Date: 2019-12-25 22:34:39 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 14049 148
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
---|---|---|---|---|---|---|
SD:pam | 6 | 1.000 | 0.974 | 0.983 | ** | 2,3,5 |
SD:NMF | 5 | 1.000 | 0.975 | 0.988 | ** | 2,4 |
CV:mclust | 2 | 1.000 | 1.000 | 1.000 | ** | |
MAD:pam | 6 | 1.000 | 1.000 | 1.000 | ** | 2,3,5 |
ATC:hclust | 6 | 1.000 | 0.988 | 0.990 | ** | 3,4 |
ATC:pam | 6 | 1.000 | 0.989 | 0.994 | ** | 2,5 |
ATC:mclust | 6 | 1.000 | 1.000 | 1.000 | ** | 2,5 |
ATC:NMF | 3 | 1.000 | 0.965 | 0.981 | ** | 2 |
CV:NMF | 6 | 0.964 | 0.942 | 0.947 | ** | 2,3,5 |
SD:mclust | 6 | 0.961 | 0.975 | 0.954 | ** | 2,4,5 |
MAD:mclust | 6 | 0.956 | 0.969 | 0.952 | ** | 2,5 |
ATC:skmeans | 4 | 0.950 | 0.960 | 0.968 | ** | 2,3 |
CV:pam | 6 | 0.940 | 0.916 | 0.933 | * | 2,3,4,5 |
CV:hclust | 6 | 0.938 | 0.958 | 0.969 | * | |
CV:skmeans | 6 | 0.934 | 0.867 | 0.882 | * | 5 |
MAD:NMF | 6 | 0.927 | 0.830 | 0.899 | * | 2,4,5 |
SD:skmeans | 6 | 0.911 | 0.926 | 0.862 | * | 5 |
MAD:skmeans | 6 | 0.901 | 0.902 | 0.869 | * | |
MAD:hclust | 5 | 0.841 | 0.888 | 0.903 | ||
SD:hclust | 3 | 0.623 | 0.858 | 0.899 | ||
ATC:kmeans | 3 | 0.610 | 0.897 | 0.874 | ||
CV:kmeans | 4 | 0.535 | 0.716 | 0.691 | ||
SD:kmeans | 4 | 0.475 | 0.717 | 0.745 | ||
MAD:kmeans | 4 | 0.444 | 0.688 | 0.731 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 1.000 1.000 1.000 0.326 0.675 0.675
#> CV:NMF 2 1.000 1.000 1.000 0.326 0.675 0.675
#> MAD:NMF 2 1.000 1.000 1.000 0.326 0.675 0.675
#> ATC:NMF 2 1.000 1.000 1.000 0.326 0.675 0.675
#> SD:skmeans 2 0.799 0.941 0.959 0.468 0.520 0.520
#> CV:skmeans 2 0.535 0.705 0.844 0.475 0.520 0.520
#> MAD:skmeans 2 0.640 0.738 0.900 0.490 0.502 0.502
#> ATC:skmeans 2 0.904 0.932 0.964 0.498 0.501 0.501
#> SD:mclust 2 1.000 1.000 1.000 0.326 0.675 0.675
#> CV:mclust 2 1.000 1.000 1.000 0.326 0.675 0.675
#> MAD:mclust 2 1.000 1.000 1.000 0.326 0.675 0.675
#> ATC:mclust 2 1.000 1.000 1.000 0.326 0.675 0.675
#> SD:kmeans 2 0.198 0.790 0.824 0.366 0.675 0.675
#> CV:kmeans 2 0.153 0.710 0.757 0.381 0.675 0.675
#> MAD:kmeans 2 0.175 0.710 0.793 0.383 0.675 0.675
#> ATC:kmeans 2 0.300 0.701 0.773 0.365 0.579 0.579
#> SD:pam 2 1.000 1.000 1.000 0.326 0.675 0.675
#> CV:pam 2 1.000 1.000 1.000 0.326 0.675 0.675
#> MAD:pam 2 1.000 1.000 1.000 0.326 0.675 0.675
#> ATC:pam 2 1.000 1.000 1.000 0.326 0.675 0.675
#> SD:hclust 2 0.579 0.755 0.869 0.246 0.828 0.828
#> CV:hclust 2 0.198 0.748 0.784 0.384 0.520 0.520
#> MAD:hclust 2 0.259 0.815 0.791 0.389 0.515 0.515
#> ATC:hclust 2 0.579 0.783 0.881 0.234 0.828 0.828
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 0.716 0.824 0.894 0.891 0.686 0.534
#> CV:NMF 3 1.000 0.962 0.984 0.778 0.757 0.640
#> MAD:NMF 3 0.762 0.923 0.947 0.943 0.686 0.534
#> ATC:NMF 3 1.000 0.965 0.981 0.869 0.710 0.570
#> SD:skmeans 3 0.672 0.801 0.874 0.368 0.647 0.428
#> CV:skmeans 3 0.724 0.869 0.923 0.316 0.609 0.403
#> MAD:skmeans 3 0.701 0.867 0.904 0.313 0.759 0.563
#> ATC:skmeans 3 1.000 1.000 1.000 0.286 0.859 0.719
#> SD:mclust 3 0.768 0.926 0.955 0.799 0.757 0.640
#> CV:mclust 3 0.616 0.782 0.856 0.862 0.757 0.640
#> MAD:mclust 3 0.809 0.844 0.908 0.836 0.757 0.640
#> ATC:mclust 3 0.585 0.885 0.870 0.830 0.585 0.418
#> SD:kmeans 3 0.401 0.490 0.712 0.569 0.680 0.526
#> CV:kmeans 3 0.243 0.675 0.756 0.510 0.724 0.592
#> MAD:kmeans 3 0.312 0.635 0.695 0.498 0.686 0.534
#> ATC:kmeans 3 0.610 0.897 0.874 0.585 0.686 0.499
#> SD:pam 3 1.000 0.985 0.993 0.759 0.757 0.640
#> CV:pam 3 1.000 0.971 0.987 0.771 0.757 0.640
#> MAD:pam 3 1.000 0.978 0.990 0.765 0.757 0.640
#> ATC:pam 3 0.835 0.842 0.941 0.964 0.681 0.527
#> SD:hclust 3 0.623 0.858 0.899 1.084 0.713 0.653
#> CV:hclust 3 0.569 0.775 0.846 0.486 0.923 0.852
#> MAD:hclust 3 0.419 0.887 0.836 0.548 0.840 0.689
#> ATC:hclust 3 1.000 1.000 1.000 0.962 0.713 0.653
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 1.000 0.957 0.974 0.1708 0.724 0.397
#> CV:NMF 4 0.769 0.833 0.873 0.2560 0.846 0.642
#> MAD:NMF 4 0.974 0.926 0.965 0.1393 0.742 0.426
#> ATC:NMF 4 0.865 0.825 0.929 0.1765 0.796 0.526
#> SD:skmeans 4 0.745 0.843 0.893 0.1413 0.724 0.397
#> CV:skmeans 4 0.759 0.672 0.710 0.1720 0.807 0.554
#> MAD:skmeans 4 0.724 0.659 0.804 0.1407 0.726 0.383
#> ATC:skmeans 4 0.950 0.960 0.968 0.0838 0.950 0.862
#> SD:mclust 4 1.000 0.998 0.999 0.2324 0.846 0.642
#> CV:mclust 4 0.741 0.825 0.877 0.1953 0.840 0.630
#> MAD:mclust 4 0.763 0.695 0.841 0.2109 0.822 0.588
#> ATC:mclust 4 0.765 0.903 0.923 0.1880 0.905 0.731
#> SD:kmeans 4 0.475 0.717 0.745 0.1813 0.739 0.416
#> CV:kmeans 4 0.535 0.716 0.691 0.2111 0.807 0.554
#> MAD:kmeans 4 0.444 0.688 0.731 0.1976 0.724 0.397
#> ATC:kmeans 4 0.609 0.804 0.815 0.1539 0.890 0.714
#> SD:pam 4 0.839 0.910 0.918 0.2589 0.840 0.630
#> CV:pam 4 0.962 0.960 0.980 0.2710 0.840 0.630
#> MAD:pam 4 0.735 0.678 0.869 0.2602 0.822 0.588
#> ATC:pam 4 0.876 0.893 0.956 0.1018 0.852 0.629
#> SD:hclust 4 0.739 0.728 0.868 0.3705 0.796 0.623
#> CV:hclust 4 0.831 0.859 0.910 0.2609 0.835 0.626
#> MAD:hclust 4 0.765 0.853 0.864 0.1776 0.943 0.840
#> ATC:hclust 4 1.000 1.000 1.000 0.5273 0.757 0.551
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 1.000 0.975 0.988 0.1141 0.917 0.702
#> CV:NMF 5 1.000 1.000 1.000 0.1061 0.917 0.702
#> MAD:NMF 5 0.932 0.898 0.951 0.1101 0.902 0.659
#> ATC:NMF 5 0.872 0.886 0.928 0.0802 0.866 0.573
#> SD:skmeans 5 0.904 0.959 0.962 0.1004 0.917 0.702
#> CV:skmeans 5 0.977 0.965 0.965 0.0953 0.923 0.716
#> MAD:skmeans 5 0.865 0.864 0.862 0.0941 0.899 0.634
#> ATC:skmeans 5 0.854 0.898 0.855 0.1006 0.898 0.672
#> SD:mclust 5 1.000 0.990 0.990 0.1136 0.917 0.702
#> CV:mclust 5 0.811 0.774 0.808 0.0945 0.941 0.782
#> MAD:mclust 5 1.000 0.990 0.993 0.1100 0.899 0.634
#> ATC:mclust 5 0.905 0.960 0.963 0.1247 0.917 0.702
#> SD:kmeans 5 0.626 0.666 0.685 0.1081 1.000 1.000
#> CV:kmeans 5 0.659 0.786 0.720 0.0718 0.929 0.737
#> MAD:kmeans 5 0.621 0.665 0.713 0.0917 1.000 1.000
#> ATC:kmeans 5 0.632 0.797 0.739 0.1069 0.874 0.603
#> SD:pam 5 0.963 0.928 0.968 0.1040 0.857 0.536
#> CV:pam 5 1.000 0.973 0.985 0.0898 0.929 0.737
#> MAD:pam 5 1.000 0.987 0.992 0.0996 0.855 0.518
#> ATC:pam 5 1.000 0.983 0.993 0.1177 0.854 0.551
#> SD:hclust 5 0.816 0.814 0.860 0.1091 0.879 0.640
#> CV:hclust 5 0.899 0.957 0.877 0.0861 0.917 0.702
#> MAD:hclust 5 0.841 0.888 0.903 0.1103 0.917 0.722
#> ATC:hclust 5 0.879 0.889 0.863 0.0825 0.961 0.870
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.978 0.905 0.902 0.0220 1.000 1.000
#> CV:NMF 6 0.964 0.942 0.947 0.0199 0.986 0.931
#> MAD:NMF 6 0.927 0.830 0.899 0.0285 0.972 0.861
#> ATC:NMF 6 0.876 0.788 0.868 0.0510 0.944 0.757
#> SD:skmeans 6 0.911 0.926 0.862 0.0262 0.979 0.894
#> CV:skmeans 6 0.934 0.867 0.882 0.0274 0.986 0.931
#> MAD:skmeans 6 0.901 0.902 0.869 0.0274 0.979 0.894
#> ATC:skmeans 6 0.818 0.913 0.873 0.0545 0.981 0.908
#> SD:mclust 6 0.961 0.975 0.954 0.0232 0.982 0.907
#> CV:mclust 6 0.802 0.783 0.777 0.0258 0.958 0.800
#> MAD:mclust 6 0.956 0.969 0.952 0.0231 0.982 0.907
#> ATC:mclust 6 1.000 1.000 1.000 0.0325 0.982 0.907
#> SD:kmeans 6 0.682 0.595 0.640 0.0522 0.895 0.659
#> CV:kmeans 6 0.702 0.746 0.745 0.0623 1.000 1.000
#> MAD:kmeans 6 0.718 0.688 0.710 0.0606 0.917 0.702
#> ATC:kmeans 6 0.665 0.768 0.743 0.0566 0.957 0.816
#> SD:pam 6 1.000 0.974 0.983 0.0411 0.959 0.800
#> CV:pam 6 0.940 0.916 0.933 0.0344 0.970 0.849
#> MAD:pam 6 1.000 1.000 1.000 0.0403 0.959 0.800
#> ATC:pam 6 1.000 0.989 0.994 0.0403 0.970 0.856
#> SD:hclust 6 0.899 0.782 0.868 0.0532 0.961 0.821
#> CV:hclust 6 0.938 0.958 0.969 0.0451 0.982 0.907
#> MAD:hclust 6 0.899 0.904 0.926 0.0438 0.961 0.821
#> ATC:hclust 6 1.000 0.988 0.990 0.0838 0.917 0.681
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.579 0.755 0.869 0.2464 0.828 0.828
#> 3 3 0.623 0.858 0.899 1.0844 0.713 0.653
#> 4 4 0.739 0.728 0.868 0.3705 0.796 0.623
#> 5 5 0.816 0.814 0.860 0.1091 0.879 0.640
#> 6 6 0.899 0.782 0.868 0.0532 0.961 0.821
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.000 0.821 0.00 1.00
#> ERR978108 2 0.000 0.821 0.00 1.00
#> ERR978109 2 0.000 0.821 0.00 1.00
#> ERR978110 2 0.000 0.821 0.00 1.00
#> ERR978111 2 0.000 0.821 0.00 1.00
#> ERR978112 2 0.000 0.821 0.00 1.00
#> ERR978113 2 0.000 0.821 0.00 1.00
#> ERR978114 2 0.000 0.821 0.00 1.00
#> ERR978115 2 0.000 0.821 0.00 1.00
#> ERR978116 2 0.000 0.821 0.00 1.00
#> ERR978117 2 0.000 0.821 0.00 1.00
#> ERR978118 2 0.000 0.821 0.00 1.00
#> ERR978119 2 0.000 0.821 0.00 1.00
#> ERR978120 2 0.000 0.821 0.00 1.00
#> ERR978121 2 0.000 0.821 0.00 1.00
#> ERR978122 2 0.000 0.821 0.00 1.00
#> ERR978123 2 0.242 0.803 0.04 0.96
#> ERR978124 2 0.242 0.803 0.04 0.96
#> ERR978125 2 0.242 0.803 0.04 0.96
#> ERR978126 2 0.242 0.803 0.04 0.96
#> ERR978127 2 0.242 0.803 0.04 0.96
#> ERR978128 2 0.242 0.803 0.04 0.96
#> ERR978129 2 0.242 0.803 0.04 0.96
#> ERR978130 2 0.242 0.803 0.04 0.96
#> ERR978131 2 0.242 0.803 0.04 0.96
#> ERR978132 2 0.242 0.803 0.04 0.96
#> ERR978133 2 0.242 0.803 0.04 0.96
#> ERR978134 2 0.242 0.803 0.04 0.96
#> ERR978135 2 0.242 0.803 0.04 0.96
#> ERR978136 2 0.242 0.803 0.04 0.96
#> ERR978137 2 0.242 0.803 0.04 0.96
#> ERR978138 2 0.242 0.803 0.04 0.96
#> ERR978139 2 0.242 0.803 0.04 0.96
#> ERR978140 2 0.242 0.803 0.04 0.96
#> ERR978141 2 0.242 0.803 0.04 0.96
#> ERR978142 2 0.242 0.803 0.04 0.96
#> ERR978143 2 0.242 0.803 0.04 0.96
#> ERR978144 2 0.242 0.803 0.04 0.96
#> ERR978145 2 0.242 0.803 0.04 0.96
#> ERR978146 2 0.242 0.803 0.04 0.96
#> ERR978147 2 0.242 0.803 0.04 0.96
#> ERR978148 2 0.242 0.803 0.04 0.96
#> ERR978149 2 0.242 0.803 0.04 0.96
#> ERR978150 2 0.242 0.803 0.04 0.96
#> ERR978151 2 0.242 0.803 0.04 0.96
#> ERR978152 2 0.242 0.803 0.04 0.96
#> ERR978153 2 0.971 0.440 0.40 0.60
#> ERR978154 2 0.971 0.440 0.40 0.60
#> ERR978155 2 0.971 0.440 0.40 0.60
#> ERR978156 2 0.971 0.440 0.40 0.60
#> ERR978157 2 0.971 0.440 0.40 0.60
#> ERR978158 2 0.971 0.440 0.40 0.60
#> ERR978159 2 0.971 0.440 0.40 0.60
#> ERR978160 2 0.971 0.440 0.40 0.60
#> ERR978161 2 0.971 0.440 0.40 0.60
#> ERR978162 2 0.971 0.440 0.40 0.60
#> ERR978163 2 0.971 0.440 0.40 0.60
#> ERR978164 2 0.971 0.440 0.40 0.60
#> ERR978165 2 0.971 0.440 0.40 0.60
#> ERR978166 2 0.971 0.440 0.40 0.60
#> ERR978167 2 0.971 0.440 0.40 0.60
#> ERR978168 2 0.971 0.440 0.40 0.60
#> ERR978169 1 0.971 1.000 0.60 0.40
#> ERR978170 1 0.971 1.000 0.60 0.40
#> ERR978171 1 0.971 1.000 0.60 0.40
#> ERR978172 1 0.971 1.000 0.60 0.40
#> ERR978173 1 0.971 1.000 0.60 0.40
#> ERR978174 1 0.971 1.000 0.60 0.40
#> ERR978175 1 0.971 1.000 0.60 0.40
#> ERR978176 1 0.971 1.000 0.60 0.40
#> ERR978177 1 0.971 1.000 0.60 0.40
#> ERR978178 1 0.971 1.000 0.60 0.40
#> ERR978179 1 0.971 1.000 0.60 0.40
#> ERR978180 1 0.971 1.000 0.60 0.40
#> ERR978181 1 0.971 1.000 0.60 0.40
#> ERR978182 1 0.971 1.000 0.60 0.40
#> ERR978183 2 0.000 0.821 0.00 1.00
#> ERR978184 2 0.000 0.821 0.00 1.00
#> ERR978185 2 0.000 0.821 0.00 1.00
#> ERR978186 2 0.000 0.821 0.00 1.00
#> ERR978187 2 0.000 0.821 0.00 1.00
#> ERR978188 2 0.000 0.821 0.00 1.00
#> ERR978189 2 0.000 0.821 0.00 1.00
#> ERR978190 2 0.000 0.821 0.00 1.00
#> ERR978191 2 0.000 0.821 0.00 1.00
#> ERR978192 2 0.000 0.821 0.00 1.00
#> ERR978193 2 0.000 0.821 0.00 1.00
#> ERR978194 2 0.000 0.821 0.00 1.00
#> ERR978195 2 0.000 0.821 0.00 1.00
#> ERR978196 2 0.000 0.821 0.00 1.00
#> ERR978197 2 0.000 0.821 0.00 1.00
#> ERR978198 2 0.000 0.821 0.00 1.00
#> ERR978199 2 0.000 0.821 0.00 1.00
#> ERR978200 2 0.000 0.821 0.00 1.00
#> ERR978201 2 0.000 0.821 0.00 1.00
#> ERR978202 2 0.000 0.821 0.00 1.00
#> ERR978203 2 0.000 0.821 0.00 1.00
#> ERR978204 2 0.000 0.821 0.00 1.00
#> ERR978205 2 0.000 0.821 0.00 1.00
#> ERR978206 2 0.000 0.821 0.00 1.00
#> ERR978207 2 0.000 0.821 0.00 1.00
#> ERR978208 2 0.000 0.821 0.00 1.00
#> ERR978209 2 0.000 0.821 0.00 1.00
#> ERR978210 2 0.000 0.821 0.00 1.00
#> ERR978211 2 0.000 0.821 0.00 1.00
#> ERR978212 2 0.000 0.821 0.00 1.00
#> ERR978213 2 0.000 0.821 0.00 1.00
#> ERR978214 2 0.000 0.821 0.00 1.00
#> ERR978215 2 0.000 0.821 0.00 1.00
#> ERR978216 2 0.000 0.821 0.00 1.00
#> ERR978217 2 0.000 0.821 0.00 1.00
#> ERR978218 2 0.000 0.821 0.00 1.00
#> ERR978219 2 0.000 0.821 0.00 1.00
#> ERR978220 2 0.000 0.821 0.00 1.00
#> ERR978221 2 0.000 0.821 0.00 1.00
#> ERR978222 2 0.000 0.821 0.00 1.00
#> ERR978223 2 0.000 0.821 0.00 1.00
#> ERR978224 2 0.000 0.821 0.00 1.00
#> ERR978225 2 0.000 0.821 0.00 1.00
#> ERR978226 2 0.000 0.821 0.00 1.00
#> ERR978227 2 0.971 0.440 0.40 0.60
#> ERR978228 2 0.971 0.440 0.40 0.60
#> ERR978229 2 0.971 0.440 0.40 0.60
#> ERR978230 2 0.971 0.440 0.40 0.60
#> ERR978231 2 0.971 0.440 0.40 0.60
#> ERR978232 2 0.971 0.440 0.40 0.60
#> ERR978233 2 0.971 0.440 0.40 0.60
#> ERR978234 2 0.971 0.440 0.40 0.60
#> ERR978235 2 0.971 0.440 0.40 0.60
#> ERR978236 2 0.971 0.440 0.40 0.60
#> ERR978237 2 0.971 0.440 0.40 0.60
#> ERR978238 2 0.971 0.440 0.40 0.60
#> ERR978239 2 0.971 0.440 0.40 0.60
#> ERR978240 2 0.971 0.440 0.40 0.60
#> ERR978241 2 0.242 0.803 0.04 0.96
#> ERR978242 2 0.242 0.803 0.04 0.96
#> ERR978243 2 0.242 0.803 0.04 0.96
#> ERR978244 2 0.242 0.803 0.04 0.96
#> ERR978245 2 0.242 0.803 0.04 0.96
#> ERR978246 2 0.242 0.803 0.04 0.96
#> ERR978247 2 0.242 0.803 0.04 0.96
#> ERR978248 2 0.242 0.803 0.04 0.96
#> ERR978249 2 0.242 0.803 0.04 0.96
#> ERR978250 2 0.242 0.803 0.04 0.96
#> ERR978251 2 0.242 0.803 0.04 0.96
#> ERR978252 2 0.242 0.803 0.04 0.96
#> ERR978253 2 0.242 0.803 0.04 0.96
#> ERR978254 2 0.242 0.803 0.04 0.96
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.394 0.798 0.000 0.844 0.156
#> ERR978108 2 0.394 0.798 0.000 0.844 0.156
#> ERR978109 2 0.394 0.798 0.000 0.844 0.156
#> ERR978110 2 0.394 0.798 0.000 0.844 0.156
#> ERR978111 2 0.394 0.798 0.000 0.844 0.156
#> ERR978112 2 0.394 0.798 0.000 0.844 0.156
#> ERR978113 2 0.394 0.798 0.000 0.844 0.156
#> ERR978114 2 0.394 0.798 0.000 0.844 0.156
#> ERR978115 2 0.394 0.798 0.000 0.844 0.156
#> ERR978116 2 0.394 0.798 0.000 0.844 0.156
#> ERR978117 2 0.394 0.798 0.000 0.844 0.156
#> ERR978118 2 0.394 0.798 0.000 0.844 0.156
#> ERR978119 2 0.394 0.798 0.000 0.844 0.156
#> ERR978120 2 0.394 0.798 0.000 0.844 0.156
#> ERR978121 2 0.394 0.798 0.000 0.844 0.156
#> ERR978122 2 0.394 0.798 0.000 0.844 0.156
#> ERR978123 2 0.337 0.839 0.024 0.904 0.072
#> ERR978124 2 0.337 0.839 0.024 0.904 0.072
#> ERR978125 2 0.337 0.839 0.024 0.904 0.072
#> ERR978126 2 0.337 0.839 0.024 0.904 0.072
#> ERR978127 2 0.337 0.839 0.024 0.904 0.072
#> ERR978128 2 0.337 0.839 0.024 0.904 0.072
#> ERR978129 2 0.337 0.839 0.024 0.904 0.072
#> ERR978130 2 0.337 0.839 0.024 0.904 0.072
#> ERR978131 2 0.337 0.839 0.024 0.904 0.072
#> ERR978132 2 0.337 0.839 0.024 0.904 0.072
#> ERR978133 2 0.337 0.839 0.024 0.904 0.072
#> ERR978134 2 0.337 0.839 0.024 0.904 0.072
#> ERR978135 2 0.337 0.839 0.024 0.904 0.072
#> ERR978136 2 0.337 0.839 0.024 0.904 0.072
#> ERR978137 2 0.337 0.839 0.024 0.904 0.072
#> ERR978138 2 0.255 0.851 0.024 0.936 0.040
#> ERR978139 2 0.255 0.851 0.024 0.936 0.040
#> ERR978140 2 0.255 0.851 0.024 0.936 0.040
#> ERR978141 2 0.255 0.851 0.024 0.936 0.040
#> ERR978142 2 0.255 0.851 0.024 0.936 0.040
#> ERR978143 2 0.255 0.851 0.024 0.936 0.040
#> ERR978144 2 0.255 0.851 0.024 0.936 0.040
#> ERR978145 2 0.255 0.851 0.024 0.936 0.040
#> ERR978146 2 0.255 0.851 0.024 0.936 0.040
#> ERR978147 2 0.255 0.851 0.024 0.936 0.040
#> ERR978148 2 0.255 0.851 0.024 0.936 0.040
#> ERR978149 2 0.255 0.851 0.024 0.936 0.040
#> ERR978150 2 0.255 0.851 0.024 0.936 0.040
#> ERR978151 2 0.255 0.851 0.024 0.936 0.040
#> ERR978152 2 0.255 0.851 0.024 0.936 0.040
#> ERR978153 1 0.000 1.000 1.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1.000 0.000 0.000
#> ERR978169 3 0.394 1.000 0.000 0.156 0.844
#> ERR978170 3 0.394 1.000 0.000 0.156 0.844
#> ERR978171 3 0.394 1.000 0.000 0.156 0.844
#> ERR978172 3 0.394 1.000 0.000 0.156 0.844
#> ERR978173 3 0.394 1.000 0.000 0.156 0.844
#> ERR978174 3 0.394 1.000 0.000 0.156 0.844
#> ERR978175 3 0.394 1.000 0.000 0.156 0.844
#> ERR978176 3 0.394 1.000 0.000 0.156 0.844
#> ERR978177 3 0.394 1.000 0.000 0.156 0.844
#> ERR978178 3 0.394 1.000 0.000 0.156 0.844
#> ERR978179 3 0.394 1.000 0.000 0.156 0.844
#> ERR978180 3 0.394 1.000 0.000 0.156 0.844
#> ERR978181 3 0.394 1.000 0.000 0.156 0.844
#> ERR978182 3 0.394 1.000 0.000 0.156 0.844
#> ERR978183 2 0.394 0.798 0.000 0.844 0.156
#> ERR978184 2 0.394 0.798 0.000 0.844 0.156
#> ERR978185 2 0.394 0.798 0.000 0.844 0.156
#> ERR978186 2 0.394 0.798 0.000 0.844 0.156
#> ERR978187 2 0.394 0.798 0.000 0.844 0.156
#> ERR978188 2 0.394 0.798 0.000 0.844 0.156
#> ERR978189 2 0.394 0.798 0.000 0.844 0.156
#> ERR978190 2 0.394 0.798 0.000 0.844 0.156
#> ERR978191 2 0.394 0.798 0.000 0.844 0.156
#> ERR978192 2 0.394 0.798 0.000 0.844 0.156
#> ERR978193 2 0.394 0.798 0.000 0.844 0.156
#> ERR978194 2 0.394 0.798 0.000 0.844 0.156
#> ERR978195 2 0.394 0.798 0.000 0.844 0.156
#> ERR978196 2 0.394 0.798 0.000 0.844 0.156
#> ERR978197 2 0.129 0.857 0.000 0.968 0.032
#> ERR978198 2 0.129 0.857 0.000 0.968 0.032
#> ERR978199 2 0.129 0.857 0.000 0.968 0.032
#> ERR978200 2 0.129 0.857 0.000 0.968 0.032
#> ERR978201 2 0.129 0.857 0.000 0.968 0.032
#> ERR978202 2 0.129 0.857 0.000 0.968 0.032
#> ERR978203 2 0.129 0.857 0.000 0.968 0.032
#> ERR978204 2 0.129 0.857 0.000 0.968 0.032
#> ERR978205 2 0.129 0.857 0.000 0.968 0.032
#> ERR978206 2 0.129 0.857 0.000 0.968 0.032
#> ERR978207 2 0.129 0.857 0.000 0.968 0.032
#> ERR978208 2 0.129 0.857 0.000 0.968 0.032
#> ERR978209 2 0.129 0.857 0.000 0.968 0.032
#> ERR978210 2 0.129 0.857 0.000 0.968 0.032
#> ERR978211 2 0.129 0.857 0.000 0.968 0.032
#> ERR978212 2 0.000 0.858 0.000 1.000 0.000
#> ERR978213 2 0.000 0.858 0.000 1.000 0.000
#> ERR978214 2 0.000 0.858 0.000 1.000 0.000
#> ERR978215 2 0.000 0.858 0.000 1.000 0.000
#> ERR978216 2 0.000 0.858 0.000 1.000 0.000
#> ERR978217 2 0.000 0.858 0.000 1.000 0.000
#> ERR978218 2 0.000 0.858 0.000 1.000 0.000
#> ERR978219 2 0.000 0.858 0.000 1.000 0.000
#> ERR978220 2 0.000 0.858 0.000 1.000 0.000
#> ERR978221 2 0.000 0.858 0.000 1.000 0.000
#> ERR978222 2 0.000 0.858 0.000 1.000 0.000
#> ERR978223 2 0.000 0.858 0.000 1.000 0.000
#> ERR978224 2 0.000 0.858 0.000 1.000 0.000
#> ERR978225 2 0.000 0.858 0.000 1.000 0.000
#> ERR978226 2 0.000 0.858 0.000 1.000 0.000
#> ERR978227 1 0.000 1.000 1.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1.000 0.000 0.000
#> ERR978241 2 0.639 0.572 0.024 0.692 0.284
#> ERR978242 2 0.639 0.572 0.024 0.692 0.284
#> ERR978243 2 0.639 0.572 0.024 0.692 0.284
#> ERR978244 2 0.639 0.572 0.024 0.692 0.284
#> ERR978245 2 0.639 0.572 0.024 0.692 0.284
#> ERR978246 2 0.639 0.572 0.024 0.692 0.284
#> ERR978247 2 0.639 0.572 0.024 0.692 0.284
#> ERR978248 2 0.639 0.572 0.024 0.692 0.284
#> ERR978249 2 0.639 0.572 0.024 0.692 0.284
#> ERR978250 2 0.639 0.572 0.024 0.692 0.284
#> ERR978251 2 0.639 0.572 0.024 0.692 0.284
#> ERR978252 2 0.639 0.572 0.024 0.692 0.284
#> ERR978253 2 0.639 0.572 0.024 0.692 0.284
#> ERR978254 2 0.639 0.572 0.024 0.692 0.284
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978123 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978124 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978125 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978126 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978127 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978128 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978129 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978130 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978131 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978132 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978133 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978134 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978135 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978136 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978137 3 0.000 0.645 0 0.000 1.000 0.0
#> ERR978138 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978139 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978140 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978141 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978142 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978143 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978144 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978145 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978146 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978147 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978148 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978149 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978150 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978151 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978152 3 0.102 0.651 0 0.032 0.968 0.0
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978169 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978170 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978171 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978172 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978173 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978174 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978175 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978176 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978177 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978178 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978179 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978180 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978181 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978182 4 0.000 1.000 0 0.000 0.000 1.0
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.0
#> ERR978197 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978198 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978199 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978200 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978201 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978202 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978203 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978204 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978205 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978206 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978207 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978208 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978209 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978210 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978211 3 0.492 0.430 0 0.424 0.576 0.0
#> ERR978212 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978213 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978214 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978215 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978216 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978217 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978218 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978219 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978220 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978221 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978222 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978223 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978224 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978225 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978226 3 0.499 0.386 0 0.472 0.528 0.0
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.0
#> ERR978241 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978242 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978243 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978244 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978245 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978246 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978247 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978248 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978249 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978250 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978251 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978252 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978253 3 0.485 0.145 0 0.000 0.600 0.4
#> ERR978254 3 0.485 0.145 0 0.000 0.600 0.4
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978124 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978125 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978126 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978127 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978128 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978129 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978130 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978131 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978132 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978133 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978134 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978135 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978136 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978137 3 0.431 0.608 0 0.000 0.508 0.000 0.492
#> ERR978138 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978139 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978140 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978141 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978142 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978143 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978144 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978145 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978146 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978147 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978148 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978149 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978150 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978151 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978152 3 0.337 0.634 0 0.000 0.768 0.000 0.232
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.307 0.902 0 0.000 0.196 0.804 0.000
#> ERR978170 4 0.307 0.902 0 0.000 0.196 0.804 0.000
#> ERR978171 4 0.307 0.902 0 0.000 0.196 0.804 0.000
#> ERR978172 4 0.307 0.902 0 0.000 0.196 0.804 0.000
#> ERR978173 4 0.307 0.902 0 0.000 0.196 0.804 0.000
#> ERR978174 4 0.307 0.902 0 0.000 0.196 0.804 0.000
#> ERR978175 4 0.307 0.902 0 0.000 0.196 0.804 0.000
#> ERR978176 4 0.000 0.902 0 0.000 0.000 1.000 0.000
#> ERR978177 4 0.000 0.902 0 0.000 0.000 1.000 0.000
#> ERR978178 4 0.000 0.902 0 0.000 0.000 1.000 0.000
#> ERR978179 4 0.000 0.902 0 0.000 0.000 1.000 0.000
#> ERR978180 4 0.000 0.902 0 0.000 0.000 1.000 0.000
#> ERR978181 4 0.000 0.902 0 0.000 0.000 1.000 0.000
#> ERR978182 4 0.000 0.902 0 0.000 0.000 1.000 0.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978197 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978198 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978199 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978200 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978201 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978202 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978203 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978204 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978205 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978206 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978207 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978208 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978209 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978210 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978211 5 0.000 0.765 0 0.000 0.000 0.000 1.000
#> ERR978212 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978213 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978214 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978215 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978216 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978217 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978218 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978219 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978220 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978221 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978222 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978223 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978224 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978225 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978226 5 0.425 0.765 0 0.016 0.296 0.000 0.688
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 3 0.342 0.443 0 0.000 0.788 0.204 0.008
#> ERR978242 3 0.342 0.443 0 0.000 0.788 0.204 0.008
#> ERR978243 3 0.342 0.443 0 0.000 0.788 0.204 0.008
#> ERR978244 3 0.342 0.443 0 0.000 0.788 0.204 0.008
#> ERR978245 3 0.342 0.443 0 0.000 0.788 0.204 0.008
#> ERR978246 3 0.342 0.443 0 0.000 0.788 0.204 0.008
#> ERR978247 3 0.342 0.443 0 0.000 0.788 0.204 0.008
#> ERR978248 3 0.445 0.443 0 0.000 0.592 0.400 0.008
#> ERR978249 3 0.445 0.443 0 0.000 0.592 0.400 0.008
#> ERR978250 3 0.445 0.443 0 0.000 0.592 0.400 0.008
#> ERR978251 3 0.445 0.443 0 0.000 0.592 0.400 0.008
#> ERR978252 3 0.445 0.443 0 0.000 0.592 0.400 0.008
#> ERR978253 3 0.445 0.443 0 0.000 0.592 0.400 0.008
#> ERR978254 3 0.445 0.443 0 0.000 0.592 0.400 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978108 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978109 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978110 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978111 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978112 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978113 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978114 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978115 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978116 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978117 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978118 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978119 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978120 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978121 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978122 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978123 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978124 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978125 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978126 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978127 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978128 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978129 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978130 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978131 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978132 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978133 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978134 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978135 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978136 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978137 3 0.000 0.630 0 0 1.000 0.0 0.000 0.0
#> ERR978138 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978139 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978140 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978141 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978142 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978143 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978144 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978145 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978146 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978147 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978148 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978149 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978150 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978151 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978152 3 0.382 0.627 0 0 0.564 0.0 0.436 0.0
#> ERR978153 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978154 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978155 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978156 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978157 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978158 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978159 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978160 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978161 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978162 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978163 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978164 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978165 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978166 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978167 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978168 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978169 4 0.000 0.674 0 0 0.000 1.0 0.000 0.0
#> ERR978170 4 0.000 0.674 0 0 0.000 1.0 0.000 0.0
#> ERR978171 4 0.000 0.674 0 0 0.000 1.0 0.000 0.0
#> ERR978172 4 0.000 0.674 0 0 0.000 1.0 0.000 0.0
#> ERR978173 4 0.000 0.674 0 0 0.000 1.0 0.000 0.0
#> ERR978174 4 0.000 0.674 0 0 0.000 1.0 0.000 0.0
#> ERR978175 4 0.000 0.674 0 0 0.000 1.0 0.000 0.0
#> ERR978176 4 0.376 0.674 0 0 0.000 0.6 0.000 0.4
#> ERR978177 4 0.376 0.674 0 0 0.000 0.6 0.000 0.4
#> ERR978178 4 0.376 0.674 0 0 0.000 0.6 0.000 0.4
#> ERR978179 4 0.376 0.674 0 0 0.000 0.6 0.000 0.4
#> ERR978180 4 0.376 0.674 0 0 0.000 0.6 0.000 0.4
#> ERR978181 4 0.376 0.674 0 0 0.000 0.6 0.000 0.4
#> ERR978182 4 0.376 0.674 0 0 0.000 0.6 0.000 0.4
#> ERR978183 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978184 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978185 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978186 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978187 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978188 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978189 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978190 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978191 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978192 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978193 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978194 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978195 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978196 2 0.000 1.000 0 1 0.000 0.0 0.000 0.0
#> ERR978197 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978198 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978199 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978200 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978201 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978202 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978203 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978204 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978205 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978206 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978207 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978208 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978209 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978210 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978211 5 0.387 0.590 0 0 0.492 0.0 0.508 0.0
#> ERR978212 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978213 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978214 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978215 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978216 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978217 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978218 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978219 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978220 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978221 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978222 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978223 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978224 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978225 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978226 5 0.000 0.613 0 0 0.000 0.0 1.000 0.0
#> ERR978227 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978228 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978229 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978230 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978231 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978232 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978233 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978234 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978235 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978236 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978237 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978238 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978239 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978240 1 0.000 1.000 1 0 0.000 0.0 0.000 0.0
#> ERR978241 6 0.376 0.674 0 0 0.000 0.4 0.000 0.6
#> ERR978242 6 0.376 0.674 0 0 0.000 0.4 0.000 0.6
#> ERR978243 6 0.376 0.674 0 0 0.000 0.4 0.000 0.6
#> ERR978244 6 0.376 0.674 0 0 0.000 0.4 0.000 0.6
#> ERR978245 6 0.376 0.674 0 0 0.000 0.4 0.000 0.6
#> ERR978246 6 0.376 0.674 0 0 0.000 0.4 0.000 0.6
#> ERR978247 6 0.376 0.674 0 0 0.000 0.4 0.000 0.6
#> ERR978248 6 0.000 0.674 0 0 0.000 0.0 0.000 1.0
#> ERR978249 6 0.000 0.674 0 0 0.000 0.0 0.000 1.0
#> ERR978250 6 0.000 0.674 0 0 0.000 0.0 0.000 1.0
#> ERR978251 6 0.000 0.674 0 0 0.000 0.0 0.000 1.0
#> ERR978252 6 0.000 0.674 0 0 0.000 0.0 0.000 1.0
#> ERR978253 6 0.000 0.674 0 0 0.000 0.0 0.000 1.0
#> ERR978254 6 0.000 0.674 0 0 0.000 0.0 0.000 1.0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.198 0.790 0.824 0.3663 0.675 0.675
#> 3 3 0.401 0.490 0.712 0.5691 0.680 0.526
#> 4 4 0.475 0.717 0.745 0.1813 0.739 0.416
#> 5 5 0.626 0.666 0.685 0.1081 1.000 1.000
#> 6 6 0.682 0.595 0.640 0.0522 0.895 0.659
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.278 0.732 0.048 0.952
#> ERR978108 2 0.278 0.732 0.048 0.952
#> ERR978109 2 0.278 0.732 0.048 0.952
#> ERR978110 2 0.278 0.732 0.048 0.952
#> ERR978111 2 0.278 0.732 0.048 0.952
#> ERR978112 2 0.278 0.732 0.048 0.952
#> ERR978113 2 0.278 0.732 0.048 0.952
#> ERR978114 2 0.278 0.732 0.048 0.952
#> ERR978115 2 0.278 0.732 0.048 0.952
#> ERR978116 2 0.278 0.732 0.048 0.952
#> ERR978117 2 0.278 0.732 0.048 0.952
#> ERR978118 2 0.278 0.732 0.048 0.952
#> ERR978119 2 0.278 0.732 0.048 0.952
#> ERR978120 2 0.278 0.732 0.048 0.952
#> ERR978121 2 0.278 0.732 0.048 0.952
#> ERR978122 2 0.278 0.732 0.048 0.952
#> ERR978123 2 0.886 0.746 0.304 0.696
#> ERR978124 2 0.886 0.746 0.304 0.696
#> ERR978125 2 0.886 0.746 0.304 0.696
#> ERR978126 2 0.886 0.746 0.304 0.696
#> ERR978127 2 0.886 0.746 0.304 0.696
#> ERR978128 2 0.886 0.746 0.304 0.696
#> ERR978129 2 0.886 0.746 0.304 0.696
#> ERR978130 2 0.886 0.746 0.304 0.696
#> ERR978131 2 0.855 0.755 0.280 0.720
#> ERR978132 2 0.855 0.755 0.280 0.720
#> ERR978133 2 0.855 0.755 0.280 0.720
#> ERR978134 2 0.855 0.755 0.280 0.720
#> ERR978135 2 0.855 0.755 0.280 0.720
#> ERR978136 2 0.855 0.755 0.280 0.720
#> ERR978137 2 0.855 0.755 0.280 0.720
#> ERR978138 2 0.855 0.761 0.280 0.720
#> ERR978139 2 0.855 0.761 0.280 0.720
#> ERR978140 2 0.855 0.761 0.280 0.720
#> ERR978141 2 0.855 0.761 0.280 0.720
#> ERR978142 2 0.855 0.761 0.280 0.720
#> ERR978143 2 0.855 0.761 0.280 0.720
#> ERR978144 2 0.855 0.761 0.280 0.720
#> ERR978145 2 0.855 0.761 0.280 0.720
#> ERR978146 2 0.866 0.755 0.288 0.712
#> ERR978147 2 0.866 0.755 0.288 0.712
#> ERR978148 2 0.866 0.755 0.288 0.712
#> ERR978149 2 0.866 0.755 0.288 0.712
#> ERR978150 2 0.866 0.755 0.288 0.712
#> ERR978151 2 0.866 0.755 0.288 0.712
#> ERR978152 2 0.866 0.755 0.288 0.712
#> ERR978153 1 0.541 1.000 0.876 0.124
#> ERR978154 1 0.541 1.000 0.876 0.124
#> ERR978155 1 0.541 1.000 0.876 0.124
#> ERR978156 1 0.541 1.000 0.876 0.124
#> ERR978157 1 0.541 1.000 0.876 0.124
#> ERR978158 1 0.541 1.000 0.876 0.124
#> ERR978159 1 0.541 1.000 0.876 0.124
#> ERR978160 1 0.541 1.000 0.876 0.124
#> ERR978161 1 0.541 1.000 0.876 0.124
#> ERR978162 1 0.541 1.000 0.876 0.124
#> ERR978163 1 0.541 1.000 0.876 0.124
#> ERR978164 1 0.541 1.000 0.876 0.124
#> ERR978165 1 0.541 1.000 0.876 0.124
#> ERR978166 1 0.541 1.000 0.876 0.124
#> ERR978167 1 0.541 1.000 0.876 0.124
#> ERR978168 1 0.541 1.000 0.876 0.124
#> ERR978169 2 0.993 0.603 0.452 0.548
#> ERR978170 2 0.993 0.603 0.452 0.548
#> ERR978171 2 0.993 0.603 0.452 0.548
#> ERR978172 2 0.993 0.603 0.452 0.548
#> ERR978173 2 0.993 0.603 0.452 0.548
#> ERR978174 2 0.993 0.603 0.452 0.548
#> ERR978175 2 0.993 0.603 0.452 0.548
#> ERR978176 2 0.993 0.609 0.452 0.548
#> ERR978177 2 0.993 0.609 0.452 0.548
#> ERR978178 2 0.993 0.609 0.452 0.548
#> ERR978179 2 0.993 0.609 0.452 0.548
#> ERR978180 2 0.993 0.609 0.452 0.548
#> ERR978181 2 0.993 0.609 0.452 0.548
#> ERR978182 2 0.993 0.609 0.452 0.548
#> ERR978183 2 0.278 0.732 0.048 0.952
#> ERR978184 2 0.278 0.732 0.048 0.952
#> ERR978185 2 0.278 0.732 0.048 0.952
#> ERR978186 2 0.278 0.732 0.048 0.952
#> ERR978187 2 0.278 0.732 0.048 0.952
#> ERR978188 2 0.278 0.732 0.048 0.952
#> ERR978189 2 0.278 0.732 0.048 0.952
#> ERR978190 2 0.278 0.732 0.048 0.952
#> ERR978191 2 0.278 0.732 0.048 0.952
#> ERR978192 2 0.278 0.732 0.048 0.952
#> ERR978193 2 0.278 0.732 0.048 0.952
#> ERR978194 2 0.278 0.732 0.048 0.952
#> ERR978195 2 0.278 0.732 0.048 0.952
#> ERR978196 2 0.278 0.732 0.048 0.952
#> ERR978197 2 0.584 0.798 0.140 0.860
#> ERR978198 2 0.584 0.798 0.140 0.860
#> ERR978199 2 0.584 0.798 0.140 0.860
#> ERR978200 2 0.584 0.798 0.140 0.860
#> ERR978201 2 0.584 0.798 0.140 0.860
#> ERR978202 2 0.584 0.798 0.140 0.860
#> ERR978203 2 0.584 0.798 0.140 0.860
#> ERR978204 2 0.529 0.795 0.120 0.880
#> ERR978205 2 0.529 0.795 0.120 0.880
#> ERR978206 2 0.529 0.795 0.120 0.880
#> ERR978207 2 0.529 0.795 0.120 0.880
#> ERR978208 2 0.529 0.795 0.120 0.880
#> ERR978209 2 0.529 0.795 0.120 0.880
#> ERR978210 2 0.529 0.795 0.120 0.880
#> ERR978211 2 0.529 0.795 0.120 0.880
#> ERR978212 2 0.634 0.797 0.160 0.840
#> ERR978213 2 0.634 0.797 0.160 0.840
#> ERR978214 2 0.634 0.797 0.160 0.840
#> ERR978215 2 0.634 0.797 0.160 0.840
#> ERR978216 2 0.634 0.797 0.160 0.840
#> ERR978217 2 0.634 0.797 0.160 0.840
#> ERR978218 2 0.634 0.797 0.160 0.840
#> ERR978219 2 0.634 0.797 0.160 0.840
#> ERR978220 2 0.634 0.797 0.160 0.840
#> ERR978221 2 0.634 0.797 0.160 0.840
#> ERR978222 2 0.634 0.797 0.160 0.840
#> ERR978223 2 0.634 0.797 0.160 0.840
#> ERR978224 2 0.634 0.797 0.160 0.840
#> ERR978225 2 0.634 0.797 0.160 0.840
#> ERR978226 2 0.634 0.797 0.160 0.840
#> ERR978227 1 0.541 1.000 0.876 0.124
#> ERR978228 1 0.541 1.000 0.876 0.124
#> ERR978229 1 0.541 1.000 0.876 0.124
#> ERR978230 1 0.541 1.000 0.876 0.124
#> ERR978231 1 0.541 1.000 0.876 0.124
#> ERR978232 1 0.541 1.000 0.876 0.124
#> ERR978233 1 0.541 1.000 0.876 0.124
#> ERR978234 1 0.541 1.000 0.876 0.124
#> ERR978235 1 0.541 1.000 0.876 0.124
#> ERR978236 1 0.541 1.000 0.876 0.124
#> ERR978237 1 0.541 1.000 0.876 0.124
#> ERR978238 1 0.541 1.000 0.876 0.124
#> ERR978239 1 0.541 1.000 0.876 0.124
#> ERR978240 1 0.541 1.000 0.876 0.124
#> ERR978241 2 0.992 0.626 0.448 0.552
#> ERR978242 2 0.992 0.626 0.448 0.552
#> ERR978243 2 0.992 0.626 0.448 0.552
#> ERR978244 2 0.992 0.626 0.448 0.552
#> ERR978245 2 0.992 0.626 0.448 0.552
#> ERR978246 2 0.992 0.626 0.448 0.552
#> ERR978247 2 0.992 0.626 0.448 0.552
#> ERR978248 2 0.730 0.795 0.204 0.796
#> ERR978249 2 0.730 0.795 0.204 0.796
#> ERR978250 2 0.730 0.795 0.204 0.796
#> ERR978251 2 0.730 0.795 0.204 0.796
#> ERR978252 2 0.730 0.795 0.204 0.796
#> ERR978253 2 0.730 0.795 0.204 0.796
#> ERR978254 2 0.730 0.795 0.204 0.796
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978108 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978109 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978110 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978111 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978112 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978113 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978114 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978115 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978116 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978117 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978118 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978119 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978120 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978121 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978122 2 0.195 0.5788 0.008 0.952 0.040
#> ERR978123 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978124 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978125 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978126 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978127 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978128 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978129 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978130 3 0.691 0.4562 0.028 0.344 0.628
#> ERR978131 3 0.693 0.4524 0.028 0.348 0.624
#> ERR978132 3 0.693 0.4524 0.028 0.348 0.624
#> ERR978133 3 0.693 0.4524 0.028 0.348 0.624
#> ERR978134 3 0.693 0.4524 0.028 0.348 0.624
#> ERR978135 3 0.693 0.4524 0.028 0.348 0.624
#> ERR978136 3 0.693 0.4524 0.028 0.348 0.624
#> ERR978137 3 0.693 0.4524 0.028 0.348 0.624
#> ERR978138 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978139 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978140 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978141 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978142 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978143 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978144 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978145 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978146 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978147 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978148 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978149 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978150 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978151 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978152 3 0.782 0.4675 0.072 0.324 0.604
#> ERR978153 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978154 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978155 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978156 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978157 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978158 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978159 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978160 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978161 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978162 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978163 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978164 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978165 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978166 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978167 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978168 1 0.350 0.9790 0.900 0.028 0.072
#> ERR978169 3 0.781 0.4637 0.184 0.144 0.672
#> ERR978170 3 0.781 0.4637 0.184 0.144 0.672
#> ERR978171 3 0.781 0.4637 0.184 0.144 0.672
#> ERR978172 3 0.781 0.4637 0.184 0.144 0.672
#> ERR978173 3 0.781 0.4637 0.184 0.144 0.672
#> ERR978174 3 0.781 0.4637 0.184 0.144 0.672
#> ERR978175 3 0.781 0.4637 0.184 0.144 0.672
#> ERR978176 3 0.801 0.4557 0.192 0.152 0.656
#> ERR978177 3 0.801 0.4557 0.192 0.152 0.656
#> ERR978178 3 0.801 0.4557 0.192 0.152 0.656
#> ERR978179 3 0.801 0.4557 0.192 0.152 0.656
#> ERR978180 3 0.801 0.4557 0.192 0.152 0.656
#> ERR978181 3 0.801 0.4557 0.192 0.152 0.656
#> ERR978182 3 0.801 0.4557 0.192 0.152 0.656
#> ERR978183 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978184 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978185 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978186 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978187 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978188 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978189 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978190 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978191 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978192 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978193 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978194 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978195 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978196 2 0.148 0.5836 0.020 0.968 0.012
#> ERR978197 3 0.707 0.1175 0.020 0.472 0.508
#> ERR978198 3 0.707 0.1175 0.020 0.472 0.508
#> ERR978199 3 0.707 0.1175 0.020 0.472 0.508
#> ERR978200 3 0.707 0.1175 0.020 0.472 0.508
#> ERR978201 3 0.707 0.1175 0.020 0.472 0.508
#> ERR978202 3 0.707 0.1175 0.020 0.472 0.508
#> ERR978203 3 0.707 0.1175 0.020 0.472 0.508
#> ERR978204 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978205 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978206 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978207 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978208 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978209 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978210 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978211 2 0.708 -0.0737 0.020 0.492 0.488
#> ERR978212 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978213 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978214 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978215 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978216 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978217 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978218 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978219 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978220 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978221 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978222 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978223 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978224 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978225 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978226 2 0.809 0.1182 0.068 0.516 0.416
#> ERR978227 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978228 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978229 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978230 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978231 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978232 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978233 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978234 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978235 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978236 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978237 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978238 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978239 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978240 1 0.175 0.9760 0.960 0.028 0.012
#> ERR978241 3 0.746 0.4797 0.180 0.124 0.696
#> ERR978242 3 0.746 0.4797 0.180 0.124 0.696
#> ERR978243 3 0.746 0.4797 0.180 0.124 0.696
#> ERR978244 3 0.746 0.4797 0.180 0.124 0.696
#> ERR978245 3 0.746 0.4797 0.180 0.124 0.696
#> ERR978246 3 0.746 0.4797 0.180 0.124 0.696
#> ERR978247 3 0.746 0.4797 0.180 0.124 0.696
#> ERR978248 2 0.879 0.0275 0.116 0.492 0.392
#> ERR978249 2 0.879 0.0275 0.116 0.492 0.392
#> ERR978250 2 0.879 0.0275 0.116 0.492 0.392
#> ERR978251 2 0.879 0.0275 0.116 0.492 0.392
#> ERR978252 2 0.879 0.0275 0.116 0.492 0.392
#> ERR978253 2 0.879 0.0275 0.116 0.492 0.392
#> ERR978254 2 0.879 0.0275 0.116 0.492 0.392
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978108 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978109 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978110 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978111 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978112 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978113 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978114 2 0.5788 0.903 0.004 0.716 0.176 0.104
#> ERR978115 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978116 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978117 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978118 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978119 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978120 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978121 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978122 2 0.5674 0.903 0.004 0.724 0.176 0.096
#> ERR978123 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978124 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978125 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978126 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978127 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978128 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978129 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978130 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978131 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978132 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978133 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978134 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978135 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978136 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978137 3 0.1762 0.584 0.012 0.016 0.952 0.020
#> ERR978138 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978139 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978140 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978141 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978142 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978143 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978144 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978145 3 0.6274 0.488 0.028 0.088 0.704 0.180
#> ERR978146 3 0.6070 0.490 0.028 0.080 0.720 0.172
#> ERR978147 3 0.6070 0.490 0.028 0.080 0.720 0.172
#> ERR978148 3 0.6070 0.490 0.028 0.080 0.720 0.172
#> ERR978149 3 0.6070 0.490 0.028 0.080 0.720 0.172
#> ERR978150 3 0.6070 0.490 0.028 0.080 0.720 0.172
#> ERR978151 3 0.6070 0.490 0.028 0.080 0.720 0.172
#> ERR978152 3 0.6070 0.490 0.028 0.080 0.720 0.172
#> ERR978153 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978154 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978155 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978156 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978157 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978158 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978159 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978160 1 0.4548 0.921 0.804 0.044 0.008 0.144
#> ERR978161 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978162 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978163 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978164 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978165 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978166 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978167 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978168 1 0.4597 0.920 0.800 0.044 0.008 0.148
#> ERR978169 4 0.7346 0.794 0.068 0.060 0.280 0.592
#> ERR978170 4 0.7346 0.794 0.068 0.060 0.280 0.592
#> ERR978171 4 0.7346 0.794 0.068 0.060 0.280 0.592
#> ERR978172 4 0.7346 0.794 0.068 0.060 0.280 0.592
#> ERR978173 4 0.7346 0.794 0.068 0.060 0.280 0.592
#> ERR978174 4 0.7346 0.794 0.068 0.060 0.280 0.592
#> ERR978175 4 0.7346 0.794 0.068 0.060 0.280 0.592
#> ERR978176 4 0.7419 0.793 0.064 0.076 0.260 0.600
#> ERR978177 4 0.7419 0.793 0.064 0.076 0.260 0.600
#> ERR978178 4 0.7419 0.793 0.064 0.076 0.260 0.600
#> ERR978179 4 0.7419 0.793 0.064 0.076 0.260 0.600
#> ERR978180 4 0.7419 0.793 0.064 0.076 0.260 0.600
#> ERR978181 4 0.7419 0.793 0.064 0.076 0.260 0.600
#> ERR978182 4 0.7419 0.793 0.064 0.076 0.260 0.600
#> ERR978183 2 0.3172 0.888 0.004 0.872 0.112 0.012
#> ERR978184 2 0.3172 0.888 0.004 0.872 0.112 0.012
#> ERR978185 2 0.3172 0.888 0.004 0.872 0.112 0.012
#> ERR978186 2 0.3172 0.888 0.004 0.872 0.112 0.012
#> ERR978187 2 0.3172 0.888 0.004 0.872 0.112 0.012
#> ERR978188 2 0.3172 0.888 0.004 0.872 0.112 0.012
#> ERR978189 2 0.3172 0.888 0.004 0.872 0.112 0.012
#> ERR978190 2 0.3043 0.890 0.008 0.876 0.112 0.004
#> ERR978191 2 0.3043 0.890 0.008 0.876 0.112 0.004
#> ERR978192 2 0.3043 0.890 0.008 0.876 0.112 0.004
#> ERR978193 2 0.3043 0.890 0.008 0.876 0.112 0.004
#> ERR978194 2 0.3043 0.890 0.008 0.876 0.112 0.004
#> ERR978195 2 0.3043 0.890 0.008 0.876 0.112 0.004
#> ERR978196 2 0.3043 0.890 0.008 0.876 0.112 0.004
#> ERR978197 3 0.4662 0.630 0.000 0.112 0.796 0.092
#> ERR978198 3 0.4662 0.630 0.000 0.112 0.796 0.092
#> ERR978199 3 0.4662 0.630 0.000 0.112 0.796 0.092
#> ERR978200 3 0.4662 0.630 0.000 0.112 0.796 0.092
#> ERR978201 3 0.4662 0.630 0.000 0.112 0.796 0.092
#> ERR978202 3 0.4662 0.630 0.000 0.112 0.796 0.092
#> ERR978203 3 0.4662 0.630 0.000 0.112 0.796 0.092
#> ERR978204 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978205 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978206 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978207 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978208 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978209 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978210 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978211 3 0.4931 0.626 0.000 0.132 0.776 0.092
#> ERR978212 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978213 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978214 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978215 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978216 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978217 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978218 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978219 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978220 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978221 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978222 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978223 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978224 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978225 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978226 3 0.8140 0.500 0.020 0.304 0.460 0.216
#> ERR978227 1 0.0804 0.908 0.980 0.012 0.008 0.000
#> ERR978228 1 0.0804 0.908 0.980 0.012 0.008 0.000
#> ERR978229 1 0.0804 0.908 0.980 0.012 0.008 0.000
#> ERR978230 1 0.0804 0.908 0.980 0.012 0.008 0.000
#> ERR978231 1 0.0804 0.908 0.980 0.012 0.008 0.000
#> ERR978232 1 0.0804 0.908 0.980 0.012 0.008 0.000
#> ERR978233 1 0.0804 0.908 0.980 0.012 0.008 0.000
#> ERR978234 1 0.0804 0.908 0.980 0.000 0.008 0.012
#> ERR978235 1 0.0804 0.908 0.980 0.000 0.008 0.012
#> ERR978236 1 0.0804 0.908 0.980 0.000 0.008 0.012
#> ERR978237 1 0.0804 0.908 0.980 0.000 0.008 0.012
#> ERR978238 1 0.0804 0.908 0.980 0.000 0.008 0.012
#> ERR978239 1 0.0804 0.908 0.980 0.000 0.008 0.012
#> ERR978240 1 0.0804 0.908 0.980 0.000 0.008 0.012
#> ERR978241 4 0.7798 0.770 0.060 0.088 0.316 0.536
#> ERR978242 4 0.7798 0.770 0.060 0.088 0.316 0.536
#> ERR978243 4 0.7798 0.770 0.060 0.088 0.316 0.536
#> ERR978244 4 0.7798 0.770 0.060 0.088 0.316 0.536
#> ERR978245 4 0.7798 0.770 0.060 0.088 0.316 0.536
#> ERR978246 4 0.7798 0.770 0.060 0.088 0.316 0.536
#> ERR978247 4 0.7798 0.770 0.060 0.088 0.316 0.536
#> ERR978248 4 0.8831 0.333 0.044 0.292 0.292 0.372
#> ERR978249 4 0.8831 0.333 0.044 0.292 0.292 0.372
#> ERR978250 4 0.8831 0.333 0.044 0.292 0.292 0.372
#> ERR978251 4 0.8831 0.333 0.044 0.292 0.292 0.372
#> ERR978252 4 0.8831 0.333 0.044 0.292 0.292 0.372
#> ERR978253 4 0.8831 0.333 0.044 0.292 0.292 0.372
#> ERR978254 4 0.8831 0.333 0.044 0.292 0.292 0.372
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978108 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978109 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978110 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978111 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978112 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978113 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978114 2 0.5089 0.880 0.008 0.748 0.052 0.036 NA
#> ERR978115 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978116 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978117 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978118 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978119 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978120 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978121 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978122 2 0.5383 0.880 0.008 0.724 0.052 0.044 NA
#> ERR978123 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978124 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978125 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978126 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978127 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978128 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978129 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978130 3 0.6746 0.503 0.004 0.044 0.548 0.104 NA
#> ERR978131 3 0.6795 0.505 0.004 0.048 0.540 0.100 NA
#> ERR978132 3 0.6795 0.505 0.004 0.048 0.540 0.100 NA
#> ERR978133 3 0.6795 0.505 0.004 0.048 0.540 0.100 NA
#> ERR978134 3 0.6795 0.505 0.004 0.048 0.540 0.100 NA
#> ERR978135 3 0.6795 0.505 0.004 0.048 0.540 0.100 NA
#> ERR978136 3 0.6795 0.505 0.004 0.048 0.540 0.100 NA
#> ERR978137 3 0.6795 0.505 0.004 0.048 0.540 0.100 NA
#> ERR978138 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978139 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978140 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978141 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978142 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978143 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978144 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978145 3 0.4928 0.366 0.008 0.036 0.684 0.268 NA
#> ERR978146 3 0.5359 0.366 0.008 0.036 0.664 0.272 NA
#> ERR978147 3 0.5359 0.366 0.008 0.036 0.664 0.272 NA
#> ERR978148 3 0.5359 0.366 0.008 0.036 0.664 0.272 NA
#> ERR978149 3 0.5359 0.366 0.008 0.036 0.664 0.272 NA
#> ERR978150 3 0.5359 0.366 0.008 0.036 0.664 0.272 NA
#> ERR978151 3 0.5359 0.366 0.008 0.036 0.664 0.272 NA
#> ERR978152 3 0.5359 0.366 0.008 0.036 0.664 0.272 NA
#> ERR978153 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978154 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978155 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978156 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978157 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978158 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978159 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978160 1 0.4314 0.904 0.772 0.008 0.020 0.016 NA
#> ERR978161 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978162 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978163 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978164 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978165 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978166 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978167 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978168 1 0.3659 0.903 0.768 0.000 0.012 0.000 NA
#> ERR978169 4 0.2151 0.778 0.020 0.016 0.040 0.924 NA
#> ERR978170 4 0.2151 0.778 0.020 0.016 0.040 0.924 NA
#> ERR978171 4 0.2151 0.778 0.020 0.016 0.040 0.924 NA
#> ERR978172 4 0.2151 0.778 0.020 0.016 0.040 0.924 NA
#> ERR978173 4 0.2151 0.778 0.020 0.016 0.040 0.924 NA
#> ERR978174 4 0.2151 0.778 0.020 0.016 0.040 0.924 NA
#> ERR978175 4 0.2151 0.778 0.020 0.016 0.040 0.924 NA
#> ERR978176 4 0.3327 0.778 0.024 0.016 0.032 0.876 NA
#> ERR978177 4 0.3327 0.778 0.024 0.016 0.032 0.876 NA
#> ERR978178 4 0.3327 0.778 0.024 0.016 0.032 0.876 NA
#> ERR978179 4 0.3327 0.778 0.024 0.016 0.032 0.876 NA
#> ERR978180 4 0.3327 0.778 0.024 0.016 0.032 0.876 NA
#> ERR978181 4 0.3327 0.778 0.024 0.016 0.032 0.876 NA
#> ERR978182 4 0.3327 0.778 0.024 0.016 0.032 0.876 NA
#> ERR978183 2 0.1522 0.862 0.012 0.944 0.044 0.000 NA
#> ERR978184 2 0.1522 0.862 0.012 0.944 0.044 0.000 NA
#> ERR978185 2 0.1522 0.862 0.012 0.944 0.044 0.000 NA
#> ERR978186 2 0.1522 0.862 0.012 0.944 0.044 0.000 NA
#> ERR978187 2 0.1522 0.862 0.012 0.944 0.044 0.000 NA
#> ERR978188 2 0.1522 0.862 0.012 0.944 0.044 0.000 NA
#> ERR978189 2 0.1522 0.862 0.012 0.944 0.044 0.000 NA
#> ERR978190 2 0.2297 0.862 0.008 0.920 0.044 0.008 NA
#> ERR978191 2 0.2297 0.862 0.008 0.920 0.044 0.008 NA
#> ERR978192 2 0.2297 0.862 0.008 0.920 0.044 0.008 NA
#> ERR978193 2 0.2297 0.862 0.008 0.920 0.044 0.008 NA
#> ERR978194 2 0.2297 0.862 0.008 0.920 0.044 0.008 NA
#> ERR978195 2 0.2297 0.862 0.008 0.920 0.044 0.008 NA
#> ERR978196 2 0.2297 0.862 0.008 0.920 0.044 0.008 NA
#> ERR978197 3 0.6150 0.544 0.000 0.072 0.508 0.024 NA
#> ERR978198 3 0.6150 0.544 0.000 0.072 0.508 0.024 NA
#> ERR978199 3 0.6150 0.544 0.000 0.072 0.508 0.024 NA
#> ERR978200 3 0.6150 0.544 0.000 0.072 0.508 0.024 NA
#> ERR978201 3 0.6150 0.544 0.000 0.072 0.508 0.024 NA
#> ERR978202 3 0.6150 0.544 0.000 0.072 0.508 0.024 NA
#> ERR978203 3 0.6150 0.544 0.000 0.072 0.508 0.024 NA
#> ERR978204 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978205 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978206 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978207 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978208 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978209 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978210 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978211 3 0.6236 0.539 0.000 0.088 0.508 0.020 NA
#> ERR978212 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978213 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978214 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978215 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978216 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978217 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978218 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978219 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978220 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978221 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978222 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978223 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978224 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978225 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978226 3 0.6935 0.384 0.008 0.136 0.616 0.108 NA
#> ERR978227 1 0.0898 0.894 0.972 0.000 0.020 0.008 NA
#> ERR978228 1 0.0898 0.894 0.972 0.000 0.020 0.008 NA
#> ERR978229 1 0.0898 0.894 0.972 0.000 0.020 0.008 NA
#> ERR978230 1 0.0898 0.894 0.972 0.000 0.020 0.008 NA
#> ERR978231 1 0.0898 0.894 0.972 0.000 0.020 0.008 NA
#> ERR978232 1 0.0898 0.894 0.972 0.000 0.020 0.008 NA
#> ERR978233 1 0.0898 0.894 0.972 0.000 0.020 0.008 NA
#> ERR978234 1 0.0912 0.894 0.972 0.000 0.012 0.000 NA
#> ERR978235 1 0.0912 0.894 0.972 0.000 0.012 0.000 NA
#> ERR978236 1 0.0912 0.894 0.972 0.000 0.012 0.000 NA
#> ERR978237 1 0.0912 0.894 0.972 0.000 0.012 0.000 NA
#> ERR978238 1 0.0912 0.894 0.972 0.000 0.012 0.000 NA
#> ERR978239 1 0.0912 0.894 0.972 0.000 0.012 0.000 NA
#> ERR978240 1 0.0912 0.894 0.972 0.000 0.012 0.000 NA
#> ERR978241 4 0.4476 0.756 0.024 0.020 0.120 0.800 NA
#> ERR978242 4 0.4476 0.756 0.024 0.020 0.120 0.800 NA
#> ERR978243 4 0.4476 0.756 0.024 0.020 0.120 0.800 NA
#> ERR978244 4 0.4476 0.756 0.024 0.020 0.120 0.800 NA
#> ERR978245 4 0.4476 0.756 0.024 0.020 0.120 0.800 NA
#> ERR978246 4 0.4476 0.756 0.024 0.020 0.120 0.800 NA
#> ERR978247 4 0.4476 0.756 0.024 0.020 0.120 0.800 NA
#> ERR978248 4 0.8710 0.332 0.028 0.156 0.300 0.368 NA
#> ERR978249 4 0.8710 0.332 0.028 0.156 0.300 0.368 NA
#> ERR978250 4 0.8710 0.332 0.028 0.156 0.300 0.368 NA
#> ERR978251 4 0.8710 0.332 0.028 0.156 0.300 0.368 NA
#> ERR978252 4 0.8710 0.332 0.028 0.156 0.300 0.368 NA
#> ERR978253 4 0.8710 0.332 0.028 0.156 0.300 0.368 NA
#> ERR978254 4 0.8710 0.332 0.028 0.156 0.300 0.368 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978108 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978109 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978110 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978111 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978112 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978113 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978114 2 0.1811 0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978115 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978116 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978117 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978118 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978119 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978120 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978121 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978122 2 0.0951 0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978123 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978124 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978125 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978126 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978127 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978128 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978129 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978130 5 0.7015 -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978131 5 0.6981 -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978132 5 0.6981 -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978133 5 0.6981 -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978134 5 0.6981 -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978135 5 0.6981 -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978136 5 0.6981 -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978137 5 0.6981 -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978138 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978139 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978140 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978141 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978142 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978143 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978144 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978145 5 0.2747 0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978146 5 0.3211 0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978147 5 0.3211 0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978148 5 0.3211 0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978149 5 0.3211 0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978150 5 0.3211 0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978151 5 0.3211 0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978152 5 0.3211 0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978153 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978154 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978155 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978156 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978157 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978158 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978159 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978160 1 0.3942 0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978161 1 0.5169 0.840 0.624 0.004 0.036 0.024 0.008 0.304
#> ERR978162 1 0.5169 0.840 0.624 0.004 0.036 0.024 0.008 0.304
#> ERR978163 1 0.5157 0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978164 1 0.5157 0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978165 1 0.5157 0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978166 1 0.5157 0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978167 1 0.5175 0.840 0.624 0.004 0.032 0.028 0.008 0.304
#> ERR978168 1 0.5175 0.840 0.624 0.004 0.032 0.028 0.008 0.304
#> ERR978169 4 0.2856 0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978170 4 0.2856 0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978171 4 0.2856 0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978172 4 0.2856 0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978173 4 0.2856 0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978174 4 0.2856 0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978175 4 0.2856 0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978176 4 0.4942 0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978177 4 0.4942 0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978178 4 0.4942 0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978179 4 0.4942 0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978180 4 0.4942 0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978181 4 0.4942 0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978182 4 0.4942 0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978183 2 0.5630 0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978184 2 0.5630 0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978185 2 0.5630 0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978186 2 0.5630 0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978187 2 0.5630 0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978188 2 0.5630 0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978189 2 0.5630 0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978190 2 0.5685 0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978191 2 0.5685 0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978192 2 0.5685 0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978193 2 0.5685 0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978194 2 0.5685 0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978195 2 0.5685 0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978196 2 0.5689 0.795 0.000 0.636 0.052 0.048 0.024 0.240
#> ERR978197 3 0.5197 0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978198 3 0.5197 0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978199 3 0.5197 0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978200 3 0.5197 0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978201 3 0.5197 0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978202 3 0.5197 0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978203 3 0.5197 0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978204 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978205 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978206 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978207 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978208 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978209 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978210 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978211 3 0.4796 0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978212 5 0.6532 0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978213 5 0.6532 0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978214 5 0.6532 0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978215 5 0.6532 0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978216 5 0.6532 0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978217 5 0.6532 0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978218 5 0.6532 0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978219 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978220 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978221 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978222 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978223 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978224 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978225 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978226 5 0.6516 0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978227 1 0.1129 0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978228 1 0.1129 0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978229 1 0.1129 0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978230 1 0.1129 0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978231 1 0.1129 0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978232 1 0.1129 0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978233 1 0.1129 0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978234 1 0.0436 0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978235 1 0.0436 0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978236 1 0.0436 0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978237 1 0.0436 0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978238 1 0.0436 0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978239 1 0.0436 0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978240 1 0.0436 0.824 0.988 0.004 0.004 0.000 0.004 0.000
#> ERR978241 4 0.6113 0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978242 4 0.6113 0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978243 4 0.6113 0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978244 4 0.6113 0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978245 4 0.6113 0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978246 4 0.6113 0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978247 4 0.6113 0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978248 5 0.8833 -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978249 5 0.8833 -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978250 5 0.8833 -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978251 5 0.8833 -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978252 5 0.8833 -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978253 5 0.8833 -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978254 5 0.8833 -0.143 0.004 0.152 0.132 0.256 0.288 0.168
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.799 0.941 0.959 0.4682 0.520 0.520
#> 3 3 0.672 0.801 0.874 0.3681 0.647 0.428
#> 4 4 0.745 0.843 0.893 0.1413 0.724 0.397
#> 5 5 0.904 0.959 0.962 0.1004 0.917 0.702
#> 6 6 0.911 0.926 0.862 0.0262 0.979 0.894
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5
There is also optional best \(k\) = 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.000 0.970 0.000 1.000
#> ERR978108 2 0.000 0.970 0.000 1.000
#> ERR978109 2 0.000 0.970 0.000 1.000
#> ERR978110 2 0.000 0.970 0.000 1.000
#> ERR978111 2 0.000 0.970 0.000 1.000
#> ERR978112 2 0.000 0.970 0.000 1.000
#> ERR978113 2 0.000 0.970 0.000 1.000
#> ERR978114 2 0.000 0.970 0.000 1.000
#> ERR978115 2 0.000 0.970 0.000 1.000
#> ERR978116 2 0.000 0.970 0.000 1.000
#> ERR978117 2 0.000 0.970 0.000 1.000
#> ERR978118 2 0.000 0.970 0.000 1.000
#> ERR978119 2 0.000 0.970 0.000 1.000
#> ERR978120 2 0.000 0.970 0.000 1.000
#> ERR978121 2 0.000 0.970 0.000 1.000
#> ERR978122 2 0.000 0.970 0.000 1.000
#> ERR978123 2 0.518 0.898 0.116 0.884
#> ERR978124 2 0.518 0.898 0.116 0.884
#> ERR978125 2 0.518 0.898 0.116 0.884
#> ERR978126 2 0.518 0.898 0.116 0.884
#> ERR978127 2 0.518 0.898 0.116 0.884
#> ERR978128 2 0.518 0.898 0.116 0.884
#> ERR978129 2 0.518 0.898 0.116 0.884
#> ERR978130 2 0.518 0.898 0.116 0.884
#> ERR978131 2 0.518 0.898 0.116 0.884
#> ERR978132 2 0.518 0.898 0.116 0.884
#> ERR978133 2 0.518 0.898 0.116 0.884
#> ERR978134 2 0.518 0.898 0.116 0.884
#> ERR978135 2 0.518 0.898 0.116 0.884
#> ERR978136 2 0.518 0.898 0.116 0.884
#> ERR978137 2 0.518 0.898 0.116 0.884
#> ERR978138 2 0.295 0.947 0.052 0.948
#> ERR978139 2 0.295 0.947 0.052 0.948
#> ERR978140 2 0.295 0.947 0.052 0.948
#> ERR978141 2 0.295 0.947 0.052 0.948
#> ERR978142 2 0.295 0.947 0.052 0.948
#> ERR978143 2 0.295 0.947 0.052 0.948
#> ERR978144 2 0.295 0.947 0.052 0.948
#> ERR978145 2 0.295 0.947 0.052 0.948
#> ERR978146 2 0.295 0.947 0.052 0.948
#> ERR978147 2 0.295 0.947 0.052 0.948
#> ERR978148 2 0.295 0.947 0.052 0.948
#> ERR978149 2 0.295 0.947 0.052 0.948
#> ERR978150 2 0.295 0.947 0.052 0.948
#> ERR978151 2 0.295 0.947 0.052 0.948
#> ERR978152 2 0.295 0.947 0.052 0.948
#> ERR978153 1 0.000 0.938 1.000 0.000
#> ERR978154 1 0.000 0.938 1.000 0.000
#> ERR978155 1 0.000 0.938 1.000 0.000
#> ERR978156 1 0.000 0.938 1.000 0.000
#> ERR978157 1 0.000 0.938 1.000 0.000
#> ERR978158 1 0.000 0.938 1.000 0.000
#> ERR978159 1 0.000 0.938 1.000 0.000
#> ERR978160 1 0.000 0.938 1.000 0.000
#> ERR978161 1 0.000 0.938 1.000 0.000
#> ERR978162 1 0.000 0.938 1.000 0.000
#> ERR978163 1 0.000 0.938 1.000 0.000
#> ERR978164 1 0.000 0.938 1.000 0.000
#> ERR978165 1 0.000 0.938 1.000 0.000
#> ERR978166 1 0.000 0.938 1.000 0.000
#> ERR978167 1 0.000 0.938 1.000 0.000
#> ERR978168 1 0.000 0.938 1.000 0.000
#> ERR978169 1 0.456 0.926 0.904 0.096
#> ERR978170 1 0.456 0.926 0.904 0.096
#> ERR978171 1 0.456 0.926 0.904 0.096
#> ERR978172 1 0.456 0.926 0.904 0.096
#> ERR978173 1 0.456 0.926 0.904 0.096
#> ERR978174 1 0.456 0.926 0.904 0.096
#> ERR978175 1 0.456 0.926 0.904 0.096
#> ERR978176 1 0.456 0.926 0.904 0.096
#> ERR978177 1 0.456 0.926 0.904 0.096
#> ERR978178 1 0.456 0.926 0.904 0.096
#> ERR978179 1 0.456 0.926 0.904 0.096
#> ERR978180 1 0.456 0.926 0.904 0.096
#> ERR978181 1 0.456 0.926 0.904 0.096
#> ERR978182 1 0.456 0.926 0.904 0.096
#> ERR978183 2 0.000 0.970 0.000 1.000
#> ERR978184 2 0.000 0.970 0.000 1.000
#> ERR978185 2 0.000 0.970 0.000 1.000
#> ERR978186 2 0.000 0.970 0.000 1.000
#> ERR978187 2 0.000 0.970 0.000 1.000
#> ERR978188 2 0.000 0.970 0.000 1.000
#> ERR978189 2 0.000 0.970 0.000 1.000
#> ERR978190 2 0.000 0.970 0.000 1.000
#> ERR978191 2 0.000 0.970 0.000 1.000
#> ERR978192 2 0.000 0.970 0.000 1.000
#> ERR978193 2 0.000 0.970 0.000 1.000
#> ERR978194 2 0.000 0.970 0.000 1.000
#> ERR978195 2 0.000 0.970 0.000 1.000
#> ERR978196 2 0.000 0.970 0.000 1.000
#> ERR978197 2 0.000 0.970 0.000 1.000
#> ERR978198 2 0.000 0.970 0.000 1.000
#> ERR978199 2 0.000 0.970 0.000 1.000
#> ERR978200 2 0.000 0.970 0.000 1.000
#> ERR978201 2 0.000 0.970 0.000 1.000
#> ERR978202 2 0.000 0.970 0.000 1.000
#> ERR978203 2 0.000 0.970 0.000 1.000
#> ERR978204 2 0.000 0.970 0.000 1.000
#> ERR978205 2 0.000 0.970 0.000 1.000
#> ERR978206 2 0.000 0.970 0.000 1.000
#> ERR978207 2 0.000 0.970 0.000 1.000
#> ERR978208 2 0.000 0.970 0.000 1.000
#> ERR978209 2 0.000 0.970 0.000 1.000
#> ERR978210 2 0.000 0.970 0.000 1.000
#> ERR978211 2 0.000 0.970 0.000 1.000
#> ERR978212 2 0.000 0.970 0.000 1.000
#> ERR978213 2 0.000 0.970 0.000 1.000
#> ERR978214 2 0.000 0.970 0.000 1.000
#> ERR978215 2 0.000 0.970 0.000 1.000
#> ERR978216 2 0.000 0.970 0.000 1.000
#> ERR978217 2 0.000 0.970 0.000 1.000
#> ERR978218 2 0.000 0.970 0.000 1.000
#> ERR978219 2 0.000 0.970 0.000 1.000
#> ERR978220 2 0.000 0.970 0.000 1.000
#> ERR978221 2 0.000 0.970 0.000 1.000
#> ERR978222 2 0.000 0.970 0.000 1.000
#> ERR978223 2 0.000 0.970 0.000 1.000
#> ERR978224 2 0.000 0.970 0.000 1.000
#> ERR978225 2 0.000 0.970 0.000 1.000
#> ERR978226 2 0.000 0.970 0.000 1.000
#> ERR978227 1 0.000 0.938 1.000 0.000
#> ERR978228 1 0.000 0.938 1.000 0.000
#> ERR978229 1 0.000 0.938 1.000 0.000
#> ERR978230 1 0.000 0.938 1.000 0.000
#> ERR978231 1 0.000 0.938 1.000 0.000
#> ERR978232 1 0.000 0.938 1.000 0.000
#> ERR978233 1 0.000 0.938 1.000 0.000
#> ERR978234 1 0.000 0.938 1.000 0.000
#> ERR978235 1 0.000 0.938 1.000 0.000
#> ERR978236 1 0.000 0.938 1.000 0.000
#> ERR978237 1 0.000 0.938 1.000 0.000
#> ERR978238 1 0.000 0.938 1.000 0.000
#> ERR978239 1 0.000 0.938 1.000 0.000
#> ERR978240 1 0.000 0.938 1.000 0.000
#> ERR978241 1 0.456 0.926 0.904 0.096
#> ERR978242 1 0.456 0.926 0.904 0.096
#> ERR978243 1 0.456 0.926 0.904 0.096
#> ERR978244 1 0.456 0.926 0.904 0.096
#> ERR978245 1 0.456 0.926 0.904 0.096
#> ERR978246 1 0.456 0.926 0.904 0.096
#> ERR978247 1 0.456 0.926 0.904 0.096
#> ERR978248 1 0.745 0.829 0.788 0.212
#> ERR978249 1 0.745 0.829 0.788 0.212
#> ERR978250 1 0.745 0.829 0.788 0.212
#> ERR978251 1 0.745 0.829 0.788 0.212
#> ERR978252 1 0.745 0.829 0.788 0.212
#> ERR978253 1 0.745 0.829 0.788 0.212
#> ERR978254 1 0.745 0.829 0.788 0.212
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 0.786 0.000 1.000 0.000
#> ERR978108 2 0.000 0.786 0.000 1.000 0.000
#> ERR978109 2 0.000 0.786 0.000 1.000 0.000
#> ERR978110 2 0.000 0.786 0.000 1.000 0.000
#> ERR978111 2 0.000 0.786 0.000 1.000 0.000
#> ERR978112 2 0.000 0.786 0.000 1.000 0.000
#> ERR978113 2 0.000 0.786 0.000 1.000 0.000
#> ERR978114 2 0.000 0.786 0.000 1.000 0.000
#> ERR978115 2 0.000 0.786 0.000 1.000 0.000
#> ERR978116 2 0.000 0.786 0.000 1.000 0.000
#> ERR978117 2 0.000 0.786 0.000 1.000 0.000
#> ERR978118 2 0.000 0.786 0.000 1.000 0.000
#> ERR978119 2 0.000 0.786 0.000 1.000 0.000
#> ERR978120 2 0.000 0.786 0.000 1.000 0.000
#> ERR978121 2 0.000 0.786 0.000 1.000 0.000
#> ERR978122 2 0.000 0.786 0.000 1.000 0.000
#> ERR978123 3 0.103 0.826 0.000 0.024 0.976
#> ERR978124 3 0.103 0.826 0.000 0.024 0.976
#> ERR978125 3 0.103 0.826 0.000 0.024 0.976
#> ERR978126 3 0.103 0.826 0.000 0.024 0.976
#> ERR978127 3 0.103 0.826 0.000 0.024 0.976
#> ERR978128 3 0.103 0.826 0.000 0.024 0.976
#> ERR978129 3 0.103 0.826 0.000 0.024 0.976
#> ERR978130 3 0.103 0.826 0.000 0.024 0.976
#> ERR978131 3 0.103 0.826 0.000 0.024 0.976
#> ERR978132 3 0.103 0.826 0.000 0.024 0.976
#> ERR978133 3 0.103 0.826 0.000 0.024 0.976
#> ERR978134 3 0.103 0.826 0.000 0.024 0.976
#> ERR978135 3 0.103 0.826 0.000 0.024 0.976
#> ERR978136 3 0.103 0.826 0.000 0.024 0.976
#> ERR978137 3 0.103 0.826 0.000 0.024 0.976
#> ERR978138 3 0.000 0.829 0.000 0.000 1.000
#> ERR978139 3 0.000 0.829 0.000 0.000 1.000
#> ERR978140 3 0.000 0.829 0.000 0.000 1.000
#> ERR978141 3 0.000 0.829 0.000 0.000 1.000
#> ERR978142 3 0.000 0.829 0.000 0.000 1.000
#> ERR978143 3 0.000 0.829 0.000 0.000 1.000
#> ERR978144 3 0.000 0.829 0.000 0.000 1.000
#> ERR978145 3 0.000 0.829 0.000 0.000 1.000
#> ERR978146 3 0.000 0.829 0.000 0.000 1.000
#> ERR978147 3 0.000 0.829 0.000 0.000 1.000
#> ERR978148 3 0.000 0.829 0.000 0.000 1.000
#> ERR978149 3 0.000 0.829 0.000 0.000 1.000
#> ERR978150 3 0.000 0.829 0.000 0.000 1.000
#> ERR978151 3 0.000 0.829 0.000 0.000 1.000
#> ERR978152 3 0.000 0.829 0.000 0.000 1.000
#> ERR978153 1 0.000 1.000 1.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1.000 0.000 0.000
#> ERR978169 3 0.687 0.760 0.080 0.196 0.724
#> ERR978170 3 0.687 0.760 0.080 0.196 0.724
#> ERR978171 3 0.687 0.760 0.080 0.196 0.724
#> ERR978172 3 0.687 0.760 0.080 0.196 0.724
#> ERR978173 3 0.687 0.760 0.080 0.196 0.724
#> ERR978174 3 0.687 0.760 0.080 0.196 0.724
#> ERR978175 3 0.687 0.760 0.080 0.196 0.724
#> ERR978176 3 0.719 0.732 0.080 0.224 0.696
#> ERR978177 3 0.719 0.732 0.080 0.224 0.696
#> ERR978178 3 0.719 0.732 0.080 0.224 0.696
#> ERR978179 3 0.719 0.732 0.080 0.224 0.696
#> ERR978180 3 0.719 0.732 0.080 0.224 0.696
#> ERR978181 3 0.719 0.732 0.080 0.224 0.696
#> ERR978182 3 0.719 0.732 0.080 0.224 0.696
#> ERR978183 2 0.000 0.786 0.000 1.000 0.000
#> ERR978184 2 0.000 0.786 0.000 1.000 0.000
#> ERR978185 2 0.000 0.786 0.000 1.000 0.000
#> ERR978186 2 0.000 0.786 0.000 1.000 0.000
#> ERR978187 2 0.000 0.786 0.000 1.000 0.000
#> ERR978188 2 0.000 0.786 0.000 1.000 0.000
#> ERR978189 2 0.000 0.786 0.000 1.000 0.000
#> ERR978190 2 0.000 0.786 0.000 1.000 0.000
#> ERR978191 2 0.000 0.786 0.000 1.000 0.000
#> ERR978192 2 0.000 0.786 0.000 1.000 0.000
#> ERR978193 2 0.000 0.786 0.000 1.000 0.000
#> ERR978194 2 0.000 0.786 0.000 1.000 0.000
#> ERR978195 2 0.000 0.786 0.000 1.000 0.000
#> ERR978196 2 0.000 0.786 0.000 1.000 0.000
#> ERR978197 2 0.626 0.571 0.000 0.552 0.448
#> ERR978198 2 0.626 0.571 0.000 0.552 0.448
#> ERR978199 2 0.626 0.571 0.000 0.552 0.448
#> ERR978200 2 0.626 0.571 0.000 0.552 0.448
#> ERR978201 2 0.626 0.571 0.000 0.552 0.448
#> ERR978202 2 0.626 0.571 0.000 0.552 0.448
#> ERR978203 2 0.626 0.571 0.000 0.552 0.448
#> ERR978204 2 0.624 0.583 0.000 0.560 0.440
#> ERR978205 2 0.624 0.583 0.000 0.560 0.440
#> ERR978206 2 0.624 0.583 0.000 0.560 0.440
#> ERR978207 2 0.624 0.583 0.000 0.560 0.440
#> ERR978208 2 0.624 0.583 0.000 0.560 0.440
#> ERR978209 2 0.624 0.583 0.000 0.560 0.440
#> ERR978210 2 0.624 0.583 0.000 0.560 0.440
#> ERR978211 2 0.624 0.583 0.000 0.560 0.440
#> ERR978212 2 0.588 0.692 0.000 0.652 0.348
#> ERR978213 2 0.588 0.692 0.000 0.652 0.348
#> ERR978214 2 0.588 0.692 0.000 0.652 0.348
#> ERR978215 2 0.588 0.692 0.000 0.652 0.348
#> ERR978216 2 0.588 0.692 0.000 0.652 0.348
#> ERR978217 2 0.588 0.692 0.000 0.652 0.348
#> ERR978218 2 0.588 0.692 0.000 0.652 0.348
#> ERR978219 2 0.588 0.692 0.000 0.652 0.348
#> ERR978220 2 0.588 0.692 0.000 0.652 0.348
#> ERR978221 2 0.588 0.692 0.000 0.652 0.348
#> ERR978222 2 0.588 0.692 0.000 0.652 0.348
#> ERR978223 2 0.588 0.692 0.000 0.652 0.348
#> ERR978224 2 0.588 0.692 0.000 0.652 0.348
#> ERR978225 2 0.588 0.692 0.000 0.652 0.348
#> ERR978226 2 0.588 0.692 0.000 0.652 0.348
#> ERR978227 1 0.000 1.000 1.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1.000 0.000 0.000
#> ERR978241 3 0.687 0.760 0.080 0.196 0.724
#> ERR978242 3 0.687 0.760 0.080 0.196 0.724
#> ERR978243 3 0.687 0.760 0.080 0.196 0.724
#> ERR978244 3 0.687 0.760 0.080 0.196 0.724
#> ERR978245 3 0.687 0.760 0.080 0.196 0.724
#> ERR978246 3 0.687 0.760 0.080 0.196 0.724
#> ERR978247 3 0.687 0.760 0.080 0.196 0.724
#> ERR978248 2 0.234 0.766 0.012 0.940 0.048
#> ERR978249 2 0.234 0.766 0.012 0.940 0.048
#> ERR978250 2 0.234 0.766 0.012 0.940 0.048
#> ERR978251 2 0.234 0.766 0.012 0.940 0.048
#> ERR978252 2 0.234 0.766 0.012 0.940 0.048
#> ERR978253 2 0.234 0.766 0.012 0.940 0.048
#> ERR978254 2 0.234 0.766 0.012 0.940 0.048
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978123 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978124 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978125 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978126 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978127 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978128 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978129 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978130 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978131 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978132 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978133 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978134 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978135 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978136 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978137 3 0.2149 0.742 0.000 0.000 0.912 0.088
#> ERR978138 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978139 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978140 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978141 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978142 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978143 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978144 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978145 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978146 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978147 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978148 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978149 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978150 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978151 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978152 3 0.4961 0.565 0.000 0.000 0.552 0.448
#> ERR978153 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978169 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978170 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978171 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978172 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978173 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978174 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978175 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978176 4 0.0336 0.921 0.000 0.008 0.000 0.992
#> ERR978177 4 0.0336 0.921 0.000 0.008 0.000 0.992
#> ERR978178 4 0.0336 0.921 0.000 0.008 0.000 0.992
#> ERR978179 4 0.0336 0.921 0.000 0.008 0.000 0.992
#> ERR978180 4 0.0336 0.921 0.000 0.008 0.000 0.992
#> ERR978181 4 0.0336 0.921 0.000 0.008 0.000 0.992
#> ERR978182 4 0.0336 0.921 0.000 0.008 0.000 0.992
#> ERR978183 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0.000 1.000 0.000 0.000
#> ERR978197 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978198 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978199 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978200 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978201 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978202 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978203 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978204 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978205 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978206 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978207 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978208 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978209 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978210 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978211 3 0.0336 0.742 0.000 0.008 0.992 0.000
#> ERR978212 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978213 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978214 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978215 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978216 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978217 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978218 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978219 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978220 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978221 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978222 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978223 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978224 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978225 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978226 3 0.6685 0.624 0.000 0.160 0.616 0.224
#> ERR978227 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> ERR978241 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978242 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978243 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978244 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978245 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978246 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978247 4 0.0524 0.922 0.004 0.008 0.000 0.988
#> ERR978248 4 0.4937 0.763 0.000 0.172 0.064 0.764
#> ERR978249 4 0.4937 0.763 0.000 0.172 0.064 0.764
#> ERR978250 4 0.4937 0.763 0.000 0.172 0.064 0.764
#> ERR978251 4 0.4937 0.763 0.000 0.172 0.064 0.764
#> ERR978252 4 0.4937 0.763 0.000 0.172 0.064 0.764
#> ERR978253 4 0.4937 0.763 0.000 0.172 0.064 0.764
#> ERR978254 4 0.4937 0.763 0.000 0.172 0.064 0.764
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978108 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978109 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978110 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978111 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978112 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978113 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978114 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978115 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978116 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978117 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978118 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978119 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978120 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978121 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978122 2 0.0162 0.998 0 0.996 0.004 0.000 0.000
#> ERR978123 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978124 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978125 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978126 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978127 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978128 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978129 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978130 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978131 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978132 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978133 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978134 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978135 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978136 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978137 3 0.0324 0.936 0 0.004 0.992 0.004 0.000
#> ERR978138 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978139 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978140 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978141 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978142 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978143 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978144 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978145 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978146 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978147 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978148 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978149 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978150 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978151 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978152 5 0.3719 0.901 0 0.000 0.116 0.068 0.816
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978170 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978171 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978172 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978173 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978174 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978175 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978176 4 0.0290 0.973 0 0.000 0.008 0.992 0.000
#> ERR978177 4 0.0290 0.973 0 0.000 0.008 0.992 0.000
#> ERR978178 4 0.0290 0.973 0 0.000 0.008 0.992 0.000
#> ERR978179 4 0.0290 0.973 0 0.000 0.008 0.992 0.000
#> ERR978180 4 0.0290 0.973 0 0.000 0.008 0.992 0.000
#> ERR978181 4 0.0290 0.973 0 0.000 0.008 0.992 0.000
#> ERR978182 4 0.0290 0.973 0 0.000 0.008 0.992 0.000
#> ERR978183 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 0.997 0 1.000 0.000 0.000 0.000
#> ERR978197 3 0.2304 0.935 0 0.008 0.892 0.000 0.100
#> ERR978198 3 0.2304 0.935 0 0.008 0.892 0.000 0.100
#> ERR978199 3 0.2304 0.935 0 0.008 0.892 0.000 0.100
#> ERR978200 3 0.2304 0.935 0 0.008 0.892 0.000 0.100
#> ERR978201 3 0.2304 0.935 0 0.008 0.892 0.000 0.100
#> ERR978202 3 0.2304 0.935 0 0.008 0.892 0.000 0.100
#> ERR978203 3 0.2304 0.935 0 0.008 0.892 0.000 0.100
#> ERR978204 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978205 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978206 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978207 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978208 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978209 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978210 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978211 3 0.2416 0.934 0 0.012 0.888 0.000 0.100
#> ERR978212 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978213 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978214 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978215 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978216 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978217 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978218 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978219 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978220 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978221 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978222 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978223 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978224 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978225 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978226 5 0.0451 0.902 0 0.004 0.008 0.000 0.988
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978242 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978243 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978244 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978245 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978246 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978247 4 0.0162 0.973 0 0.000 0.004 0.996 0.000
#> ERR978248 4 0.2414 0.920 0 0.012 0.008 0.900 0.080
#> ERR978249 4 0.2414 0.920 0 0.012 0.008 0.900 0.080
#> ERR978250 4 0.2414 0.920 0 0.012 0.008 0.900 0.080
#> ERR978251 4 0.2414 0.920 0 0.012 0.008 0.900 0.080
#> ERR978252 4 0.2414 0.920 0 0.012 0.008 0.900 0.080
#> ERR978253 4 0.2414 0.920 0 0.012 0.008 0.900 0.080
#> ERR978254 4 0.2414 0.920 0 0.012 0.008 0.900 0.080
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978123 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978124 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978125 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978126 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978127 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978128 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978129 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978130 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978131 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978132 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978133 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978134 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978135 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978136 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978137 3 0.1765 0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978138 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978139 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978140 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978141 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978142 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978143 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978144 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978145 5 0.0713 0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978146 5 0.0972 0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978147 5 0.0972 0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978148 5 0.0972 0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978149 5 0.0972 0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978150 5 0.0972 0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978151 5 0.0972 0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978152 5 0.0972 0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978153 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0260 0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978170 4 0.0260 0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978171 4 0.0260 0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978172 4 0.0260 0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978173 4 0.0260 0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978174 4 0.0260 0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978175 4 0.0260 0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978176 4 0.2100 0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978177 4 0.2100 0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978178 4 0.2100 0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978179 4 0.2100 0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978180 4 0.2100 0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978181 4 0.2100 0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978182 4 0.2100 0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978183 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978184 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978185 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978186 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978187 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978188 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978189 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978190 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978191 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978192 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978193 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978194 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978195 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978196 2 0.0777 0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978197 3 0.3509 0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978198 3 0.3509 0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978199 3 0.3509 0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978200 3 0.3509 0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978201 3 0.3509 0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978202 3 0.3509 0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978203 3 0.3509 0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978204 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978205 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978206 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978207 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978208 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978209 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978210 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978211 3 0.3629 0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978212 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978213 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978214 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978215 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978216 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978217 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978218 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978219 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978220 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978221 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978222 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978223 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978224 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978225 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978226 6 0.4524 1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978227 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978228 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978229 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978230 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978231 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978232 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978233 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978234 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978235 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978236 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978237 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978238 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978239 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978240 1 0.0363 0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978241 4 0.0692 0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978242 4 0.0692 0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978243 4 0.0692 0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978244 4 0.0692 0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978245 4 0.0692 0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978246 4 0.0692 0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978247 4 0.0692 0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978248 4 0.4002 0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978249 4 0.4002 0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978250 4 0.4002 0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978251 4 0.4002 0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978252 4 0.4002 0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978253 4 0.4002 0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978254 4 0.4002 0.712 0.000 0.008 0.000 0.588 0.000 0.404
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 1.000 0.985 0.993 0.7586 0.757 0.640
#> 4 4 0.839 0.910 0.918 0.2589 0.840 0.630
#> 5 5 0.963 0.928 0.968 0.1040 0.857 0.536
#> 6 6 1.000 0.974 0.983 0.0411 0.959 0.800
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5
There is also optional best \(k\) = 2 3 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.0000 1.000 0 1.000 0.000
#> ERR978108 2 0.0000 1.000 0 1.000 0.000
#> ERR978109 2 0.0000 1.000 0 1.000 0.000
#> ERR978110 2 0.0000 1.000 0 1.000 0.000
#> ERR978111 2 0.0000 1.000 0 1.000 0.000
#> ERR978112 2 0.0000 1.000 0 1.000 0.000
#> ERR978113 2 0.0000 1.000 0 1.000 0.000
#> ERR978114 2 0.0000 1.000 0 1.000 0.000
#> ERR978115 2 0.0000 1.000 0 1.000 0.000
#> ERR978116 2 0.0000 1.000 0 1.000 0.000
#> ERR978117 2 0.0000 1.000 0 1.000 0.000
#> ERR978118 2 0.0000 1.000 0 1.000 0.000
#> ERR978119 2 0.0000 1.000 0 1.000 0.000
#> ERR978120 2 0.0000 1.000 0 1.000 0.000
#> ERR978121 2 0.0000 1.000 0 1.000 0.000
#> ERR978122 2 0.0000 1.000 0 1.000 0.000
#> ERR978123 3 0.0000 0.988 0 0.000 1.000
#> ERR978124 3 0.0000 0.988 0 0.000 1.000
#> ERR978125 3 0.0000 0.988 0 0.000 1.000
#> ERR978126 3 0.0000 0.988 0 0.000 1.000
#> ERR978127 3 0.0000 0.988 0 0.000 1.000
#> ERR978128 3 0.0000 0.988 0 0.000 1.000
#> ERR978129 3 0.0000 0.988 0 0.000 1.000
#> ERR978130 3 0.0000 0.988 0 0.000 1.000
#> ERR978131 3 0.0000 0.988 0 0.000 1.000
#> ERR978132 3 0.0000 0.988 0 0.000 1.000
#> ERR978133 3 0.0000 0.988 0 0.000 1.000
#> ERR978134 3 0.0000 0.988 0 0.000 1.000
#> ERR978135 3 0.0000 0.988 0 0.000 1.000
#> ERR978136 3 0.0000 0.988 0 0.000 1.000
#> ERR978137 3 0.0000 0.988 0 0.000 1.000
#> ERR978138 3 0.0000 0.988 0 0.000 1.000
#> ERR978139 3 0.0000 0.988 0 0.000 1.000
#> ERR978140 3 0.0000 0.988 0 0.000 1.000
#> ERR978141 3 0.0000 0.988 0 0.000 1.000
#> ERR978142 3 0.0000 0.988 0 0.000 1.000
#> ERR978143 3 0.0000 0.988 0 0.000 1.000
#> ERR978144 3 0.0000 0.988 0 0.000 1.000
#> ERR978145 3 0.0000 0.988 0 0.000 1.000
#> ERR978146 3 0.0000 0.988 0 0.000 1.000
#> ERR978147 3 0.0000 0.988 0 0.000 1.000
#> ERR978148 3 0.0000 0.988 0 0.000 1.000
#> ERR978149 3 0.0000 0.988 0 0.000 1.000
#> ERR978150 3 0.0000 0.988 0 0.000 1.000
#> ERR978151 3 0.0000 0.988 0 0.000 1.000
#> ERR978152 3 0.0000 0.988 0 0.000 1.000
#> ERR978153 1 0.0000 1.000 1 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000
#> ERR978169 3 0.0000 0.988 0 0.000 1.000
#> ERR978170 3 0.0000 0.988 0 0.000 1.000
#> ERR978171 3 0.0000 0.988 0 0.000 1.000
#> ERR978172 3 0.0000 0.988 0 0.000 1.000
#> ERR978173 3 0.0000 0.988 0 0.000 1.000
#> ERR978174 3 0.0000 0.988 0 0.000 1.000
#> ERR978175 3 0.0000 0.988 0 0.000 1.000
#> ERR978176 3 0.0000 0.988 0 0.000 1.000
#> ERR978177 3 0.0000 0.988 0 0.000 1.000
#> ERR978178 3 0.0000 0.988 0 0.000 1.000
#> ERR978179 3 0.0000 0.988 0 0.000 1.000
#> ERR978180 3 0.0000 0.988 0 0.000 1.000
#> ERR978181 3 0.0000 0.988 0 0.000 1.000
#> ERR978182 3 0.0000 0.988 0 0.000 1.000
#> ERR978183 2 0.0000 1.000 0 1.000 0.000
#> ERR978184 2 0.0000 1.000 0 1.000 0.000
#> ERR978185 2 0.0000 1.000 0 1.000 0.000
#> ERR978186 2 0.0000 1.000 0 1.000 0.000
#> ERR978187 2 0.0000 1.000 0 1.000 0.000
#> ERR978188 2 0.0000 1.000 0 1.000 0.000
#> ERR978189 2 0.0000 1.000 0 1.000 0.000
#> ERR978190 2 0.0000 1.000 0 1.000 0.000
#> ERR978191 2 0.0000 1.000 0 1.000 0.000
#> ERR978192 2 0.0000 1.000 0 1.000 0.000
#> ERR978193 2 0.0000 1.000 0 1.000 0.000
#> ERR978194 2 0.0000 1.000 0 1.000 0.000
#> ERR978195 2 0.0000 1.000 0 1.000 0.000
#> ERR978196 2 0.0000 1.000 0 1.000 0.000
#> ERR978197 3 0.0000 0.988 0 0.000 1.000
#> ERR978198 3 0.0000 0.988 0 0.000 1.000
#> ERR978199 3 0.0000 0.988 0 0.000 1.000
#> ERR978200 3 0.0000 0.988 0 0.000 1.000
#> ERR978201 3 0.0000 0.988 0 0.000 1.000
#> ERR978202 3 0.0000 0.988 0 0.000 1.000
#> ERR978203 3 0.0000 0.988 0 0.000 1.000
#> ERR978204 3 0.0000 0.988 0 0.000 1.000
#> ERR978205 3 0.0000 0.988 0 0.000 1.000
#> ERR978206 3 0.0000 0.988 0 0.000 1.000
#> ERR978207 3 0.0000 0.988 0 0.000 1.000
#> ERR978208 3 0.0000 0.988 0 0.000 1.000
#> ERR978209 3 0.0000 0.988 0 0.000 1.000
#> ERR978210 3 0.0000 0.988 0 0.000 1.000
#> ERR978211 3 0.0000 0.988 0 0.000 1.000
#> ERR978212 3 0.0000 0.988 0 0.000 1.000
#> ERR978213 3 0.0000 0.988 0 0.000 1.000
#> ERR978214 3 0.0000 0.988 0 0.000 1.000
#> ERR978215 3 0.0000 0.988 0 0.000 1.000
#> ERR978216 3 0.0000 0.988 0 0.000 1.000
#> ERR978217 3 0.0000 0.988 0 0.000 1.000
#> ERR978218 3 0.0000 0.988 0 0.000 1.000
#> ERR978219 3 0.0000 0.988 0 0.000 1.000
#> ERR978220 3 0.0000 0.988 0 0.000 1.000
#> ERR978221 3 0.0000 0.988 0 0.000 1.000
#> ERR978222 3 0.0000 0.988 0 0.000 1.000
#> ERR978223 3 0.0000 0.988 0 0.000 1.000
#> ERR978224 3 0.0000 0.988 0 0.000 1.000
#> ERR978225 3 0.0000 0.988 0 0.000 1.000
#> ERR978226 3 0.0000 0.988 0 0.000 1.000
#> ERR978227 1 0.0000 1.000 1 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000
#> ERR978241 3 0.0000 0.988 0 0.000 1.000
#> ERR978242 3 0.0000 0.988 0 0.000 1.000
#> ERR978243 3 0.0000 0.988 0 0.000 1.000
#> ERR978244 3 0.0000 0.988 0 0.000 1.000
#> ERR978245 3 0.0000 0.988 0 0.000 1.000
#> ERR978246 3 0.0000 0.988 0 0.000 1.000
#> ERR978247 3 0.0000 0.988 0 0.000 1.000
#> ERR978248 3 0.5138 0.679 0 0.252 0.748
#> ERR978249 3 0.3941 0.822 0 0.156 0.844
#> ERR978250 3 0.2066 0.932 0 0.060 0.940
#> ERR978251 3 0.0747 0.974 0 0.016 0.984
#> ERR978252 3 0.2711 0.903 0 0.088 0.912
#> ERR978253 3 0.3816 0.832 0 0.148 0.852
#> ERR978254 3 0.5465 0.614 0 0.288 0.712
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978123 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978124 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978125 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978126 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978127 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978128 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978129 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978130 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978131 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978132 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978133 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978134 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978135 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978136 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978137 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978138 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978139 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978140 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978141 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978142 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978143 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978144 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978145 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978146 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978147 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978148 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978149 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978150 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978151 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978152 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978153 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978169 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978170 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978171 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978172 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978173 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978174 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978175 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978176 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978177 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978178 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978179 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978180 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978181 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978182 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978183 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.00 0.000
#> ERR978197 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978198 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978199 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978200 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978201 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978202 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978203 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978204 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978205 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978206 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978207 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978208 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978209 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978210 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978211 3 0.452 1.000 0 0.000 0.68 0.320
#> ERR978212 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978213 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978214 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978215 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978216 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978217 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978218 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978219 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978220 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978221 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978222 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978223 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978224 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978225 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978226 4 0.000 0.799 0 0.000 0.00 1.000
#> ERR978227 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.00 0.000
#> ERR978241 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978242 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978243 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978244 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978245 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978246 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978247 4 0.452 0.752 0 0.000 0.32 0.680
#> ERR978248 4 0.436 0.617 0 0.292 0.00 0.708
#> ERR978249 4 0.357 0.700 0 0.196 0.00 0.804
#> ERR978250 4 0.187 0.768 0 0.072 0.00 0.928
#> ERR978251 4 0.121 0.784 0 0.040 0.00 0.960
#> ERR978252 4 0.287 0.736 0 0.136 0.00 0.864
#> ERR978253 4 0.331 0.714 0 0.172 0.00 0.828
#> ERR978254 4 0.456 0.560 0 0.328 0.00 0.672
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978108 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978109 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978110 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978111 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978112 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978113 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978114 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978115 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978116 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978117 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978118 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978119 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978120 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978121 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978122 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978123 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978124 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978125 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978126 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978127 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978128 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978129 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978130 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978131 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978132 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978133 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978134 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978135 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978136 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978137 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978138 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978139 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978140 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978141 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978142 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978143 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978144 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978145 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978146 3 0.430 0.270 0 0 0.516 0 0.484
#> ERR978147 3 0.424 0.410 0 0 0.572 0 0.428
#> ERR978148 3 0.422 0.435 0 0 0.584 0 0.416
#> ERR978149 3 0.429 0.324 0 0 0.536 0 0.464
#> ERR978150 3 0.431 0.231 0 0 0.504 0 0.496
#> ERR978151 3 0.409 0.520 0 0 0.632 0 0.368
#> ERR978152 3 0.402 0.550 0 0 0.652 0 0.348
#> ERR978153 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978154 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978155 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978156 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978157 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978158 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978159 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978160 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978161 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978162 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978163 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978164 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978165 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978166 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978167 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978168 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978169 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978170 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978171 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978172 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978173 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978174 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978175 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978176 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978177 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978178 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978179 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978180 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978181 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978182 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978183 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978184 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978185 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978186 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978187 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978188 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978189 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978190 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978191 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978192 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978193 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978194 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978195 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978196 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978197 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978198 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978199 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978200 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978201 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978202 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978203 3 0.000 0.880 0 0 1.000 0 0.000
#> ERR978204 5 0.314 0.757 0 0 0.204 0 0.796
#> ERR978205 5 0.324 0.744 0 0 0.216 0 0.784
#> ERR978206 5 0.327 0.739 0 0 0.220 0 0.780
#> ERR978207 5 0.324 0.744 0 0 0.216 0 0.784
#> ERR978208 5 0.321 0.749 0 0 0.212 0 0.788
#> ERR978209 5 0.331 0.733 0 0 0.224 0 0.776
#> ERR978210 5 0.324 0.744 0 0 0.216 0 0.784
#> ERR978211 5 0.324 0.744 0 0 0.216 0 0.784
#> ERR978212 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978213 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978214 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978215 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978216 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978217 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978218 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978219 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978220 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978221 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978222 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978223 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978224 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978225 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978226 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978227 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978228 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978229 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978230 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978231 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978232 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978233 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978234 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978235 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978236 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978237 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978238 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978239 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978240 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978241 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978242 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978243 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978244 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978245 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978246 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978247 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978248 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978249 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978250 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978251 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978252 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978253 5 0.000 0.944 0 0 0.000 0 1.000
#> ERR978254 5 0.000 0.944 0 0 0.000 0 1.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978123 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978124 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978125 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978126 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978127 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978128 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978129 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978130 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978131 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978132 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978133 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978134 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978135 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978136 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978137 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978138 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978139 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978140 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978141 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978142 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978143 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978144 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978145 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978146 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978147 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978148 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978149 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978150 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978151 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978152 6 0.0000 1.000 0 0 0.000 0.000 0.000 1.000
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978170 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978171 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978172 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978173 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978174 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978175 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978176 4 0.0713 0.983 0 0 0.000 0.972 0.028 0.000
#> ERR978177 4 0.0713 0.983 0 0 0.000 0.972 0.028 0.000
#> ERR978178 4 0.0713 0.983 0 0 0.000 0.972 0.028 0.000
#> ERR978179 4 0.0713 0.983 0 0 0.000 0.972 0.028 0.000
#> ERR978180 4 0.0713 0.983 0 0 0.000 0.972 0.028 0.000
#> ERR978181 4 0.0713 0.983 0 0 0.000 0.972 0.028 0.000
#> ERR978182 4 0.0713 0.983 0 0 0.000 0.972 0.028 0.000
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978197 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978198 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978199 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978200 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978201 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978202 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978203 3 0.0000 1.000 0 0 1.000 0.000 0.000 0.000
#> ERR978204 5 0.2941 0.785 0 0 0.220 0.000 0.780 0.000
#> ERR978205 5 0.3023 0.774 0 0 0.232 0.000 0.768 0.000
#> ERR978206 5 0.3023 0.774 0 0 0.232 0.000 0.768 0.000
#> ERR978207 5 0.3023 0.774 0 0 0.232 0.000 0.768 0.000
#> ERR978208 5 0.2996 0.778 0 0 0.228 0.000 0.772 0.000
#> ERR978209 5 0.3101 0.759 0 0 0.244 0.000 0.756 0.000
#> ERR978210 5 0.3050 0.769 0 0 0.236 0.000 0.764 0.000
#> ERR978211 5 0.2996 0.778 0 0 0.228 0.000 0.772 0.000
#> ERR978212 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978213 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978214 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978215 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978216 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978217 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978218 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978219 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978220 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978221 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978222 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978223 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978224 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978225 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978226 5 0.0713 0.921 0 0 0.000 0.000 0.972 0.028
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978242 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978243 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978244 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978245 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978246 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978247 4 0.0000 0.991 0 0 0.000 1.000 0.000 0.000
#> ERR978248 5 0.0000 0.915 0 0 0.000 0.000 1.000 0.000
#> ERR978249 5 0.0000 0.915 0 0 0.000 0.000 1.000 0.000
#> ERR978250 5 0.0000 0.915 0 0 0.000 0.000 1.000 0.000
#> ERR978251 5 0.0000 0.915 0 0 0.000 0.000 1.000 0.000
#> ERR978252 5 0.0000 0.915 0 0 0.000 0.000 1.000 0.000
#> ERR978253 5 0.0000 0.915 0 0 0.000 0.000 1.000 0.000
#> ERR978254 5 0.0000 0.915 0 0 0.000 0.000 1.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 0.768 0.926 0.955 0.7992 0.757 0.640
#> 4 4 1.000 0.998 0.999 0.2324 0.846 0.642
#> 5 5 1.000 0.990 0.990 0.1136 0.917 0.702
#> 6 6 0.961 0.975 0.954 0.0232 0.982 0.907
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5
There is also optional best \(k\) = 2 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 1.000 0 1.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000
#> ERR978123 3 0.000 0.917 0 0.000 1.000
#> ERR978124 3 0.000 0.917 0 0.000 1.000
#> ERR978125 3 0.000 0.917 0 0.000 1.000
#> ERR978126 3 0.000 0.917 0 0.000 1.000
#> ERR978127 3 0.000 0.917 0 0.000 1.000
#> ERR978128 3 0.000 0.917 0 0.000 1.000
#> ERR978129 3 0.000 0.917 0 0.000 1.000
#> ERR978130 3 0.000 0.917 0 0.000 1.000
#> ERR978131 3 0.000 0.917 0 0.000 1.000
#> ERR978132 3 0.000 0.917 0 0.000 1.000
#> ERR978133 3 0.000 0.917 0 0.000 1.000
#> ERR978134 3 0.000 0.917 0 0.000 1.000
#> ERR978135 3 0.000 0.917 0 0.000 1.000
#> ERR978136 3 0.000 0.917 0 0.000 1.000
#> ERR978137 3 0.000 0.917 0 0.000 1.000
#> ERR978138 3 0.000 0.917 0 0.000 1.000
#> ERR978139 3 0.000 0.917 0 0.000 1.000
#> ERR978140 3 0.000 0.917 0 0.000 1.000
#> ERR978141 3 0.000 0.917 0 0.000 1.000
#> ERR978142 3 0.000 0.917 0 0.000 1.000
#> ERR978143 3 0.000 0.917 0 0.000 1.000
#> ERR978144 3 0.000 0.917 0 0.000 1.000
#> ERR978145 3 0.000 0.917 0 0.000 1.000
#> ERR978146 3 0.000 0.917 0 0.000 1.000
#> ERR978147 3 0.000 0.917 0 0.000 1.000
#> ERR978148 3 0.000 0.917 0 0.000 1.000
#> ERR978149 3 0.000 0.917 0 0.000 1.000
#> ERR978150 3 0.000 0.917 0 0.000 1.000
#> ERR978151 3 0.000 0.917 0 0.000 1.000
#> ERR978152 3 0.000 0.917 0 0.000 1.000
#> ERR978153 1 0.000 1.000 1 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000
#> ERR978169 3 0.497 0.787 0 0.236 0.764
#> ERR978170 3 0.497 0.787 0 0.236 0.764
#> ERR978171 3 0.497 0.787 0 0.236 0.764
#> ERR978172 3 0.497 0.787 0 0.236 0.764
#> ERR978173 3 0.497 0.787 0 0.236 0.764
#> ERR978174 3 0.497 0.787 0 0.236 0.764
#> ERR978175 3 0.497 0.787 0 0.236 0.764
#> ERR978176 3 0.497 0.787 0 0.236 0.764
#> ERR978177 3 0.497 0.787 0 0.236 0.764
#> ERR978178 3 0.497 0.787 0 0.236 0.764
#> ERR978179 3 0.497 0.787 0 0.236 0.764
#> ERR978180 3 0.497 0.787 0 0.236 0.764
#> ERR978181 3 0.497 0.787 0 0.236 0.764
#> ERR978182 3 0.497 0.787 0 0.236 0.764
#> ERR978183 2 0.000 1.000 0 1.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000
#> ERR978197 3 0.000 0.917 0 0.000 1.000
#> ERR978198 3 0.000 0.917 0 0.000 1.000
#> ERR978199 3 0.000 0.917 0 0.000 1.000
#> ERR978200 3 0.000 0.917 0 0.000 1.000
#> ERR978201 3 0.000 0.917 0 0.000 1.000
#> ERR978202 3 0.000 0.917 0 0.000 1.000
#> ERR978203 3 0.000 0.917 0 0.000 1.000
#> ERR978204 3 0.000 0.917 0 0.000 1.000
#> ERR978205 3 0.000 0.917 0 0.000 1.000
#> ERR978206 3 0.000 0.917 0 0.000 1.000
#> ERR978207 3 0.000 0.917 0 0.000 1.000
#> ERR978208 3 0.000 0.917 0 0.000 1.000
#> ERR978209 3 0.000 0.917 0 0.000 1.000
#> ERR978210 3 0.000 0.917 0 0.000 1.000
#> ERR978211 3 0.000 0.917 0 0.000 1.000
#> ERR978212 3 0.000 0.917 0 0.000 1.000
#> ERR978213 3 0.000 0.917 0 0.000 1.000
#> ERR978214 3 0.000 0.917 0 0.000 1.000
#> ERR978215 3 0.000 0.917 0 0.000 1.000
#> ERR978216 3 0.000 0.917 0 0.000 1.000
#> ERR978217 3 0.000 0.917 0 0.000 1.000
#> ERR978218 3 0.000 0.917 0 0.000 1.000
#> ERR978219 3 0.000 0.917 0 0.000 1.000
#> ERR978220 3 0.000 0.917 0 0.000 1.000
#> ERR978221 3 0.000 0.917 0 0.000 1.000
#> ERR978222 3 0.000 0.917 0 0.000 1.000
#> ERR978223 3 0.000 0.917 0 0.000 1.000
#> ERR978224 3 0.000 0.917 0 0.000 1.000
#> ERR978225 3 0.000 0.917 0 0.000 1.000
#> ERR978226 3 0.000 0.917 0 0.000 1.000
#> ERR978227 1 0.000 1.000 1 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000
#> ERR978241 3 0.497 0.787 0 0.236 0.764
#> ERR978242 3 0.497 0.787 0 0.236 0.764
#> ERR978243 3 0.497 0.787 0 0.236 0.764
#> ERR978244 3 0.497 0.787 0 0.236 0.764
#> ERR978245 3 0.497 0.787 0 0.236 0.764
#> ERR978246 3 0.497 0.787 0 0.236 0.764
#> ERR978247 3 0.497 0.787 0 0.236 0.764
#> ERR978248 3 0.497 0.787 0 0.236 0.764
#> ERR978249 3 0.497 0.787 0 0.236 0.764
#> ERR978250 3 0.497 0.787 0 0.236 0.764
#> ERR978251 3 0.497 0.787 0 0.236 0.764
#> ERR978252 3 0.497 0.787 0 0.236 0.764
#> ERR978253 3 0.497 0.787 0 0.236 0.764
#> ERR978254 3 0.497 0.787 0 0.236 0.764
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978123 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978124 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978125 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978126 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978127 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978128 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978129 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978130 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978131 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978132 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978133 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978134 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978135 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978136 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978137 3 0.0469 0.991 0 0 0.988 0.012
#> ERR978138 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978139 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978140 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978141 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978142 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978143 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978144 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978145 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978146 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978147 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978148 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978149 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978150 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978151 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978152 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978169 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978170 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978171 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978172 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978173 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978174 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978175 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978176 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978177 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978178 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978179 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978180 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978181 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978182 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.000
#> ERR978197 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978198 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978199 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978200 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978201 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978202 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978203 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978204 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978205 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978206 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978207 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978208 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978209 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978210 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978211 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978212 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978213 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978214 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978215 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978216 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978217 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978218 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978219 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978220 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978221 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978222 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978223 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978224 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978225 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978226 3 0.0000 0.997 0 0 1.000 0.000
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.000
#> ERR978241 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978242 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978243 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978244 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978245 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978246 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978247 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978248 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978249 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978250 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978251 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978252 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978253 4 0.0000 1.000 0 0 0.000 1.000
#> ERR978254 4 0.0000 1.000 0 0 0.000 1.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978108 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978109 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978110 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978111 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978112 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978113 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978114 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978115 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978116 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978117 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978118 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978119 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978120 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978121 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978122 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978123 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978124 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978125 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978126 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978127 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978128 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978129 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978130 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978131 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978132 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978133 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978134 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978135 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978136 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978137 3 0.1121 0.975 0 0 0.956 0 0.044
#> ERR978138 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978139 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978140 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978141 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978142 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978143 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978144 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978145 3 0.0510 0.969 0 0 0.984 0 0.016
#> ERR978146 3 0.0000 0.972 0 0 1.000 0 0.000
#> ERR978147 3 0.0000 0.972 0 0 1.000 0 0.000
#> ERR978148 3 0.0000 0.972 0 0 1.000 0 0.000
#> ERR978149 3 0.0000 0.972 0 0 1.000 0 0.000
#> ERR978150 3 0.0000 0.972 0 0 1.000 0 0.000
#> ERR978151 3 0.0000 0.972 0 0 1.000 0 0.000
#> ERR978152 3 0.0000 0.972 0 0 1.000 0 0.000
#> ERR978153 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978154 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978155 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978156 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978157 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978158 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978159 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978160 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978161 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978162 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978163 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978164 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978165 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978166 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978167 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978168 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978169 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978170 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978171 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978172 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978173 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978174 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978175 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978176 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978177 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978178 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978179 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978180 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978181 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978182 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978183 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978184 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978185 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978186 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978187 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978188 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978189 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978190 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978191 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978192 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978193 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978194 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978195 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978196 2 0.0000 1.000 0 1 0.000 0 0.000
#> ERR978197 5 0.0290 0.975 0 0 0.008 0 0.992
#> ERR978198 5 0.0290 0.975 0 0 0.008 0 0.992
#> ERR978199 5 0.0290 0.975 0 0 0.008 0 0.992
#> ERR978200 5 0.0290 0.975 0 0 0.008 0 0.992
#> ERR978201 5 0.0290 0.975 0 0 0.008 0 0.992
#> ERR978202 5 0.0290 0.975 0 0 0.008 0 0.992
#> ERR978203 5 0.0290 0.975 0 0 0.008 0 0.992
#> ERR978204 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978205 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978206 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978207 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978208 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978209 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978210 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978211 5 0.0162 0.976 0 0 0.004 0 0.996
#> ERR978212 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978213 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978214 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978215 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978216 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978217 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978218 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978219 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978220 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978221 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978222 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978223 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978224 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978225 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978226 5 0.1043 0.977 0 0 0.040 0 0.960
#> ERR978227 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978228 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978229 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978230 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978231 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978232 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978233 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978234 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978235 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978236 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978237 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978238 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978239 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978240 1 0.0000 1.000 1 0 0.000 0 0.000
#> ERR978241 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978242 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978243 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978244 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978245 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978246 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978247 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978248 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978249 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978250 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978251 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978252 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978253 4 0.0000 1.000 0 0 0.000 1 0.000
#> ERR978254 4 0.0000 1.000 0 0 0.000 1 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.940 0 1.000 0.000 0.000 0.000 0.000
#> ERR978123 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978124 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978125 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978126 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978127 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978128 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978129 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978130 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978131 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978132 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978133 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978134 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978135 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978136 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978137 3 0.1204 0.970 0 0.000 0.944 0.056 0.000 0.000
#> ERR978138 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978139 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978140 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978141 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978142 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978143 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978144 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978145 3 0.0458 0.965 0 0.000 0.984 0.000 0.016 0.000
#> ERR978146 3 0.0000 0.966 0 0.000 1.000 0.000 0.000 0.000
#> ERR978147 3 0.0000 0.966 0 0.000 1.000 0.000 0.000 0.000
#> ERR978148 3 0.0000 0.966 0 0.000 1.000 0.000 0.000 0.000
#> ERR978149 3 0.0000 0.966 0 0.000 1.000 0.000 0.000 0.000
#> ERR978150 3 0.0000 0.966 0 0.000 1.000 0.000 0.000 0.000
#> ERR978151 3 0.0000 0.966 0 0.000 1.000 0.000 0.000 0.000
#> ERR978152 3 0.0000 0.966 0 0.000 1.000 0.000 0.000 0.000
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978170 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978171 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978172 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978173 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978174 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978175 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978176 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978177 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978178 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978179 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978180 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978181 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978182 4 0.2854 1.000 0 0.000 0.000 0.792 0.000 0.208
#> ERR978183 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978184 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978185 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978186 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978187 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978188 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978189 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978190 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978191 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978192 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978193 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978194 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978195 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978196 2 0.2300 0.931 0 0.856 0.000 0.144 0.000 0.000
#> ERR978197 5 0.1349 0.969 0 0.000 0.004 0.056 0.940 0.000
#> ERR978198 5 0.1349 0.969 0 0.000 0.004 0.056 0.940 0.000
#> ERR978199 5 0.1349 0.969 0 0.000 0.004 0.056 0.940 0.000
#> ERR978200 5 0.1349 0.969 0 0.000 0.004 0.056 0.940 0.000
#> ERR978201 5 0.1349 0.969 0 0.000 0.004 0.056 0.940 0.000
#> ERR978202 5 0.1349 0.969 0 0.000 0.004 0.056 0.940 0.000
#> ERR978203 5 0.1349 0.969 0 0.000 0.004 0.056 0.940 0.000
#> ERR978204 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978205 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978206 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978207 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978208 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978209 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978210 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978211 5 0.1204 0.971 0 0.000 0.000 0.056 0.944 0.000
#> ERR978212 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978213 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978214 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978215 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978216 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978217 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978218 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978219 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978220 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978221 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978222 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978223 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978224 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978225 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978226 5 0.0000 0.971 0 0.000 0.000 0.000 1.000 0.000
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978241 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978242 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978243 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978244 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978245 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978246 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978247 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978248 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978249 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978250 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978251 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978252 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978253 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
#> ERR978254 6 0.0000 1.000 0 0.000 0.000 0.000 0.000 1.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.326 0.675 0.675
#> 3 3 0.716 0.824 0.894 0.891 0.686 0.534
#> 4 4 1.000 0.957 0.974 0.171 0.724 0.397
#> 5 5 1.000 0.975 0.988 0.114 0.917 0.702
#> 6 6 0.978 0.905 0.902 0.022 1.000 1.000
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 4
There is also optional best \(k\) = 2 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 0.742 0 1.000 0.000
#> ERR978108 2 0.000 0.742 0 1.000 0.000
#> ERR978109 2 0.000 0.742 0 1.000 0.000
#> ERR978110 2 0.000 0.742 0 1.000 0.000
#> ERR978111 2 0.000 0.742 0 1.000 0.000
#> ERR978112 2 0.000 0.742 0 1.000 0.000
#> ERR978113 2 0.000 0.742 0 1.000 0.000
#> ERR978114 2 0.000 0.742 0 1.000 0.000
#> ERR978115 2 0.000 0.742 0 1.000 0.000
#> ERR978116 2 0.000 0.742 0 1.000 0.000
#> ERR978117 2 0.000 0.742 0 1.000 0.000
#> ERR978118 2 0.000 0.742 0 1.000 0.000
#> ERR978119 2 0.000 0.742 0 1.000 0.000
#> ERR978120 2 0.000 0.742 0 1.000 0.000
#> ERR978121 2 0.000 0.742 0 1.000 0.000
#> ERR978122 2 0.000 0.742 0 1.000 0.000
#> ERR978123 3 0.000 0.962 0 0.000 1.000
#> ERR978124 3 0.000 0.962 0 0.000 1.000
#> ERR978125 3 0.000 0.962 0 0.000 1.000
#> ERR978126 3 0.000 0.962 0 0.000 1.000
#> ERR978127 3 0.000 0.962 0 0.000 1.000
#> ERR978128 3 0.000 0.962 0 0.000 1.000
#> ERR978129 3 0.000 0.962 0 0.000 1.000
#> ERR978130 3 0.000 0.962 0 0.000 1.000
#> ERR978131 3 0.581 0.208 0 0.336 0.664
#> ERR978132 3 0.465 0.618 0 0.208 0.792
#> ERR978133 3 0.319 0.811 0 0.112 0.888
#> ERR978134 3 0.280 0.843 0 0.092 0.908
#> ERR978135 3 0.271 0.849 0 0.088 0.912
#> ERR978136 3 0.450 0.646 0 0.196 0.804
#> ERR978137 3 0.543 0.402 0 0.284 0.716
#> ERR978138 3 0.000 0.962 0 0.000 1.000
#> ERR978139 3 0.000 0.962 0 0.000 1.000
#> ERR978140 3 0.000 0.962 0 0.000 1.000
#> ERR978141 3 0.000 0.962 0 0.000 1.000
#> ERR978142 3 0.000 0.962 0 0.000 1.000
#> ERR978143 3 0.000 0.962 0 0.000 1.000
#> ERR978144 3 0.000 0.962 0 0.000 1.000
#> ERR978145 3 0.000 0.962 0 0.000 1.000
#> ERR978146 3 0.000 0.962 0 0.000 1.000
#> ERR978147 3 0.000 0.962 0 0.000 1.000
#> ERR978148 3 0.000 0.962 0 0.000 1.000
#> ERR978149 3 0.000 0.962 0 0.000 1.000
#> ERR978150 3 0.000 0.962 0 0.000 1.000
#> ERR978151 3 0.000 0.962 0 0.000 1.000
#> ERR978152 3 0.000 0.962 0 0.000 1.000
#> ERR978153 1 0.000 1.000 1 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000
#> ERR978169 3 0.000 0.962 0 0.000 1.000
#> ERR978170 3 0.000 0.962 0 0.000 1.000
#> ERR978171 3 0.000 0.962 0 0.000 1.000
#> ERR978172 3 0.000 0.962 0 0.000 1.000
#> ERR978173 3 0.000 0.962 0 0.000 1.000
#> ERR978174 3 0.000 0.962 0 0.000 1.000
#> ERR978175 3 0.000 0.962 0 0.000 1.000
#> ERR978176 3 0.000 0.962 0 0.000 1.000
#> ERR978177 3 0.000 0.962 0 0.000 1.000
#> ERR978178 3 0.000 0.962 0 0.000 1.000
#> ERR978179 3 0.000 0.962 0 0.000 1.000
#> ERR978180 3 0.000 0.962 0 0.000 1.000
#> ERR978181 3 0.000 0.962 0 0.000 1.000
#> ERR978182 3 0.000 0.962 0 0.000 1.000
#> ERR978183 2 0.000 0.742 0 1.000 0.000
#> ERR978184 2 0.000 0.742 0 1.000 0.000
#> ERR978185 2 0.000 0.742 0 1.000 0.000
#> ERR978186 2 0.000 0.742 0 1.000 0.000
#> ERR978187 2 0.000 0.742 0 1.000 0.000
#> ERR978188 2 0.000 0.742 0 1.000 0.000
#> ERR978189 2 0.000 0.742 0 1.000 0.000
#> ERR978190 2 0.000 0.742 0 1.000 0.000
#> ERR978191 2 0.000 0.742 0 1.000 0.000
#> ERR978192 2 0.000 0.742 0 1.000 0.000
#> ERR978193 2 0.000 0.742 0 1.000 0.000
#> ERR978194 2 0.000 0.742 0 1.000 0.000
#> ERR978195 2 0.000 0.742 0 1.000 0.000
#> ERR978196 2 0.000 0.742 0 1.000 0.000
#> ERR978197 2 0.614 0.629 0 0.596 0.404
#> ERR978198 2 0.621 0.590 0 0.572 0.428
#> ERR978199 2 0.623 0.575 0 0.564 0.436
#> ERR978200 2 0.624 0.567 0 0.560 0.440
#> ERR978201 2 0.621 0.590 0 0.572 0.428
#> ERR978202 2 0.618 0.610 0 0.584 0.416
#> ERR978203 2 0.614 0.629 0 0.596 0.404
#> ERR978204 2 0.610 0.644 0 0.608 0.392
#> ERR978205 2 0.611 0.639 0 0.604 0.396
#> ERR978206 2 0.613 0.634 0 0.600 0.400
#> ERR978207 2 0.613 0.634 0 0.600 0.400
#> ERR978208 2 0.613 0.634 0 0.600 0.400
#> ERR978209 2 0.613 0.634 0 0.600 0.400
#> ERR978210 2 0.613 0.634 0 0.600 0.400
#> ERR978211 2 0.610 0.644 0 0.608 0.392
#> ERR978212 2 0.599 0.663 0 0.632 0.368
#> ERR978213 2 0.604 0.655 0 0.620 0.380
#> ERR978214 2 0.604 0.655 0 0.620 0.380
#> ERR978215 2 0.608 0.648 0 0.612 0.388
#> ERR978216 2 0.603 0.658 0 0.624 0.376
#> ERR978217 2 0.603 0.658 0 0.624 0.376
#> ERR978218 2 0.590 0.670 0 0.648 0.352
#> ERR978219 2 0.599 0.662 0 0.632 0.368
#> ERR978220 2 0.608 0.648 0 0.612 0.388
#> ERR978221 2 0.608 0.648 0 0.612 0.388
#> ERR978222 2 0.610 0.644 0 0.608 0.392
#> ERR978223 2 0.606 0.651 0 0.616 0.384
#> ERR978224 2 0.606 0.651 0 0.616 0.384
#> ERR978225 2 0.601 0.660 0 0.628 0.372
#> ERR978226 2 0.595 0.666 0 0.640 0.360
#> ERR978227 1 0.000 1.000 1 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000
#> ERR978241 3 0.000 0.962 0 0.000 1.000
#> ERR978242 3 0.000 0.962 0 0.000 1.000
#> ERR978243 3 0.000 0.962 0 0.000 1.000
#> ERR978244 3 0.000 0.962 0 0.000 1.000
#> ERR978245 3 0.000 0.962 0 0.000 1.000
#> ERR978246 3 0.000 0.962 0 0.000 1.000
#> ERR978247 3 0.000 0.962 0 0.000 1.000
#> ERR978248 2 0.514 0.683 0 0.748 0.252
#> ERR978249 2 0.601 0.569 0 0.628 0.372
#> ERR978250 2 0.625 0.427 0 0.556 0.444
#> ERR978251 2 0.626 0.416 0 0.552 0.448
#> ERR978252 2 0.621 0.467 0 0.572 0.428
#> ERR978253 2 0.595 0.579 0 0.640 0.360
#> ERR978254 2 0.540 0.673 0 0.720 0.280
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978123 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978124 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978125 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978126 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978127 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978128 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978129 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978130 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978131 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978132 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978133 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978134 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978135 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978136 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978137 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978138 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978139 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978140 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978141 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978142 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978143 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978144 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978145 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978146 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978147 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978148 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978149 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978150 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978151 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978152 3 0.0000 0.976 0 0.000 1.000 0.000
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978170 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978171 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978172 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978173 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978174 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978175 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978176 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978177 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978178 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978179 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978180 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978181 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978182 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978183 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978197 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978198 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978199 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978200 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978201 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978202 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978203 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978204 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978205 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978206 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978207 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978208 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978209 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978210 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978211 3 0.1211 0.977 0 0.000 0.960 0.040
#> ERR978212 3 0.0657 0.970 0 0.012 0.984 0.004
#> ERR978213 3 0.0524 0.972 0 0.008 0.988 0.004
#> ERR978214 3 0.0524 0.972 0 0.004 0.988 0.008
#> ERR978215 3 0.0804 0.968 0 0.008 0.980 0.012
#> ERR978216 3 0.0657 0.970 0 0.012 0.984 0.004
#> ERR978217 3 0.0657 0.970 0 0.012 0.984 0.004
#> ERR978218 3 0.0657 0.970 0 0.012 0.984 0.004
#> ERR978219 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978220 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978221 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978222 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978223 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978224 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978225 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978226 3 0.0188 0.975 0 0.000 0.996 0.004
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978242 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978243 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978244 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978245 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978246 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978247 4 0.0000 0.907 0 0.000 0.000 1.000
#> ERR978248 4 0.5872 0.465 0 0.384 0.040 0.576
#> ERR978249 4 0.5639 0.581 0 0.324 0.040 0.636
#> ERR978250 4 0.5442 0.634 0 0.288 0.040 0.672
#> ERR978251 4 0.5168 0.682 0 0.248 0.040 0.712
#> ERR978252 4 0.5489 0.623 0 0.296 0.040 0.664
#> ERR978253 4 0.5658 0.574 0 0.328 0.040 0.632
#> ERR978254 4 0.5894 0.447 0 0.392 0.040 0.568
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978124 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978125 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978126 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978127 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978128 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978129 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978130 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978131 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978132 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978133 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978134 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978135 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978136 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978137 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978138 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978139 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978140 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978141 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978142 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978143 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978144 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978145 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978146 5 0.120 0.955 0 0.000 0.048 0.000 0.952
#> ERR978147 5 0.134 0.948 0 0.000 0.056 0.000 0.944
#> ERR978148 5 0.127 0.952 0 0.000 0.052 0.000 0.948
#> ERR978149 5 0.120 0.955 0 0.000 0.048 0.000 0.952
#> ERR978150 5 0.127 0.952 0 0.000 0.052 0.000 0.948
#> ERR978151 5 0.154 0.937 0 0.000 0.068 0.000 0.932
#> ERR978152 5 0.154 0.937 0 0.000 0.068 0.000 0.932
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978170 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978171 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978172 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978173 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978174 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978175 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978176 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978177 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978178 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978179 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978180 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978181 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978182 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978197 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978198 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978199 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978200 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978201 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978202 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978203 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978204 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978205 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978206 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978207 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978208 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978209 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978210 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978211 3 0.000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978212 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978213 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978214 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978215 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978216 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978217 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978218 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978219 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978220 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978221 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978222 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978223 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978224 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978225 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978226 5 0.000 0.985 0 0.000 0.000 0.000 1.000
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978242 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978243 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978244 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978245 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978246 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978247 4 0.000 0.948 0 0.000 0.000 1.000 0.000
#> ERR978248 4 0.446 0.390 0 0.008 0.000 0.588 0.404
#> ERR978249 4 0.340 0.744 0 0.004 0.000 0.780 0.216
#> ERR978250 4 0.127 0.915 0 0.000 0.000 0.948 0.052
#> ERR978251 4 0.088 0.929 0 0.000 0.000 0.968 0.032
#> ERR978252 4 0.164 0.904 0 0.004 0.000 0.932 0.064
#> ERR978253 4 0.364 0.699 0 0.004 0.000 0.748 0.248
#> ERR978254 4 0.444 0.482 0 0.012 0.000 0.624 0.364
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978123 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978124 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978125 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978126 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978127 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978128 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978129 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978130 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978131 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978132 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978133 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978134 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978135 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978136 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978137 3 0.0000 0.993 0 0 1.000 0.000 0.000 NA
#> ERR978138 5 0.0000 0.744 0 0 0.000 0.000 1.000 NA
#> ERR978139 5 0.0405 0.744 0 0 0.000 0.004 0.988 NA
#> ERR978140 5 0.0260 0.742 0 0 0.000 0.008 0.992 NA
#> ERR978141 5 0.0260 0.742 0 0 0.000 0.008 0.992 NA
#> ERR978142 5 0.0260 0.742 0 0 0.000 0.008 0.992 NA
#> ERR978143 5 0.0260 0.742 0 0 0.000 0.008 0.992 NA
#> ERR978144 5 0.0260 0.745 0 0 0.000 0.000 0.992 NA
#> ERR978145 5 0.0260 0.745 0 0 0.000 0.000 0.992 NA
#> ERR978146 5 0.1262 0.731 0 0 0.008 0.020 0.956 NA
#> ERR978147 5 0.1262 0.731 0 0 0.008 0.020 0.956 NA
#> ERR978148 5 0.1262 0.731 0 0 0.008 0.020 0.956 NA
#> ERR978149 5 0.1262 0.731 0 0 0.008 0.020 0.956 NA
#> ERR978150 5 0.1262 0.731 0 0 0.008 0.020 0.956 NA
#> ERR978151 5 0.1262 0.731 0 0 0.008 0.020 0.956 NA
#> ERR978152 5 0.1262 0.731 0 0 0.008 0.020 0.956 NA
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978169 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978170 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978171 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978172 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978173 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978174 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978175 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978176 4 0.3887 0.859 0 0 0.000 0.632 0.008 NA
#> ERR978177 4 0.3887 0.859 0 0 0.000 0.632 0.008 NA
#> ERR978178 4 0.3887 0.859 0 0 0.000 0.632 0.008 NA
#> ERR978179 4 0.3887 0.859 0 0 0.000 0.632 0.008 NA
#> ERR978180 4 0.3887 0.859 0 0 0.000 0.632 0.008 NA
#> ERR978181 4 0.3887 0.859 0 0 0.000 0.632 0.008 NA
#> ERR978182 4 0.3887 0.859 0 0 0.000 0.632 0.008 NA
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.000 0.000 NA
#> ERR978197 3 0.0260 0.992 0 0 0.992 0.000 0.000 NA
#> ERR978198 3 0.0260 0.992 0 0 0.992 0.000 0.000 NA
#> ERR978199 3 0.0260 0.992 0 0 0.992 0.000 0.000 NA
#> ERR978200 3 0.0260 0.992 0 0 0.992 0.000 0.000 NA
#> ERR978201 3 0.0260 0.992 0 0 0.992 0.000 0.000 NA
#> ERR978202 3 0.0260 0.992 0 0 0.992 0.000 0.000 NA
#> ERR978203 3 0.0260 0.992 0 0 0.992 0.000 0.000 NA
#> ERR978204 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978205 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978206 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978207 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978208 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978209 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978210 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978211 3 0.0725 0.985 0 0 0.976 0.012 0.000 NA
#> ERR978212 5 0.5962 0.694 0 0 0.000 0.228 0.424 NA
#> ERR978213 5 0.5890 0.710 0 0 0.000 0.212 0.448 NA
#> ERR978214 5 0.5771 0.724 0 0 0.000 0.188 0.476 NA
#> ERR978215 5 0.5688 0.730 0 0 0.000 0.176 0.496 NA
#> ERR978216 5 0.5849 0.717 0 0 0.000 0.204 0.460 NA
#> ERR978217 5 0.5890 0.710 0 0 0.000 0.212 0.448 NA
#> ERR978218 5 0.5975 0.691 0 0 0.000 0.232 0.420 NA
#> ERR978219 5 0.5763 0.725 0 0 0.000 0.188 0.480 NA
#> ERR978220 5 0.5688 0.730 0 0 0.000 0.176 0.496 NA
#> ERR978221 5 0.5590 0.733 0 0 0.000 0.160 0.512 NA
#> ERR978222 5 0.5498 0.735 0 0 0.000 0.148 0.528 NA
#> ERR978223 5 0.5487 0.735 0 0 0.000 0.148 0.532 NA
#> ERR978224 5 0.5665 0.731 0 0 0.000 0.172 0.500 NA
#> ERR978225 5 0.5849 0.717 0 0 0.000 0.204 0.460 NA
#> ERR978226 5 0.5811 0.721 0 0 0.000 0.196 0.468 NA
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.000 0.000 NA
#> ERR978241 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978242 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978243 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978244 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978245 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978246 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978247 4 0.3838 0.871 0 0 0.000 0.552 0.000 NA
#> ERR978248 4 0.2070 0.536 0 0 0.000 0.892 0.008 NA
#> ERR978249 4 0.1524 0.584 0 0 0.000 0.932 0.008 NA
#> ERR978250 4 0.0622 0.629 0 0 0.000 0.980 0.008 NA
#> ERR978251 4 0.0405 0.642 0 0 0.000 0.988 0.008 NA
#> ERR978252 4 0.0622 0.629 0 0 0.000 0.980 0.008 NA
#> ERR978253 4 0.1524 0.585 0 0 0.000 0.932 0.008 NA
#> ERR978254 4 0.1970 0.545 0 0 0.000 0.900 0.008 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.198 0.748 0.784 0.3844 0.520 0.520
#> 3 3 0.569 0.775 0.846 0.4856 0.923 0.852
#> 4 4 0.831 0.859 0.910 0.2609 0.835 0.626
#> 5 5 0.899 0.957 0.877 0.0861 0.917 0.702
#> 6 6 0.938 0.958 0.969 0.0451 0.982 0.907
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.000 0.755 0.000 1.000
#> ERR978108 2 0.000 0.755 0.000 1.000
#> ERR978109 2 0.000 0.755 0.000 1.000
#> ERR978110 2 0.000 0.755 0.000 1.000
#> ERR978111 2 0.000 0.755 0.000 1.000
#> ERR978112 2 0.000 0.755 0.000 1.000
#> ERR978113 2 0.000 0.755 0.000 1.000
#> ERR978114 2 0.000 0.755 0.000 1.000
#> ERR978115 2 0.000 0.755 0.000 1.000
#> ERR978116 2 0.000 0.755 0.000 1.000
#> ERR978117 2 0.000 0.755 0.000 1.000
#> ERR978118 2 0.000 0.755 0.000 1.000
#> ERR978119 2 0.000 0.755 0.000 1.000
#> ERR978120 2 0.000 0.755 0.000 1.000
#> ERR978121 2 0.000 0.755 0.000 1.000
#> ERR978122 2 0.000 0.755 0.000 1.000
#> ERR978123 2 0.839 0.745 0.268 0.732
#> ERR978124 2 0.839 0.745 0.268 0.732
#> ERR978125 2 0.839 0.745 0.268 0.732
#> ERR978126 2 0.839 0.745 0.268 0.732
#> ERR978127 2 0.839 0.745 0.268 0.732
#> ERR978128 2 0.839 0.745 0.268 0.732
#> ERR978129 2 0.839 0.745 0.268 0.732
#> ERR978130 2 0.839 0.745 0.268 0.732
#> ERR978131 2 0.839 0.745 0.268 0.732
#> ERR978132 2 0.839 0.745 0.268 0.732
#> ERR978133 2 0.839 0.745 0.268 0.732
#> ERR978134 2 0.839 0.745 0.268 0.732
#> ERR978135 2 0.839 0.745 0.268 0.732
#> ERR978136 2 0.839 0.745 0.268 0.732
#> ERR978137 2 0.839 0.745 0.268 0.732
#> ERR978138 2 0.644 0.824 0.164 0.836
#> ERR978139 2 0.644 0.824 0.164 0.836
#> ERR978140 2 0.644 0.824 0.164 0.836
#> ERR978141 2 0.644 0.824 0.164 0.836
#> ERR978142 2 0.644 0.824 0.164 0.836
#> ERR978143 2 0.644 0.824 0.164 0.836
#> ERR978144 2 0.644 0.824 0.164 0.836
#> ERR978145 2 0.644 0.824 0.164 0.836
#> ERR978146 2 0.644 0.824 0.164 0.836
#> ERR978147 2 0.644 0.824 0.164 0.836
#> ERR978148 2 0.644 0.824 0.164 0.836
#> ERR978149 2 0.644 0.824 0.164 0.836
#> ERR978150 2 0.644 0.824 0.164 0.836
#> ERR978151 2 0.644 0.824 0.164 0.836
#> ERR978152 2 0.644 0.824 0.164 0.836
#> ERR978153 1 0.722 0.755 0.800 0.200
#> ERR978154 1 0.722 0.755 0.800 0.200
#> ERR978155 1 0.722 0.755 0.800 0.200
#> ERR978156 1 0.722 0.755 0.800 0.200
#> ERR978157 1 0.722 0.755 0.800 0.200
#> ERR978158 1 0.722 0.755 0.800 0.200
#> ERR978159 1 0.722 0.755 0.800 0.200
#> ERR978160 1 0.722 0.755 0.800 0.200
#> ERR978161 1 0.722 0.755 0.800 0.200
#> ERR978162 1 0.722 0.755 0.800 0.200
#> ERR978163 1 0.722 0.755 0.800 0.200
#> ERR978164 1 0.722 0.755 0.800 0.200
#> ERR978165 1 0.722 0.755 0.800 0.200
#> ERR978166 1 0.722 0.755 0.800 0.200
#> ERR978167 1 0.722 0.755 0.800 0.200
#> ERR978168 1 0.722 0.755 0.800 0.200
#> ERR978169 1 0.722 0.703 0.800 0.200
#> ERR978170 1 0.722 0.703 0.800 0.200
#> ERR978171 1 0.722 0.703 0.800 0.200
#> ERR978172 1 0.722 0.703 0.800 0.200
#> ERR978173 1 0.722 0.703 0.800 0.200
#> ERR978174 1 0.722 0.703 0.800 0.200
#> ERR978175 1 0.722 0.703 0.800 0.200
#> ERR978176 1 0.866 0.612 0.712 0.288
#> ERR978177 1 0.866 0.612 0.712 0.288
#> ERR978178 1 0.866 0.612 0.712 0.288
#> ERR978179 1 0.866 0.612 0.712 0.288
#> ERR978180 1 0.866 0.612 0.712 0.288
#> ERR978181 1 0.866 0.612 0.712 0.288
#> ERR978182 1 0.866 0.612 0.712 0.288
#> ERR978183 2 0.000 0.755 0.000 1.000
#> ERR978184 2 0.000 0.755 0.000 1.000
#> ERR978185 2 0.000 0.755 0.000 1.000
#> ERR978186 2 0.000 0.755 0.000 1.000
#> ERR978187 2 0.000 0.755 0.000 1.000
#> ERR978188 2 0.000 0.755 0.000 1.000
#> ERR978189 2 0.000 0.755 0.000 1.000
#> ERR978190 2 0.000 0.755 0.000 1.000
#> ERR978191 2 0.000 0.755 0.000 1.000
#> ERR978192 2 0.000 0.755 0.000 1.000
#> ERR978193 2 0.000 0.755 0.000 1.000
#> ERR978194 2 0.000 0.755 0.000 1.000
#> ERR978195 2 0.000 0.755 0.000 1.000
#> ERR978196 2 0.000 0.755 0.000 1.000
#> ERR978197 2 0.839 0.745 0.268 0.732
#> ERR978198 2 0.839 0.745 0.268 0.732
#> ERR978199 2 0.839 0.745 0.268 0.732
#> ERR978200 2 0.839 0.745 0.268 0.732
#> ERR978201 2 0.839 0.745 0.268 0.732
#> ERR978202 2 0.839 0.745 0.268 0.732
#> ERR978203 2 0.839 0.745 0.268 0.732
#> ERR978204 2 0.839 0.745 0.268 0.732
#> ERR978205 2 0.839 0.745 0.268 0.732
#> ERR978206 2 0.839 0.745 0.268 0.732
#> ERR978207 2 0.839 0.745 0.268 0.732
#> ERR978208 2 0.839 0.745 0.268 0.732
#> ERR978209 2 0.839 0.745 0.268 0.732
#> ERR978210 2 0.839 0.745 0.268 0.732
#> ERR978211 2 0.839 0.745 0.268 0.732
#> ERR978212 2 0.644 0.824 0.164 0.836
#> ERR978213 2 0.644 0.824 0.164 0.836
#> ERR978214 2 0.644 0.824 0.164 0.836
#> ERR978215 2 0.644 0.824 0.164 0.836
#> ERR978216 2 0.644 0.824 0.164 0.836
#> ERR978217 2 0.644 0.824 0.164 0.836
#> ERR978218 2 0.644 0.824 0.164 0.836
#> ERR978219 2 0.644 0.824 0.164 0.836
#> ERR978220 2 0.644 0.824 0.164 0.836
#> ERR978221 2 0.644 0.824 0.164 0.836
#> ERR978222 2 0.644 0.824 0.164 0.836
#> ERR978223 2 0.644 0.824 0.164 0.836
#> ERR978224 2 0.644 0.824 0.164 0.836
#> ERR978225 2 0.644 0.824 0.164 0.836
#> ERR978226 2 0.644 0.824 0.164 0.836
#> ERR978227 1 0.722 0.755 0.800 0.200
#> ERR978228 1 0.722 0.755 0.800 0.200
#> ERR978229 1 0.722 0.755 0.800 0.200
#> ERR978230 1 0.722 0.755 0.800 0.200
#> ERR978231 1 0.722 0.755 0.800 0.200
#> ERR978232 1 0.722 0.755 0.800 0.200
#> ERR978233 1 0.722 0.755 0.800 0.200
#> ERR978234 1 0.722 0.755 0.800 0.200
#> ERR978235 1 0.722 0.755 0.800 0.200
#> ERR978236 1 0.722 0.755 0.800 0.200
#> ERR978237 1 0.722 0.755 0.800 0.200
#> ERR978238 1 0.722 0.755 0.800 0.200
#> ERR978239 1 0.722 0.755 0.800 0.200
#> ERR978240 1 0.722 0.755 0.800 0.200
#> ERR978241 1 0.722 0.703 0.800 0.200
#> ERR978242 1 0.722 0.703 0.800 0.200
#> ERR978243 1 0.722 0.703 0.800 0.200
#> ERR978244 1 0.722 0.703 0.800 0.200
#> ERR978245 1 0.722 0.703 0.800 0.200
#> ERR978246 1 0.722 0.703 0.800 0.200
#> ERR978247 1 0.722 0.703 0.800 0.200
#> ERR978248 1 0.891 0.600 0.692 0.308
#> ERR978249 1 0.891 0.600 0.692 0.308
#> ERR978250 1 0.891 0.600 0.692 0.308
#> ERR978251 1 0.891 0.600 0.692 0.308
#> ERR978252 1 0.891 0.600 0.692 0.308
#> ERR978253 1 0.891 0.600 0.692 0.308
#> ERR978254 1 0.891 0.600 0.692 0.308
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.510 0.681 0.000 0.752 0.248
#> ERR978108 2 0.510 0.681 0.000 0.752 0.248
#> ERR978109 2 0.510 0.681 0.000 0.752 0.248
#> ERR978110 2 0.510 0.681 0.000 0.752 0.248
#> ERR978111 2 0.510 0.681 0.000 0.752 0.248
#> ERR978112 2 0.510 0.681 0.000 0.752 0.248
#> ERR978113 2 0.510 0.681 0.000 0.752 0.248
#> ERR978114 2 0.510 0.681 0.000 0.752 0.248
#> ERR978115 2 0.510 0.681 0.000 0.752 0.248
#> ERR978116 2 0.510 0.681 0.000 0.752 0.248
#> ERR978117 2 0.510 0.681 0.000 0.752 0.248
#> ERR978118 2 0.510 0.681 0.000 0.752 0.248
#> ERR978119 2 0.510 0.681 0.000 0.752 0.248
#> ERR978120 2 0.510 0.681 0.000 0.752 0.248
#> ERR978121 2 0.510 0.681 0.000 0.752 0.248
#> ERR978122 2 0.510 0.681 0.000 0.752 0.248
#> ERR978123 2 0.484 0.553 0.000 0.776 0.224
#> ERR978124 2 0.484 0.553 0.000 0.776 0.224
#> ERR978125 2 0.484 0.553 0.000 0.776 0.224
#> ERR978126 2 0.484 0.553 0.000 0.776 0.224
#> ERR978127 2 0.484 0.553 0.000 0.776 0.224
#> ERR978128 2 0.484 0.553 0.000 0.776 0.224
#> ERR978129 2 0.484 0.553 0.000 0.776 0.224
#> ERR978130 2 0.484 0.553 0.000 0.776 0.224
#> ERR978131 2 0.484 0.553 0.000 0.776 0.224
#> ERR978132 2 0.484 0.553 0.000 0.776 0.224
#> ERR978133 2 0.484 0.553 0.000 0.776 0.224
#> ERR978134 2 0.484 0.553 0.000 0.776 0.224
#> ERR978135 2 0.484 0.553 0.000 0.776 0.224
#> ERR978136 2 0.484 0.553 0.000 0.776 0.224
#> ERR978137 2 0.484 0.553 0.000 0.776 0.224
#> ERR978138 2 0.000 0.741 0.000 1.000 0.000
#> ERR978139 2 0.000 0.741 0.000 1.000 0.000
#> ERR978140 2 0.000 0.741 0.000 1.000 0.000
#> ERR978141 2 0.000 0.741 0.000 1.000 0.000
#> ERR978142 2 0.000 0.741 0.000 1.000 0.000
#> ERR978143 2 0.000 0.741 0.000 1.000 0.000
#> ERR978144 2 0.000 0.741 0.000 1.000 0.000
#> ERR978145 2 0.000 0.741 0.000 1.000 0.000
#> ERR978146 2 0.000 0.741 0.000 1.000 0.000
#> ERR978147 2 0.000 0.741 0.000 1.000 0.000
#> ERR978148 2 0.000 0.741 0.000 1.000 0.000
#> ERR978149 2 0.000 0.741 0.000 1.000 0.000
#> ERR978150 2 0.000 0.741 0.000 1.000 0.000
#> ERR978151 2 0.000 0.741 0.000 1.000 0.000
#> ERR978152 2 0.000 0.741 0.000 1.000 0.000
#> ERR978153 1 0.000 1.000 1.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1.000 0.000 0.000
#> ERR978169 3 0.528 0.919 0.004 0.244 0.752
#> ERR978170 3 0.528 0.919 0.004 0.244 0.752
#> ERR978171 3 0.528 0.919 0.004 0.244 0.752
#> ERR978172 3 0.528 0.919 0.004 0.244 0.752
#> ERR978173 3 0.528 0.919 0.004 0.244 0.752
#> ERR978174 3 0.528 0.919 0.004 0.244 0.752
#> ERR978175 3 0.528 0.919 0.004 0.244 0.752
#> ERR978176 3 0.603 0.910 0.004 0.336 0.660
#> ERR978177 3 0.603 0.910 0.004 0.336 0.660
#> ERR978178 3 0.603 0.910 0.004 0.336 0.660
#> ERR978179 3 0.603 0.910 0.004 0.336 0.660
#> ERR978180 3 0.603 0.910 0.004 0.336 0.660
#> ERR978181 3 0.603 0.910 0.004 0.336 0.660
#> ERR978182 3 0.603 0.910 0.004 0.336 0.660
#> ERR978183 2 0.510 0.681 0.000 0.752 0.248
#> ERR978184 2 0.510 0.681 0.000 0.752 0.248
#> ERR978185 2 0.510 0.681 0.000 0.752 0.248
#> ERR978186 2 0.510 0.681 0.000 0.752 0.248
#> ERR978187 2 0.510 0.681 0.000 0.752 0.248
#> ERR978188 2 0.510 0.681 0.000 0.752 0.248
#> ERR978189 2 0.510 0.681 0.000 0.752 0.248
#> ERR978190 2 0.510 0.681 0.000 0.752 0.248
#> ERR978191 2 0.510 0.681 0.000 0.752 0.248
#> ERR978192 2 0.510 0.681 0.000 0.752 0.248
#> ERR978193 2 0.510 0.681 0.000 0.752 0.248
#> ERR978194 2 0.510 0.681 0.000 0.752 0.248
#> ERR978195 2 0.510 0.681 0.000 0.752 0.248
#> ERR978196 2 0.510 0.681 0.000 0.752 0.248
#> ERR978197 2 0.484 0.553 0.000 0.776 0.224
#> ERR978198 2 0.484 0.553 0.000 0.776 0.224
#> ERR978199 2 0.484 0.553 0.000 0.776 0.224
#> ERR978200 2 0.484 0.553 0.000 0.776 0.224
#> ERR978201 2 0.484 0.553 0.000 0.776 0.224
#> ERR978202 2 0.484 0.553 0.000 0.776 0.224
#> ERR978203 2 0.484 0.553 0.000 0.776 0.224
#> ERR978204 2 0.484 0.553 0.000 0.776 0.224
#> ERR978205 2 0.484 0.553 0.000 0.776 0.224
#> ERR978206 2 0.484 0.553 0.000 0.776 0.224
#> ERR978207 2 0.484 0.553 0.000 0.776 0.224
#> ERR978208 2 0.484 0.553 0.000 0.776 0.224
#> ERR978209 2 0.484 0.553 0.000 0.776 0.224
#> ERR978210 2 0.484 0.553 0.000 0.776 0.224
#> ERR978211 2 0.484 0.553 0.000 0.776 0.224
#> ERR978212 2 0.000 0.741 0.000 1.000 0.000
#> ERR978213 2 0.000 0.741 0.000 1.000 0.000
#> ERR978214 2 0.000 0.741 0.000 1.000 0.000
#> ERR978215 2 0.000 0.741 0.000 1.000 0.000
#> ERR978216 2 0.000 0.741 0.000 1.000 0.000
#> ERR978217 2 0.000 0.741 0.000 1.000 0.000
#> ERR978218 2 0.000 0.741 0.000 1.000 0.000
#> ERR978219 2 0.000 0.741 0.000 1.000 0.000
#> ERR978220 2 0.000 0.741 0.000 1.000 0.000
#> ERR978221 2 0.000 0.741 0.000 1.000 0.000
#> ERR978222 2 0.000 0.741 0.000 1.000 0.000
#> ERR978223 2 0.000 0.741 0.000 1.000 0.000
#> ERR978224 2 0.000 0.741 0.000 1.000 0.000
#> ERR978225 2 0.000 0.741 0.000 1.000 0.000
#> ERR978226 2 0.000 0.741 0.000 1.000 0.000
#> ERR978227 1 0.000 1.000 1.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1.000 0.000 0.000
#> ERR978241 3 0.528 0.919 0.004 0.244 0.752
#> ERR978242 3 0.528 0.919 0.004 0.244 0.752
#> ERR978243 3 0.528 0.919 0.004 0.244 0.752
#> ERR978244 3 0.528 0.919 0.004 0.244 0.752
#> ERR978245 3 0.528 0.919 0.004 0.244 0.752
#> ERR978246 3 0.528 0.919 0.004 0.244 0.752
#> ERR978247 3 0.528 0.919 0.004 0.244 0.752
#> ERR978248 3 0.615 0.890 0.004 0.356 0.640
#> ERR978249 3 0.615 0.890 0.004 0.356 0.640
#> ERR978250 3 0.615 0.890 0.004 0.356 0.640
#> ERR978251 3 0.615 0.890 0.004 0.356 0.640
#> ERR978252 3 0.615 0.890 0.004 0.356 0.640
#> ERR978253 3 0.615 0.890 0.004 0.356 0.640
#> ERR978254 3 0.615 0.890 0.004 0.356 0.640
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978108 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978109 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978110 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978111 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978112 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978113 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978114 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978115 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978116 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978117 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978118 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978119 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978120 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978121 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978122 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978123 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978124 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978125 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978126 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978127 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978128 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978129 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978130 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978131 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978132 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978133 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978134 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978135 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978136 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978137 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978138 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978139 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978140 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978141 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978142 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978143 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978144 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978145 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978146 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978147 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978148 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978149 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978150 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978151 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978152 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978153 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978154 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978155 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978156 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978157 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978158 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978159 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978160 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978161 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978162 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978163 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978164 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978165 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978166 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978167 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978168 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978169 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978170 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978171 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978172 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978173 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978174 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978175 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978176 4 0.499 0.922 0.000 0.00 0.472 0.528
#> ERR978177 4 0.499 0.922 0.000 0.00 0.472 0.528
#> ERR978178 4 0.499 0.922 0.000 0.00 0.472 0.528
#> ERR978179 4 0.499 0.922 0.000 0.00 0.472 0.528
#> ERR978180 4 0.499 0.922 0.000 0.00 0.472 0.528
#> ERR978181 4 0.499 0.922 0.000 0.00 0.472 0.528
#> ERR978182 4 0.499 0.922 0.000 0.00 0.472 0.528
#> ERR978183 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978184 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978185 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978186 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978187 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978188 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978189 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978190 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978191 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978192 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978193 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978194 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978195 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978196 2 0.000 1.000 0.000 1.00 0.000 0.000
#> ERR978197 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978198 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978199 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978200 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978201 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978202 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978203 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978204 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978205 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978206 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978207 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978208 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978209 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978210 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978211 3 0.000 0.635 0.000 0.00 1.000 0.000
#> ERR978212 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978213 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978214 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978215 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978216 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978217 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978218 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978219 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978220 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978221 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978222 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978223 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978224 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978225 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978226 3 0.513 0.737 0.388 0.00 0.604 0.008
#> ERR978227 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978228 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978229 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978230 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978231 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978232 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978233 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978234 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978235 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978236 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978237 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978238 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978239 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978240 1 0.482 1.000 0.612 0.00 0.000 0.388
#> ERR978241 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978242 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978243 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978244 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978245 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978246 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978247 4 0.484 0.932 0.000 0.00 0.396 0.604
#> ERR978248 4 0.560 0.917 0.000 0.02 0.472 0.508
#> ERR978249 4 0.560 0.917 0.000 0.02 0.472 0.508
#> ERR978250 4 0.560 0.917 0.000 0.02 0.472 0.508
#> ERR978251 4 0.560 0.917 0.000 0.02 0.472 0.508
#> ERR978252 4 0.560 0.917 0.000 0.02 0.472 0.508
#> ERR978253 4 0.560 0.917 0.000 0.02 0.472 0.508
#> ERR978254 4 0.560 0.917 0.000 0.02 0.472 0.508
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978123 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978124 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978125 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978126 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978127 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978128 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978129 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978130 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978131 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978132 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978133 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978134 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978135 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978136 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978137 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978138 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978139 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978140 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978141 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978142 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978143 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978144 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978145 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978146 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978147 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978148 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978149 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978150 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978151 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978152 5 0.154 0.942 0 0.00 0.068 0.000 0.932
#> ERR978153 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978169 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978170 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978171 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978172 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978173 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978174 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978175 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978176 4 0.439 0.830 0 0.00 0.380 0.612 0.008
#> ERR978177 4 0.439 0.830 0 0.00 0.380 0.612 0.008
#> ERR978178 4 0.439 0.830 0 0.00 0.380 0.612 0.008
#> ERR978179 4 0.439 0.830 0 0.00 0.380 0.612 0.008
#> ERR978180 4 0.439 0.830 0 0.00 0.380 0.612 0.008
#> ERR978181 4 0.439 0.830 0 0.00 0.380 0.612 0.008
#> ERR978182 4 0.439 0.830 0 0.00 0.380 0.612 0.008
#> ERR978183 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.00 0.000 0.000 0.000
#> ERR978197 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978198 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978199 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978200 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978201 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978202 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978203 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978204 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978205 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978206 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978207 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978208 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978209 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978210 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978211 3 0.377 1.000 0 0.00 0.704 0.000 0.296
#> ERR978212 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978213 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978214 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978215 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978216 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978217 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978218 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978219 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978220 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978221 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978222 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978223 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978224 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978225 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978226 5 0.000 0.945 0 0.00 0.000 0.000 1.000
#> ERR978227 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.00 0.000 0.000 0.000
#> ERR978241 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978242 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978243 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978244 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978245 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978246 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978247 4 0.000 0.841 0 0.00 0.000 1.000 0.000
#> ERR978248 4 0.494 0.825 0 0.02 0.380 0.592 0.008
#> ERR978249 4 0.494 0.825 0 0.02 0.380 0.592 0.008
#> ERR978250 4 0.494 0.825 0 0.02 0.380 0.592 0.008
#> ERR978251 4 0.494 0.825 0 0.02 0.380 0.592 0.008
#> ERR978252 4 0.494 0.825 0 0.02 0.380 0.592 0.008
#> ERR978253 4 0.494 0.825 0 0.02 0.380 0.592 0.008
#> ERR978254 4 0.494 0.825 0 0.02 0.380 0.592 0.008
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978123 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978124 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978125 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978126 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978127 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978128 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978129 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978130 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978131 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978132 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978133 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978134 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978135 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978136 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978137 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978138 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978139 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978140 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978141 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978142 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978143 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978144 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978145 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978146 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978147 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978148 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978149 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978150 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978151 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978152 5 0.3371 0.787 0 0 0.292 0.00 0.708 0.00
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978169 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978170 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978171 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978172 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978173 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978174 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978175 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978176 6 0.0547 0.989 0 0 0.000 0.02 0.000 0.98
#> ERR978177 6 0.0547 0.989 0 0 0.000 0.02 0.000 0.98
#> ERR978178 6 0.0547 0.989 0 0 0.000 0.02 0.000 0.98
#> ERR978179 6 0.0547 0.989 0 0 0.000 0.02 0.000 0.98
#> ERR978180 6 0.0547 0.989 0 0 0.000 0.02 0.000 0.98
#> ERR978181 6 0.0547 0.989 0 0 0.000 0.02 0.000 0.98
#> ERR978182 6 0.0547 0.989 0 0 0.000 0.02 0.000 0.98
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.00 0.000 0.00
#> ERR978197 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978198 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978199 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978200 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978201 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978202 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978203 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978204 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978205 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978206 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978207 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978208 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978209 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978210 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978211 3 0.0000 1.000 0 0 1.000 0.00 0.000 0.00
#> ERR978212 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978213 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978214 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978215 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978216 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978217 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978218 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978219 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978220 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978221 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978222 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978223 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978224 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978225 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978226 5 0.0000 0.806 0 0 0.000 0.00 1.000 0.00
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.00 0.000 0.00
#> ERR978241 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978242 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978243 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978244 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978245 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978246 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978247 4 0.0000 1.000 0 0 0.000 1.00 0.000 0.00
#> ERR978248 6 0.0000 0.989 0 0 0.000 0.00 0.000 1.00
#> ERR978249 6 0.0000 0.989 0 0 0.000 0.00 0.000 1.00
#> ERR978250 6 0.0000 0.989 0 0 0.000 0.00 0.000 1.00
#> ERR978251 6 0.0000 0.989 0 0 0.000 0.00 0.000 1.00
#> ERR978252 6 0.0000 0.989 0 0 0.000 0.00 0.000 1.00
#> ERR978253 6 0.0000 0.989 0 0 0.000 0.00 0.000 1.00
#> ERR978254 6 0.0000 0.989 0 0 0.000 0.00 0.000 1.00
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.153 0.710 0.757 0.3813 0.675 0.675
#> 3 3 0.243 0.675 0.756 0.5098 0.724 0.592
#> 4 4 0.535 0.716 0.691 0.2111 0.807 0.554
#> 5 5 0.659 0.786 0.720 0.0718 0.929 0.737
#> 6 6 0.702 0.746 0.745 0.0623 1.000 1.000
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.998 0.589 0.476 0.524
#> ERR978108 2 0.998 0.589 0.476 0.524
#> ERR978109 2 0.998 0.589 0.476 0.524
#> ERR978110 2 0.998 0.589 0.476 0.524
#> ERR978111 2 0.998 0.589 0.476 0.524
#> ERR978112 2 0.998 0.589 0.476 0.524
#> ERR978113 2 0.998 0.589 0.476 0.524
#> ERR978114 2 0.998 0.589 0.476 0.524
#> ERR978115 2 0.998 0.589 0.476 0.524
#> ERR978116 2 0.998 0.589 0.476 0.524
#> ERR978117 2 0.998 0.589 0.476 0.524
#> ERR978118 2 0.998 0.589 0.476 0.524
#> ERR978119 2 0.998 0.589 0.476 0.524
#> ERR978120 2 0.998 0.589 0.476 0.524
#> ERR978121 2 0.998 0.589 0.476 0.524
#> ERR978122 2 0.998 0.589 0.476 0.524
#> ERR978123 2 0.430 0.659 0.088 0.912
#> ERR978124 2 0.430 0.659 0.088 0.912
#> ERR978125 2 0.430 0.659 0.088 0.912
#> ERR978126 2 0.430 0.659 0.088 0.912
#> ERR978127 2 0.430 0.659 0.088 0.912
#> ERR978128 2 0.430 0.659 0.088 0.912
#> ERR978129 2 0.430 0.659 0.088 0.912
#> ERR978130 2 0.430 0.659 0.088 0.912
#> ERR978131 2 0.430 0.659 0.088 0.912
#> ERR978132 2 0.430 0.659 0.088 0.912
#> ERR978133 2 0.430 0.659 0.088 0.912
#> ERR978134 2 0.430 0.659 0.088 0.912
#> ERR978135 2 0.430 0.659 0.088 0.912
#> ERR978136 2 0.430 0.659 0.088 0.912
#> ERR978137 2 0.430 0.659 0.088 0.912
#> ERR978138 2 0.242 0.671 0.040 0.960
#> ERR978139 2 0.242 0.671 0.040 0.960
#> ERR978140 2 0.242 0.671 0.040 0.960
#> ERR978141 2 0.242 0.671 0.040 0.960
#> ERR978142 2 0.242 0.671 0.040 0.960
#> ERR978143 2 0.242 0.671 0.040 0.960
#> ERR978144 2 0.242 0.671 0.040 0.960
#> ERR978145 2 0.242 0.671 0.040 0.960
#> ERR978146 2 0.204 0.666 0.032 0.968
#> ERR978147 2 0.204 0.666 0.032 0.968
#> ERR978148 2 0.204 0.666 0.032 0.968
#> ERR978149 2 0.204 0.666 0.032 0.968
#> ERR978150 2 0.204 0.666 0.032 0.968
#> ERR978151 2 0.204 0.666 0.032 0.968
#> ERR978152 2 0.204 0.666 0.032 0.968
#> ERR978153 1 0.991 1.000 0.556 0.444
#> ERR978154 1 0.991 1.000 0.556 0.444
#> ERR978155 1 0.991 1.000 0.556 0.444
#> ERR978156 1 0.991 1.000 0.556 0.444
#> ERR978157 1 0.991 1.000 0.556 0.444
#> ERR978158 1 0.991 1.000 0.556 0.444
#> ERR978159 1 0.991 1.000 0.556 0.444
#> ERR978160 1 0.991 1.000 0.556 0.444
#> ERR978161 1 0.991 1.000 0.556 0.444
#> ERR978162 1 0.991 1.000 0.556 0.444
#> ERR978163 1 0.991 1.000 0.556 0.444
#> ERR978164 1 0.991 1.000 0.556 0.444
#> ERR978165 1 0.991 1.000 0.556 0.444
#> ERR978166 1 0.991 1.000 0.556 0.444
#> ERR978167 1 0.991 1.000 0.556 0.444
#> ERR978168 1 0.991 1.000 0.556 0.444
#> ERR978169 2 0.584 0.572 0.140 0.860
#> ERR978170 2 0.584 0.572 0.140 0.860
#> ERR978171 2 0.584 0.572 0.140 0.860
#> ERR978172 2 0.584 0.572 0.140 0.860
#> ERR978173 2 0.584 0.572 0.140 0.860
#> ERR978174 2 0.584 0.572 0.140 0.860
#> ERR978175 2 0.584 0.572 0.140 0.860
#> ERR978176 2 0.615 0.569 0.152 0.848
#> ERR978177 2 0.615 0.569 0.152 0.848
#> ERR978178 2 0.615 0.569 0.152 0.848
#> ERR978179 2 0.615 0.569 0.152 0.848
#> ERR978180 2 0.615 0.569 0.152 0.848
#> ERR978181 2 0.615 0.569 0.152 0.848
#> ERR978182 2 0.615 0.569 0.152 0.848
#> ERR978183 2 0.998 0.589 0.472 0.528
#> ERR978184 2 0.998 0.589 0.472 0.528
#> ERR978185 2 0.998 0.589 0.472 0.528
#> ERR978186 2 0.998 0.589 0.472 0.528
#> ERR978187 2 0.998 0.589 0.472 0.528
#> ERR978188 2 0.998 0.589 0.472 0.528
#> ERR978189 2 0.998 0.589 0.472 0.528
#> ERR978190 2 0.998 0.589 0.472 0.528
#> ERR978191 2 0.998 0.589 0.472 0.528
#> ERR978192 2 0.998 0.589 0.472 0.528
#> ERR978193 2 0.998 0.589 0.472 0.528
#> ERR978194 2 0.998 0.589 0.472 0.528
#> ERR978195 2 0.998 0.589 0.472 0.528
#> ERR978196 2 0.998 0.589 0.472 0.528
#> ERR978197 2 0.494 0.700 0.108 0.892
#> ERR978198 2 0.494 0.700 0.108 0.892
#> ERR978199 2 0.494 0.700 0.108 0.892
#> ERR978200 2 0.494 0.700 0.108 0.892
#> ERR978201 2 0.494 0.700 0.108 0.892
#> ERR978202 2 0.494 0.700 0.108 0.892
#> ERR978203 2 0.494 0.700 0.108 0.892
#> ERR978204 2 0.518 0.702 0.116 0.884
#> ERR978205 2 0.518 0.702 0.116 0.884
#> ERR978206 2 0.518 0.702 0.116 0.884
#> ERR978207 2 0.518 0.702 0.116 0.884
#> ERR978208 2 0.518 0.702 0.116 0.884
#> ERR978209 2 0.518 0.702 0.116 0.884
#> ERR978210 2 0.518 0.702 0.116 0.884
#> ERR978211 2 0.518 0.702 0.116 0.884
#> ERR978212 2 0.706 0.693 0.192 0.808
#> ERR978213 2 0.706 0.693 0.192 0.808
#> ERR978214 2 0.706 0.693 0.192 0.808
#> ERR978215 2 0.706 0.693 0.192 0.808
#> ERR978216 2 0.706 0.693 0.192 0.808
#> ERR978217 2 0.706 0.693 0.192 0.808
#> ERR978218 2 0.706 0.693 0.192 0.808
#> ERR978219 2 0.706 0.693 0.192 0.808
#> ERR978220 2 0.706 0.693 0.192 0.808
#> ERR978221 2 0.706 0.693 0.192 0.808
#> ERR978222 2 0.706 0.693 0.192 0.808
#> ERR978223 2 0.706 0.693 0.192 0.808
#> ERR978224 2 0.706 0.693 0.192 0.808
#> ERR978225 2 0.706 0.693 0.192 0.808
#> ERR978226 2 0.697 0.693 0.188 0.812
#> ERR978227 1 0.991 1.000 0.556 0.444
#> ERR978228 1 0.991 1.000 0.556 0.444
#> ERR978229 1 0.991 1.000 0.556 0.444
#> ERR978230 1 0.991 1.000 0.556 0.444
#> ERR978231 1 0.991 1.000 0.556 0.444
#> ERR978232 1 0.991 1.000 0.556 0.444
#> ERR978233 1 0.991 1.000 0.556 0.444
#> ERR978234 1 0.991 1.000 0.556 0.444
#> ERR978235 1 0.991 1.000 0.556 0.444
#> ERR978236 1 0.991 1.000 0.556 0.444
#> ERR978237 1 0.991 1.000 0.556 0.444
#> ERR978238 1 0.991 1.000 0.556 0.444
#> ERR978239 1 0.991 1.000 0.556 0.444
#> ERR978240 1 0.991 1.000 0.556 0.444
#> ERR978241 2 0.563 0.576 0.132 0.868
#> ERR978242 2 0.563 0.576 0.132 0.868
#> ERR978243 2 0.563 0.576 0.132 0.868
#> ERR978244 2 0.563 0.576 0.132 0.868
#> ERR978245 2 0.563 0.576 0.132 0.868
#> ERR978246 2 0.563 0.576 0.132 0.868
#> ERR978247 2 0.563 0.576 0.132 0.868
#> ERR978248 2 0.881 0.664 0.300 0.700
#> ERR978249 2 0.881 0.664 0.300 0.700
#> ERR978250 2 0.881 0.664 0.300 0.700
#> ERR978251 2 0.881 0.664 0.300 0.700
#> ERR978252 2 0.881 0.664 0.300 0.700
#> ERR978253 2 0.881 0.664 0.300 0.700
#> ERR978254 2 0.881 0.664 0.300 0.700
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978108 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978109 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978110 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978111 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978112 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978113 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978114 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978115 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978116 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978117 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978118 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978119 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978120 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978121 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978122 2 0.516 0.8241 0.008 0.776 0.216
#> ERR978123 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978124 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978125 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978126 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978127 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978128 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978129 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978130 3 0.432 0.6382 0.088 0.044 0.868
#> ERR978131 3 0.453 0.6384 0.088 0.052 0.860
#> ERR978132 3 0.453 0.6384 0.088 0.052 0.860
#> ERR978133 3 0.453 0.6384 0.088 0.052 0.860
#> ERR978134 3 0.453 0.6384 0.088 0.052 0.860
#> ERR978135 3 0.453 0.6384 0.088 0.052 0.860
#> ERR978136 3 0.453 0.6384 0.088 0.052 0.860
#> ERR978137 3 0.453 0.6384 0.088 0.052 0.860
#> ERR978138 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978139 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978140 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978141 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978142 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978143 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978144 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978145 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978146 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978147 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978148 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978149 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978150 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978151 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978152 3 0.591 0.6369 0.068 0.144 0.788
#> ERR978153 1 0.280 0.9722 0.924 0.016 0.060
#> ERR978154 1 0.280 0.9722 0.924 0.016 0.060
#> ERR978155 1 0.280 0.9722 0.924 0.016 0.060
#> ERR978156 1 0.280 0.9722 0.924 0.016 0.060
#> ERR978157 1 0.280 0.9722 0.924 0.016 0.060
#> ERR978158 1 0.280 0.9722 0.924 0.016 0.060
#> ERR978159 1 0.280 0.9722 0.924 0.016 0.060
#> ERR978160 1 0.295 0.9711 0.920 0.020 0.060
#> ERR978161 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978162 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978163 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978164 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978165 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978166 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978167 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978168 1 0.295 0.9723 0.920 0.020 0.060
#> ERR978169 3 0.833 0.5689 0.208 0.164 0.628
#> ERR978170 3 0.833 0.5689 0.208 0.164 0.628
#> ERR978171 3 0.833 0.5689 0.208 0.164 0.628
#> ERR978172 3 0.833 0.5689 0.208 0.164 0.628
#> ERR978173 3 0.833 0.5689 0.208 0.164 0.628
#> ERR978174 3 0.833 0.5689 0.208 0.164 0.628
#> ERR978175 3 0.833 0.5689 0.208 0.164 0.628
#> ERR978176 3 0.891 0.5476 0.216 0.212 0.572
#> ERR978177 3 0.891 0.5476 0.216 0.212 0.572
#> ERR978178 3 0.891 0.5476 0.216 0.212 0.572
#> ERR978179 3 0.891 0.5476 0.216 0.212 0.572
#> ERR978180 3 0.891 0.5476 0.216 0.212 0.572
#> ERR978181 3 0.891 0.5476 0.216 0.212 0.572
#> ERR978182 3 0.891 0.5476 0.216 0.212 0.572
#> ERR978183 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978184 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978185 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978186 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978187 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978188 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978189 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978190 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978191 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978192 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978193 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978194 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978195 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978196 2 0.484 0.8224 0.016 0.816 0.168
#> ERR978197 3 0.579 0.6153 0.084 0.116 0.800
#> ERR978198 3 0.579 0.6153 0.084 0.116 0.800
#> ERR978199 3 0.579 0.6153 0.084 0.116 0.800
#> ERR978200 3 0.579 0.6153 0.084 0.116 0.800
#> ERR978201 3 0.579 0.6153 0.084 0.116 0.800
#> ERR978202 3 0.579 0.6153 0.084 0.116 0.800
#> ERR978203 3 0.579 0.6153 0.084 0.116 0.800
#> ERR978204 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978205 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978206 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978207 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978208 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978209 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978210 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978211 3 0.571 0.6129 0.080 0.116 0.804
#> ERR978212 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978213 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978214 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978215 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978216 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978217 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978218 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978219 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978220 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978221 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978222 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978223 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978224 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978225 3 0.760 0.4135 0.056 0.344 0.600
#> ERR978226 3 0.758 0.4206 0.056 0.340 0.604
#> ERR978227 1 0.473 0.9685 0.852 0.088 0.060
#> ERR978228 1 0.473 0.9685 0.852 0.088 0.060
#> ERR978229 1 0.473 0.9685 0.852 0.088 0.060
#> ERR978230 1 0.473 0.9685 0.852 0.088 0.060
#> ERR978231 1 0.473 0.9685 0.852 0.088 0.060
#> ERR978232 1 0.473 0.9685 0.852 0.088 0.060
#> ERR978233 1 0.473 0.9685 0.852 0.088 0.060
#> ERR978234 1 0.481 0.9685 0.848 0.092 0.060
#> ERR978235 1 0.481 0.9685 0.848 0.092 0.060
#> ERR978236 1 0.481 0.9685 0.848 0.092 0.060
#> ERR978237 1 0.481 0.9685 0.848 0.092 0.060
#> ERR978238 1 0.481 0.9685 0.848 0.092 0.060
#> ERR978239 1 0.481 0.9685 0.848 0.092 0.060
#> ERR978240 1 0.481 0.9685 0.848 0.092 0.060
#> ERR978241 3 0.859 0.5675 0.220 0.176 0.604
#> ERR978242 3 0.859 0.5675 0.220 0.176 0.604
#> ERR978243 3 0.859 0.5675 0.220 0.176 0.604
#> ERR978244 3 0.859 0.5675 0.220 0.176 0.604
#> ERR978245 3 0.859 0.5675 0.220 0.176 0.604
#> ERR978246 3 0.859 0.5675 0.220 0.176 0.604
#> ERR978247 3 0.859 0.5675 0.220 0.176 0.604
#> ERR978248 2 0.898 -0.0305 0.132 0.484 0.384
#> ERR978249 2 0.898 -0.0305 0.132 0.484 0.384
#> ERR978250 2 0.898 -0.0305 0.132 0.484 0.384
#> ERR978251 2 0.898 -0.0305 0.132 0.484 0.384
#> ERR978252 2 0.898 -0.0305 0.132 0.484 0.384
#> ERR978253 2 0.898 -0.0305 0.132 0.484 0.384
#> ERR978254 2 0.898 -0.0305 0.132 0.484 0.384
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978108 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978109 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978110 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978111 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978112 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978113 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978114 2 0.3093 0.921 0.004 0.892 0.064 0.040
#> ERR978115 2 0.3168 0.921 0.004 0.888 0.068 0.040
#> ERR978116 2 0.3168 0.921 0.004 0.888 0.068 0.040
#> ERR978117 2 0.3168 0.921 0.004 0.888 0.068 0.040
#> ERR978118 2 0.3168 0.921 0.004 0.888 0.068 0.040
#> ERR978119 2 0.3168 0.921 0.004 0.888 0.068 0.040
#> ERR978120 2 0.3168 0.921 0.004 0.888 0.068 0.040
#> ERR978121 2 0.3168 0.921 0.004 0.888 0.068 0.040
#> ERR978122 2 0.3312 0.921 0.008 0.884 0.068 0.040
#> ERR978123 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978124 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978125 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978126 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978127 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978128 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978129 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978130 3 0.6935 0.871 0.076 0.044 0.640 0.240
#> ERR978131 3 0.6977 0.870 0.084 0.040 0.636 0.240
#> ERR978132 3 0.6977 0.870 0.084 0.040 0.636 0.240
#> ERR978133 3 0.6977 0.870 0.084 0.040 0.636 0.240
#> ERR978134 3 0.6977 0.870 0.084 0.040 0.636 0.240
#> ERR978135 3 0.6977 0.870 0.084 0.040 0.636 0.240
#> ERR978136 3 0.6977 0.870 0.084 0.040 0.636 0.240
#> ERR978137 3 0.6977 0.870 0.084 0.040 0.636 0.240
#> ERR978138 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978139 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978140 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978141 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978142 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978143 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978144 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978145 4 0.7443 0.356 0.020 0.108 0.368 0.504
#> ERR978146 4 0.7369 0.341 0.020 0.100 0.376 0.504
#> ERR978147 4 0.7369 0.341 0.020 0.100 0.376 0.504
#> ERR978148 4 0.7369 0.341 0.020 0.100 0.376 0.504
#> ERR978149 4 0.7369 0.341 0.020 0.100 0.376 0.504
#> ERR978150 4 0.7369 0.341 0.020 0.100 0.376 0.504
#> ERR978151 4 0.7369 0.341 0.020 0.100 0.376 0.504
#> ERR978152 4 0.7369 0.341 0.020 0.100 0.376 0.504
#> ERR978153 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978154 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978155 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978156 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978157 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978158 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978159 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978160 1 0.0469 0.945 0.988 0.000 0.000 0.012
#> ERR978161 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978162 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978163 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978164 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978165 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978166 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978167 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978168 1 0.0657 0.945 0.984 0.000 0.004 0.012
#> ERR978169 4 0.6023 0.400 0.064 0.044 0.160 0.732
#> ERR978170 4 0.6023 0.400 0.064 0.044 0.160 0.732
#> ERR978171 4 0.6023 0.400 0.064 0.044 0.160 0.732
#> ERR978172 4 0.6023 0.400 0.064 0.044 0.160 0.732
#> ERR978173 4 0.6023 0.400 0.064 0.044 0.160 0.732
#> ERR978174 4 0.6023 0.400 0.064 0.044 0.160 0.732
#> ERR978175 4 0.6023 0.400 0.064 0.044 0.160 0.732
#> ERR978176 4 0.4670 0.481 0.064 0.056 0.052 0.828
#> ERR978177 4 0.4670 0.481 0.064 0.056 0.052 0.828
#> ERR978178 4 0.4670 0.481 0.064 0.056 0.052 0.828
#> ERR978179 4 0.4670 0.481 0.064 0.056 0.052 0.828
#> ERR978180 4 0.4670 0.481 0.064 0.056 0.052 0.828
#> ERR978181 4 0.4670 0.481 0.064 0.056 0.052 0.828
#> ERR978182 4 0.4670 0.481 0.064 0.056 0.052 0.828
#> ERR978183 2 0.2189 0.908 0.004 0.932 0.044 0.020
#> ERR978184 2 0.2189 0.908 0.004 0.932 0.044 0.020
#> ERR978185 2 0.2189 0.908 0.004 0.932 0.044 0.020
#> ERR978186 2 0.2189 0.908 0.004 0.932 0.044 0.020
#> ERR978187 2 0.2189 0.908 0.004 0.932 0.044 0.020
#> ERR978188 2 0.2189 0.908 0.004 0.932 0.044 0.020
#> ERR978189 2 0.2189 0.908 0.004 0.932 0.044 0.020
#> ERR978190 2 0.2383 0.909 0.004 0.924 0.048 0.024
#> ERR978191 2 0.2383 0.909 0.004 0.924 0.048 0.024
#> ERR978192 2 0.2383 0.909 0.004 0.924 0.048 0.024
#> ERR978193 2 0.2383 0.909 0.004 0.924 0.048 0.024
#> ERR978194 2 0.2383 0.909 0.004 0.924 0.048 0.024
#> ERR978195 2 0.2383 0.909 0.004 0.924 0.048 0.024
#> ERR978196 2 0.2383 0.909 0.004 0.924 0.048 0.024
#> ERR978197 3 0.7081 0.870 0.076 0.084 0.664 0.176
#> ERR978198 3 0.7081 0.870 0.076 0.084 0.664 0.176
#> ERR978199 3 0.7081 0.870 0.076 0.084 0.664 0.176
#> ERR978200 3 0.7081 0.870 0.076 0.084 0.664 0.176
#> ERR978201 3 0.7081 0.870 0.076 0.084 0.664 0.176
#> ERR978202 3 0.7081 0.870 0.076 0.084 0.664 0.176
#> ERR978203 3 0.7081 0.870 0.076 0.084 0.664 0.176
#> ERR978204 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978205 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978206 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978207 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978208 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978209 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978210 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978211 3 0.7019 0.855 0.084 0.088 0.676 0.152
#> ERR978212 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978213 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978214 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978215 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978216 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978217 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978218 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978219 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978220 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978221 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978222 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978223 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978224 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978225 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978226 4 0.8265 0.453 0.016 0.264 0.308 0.412
#> ERR978227 1 0.3908 0.937 0.844 0.008 0.116 0.032
#> ERR978228 1 0.3908 0.937 0.844 0.008 0.116 0.032
#> ERR978229 1 0.3908 0.937 0.844 0.008 0.116 0.032
#> ERR978230 1 0.3908 0.937 0.844 0.008 0.116 0.032
#> ERR978231 1 0.3908 0.937 0.844 0.008 0.116 0.032
#> ERR978232 1 0.3908 0.937 0.844 0.008 0.116 0.032
#> ERR978233 1 0.3908 0.937 0.844 0.008 0.116 0.032
#> ERR978234 1 0.3877 0.937 0.840 0.004 0.124 0.032
#> ERR978235 1 0.3877 0.937 0.840 0.004 0.124 0.032
#> ERR978236 1 0.3877 0.937 0.840 0.004 0.124 0.032
#> ERR978237 1 0.3877 0.937 0.840 0.004 0.124 0.032
#> ERR978238 1 0.3877 0.937 0.840 0.004 0.124 0.032
#> ERR978239 1 0.3877 0.937 0.840 0.004 0.124 0.032
#> ERR978240 1 0.3877 0.937 0.840 0.004 0.124 0.032
#> ERR978241 4 0.5506 0.446 0.064 0.040 0.124 0.772
#> ERR978242 4 0.5506 0.446 0.064 0.040 0.124 0.772
#> ERR978243 4 0.5506 0.446 0.064 0.040 0.124 0.772
#> ERR978244 4 0.5506 0.446 0.064 0.040 0.124 0.772
#> ERR978245 4 0.5506 0.446 0.064 0.040 0.124 0.772
#> ERR978246 4 0.5506 0.446 0.064 0.040 0.124 0.772
#> ERR978247 4 0.5506 0.446 0.064 0.040 0.124 0.772
#> ERR978248 4 0.7098 0.423 0.044 0.328 0.056 0.572
#> ERR978249 4 0.7098 0.423 0.044 0.328 0.056 0.572
#> ERR978250 4 0.7098 0.423 0.044 0.328 0.056 0.572
#> ERR978251 4 0.7098 0.423 0.044 0.328 0.056 0.572
#> ERR978252 4 0.7098 0.423 0.044 0.328 0.056 0.572
#> ERR978253 4 0.7098 0.423 0.044 0.328 0.056 0.572
#> ERR978254 4 0.7098 0.423 0.044 0.328 0.056 0.572
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978108 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978109 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978110 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978111 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978112 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978113 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978114 2 0.164 0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978115 2 0.252 0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978116 2 0.252 0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978117 2 0.252 0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978118 2 0.252 0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978119 2 0.252 0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978120 2 0.252 0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978121 2 0.252 0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978122 2 0.261 0.8778 0.000 0.896 0.068 0.008 0.028
#> ERR978123 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978124 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978125 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978126 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978127 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978128 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978129 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978130 3 0.166 0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978131 3 0.176 0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978132 3 0.176 0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978133 3 0.176 0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978134 3 0.176 0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978135 3 0.176 0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978136 3 0.176 0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978137 3 0.176 0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978138 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978139 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978140 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978141 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978142 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978143 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978144 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978145 5 0.727 0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978146 5 0.727 0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978147 5 0.727 0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978148 5 0.727 0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978149 5 0.727 0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978150 5 0.727 0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978151 5 0.727 0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978152 5 0.727 0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978153 1 0.117 0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978154 1 0.117 0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978155 1 0.117 0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978156 1 0.117 0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978157 1 0.117 0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978158 1 0.117 0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978159 1 0.117 0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978160 1 0.140 0.8915 0.956 0.004 0.008 0.004 0.028
#> ERR978161 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978162 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978163 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978164 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978165 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978166 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978167 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978168 1 0.128 0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978169 4 0.739 0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978170 4 0.739 0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978171 4 0.739 0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978172 4 0.739 0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978173 4 0.739 0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978174 4 0.739 0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978175 4 0.739 0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978176 4 0.822 0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978177 4 0.822 0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978178 4 0.822 0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978179 4 0.822 0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978180 4 0.822 0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978181 4 0.822 0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978182 4 0.822 0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978183 2 0.553 0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978184 2 0.553 0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978185 2 0.553 0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978186 2 0.553 0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978187 2 0.553 0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978188 2 0.553 0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978189 2 0.553 0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978190 2 0.578 0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978191 2 0.578 0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978192 2 0.578 0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978193 2 0.578 0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978194 2 0.578 0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978195 2 0.578 0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978196 2 0.578 0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978197 3 0.444 0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978198 3 0.444 0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978199 3 0.444 0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978200 3 0.444 0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978201 3 0.444 0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978202 3 0.444 0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978203 3 0.444 0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978204 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978205 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978206 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978207 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978208 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978209 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978210 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978211 3 0.467 0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978212 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978213 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978214 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978215 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978216 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978217 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978218 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978219 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978220 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978221 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978222 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978223 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978224 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978225 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978226 5 0.546 0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978227 1 0.489 0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978228 1 0.489 0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978229 1 0.489 0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978230 1 0.489 0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978231 1 0.489 0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978232 1 0.489 0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978233 1 0.489 0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978234 1 0.476 0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978235 1 0.476 0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978236 1 0.476 0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978237 1 0.476 0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978238 1 0.476 0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978239 1 0.476 0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978240 1 0.476 0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978241 4 0.751 0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978242 4 0.751 0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978243 4 0.751 0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978244 4 0.751 0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978245 4 0.751 0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978246 4 0.751 0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978247 4 0.751 0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978248 5 0.853 0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978249 5 0.853 0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978250 5 0.853 0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978251 5 0.853 0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978252 5 0.853 0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978253 5 0.853 0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978254 5 0.853 0.0131 0.044 0.168 0.120 0.204 0.464
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978108 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978109 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978110 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978111 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978112 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978113 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978114 2 0.4813 0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978115 2 0.4996 0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978116 2 0.4996 0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978117 2 0.4996 0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978118 2 0.4996 0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978119 2 0.4996 0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978120 2 0.4996 0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978121 2 0.4996 0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978122 2 0.5053 0.8598 0.000 0.688 0.024 0.056 0.016 NA
#> ERR978123 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978124 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978125 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978126 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978127 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978128 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978129 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978130 3 0.2307 0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978131 3 0.2935 0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978132 3 0.2935 0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978133 3 0.2935 0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978134 3 0.2935 0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978135 3 0.2935 0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978136 3 0.2935 0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978137 3 0.2935 0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978138 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978139 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978140 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978141 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978142 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978143 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978144 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978145 5 0.7048 0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978146 5 0.7163 0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978147 5 0.7163 0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978148 5 0.7163 0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978149 5 0.7163 0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978150 5 0.7163 0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978151 5 0.7163 0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978152 5 0.7163 0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978153 1 0.3634 0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978154 1 0.3634 0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978155 1 0.3634 0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978156 1 0.3634 0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978157 1 0.3634 0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978158 1 0.3634 0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978159 1 0.3634 0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978160 1 0.3935 0.8508 0.692 0.000 0.000 0.012 0.008 NA
#> ERR978161 1 0.4654 0.8525 0.696 0.004 0.004 0.040 0.016 NA
#> ERR978162 1 0.4552 0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978163 1 0.4552 0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978164 1 0.4552 0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978165 1 0.4552 0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978166 1 0.4654 0.8525 0.696 0.004 0.004 0.040 0.016 NA
#> ERR978167 1 0.4654 0.8525 0.696 0.004 0.004 0.040 0.016 NA
#> ERR978168 1 0.4670 0.8528 0.696 0.004 0.004 0.036 0.020 NA
#> ERR978169 4 0.4047 0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978170 4 0.4047 0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978171 4 0.4047 0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978172 4 0.4047 0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978173 4 0.4047 0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978174 4 0.4047 0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978175 4 0.4047 0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978176 4 0.6849 0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978177 4 0.6849 0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978178 4 0.6849 0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978179 4 0.6849 0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978180 4 0.6849 0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978181 4 0.6849 0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978182 4 0.6849 0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978183 2 0.1230 0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978184 2 0.1230 0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978185 2 0.1230 0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978186 2 0.1230 0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978187 2 0.1230 0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978188 2 0.1230 0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978189 2 0.1307 0.8409 0.000 0.952 0.008 0.008 0.032 NA
#> ERR978190 2 0.1988 0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978191 2 0.1988 0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978192 2 0.1988 0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978193 2 0.1988 0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978194 2 0.1988 0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978195 2 0.1988 0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978196 2 0.1988 0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978197 3 0.5378 0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978198 3 0.5378 0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978199 3 0.5378 0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978200 3 0.5378 0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978201 3 0.5378 0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978202 3 0.5378 0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978203 3 0.5378 0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978204 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978205 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978206 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978207 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978208 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978209 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978210 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978211 3 0.5903 0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978212 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978213 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978214 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978215 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978216 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978217 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978218 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978219 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978220 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978221 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978222 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978223 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978224 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978225 5 0.3968 0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978226 5 0.4058 0.6390 0.020 0.060 0.104 0.016 0.800 NA
#> ERR978227 1 0.1168 0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978228 1 0.1168 0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978229 1 0.1168 0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978230 1 0.1168 0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978231 1 0.1168 0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978232 1 0.1176 0.8350 0.956 0.000 0.000 0.020 0.024 NA
#> ERR978233 1 0.1176 0.8350 0.956 0.000 0.000 0.020 0.024 NA
#> ERR978234 1 0.0865 0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978235 1 0.0865 0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978236 1 0.0865 0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978237 1 0.0865 0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978238 1 0.0865 0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978239 1 0.0865 0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978240 1 0.1268 0.8348 0.952 0.004 0.000 0.000 0.008 NA
#> ERR978241 4 0.5045 0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978242 4 0.5045 0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978243 4 0.5045 0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978244 4 0.5045 0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978245 4 0.5045 0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978246 4 0.5045 0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978247 4 0.5045 0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978248 5 0.8238 0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978249 5 0.8238 0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978250 5 0.8238 0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978251 5 0.8238 0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978252 5 0.8238 0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978253 5 0.8238 0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978254 5 0.8238 0.0125 0.028 0.116 0.032 0.276 0.388 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.535 0.705 0.844 0.4752 0.520 0.520
#> 3 3 0.724 0.869 0.923 0.3162 0.609 0.403
#> 4 4 0.759 0.672 0.710 0.1720 0.807 0.554
#> 5 5 0.977 0.965 0.965 0.0953 0.923 0.716
#> 6 6 0.934 0.867 0.882 0.0274 0.986 0.931
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5
There is also optional best \(k\) = 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.9286 0.611 0.344 0.656
#> ERR978108 2 0.9286 0.611 0.344 0.656
#> ERR978109 2 0.9286 0.611 0.344 0.656
#> ERR978110 2 0.9286 0.611 0.344 0.656
#> ERR978111 2 0.9286 0.611 0.344 0.656
#> ERR978112 2 0.9286 0.611 0.344 0.656
#> ERR978113 2 0.9286 0.611 0.344 0.656
#> ERR978114 2 0.9286 0.611 0.344 0.656
#> ERR978115 2 0.9286 0.611 0.344 0.656
#> ERR978116 2 0.9286 0.611 0.344 0.656
#> ERR978117 2 0.9286 0.611 0.344 0.656
#> ERR978118 2 0.9286 0.611 0.344 0.656
#> ERR978119 2 0.9286 0.611 0.344 0.656
#> ERR978120 2 0.9286 0.611 0.344 0.656
#> ERR978121 2 0.9286 0.611 0.344 0.656
#> ERR978122 2 0.9286 0.611 0.344 0.656
#> ERR978123 2 0.3879 0.755 0.076 0.924
#> ERR978124 2 0.3879 0.755 0.076 0.924
#> ERR978125 2 0.3879 0.755 0.076 0.924
#> ERR978126 2 0.3879 0.755 0.076 0.924
#> ERR978127 2 0.3879 0.755 0.076 0.924
#> ERR978128 2 0.3879 0.755 0.076 0.924
#> ERR978129 2 0.3879 0.755 0.076 0.924
#> ERR978130 2 0.3879 0.755 0.076 0.924
#> ERR978131 2 0.3879 0.755 0.076 0.924
#> ERR978132 2 0.3879 0.755 0.076 0.924
#> ERR978133 2 0.3879 0.755 0.076 0.924
#> ERR978134 2 0.3879 0.755 0.076 0.924
#> ERR978135 2 0.3879 0.755 0.076 0.924
#> ERR978136 2 0.3879 0.755 0.076 0.924
#> ERR978137 2 0.3879 0.755 0.076 0.924
#> ERR978138 2 0.0672 0.807 0.008 0.992
#> ERR978139 2 0.0672 0.807 0.008 0.992
#> ERR978140 2 0.0672 0.807 0.008 0.992
#> ERR978141 2 0.0672 0.807 0.008 0.992
#> ERR978142 2 0.0672 0.807 0.008 0.992
#> ERR978143 2 0.0672 0.807 0.008 0.992
#> ERR978144 2 0.0672 0.807 0.008 0.992
#> ERR978145 2 0.0672 0.807 0.008 0.992
#> ERR978146 2 0.0672 0.807 0.008 0.992
#> ERR978147 2 0.0672 0.807 0.008 0.992
#> ERR978148 2 0.0672 0.807 0.008 0.992
#> ERR978149 2 0.0672 0.807 0.008 0.992
#> ERR978150 2 0.0672 0.807 0.008 0.992
#> ERR978151 2 0.0672 0.807 0.008 0.992
#> ERR978152 2 0.0672 0.807 0.008 0.992
#> ERR978153 1 0.0000 0.747 1.000 0.000
#> ERR978154 1 0.0000 0.747 1.000 0.000
#> ERR978155 1 0.0000 0.747 1.000 0.000
#> ERR978156 1 0.0000 0.747 1.000 0.000
#> ERR978157 1 0.0000 0.747 1.000 0.000
#> ERR978158 1 0.0000 0.747 1.000 0.000
#> ERR978159 1 0.0000 0.747 1.000 0.000
#> ERR978160 1 0.0000 0.747 1.000 0.000
#> ERR978161 1 0.0000 0.747 1.000 0.000
#> ERR978162 1 0.0000 0.747 1.000 0.000
#> ERR978163 1 0.0000 0.747 1.000 0.000
#> ERR978164 1 0.0000 0.747 1.000 0.000
#> ERR978165 1 0.0000 0.747 1.000 0.000
#> ERR978166 1 0.0000 0.747 1.000 0.000
#> ERR978167 1 0.0000 0.747 1.000 0.000
#> ERR978168 1 0.0000 0.747 1.000 0.000
#> ERR978169 1 0.9635 0.627 0.612 0.388
#> ERR978170 1 0.9635 0.627 0.612 0.388
#> ERR978171 1 0.9635 0.627 0.612 0.388
#> ERR978172 1 0.9635 0.627 0.612 0.388
#> ERR978173 1 0.9635 0.627 0.612 0.388
#> ERR978174 1 0.9635 0.627 0.612 0.388
#> ERR978175 1 0.9635 0.627 0.612 0.388
#> ERR978176 1 0.9635 0.627 0.612 0.388
#> ERR978177 1 0.9635 0.627 0.612 0.388
#> ERR978178 1 0.9635 0.627 0.612 0.388
#> ERR978179 1 0.9635 0.627 0.612 0.388
#> ERR978180 1 0.9635 0.627 0.612 0.388
#> ERR978181 1 0.9635 0.627 0.612 0.388
#> ERR978182 1 0.9635 0.627 0.612 0.388
#> ERR978183 2 0.9286 0.611 0.344 0.656
#> ERR978184 2 0.9286 0.611 0.344 0.656
#> ERR978185 2 0.9286 0.611 0.344 0.656
#> ERR978186 2 0.9286 0.611 0.344 0.656
#> ERR978187 2 0.9286 0.611 0.344 0.656
#> ERR978188 2 0.9286 0.611 0.344 0.656
#> ERR978189 2 0.9286 0.611 0.344 0.656
#> ERR978190 2 0.9286 0.611 0.344 0.656
#> ERR978191 2 0.9286 0.611 0.344 0.656
#> ERR978192 2 0.9286 0.611 0.344 0.656
#> ERR978193 2 0.9286 0.611 0.344 0.656
#> ERR978194 2 0.9286 0.611 0.344 0.656
#> ERR978195 2 0.9286 0.611 0.344 0.656
#> ERR978196 2 0.9286 0.611 0.344 0.656
#> ERR978197 2 0.0000 0.809 0.000 1.000
#> ERR978198 2 0.0000 0.809 0.000 1.000
#> ERR978199 2 0.0000 0.809 0.000 1.000
#> ERR978200 2 0.0000 0.809 0.000 1.000
#> ERR978201 2 0.0000 0.809 0.000 1.000
#> ERR978202 2 0.0000 0.809 0.000 1.000
#> ERR978203 2 0.0000 0.809 0.000 1.000
#> ERR978204 2 0.0000 0.809 0.000 1.000
#> ERR978205 2 0.0000 0.809 0.000 1.000
#> ERR978206 2 0.0000 0.809 0.000 1.000
#> ERR978207 2 0.0000 0.809 0.000 1.000
#> ERR978208 2 0.0000 0.809 0.000 1.000
#> ERR978209 2 0.0000 0.809 0.000 1.000
#> ERR978210 2 0.0000 0.809 0.000 1.000
#> ERR978211 2 0.0000 0.809 0.000 1.000
#> ERR978212 2 0.0000 0.809 0.000 1.000
#> ERR978213 2 0.0000 0.809 0.000 1.000
#> ERR978214 2 0.0000 0.809 0.000 1.000
#> ERR978215 2 0.0000 0.809 0.000 1.000
#> ERR978216 2 0.0000 0.809 0.000 1.000
#> ERR978217 2 0.0000 0.809 0.000 1.000
#> ERR978218 2 0.0000 0.809 0.000 1.000
#> ERR978219 2 0.0000 0.809 0.000 1.000
#> ERR978220 2 0.0000 0.809 0.000 1.000
#> ERR978221 2 0.0000 0.809 0.000 1.000
#> ERR978222 2 0.0000 0.809 0.000 1.000
#> ERR978223 2 0.0000 0.809 0.000 1.000
#> ERR978224 2 0.0000 0.809 0.000 1.000
#> ERR978225 2 0.0000 0.809 0.000 1.000
#> ERR978226 2 0.0000 0.809 0.000 1.000
#> ERR978227 1 0.0000 0.747 1.000 0.000
#> ERR978228 1 0.0000 0.747 1.000 0.000
#> ERR978229 1 0.0000 0.747 1.000 0.000
#> ERR978230 1 0.0000 0.747 1.000 0.000
#> ERR978231 1 0.0000 0.747 1.000 0.000
#> ERR978232 1 0.0000 0.747 1.000 0.000
#> ERR978233 1 0.0000 0.747 1.000 0.000
#> ERR978234 1 0.0000 0.747 1.000 0.000
#> ERR978235 1 0.0000 0.747 1.000 0.000
#> ERR978236 1 0.0000 0.747 1.000 0.000
#> ERR978237 1 0.0000 0.747 1.000 0.000
#> ERR978238 1 0.0000 0.747 1.000 0.000
#> ERR978239 1 0.0000 0.747 1.000 0.000
#> ERR978240 1 0.0000 0.747 1.000 0.000
#> ERR978241 1 0.9635 0.627 0.612 0.388
#> ERR978242 1 0.9635 0.627 0.612 0.388
#> ERR978243 1 0.9635 0.627 0.612 0.388
#> ERR978244 1 0.9635 0.627 0.612 0.388
#> ERR978245 1 0.9635 0.627 0.612 0.388
#> ERR978246 1 0.9635 0.627 0.612 0.388
#> ERR978247 1 0.9635 0.627 0.612 0.388
#> ERR978248 1 0.9996 0.385 0.512 0.488
#> ERR978249 1 0.9996 0.385 0.512 0.488
#> ERR978250 1 0.9996 0.385 0.512 0.488
#> ERR978251 1 0.9996 0.385 0.512 0.488
#> ERR978252 1 0.9996 0.385 0.512 0.488
#> ERR978253 1 0.9996 0.385 0.512 0.488
#> ERR978254 1 0.9996 0.385 0.512 0.488
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978108 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978109 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978110 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978111 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978112 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978113 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978114 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978115 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978116 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978117 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978118 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978119 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978120 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978121 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978122 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978123 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978124 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978125 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978126 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978127 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978128 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978129 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978130 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978131 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978132 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978133 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978134 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978135 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978136 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978137 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978138 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978139 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978140 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978141 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978142 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978143 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978144 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978145 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978146 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978147 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978148 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978149 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978150 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978151 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978152 3 0.0000 0.853 0.000 0.000 1.000
#> ERR978153 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978169 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978170 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978171 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978172 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978173 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978174 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978175 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978176 3 0.7453 0.634 0.092 0.228 0.680
#> ERR978177 3 0.7453 0.634 0.092 0.228 0.680
#> ERR978178 3 0.7453 0.634 0.092 0.228 0.680
#> ERR978179 3 0.7453 0.634 0.092 0.228 0.680
#> ERR978180 3 0.7453 0.634 0.092 0.228 0.680
#> ERR978181 3 0.7453 0.634 0.092 0.228 0.680
#> ERR978182 3 0.7453 0.634 0.092 0.228 0.680
#> ERR978183 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978184 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978185 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978186 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978187 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978188 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978189 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978190 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978191 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978192 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978193 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978194 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978195 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978196 2 0.0237 0.985 0.000 0.996 0.004
#> ERR978197 3 0.1860 0.843 0.000 0.052 0.948
#> ERR978198 3 0.1860 0.843 0.000 0.052 0.948
#> ERR978199 3 0.1860 0.843 0.000 0.052 0.948
#> ERR978200 3 0.1860 0.843 0.000 0.052 0.948
#> ERR978201 3 0.1860 0.843 0.000 0.052 0.948
#> ERR978202 3 0.1860 0.843 0.000 0.052 0.948
#> ERR978203 3 0.1860 0.843 0.000 0.052 0.948
#> ERR978204 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978205 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978206 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978207 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978208 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978209 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978210 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978211 3 0.2796 0.827 0.000 0.092 0.908
#> ERR978212 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978213 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978214 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978215 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978216 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978217 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978218 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978219 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978220 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978221 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978222 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978223 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978224 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978225 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978226 3 0.5733 0.597 0.000 0.324 0.676
#> ERR978227 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978241 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978242 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978243 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978244 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978245 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978246 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978247 3 0.5505 0.780 0.096 0.088 0.816
#> ERR978248 2 0.2689 0.935 0.032 0.932 0.036
#> ERR978249 2 0.2689 0.935 0.032 0.932 0.036
#> ERR978250 2 0.2689 0.935 0.032 0.932 0.036
#> ERR978251 2 0.2689 0.935 0.032 0.932 0.036
#> ERR978252 2 0.2689 0.935 0.032 0.932 0.036
#> ERR978253 2 0.2689 0.935 0.032 0.932 0.036
#> ERR978254 2 0.2689 0.935 0.032 0.932 0.036
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978108 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978109 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978110 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978111 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978112 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978113 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978114 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978115 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978116 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978117 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978118 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978119 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978120 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978121 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978122 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978123 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978124 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978125 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978126 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978127 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978128 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978129 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978130 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978131 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978132 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978133 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978134 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978135 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978136 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978137 4 0.510 0.3045 0.000 0.008 0.380 0.612
#> ERR978138 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978139 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978140 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978141 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978142 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978143 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978144 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978145 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978146 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978147 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978148 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978149 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978150 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978151 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978152 3 0.147 0.8922 0.000 0.000 0.948 0.052
#> ERR978153 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978169 4 0.536 0.1961 0.012 0.004 0.372 0.612
#> ERR978170 4 0.536 0.1961 0.012 0.004 0.372 0.612
#> ERR978171 4 0.536 0.1961 0.012 0.004 0.372 0.612
#> ERR978172 4 0.536 0.1961 0.012 0.004 0.372 0.612
#> ERR978173 4 0.536 0.1961 0.012 0.004 0.372 0.612
#> ERR978174 4 0.536 0.1961 0.012 0.004 0.372 0.612
#> ERR978175 4 0.536 0.1961 0.012 0.004 0.372 0.612
#> ERR978176 4 0.580 0.0958 0.016 0.008 0.464 0.512
#> ERR978177 4 0.580 0.0958 0.016 0.008 0.464 0.512
#> ERR978178 4 0.580 0.0958 0.016 0.008 0.464 0.512
#> ERR978179 4 0.580 0.0958 0.016 0.008 0.464 0.512
#> ERR978180 4 0.580 0.0958 0.016 0.008 0.464 0.512
#> ERR978181 4 0.580 0.0958 0.016 0.008 0.464 0.512
#> ERR978182 4 0.580 0.0958 0.016 0.008 0.464 0.512
#> ERR978183 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978184 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978185 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978186 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978187 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978188 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978189 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978190 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978191 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978192 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978193 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978194 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978195 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978196 2 0.000 1.0000 0.000 1.000 0.000 0.000
#> ERR978197 4 0.524 0.2823 0.000 0.008 0.436 0.556
#> ERR978198 4 0.524 0.2823 0.000 0.008 0.436 0.556
#> ERR978199 4 0.524 0.2823 0.000 0.008 0.436 0.556
#> ERR978200 4 0.524 0.2823 0.000 0.008 0.436 0.556
#> ERR978201 4 0.524 0.2823 0.000 0.008 0.436 0.556
#> ERR978202 4 0.524 0.2823 0.000 0.008 0.436 0.556
#> ERR978203 4 0.524 0.2823 0.000 0.008 0.436 0.556
#> ERR978204 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978205 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978206 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978207 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978208 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978209 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978210 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978211 4 0.525 0.2779 0.000 0.008 0.440 0.552
#> ERR978212 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978213 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978214 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978215 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978216 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978217 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978218 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978219 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978220 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978221 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978222 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978223 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978224 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978225 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978226 3 0.222 0.8941 0.000 0.060 0.924 0.016
#> ERR978227 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.0000 1.000 0.000 0.000 0.000
#> ERR978241 4 0.538 0.1937 0.012 0.004 0.376 0.608
#> ERR978242 4 0.538 0.1937 0.012 0.004 0.376 0.608
#> ERR978243 4 0.538 0.1937 0.012 0.004 0.376 0.608
#> ERR978244 4 0.538 0.1937 0.012 0.004 0.376 0.608
#> ERR978245 4 0.538 0.1937 0.012 0.004 0.376 0.608
#> ERR978246 4 0.538 0.1937 0.012 0.004 0.376 0.608
#> ERR978247 4 0.538 0.1937 0.012 0.004 0.376 0.608
#> ERR978248 4 0.819 0.0696 0.008 0.324 0.312 0.356
#> ERR978249 4 0.819 0.0696 0.008 0.324 0.312 0.356
#> ERR978250 4 0.819 0.0696 0.008 0.324 0.312 0.356
#> ERR978251 4 0.819 0.0696 0.008 0.324 0.312 0.356
#> ERR978252 4 0.819 0.0696 0.008 0.324 0.312 0.356
#> ERR978253 4 0.819 0.0696 0.008 0.324 0.312 0.356
#> ERR978254 4 0.819 0.0696 0.008 0.324 0.312 0.356
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978124 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978125 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978126 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978127 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978128 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978129 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978130 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978131 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978132 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978133 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978134 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978135 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978136 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978137 3 0.1597 0.966 0 0.000 0.940 0.012 0.048
#> ERR978138 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978139 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978140 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978141 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978142 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978143 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978144 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978145 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978146 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978147 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978148 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978149 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978150 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978151 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978152 5 0.2473 0.927 0 0.000 0.032 0.072 0.896
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978170 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978171 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978172 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978173 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978174 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978175 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978176 4 0.0671 0.947 0 0.000 0.004 0.980 0.016
#> ERR978177 4 0.0671 0.947 0 0.000 0.004 0.980 0.016
#> ERR978178 4 0.0671 0.947 0 0.000 0.004 0.980 0.016
#> ERR978179 4 0.0671 0.947 0 0.000 0.004 0.980 0.016
#> ERR978180 4 0.0671 0.947 0 0.000 0.004 0.980 0.016
#> ERR978181 4 0.0671 0.947 0 0.000 0.004 0.980 0.016
#> ERR978182 4 0.0671 0.947 0 0.000 0.004 0.980 0.016
#> ERR978183 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978197 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978198 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978199 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978200 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978201 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978202 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978203 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978204 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978205 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978206 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978207 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978208 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978209 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978210 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978211 3 0.0162 0.966 0 0.000 0.996 0.000 0.004
#> ERR978212 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978213 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978214 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978215 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978216 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978217 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978218 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978219 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978220 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978221 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978222 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978223 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978224 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978225 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978226 5 0.1638 0.929 0 0.000 0.064 0.004 0.932
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978242 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978243 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978244 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978245 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978246 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978247 4 0.0898 0.951 0 0.000 0.020 0.972 0.008
#> ERR978248 4 0.3612 0.872 0 0.064 0.004 0.832 0.100
#> ERR978249 4 0.3612 0.872 0 0.064 0.004 0.832 0.100
#> ERR978250 4 0.3612 0.872 0 0.064 0.004 0.832 0.100
#> ERR978251 4 0.3612 0.872 0 0.064 0.004 0.832 0.100
#> ERR978252 4 0.3612 0.872 0 0.064 0.004 0.832 0.100
#> ERR978253 4 0.3612 0.872 0 0.064 0.004 0.832 0.100
#> ERR978254 4 0.3612 0.872 0 0.064 0.004 0.832 0.100
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978123 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978124 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978125 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978126 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978127 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978128 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978129 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978130 3 0.3062 0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978131 3 0.3025 0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978132 3 0.3025 0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978133 3 0.3025 0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978134 3 0.3025 0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978135 3 0.3025 0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978136 3 0.3025 0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978137 3 0.3025 0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978138 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978139 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978140 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978141 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978142 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978143 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978144 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978145 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978146 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978147 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978148 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978149 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978150 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978151 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978152 5 0.0547 0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978153 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978170 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978171 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978172 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978173 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978174 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978175 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978176 4 0.3756 0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978177 4 0.3756 0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978178 4 0.3756 0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978179 4 0.3756 0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978180 4 0.3756 0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978181 4 0.3756 0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978182 4 0.3756 0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978183 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978184 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978185 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978186 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978187 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978188 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978189 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978190 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978191 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978192 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978193 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978194 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978195 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978196 2 0.1327 0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978197 3 0.0508 0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978198 3 0.0508 0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978199 3 0.0508 0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978200 3 0.0508 0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978201 3 0.0508 0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978202 3 0.0508 0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978203 3 0.0508 0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978204 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978205 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978206 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978207 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978208 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978209 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978210 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978211 3 0.0508 0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978212 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978213 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978214 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978215 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978216 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978217 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978218 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978219 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978220 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978221 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978222 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978223 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978224 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978225 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978226 5 0.3954 0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978227 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978228 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978229 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978230 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978231 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978232 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978233 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978234 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978235 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978236 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978237 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978238 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978239 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978240 1 0.0790 0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978241 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978242 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978243 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978244 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978245 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978246 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978247 4 0.0000 0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978248 6 0.5395 1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978249 6 0.5395 1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978250 6 0.5395 1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978251 6 0.5395 1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978252 6 0.5395 1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978253 6 0.5395 1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978254 6 0.5395 1.0000 0.000 0.080 0.000 0.404 0.012 0.504
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 1.000 0.971 0.987 0.7712 0.757 0.640
#> 4 4 0.962 0.960 0.980 0.2710 0.840 0.630
#> 5 5 1.000 0.973 0.985 0.0898 0.929 0.737
#> 6 6 0.940 0.916 0.933 0.0344 0.970 0.849
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 1.000 0 1.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000
#> ERR978123 3 0.000 0.977 0 0.000 1.000
#> ERR978124 3 0.000 0.977 0 0.000 1.000
#> ERR978125 3 0.000 0.977 0 0.000 1.000
#> ERR978126 3 0.000 0.977 0 0.000 1.000
#> ERR978127 3 0.000 0.977 0 0.000 1.000
#> ERR978128 3 0.000 0.977 0 0.000 1.000
#> ERR978129 3 0.000 0.977 0 0.000 1.000
#> ERR978130 3 0.000 0.977 0 0.000 1.000
#> ERR978131 3 0.000 0.977 0 0.000 1.000
#> ERR978132 3 0.000 0.977 0 0.000 1.000
#> ERR978133 3 0.000 0.977 0 0.000 1.000
#> ERR978134 3 0.000 0.977 0 0.000 1.000
#> ERR978135 3 0.000 0.977 0 0.000 1.000
#> ERR978136 3 0.000 0.977 0 0.000 1.000
#> ERR978137 3 0.000 0.977 0 0.000 1.000
#> ERR978138 3 0.000 0.977 0 0.000 1.000
#> ERR978139 3 0.000 0.977 0 0.000 1.000
#> ERR978140 3 0.000 0.977 0 0.000 1.000
#> ERR978141 3 0.000 0.977 0 0.000 1.000
#> ERR978142 3 0.000 0.977 0 0.000 1.000
#> ERR978143 3 0.000 0.977 0 0.000 1.000
#> ERR978144 3 0.000 0.977 0 0.000 1.000
#> ERR978145 3 0.000 0.977 0 0.000 1.000
#> ERR978146 3 0.000 0.977 0 0.000 1.000
#> ERR978147 3 0.000 0.977 0 0.000 1.000
#> ERR978148 3 0.000 0.977 0 0.000 1.000
#> ERR978149 3 0.000 0.977 0 0.000 1.000
#> ERR978150 3 0.000 0.977 0 0.000 1.000
#> ERR978151 3 0.000 0.977 0 0.000 1.000
#> ERR978152 3 0.000 0.977 0 0.000 1.000
#> ERR978153 1 0.000 1.000 1 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000
#> ERR978169 3 0.000 0.977 0 0.000 1.000
#> ERR978170 3 0.000 0.977 0 0.000 1.000
#> ERR978171 3 0.000 0.977 0 0.000 1.000
#> ERR978172 3 0.000 0.977 0 0.000 1.000
#> ERR978173 3 0.000 0.977 0 0.000 1.000
#> ERR978174 3 0.000 0.977 0 0.000 1.000
#> ERR978175 3 0.000 0.977 0 0.000 1.000
#> ERR978176 3 0.000 0.977 0 0.000 1.000
#> ERR978177 3 0.000 0.977 0 0.000 1.000
#> ERR978178 3 0.000 0.977 0 0.000 1.000
#> ERR978179 3 0.000 0.977 0 0.000 1.000
#> ERR978180 3 0.000 0.977 0 0.000 1.000
#> ERR978181 3 0.000 0.977 0 0.000 1.000
#> ERR978182 3 0.000 0.977 0 0.000 1.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000
#> ERR978197 3 0.000 0.977 0 0.000 1.000
#> ERR978198 3 0.000 0.977 0 0.000 1.000
#> ERR978199 3 0.000 0.977 0 0.000 1.000
#> ERR978200 3 0.000 0.977 0 0.000 1.000
#> ERR978201 3 0.000 0.977 0 0.000 1.000
#> ERR978202 3 0.000 0.977 0 0.000 1.000
#> ERR978203 3 0.000 0.977 0 0.000 1.000
#> ERR978204 3 0.000 0.977 0 0.000 1.000
#> ERR978205 3 0.000 0.977 0 0.000 1.000
#> ERR978206 3 0.000 0.977 0 0.000 1.000
#> ERR978207 3 0.000 0.977 0 0.000 1.000
#> ERR978208 3 0.000 0.977 0 0.000 1.000
#> ERR978209 3 0.000 0.977 0 0.000 1.000
#> ERR978210 3 0.000 0.977 0 0.000 1.000
#> ERR978211 3 0.000 0.977 0 0.000 1.000
#> ERR978212 3 0.000 0.977 0 0.000 1.000
#> ERR978213 3 0.000 0.977 0 0.000 1.000
#> ERR978214 3 0.000 0.977 0 0.000 1.000
#> ERR978215 3 0.000 0.977 0 0.000 1.000
#> ERR978216 3 0.000 0.977 0 0.000 1.000
#> ERR978217 3 0.000 0.977 0 0.000 1.000
#> ERR978218 3 0.000 0.977 0 0.000 1.000
#> ERR978219 3 0.000 0.977 0 0.000 1.000
#> ERR978220 3 0.000 0.977 0 0.000 1.000
#> ERR978221 3 0.000 0.977 0 0.000 1.000
#> ERR978222 3 0.000 0.977 0 0.000 1.000
#> ERR978223 3 0.000 0.977 0 0.000 1.000
#> ERR978224 3 0.000 0.977 0 0.000 1.000
#> ERR978225 3 0.000 0.977 0 0.000 1.000
#> ERR978226 3 0.000 0.977 0 0.000 1.000
#> ERR978227 1 0.000 1.000 1 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000
#> ERR978241 3 0.000 0.977 0 0.000 1.000
#> ERR978242 3 0.000 0.977 0 0.000 1.000
#> ERR978243 3 0.000 0.977 0 0.000 1.000
#> ERR978244 3 0.000 0.977 0 0.000 1.000
#> ERR978245 3 0.000 0.977 0 0.000 1.000
#> ERR978246 3 0.000 0.977 0 0.000 1.000
#> ERR978247 3 0.000 0.977 0 0.000 1.000
#> ERR978248 3 0.546 0.624 0 0.288 0.712
#> ERR978249 3 0.529 0.658 0 0.268 0.732
#> ERR978250 3 0.546 0.624 0 0.288 0.712
#> ERR978251 3 0.514 0.683 0 0.252 0.748
#> ERR978252 3 0.522 0.670 0 0.260 0.740
#> ERR978253 3 0.540 0.638 0 0.280 0.720
#> ERR978254 3 0.546 0.624 0 0.288 0.712
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978123 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978124 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978125 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978126 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978127 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978128 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978129 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978130 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978131 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978132 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978133 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978134 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978135 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978136 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978137 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978138 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978139 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978140 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978141 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978142 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978143 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978144 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978145 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978146 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978147 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978148 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978149 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978150 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978151 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978152 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.270 0.848 0 0.000 0.124 0.876
#> ERR978170 4 0.276 0.844 0 0.000 0.128 0.872
#> ERR978171 4 0.336 0.790 0 0.000 0.176 0.824
#> ERR978172 4 0.327 0.800 0 0.000 0.168 0.832
#> ERR978173 4 0.312 0.814 0 0.000 0.156 0.844
#> ERR978174 4 0.215 0.880 0 0.000 0.088 0.912
#> ERR978175 4 0.307 0.819 0 0.000 0.152 0.848
#> ERR978176 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978177 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978178 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978179 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978180 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978181 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978182 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978197 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978198 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978199 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978200 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978201 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978202 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978203 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978204 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978205 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978206 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978207 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978208 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978209 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978210 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978211 3 0.000 1.000 0 0.000 1.000 0.000
#> ERR978212 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978213 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978214 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978215 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978216 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978217 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978218 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978219 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978220 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978221 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978222 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978223 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978224 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978225 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978226 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978242 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978243 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978244 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978245 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978246 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978247 4 0.000 0.947 0 0.000 0.000 1.000
#> ERR978248 4 0.436 0.629 0 0.292 0.000 0.708
#> ERR978249 4 0.422 0.661 0 0.272 0.000 0.728
#> ERR978250 4 0.430 0.643 0 0.284 0.000 0.716
#> ERR978251 4 0.401 0.702 0 0.244 0.000 0.756
#> ERR978252 4 0.416 0.673 0 0.264 0.000 0.736
#> ERR978253 4 0.433 0.636 0 0.288 0.000 0.712
#> ERR978254 4 0.433 0.636 0 0.288 0.000 0.712
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978124 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978125 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978126 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978127 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978128 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978129 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978130 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978131 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978132 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978133 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978134 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978135 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978136 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978137 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978138 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978139 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978140 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978141 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978142 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978143 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978144 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978145 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978146 5 0.0290 0.939 0 0.000 0.008 0.000 0.992
#> ERR978147 5 0.0290 0.939 0 0.000 0.008 0.000 0.992
#> ERR978148 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978149 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978150 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978151 5 0.0290 0.939 0 0.000 0.008 0.000 0.992
#> ERR978152 5 0.0162 0.942 0 0.000 0.004 0.000 0.996
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978170 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978171 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978172 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978173 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978174 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978175 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978176 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978177 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978178 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978179 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978180 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978181 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978182 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978183 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978197 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978198 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978199 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978200 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978201 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978202 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978203 3 0.0000 0.992 0 0.000 1.000 0.000 0.000
#> ERR978204 3 0.0794 0.975 0 0.000 0.972 0.000 0.028
#> ERR978205 3 0.0794 0.975 0 0.000 0.972 0.000 0.028
#> ERR978206 3 0.0794 0.975 0 0.000 0.972 0.000 0.028
#> ERR978207 3 0.0794 0.975 0 0.000 0.972 0.000 0.028
#> ERR978208 3 0.0794 0.975 0 0.000 0.972 0.000 0.028
#> ERR978209 3 0.0794 0.975 0 0.000 0.972 0.000 0.028
#> ERR978210 3 0.0794 0.975 0 0.000 0.972 0.000 0.028
#> ERR978211 3 0.0290 0.988 0 0.000 0.992 0.000 0.008
#> ERR978212 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978213 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978214 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978215 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978216 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978217 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978218 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978219 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978220 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978221 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978222 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978223 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978224 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978225 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978226 5 0.0000 0.944 0 0.000 0.000 0.000 1.000
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978242 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978243 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978244 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978245 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978246 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978247 4 0.0000 1.000 0 0.000 0.000 1.000 0.000
#> ERR978248 5 0.4800 0.725 0 0.196 0.000 0.088 0.716
#> ERR978249 5 0.4800 0.725 0 0.196 0.000 0.088 0.716
#> ERR978250 5 0.4800 0.725 0 0.196 0.000 0.088 0.716
#> ERR978251 5 0.4734 0.733 0 0.188 0.000 0.088 0.724
#> ERR978252 5 0.4800 0.725 0 0.196 0.000 0.088 0.716
#> ERR978253 5 0.4800 0.725 0 0.196 0.000 0.088 0.716
#> ERR978254 5 0.4800 0.725 0 0.196 0.000 0.088 0.716
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978123 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978124 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978125 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978126 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978127 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978128 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978129 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978130 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978131 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978132 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978133 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978134 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978135 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978136 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978137 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978138 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978139 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978140 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978141 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978142 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978143 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978144 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978145 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978146 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978147 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978148 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978149 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978150 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978151 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978152 5 0.000 1.000 0 0 0.000 0.000 1.000 0.000
#> ERR978153 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978169 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978170 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978171 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978172 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978173 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978174 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978175 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978176 4 0.374 0.710 0 0 0.000 0.608 0.000 0.392
#> ERR978177 4 0.374 0.710 0 0 0.000 0.608 0.000 0.392
#> ERR978178 4 0.374 0.710 0 0 0.000 0.608 0.000 0.392
#> ERR978179 4 0.374 0.710 0 0 0.000 0.608 0.000 0.392
#> ERR978180 4 0.374 0.710 0 0 0.000 0.608 0.000 0.392
#> ERR978181 4 0.374 0.710 0 0 0.000 0.608 0.000 0.392
#> ERR978182 4 0.374 0.710 0 0 0.000 0.608 0.000 0.392
#> ERR978183 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978197 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978198 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978199 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978200 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978201 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978202 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978203 3 0.000 0.951 0 0 1.000 0.000 0.000 0.000
#> ERR978204 3 0.270 0.812 0 0 0.812 0.000 0.000 0.188
#> ERR978205 3 0.234 0.851 0 0 0.852 0.000 0.000 0.148
#> ERR978206 3 0.249 0.837 0 0 0.836 0.000 0.000 0.164
#> ERR978207 3 0.273 0.807 0 0 0.808 0.000 0.000 0.192
#> ERR978208 3 0.273 0.807 0 0 0.808 0.000 0.000 0.192
#> ERR978209 3 0.263 0.821 0 0 0.820 0.000 0.000 0.180
#> ERR978210 3 0.263 0.821 0 0 0.820 0.000 0.000 0.180
#> ERR978211 3 0.144 0.908 0 0 0.928 0.000 0.000 0.072
#> ERR978212 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978213 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978214 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978215 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978216 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978217 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978218 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978219 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978220 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978221 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978222 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978223 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978224 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978225 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978226 6 0.374 0.768 0 0 0.000 0.000 0.392 0.608
#> ERR978227 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978241 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978242 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978243 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978244 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978245 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978246 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978247 4 0.000 0.875 0 0 0.000 1.000 0.000 0.000
#> ERR978248 6 0.000 0.614 0 0 0.000 0.000 0.000 1.000
#> ERR978249 6 0.000 0.614 0 0 0.000 0.000 0.000 1.000
#> ERR978250 6 0.000 0.614 0 0 0.000 0.000 0.000 1.000
#> ERR978251 6 0.000 0.614 0 0 0.000 0.000 0.000 1.000
#> ERR978252 6 0.000 0.614 0 0 0.000 0.000 0.000 1.000
#> ERR978253 6 0.000 0.614 0 0 0.000 0.000 0.000 1.000
#> ERR978254 6 0.000 0.614 0 0 0.000 0.000 0.000 1.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 0.616 0.782 0.856 0.8619 0.757 0.640
#> 4 4 0.741 0.825 0.877 0.1953 0.840 0.630
#> 5 5 0.811 0.774 0.808 0.0945 0.941 0.782
#> 6 6 0.802 0.783 0.777 0.0258 0.958 0.800
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 1.000 0 1.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000
#> ERR978123 3 0.141 0.711 0 0.036 0.964
#> ERR978124 3 0.141 0.711 0 0.036 0.964
#> ERR978125 3 0.141 0.711 0 0.036 0.964
#> ERR978126 3 0.141 0.711 0 0.036 0.964
#> ERR978127 3 0.141 0.711 0 0.036 0.964
#> ERR978128 3 0.141 0.711 0 0.036 0.964
#> ERR978129 3 0.141 0.711 0 0.036 0.964
#> ERR978130 3 0.141 0.711 0 0.036 0.964
#> ERR978131 3 0.141 0.711 0 0.036 0.964
#> ERR978132 3 0.141 0.711 0 0.036 0.964
#> ERR978133 3 0.141 0.711 0 0.036 0.964
#> ERR978134 3 0.141 0.711 0 0.036 0.964
#> ERR978135 3 0.141 0.711 0 0.036 0.964
#> ERR978136 3 0.141 0.711 0 0.036 0.964
#> ERR978137 3 0.141 0.711 0 0.036 0.964
#> ERR978138 3 0.543 0.690 0 0.284 0.716
#> ERR978139 3 0.543 0.690 0 0.284 0.716
#> ERR978140 3 0.543 0.690 0 0.284 0.716
#> ERR978141 3 0.543 0.690 0 0.284 0.716
#> ERR978142 3 0.543 0.690 0 0.284 0.716
#> ERR978143 3 0.543 0.690 0 0.284 0.716
#> ERR978144 3 0.543 0.690 0 0.284 0.716
#> ERR978145 3 0.543 0.690 0 0.284 0.716
#> ERR978146 3 0.543 0.690 0 0.284 0.716
#> ERR978147 3 0.543 0.690 0 0.284 0.716
#> ERR978148 3 0.543 0.690 0 0.284 0.716
#> ERR978149 3 0.543 0.690 0 0.284 0.716
#> ERR978150 3 0.543 0.690 0 0.284 0.716
#> ERR978151 3 0.543 0.690 0 0.284 0.716
#> ERR978152 3 0.543 0.690 0 0.284 0.716
#> ERR978153 1 0.000 1.000 1 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000
#> ERR978169 3 0.556 0.539 0 0.300 0.700
#> ERR978170 3 0.556 0.539 0 0.300 0.700
#> ERR978171 3 0.556 0.539 0 0.300 0.700
#> ERR978172 3 0.556 0.539 0 0.300 0.700
#> ERR978173 3 0.556 0.539 0 0.300 0.700
#> ERR978174 3 0.556 0.539 0 0.300 0.700
#> ERR978175 3 0.556 0.539 0 0.300 0.700
#> ERR978176 3 0.618 0.499 0 0.416 0.584
#> ERR978177 3 0.618 0.499 0 0.416 0.584
#> ERR978178 3 0.618 0.499 0 0.416 0.584
#> ERR978179 3 0.618 0.499 0 0.416 0.584
#> ERR978180 3 0.618 0.499 0 0.416 0.584
#> ERR978181 3 0.618 0.499 0 0.416 0.584
#> ERR978182 3 0.618 0.499 0 0.416 0.584
#> ERR978183 2 0.000 1.000 0 1.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000
#> ERR978197 3 0.153 0.712 0 0.040 0.960
#> ERR978198 3 0.153 0.712 0 0.040 0.960
#> ERR978199 3 0.153 0.712 0 0.040 0.960
#> ERR978200 3 0.153 0.712 0 0.040 0.960
#> ERR978201 3 0.153 0.712 0 0.040 0.960
#> ERR978202 3 0.153 0.712 0 0.040 0.960
#> ERR978203 3 0.153 0.712 0 0.040 0.960
#> ERR978204 3 0.153 0.712 0 0.040 0.960
#> ERR978205 3 0.153 0.712 0 0.040 0.960
#> ERR978206 3 0.153 0.712 0 0.040 0.960
#> ERR978207 3 0.153 0.712 0 0.040 0.960
#> ERR978208 3 0.153 0.712 0 0.040 0.960
#> ERR978209 3 0.153 0.712 0 0.040 0.960
#> ERR978210 3 0.153 0.712 0 0.040 0.960
#> ERR978211 3 0.153 0.712 0 0.040 0.960
#> ERR978212 3 0.543 0.690 0 0.284 0.716
#> ERR978213 3 0.543 0.690 0 0.284 0.716
#> ERR978214 3 0.543 0.690 0 0.284 0.716
#> ERR978215 3 0.543 0.690 0 0.284 0.716
#> ERR978216 3 0.543 0.690 0 0.284 0.716
#> ERR978217 3 0.543 0.690 0 0.284 0.716
#> ERR978218 3 0.543 0.690 0 0.284 0.716
#> ERR978219 3 0.543 0.690 0 0.284 0.716
#> ERR978220 3 0.543 0.690 0 0.284 0.716
#> ERR978221 3 0.543 0.690 0 0.284 0.716
#> ERR978222 3 0.543 0.690 0 0.284 0.716
#> ERR978223 3 0.543 0.690 0 0.284 0.716
#> ERR978224 3 0.543 0.690 0 0.284 0.716
#> ERR978225 3 0.543 0.690 0 0.284 0.716
#> ERR978226 3 0.543 0.690 0 0.284 0.716
#> ERR978227 1 0.000 1.000 1 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000
#> ERR978241 3 0.627 0.473 0 0.452 0.548
#> ERR978242 3 0.627 0.473 0 0.452 0.548
#> ERR978243 3 0.627 0.473 0 0.452 0.548
#> ERR978244 3 0.627 0.473 0 0.452 0.548
#> ERR978245 3 0.627 0.473 0 0.452 0.548
#> ERR978246 3 0.627 0.473 0 0.452 0.548
#> ERR978247 3 0.627 0.473 0 0.452 0.548
#> ERR978248 3 0.631 0.434 0 0.488 0.512
#> ERR978249 3 0.631 0.434 0 0.488 0.512
#> ERR978250 3 0.631 0.434 0 0.488 0.512
#> ERR978251 3 0.631 0.434 0 0.488 0.512
#> ERR978252 3 0.631 0.434 0 0.488 0.512
#> ERR978253 3 0.631 0.434 0 0.488 0.512
#> ERR978254 3 0.631 0.434 0 0.488 0.512
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978123 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978124 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978125 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978126 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978127 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978128 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978129 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978130 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978131 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978132 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978133 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978134 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978135 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978136 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978137 3 0.0707 0.982 0 0.000 0.980 0.020
#> ERR978138 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978139 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978140 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978141 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978142 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978143 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978144 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978145 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978146 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978147 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978148 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978149 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978150 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978151 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978152 4 0.4961 0.545 0 0.000 0.448 0.552
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.3688 0.545 0 0.000 0.208 0.792
#> ERR978170 4 0.3688 0.545 0 0.000 0.208 0.792
#> ERR978171 4 0.3649 0.550 0 0.000 0.204 0.796
#> ERR978172 4 0.3649 0.550 0 0.000 0.204 0.796
#> ERR978173 4 0.3649 0.550 0 0.000 0.204 0.796
#> ERR978174 4 0.3649 0.550 0 0.000 0.204 0.796
#> ERR978175 4 0.3688 0.545 0 0.000 0.208 0.792
#> ERR978176 4 0.2921 0.598 0 0.000 0.140 0.860
#> ERR978177 4 0.2921 0.598 0 0.000 0.140 0.860
#> ERR978178 4 0.2921 0.598 0 0.000 0.140 0.860
#> ERR978179 4 0.2921 0.598 0 0.000 0.140 0.860
#> ERR978180 4 0.2921 0.598 0 0.000 0.140 0.860
#> ERR978181 4 0.2921 0.598 0 0.000 0.140 0.860
#> ERR978182 4 0.2921 0.598 0 0.000 0.140 0.860
#> ERR978183 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978197 3 0.0000 0.980 0 0.000 1.000 0.000
#> ERR978198 3 0.0000 0.980 0 0.000 1.000 0.000
#> ERR978199 3 0.0000 0.980 0 0.000 1.000 0.000
#> ERR978200 3 0.0000 0.980 0 0.000 1.000 0.000
#> ERR978201 3 0.0000 0.980 0 0.000 1.000 0.000
#> ERR978202 3 0.0000 0.980 0 0.000 1.000 0.000
#> ERR978203 3 0.0000 0.980 0 0.000 1.000 0.000
#> ERR978204 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978205 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978206 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978207 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978208 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978209 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978210 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978211 3 0.0336 0.977 0 0.000 0.992 0.008
#> ERR978212 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978213 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978214 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978215 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978216 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978217 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978218 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978219 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978220 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978221 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978222 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978223 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978224 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978225 4 0.4933 0.542 0 0.000 0.432 0.568
#> ERR978226 4 0.4967 0.541 0 0.000 0.452 0.548
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.2216 0.614 0 0.000 0.092 0.908
#> ERR978242 4 0.2216 0.614 0 0.000 0.092 0.908
#> ERR978243 4 0.2216 0.614 0 0.000 0.092 0.908
#> ERR978244 4 0.2216 0.614 0 0.000 0.092 0.908
#> ERR978245 4 0.2216 0.614 0 0.000 0.092 0.908
#> ERR978246 4 0.2216 0.614 0 0.000 0.092 0.908
#> ERR978247 4 0.2216 0.614 0 0.000 0.092 0.908
#> ERR978248 4 0.5160 0.589 0 0.136 0.104 0.760
#> ERR978249 4 0.5160 0.589 0 0.136 0.104 0.760
#> ERR978250 4 0.5160 0.589 0 0.136 0.104 0.760
#> ERR978251 4 0.5160 0.589 0 0.136 0.104 0.760
#> ERR978252 4 0.5160 0.589 0 0.136 0.104 0.760
#> ERR978253 4 0.5160 0.589 0 0.136 0.104 0.760
#> ERR978254 4 0.5160 0.589 0 0.136 0.104 0.760
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978123 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978124 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978125 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978126 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978127 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978128 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978129 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978130 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978131 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978132 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978133 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978134 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978135 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978136 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978137 3 0.4801 0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978138 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978139 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978140 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978141 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978142 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978143 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978144 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978145 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978146 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978147 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978148 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978149 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978150 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978151 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978152 4 0.6028 0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978153 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978154 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978155 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978156 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978157 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978158 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978159 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978160 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978161 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978162 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978163 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978164 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978165 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978166 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978167 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978168 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978169 4 0.4126 0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978170 4 0.4126 0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978171 4 0.4126 0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978172 4 0.4126 0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978173 4 0.4126 0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978174 4 0.4126 0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978175 4 0.4126 0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978176 4 0.2462 0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978177 4 0.2462 0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978178 4 0.2462 0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978179 4 0.2462 0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978180 4 0.2462 0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978181 4 0.2462 0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978182 4 0.2462 0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978183 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978184 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978185 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978186 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978187 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978188 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978189 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978190 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978191 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978192 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978193 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978194 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978195 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978196 2 0.0162 0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978197 3 0.1121 0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978198 3 0.1121 0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978199 3 0.1121 0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978200 3 0.1121 0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978201 3 0.1121 0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978202 3 0.1121 0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978203 3 0.1121 0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978204 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978205 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978206 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978207 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978208 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978209 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978210 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978211 3 0.1341 0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978212 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978213 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978214 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978215 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978216 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978217 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978218 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978219 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978220 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978221 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978222 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978223 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978224 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978225 5 0.4464 0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978226 5 0.6055 0.823 0.000 0.000 0.408 0.120 0.472
#> ERR978227 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978228 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978229 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978230 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978231 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978232 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978233 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978234 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978235 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978236 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978237 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978238 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978239 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978240 1 0.4101 1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978241 4 0.2411 0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978242 4 0.2411 0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978243 4 0.2411 0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978244 4 0.2411 0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978245 4 0.2411 0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978246 4 0.2411 0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978247 4 0.2411 0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978248 4 0.5405 0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978249 4 0.5405 0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978250 4 0.5405 0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978251 4 0.5405 0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978252 4 0.5405 0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978253 4 0.5405 0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978254 4 0.5405 0.491 0.000 0.136 0.016 0.700 0.148
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.788 0 1.000 0.000 0.000 0.000 0.000
#> ERR978123 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978124 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978125 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978126 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978127 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978128 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978129 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978130 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978131 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978132 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978133 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978134 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978135 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978136 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978137 3 0.4473 0.649 0 0.000 0.584 0.000 0.036 0.380
#> ERR978138 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978139 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978140 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978141 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978142 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978143 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978144 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978145 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978146 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978147 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978148 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978149 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978150 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978151 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978152 6 0.0865 0.746 0 0.000 0.000 0.000 0.036 0.964
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.5368 0.608 0 0.000 0.400 0.488 0.000 0.112
#> ERR978170 4 0.5368 0.608 0 0.000 0.400 0.488 0.000 0.112
#> ERR978171 4 0.5368 0.608 0 0.000 0.400 0.488 0.000 0.112
#> ERR978172 4 0.5368 0.608 0 0.000 0.400 0.488 0.000 0.112
#> ERR978173 4 0.5368 0.608 0 0.000 0.400 0.488 0.000 0.112
#> ERR978174 4 0.5368 0.608 0 0.000 0.400 0.488 0.000 0.112
#> ERR978175 4 0.5368 0.608 0 0.000 0.400 0.488 0.000 0.112
#> ERR978176 4 0.5576 0.792 0 0.000 0.116 0.512 0.008 0.364
#> ERR978177 4 0.5576 0.792 0 0.000 0.116 0.512 0.008 0.364
#> ERR978178 4 0.5576 0.792 0 0.000 0.116 0.512 0.008 0.364
#> ERR978179 4 0.5576 0.792 0 0.000 0.116 0.512 0.008 0.364
#> ERR978180 4 0.5576 0.792 0 0.000 0.116 0.512 0.008 0.364
#> ERR978181 4 0.5576 0.792 0 0.000 0.116 0.512 0.008 0.364
#> ERR978182 4 0.5576 0.792 0 0.000 0.116 0.512 0.008 0.364
#> ERR978183 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978184 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978185 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978186 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978187 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978188 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978189 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978190 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978191 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978192 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978193 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978194 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978195 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978196 2 0.3867 0.752 0 0.512 0.000 0.488 0.000 0.000
#> ERR978197 3 0.4919 0.578 0 0.000 0.536 0.012 0.412 0.040
#> ERR978198 3 0.4919 0.578 0 0.000 0.536 0.012 0.412 0.040
#> ERR978199 3 0.4919 0.578 0 0.000 0.536 0.012 0.412 0.040
#> ERR978200 3 0.4919 0.578 0 0.000 0.536 0.012 0.412 0.040
#> ERR978201 3 0.4919 0.578 0 0.000 0.536 0.012 0.412 0.040
#> ERR978202 3 0.4919 0.578 0 0.000 0.536 0.012 0.412 0.040
#> ERR978203 3 0.4919 0.578 0 0.000 0.536 0.012 0.412 0.040
#> ERR978204 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978205 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978206 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978207 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978208 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978209 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978210 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978211 3 0.5499 0.563 0 0.000 0.500 0.036 0.412 0.052
#> ERR978212 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978213 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978214 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978215 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978216 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978217 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978218 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978219 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978220 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978221 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978222 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978223 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978224 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978225 5 0.0146 0.991 0 0.000 0.000 0.000 0.996 0.004
#> ERR978226 5 0.1714 0.863 0 0.000 0.000 0.000 0.908 0.092
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978241 4 0.5334 0.790 0 0.000 0.112 0.512 0.000 0.376
#> ERR978242 4 0.5334 0.790 0 0.000 0.112 0.512 0.000 0.376
#> ERR978243 4 0.5334 0.790 0 0.000 0.112 0.512 0.000 0.376
#> ERR978244 4 0.5334 0.790 0 0.000 0.112 0.512 0.000 0.376
#> ERR978245 4 0.5334 0.790 0 0.000 0.112 0.512 0.000 0.376
#> ERR978246 4 0.5334 0.790 0 0.000 0.112 0.512 0.000 0.376
#> ERR978247 4 0.5334 0.790 0 0.000 0.112 0.512 0.000 0.376
#> ERR978248 6 0.5585 0.456 0 0.000 0.416 0.000 0.140 0.444
#> ERR978249 6 0.5585 0.456 0 0.000 0.416 0.000 0.140 0.444
#> ERR978250 6 0.5585 0.456 0 0.000 0.416 0.000 0.140 0.444
#> ERR978251 6 0.5585 0.456 0 0.000 0.416 0.000 0.140 0.444
#> ERR978252 6 0.5585 0.456 0 0.000 0.416 0.000 0.140 0.444
#> ERR978253 6 0.5585 0.456 0 0.000 0.416 0.000 0.140 0.444
#> ERR978254 6 0.5585 0.456 0 0.000 0.416 0.000 0.140 0.444
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 1.000 0.962 0.984 0.7780 0.757 0.640
#> 4 4 0.769 0.833 0.873 0.2560 0.846 0.642
#> 5 5 1.000 1.000 1.000 0.1061 0.917 0.702
#> 6 6 0.964 0.942 0.947 0.0199 0.986 0.931
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5
There is also optional best \(k\) = 2 3 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 1.000 0 1.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000
#> ERR978123 3 0.000 0.972 0 0.000 1.000
#> ERR978124 3 0.000 0.972 0 0.000 1.000
#> ERR978125 3 0.000 0.972 0 0.000 1.000
#> ERR978126 3 0.000 0.972 0 0.000 1.000
#> ERR978127 3 0.000 0.972 0 0.000 1.000
#> ERR978128 3 0.000 0.972 0 0.000 1.000
#> ERR978129 3 0.000 0.972 0 0.000 1.000
#> ERR978130 3 0.000 0.972 0 0.000 1.000
#> ERR978131 3 0.000 0.972 0 0.000 1.000
#> ERR978132 3 0.000 0.972 0 0.000 1.000
#> ERR978133 3 0.000 0.972 0 0.000 1.000
#> ERR978134 3 0.000 0.972 0 0.000 1.000
#> ERR978135 3 0.000 0.972 0 0.000 1.000
#> ERR978136 3 0.000 0.972 0 0.000 1.000
#> ERR978137 3 0.000 0.972 0 0.000 1.000
#> ERR978138 3 0.000 0.972 0 0.000 1.000
#> ERR978139 3 0.000 0.972 0 0.000 1.000
#> ERR978140 3 0.000 0.972 0 0.000 1.000
#> ERR978141 3 0.000 0.972 0 0.000 1.000
#> ERR978142 3 0.000 0.972 0 0.000 1.000
#> ERR978143 3 0.000 0.972 0 0.000 1.000
#> ERR978144 3 0.000 0.972 0 0.000 1.000
#> ERR978145 3 0.000 0.972 0 0.000 1.000
#> ERR978146 3 0.000 0.972 0 0.000 1.000
#> ERR978147 3 0.000 0.972 0 0.000 1.000
#> ERR978148 3 0.000 0.972 0 0.000 1.000
#> ERR978149 3 0.000 0.972 0 0.000 1.000
#> ERR978150 3 0.000 0.972 0 0.000 1.000
#> ERR978151 3 0.000 0.972 0 0.000 1.000
#> ERR978152 3 0.000 0.972 0 0.000 1.000
#> ERR978153 1 0.000 1.000 1 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000
#> ERR978169 3 0.000 0.972 0 0.000 1.000
#> ERR978170 3 0.000 0.972 0 0.000 1.000
#> ERR978171 3 0.000 0.972 0 0.000 1.000
#> ERR978172 3 0.000 0.972 0 0.000 1.000
#> ERR978173 3 0.000 0.972 0 0.000 1.000
#> ERR978174 3 0.000 0.972 0 0.000 1.000
#> ERR978175 3 0.000 0.972 0 0.000 1.000
#> ERR978176 3 0.000 0.972 0 0.000 1.000
#> ERR978177 3 0.000 0.972 0 0.000 1.000
#> ERR978178 3 0.000 0.972 0 0.000 1.000
#> ERR978179 3 0.000 0.972 0 0.000 1.000
#> ERR978180 3 0.000 0.972 0 0.000 1.000
#> ERR978181 3 0.000 0.972 0 0.000 1.000
#> ERR978182 3 0.000 0.972 0 0.000 1.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000
#> ERR978197 3 0.000 0.972 0 0.000 1.000
#> ERR978198 3 0.000 0.972 0 0.000 1.000
#> ERR978199 3 0.000 0.972 0 0.000 1.000
#> ERR978200 3 0.000 0.972 0 0.000 1.000
#> ERR978201 3 0.000 0.972 0 0.000 1.000
#> ERR978202 3 0.000 0.972 0 0.000 1.000
#> ERR978203 3 0.000 0.972 0 0.000 1.000
#> ERR978204 3 0.000 0.972 0 0.000 1.000
#> ERR978205 3 0.000 0.972 0 0.000 1.000
#> ERR978206 3 0.000 0.972 0 0.000 1.000
#> ERR978207 3 0.000 0.972 0 0.000 1.000
#> ERR978208 3 0.000 0.972 0 0.000 1.000
#> ERR978209 3 0.000 0.972 0 0.000 1.000
#> ERR978210 3 0.000 0.972 0 0.000 1.000
#> ERR978211 3 0.000 0.972 0 0.000 1.000
#> ERR978212 3 0.000 0.972 0 0.000 1.000
#> ERR978213 3 0.000 0.972 0 0.000 1.000
#> ERR978214 3 0.000 0.972 0 0.000 1.000
#> ERR978215 3 0.000 0.972 0 0.000 1.000
#> ERR978216 3 0.000 0.972 0 0.000 1.000
#> ERR978217 3 0.000 0.972 0 0.000 1.000
#> ERR978218 3 0.000 0.972 0 0.000 1.000
#> ERR978219 3 0.000 0.972 0 0.000 1.000
#> ERR978220 3 0.000 0.972 0 0.000 1.000
#> ERR978221 3 0.000 0.972 0 0.000 1.000
#> ERR978222 3 0.000 0.972 0 0.000 1.000
#> ERR978223 3 0.000 0.972 0 0.000 1.000
#> ERR978224 3 0.000 0.972 0 0.000 1.000
#> ERR978225 3 0.000 0.972 0 0.000 1.000
#> ERR978226 3 0.000 0.972 0 0.000 1.000
#> ERR978227 1 0.000 1.000 1 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000
#> ERR978241 3 0.000 0.972 0 0.000 1.000
#> ERR978242 3 0.000 0.972 0 0.000 1.000
#> ERR978243 3 0.000 0.972 0 0.000 1.000
#> ERR978244 3 0.000 0.972 0 0.000 1.000
#> ERR978245 3 0.000 0.972 0 0.000 1.000
#> ERR978246 3 0.000 0.972 0 0.000 1.000
#> ERR978247 3 0.000 0.972 0 0.000 1.000
#> ERR978248 3 0.617 0.348 0 0.412 0.588
#> ERR978249 3 0.579 0.534 0 0.332 0.668
#> ERR978250 3 0.579 0.534 0 0.332 0.668
#> ERR978251 3 0.543 0.621 0 0.284 0.716
#> ERR978252 3 0.562 0.580 0 0.308 0.692
#> ERR978253 3 0.581 0.526 0 0.336 0.664
#> ERR978254 3 0.603 0.439 0 0.376 0.624
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978123 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978124 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978125 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978126 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978127 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978128 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978129 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978130 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978131 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978132 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978133 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978134 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978135 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978136 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978137 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978138 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978139 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978140 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978141 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978142 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978143 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978144 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978145 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978146 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978147 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978148 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978149 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978150 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978151 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978152 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978170 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978171 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978172 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978173 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978174 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978175 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978176 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978177 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978178 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978179 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978180 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978181 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978182 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978183 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1.000 0.000 0.000
#> ERR978197 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978198 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978199 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978200 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978201 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978202 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978203 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978204 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978205 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978206 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978207 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978208 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978209 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978210 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978211 3 0.0000 0.677 0 0.000 1.000 0.000
#> ERR978212 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978213 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978214 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978215 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978216 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978217 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978218 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978219 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978220 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978221 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978222 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978223 3 0.5000 0.606 0 0.000 0.504 0.496
#> ERR978224 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978225 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978226 3 0.4999 0.610 0 0.000 0.508 0.492
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978242 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978243 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978244 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978245 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978246 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978247 4 0.3569 0.925 0 0.000 0.196 0.804
#> ERR978248 4 0.1661 0.749 0 0.052 0.004 0.944
#> ERR978249 4 0.1209 0.766 0 0.032 0.004 0.964
#> ERR978250 4 0.1488 0.775 0 0.032 0.012 0.956
#> ERR978251 4 0.1042 0.765 0 0.020 0.008 0.972
#> ERR978252 4 0.1820 0.784 0 0.036 0.020 0.944
#> ERR978253 4 0.0927 0.763 0 0.016 0.008 0.976
#> ERR978254 4 0.1452 0.766 0 0.036 0.008 0.956
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978108 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978109 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978110 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978111 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978112 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978113 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978114 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978115 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978116 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978117 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978118 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978119 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978120 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978121 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978122 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978123 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978124 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978125 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978126 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978127 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978128 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978129 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978130 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978131 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978132 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978133 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978134 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978135 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978136 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978137 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978138 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978139 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978140 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978141 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978142 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978143 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978144 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978145 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978146 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978147 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978148 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978149 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978150 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978151 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978152 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978153 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978154 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978155 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978156 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978157 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978158 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978159 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978160 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978161 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978162 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978163 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978164 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978165 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978166 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978167 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978168 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978169 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978170 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978171 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978172 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978173 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978174 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978175 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978176 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978177 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978178 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978179 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978180 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978181 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978182 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978183 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978184 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978185 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978186 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978187 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978188 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978189 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978190 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978191 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978192 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978193 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978194 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978195 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978196 2 0.0000 1.000 0 1.000 0 0.000 0
#> ERR978197 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978198 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978199 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978200 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978201 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978202 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978203 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978204 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978205 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978206 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978207 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978208 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978209 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978210 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978211 3 0.0000 1.000 0 0.000 1 0.000 0
#> ERR978212 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978213 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978214 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978215 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978216 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978217 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978218 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978219 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978220 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978221 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978222 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978223 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978224 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978225 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978226 5 0.0000 1.000 0 0.000 0 0.000 1
#> ERR978227 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978228 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978229 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978230 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978231 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978232 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978233 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978234 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978235 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978236 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978237 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978238 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978239 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978240 1 0.0000 1.000 1 0.000 0 0.000 0
#> ERR978241 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978242 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978243 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978244 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978245 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978246 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978247 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978248 4 0.0162 0.996 0 0.004 0 0.996 0
#> ERR978249 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978250 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978251 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978252 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978253 4 0.0000 1.000 0 0.000 0 1.000 0
#> ERR978254 4 0.0162 0.996 0 0.004 0 0.996 0
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978123 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978124 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978125 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978126 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978127 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978128 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978129 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978130 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978131 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978132 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978133 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978134 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978135 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978136 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978137 3 0.0146 0.998 0 0 0.996 0.000 0.000 0.004
#> ERR978138 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978139 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978140 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978141 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978142 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978143 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978144 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978145 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978146 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978147 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978148 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978149 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978150 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978151 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978152 5 0.1765 0.916 0 0 0.000 0.000 0.904 0.096
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978170 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978171 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978172 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978173 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978174 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978175 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978176 4 0.3428 0.555 0 0 0.000 0.696 0.000 0.304
#> ERR978177 4 0.3428 0.555 0 0 0.000 0.696 0.000 0.304
#> ERR978178 4 0.3428 0.555 0 0 0.000 0.696 0.000 0.304
#> ERR978179 4 0.3428 0.555 0 0 0.000 0.696 0.000 0.304
#> ERR978180 4 0.3428 0.555 0 0 0.000 0.696 0.000 0.304
#> ERR978181 4 0.3428 0.555 0 0 0.000 0.696 0.000 0.304
#> ERR978182 4 0.3428 0.555 0 0 0.000 0.696 0.000 0.304
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978197 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978198 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978199 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978200 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978201 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978202 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978203 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978204 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978205 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978206 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978207 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978208 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978209 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978210 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978211 3 0.0000 0.998 0 0 1.000 0.000 0.000 0.000
#> ERR978212 5 0.2454 0.845 0 0 0.000 0.000 0.840 0.160
#> ERR978213 5 0.2219 0.863 0 0 0.000 0.000 0.864 0.136
#> ERR978214 5 0.1663 0.889 0 0 0.000 0.000 0.912 0.088
#> ERR978215 5 0.1501 0.894 0 0 0.000 0.000 0.924 0.076
#> ERR978216 5 0.2048 0.873 0 0 0.000 0.000 0.880 0.120
#> ERR978217 5 0.2340 0.854 0 0 0.000 0.000 0.852 0.148
#> ERR978218 5 0.2854 0.800 0 0 0.000 0.000 0.792 0.208
#> ERR978219 5 0.1556 0.890 0 0 0.000 0.000 0.920 0.080
#> ERR978220 5 0.1007 0.902 0 0 0.000 0.000 0.956 0.044
#> ERR978221 5 0.0713 0.906 0 0 0.000 0.000 0.972 0.028
#> ERR978222 5 0.0713 0.906 0 0 0.000 0.000 0.972 0.028
#> ERR978223 5 0.0790 0.905 0 0 0.000 0.000 0.968 0.032
#> ERR978224 5 0.0865 0.904 0 0 0.000 0.000 0.964 0.036
#> ERR978225 5 0.1610 0.889 0 0 0.000 0.000 0.916 0.084
#> ERR978226 5 0.2562 0.822 0 0 0.000 0.000 0.828 0.172
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978242 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978243 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978244 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978245 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978246 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978247 4 0.0000 0.844 0 0 0.000 1.000 0.000 0.000
#> ERR978248 6 0.2854 0.979 0 0 0.000 0.208 0.000 0.792
#> ERR978249 6 0.2941 0.988 0 0 0.000 0.220 0.000 0.780
#> ERR978250 6 0.2969 0.986 0 0 0.000 0.224 0.000 0.776
#> ERR978251 6 0.3023 0.976 0 0 0.000 0.232 0.000 0.768
#> ERR978252 6 0.2969 0.986 0 0 0.000 0.224 0.000 0.776
#> ERR978253 6 0.2912 0.987 0 0 0.000 0.216 0.000 0.784
#> ERR978254 6 0.2883 0.984 0 0 0.000 0.212 0.000 0.788
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.259 0.815 0.791 0.3890 0.515 0.515
#> 3 3 0.419 0.887 0.836 0.5479 0.840 0.689
#> 4 4 0.765 0.853 0.864 0.1776 0.943 0.840
#> 5 5 0.841 0.888 0.903 0.1103 0.917 0.722
#> 6 6 0.899 0.904 0.926 0.0438 0.961 0.821
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.7299 0.991 0.204 0.796
#> ERR978108 2 0.7299 0.991 0.204 0.796
#> ERR978109 2 0.7299 0.991 0.204 0.796
#> ERR978110 2 0.7299 0.991 0.204 0.796
#> ERR978111 2 0.7299 0.991 0.204 0.796
#> ERR978112 2 0.7299 0.991 0.204 0.796
#> ERR978113 2 0.7299 0.991 0.204 0.796
#> ERR978114 2 0.7299 0.991 0.204 0.796
#> ERR978115 2 0.7299 0.991 0.204 0.796
#> ERR978116 2 0.7299 0.991 0.204 0.796
#> ERR978117 2 0.7299 0.991 0.204 0.796
#> ERR978118 2 0.7299 0.991 0.204 0.796
#> ERR978119 2 0.7299 0.991 0.204 0.796
#> ERR978120 2 0.7299 0.991 0.204 0.796
#> ERR978121 2 0.7299 0.991 0.204 0.796
#> ERR978122 2 0.7299 0.991 0.204 0.796
#> ERR978123 1 0.8555 0.709 0.720 0.280
#> ERR978124 1 0.8555 0.709 0.720 0.280
#> ERR978125 1 0.8555 0.709 0.720 0.280
#> ERR978126 1 0.8555 0.709 0.720 0.280
#> ERR978127 1 0.8555 0.709 0.720 0.280
#> ERR978128 1 0.8555 0.709 0.720 0.280
#> ERR978129 1 0.8555 0.709 0.720 0.280
#> ERR978130 1 0.8555 0.709 0.720 0.280
#> ERR978131 1 0.8555 0.709 0.720 0.280
#> ERR978132 1 0.8555 0.709 0.720 0.280
#> ERR978133 1 0.8555 0.709 0.720 0.280
#> ERR978134 1 0.8555 0.709 0.720 0.280
#> ERR978135 1 0.8555 0.709 0.720 0.280
#> ERR978136 1 0.8555 0.709 0.720 0.280
#> ERR978137 1 0.8555 0.709 0.720 0.280
#> ERR978138 1 0.8555 0.709 0.720 0.280
#> ERR978139 1 0.8555 0.709 0.720 0.280
#> ERR978140 1 0.8555 0.709 0.720 0.280
#> ERR978141 1 0.8555 0.709 0.720 0.280
#> ERR978142 1 0.8555 0.709 0.720 0.280
#> ERR978143 1 0.8555 0.709 0.720 0.280
#> ERR978144 1 0.8555 0.709 0.720 0.280
#> ERR978145 1 0.8555 0.709 0.720 0.280
#> ERR978146 1 0.8555 0.709 0.720 0.280
#> ERR978147 1 0.8555 0.709 0.720 0.280
#> ERR978148 1 0.8555 0.709 0.720 0.280
#> ERR978149 1 0.8555 0.709 0.720 0.280
#> ERR978150 1 0.8555 0.709 0.720 0.280
#> ERR978151 1 0.8555 0.709 0.720 0.280
#> ERR978152 1 0.8555 0.709 0.720 0.280
#> ERR978153 1 0.0672 0.732 0.992 0.008
#> ERR978154 1 0.0672 0.732 0.992 0.008
#> ERR978155 1 0.0672 0.732 0.992 0.008
#> ERR978156 1 0.0672 0.732 0.992 0.008
#> ERR978157 1 0.0672 0.732 0.992 0.008
#> ERR978158 1 0.0672 0.732 0.992 0.008
#> ERR978159 1 0.0672 0.732 0.992 0.008
#> ERR978160 1 0.0672 0.732 0.992 0.008
#> ERR978161 1 0.0672 0.732 0.992 0.008
#> ERR978162 1 0.0672 0.732 0.992 0.008
#> ERR978163 1 0.0672 0.732 0.992 0.008
#> ERR978164 1 0.0672 0.732 0.992 0.008
#> ERR978165 1 0.0672 0.732 0.992 0.008
#> ERR978166 1 0.0672 0.732 0.992 0.008
#> ERR978167 1 0.0672 0.732 0.992 0.008
#> ERR978168 1 0.0672 0.732 0.992 0.008
#> ERR978169 1 0.9608 0.652 0.616 0.384
#> ERR978170 1 0.9608 0.652 0.616 0.384
#> ERR978171 1 0.9608 0.652 0.616 0.384
#> ERR978172 1 0.9608 0.652 0.616 0.384
#> ERR978173 1 0.9608 0.652 0.616 0.384
#> ERR978174 1 0.9608 0.652 0.616 0.384
#> ERR978175 1 0.9608 0.652 0.616 0.384
#> ERR978176 1 0.9608 0.652 0.616 0.384
#> ERR978177 1 0.9608 0.652 0.616 0.384
#> ERR978178 1 0.9608 0.652 0.616 0.384
#> ERR978179 1 0.9608 0.652 0.616 0.384
#> ERR978180 1 0.9608 0.652 0.616 0.384
#> ERR978181 1 0.9608 0.652 0.616 0.384
#> ERR978182 1 0.9608 0.652 0.616 0.384
#> ERR978183 2 0.7299 0.991 0.204 0.796
#> ERR978184 2 0.7299 0.991 0.204 0.796
#> ERR978185 2 0.7299 0.991 0.204 0.796
#> ERR978186 2 0.7299 0.991 0.204 0.796
#> ERR978187 2 0.7299 0.991 0.204 0.796
#> ERR978188 2 0.7299 0.991 0.204 0.796
#> ERR978189 2 0.7299 0.991 0.204 0.796
#> ERR978190 2 0.7299 0.991 0.204 0.796
#> ERR978191 2 0.7299 0.991 0.204 0.796
#> ERR978192 2 0.7299 0.991 0.204 0.796
#> ERR978193 2 0.7299 0.991 0.204 0.796
#> ERR978194 2 0.7299 0.991 0.204 0.796
#> ERR978195 2 0.7299 0.991 0.204 0.796
#> ERR978196 2 0.7299 0.991 0.204 0.796
#> ERR978197 2 0.7674 0.972 0.224 0.776
#> ERR978198 2 0.7674 0.972 0.224 0.776
#> ERR978199 2 0.7674 0.972 0.224 0.776
#> ERR978200 2 0.7674 0.972 0.224 0.776
#> ERR978201 2 0.7674 0.972 0.224 0.776
#> ERR978202 2 0.7674 0.972 0.224 0.776
#> ERR978203 2 0.7674 0.972 0.224 0.776
#> ERR978204 2 0.7674 0.972 0.224 0.776
#> ERR978205 2 0.7674 0.972 0.224 0.776
#> ERR978206 2 0.7674 0.972 0.224 0.776
#> ERR978207 2 0.7674 0.972 0.224 0.776
#> ERR978208 2 0.7674 0.972 0.224 0.776
#> ERR978209 2 0.7674 0.972 0.224 0.776
#> ERR978210 2 0.7674 0.972 0.224 0.776
#> ERR978211 2 0.7674 0.972 0.224 0.776
#> ERR978212 2 0.7299 0.991 0.204 0.796
#> ERR978213 2 0.7299 0.991 0.204 0.796
#> ERR978214 2 0.7299 0.991 0.204 0.796
#> ERR978215 2 0.7299 0.991 0.204 0.796
#> ERR978216 2 0.7299 0.991 0.204 0.796
#> ERR978217 2 0.7299 0.991 0.204 0.796
#> ERR978218 2 0.7299 0.991 0.204 0.796
#> ERR978219 2 0.7299 0.991 0.204 0.796
#> ERR978220 2 0.7299 0.991 0.204 0.796
#> ERR978221 2 0.7299 0.991 0.204 0.796
#> ERR978222 2 0.7299 0.991 0.204 0.796
#> ERR978223 2 0.7299 0.991 0.204 0.796
#> ERR978224 2 0.7299 0.991 0.204 0.796
#> ERR978225 2 0.7299 0.991 0.204 0.796
#> ERR978226 2 0.7299 0.991 0.204 0.796
#> ERR978227 1 0.0672 0.732 0.992 0.008
#> ERR978228 1 0.0672 0.732 0.992 0.008
#> ERR978229 1 0.0672 0.732 0.992 0.008
#> ERR978230 1 0.0672 0.732 0.992 0.008
#> ERR978231 1 0.0672 0.732 0.992 0.008
#> ERR978232 1 0.0672 0.732 0.992 0.008
#> ERR978233 1 0.0672 0.732 0.992 0.008
#> ERR978234 1 0.0672 0.732 0.992 0.008
#> ERR978235 1 0.0672 0.732 0.992 0.008
#> ERR978236 1 0.0672 0.732 0.992 0.008
#> ERR978237 1 0.0672 0.732 0.992 0.008
#> ERR978238 1 0.0672 0.732 0.992 0.008
#> ERR978239 1 0.0672 0.732 0.992 0.008
#> ERR978240 1 0.0672 0.732 0.992 0.008
#> ERR978241 1 0.8955 0.650 0.688 0.312
#> ERR978242 1 0.8955 0.650 0.688 0.312
#> ERR978243 1 0.8955 0.650 0.688 0.312
#> ERR978244 1 0.8955 0.650 0.688 0.312
#> ERR978245 1 0.8955 0.650 0.688 0.312
#> ERR978246 1 0.8955 0.650 0.688 0.312
#> ERR978247 1 0.8955 0.650 0.688 0.312
#> ERR978248 1 0.8955 0.650 0.688 0.312
#> ERR978249 1 0.8955 0.650 0.688 0.312
#> ERR978250 1 0.8955 0.650 0.688 0.312
#> ERR978251 1 0.8955 0.650 0.688 0.312
#> ERR978252 1 0.8955 0.650 0.688 0.312
#> ERR978253 1 0.8955 0.650 0.688 0.312
#> ERR978254 1 0.8955 0.650 0.688 0.312
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 0.913 0.000 1.000 0.000
#> ERR978108 2 0.000 0.913 0.000 1.000 0.000
#> ERR978109 2 0.000 0.913 0.000 1.000 0.000
#> ERR978110 2 0.000 0.913 0.000 1.000 0.000
#> ERR978111 2 0.000 0.913 0.000 1.000 0.000
#> ERR978112 2 0.000 0.913 0.000 1.000 0.000
#> ERR978113 2 0.000 0.913 0.000 1.000 0.000
#> ERR978114 2 0.000 0.913 0.000 1.000 0.000
#> ERR978115 2 0.000 0.913 0.000 1.000 0.000
#> ERR978116 2 0.000 0.913 0.000 1.000 0.000
#> ERR978117 2 0.000 0.913 0.000 1.000 0.000
#> ERR978118 2 0.000 0.913 0.000 1.000 0.000
#> ERR978119 2 0.000 0.913 0.000 1.000 0.000
#> ERR978120 2 0.000 0.913 0.000 1.000 0.000
#> ERR978121 2 0.000 0.913 0.000 1.000 0.000
#> ERR978122 2 0.000 0.913 0.000 1.000 0.000
#> ERR978123 3 0.811 0.863 0.212 0.144 0.644
#> ERR978124 3 0.811 0.863 0.212 0.144 0.644
#> ERR978125 3 0.811 0.863 0.212 0.144 0.644
#> ERR978126 3 0.811 0.863 0.212 0.144 0.644
#> ERR978127 3 0.811 0.863 0.212 0.144 0.644
#> ERR978128 3 0.811 0.863 0.212 0.144 0.644
#> ERR978129 3 0.811 0.863 0.212 0.144 0.644
#> ERR978130 3 0.811 0.863 0.212 0.144 0.644
#> ERR978131 3 0.811 0.863 0.212 0.144 0.644
#> ERR978132 3 0.811 0.863 0.212 0.144 0.644
#> ERR978133 3 0.811 0.863 0.212 0.144 0.644
#> ERR978134 3 0.811 0.863 0.212 0.144 0.644
#> ERR978135 3 0.811 0.863 0.212 0.144 0.644
#> ERR978136 3 0.811 0.863 0.212 0.144 0.644
#> ERR978137 3 0.811 0.863 0.212 0.144 0.644
#> ERR978138 3 0.817 0.862 0.212 0.148 0.640
#> ERR978139 3 0.817 0.862 0.212 0.148 0.640
#> ERR978140 3 0.817 0.862 0.212 0.148 0.640
#> ERR978141 3 0.817 0.862 0.212 0.148 0.640
#> ERR978142 3 0.817 0.862 0.212 0.148 0.640
#> ERR978143 3 0.817 0.862 0.212 0.148 0.640
#> ERR978144 3 0.817 0.862 0.212 0.148 0.640
#> ERR978145 3 0.817 0.862 0.212 0.148 0.640
#> ERR978146 3 0.817 0.862 0.212 0.148 0.640
#> ERR978147 3 0.817 0.862 0.212 0.148 0.640
#> ERR978148 3 0.817 0.862 0.212 0.148 0.640
#> ERR978149 3 0.817 0.862 0.212 0.148 0.640
#> ERR978150 3 0.817 0.862 0.212 0.148 0.640
#> ERR978151 3 0.817 0.862 0.212 0.148 0.640
#> ERR978152 3 0.817 0.862 0.212 0.148 0.640
#> ERR978153 1 0.000 1.000 1.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1.000 0.000 0.000
#> ERR978169 3 0.000 0.696 0.000 0.000 1.000
#> ERR978170 3 0.000 0.696 0.000 0.000 1.000
#> ERR978171 3 0.000 0.696 0.000 0.000 1.000
#> ERR978172 3 0.000 0.696 0.000 0.000 1.000
#> ERR978173 3 0.000 0.696 0.000 0.000 1.000
#> ERR978174 3 0.000 0.696 0.000 0.000 1.000
#> ERR978175 3 0.000 0.696 0.000 0.000 1.000
#> ERR978176 3 0.000 0.696 0.000 0.000 1.000
#> ERR978177 3 0.000 0.696 0.000 0.000 1.000
#> ERR978178 3 0.000 0.696 0.000 0.000 1.000
#> ERR978179 3 0.000 0.696 0.000 0.000 1.000
#> ERR978180 3 0.000 0.696 0.000 0.000 1.000
#> ERR978181 3 0.000 0.696 0.000 0.000 1.000
#> ERR978182 3 0.000 0.696 0.000 0.000 1.000
#> ERR978183 2 0.000 0.913 0.000 1.000 0.000
#> ERR978184 2 0.000 0.913 0.000 1.000 0.000
#> ERR978185 2 0.000 0.913 0.000 1.000 0.000
#> ERR978186 2 0.000 0.913 0.000 1.000 0.000
#> ERR978187 2 0.000 0.913 0.000 1.000 0.000
#> ERR978188 2 0.000 0.913 0.000 1.000 0.000
#> ERR978189 2 0.000 0.913 0.000 1.000 0.000
#> ERR978190 2 0.000 0.913 0.000 1.000 0.000
#> ERR978191 2 0.000 0.913 0.000 1.000 0.000
#> ERR978192 2 0.000 0.913 0.000 1.000 0.000
#> ERR978193 2 0.000 0.913 0.000 1.000 0.000
#> ERR978194 2 0.000 0.913 0.000 1.000 0.000
#> ERR978195 2 0.000 0.913 0.000 1.000 0.000
#> ERR978196 2 0.000 0.913 0.000 1.000 0.000
#> ERR978197 2 0.388 0.879 0.000 0.848 0.152
#> ERR978198 2 0.388 0.879 0.000 0.848 0.152
#> ERR978199 2 0.388 0.879 0.000 0.848 0.152
#> ERR978200 2 0.388 0.879 0.000 0.848 0.152
#> ERR978201 2 0.388 0.879 0.000 0.848 0.152
#> ERR978202 2 0.388 0.879 0.000 0.848 0.152
#> ERR978203 2 0.388 0.879 0.000 0.848 0.152
#> ERR978204 2 0.388 0.879 0.000 0.848 0.152
#> ERR978205 2 0.388 0.879 0.000 0.848 0.152
#> ERR978206 2 0.388 0.879 0.000 0.848 0.152
#> ERR978207 2 0.388 0.879 0.000 0.848 0.152
#> ERR978208 2 0.388 0.879 0.000 0.848 0.152
#> ERR978209 2 0.388 0.879 0.000 0.848 0.152
#> ERR978210 2 0.388 0.879 0.000 0.848 0.152
#> ERR978211 2 0.388 0.879 0.000 0.848 0.152
#> ERR978212 2 0.327 0.903 0.000 0.884 0.116
#> ERR978213 2 0.327 0.903 0.000 0.884 0.116
#> ERR978214 2 0.327 0.903 0.000 0.884 0.116
#> ERR978215 2 0.327 0.903 0.000 0.884 0.116
#> ERR978216 2 0.327 0.903 0.000 0.884 0.116
#> ERR978217 2 0.327 0.903 0.000 0.884 0.116
#> ERR978218 2 0.327 0.903 0.000 0.884 0.116
#> ERR978219 2 0.327 0.903 0.000 0.884 0.116
#> ERR978220 2 0.327 0.903 0.000 0.884 0.116
#> ERR978221 2 0.327 0.903 0.000 0.884 0.116
#> ERR978222 2 0.327 0.903 0.000 0.884 0.116
#> ERR978223 2 0.327 0.903 0.000 0.884 0.116
#> ERR978224 2 0.327 0.903 0.000 0.884 0.116
#> ERR978225 2 0.327 0.903 0.000 0.884 0.116
#> ERR978226 2 0.327 0.903 0.000 0.884 0.116
#> ERR978227 1 0.000 1.000 1.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1.000 0.000 0.000
#> ERR978241 3 0.800 0.829 0.212 0.136 0.652
#> ERR978242 3 0.800 0.829 0.212 0.136 0.652
#> ERR978243 3 0.800 0.829 0.212 0.136 0.652
#> ERR978244 3 0.800 0.829 0.212 0.136 0.652
#> ERR978245 3 0.800 0.829 0.212 0.136 0.652
#> ERR978246 3 0.800 0.829 0.212 0.136 0.652
#> ERR978247 3 0.800 0.829 0.212 0.136 0.652
#> ERR978248 3 0.800 0.829 0.212 0.136 0.652
#> ERR978249 3 0.800 0.829 0.212 0.136 0.652
#> ERR978250 3 0.800 0.829 0.212 0.136 0.652
#> ERR978251 3 0.800 0.829 0.212 0.136 0.652
#> ERR978252 3 0.800 0.829 0.212 0.136 0.652
#> ERR978253 3 0.800 0.829 0.212 0.136 0.652
#> ERR978254 3 0.800 0.829 0.212 0.136 0.652
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978123 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978124 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978125 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978126 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978127 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978128 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978129 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978130 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978131 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978132 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978133 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978134 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978135 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978136 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978137 3 0.0000 0.876 0 0.000 1.000 0.000
#> ERR978138 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978139 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978140 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978141 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978142 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978143 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978144 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978145 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978146 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978147 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978148 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978149 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978150 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978151 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978152 3 0.0188 0.876 0 0.004 0.996 0.000
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.1867 0.997 0 0.000 0.072 0.928
#> ERR978170 4 0.1867 0.997 0 0.000 0.072 0.928
#> ERR978171 4 0.1867 0.997 0 0.000 0.072 0.928
#> ERR978172 4 0.1867 0.997 0 0.000 0.072 0.928
#> ERR978173 4 0.1867 0.997 0 0.000 0.072 0.928
#> ERR978174 4 0.1867 0.997 0 0.000 0.072 0.928
#> ERR978175 4 0.1867 0.997 0 0.000 0.072 0.928
#> ERR978176 4 0.1940 0.997 0 0.000 0.076 0.924
#> ERR978177 4 0.1940 0.997 0 0.000 0.076 0.924
#> ERR978178 4 0.1940 0.997 0 0.000 0.076 0.924
#> ERR978179 4 0.1940 0.997 0 0.000 0.076 0.924
#> ERR978180 4 0.1940 0.997 0 0.000 0.076 0.924
#> ERR978181 4 0.1940 0.997 0 0.000 0.076 0.924
#> ERR978182 4 0.1940 0.997 0 0.000 0.076 0.924
#> ERR978183 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 0.793 0 1.000 0.000 0.000
#> ERR978197 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978198 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978199 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978200 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978201 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978202 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978203 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978204 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978205 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978206 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978207 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978208 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978209 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978210 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978211 2 0.6058 0.750 0 0.632 0.296 0.072
#> ERR978212 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978213 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978214 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978215 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978216 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978217 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978218 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978219 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978220 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978221 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978222 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978223 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978224 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978225 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978226 2 0.5837 0.772 0 0.668 0.260 0.072
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978241 3 0.4605 0.665 0 0.000 0.664 0.336
#> ERR978242 3 0.4605 0.665 0 0.000 0.664 0.336
#> ERR978243 3 0.4605 0.665 0 0.000 0.664 0.336
#> ERR978244 3 0.4605 0.665 0 0.000 0.664 0.336
#> ERR978245 3 0.4605 0.665 0 0.000 0.664 0.336
#> ERR978246 3 0.4605 0.665 0 0.000 0.664 0.336
#> ERR978247 3 0.4605 0.665 0 0.000 0.664 0.336
#> ERR978248 3 0.4585 0.668 0 0.000 0.668 0.332
#> ERR978249 3 0.4585 0.668 0 0.000 0.668 0.332
#> ERR978250 3 0.4585 0.668 0 0.000 0.668 0.332
#> ERR978251 3 0.4585 0.668 0 0.000 0.668 0.332
#> ERR978252 3 0.4585 0.668 0 0.000 0.668 0.332
#> ERR978253 3 0.4585 0.668 0 0.000 0.668 0.332
#> ERR978254 3 0.4585 0.668 0 0.000 0.668 0.332
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978124 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978125 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978126 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978127 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978128 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978129 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978130 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978131 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978132 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978133 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978134 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978135 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978136 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978137 3 0.000 0.783 0 0.000 1.000 0.000 0.000
#> ERR978138 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978139 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978140 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978141 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978142 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978143 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978144 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978145 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978146 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978147 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978148 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978149 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978150 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978151 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978152 3 0.300 0.789 0 0.000 0.812 0.000 0.188
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.000 0.977 0 0.000 0.000 1.000 0.000
#> ERR978170 4 0.000 0.977 0 0.000 0.000 1.000 0.000
#> ERR978171 4 0.000 0.977 0 0.000 0.000 1.000 0.000
#> ERR978172 4 0.000 0.977 0 0.000 0.000 1.000 0.000
#> ERR978173 4 0.000 0.977 0 0.000 0.000 1.000 0.000
#> ERR978174 4 0.000 0.977 0 0.000 0.000 1.000 0.000
#> ERR978175 4 0.000 0.977 0 0.000 0.000 1.000 0.000
#> ERR978176 4 0.120 0.977 0 0.000 0.000 0.952 0.048
#> ERR978177 4 0.120 0.977 0 0.000 0.000 0.952 0.048
#> ERR978178 4 0.120 0.977 0 0.000 0.000 0.952 0.048
#> ERR978179 4 0.120 0.977 0 0.000 0.000 0.952 0.048
#> ERR978180 4 0.120 0.977 0 0.000 0.000 0.952 0.048
#> ERR978181 4 0.120 0.977 0 0.000 0.000 0.952 0.048
#> ERR978182 4 0.120 0.977 0 0.000 0.000 0.952 0.048
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978197 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978198 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978199 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978200 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978201 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978202 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978203 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978204 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978205 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978206 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978207 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978208 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978209 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978210 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978211 5 0.440 0.835 0 0.028 0.276 0.000 0.696
#> ERR978212 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978213 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978214 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978215 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978216 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978217 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978218 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978219 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978220 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978221 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978222 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978223 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978224 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978225 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978226 5 0.120 0.838 0 0.048 0.000 0.000 0.952
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 3 0.577 0.652 0 0.000 0.600 0.264 0.136
#> ERR978242 3 0.577 0.652 0 0.000 0.600 0.264 0.136
#> ERR978243 3 0.577 0.652 0 0.000 0.600 0.264 0.136
#> ERR978244 3 0.577 0.652 0 0.000 0.600 0.264 0.136
#> ERR978245 3 0.577 0.652 0 0.000 0.600 0.264 0.136
#> ERR978246 3 0.577 0.652 0 0.000 0.600 0.264 0.136
#> ERR978247 3 0.577 0.652 0 0.000 0.600 0.264 0.136
#> ERR978248 3 0.590 0.652 0 0.000 0.600 0.216 0.184
#> ERR978249 3 0.590 0.652 0 0.000 0.600 0.216 0.184
#> ERR978250 3 0.590 0.652 0 0.000 0.600 0.216 0.184
#> ERR978251 3 0.590 0.652 0 0.000 0.600 0.216 0.184
#> ERR978252 3 0.590 0.652 0 0.000 0.600 0.216 0.184
#> ERR978253 3 0.590 0.652 0 0.000 0.600 0.216 0.184
#> ERR978254 3 0.590 0.652 0 0.000 0.600 0.216 0.184
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978123 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978124 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978125 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978126 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978127 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978128 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978129 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978130 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978131 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978132 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978133 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978134 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978135 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978136 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978137 3 0.270 0.873 0 0 0.812 0.000 0.188 0.000
#> ERR978138 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978139 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978140 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978141 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978142 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978143 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978144 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978145 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978146 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978147 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978148 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978149 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978150 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978151 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978152 3 0.000 0.872 0 0 1.000 0.000 0.000 0.000
#> ERR978153 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978169 4 0.000 0.813 0 0 0.000 1.000 0.000 0.000
#> ERR978170 4 0.000 0.813 0 0 0.000 1.000 0.000 0.000
#> ERR978171 4 0.000 0.813 0 0 0.000 1.000 0.000 0.000
#> ERR978172 4 0.000 0.813 0 0 0.000 1.000 0.000 0.000
#> ERR978173 4 0.000 0.813 0 0 0.000 1.000 0.000 0.000
#> ERR978174 4 0.000 0.813 0 0 0.000 1.000 0.000 0.000
#> ERR978175 4 0.000 0.813 0 0 0.000 1.000 0.000 0.000
#> ERR978176 4 0.322 0.813 0 0 0.000 0.736 0.000 0.264
#> ERR978177 4 0.322 0.813 0 0 0.000 0.736 0.000 0.264
#> ERR978178 4 0.322 0.813 0 0 0.000 0.736 0.000 0.264
#> ERR978179 4 0.322 0.813 0 0 0.000 0.736 0.000 0.264
#> ERR978180 4 0.322 0.813 0 0 0.000 0.736 0.000 0.264
#> ERR978181 4 0.322 0.813 0 0 0.000 0.736 0.000 0.264
#> ERR978182 4 0.322 0.813 0 0 0.000 0.736 0.000 0.264
#> ERR978183 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978197 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978198 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978199 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978200 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978201 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978202 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978203 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978204 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978205 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978206 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978207 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978208 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978209 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978210 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978211 5 0.166 0.828 0 0 0.088 0.000 0.912 0.000
#> ERR978212 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978213 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978214 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978215 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978216 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978217 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978218 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978219 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978220 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978221 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978222 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978223 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978224 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978225 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978226 5 0.270 0.834 0 0 0.188 0.000 0.812 0.000
#> ERR978227 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978241 6 0.322 0.813 0 0 0.000 0.264 0.000 0.736
#> ERR978242 6 0.322 0.813 0 0 0.000 0.264 0.000 0.736
#> ERR978243 6 0.322 0.813 0 0 0.000 0.264 0.000 0.736
#> ERR978244 6 0.322 0.813 0 0 0.000 0.264 0.000 0.736
#> ERR978245 6 0.322 0.813 0 0 0.000 0.264 0.000 0.736
#> ERR978246 6 0.322 0.813 0 0 0.000 0.264 0.000 0.736
#> ERR978247 6 0.322 0.813 0 0 0.000 0.264 0.000 0.736
#> ERR978248 6 0.000 0.813 0 0 0.000 0.000 0.000 1.000
#> ERR978249 6 0.000 0.813 0 0 0.000 0.000 0.000 1.000
#> ERR978250 6 0.000 0.813 0 0 0.000 0.000 0.000 1.000
#> ERR978251 6 0.000 0.813 0 0 0.000 0.000 0.000 1.000
#> ERR978252 6 0.000 0.813 0 0 0.000 0.000 0.000 1.000
#> ERR978253 6 0.000 0.813 0 0 0.000 0.000 0.000 1.000
#> ERR978254 6 0.000 0.813 0 0 0.000 0.000 0.000 1.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.175 0.710 0.793 0.3827 0.675 0.675
#> 3 3 0.312 0.635 0.695 0.4978 0.686 0.534
#> 4 4 0.444 0.688 0.731 0.1976 0.724 0.397
#> 5 5 0.621 0.665 0.713 0.0917 1.000 1.000
#> 6 6 0.718 0.688 0.710 0.0606 0.917 0.702
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.6438 0.690 0.164 0.836
#> ERR978108 2 0.6438 0.690 0.164 0.836
#> ERR978109 2 0.6438 0.690 0.164 0.836
#> ERR978110 2 0.6438 0.690 0.164 0.836
#> ERR978111 2 0.6438 0.690 0.164 0.836
#> ERR978112 2 0.6438 0.690 0.164 0.836
#> ERR978113 2 0.6438 0.690 0.164 0.836
#> ERR978114 2 0.6438 0.690 0.164 0.836
#> ERR978115 2 0.6438 0.690 0.164 0.836
#> ERR978116 2 0.6438 0.690 0.164 0.836
#> ERR978117 2 0.6438 0.690 0.164 0.836
#> ERR978118 2 0.6438 0.690 0.164 0.836
#> ERR978119 2 0.6438 0.690 0.164 0.836
#> ERR978120 2 0.6438 0.690 0.164 0.836
#> ERR978121 2 0.6438 0.690 0.164 0.836
#> ERR978122 2 0.6438 0.690 0.164 0.836
#> ERR978123 2 0.8386 0.585 0.268 0.732
#> ERR978124 2 0.8386 0.585 0.268 0.732
#> ERR978125 2 0.8386 0.585 0.268 0.732
#> ERR978126 2 0.8386 0.585 0.268 0.732
#> ERR978127 2 0.8386 0.585 0.268 0.732
#> ERR978128 2 0.8386 0.585 0.268 0.732
#> ERR978129 2 0.8386 0.585 0.268 0.732
#> ERR978130 2 0.8386 0.585 0.268 0.732
#> ERR978131 2 0.8386 0.585 0.268 0.732
#> ERR978132 2 0.8386 0.585 0.268 0.732
#> ERR978133 2 0.8386 0.585 0.268 0.732
#> ERR978134 2 0.8386 0.585 0.268 0.732
#> ERR978135 2 0.8386 0.585 0.268 0.732
#> ERR978136 2 0.8386 0.585 0.268 0.732
#> ERR978137 2 0.8386 0.585 0.268 0.732
#> ERR978138 2 0.7139 0.669 0.196 0.804
#> ERR978139 2 0.7139 0.669 0.196 0.804
#> ERR978140 2 0.7139 0.669 0.196 0.804
#> ERR978141 2 0.7139 0.669 0.196 0.804
#> ERR978142 2 0.7139 0.669 0.196 0.804
#> ERR978143 2 0.7139 0.669 0.196 0.804
#> ERR978144 2 0.7139 0.669 0.196 0.804
#> ERR978145 2 0.7139 0.669 0.196 0.804
#> ERR978146 2 0.7376 0.659 0.208 0.792
#> ERR978147 2 0.7376 0.659 0.208 0.792
#> ERR978148 2 0.7376 0.659 0.208 0.792
#> ERR978149 2 0.7376 0.659 0.208 0.792
#> ERR978150 2 0.7376 0.659 0.208 0.792
#> ERR978151 2 0.7376 0.659 0.208 0.792
#> ERR978152 2 0.7376 0.659 0.208 0.792
#> ERR978153 1 0.7950 1.000 0.760 0.240
#> ERR978154 1 0.7950 1.000 0.760 0.240
#> ERR978155 1 0.7950 1.000 0.760 0.240
#> ERR978156 1 0.7950 1.000 0.760 0.240
#> ERR978157 1 0.7950 1.000 0.760 0.240
#> ERR978158 1 0.7950 1.000 0.760 0.240
#> ERR978159 1 0.7950 1.000 0.760 0.240
#> ERR978160 1 0.7950 1.000 0.760 0.240
#> ERR978161 1 0.7950 1.000 0.760 0.240
#> ERR978162 1 0.7950 1.000 0.760 0.240
#> ERR978163 1 0.7950 1.000 0.760 0.240
#> ERR978164 1 0.7950 1.000 0.760 0.240
#> ERR978165 1 0.7950 1.000 0.760 0.240
#> ERR978166 1 0.7950 1.000 0.760 0.240
#> ERR978167 1 0.7950 1.000 0.760 0.240
#> ERR978168 1 0.7950 1.000 0.760 0.240
#> ERR978169 2 0.9970 0.374 0.468 0.532
#> ERR978170 2 0.9970 0.374 0.468 0.532
#> ERR978171 2 0.9970 0.374 0.468 0.532
#> ERR978172 2 0.9970 0.374 0.468 0.532
#> ERR978173 2 0.9970 0.374 0.468 0.532
#> ERR978174 2 0.9970 0.374 0.468 0.532
#> ERR978175 2 0.9970 0.374 0.468 0.532
#> ERR978176 2 0.9977 0.373 0.472 0.528
#> ERR978177 2 0.9977 0.373 0.472 0.528
#> ERR978178 2 0.9977 0.373 0.472 0.528
#> ERR978179 2 0.9977 0.373 0.472 0.528
#> ERR978180 2 0.9977 0.373 0.472 0.528
#> ERR978181 2 0.9977 0.373 0.472 0.528
#> ERR978182 2 0.9977 0.373 0.472 0.528
#> ERR978183 2 0.6438 0.690 0.164 0.836
#> ERR978184 2 0.6438 0.690 0.164 0.836
#> ERR978185 2 0.6438 0.690 0.164 0.836
#> ERR978186 2 0.6438 0.690 0.164 0.836
#> ERR978187 2 0.6438 0.690 0.164 0.836
#> ERR978188 2 0.6438 0.690 0.164 0.836
#> ERR978189 2 0.6438 0.690 0.164 0.836
#> ERR978190 2 0.6438 0.690 0.164 0.836
#> ERR978191 2 0.6438 0.690 0.164 0.836
#> ERR978192 2 0.6438 0.690 0.164 0.836
#> ERR978193 2 0.6438 0.690 0.164 0.836
#> ERR978194 2 0.6438 0.690 0.164 0.836
#> ERR978195 2 0.6438 0.690 0.164 0.836
#> ERR978196 2 0.6438 0.690 0.164 0.836
#> ERR978197 2 0.0000 0.741 0.000 1.000
#> ERR978198 2 0.0000 0.741 0.000 1.000
#> ERR978199 2 0.0000 0.741 0.000 1.000
#> ERR978200 2 0.0000 0.741 0.000 1.000
#> ERR978201 2 0.0000 0.741 0.000 1.000
#> ERR978202 2 0.0000 0.741 0.000 1.000
#> ERR978203 2 0.0000 0.741 0.000 1.000
#> ERR978204 2 0.0376 0.741 0.004 0.996
#> ERR978205 2 0.0376 0.741 0.004 0.996
#> ERR978206 2 0.0376 0.741 0.004 0.996
#> ERR978207 2 0.0376 0.741 0.004 0.996
#> ERR978208 2 0.0376 0.741 0.004 0.996
#> ERR978209 2 0.0376 0.741 0.004 0.996
#> ERR978210 2 0.0376 0.741 0.004 0.996
#> ERR978211 2 0.0376 0.741 0.004 0.996
#> ERR978212 2 0.0938 0.740 0.012 0.988
#> ERR978213 2 0.0938 0.740 0.012 0.988
#> ERR978214 2 0.0938 0.740 0.012 0.988
#> ERR978215 2 0.0938 0.740 0.012 0.988
#> ERR978216 2 0.0938 0.740 0.012 0.988
#> ERR978217 2 0.0938 0.740 0.012 0.988
#> ERR978218 2 0.0938 0.740 0.012 0.988
#> ERR978219 2 0.0938 0.740 0.012 0.988
#> ERR978220 2 0.0938 0.740 0.012 0.988
#> ERR978221 2 0.0938 0.740 0.012 0.988
#> ERR978222 2 0.0938 0.740 0.012 0.988
#> ERR978223 2 0.0938 0.740 0.012 0.988
#> ERR978224 2 0.0938 0.740 0.012 0.988
#> ERR978225 2 0.0938 0.740 0.012 0.988
#> ERR978226 2 0.0938 0.740 0.012 0.988
#> ERR978227 1 0.7950 1.000 0.760 0.240
#> ERR978228 1 0.7950 1.000 0.760 0.240
#> ERR978229 1 0.7950 1.000 0.760 0.240
#> ERR978230 1 0.7950 1.000 0.760 0.240
#> ERR978231 1 0.7950 1.000 0.760 0.240
#> ERR978232 1 0.7950 1.000 0.760 0.240
#> ERR978233 1 0.7950 1.000 0.760 0.240
#> ERR978234 1 0.7950 1.000 0.760 0.240
#> ERR978235 1 0.7950 1.000 0.760 0.240
#> ERR978236 1 0.7950 1.000 0.760 0.240
#> ERR978237 1 0.7950 1.000 0.760 0.240
#> ERR978238 1 0.7950 1.000 0.760 0.240
#> ERR978239 1 0.7950 1.000 0.760 0.240
#> ERR978240 1 0.7950 1.000 0.760 0.240
#> ERR978241 2 0.9795 0.441 0.416 0.584
#> ERR978242 2 0.9795 0.441 0.416 0.584
#> ERR978243 2 0.9795 0.441 0.416 0.584
#> ERR978244 2 0.9795 0.441 0.416 0.584
#> ERR978245 2 0.9795 0.441 0.416 0.584
#> ERR978246 2 0.9795 0.441 0.416 0.584
#> ERR978247 2 0.9795 0.441 0.416 0.584
#> ERR978248 2 0.5737 0.726 0.136 0.864
#> ERR978249 2 0.5737 0.726 0.136 0.864
#> ERR978250 2 0.5737 0.726 0.136 0.864
#> ERR978251 2 0.5737 0.726 0.136 0.864
#> ERR978252 2 0.5737 0.726 0.136 0.864
#> ERR978253 2 0.5737 0.726 0.136 0.864
#> ERR978254 2 0.5737 0.726 0.136 0.864
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.249 0.622 0.016 0.936 0.048
#> ERR978108 2 0.249 0.622 0.016 0.936 0.048
#> ERR978109 2 0.249 0.622 0.016 0.936 0.048
#> ERR978110 2 0.249 0.622 0.016 0.936 0.048
#> ERR978111 2 0.249 0.622 0.016 0.936 0.048
#> ERR978112 2 0.249 0.622 0.016 0.936 0.048
#> ERR978113 2 0.249 0.622 0.016 0.936 0.048
#> ERR978114 2 0.249 0.622 0.016 0.936 0.048
#> ERR978115 2 0.249 0.622 0.016 0.936 0.048
#> ERR978116 2 0.249 0.622 0.016 0.936 0.048
#> ERR978117 2 0.249 0.622 0.016 0.936 0.048
#> ERR978118 2 0.249 0.622 0.016 0.936 0.048
#> ERR978119 2 0.249 0.622 0.016 0.936 0.048
#> ERR978120 2 0.249 0.622 0.016 0.936 0.048
#> ERR978121 2 0.249 0.622 0.016 0.936 0.048
#> ERR978122 2 0.249 0.622 0.016 0.936 0.048
#> ERR978123 3 0.841 0.606 0.112 0.308 0.580
#> ERR978124 3 0.841 0.606 0.112 0.308 0.580
#> ERR978125 3 0.841 0.606 0.112 0.308 0.580
#> ERR978126 3 0.841 0.606 0.112 0.308 0.580
#> ERR978127 3 0.841 0.606 0.112 0.308 0.580
#> ERR978128 3 0.841 0.606 0.112 0.308 0.580
#> ERR978129 3 0.841 0.606 0.112 0.308 0.580
#> ERR978130 3 0.841 0.606 0.112 0.308 0.580
#> ERR978131 3 0.845 0.598 0.112 0.316 0.572
#> ERR978132 3 0.845 0.598 0.112 0.316 0.572
#> ERR978133 3 0.845 0.598 0.112 0.316 0.572
#> ERR978134 3 0.845 0.598 0.112 0.316 0.572
#> ERR978135 3 0.845 0.598 0.112 0.316 0.572
#> ERR978136 3 0.845 0.598 0.112 0.316 0.572
#> ERR978137 3 0.845 0.598 0.112 0.316 0.572
#> ERR978138 3 0.816 0.600 0.092 0.320 0.588
#> ERR978139 3 0.816 0.600 0.092 0.320 0.588
#> ERR978140 3 0.816 0.600 0.092 0.320 0.588
#> ERR978141 3 0.816 0.600 0.092 0.320 0.588
#> ERR978142 3 0.816 0.600 0.092 0.320 0.588
#> ERR978143 3 0.816 0.600 0.092 0.320 0.588
#> ERR978144 3 0.816 0.600 0.092 0.320 0.588
#> ERR978145 3 0.816 0.600 0.092 0.320 0.588
#> ERR978146 3 0.816 0.600 0.092 0.320 0.588
#> ERR978147 3 0.816 0.600 0.092 0.320 0.588
#> ERR978148 3 0.816 0.600 0.092 0.320 0.588
#> ERR978149 3 0.816 0.600 0.092 0.320 0.588
#> ERR978150 3 0.816 0.600 0.092 0.320 0.588
#> ERR978151 3 0.816 0.600 0.092 0.320 0.588
#> ERR978152 3 0.816 0.600 0.092 0.320 0.588
#> ERR978153 1 0.113 0.963 0.976 0.020 0.004
#> ERR978154 1 0.113 0.963 0.976 0.020 0.004
#> ERR978155 1 0.113 0.963 0.976 0.020 0.004
#> ERR978156 1 0.113 0.963 0.976 0.020 0.004
#> ERR978157 1 0.113 0.963 0.976 0.020 0.004
#> ERR978158 1 0.113 0.963 0.976 0.020 0.004
#> ERR978159 1 0.113 0.963 0.976 0.020 0.004
#> ERR978160 1 0.113 0.963 0.976 0.020 0.004
#> ERR978161 1 0.113 0.963 0.976 0.020 0.004
#> ERR978162 1 0.113 0.963 0.976 0.020 0.004
#> ERR978163 1 0.113 0.963 0.976 0.020 0.004
#> ERR978164 1 0.113 0.963 0.976 0.020 0.004
#> ERR978165 1 0.113 0.963 0.976 0.020 0.004
#> ERR978166 1 0.113 0.963 0.976 0.020 0.004
#> ERR978167 1 0.113 0.963 0.976 0.020 0.004
#> ERR978168 1 0.113 0.963 0.976 0.020 0.004
#> ERR978169 3 0.812 0.648 0.164 0.188 0.648
#> ERR978170 3 0.812 0.648 0.164 0.188 0.648
#> ERR978171 3 0.812 0.648 0.164 0.188 0.648
#> ERR978172 3 0.812 0.648 0.164 0.188 0.648
#> ERR978173 3 0.812 0.648 0.164 0.188 0.648
#> ERR978174 3 0.812 0.648 0.164 0.188 0.648
#> ERR978175 3 0.812 0.648 0.164 0.188 0.648
#> ERR978176 3 0.825 0.643 0.164 0.200 0.636
#> ERR978177 3 0.825 0.643 0.164 0.200 0.636
#> ERR978178 3 0.825 0.643 0.164 0.200 0.636
#> ERR978179 3 0.825 0.643 0.164 0.200 0.636
#> ERR978180 3 0.825 0.643 0.164 0.200 0.636
#> ERR978181 3 0.825 0.643 0.164 0.200 0.636
#> ERR978182 3 0.825 0.643 0.164 0.200 0.636
#> ERR978183 2 0.178 0.630 0.020 0.960 0.020
#> ERR978184 2 0.178 0.630 0.020 0.960 0.020
#> ERR978185 2 0.178 0.630 0.020 0.960 0.020
#> ERR978186 2 0.178 0.630 0.020 0.960 0.020
#> ERR978187 2 0.178 0.630 0.020 0.960 0.020
#> ERR978188 2 0.178 0.630 0.020 0.960 0.020
#> ERR978189 2 0.178 0.630 0.020 0.960 0.020
#> ERR978190 2 0.178 0.630 0.020 0.960 0.020
#> ERR978191 2 0.178 0.630 0.020 0.960 0.020
#> ERR978192 2 0.178 0.630 0.020 0.960 0.020
#> ERR978193 2 0.178 0.630 0.020 0.960 0.020
#> ERR978194 2 0.178 0.630 0.020 0.960 0.020
#> ERR978195 2 0.178 0.630 0.020 0.960 0.020
#> ERR978196 2 0.178 0.630 0.020 0.960 0.020
#> ERR978197 2 0.692 0.412 0.020 0.580 0.400
#> ERR978198 2 0.692 0.412 0.020 0.580 0.400
#> ERR978199 2 0.692 0.412 0.020 0.580 0.400
#> ERR978200 2 0.692 0.412 0.020 0.580 0.400
#> ERR978201 2 0.692 0.412 0.020 0.580 0.400
#> ERR978202 2 0.692 0.412 0.020 0.580 0.400
#> ERR978203 2 0.692 0.412 0.020 0.580 0.400
#> ERR978204 2 0.675 0.440 0.016 0.596 0.388
#> ERR978205 2 0.675 0.440 0.016 0.596 0.388
#> ERR978206 2 0.675 0.440 0.016 0.596 0.388
#> ERR978207 2 0.675 0.440 0.016 0.596 0.388
#> ERR978208 2 0.675 0.440 0.016 0.596 0.388
#> ERR978209 2 0.675 0.440 0.016 0.596 0.388
#> ERR978210 2 0.675 0.440 0.016 0.596 0.388
#> ERR978211 2 0.675 0.440 0.016 0.596 0.388
#> ERR978212 2 0.757 0.470 0.052 0.592 0.356
#> ERR978213 2 0.757 0.470 0.052 0.592 0.356
#> ERR978214 2 0.757 0.470 0.052 0.592 0.356
#> ERR978215 2 0.757 0.470 0.052 0.592 0.356
#> ERR978216 2 0.757 0.470 0.052 0.592 0.356
#> ERR978217 2 0.757 0.470 0.052 0.592 0.356
#> ERR978218 2 0.757 0.470 0.052 0.592 0.356
#> ERR978219 2 0.757 0.470 0.052 0.592 0.356
#> ERR978220 2 0.757 0.470 0.052 0.592 0.356
#> ERR978221 2 0.757 0.470 0.052 0.592 0.356
#> ERR978222 2 0.757 0.470 0.052 0.592 0.356
#> ERR978223 2 0.757 0.470 0.052 0.592 0.356
#> ERR978224 2 0.757 0.470 0.052 0.592 0.356
#> ERR978225 2 0.757 0.470 0.052 0.592 0.356
#> ERR978226 2 0.757 0.470 0.052 0.592 0.356
#> ERR978227 1 0.391 0.958 0.876 0.020 0.104
#> ERR978228 1 0.391 0.958 0.876 0.020 0.104
#> ERR978229 1 0.391 0.958 0.876 0.020 0.104
#> ERR978230 1 0.391 0.958 0.876 0.020 0.104
#> ERR978231 1 0.391 0.958 0.876 0.020 0.104
#> ERR978232 1 0.391 0.958 0.876 0.020 0.104
#> ERR978233 1 0.391 0.958 0.876 0.020 0.104
#> ERR978234 1 0.391 0.958 0.876 0.020 0.104
#> ERR978235 1 0.391 0.958 0.876 0.020 0.104
#> ERR978236 1 0.391 0.958 0.876 0.020 0.104
#> ERR978237 1 0.391 0.958 0.876 0.020 0.104
#> ERR978238 1 0.391 0.958 0.876 0.020 0.104
#> ERR978239 1 0.391 0.958 0.876 0.020 0.104
#> ERR978240 1 0.391 0.958 0.876 0.020 0.104
#> ERR978241 3 0.788 0.651 0.172 0.160 0.668
#> ERR978242 3 0.788 0.651 0.172 0.160 0.668
#> ERR978243 3 0.788 0.651 0.172 0.160 0.668
#> ERR978244 3 0.788 0.651 0.172 0.160 0.668
#> ERR978245 3 0.788 0.651 0.172 0.160 0.668
#> ERR978246 3 0.788 0.651 0.172 0.160 0.668
#> ERR978247 3 0.788 0.651 0.172 0.160 0.668
#> ERR978248 2 0.851 0.199 0.100 0.528 0.372
#> ERR978249 2 0.851 0.199 0.100 0.528 0.372
#> ERR978250 2 0.851 0.199 0.100 0.528 0.372
#> ERR978251 2 0.851 0.199 0.100 0.528 0.372
#> ERR978252 2 0.851 0.199 0.100 0.528 0.372
#> ERR978253 2 0.851 0.199 0.100 0.528 0.372
#> ERR978254 2 0.851 0.199 0.100 0.528 0.372
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978108 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978109 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978110 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978111 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978112 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978113 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978114 2 0.5127 0.882 0.016 0.776 0.152 0.056
#> ERR978115 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978116 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978117 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978118 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978119 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978120 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978121 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978122 2 0.4960 0.882 0.008 0.780 0.152 0.060
#> ERR978123 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978124 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978125 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978126 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978127 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978128 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978129 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978130 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978131 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978132 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978133 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978134 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978135 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978136 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978137 3 0.3322 0.486 0.040 0.032 0.892 0.036
#> ERR978138 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978139 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978140 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978141 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978142 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978143 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978144 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978145 3 0.5723 0.481 0.020 0.076 0.740 0.164
#> ERR978146 3 0.5589 0.481 0.020 0.076 0.752 0.152
#> ERR978147 3 0.5589 0.481 0.020 0.076 0.752 0.152
#> ERR978148 3 0.5589 0.481 0.020 0.076 0.752 0.152
#> ERR978149 3 0.5589 0.481 0.020 0.076 0.752 0.152
#> ERR978150 3 0.5589 0.481 0.020 0.076 0.752 0.152
#> ERR978151 3 0.5589 0.481 0.020 0.076 0.752 0.152
#> ERR978152 3 0.5589 0.481 0.020 0.076 0.752 0.152
#> ERR978153 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978154 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978155 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978156 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978157 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978158 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978159 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978160 1 0.4469 0.926 0.816 0.044 0.012 0.128
#> ERR978161 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978162 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978163 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978164 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978165 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978166 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978167 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978168 1 0.4360 0.926 0.816 0.032 0.012 0.140
#> ERR978169 4 0.7458 0.774 0.120 0.024 0.304 0.552
#> ERR978170 4 0.7458 0.774 0.120 0.024 0.304 0.552
#> ERR978171 4 0.7458 0.774 0.120 0.024 0.304 0.552
#> ERR978172 4 0.7458 0.774 0.120 0.024 0.304 0.552
#> ERR978173 4 0.7458 0.774 0.120 0.024 0.304 0.552
#> ERR978174 4 0.7458 0.774 0.120 0.024 0.304 0.552
#> ERR978175 4 0.7458 0.774 0.120 0.024 0.304 0.552
#> ERR978176 4 0.7708 0.777 0.116 0.040 0.296 0.548
#> ERR978177 4 0.7708 0.777 0.116 0.040 0.296 0.548
#> ERR978178 4 0.7708 0.777 0.116 0.040 0.296 0.548
#> ERR978179 4 0.7708 0.777 0.116 0.040 0.296 0.548
#> ERR978180 4 0.7708 0.777 0.116 0.040 0.296 0.548
#> ERR978181 4 0.7708 0.777 0.116 0.040 0.296 0.548
#> ERR978182 4 0.7708 0.777 0.116 0.040 0.296 0.548
#> ERR978183 2 0.4004 0.866 0.012 0.852 0.068 0.068
#> ERR978184 2 0.4004 0.866 0.012 0.852 0.068 0.068
#> ERR978185 2 0.4004 0.866 0.012 0.852 0.068 0.068
#> ERR978186 2 0.4004 0.866 0.012 0.852 0.068 0.068
#> ERR978187 2 0.4004 0.866 0.012 0.852 0.068 0.068
#> ERR978188 2 0.4004 0.866 0.012 0.852 0.068 0.068
#> ERR978189 2 0.4004 0.866 0.012 0.852 0.068 0.068
#> ERR978190 2 0.3876 0.866 0.008 0.856 0.068 0.068
#> ERR978191 2 0.3876 0.866 0.008 0.856 0.068 0.068
#> ERR978192 2 0.3876 0.866 0.008 0.856 0.068 0.068
#> ERR978193 2 0.3876 0.866 0.008 0.856 0.068 0.068
#> ERR978194 2 0.3876 0.866 0.008 0.856 0.068 0.068
#> ERR978195 2 0.3876 0.866 0.008 0.856 0.068 0.068
#> ERR978196 2 0.3876 0.866 0.008 0.856 0.068 0.068
#> ERR978197 3 0.5653 0.587 0.000 0.192 0.712 0.096
#> ERR978198 3 0.5653 0.587 0.000 0.192 0.712 0.096
#> ERR978199 3 0.5653 0.587 0.000 0.192 0.712 0.096
#> ERR978200 3 0.5653 0.587 0.000 0.192 0.712 0.096
#> ERR978201 3 0.5653 0.587 0.000 0.192 0.712 0.096
#> ERR978202 3 0.5653 0.587 0.000 0.192 0.712 0.096
#> ERR978203 3 0.5653 0.587 0.000 0.192 0.712 0.096
#> ERR978204 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978205 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978206 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978207 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978208 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978209 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978210 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978211 3 0.6195 0.561 0.000 0.252 0.648 0.100
#> ERR978212 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978213 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978214 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978215 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978216 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978217 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978218 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978219 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978220 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978221 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978222 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978223 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978224 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978225 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978226 3 0.7908 0.494 0.004 0.340 0.416 0.240
#> ERR978227 1 0.0657 0.917 0.984 0.004 0.012 0.000
#> ERR978228 1 0.0657 0.917 0.984 0.004 0.012 0.000
#> ERR978229 1 0.0657 0.917 0.984 0.004 0.012 0.000
#> ERR978230 1 0.0657 0.917 0.984 0.004 0.012 0.000
#> ERR978231 1 0.0657 0.917 0.984 0.004 0.012 0.000
#> ERR978232 1 0.0657 0.917 0.984 0.004 0.012 0.000
#> ERR978233 1 0.0657 0.917 0.984 0.004 0.012 0.000
#> ERR978234 1 0.0657 0.917 0.984 0.000 0.012 0.004
#> ERR978235 1 0.0657 0.917 0.984 0.000 0.012 0.004
#> ERR978236 1 0.0657 0.917 0.984 0.000 0.012 0.004
#> ERR978237 1 0.0657 0.917 0.984 0.000 0.012 0.004
#> ERR978238 1 0.0657 0.917 0.984 0.000 0.012 0.004
#> ERR978239 1 0.0657 0.917 0.984 0.000 0.012 0.004
#> ERR978240 1 0.0657 0.917 0.984 0.000 0.012 0.004
#> ERR978241 4 0.6840 0.761 0.104 0.004 0.332 0.560
#> ERR978242 4 0.6840 0.761 0.104 0.004 0.332 0.560
#> ERR978243 4 0.6840 0.761 0.104 0.004 0.332 0.560
#> ERR978244 4 0.6840 0.761 0.104 0.004 0.332 0.560
#> ERR978245 4 0.6840 0.761 0.104 0.004 0.332 0.560
#> ERR978246 4 0.6840 0.761 0.104 0.004 0.332 0.560
#> ERR978247 4 0.6840 0.761 0.104 0.004 0.332 0.560
#> ERR978248 4 0.9163 0.170 0.068 0.292 0.300 0.340
#> ERR978249 4 0.9163 0.170 0.068 0.292 0.300 0.340
#> ERR978250 4 0.9163 0.170 0.068 0.292 0.300 0.340
#> ERR978251 4 0.9163 0.170 0.068 0.292 0.300 0.340
#> ERR978252 4 0.9163 0.170 0.068 0.292 0.300 0.340
#> ERR978253 4 0.9163 0.170 0.068 0.292 0.300 0.340
#> ERR978254 4 0.9163 0.170 0.068 0.292 0.300 0.340
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978108 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978109 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978110 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978111 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978112 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978113 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978114 2 0.1310 0.869 0.000 0.956 0.020 0.024 NA
#> ERR978115 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978116 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978117 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978118 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978119 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978120 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978121 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978122 2 0.2006 0.869 0.000 0.932 0.020 0.024 NA
#> ERR978123 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978124 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978125 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978126 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978127 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978128 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978129 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978130 3 0.7699 0.468 0.028 0.048 0.500 0.164 NA
#> ERR978131 3 0.7729 0.469 0.028 0.052 0.500 0.160 NA
#> ERR978132 3 0.7729 0.469 0.028 0.052 0.500 0.160 NA
#> ERR978133 3 0.7729 0.469 0.028 0.052 0.500 0.160 NA
#> ERR978134 3 0.7729 0.469 0.028 0.052 0.500 0.160 NA
#> ERR978135 3 0.7729 0.469 0.028 0.052 0.500 0.160 NA
#> ERR978136 3 0.7729 0.469 0.028 0.052 0.500 0.160 NA
#> ERR978137 3 0.7729 0.469 0.028 0.052 0.500 0.160 NA
#> ERR978138 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978139 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978140 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978141 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978142 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978143 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978144 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978145 3 0.6147 0.438 0.016 0.028 0.624 0.268 NA
#> ERR978146 3 0.6420 0.430 0.016 0.028 0.596 0.280 NA
#> ERR978147 3 0.6420 0.430 0.016 0.028 0.596 0.280 NA
#> ERR978148 3 0.6420 0.430 0.016 0.028 0.596 0.280 NA
#> ERR978149 3 0.6420 0.430 0.016 0.028 0.596 0.280 NA
#> ERR978150 3 0.6420 0.430 0.016 0.028 0.596 0.280 NA
#> ERR978151 3 0.6420 0.430 0.016 0.028 0.596 0.280 NA
#> ERR978152 3 0.6420 0.430 0.016 0.028 0.596 0.280 NA
#> ERR978153 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978154 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978155 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978156 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978157 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978158 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978159 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978160 1 0.0000 0.881 1.000 0.000 0.000 0.000 NA
#> ERR978161 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978162 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978163 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978164 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978165 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978166 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978167 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978168 1 0.0566 0.881 0.984 0.000 0.004 0.012 NA
#> ERR978169 4 0.3800 0.770 0.068 0.020 0.060 0.844 NA
#> ERR978170 4 0.3800 0.770 0.068 0.020 0.060 0.844 NA
#> ERR978171 4 0.3800 0.770 0.068 0.020 0.060 0.844 NA
#> ERR978172 4 0.3800 0.770 0.068 0.020 0.060 0.844 NA
#> ERR978173 4 0.3800 0.770 0.068 0.020 0.060 0.844 NA
#> ERR978174 4 0.3800 0.770 0.068 0.020 0.060 0.844 NA
#> ERR978175 4 0.3800 0.770 0.068 0.020 0.060 0.844 NA
#> ERR978176 4 0.4759 0.773 0.068 0.024 0.052 0.800 NA
#> ERR978177 4 0.4759 0.773 0.068 0.024 0.052 0.800 NA
#> ERR978178 4 0.4759 0.773 0.068 0.024 0.052 0.800 NA
#> ERR978179 4 0.4759 0.773 0.068 0.024 0.052 0.800 NA
#> ERR978180 4 0.4759 0.773 0.068 0.024 0.052 0.800 NA
#> ERR978181 4 0.4759 0.773 0.068 0.024 0.052 0.800 NA
#> ERR978182 4 0.4759 0.773 0.068 0.024 0.052 0.800 NA
#> ERR978183 2 0.4604 0.851 0.000 0.748 0.040 0.020 NA
#> ERR978184 2 0.4604 0.851 0.000 0.748 0.040 0.020 NA
#> ERR978185 2 0.4604 0.851 0.000 0.748 0.040 0.020 NA
#> ERR978186 2 0.4604 0.851 0.000 0.748 0.040 0.020 NA
#> ERR978187 2 0.4604 0.851 0.000 0.748 0.040 0.020 NA
#> ERR978188 2 0.4604 0.851 0.000 0.748 0.040 0.020 NA
#> ERR978189 2 0.4658 0.851 0.000 0.748 0.040 0.024 NA
#> ERR978190 2 0.4558 0.851 0.000 0.728 0.040 0.008 NA
#> ERR978191 2 0.4558 0.851 0.000 0.728 0.040 0.008 NA
#> ERR978192 2 0.4558 0.851 0.000 0.728 0.040 0.008 NA
#> ERR978193 2 0.4558 0.851 0.000 0.728 0.040 0.008 NA
#> ERR978194 2 0.4558 0.851 0.000 0.728 0.040 0.008 NA
#> ERR978195 2 0.4558 0.851 0.000 0.728 0.040 0.008 NA
#> ERR978196 2 0.4558 0.851 0.000 0.728 0.040 0.008 NA
#> ERR978197 3 0.5440 0.535 0.000 0.132 0.696 0.016 NA
#> ERR978198 3 0.5440 0.535 0.000 0.132 0.696 0.016 NA
#> ERR978199 3 0.5440 0.535 0.000 0.132 0.696 0.016 NA
#> ERR978200 3 0.5440 0.535 0.000 0.132 0.696 0.016 NA
#> ERR978201 3 0.5440 0.535 0.000 0.132 0.696 0.016 NA
#> ERR978202 3 0.5440 0.535 0.000 0.132 0.696 0.016 NA
#> ERR978203 3 0.5440 0.535 0.000 0.132 0.696 0.016 NA
#> ERR978204 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978205 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978206 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978207 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978208 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978209 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978210 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978211 3 0.5384 0.522 0.000 0.156 0.696 0.012 NA
#> ERR978212 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978213 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978214 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978215 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978216 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978217 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978218 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978219 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978220 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978221 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978222 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978223 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978224 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978225 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978226 3 0.6594 0.439 0.004 0.176 0.632 0.104 NA
#> ERR978227 1 0.4497 0.859 0.716 0.000 0.008 0.028 NA
#> ERR978228 1 0.4497 0.859 0.716 0.000 0.008 0.028 NA
#> ERR978229 1 0.4497 0.859 0.716 0.000 0.008 0.028 NA
#> ERR978230 1 0.4497 0.859 0.716 0.000 0.008 0.028 NA
#> ERR978231 1 0.4497 0.859 0.716 0.000 0.008 0.028 NA
#> ERR978232 1 0.4497 0.859 0.716 0.000 0.008 0.028 NA
#> ERR978233 1 0.4497 0.859 0.716 0.000 0.008 0.028 NA
#> ERR978234 1 0.3968 0.859 0.716 0.004 0.000 0.004 NA
#> ERR978235 1 0.3968 0.859 0.716 0.004 0.000 0.004 NA
#> ERR978236 1 0.3934 0.859 0.716 0.000 0.000 0.008 NA
#> ERR978237 1 0.3934 0.859 0.716 0.000 0.000 0.008 NA
#> ERR978238 1 0.3934 0.859 0.716 0.000 0.000 0.008 NA
#> ERR978239 1 0.3968 0.859 0.716 0.004 0.000 0.004 NA
#> ERR978240 1 0.3968 0.859 0.716 0.004 0.000 0.004 NA
#> ERR978241 4 0.4874 0.765 0.064 0.008 0.100 0.780 NA
#> ERR978242 4 0.4874 0.765 0.064 0.008 0.100 0.780 NA
#> ERR978243 4 0.4874 0.765 0.064 0.008 0.100 0.780 NA
#> ERR978244 4 0.4874 0.765 0.064 0.008 0.100 0.780 NA
#> ERR978245 4 0.4874 0.765 0.064 0.008 0.100 0.780 NA
#> ERR978246 4 0.4874 0.765 0.064 0.008 0.100 0.780 NA
#> ERR978247 4 0.4874 0.765 0.064 0.008 0.100 0.780 NA
#> ERR978248 4 0.8878 0.316 0.040 0.176 0.324 0.332 NA
#> ERR978249 4 0.8878 0.316 0.040 0.176 0.324 0.332 NA
#> ERR978250 4 0.8878 0.316 0.040 0.176 0.324 0.332 NA
#> ERR978251 4 0.8878 0.316 0.040 0.176 0.324 0.332 NA
#> ERR978252 4 0.8878 0.316 0.040 0.176 0.324 0.332 NA
#> ERR978253 4 0.8878 0.316 0.040 0.176 0.324 0.332 NA
#> ERR978254 4 0.8878 0.316 0.040 0.176 0.324 0.332 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978108 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978109 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978110 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978111 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978112 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978113 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978114 2 0.5762 0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978115 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978116 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978117 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978118 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978119 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978120 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978121 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978122 2 0.5306 0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978123 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978124 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978125 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978126 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978127 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978128 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978129 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978130 3 0.6516 0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978131 3 0.6531 0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978132 3 0.6531 0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978133 3 0.6531 0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978134 3 0.6531 0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978135 3 0.6531 0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978136 3 0.6531 0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978137 3 0.6531 0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978138 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978139 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978140 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978141 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978142 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978143 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978144 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978145 5 0.7314 0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978146 5 0.7478 0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978147 5 0.7478 0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978148 5 0.7478 0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978149 5 0.7478 0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978150 5 0.7478 0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978151 5 0.7478 0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978152 5 0.7478 0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978153 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978154 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978155 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978156 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978157 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978158 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978159 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978160 1 0.0777 0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978161 1 0.0146 0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978162 1 0.0146 0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978163 1 0.0146 0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978164 1 0.0146 0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978165 1 0.0146 0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978166 1 0.0146 0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978167 1 0.0146 0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978168 1 0.0146 0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978169 4 0.1880 0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978170 4 0.1880 0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978171 4 0.1880 0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978172 4 0.1880 0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978173 4 0.1880 0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978174 4 0.1880 0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978175 4 0.1880 0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978176 4 0.3273 0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978177 4 0.3273 0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978178 4 0.3273 0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978179 4 0.3273 0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978180 4 0.3273 0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978181 4 0.3273 0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978182 4 0.3273 0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978183 2 0.0972 0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978184 2 0.0972 0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978185 2 0.0972 0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978186 2 0.0972 0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978187 2 0.0972 0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978188 2 0.0972 0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978189 2 0.1049 0.780 0.000 0.960 0.008 0.000 0.032 NA
#> ERR978190 2 0.0520 0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978191 2 0.0520 0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978192 2 0.0520 0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978193 2 0.0520 0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978194 2 0.0520 0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978195 2 0.0520 0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978196 2 0.0520 0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978197 3 0.1477 0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978198 3 0.1477 0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978199 3 0.1477 0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978200 3 0.1477 0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978201 3 0.1477 0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978202 3 0.1477 0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978203 3 0.1477 0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978204 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978205 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978206 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978207 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978208 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978209 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978210 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978211 3 0.2649 0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978212 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978213 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978214 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978215 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978216 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978217 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978218 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978219 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978220 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978221 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978222 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978223 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978224 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978225 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978226 5 0.6657 0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978227 1 0.4841 0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978228 1 0.4841 0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978229 1 0.4841 0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978230 1 0.4841 0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978231 1 0.4841 0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978232 1 0.4841 0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978233 1 0.4841 0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978234 1 0.4269 0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978235 1 0.4269 0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978236 1 0.4269 0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978237 1 0.4269 0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978238 1 0.4269 0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978239 1 0.4269 0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978240 1 0.4388 0.823 0.648 0.000 0.000 0.004 0.036 NA
#> ERR978241 4 0.4470 0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978242 4 0.4470 0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978243 4 0.4470 0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978244 4 0.4470 0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978245 4 0.4470 0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978246 4 0.4470 0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978247 4 0.4470 0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978248 4 0.8566 0.369 0.020 0.120 0.124 0.340 0.308 NA
#> ERR978249 4 0.8538 0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978250 4 0.8538 0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978251 4 0.8538 0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978252 4 0.8538 0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978253 4 0.8538 0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978254 4 0.8566 0.369 0.020 0.120 0.124 0.340 0.308 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.640 0.738 0.900 0.4902 0.502 0.502
#> 3 3 0.701 0.867 0.904 0.3133 0.759 0.563
#> 4 4 0.724 0.659 0.804 0.1407 0.726 0.383
#> 5 5 0.865 0.864 0.862 0.0941 0.899 0.634
#> 6 6 0.901 0.902 0.869 0.0274 0.979 0.894
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.0000 0.873 0.000 1.000
#> ERR978108 2 0.0000 0.873 0.000 1.000
#> ERR978109 2 0.0000 0.873 0.000 1.000
#> ERR978110 2 0.0000 0.873 0.000 1.000
#> ERR978111 2 0.0000 0.873 0.000 1.000
#> ERR978112 2 0.0000 0.873 0.000 1.000
#> ERR978113 2 0.0000 0.873 0.000 1.000
#> ERR978114 2 0.0000 0.873 0.000 1.000
#> ERR978115 2 0.0000 0.873 0.000 1.000
#> ERR978116 2 0.0000 0.873 0.000 1.000
#> ERR978117 2 0.0000 0.873 0.000 1.000
#> ERR978118 2 0.0000 0.873 0.000 1.000
#> ERR978119 2 0.0000 0.873 0.000 1.000
#> ERR978120 2 0.0000 0.873 0.000 1.000
#> ERR978121 2 0.0000 0.873 0.000 1.000
#> ERR978122 2 0.0000 0.873 0.000 1.000
#> ERR978123 1 0.9896 0.265 0.560 0.440
#> ERR978124 1 0.9896 0.265 0.560 0.440
#> ERR978125 1 0.9896 0.265 0.560 0.440
#> ERR978126 1 0.9896 0.265 0.560 0.440
#> ERR978127 1 0.9896 0.265 0.560 0.440
#> ERR978128 1 0.9896 0.265 0.560 0.440
#> ERR978129 1 0.9896 0.265 0.560 0.440
#> ERR978130 1 0.9896 0.265 0.560 0.440
#> ERR978131 1 0.9896 0.265 0.560 0.440
#> ERR978132 1 0.9896 0.265 0.560 0.440
#> ERR978133 1 0.9896 0.265 0.560 0.440
#> ERR978134 1 0.9896 0.265 0.560 0.440
#> ERR978135 1 0.9896 0.265 0.560 0.440
#> ERR978136 1 0.9896 0.265 0.560 0.440
#> ERR978137 1 0.9896 0.265 0.560 0.440
#> ERR978138 2 0.9248 0.453 0.340 0.660
#> ERR978139 2 0.9248 0.453 0.340 0.660
#> ERR978140 2 0.9248 0.453 0.340 0.660
#> ERR978141 2 0.9248 0.453 0.340 0.660
#> ERR978142 2 0.9248 0.453 0.340 0.660
#> ERR978143 2 0.9248 0.453 0.340 0.660
#> ERR978144 2 0.9248 0.453 0.340 0.660
#> ERR978145 2 0.9248 0.453 0.340 0.660
#> ERR978146 2 0.9248 0.453 0.340 0.660
#> ERR978147 2 0.9248 0.453 0.340 0.660
#> ERR978148 2 0.9248 0.453 0.340 0.660
#> ERR978149 2 0.9248 0.453 0.340 0.660
#> ERR978150 2 0.9248 0.453 0.340 0.660
#> ERR978151 2 0.9248 0.453 0.340 0.660
#> ERR978152 2 0.9248 0.453 0.340 0.660
#> ERR978153 1 0.0000 0.871 1.000 0.000
#> ERR978154 1 0.0000 0.871 1.000 0.000
#> ERR978155 1 0.0000 0.871 1.000 0.000
#> ERR978156 1 0.0000 0.871 1.000 0.000
#> ERR978157 1 0.0000 0.871 1.000 0.000
#> ERR978158 1 0.0000 0.871 1.000 0.000
#> ERR978159 1 0.0000 0.871 1.000 0.000
#> ERR978160 1 0.0000 0.871 1.000 0.000
#> ERR978161 1 0.0000 0.871 1.000 0.000
#> ERR978162 1 0.0000 0.871 1.000 0.000
#> ERR978163 1 0.0000 0.871 1.000 0.000
#> ERR978164 1 0.0000 0.871 1.000 0.000
#> ERR978165 1 0.0000 0.871 1.000 0.000
#> ERR978166 1 0.0000 0.871 1.000 0.000
#> ERR978167 1 0.0000 0.871 1.000 0.000
#> ERR978168 1 0.0000 0.871 1.000 0.000
#> ERR978169 1 0.0376 0.871 0.996 0.004
#> ERR978170 1 0.0376 0.871 0.996 0.004
#> ERR978171 1 0.0376 0.871 0.996 0.004
#> ERR978172 1 0.0376 0.871 0.996 0.004
#> ERR978173 1 0.0376 0.871 0.996 0.004
#> ERR978174 1 0.0376 0.871 0.996 0.004
#> ERR978175 1 0.0376 0.871 0.996 0.004
#> ERR978176 1 0.0376 0.871 0.996 0.004
#> ERR978177 1 0.0376 0.871 0.996 0.004
#> ERR978178 1 0.0376 0.871 0.996 0.004
#> ERR978179 1 0.0376 0.871 0.996 0.004
#> ERR978180 1 0.0376 0.871 0.996 0.004
#> ERR978181 1 0.0376 0.871 0.996 0.004
#> ERR978182 1 0.0376 0.871 0.996 0.004
#> ERR978183 2 0.0000 0.873 0.000 1.000
#> ERR978184 2 0.0000 0.873 0.000 1.000
#> ERR978185 2 0.0000 0.873 0.000 1.000
#> ERR978186 2 0.0000 0.873 0.000 1.000
#> ERR978187 2 0.0000 0.873 0.000 1.000
#> ERR978188 2 0.0000 0.873 0.000 1.000
#> ERR978189 2 0.0000 0.873 0.000 1.000
#> ERR978190 2 0.0000 0.873 0.000 1.000
#> ERR978191 2 0.0000 0.873 0.000 1.000
#> ERR978192 2 0.0000 0.873 0.000 1.000
#> ERR978193 2 0.0000 0.873 0.000 1.000
#> ERR978194 2 0.0000 0.873 0.000 1.000
#> ERR978195 2 0.0000 0.873 0.000 1.000
#> ERR978196 2 0.0000 0.873 0.000 1.000
#> ERR978197 2 0.0000 0.873 0.000 1.000
#> ERR978198 2 0.0000 0.873 0.000 1.000
#> ERR978199 2 0.0000 0.873 0.000 1.000
#> ERR978200 2 0.0000 0.873 0.000 1.000
#> ERR978201 2 0.0000 0.873 0.000 1.000
#> ERR978202 2 0.0000 0.873 0.000 1.000
#> ERR978203 2 0.0000 0.873 0.000 1.000
#> ERR978204 2 0.0000 0.873 0.000 1.000
#> ERR978205 2 0.0000 0.873 0.000 1.000
#> ERR978206 2 0.0000 0.873 0.000 1.000
#> ERR978207 2 0.0000 0.873 0.000 1.000
#> ERR978208 2 0.0000 0.873 0.000 1.000
#> ERR978209 2 0.0000 0.873 0.000 1.000
#> ERR978210 2 0.0000 0.873 0.000 1.000
#> ERR978211 2 0.0000 0.873 0.000 1.000
#> ERR978212 2 0.0000 0.873 0.000 1.000
#> ERR978213 2 0.0000 0.873 0.000 1.000
#> ERR978214 2 0.0000 0.873 0.000 1.000
#> ERR978215 2 0.0000 0.873 0.000 1.000
#> ERR978216 2 0.0000 0.873 0.000 1.000
#> ERR978217 2 0.0000 0.873 0.000 1.000
#> ERR978218 2 0.0000 0.873 0.000 1.000
#> ERR978219 2 0.0000 0.873 0.000 1.000
#> ERR978220 2 0.0000 0.873 0.000 1.000
#> ERR978221 2 0.0000 0.873 0.000 1.000
#> ERR978222 2 0.0000 0.873 0.000 1.000
#> ERR978223 2 0.0000 0.873 0.000 1.000
#> ERR978224 2 0.0000 0.873 0.000 1.000
#> ERR978225 2 0.0000 0.873 0.000 1.000
#> ERR978226 2 0.0000 0.873 0.000 1.000
#> ERR978227 1 0.0000 0.871 1.000 0.000
#> ERR978228 1 0.0000 0.871 1.000 0.000
#> ERR978229 1 0.0000 0.871 1.000 0.000
#> ERR978230 1 0.0000 0.871 1.000 0.000
#> ERR978231 1 0.0000 0.871 1.000 0.000
#> ERR978232 1 0.0000 0.871 1.000 0.000
#> ERR978233 1 0.0000 0.871 1.000 0.000
#> ERR978234 1 0.0000 0.871 1.000 0.000
#> ERR978235 1 0.0000 0.871 1.000 0.000
#> ERR978236 1 0.0000 0.871 1.000 0.000
#> ERR978237 1 0.0000 0.871 1.000 0.000
#> ERR978238 1 0.0000 0.871 1.000 0.000
#> ERR978239 1 0.0000 0.871 1.000 0.000
#> ERR978240 1 0.0000 0.871 1.000 0.000
#> ERR978241 1 0.0376 0.871 0.996 0.004
#> ERR978242 1 0.0376 0.871 0.996 0.004
#> ERR978243 1 0.0376 0.871 0.996 0.004
#> ERR978244 1 0.0376 0.871 0.996 0.004
#> ERR978245 1 0.0376 0.871 0.996 0.004
#> ERR978246 1 0.0376 0.871 0.996 0.004
#> ERR978247 1 0.0376 0.871 0.996 0.004
#> ERR978248 2 0.9881 0.224 0.436 0.564
#> ERR978249 2 0.9881 0.224 0.436 0.564
#> ERR978250 2 0.9881 0.224 0.436 0.564
#> ERR978251 2 0.9881 0.224 0.436 0.564
#> ERR978252 2 0.9881 0.224 0.436 0.564
#> ERR978253 2 0.9881 0.224 0.436 0.564
#> ERR978254 2 0.9881 0.224 0.436 0.564
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978108 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978109 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978110 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978111 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978112 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978113 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978114 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978115 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978116 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978117 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978118 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978119 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978120 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978121 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978122 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978123 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978124 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978125 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978126 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978127 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978128 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978129 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978130 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978131 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978132 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978133 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978134 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978135 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978136 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978137 3 0.0829 0.861 0.004 0.012 0.984
#> ERR978138 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978139 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978140 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978141 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978142 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978143 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978144 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978145 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978146 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978147 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978148 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978149 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978150 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978151 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978152 3 0.0000 0.863 0.000 0.000 1.000
#> ERR978153 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978169 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978170 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978171 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978172 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978173 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978174 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978175 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978176 3 0.6746 0.775 0.192 0.076 0.732
#> ERR978177 3 0.6746 0.775 0.192 0.076 0.732
#> ERR978178 3 0.6746 0.775 0.192 0.076 0.732
#> ERR978179 3 0.6746 0.775 0.192 0.076 0.732
#> ERR978180 3 0.6746 0.775 0.192 0.076 0.732
#> ERR978181 3 0.6746 0.775 0.192 0.076 0.732
#> ERR978182 3 0.6746 0.775 0.192 0.076 0.732
#> ERR978183 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978184 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978185 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978186 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978187 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978188 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978189 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978190 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978191 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978192 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978193 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978194 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978195 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978196 2 0.0000 0.866 0.000 1.000 0.000
#> ERR978197 2 0.5465 0.792 0.000 0.712 0.288
#> ERR978198 2 0.5465 0.792 0.000 0.712 0.288
#> ERR978199 2 0.5465 0.792 0.000 0.712 0.288
#> ERR978200 2 0.5465 0.792 0.000 0.712 0.288
#> ERR978201 2 0.5465 0.792 0.000 0.712 0.288
#> ERR978202 2 0.5465 0.792 0.000 0.712 0.288
#> ERR978203 2 0.5465 0.792 0.000 0.712 0.288
#> ERR978204 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978205 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978206 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978207 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978208 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978209 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978210 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978211 2 0.5397 0.799 0.000 0.720 0.280
#> ERR978212 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978213 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978214 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978215 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978216 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978217 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978218 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978219 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978220 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978221 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978222 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978223 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978224 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978225 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978226 2 0.5138 0.822 0.000 0.748 0.252
#> ERR978227 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1.000 0.000 0.000
#> ERR978241 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978242 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978243 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978244 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978245 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978246 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978247 3 0.6662 0.779 0.192 0.072 0.736
#> ERR978248 2 0.2297 0.842 0.036 0.944 0.020
#> ERR978249 2 0.2297 0.842 0.036 0.944 0.020
#> ERR978250 2 0.2297 0.842 0.036 0.944 0.020
#> ERR978251 2 0.2297 0.842 0.036 0.944 0.020
#> ERR978252 2 0.2297 0.842 0.036 0.944 0.020
#> ERR978253 2 0.2297 0.842 0.036 0.944 0.020
#> ERR978254 2 0.2297 0.842 0.036 0.944 0.020
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978123 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978124 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978125 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978126 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978127 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978128 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978129 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978130 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978131 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978132 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978133 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978134 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978135 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978136 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978137 3 0.130 0.673 0.000 0.000 0.956 0.044
#> ERR978138 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978139 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978140 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978141 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978142 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978143 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978144 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978145 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978146 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978147 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978148 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978149 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978150 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978151 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978152 3 0.307 0.634 0.000 0.000 0.848 0.152
#> ERR978153 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978169 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978170 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978171 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978172 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978173 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978174 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978175 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978176 4 0.488 0.484 0.016 0.000 0.288 0.696
#> ERR978177 4 0.488 0.484 0.016 0.000 0.288 0.696
#> ERR978178 4 0.488 0.484 0.016 0.000 0.288 0.696
#> ERR978179 4 0.488 0.484 0.016 0.000 0.288 0.696
#> ERR978180 4 0.488 0.484 0.016 0.000 0.288 0.696
#> ERR978181 4 0.488 0.484 0.016 0.000 0.288 0.696
#> ERR978182 4 0.488 0.484 0.016 0.000 0.288 0.696
#> ERR978183 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0.000 1.000 0.000 0.000
#> ERR978197 3 0.601 0.493 0.000 0.072 0.640 0.288
#> ERR978198 3 0.601 0.493 0.000 0.072 0.640 0.288
#> ERR978199 3 0.601 0.493 0.000 0.072 0.640 0.288
#> ERR978200 3 0.601 0.493 0.000 0.072 0.640 0.288
#> ERR978201 3 0.601 0.493 0.000 0.072 0.640 0.288
#> ERR978202 3 0.601 0.493 0.000 0.072 0.640 0.288
#> ERR978203 3 0.601 0.493 0.000 0.072 0.640 0.288
#> ERR978204 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978205 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978206 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978207 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978208 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978209 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978210 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978211 3 0.631 0.475 0.000 0.092 0.620 0.288
#> ERR978212 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978213 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978214 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978215 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978216 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978217 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978218 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978219 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978220 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978221 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978222 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978223 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978224 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978225 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978226 4 0.767 -0.147 0.000 0.212 0.392 0.396
#> ERR978227 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1.000 0.000 0.000 0.000
#> ERR978241 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978242 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978243 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978244 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978245 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978246 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978247 4 0.504 0.485 0.020 0.000 0.296 0.684
#> ERR978248 4 0.391 0.384 0.004 0.212 0.000 0.784
#> ERR978249 4 0.391 0.384 0.004 0.212 0.000 0.784
#> ERR978250 4 0.391 0.384 0.004 0.212 0.000 0.784
#> ERR978251 4 0.391 0.384 0.004 0.212 0.000 0.784
#> ERR978252 4 0.391 0.384 0.004 0.212 0.000 0.784
#> ERR978253 4 0.391 0.384 0.004 0.212 0.000 0.784
#> ERR978254 4 0.391 0.384 0.004 0.212 0.000 0.784
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978124 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978125 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978126 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978127 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978128 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978129 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978130 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978131 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978132 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978133 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978134 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978135 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978136 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978137 3 0.4268 0.724 0 0.000 0.648 0.008 0.344
#> ERR978138 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978139 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978140 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978141 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978142 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978143 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978144 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978145 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978146 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978147 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978148 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978149 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978150 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978151 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978152 5 0.2722 0.674 0 0.000 0.020 0.108 0.872
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978170 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978171 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978172 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978173 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978174 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978175 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978176 4 0.0324 0.954 0 0.000 0.004 0.992 0.004
#> ERR978177 4 0.0324 0.954 0 0.000 0.004 0.992 0.004
#> ERR978178 4 0.0324 0.954 0 0.000 0.004 0.992 0.004
#> ERR978179 4 0.0324 0.954 0 0.000 0.004 0.992 0.004
#> ERR978180 4 0.0324 0.954 0 0.000 0.004 0.992 0.004
#> ERR978181 4 0.0324 0.954 0 0.000 0.004 0.992 0.004
#> ERR978182 4 0.0324 0.954 0 0.000 0.004 0.992 0.004
#> ERR978183 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978197 3 0.0912 0.715 0 0.012 0.972 0.000 0.016
#> ERR978198 3 0.0912 0.715 0 0.012 0.972 0.000 0.016
#> ERR978199 3 0.0912 0.715 0 0.012 0.972 0.000 0.016
#> ERR978200 3 0.0912 0.715 0 0.012 0.972 0.000 0.016
#> ERR978201 3 0.0912 0.715 0 0.012 0.972 0.000 0.016
#> ERR978202 3 0.0912 0.715 0 0.012 0.972 0.000 0.016
#> ERR978203 3 0.0912 0.715 0 0.012 0.972 0.000 0.016
#> ERR978204 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978205 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978206 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978207 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978208 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978209 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978210 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978211 3 0.1281 0.706 0 0.012 0.956 0.000 0.032
#> ERR978212 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978213 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978214 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978215 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978216 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978217 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978218 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978219 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978220 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978221 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978222 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978223 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978224 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978225 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978226 5 0.4387 0.676 0 0.012 0.348 0.000 0.640
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978242 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978243 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978244 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978245 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978246 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978247 4 0.0000 0.956 0 0.000 0.000 1.000 0.000
#> ERR978248 4 0.3579 0.867 0 0.032 0.016 0.836 0.116
#> ERR978249 4 0.3579 0.867 0 0.032 0.016 0.836 0.116
#> ERR978250 4 0.3579 0.867 0 0.032 0.016 0.836 0.116
#> ERR978251 4 0.3579 0.867 0 0.032 0.016 0.836 0.116
#> ERR978252 4 0.3579 0.867 0 0.032 0.016 0.836 0.116
#> ERR978253 4 0.3579 0.867 0 0.032 0.016 0.836 0.116
#> ERR978254 4 0.3579 0.867 0 0.032 0.016 0.836 0.116
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978123 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978124 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978125 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978126 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978127 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978128 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978129 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978130 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978131 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978132 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978133 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978134 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978135 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978136 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978137 3 0.3244 0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978138 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978139 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978140 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978141 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978142 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978143 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978144 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978145 5 0.5272 0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978146 5 0.5261 0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978147 5 0.5261 0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978148 5 0.5261 0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978149 5 0.5261 0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978150 5 0.5261 0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978151 5 0.5261 0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978152 5 0.5261 0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978153 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0260 0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978170 4 0.0260 0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978171 4 0.0260 0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978172 4 0.0260 0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978173 4 0.0260 0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978174 4 0.0260 0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978175 4 0.0260 0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978176 4 0.1663 0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978177 4 0.1663 0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978178 4 0.1663 0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978179 4 0.1663 0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978180 4 0.1663 0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978181 4 0.1663 0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978182 4 0.1663 0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978183 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978184 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978185 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978186 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978187 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978188 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978189 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978190 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978191 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978192 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978193 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978194 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978195 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978196 2 0.0914 0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978197 3 0.3050 0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978198 3 0.3050 0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978199 3 0.3050 0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978200 3 0.3050 0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978201 3 0.3050 0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978202 3 0.3050 0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978203 3 0.3050 0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978204 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978205 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978206 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978207 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978208 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978209 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978210 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978211 3 0.3482 0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978212 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978213 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978214 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978215 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978216 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978217 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978218 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978219 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978220 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978221 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978222 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978223 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978224 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978225 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978226 6 0.0000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978227 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978228 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978229 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978230 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978231 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978232 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978233 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978234 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978235 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978236 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978237 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978238 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978239 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978240 1 0.0458 0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978241 4 0.0790 0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978242 4 0.0790 0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978243 4 0.0790 0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978244 4 0.0790 0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978245 4 0.0790 0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978246 4 0.0790 0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978247 4 0.0790 0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978248 4 0.5228 0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978249 4 0.5228 0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978250 4 0.5228 0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978251 4 0.5228 0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978252 4 0.5228 0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978253 4 0.5228 0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978254 4 0.5228 0.773 0.000 0.004 0.012 0.656 0.200 0.128
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 1.000 0.978 0.990 0.7654 0.757 0.640
#> 4 4 0.735 0.678 0.869 0.2602 0.822 0.588
#> 5 5 1.000 0.987 0.992 0.0996 0.855 0.518
#> 6 6 1.000 1.000 1.000 0.0403 0.959 0.800
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5
There is also optional best \(k\) = 2 3 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 1.000 0 1.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000
#> ERR978123 3 0.000 0.983 0 0.000 1.000
#> ERR978124 3 0.000 0.983 0 0.000 1.000
#> ERR978125 3 0.000 0.983 0 0.000 1.000
#> ERR978126 3 0.000 0.983 0 0.000 1.000
#> ERR978127 3 0.000 0.983 0 0.000 1.000
#> ERR978128 3 0.000 0.983 0 0.000 1.000
#> ERR978129 3 0.000 0.983 0 0.000 1.000
#> ERR978130 3 0.000 0.983 0 0.000 1.000
#> ERR978131 3 0.000 0.983 0 0.000 1.000
#> ERR978132 3 0.000 0.983 0 0.000 1.000
#> ERR978133 3 0.000 0.983 0 0.000 1.000
#> ERR978134 3 0.000 0.983 0 0.000 1.000
#> ERR978135 3 0.000 0.983 0 0.000 1.000
#> ERR978136 3 0.000 0.983 0 0.000 1.000
#> ERR978137 3 0.000 0.983 0 0.000 1.000
#> ERR978138 3 0.000 0.983 0 0.000 1.000
#> ERR978139 3 0.000 0.983 0 0.000 1.000
#> ERR978140 3 0.000 0.983 0 0.000 1.000
#> ERR978141 3 0.000 0.983 0 0.000 1.000
#> ERR978142 3 0.000 0.983 0 0.000 1.000
#> ERR978143 3 0.000 0.983 0 0.000 1.000
#> ERR978144 3 0.000 0.983 0 0.000 1.000
#> ERR978145 3 0.000 0.983 0 0.000 1.000
#> ERR978146 3 0.000 0.983 0 0.000 1.000
#> ERR978147 3 0.000 0.983 0 0.000 1.000
#> ERR978148 3 0.000 0.983 0 0.000 1.000
#> ERR978149 3 0.000 0.983 0 0.000 1.000
#> ERR978150 3 0.000 0.983 0 0.000 1.000
#> ERR978151 3 0.000 0.983 0 0.000 1.000
#> ERR978152 3 0.000 0.983 0 0.000 1.000
#> ERR978153 1 0.000 1.000 1 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000
#> ERR978169 3 0.000 0.983 0 0.000 1.000
#> ERR978170 3 0.000 0.983 0 0.000 1.000
#> ERR978171 3 0.000 0.983 0 0.000 1.000
#> ERR978172 3 0.000 0.983 0 0.000 1.000
#> ERR978173 3 0.000 0.983 0 0.000 1.000
#> ERR978174 3 0.000 0.983 0 0.000 1.000
#> ERR978175 3 0.000 0.983 0 0.000 1.000
#> ERR978176 3 0.000 0.983 0 0.000 1.000
#> ERR978177 3 0.000 0.983 0 0.000 1.000
#> ERR978178 3 0.000 0.983 0 0.000 1.000
#> ERR978179 3 0.000 0.983 0 0.000 1.000
#> ERR978180 3 0.000 0.983 0 0.000 1.000
#> ERR978181 3 0.000 0.983 0 0.000 1.000
#> ERR978182 3 0.000 0.983 0 0.000 1.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000
#> ERR978197 3 0.000 0.983 0 0.000 1.000
#> ERR978198 3 0.000 0.983 0 0.000 1.000
#> ERR978199 3 0.000 0.983 0 0.000 1.000
#> ERR978200 3 0.000 0.983 0 0.000 1.000
#> ERR978201 3 0.000 0.983 0 0.000 1.000
#> ERR978202 3 0.000 0.983 0 0.000 1.000
#> ERR978203 3 0.000 0.983 0 0.000 1.000
#> ERR978204 3 0.000 0.983 0 0.000 1.000
#> ERR978205 3 0.000 0.983 0 0.000 1.000
#> ERR978206 3 0.000 0.983 0 0.000 1.000
#> ERR978207 3 0.000 0.983 0 0.000 1.000
#> ERR978208 3 0.000 0.983 0 0.000 1.000
#> ERR978209 3 0.000 0.983 0 0.000 1.000
#> ERR978210 3 0.000 0.983 0 0.000 1.000
#> ERR978211 3 0.000 0.983 0 0.000 1.000
#> ERR978212 3 0.000 0.983 0 0.000 1.000
#> ERR978213 3 0.000 0.983 0 0.000 1.000
#> ERR978214 3 0.000 0.983 0 0.000 1.000
#> ERR978215 3 0.000 0.983 0 0.000 1.000
#> ERR978216 3 0.000 0.983 0 0.000 1.000
#> ERR978217 3 0.000 0.983 0 0.000 1.000
#> ERR978218 3 0.000 0.983 0 0.000 1.000
#> ERR978219 3 0.000 0.983 0 0.000 1.000
#> ERR978220 3 0.000 0.983 0 0.000 1.000
#> ERR978221 3 0.000 0.983 0 0.000 1.000
#> ERR978222 3 0.000 0.983 0 0.000 1.000
#> ERR978223 3 0.000 0.983 0 0.000 1.000
#> ERR978224 3 0.000 0.983 0 0.000 1.000
#> ERR978225 3 0.000 0.983 0 0.000 1.000
#> ERR978226 3 0.000 0.983 0 0.000 1.000
#> ERR978227 1 0.000 1.000 1 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000
#> ERR978241 3 0.000 0.983 0 0.000 1.000
#> ERR978242 3 0.000 0.983 0 0.000 1.000
#> ERR978243 3 0.000 0.983 0 0.000 1.000
#> ERR978244 3 0.000 0.983 0 0.000 1.000
#> ERR978245 3 0.000 0.983 0 0.000 1.000
#> ERR978246 3 0.000 0.983 0 0.000 1.000
#> ERR978247 3 0.000 0.983 0 0.000 1.000
#> ERR978248 3 0.559 0.589 0 0.304 0.696
#> ERR978249 3 0.510 0.688 0 0.248 0.752
#> ERR978250 3 0.400 0.814 0 0.160 0.840
#> ERR978251 3 0.207 0.927 0 0.060 0.940
#> ERR978252 3 0.388 0.824 0 0.152 0.848
#> ERR978253 3 0.497 0.707 0 0.236 0.764
#> ERR978254 3 0.573 0.549 0 0.324 0.676
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978123 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978124 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978125 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978126 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978127 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978128 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978129 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978130 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978131 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978132 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978133 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978134 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978135 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978136 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978137 3 0.4454 0.4439 0 0.000 0.692 0.308
#> ERR978138 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978139 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978140 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978141 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978142 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978143 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978144 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978145 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978146 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978147 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978148 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978149 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978150 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978151 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978152 4 0.3569 0.6708 0 0.000 0.196 0.804
#> ERR978153 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978170 4 0.0336 0.7395 0 0.000 0.008 0.992
#> ERR978171 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978172 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978173 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978174 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978175 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978176 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978177 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978178 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978179 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978180 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978181 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978182 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978183 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 1.0000 0 1.000 0.000 0.000
#> ERR978197 3 0.0000 0.5422 0 0.000 1.000 0.000
#> ERR978198 3 0.0000 0.5422 0 0.000 1.000 0.000
#> ERR978199 3 0.0000 0.5422 0 0.000 1.000 0.000
#> ERR978200 3 0.0000 0.5422 0 0.000 1.000 0.000
#> ERR978201 3 0.0000 0.5422 0 0.000 1.000 0.000
#> ERR978202 3 0.0000 0.5422 0 0.000 1.000 0.000
#> ERR978203 3 0.0000 0.5422 0 0.000 1.000 0.000
#> ERR978204 3 0.1940 0.5386 0 0.000 0.924 0.076
#> ERR978205 3 0.2081 0.5368 0 0.000 0.916 0.084
#> ERR978206 3 0.2281 0.5319 0 0.000 0.904 0.096
#> ERR978207 3 0.2281 0.5319 0 0.000 0.904 0.096
#> ERR978208 3 0.2408 0.5268 0 0.000 0.896 0.104
#> ERR978209 3 0.2281 0.5319 0 0.000 0.904 0.096
#> ERR978210 3 0.2081 0.5368 0 0.000 0.916 0.084
#> ERR978211 3 0.2011 0.5379 0 0.000 0.920 0.080
#> ERR978212 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978213 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978214 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978215 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978216 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978217 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978218 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978219 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978220 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978221 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978222 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978223 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978224 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978225 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978226 3 0.5000 -0.0457 0 0.000 0.504 0.496
#> ERR978227 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.0000 1 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978242 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978243 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978244 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978245 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978246 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978247 4 0.0000 0.7474 0 0.000 0.000 1.000
#> ERR978248 4 0.6918 0.0982 0 0.108 0.420 0.472
#> ERR978249 4 0.6599 0.1025 0 0.080 0.432 0.488
#> ERR978250 4 0.5859 0.0586 0 0.032 0.472 0.496
#> ERR978251 4 0.5409 0.0245 0 0.012 0.492 0.496
#> ERR978252 4 0.6009 0.0621 0 0.040 0.468 0.492
#> ERR978253 4 0.6447 0.0845 0 0.068 0.448 0.484
#> ERR978254 4 0.6994 0.1032 0 0.116 0.412 0.472
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978123 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978124 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978125 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978126 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978127 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978128 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978129 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978130 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978131 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978132 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978133 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978134 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978135 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978136 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978137 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978138 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978139 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978140 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978141 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978142 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978143 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978144 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978145 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978146 3 0.2561 0.864 0 0 0.856 0.000 0.144
#> ERR978147 3 0.2561 0.864 0 0 0.856 0.000 0.144
#> ERR978148 3 0.2377 0.878 0 0 0.872 0.000 0.128
#> ERR978149 3 0.2561 0.864 0 0 0.856 0.000 0.144
#> ERR978150 3 0.2561 0.864 0 0 0.856 0.000 0.144
#> ERR978151 3 0.2377 0.878 0 0 0.872 0.000 0.128
#> ERR978152 3 0.2179 0.890 0 0 0.888 0.000 0.112
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978169 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978170 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978171 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978172 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978173 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978174 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978175 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978176 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978177 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978178 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978179 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978180 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978181 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978182 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978197 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978198 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978199 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978200 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978201 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978202 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978203 3 0.0000 0.962 0 0 1.000 0.000 0.000
#> ERR978204 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978205 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978206 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978207 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978208 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978209 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978210 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978211 5 0.0404 0.990 0 0 0.012 0.000 0.988
#> ERR978212 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978213 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978214 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978215 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978216 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978217 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978218 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978219 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978220 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978221 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978222 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978223 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978224 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978225 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978226 5 0.0000 0.995 0 0 0.000 0.000 1.000
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978241 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978242 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978243 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978244 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978245 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978246 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978247 4 0.0000 1.000 0 0 0.000 1.000 0.000
#> ERR978248 5 0.0404 0.990 0 0 0.000 0.012 0.988
#> ERR978249 5 0.0404 0.990 0 0 0.000 0.012 0.988
#> ERR978250 5 0.0404 0.990 0 0 0.000 0.012 0.988
#> ERR978251 5 0.0404 0.990 0 0 0.000 0.012 0.988
#> ERR978252 5 0.0404 0.990 0 0 0.000 0.012 0.988
#> ERR978253 5 0.0404 0.990 0 0 0.000 0.012 0.988
#> ERR978254 5 0.0404 0.990 0 0 0.000 0.012 0.988
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0 1 0 1 0 0 0 0
#> ERR978108 2 0 1 0 1 0 0 0 0
#> ERR978109 2 0 1 0 1 0 0 0 0
#> ERR978110 2 0 1 0 1 0 0 0 0
#> ERR978111 2 0 1 0 1 0 0 0 0
#> ERR978112 2 0 1 0 1 0 0 0 0
#> ERR978113 2 0 1 0 1 0 0 0 0
#> ERR978114 2 0 1 0 1 0 0 0 0
#> ERR978115 2 0 1 0 1 0 0 0 0
#> ERR978116 2 0 1 0 1 0 0 0 0
#> ERR978117 2 0 1 0 1 0 0 0 0
#> ERR978118 2 0 1 0 1 0 0 0 0
#> ERR978119 2 0 1 0 1 0 0 0 0
#> ERR978120 2 0 1 0 1 0 0 0 0
#> ERR978121 2 0 1 0 1 0 0 0 0
#> ERR978122 2 0 1 0 1 0 0 0 0
#> ERR978123 3 0 1 0 0 1 0 0 0
#> ERR978124 3 0 1 0 0 1 0 0 0
#> ERR978125 3 0 1 0 0 1 0 0 0
#> ERR978126 3 0 1 0 0 1 0 0 0
#> ERR978127 3 0 1 0 0 1 0 0 0
#> ERR978128 3 0 1 0 0 1 0 0 0
#> ERR978129 3 0 1 0 0 1 0 0 0
#> ERR978130 3 0 1 0 0 1 0 0 0
#> ERR978131 3 0 1 0 0 1 0 0 0
#> ERR978132 3 0 1 0 0 1 0 0 0
#> ERR978133 3 0 1 0 0 1 0 0 0
#> ERR978134 3 0 1 0 0 1 0 0 0
#> ERR978135 3 0 1 0 0 1 0 0 0
#> ERR978136 3 0 1 0 0 1 0 0 0
#> ERR978137 3 0 1 0 0 1 0 0 0
#> ERR978138 6 0 1 0 0 0 0 0 1
#> ERR978139 6 0 1 0 0 0 0 0 1
#> ERR978140 6 0 1 0 0 0 0 0 1
#> ERR978141 6 0 1 0 0 0 0 0 1
#> ERR978142 6 0 1 0 0 0 0 0 1
#> ERR978143 6 0 1 0 0 0 0 0 1
#> ERR978144 6 0 1 0 0 0 0 0 1
#> ERR978145 6 0 1 0 0 0 0 0 1
#> ERR978146 6 0 1 0 0 0 0 0 1
#> ERR978147 6 0 1 0 0 0 0 0 1
#> ERR978148 6 0 1 0 0 0 0 0 1
#> ERR978149 6 0 1 0 0 0 0 0 1
#> ERR978150 6 0 1 0 0 0 0 0 1
#> ERR978151 6 0 1 0 0 0 0 0 1
#> ERR978152 6 0 1 0 0 0 0 0 1
#> ERR978153 1 0 1 1 0 0 0 0 0
#> ERR978154 1 0 1 1 0 0 0 0 0
#> ERR978155 1 0 1 1 0 0 0 0 0
#> ERR978156 1 0 1 1 0 0 0 0 0
#> ERR978157 1 0 1 1 0 0 0 0 0
#> ERR978158 1 0 1 1 0 0 0 0 0
#> ERR978159 1 0 1 1 0 0 0 0 0
#> ERR978160 1 0 1 1 0 0 0 0 0
#> ERR978161 1 0 1 1 0 0 0 0 0
#> ERR978162 1 0 1 1 0 0 0 0 0
#> ERR978163 1 0 1 1 0 0 0 0 0
#> ERR978164 1 0 1 1 0 0 0 0 0
#> ERR978165 1 0 1 1 0 0 0 0 0
#> ERR978166 1 0 1 1 0 0 0 0 0
#> ERR978167 1 0 1 1 0 0 0 0 0
#> ERR978168 1 0 1 1 0 0 0 0 0
#> ERR978169 4 0 1 0 0 0 1 0 0
#> ERR978170 4 0 1 0 0 0 1 0 0
#> ERR978171 4 0 1 0 0 0 1 0 0
#> ERR978172 4 0 1 0 0 0 1 0 0
#> ERR978173 4 0 1 0 0 0 1 0 0
#> ERR978174 4 0 1 0 0 0 1 0 0
#> ERR978175 4 0 1 0 0 0 1 0 0
#> ERR978176 4 0 1 0 0 0 1 0 0
#> ERR978177 4 0 1 0 0 0 1 0 0
#> ERR978178 4 0 1 0 0 0 1 0 0
#> ERR978179 4 0 1 0 0 0 1 0 0
#> ERR978180 4 0 1 0 0 0 1 0 0
#> ERR978181 4 0 1 0 0 0 1 0 0
#> ERR978182 4 0 1 0 0 0 1 0 0
#> ERR978183 2 0 1 0 1 0 0 0 0
#> ERR978184 2 0 1 0 1 0 0 0 0
#> ERR978185 2 0 1 0 1 0 0 0 0
#> ERR978186 2 0 1 0 1 0 0 0 0
#> ERR978187 2 0 1 0 1 0 0 0 0
#> ERR978188 2 0 1 0 1 0 0 0 0
#> ERR978189 2 0 1 0 1 0 0 0 0
#> ERR978190 2 0 1 0 1 0 0 0 0
#> ERR978191 2 0 1 0 1 0 0 0 0
#> ERR978192 2 0 1 0 1 0 0 0 0
#> ERR978193 2 0 1 0 1 0 0 0 0
#> ERR978194 2 0 1 0 1 0 0 0 0
#> ERR978195 2 0 1 0 1 0 0 0 0
#> ERR978196 2 0 1 0 1 0 0 0 0
#> ERR978197 3 0 1 0 0 1 0 0 0
#> ERR978198 3 0 1 0 0 1 0 0 0
#> ERR978199 3 0 1 0 0 1 0 0 0
#> ERR978200 3 0 1 0 0 1 0 0 0
#> ERR978201 3 0 1 0 0 1 0 0 0
#> ERR978202 3 0 1 0 0 1 0 0 0
#> ERR978203 3 0 1 0 0 1 0 0 0
#> ERR978204 5 0 1 0 0 0 0 1 0
#> ERR978205 5 0 1 0 0 0 0 1 0
#> ERR978206 5 0 1 0 0 0 0 1 0
#> ERR978207 5 0 1 0 0 0 0 1 0
#> ERR978208 5 0 1 0 0 0 0 1 0
#> ERR978209 5 0 1 0 0 0 0 1 0
#> ERR978210 5 0 1 0 0 0 0 1 0
#> ERR978211 5 0 1 0 0 0 0 1 0
#> ERR978212 5 0 1 0 0 0 0 1 0
#> ERR978213 5 0 1 0 0 0 0 1 0
#> ERR978214 5 0 1 0 0 0 0 1 0
#> ERR978215 5 0 1 0 0 0 0 1 0
#> ERR978216 5 0 1 0 0 0 0 1 0
#> ERR978217 5 0 1 0 0 0 0 1 0
#> ERR978218 5 0 1 0 0 0 0 1 0
#> ERR978219 5 0 1 0 0 0 0 1 0
#> ERR978220 5 0 1 0 0 0 0 1 0
#> ERR978221 5 0 1 0 0 0 0 1 0
#> ERR978222 5 0 1 0 0 0 0 1 0
#> ERR978223 5 0 1 0 0 0 0 1 0
#> ERR978224 5 0 1 0 0 0 0 1 0
#> ERR978225 5 0 1 0 0 0 0 1 0
#> ERR978226 5 0 1 0 0 0 0 1 0
#> ERR978227 1 0 1 1 0 0 0 0 0
#> ERR978228 1 0 1 1 0 0 0 0 0
#> ERR978229 1 0 1 1 0 0 0 0 0
#> ERR978230 1 0 1 1 0 0 0 0 0
#> ERR978231 1 0 1 1 0 0 0 0 0
#> ERR978232 1 0 1 1 0 0 0 0 0
#> ERR978233 1 0 1 1 0 0 0 0 0
#> ERR978234 1 0 1 1 0 0 0 0 0
#> ERR978235 1 0 1 1 0 0 0 0 0
#> ERR978236 1 0 1 1 0 0 0 0 0
#> ERR978237 1 0 1 1 0 0 0 0 0
#> ERR978238 1 0 1 1 0 0 0 0 0
#> ERR978239 1 0 1 1 0 0 0 0 0
#> ERR978240 1 0 1 1 0 0 0 0 0
#> ERR978241 4 0 1 0 0 0 1 0 0
#> ERR978242 4 0 1 0 0 0 1 0 0
#> ERR978243 4 0 1 0 0 0 1 0 0
#> ERR978244 4 0 1 0 0 0 1 0 0
#> ERR978245 4 0 1 0 0 0 1 0 0
#> ERR978246 4 0 1 0 0 0 1 0 0
#> ERR978247 4 0 1 0 0 0 1 0 0
#> ERR978248 5 0 1 0 0 0 0 1 0
#> ERR978249 5 0 1 0 0 0 0 1 0
#> ERR978250 5 0 1 0 0 0 0 1 0
#> ERR978251 5 0 1 0 0 0 0 1 0
#> ERR978252 5 0 1 0 0 0 0 1 0
#> ERR978253 5 0 1 0 0 0 0 1 0
#> ERR978254 5 0 1 0 0 0 0 1 0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 0.809 0.844 0.908 0.8359 0.757 0.640
#> 4 4 0.763 0.695 0.841 0.2109 0.822 0.588
#> 5 5 1.000 0.990 0.993 0.1100 0.899 0.634
#> 6 6 0.956 0.969 0.952 0.0231 0.982 0.907
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5
There is also optional best \(k\) = 2 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.604 1.000 0.000 0.620 0.380
#> ERR978108 2 0.604 1.000 0.000 0.620 0.380
#> ERR978109 2 0.604 1.000 0.000 0.620 0.380
#> ERR978110 2 0.604 1.000 0.000 0.620 0.380
#> ERR978111 2 0.604 1.000 0.000 0.620 0.380
#> ERR978112 2 0.604 1.000 0.000 0.620 0.380
#> ERR978113 2 0.604 1.000 0.000 0.620 0.380
#> ERR978114 2 0.604 1.000 0.000 0.620 0.380
#> ERR978115 2 0.604 1.000 0.000 0.620 0.380
#> ERR978116 2 0.604 1.000 0.000 0.620 0.380
#> ERR978117 2 0.604 1.000 0.000 0.620 0.380
#> ERR978118 2 0.604 1.000 0.000 0.620 0.380
#> ERR978119 2 0.604 1.000 0.000 0.620 0.380
#> ERR978120 2 0.604 1.000 0.000 0.620 0.380
#> ERR978121 2 0.604 1.000 0.000 0.620 0.380
#> ERR978122 2 0.604 1.000 0.000 0.620 0.380
#> ERR978123 3 0.576 0.837 0.000 0.328 0.672
#> ERR978124 3 0.576 0.837 0.000 0.328 0.672
#> ERR978125 3 0.576 0.837 0.000 0.328 0.672
#> ERR978126 3 0.576 0.837 0.000 0.328 0.672
#> ERR978127 3 0.576 0.837 0.000 0.328 0.672
#> ERR978128 3 0.576 0.837 0.000 0.328 0.672
#> ERR978129 3 0.576 0.837 0.000 0.328 0.672
#> ERR978130 3 0.576 0.837 0.000 0.328 0.672
#> ERR978131 3 0.576 0.837 0.000 0.328 0.672
#> ERR978132 3 0.576 0.837 0.000 0.328 0.672
#> ERR978133 3 0.576 0.837 0.000 0.328 0.672
#> ERR978134 3 0.576 0.837 0.000 0.328 0.672
#> ERR978135 3 0.576 0.837 0.000 0.328 0.672
#> ERR978136 3 0.576 0.837 0.000 0.328 0.672
#> ERR978137 3 0.576 0.837 0.000 0.328 0.672
#> ERR978138 3 0.576 0.837 0.000 0.328 0.672
#> ERR978139 3 0.576 0.837 0.000 0.328 0.672
#> ERR978140 3 0.576 0.837 0.000 0.328 0.672
#> ERR978141 3 0.576 0.837 0.000 0.328 0.672
#> ERR978142 3 0.576 0.837 0.000 0.328 0.672
#> ERR978143 3 0.576 0.837 0.000 0.328 0.672
#> ERR978144 3 0.576 0.837 0.000 0.328 0.672
#> ERR978145 3 0.576 0.837 0.000 0.328 0.672
#> ERR978146 3 0.576 0.837 0.000 0.328 0.672
#> ERR978147 3 0.576 0.837 0.000 0.328 0.672
#> ERR978148 3 0.576 0.837 0.000 0.328 0.672
#> ERR978149 3 0.576 0.837 0.000 0.328 0.672
#> ERR978150 3 0.576 0.837 0.000 0.328 0.672
#> ERR978151 3 0.576 0.837 0.000 0.328 0.672
#> ERR978152 3 0.576 0.837 0.000 0.328 0.672
#> ERR978153 1 0.000 1.000 1.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1.000 0.000 0.000
#> ERR978169 3 0.199 0.543 0.048 0.004 0.948
#> ERR978170 3 0.199 0.543 0.048 0.004 0.948
#> ERR978171 3 0.199 0.543 0.048 0.004 0.948
#> ERR978172 3 0.199 0.543 0.048 0.004 0.948
#> ERR978173 3 0.199 0.543 0.048 0.004 0.948
#> ERR978174 3 0.199 0.543 0.048 0.004 0.948
#> ERR978175 3 0.199 0.543 0.048 0.004 0.948
#> ERR978176 3 0.218 0.538 0.032 0.020 0.948
#> ERR978177 3 0.218 0.538 0.032 0.020 0.948
#> ERR978178 3 0.218 0.538 0.032 0.020 0.948
#> ERR978179 3 0.218 0.538 0.032 0.020 0.948
#> ERR978180 3 0.218 0.538 0.032 0.020 0.948
#> ERR978181 3 0.218 0.538 0.032 0.020 0.948
#> ERR978182 3 0.218 0.538 0.032 0.020 0.948
#> ERR978183 2 0.604 1.000 0.000 0.620 0.380
#> ERR978184 2 0.604 1.000 0.000 0.620 0.380
#> ERR978185 2 0.604 1.000 0.000 0.620 0.380
#> ERR978186 2 0.604 1.000 0.000 0.620 0.380
#> ERR978187 2 0.604 1.000 0.000 0.620 0.380
#> ERR978188 2 0.604 1.000 0.000 0.620 0.380
#> ERR978189 2 0.604 1.000 0.000 0.620 0.380
#> ERR978190 2 0.604 1.000 0.000 0.620 0.380
#> ERR978191 2 0.604 1.000 0.000 0.620 0.380
#> ERR978192 2 0.604 1.000 0.000 0.620 0.380
#> ERR978193 2 0.604 1.000 0.000 0.620 0.380
#> ERR978194 2 0.604 1.000 0.000 0.620 0.380
#> ERR978195 2 0.604 1.000 0.000 0.620 0.380
#> ERR978196 2 0.604 1.000 0.000 0.620 0.380
#> ERR978197 3 0.604 0.829 0.000 0.380 0.620
#> ERR978198 3 0.604 0.829 0.000 0.380 0.620
#> ERR978199 3 0.604 0.829 0.000 0.380 0.620
#> ERR978200 3 0.604 0.829 0.000 0.380 0.620
#> ERR978201 3 0.604 0.829 0.000 0.380 0.620
#> ERR978202 3 0.604 0.829 0.000 0.380 0.620
#> ERR978203 3 0.604 0.829 0.000 0.380 0.620
#> ERR978204 3 0.604 0.829 0.000 0.380 0.620
#> ERR978205 3 0.604 0.829 0.000 0.380 0.620
#> ERR978206 3 0.604 0.829 0.000 0.380 0.620
#> ERR978207 3 0.604 0.829 0.000 0.380 0.620
#> ERR978208 3 0.604 0.829 0.000 0.380 0.620
#> ERR978209 3 0.604 0.829 0.000 0.380 0.620
#> ERR978210 3 0.604 0.829 0.000 0.380 0.620
#> ERR978211 3 0.604 0.829 0.000 0.380 0.620
#> ERR978212 3 0.604 0.829 0.000 0.380 0.620
#> ERR978213 3 0.604 0.829 0.000 0.380 0.620
#> ERR978214 3 0.604 0.829 0.000 0.380 0.620
#> ERR978215 3 0.604 0.829 0.000 0.380 0.620
#> ERR978216 3 0.604 0.829 0.000 0.380 0.620
#> ERR978217 3 0.604 0.829 0.000 0.380 0.620
#> ERR978218 3 0.604 0.829 0.000 0.380 0.620
#> ERR978219 3 0.604 0.829 0.000 0.380 0.620
#> ERR978220 3 0.604 0.829 0.000 0.380 0.620
#> ERR978221 3 0.604 0.829 0.000 0.380 0.620
#> ERR978222 3 0.604 0.829 0.000 0.380 0.620
#> ERR978223 3 0.604 0.829 0.000 0.380 0.620
#> ERR978224 3 0.604 0.829 0.000 0.380 0.620
#> ERR978225 3 0.604 0.829 0.000 0.380 0.620
#> ERR978226 3 0.590 0.834 0.000 0.352 0.648
#> ERR978227 1 0.000 1.000 1.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1.000 0.000 0.000
#> ERR978241 3 0.199 0.521 0.004 0.048 0.948
#> ERR978242 3 0.199 0.521 0.004 0.048 0.948
#> ERR978243 3 0.199 0.521 0.004 0.048 0.948
#> ERR978244 3 0.199 0.521 0.004 0.048 0.948
#> ERR978245 3 0.199 0.521 0.004 0.048 0.948
#> ERR978246 3 0.199 0.521 0.004 0.048 0.948
#> ERR978247 3 0.199 0.521 0.004 0.048 0.948
#> ERR978248 3 0.218 0.531 0.020 0.032 0.948
#> ERR978249 3 0.218 0.531 0.020 0.032 0.948
#> ERR978250 3 0.218 0.531 0.020 0.032 0.948
#> ERR978251 3 0.218 0.531 0.020 0.032 0.948
#> ERR978252 3 0.218 0.531 0.020 0.032 0.948
#> ERR978253 3 0.218 0.531 0.020 0.032 0.948
#> ERR978254 3 0.218 0.531 0.020 0.032 0.948
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978123 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978124 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978125 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978126 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978127 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978128 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978129 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978130 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978131 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978132 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978133 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978134 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978135 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978136 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978137 4 0.500 -0.266 0 0.000 0.496 0.504
#> ERR978138 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978139 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978140 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978141 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978142 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978143 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978144 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978145 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978146 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978147 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978148 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978149 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978150 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978151 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978152 3 0.500 0.282 0 0.000 0.512 0.488
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978170 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978171 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978172 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978173 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978174 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978175 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978176 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978177 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978178 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978179 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978180 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978181 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978182 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978197 3 0.172 0.752 0 0.000 0.936 0.064
#> ERR978198 3 0.172 0.752 0 0.000 0.936 0.064
#> ERR978199 3 0.172 0.752 0 0.000 0.936 0.064
#> ERR978200 3 0.172 0.752 0 0.000 0.936 0.064
#> ERR978201 3 0.172 0.752 0 0.000 0.936 0.064
#> ERR978202 3 0.172 0.752 0 0.000 0.936 0.064
#> ERR978203 3 0.172 0.752 0 0.000 0.936 0.064
#> ERR978204 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978205 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978206 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978207 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978208 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978209 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978210 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978211 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978212 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978213 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978214 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978215 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978216 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978217 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978218 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978219 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978220 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978221 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978222 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978223 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978224 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978225 3 0.000 0.768 0 0.000 1.000 0.000
#> ERR978226 3 0.112 0.757 0 0.000 0.964 0.036
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978242 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978243 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978244 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978245 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978246 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978247 4 0.297 0.702 0 0.144 0.000 0.856
#> ERR978248 4 0.316 0.701 0 0.144 0.004 0.852
#> ERR978249 4 0.316 0.701 0 0.144 0.004 0.852
#> ERR978250 4 0.316 0.701 0 0.144 0.004 0.852
#> ERR978251 4 0.316 0.701 0 0.144 0.004 0.852
#> ERR978252 4 0.316 0.701 0 0.144 0.004 0.852
#> ERR978253 4 0.316 0.701 0 0.144 0.004 0.852
#> ERR978254 4 0.316 0.701 0 0.144 0.004 0.852
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978123 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978124 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978125 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978126 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978127 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978128 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978129 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978130 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978131 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978132 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978133 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978134 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978135 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978136 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978137 3 0.0290 0.993 0 0 0.992 0.008 0.000
#> ERR978138 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978139 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978140 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978141 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978142 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978143 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978144 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978145 3 0.0510 0.983 0 0 0.984 0.000 0.016
#> ERR978146 3 0.0162 0.992 0 0 0.996 0.004 0.000
#> ERR978147 3 0.0162 0.992 0 0 0.996 0.004 0.000
#> ERR978148 3 0.0162 0.992 0 0 0.996 0.004 0.000
#> ERR978149 3 0.0162 0.992 0 0 0.996 0.004 0.000
#> ERR978150 3 0.0162 0.992 0 0 0.996 0.004 0.000
#> ERR978151 3 0.0162 0.992 0 0 0.996 0.004 0.000
#> ERR978152 3 0.0162 0.992 0 0 0.996 0.004 0.000
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978170 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978171 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978172 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978173 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978174 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978175 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978176 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978177 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978178 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978179 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978180 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978181 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978182 4 0.0000 0.997 0 0 0.000 1.000 0.000
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.000 0.000
#> ERR978197 5 0.1908 0.926 0 0 0.092 0.000 0.908
#> ERR978198 5 0.1908 0.926 0 0 0.092 0.000 0.908
#> ERR978199 5 0.1908 0.926 0 0 0.092 0.000 0.908
#> ERR978200 5 0.1908 0.926 0 0 0.092 0.000 0.908
#> ERR978201 5 0.1908 0.926 0 0 0.092 0.000 0.908
#> ERR978202 5 0.1908 0.926 0 0 0.092 0.000 0.908
#> ERR978203 5 0.1908 0.926 0 0 0.092 0.000 0.908
#> ERR978204 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978205 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978206 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978207 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978208 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978209 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978210 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978211 5 0.0404 0.975 0 0 0.012 0.000 0.988
#> ERR978212 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978213 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978214 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978215 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978216 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978217 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978218 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978219 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978220 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978221 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978222 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978223 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978224 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978225 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978226 5 0.0000 0.975 0 0 0.000 0.000 1.000
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.000 0.000
#> ERR978241 4 0.0162 0.997 0 0 0.004 0.996 0.000
#> ERR978242 4 0.0162 0.997 0 0 0.004 0.996 0.000
#> ERR978243 4 0.0162 0.997 0 0 0.004 0.996 0.000
#> ERR978244 4 0.0162 0.997 0 0 0.004 0.996 0.000
#> ERR978245 4 0.0162 0.997 0 0 0.004 0.996 0.000
#> ERR978246 4 0.0162 0.997 0 0 0.004 0.996 0.000
#> ERR978247 4 0.0162 0.997 0 0 0.004 0.996 0.000
#> ERR978248 4 0.0290 0.995 0 0 0.008 0.992 0.000
#> ERR978249 4 0.0290 0.995 0 0 0.008 0.992 0.000
#> ERR978250 4 0.0290 0.995 0 0 0.008 0.992 0.000
#> ERR978251 4 0.0290 0.995 0 0 0.008 0.992 0.000
#> ERR978252 4 0.0290 0.995 0 0 0.008 0.992 0.000
#> ERR978253 4 0.0290 0.995 0 0 0.008 0.992 0.000
#> ERR978254 4 0.0290 0.995 0 0 0.008 0.992 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.909 0 1.000 0.000 0.000 0.000 0.000
#> ERR978123 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978124 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978125 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978126 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978127 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978128 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978129 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978130 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978131 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978132 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978133 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978134 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978135 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978136 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978137 3 0.0260 0.992 0 0.000 0.992 0.008 0.000 0.000
#> ERR978138 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978139 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978140 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978141 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978142 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978143 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978144 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978145 3 0.0458 0.981 0 0.000 0.984 0.000 0.016 0.000
#> ERR978146 3 0.0146 0.991 0 0.000 0.996 0.004 0.000 0.000
#> ERR978147 3 0.0146 0.991 0 0.000 0.996 0.004 0.000 0.000
#> ERR978148 3 0.0146 0.991 0 0.000 0.996 0.004 0.000 0.000
#> ERR978149 3 0.0146 0.991 0 0.000 0.996 0.004 0.000 0.000
#> ERR978150 3 0.0146 0.991 0 0.000 0.996 0.004 0.000 0.000
#> ERR978151 3 0.0146 0.991 0 0.000 0.996 0.004 0.000 0.000
#> ERR978152 3 0.0146 0.991 0 0.000 0.996 0.004 0.000 0.000
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978170 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978171 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978172 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978173 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978174 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978175 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978176 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978177 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978178 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978179 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978180 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978181 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978182 4 0.0000 1.000 0 0.000 0.000 1.000 0.000 0.000
#> ERR978183 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978184 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978185 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978186 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978187 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978188 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978189 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978190 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978191 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978192 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978193 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978194 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978195 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978196 2 0.2912 0.895 0 0.784 0.000 0.000 0.000 0.216
#> ERR978197 5 0.1714 0.919 0 0.000 0.092 0.000 0.908 0.000
#> ERR978198 5 0.1714 0.919 0 0.000 0.092 0.000 0.908 0.000
#> ERR978199 5 0.1714 0.919 0 0.000 0.092 0.000 0.908 0.000
#> ERR978200 5 0.1714 0.919 0 0.000 0.092 0.000 0.908 0.000
#> ERR978201 5 0.1714 0.919 0 0.000 0.092 0.000 0.908 0.000
#> ERR978202 5 0.1714 0.919 0 0.000 0.092 0.000 0.908 0.000
#> ERR978203 5 0.1714 0.919 0 0.000 0.092 0.000 0.908 0.000
#> ERR978204 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978205 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978206 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978207 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978208 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978209 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978210 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978211 5 0.0363 0.971 0 0.000 0.012 0.000 0.988 0.000
#> ERR978212 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978213 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978214 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978215 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978216 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978217 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978218 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978219 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978220 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978221 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978222 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978223 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978224 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978225 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978226 5 0.0000 0.972 0 0.000 0.000 0.000 1.000 0.000
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978241 6 0.3023 0.996 0 0.000 0.004 0.212 0.000 0.784
#> ERR978242 6 0.3023 0.996 0 0.000 0.004 0.212 0.000 0.784
#> ERR978243 6 0.3023 0.996 0 0.000 0.004 0.212 0.000 0.784
#> ERR978244 6 0.3023 0.996 0 0.000 0.004 0.212 0.000 0.784
#> ERR978245 6 0.3023 0.996 0 0.000 0.004 0.212 0.000 0.784
#> ERR978246 6 0.3023 0.996 0 0.000 0.004 0.212 0.000 0.784
#> ERR978247 6 0.3023 0.996 0 0.000 0.004 0.212 0.000 0.784
#> ERR978248 6 0.3103 0.996 0 0.000 0.008 0.208 0.000 0.784
#> ERR978249 6 0.3103 0.996 0 0.000 0.008 0.208 0.000 0.784
#> ERR978250 6 0.3103 0.996 0 0.000 0.008 0.208 0.000 0.784
#> ERR978251 6 0.3103 0.996 0 0.000 0.008 0.208 0.000 0.784
#> ERR978252 6 0.3103 0.996 0 0.000 0.008 0.208 0.000 0.784
#> ERR978253 6 0.3103 0.996 0 0.000 0.008 0.208 0.000 0.784
#> ERR978254 6 0.3103 0.996 0 0.000 0.008 0.208 0.000 0.784
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 0.762 0.923 0.947 0.9434 0.686 0.534
#> 4 4 0.974 0.926 0.965 0.1393 0.742 0.426
#> 5 5 0.932 0.898 0.951 0.1101 0.902 0.659
#> 6 6 0.927 0.830 0.899 0.0285 0.972 0.861
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5
There is also optional best \(k\) = 2 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.0000 0.866 0 1.000 0.000
#> ERR978108 2 0.0000 0.866 0 1.000 0.000
#> ERR978109 2 0.0000 0.866 0 1.000 0.000
#> ERR978110 2 0.0000 0.866 0 1.000 0.000
#> ERR978111 2 0.0000 0.866 0 1.000 0.000
#> ERR978112 2 0.0000 0.866 0 1.000 0.000
#> ERR978113 2 0.0000 0.866 0 1.000 0.000
#> ERR978114 2 0.0000 0.866 0 1.000 0.000
#> ERR978115 2 0.0000 0.866 0 1.000 0.000
#> ERR978116 2 0.0000 0.866 0 1.000 0.000
#> ERR978117 2 0.0000 0.866 0 1.000 0.000
#> ERR978118 2 0.0000 0.866 0 1.000 0.000
#> ERR978119 2 0.0000 0.866 0 1.000 0.000
#> ERR978120 2 0.0000 0.866 0 1.000 0.000
#> ERR978121 2 0.0000 0.866 0 1.000 0.000
#> ERR978122 2 0.0000 0.866 0 1.000 0.000
#> ERR978123 3 0.0000 1.000 0 0.000 1.000
#> ERR978124 3 0.0000 1.000 0 0.000 1.000
#> ERR978125 3 0.0000 1.000 0 0.000 1.000
#> ERR978126 3 0.0000 1.000 0 0.000 1.000
#> ERR978127 3 0.0000 1.000 0 0.000 1.000
#> ERR978128 3 0.0000 1.000 0 0.000 1.000
#> ERR978129 3 0.0000 1.000 0 0.000 1.000
#> ERR978130 3 0.0000 1.000 0 0.000 1.000
#> ERR978131 3 0.0237 0.995 0 0.004 0.996
#> ERR978132 3 0.0237 0.995 0 0.004 0.996
#> ERR978133 3 0.0000 1.000 0 0.000 1.000
#> ERR978134 3 0.0000 1.000 0 0.000 1.000
#> ERR978135 3 0.0000 1.000 0 0.000 1.000
#> ERR978136 3 0.0237 0.995 0 0.004 0.996
#> ERR978137 3 0.0237 0.995 0 0.004 0.996
#> ERR978138 3 0.0000 1.000 0 0.000 1.000
#> ERR978139 3 0.0000 1.000 0 0.000 1.000
#> ERR978140 3 0.0000 1.000 0 0.000 1.000
#> ERR978141 3 0.0000 1.000 0 0.000 1.000
#> ERR978142 3 0.0000 1.000 0 0.000 1.000
#> ERR978143 3 0.0000 1.000 0 0.000 1.000
#> ERR978144 3 0.0000 1.000 0 0.000 1.000
#> ERR978145 3 0.0000 1.000 0 0.000 1.000
#> ERR978146 3 0.0000 1.000 0 0.000 1.000
#> ERR978147 3 0.0000 1.000 0 0.000 1.000
#> ERR978148 3 0.0000 1.000 0 0.000 1.000
#> ERR978149 3 0.0000 1.000 0 0.000 1.000
#> ERR978150 3 0.0000 1.000 0 0.000 1.000
#> ERR978151 3 0.0000 1.000 0 0.000 1.000
#> ERR978152 3 0.0000 1.000 0 0.000 1.000
#> ERR978153 1 0.0000 1.000 1 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000
#> ERR978169 3 0.0000 1.000 0 0.000 1.000
#> ERR978170 3 0.0000 1.000 0 0.000 1.000
#> ERR978171 3 0.0000 1.000 0 0.000 1.000
#> ERR978172 3 0.0000 1.000 0 0.000 1.000
#> ERR978173 3 0.0000 1.000 0 0.000 1.000
#> ERR978174 3 0.0000 1.000 0 0.000 1.000
#> ERR978175 3 0.0000 1.000 0 0.000 1.000
#> ERR978176 3 0.0000 1.000 0 0.000 1.000
#> ERR978177 3 0.0000 1.000 0 0.000 1.000
#> ERR978178 3 0.0000 1.000 0 0.000 1.000
#> ERR978179 3 0.0000 1.000 0 0.000 1.000
#> ERR978180 3 0.0000 1.000 0 0.000 1.000
#> ERR978181 3 0.0000 1.000 0 0.000 1.000
#> ERR978182 3 0.0000 1.000 0 0.000 1.000
#> ERR978183 2 0.0000 0.866 0 1.000 0.000
#> ERR978184 2 0.0000 0.866 0 1.000 0.000
#> ERR978185 2 0.0000 0.866 0 1.000 0.000
#> ERR978186 2 0.0000 0.866 0 1.000 0.000
#> ERR978187 2 0.0000 0.866 0 1.000 0.000
#> ERR978188 2 0.0000 0.866 0 1.000 0.000
#> ERR978189 2 0.0000 0.866 0 1.000 0.000
#> ERR978190 2 0.0000 0.866 0 1.000 0.000
#> ERR978191 2 0.0000 0.866 0 1.000 0.000
#> ERR978192 2 0.0000 0.866 0 1.000 0.000
#> ERR978193 2 0.0000 0.866 0 1.000 0.000
#> ERR978194 2 0.0000 0.866 0 1.000 0.000
#> ERR978195 2 0.0000 0.866 0 1.000 0.000
#> ERR978196 2 0.0000 0.866 0 1.000 0.000
#> ERR978197 2 0.5497 0.748 0 0.708 0.292
#> ERR978198 2 0.5810 0.690 0 0.664 0.336
#> ERR978199 2 0.5968 0.644 0 0.636 0.364
#> ERR978200 2 0.5988 0.637 0 0.632 0.368
#> ERR978201 2 0.5905 0.664 0 0.648 0.352
#> ERR978202 2 0.5785 0.696 0 0.668 0.332
#> ERR978203 2 0.5621 0.729 0 0.692 0.308
#> ERR978204 2 0.4605 0.835 0 0.796 0.204
#> ERR978205 2 0.4605 0.835 0 0.796 0.204
#> ERR978206 2 0.4605 0.835 0 0.796 0.204
#> ERR978207 2 0.4605 0.835 0 0.796 0.204
#> ERR978208 2 0.4605 0.835 0 0.796 0.204
#> ERR978209 2 0.4605 0.835 0 0.796 0.204
#> ERR978210 2 0.4605 0.835 0 0.796 0.204
#> ERR978211 2 0.4605 0.835 0 0.796 0.204
#> ERR978212 2 0.4062 0.854 0 0.836 0.164
#> ERR978213 2 0.4121 0.852 0 0.832 0.168
#> ERR978214 2 0.4121 0.852 0 0.832 0.168
#> ERR978215 2 0.4178 0.851 0 0.828 0.172
#> ERR978216 2 0.4121 0.852 0 0.832 0.168
#> ERR978217 2 0.4121 0.852 0 0.832 0.168
#> ERR978218 2 0.4062 0.854 0 0.836 0.164
#> ERR978219 2 0.4452 0.842 0 0.808 0.192
#> ERR978220 2 0.4605 0.835 0 0.796 0.204
#> ERR978221 2 0.4504 0.839 0 0.804 0.196
#> ERR978222 2 0.4605 0.835 0 0.796 0.204
#> ERR978223 2 0.4555 0.837 0 0.800 0.200
#> ERR978224 2 0.4452 0.842 0 0.808 0.192
#> ERR978225 2 0.4399 0.844 0 0.812 0.188
#> ERR978226 2 0.4235 0.849 0 0.824 0.176
#> ERR978227 1 0.0000 1.000 1 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000
#> ERR978241 3 0.0000 1.000 0 0.000 1.000
#> ERR978242 3 0.0000 1.000 0 0.000 1.000
#> ERR978243 3 0.0000 1.000 0 0.000 1.000
#> ERR978244 3 0.0000 1.000 0 0.000 1.000
#> ERR978245 3 0.0000 1.000 0 0.000 1.000
#> ERR978246 3 0.0000 1.000 0 0.000 1.000
#> ERR978247 3 0.0000 1.000 0 0.000 1.000
#> ERR978248 2 0.2625 0.851 0 0.916 0.084
#> ERR978249 2 0.4062 0.800 0 0.836 0.164
#> ERR978250 2 0.4842 0.735 0 0.776 0.224
#> ERR978251 2 0.5216 0.685 0 0.740 0.260
#> ERR978252 2 0.4750 0.745 0 0.784 0.216
#> ERR978253 2 0.3686 0.819 0 0.860 0.140
#> ERR978254 2 0.2711 0.849 0 0.912 0.088
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978123 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978124 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978125 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978126 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978127 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978128 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978129 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978130 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978131 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978132 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978133 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978134 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978135 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978136 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978137 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978138 3 0.0000 0.96472 0 0.000 1.000 0.000
#> ERR978139 3 0.0000 0.96472 0 0.000 1.000 0.000
#> ERR978140 3 0.0188 0.96433 0 0.000 0.996 0.004
#> ERR978141 3 0.0188 0.96433 0 0.000 0.996 0.004
#> ERR978142 3 0.0188 0.96433 0 0.000 0.996 0.004
#> ERR978143 3 0.0000 0.96472 0 0.000 1.000 0.000
#> ERR978144 3 0.0000 0.96472 0 0.000 1.000 0.000
#> ERR978145 3 0.0000 0.96472 0 0.000 1.000 0.000
#> ERR978146 3 0.0336 0.96745 0 0.000 0.992 0.008
#> ERR978147 3 0.0336 0.96745 0 0.000 0.992 0.008
#> ERR978148 3 0.0469 0.96830 0 0.000 0.988 0.012
#> ERR978149 3 0.0469 0.96830 0 0.000 0.988 0.012
#> ERR978150 3 0.0336 0.96745 0 0.000 0.992 0.008
#> ERR978151 3 0.0336 0.96745 0 0.000 0.992 0.008
#> ERR978152 3 0.0336 0.96745 0 0.000 0.992 0.008
#> ERR978153 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978170 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978171 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978172 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978173 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978174 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978175 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978176 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978177 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978178 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978179 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978180 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978181 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978182 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978183 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 0.94577 0 1.000 0.000 0.000
#> ERR978197 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978198 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978199 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978200 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978201 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978202 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978203 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978204 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978205 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978206 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978207 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978208 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978209 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978210 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978211 3 0.1022 0.97085 0 0.000 0.968 0.032
#> ERR978212 3 0.2401 0.90514 0 0.092 0.904 0.004
#> ERR978213 3 0.2266 0.91280 0 0.084 0.912 0.004
#> ERR978214 3 0.2197 0.91644 0 0.080 0.916 0.004
#> ERR978215 3 0.2197 0.91644 0 0.080 0.916 0.004
#> ERR978216 3 0.2197 0.91644 0 0.080 0.916 0.004
#> ERR978217 3 0.2125 0.91989 0 0.076 0.920 0.004
#> ERR978218 3 0.2401 0.90514 0 0.092 0.904 0.004
#> ERR978219 3 0.1302 0.94568 0 0.044 0.956 0.000
#> ERR978220 3 0.1118 0.95044 0 0.036 0.964 0.000
#> ERR978221 3 0.1211 0.94819 0 0.040 0.960 0.000
#> ERR978222 3 0.1209 0.95148 0 0.032 0.964 0.004
#> ERR978223 3 0.1302 0.94568 0 0.044 0.956 0.000
#> ERR978224 3 0.1211 0.94819 0 0.040 0.960 0.000
#> ERR978225 3 0.1302 0.94568 0 0.044 0.956 0.000
#> ERR978226 3 0.1792 0.92885 0 0.068 0.932 0.000
#> ERR978227 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.00000 1 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978242 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978243 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978244 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978245 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978246 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978247 4 0.0000 0.93166 0 0.000 0.000 1.000
#> ERR978248 2 0.5615 0.37790 0 0.612 0.032 0.356
#> ERR978249 2 0.5746 0.27140 0 0.572 0.032 0.396
#> ERR978250 4 0.5859 0.02385 0 0.472 0.032 0.496
#> ERR978251 4 0.5792 0.21001 0 0.416 0.032 0.552
#> ERR978252 4 0.5861 -0.00731 0 0.480 0.032 0.488
#> ERR978253 2 0.5735 0.28311 0 0.576 0.032 0.392
#> ERR978254 2 0.5645 0.35833 0 0.604 0.032 0.364
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978124 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978125 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978126 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978127 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978128 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978129 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978130 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978131 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978132 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978133 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978134 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978135 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978136 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978137 3 0.000 0.855 0 0.000 1.000 0.000 0.000
#> ERR978138 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978139 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978140 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978141 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978142 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978143 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978144 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978145 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978146 3 0.297 0.757 0 0.000 0.816 0.000 0.184
#> ERR978147 3 0.314 0.740 0 0.000 0.796 0.000 0.204
#> ERR978148 3 0.369 0.734 0 0.000 0.780 0.020 0.200
#> ERR978149 3 0.374 0.733 0 0.000 0.780 0.024 0.196
#> ERR978150 3 0.327 0.742 0 0.000 0.796 0.004 0.200
#> ERR978151 3 0.273 0.775 0 0.000 0.840 0.000 0.160
#> ERR978152 3 0.265 0.781 0 0.000 0.848 0.000 0.152
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978170 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978171 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978172 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978173 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978174 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978175 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978176 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978177 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978178 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978179 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978180 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978181 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978182 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000 0.000
#> ERR978197 3 0.029 0.855 0 0.000 0.992 0.000 0.008
#> ERR978198 3 0.029 0.855 0 0.000 0.992 0.000 0.008
#> ERR978199 3 0.029 0.855 0 0.000 0.992 0.000 0.008
#> ERR978200 3 0.029 0.855 0 0.000 0.992 0.000 0.008
#> ERR978201 3 0.029 0.855 0 0.000 0.992 0.000 0.008
#> ERR978202 3 0.029 0.855 0 0.000 0.992 0.000 0.008
#> ERR978203 3 0.029 0.855 0 0.000 0.992 0.000 0.008
#> ERR978204 3 0.426 0.382 0 0.000 0.560 0.000 0.440
#> ERR978205 3 0.423 0.417 0 0.000 0.576 0.000 0.424
#> ERR978206 3 0.423 0.417 0 0.000 0.576 0.000 0.424
#> ERR978207 3 0.424 0.409 0 0.000 0.572 0.000 0.428
#> ERR978208 3 0.424 0.409 0 0.000 0.572 0.000 0.428
#> ERR978209 3 0.424 0.409 0 0.000 0.572 0.000 0.428
#> ERR978210 3 0.423 0.425 0 0.000 0.580 0.000 0.420
#> ERR978211 3 0.423 0.425 0 0.000 0.580 0.000 0.420
#> ERR978212 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978213 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978214 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978215 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978216 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978217 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978218 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978219 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978220 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978221 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978222 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978223 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978224 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978225 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978226 5 0.029 0.971 0 0.000 0.008 0.000 0.992
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978242 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978243 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978244 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978245 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978246 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978247 4 0.000 0.930 0 0.000 0.000 1.000 0.000
#> ERR978248 5 0.404 0.563 0 0.012 0.000 0.276 0.712
#> ERR978249 4 0.422 0.354 0 0.000 0.000 0.584 0.416
#> ERR978250 4 0.364 0.652 0 0.000 0.000 0.728 0.272
#> ERR978251 4 0.342 0.697 0 0.000 0.000 0.760 0.240
#> ERR978252 4 0.366 0.646 0 0.000 0.000 0.724 0.276
#> ERR978253 4 0.427 0.258 0 0.000 0.000 0.552 0.448
#> ERR978254 5 0.413 0.530 0 0.012 0.000 0.292 0.696
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978123 3 0.1501 0.874 0 0 0.924 0.000 0.000 0.076
#> ERR978124 3 0.1765 0.865 0 0 0.904 0.000 0.000 0.096
#> ERR978125 3 0.1910 0.857 0 0 0.892 0.000 0.000 0.108
#> ERR978126 3 0.1957 0.854 0 0 0.888 0.000 0.000 0.112
#> ERR978127 3 0.1910 0.857 0 0 0.892 0.000 0.000 0.108
#> ERR978128 3 0.1863 0.860 0 0 0.896 0.000 0.000 0.104
#> ERR978129 3 0.1610 0.871 0 0 0.916 0.000 0.000 0.084
#> ERR978130 3 0.1714 0.867 0 0 0.908 0.000 0.000 0.092
#> ERR978131 3 0.0363 0.894 0 0 0.988 0.000 0.000 0.012
#> ERR978132 3 0.0363 0.894 0 0 0.988 0.000 0.000 0.012
#> ERR978133 3 0.0363 0.894 0 0 0.988 0.000 0.000 0.012
#> ERR978134 3 0.0363 0.894 0 0 0.988 0.000 0.000 0.012
#> ERR978135 3 0.0363 0.894 0 0 0.988 0.000 0.000 0.012
#> ERR978136 3 0.0363 0.894 0 0 0.988 0.000 0.000 0.012
#> ERR978137 3 0.0363 0.894 0 0 0.988 0.000 0.000 0.012
#> ERR978138 5 0.3995 -0.507 0 0 0.004 0.000 0.516 0.480
#> ERR978139 5 0.3991 -0.478 0 0 0.004 0.000 0.524 0.472
#> ERR978140 5 0.3993 -0.489 0 0 0.004 0.000 0.520 0.476
#> ERR978141 5 0.3993 -0.489 0 0 0.004 0.000 0.520 0.476
#> ERR978142 5 0.3993 -0.489 0 0 0.004 0.000 0.520 0.476
#> ERR978143 5 0.3993 -0.489 0 0 0.004 0.000 0.520 0.476
#> ERR978144 5 0.3989 -0.468 0 0 0.004 0.000 0.528 0.468
#> ERR978145 5 0.3995 -0.509 0 0 0.004 0.000 0.516 0.480
#> ERR978146 6 0.4088 0.976 0 0 0.016 0.000 0.368 0.616
#> ERR978147 6 0.4303 0.983 0 0 0.016 0.008 0.360 0.616
#> ERR978148 6 0.4311 0.983 0 0 0.012 0.012 0.360 0.616
#> ERR978149 6 0.4219 0.976 0 0 0.008 0.012 0.360 0.620
#> ERR978150 6 0.4311 0.983 0 0 0.012 0.012 0.360 0.616
#> ERR978151 6 0.4211 0.983 0 0 0.016 0.004 0.364 0.616
#> ERR978152 6 0.4155 0.976 0 0 0.020 0.000 0.364 0.616
#> ERR978153 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978170 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978171 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978172 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978173 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978174 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978175 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978176 4 0.0937 0.921 0 0 0.000 0.960 0.000 0.040
#> ERR978177 4 0.0937 0.921 0 0 0.000 0.960 0.000 0.040
#> ERR978178 4 0.0937 0.921 0 0 0.000 0.960 0.000 0.040
#> ERR978179 4 0.0937 0.921 0 0 0.000 0.960 0.000 0.040
#> ERR978180 4 0.0937 0.921 0 0 0.000 0.960 0.000 0.040
#> ERR978181 4 0.0937 0.921 0 0 0.000 0.960 0.000 0.040
#> ERR978182 4 0.0937 0.921 0 0 0.000 0.960 0.000 0.040
#> ERR978183 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 1.000 0 1 0.000 0.000 0.000 0.000
#> ERR978197 3 0.1500 0.889 0 0 0.936 0.000 0.012 0.052
#> ERR978198 3 0.1152 0.892 0 0 0.952 0.000 0.004 0.044
#> ERR978199 3 0.1082 0.893 0 0 0.956 0.000 0.004 0.040
#> ERR978200 3 0.1082 0.893 0 0 0.956 0.000 0.004 0.040
#> ERR978201 3 0.1152 0.892 0 0 0.952 0.000 0.004 0.044
#> ERR978202 3 0.1152 0.892 0 0 0.952 0.000 0.004 0.044
#> ERR978203 3 0.1333 0.891 0 0 0.944 0.000 0.008 0.048
#> ERR978204 3 0.4226 0.796 0 0 0.736 0.000 0.112 0.152
#> ERR978205 3 0.4226 0.796 0 0 0.736 0.000 0.112 0.152
#> ERR978206 3 0.4226 0.796 0 0 0.736 0.000 0.112 0.152
#> ERR978207 3 0.4190 0.798 0 0 0.740 0.000 0.112 0.148
#> ERR978208 3 0.4226 0.796 0 0 0.736 0.000 0.112 0.152
#> ERR978209 3 0.4190 0.798 0 0 0.740 0.000 0.112 0.148
#> ERR978210 3 0.4226 0.796 0 0 0.736 0.000 0.112 0.152
#> ERR978211 3 0.4190 0.798 0 0 0.740 0.000 0.112 0.148
#> ERR978212 5 0.1204 0.614 0 0 0.000 0.000 0.944 0.056
#> ERR978213 5 0.0260 0.643 0 0 0.000 0.000 0.992 0.008
#> ERR978214 5 0.0790 0.641 0 0 0.000 0.000 0.968 0.032
#> ERR978215 5 0.1141 0.629 0 0 0.000 0.000 0.948 0.052
#> ERR978216 5 0.0363 0.644 0 0 0.000 0.000 0.988 0.012
#> ERR978217 5 0.0713 0.633 0 0 0.000 0.000 0.972 0.028
#> ERR978218 5 0.1610 0.584 0 0 0.000 0.000 0.916 0.084
#> ERR978219 5 0.1327 0.615 0 0 0.000 0.000 0.936 0.064
#> ERR978220 5 0.0458 0.646 0 0 0.000 0.000 0.984 0.016
#> ERR978221 5 0.1075 0.636 0 0 0.000 0.000 0.952 0.048
#> ERR978222 5 0.1204 0.630 0 0 0.000 0.000 0.944 0.056
#> ERR978223 5 0.1141 0.633 0 0 0.000 0.000 0.948 0.052
#> ERR978224 5 0.0632 0.646 0 0 0.000 0.000 0.976 0.024
#> ERR978225 5 0.1327 0.615 0 0 0.000 0.000 0.936 0.064
#> ERR978226 5 0.0790 0.644 0 0 0.000 0.000 0.968 0.032
#> ERR978227 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0146 0.926 0 0 0.000 0.996 0.000 0.004
#> ERR978242 4 0.0146 0.926 0 0 0.000 0.996 0.000 0.004
#> ERR978243 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978244 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978245 4 0.0000 0.926 0 0 0.000 1.000 0.000 0.000
#> ERR978246 4 0.0146 0.926 0 0 0.000 0.996 0.000 0.004
#> ERR978247 4 0.0146 0.926 0 0 0.000 0.996 0.000 0.004
#> ERR978248 4 0.5277 0.660 0 0 0.000 0.592 0.152 0.256
#> ERR978249 4 0.4599 0.754 0 0 0.000 0.684 0.104 0.212
#> ERR978250 4 0.3786 0.823 0 0 0.000 0.768 0.064 0.168
#> ERR978251 4 0.3332 0.847 0 0 0.000 0.808 0.048 0.144
#> ERR978252 4 0.3806 0.822 0 0 0.000 0.768 0.068 0.164
#> ERR978253 4 0.4756 0.736 0 0 0.000 0.664 0.112 0.224
#> ERR978254 4 0.5219 0.670 0 0 0.000 0.604 0.152 0.244
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.579 0.783 0.881 0.2344 0.828 0.828
#> 3 3 1.000 1.000 1.000 0.9618 0.713 0.653
#> 4 4 1.000 1.000 1.000 0.5273 0.757 0.551
#> 5 5 0.879 0.889 0.863 0.0825 0.961 0.870
#> 6 6 1.000 0.988 0.990 0.0838 0.917 0.681
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4
There is also optional best \(k\) = 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.000 0.850 0.0 1.0
#> ERR978108 2 0.000 0.850 0.0 1.0
#> ERR978109 2 0.000 0.850 0.0 1.0
#> ERR978110 2 0.000 0.850 0.0 1.0
#> ERR978111 2 0.000 0.850 0.0 1.0
#> ERR978112 2 0.000 0.850 0.0 1.0
#> ERR978113 2 0.000 0.850 0.0 1.0
#> ERR978114 2 0.000 0.850 0.0 1.0
#> ERR978115 2 0.000 0.850 0.0 1.0
#> ERR978116 2 0.000 0.850 0.0 1.0
#> ERR978117 2 0.000 0.850 0.0 1.0
#> ERR978118 2 0.000 0.850 0.0 1.0
#> ERR978119 2 0.000 0.850 0.0 1.0
#> ERR978120 2 0.000 0.850 0.0 1.0
#> ERR978121 2 0.000 0.850 0.0 1.0
#> ERR978122 2 0.000 0.850 0.0 1.0
#> ERR978123 2 0.000 0.850 0.0 1.0
#> ERR978124 2 0.000 0.850 0.0 1.0
#> ERR978125 2 0.000 0.850 0.0 1.0
#> ERR978126 2 0.000 0.850 0.0 1.0
#> ERR978127 2 0.000 0.850 0.0 1.0
#> ERR978128 2 0.000 0.850 0.0 1.0
#> ERR978129 2 0.000 0.850 0.0 1.0
#> ERR978130 2 0.000 0.850 0.0 1.0
#> ERR978131 2 0.000 0.850 0.0 1.0
#> ERR978132 2 0.000 0.850 0.0 1.0
#> ERR978133 2 0.000 0.850 0.0 1.0
#> ERR978134 2 0.000 0.850 0.0 1.0
#> ERR978135 2 0.000 0.850 0.0 1.0
#> ERR978136 2 0.000 0.850 0.0 1.0
#> ERR978137 2 0.000 0.850 0.0 1.0
#> ERR978138 2 0.000 0.850 0.0 1.0
#> ERR978139 2 0.000 0.850 0.0 1.0
#> ERR978140 2 0.000 0.850 0.0 1.0
#> ERR978141 2 0.000 0.850 0.0 1.0
#> ERR978142 2 0.000 0.850 0.0 1.0
#> ERR978143 2 0.000 0.850 0.0 1.0
#> ERR978144 2 0.000 0.850 0.0 1.0
#> ERR978145 2 0.000 0.850 0.0 1.0
#> ERR978146 2 0.000 0.850 0.0 1.0
#> ERR978147 2 0.000 0.850 0.0 1.0
#> ERR978148 2 0.000 0.850 0.0 1.0
#> ERR978149 2 0.000 0.850 0.0 1.0
#> ERR978150 2 0.000 0.850 0.0 1.0
#> ERR978151 2 0.000 0.850 0.0 1.0
#> ERR978152 2 0.000 0.850 0.0 1.0
#> ERR978153 2 0.971 0.452 0.4 0.6
#> ERR978154 2 0.971 0.452 0.4 0.6
#> ERR978155 2 0.971 0.452 0.4 0.6
#> ERR978156 2 0.971 0.452 0.4 0.6
#> ERR978157 2 0.971 0.452 0.4 0.6
#> ERR978158 2 0.971 0.452 0.4 0.6
#> ERR978159 2 0.971 0.452 0.4 0.6
#> ERR978160 2 0.971 0.452 0.4 0.6
#> ERR978161 2 0.971 0.452 0.4 0.6
#> ERR978162 2 0.971 0.452 0.4 0.6
#> ERR978163 2 0.971 0.452 0.4 0.6
#> ERR978164 2 0.971 0.452 0.4 0.6
#> ERR978165 2 0.971 0.452 0.4 0.6
#> ERR978166 2 0.971 0.452 0.4 0.6
#> ERR978167 2 0.971 0.452 0.4 0.6
#> ERR978168 2 0.971 0.452 0.4 0.6
#> ERR978169 1 0.971 1.000 0.6 0.4
#> ERR978170 1 0.971 1.000 0.6 0.4
#> ERR978171 1 0.971 1.000 0.6 0.4
#> ERR978172 1 0.971 1.000 0.6 0.4
#> ERR978173 1 0.971 1.000 0.6 0.4
#> ERR978174 1 0.971 1.000 0.6 0.4
#> ERR978175 1 0.971 1.000 0.6 0.4
#> ERR978176 1 0.971 1.000 0.6 0.4
#> ERR978177 1 0.971 1.000 0.6 0.4
#> ERR978178 1 0.971 1.000 0.6 0.4
#> ERR978179 1 0.971 1.000 0.6 0.4
#> ERR978180 1 0.971 1.000 0.6 0.4
#> ERR978181 1 0.971 1.000 0.6 0.4
#> ERR978182 1 0.971 1.000 0.6 0.4
#> ERR978183 2 0.000 0.850 0.0 1.0
#> ERR978184 2 0.000 0.850 0.0 1.0
#> ERR978185 2 0.000 0.850 0.0 1.0
#> ERR978186 2 0.000 0.850 0.0 1.0
#> ERR978187 2 0.000 0.850 0.0 1.0
#> ERR978188 2 0.000 0.850 0.0 1.0
#> ERR978189 2 0.000 0.850 0.0 1.0
#> ERR978190 2 0.000 0.850 0.0 1.0
#> ERR978191 2 0.000 0.850 0.0 1.0
#> ERR978192 2 0.000 0.850 0.0 1.0
#> ERR978193 2 0.000 0.850 0.0 1.0
#> ERR978194 2 0.000 0.850 0.0 1.0
#> ERR978195 2 0.000 0.850 0.0 1.0
#> ERR978196 2 0.000 0.850 0.0 1.0
#> ERR978197 2 0.000 0.850 0.0 1.0
#> ERR978198 2 0.000 0.850 0.0 1.0
#> ERR978199 2 0.000 0.850 0.0 1.0
#> ERR978200 2 0.000 0.850 0.0 1.0
#> ERR978201 2 0.000 0.850 0.0 1.0
#> ERR978202 2 0.000 0.850 0.0 1.0
#> ERR978203 2 0.000 0.850 0.0 1.0
#> ERR978204 2 0.000 0.850 0.0 1.0
#> ERR978205 2 0.000 0.850 0.0 1.0
#> ERR978206 2 0.000 0.850 0.0 1.0
#> ERR978207 2 0.000 0.850 0.0 1.0
#> ERR978208 2 0.000 0.850 0.0 1.0
#> ERR978209 2 0.000 0.850 0.0 1.0
#> ERR978210 2 0.000 0.850 0.0 1.0
#> ERR978211 2 0.000 0.850 0.0 1.0
#> ERR978212 2 0.000 0.850 0.0 1.0
#> ERR978213 2 0.000 0.850 0.0 1.0
#> ERR978214 2 0.000 0.850 0.0 1.0
#> ERR978215 2 0.000 0.850 0.0 1.0
#> ERR978216 2 0.000 0.850 0.0 1.0
#> ERR978217 2 0.000 0.850 0.0 1.0
#> ERR978218 2 0.000 0.850 0.0 1.0
#> ERR978219 2 0.000 0.850 0.0 1.0
#> ERR978220 2 0.000 0.850 0.0 1.0
#> ERR978221 2 0.000 0.850 0.0 1.0
#> ERR978222 2 0.000 0.850 0.0 1.0
#> ERR978223 2 0.000 0.850 0.0 1.0
#> ERR978224 2 0.000 0.850 0.0 1.0
#> ERR978225 2 0.000 0.850 0.0 1.0
#> ERR978226 2 0.000 0.850 0.0 1.0
#> ERR978227 2 0.971 0.452 0.4 0.6
#> ERR978228 2 0.971 0.452 0.4 0.6
#> ERR978229 2 0.971 0.452 0.4 0.6
#> ERR978230 2 0.971 0.452 0.4 0.6
#> ERR978231 2 0.971 0.452 0.4 0.6
#> ERR978232 2 0.971 0.452 0.4 0.6
#> ERR978233 2 0.971 0.452 0.4 0.6
#> ERR978234 2 0.971 0.452 0.4 0.6
#> ERR978235 2 0.971 0.452 0.4 0.6
#> ERR978236 2 0.971 0.452 0.4 0.6
#> ERR978237 2 0.971 0.452 0.4 0.6
#> ERR978238 2 0.971 0.452 0.4 0.6
#> ERR978239 2 0.971 0.452 0.4 0.6
#> ERR978240 2 0.971 0.452 0.4 0.6
#> ERR978241 2 0.000 0.850 0.0 1.0
#> ERR978242 2 0.000 0.850 0.0 1.0
#> ERR978243 2 0.000 0.850 0.0 1.0
#> ERR978244 2 0.000 0.850 0.0 1.0
#> ERR978245 2 0.000 0.850 0.0 1.0
#> ERR978246 2 0.000 0.850 0.0 1.0
#> ERR978247 2 0.000 0.850 0.0 1.0
#> ERR978248 2 0.000 0.850 0.0 1.0
#> ERR978249 2 0.000 0.850 0.0 1.0
#> ERR978250 2 0.000 0.850 0.0 1.0
#> ERR978251 2 0.000 0.850 0.0 1.0
#> ERR978252 2 0.000 0.850 0.0 1.0
#> ERR978253 2 0.000 0.850 0.0 1.0
#> ERR978254 2 0.000 0.850 0.0 1.0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0 1 0 1 0
#> ERR978108 2 0 1 0 1 0
#> ERR978109 2 0 1 0 1 0
#> ERR978110 2 0 1 0 1 0
#> ERR978111 2 0 1 0 1 0
#> ERR978112 2 0 1 0 1 0
#> ERR978113 2 0 1 0 1 0
#> ERR978114 2 0 1 0 1 0
#> ERR978115 2 0 1 0 1 0
#> ERR978116 2 0 1 0 1 0
#> ERR978117 2 0 1 0 1 0
#> ERR978118 2 0 1 0 1 0
#> ERR978119 2 0 1 0 1 0
#> ERR978120 2 0 1 0 1 0
#> ERR978121 2 0 1 0 1 0
#> ERR978122 2 0 1 0 1 0
#> ERR978123 2 0 1 0 1 0
#> ERR978124 2 0 1 0 1 0
#> ERR978125 2 0 1 0 1 0
#> ERR978126 2 0 1 0 1 0
#> ERR978127 2 0 1 0 1 0
#> ERR978128 2 0 1 0 1 0
#> ERR978129 2 0 1 0 1 0
#> ERR978130 2 0 1 0 1 0
#> ERR978131 2 0 1 0 1 0
#> ERR978132 2 0 1 0 1 0
#> ERR978133 2 0 1 0 1 0
#> ERR978134 2 0 1 0 1 0
#> ERR978135 2 0 1 0 1 0
#> ERR978136 2 0 1 0 1 0
#> ERR978137 2 0 1 0 1 0
#> ERR978138 2 0 1 0 1 0
#> ERR978139 2 0 1 0 1 0
#> ERR978140 2 0 1 0 1 0
#> ERR978141 2 0 1 0 1 0
#> ERR978142 2 0 1 0 1 0
#> ERR978143 2 0 1 0 1 0
#> ERR978144 2 0 1 0 1 0
#> ERR978145 2 0 1 0 1 0
#> ERR978146 2 0 1 0 1 0
#> ERR978147 2 0 1 0 1 0
#> ERR978148 2 0 1 0 1 0
#> ERR978149 2 0 1 0 1 0
#> ERR978150 2 0 1 0 1 0
#> ERR978151 2 0 1 0 1 0
#> ERR978152 2 0 1 0 1 0
#> ERR978153 1 0 1 1 0 0
#> ERR978154 1 0 1 1 0 0
#> ERR978155 1 0 1 1 0 0
#> ERR978156 1 0 1 1 0 0
#> ERR978157 1 0 1 1 0 0
#> ERR978158 1 0 1 1 0 0
#> ERR978159 1 0 1 1 0 0
#> ERR978160 1 0 1 1 0 0
#> ERR978161 1 0 1 1 0 0
#> ERR978162 1 0 1 1 0 0
#> ERR978163 1 0 1 1 0 0
#> ERR978164 1 0 1 1 0 0
#> ERR978165 1 0 1 1 0 0
#> ERR978166 1 0 1 1 0 0
#> ERR978167 1 0 1 1 0 0
#> ERR978168 1 0 1 1 0 0
#> ERR978169 3 0 1 0 0 1
#> ERR978170 3 0 1 0 0 1
#> ERR978171 3 0 1 0 0 1
#> ERR978172 3 0 1 0 0 1
#> ERR978173 3 0 1 0 0 1
#> ERR978174 3 0 1 0 0 1
#> ERR978175 3 0 1 0 0 1
#> ERR978176 3 0 1 0 0 1
#> ERR978177 3 0 1 0 0 1
#> ERR978178 3 0 1 0 0 1
#> ERR978179 3 0 1 0 0 1
#> ERR978180 3 0 1 0 0 1
#> ERR978181 3 0 1 0 0 1
#> ERR978182 3 0 1 0 0 1
#> ERR978183 2 0 1 0 1 0
#> ERR978184 2 0 1 0 1 0
#> ERR978185 2 0 1 0 1 0
#> ERR978186 2 0 1 0 1 0
#> ERR978187 2 0 1 0 1 0
#> ERR978188 2 0 1 0 1 0
#> ERR978189 2 0 1 0 1 0
#> ERR978190 2 0 1 0 1 0
#> ERR978191 2 0 1 0 1 0
#> ERR978192 2 0 1 0 1 0
#> ERR978193 2 0 1 0 1 0
#> ERR978194 2 0 1 0 1 0
#> ERR978195 2 0 1 0 1 0
#> ERR978196 2 0 1 0 1 0
#> ERR978197 2 0 1 0 1 0
#> ERR978198 2 0 1 0 1 0
#> ERR978199 2 0 1 0 1 0
#> ERR978200 2 0 1 0 1 0
#> ERR978201 2 0 1 0 1 0
#> ERR978202 2 0 1 0 1 0
#> ERR978203 2 0 1 0 1 0
#> ERR978204 2 0 1 0 1 0
#> ERR978205 2 0 1 0 1 0
#> ERR978206 2 0 1 0 1 0
#> ERR978207 2 0 1 0 1 0
#> ERR978208 2 0 1 0 1 0
#> ERR978209 2 0 1 0 1 0
#> ERR978210 2 0 1 0 1 0
#> ERR978211 2 0 1 0 1 0
#> ERR978212 2 0 1 0 1 0
#> ERR978213 2 0 1 0 1 0
#> ERR978214 2 0 1 0 1 0
#> ERR978215 2 0 1 0 1 0
#> ERR978216 2 0 1 0 1 0
#> ERR978217 2 0 1 0 1 0
#> ERR978218 2 0 1 0 1 0
#> ERR978219 2 0 1 0 1 0
#> ERR978220 2 0 1 0 1 0
#> ERR978221 2 0 1 0 1 0
#> ERR978222 2 0 1 0 1 0
#> ERR978223 2 0 1 0 1 0
#> ERR978224 2 0 1 0 1 0
#> ERR978225 2 0 1 0 1 0
#> ERR978226 2 0 1 0 1 0
#> ERR978227 1 0 1 1 0 0
#> ERR978228 1 0 1 1 0 0
#> ERR978229 1 0 1 1 0 0
#> ERR978230 1 0 1 1 0 0
#> ERR978231 1 0 1 1 0 0
#> ERR978232 1 0 1 1 0 0
#> ERR978233 1 0 1 1 0 0
#> ERR978234 1 0 1 1 0 0
#> ERR978235 1 0 1 1 0 0
#> ERR978236 1 0 1 1 0 0
#> ERR978237 1 0 1 1 0 0
#> ERR978238 1 0 1 1 0 0
#> ERR978239 1 0 1 1 0 0
#> ERR978240 1 0 1 1 0 0
#> ERR978241 2 0 1 0 1 0
#> ERR978242 2 0 1 0 1 0
#> ERR978243 2 0 1 0 1 0
#> ERR978244 2 0 1 0 1 0
#> ERR978245 2 0 1 0 1 0
#> ERR978246 2 0 1 0 1 0
#> ERR978247 2 0 1 0 1 0
#> ERR978248 2 0 1 0 1 0
#> ERR978249 2 0 1 0 1 0
#> ERR978250 2 0 1 0 1 0
#> ERR978251 2 0 1 0 1 0
#> ERR978252 2 0 1 0 1 0
#> ERR978253 2 0 1 0 1 0
#> ERR978254 2 0 1 0 1 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0 1 0 1 0 0
#> ERR978108 2 0 1 0 1 0 0
#> ERR978109 2 0 1 0 1 0 0
#> ERR978110 2 0 1 0 1 0 0
#> ERR978111 2 0 1 0 1 0 0
#> ERR978112 2 0 1 0 1 0 0
#> ERR978113 2 0 1 0 1 0 0
#> ERR978114 2 0 1 0 1 0 0
#> ERR978115 2 0 1 0 1 0 0
#> ERR978116 2 0 1 0 1 0 0
#> ERR978117 2 0 1 0 1 0 0
#> ERR978118 2 0 1 0 1 0 0
#> ERR978119 2 0 1 0 1 0 0
#> ERR978120 2 0 1 0 1 0 0
#> ERR978121 2 0 1 0 1 0 0
#> ERR978122 2 0 1 0 1 0 0
#> ERR978123 3 0 1 0 0 1 0
#> ERR978124 3 0 1 0 0 1 0
#> ERR978125 3 0 1 0 0 1 0
#> ERR978126 3 0 1 0 0 1 0
#> ERR978127 3 0 1 0 0 1 0
#> ERR978128 3 0 1 0 0 1 0
#> ERR978129 3 0 1 0 0 1 0
#> ERR978130 3 0 1 0 0 1 0
#> ERR978131 3 0 1 0 0 1 0
#> ERR978132 3 0 1 0 0 1 0
#> ERR978133 3 0 1 0 0 1 0
#> ERR978134 3 0 1 0 0 1 0
#> ERR978135 3 0 1 0 0 1 0
#> ERR978136 3 0 1 0 0 1 0
#> ERR978137 3 0 1 0 0 1 0
#> ERR978138 3 0 1 0 0 1 0
#> ERR978139 3 0 1 0 0 1 0
#> ERR978140 3 0 1 0 0 1 0
#> ERR978141 3 0 1 0 0 1 0
#> ERR978142 3 0 1 0 0 1 0
#> ERR978143 3 0 1 0 0 1 0
#> ERR978144 3 0 1 0 0 1 0
#> ERR978145 3 0 1 0 0 1 0
#> ERR978146 3 0 1 0 0 1 0
#> ERR978147 3 0 1 0 0 1 0
#> ERR978148 3 0 1 0 0 1 0
#> ERR978149 3 0 1 0 0 1 0
#> ERR978150 3 0 1 0 0 1 0
#> ERR978151 3 0 1 0 0 1 0
#> ERR978152 3 0 1 0 0 1 0
#> ERR978153 1 0 1 1 0 0 0
#> ERR978154 1 0 1 1 0 0 0
#> ERR978155 1 0 1 1 0 0 0
#> ERR978156 1 0 1 1 0 0 0
#> ERR978157 1 0 1 1 0 0 0
#> ERR978158 1 0 1 1 0 0 0
#> ERR978159 1 0 1 1 0 0 0
#> ERR978160 1 0 1 1 0 0 0
#> ERR978161 1 0 1 1 0 0 0
#> ERR978162 1 0 1 1 0 0 0
#> ERR978163 1 0 1 1 0 0 0
#> ERR978164 1 0 1 1 0 0 0
#> ERR978165 1 0 1 1 0 0 0
#> ERR978166 1 0 1 1 0 0 0
#> ERR978167 1 0 1 1 0 0 0
#> ERR978168 1 0 1 1 0 0 0
#> ERR978169 4 0 1 0 0 0 1
#> ERR978170 4 0 1 0 0 0 1
#> ERR978171 4 0 1 0 0 0 1
#> ERR978172 4 0 1 0 0 0 1
#> ERR978173 4 0 1 0 0 0 1
#> ERR978174 4 0 1 0 0 0 1
#> ERR978175 4 0 1 0 0 0 1
#> ERR978176 4 0 1 0 0 0 1
#> ERR978177 4 0 1 0 0 0 1
#> ERR978178 4 0 1 0 0 0 1
#> ERR978179 4 0 1 0 0 0 1
#> ERR978180 4 0 1 0 0 0 1
#> ERR978181 4 0 1 0 0 0 1
#> ERR978182 4 0 1 0 0 0 1
#> ERR978183 2 0 1 0 1 0 0
#> ERR978184 2 0 1 0 1 0 0
#> ERR978185 2 0 1 0 1 0 0
#> ERR978186 2 0 1 0 1 0 0
#> ERR978187 2 0 1 0 1 0 0
#> ERR978188 2 0 1 0 1 0 0
#> ERR978189 2 0 1 0 1 0 0
#> ERR978190 2 0 1 0 1 0 0
#> ERR978191 2 0 1 0 1 0 0
#> ERR978192 2 0 1 0 1 0 0
#> ERR978193 2 0 1 0 1 0 0
#> ERR978194 2 0 1 0 1 0 0
#> ERR978195 2 0 1 0 1 0 0
#> ERR978196 2 0 1 0 1 0 0
#> ERR978197 2 0 1 0 1 0 0
#> ERR978198 2 0 1 0 1 0 0
#> ERR978199 2 0 1 0 1 0 0
#> ERR978200 2 0 1 0 1 0 0
#> ERR978201 2 0 1 0 1 0 0
#> ERR978202 2 0 1 0 1 0 0
#> ERR978203 2 0 1 0 1 0 0
#> ERR978204 2 0 1 0 1 0 0
#> ERR978205 2 0 1 0 1 0 0
#> ERR978206 2 0 1 0 1 0 0
#> ERR978207 2 0 1 0 1 0 0
#> ERR978208 2 0 1 0 1 0 0
#> ERR978209 2 0 1 0 1 0 0
#> ERR978210 2 0 1 0 1 0 0
#> ERR978211 2 0 1 0 1 0 0
#> ERR978212 2 0 1 0 1 0 0
#> ERR978213 2 0 1 0 1 0 0
#> ERR978214 2 0 1 0 1 0 0
#> ERR978215 2 0 1 0 1 0 0
#> ERR978216 2 0 1 0 1 0 0
#> ERR978217 2 0 1 0 1 0 0
#> ERR978218 2 0 1 0 1 0 0
#> ERR978219 2 0 1 0 1 0 0
#> ERR978220 2 0 1 0 1 0 0
#> ERR978221 2 0 1 0 1 0 0
#> ERR978222 2 0 1 0 1 0 0
#> ERR978223 2 0 1 0 1 0 0
#> ERR978224 2 0 1 0 1 0 0
#> ERR978225 2 0 1 0 1 0 0
#> ERR978226 2 0 1 0 1 0 0
#> ERR978227 1 0 1 1 0 0 0
#> ERR978228 1 0 1 1 0 0 0
#> ERR978229 1 0 1 1 0 0 0
#> ERR978230 1 0 1 1 0 0 0
#> ERR978231 1 0 1 1 0 0 0
#> ERR978232 1 0 1 1 0 0 0
#> ERR978233 1 0 1 1 0 0 0
#> ERR978234 1 0 1 1 0 0 0
#> ERR978235 1 0 1 1 0 0 0
#> ERR978236 1 0 1 1 0 0 0
#> ERR978237 1 0 1 1 0 0 0
#> ERR978238 1 0 1 1 0 0 0
#> ERR978239 1 0 1 1 0 0 0
#> ERR978240 1 0 1 1 0 0 0
#> ERR978241 3 0 1 0 0 1 0
#> ERR978242 3 0 1 0 0 1 0
#> ERR978243 3 0 1 0 0 1 0
#> ERR978244 3 0 1 0 0 1 0
#> ERR978245 3 0 1 0 0 1 0
#> ERR978246 3 0 1 0 0 1 0
#> ERR978247 3 0 1 0 0 1 0
#> ERR978248 3 0 1 0 0 1 0
#> ERR978249 3 0 1 0 0 1 0
#> ERR978250 3 0 1 0 0 1 0
#> ERR978251 3 0 1 0 0 1 0
#> ERR978252 3 0 1 0 0 1 0
#> ERR978253 3 0 1 0 0 1 0
#> ERR978254 3 0 1 0 0 1 0
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978108 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978109 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978110 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978111 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978112 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978113 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978114 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978115 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978116 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978117 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978118 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978119 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978120 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978121 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978122 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978123 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978124 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978125 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978126 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978127 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978128 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978129 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978130 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978131 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978132 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978133 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978134 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978135 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978136 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978137 3 0.134 0.944 0 0.000 0.944 0 0.056
#> ERR978138 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978139 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978140 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978141 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978142 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978143 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978144 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978145 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978146 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978147 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978148 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978149 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978150 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978151 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978152 3 0.000 0.944 0 0.000 1.000 0 0.000
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978169 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978170 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978171 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978172 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978173 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978174 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978175 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978176 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978177 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978178 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978179 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978180 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978181 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978182 4 0.000 1.000 0 0.000 0.000 1 0.000
#> ERR978183 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978184 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978185 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978186 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978187 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978188 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978189 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978190 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978191 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978192 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978193 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978194 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978195 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978196 2 0.000 0.768 0 1.000 0.000 0 0.000
#> ERR978197 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978198 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978199 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978200 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978201 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978202 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978203 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978204 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978205 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978206 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978207 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978208 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978209 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978210 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978211 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978212 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978213 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978214 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978215 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978216 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978217 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978218 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978219 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978220 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978221 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978222 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978223 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978224 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978225 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978226 2 0.425 0.768 0 0.568 0.000 0 0.432
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0 0.000
#> ERR978241 5 0.430 0.941 0 0.000 0.488 0 0.512
#> ERR978242 5 0.430 0.941 0 0.000 0.488 0 0.512
#> ERR978243 5 0.430 0.941 0 0.000 0.488 0 0.512
#> ERR978244 5 0.430 0.941 0 0.000 0.488 0 0.512
#> ERR978245 5 0.430 0.941 0 0.000 0.488 0 0.512
#> ERR978246 5 0.430 0.941 0 0.000 0.488 0 0.512
#> ERR978247 5 0.430 0.941 0 0.000 0.488 0 0.512
#> ERR978248 5 0.425 0.941 0 0.000 0.432 0 0.568
#> ERR978249 5 0.425 0.941 0 0.000 0.432 0 0.568
#> ERR978250 5 0.425 0.941 0 0.000 0.432 0 0.568
#> ERR978251 5 0.425 0.941 0 0.000 0.432 0 0.568
#> ERR978252 5 0.425 0.941 0 0.000 0.432 0 0.568
#> ERR978253 5 0.425 0.941 0 0.000 0.432 0 0.568
#> ERR978254 5 0.425 0.941 0 0.000 0.432 0 0.568
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978108 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978109 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978110 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978111 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978112 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978113 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978114 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978115 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978116 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978117 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978118 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978119 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978120 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978121 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978122 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978123 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978124 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978125 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978126 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978127 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978128 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978129 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978130 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978131 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978132 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978133 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978134 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978135 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978136 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978137 3 0.000 0.962 0 0 1.000 0 0 0.000
#> ERR978138 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978139 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978140 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978141 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978142 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978143 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978144 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978145 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978146 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978147 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978148 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978149 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978150 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978151 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978152 3 0.139 0.962 0 0 0.932 0 0 0.068
#> ERR978153 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978154 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978155 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978156 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978157 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978158 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978159 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978160 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978161 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978162 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978163 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978164 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978165 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978166 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978167 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978168 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978169 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978170 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978171 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978172 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978173 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978174 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978175 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978176 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978177 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978178 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978179 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978180 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978181 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978182 4 0.000 1.000 0 0 0.000 1 0 0.000
#> ERR978183 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978184 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978185 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978186 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978187 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978188 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978189 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978190 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978191 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978192 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978193 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978194 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978195 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978196 2 0.000 1.000 0 1 0.000 0 0 0.000
#> ERR978197 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978198 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978199 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978200 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978201 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978202 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978203 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978204 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978205 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978206 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978207 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978208 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978209 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978210 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978211 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978212 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978213 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978214 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978215 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978216 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978217 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978218 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978219 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978220 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978221 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978222 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978223 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978224 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978225 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978226 5 0.000 1.000 0 0 0.000 0 1 0.000
#> ERR978227 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978228 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978229 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978230 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978231 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978232 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978233 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978234 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978235 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978236 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978237 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978238 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978239 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978240 1 0.000 1.000 1 0 0.000 0 0 0.000
#> ERR978241 6 0.000 0.953 0 0 0.000 0 0 1.000
#> ERR978242 6 0.000 0.953 0 0 0.000 0 0 1.000
#> ERR978243 6 0.000 0.953 0 0 0.000 0 0 1.000
#> ERR978244 6 0.000 0.953 0 0 0.000 0 0 1.000
#> ERR978245 6 0.000 0.953 0 0 0.000 0 0 1.000
#> ERR978246 6 0.000 0.953 0 0 0.000 0 0 1.000
#> ERR978247 6 0.000 0.953 0 0 0.000 0 0 1.000
#> ERR978248 6 0.139 0.953 0 0 0.068 0 0 0.932
#> ERR978249 6 0.139 0.953 0 0 0.068 0 0 0.932
#> ERR978250 6 0.139 0.953 0 0 0.068 0 0 0.932
#> ERR978251 6 0.139 0.953 0 0 0.068 0 0 0.932
#> ERR978252 6 0.139 0.953 0 0 0.068 0 0 0.932
#> ERR978253 6 0.139 0.953 0 0 0.068 0 0 0.932
#> ERR978254 6 0.139 0.953 0 0 0.068 0 0 0.932
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.300 0.701 0.773 0.3648 0.579 0.579
#> 3 3 0.610 0.897 0.874 0.5853 0.686 0.499
#> 4 4 0.609 0.804 0.815 0.1539 0.890 0.714
#> 5 5 0.632 0.797 0.739 0.1069 0.874 0.603
#> 6 6 0.665 0.768 0.743 0.0566 0.957 0.816
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.0376 0.8464 0.004 0.996
#> ERR978108 2 0.0376 0.8464 0.004 0.996
#> ERR978109 2 0.0376 0.8464 0.004 0.996
#> ERR978110 2 0.0376 0.8464 0.004 0.996
#> ERR978111 2 0.0376 0.8464 0.004 0.996
#> ERR978112 2 0.0376 0.8464 0.004 0.996
#> ERR978113 2 0.0376 0.8464 0.004 0.996
#> ERR978114 2 0.0376 0.8464 0.004 0.996
#> ERR978115 2 0.0376 0.8464 0.004 0.996
#> ERR978116 2 0.0376 0.8464 0.004 0.996
#> ERR978117 2 0.0376 0.8464 0.004 0.996
#> ERR978118 2 0.0376 0.8464 0.004 0.996
#> ERR978119 2 0.0376 0.8464 0.004 0.996
#> ERR978120 2 0.0376 0.8464 0.004 0.996
#> ERR978121 2 0.0376 0.8464 0.004 0.996
#> ERR978122 2 0.0376 0.8464 0.004 0.996
#> ERR978123 2 0.7528 0.6561 0.216 0.784
#> ERR978124 2 0.7602 0.6541 0.220 0.780
#> ERR978125 2 0.7602 0.6541 0.220 0.780
#> ERR978126 2 0.7602 0.6541 0.220 0.780
#> ERR978127 2 0.7602 0.6541 0.220 0.780
#> ERR978128 2 0.7602 0.6541 0.220 0.780
#> ERR978129 2 0.7602 0.6541 0.220 0.780
#> ERR978130 2 0.7528 0.6561 0.216 0.784
#> ERR978131 2 0.7528 0.6561 0.216 0.784
#> ERR978132 2 0.7528 0.6561 0.216 0.784
#> ERR978133 2 0.7528 0.6561 0.216 0.784
#> ERR978134 2 0.7528 0.6561 0.216 0.784
#> ERR978135 2 0.7528 0.6561 0.216 0.784
#> ERR978136 2 0.7528 0.6561 0.216 0.784
#> ERR978137 2 0.7528 0.6561 0.216 0.784
#> ERR978138 2 0.8909 0.5810 0.308 0.692
#> ERR978139 2 0.8909 0.5810 0.308 0.692
#> ERR978140 2 0.8909 0.5810 0.308 0.692
#> ERR978141 2 0.8909 0.5810 0.308 0.692
#> ERR978142 2 0.8909 0.5810 0.308 0.692
#> ERR978143 2 0.8909 0.5810 0.308 0.692
#> ERR978144 2 0.8909 0.5810 0.308 0.692
#> ERR978145 2 0.8909 0.5810 0.308 0.692
#> ERR978146 2 0.8955 0.5744 0.312 0.688
#> ERR978147 2 0.8955 0.5744 0.312 0.688
#> ERR978148 2 0.8955 0.5744 0.312 0.688
#> ERR978149 2 0.8955 0.5744 0.312 0.688
#> ERR978150 2 0.8955 0.5744 0.312 0.688
#> ERR978151 2 0.8955 0.5744 0.312 0.688
#> ERR978152 2 0.8955 0.5744 0.312 0.688
#> ERR978153 1 0.7219 0.7713 0.800 0.200
#> ERR978154 1 0.7219 0.7713 0.800 0.200
#> ERR978155 1 0.7219 0.7713 0.800 0.200
#> ERR978156 1 0.7219 0.7713 0.800 0.200
#> ERR978157 1 0.7219 0.7713 0.800 0.200
#> ERR978158 1 0.7219 0.7713 0.800 0.200
#> ERR978159 1 0.7219 0.7713 0.800 0.200
#> ERR978160 1 0.7219 0.7713 0.800 0.200
#> ERR978161 1 0.7219 0.7713 0.800 0.200
#> ERR978162 1 0.7219 0.7713 0.800 0.200
#> ERR978163 1 0.7219 0.7713 0.800 0.200
#> ERR978164 1 0.7219 0.7713 0.800 0.200
#> ERR978165 1 0.7219 0.7713 0.800 0.200
#> ERR978166 1 0.7219 0.7713 0.800 0.200
#> ERR978167 1 0.7219 0.7713 0.800 0.200
#> ERR978168 1 0.7219 0.7713 0.800 0.200
#> ERR978169 1 0.9954 0.0998 0.540 0.460
#> ERR978170 1 0.9954 0.0998 0.540 0.460
#> ERR978171 1 0.9954 0.0998 0.540 0.460
#> ERR978172 1 0.9954 0.0998 0.540 0.460
#> ERR978173 1 0.9954 0.0998 0.540 0.460
#> ERR978174 1 0.9954 0.0998 0.540 0.460
#> ERR978175 1 0.9954 0.0998 0.540 0.460
#> ERR978176 1 0.9954 0.0998 0.540 0.460
#> ERR978177 1 0.9954 0.0998 0.540 0.460
#> ERR978178 1 0.9954 0.0998 0.540 0.460
#> ERR978179 1 0.9954 0.0998 0.540 0.460
#> ERR978180 1 0.9954 0.0998 0.540 0.460
#> ERR978181 1 0.9954 0.0998 0.540 0.460
#> ERR978182 1 0.9954 0.0998 0.540 0.460
#> ERR978183 2 0.0376 0.8464 0.004 0.996
#> ERR978184 2 0.0376 0.8464 0.004 0.996
#> ERR978185 2 0.0376 0.8464 0.004 0.996
#> ERR978186 2 0.0376 0.8464 0.004 0.996
#> ERR978187 2 0.0376 0.8464 0.004 0.996
#> ERR978188 2 0.0376 0.8464 0.004 0.996
#> ERR978189 2 0.0376 0.8464 0.004 0.996
#> ERR978190 2 0.0376 0.8464 0.004 0.996
#> ERR978191 2 0.0376 0.8464 0.004 0.996
#> ERR978192 2 0.0376 0.8464 0.004 0.996
#> ERR978193 2 0.0376 0.8464 0.004 0.996
#> ERR978194 2 0.0376 0.8464 0.004 0.996
#> ERR978195 2 0.0376 0.8464 0.004 0.996
#> ERR978196 2 0.0376 0.8464 0.004 0.996
#> ERR978197 2 0.0000 0.8467 0.000 1.000
#> ERR978198 2 0.0000 0.8467 0.000 1.000
#> ERR978199 2 0.0000 0.8467 0.000 1.000
#> ERR978200 2 0.0000 0.8467 0.000 1.000
#> ERR978201 2 0.0000 0.8467 0.000 1.000
#> ERR978202 2 0.0000 0.8467 0.000 1.000
#> ERR978203 2 0.0000 0.8467 0.000 1.000
#> ERR978204 2 0.0000 0.8467 0.000 1.000
#> ERR978205 2 0.0000 0.8467 0.000 1.000
#> ERR978206 2 0.0000 0.8467 0.000 1.000
#> ERR978207 2 0.0000 0.8467 0.000 1.000
#> ERR978208 2 0.0000 0.8467 0.000 1.000
#> ERR978209 2 0.0000 0.8467 0.000 1.000
#> ERR978210 2 0.0000 0.8467 0.000 1.000
#> ERR978211 2 0.0000 0.8467 0.000 1.000
#> ERR978212 2 0.0000 0.8467 0.000 1.000
#> ERR978213 2 0.0000 0.8467 0.000 1.000
#> ERR978214 2 0.0000 0.8467 0.000 1.000
#> ERR978215 2 0.0000 0.8467 0.000 1.000
#> ERR978216 2 0.0000 0.8467 0.000 1.000
#> ERR978217 2 0.0000 0.8467 0.000 1.000
#> ERR978218 2 0.0000 0.8467 0.000 1.000
#> ERR978219 2 0.0000 0.8467 0.000 1.000
#> ERR978220 2 0.0000 0.8467 0.000 1.000
#> ERR978221 2 0.0000 0.8467 0.000 1.000
#> ERR978222 2 0.0000 0.8467 0.000 1.000
#> ERR978223 2 0.0000 0.8467 0.000 1.000
#> ERR978224 2 0.0000 0.8467 0.000 1.000
#> ERR978225 2 0.0000 0.8467 0.000 1.000
#> ERR978226 2 0.0000 0.8467 0.000 1.000
#> ERR978227 1 0.7219 0.7713 0.800 0.200
#> ERR978228 1 0.7219 0.7713 0.800 0.200
#> ERR978229 1 0.7219 0.7713 0.800 0.200
#> ERR978230 1 0.7219 0.7713 0.800 0.200
#> ERR978231 1 0.7219 0.7713 0.800 0.200
#> ERR978232 1 0.7219 0.7713 0.800 0.200
#> ERR978233 1 0.7219 0.7713 0.800 0.200
#> ERR978234 1 0.7219 0.7713 0.800 0.200
#> ERR978235 1 0.7219 0.7713 0.800 0.200
#> ERR978236 1 0.7219 0.7713 0.800 0.200
#> ERR978237 1 0.7219 0.7713 0.800 0.200
#> ERR978238 1 0.7219 0.7713 0.800 0.200
#> ERR978239 1 0.7219 0.7713 0.800 0.200
#> ERR978240 1 0.7219 0.7713 0.800 0.200
#> ERR978241 2 0.9000 0.5688 0.316 0.684
#> ERR978242 2 0.9000 0.5688 0.316 0.684
#> ERR978243 2 0.9000 0.5688 0.316 0.684
#> ERR978244 2 0.9000 0.5688 0.316 0.684
#> ERR978245 2 0.9000 0.5688 0.316 0.684
#> ERR978246 2 0.9000 0.5688 0.316 0.684
#> ERR978247 2 0.9000 0.5688 0.316 0.684
#> ERR978248 2 0.0376 0.8464 0.004 0.996
#> ERR978249 2 0.0376 0.8464 0.004 0.996
#> ERR978250 2 0.0376 0.8464 0.004 0.996
#> ERR978251 2 0.0376 0.8464 0.004 0.996
#> ERR978252 2 0.0376 0.8464 0.004 0.996
#> ERR978253 2 0.0376 0.8464 0.004 0.996
#> ERR978254 2 0.0376 0.8464 0.004 0.996
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978108 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978109 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978110 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978111 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978112 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978113 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978114 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978115 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978116 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978117 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978118 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978119 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978120 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978121 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978122 2 0.0237 0.935 0.000 0.996 0.004
#> ERR978123 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978124 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978125 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978126 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978127 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978128 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978129 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978130 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978131 3 0.6282 0.818 0.012 0.324 0.664
#> ERR978132 3 0.6282 0.818 0.012 0.324 0.664
#> ERR978133 3 0.6282 0.818 0.012 0.324 0.664
#> ERR978134 3 0.6282 0.818 0.012 0.324 0.664
#> ERR978135 3 0.6282 0.818 0.012 0.324 0.664
#> ERR978136 3 0.6282 0.818 0.012 0.324 0.664
#> ERR978137 3 0.6282 0.818 0.012 0.324 0.664
#> ERR978138 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978139 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978140 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978141 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978142 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978143 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978144 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978145 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978146 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978147 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978148 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978149 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978150 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978151 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978152 3 0.5698 0.901 0.012 0.252 0.736
#> ERR978153 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978154 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978155 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978156 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978157 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978158 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978159 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978160 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978161 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978162 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978163 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978164 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978165 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978166 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978167 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978168 1 0.2443 0.967 0.940 0.032 0.028
#> ERR978169 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978170 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978171 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978172 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978173 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978174 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978175 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978176 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978177 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978178 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978179 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978180 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978181 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978182 3 0.4449 0.818 0.040 0.100 0.860
#> ERR978183 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978184 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978185 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978186 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978187 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978188 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978189 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978190 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978191 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978192 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978193 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978194 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978195 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978196 2 0.0661 0.935 0.008 0.988 0.004
#> ERR978197 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978198 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978199 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978200 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978201 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978202 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978203 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978204 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978205 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978206 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978207 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978208 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978209 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978210 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978211 2 0.2050 0.933 0.020 0.952 0.028
#> ERR978212 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978213 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978214 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978215 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978216 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978217 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978218 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978219 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978220 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978221 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978222 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978223 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978224 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978225 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978226 2 0.1905 0.936 0.016 0.956 0.028
#> ERR978227 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978228 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978229 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978230 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978231 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978232 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978233 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978234 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978235 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978236 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978237 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978238 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978239 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978240 1 0.4731 0.963 0.840 0.032 0.128
#> ERR978241 3 0.5406 0.891 0.020 0.200 0.780
#> ERR978242 3 0.5406 0.891 0.020 0.200 0.780
#> ERR978243 3 0.5406 0.891 0.020 0.200 0.780
#> ERR978244 3 0.5406 0.891 0.020 0.200 0.780
#> ERR978245 3 0.5406 0.891 0.020 0.200 0.780
#> ERR978246 3 0.5406 0.891 0.020 0.200 0.780
#> ERR978247 3 0.5406 0.891 0.020 0.200 0.780
#> ERR978248 2 0.5327 0.522 0.000 0.728 0.272
#> ERR978249 2 0.5397 0.502 0.000 0.720 0.280
#> ERR978250 2 0.5397 0.502 0.000 0.720 0.280
#> ERR978251 2 0.5397 0.502 0.000 0.720 0.280
#> ERR978252 2 0.5397 0.502 0.000 0.720 0.280
#> ERR978253 2 0.5397 0.502 0.000 0.720 0.280
#> ERR978254 2 0.5327 0.522 0.000 0.728 0.272
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978108 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978109 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978110 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978111 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978112 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978113 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978114 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978115 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978116 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978117 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978118 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978119 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978120 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978121 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978122 2 0.2867 0.768 0.000 0.884 0.104 0.012
#> ERR978123 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978124 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978125 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978126 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978127 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978128 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978129 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978130 3 0.0188 0.838 0.000 0.004 0.996 0.000
#> ERR978131 3 0.0707 0.832 0.000 0.020 0.980 0.000
#> ERR978132 3 0.0707 0.832 0.000 0.020 0.980 0.000
#> ERR978133 3 0.0707 0.832 0.000 0.020 0.980 0.000
#> ERR978134 3 0.0707 0.832 0.000 0.020 0.980 0.000
#> ERR978135 3 0.0707 0.832 0.000 0.020 0.980 0.000
#> ERR978136 3 0.0707 0.832 0.000 0.020 0.980 0.000
#> ERR978137 3 0.0707 0.832 0.000 0.020 0.980 0.000
#> ERR978138 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978139 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978140 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978141 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978142 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978143 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978144 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978145 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978146 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978147 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978148 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978149 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978150 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978151 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978152 3 0.2466 0.836 0.000 0.004 0.900 0.096
#> ERR978153 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978154 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978155 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978156 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978157 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978158 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978159 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978160 1 0.1339 0.923 0.964 0.004 0.008 0.024
#> ERR978161 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978162 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978163 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978164 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978165 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978166 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978167 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978168 1 0.1256 0.923 0.964 0.028 0.008 0.000
#> ERR978169 4 0.4188 0.988 0.004 0.000 0.244 0.752
#> ERR978170 4 0.4188 0.988 0.004 0.000 0.244 0.752
#> ERR978171 4 0.4188 0.988 0.004 0.000 0.244 0.752
#> ERR978172 4 0.4188 0.988 0.004 0.000 0.244 0.752
#> ERR978173 4 0.4188 0.988 0.004 0.000 0.244 0.752
#> ERR978174 4 0.4188 0.988 0.004 0.000 0.244 0.752
#> ERR978175 4 0.4188 0.988 0.004 0.000 0.244 0.752
#> ERR978176 4 0.5217 0.988 0.012 0.024 0.244 0.720
#> ERR978177 4 0.5217 0.988 0.012 0.024 0.244 0.720
#> ERR978178 4 0.5217 0.988 0.012 0.024 0.244 0.720
#> ERR978179 4 0.5217 0.988 0.012 0.024 0.244 0.720
#> ERR978180 4 0.5217 0.988 0.012 0.024 0.244 0.720
#> ERR978181 4 0.5217 0.988 0.012 0.024 0.244 0.720
#> ERR978182 4 0.5217 0.988 0.012 0.024 0.244 0.720
#> ERR978183 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978184 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978185 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978186 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978187 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978188 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978189 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978190 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978191 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978192 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978193 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978194 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978195 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978196 2 0.2593 0.769 0.000 0.892 0.104 0.004
#> ERR978197 2 0.6546 0.685 0.000 0.524 0.396 0.080
#> ERR978198 2 0.6546 0.685 0.000 0.524 0.396 0.080
#> ERR978199 2 0.6546 0.685 0.000 0.524 0.396 0.080
#> ERR978200 2 0.6546 0.685 0.000 0.524 0.396 0.080
#> ERR978201 2 0.6546 0.685 0.000 0.524 0.396 0.080
#> ERR978202 2 0.6546 0.685 0.000 0.524 0.396 0.080
#> ERR978203 2 0.6546 0.685 0.000 0.524 0.396 0.080
#> ERR978204 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978205 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978206 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978207 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978208 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978209 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978210 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978211 2 0.6347 0.696 0.000 0.548 0.384 0.068
#> ERR978212 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978213 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978214 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978215 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978216 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978217 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978218 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978219 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978220 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978221 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978222 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978223 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978224 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978225 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978226 2 0.6747 0.688 0.000 0.528 0.372 0.100
#> ERR978227 1 0.4322 0.916 0.828 0.060 0.008 0.104
#> ERR978228 1 0.4322 0.916 0.828 0.060 0.008 0.104
#> ERR978229 1 0.4322 0.916 0.828 0.060 0.008 0.104
#> ERR978230 1 0.4322 0.916 0.828 0.060 0.008 0.104
#> ERR978231 1 0.4322 0.916 0.828 0.060 0.008 0.104
#> ERR978232 1 0.4322 0.916 0.828 0.060 0.008 0.104
#> ERR978233 1 0.4322 0.916 0.828 0.060 0.008 0.104
#> ERR978234 1 0.4304 0.916 0.828 0.056 0.008 0.108
#> ERR978235 1 0.4304 0.916 0.828 0.056 0.008 0.108
#> ERR978236 1 0.4304 0.916 0.828 0.056 0.008 0.108
#> ERR978237 1 0.4304 0.916 0.828 0.056 0.008 0.108
#> ERR978238 1 0.4304 0.916 0.828 0.056 0.008 0.108
#> ERR978239 1 0.4304 0.916 0.828 0.056 0.008 0.108
#> ERR978240 1 0.4304 0.916 0.828 0.056 0.008 0.108
#> ERR978241 3 0.3400 0.721 0.000 0.000 0.820 0.180
#> ERR978242 3 0.3400 0.721 0.000 0.000 0.820 0.180
#> ERR978243 3 0.3400 0.721 0.000 0.000 0.820 0.180
#> ERR978244 3 0.3400 0.721 0.000 0.000 0.820 0.180
#> ERR978245 3 0.3400 0.721 0.000 0.000 0.820 0.180
#> ERR978246 3 0.3400 0.721 0.000 0.000 0.820 0.180
#> ERR978247 3 0.3400 0.721 0.000 0.000 0.820 0.180
#> ERR978248 3 0.4872 0.531 0.004 0.212 0.752 0.032
#> ERR978249 3 0.4872 0.531 0.004 0.212 0.752 0.032
#> ERR978250 3 0.4872 0.531 0.004 0.212 0.752 0.032
#> ERR978251 3 0.4872 0.531 0.004 0.212 0.752 0.032
#> ERR978252 3 0.4872 0.531 0.004 0.212 0.752 0.032
#> ERR978253 3 0.4872 0.531 0.004 0.212 0.752 0.032
#> ERR978254 3 0.4872 0.531 0.004 0.212 0.752 0.032
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978108 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978109 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978110 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978111 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978112 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978113 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978114 2 0.405 0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978115 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978116 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978117 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978118 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978119 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978120 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978121 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978122 2 0.442 0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978123 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978124 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978125 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978126 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978127 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978128 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978129 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978130 3 0.330 0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978131 3 0.344 0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978132 3 0.344 0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978133 3 0.344 0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978134 3 0.344 0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978135 3 0.344 0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978136 3 0.344 0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978137 3 0.344 0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978138 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978139 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978140 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978141 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978142 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978143 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978144 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978145 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978146 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978147 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978148 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978149 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978150 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978151 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978152 3 0.603 0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978153 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978154 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978155 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978156 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978157 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978158 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978159 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978160 1 0.115 0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978161 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978162 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978163 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978164 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978165 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978166 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978167 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978168 1 0.104 0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978169 4 0.365 0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978170 4 0.365 0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978171 4 0.365 0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978172 4 0.365 0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978173 4 0.365 0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978174 4 0.365 0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978175 4 0.365 0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978176 4 0.256 0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978177 4 0.256 0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978178 4 0.256 0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978179 4 0.256 0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978180 4 0.256 0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978181 4 0.256 0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978182 4 0.256 0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978183 2 0.636 0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978184 2 0.636 0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978185 2 0.636 0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978186 2 0.636 0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978187 2 0.636 0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978188 2 0.636 0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978189 2 0.636 0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978190 2 0.645 0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978191 2 0.645 0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978192 2 0.645 0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978193 2 0.645 0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978194 2 0.645 0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978195 2 0.645 0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978196 2 0.645 0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978197 5 0.375 0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978198 5 0.375 0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978199 5 0.375 0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978200 5 0.375 0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978201 5 0.375 0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978202 5 0.375 0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978203 5 0.375 0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978204 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978205 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978206 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978207 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978208 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978209 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978210 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978211 5 0.345 0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978212 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978213 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978214 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978215 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978216 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978217 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978218 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978219 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978220 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978221 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978222 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978223 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978224 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978225 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978226 5 0.051 0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978227 1 0.524 0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978228 1 0.524 0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978229 1 0.524 0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978230 1 0.524 0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978231 1 0.524 0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978232 1 0.524 0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978233 1 0.524 0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978234 1 0.502 0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978235 1 0.502 0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978236 1 0.502 0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978237 1 0.502 0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978238 1 0.502 0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978239 1 0.502 0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978240 1 0.502 0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978241 3 0.666 0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978242 3 0.666 0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978243 3 0.666 0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978244 3 0.666 0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978245 3 0.666 0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978246 3 0.666 0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978247 3 0.666 0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978248 5 0.668 -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978249 5 0.668 -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978250 5 0.668 -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978251 5 0.668 -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978252 5 0.668 -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978253 5 0.668 -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978254 5 0.668 -0.159 0.000 0.124 0.408 0.024 0.444
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978108 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978109 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978110 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978111 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978112 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978113 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978114 2 0.5519 0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978115 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978116 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978117 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978118 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978119 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978120 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978121 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978122 2 0.5678 0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978123 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978124 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978125 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978126 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978127 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978128 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978129 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978130 3 0.0632 0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978131 3 0.1003 0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978132 3 0.1003 0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978133 3 0.1003 0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978134 3 0.1003 0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978135 3 0.1003 0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978136 3 0.1003 0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978137 3 0.1003 0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978138 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978139 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978140 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978141 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978142 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978143 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978144 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978145 3 0.6615 0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978146 3 0.6502 0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978147 3 0.6502 0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978148 3 0.6502 0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978149 3 0.6502 0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978150 3 0.6502 0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978151 3 0.6502 0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978152 3 0.6502 0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978153 1 0.0260 0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978154 1 0.0260 0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978155 1 0.0260 0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978156 1 0.0260 0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978157 1 0.0260 0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978158 1 0.0260 0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978159 1 0.0260 0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978160 1 0.0260 0.857 0.992 0.008 0.000 0.000 0.000 NA
#> ERR978161 1 0.1370 0.857 0.948 0.036 0.004 0.012 0.000 NA
#> ERR978162 1 0.1370 0.857 0.948 0.036 0.004 0.012 0.000 NA
#> ERR978163 1 0.1296 0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978164 1 0.1296 0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978165 1 0.1296 0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978166 1 0.1296 0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978167 1 0.1296 0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978168 1 0.1370 0.857 0.948 0.036 0.004 0.012 0.000 NA
#> ERR978169 4 0.3917 0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978170 4 0.3917 0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978171 4 0.3917 0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978172 4 0.3917 0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978173 4 0.3917 0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978174 4 0.3917 0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978175 4 0.3935 0.959 0.000 0.028 0.124 0.792 0.000 NA
#> ERR978176 4 0.2003 0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978177 4 0.2003 0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978178 4 0.2003 0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978179 4 0.2003 0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978180 4 0.2003 0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978181 4 0.2003 0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978182 4 0.2146 0.959 0.000 0.004 0.116 0.880 0.000 NA
#> ERR978183 2 0.3695 0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978184 2 0.3695 0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978185 2 0.3695 0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978186 2 0.3695 0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978187 2 0.3695 0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978188 2 0.3695 0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978189 2 0.3695 0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978190 2 0.4327 0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978191 2 0.4327 0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978192 2 0.4327 0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978193 2 0.4327 0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978194 2 0.4327 0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978195 2 0.4327 0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978196 2 0.4327 0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978197 5 0.3996 0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978198 5 0.3996 0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978199 5 0.3996 0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978200 5 0.3996 0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978201 5 0.3996 0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978202 5 0.3996 0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978203 5 0.3996 0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978204 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978205 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978206 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978207 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978208 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978209 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978210 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978211 5 0.3201 0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978212 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978213 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978214 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978215 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978216 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978217 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978218 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978219 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978220 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978221 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978222 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978223 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978224 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978225 5 0.4457 0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978226 5 0.4508 0.848 0.000 0.052 0.080 0.012 0.776 NA
#> ERR978227 1 0.3888 0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978228 1 0.3888 0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978229 1 0.3888 0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978230 1 0.3888 0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978231 1 0.3888 0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978232 1 0.3888 0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978233 1 0.3888 0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978234 1 0.4159 0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978235 1 0.4159 0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978236 1 0.4159 0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978237 1 0.4159 0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978238 1 0.4159 0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978239 1 0.4159 0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978240 1 0.4190 0.841 0.672 0.004 0.000 0.004 0.020 NA
#> ERR978241 3 0.7182 0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978242 3 0.7182 0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978243 3 0.7182 0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978244 3 0.7182 0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978245 3 0.7182 0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978246 3 0.7182 0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978247 3 0.7182 0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978248 3 0.7745 0.214 0.000 0.108 0.348 0.020 0.268 NA
#> ERR978249 3 0.7725 0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978250 3 0.7725 0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978251 3 0.7725 0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978252 3 0.7725 0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978253 3 0.7725 0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978254 3 0.7745 0.214 0.000 0.108 0.348 0.020 0.268 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.904 0.932 0.964 0.4975 0.501 0.501
#> 3 3 1.000 1.000 1.000 0.2862 0.859 0.719
#> 4 4 0.950 0.960 0.968 0.0838 0.950 0.862
#> 5 5 0.854 0.898 0.855 0.1006 0.898 0.672
#> 6 6 0.818 0.913 0.873 0.0545 0.981 0.908
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.0000 1.000 0.000 1.000
#> ERR978108 2 0.0000 1.000 0.000 1.000
#> ERR978109 2 0.0000 1.000 0.000 1.000
#> ERR978110 2 0.0000 1.000 0.000 1.000
#> ERR978111 2 0.0000 1.000 0.000 1.000
#> ERR978112 2 0.0000 1.000 0.000 1.000
#> ERR978113 2 0.0000 1.000 0.000 1.000
#> ERR978114 2 0.0000 1.000 0.000 1.000
#> ERR978115 2 0.0000 1.000 0.000 1.000
#> ERR978116 2 0.0000 1.000 0.000 1.000
#> ERR978117 2 0.0000 1.000 0.000 1.000
#> ERR978118 2 0.0000 1.000 0.000 1.000
#> ERR978119 2 0.0000 1.000 0.000 1.000
#> ERR978120 2 0.0000 1.000 0.000 1.000
#> ERR978121 2 0.0000 1.000 0.000 1.000
#> ERR978122 2 0.0000 1.000 0.000 1.000
#> ERR978123 1 0.2043 0.921 0.968 0.032
#> ERR978124 1 0.2043 0.921 0.968 0.032
#> ERR978125 1 0.2043 0.921 0.968 0.032
#> ERR978126 1 0.2043 0.921 0.968 0.032
#> ERR978127 1 0.2043 0.921 0.968 0.032
#> ERR978128 1 0.2043 0.921 0.968 0.032
#> ERR978129 1 0.2043 0.921 0.968 0.032
#> ERR978130 1 0.2043 0.921 0.968 0.032
#> ERR978131 1 0.2778 0.912 0.952 0.048
#> ERR978132 1 0.2778 0.912 0.952 0.048
#> ERR978133 1 0.2778 0.912 0.952 0.048
#> ERR978134 1 0.2778 0.912 0.952 0.048
#> ERR978135 1 0.2778 0.912 0.952 0.048
#> ERR978136 1 0.2778 0.912 0.952 0.048
#> ERR978137 1 0.2778 0.912 0.952 0.048
#> ERR978138 1 0.9129 0.615 0.672 0.328
#> ERR978139 1 0.9129 0.615 0.672 0.328
#> ERR978140 1 0.9129 0.615 0.672 0.328
#> ERR978141 1 0.9129 0.615 0.672 0.328
#> ERR978142 1 0.9129 0.615 0.672 0.328
#> ERR978143 1 0.9129 0.615 0.672 0.328
#> ERR978144 1 0.9129 0.615 0.672 0.328
#> ERR978145 1 0.9129 0.615 0.672 0.328
#> ERR978146 1 0.8713 0.671 0.708 0.292
#> ERR978147 1 0.8713 0.671 0.708 0.292
#> ERR978148 1 0.8713 0.671 0.708 0.292
#> ERR978149 1 0.8713 0.671 0.708 0.292
#> ERR978150 1 0.8713 0.671 0.708 0.292
#> ERR978151 1 0.8713 0.671 0.708 0.292
#> ERR978152 1 0.8713 0.671 0.708 0.292
#> ERR978153 1 0.0000 0.932 1.000 0.000
#> ERR978154 1 0.0000 0.932 1.000 0.000
#> ERR978155 1 0.0000 0.932 1.000 0.000
#> ERR978156 1 0.0000 0.932 1.000 0.000
#> ERR978157 1 0.0000 0.932 1.000 0.000
#> ERR978158 1 0.0000 0.932 1.000 0.000
#> ERR978159 1 0.0000 0.932 1.000 0.000
#> ERR978160 1 0.0000 0.932 1.000 0.000
#> ERR978161 1 0.0000 0.932 1.000 0.000
#> ERR978162 1 0.0000 0.932 1.000 0.000
#> ERR978163 1 0.0000 0.932 1.000 0.000
#> ERR978164 1 0.0000 0.932 1.000 0.000
#> ERR978165 1 0.0000 0.932 1.000 0.000
#> ERR978166 1 0.0000 0.932 1.000 0.000
#> ERR978167 1 0.0000 0.932 1.000 0.000
#> ERR978168 1 0.0000 0.932 1.000 0.000
#> ERR978169 1 0.0000 0.932 1.000 0.000
#> ERR978170 1 0.0000 0.932 1.000 0.000
#> ERR978171 1 0.0000 0.932 1.000 0.000
#> ERR978172 1 0.0000 0.932 1.000 0.000
#> ERR978173 1 0.0000 0.932 1.000 0.000
#> ERR978174 1 0.0000 0.932 1.000 0.000
#> ERR978175 1 0.0000 0.932 1.000 0.000
#> ERR978176 1 0.0000 0.932 1.000 0.000
#> ERR978177 1 0.0000 0.932 1.000 0.000
#> ERR978178 1 0.0000 0.932 1.000 0.000
#> ERR978179 1 0.0000 0.932 1.000 0.000
#> ERR978180 1 0.0000 0.932 1.000 0.000
#> ERR978181 1 0.0000 0.932 1.000 0.000
#> ERR978182 1 0.0000 0.932 1.000 0.000
#> ERR978183 2 0.0000 1.000 0.000 1.000
#> ERR978184 2 0.0000 1.000 0.000 1.000
#> ERR978185 2 0.0000 1.000 0.000 1.000
#> ERR978186 2 0.0000 1.000 0.000 1.000
#> ERR978187 2 0.0000 1.000 0.000 1.000
#> ERR978188 2 0.0000 1.000 0.000 1.000
#> ERR978189 2 0.0000 1.000 0.000 1.000
#> ERR978190 2 0.0000 1.000 0.000 1.000
#> ERR978191 2 0.0000 1.000 0.000 1.000
#> ERR978192 2 0.0000 1.000 0.000 1.000
#> ERR978193 2 0.0000 1.000 0.000 1.000
#> ERR978194 2 0.0000 1.000 0.000 1.000
#> ERR978195 2 0.0000 1.000 0.000 1.000
#> ERR978196 2 0.0000 1.000 0.000 1.000
#> ERR978197 2 0.0000 1.000 0.000 1.000
#> ERR978198 2 0.0000 1.000 0.000 1.000
#> ERR978199 2 0.0000 1.000 0.000 1.000
#> ERR978200 2 0.0000 1.000 0.000 1.000
#> ERR978201 2 0.0000 1.000 0.000 1.000
#> ERR978202 2 0.0000 1.000 0.000 1.000
#> ERR978203 2 0.0000 1.000 0.000 1.000
#> ERR978204 2 0.0000 1.000 0.000 1.000
#> ERR978205 2 0.0000 1.000 0.000 1.000
#> ERR978206 2 0.0000 1.000 0.000 1.000
#> ERR978207 2 0.0000 1.000 0.000 1.000
#> ERR978208 2 0.0000 1.000 0.000 1.000
#> ERR978209 2 0.0000 1.000 0.000 1.000
#> ERR978210 2 0.0000 1.000 0.000 1.000
#> ERR978211 2 0.0000 1.000 0.000 1.000
#> ERR978212 2 0.0000 1.000 0.000 1.000
#> ERR978213 2 0.0000 1.000 0.000 1.000
#> ERR978214 2 0.0000 1.000 0.000 1.000
#> ERR978215 2 0.0000 1.000 0.000 1.000
#> ERR978216 2 0.0000 1.000 0.000 1.000
#> ERR978217 2 0.0000 1.000 0.000 1.000
#> ERR978218 2 0.0000 1.000 0.000 1.000
#> ERR978219 2 0.0000 1.000 0.000 1.000
#> ERR978220 2 0.0000 1.000 0.000 1.000
#> ERR978221 2 0.0000 1.000 0.000 1.000
#> ERR978222 2 0.0000 1.000 0.000 1.000
#> ERR978223 2 0.0000 1.000 0.000 1.000
#> ERR978224 2 0.0000 1.000 0.000 1.000
#> ERR978225 2 0.0000 1.000 0.000 1.000
#> ERR978226 2 0.0000 1.000 0.000 1.000
#> ERR978227 1 0.0000 0.932 1.000 0.000
#> ERR978228 1 0.0000 0.932 1.000 0.000
#> ERR978229 1 0.0000 0.932 1.000 0.000
#> ERR978230 1 0.0000 0.932 1.000 0.000
#> ERR978231 1 0.0000 0.932 1.000 0.000
#> ERR978232 1 0.0000 0.932 1.000 0.000
#> ERR978233 1 0.0000 0.932 1.000 0.000
#> ERR978234 1 0.0000 0.932 1.000 0.000
#> ERR978235 1 0.0000 0.932 1.000 0.000
#> ERR978236 1 0.0000 0.932 1.000 0.000
#> ERR978237 1 0.0000 0.932 1.000 0.000
#> ERR978238 1 0.0000 0.932 1.000 0.000
#> ERR978239 1 0.0000 0.932 1.000 0.000
#> ERR978240 1 0.0000 0.932 1.000 0.000
#> ERR978241 1 0.0376 0.931 0.996 0.004
#> ERR978242 1 0.0376 0.931 0.996 0.004
#> ERR978243 1 0.0376 0.931 0.996 0.004
#> ERR978244 1 0.0376 0.931 0.996 0.004
#> ERR978245 1 0.0376 0.931 0.996 0.004
#> ERR978246 1 0.0376 0.931 0.996 0.004
#> ERR978247 1 0.0376 0.931 0.996 0.004
#> ERR978248 2 0.0000 1.000 0.000 1.000
#> ERR978249 2 0.0000 1.000 0.000 1.000
#> ERR978250 2 0.0000 1.000 0.000 1.000
#> ERR978251 2 0.0000 1.000 0.000 1.000
#> ERR978252 2 0.0000 1.000 0.000 1.000
#> ERR978253 2 0.0000 1.000 0.000 1.000
#> ERR978254 2 0.0000 1.000 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0 1 0 1 0
#> ERR978108 2 0 1 0 1 0
#> ERR978109 2 0 1 0 1 0
#> ERR978110 2 0 1 0 1 0
#> ERR978111 2 0 1 0 1 0
#> ERR978112 2 0 1 0 1 0
#> ERR978113 2 0 1 0 1 0
#> ERR978114 2 0 1 0 1 0
#> ERR978115 2 0 1 0 1 0
#> ERR978116 2 0 1 0 1 0
#> ERR978117 2 0 1 0 1 0
#> ERR978118 2 0 1 0 1 0
#> ERR978119 2 0 1 0 1 0
#> ERR978120 2 0 1 0 1 0
#> ERR978121 2 0 1 0 1 0
#> ERR978122 2 0 1 0 1 0
#> ERR978123 3 0 1 0 0 1
#> ERR978124 3 0 1 0 0 1
#> ERR978125 3 0 1 0 0 1
#> ERR978126 3 0 1 0 0 1
#> ERR978127 3 0 1 0 0 1
#> ERR978128 3 0 1 0 0 1
#> ERR978129 3 0 1 0 0 1
#> ERR978130 3 0 1 0 0 1
#> ERR978131 3 0 1 0 0 1
#> ERR978132 3 0 1 0 0 1
#> ERR978133 3 0 1 0 0 1
#> ERR978134 3 0 1 0 0 1
#> ERR978135 3 0 1 0 0 1
#> ERR978136 3 0 1 0 0 1
#> ERR978137 3 0 1 0 0 1
#> ERR978138 3 0 1 0 0 1
#> ERR978139 3 0 1 0 0 1
#> ERR978140 3 0 1 0 0 1
#> ERR978141 3 0 1 0 0 1
#> ERR978142 3 0 1 0 0 1
#> ERR978143 3 0 1 0 0 1
#> ERR978144 3 0 1 0 0 1
#> ERR978145 3 0 1 0 0 1
#> ERR978146 3 0 1 0 0 1
#> ERR978147 3 0 1 0 0 1
#> ERR978148 3 0 1 0 0 1
#> ERR978149 3 0 1 0 0 1
#> ERR978150 3 0 1 0 0 1
#> ERR978151 3 0 1 0 0 1
#> ERR978152 3 0 1 0 0 1
#> ERR978153 1 0 1 1 0 0
#> ERR978154 1 0 1 1 0 0
#> ERR978155 1 0 1 1 0 0
#> ERR978156 1 0 1 1 0 0
#> ERR978157 1 0 1 1 0 0
#> ERR978158 1 0 1 1 0 0
#> ERR978159 1 0 1 1 0 0
#> ERR978160 1 0 1 1 0 0
#> ERR978161 1 0 1 1 0 0
#> ERR978162 1 0 1 1 0 0
#> ERR978163 1 0 1 1 0 0
#> ERR978164 1 0 1 1 0 0
#> ERR978165 1 0 1 1 0 0
#> ERR978166 1 0 1 1 0 0
#> ERR978167 1 0 1 1 0 0
#> ERR978168 1 0 1 1 0 0
#> ERR978169 3 0 1 0 0 1
#> ERR978170 3 0 1 0 0 1
#> ERR978171 3 0 1 0 0 1
#> ERR978172 3 0 1 0 0 1
#> ERR978173 3 0 1 0 0 1
#> ERR978174 3 0 1 0 0 1
#> ERR978175 3 0 1 0 0 1
#> ERR978176 3 0 1 0 0 1
#> ERR978177 3 0 1 0 0 1
#> ERR978178 3 0 1 0 0 1
#> ERR978179 3 0 1 0 0 1
#> ERR978180 3 0 1 0 0 1
#> ERR978181 3 0 1 0 0 1
#> ERR978182 3 0 1 0 0 1
#> ERR978183 2 0 1 0 1 0
#> ERR978184 2 0 1 0 1 0
#> ERR978185 2 0 1 0 1 0
#> ERR978186 2 0 1 0 1 0
#> ERR978187 2 0 1 0 1 0
#> ERR978188 2 0 1 0 1 0
#> ERR978189 2 0 1 0 1 0
#> ERR978190 2 0 1 0 1 0
#> ERR978191 2 0 1 0 1 0
#> ERR978192 2 0 1 0 1 0
#> ERR978193 2 0 1 0 1 0
#> ERR978194 2 0 1 0 1 0
#> ERR978195 2 0 1 0 1 0
#> ERR978196 2 0 1 0 1 0
#> ERR978197 2 0 1 0 1 0
#> ERR978198 2 0 1 0 1 0
#> ERR978199 2 0 1 0 1 0
#> ERR978200 2 0 1 0 1 0
#> ERR978201 2 0 1 0 1 0
#> ERR978202 2 0 1 0 1 0
#> ERR978203 2 0 1 0 1 0
#> ERR978204 2 0 1 0 1 0
#> ERR978205 2 0 1 0 1 0
#> ERR978206 2 0 1 0 1 0
#> ERR978207 2 0 1 0 1 0
#> ERR978208 2 0 1 0 1 0
#> ERR978209 2 0 1 0 1 0
#> ERR978210 2 0 1 0 1 0
#> ERR978211 2 0 1 0 1 0
#> ERR978212 2 0 1 0 1 0
#> ERR978213 2 0 1 0 1 0
#> ERR978214 2 0 1 0 1 0
#> ERR978215 2 0 1 0 1 0
#> ERR978216 2 0 1 0 1 0
#> ERR978217 2 0 1 0 1 0
#> ERR978218 2 0 1 0 1 0
#> ERR978219 2 0 1 0 1 0
#> ERR978220 2 0 1 0 1 0
#> ERR978221 2 0 1 0 1 0
#> ERR978222 2 0 1 0 1 0
#> ERR978223 2 0 1 0 1 0
#> ERR978224 2 0 1 0 1 0
#> ERR978225 2 0 1 0 1 0
#> ERR978226 2 0 1 0 1 0
#> ERR978227 1 0 1 1 0 0
#> ERR978228 1 0 1 1 0 0
#> ERR978229 1 0 1 1 0 0
#> ERR978230 1 0 1 1 0 0
#> ERR978231 1 0 1 1 0 0
#> ERR978232 1 0 1 1 0 0
#> ERR978233 1 0 1 1 0 0
#> ERR978234 1 0 1 1 0 0
#> ERR978235 1 0 1 1 0 0
#> ERR978236 1 0 1 1 0 0
#> ERR978237 1 0 1 1 0 0
#> ERR978238 1 0 1 1 0 0
#> ERR978239 1 0 1 1 0 0
#> ERR978240 1 0 1 1 0 0
#> ERR978241 3 0 1 0 0 1
#> ERR978242 3 0 1 0 0 1
#> ERR978243 3 0 1 0 0 1
#> ERR978244 3 0 1 0 0 1
#> ERR978245 3 0 1 0 0 1
#> ERR978246 3 0 1 0 0 1
#> ERR978247 3 0 1 0 0 1
#> ERR978248 2 0 1 0 1 0
#> ERR978249 2 0 1 0 1 0
#> ERR978250 2 0 1 0 1 0
#> ERR978251 2 0 1 0 1 0
#> ERR978252 2 0 1 0 1 0
#> ERR978253 2 0 1 0 1 0
#> ERR978254 2 0 1 0 1 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978123 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978124 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978125 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978126 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978127 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978128 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978129 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978130 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978131 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978132 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978133 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978134 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978135 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978136 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978137 3 0.1022 1.000 0 0.000 0.968 0.032
#> ERR978138 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978139 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978140 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978141 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978142 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978143 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978144 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978145 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978146 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978147 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978148 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978149 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978150 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978151 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978152 4 0.3649 0.839 0 0.000 0.204 0.796
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978170 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978171 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978172 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978173 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978174 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978175 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978176 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978177 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978178 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978179 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978180 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978181 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978182 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978183 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 0.984 0 1.000 0.000 0.000
#> ERR978197 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978198 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978199 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978200 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978201 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978202 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978203 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978204 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978205 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978206 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978207 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978208 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978209 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978210 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978211 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978212 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978213 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978214 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978215 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978216 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978217 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978218 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978219 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978220 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978221 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978222 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978223 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978224 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978225 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978226 2 0.0921 0.983 0 0.972 0.028 0.000
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978242 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978243 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978244 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978245 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978246 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978247 4 0.0000 0.899 0 0.000 0.000 1.000
#> ERR978248 2 0.1398 0.954 0 0.956 0.004 0.040
#> ERR978249 2 0.1398 0.954 0 0.956 0.004 0.040
#> ERR978250 2 0.1398 0.954 0 0.956 0.004 0.040
#> ERR978251 2 0.1398 0.954 0 0.956 0.004 0.040
#> ERR978252 2 0.1398 0.954 0 0.956 0.004 0.040
#> ERR978253 2 0.1398 0.954 0 0.956 0.004 0.040
#> ERR978254 2 0.1398 0.954 0 0.956 0.004 0.040
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978124 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978125 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978126 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978127 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978128 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978129 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978130 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978131 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978132 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978133 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978134 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978135 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978136 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978137 3 0.0000 1.000 0 0.000 1.000 0.000 0.000
#> ERR978138 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978139 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978140 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978141 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978142 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978143 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978144 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978145 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978146 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978147 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978148 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978149 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978150 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978151 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978152 4 0.5342 0.771 0 0.000 0.172 0.672 0.156
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978170 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978171 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978172 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978173 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978174 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978175 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978176 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978177 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978178 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978179 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978180 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978181 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978182 4 0.0000 0.854 0 0.000 0.000 1.000 0.000
#> ERR978183 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 0.865 0 1.000 0.000 0.000 0.000
#> ERR978197 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978198 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978199 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978200 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978201 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978202 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978203 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978204 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978205 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978206 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978207 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978208 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978209 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978210 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978211 5 0.4443 0.968 0 0.472 0.004 0.000 0.524
#> ERR978212 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978213 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978214 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978215 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978216 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978217 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978218 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978219 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978220 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978221 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978222 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978223 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978224 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978225 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978226 5 0.4291 0.968 0 0.464 0.000 0.000 0.536
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0609 0.847 0 0.000 0.000 0.980 0.020
#> ERR978242 4 0.0609 0.847 0 0.000 0.000 0.980 0.020
#> ERR978243 4 0.0609 0.847 0 0.000 0.000 0.980 0.020
#> ERR978244 4 0.0609 0.847 0 0.000 0.000 0.980 0.020
#> ERR978245 4 0.0609 0.847 0 0.000 0.000 0.980 0.020
#> ERR978246 4 0.0609 0.847 0 0.000 0.000 0.980 0.020
#> ERR978247 4 0.0609 0.847 0 0.000 0.000 0.980 0.020
#> ERR978248 2 0.4856 0.489 0 0.584 0.000 0.028 0.388
#> ERR978249 2 0.4856 0.489 0 0.584 0.000 0.028 0.388
#> ERR978250 2 0.4856 0.489 0 0.584 0.000 0.028 0.388
#> ERR978251 2 0.4856 0.489 0 0.584 0.000 0.028 0.388
#> ERR978252 2 0.4856 0.489 0 0.584 0.000 0.028 0.388
#> ERR978253 2 0.4856 0.489 0 0.584 0.000 0.028 0.388
#> ERR978254 2 0.4856 0.489 0 0.584 0.000 0.028 0.388
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978108 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978109 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978110 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978111 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978112 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978113 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978114 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978115 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978116 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978117 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978118 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978119 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978120 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978121 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978122 2 0.2491 0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978123 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978124 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978125 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978126 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978127 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978128 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978129 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978130 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978131 3 0.0146 0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978132 3 0.0146 0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978133 3 0.0146 0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978134 3 0.0146 0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978135 3 0.0146 0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978136 3 0.0146 0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978137 3 0.0146 0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978138 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978139 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978140 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978141 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978142 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978143 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978144 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978145 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978146 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978147 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978148 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978149 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978150 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978151 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978152 4 0.1814 0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978153 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978170 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978171 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978172 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978173 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978174 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978175 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978176 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978177 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978178 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978179 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978180 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978181 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978182 4 0.3810 0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978183 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978184 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978185 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978186 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978187 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978188 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978189 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978190 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978191 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978192 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978193 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978194 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978195 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978196 2 0.2527 0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978197 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978198 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978199 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978200 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978201 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978202 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978203 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978204 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978205 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978206 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978207 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978208 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978209 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978210 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978211 5 0.1863 0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978212 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978213 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978214 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978215 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978216 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978217 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978218 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978219 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978220 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978221 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978222 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978223 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978224 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978225 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978226 5 0.0820 0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978227 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978228 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978229 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978230 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978231 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978232 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978233 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978234 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978235 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978236 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978237 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978238 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978239 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978240 1 0.0146 0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978241 4 0.3847 0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978242 4 0.3847 0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978243 4 0.3847 0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978244 4 0.3847 0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978245 4 0.3847 0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978246 4 0.3847 0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978247 4 0.3847 0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978248 6 0.5227 1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978249 6 0.5227 1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978250 6 0.5227 1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978251 6 0.5227 1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978252 6 0.5227 1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978253 6 0.5227 1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978254 6 0.5227 1.000 0.000 0.368 0.000 0.004 0.088 0.540
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 0.835 0.842 0.941 0.9643 0.681 0.527
#> 4 4 0.876 0.893 0.956 0.1018 0.852 0.629
#> 5 5 1.000 0.983 0.993 0.1177 0.854 0.551
#> 6 6 1.000 0.989 0.994 0.0403 0.970 0.856
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5
There is also optional best \(k\) = 2 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.0000 0.89410 0 1.000 0.000
#> ERR978108 2 0.0000 0.89410 0 1.000 0.000
#> ERR978109 2 0.0000 0.89410 0 1.000 0.000
#> ERR978110 2 0.0000 0.89410 0 1.000 0.000
#> ERR978111 2 0.0000 0.89410 0 1.000 0.000
#> ERR978112 2 0.0000 0.89410 0 1.000 0.000
#> ERR978113 2 0.0000 0.89410 0 1.000 0.000
#> ERR978114 2 0.0000 0.89410 0 1.000 0.000
#> ERR978115 2 0.0000 0.89410 0 1.000 0.000
#> ERR978116 2 0.0000 0.89410 0 1.000 0.000
#> ERR978117 2 0.0000 0.89410 0 1.000 0.000
#> ERR978118 2 0.0000 0.89410 0 1.000 0.000
#> ERR978119 2 0.0000 0.89410 0 1.000 0.000
#> ERR978120 2 0.0000 0.89410 0 1.000 0.000
#> ERR978121 2 0.0000 0.89410 0 1.000 0.000
#> ERR978122 2 0.0000 0.89410 0 1.000 0.000
#> ERR978123 3 0.0000 0.93000 0 0.000 1.000
#> ERR978124 3 0.0000 0.93000 0 0.000 1.000
#> ERR978125 3 0.0000 0.93000 0 0.000 1.000
#> ERR978126 3 0.0000 0.93000 0 0.000 1.000
#> ERR978127 3 0.0000 0.93000 0 0.000 1.000
#> ERR978128 3 0.0000 0.93000 0 0.000 1.000
#> ERR978129 3 0.0000 0.93000 0 0.000 1.000
#> ERR978130 3 0.0000 0.93000 0 0.000 1.000
#> ERR978131 3 0.0000 0.93000 0 0.000 1.000
#> ERR978132 3 0.0000 0.93000 0 0.000 1.000
#> ERR978133 3 0.0000 0.93000 0 0.000 1.000
#> ERR978134 3 0.0000 0.93000 0 0.000 1.000
#> ERR978135 3 0.0000 0.93000 0 0.000 1.000
#> ERR978136 3 0.0000 0.93000 0 0.000 1.000
#> ERR978137 3 0.0000 0.93000 0 0.000 1.000
#> ERR978138 3 0.0000 0.93000 0 0.000 1.000
#> ERR978139 3 0.0000 0.93000 0 0.000 1.000
#> ERR978140 3 0.0000 0.93000 0 0.000 1.000
#> ERR978141 3 0.0000 0.93000 0 0.000 1.000
#> ERR978142 3 0.0000 0.93000 0 0.000 1.000
#> ERR978143 3 0.0000 0.93000 0 0.000 1.000
#> ERR978144 3 0.0000 0.93000 0 0.000 1.000
#> ERR978145 3 0.0000 0.93000 0 0.000 1.000
#> ERR978146 3 0.0000 0.93000 0 0.000 1.000
#> ERR978147 3 0.0000 0.93000 0 0.000 1.000
#> ERR978148 3 0.0000 0.93000 0 0.000 1.000
#> ERR978149 3 0.0000 0.93000 0 0.000 1.000
#> ERR978150 3 0.0000 0.93000 0 0.000 1.000
#> ERR978151 3 0.0000 0.93000 0 0.000 1.000
#> ERR978152 3 0.0000 0.93000 0 0.000 1.000
#> ERR978153 1 0.0000 1.00000 1 0.000 0.000
#> ERR978154 1 0.0000 1.00000 1 0.000 0.000
#> ERR978155 1 0.0000 1.00000 1 0.000 0.000
#> ERR978156 1 0.0000 1.00000 1 0.000 0.000
#> ERR978157 1 0.0000 1.00000 1 0.000 0.000
#> ERR978158 1 0.0000 1.00000 1 0.000 0.000
#> ERR978159 1 0.0000 1.00000 1 0.000 0.000
#> ERR978160 1 0.0000 1.00000 1 0.000 0.000
#> ERR978161 1 0.0000 1.00000 1 0.000 0.000
#> ERR978162 1 0.0000 1.00000 1 0.000 0.000
#> ERR978163 1 0.0000 1.00000 1 0.000 0.000
#> ERR978164 1 0.0000 1.00000 1 0.000 0.000
#> ERR978165 1 0.0000 1.00000 1 0.000 0.000
#> ERR978166 1 0.0000 1.00000 1 0.000 0.000
#> ERR978167 1 0.0000 1.00000 1 0.000 0.000
#> ERR978168 1 0.0000 1.00000 1 0.000 0.000
#> ERR978169 3 0.0000 0.93000 0 0.000 1.000
#> ERR978170 3 0.0000 0.93000 0 0.000 1.000
#> ERR978171 3 0.0000 0.93000 0 0.000 1.000
#> ERR978172 3 0.0000 0.93000 0 0.000 1.000
#> ERR978173 3 0.0000 0.93000 0 0.000 1.000
#> ERR978174 3 0.0000 0.93000 0 0.000 1.000
#> ERR978175 3 0.0000 0.93000 0 0.000 1.000
#> ERR978176 3 0.0000 0.93000 0 0.000 1.000
#> ERR978177 3 0.0000 0.93000 0 0.000 1.000
#> ERR978178 3 0.0000 0.93000 0 0.000 1.000
#> ERR978179 3 0.0000 0.93000 0 0.000 1.000
#> ERR978180 3 0.0000 0.93000 0 0.000 1.000
#> ERR978181 3 0.0000 0.93000 0 0.000 1.000
#> ERR978182 3 0.0000 0.93000 0 0.000 1.000
#> ERR978183 2 0.0000 0.89410 0 1.000 0.000
#> ERR978184 2 0.0000 0.89410 0 1.000 0.000
#> ERR978185 2 0.0000 0.89410 0 1.000 0.000
#> ERR978186 2 0.0000 0.89410 0 1.000 0.000
#> ERR978187 2 0.0000 0.89410 0 1.000 0.000
#> ERR978188 2 0.0000 0.89410 0 1.000 0.000
#> ERR978189 2 0.0000 0.89410 0 1.000 0.000
#> ERR978190 2 0.0000 0.89410 0 1.000 0.000
#> ERR978191 2 0.0000 0.89410 0 1.000 0.000
#> ERR978192 2 0.0000 0.89410 0 1.000 0.000
#> ERR978193 2 0.0000 0.89410 0 1.000 0.000
#> ERR978194 2 0.0000 0.89410 0 1.000 0.000
#> ERR978195 2 0.0000 0.89410 0 1.000 0.000
#> ERR978196 2 0.0000 0.89410 0 1.000 0.000
#> ERR978197 2 0.0000 0.89410 0 1.000 0.000
#> ERR978198 2 0.0592 0.88639 0 0.988 0.012
#> ERR978199 2 0.4121 0.74965 0 0.832 0.168
#> ERR978200 2 0.4750 0.69353 0 0.784 0.216
#> ERR978201 2 0.1643 0.86434 0 0.956 0.044
#> ERR978202 2 0.0000 0.89410 0 1.000 0.000
#> ERR978203 2 0.0000 0.89410 0 1.000 0.000
#> ERR978204 2 0.0000 0.89410 0 1.000 0.000
#> ERR978205 2 0.0000 0.89410 0 1.000 0.000
#> ERR978206 2 0.0000 0.89410 0 1.000 0.000
#> ERR978207 2 0.0000 0.89410 0 1.000 0.000
#> ERR978208 2 0.0000 0.89410 0 1.000 0.000
#> ERR978209 2 0.0000 0.89410 0 1.000 0.000
#> ERR978210 2 0.0000 0.89410 0 1.000 0.000
#> ERR978211 2 0.0000 0.89410 0 1.000 0.000
#> ERR978212 2 0.6309 0.06953 0 0.504 0.496
#> ERR978213 3 0.5948 0.39127 0 0.360 0.640
#> ERR978214 3 0.5650 0.50578 0 0.312 0.688
#> ERR978215 3 0.5529 0.53916 0 0.296 0.704
#> ERR978216 3 0.5810 0.45135 0 0.336 0.664
#> ERR978217 3 0.6302 -0.00608 0 0.480 0.520
#> ERR978218 2 0.6308 0.08461 0 0.508 0.492
#> ERR978219 2 0.4555 0.71266 0 0.800 0.200
#> ERR978220 2 0.6140 0.34615 0 0.596 0.404
#> ERR978221 2 0.6308 0.08461 0 0.508 0.492
#> ERR978222 3 0.6299 0.01032 0 0.476 0.524
#> ERR978223 2 0.6308 0.08461 0 0.508 0.492
#> ERR978224 2 0.6192 0.30544 0 0.580 0.420
#> ERR978225 2 0.4702 0.69781 0 0.788 0.212
#> ERR978226 2 0.6008 0.41984 0 0.628 0.372
#> ERR978227 1 0.0000 1.00000 1 0.000 0.000
#> ERR978228 1 0.0000 1.00000 1 0.000 0.000
#> ERR978229 1 0.0000 1.00000 1 0.000 0.000
#> ERR978230 1 0.0000 1.00000 1 0.000 0.000
#> ERR978231 1 0.0000 1.00000 1 0.000 0.000
#> ERR978232 1 0.0000 1.00000 1 0.000 0.000
#> ERR978233 1 0.0000 1.00000 1 0.000 0.000
#> ERR978234 1 0.0000 1.00000 1 0.000 0.000
#> ERR978235 1 0.0000 1.00000 1 0.000 0.000
#> ERR978236 1 0.0000 1.00000 1 0.000 0.000
#> ERR978237 1 0.0000 1.00000 1 0.000 0.000
#> ERR978238 1 0.0000 1.00000 1 0.000 0.000
#> ERR978239 1 0.0000 1.00000 1 0.000 0.000
#> ERR978240 1 0.0000 1.00000 1 0.000 0.000
#> ERR978241 3 0.0000 0.93000 0 0.000 1.000
#> ERR978242 3 0.0000 0.93000 0 0.000 1.000
#> ERR978243 3 0.0000 0.93000 0 0.000 1.000
#> ERR978244 3 0.0000 0.93000 0 0.000 1.000
#> ERR978245 3 0.0000 0.93000 0 0.000 1.000
#> ERR978246 3 0.0000 0.93000 0 0.000 1.000
#> ERR978247 3 0.0000 0.93000 0 0.000 1.000
#> ERR978248 2 0.6299 0.05963 0 0.524 0.476
#> ERR978249 3 0.6295 0.09706 0 0.472 0.528
#> ERR978250 3 0.4235 0.74998 0 0.176 0.824
#> ERR978251 3 0.3038 0.82806 0 0.104 0.896
#> ERR978252 3 0.4974 0.66510 0 0.236 0.764
#> ERR978253 3 0.6302 0.07012 0 0.480 0.520
#> ERR978254 2 0.6280 0.11486 0 0.540 0.460
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978108 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978109 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978110 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978111 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978112 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978113 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978114 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978115 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978116 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978117 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978118 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978119 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978120 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978121 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978122 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978123 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978124 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978125 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978126 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978127 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978128 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978129 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978130 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978131 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978132 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978133 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978134 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978135 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978136 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978137 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978138 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978139 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978140 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978141 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978142 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978143 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978144 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978145 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978146 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978147 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978148 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978149 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978150 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978151 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978152 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978169 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978170 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978171 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978172 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978173 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978174 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978175 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978176 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978177 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978178 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978179 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978180 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978181 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978182 4 0.0000 1.000 0 0.000 0.000 1
#> ERR978183 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978184 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978185 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978186 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978187 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978188 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978189 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978190 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978191 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978192 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978193 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978194 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978195 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978196 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978197 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978198 2 0.2469 0.843 0 0.892 0.108 0
#> ERR978199 2 0.4164 0.611 0 0.736 0.264 0
#> ERR978200 3 0.4989 0.161 0 0.472 0.528 0
#> ERR978201 2 0.3610 0.715 0 0.800 0.200 0
#> ERR978202 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978203 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978204 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978205 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978206 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978207 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978208 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978209 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978210 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978211 2 0.0000 0.965 0 1.000 0.000 0
#> ERR978212 3 0.4072 0.683 0 0.252 0.748 0
#> ERR978213 3 0.3356 0.765 0 0.176 0.824 0
#> ERR978214 3 0.2647 0.808 0 0.120 0.880 0
#> ERR978215 3 0.1474 0.854 0 0.052 0.948 0
#> ERR978216 3 0.3444 0.758 0 0.184 0.816 0
#> ERR978217 3 0.3649 0.741 0 0.204 0.796 0
#> ERR978218 3 0.4103 0.678 0 0.256 0.744 0
#> ERR978219 2 0.4193 0.590 0 0.732 0.268 0
#> ERR978220 3 0.4955 0.291 0 0.444 0.556 0
#> ERR978221 3 0.4382 0.617 0 0.296 0.704 0
#> ERR978222 3 0.3688 0.737 0 0.208 0.792 0
#> ERR978223 3 0.4643 0.530 0 0.344 0.656 0
#> ERR978224 3 0.4955 0.291 0 0.444 0.556 0
#> ERR978225 2 0.4776 0.318 0 0.624 0.376 0
#> ERR978226 3 0.5000 0.105 0 0.500 0.500 0
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0
#> ERR978241 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978242 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978243 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978244 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978245 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978246 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978247 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978248 3 0.4855 0.367 0 0.400 0.600 0
#> ERR978249 3 0.3975 0.662 0 0.240 0.760 0
#> ERR978250 3 0.0336 0.881 0 0.008 0.992 0
#> ERR978251 3 0.0000 0.886 0 0.000 1.000 0
#> ERR978252 3 0.0469 0.878 0 0.012 0.988 0
#> ERR978253 3 0.4193 0.626 0 0.268 0.732 0
#> ERR978254 3 0.4866 0.357 0 0.404 0.596 0
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978108 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978109 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978110 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978111 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978112 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978113 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978114 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978115 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978116 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978117 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978118 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978119 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978120 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978121 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978122 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978123 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978124 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978125 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978126 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978127 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978128 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978129 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978130 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978131 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978132 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978133 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978134 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978135 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978136 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978137 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978138 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978139 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978140 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978141 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978142 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978143 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978144 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978145 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978146 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978147 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978148 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978149 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978150 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978151 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978152 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978153 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978154 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978155 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978156 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978157 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978158 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978159 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978160 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978161 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978162 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978163 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978164 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978165 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978166 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978167 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978168 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978169 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978170 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978171 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978172 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978173 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978174 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978175 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978176 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978177 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978178 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978179 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978180 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978181 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978182 4 0.000 1.000 0 0 0.000 1 0.000
#> ERR978183 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978184 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978185 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978186 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978187 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978188 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978189 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978190 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978191 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978192 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978193 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978194 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978195 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978196 2 0.000 1.000 0 1 0.000 0 0.000
#> ERR978197 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978198 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978199 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978200 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978201 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978202 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978203 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978204 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978205 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978206 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978207 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978208 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978209 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978210 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978211 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978212 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978213 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978214 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978215 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978216 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978217 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978218 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978219 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978220 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978221 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978222 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978223 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978224 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978225 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978226 5 0.000 0.963 0 0 0.000 0 1.000
#> ERR978227 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978228 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978229 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978230 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978231 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978232 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978233 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978234 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978235 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978236 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978237 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978238 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978239 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978240 1 0.000 1.000 1 0 0.000 0 0.000
#> ERR978241 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978242 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978243 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978244 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978245 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978246 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978247 3 0.000 1.000 0 0 1.000 0 0.000
#> ERR978248 5 0.120 0.923 0 0 0.048 0 0.952
#> ERR978249 5 0.285 0.797 0 0 0.172 0 0.828
#> ERR978250 5 0.314 0.758 0 0 0.204 0 0.796
#> ERR978251 5 0.366 0.658 0 0 0.276 0 0.724
#> ERR978252 5 0.304 0.773 0 0 0.192 0 0.808
#> ERR978253 5 0.285 0.797 0 0 0.172 0 0.828
#> ERR978254 5 0.112 0.926 0 0 0.044 0 0.956
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978123 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978124 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978125 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978126 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978127 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978128 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978129 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978130 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978131 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978132 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978133 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978134 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978135 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978136 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978137 3 0.000 1.000 0 0 1.000 0 0.000 0.000
#> ERR978138 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978139 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978140 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978141 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978142 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978143 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978144 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978145 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978146 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978147 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978148 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978149 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978150 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978151 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978152 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978153 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978169 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978170 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978171 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978172 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978173 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978174 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978175 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978176 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978177 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978178 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978179 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978180 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978181 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978182 4 0.000 1.000 0 0 0.000 1 0.000 0.000
#> ERR978183 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1 0.000 0 0.000 0.000
#> ERR978197 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978198 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978199 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978200 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978201 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978202 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978203 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978204 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978205 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978206 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978207 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978208 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978209 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978210 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978211 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978212 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978213 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978214 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978215 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978216 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978217 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978218 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978219 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978220 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978221 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978222 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978223 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978224 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978225 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978226 5 0.000 0.975 0 0 0.000 0 1.000 0.000
#> ERR978227 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0 0.000 0 0.000 0.000
#> ERR978241 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978242 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978243 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978244 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978245 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978246 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978247 6 0.000 1.000 0 0 0.000 0 0.000 1.000
#> ERR978248 5 0.101 0.946 0 0 0.036 0 0.960 0.004
#> ERR978249 5 0.261 0.871 0 0 0.036 0 0.868 0.096
#> ERR978250 5 0.321 0.813 0 0 0.036 0 0.812 0.152
#> ERR978251 5 0.335 0.793 0 0 0.036 0 0.796 0.168
#> ERR978252 5 0.317 0.817 0 0 0.036 0 0.816 0.148
#> ERR978253 5 0.246 0.883 0 0 0.036 0 0.880 0.084
#> ERR978254 5 0.112 0.944 0 0 0.036 0 0.956 0.008
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3261 0.675 0.675
#> 3 3 0.585 0.885 0.870 0.8305 0.585 0.418
#> 4 4 0.765 0.903 0.923 0.1880 0.905 0.731
#> 5 5 0.905 0.960 0.963 0.1247 0.917 0.702
#> 6 6 1.000 1.000 1.000 0.0325 0.982 0.907
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5
There is also optional best \(k\) = 2 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0 1 0 1
#> ERR978108 2 0 1 0 1
#> ERR978109 2 0 1 0 1
#> ERR978110 2 0 1 0 1
#> ERR978111 2 0 1 0 1
#> ERR978112 2 0 1 0 1
#> ERR978113 2 0 1 0 1
#> ERR978114 2 0 1 0 1
#> ERR978115 2 0 1 0 1
#> ERR978116 2 0 1 0 1
#> ERR978117 2 0 1 0 1
#> ERR978118 2 0 1 0 1
#> ERR978119 2 0 1 0 1
#> ERR978120 2 0 1 0 1
#> ERR978121 2 0 1 0 1
#> ERR978122 2 0 1 0 1
#> ERR978123 2 0 1 0 1
#> ERR978124 2 0 1 0 1
#> ERR978125 2 0 1 0 1
#> ERR978126 2 0 1 0 1
#> ERR978127 2 0 1 0 1
#> ERR978128 2 0 1 0 1
#> ERR978129 2 0 1 0 1
#> ERR978130 2 0 1 0 1
#> ERR978131 2 0 1 0 1
#> ERR978132 2 0 1 0 1
#> ERR978133 2 0 1 0 1
#> ERR978134 2 0 1 0 1
#> ERR978135 2 0 1 0 1
#> ERR978136 2 0 1 0 1
#> ERR978137 2 0 1 0 1
#> ERR978138 2 0 1 0 1
#> ERR978139 2 0 1 0 1
#> ERR978140 2 0 1 0 1
#> ERR978141 2 0 1 0 1
#> ERR978142 2 0 1 0 1
#> ERR978143 2 0 1 0 1
#> ERR978144 2 0 1 0 1
#> ERR978145 2 0 1 0 1
#> ERR978146 2 0 1 0 1
#> ERR978147 2 0 1 0 1
#> ERR978148 2 0 1 0 1
#> ERR978149 2 0 1 0 1
#> ERR978150 2 0 1 0 1
#> ERR978151 2 0 1 0 1
#> ERR978152 2 0 1 0 1
#> ERR978153 1 0 1 1 0
#> ERR978154 1 0 1 1 0
#> ERR978155 1 0 1 1 0
#> ERR978156 1 0 1 1 0
#> ERR978157 1 0 1 1 0
#> ERR978158 1 0 1 1 0
#> ERR978159 1 0 1 1 0
#> ERR978160 1 0 1 1 0
#> ERR978161 1 0 1 1 0
#> ERR978162 1 0 1 1 0
#> ERR978163 1 0 1 1 0
#> ERR978164 1 0 1 1 0
#> ERR978165 1 0 1 1 0
#> ERR978166 1 0 1 1 0
#> ERR978167 1 0 1 1 0
#> ERR978168 1 0 1 1 0
#> ERR978169 2 0 1 0 1
#> ERR978170 2 0 1 0 1
#> ERR978171 2 0 1 0 1
#> ERR978172 2 0 1 0 1
#> ERR978173 2 0 1 0 1
#> ERR978174 2 0 1 0 1
#> ERR978175 2 0 1 0 1
#> ERR978176 2 0 1 0 1
#> ERR978177 2 0 1 0 1
#> ERR978178 2 0 1 0 1
#> ERR978179 2 0 1 0 1
#> ERR978180 2 0 1 0 1
#> ERR978181 2 0 1 0 1
#> ERR978182 2 0 1 0 1
#> ERR978183 2 0 1 0 1
#> ERR978184 2 0 1 0 1
#> ERR978185 2 0 1 0 1
#> ERR978186 2 0 1 0 1
#> ERR978187 2 0 1 0 1
#> ERR978188 2 0 1 0 1
#> ERR978189 2 0 1 0 1
#> ERR978190 2 0 1 0 1
#> ERR978191 2 0 1 0 1
#> ERR978192 2 0 1 0 1
#> ERR978193 2 0 1 0 1
#> ERR978194 2 0 1 0 1
#> ERR978195 2 0 1 0 1
#> ERR978196 2 0 1 0 1
#> ERR978197 2 0 1 0 1
#> ERR978198 2 0 1 0 1
#> ERR978199 2 0 1 0 1
#> ERR978200 2 0 1 0 1
#> ERR978201 2 0 1 0 1
#> ERR978202 2 0 1 0 1
#> ERR978203 2 0 1 0 1
#> ERR978204 2 0 1 0 1
#> ERR978205 2 0 1 0 1
#> ERR978206 2 0 1 0 1
#> ERR978207 2 0 1 0 1
#> ERR978208 2 0 1 0 1
#> ERR978209 2 0 1 0 1
#> ERR978210 2 0 1 0 1
#> ERR978211 2 0 1 0 1
#> ERR978212 2 0 1 0 1
#> ERR978213 2 0 1 0 1
#> ERR978214 2 0 1 0 1
#> ERR978215 2 0 1 0 1
#> ERR978216 2 0 1 0 1
#> ERR978217 2 0 1 0 1
#> ERR978218 2 0 1 0 1
#> ERR978219 2 0 1 0 1
#> ERR978220 2 0 1 0 1
#> ERR978221 2 0 1 0 1
#> ERR978222 2 0 1 0 1
#> ERR978223 2 0 1 0 1
#> ERR978224 2 0 1 0 1
#> ERR978225 2 0 1 0 1
#> ERR978226 2 0 1 0 1
#> ERR978227 1 0 1 1 0
#> ERR978228 1 0 1 1 0
#> ERR978229 1 0 1 1 0
#> ERR978230 1 0 1 1 0
#> ERR978231 1 0 1 1 0
#> ERR978232 1 0 1 1 0
#> ERR978233 1 0 1 1 0
#> ERR978234 1 0 1 1 0
#> ERR978235 1 0 1 1 0
#> ERR978236 1 0 1 1 0
#> ERR978237 1 0 1 1 0
#> ERR978238 1 0 1 1 0
#> ERR978239 1 0 1 1 0
#> ERR978240 1 0 1 1 0
#> ERR978241 2 0 1 0 1
#> ERR978242 2 0 1 0 1
#> ERR978243 2 0 1 0 1
#> ERR978244 2 0 1 0 1
#> ERR978245 2 0 1 0 1
#> ERR978246 2 0 1 0 1
#> ERR978247 2 0 1 0 1
#> ERR978248 2 0 1 0 1
#> ERR978249 2 0 1 0 1
#> ERR978250 2 0 1 0 1
#> ERR978251 2 0 1 0 1
#> ERR978252 2 0 1 0 1
#> ERR978253 2 0 1 0 1
#> ERR978254 2 0 1 0 1
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.000 0.888 0.00 1.000 0.000
#> ERR978108 2 0.000 0.888 0.00 1.000 0.000
#> ERR978109 2 0.000 0.888 0.00 1.000 0.000
#> ERR978110 2 0.000 0.888 0.00 1.000 0.000
#> ERR978111 2 0.000 0.888 0.00 1.000 0.000
#> ERR978112 2 0.000 0.888 0.00 1.000 0.000
#> ERR978113 2 0.000 0.888 0.00 1.000 0.000
#> ERR978114 2 0.000 0.888 0.00 1.000 0.000
#> ERR978115 2 0.000 0.888 0.00 1.000 0.000
#> ERR978116 2 0.000 0.888 0.00 1.000 0.000
#> ERR978117 2 0.000 0.888 0.00 1.000 0.000
#> ERR978118 2 0.000 0.888 0.00 1.000 0.000
#> ERR978119 2 0.000 0.888 0.00 1.000 0.000
#> ERR978120 2 0.000 0.888 0.00 1.000 0.000
#> ERR978121 2 0.000 0.888 0.00 1.000 0.000
#> ERR978122 2 0.000 0.888 0.00 1.000 0.000
#> ERR978123 3 0.475 1.000 0.00 0.216 0.784
#> ERR978124 3 0.475 1.000 0.00 0.216 0.784
#> ERR978125 3 0.475 1.000 0.00 0.216 0.784
#> ERR978126 3 0.475 1.000 0.00 0.216 0.784
#> ERR978127 3 0.475 1.000 0.00 0.216 0.784
#> ERR978128 3 0.475 1.000 0.00 0.216 0.784
#> ERR978129 3 0.475 1.000 0.00 0.216 0.784
#> ERR978130 3 0.475 1.000 0.00 0.216 0.784
#> ERR978131 3 0.475 1.000 0.00 0.216 0.784
#> ERR978132 3 0.475 1.000 0.00 0.216 0.784
#> ERR978133 3 0.475 1.000 0.00 0.216 0.784
#> ERR978134 3 0.475 1.000 0.00 0.216 0.784
#> ERR978135 3 0.475 1.000 0.00 0.216 0.784
#> ERR978136 3 0.475 1.000 0.00 0.216 0.784
#> ERR978137 3 0.475 1.000 0.00 0.216 0.784
#> ERR978138 3 0.475 1.000 0.00 0.216 0.784
#> ERR978139 3 0.475 1.000 0.00 0.216 0.784
#> ERR978140 3 0.475 1.000 0.00 0.216 0.784
#> ERR978141 3 0.475 1.000 0.00 0.216 0.784
#> ERR978142 3 0.475 1.000 0.00 0.216 0.784
#> ERR978143 3 0.475 1.000 0.00 0.216 0.784
#> ERR978144 3 0.475 1.000 0.00 0.216 0.784
#> ERR978145 3 0.475 1.000 0.00 0.216 0.784
#> ERR978146 3 0.475 1.000 0.00 0.216 0.784
#> ERR978147 3 0.475 1.000 0.00 0.216 0.784
#> ERR978148 3 0.475 1.000 0.00 0.216 0.784
#> ERR978149 3 0.475 1.000 0.00 0.216 0.784
#> ERR978150 3 0.475 1.000 0.00 0.216 0.784
#> ERR978151 3 0.475 1.000 0.00 0.216 0.784
#> ERR978152 3 0.475 1.000 0.00 0.216 0.784
#> ERR978153 1 0.000 0.861 1.00 0.000 0.000
#> ERR978154 1 0.000 0.861 1.00 0.000 0.000
#> ERR978155 1 0.000 0.861 1.00 0.000 0.000
#> ERR978156 1 0.000 0.861 1.00 0.000 0.000
#> ERR978157 1 0.000 0.861 1.00 0.000 0.000
#> ERR978158 1 0.000 0.861 1.00 0.000 0.000
#> ERR978159 1 0.000 0.861 1.00 0.000 0.000
#> ERR978160 1 0.000 0.861 1.00 0.000 0.000
#> ERR978161 1 0.000 0.861 1.00 0.000 0.000
#> ERR978162 1 0.000 0.861 1.00 0.000 0.000
#> ERR978163 1 0.000 0.861 1.00 0.000 0.000
#> ERR978164 1 0.000 0.861 1.00 0.000 0.000
#> ERR978165 1 0.000 0.861 1.00 0.000 0.000
#> ERR978166 1 0.000 0.861 1.00 0.000 0.000
#> ERR978167 1 0.000 0.861 1.00 0.000 0.000
#> ERR978168 1 0.000 0.861 1.00 0.000 0.000
#> ERR978169 1 0.649 0.644 0.54 0.004 0.456
#> ERR978170 1 0.649 0.644 0.54 0.004 0.456
#> ERR978171 1 0.649 0.644 0.54 0.004 0.456
#> ERR978172 1 0.649 0.644 0.54 0.004 0.456
#> ERR978173 1 0.649 0.644 0.54 0.004 0.456
#> ERR978174 1 0.649 0.644 0.54 0.004 0.456
#> ERR978175 1 0.649 0.644 0.54 0.004 0.456
#> ERR978176 1 0.649 0.644 0.54 0.004 0.456
#> ERR978177 1 0.649 0.644 0.54 0.004 0.456
#> ERR978178 1 0.649 0.644 0.54 0.004 0.456
#> ERR978179 1 0.649 0.644 0.54 0.004 0.456
#> ERR978180 1 0.649 0.644 0.54 0.004 0.456
#> ERR978181 1 0.649 0.644 0.54 0.004 0.456
#> ERR978182 1 0.649 0.644 0.54 0.004 0.456
#> ERR978183 2 0.000 0.888 0.00 1.000 0.000
#> ERR978184 2 0.000 0.888 0.00 1.000 0.000
#> ERR978185 2 0.000 0.888 0.00 1.000 0.000
#> ERR978186 2 0.000 0.888 0.00 1.000 0.000
#> ERR978187 2 0.000 0.888 0.00 1.000 0.000
#> ERR978188 2 0.000 0.888 0.00 1.000 0.000
#> ERR978189 2 0.000 0.888 0.00 1.000 0.000
#> ERR978190 2 0.000 0.888 0.00 1.000 0.000
#> ERR978191 2 0.000 0.888 0.00 1.000 0.000
#> ERR978192 2 0.000 0.888 0.00 1.000 0.000
#> ERR978193 2 0.000 0.888 0.00 1.000 0.000
#> ERR978194 2 0.000 0.888 0.00 1.000 0.000
#> ERR978195 2 0.000 0.888 0.00 1.000 0.000
#> ERR978196 2 0.000 0.888 0.00 1.000 0.000
#> ERR978197 3 0.475 1.000 0.00 0.216 0.784
#> ERR978198 3 0.475 1.000 0.00 0.216 0.784
#> ERR978199 3 0.475 1.000 0.00 0.216 0.784
#> ERR978200 3 0.475 1.000 0.00 0.216 0.784
#> ERR978201 3 0.475 1.000 0.00 0.216 0.784
#> ERR978202 3 0.475 1.000 0.00 0.216 0.784
#> ERR978203 3 0.475 1.000 0.00 0.216 0.784
#> ERR978204 3 0.475 1.000 0.00 0.216 0.784
#> ERR978205 3 0.475 1.000 0.00 0.216 0.784
#> ERR978206 3 0.475 1.000 0.00 0.216 0.784
#> ERR978207 3 0.475 1.000 0.00 0.216 0.784
#> ERR978208 3 0.475 1.000 0.00 0.216 0.784
#> ERR978209 3 0.475 1.000 0.00 0.216 0.784
#> ERR978210 3 0.475 1.000 0.00 0.216 0.784
#> ERR978211 3 0.475 1.000 0.00 0.216 0.784
#> ERR978212 3 0.475 1.000 0.00 0.216 0.784
#> ERR978213 3 0.475 1.000 0.00 0.216 0.784
#> ERR978214 3 0.475 1.000 0.00 0.216 0.784
#> ERR978215 3 0.475 1.000 0.00 0.216 0.784
#> ERR978216 3 0.475 1.000 0.00 0.216 0.784
#> ERR978217 3 0.475 1.000 0.00 0.216 0.784
#> ERR978218 3 0.475 1.000 0.00 0.216 0.784
#> ERR978219 3 0.475 1.000 0.00 0.216 0.784
#> ERR978220 3 0.475 1.000 0.00 0.216 0.784
#> ERR978221 3 0.475 1.000 0.00 0.216 0.784
#> ERR978222 3 0.475 1.000 0.00 0.216 0.784
#> ERR978223 3 0.475 1.000 0.00 0.216 0.784
#> ERR978224 3 0.475 1.000 0.00 0.216 0.784
#> ERR978225 3 0.475 1.000 0.00 0.216 0.784
#> ERR978226 3 0.475 1.000 0.00 0.216 0.784
#> ERR978227 1 0.000 0.861 1.00 0.000 0.000
#> ERR978228 1 0.000 0.861 1.00 0.000 0.000
#> ERR978229 1 0.000 0.861 1.00 0.000 0.000
#> ERR978230 1 0.000 0.861 1.00 0.000 0.000
#> ERR978231 1 0.000 0.861 1.00 0.000 0.000
#> ERR978232 1 0.000 0.861 1.00 0.000 0.000
#> ERR978233 1 0.000 0.861 1.00 0.000 0.000
#> ERR978234 1 0.000 0.861 1.00 0.000 0.000
#> ERR978235 1 0.000 0.861 1.00 0.000 0.000
#> ERR978236 1 0.000 0.861 1.00 0.000 0.000
#> ERR978237 1 0.000 0.861 1.00 0.000 0.000
#> ERR978238 1 0.000 0.861 1.00 0.000 0.000
#> ERR978239 1 0.000 0.861 1.00 0.000 0.000
#> ERR978240 1 0.000 0.861 1.00 0.000 0.000
#> ERR978241 2 0.502 0.672 0.00 0.760 0.240
#> ERR978242 2 0.502 0.672 0.00 0.760 0.240
#> ERR978243 2 0.502 0.672 0.00 0.760 0.240
#> ERR978244 2 0.502 0.672 0.00 0.760 0.240
#> ERR978245 2 0.502 0.672 0.00 0.760 0.240
#> ERR978246 2 0.502 0.672 0.00 0.760 0.240
#> ERR978247 2 0.502 0.672 0.00 0.760 0.240
#> ERR978248 2 0.502 0.672 0.00 0.760 0.240
#> ERR978249 2 0.502 0.672 0.00 0.760 0.240
#> ERR978250 2 0.502 0.672 0.00 0.760 0.240
#> ERR978251 2 0.502 0.672 0.00 0.760 0.240
#> ERR978252 2 0.502 0.672 0.00 0.760 0.240
#> ERR978253 2 0.502 0.672 0.00 0.760 0.240
#> ERR978254 2 0.502 0.672 0.00 0.760 0.240
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978123 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978124 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978125 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978126 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978127 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978128 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978129 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978130 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978131 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978132 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978133 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978134 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978135 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978136 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978137 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978138 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978139 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978140 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978141 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978142 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978143 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978144 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978145 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978146 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978147 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978148 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978149 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978150 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978151 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978152 3 0.156 0.838 0 0.000 0.944 0.056
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978170 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978171 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978172 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978173 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978174 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978175 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978176 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978177 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978178 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978179 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978180 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978181 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978182 4 0.000 0.843 0 0.000 0.000 1.000
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000
#> ERR978197 3 0.389 0.838 0 0.184 0.804 0.012
#> ERR978198 3 0.381 0.839 0 0.188 0.804 0.008
#> ERR978199 3 0.381 0.839 0 0.188 0.804 0.008
#> ERR978200 3 0.371 0.840 0 0.192 0.804 0.004
#> ERR978201 3 0.381 0.839 0 0.188 0.804 0.008
#> ERR978202 3 0.381 0.839 0 0.188 0.804 0.008
#> ERR978203 3 0.389 0.838 0 0.184 0.804 0.012
#> ERR978204 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978205 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978206 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978207 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978208 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978209 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978210 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978211 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978212 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978213 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978214 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978215 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978216 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978217 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978218 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978219 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978220 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978221 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978222 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978223 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978224 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978225 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978226 3 0.357 0.841 0 0.196 0.804 0.000
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.511 0.821 0 0.060 0.196 0.744
#> ERR978242 4 0.511 0.821 0 0.060 0.196 0.744
#> ERR978243 4 0.511 0.821 0 0.060 0.196 0.744
#> ERR978244 4 0.511 0.821 0 0.060 0.196 0.744
#> ERR978245 4 0.511 0.821 0 0.060 0.196 0.744
#> ERR978246 4 0.511 0.821 0 0.060 0.196 0.744
#> ERR978247 4 0.511 0.821 0 0.060 0.196 0.744
#> ERR978248 4 0.518 0.820 0 0.064 0.196 0.740
#> ERR978249 4 0.518 0.820 0 0.064 0.196 0.740
#> ERR978250 4 0.518 0.820 0 0.064 0.196 0.740
#> ERR978251 4 0.518 0.820 0 0.064 0.196 0.740
#> ERR978252 4 0.518 0.820 0 0.064 0.196 0.740
#> ERR978253 4 0.518 0.820 0 0.064 0.196 0.740
#> ERR978254 4 0.518 0.820 0 0.064 0.196 0.740
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978108 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978109 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978110 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978111 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978112 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978113 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978114 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978115 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978116 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978117 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978118 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978119 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978120 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978121 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978122 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978123 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978124 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978125 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978126 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978127 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978128 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978129 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978130 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978131 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978132 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978133 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978134 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978135 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978136 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978137 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978138 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978139 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978140 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978141 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978142 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978143 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978144 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978145 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978146 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978147 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978148 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978149 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978150 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978151 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978152 3 0.000 1.000 0 0.000 1.000 0.000 0
#> ERR978153 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978154 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978155 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978156 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978157 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978158 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978159 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978160 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978161 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978162 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978163 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978164 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978165 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978166 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978167 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978168 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978169 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978170 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978171 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978172 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978173 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978174 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978175 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978176 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978177 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978178 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978179 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978180 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978181 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978182 4 0.000 0.806 0 0.000 0.000 1.000 0
#> ERR978183 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978184 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978185 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978186 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978187 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978188 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978189 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978190 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978191 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978192 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978193 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978194 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978195 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978196 2 0.000 1.000 0 1.000 0.000 0.000 0
#> ERR978197 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978198 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978199 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978200 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978201 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978202 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978203 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978204 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978205 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978206 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978207 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978208 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978209 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978210 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978211 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978212 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978213 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978214 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978215 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978216 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978217 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978218 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978219 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978220 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978221 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978222 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978223 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978224 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978225 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978226 5 0.000 1.000 0 0.000 0.000 0.000 1
#> ERR978227 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978228 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978229 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978230 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978231 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978232 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978233 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978234 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978235 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978236 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978237 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978238 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978239 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978240 1 0.000 1.000 1 0.000 0.000 0.000 0
#> ERR978241 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978242 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978243 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978244 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978245 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978246 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978247 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978248 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978249 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978250 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978251 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978252 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978253 4 0.582 0.774 0 0.204 0.184 0.612 0
#> ERR978254 4 0.582 0.774 0 0.204 0.184 0.612 0
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0 1 0 1 0 0 0 0
#> ERR978108 2 0 1 0 1 0 0 0 0
#> ERR978109 2 0 1 0 1 0 0 0 0
#> ERR978110 2 0 1 0 1 0 0 0 0
#> ERR978111 2 0 1 0 1 0 0 0 0
#> ERR978112 2 0 1 0 1 0 0 0 0
#> ERR978113 2 0 1 0 1 0 0 0 0
#> ERR978114 2 0 1 0 1 0 0 0 0
#> ERR978115 2 0 1 0 1 0 0 0 0
#> ERR978116 2 0 1 0 1 0 0 0 0
#> ERR978117 2 0 1 0 1 0 0 0 0
#> ERR978118 2 0 1 0 1 0 0 0 0
#> ERR978119 2 0 1 0 1 0 0 0 0
#> ERR978120 2 0 1 0 1 0 0 0 0
#> ERR978121 2 0 1 0 1 0 0 0 0
#> ERR978122 2 0 1 0 1 0 0 0 0
#> ERR978123 3 0 1 0 0 1 0 0 0
#> ERR978124 3 0 1 0 0 1 0 0 0
#> ERR978125 3 0 1 0 0 1 0 0 0
#> ERR978126 3 0 1 0 0 1 0 0 0
#> ERR978127 3 0 1 0 0 1 0 0 0
#> ERR978128 3 0 1 0 0 1 0 0 0
#> ERR978129 3 0 1 0 0 1 0 0 0
#> ERR978130 3 0 1 0 0 1 0 0 0
#> ERR978131 3 0 1 0 0 1 0 0 0
#> ERR978132 3 0 1 0 0 1 0 0 0
#> ERR978133 3 0 1 0 0 1 0 0 0
#> ERR978134 3 0 1 0 0 1 0 0 0
#> ERR978135 3 0 1 0 0 1 0 0 0
#> ERR978136 3 0 1 0 0 1 0 0 0
#> ERR978137 3 0 1 0 0 1 0 0 0
#> ERR978138 3 0 1 0 0 1 0 0 0
#> ERR978139 3 0 1 0 0 1 0 0 0
#> ERR978140 3 0 1 0 0 1 0 0 0
#> ERR978141 3 0 1 0 0 1 0 0 0
#> ERR978142 3 0 1 0 0 1 0 0 0
#> ERR978143 3 0 1 0 0 1 0 0 0
#> ERR978144 3 0 1 0 0 1 0 0 0
#> ERR978145 3 0 1 0 0 1 0 0 0
#> ERR978146 3 0 1 0 0 1 0 0 0
#> ERR978147 3 0 1 0 0 1 0 0 0
#> ERR978148 3 0 1 0 0 1 0 0 0
#> ERR978149 3 0 1 0 0 1 0 0 0
#> ERR978150 3 0 1 0 0 1 0 0 0
#> ERR978151 3 0 1 0 0 1 0 0 0
#> ERR978152 3 0 1 0 0 1 0 0 0
#> ERR978153 1 0 1 1 0 0 0 0 0
#> ERR978154 1 0 1 1 0 0 0 0 0
#> ERR978155 1 0 1 1 0 0 0 0 0
#> ERR978156 1 0 1 1 0 0 0 0 0
#> ERR978157 1 0 1 1 0 0 0 0 0
#> ERR978158 1 0 1 1 0 0 0 0 0
#> ERR978159 1 0 1 1 0 0 0 0 0
#> ERR978160 1 0 1 1 0 0 0 0 0
#> ERR978161 1 0 1 1 0 0 0 0 0
#> ERR978162 1 0 1 1 0 0 0 0 0
#> ERR978163 1 0 1 1 0 0 0 0 0
#> ERR978164 1 0 1 1 0 0 0 0 0
#> ERR978165 1 0 1 1 0 0 0 0 0
#> ERR978166 1 0 1 1 0 0 0 0 0
#> ERR978167 1 0 1 1 0 0 0 0 0
#> ERR978168 1 0 1 1 0 0 0 0 0
#> ERR978169 4 0 1 0 0 0 1 0 0
#> ERR978170 4 0 1 0 0 0 1 0 0
#> ERR978171 4 0 1 0 0 0 1 0 0
#> ERR978172 4 0 1 0 0 0 1 0 0
#> ERR978173 4 0 1 0 0 0 1 0 0
#> ERR978174 4 0 1 0 0 0 1 0 0
#> ERR978175 4 0 1 0 0 0 1 0 0
#> ERR978176 4 0 1 0 0 0 1 0 0
#> ERR978177 4 0 1 0 0 0 1 0 0
#> ERR978178 4 0 1 0 0 0 1 0 0
#> ERR978179 4 0 1 0 0 0 1 0 0
#> ERR978180 4 0 1 0 0 0 1 0 0
#> ERR978181 4 0 1 0 0 0 1 0 0
#> ERR978182 4 0 1 0 0 0 1 0 0
#> ERR978183 2 0 1 0 1 0 0 0 0
#> ERR978184 2 0 1 0 1 0 0 0 0
#> ERR978185 2 0 1 0 1 0 0 0 0
#> ERR978186 2 0 1 0 1 0 0 0 0
#> ERR978187 2 0 1 0 1 0 0 0 0
#> ERR978188 2 0 1 0 1 0 0 0 0
#> ERR978189 2 0 1 0 1 0 0 0 0
#> ERR978190 2 0 1 0 1 0 0 0 0
#> ERR978191 2 0 1 0 1 0 0 0 0
#> ERR978192 2 0 1 0 1 0 0 0 0
#> ERR978193 2 0 1 0 1 0 0 0 0
#> ERR978194 2 0 1 0 1 0 0 0 0
#> ERR978195 2 0 1 0 1 0 0 0 0
#> ERR978196 2 0 1 0 1 0 0 0 0
#> ERR978197 5 0 1 0 0 0 0 1 0
#> ERR978198 5 0 1 0 0 0 0 1 0
#> ERR978199 5 0 1 0 0 0 0 1 0
#> ERR978200 5 0 1 0 0 0 0 1 0
#> ERR978201 5 0 1 0 0 0 0 1 0
#> ERR978202 5 0 1 0 0 0 0 1 0
#> ERR978203 5 0 1 0 0 0 0 1 0
#> ERR978204 5 0 1 0 0 0 0 1 0
#> ERR978205 5 0 1 0 0 0 0 1 0
#> ERR978206 5 0 1 0 0 0 0 1 0
#> ERR978207 5 0 1 0 0 0 0 1 0
#> ERR978208 5 0 1 0 0 0 0 1 0
#> ERR978209 5 0 1 0 0 0 0 1 0
#> ERR978210 5 0 1 0 0 0 0 1 0
#> ERR978211 5 0 1 0 0 0 0 1 0
#> ERR978212 5 0 1 0 0 0 0 1 0
#> ERR978213 5 0 1 0 0 0 0 1 0
#> ERR978214 5 0 1 0 0 0 0 1 0
#> ERR978215 5 0 1 0 0 0 0 1 0
#> ERR978216 5 0 1 0 0 0 0 1 0
#> ERR978217 5 0 1 0 0 0 0 1 0
#> ERR978218 5 0 1 0 0 0 0 1 0
#> ERR978219 5 0 1 0 0 0 0 1 0
#> ERR978220 5 0 1 0 0 0 0 1 0
#> ERR978221 5 0 1 0 0 0 0 1 0
#> ERR978222 5 0 1 0 0 0 0 1 0
#> ERR978223 5 0 1 0 0 0 0 1 0
#> ERR978224 5 0 1 0 0 0 0 1 0
#> ERR978225 5 0 1 0 0 0 0 1 0
#> ERR978226 5 0 1 0 0 0 0 1 0
#> ERR978227 1 0 1 1 0 0 0 0 0
#> ERR978228 1 0 1 1 0 0 0 0 0
#> ERR978229 1 0 1 1 0 0 0 0 0
#> ERR978230 1 0 1 1 0 0 0 0 0
#> ERR978231 1 0 1 1 0 0 0 0 0
#> ERR978232 1 0 1 1 0 0 0 0 0
#> ERR978233 1 0 1 1 0 0 0 0 0
#> ERR978234 1 0 1 1 0 0 0 0 0
#> ERR978235 1 0 1 1 0 0 0 0 0
#> ERR978236 1 0 1 1 0 0 0 0 0
#> ERR978237 1 0 1 1 0 0 0 0 0
#> ERR978238 1 0 1 1 0 0 0 0 0
#> ERR978239 1 0 1 1 0 0 0 0 0
#> ERR978240 1 0 1 1 0 0 0 0 0
#> ERR978241 6 0 1 0 0 0 0 0 1
#> ERR978242 6 0 1 0 0 0 0 0 1
#> ERR978243 6 0 1 0 0 0 0 0 1
#> ERR978244 6 0 1 0 0 0 0 0 1
#> ERR978245 6 0 1 0 0 0 0 0 1
#> ERR978246 6 0 1 0 0 0 0 0 1
#> ERR978247 6 0 1 0 0 0 0 0 1
#> ERR978248 6 0 1 0 0 0 0 0 1
#> ERR978249 6 0 1 0 0 0 0 0 1
#> ERR978250 6 0 1 0 0 0 0 0 1
#> ERR978251 6 0 1 0 0 0 0 0 1
#> ERR978252 6 0 1 0 0 0 0 0 1
#> ERR978253 6 0 1 0 0 0 0 0 1
#> ERR978254 6 0 1 0 0 0 0 0 1
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 14049 rows and 148 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3263 0.675 0.675
#> 3 3 1.000 0.965 0.981 0.8695 0.710 0.570
#> 4 4 0.865 0.825 0.929 0.1765 0.796 0.526
#> 5 5 0.872 0.886 0.928 0.0802 0.866 0.573
#> 6 6 0.876 0.788 0.868 0.0510 0.944 0.757
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> ERR978107 2 0.0000 1.000 0.000 1.000
#> ERR978108 2 0.0000 1.000 0.000 1.000
#> ERR978109 2 0.0000 1.000 0.000 1.000
#> ERR978110 2 0.0000 1.000 0.000 1.000
#> ERR978111 2 0.0000 1.000 0.000 1.000
#> ERR978112 2 0.0000 1.000 0.000 1.000
#> ERR978113 2 0.0000 1.000 0.000 1.000
#> ERR978114 2 0.0000 1.000 0.000 1.000
#> ERR978115 2 0.0000 1.000 0.000 1.000
#> ERR978116 2 0.0000 1.000 0.000 1.000
#> ERR978117 2 0.0000 1.000 0.000 1.000
#> ERR978118 2 0.0000 1.000 0.000 1.000
#> ERR978119 2 0.0000 1.000 0.000 1.000
#> ERR978120 2 0.0000 1.000 0.000 1.000
#> ERR978121 2 0.0000 1.000 0.000 1.000
#> ERR978122 2 0.0000 1.000 0.000 1.000
#> ERR978123 2 0.0000 1.000 0.000 1.000
#> ERR978124 2 0.0000 1.000 0.000 1.000
#> ERR978125 2 0.0000 1.000 0.000 1.000
#> ERR978126 2 0.0000 1.000 0.000 1.000
#> ERR978127 2 0.0000 1.000 0.000 1.000
#> ERR978128 2 0.0000 1.000 0.000 1.000
#> ERR978129 2 0.0000 1.000 0.000 1.000
#> ERR978130 2 0.0000 1.000 0.000 1.000
#> ERR978131 2 0.0000 1.000 0.000 1.000
#> ERR978132 2 0.0000 1.000 0.000 1.000
#> ERR978133 2 0.0000 1.000 0.000 1.000
#> ERR978134 2 0.0000 1.000 0.000 1.000
#> ERR978135 2 0.0000 1.000 0.000 1.000
#> ERR978136 2 0.0000 1.000 0.000 1.000
#> ERR978137 2 0.0000 1.000 0.000 1.000
#> ERR978138 2 0.0000 1.000 0.000 1.000
#> ERR978139 2 0.0000 1.000 0.000 1.000
#> ERR978140 2 0.0000 1.000 0.000 1.000
#> ERR978141 2 0.0000 1.000 0.000 1.000
#> ERR978142 2 0.0000 1.000 0.000 1.000
#> ERR978143 2 0.0000 1.000 0.000 1.000
#> ERR978144 2 0.0000 1.000 0.000 1.000
#> ERR978145 2 0.0000 1.000 0.000 1.000
#> ERR978146 2 0.0000 1.000 0.000 1.000
#> ERR978147 2 0.0000 1.000 0.000 1.000
#> ERR978148 2 0.0000 1.000 0.000 1.000
#> ERR978149 2 0.0000 1.000 0.000 1.000
#> ERR978150 2 0.0000 1.000 0.000 1.000
#> ERR978151 2 0.0000 1.000 0.000 1.000
#> ERR978152 2 0.0000 1.000 0.000 1.000
#> ERR978153 1 0.0000 1.000 1.000 0.000
#> ERR978154 1 0.0000 1.000 1.000 0.000
#> ERR978155 1 0.0000 1.000 1.000 0.000
#> ERR978156 1 0.0000 1.000 1.000 0.000
#> ERR978157 1 0.0000 1.000 1.000 0.000
#> ERR978158 1 0.0000 1.000 1.000 0.000
#> ERR978159 1 0.0000 1.000 1.000 0.000
#> ERR978160 1 0.0000 1.000 1.000 0.000
#> ERR978161 1 0.0000 1.000 1.000 0.000
#> ERR978162 1 0.0000 1.000 1.000 0.000
#> ERR978163 1 0.0000 1.000 1.000 0.000
#> ERR978164 1 0.0000 1.000 1.000 0.000
#> ERR978165 1 0.0000 1.000 1.000 0.000
#> ERR978166 1 0.0000 1.000 1.000 0.000
#> ERR978167 1 0.0000 1.000 1.000 0.000
#> ERR978168 1 0.0000 1.000 1.000 0.000
#> ERR978169 2 0.0376 0.996 0.004 0.996
#> ERR978170 2 0.0672 0.992 0.008 0.992
#> ERR978171 2 0.0672 0.992 0.008 0.992
#> ERR978172 2 0.0672 0.992 0.008 0.992
#> ERR978173 2 0.0376 0.996 0.004 0.996
#> ERR978174 2 0.0000 1.000 0.000 1.000
#> ERR978175 2 0.0000 1.000 0.000 1.000
#> ERR978176 2 0.0000 1.000 0.000 1.000
#> ERR978177 2 0.0000 1.000 0.000 1.000
#> ERR978178 2 0.0000 1.000 0.000 1.000
#> ERR978179 2 0.0000 1.000 0.000 1.000
#> ERR978180 2 0.0000 1.000 0.000 1.000
#> ERR978181 2 0.0000 1.000 0.000 1.000
#> ERR978182 2 0.0000 1.000 0.000 1.000
#> ERR978183 2 0.0000 1.000 0.000 1.000
#> ERR978184 2 0.0000 1.000 0.000 1.000
#> ERR978185 2 0.0000 1.000 0.000 1.000
#> ERR978186 2 0.0000 1.000 0.000 1.000
#> ERR978187 2 0.0000 1.000 0.000 1.000
#> ERR978188 2 0.0000 1.000 0.000 1.000
#> ERR978189 2 0.0000 1.000 0.000 1.000
#> ERR978190 2 0.0000 1.000 0.000 1.000
#> ERR978191 2 0.0000 1.000 0.000 1.000
#> ERR978192 2 0.0000 1.000 0.000 1.000
#> ERR978193 2 0.0000 1.000 0.000 1.000
#> ERR978194 2 0.0000 1.000 0.000 1.000
#> ERR978195 2 0.0000 1.000 0.000 1.000
#> ERR978196 2 0.0000 1.000 0.000 1.000
#> ERR978197 2 0.0000 1.000 0.000 1.000
#> ERR978198 2 0.0000 1.000 0.000 1.000
#> ERR978199 2 0.0000 1.000 0.000 1.000
#> ERR978200 2 0.0000 1.000 0.000 1.000
#> ERR978201 2 0.0000 1.000 0.000 1.000
#> ERR978202 2 0.0000 1.000 0.000 1.000
#> ERR978203 2 0.0000 1.000 0.000 1.000
#> ERR978204 2 0.0000 1.000 0.000 1.000
#> ERR978205 2 0.0000 1.000 0.000 1.000
#> ERR978206 2 0.0000 1.000 0.000 1.000
#> ERR978207 2 0.0000 1.000 0.000 1.000
#> ERR978208 2 0.0000 1.000 0.000 1.000
#> ERR978209 2 0.0000 1.000 0.000 1.000
#> ERR978210 2 0.0000 1.000 0.000 1.000
#> ERR978211 2 0.0000 1.000 0.000 1.000
#> ERR978212 2 0.0000 1.000 0.000 1.000
#> ERR978213 2 0.0000 1.000 0.000 1.000
#> ERR978214 2 0.0000 1.000 0.000 1.000
#> ERR978215 2 0.0000 1.000 0.000 1.000
#> ERR978216 2 0.0000 1.000 0.000 1.000
#> ERR978217 2 0.0000 1.000 0.000 1.000
#> ERR978218 2 0.0000 1.000 0.000 1.000
#> ERR978219 2 0.0000 1.000 0.000 1.000
#> ERR978220 2 0.0000 1.000 0.000 1.000
#> ERR978221 2 0.0000 1.000 0.000 1.000
#> ERR978222 2 0.0000 1.000 0.000 1.000
#> ERR978223 2 0.0000 1.000 0.000 1.000
#> ERR978224 2 0.0000 1.000 0.000 1.000
#> ERR978225 2 0.0000 1.000 0.000 1.000
#> ERR978226 2 0.0000 1.000 0.000 1.000
#> ERR978227 1 0.0000 1.000 1.000 0.000
#> ERR978228 1 0.0000 1.000 1.000 0.000
#> ERR978229 1 0.0000 1.000 1.000 0.000
#> ERR978230 1 0.0000 1.000 1.000 0.000
#> ERR978231 1 0.0000 1.000 1.000 0.000
#> ERR978232 1 0.0000 1.000 1.000 0.000
#> ERR978233 1 0.0000 1.000 1.000 0.000
#> ERR978234 1 0.0000 1.000 1.000 0.000
#> ERR978235 1 0.0000 1.000 1.000 0.000
#> ERR978236 1 0.0000 1.000 1.000 0.000
#> ERR978237 1 0.0000 1.000 1.000 0.000
#> ERR978238 1 0.0000 1.000 1.000 0.000
#> ERR978239 1 0.0000 1.000 1.000 0.000
#> ERR978240 1 0.0000 1.000 1.000 0.000
#> ERR978241 2 0.0000 1.000 0.000 1.000
#> ERR978242 2 0.0000 1.000 0.000 1.000
#> ERR978243 2 0.0000 1.000 0.000 1.000
#> ERR978244 2 0.0000 1.000 0.000 1.000
#> ERR978245 2 0.0000 1.000 0.000 1.000
#> ERR978246 2 0.0000 1.000 0.000 1.000
#> ERR978247 2 0.0000 1.000 0.000 1.000
#> ERR978248 2 0.0000 1.000 0.000 1.000
#> ERR978249 2 0.0000 1.000 0.000 1.000
#> ERR978250 2 0.0000 1.000 0.000 1.000
#> ERR978251 2 0.0000 1.000 0.000 1.000
#> ERR978252 2 0.0000 1.000 0.000 1.000
#> ERR978253 2 0.0000 1.000 0.000 1.000
#> ERR978254 2 0.0000 1.000 0.000 1.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> ERR978107 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978108 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978109 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978110 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978111 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978112 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978113 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978114 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978115 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978116 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978117 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978118 2 0.0237 0.986 0.000 0.996 0.004
#> ERR978119 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978120 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978121 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978122 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978123 2 0.4178 0.779 0.000 0.828 0.172
#> ERR978124 3 0.3752 0.836 0.000 0.144 0.856
#> ERR978125 3 0.1643 0.944 0.000 0.044 0.956
#> ERR978126 3 0.1031 0.958 0.000 0.024 0.976
#> ERR978127 3 0.1289 0.953 0.000 0.032 0.968
#> ERR978128 3 0.3412 0.860 0.000 0.124 0.876
#> ERR978129 2 0.6008 0.361 0.000 0.628 0.372
#> ERR978130 2 0.2878 0.884 0.000 0.904 0.096
#> ERR978131 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978132 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978133 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978134 2 0.0892 0.978 0.000 0.980 0.020
#> ERR978135 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978136 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978137 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978138 3 0.5859 0.528 0.000 0.344 0.656
#> ERR978139 3 0.1860 0.936 0.000 0.052 0.948
#> ERR978140 3 0.1031 0.958 0.000 0.024 0.976
#> ERR978141 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978142 3 0.1031 0.958 0.000 0.024 0.976
#> ERR978143 3 0.1289 0.953 0.000 0.032 0.968
#> ERR978144 3 0.3482 0.856 0.000 0.128 0.872
#> ERR978145 3 0.6192 0.339 0.000 0.420 0.580
#> ERR978146 3 0.1163 0.956 0.000 0.028 0.972
#> ERR978147 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978148 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978149 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978150 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978151 3 0.1031 0.958 0.000 0.024 0.976
#> ERR978152 3 0.1643 0.944 0.000 0.044 0.956
#> ERR978153 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978154 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978155 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978156 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978157 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978158 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978159 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978160 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978161 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978162 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978163 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978164 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978165 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978166 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978167 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978168 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978169 3 0.1015 0.954 0.008 0.012 0.980
#> ERR978170 3 0.1015 0.954 0.008 0.012 0.980
#> ERR978171 3 0.1015 0.954 0.008 0.012 0.980
#> ERR978172 3 0.1015 0.954 0.008 0.012 0.980
#> ERR978173 3 0.1015 0.954 0.008 0.012 0.980
#> ERR978174 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978175 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978176 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978177 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978178 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978179 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978180 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978181 3 0.0983 0.958 0.004 0.016 0.980
#> ERR978182 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978183 2 0.0424 0.984 0.000 0.992 0.008
#> ERR978184 2 0.0237 0.986 0.000 0.996 0.004
#> ERR978185 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978186 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978187 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978188 2 0.0424 0.984 0.000 0.992 0.008
#> ERR978189 2 0.0424 0.984 0.000 0.992 0.008
#> ERR978190 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978191 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978192 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978193 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978194 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978195 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978196 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978197 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978198 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978199 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978200 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978201 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978202 2 0.0424 0.984 0.000 0.992 0.008
#> ERR978203 2 0.0592 0.981 0.000 0.988 0.012
#> ERR978204 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978205 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978206 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978207 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978208 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978209 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978210 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978211 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978212 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978213 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978214 2 0.0237 0.986 0.000 0.996 0.004
#> ERR978215 2 0.0237 0.986 0.000 0.996 0.004
#> ERR978216 2 0.0237 0.986 0.000 0.996 0.004
#> ERR978217 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978218 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978219 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978220 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978221 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978222 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978223 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978224 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978225 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978226 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978227 1 0.0237 0.997 0.996 0.000 0.004
#> ERR978228 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978229 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978230 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978231 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978232 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978233 1 0.0237 0.997 0.996 0.000 0.004
#> ERR978234 1 0.0424 0.994 0.992 0.000 0.008
#> ERR978235 1 0.0237 0.997 0.996 0.000 0.004
#> ERR978236 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978237 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978238 1 0.0000 0.999 1.000 0.000 0.000
#> ERR978239 1 0.0237 0.997 0.996 0.000 0.004
#> ERR978240 1 0.0424 0.994 0.992 0.000 0.008
#> ERR978241 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978242 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978243 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978244 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978245 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978246 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978247 3 0.0892 0.959 0.000 0.020 0.980
#> ERR978248 2 0.0424 0.984 0.000 0.992 0.008
#> ERR978249 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978250 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978251 2 0.0237 0.986 0.000 0.996 0.004
#> ERR978252 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978253 2 0.0000 0.989 0.000 1.000 0.000
#> ERR978254 2 0.0592 0.981 0.000 0.988 0.012
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> ERR978107 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978108 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978109 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978110 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978111 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978112 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978113 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978114 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978115 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978116 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978117 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978118 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978119 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978120 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978121 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978122 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978123 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978124 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978125 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978126 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978127 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978128 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978129 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978130 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978131 3 0.0188 0.889 0 0.004 0.996 0.000
#> ERR978132 3 0.0188 0.889 0 0.004 0.996 0.000
#> ERR978133 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978134 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978135 3 0.0000 0.889 0 0.000 1.000 0.000
#> ERR978136 3 0.0188 0.889 0 0.004 0.996 0.000
#> ERR978137 3 0.0188 0.889 0 0.004 0.996 0.000
#> ERR978138 3 0.0376 0.890 0 0.004 0.992 0.004
#> ERR978139 3 0.0592 0.887 0 0.000 0.984 0.016
#> ERR978140 3 0.1211 0.877 0 0.000 0.960 0.040
#> ERR978141 3 0.2216 0.845 0 0.000 0.908 0.092
#> ERR978142 3 0.1389 0.873 0 0.000 0.952 0.048
#> ERR978143 3 0.1389 0.873 0 0.000 0.952 0.048
#> ERR978144 3 0.0469 0.888 0 0.000 0.988 0.012
#> ERR978145 3 0.0376 0.890 0 0.004 0.992 0.004
#> ERR978146 3 0.0188 0.889 0 0.000 0.996 0.004
#> ERR978147 3 0.0469 0.888 0 0.000 0.988 0.012
#> ERR978148 3 0.0592 0.887 0 0.000 0.984 0.016
#> ERR978149 3 0.0592 0.887 0 0.000 0.984 0.016
#> ERR978150 3 0.0592 0.887 0 0.000 0.984 0.016
#> ERR978151 3 0.0188 0.889 0 0.000 0.996 0.004
#> ERR978152 3 0.0188 0.889 0 0.000 0.996 0.004
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978169 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978170 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978171 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978172 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978173 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978174 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978175 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978176 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978177 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978178 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978179 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978180 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978181 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978182 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978183 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978184 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978185 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978186 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978187 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978188 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978189 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978190 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978191 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978192 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978193 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978194 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978195 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978196 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978197 3 0.2589 0.817 0 0.116 0.884 0.000
#> ERR978198 3 0.2149 0.843 0 0.088 0.912 0.000
#> ERR978199 3 0.2011 0.849 0 0.080 0.920 0.000
#> ERR978200 3 0.2081 0.847 0 0.084 0.916 0.000
#> ERR978201 3 0.2081 0.847 0 0.084 0.916 0.000
#> ERR978202 3 0.2216 0.840 0 0.092 0.908 0.000
#> ERR978203 3 0.2704 0.809 0 0.124 0.876 0.000
#> ERR978204 3 0.4855 0.306 0 0.400 0.600 0.000
#> ERR978205 3 0.4746 0.399 0 0.368 0.632 0.000
#> ERR978206 3 0.4713 0.420 0 0.360 0.640 0.000
#> ERR978207 3 0.4697 0.429 0 0.356 0.644 0.000
#> ERR978208 3 0.4585 0.483 0 0.332 0.668 0.000
#> ERR978209 3 0.4679 0.439 0 0.352 0.648 0.000
#> ERR978210 3 0.4804 0.353 0 0.384 0.616 0.000
#> ERR978211 3 0.4830 0.332 0 0.392 0.608 0.000
#> ERR978212 2 0.4967 0.245 0 0.548 0.452 0.000
#> ERR978213 2 0.4981 0.206 0 0.536 0.464 0.000
#> ERR978214 2 0.4933 0.301 0 0.568 0.432 0.000
#> ERR978215 2 0.4925 0.311 0 0.572 0.428 0.000
#> ERR978216 2 0.4967 0.245 0 0.548 0.452 0.000
#> ERR978217 2 0.4955 0.269 0 0.556 0.444 0.000
#> ERR978218 2 0.4888 0.347 0 0.588 0.412 0.000
#> ERR978219 2 0.4804 0.401 0 0.616 0.384 0.000
#> ERR978220 2 0.4961 0.258 0 0.552 0.448 0.000
#> ERR978221 2 0.4948 0.280 0 0.560 0.440 0.000
#> ERR978222 2 0.4898 0.339 0 0.584 0.416 0.000
#> ERR978223 2 0.4898 0.339 0 0.584 0.416 0.000
#> ERR978224 2 0.4866 0.363 0 0.596 0.404 0.000
#> ERR978225 2 0.4948 0.280 0 0.560 0.440 0.000
#> ERR978226 2 0.4994 0.146 0 0.520 0.480 0.000
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000
#> ERR978241 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978242 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978243 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978244 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978245 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978246 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978247 4 0.0188 1.000 0 0.000 0.004 0.996
#> ERR978248 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978249 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978250 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978251 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978252 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978253 2 0.0000 0.842 0 1.000 0.000 0.000
#> ERR978254 2 0.0000 0.842 0 1.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> ERR978107 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978123 3 0.2852 0.995 0 0.000 0.828 0.000 0.172
#> ERR978124 3 0.2852 0.995 0 0.000 0.828 0.000 0.172
#> ERR978125 3 0.2852 0.995 0 0.000 0.828 0.000 0.172
#> ERR978126 3 0.2813 0.992 0 0.000 0.832 0.000 0.168
#> ERR978127 3 0.2813 0.992 0 0.000 0.832 0.000 0.168
#> ERR978128 3 0.2852 0.995 0 0.000 0.828 0.000 0.172
#> ERR978129 3 0.2852 0.995 0 0.000 0.828 0.000 0.172
#> ERR978130 3 0.2813 0.992 0 0.000 0.832 0.000 0.168
#> ERR978131 3 0.2929 0.989 0 0.000 0.820 0.000 0.180
#> ERR978132 3 0.2891 0.995 0 0.000 0.824 0.000 0.176
#> ERR978133 3 0.2891 0.995 0 0.000 0.824 0.000 0.176
#> ERR978134 3 0.2891 0.995 0 0.000 0.824 0.000 0.176
#> ERR978135 3 0.2891 0.995 0 0.000 0.824 0.000 0.176
#> ERR978136 3 0.2891 0.995 0 0.000 0.824 0.000 0.176
#> ERR978137 3 0.2891 0.995 0 0.000 0.824 0.000 0.176
#> ERR978138 5 0.0404 0.776 0 0.000 0.012 0.000 0.988
#> ERR978139 5 0.0162 0.777 0 0.000 0.004 0.000 0.996
#> ERR978140 5 0.0162 0.777 0 0.000 0.004 0.000 0.996
#> ERR978141 5 0.0865 0.772 0 0.000 0.004 0.024 0.972
#> ERR978142 5 0.0451 0.777 0 0.000 0.004 0.008 0.988
#> ERR978143 5 0.0324 0.777 0 0.000 0.004 0.004 0.992
#> ERR978144 5 0.0290 0.777 0 0.000 0.008 0.000 0.992
#> ERR978145 5 0.0404 0.776 0 0.000 0.012 0.000 0.988
#> ERR978146 5 0.3895 0.438 0 0.000 0.320 0.000 0.680
#> ERR978147 5 0.3895 0.439 0 0.000 0.320 0.000 0.680
#> ERR978148 5 0.5028 0.455 0 0.000 0.260 0.072 0.668
#> ERR978149 5 0.5365 0.465 0 0.000 0.204 0.132 0.664
#> ERR978150 5 0.4520 0.467 0 0.000 0.284 0.032 0.684
#> ERR978151 5 0.3913 0.430 0 0.000 0.324 0.000 0.676
#> ERR978152 5 0.4074 0.338 0 0.000 0.364 0.000 0.636
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978170 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978171 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978172 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978173 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978174 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978175 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978176 4 0.0162 0.998 0 0.000 0.004 0.996 0.000
#> ERR978177 4 0.0162 0.998 0 0.000 0.004 0.996 0.000
#> ERR978178 4 0.0162 0.998 0 0.000 0.004 0.996 0.000
#> ERR978179 4 0.0162 0.998 0 0.000 0.004 0.996 0.000
#> ERR978180 4 0.0162 0.998 0 0.000 0.004 0.996 0.000
#> ERR978181 4 0.0162 0.998 0 0.000 0.004 0.996 0.000
#> ERR978182 4 0.0162 0.998 0 0.000 0.004 0.996 0.000
#> ERR978183 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978184 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978185 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978186 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978187 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978188 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978189 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978190 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 0.992 0 1.000 0.000 0.000 0.000
#> ERR978197 5 0.5696 0.308 0 0.096 0.344 0.000 0.560
#> ERR978198 5 0.5165 0.292 0 0.048 0.376 0.000 0.576
#> ERR978199 5 0.5071 0.150 0 0.036 0.424 0.000 0.540
#> ERR978200 5 0.4989 0.182 0 0.032 0.416 0.000 0.552
#> ERR978201 5 0.5195 0.259 0 0.048 0.388 0.000 0.564
#> ERR978202 5 0.5405 0.261 0 0.064 0.380 0.000 0.556
#> ERR978203 5 0.5793 0.280 0 0.104 0.348 0.000 0.548
#> ERR978204 5 0.3656 0.693 0 0.196 0.020 0.000 0.784
#> ERR978205 5 0.3241 0.744 0 0.144 0.024 0.000 0.832
#> ERR978206 5 0.3197 0.748 0 0.140 0.024 0.000 0.836
#> ERR978207 5 0.3197 0.748 0 0.140 0.024 0.000 0.836
#> ERR978208 5 0.3197 0.748 0 0.140 0.024 0.000 0.836
#> ERR978209 5 0.3106 0.753 0 0.132 0.024 0.000 0.844
#> ERR978210 5 0.3409 0.730 0 0.160 0.024 0.000 0.816
#> ERR978211 5 0.3656 0.693 0 0.196 0.020 0.000 0.784
#> ERR978212 5 0.1341 0.796 0 0.056 0.000 0.000 0.944
#> ERR978213 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978214 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978215 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978216 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978217 5 0.1341 0.797 0 0.056 0.000 0.000 0.944
#> ERR978218 5 0.1341 0.797 0 0.056 0.000 0.000 0.944
#> ERR978219 5 0.1410 0.795 0 0.060 0.000 0.000 0.940
#> ERR978220 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978221 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978222 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978223 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978224 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978225 5 0.1341 0.797 0 0.056 0.000 0.000 0.944
#> ERR978226 5 0.1270 0.797 0 0.052 0.000 0.000 0.948
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000
#> ERR978241 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978242 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978243 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978244 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978245 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978246 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978247 4 0.0000 0.999 0 0.000 0.000 1.000 0.000
#> ERR978248 2 0.0963 0.964 0 0.964 0.000 0.000 0.036
#> ERR978249 2 0.0865 0.973 0 0.972 0.000 0.004 0.024
#> ERR978250 2 0.1485 0.955 0 0.948 0.000 0.020 0.032
#> ERR978251 2 0.1753 0.945 0 0.936 0.000 0.032 0.032
#> ERR978252 2 0.1168 0.964 0 0.960 0.000 0.008 0.032
#> ERR978253 2 0.0955 0.969 0 0.968 0.000 0.004 0.028
#> ERR978254 2 0.0703 0.974 0 0.976 0.000 0.000 0.024
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978108 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978109 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978110 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978111 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978112 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978113 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978114 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978115 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978116 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978117 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978118 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978119 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978120 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978121 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978122 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978123 3 0.2480 0.627 0 0.000 0.872 0.000 0.024 0.104
#> ERR978124 3 0.2972 0.619 0 0.000 0.836 0.000 0.036 0.128
#> ERR978125 3 0.3083 0.615 0 0.000 0.828 0.000 0.040 0.132
#> ERR978126 3 0.3149 0.613 0 0.000 0.824 0.000 0.044 0.132
#> ERR978127 3 0.3108 0.614 0 0.000 0.828 0.000 0.044 0.128
#> ERR978128 3 0.2999 0.619 0 0.000 0.836 0.000 0.040 0.124
#> ERR978129 3 0.2889 0.622 0 0.000 0.848 0.000 0.044 0.108
#> ERR978130 3 0.2558 0.627 0 0.000 0.868 0.000 0.028 0.104
#> ERR978131 3 0.1297 0.602 0 0.000 0.948 0.000 0.012 0.040
#> ERR978132 3 0.0993 0.613 0 0.000 0.964 0.000 0.012 0.024
#> ERR978133 3 0.0914 0.619 0 0.000 0.968 0.000 0.016 0.016
#> ERR978134 3 0.0622 0.622 0 0.000 0.980 0.000 0.012 0.008
#> ERR978135 3 0.0725 0.619 0 0.000 0.976 0.000 0.012 0.012
#> ERR978136 3 0.0909 0.616 0 0.000 0.968 0.000 0.012 0.020
#> ERR978137 3 0.1151 0.609 0 0.000 0.956 0.000 0.012 0.032
#> ERR978138 5 0.1124 0.793 0 0.000 0.036 0.000 0.956 0.008
#> ERR978139 5 0.0935 0.791 0 0.000 0.032 0.000 0.964 0.004
#> ERR978140 5 0.1194 0.789 0 0.000 0.032 0.008 0.956 0.004
#> ERR978141 5 0.1332 0.788 0 0.000 0.028 0.012 0.952 0.008
#> ERR978142 5 0.1382 0.788 0 0.000 0.036 0.008 0.948 0.008
#> ERR978143 5 0.1382 0.788 0 0.000 0.036 0.008 0.948 0.008
#> ERR978144 5 0.1010 0.791 0 0.000 0.036 0.000 0.960 0.004
#> ERR978145 5 0.1225 0.793 0 0.000 0.036 0.000 0.952 0.012
#> ERR978146 5 0.3511 0.713 0 0.000 0.124 0.004 0.808 0.064
#> ERR978147 5 0.3835 0.705 0 0.000 0.116 0.016 0.796 0.072
#> ERR978148 5 0.4024 0.695 0 0.000 0.116 0.020 0.784 0.080
#> ERR978149 5 0.4148 0.695 0 0.000 0.104 0.028 0.780 0.088
#> ERR978150 5 0.3737 0.711 0 0.000 0.112 0.016 0.804 0.068
#> ERR978151 5 0.3677 0.707 0 0.000 0.124 0.008 0.800 0.068
#> ERR978152 5 0.3627 0.705 0 0.000 0.128 0.000 0.792 0.080
#> ERR978153 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978154 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978155 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978156 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978157 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978158 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978159 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978160 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978161 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978162 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978163 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978164 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978165 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978166 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978167 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978168 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978169 4 0.0000 0.966 0 0.000 0.000 1.000 0.000 0.000
#> ERR978170 4 0.0000 0.966 0 0.000 0.000 1.000 0.000 0.000
#> ERR978171 4 0.0000 0.966 0 0.000 0.000 1.000 0.000 0.000
#> ERR978172 4 0.0000 0.966 0 0.000 0.000 1.000 0.000 0.000
#> ERR978173 4 0.0000 0.966 0 0.000 0.000 1.000 0.000 0.000
#> ERR978174 4 0.0000 0.966 0 0.000 0.000 1.000 0.000 0.000
#> ERR978175 4 0.0000 0.966 0 0.000 0.000 1.000 0.000 0.000
#> ERR978176 4 0.0725 0.963 0 0.000 0.000 0.976 0.012 0.012
#> ERR978177 4 0.0725 0.963 0 0.000 0.000 0.976 0.012 0.012
#> ERR978178 4 0.0725 0.963 0 0.000 0.000 0.976 0.012 0.012
#> ERR978179 4 0.0725 0.963 0 0.000 0.000 0.976 0.012 0.012
#> ERR978180 4 0.0725 0.963 0 0.000 0.000 0.976 0.012 0.012
#> ERR978181 4 0.0725 0.963 0 0.000 0.000 0.976 0.012 0.012
#> ERR978182 4 0.0725 0.963 0 0.000 0.000 0.976 0.012 0.012
#> ERR978183 2 0.0363 0.913 0 0.988 0.000 0.000 0.000 0.012
#> ERR978184 2 0.0146 0.917 0 0.996 0.000 0.000 0.000 0.004
#> ERR978185 2 0.0146 0.917 0 0.996 0.000 0.000 0.000 0.004
#> ERR978186 2 0.0146 0.917 0 0.996 0.000 0.000 0.000 0.004
#> ERR978187 2 0.0146 0.917 0 0.996 0.000 0.000 0.000 0.004
#> ERR978188 2 0.0363 0.913 0 0.988 0.000 0.000 0.000 0.012
#> ERR978189 2 0.0363 0.913 0 0.988 0.000 0.000 0.000 0.012
#> ERR978190 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978191 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978192 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978193 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978194 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978195 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978196 2 0.0000 0.919 0 1.000 0.000 0.000 0.000 0.000
#> ERR978197 3 0.5615 -0.564 0 0.016 0.496 0.000 0.096 0.392
#> ERR978198 3 0.5330 -0.570 0 0.000 0.496 0.000 0.108 0.396
#> ERR978199 3 0.5260 -0.534 0 0.000 0.504 0.000 0.100 0.396
#> ERR978200 3 0.5290 -0.541 0 0.000 0.504 0.000 0.104 0.392
#> ERR978201 3 0.5325 -0.556 0 0.000 0.500 0.000 0.108 0.392
#> ERR978202 3 0.5453 -0.541 0 0.008 0.500 0.000 0.096 0.396
#> ERR978203 3 0.5550 -0.547 0 0.016 0.496 0.000 0.088 0.400
#> ERR978204 6 0.6510 0.911 0 0.056 0.368 0.000 0.140 0.436
#> ERR978205 6 0.6360 0.943 0 0.032 0.364 0.000 0.168 0.436
#> ERR978206 6 0.6488 0.938 0 0.040 0.360 0.000 0.172 0.428
#> ERR978207 6 0.6381 0.937 0 0.028 0.364 0.000 0.184 0.424
#> ERR978208 6 0.6322 0.933 0 0.024 0.368 0.000 0.184 0.424
#> ERR978209 6 0.6191 0.918 0 0.016 0.376 0.000 0.184 0.424
#> ERR978210 6 0.6508 0.936 0 0.048 0.364 0.000 0.156 0.432
#> ERR978211 6 0.6622 0.882 0 0.072 0.360 0.000 0.132 0.436
#> ERR978212 5 0.3213 0.772 0 0.008 0.004 0.000 0.784 0.204
#> ERR978213 5 0.2913 0.787 0 0.004 0.004 0.000 0.812 0.180
#> ERR978214 5 0.2913 0.787 0 0.004 0.004 0.000 0.812 0.180
#> ERR978215 5 0.2879 0.788 0 0.004 0.004 0.000 0.816 0.176
#> ERR978216 5 0.2913 0.787 0 0.004 0.004 0.000 0.812 0.180
#> ERR978217 5 0.3089 0.782 0 0.008 0.004 0.000 0.800 0.188
#> ERR978218 5 0.3213 0.772 0 0.008 0.004 0.000 0.784 0.204
#> ERR978219 5 0.3463 0.730 0 0.008 0.004 0.000 0.748 0.240
#> ERR978220 5 0.3221 0.757 0 0.004 0.004 0.000 0.772 0.220
#> ERR978221 5 0.3011 0.781 0 0.004 0.004 0.000 0.800 0.192
#> ERR978222 5 0.2979 0.784 0 0.004 0.004 0.000 0.804 0.188
#> ERR978223 5 0.2979 0.784 0 0.004 0.004 0.000 0.804 0.188
#> ERR978224 5 0.3192 0.761 0 0.004 0.004 0.000 0.776 0.216
#> ERR978225 5 0.3437 0.735 0 0.008 0.004 0.000 0.752 0.236
#> ERR978226 5 0.3276 0.746 0 0.004 0.004 0.000 0.764 0.228
#> ERR978227 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978228 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978229 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978230 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978231 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978232 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978233 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978234 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978235 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978236 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978237 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978238 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978239 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978240 1 0.0000 1.000 1 0.000 0.000 0.000 0.000 0.000
#> ERR978241 4 0.2145 0.931 0 0.000 0.000 0.900 0.028 0.072
#> ERR978242 4 0.2009 0.937 0 0.000 0.000 0.908 0.024 0.068
#> ERR978243 4 0.1745 0.945 0 0.000 0.000 0.924 0.020 0.056
#> ERR978244 4 0.1745 0.945 0 0.000 0.000 0.924 0.020 0.056
#> ERR978245 4 0.1867 0.942 0 0.000 0.000 0.916 0.020 0.064
#> ERR978246 4 0.1926 0.939 0 0.000 0.000 0.912 0.020 0.068
#> ERR978247 4 0.2221 0.928 0 0.000 0.000 0.896 0.032 0.072
#> ERR978248 2 0.5052 0.551 0 0.628 0.012 0.012 0.048 0.300
#> ERR978249 2 0.5582 0.541 0 0.608 0.004 0.068 0.044 0.276
#> ERR978250 2 0.6386 0.451 0 0.536 0.004 0.184 0.044 0.232
#> ERR978251 2 0.6438 0.356 0 0.484 0.000 0.264 0.036 0.216
#> ERR978252 2 0.6310 0.463 0 0.544 0.004 0.148 0.048 0.256
#> ERR978253 2 0.5344 0.538 0 0.612 0.004 0.040 0.048 0.296
#> ERR978254 2 0.4884 0.566 0 0.640 0.012 0.008 0.044 0.296
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0