cola Report for recount2:ERP011411

Date: 2019-12-25 22:34:39 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 14049   148

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:pam 6 1.000 0.974 0.983 ** 2,3,5
SD:NMF 5 1.000 0.975 0.988 ** 2,4
CV:mclust 2 1.000 1.000 1.000 **
MAD:pam 6 1.000 1.000 1.000 ** 2,3,5
ATC:hclust 6 1.000 0.988 0.990 ** 3,4
ATC:pam 6 1.000 0.989 0.994 ** 2,5
ATC:mclust 6 1.000 1.000 1.000 ** 2,5
ATC:NMF 3 1.000 0.965 0.981 ** 2
CV:NMF 6 0.964 0.942 0.947 ** 2,3,5
SD:mclust 6 0.961 0.975 0.954 ** 2,4,5
MAD:mclust 6 0.956 0.969 0.952 ** 2,5
ATC:skmeans 4 0.950 0.960 0.968 ** 2,3
CV:pam 6 0.940 0.916 0.933 * 2,3,4,5
CV:hclust 6 0.938 0.958 0.969 *
CV:skmeans 6 0.934 0.867 0.882 * 5
MAD:NMF 6 0.927 0.830 0.899 * 2,4,5
SD:skmeans 6 0.911 0.926 0.862 * 5
MAD:skmeans 6 0.901 0.902 0.869 *
MAD:hclust 5 0.841 0.888 0.903
SD:hclust 3 0.623 0.858 0.899
ATC:kmeans 3 0.610 0.897 0.874
CV:kmeans 4 0.535 0.716 0.691
SD:kmeans 4 0.475 0.717 0.745
MAD:kmeans 4 0.444 0.688 0.731

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 1.000           1.000       1.000          0.326 0.675   0.675
#> CV:NMF      2 1.000           1.000       1.000          0.326 0.675   0.675
#> MAD:NMF     2 1.000           1.000       1.000          0.326 0.675   0.675
#> ATC:NMF     2 1.000           1.000       1.000          0.326 0.675   0.675
#> SD:skmeans  2 0.799           0.941       0.959          0.468 0.520   0.520
#> CV:skmeans  2 0.535           0.705       0.844          0.475 0.520   0.520
#> MAD:skmeans 2 0.640           0.738       0.900          0.490 0.502   0.502
#> ATC:skmeans 2 0.904           0.932       0.964          0.498 0.501   0.501
#> SD:mclust   2 1.000           1.000       1.000          0.326 0.675   0.675
#> CV:mclust   2 1.000           1.000       1.000          0.326 0.675   0.675
#> MAD:mclust  2 1.000           1.000       1.000          0.326 0.675   0.675
#> ATC:mclust  2 1.000           1.000       1.000          0.326 0.675   0.675
#> SD:kmeans   2 0.198           0.790       0.824          0.366 0.675   0.675
#> CV:kmeans   2 0.153           0.710       0.757          0.381 0.675   0.675
#> MAD:kmeans  2 0.175           0.710       0.793          0.383 0.675   0.675
#> ATC:kmeans  2 0.300           0.701       0.773          0.365 0.579   0.579
#> SD:pam      2 1.000           1.000       1.000          0.326 0.675   0.675
#> CV:pam      2 1.000           1.000       1.000          0.326 0.675   0.675
#> MAD:pam     2 1.000           1.000       1.000          0.326 0.675   0.675
#> ATC:pam     2 1.000           1.000       1.000          0.326 0.675   0.675
#> SD:hclust   2 0.579           0.755       0.869          0.246 0.828   0.828
#> CV:hclust   2 0.198           0.748       0.784          0.384 0.520   0.520
#> MAD:hclust  2 0.259           0.815       0.791          0.389 0.515   0.515
#> ATC:hclust  2 0.579           0.783       0.881          0.234 0.828   0.828
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.716           0.824       0.894          0.891 0.686   0.534
#> CV:NMF      3 1.000           0.962       0.984          0.778 0.757   0.640
#> MAD:NMF     3 0.762           0.923       0.947          0.943 0.686   0.534
#> ATC:NMF     3 1.000           0.965       0.981          0.869 0.710   0.570
#> SD:skmeans  3 0.672           0.801       0.874          0.368 0.647   0.428
#> CV:skmeans  3 0.724           0.869       0.923          0.316 0.609   0.403
#> MAD:skmeans 3 0.701           0.867       0.904          0.313 0.759   0.563
#> ATC:skmeans 3 1.000           1.000       1.000          0.286 0.859   0.719
#> SD:mclust   3 0.768           0.926       0.955          0.799 0.757   0.640
#> CV:mclust   3 0.616           0.782       0.856          0.862 0.757   0.640
#> MAD:mclust  3 0.809           0.844       0.908          0.836 0.757   0.640
#> ATC:mclust  3 0.585           0.885       0.870          0.830 0.585   0.418
#> SD:kmeans   3 0.401           0.490       0.712          0.569 0.680   0.526
#> CV:kmeans   3 0.243           0.675       0.756          0.510 0.724   0.592
#> MAD:kmeans  3 0.312           0.635       0.695          0.498 0.686   0.534
#> ATC:kmeans  3 0.610           0.897       0.874          0.585 0.686   0.499
#> SD:pam      3 1.000           0.985       0.993          0.759 0.757   0.640
#> CV:pam      3 1.000           0.971       0.987          0.771 0.757   0.640
#> MAD:pam     3 1.000           0.978       0.990          0.765 0.757   0.640
#> ATC:pam     3 0.835           0.842       0.941          0.964 0.681   0.527
#> SD:hclust   3 0.623           0.858       0.899          1.084 0.713   0.653
#> CV:hclust   3 0.569           0.775       0.846          0.486 0.923   0.852
#> MAD:hclust  3 0.419           0.887       0.836          0.548 0.840   0.689
#> ATC:hclust  3 1.000           1.000       1.000          0.962 0.713   0.653
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 1.000           0.957       0.974         0.1708 0.724   0.397
#> CV:NMF      4 0.769           0.833       0.873         0.2560 0.846   0.642
#> MAD:NMF     4 0.974           0.926       0.965         0.1393 0.742   0.426
#> ATC:NMF     4 0.865           0.825       0.929         0.1765 0.796   0.526
#> SD:skmeans  4 0.745           0.843       0.893         0.1413 0.724   0.397
#> CV:skmeans  4 0.759           0.672       0.710         0.1720 0.807   0.554
#> MAD:skmeans 4 0.724           0.659       0.804         0.1407 0.726   0.383
#> ATC:skmeans 4 0.950           0.960       0.968         0.0838 0.950   0.862
#> SD:mclust   4 1.000           0.998       0.999         0.2324 0.846   0.642
#> CV:mclust   4 0.741           0.825       0.877         0.1953 0.840   0.630
#> MAD:mclust  4 0.763           0.695       0.841         0.2109 0.822   0.588
#> ATC:mclust  4 0.765           0.903       0.923         0.1880 0.905   0.731
#> SD:kmeans   4 0.475           0.717       0.745         0.1813 0.739   0.416
#> CV:kmeans   4 0.535           0.716       0.691         0.2111 0.807   0.554
#> MAD:kmeans  4 0.444           0.688       0.731         0.1976 0.724   0.397
#> ATC:kmeans  4 0.609           0.804       0.815         0.1539 0.890   0.714
#> SD:pam      4 0.839           0.910       0.918         0.2589 0.840   0.630
#> CV:pam      4 0.962           0.960       0.980         0.2710 0.840   0.630
#> MAD:pam     4 0.735           0.678       0.869         0.2602 0.822   0.588
#> ATC:pam     4 0.876           0.893       0.956         0.1018 0.852   0.629
#> SD:hclust   4 0.739           0.728       0.868         0.3705 0.796   0.623
#> CV:hclust   4 0.831           0.859       0.910         0.2609 0.835   0.626
#> MAD:hclust  4 0.765           0.853       0.864         0.1776 0.943   0.840
#> ATC:hclust  4 1.000           1.000       1.000         0.5273 0.757   0.551
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 1.000           0.975       0.988         0.1141 0.917   0.702
#> CV:NMF      5 1.000           1.000       1.000         0.1061 0.917   0.702
#> MAD:NMF     5 0.932           0.898       0.951         0.1101 0.902   0.659
#> ATC:NMF     5 0.872           0.886       0.928         0.0802 0.866   0.573
#> SD:skmeans  5 0.904           0.959       0.962         0.1004 0.917   0.702
#> CV:skmeans  5 0.977           0.965       0.965         0.0953 0.923   0.716
#> MAD:skmeans 5 0.865           0.864       0.862         0.0941 0.899   0.634
#> ATC:skmeans 5 0.854           0.898       0.855         0.1006 0.898   0.672
#> SD:mclust   5 1.000           0.990       0.990         0.1136 0.917   0.702
#> CV:mclust   5 0.811           0.774       0.808         0.0945 0.941   0.782
#> MAD:mclust  5 1.000           0.990       0.993         0.1100 0.899   0.634
#> ATC:mclust  5 0.905           0.960       0.963         0.1247 0.917   0.702
#> SD:kmeans   5 0.626           0.666       0.685         0.1081 1.000   1.000
#> CV:kmeans   5 0.659           0.786       0.720         0.0718 0.929   0.737
#> MAD:kmeans  5 0.621           0.665       0.713         0.0917 1.000   1.000
#> ATC:kmeans  5 0.632           0.797       0.739         0.1069 0.874   0.603
#> SD:pam      5 0.963           0.928       0.968         0.1040 0.857   0.536
#> CV:pam      5 1.000           0.973       0.985         0.0898 0.929   0.737
#> MAD:pam     5 1.000           0.987       0.992         0.0996 0.855   0.518
#> ATC:pam     5 1.000           0.983       0.993         0.1177 0.854   0.551
#> SD:hclust   5 0.816           0.814       0.860         0.1091 0.879   0.640
#> CV:hclust   5 0.899           0.957       0.877         0.0861 0.917   0.702
#> MAD:hclust  5 0.841           0.888       0.903         0.1103 0.917   0.722
#> ATC:hclust  5 0.879           0.889       0.863         0.0825 0.961   0.870
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.978           0.905       0.902         0.0220 1.000   1.000
#> CV:NMF      6 0.964           0.942       0.947         0.0199 0.986   0.931
#> MAD:NMF     6 0.927           0.830       0.899         0.0285 0.972   0.861
#> ATC:NMF     6 0.876           0.788       0.868         0.0510 0.944   0.757
#> SD:skmeans  6 0.911           0.926       0.862         0.0262 0.979   0.894
#> CV:skmeans  6 0.934           0.867       0.882         0.0274 0.986   0.931
#> MAD:skmeans 6 0.901           0.902       0.869         0.0274 0.979   0.894
#> ATC:skmeans 6 0.818           0.913       0.873         0.0545 0.981   0.908
#> SD:mclust   6 0.961           0.975       0.954         0.0232 0.982   0.907
#> CV:mclust   6 0.802           0.783       0.777         0.0258 0.958   0.800
#> MAD:mclust  6 0.956           0.969       0.952         0.0231 0.982   0.907
#> ATC:mclust  6 1.000           1.000       1.000         0.0325 0.982   0.907
#> SD:kmeans   6 0.682           0.595       0.640         0.0522 0.895   0.659
#> CV:kmeans   6 0.702           0.746       0.745         0.0623 1.000   1.000
#> MAD:kmeans  6 0.718           0.688       0.710         0.0606 0.917   0.702
#> ATC:kmeans  6 0.665           0.768       0.743         0.0566 0.957   0.816
#> SD:pam      6 1.000           0.974       0.983         0.0411 0.959   0.800
#> CV:pam      6 0.940           0.916       0.933         0.0344 0.970   0.849
#> MAD:pam     6 1.000           1.000       1.000         0.0403 0.959   0.800
#> ATC:pam     6 1.000           0.989       0.994         0.0403 0.970   0.856
#> SD:hclust   6 0.899           0.782       0.868         0.0532 0.961   0.821
#> CV:hclust   6 0.938           0.958       0.969         0.0451 0.982   0.907
#> MAD:hclust  6 0.899           0.904       0.926         0.0438 0.961   0.821
#> ATC:hclust  6 1.000           0.988       0.990         0.0838 0.917   0.681

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.579           0.755       0.869         0.2464 0.828   0.828
#> 3 3 0.623           0.858       0.899         1.0844 0.713   0.653
#> 4 4 0.739           0.728       0.868         0.3705 0.796   0.623
#> 5 5 0.816           0.814       0.860         0.1091 0.879   0.640
#> 6 6 0.899           0.782       0.868         0.0532 0.961   0.821

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette   p1   p2
#> ERR978107     2   0.000      0.821 0.00 1.00
#> ERR978108     2   0.000      0.821 0.00 1.00
#> ERR978109     2   0.000      0.821 0.00 1.00
#> ERR978110     2   0.000      0.821 0.00 1.00
#> ERR978111     2   0.000      0.821 0.00 1.00
#> ERR978112     2   0.000      0.821 0.00 1.00
#> ERR978113     2   0.000      0.821 0.00 1.00
#> ERR978114     2   0.000      0.821 0.00 1.00
#> ERR978115     2   0.000      0.821 0.00 1.00
#> ERR978116     2   0.000      0.821 0.00 1.00
#> ERR978117     2   0.000      0.821 0.00 1.00
#> ERR978118     2   0.000      0.821 0.00 1.00
#> ERR978119     2   0.000      0.821 0.00 1.00
#> ERR978120     2   0.000      0.821 0.00 1.00
#> ERR978121     2   0.000      0.821 0.00 1.00
#> ERR978122     2   0.000      0.821 0.00 1.00
#> ERR978123     2   0.242      0.803 0.04 0.96
#> ERR978124     2   0.242      0.803 0.04 0.96
#> ERR978125     2   0.242      0.803 0.04 0.96
#> ERR978126     2   0.242      0.803 0.04 0.96
#> ERR978127     2   0.242      0.803 0.04 0.96
#> ERR978128     2   0.242      0.803 0.04 0.96
#> ERR978129     2   0.242      0.803 0.04 0.96
#> ERR978130     2   0.242      0.803 0.04 0.96
#> ERR978131     2   0.242      0.803 0.04 0.96
#> ERR978132     2   0.242      0.803 0.04 0.96
#> ERR978133     2   0.242      0.803 0.04 0.96
#> ERR978134     2   0.242      0.803 0.04 0.96
#> ERR978135     2   0.242      0.803 0.04 0.96
#> ERR978136     2   0.242      0.803 0.04 0.96
#> ERR978137     2   0.242      0.803 0.04 0.96
#> ERR978138     2   0.242      0.803 0.04 0.96
#> ERR978139     2   0.242      0.803 0.04 0.96
#> ERR978140     2   0.242      0.803 0.04 0.96
#> ERR978141     2   0.242      0.803 0.04 0.96
#> ERR978142     2   0.242      0.803 0.04 0.96
#> ERR978143     2   0.242      0.803 0.04 0.96
#> ERR978144     2   0.242      0.803 0.04 0.96
#> ERR978145     2   0.242      0.803 0.04 0.96
#> ERR978146     2   0.242      0.803 0.04 0.96
#> ERR978147     2   0.242      0.803 0.04 0.96
#> ERR978148     2   0.242      0.803 0.04 0.96
#> ERR978149     2   0.242      0.803 0.04 0.96
#> ERR978150     2   0.242      0.803 0.04 0.96
#> ERR978151     2   0.242      0.803 0.04 0.96
#> ERR978152     2   0.242      0.803 0.04 0.96
#> ERR978153     2   0.971      0.440 0.40 0.60
#> ERR978154     2   0.971      0.440 0.40 0.60
#> ERR978155     2   0.971      0.440 0.40 0.60
#> ERR978156     2   0.971      0.440 0.40 0.60
#> ERR978157     2   0.971      0.440 0.40 0.60
#> ERR978158     2   0.971      0.440 0.40 0.60
#> ERR978159     2   0.971      0.440 0.40 0.60
#> ERR978160     2   0.971      0.440 0.40 0.60
#> ERR978161     2   0.971      0.440 0.40 0.60
#> ERR978162     2   0.971      0.440 0.40 0.60
#> ERR978163     2   0.971      0.440 0.40 0.60
#> ERR978164     2   0.971      0.440 0.40 0.60
#> ERR978165     2   0.971      0.440 0.40 0.60
#> ERR978166     2   0.971      0.440 0.40 0.60
#> ERR978167     2   0.971      0.440 0.40 0.60
#> ERR978168     2   0.971      0.440 0.40 0.60
#> ERR978169     1   0.971      1.000 0.60 0.40
#> ERR978170     1   0.971      1.000 0.60 0.40
#> ERR978171     1   0.971      1.000 0.60 0.40
#> ERR978172     1   0.971      1.000 0.60 0.40
#> ERR978173     1   0.971      1.000 0.60 0.40
#> ERR978174     1   0.971      1.000 0.60 0.40
#> ERR978175     1   0.971      1.000 0.60 0.40
#> ERR978176     1   0.971      1.000 0.60 0.40
#> ERR978177     1   0.971      1.000 0.60 0.40
#> ERR978178     1   0.971      1.000 0.60 0.40
#> ERR978179     1   0.971      1.000 0.60 0.40
#> ERR978180     1   0.971      1.000 0.60 0.40
#> ERR978181     1   0.971      1.000 0.60 0.40
#> ERR978182     1   0.971      1.000 0.60 0.40
#> ERR978183     2   0.000      0.821 0.00 1.00
#> ERR978184     2   0.000      0.821 0.00 1.00
#> ERR978185     2   0.000      0.821 0.00 1.00
#> ERR978186     2   0.000      0.821 0.00 1.00
#> ERR978187     2   0.000      0.821 0.00 1.00
#> ERR978188     2   0.000      0.821 0.00 1.00
#> ERR978189     2   0.000      0.821 0.00 1.00
#> ERR978190     2   0.000      0.821 0.00 1.00
#> ERR978191     2   0.000      0.821 0.00 1.00
#> ERR978192     2   0.000      0.821 0.00 1.00
#> ERR978193     2   0.000      0.821 0.00 1.00
#> ERR978194     2   0.000      0.821 0.00 1.00
#> ERR978195     2   0.000      0.821 0.00 1.00
#> ERR978196     2   0.000      0.821 0.00 1.00
#> ERR978197     2   0.000      0.821 0.00 1.00
#> ERR978198     2   0.000      0.821 0.00 1.00
#> ERR978199     2   0.000      0.821 0.00 1.00
#> ERR978200     2   0.000      0.821 0.00 1.00
#> ERR978201     2   0.000      0.821 0.00 1.00
#> ERR978202     2   0.000      0.821 0.00 1.00
#> ERR978203     2   0.000      0.821 0.00 1.00
#> ERR978204     2   0.000      0.821 0.00 1.00
#> ERR978205     2   0.000      0.821 0.00 1.00
#> ERR978206     2   0.000      0.821 0.00 1.00
#> ERR978207     2   0.000      0.821 0.00 1.00
#> ERR978208     2   0.000      0.821 0.00 1.00
#> ERR978209     2   0.000      0.821 0.00 1.00
#> ERR978210     2   0.000      0.821 0.00 1.00
#> ERR978211     2   0.000      0.821 0.00 1.00
#> ERR978212     2   0.000      0.821 0.00 1.00
#> ERR978213     2   0.000      0.821 0.00 1.00
#> ERR978214     2   0.000      0.821 0.00 1.00
#> ERR978215     2   0.000      0.821 0.00 1.00
#> ERR978216     2   0.000      0.821 0.00 1.00
#> ERR978217     2   0.000      0.821 0.00 1.00
#> ERR978218     2   0.000      0.821 0.00 1.00
#> ERR978219     2   0.000      0.821 0.00 1.00
#> ERR978220     2   0.000      0.821 0.00 1.00
#> ERR978221     2   0.000      0.821 0.00 1.00
#> ERR978222     2   0.000      0.821 0.00 1.00
#> ERR978223     2   0.000      0.821 0.00 1.00
#> ERR978224     2   0.000      0.821 0.00 1.00
#> ERR978225     2   0.000      0.821 0.00 1.00
#> ERR978226     2   0.000      0.821 0.00 1.00
#> ERR978227     2   0.971      0.440 0.40 0.60
#> ERR978228     2   0.971      0.440 0.40 0.60
#> ERR978229     2   0.971      0.440 0.40 0.60
#> ERR978230     2   0.971      0.440 0.40 0.60
#> ERR978231     2   0.971      0.440 0.40 0.60
#> ERR978232     2   0.971      0.440 0.40 0.60
#> ERR978233     2   0.971      0.440 0.40 0.60
#> ERR978234     2   0.971      0.440 0.40 0.60
#> ERR978235     2   0.971      0.440 0.40 0.60
#> ERR978236     2   0.971      0.440 0.40 0.60
#> ERR978237     2   0.971      0.440 0.40 0.60
#> ERR978238     2   0.971      0.440 0.40 0.60
#> ERR978239     2   0.971      0.440 0.40 0.60
#> ERR978240     2   0.971      0.440 0.40 0.60
#> ERR978241     2   0.242      0.803 0.04 0.96
#> ERR978242     2   0.242      0.803 0.04 0.96
#> ERR978243     2   0.242      0.803 0.04 0.96
#> ERR978244     2   0.242      0.803 0.04 0.96
#> ERR978245     2   0.242      0.803 0.04 0.96
#> ERR978246     2   0.242      0.803 0.04 0.96
#> ERR978247     2   0.242      0.803 0.04 0.96
#> ERR978248     2   0.242      0.803 0.04 0.96
#> ERR978249     2   0.242      0.803 0.04 0.96
#> ERR978250     2   0.242      0.803 0.04 0.96
#> ERR978251     2   0.242      0.803 0.04 0.96
#> ERR978252     2   0.242      0.803 0.04 0.96
#> ERR978253     2   0.242      0.803 0.04 0.96
#> ERR978254     2   0.242      0.803 0.04 0.96

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.394      0.798 0.000 0.844 0.156
#> ERR978108     2   0.394      0.798 0.000 0.844 0.156
#> ERR978109     2   0.394      0.798 0.000 0.844 0.156
#> ERR978110     2   0.394      0.798 0.000 0.844 0.156
#> ERR978111     2   0.394      0.798 0.000 0.844 0.156
#> ERR978112     2   0.394      0.798 0.000 0.844 0.156
#> ERR978113     2   0.394      0.798 0.000 0.844 0.156
#> ERR978114     2   0.394      0.798 0.000 0.844 0.156
#> ERR978115     2   0.394      0.798 0.000 0.844 0.156
#> ERR978116     2   0.394      0.798 0.000 0.844 0.156
#> ERR978117     2   0.394      0.798 0.000 0.844 0.156
#> ERR978118     2   0.394      0.798 0.000 0.844 0.156
#> ERR978119     2   0.394      0.798 0.000 0.844 0.156
#> ERR978120     2   0.394      0.798 0.000 0.844 0.156
#> ERR978121     2   0.394      0.798 0.000 0.844 0.156
#> ERR978122     2   0.394      0.798 0.000 0.844 0.156
#> ERR978123     2   0.337      0.839 0.024 0.904 0.072
#> ERR978124     2   0.337      0.839 0.024 0.904 0.072
#> ERR978125     2   0.337      0.839 0.024 0.904 0.072
#> ERR978126     2   0.337      0.839 0.024 0.904 0.072
#> ERR978127     2   0.337      0.839 0.024 0.904 0.072
#> ERR978128     2   0.337      0.839 0.024 0.904 0.072
#> ERR978129     2   0.337      0.839 0.024 0.904 0.072
#> ERR978130     2   0.337      0.839 0.024 0.904 0.072
#> ERR978131     2   0.337      0.839 0.024 0.904 0.072
#> ERR978132     2   0.337      0.839 0.024 0.904 0.072
#> ERR978133     2   0.337      0.839 0.024 0.904 0.072
#> ERR978134     2   0.337      0.839 0.024 0.904 0.072
#> ERR978135     2   0.337      0.839 0.024 0.904 0.072
#> ERR978136     2   0.337      0.839 0.024 0.904 0.072
#> ERR978137     2   0.337      0.839 0.024 0.904 0.072
#> ERR978138     2   0.255      0.851 0.024 0.936 0.040
#> ERR978139     2   0.255      0.851 0.024 0.936 0.040
#> ERR978140     2   0.255      0.851 0.024 0.936 0.040
#> ERR978141     2   0.255      0.851 0.024 0.936 0.040
#> ERR978142     2   0.255      0.851 0.024 0.936 0.040
#> ERR978143     2   0.255      0.851 0.024 0.936 0.040
#> ERR978144     2   0.255      0.851 0.024 0.936 0.040
#> ERR978145     2   0.255      0.851 0.024 0.936 0.040
#> ERR978146     2   0.255      0.851 0.024 0.936 0.040
#> ERR978147     2   0.255      0.851 0.024 0.936 0.040
#> ERR978148     2   0.255      0.851 0.024 0.936 0.040
#> ERR978149     2   0.255      0.851 0.024 0.936 0.040
#> ERR978150     2   0.255      0.851 0.024 0.936 0.040
#> ERR978151     2   0.255      0.851 0.024 0.936 0.040
#> ERR978152     2   0.255      0.851 0.024 0.936 0.040
#> ERR978153     1   0.000      1.000 1.000 0.000 0.000
#> ERR978154     1   0.000      1.000 1.000 0.000 0.000
#> ERR978155     1   0.000      1.000 1.000 0.000 0.000
#> ERR978156     1   0.000      1.000 1.000 0.000 0.000
#> ERR978157     1   0.000      1.000 1.000 0.000 0.000
#> ERR978158     1   0.000      1.000 1.000 0.000 0.000
#> ERR978159     1   0.000      1.000 1.000 0.000 0.000
#> ERR978160     1   0.000      1.000 1.000 0.000 0.000
#> ERR978161     1   0.000      1.000 1.000 0.000 0.000
#> ERR978162     1   0.000      1.000 1.000 0.000 0.000
#> ERR978163     1   0.000      1.000 1.000 0.000 0.000
#> ERR978164     1   0.000      1.000 1.000 0.000 0.000
#> ERR978165     1   0.000      1.000 1.000 0.000 0.000
#> ERR978166     1   0.000      1.000 1.000 0.000 0.000
#> ERR978167     1   0.000      1.000 1.000 0.000 0.000
#> ERR978168     1   0.000      1.000 1.000 0.000 0.000
#> ERR978169     3   0.394      1.000 0.000 0.156 0.844
#> ERR978170     3   0.394      1.000 0.000 0.156 0.844
#> ERR978171     3   0.394      1.000 0.000 0.156 0.844
#> ERR978172     3   0.394      1.000 0.000 0.156 0.844
#> ERR978173     3   0.394      1.000 0.000 0.156 0.844
#> ERR978174     3   0.394      1.000 0.000 0.156 0.844
#> ERR978175     3   0.394      1.000 0.000 0.156 0.844
#> ERR978176     3   0.394      1.000 0.000 0.156 0.844
#> ERR978177     3   0.394      1.000 0.000 0.156 0.844
#> ERR978178     3   0.394      1.000 0.000 0.156 0.844
#> ERR978179     3   0.394      1.000 0.000 0.156 0.844
#> ERR978180     3   0.394      1.000 0.000 0.156 0.844
#> ERR978181     3   0.394      1.000 0.000 0.156 0.844
#> ERR978182     3   0.394      1.000 0.000 0.156 0.844
#> ERR978183     2   0.394      0.798 0.000 0.844 0.156
#> ERR978184     2   0.394      0.798 0.000 0.844 0.156
#> ERR978185     2   0.394      0.798 0.000 0.844 0.156
#> ERR978186     2   0.394      0.798 0.000 0.844 0.156
#> ERR978187     2   0.394      0.798 0.000 0.844 0.156
#> ERR978188     2   0.394      0.798 0.000 0.844 0.156
#> ERR978189     2   0.394      0.798 0.000 0.844 0.156
#> ERR978190     2   0.394      0.798 0.000 0.844 0.156
#> ERR978191     2   0.394      0.798 0.000 0.844 0.156
#> ERR978192     2   0.394      0.798 0.000 0.844 0.156
#> ERR978193     2   0.394      0.798 0.000 0.844 0.156
#> ERR978194     2   0.394      0.798 0.000 0.844 0.156
#> ERR978195     2   0.394      0.798 0.000 0.844 0.156
#> ERR978196     2   0.394      0.798 0.000 0.844 0.156
#> ERR978197     2   0.129      0.857 0.000 0.968 0.032
#> ERR978198     2   0.129      0.857 0.000 0.968 0.032
#> ERR978199     2   0.129      0.857 0.000 0.968 0.032
#> ERR978200     2   0.129      0.857 0.000 0.968 0.032
#> ERR978201     2   0.129      0.857 0.000 0.968 0.032
#> ERR978202     2   0.129      0.857 0.000 0.968 0.032
#> ERR978203     2   0.129      0.857 0.000 0.968 0.032
#> ERR978204     2   0.129      0.857 0.000 0.968 0.032
#> ERR978205     2   0.129      0.857 0.000 0.968 0.032
#> ERR978206     2   0.129      0.857 0.000 0.968 0.032
#> ERR978207     2   0.129      0.857 0.000 0.968 0.032
#> ERR978208     2   0.129      0.857 0.000 0.968 0.032
#> ERR978209     2   0.129      0.857 0.000 0.968 0.032
#> ERR978210     2   0.129      0.857 0.000 0.968 0.032
#> ERR978211     2   0.129      0.857 0.000 0.968 0.032
#> ERR978212     2   0.000      0.858 0.000 1.000 0.000
#> ERR978213     2   0.000      0.858 0.000 1.000 0.000
#> ERR978214     2   0.000      0.858 0.000 1.000 0.000
#> ERR978215     2   0.000      0.858 0.000 1.000 0.000
#> ERR978216     2   0.000      0.858 0.000 1.000 0.000
#> ERR978217     2   0.000      0.858 0.000 1.000 0.000
#> ERR978218     2   0.000      0.858 0.000 1.000 0.000
#> ERR978219     2   0.000      0.858 0.000 1.000 0.000
#> ERR978220     2   0.000      0.858 0.000 1.000 0.000
#> ERR978221     2   0.000      0.858 0.000 1.000 0.000
#> ERR978222     2   0.000      0.858 0.000 1.000 0.000
#> ERR978223     2   0.000      0.858 0.000 1.000 0.000
#> ERR978224     2   0.000      0.858 0.000 1.000 0.000
#> ERR978225     2   0.000      0.858 0.000 1.000 0.000
#> ERR978226     2   0.000      0.858 0.000 1.000 0.000
#> ERR978227     1   0.000      1.000 1.000 0.000 0.000
#> ERR978228     1   0.000      1.000 1.000 0.000 0.000
#> ERR978229     1   0.000      1.000 1.000 0.000 0.000
#> ERR978230     1   0.000      1.000 1.000 0.000 0.000
#> ERR978231     1   0.000      1.000 1.000 0.000 0.000
#> ERR978232     1   0.000      1.000 1.000 0.000 0.000
#> ERR978233     1   0.000      1.000 1.000 0.000 0.000
#> ERR978234     1   0.000      1.000 1.000 0.000 0.000
#> ERR978235     1   0.000      1.000 1.000 0.000 0.000
#> ERR978236     1   0.000      1.000 1.000 0.000 0.000
#> ERR978237     1   0.000      1.000 1.000 0.000 0.000
#> ERR978238     1   0.000      1.000 1.000 0.000 0.000
#> ERR978239     1   0.000      1.000 1.000 0.000 0.000
#> ERR978240     1   0.000      1.000 1.000 0.000 0.000
#> ERR978241     2   0.639      0.572 0.024 0.692 0.284
#> ERR978242     2   0.639      0.572 0.024 0.692 0.284
#> ERR978243     2   0.639      0.572 0.024 0.692 0.284
#> ERR978244     2   0.639      0.572 0.024 0.692 0.284
#> ERR978245     2   0.639      0.572 0.024 0.692 0.284
#> ERR978246     2   0.639      0.572 0.024 0.692 0.284
#> ERR978247     2   0.639      0.572 0.024 0.692 0.284
#> ERR978248     2   0.639      0.572 0.024 0.692 0.284
#> ERR978249     2   0.639      0.572 0.024 0.692 0.284
#> ERR978250     2   0.639      0.572 0.024 0.692 0.284
#> ERR978251     2   0.639      0.572 0.024 0.692 0.284
#> ERR978252     2   0.639      0.572 0.024 0.692 0.284
#> ERR978253     2   0.639      0.572 0.024 0.692 0.284
#> ERR978254     2   0.639      0.572 0.024 0.692 0.284

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3  p4
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978123     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978124     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978125     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978126     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978127     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978128     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978129     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978130     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978131     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978132     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978133     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978134     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978135     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978136     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978137     3   0.000      0.645  0 0.000 1.000 0.0
#> ERR978138     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978139     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978140     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978141     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978142     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978143     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978144     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978145     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978146     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978147     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978148     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978149     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978150     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978151     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978152     3   0.102      0.651  0 0.032 0.968 0.0
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978169     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978170     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978171     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978172     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978173     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978174     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978175     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978176     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978177     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978178     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978179     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978180     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978181     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978182     4   0.000      1.000  0 0.000 0.000 1.0
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.0
#> ERR978197     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978198     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978199     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978200     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978201     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978202     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978203     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978204     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978205     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978206     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978207     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978208     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978209     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978210     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978211     3   0.492      0.430  0 0.424 0.576 0.0
#> ERR978212     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978213     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978214     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978215     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978216     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978217     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978218     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978219     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978220     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978221     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978222     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978223     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978224     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978225     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978226     3   0.499      0.386  0 0.472 0.528 0.0
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.0
#> ERR978241     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978242     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978243     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978244     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978245     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978246     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978247     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978248     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978249     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978250     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978251     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978252     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978253     3   0.485      0.145  0 0.000 0.600 0.4
#> ERR978254     3   0.485      0.145  0 0.000 0.600 0.4

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978123     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978124     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978125     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978126     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978127     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978128     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978129     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978130     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978131     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978132     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978133     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978134     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978135     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978136     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978137     3   0.431      0.608  0 0.000 0.508 0.000 0.492
#> ERR978138     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978139     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978140     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978141     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978142     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978143     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978144     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978145     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978146     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978147     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978148     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978149     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978150     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978151     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978152     3   0.337      0.634  0 0.000 0.768 0.000 0.232
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4   0.307      0.902  0 0.000 0.196 0.804 0.000
#> ERR978170     4   0.307      0.902  0 0.000 0.196 0.804 0.000
#> ERR978171     4   0.307      0.902  0 0.000 0.196 0.804 0.000
#> ERR978172     4   0.307      0.902  0 0.000 0.196 0.804 0.000
#> ERR978173     4   0.307      0.902  0 0.000 0.196 0.804 0.000
#> ERR978174     4   0.307      0.902  0 0.000 0.196 0.804 0.000
#> ERR978175     4   0.307      0.902  0 0.000 0.196 0.804 0.000
#> ERR978176     4   0.000      0.902  0 0.000 0.000 1.000 0.000
#> ERR978177     4   0.000      0.902  0 0.000 0.000 1.000 0.000
#> ERR978178     4   0.000      0.902  0 0.000 0.000 1.000 0.000
#> ERR978179     4   0.000      0.902  0 0.000 0.000 1.000 0.000
#> ERR978180     4   0.000      0.902  0 0.000 0.000 1.000 0.000
#> ERR978181     4   0.000      0.902  0 0.000 0.000 1.000 0.000
#> ERR978182     4   0.000      0.902  0 0.000 0.000 1.000 0.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978197     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978198     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978199     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978200     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978201     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978202     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978203     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978204     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978205     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978206     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978207     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978208     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978209     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978210     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978211     5   0.000      0.765  0 0.000 0.000 0.000 1.000
#> ERR978212     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978213     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978214     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978215     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978216     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978217     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978218     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978219     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978220     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978221     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978222     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978223     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978224     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978225     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978226     5   0.425      0.765  0 0.016 0.296 0.000 0.688
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     3   0.342      0.443  0 0.000 0.788 0.204 0.008
#> ERR978242     3   0.342      0.443  0 0.000 0.788 0.204 0.008
#> ERR978243     3   0.342      0.443  0 0.000 0.788 0.204 0.008
#> ERR978244     3   0.342      0.443  0 0.000 0.788 0.204 0.008
#> ERR978245     3   0.342      0.443  0 0.000 0.788 0.204 0.008
#> ERR978246     3   0.342      0.443  0 0.000 0.788 0.204 0.008
#> ERR978247     3   0.342      0.443  0 0.000 0.788 0.204 0.008
#> ERR978248     3   0.445      0.443  0 0.000 0.592 0.400 0.008
#> ERR978249     3   0.445      0.443  0 0.000 0.592 0.400 0.008
#> ERR978250     3   0.445      0.443  0 0.000 0.592 0.400 0.008
#> ERR978251     3   0.445      0.443  0 0.000 0.592 0.400 0.008
#> ERR978252     3   0.445      0.443  0 0.000 0.592 0.400 0.008
#> ERR978253     3   0.445      0.443  0 0.000 0.592 0.400 0.008
#> ERR978254     3   0.445      0.443  0 0.000 0.592 0.400 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3  p4    p5  p6
#> ERR978107     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978108     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978109     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978110     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978111     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978112     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978113     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978114     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978115     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978116     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978117     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978118     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978119     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978120     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978121     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978122     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978123     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978124     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978125     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978126     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978127     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978128     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978129     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978130     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978131     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978132     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978133     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978134     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978135     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978136     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978137     3   0.000      0.630  0  0 1.000 0.0 0.000 0.0
#> ERR978138     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978139     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978140     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978141     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978142     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978143     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978144     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978145     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978146     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978147     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978148     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978149     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978150     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978151     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978152     3   0.382      0.627  0  0 0.564 0.0 0.436 0.0
#> ERR978153     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978154     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978155     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978156     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978157     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978158     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978159     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978160     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978161     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978162     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978163     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978164     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978165     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978166     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978167     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978168     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978169     4   0.000      0.674  0  0 0.000 1.0 0.000 0.0
#> ERR978170     4   0.000      0.674  0  0 0.000 1.0 0.000 0.0
#> ERR978171     4   0.000      0.674  0  0 0.000 1.0 0.000 0.0
#> ERR978172     4   0.000      0.674  0  0 0.000 1.0 0.000 0.0
#> ERR978173     4   0.000      0.674  0  0 0.000 1.0 0.000 0.0
#> ERR978174     4   0.000      0.674  0  0 0.000 1.0 0.000 0.0
#> ERR978175     4   0.000      0.674  0  0 0.000 1.0 0.000 0.0
#> ERR978176     4   0.376      0.674  0  0 0.000 0.6 0.000 0.4
#> ERR978177     4   0.376      0.674  0  0 0.000 0.6 0.000 0.4
#> ERR978178     4   0.376      0.674  0  0 0.000 0.6 0.000 0.4
#> ERR978179     4   0.376      0.674  0  0 0.000 0.6 0.000 0.4
#> ERR978180     4   0.376      0.674  0  0 0.000 0.6 0.000 0.4
#> ERR978181     4   0.376      0.674  0  0 0.000 0.6 0.000 0.4
#> ERR978182     4   0.376      0.674  0  0 0.000 0.6 0.000 0.4
#> ERR978183     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978184     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978185     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978186     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978187     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978188     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978189     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978190     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978191     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978192     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978193     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978194     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978195     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978196     2   0.000      1.000  0  1 0.000 0.0 0.000 0.0
#> ERR978197     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978198     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978199     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978200     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978201     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978202     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978203     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978204     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978205     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978206     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978207     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978208     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978209     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978210     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978211     5   0.387      0.590  0  0 0.492 0.0 0.508 0.0
#> ERR978212     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978213     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978214     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978215     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978216     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978217     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978218     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978219     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978220     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978221     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978222     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978223     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978224     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978225     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978226     5   0.000      0.613  0  0 0.000 0.0 1.000 0.0
#> ERR978227     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978228     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978229     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978230     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978231     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978232     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978233     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978234     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978235     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978236     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978237     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978238     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978239     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978240     1   0.000      1.000  1  0 0.000 0.0 0.000 0.0
#> ERR978241     6   0.376      0.674  0  0 0.000 0.4 0.000 0.6
#> ERR978242     6   0.376      0.674  0  0 0.000 0.4 0.000 0.6
#> ERR978243     6   0.376      0.674  0  0 0.000 0.4 0.000 0.6
#> ERR978244     6   0.376      0.674  0  0 0.000 0.4 0.000 0.6
#> ERR978245     6   0.376      0.674  0  0 0.000 0.4 0.000 0.6
#> ERR978246     6   0.376      0.674  0  0 0.000 0.4 0.000 0.6
#> ERR978247     6   0.376      0.674  0  0 0.000 0.4 0.000 0.6
#> ERR978248     6   0.000      0.674  0  0 0.000 0.0 0.000 1.0
#> ERR978249     6   0.000      0.674  0  0 0.000 0.0 0.000 1.0
#> ERR978250     6   0.000      0.674  0  0 0.000 0.0 0.000 1.0
#> ERR978251     6   0.000      0.674  0  0 0.000 0.0 0.000 1.0
#> ERR978252     6   0.000      0.674  0  0 0.000 0.0 0.000 1.0
#> ERR978253     6   0.000      0.674  0  0 0.000 0.0 0.000 1.0
#> ERR978254     6   0.000      0.674  0  0 0.000 0.0 0.000 1.0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.198           0.790       0.824         0.3663 0.675   0.675
#> 3 3 0.401           0.490       0.712         0.5691 0.680   0.526
#> 4 4 0.475           0.717       0.745         0.1813 0.739   0.416
#> 5 5 0.626           0.666       0.685         0.1081 1.000   1.000
#> 6 6 0.682           0.595       0.640         0.0522 0.895   0.659

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2   0.278      0.732 0.048 0.952
#> ERR978108     2   0.278      0.732 0.048 0.952
#> ERR978109     2   0.278      0.732 0.048 0.952
#> ERR978110     2   0.278      0.732 0.048 0.952
#> ERR978111     2   0.278      0.732 0.048 0.952
#> ERR978112     2   0.278      0.732 0.048 0.952
#> ERR978113     2   0.278      0.732 0.048 0.952
#> ERR978114     2   0.278      0.732 0.048 0.952
#> ERR978115     2   0.278      0.732 0.048 0.952
#> ERR978116     2   0.278      0.732 0.048 0.952
#> ERR978117     2   0.278      0.732 0.048 0.952
#> ERR978118     2   0.278      0.732 0.048 0.952
#> ERR978119     2   0.278      0.732 0.048 0.952
#> ERR978120     2   0.278      0.732 0.048 0.952
#> ERR978121     2   0.278      0.732 0.048 0.952
#> ERR978122     2   0.278      0.732 0.048 0.952
#> ERR978123     2   0.886      0.746 0.304 0.696
#> ERR978124     2   0.886      0.746 0.304 0.696
#> ERR978125     2   0.886      0.746 0.304 0.696
#> ERR978126     2   0.886      0.746 0.304 0.696
#> ERR978127     2   0.886      0.746 0.304 0.696
#> ERR978128     2   0.886      0.746 0.304 0.696
#> ERR978129     2   0.886      0.746 0.304 0.696
#> ERR978130     2   0.886      0.746 0.304 0.696
#> ERR978131     2   0.855      0.755 0.280 0.720
#> ERR978132     2   0.855      0.755 0.280 0.720
#> ERR978133     2   0.855      0.755 0.280 0.720
#> ERR978134     2   0.855      0.755 0.280 0.720
#> ERR978135     2   0.855      0.755 0.280 0.720
#> ERR978136     2   0.855      0.755 0.280 0.720
#> ERR978137     2   0.855      0.755 0.280 0.720
#> ERR978138     2   0.855      0.761 0.280 0.720
#> ERR978139     2   0.855      0.761 0.280 0.720
#> ERR978140     2   0.855      0.761 0.280 0.720
#> ERR978141     2   0.855      0.761 0.280 0.720
#> ERR978142     2   0.855      0.761 0.280 0.720
#> ERR978143     2   0.855      0.761 0.280 0.720
#> ERR978144     2   0.855      0.761 0.280 0.720
#> ERR978145     2   0.855      0.761 0.280 0.720
#> ERR978146     2   0.866      0.755 0.288 0.712
#> ERR978147     2   0.866      0.755 0.288 0.712
#> ERR978148     2   0.866      0.755 0.288 0.712
#> ERR978149     2   0.866      0.755 0.288 0.712
#> ERR978150     2   0.866      0.755 0.288 0.712
#> ERR978151     2   0.866      0.755 0.288 0.712
#> ERR978152     2   0.866      0.755 0.288 0.712
#> ERR978153     1   0.541      1.000 0.876 0.124
#> ERR978154     1   0.541      1.000 0.876 0.124
#> ERR978155     1   0.541      1.000 0.876 0.124
#> ERR978156     1   0.541      1.000 0.876 0.124
#> ERR978157     1   0.541      1.000 0.876 0.124
#> ERR978158     1   0.541      1.000 0.876 0.124
#> ERR978159     1   0.541      1.000 0.876 0.124
#> ERR978160     1   0.541      1.000 0.876 0.124
#> ERR978161     1   0.541      1.000 0.876 0.124
#> ERR978162     1   0.541      1.000 0.876 0.124
#> ERR978163     1   0.541      1.000 0.876 0.124
#> ERR978164     1   0.541      1.000 0.876 0.124
#> ERR978165     1   0.541      1.000 0.876 0.124
#> ERR978166     1   0.541      1.000 0.876 0.124
#> ERR978167     1   0.541      1.000 0.876 0.124
#> ERR978168     1   0.541      1.000 0.876 0.124
#> ERR978169     2   0.993      0.603 0.452 0.548
#> ERR978170     2   0.993      0.603 0.452 0.548
#> ERR978171     2   0.993      0.603 0.452 0.548
#> ERR978172     2   0.993      0.603 0.452 0.548
#> ERR978173     2   0.993      0.603 0.452 0.548
#> ERR978174     2   0.993      0.603 0.452 0.548
#> ERR978175     2   0.993      0.603 0.452 0.548
#> ERR978176     2   0.993      0.609 0.452 0.548
#> ERR978177     2   0.993      0.609 0.452 0.548
#> ERR978178     2   0.993      0.609 0.452 0.548
#> ERR978179     2   0.993      0.609 0.452 0.548
#> ERR978180     2   0.993      0.609 0.452 0.548
#> ERR978181     2   0.993      0.609 0.452 0.548
#> ERR978182     2   0.993      0.609 0.452 0.548
#> ERR978183     2   0.278      0.732 0.048 0.952
#> ERR978184     2   0.278      0.732 0.048 0.952
#> ERR978185     2   0.278      0.732 0.048 0.952
#> ERR978186     2   0.278      0.732 0.048 0.952
#> ERR978187     2   0.278      0.732 0.048 0.952
#> ERR978188     2   0.278      0.732 0.048 0.952
#> ERR978189     2   0.278      0.732 0.048 0.952
#> ERR978190     2   0.278      0.732 0.048 0.952
#> ERR978191     2   0.278      0.732 0.048 0.952
#> ERR978192     2   0.278      0.732 0.048 0.952
#> ERR978193     2   0.278      0.732 0.048 0.952
#> ERR978194     2   0.278      0.732 0.048 0.952
#> ERR978195     2   0.278      0.732 0.048 0.952
#> ERR978196     2   0.278      0.732 0.048 0.952
#> ERR978197     2   0.584      0.798 0.140 0.860
#> ERR978198     2   0.584      0.798 0.140 0.860
#> ERR978199     2   0.584      0.798 0.140 0.860
#> ERR978200     2   0.584      0.798 0.140 0.860
#> ERR978201     2   0.584      0.798 0.140 0.860
#> ERR978202     2   0.584      0.798 0.140 0.860
#> ERR978203     2   0.584      0.798 0.140 0.860
#> ERR978204     2   0.529      0.795 0.120 0.880
#> ERR978205     2   0.529      0.795 0.120 0.880
#> ERR978206     2   0.529      0.795 0.120 0.880
#> ERR978207     2   0.529      0.795 0.120 0.880
#> ERR978208     2   0.529      0.795 0.120 0.880
#> ERR978209     2   0.529      0.795 0.120 0.880
#> ERR978210     2   0.529      0.795 0.120 0.880
#> ERR978211     2   0.529      0.795 0.120 0.880
#> ERR978212     2   0.634      0.797 0.160 0.840
#> ERR978213     2   0.634      0.797 0.160 0.840
#> ERR978214     2   0.634      0.797 0.160 0.840
#> ERR978215     2   0.634      0.797 0.160 0.840
#> ERR978216     2   0.634      0.797 0.160 0.840
#> ERR978217     2   0.634      0.797 0.160 0.840
#> ERR978218     2   0.634      0.797 0.160 0.840
#> ERR978219     2   0.634      0.797 0.160 0.840
#> ERR978220     2   0.634      0.797 0.160 0.840
#> ERR978221     2   0.634      0.797 0.160 0.840
#> ERR978222     2   0.634      0.797 0.160 0.840
#> ERR978223     2   0.634      0.797 0.160 0.840
#> ERR978224     2   0.634      0.797 0.160 0.840
#> ERR978225     2   0.634      0.797 0.160 0.840
#> ERR978226     2   0.634      0.797 0.160 0.840
#> ERR978227     1   0.541      1.000 0.876 0.124
#> ERR978228     1   0.541      1.000 0.876 0.124
#> ERR978229     1   0.541      1.000 0.876 0.124
#> ERR978230     1   0.541      1.000 0.876 0.124
#> ERR978231     1   0.541      1.000 0.876 0.124
#> ERR978232     1   0.541      1.000 0.876 0.124
#> ERR978233     1   0.541      1.000 0.876 0.124
#> ERR978234     1   0.541      1.000 0.876 0.124
#> ERR978235     1   0.541      1.000 0.876 0.124
#> ERR978236     1   0.541      1.000 0.876 0.124
#> ERR978237     1   0.541      1.000 0.876 0.124
#> ERR978238     1   0.541      1.000 0.876 0.124
#> ERR978239     1   0.541      1.000 0.876 0.124
#> ERR978240     1   0.541      1.000 0.876 0.124
#> ERR978241     2   0.992      0.626 0.448 0.552
#> ERR978242     2   0.992      0.626 0.448 0.552
#> ERR978243     2   0.992      0.626 0.448 0.552
#> ERR978244     2   0.992      0.626 0.448 0.552
#> ERR978245     2   0.992      0.626 0.448 0.552
#> ERR978246     2   0.992      0.626 0.448 0.552
#> ERR978247     2   0.992      0.626 0.448 0.552
#> ERR978248     2   0.730      0.795 0.204 0.796
#> ERR978249     2   0.730      0.795 0.204 0.796
#> ERR978250     2   0.730      0.795 0.204 0.796
#> ERR978251     2   0.730      0.795 0.204 0.796
#> ERR978252     2   0.730      0.795 0.204 0.796
#> ERR978253     2   0.730      0.795 0.204 0.796
#> ERR978254     2   0.730      0.795 0.204 0.796

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978108     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978109     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978110     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978111     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978112     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978113     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978114     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978115     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978116     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978117     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978118     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978119     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978120     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978121     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978122     2   0.195     0.5788 0.008 0.952 0.040
#> ERR978123     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978124     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978125     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978126     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978127     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978128     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978129     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978130     3   0.691     0.4562 0.028 0.344 0.628
#> ERR978131     3   0.693     0.4524 0.028 0.348 0.624
#> ERR978132     3   0.693     0.4524 0.028 0.348 0.624
#> ERR978133     3   0.693     0.4524 0.028 0.348 0.624
#> ERR978134     3   0.693     0.4524 0.028 0.348 0.624
#> ERR978135     3   0.693     0.4524 0.028 0.348 0.624
#> ERR978136     3   0.693     0.4524 0.028 0.348 0.624
#> ERR978137     3   0.693     0.4524 0.028 0.348 0.624
#> ERR978138     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978139     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978140     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978141     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978142     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978143     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978144     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978145     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978146     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978147     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978148     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978149     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978150     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978151     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978152     3   0.782     0.4675 0.072 0.324 0.604
#> ERR978153     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978154     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978155     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978156     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978157     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978158     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978159     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978160     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978161     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978162     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978163     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978164     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978165     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978166     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978167     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978168     1   0.350     0.9790 0.900 0.028 0.072
#> ERR978169     3   0.781     0.4637 0.184 0.144 0.672
#> ERR978170     3   0.781     0.4637 0.184 0.144 0.672
#> ERR978171     3   0.781     0.4637 0.184 0.144 0.672
#> ERR978172     3   0.781     0.4637 0.184 0.144 0.672
#> ERR978173     3   0.781     0.4637 0.184 0.144 0.672
#> ERR978174     3   0.781     0.4637 0.184 0.144 0.672
#> ERR978175     3   0.781     0.4637 0.184 0.144 0.672
#> ERR978176     3   0.801     0.4557 0.192 0.152 0.656
#> ERR978177     3   0.801     0.4557 0.192 0.152 0.656
#> ERR978178     3   0.801     0.4557 0.192 0.152 0.656
#> ERR978179     3   0.801     0.4557 0.192 0.152 0.656
#> ERR978180     3   0.801     0.4557 0.192 0.152 0.656
#> ERR978181     3   0.801     0.4557 0.192 0.152 0.656
#> ERR978182     3   0.801     0.4557 0.192 0.152 0.656
#> ERR978183     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978184     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978185     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978186     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978187     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978188     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978189     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978190     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978191     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978192     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978193     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978194     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978195     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978196     2   0.148     0.5836 0.020 0.968 0.012
#> ERR978197     3   0.707     0.1175 0.020 0.472 0.508
#> ERR978198     3   0.707     0.1175 0.020 0.472 0.508
#> ERR978199     3   0.707     0.1175 0.020 0.472 0.508
#> ERR978200     3   0.707     0.1175 0.020 0.472 0.508
#> ERR978201     3   0.707     0.1175 0.020 0.472 0.508
#> ERR978202     3   0.707     0.1175 0.020 0.472 0.508
#> ERR978203     3   0.707     0.1175 0.020 0.472 0.508
#> ERR978204     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978205     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978206     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978207     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978208     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978209     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978210     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978211     2   0.708    -0.0737 0.020 0.492 0.488
#> ERR978212     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978213     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978214     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978215     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978216     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978217     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978218     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978219     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978220     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978221     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978222     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978223     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978224     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978225     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978226     2   0.809     0.1182 0.068 0.516 0.416
#> ERR978227     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978228     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978229     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978230     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978231     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978232     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978233     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978234     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978235     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978236     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978237     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978238     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978239     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978240     1   0.175     0.9760 0.960 0.028 0.012
#> ERR978241     3   0.746     0.4797 0.180 0.124 0.696
#> ERR978242     3   0.746     0.4797 0.180 0.124 0.696
#> ERR978243     3   0.746     0.4797 0.180 0.124 0.696
#> ERR978244     3   0.746     0.4797 0.180 0.124 0.696
#> ERR978245     3   0.746     0.4797 0.180 0.124 0.696
#> ERR978246     3   0.746     0.4797 0.180 0.124 0.696
#> ERR978247     3   0.746     0.4797 0.180 0.124 0.696
#> ERR978248     2   0.879     0.0275 0.116 0.492 0.392
#> ERR978249     2   0.879     0.0275 0.116 0.492 0.392
#> ERR978250     2   0.879     0.0275 0.116 0.492 0.392
#> ERR978251     2   0.879     0.0275 0.116 0.492 0.392
#> ERR978252     2   0.879     0.0275 0.116 0.492 0.392
#> ERR978253     2   0.879     0.0275 0.116 0.492 0.392
#> ERR978254     2   0.879     0.0275 0.116 0.492 0.392

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> ERR978107     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978108     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978109     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978110     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978111     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978112     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978113     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978114     2  0.5788      0.903 0.004 0.716 0.176 0.104
#> ERR978115     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978116     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978117     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978118     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978119     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978120     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978121     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978122     2  0.5674      0.903 0.004 0.724 0.176 0.096
#> ERR978123     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978124     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978125     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978126     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978127     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978128     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978129     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978130     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978131     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978132     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978133     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978134     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978135     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978136     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978137     3  0.1762      0.584 0.012 0.016 0.952 0.020
#> ERR978138     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978139     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978140     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978141     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978142     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978143     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978144     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978145     3  0.6274      0.488 0.028 0.088 0.704 0.180
#> ERR978146     3  0.6070      0.490 0.028 0.080 0.720 0.172
#> ERR978147     3  0.6070      0.490 0.028 0.080 0.720 0.172
#> ERR978148     3  0.6070      0.490 0.028 0.080 0.720 0.172
#> ERR978149     3  0.6070      0.490 0.028 0.080 0.720 0.172
#> ERR978150     3  0.6070      0.490 0.028 0.080 0.720 0.172
#> ERR978151     3  0.6070      0.490 0.028 0.080 0.720 0.172
#> ERR978152     3  0.6070      0.490 0.028 0.080 0.720 0.172
#> ERR978153     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978154     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978155     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978156     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978157     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978158     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978159     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978160     1  0.4548      0.921 0.804 0.044 0.008 0.144
#> ERR978161     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978162     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978163     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978164     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978165     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978166     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978167     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978168     1  0.4597      0.920 0.800 0.044 0.008 0.148
#> ERR978169     4  0.7346      0.794 0.068 0.060 0.280 0.592
#> ERR978170     4  0.7346      0.794 0.068 0.060 0.280 0.592
#> ERR978171     4  0.7346      0.794 0.068 0.060 0.280 0.592
#> ERR978172     4  0.7346      0.794 0.068 0.060 0.280 0.592
#> ERR978173     4  0.7346      0.794 0.068 0.060 0.280 0.592
#> ERR978174     4  0.7346      0.794 0.068 0.060 0.280 0.592
#> ERR978175     4  0.7346      0.794 0.068 0.060 0.280 0.592
#> ERR978176     4  0.7419      0.793 0.064 0.076 0.260 0.600
#> ERR978177     4  0.7419      0.793 0.064 0.076 0.260 0.600
#> ERR978178     4  0.7419      0.793 0.064 0.076 0.260 0.600
#> ERR978179     4  0.7419      0.793 0.064 0.076 0.260 0.600
#> ERR978180     4  0.7419      0.793 0.064 0.076 0.260 0.600
#> ERR978181     4  0.7419      0.793 0.064 0.076 0.260 0.600
#> ERR978182     4  0.7419      0.793 0.064 0.076 0.260 0.600
#> ERR978183     2  0.3172      0.888 0.004 0.872 0.112 0.012
#> ERR978184     2  0.3172      0.888 0.004 0.872 0.112 0.012
#> ERR978185     2  0.3172      0.888 0.004 0.872 0.112 0.012
#> ERR978186     2  0.3172      0.888 0.004 0.872 0.112 0.012
#> ERR978187     2  0.3172      0.888 0.004 0.872 0.112 0.012
#> ERR978188     2  0.3172      0.888 0.004 0.872 0.112 0.012
#> ERR978189     2  0.3172      0.888 0.004 0.872 0.112 0.012
#> ERR978190     2  0.3043      0.890 0.008 0.876 0.112 0.004
#> ERR978191     2  0.3043      0.890 0.008 0.876 0.112 0.004
#> ERR978192     2  0.3043      0.890 0.008 0.876 0.112 0.004
#> ERR978193     2  0.3043      0.890 0.008 0.876 0.112 0.004
#> ERR978194     2  0.3043      0.890 0.008 0.876 0.112 0.004
#> ERR978195     2  0.3043      0.890 0.008 0.876 0.112 0.004
#> ERR978196     2  0.3043      0.890 0.008 0.876 0.112 0.004
#> ERR978197     3  0.4662      0.630 0.000 0.112 0.796 0.092
#> ERR978198     3  0.4662      0.630 0.000 0.112 0.796 0.092
#> ERR978199     3  0.4662      0.630 0.000 0.112 0.796 0.092
#> ERR978200     3  0.4662      0.630 0.000 0.112 0.796 0.092
#> ERR978201     3  0.4662      0.630 0.000 0.112 0.796 0.092
#> ERR978202     3  0.4662      0.630 0.000 0.112 0.796 0.092
#> ERR978203     3  0.4662      0.630 0.000 0.112 0.796 0.092
#> ERR978204     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978205     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978206     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978207     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978208     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978209     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978210     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978211     3  0.4931      0.626 0.000 0.132 0.776 0.092
#> ERR978212     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978213     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978214     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978215     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978216     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978217     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978218     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978219     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978220     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978221     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978222     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978223     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978224     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978225     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978226     3  0.8140      0.500 0.020 0.304 0.460 0.216
#> ERR978227     1  0.0804      0.908 0.980 0.012 0.008 0.000
#> ERR978228     1  0.0804      0.908 0.980 0.012 0.008 0.000
#> ERR978229     1  0.0804      0.908 0.980 0.012 0.008 0.000
#> ERR978230     1  0.0804      0.908 0.980 0.012 0.008 0.000
#> ERR978231     1  0.0804      0.908 0.980 0.012 0.008 0.000
#> ERR978232     1  0.0804      0.908 0.980 0.012 0.008 0.000
#> ERR978233     1  0.0804      0.908 0.980 0.012 0.008 0.000
#> ERR978234     1  0.0804      0.908 0.980 0.000 0.008 0.012
#> ERR978235     1  0.0804      0.908 0.980 0.000 0.008 0.012
#> ERR978236     1  0.0804      0.908 0.980 0.000 0.008 0.012
#> ERR978237     1  0.0804      0.908 0.980 0.000 0.008 0.012
#> ERR978238     1  0.0804      0.908 0.980 0.000 0.008 0.012
#> ERR978239     1  0.0804      0.908 0.980 0.000 0.008 0.012
#> ERR978240     1  0.0804      0.908 0.980 0.000 0.008 0.012
#> ERR978241     4  0.7798      0.770 0.060 0.088 0.316 0.536
#> ERR978242     4  0.7798      0.770 0.060 0.088 0.316 0.536
#> ERR978243     4  0.7798      0.770 0.060 0.088 0.316 0.536
#> ERR978244     4  0.7798      0.770 0.060 0.088 0.316 0.536
#> ERR978245     4  0.7798      0.770 0.060 0.088 0.316 0.536
#> ERR978246     4  0.7798      0.770 0.060 0.088 0.316 0.536
#> ERR978247     4  0.7798      0.770 0.060 0.088 0.316 0.536
#> ERR978248     4  0.8831      0.333 0.044 0.292 0.292 0.372
#> ERR978249     4  0.8831      0.333 0.044 0.292 0.292 0.372
#> ERR978250     4  0.8831      0.333 0.044 0.292 0.292 0.372
#> ERR978251     4  0.8831      0.333 0.044 0.292 0.292 0.372
#> ERR978252     4  0.8831      0.333 0.044 0.292 0.292 0.372
#> ERR978253     4  0.8831      0.333 0.044 0.292 0.292 0.372
#> ERR978254     4  0.8831      0.333 0.044 0.292 0.292 0.372

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> ERR978107     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978108     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978109     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978110     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978111     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978112     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978113     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978114     2  0.5089      0.880 0.008 0.748 0.052 0.036 NA
#> ERR978115     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978116     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978117     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978118     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978119     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978120     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978121     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978122     2  0.5383      0.880 0.008 0.724 0.052 0.044 NA
#> ERR978123     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978124     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978125     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978126     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978127     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978128     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978129     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978130     3  0.6746      0.503 0.004 0.044 0.548 0.104 NA
#> ERR978131     3  0.6795      0.505 0.004 0.048 0.540 0.100 NA
#> ERR978132     3  0.6795      0.505 0.004 0.048 0.540 0.100 NA
#> ERR978133     3  0.6795      0.505 0.004 0.048 0.540 0.100 NA
#> ERR978134     3  0.6795      0.505 0.004 0.048 0.540 0.100 NA
#> ERR978135     3  0.6795      0.505 0.004 0.048 0.540 0.100 NA
#> ERR978136     3  0.6795      0.505 0.004 0.048 0.540 0.100 NA
#> ERR978137     3  0.6795      0.505 0.004 0.048 0.540 0.100 NA
#> ERR978138     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978139     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978140     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978141     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978142     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978143     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978144     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978145     3  0.4928      0.366 0.008 0.036 0.684 0.268 NA
#> ERR978146     3  0.5359      0.366 0.008 0.036 0.664 0.272 NA
#> ERR978147     3  0.5359      0.366 0.008 0.036 0.664 0.272 NA
#> ERR978148     3  0.5359      0.366 0.008 0.036 0.664 0.272 NA
#> ERR978149     3  0.5359      0.366 0.008 0.036 0.664 0.272 NA
#> ERR978150     3  0.5359      0.366 0.008 0.036 0.664 0.272 NA
#> ERR978151     3  0.5359      0.366 0.008 0.036 0.664 0.272 NA
#> ERR978152     3  0.5359      0.366 0.008 0.036 0.664 0.272 NA
#> ERR978153     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978154     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978155     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978156     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978157     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978158     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978159     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978160     1  0.4314      0.904 0.772 0.008 0.020 0.016 NA
#> ERR978161     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978162     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978163     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978164     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978165     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978166     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978167     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978168     1  0.3659      0.903 0.768 0.000 0.012 0.000 NA
#> ERR978169     4  0.2151      0.778 0.020 0.016 0.040 0.924 NA
#> ERR978170     4  0.2151      0.778 0.020 0.016 0.040 0.924 NA
#> ERR978171     4  0.2151      0.778 0.020 0.016 0.040 0.924 NA
#> ERR978172     4  0.2151      0.778 0.020 0.016 0.040 0.924 NA
#> ERR978173     4  0.2151      0.778 0.020 0.016 0.040 0.924 NA
#> ERR978174     4  0.2151      0.778 0.020 0.016 0.040 0.924 NA
#> ERR978175     4  0.2151      0.778 0.020 0.016 0.040 0.924 NA
#> ERR978176     4  0.3327      0.778 0.024 0.016 0.032 0.876 NA
#> ERR978177     4  0.3327      0.778 0.024 0.016 0.032 0.876 NA
#> ERR978178     4  0.3327      0.778 0.024 0.016 0.032 0.876 NA
#> ERR978179     4  0.3327      0.778 0.024 0.016 0.032 0.876 NA
#> ERR978180     4  0.3327      0.778 0.024 0.016 0.032 0.876 NA
#> ERR978181     4  0.3327      0.778 0.024 0.016 0.032 0.876 NA
#> ERR978182     4  0.3327      0.778 0.024 0.016 0.032 0.876 NA
#> ERR978183     2  0.1522      0.862 0.012 0.944 0.044 0.000 NA
#> ERR978184     2  0.1522      0.862 0.012 0.944 0.044 0.000 NA
#> ERR978185     2  0.1522      0.862 0.012 0.944 0.044 0.000 NA
#> ERR978186     2  0.1522      0.862 0.012 0.944 0.044 0.000 NA
#> ERR978187     2  0.1522      0.862 0.012 0.944 0.044 0.000 NA
#> ERR978188     2  0.1522      0.862 0.012 0.944 0.044 0.000 NA
#> ERR978189     2  0.1522      0.862 0.012 0.944 0.044 0.000 NA
#> ERR978190     2  0.2297      0.862 0.008 0.920 0.044 0.008 NA
#> ERR978191     2  0.2297      0.862 0.008 0.920 0.044 0.008 NA
#> ERR978192     2  0.2297      0.862 0.008 0.920 0.044 0.008 NA
#> ERR978193     2  0.2297      0.862 0.008 0.920 0.044 0.008 NA
#> ERR978194     2  0.2297      0.862 0.008 0.920 0.044 0.008 NA
#> ERR978195     2  0.2297      0.862 0.008 0.920 0.044 0.008 NA
#> ERR978196     2  0.2297      0.862 0.008 0.920 0.044 0.008 NA
#> ERR978197     3  0.6150      0.544 0.000 0.072 0.508 0.024 NA
#> ERR978198     3  0.6150      0.544 0.000 0.072 0.508 0.024 NA
#> ERR978199     3  0.6150      0.544 0.000 0.072 0.508 0.024 NA
#> ERR978200     3  0.6150      0.544 0.000 0.072 0.508 0.024 NA
#> ERR978201     3  0.6150      0.544 0.000 0.072 0.508 0.024 NA
#> ERR978202     3  0.6150      0.544 0.000 0.072 0.508 0.024 NA
#> ERR978203     3  0.6150      0.544 0.000 0.072 0.508 0.024 NA
#> ERR978204     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978205     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978206     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978207     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978208     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978209     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978210     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978211     3  0.6236      0.539 0.000 0.088 0.508 0.020 NA
#> ERR978212     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978213     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978214     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978215     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978216     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978217     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978218     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978219     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978220     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978221     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978222     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978223     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978224     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978225     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978226     3  0.6935      0.384 0.008 0.136 0.616 0.108 NA
#> ERR978227     1  0.0898      0.894 0.972 0.000 0.020 0.008 NA
#> ERR978228     1  0.0898      0.894 0.972 0.000 0.020 0.008 NA
#> ERR978229     1  0.0898      0.894 0.972 0.000 0.020 0.008 NA
#> ERR978230     1  0.0898      0.894 0.972 0.000 0.020 0.008 NA
#> ERR978231     1  0.0898      0.894 0.972 0.000 0.020 0.008 NA
#> ERR978232     1  0.0898      0.894 0.972 0.000 0.020 0.008 NA
#> ERR978233     1  0.0898      0.894 0.972 0.000 0.020 0.008 NA
#> ERR978234     1  0.0912      0.894 0.972 0.000 0.012 0.000 NA
#> ERR978235     1  0.0912      0.894 0.972 0.000 0.012 0.000 NA
#> ERR978236     1  0.0912      0.894 0.972 0.000 0.012 0.000 NA
#> ERR978237     1  0.0912      0.894 0.972 0.000 0.012 0.000 NA
#> ERR978238     1  0.0912      0.894 0.972 0.000 0.012 0.000 NA
#> ERR978239     1  0.0912      0.894 0.972 0.000 0.012 0.000 NA
#> ERR978240     1  0.0912      0.894 0.972 0.000 0.012 0.000 NA
#> ERR978241     4  0.4476      0.756 0.024 0.020 0.120 0.800 NA
#> ERR978242     4  0.4476      0.756 0.024 0.020 0.120 0.800 NA
#> ERR978243     4  0.4476      0.756 0.024 0.020 0.120 0.800 NA
#> ERR978244     4  0.4476      0.756 0.024 0.020 0.120 0.800 NA
#> ERR978245     4  0.4476      0.756 0.024 0.020 0.120 0.800 NA
#> ERR978246     4  0.4476      0.756 0.024 0.020 0.120 0.800 NA
#> ERR978247     4  0.4476      0.756 0.024 0.020 0.120 0.800 NA
#> ERR978248     4  0.8710      0.332 0.028 0.156 0.300 0.368 NA
#> ERR978249     4  0.8710      0.332 0.028 0.156 0.300 0.368 NA
#> ERR978250     4  0.8710      0.332 0.028 0.156 0.300 0.368 NA
#> ERR978251     4  0.8710      0.332 0.028 0.156 0.300 0.368 NA
#> ERR978252     4  0.8710      0.332 0.028 0.156 0.300 0.368 NA
#> ERR978253     4  0.8710      0.332 0.028 0.156 0.300 0.368 NA
#> ERR978254     4  0.8710      0.332 0.028 0.156 0.300 0.368 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978108     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978109     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978110     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978111     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978112     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978113     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978114     2  0.1811      0.822 0.000 0.936 0.012 0.012 0.020 0.020
#> ERR978115     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978116     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978117     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978118     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978119     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978120     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978121     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978122     2  0.0951      0.822 0.000 0.968 0.004 0.008 0.020 0.000
#> ERR978123     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978124     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978125     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978126     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978127     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978128     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978129     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978130     5  0.7015     -0.195 0.000 0.032 0.364 0.064 0.432 0.108
#> ERR978131     5  0.6981     -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978132     5  0.6981     -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978133     5  0.6981     -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978134     5  0.6981     -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978135     5  0.6981     -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978136     5  0.6981     -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978137     5  0.6981     -0.205 0.000 0.032 0.376 0.060 0.424 0.108
#> ERR978138     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978139     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978140     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978141     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978142     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978143     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978144     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978145     5  0.2747      0.382 0.004 0.028 0.004 0.096 0.868 0.000
#> ERR978146     5  0.3211      0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978147     5  0.3211      0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978148     5  0.3211      0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978149     5  0.3211      0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978150     5  0.3211      0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978151     5  0.3211      0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978152     5  0.3211      0.378 0.004 0.028 0.012 0.096 0.852 0.008
#> ERR978153     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978154     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978155     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978156     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978157     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978158     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978159     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978160     1  0.3942      0.840 0.624 0.004 0.000 0.000 0.004 0.368
#> ERR978161     1  0.5169      0.840 0.624 0.004 0.036 0.024 0.008 0.304
#> ERR978162     1  0.5169      0.840 0.624 0.004 0.036 0.024 0.008 0.304
#> ERR978163     1  0.5157      0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978164     1  0.5157      0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978165     1  0.5157      0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978166     1  0.5157      0.840 0.624 0.004 0.040 0.020 0.008 0.304
#> ERR978167     1  0.5175      0.840 0.624 0.004 0.032 0.028 0.008 0.304
#> ERR978168     1  0.5175      0.840 0.624 0.004 0.032 0.028 0.008 0.304
#> ERR978169     4  0.2856      0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978170     4  0.2856      0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978171     4  0.2856      0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978172     4  0.2856      0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978173     4  0.2856      0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978174     4  0.2856      0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978175     4  0.2856      0.886 0.012 0.004 0.004 0.844 0.136 0.000
#> ERR978176     4  0.4942      0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978177     4  0.4942      0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978178     4  0.4942      0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978179     4  0.4942      0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978180     4  0.4942      0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978181     4  0.4942      0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978182     4  0.4942      0.872 0.016 0.020 0.020 0.740 0.152 0.052
#> ERR978183     2  0.5630      0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978184     2  0.5630      0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978185     2  0.5630      0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978186     2  0.5630      0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978187     2  0.5630      0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978188     2  0.5630      0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978189     2  0.5630      0.795 0.000 0.616 0.048 0.036 0.024 0.276
#> ERR978190     2  0.5685      0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978191     2  0.5685      0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978192     2  0.5685      0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978193     2  0.5685      0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978194     2  0.5685      0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978195     2  0.5685      0.795 0.000 0.636 0.056 0.044 0.024 0.240
#> ERR978196     2  0.5689      0.795 0.000 0.636 0.052 0.048 0.024 0.240
#> ERR978197     3  0.5197      0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978198     3  0.5197      0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978199     3  0.5197      0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978200     3  0.5197      0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978201     3  0.5197      0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978202     3  0.5197      0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978203     3  0.5197      0.940 0.000 0.048 0.640 0.020 0.276 0.016
#> ERR978204     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978205     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978206     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978207     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978208     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978209     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978210     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978211     3  0.4796      0.948 0.000 0.052 0.660 0.008 0.272 0.008
#> ERR978212     5  0.6532      0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978213     5  0.6532      0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978214     5  0.6532      0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978215     5  0.6532      0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978216     5  0.6532      0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978217     5  0.6532      0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978218     5  0.6532      0.320 0.004 0.084 0.224 0.008 0.568 0.112
#> ERR978219     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978220     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978221     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978222     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978223     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978224     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978225     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978226     5  0.6516      0.320 0.004 0.084 0.228 0.008 0.568 0.108
#> ERR978227     1  0.1129      0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978228     1  0.1129      0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978229     1  0.1129      0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978230     1  0.1129      0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978231     1  0.1129      0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978232     1  0.1129      0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978233     1  0.1129      0.824 0.964 0.004 0.008 0.012 0.012 0.000
#> ERR978234     1  0.0436      0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978235     1  0.0436      0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978236     1  0.0436      0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978237     1  0.0436      0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978238     1  0.0436      0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978239     1  0.0436      0.824 0.988 0.004 0.000 0.004 0.004 0.000
#> ERR978240     1  0.0436      0.824 0.988 0.004 0.004 0.000 0.004 0.000
#> ERR978241     4  0.6113      0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978242     4  0.6113      0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978243     4  0.6113      0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978244     4  0.6113      0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978245     4  0.6113      0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978246     4  0.6113      0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978247     4  0.6113      0.830 0.016 0.012 0.084 0.632 0.204 0.052
#> ERR978248     5  0.8833     -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978249     5  0.8833     -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978250     5  0.8833     -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978251     5  0.8833     -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978252     5  0.8833     -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978253     5  0.8833     -0.143 0.004 0.152 0.132 0.256 0.288 0.168
#> ERR978254     5  0.8833     -0.143 0.004 0.152 0.132 0.256 0.288 0.168

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.799           0.941       0.959         0.4682 0.520   0.520
#> 3 3 0.672           0.801       0.874         0.3681 0.647   0.428
#> 4 4 0.745           0.843       0.893         0.1413 0.724   0.397
#> 5 5 0.904           0.959       0.962         0.1004 0.917   0.702
#> 6 6 0.911           0.926       0.862         0.0262 0.979   0.894

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5

There is also optional best \(k\) = 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2   0.000      0.970 0.000 1.000
#> ERR978108     2   0.000      0.970 0.000 1.000
#> ERR978109     2   0.000      0.970 0.000 1.000
#> ERR978110     2   0.000      0.970 0.000 1.000
#> ERR978111     2   0.000      0.970 0.000 1.000
#> ERR978112     2   0.000      0.970 0.000 1.000
#> ERR978113     2   0.000      0.970 0.000 1.000
#> ERR978114     2   0.000      0.970 0.000 1.000
#> ERR978115     2   0.000      0.970 0.000 1.000
#> ERR978116     2   0.000      0.970 0.000 1.000
#> ERR978117     2   0.000      0.970 0.000 1.000
#> ERR978118     2   0.000      0.970 0.000 1.000
#> ERR978119     2   0.000      0.970 0.000 1.000
#> ERR978120     2   0.000      0.970 0.000 1.000
#> ERR978121     2   0.000      0.970 0.000 1.000
#> ERR978122     2   0.000      0.970 0.000 1.000
#> ERR978123     2   0.518      0.898 0.116 0.884
#> ERR978124     2   0.518      0.898 0.116 0.884
#> ERR978125     2   0.518      0.898 0.116 0.884
#> ERR978126     2   0.518      0.898 0.116 0.884
#> ERR978127     2   0.518      0.898 0.116 0.884
#> ERR978128     2   0.518      0.898 0.116 0.884
#> ERR978129     2   0.518      0.898 0.116 0.884
#> ERR978130     2   0.518      0.898 0.116 0.884
#> ERR978131     2   0.518      0.898 0.116 0.884
#> ERR978132     2   0.518      0.898 0.116 0.884
#> ERR978133     2   0.518      0.898 0.116 0.884
#> ERR978134     2   0.518      0.898 0.116 0.884
#> ERR978135     2   0.518      0.898 0.116 0.884
#> ERR978136     2   0.518      0.898 0.116 0.884
#> ERR978137     2   0.518      0.898 0.116 0.884
#> ERR978138     2   0.295      0.947 0.052 0.948
#> ERR978139     2   0.295      0.947 0.052 0.948
#> ERR978140     2   0.295      0.947 0.052 0.948
#> ERR978141     2   0.295      0.947 0.052 0.948
#> ERR978142     2   0.295      0.947 0.052 0.948
#> ERR978143     2   0.295      0.947 0.052 0.948
#> ERR978144     2   0.295      0.947 0.052 0.948
#> ERR978145     2   0.295      0.947 0.052 0.948
#> ERR978146     2   0.295      0.947 0.052 0.948
#> ERR978147     2   0.295      0.947 0.052 0.948
#> ERR978148     2   0.295      0.947 0.052 0.948
#> ERR978149     2   0.295      0.947 0.052 0.948
#> ERR978150     2   0.295      0.947 0.052 0.948
#> ERR978151     2   0.295      0.947 0.052 0.948
#> ERR978152     2   0.295      0.947 0.052 0.948
#> ERR978153     1   0.000      0.938 1.000 0.000
#> ERR978154     1   0.000      0.938 1.000 0.000
#> ERR978155     1   0.000      0.938 1.000 0.000
#> ERR978156     1   0.000      0.938 1.000 0.000
#> ERR978157     1   0.000      0.938 1.000 0.000
#> ERR978158     1   0.000      0.938 1.000 0.000
#> ERR978159     1   0.000      0.938 1.000 0.000
#> ERR978160     1   0.000      0.938 1.000 0.000
#> ERR978161     1   0.000      0.938 1.000 0.000
#> ERR978162     1   0.000      0.938 1.000 0.000
#> ERR978163     1   0.000      0.938 1.000 0.000
#> ERR978164     1   0.000      0.938 1.000 0.000
#> ERR978165     1   0.000      0.938 1.000 0.000
#> ERR978166     1   0.000      0.938 1.000 0.000
#> ERR978167     1   0.000      0.938 1.000 0.000
#> ERR978168     1   0.000      0.938 1.000 0.000
#> ERR978169     1   0.456      0.926 0.904 0.096
#> ERR978170     1   0.456      0.926 0.904 0.096
#> ERR978171     1   0.456      0.926 0.904 0.096
#> ERR978172     1   0.456      0.926 0.904 0.096
#> ERR978173     1   0.456      0.926 0.904 0.096
#> ERR978174     1   0.456      0.926 0.904 0.096
#> ERR978175     1   0.456      0.926 0.904 0.096
#> ERR978176     1   0.456      0.926 0.904 0.096
#> ERR978177     1   0.456      0.926 0.904 0.096
#> ERR978178     1   0.456      0.926 0.904 0.096
#> ERR978179     1   0.456      0.926 0.904 0.096
#> ERR978180     1   0.456      0.926 0.904 0.096
#> ERR978181     1   0.456      0.926 0.904 0.096
#> ERR978182     1   0.456      0.926 0.904 0.096
#> ERR978183     2   0.000      0.970 0.000 1.000
#> ERR978184     2   0.000      0.970 0.000 1.000
#> ERR978185     2   0.000      0.970 0.000 1.000
#> ERR978186     2   0.000      0.970 0.000 1.000
#> ERR978187     2   0.000      0.970 0.000 1.000
#> ERR978188     2   0.000      0.970 0.000 1.000
#> ERR978189     2   0.000      0.970 0.000 1.000
#> ERR978190     2   0.000      0.970 0.000 1.000
#> ERR978191     2   0.000      0.970 0.000 1.000
#> ERR978192     2   0.000      0.970 0.000 1.000
#> ERR978193     2   0.000      0.970 0.000 1.000
#> ERR978194     2   0.000      0.970 0.000 1.000
#> ERR978195     2   0.000      0.970 0.000 1.000
#> ERR978196     2   0.000      0.970 0.000 1.000
#> ERR978197     2   0.000      0.970 0.000 1.000
#> ERR978198     2   0.000      0.970 0.000 1.000
#> ERR978199     2   0.000      0.970 0.000 1.000
#> ERR978200     2   0.000      0.970 0.000 1.000
#> ERR978201     2   0.000      0.970 0.000 1.000
#> ERR978202     2   0.000      0.970 0.000 1.000
#> ERR978203     2   0.000      0.970 0.000 1.000
#> ERR978204     2   0.000      0.970 0.000 1.000
#> ERR978205     2   0.000      0.970 0.000 1.000
#> ERR978206     2   0.000      0.970 0.000 1.000
#> ERR978207     2   0.000      0.970 0.000 1.000
#> ERR978208     2   0.000      0.970 0.000 1.000
#> ERR978209     2   0.000      0.970 0.000 1.000
#> ERR978210     2   0.000      0.970 0.000 1.000
#> ERR978211     2   0.000      0.970 0.000 1.000
#> ERR978212     2   0.000      0.970 0.000 1.000
#> ERR978213     2   0.000      0.970 0.000 1.000
#> ERR978214     2   0.000      0.970 0.000 1.000
#> ERR978215     2   0.000      0.970 0.000 1.000
#> ERR978216     2   0.000      0.970 0.000 1.000
#> ERR978217     2   0.000      0.970 0.000 1.000
#> ERR978218     2   0.000      0.970 0.000 1.000
#> ERR978219     2   0.000      0.970 0.000 1.000
#> ERR978220     2   0.000      0.970 0.000 1.000
#> ERR978221     2   0.000      0.970 0.000 1.000
#> ERR978222     2   0.000      0.970 0.000 1.000
#> ERR978223     2   0.000      0.970 0.000 1.000
#> ERR978224     2   0.000      0.970 0.000 1.000
#> ERR978225     2   0.000      0.970 0.000 1.000
#> ERR978226     2   0.000      0.970 0.000 1.000
#> ERR978227     1   0.000      0.938 1.000 0.000
#> ERR978228     1   0.000      0.938 1.000 0.000
#> ERR978229     1   0.000      0.938 1.000 0.000
#> ERR978230     1   0.000      0.938 1.000 0.000
#> ERR978231     1   0.000      0.938 1.000 0.000
#> ERR978232     1   0.000      0.938 1.000 0.000
#> ERR978233     1   0.000      0.938 1.000 0.000
#> ERR978234     1   0.000      0.938 1.000 0.000
#> ERR978235     1   0.000      0.938 1.000 0.000
#> ERR978236     1   0.000      0.938 1.000 0.000
#> ERR978237     1   0.000      0.938 1.000 0.000
#> ERR978238     1   0.000      0.938 1.000 0.000
#> ERR978239     1   0.000      0.938 1.000 0.000
#> ERR978240     1   0.000      0.938 1.000 0.000
#> ERR978241     1   0.456      0.926 0.904 0.096
#> ERR978242     1   0.456      0.926 0.904 0.096
#> ERR978243     1   0.456      0.926 0.904 0.096
#> ERR978244     1   0.456      0.926 0.904 0.096
#> ERR978245     1   0.456      0.926 0.904 0.096
#> ERR978246     1   0.456      0.926 0.904 0.096
#> ERR978247     1   0.456      0.926 0.904 0.096
#> ERR978248     1   0.745      0.829 0.788 0.212
#> ERR978249     1   0.745      0.829 0.788 0.212
#> ERR978250     1   0.745      0.829 0.788 0.212
#> ERR978251     1   0.745      0.829 0.788 0.212
#> ERR978252     1   0.745      0.829 0.788 0.212
#> ERR978253     1   0.745      0.829 0.788 0.212
#> ERR978254     1   0.745      0.829 0.788 0.212

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.000      0.786 0.000 1.000 0.000
#> ERR978108     2   0.000      0.786 0.000 1.000 0.000
#> ERR978109     2   0.000      0.786 0.000 1.000 0.000
#> ERR978110     2   0.000      0.786 0.000 1.000 0.000
#> ERR978111     2   0.000      0.786 0.000 1.000 0.000
#> ERR978112     2   0.000      0.786 0.000 1.000 0.000
#> ERR978113     2   0.000      0.786 0.000 1.000 0.000
#> ERR978114     2   0.000      0.786 0.000 1.000 0.000
#> ERR978115     2   0.000      0.786 0.000 1.000 0.000
#> ERR978116     2   0.000      0.786 0.000 1.000 0.000
#> ERR978117     2   0.000      0.786 0.000 1.000 0.000
#> ERR978118     2   0.000      0.786 0.000 1.000 0.000
#> ERR978119     2   0.000      0.786 0.000 1.000 0.000
#> ERR978120     2   0.000      0.786 0.000 1.000 0.000
#> ERR978121     2   0.000      0.786 0.000 1.000 0.000
#> ERR978122     2   0.000      0.786 0.000 1.000 0.000
#> ERR978123     3   0.103      0.826 0.000 0.024 0.976
#> ERR978124     3   0.103      0.826 0.000 0.024 0.976
#> ERR978125     3   0.103      0.826 0.000 0.024 0.976
#> ERR978126     3   0.103      0.826 0.000 0.024 0.976
#> ERR978127     3   0.103      0.826 0.000 0.024 0.976
#> ERR978128     3   0.103      0.826 0.000 0.024 0.976
#> ERR978129     3   0.103      0.826 0.000 0.024 0.976
#> ERR978130     3   0.103      0.826 0.000 0.024 0.976
#> ERR978131     3   0.103      0.826 0.000 0.024 0.976
#> ERR978132     3   0.103      0.826 0.000 0.024 0.976
#> ERR978133     3   0.103      0.826 0.000 0.024 0.976
#> ERR978134     3   0.103      0.826 0.000 0.024 0.976
#> ERR978135     3   0.103      0.826 0.000 0.024 0.976
#> ERR978136     3   0.103      0.826 0.000 0.024 0.976
#> ERR978137     3   0.103      0.826 0.000 0.024 0.976
#> ERR978138     3   0.000      0.829 0.000 0.000 1.000
#> ERR978139     3   0.000      0.829 0.000 0.000 1.000
#> ERR978140     3   0.000      0.829 0.000 0.000 1.000
#> ERR978141     3   0.000      0.829 0.000 0.000 1.000
#> ERR978142     3   0.000      0.829 0.000 0.000 1.000
#> ERR978143     3   0.000      0.829 0.000 0.000 1.000
#> ERR978144     3   0.000      0.829 0.000 0.000 1.000
#> ERR978145     3   0.000      0.829 0.000 0.000 1.000
#> ERR978146     3   0.000      0.829 0.000 0.000 1.000
#> ERR978147     3   0.000      0.829 0.000 0.000 1.000
#> ERR978148     3   0.000      0.829 0.000 0.000 1.000
#> ERR978149     3   0.000      0.829 0.000 0.000 1.000
#> ERR978150     3   0.000      0.829 0.000 0.000 1.000
#> ERR978151     3   0.000      0.829 0.000 0.000 1.000
#> ERR978152     3   0.000      0.829 0.000 0.000 1.000
#> ERR978153     1   0.000      1.000 1.000 0.000 0.000
#> ERR978154     1   0.000      1.000 1.000 0.000 0.000
#> ERR978155     1   0.000      1.000 1.000 0.000 0.000
#> ERR978156     1   0.000      1.000 1.000 0.000 0.000
#> ERR978157     1   0.000      1.000 1.000 0.000 0.000
#> ERR978158     1   0.000      1.000 1.000 0.000 0.000
#> ERR978159     1   0.000      1.000 1.000 0.000 0.000
#> ERR978160     1   0.000      1.000 1.000 0.000 0.000
#> ERR978161     1   0.000      1.000 1.000 0.000 0.000
#> ERR978162     1   0.000      1.000 1.000 0.000 0.000
#> ERR978163     1   0.000      1.000 1.000 0.000 0.000
#> ERR978164     1   0.000      1.000 1.000 0.000 0.000
#> ERR978165     1   0.000      1.000 1.000 0.000 0.000
#> ERR978166     1   0.000      1.000 1.000 0.000 0.000
#> ERR978167     1   0.000      1.000 1.000 0.000 0.000
#> ERR978168     1   0.000      1.000 1.000 0.000 0.000
#> ERR978169     3   0.687      0.760 0.080 0.196 0.724
#> ERR978170     3   0.687      0.760 0.080 0.196 0.724
#> ERR978171     3   0.687      0.760 0.080 0.196 0.724
#> ERR978172     3   0.687      0.760 0.080 0.196 0.724
#> ERR978173     3   0.687      0.760 0.080 0.196 0.724
#> ERR978174     3   0.687      0.760 0.080 0.196 0.724
#> ERR978175     3   0.687      0.760 0.080 0.196 0.724
#> ERR978176     3   0.719      0.732 0.080 0.224 0.696
#> ERR978177     3   0.719      0.732 0.080 0.224 0.696
#> ERR978178     3   0.719      0.732 0.080 0.224 0.696
#> ERR978179     3   0.719      0.732 0.080 0.224 0.696
#> ERR978180     3   0.719      0.732 0.080 0.224 0.696
#> ERR978181     3   0.719      0.732 0.080 0.224 0.696
#> ERR978182     3   0.719      0.732 0.080 0.224 0.696
#> ERR978183     2   0.000      0.786 0.000 1.000 0.000
#> ERR978184     2   0.000      0.786 0.000 1.000 0.000
#> ERR978185     2   0.000      0.786 0.000 1.000 0.000
#> ERR978186     2   0.000      0.786 0.000 1.000 0.000
#> ERR978187     2   0.000      0.786 0.000 1.000 0.000
#> ERR978188     2   0.000      0.786 0.000 1.000 0.000
#> ERR978189     2   0.000      0.786 0.000 1.000 0.000
#> ERR978190     2   0.000      0.786 0.000 1.000 0.000
#> ERR978191     2   0.000      0.786 0.000 1.000 0.000
#> ERR978192     2   0.000      0.786 0.000 1.000 0.000
#> ERR978193     2   0.000      0.786 0.000 1.000 0.000
#> ERR978194     2   0.000      0.786 0.000 1.000 0.000
#> ERR978195     2   0.000      0.786 0.000 1.000 0.000
#> ERR978196     2   0.000      0.786 0.000 1.000 0.000
#> ERR978197     2   0.626      0.571 0.000 0.552 0.448
#> ERR978198     2   0.626      0.571 0.000 0.552 0.448
#> ERR978199     2   0.626      0.571 0.000 0.552 0.448
#> ERR978200     2   0.626      0.571 0.000 0.552 0.448
#> ERR978201     2   0.626      0.571 0.000 0.552 0.448
#> ERR978202     2   0.626      0.571 0.000 0.552 0.448
#> ERR978203     2   0.626      0.571 0.000 0.552 0.448
#> ERR978204     2   0.624      0.583 0.000 0.560 0.440
#> ERR978205     2   0.624      0.583 0.000 0.560 0.440
#> ERR978206     2   0.624      0.583 0.000 0.560 0.440
#> ERR978207     2   0.624      0.583 0.000 0.560 0.440
#> ERR978208     2   0.624      0.583 0.000 0.560 0.440
#> ERR978209     2   0.624      0.583 0.000 0.560 0.440
#> ERR978210     2   0.624      0.583 0.000 0.560 0.440
#> ERR978211     2   0.624      0.583 0.000 0.560 0.440
#> ERR978212     2   0.588      0.692 0.000 0.652 0.348
#> ERR978213     2   0.588      0.692 0.000 0.652 0.348
#> ERR978214     2   0.588      0.692 0.000 0.652 0.348
#> ERR978215     2   0.588      0.692 0.000 0.652 0.348
#> ERR978216     2   0.588      0.692 0.000 0.652 0.348
#> ERR978217     2   0.588      0.692 0.000 0.652 0.348
#> ERR978218     2   0.588      0.692 0.000 0.652 0.348
#> ERR978219     2   0.588      0.692 0.000 0.652 0.348
#> ERR978220     2   0.588      0.692 0.000 0.652 0.348
#> ERR978221     2   0.588      0.692 0.000 0.652 0.348
#> ERR978222     2   0.588      0.692 0.000 0.652 0.348
#> ERR978223     2   0.588      0.692 0.000 0.652 0.348
#> ERR978224     2   0.588      0.692 0.000 0.652 0.348
#> ERR978225     2   0.588      0.692 0.000 0.652 0.348
#> ERR978226     2   0.588      0.692 0.000 0.652 0.348
#> ERR978227     1   0.000      1.000 1.000 0.000 0.000
#> ERR978228     1   0.000      1.000 1.000 0.000 0.000
#> ERR978229     1   0.000      1.000 1.000 0.000 0.000
#> ERR978230     1   0.000      1.000 1.000 0.000 0.000
#> ERR978231     1   0.000      1.000 1.000 0.000 0.000
#> ERR978232     1   0.000      1.000 1.000 0.000 0.000
#> ERR978233     1   0.000      1.000 1.000 0.000 0.000
#> ERR978234     1   0.000      1.000 1.000 0.000 0.000
#> ERR978235     1   0.000      1.000 1.000 0.000 0.000
#> ERR978236     1   0.000      1.000 1.000 0.000 0.000
#> ERR978237     1   0.000      1.000 1.000 0.000 0.000
#> ERR978238     1   0.000      1.000 1.000 0.000 0.000
#> ERR978239     1   0.000      1.000 1.000 0.000 0.000
#> ERR978240     1   0.000      1.000 1.000 0.000 0.000
#> ERR978241     3   0.687      0.760 0.080 0.196 0.724
#> ERR978242     3   0.687      0.760 0.080 0.196 0.724
#> ERR978243     3   0.687      0.760 0.080 0.196 0.724
#> ERR978244     3   0.687      0.760 0.080 0.196 0.724
#> ERR978245     3   0.687      0.760 0.080 0.196 0.724
#> ERR978246     3   0.687      0.760 0.080 0.196 0.724
#> ERR978247     3   0.687      0.760 0.080 0.196 0.724
#> ERR978248     2   0.234      0.766 0.012 0.940 0.048
#> ERR978249     2   0.234      0.766 0.012 0.940 0.048
#> ERR978250     2   0.234      0.766 0.012 0.940 0.048
#> ERR978251     2   0.234      0.766 0.012 0.940 0.048
#> ERR978252     2   0.234      0.766 0.012 0.940 0.048
#> ERR978253     2   0.234      0.766 0.012 0.940 0.048
#> ERR978254     2   0.234      0.766 0.012 0.940 0.048

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> ERR978107     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978108     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978109     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978110     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978111     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978112     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978113     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978114     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978115     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978116     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978117     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978118     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978119     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978120     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978121     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978122     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978123     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978124     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978125     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978126     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978127     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978128     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978129     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978130     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978131     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978132     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978133     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978134     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978135     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978136     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978137     3  0.2149      0.742 0.000 0.000 0.912 0.088
#> ERR978138     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978139     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978140     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978141     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978142     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978143     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978144     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978145     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978146     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978147     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978148     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978149     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978150     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978151     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978152     3  0.4961      0.565 0.000 0.000 0.552 0.448
#> ERR978153     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978169     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978170     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978171     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978172     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978173     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978174     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978175     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978176     4  0.0336      0.921 0.000 0.008 0.000 0.992
#> ERR978177     4  0.0336      0.921 0.000 0.008 0.000 0.992
#> ERR978178     4  0.0336      0.921 0.000 0.008 0.000 0.992
#> ERR978179     4  0.0336      0.921 0.000 0.008 0.000 0.992
#> ERR978180     4  0.0336      0.921 0.000 0.008 0.000 0.992
#> ERR978181     4  0.0336      0.921 0.000 0.008 0.000 0.992
#> ERR978182     4  0.0336      0.921 0.000 0.008 0.000 0.992
#> ERR978183     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978184     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978185     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978186     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978187     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978188     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978189     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978190     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978191     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978192     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978193     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978194     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978195     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978196     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> ERR978197     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978198     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978199     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978200     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978201     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978202     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978203     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978204     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978205     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978206     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978207     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978208     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978209     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978210     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978211     3  0.0336      0.742 0.000 0.008 0.992 0.000
#> ERR978212     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978213     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978214     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978215     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978216     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978217     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978218     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978219     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978220     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978221     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978222     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978223     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978224     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978225     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978226     3  0.6685      0.624 0.000 0.160 0.616 0.224
#> ERR978227     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> ERR978241     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978242     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978243     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978244     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978245     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978246     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978247     4  0.0524      0.922 0.004 0.008 0.000 0.988
#> ERR978248     4  0.4937      0.763 0.000 0.172 0.064 0.764
#> ERR978249     4  0.4937      0.763 0.000 0.172 0.064 0.764
#> ERR978250     4  0.4937      0.763 0.000 0.172 0.064 0.764
#> ERR978251     4  0.4937      0.763 0.000 0.172 0.064 0.764
#> ERR978252     4  0.4937      0.763 0.000 0.172 0.064 0.764
#> ERR978253     4  0.4937      0.763 0.000 0.172 0.064 0.764
#> ERR978254     4  0.4937      0.763 0.000 0.172 0.064 0.764

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978108     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978109     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978110     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978111     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978112     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978113     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978114     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978115     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978116     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978117     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978118     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978119     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978120     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978121     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978122     2  0.0162      0.998  0 0.996 0.004 0.000 0.000
#> ERR978123     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978124     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978125     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978126     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978127     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978128     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978129     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978130     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978131     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978132     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978133     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978134     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978135     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978136     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978137     3  0.0324      0.936  0 0.004 0.992 0.004 0.000
#> ERR978138     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978139     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978140     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978141     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978142     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978143     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978144     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978145     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978146     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978147     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978148     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978149     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978150     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978151     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978152     5  0.3719      0.901  0 0.000 0.116 0.068 0.816
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978170     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978171     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978172     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978173     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978174     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978175     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978176     4  0.0290      0.973  0 0.000 0.008 0.992 0.000
#> ERR978177     4  0.0290      0.973  0 0.000 0.008 0.992 0.000
#> ERR978178     4  0.0290      0.973  0 0.000 0.008 0.992 0.000
#> ERR978179     4  0.0290      0.973  0 0.000 0.008 0.992 0.000
#> ERR978180     4  0.0290      0.973  0 0.000 0.008 0.992 0.000
#> ERR978181     4  0.0290      0.973  0 0.000 0.008 0.992 0.000
#> ERR978182     4  0.0290      0.973  0 0.000 0.008 0.992 0.000
#> ERR978183     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      0.997  0 1.000 0.000 0.000 0.000
#> ERR978197     3  0.2304      0.935  0 0.008 0.892 0.000 0.100
#> ERR978198     3  0.2304      0.935  0 0.008 0.892 0.000 0.100
#> ERR978199     3  0.2304      0.935  0 0.008 0.892 0.000 0.100
#> ERR978200     3  0.2304      0.935  0 0.008 0.892 0.000 0.100
#> ERR978201     3  0.2304      0.935  0 0.008 0.892 0.000 0.100
#> ERR978202     3  0.2304      0.935  0 0.008 0.892 0.000 0.100
#> ERR978203     3  0.2304      0.935  0 0.008 0.892 0.000 0.100
#> ERR978204     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978205     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978206     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978207     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978208     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978209     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978210     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978211     3  0.2416      0.934  0 0.012 0.888 0.000 0.100
#> ERR978212     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978213     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978214     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978215     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978216     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978217     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978218     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978219     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978220     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978221     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978222     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978223     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978224     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978225     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978226     5  0.0451      0.902  0 0.004 0.008 0.000 0.988
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978242     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978243     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978244     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978245     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978246     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978247     4  0.0162      0.973  0 0.000 0.004 0.996 0.000
#> ERR978248     4  0.2414      0.920  0 0.012 0.008 0.900 0.080
#> ERR978249     4  0.2414      0.920  0 0.012 0.008 0.900 0.080
#> ERR978250     4  0.2414      0.920  0 0.012 0.008 0.900 0.080
#> ERR978251     4  0.2414      0.920  0 0.012 0.008 0.900 0.080
#> ERR978252     4  0.2414      0.920  0 0.012 0.008 0.900 0.080
#> ERR978253     4  0.2414      0.920  0 0.012 0.008 0.900 0.080
#> ERR978254     4  0.2414      0.920  0 0.012 0.008 0.900 0.080

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.989 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978123     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978124     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978125     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978126     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978127     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978128     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978129     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978130     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978131     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978132     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978133     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978134     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978135     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978136     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978137     3  0.1765      0.813 0.000 0.000 0.904 0.000 0.096 0.000
#> ERR978138     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978139     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978140     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978141     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978142     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978143     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978144     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978145     5  0.0713      0.992 0.000 0.000 0.000 0.028 0.972 0.000
#> ERR978146     5  0.0972      0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978147     5  0.0972      0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978148     5  0.0972      0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978149     5  0.0972      0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978150     5  0.0972      0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978151     5  0.0972      0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978152     5  0.0972      0.991 0.000 0.000 0.008 0.028 0.964 0.000
#> ERR978153     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      0.995 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0260      0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978170     4  0.0260      0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978171     4  0.0260      0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978172     4  0.0260      0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978173     4  0.0260      0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978174     4  0.0260      0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978175     4  0.0260      0.881 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978176     4  0.2100      0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978177     4  0.2100      0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978178     4  0.2100      0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978179     4  0.2100      0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978180     4  0.2100      0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978181     4  0.2100      0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978182     4  0.2100      0.874 0.000 0.000 0.000 0.884 0.004 0.112
#> ERR978183     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978184     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978185     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978186     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978187     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978188     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978189     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978190     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978191     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978192     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978193     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978194     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978195     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978196     2  0.0777      0.988 0.000 0.972 0.000 0.000 0.004 0.024
#> ERR978197     3  0.3509      0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978198     3  0.3509      0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978199     3  0.3509      0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978200     3  0.3509      0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978201     3  0.3509      0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978202     3  0.3509      0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978203     3  0.3509      0.807 0.000 0.000 0.744 0.000 0.016 0.240
#> ERR978204     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978205     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978206     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978207     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978208     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978209     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978210     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978211     3  0.3629      0.798 0.000 0.000 0.724 0.000 0.016 0.260
#> ERR978212     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978213     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978214     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978215     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978216     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978217     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978218     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978219     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978220     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978221     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978222     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978223     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978224     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978225     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978226     6  0.4524      1.000 0.000 0.000 0.036 0.000 0.404 0.560
#> ERR978227     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978228     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978229     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978230     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978231     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978232     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978233     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978234     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978235     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978236     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978237     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978238     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978239     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978240     1  0.0363      0.995 0.988 0.000 0.000 0.000 0.000 0.012
#> ERR978241     4  0.0692      0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978242     4  0.0692      0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978243     4  0.0692      0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978244     4  0.0692      0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978245     4  0.0692      0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978246     4  0.0692      0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978247     4  0.0692      0.882 0.000 0.000 0.000 0.976 0.004 0.020
#> ERR978248     4  0.4002      0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978249     4  0.4002      0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978250     4  0.4002      0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978251     4  0.4002      0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978252     4  0.4002      0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978253     4  0.4002      0.712 0.000 0.008 0.000 0.588 0.000 0.404
#> ERR978254     4  0.4002      0.712 0.000 0.008 0.000 0.588 0.000 0.404

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 1.000           0.985       0.993         0.7586 0.757   0.640
#> 4 4 0.839           0.910       0.918         0.2589 0.840   0.630
#> 5 5 0.963           0.928       0.968         0.1040 0.857   0.536
#> 6 6 1.000           0.974       0.983         0.0411 0.959   0.800

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2  0.0000      1.000  0 1.000 0.000
#> ERR978108     2  0.0000      1.000  0 1.000 0.000
#> ERR978109     2  0.0000      1.000  0 1.000 0.000
#> ERR978110     2  0.0000      1.000  0 1.000 0.000
#> ERR978111     2  0.0000      1.000  0 1.000 0.000
#> ERR978112     2  0.0000      1.000  0 1.000 0.000
#> ERR978113     2  0.0000      1.000  0 1.000 0.000
#> ERR978114     2  0.0000      1.000  0 1.000 0.000
#> ERR978115     2  0.0000      1.000  0 1.000 0.000
#> ERR978116     2  0.0000      1.000  0 1.000 0.000
#> ERR978117     2  0.0000      1.000  0 1.000 0.000
#> ERR978118     2  0.0000      1.000  0 1.000 0.000
#> ERR978119     2  0.0000      1.000  0 1.000 0.000
#> ERR978120     2  0.0000      1.000  0 1.000 0.000
#> ERR978121     2  0.0000      1.000  0 1.000 0.000
#> ERR978122     2  0.0000      1.000  0 1.000 0.000
#> ERR978123     3  0.0000      0.988  0 0.000 1.000
#> ERR978124     3  0.0000      0.988  0 0.000 1.000
#> ERR978125     3  0.0000      0.988  0 0.000 1.000
#> ERR978126     3  0.0000      0.988  0 0.000 1.000
#> ERR978127     3  0.0000      0.988  0 0.000 1.000
#> ERR978128     3  0.0000      0.988  0 0.000 1.000
#> ERR978129     3  0.0000      0.988  0 0.000 1.000
#> ERR978130     3  0.0000      0.988  0 0.000 1.000
#> ERR978131     3  0.0000      0.988  0 0.000 1.000
#> ERR978132     3  0.0000      0.988  0 0.000 1.000
#> ERR978133     3  0.0000      0.988  0 0.000 1.000
#> ERR978134     3  0.0000      0.988  0 0.000 1.000
#> ERR978135     3  0.0000      0.988  0 0.000 1.000
#> ERR978136     3  0.0000      0.988  0 0.000 1.000
#> ERR978137     3  0.0000      0.988  0 0.000 1.000
#> ERR978138     3  0.0000      0.988  0 0.000 1.000
#> ERR978139     3  0.0000      0.988  0 0.000 1.000
#> ERR978140     3  0.0000      0.988  0 0.000 1.000
#> ERR978141     3  0.0000      0.988  0 0.000 1.000
#> ERR978142     3  0.0000      0.988  0 0.000 1.000
#> ERR978143     3  0.0000      0.988  0 0.000 1.000
#> ERR978144     3  0.0000      0.988  0 0.000 1.000
#> ERR978145     3  0.0000      0.988  0 0.000 1.000
#> ERR978146     3  0.0000      0.988  0 0.000 1.000
#> ERR978147     3  0.0000      0.988  0 0.000 1.000
#> ERR978148     3  0.0000      0.988  0 0.000 1.000
#> ERR978149     3  0.0000      0.988  0 0.000 1.000
#> ERR978150     3  0.0000      0.988  0 0.000 1.000
#> ERR978151     3  0.0000      0.988  0 0.000 1.000
#> ERR978152     3  0.0000      0.988  0 0.000 1.000
#> ERR978153     1  0.0000      1.000  1 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000
#> ERR978169     3  0.0000      0.988  0 0.000 1.000
#> ERR978170     3  0.0000      0.988  0 0.000 1.000
#> ERR978171     3  0.0000      0.988  0 0.000 1.000
#> ERR978172     3  0.0000      0.988  0 0.000 1.000
#> ERR978173     3  0.0000      0.988  0 0.000 1.000
#> ERR978174     3  0.0000      0.988  0 0.000 1.000
#> ERR978175     3  0.0000      0.988  0 0.000 1.000
#> ERR978176     3  0.0000      0.988  0 0.000 1.000
#> ERR978177     3  0.0000      0.988  0 0.000 1.000
#> ERR978178     3  0.0000      0.988  0 0.000 1.000
#> ERR978179     3  0.0000      0.988  0 0.000 1.000
#> ERR978180     3  0.0000      0.988  0 0.000 1.000
#> ERR978181     3  0.0000      0.988  0 0.000 1.000
#> ERR978182     3  0.0000      0.988  0 0.000 1.000
#> ERR978183     2  0.0000      1.000  0 1.000 0.000
#> ERR978184     2  0.0000      1.000  0 1.000 0.000
#> ERR978185     2  0.0000      1.000  0 1.000 0.000
#> ERR978186     2  0.0000      1.000  0 1.000 0.000
#> ERR978187     2  0.0000      1.000  0 1.000 0.000
#> ERR978188     2  0.0000      1.000  0 1.000 0.000
#> ERR978189     2  0.0000      1.000  0 1.000 0.000
#> ERR978190     2  0.0000      1.000  0 1.000 0.000
#> ERR978191     2  0.0000      1.000  0 1.000 0.000
#> ERR978192     2  0.0000      1.000  0 1.000 0.000
#> ERR978193     2  0.0000      1.000  0 1.000 0.000
#> ERR978194     2  0.0000      1.000  0 1.000 0.000
#> ERR978195     2  0.0000      1.000  0 1.000 0.000
#> ERR978196     2  0.0000      1.000  0 1.000 0.000
#> ERR978197     3  0.0000      0.988  0 0.000 1.000
#> ERR978198     3  0.0000      0.988  0 0.000 1.000
#> ERR978199     3  0.0000      0.988  0 0.000 1.000
#> ERR978200     3  0.0000      0.988  0 0.000 1.000
#> ERR978201     3  0.0000      0.988  0 0.000 1.000
#> ERR978202     3  0.0000      0.988  0 0.000 1.000
#> ERR978203     3  0.0000      0.988  0 0.000 1.000
#> ERR978204     3  0.0000      0.988  0 0.000 1.000
#> ERR978205     3  0.0000      0.988  0 0.000 1.000
#> ERR978206     3  0.0000      0.988  0 0.000 1.000
#> ERR978207     3  0.0000      0.988  0 0.000 1.000
#> ERR978208     3  0.0000      0.988  0 0.000 1.000
#> ERR978209     3  0.0000      0.988  0 0.000 1.000
#> ERR978210     3  0.0000      0.988  0 0.000 1.000
#> ERR978211     3  0.0000      0.988  0 0.000 1.000
#> ERR978212     3  0.0000      0.988  0 0.000 1.000
#> ERR978213     3  0.0000      0.988  0 0.000 1.000
#> ERR978214     3  0.0000      0.988  0 0.000 1.000
#> ERR978215     3  0.0000      0.988  0 0.000 1.000
#> ERR978216     3  0.0000      0.988  0 0.000 1.000
#> ERR978217     3  0.0000      0.988  0 0.000 1.000
#> ERR978218     3  0.0000      0.988  0 0.000 1.000
#> ERR978219     3  0.0000      0.988  0 0.000 1.000
#> ERR978220     3  0.0000      0.988  0 0.000 1.000
#> ERR978221     3  0.0000      0.988  0 0.000 1.000
#> ERR978222     3  0.0000      0.988  0 0.000 1.000
#> ERR978223     3  0.0000      0.988  0 0.000 1.000
#> ERR978224     3  0.0000      0.988  0 0.000 1.000
#> ERR978225     3  0.0000      0.988  0 0.000 1.000
#> ERR978226     3  0.0000      0.988  0 0.000 1.000
#> ERR978227     1  0.0000      1.000  1 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000
#> ERR978241     3  0.0000      0.988  0 0.000 1.000
#> ERR978242     3  0.0000      0.988  0 0.000 1.000
#> ERR978243     3  0.0000      0.988  0 0.000 1.000
#> ERR978244     3  0.0000      0.988  0 0.000 1.000
#> ERR978245     3  0.0000      0.988  0 0.000 1.000
#> ERR978246     3  0.0000      0.988  0 0.000 1.000
#> ERR978247     3  0.0000      0.988  0 0.000 1.000
#> ERR978248     3  0.5138      0.679  0 0.252 0.748
#> ERR978249     3  0.3941      0.822  0 0.156 0.844
#> ERR978250     3  0.2066      0.932  0 0.060 0.940
#> ERR978251     3  0.0747      0.974  0 0.016 0.984
#> ERR978252     3  0.2711      0.903  0 0.088 0.912
#> ERR978253     3  0.3816      0.832  0 0.148 0.852
#> ERR978254     3  0.5465      0.614  0 0.288 0.712

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2   p3    p4
#> ERR978107     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978123     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978124     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978125     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978126     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978127     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978128     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978129     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978130     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978131     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978132     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978133     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978134     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978135     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978136     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978137     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978138     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978139     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978140     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978141     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978142     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978143     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978144     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978145     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978146     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978147     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978148     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978149     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978150     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978151     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978152     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978153     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978169     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978170     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978171     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978172     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978173     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978174     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978175     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978176     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978177     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978178     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978179     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978180     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978181     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978182     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978183     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.00 0.000
#> ERR978197     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978198     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978199     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978200     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978201     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978202     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978203     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978204     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978205     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978206     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978207     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978208     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978209     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978210     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978211     3   0.452      1.000  0 0.000 0.68 0.320
#> ERR978212     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978213     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978214     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978215     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978216     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978217     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978218     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978219     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978220     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978221     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978222     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978223     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978224     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978225     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978226     4   0.000      0.799  0 0.000 0.00 1.000
#> ERR978227     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.00 0.000
#> ERR978241     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978242     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978243     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978244     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978245     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978246     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978247     4   0.452      0.752  0 0.000 0.32 0.680
#> ERR978248     4   0.436      0.617  0 0.292 0.00 0.708
#> ERR978249     4   0.357      0.700  0 0.196 0.00 0.804
#> ERR978250     4   0.187      0.768  0 0.072 0.00 0.928
#> ERR978251     4   0.121      0.784  0 0.040 0.00 0.960
#> ERR978252     4   0.287      0.736  0 0.136 0.00 0.864
#> ERR978253     4   0.331      0.714  0 0.172 0.00 0.828
#> ERR978254     4   0.456      0.560  0 0.328 0.00 0.672

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1 p2    p3 p4    p5
#> ERR978107     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978108     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978109     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978110     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978111     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978112     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978113     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978114     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978115     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978116     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978117     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978118     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978119     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978120     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978121     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978122     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978123     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978124     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978125     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978126     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978127     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978128     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978129     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978130     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978131     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978132     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978133     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978134     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978135     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978136     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978137     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978138     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978139     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978140     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978141     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978142     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978143     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978144     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978145     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978146     3   0.430      0.270  0  0 0.516  0 0.484
#> ERR978147     3   0.424      0.410  0  0 0.572  0 0.428
#> ERR978148     3   0.422      0.435  0  0 0.584  0 0.416
#> ERR978149     3   0.429      0.324  0  0 0.536  0 0.464
#> ERR978150     3   0.431      0.231  0  0 0.504  0 0.496
#> ERR978151     3   0.409      0.520  0  0 0.632  0 0.368
#> ERR978152     3   0.402      0.550  0  0 0.652  0 0.348
#> ERR978153     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978154     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978155     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978156     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978157     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978158     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978159     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978160     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978161     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978162     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978163     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978164     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978165     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978166     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978167     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978168     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978169     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978170     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978171     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978172     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978173     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978174     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978175     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978176     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978177     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978178     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978179     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978180     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978181     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978182     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978183     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978184     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978185     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978186     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978187     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978188     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978189     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978190     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978191     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978192     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978193     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978194     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978195     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978196     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978197     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978198     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978199     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978200     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978201     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978202     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978203     3   0.000      0.880  0  0 1.000  0 0.000
#> ERR978204     5   0.314      0.757  0  0 0.204  0 0.796
#> ERR978205     5   0.324      0.744  0  0 0.216  0 0.784
#> ERR978206     5   0.327      0.739  0  0 0.220  0 0.780
#> ERR978207     5   0.324      0.744  0  0 0.216  0 0.784
#> ERR978208     5   0.321      0.749  0  0 0.212  0 0.788
#> ERR978209     5   0.331      0.733  0  0 0.224  0 0.776
#> ERR978210     5   0.324      0.744  0  0 0.216  0 0.784
#> ERR978211     5   0.324      0.744  0  0 0.216  0 0.784
#> ERR978212     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978213     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978214     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978215     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978216     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978217     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978218     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978219     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978220     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978221     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978222     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978223     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978224     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978225     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978226     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978227     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978228     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978229     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978230     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978231     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978232     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978233     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978234     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978235     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978236     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978237     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978238     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978239     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978240     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978241     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978242     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978243     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978244     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978245     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978246     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978247     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978248     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978249     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978250     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978251     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978252     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978253     5   0.000      0.944  0  0 0.000  0 1.000
#> ERR978254     5   0.000      0.944  0  0 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978123     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978124     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978125     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978126     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978127     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978128     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978129     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978130     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978131     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978132     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978133     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978134     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978135     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978136     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978137     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978138     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978139     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978140     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978141     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978142     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978143     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978144     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978145     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978146     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978147     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978148     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978149     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978150     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978151     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978152     6  0.0000      1.000  0  0 0.000 0.000 0.000 1.000
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978170     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978171     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978172     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978173     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978174     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978175     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978176     4  0.0713      0.983  0  0 0.000 0.972 0.028 0.000
#> ERR978177     4  0.0713      0.983  0  0 0.000 0.972 0.028 0.000
#> ERR978178     4  0.0713      0.983  0  0 0.000 0.972 0.028 0.000
#> ERR978179     4  0.0713      0.983  0  0 0.000 0.972 0.028 0.000
#> ERR978180     4  0.0713      0.983  0  0 0.000 0.972 0.028 0.000
#> ERR978181     4  0.0713      0.983  0  0 0.000 0.972 0.028 0.000
#> ERR978182     4  0.0713      0.983  0  0 0.000 0.972 0.028 0.000
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978197     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978198     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978199     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978200     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978201     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978202     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978203     3  0.0000      1.000  0  0 1.000 0.000 0.000 0.000
#> ERR978204     5  0.2941      0.785  0  0 0.220 0.000 0.780 0.000
#> ERR978205     5  0.3023      0.774  0  0 0.232 0.000 0.768 0.000
#> ERR978206     5  0.3023      0.774  0  0 0.232 0.000 0.768 0.000
#> ERR978207     5  0.3023      0.774  0  0 0.232 0.000 0.768 0.000
#> ERR978208     5  0.2996      0.778  0  0 0.228 0.000 0.772 0.000
#> ERR978209     5  0.3101      0.759  0  0 0.244 0.000 0.756 0.000
#> ERR978210     5  0.3050      0.769  0  0 0.236 0.000 0.764 0.000
#> ERR978211     5  0.2996      0.778  0  0 0.228 0.000 0.772 0.000
#> ERR978212     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978213     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978214     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978215     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978216     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978217     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978218     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978219     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978220     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978221     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978222     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978223     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978224     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978225     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978226     5  0.0713      0.921  0  0 0.000 0.000 0.972 0.028
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978242     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978243     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978244     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978245     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978246     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978247     4  0.0000      0.991  0  0 0.000 1.000 0.000 0.000
#> ERR978248     5  0.0000      0.915  0  0 0.000 0.000 1.000 0.000
#> ERR978249     5  0.0000      0.915  0  0 0.000 0.000 1.000 0.000
#> ERR978250     5  0.0000      0.915  0  0 0.000 0.000 1.000 0.000
#> ERR978251     5  0.0000      0.915  0  0 0.000 0.000 1.000 0.000
#> ERR978252     5  0.0000      0.915  0  0 0.000 0.000 1.000 0.000
#> ERR978253     5  0.0000      0.915  0  0 0.000 0.000 1.000 0.000
#> ERR978254     5  0.0000      0.915  0  0 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 0.768           0.926       0.955         0.7992 0.757   0.640
#> 4 4 1.000           0.998       0.999         0.2324 0.846   0.642
#> 5 5 1.000           0.990       0.990         0.1136 0.917   0.702
#> 6 6 0.961           0.975       0.954         0.0232 0.982   0.907

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2   0.000      1.000  0 1.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000
#> ERR978123     3   0.000      0.917  0 0.000 1.000
#> ERR978124     3   0.000      0.917  0 0.000 1.000
#> ERR978125     3   0.000      0.917  0 0.000 1.000
#> ERR978126     3   0.000      0.917  0 0.000 1.000
#> ERR978127     3   0.000      0.917  0 0.000 1.000
#> ERR978128     3   0.000      0.917  0 0.000 1.000
#> ERR978129     3   0.000      0.917  0 0.000 1.000
#> ERR978130     3   0.000      0.917  0 0.000 1.000
#> ERR978131     3   0.000      0.917  0 0.000 1.000
#> ERR978132     3   0.000      0.917  0 0.000 1.000
#> ERR978133     3   0.000      0.917  0 0.000 1.000
#> ERR978134     3   0.000      0.917  0 0.000 1.000
#> ERR978135     3   0.000      0.917  0 0.000 1.000
#> ERR978136     3   0.000      0.917  0 0.000 1.000
#> ERR978137     3   0.000      0.917  0 0.000 1.000
#> ERR978138     3   0.000      0.917  0 0.000 1.000
#> ERR978139     3   0.000      0.917  0 0.000 1.000
#> ERR978140     3   0.000      0.917  0 0.000 1.000
#> ERR978141     3   0.000      0.917  0 0.000 1.000
#> ERR978142     3   0.000      0.917  0 0.000 1.000
#> ERR978143     3   0.000      0.917  0 0.000 1.000
#> ERR978144     3   0.000      0.917  0 0.000 1.000
#> ERR978145     3   0.000      0.917  0 0.000 1.000
#> ERR978146     3   0.000      0.917  0 0.000 1.000
#> ERR978147     3   0.000      0.917  0 0.000 1.000
#> ERR978148     3   0.000      0.917  0 0.000 1.000
#> ERR978149     3   0.000      0.917  0 0.000 1.000
#> ERR978150     3   0.000      0.917  0 0.000 1.000
#> ERR978151     3   0.000      0.917  0 0.000 1.000
#> ERR978152     3   0.000      0.917  0 0.000 1.000
#> ERR978153     1   0.000      1.000  1 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000
#> ERR978169     3   0.497      0.787  0 0.236 0.764
#> ERR978170     3   0.497      0.787  0 0.236 0.764
#> ERR978171     3   0.497      0.787  0 0.236 0.764
#> ERR978172     3   0.497      0.787  0 0.236 0.764
#> ERR978173     3   0.497      0.787  0 0.236 0.764
#> ERR978174     3   0.497      0.787  0 0.236 0.764
#> ERR978175     3   0.497      0.787  0 0.236 0.764
#> ERR978176     3   0.497      0.787  0 0.236 0.764
#> ERR978177     3   0.497      0.787  0 0.236 0.764
#> ERR978178     3   0.497      0.787  0 0.236 0.764
#> ERR978179     3   0.497      0.787  0 0.236 0.764
#> ERR978180     3   0.497      0.787  0 0.236 0.764
#> ERR978181     3   0.497      0.787  0 0.236 0.764
#> ERR978182     3   0.497      0.787  0 0.236 0.764
#> ERR978183     2   0.000      1.000  0 1.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000
#> ERR978197     3   0.000      0.917  0 0.000 1.000
#> ERR978198     3   0.000      0.917  0 0.000 1.000
#> ERR978199     3   0.000      0.917  0 0.000 1.000
#> ERR978200     3   0.000      0.917  0 0.000 1.000
#> ERR978201     3   0.000      0.917  0 0.000 1.000
#> ERR978202     3   0.000      0.917  0 0.000 1.000
#> ERR978203     3   0.000      0.917  0 0.000 1.000
#> ERR978204     3   0.000      0.917  0 0.000 1.000
#> ERR978205     3   0.000      0.917  0 0.000 1.000
#> ERR978206     3   0.000      0.917  0 0.000 1.000
#> ERR978207     3   0.000      0.917  0 0.000 1.000
#> ERR978208     3   0.000      0.917  0 0.000 1.000
#> ERR978209     3   0.000      0.917  0 0.000 1.000
#> ERR978210     3   0.000      0.917  0 0.000 1.000
#> ERR978211     3   0.000      0.917  0 0.000 1.000
#> ERR978212     3   0.000      0.917  0 0.000 1.000
#> ERR978213     3   0.000      0.917  0 0.000 1.000
#> ERR978214     3   0.000      0.917  0 0.000 1.000
#> ERR978215     3   0.000      0.917  0 0.000 1.000
#> ERR978216     3   0.000      0.917  0 0.000 1.000
#> ERR978217     3   0.000      0.917  0 0.000 1.000
#> ERR978218     3   0.000      0.917  0 0.000 1.000
#> ERR978219     3   0.000      0.917  0 0.000 1.000
#> ERR978220     3   0.000      0.917  0 0.000 1.000
#> ERR978221     3   0.000      0.917  0 0.000 1.000
#> ERR978222     3   0.000      0.917  0 0.000 1.000
#> ERR978223     3   0.000      0.917  0 0.000 1.000
#> ERR978224     3   0.000      0.917  0 0.000 1.000
#> ERR978225     3   0.000      0.917  0 0.000 1.000
#> ERR978226     3   0.000      0.917  0 0.000 1.000
#> ERR978227     1   0.000      1.000  1 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000
#> ERR978241     3   0.497      0.787  0 0.236 0.764
#> ERR978242     3   0.497      0.787  0 0.236 0.764
#> ERR978243     3   0.497      0.787  0 0.236 0.764
#> ERR978244     3   0.497      0.787  0 0.236 0.764
#> ERR978245     3   0.497      0.787  0 0.236 0.764
#> ERR978246     3   0.497      0.787  0 0.236 0.764
#> ERR978247     3   0.497      0.787  0 0.236 0.764
#> ERR978248     3   0.497      0.787  0 0.236 0.764
#> ERR978249     3   0.497      0.787  0 0.236 0.764
#> ERR978250     3   0.497      0.787  0 0.236 0.764
#> ERR978251     3   0.497      0.787  0 0.236 0.764
#> ERR978252     3   0.497      0.787  0 0.236 0.764
#> ERR978253     3   0.497      0.787  0 0.236 0.764
#> ERR978254     3   0.497      0.787  0 0.236 0.764

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1 p2    p3    p4
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978123     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978124     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978125     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978126     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978127     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978128     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978129     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978130     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978131     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978132     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978133     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978134     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978135     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978136     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978137     3  0.0469      0.991  0  0 0.988 0.012
#> ERR978138     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978139     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978140     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978141     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978142     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978143     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978144     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978145     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978146     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978147     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978148     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978149     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978150     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978151     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978152     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978169     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978170     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978171     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978172     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978173     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978174     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978175     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978176     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978177     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978178     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978179     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978180     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978181     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978182     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.000
#> ERR978197     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978198     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978199     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978200     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978201     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978202     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978203     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978204     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978205     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978206     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978207     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978208     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978209     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978210     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978211     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978212     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978213     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978214     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978215     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978216     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978217     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978218     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978219     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978220     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978221     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978222     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978223     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978224     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978225     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978226     3  0.0000      0.997  0  0 1.000 0.000
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.000
#> ERR978241     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978242     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978243     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978244     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978245     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978246     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978247     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978248     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978249     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978250     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978251     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978252     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978253     4  0.0000      1.000  0  0 0.000 1.000
#> ERR978254     4  0.0000      1.000  0  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1 p2    p3 p4    p5
#> ERR978107     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978108     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978109     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978110     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978111     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978112     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978113     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978114     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978115     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978116     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978117     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978118     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978119     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978120     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978121     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978122     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978123     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978124     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978125     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978126     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978127     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978128     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978129     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978130     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978131     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978132     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978133     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978134     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978135     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978136     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978137     3  0.1121      0.975  0  0 0.956  0 0.044
#> ERR978138     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978139     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978140     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978141     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978142     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978143     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978144     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978145     3  0.0510      0.969  0  0 0.984  0 0.016
#> ERR978146     3  0.0000      0.972  0  0 1.000  0 0.000
#> ERR978147     3  0.0000      0.972  0  0 1.000  0 0.000
#> ERR978148     3  0.0000      0.972  0  0 1.000  0 0.000
#> ERR978149     3  0.0000      0.972  0  0 1.000  0 0.000
#> ERR978150     3  0.0000      0.972  0  0 1.000  0 0.000
#> ERR978151     3  0.0000      0.972  0  0 1.000  0 0.000
#> ERR978152     3  0.0000      0.972  0  0 1.000  0 0.000
#> ERR978153     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978154     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978155     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978156     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978157     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978158     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978159     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978160     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978161     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978162     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978163     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978164     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978165     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978166     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978167     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978168     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978169     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978170     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978171     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978172     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978173     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978174     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978175     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978176     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978177     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978178     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978179     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978180     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978181     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978182     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978183     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978184     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978185     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978186     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978187     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978188     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978189     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978190     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978191     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978192     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978193     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978194     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978195     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978196     2  0.0000      1.000  0  1 0.000  0 0.000
#> ERR978197     5  0.0290      0.975  0  0 0.008  0 0.992
#> ERR978198     5  0.0290      0.975  0  0 0.008  0 0.992
#> ERR978199     5  0.0290      0.975  0  0 0.008  0 0.992
#> ERR978200     5  0.0290      0.975  0  0 0.008  0 0.992
#> ERR978201     5  0.0290      0.975  0  0 0.008  0 0.992
#> ERR978202     5  0.0290      0.975  0  0 0.008  0 0.992
#> ERR978203     5  0.0290      0.975  0  0 0.008  0 0.992
#> ERR978204     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978205     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978206     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978207     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978208     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978209     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978210     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978211     5  0.0162      0.976  0  0 0.004  0 0.996
#> ERR978212     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978213     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978214     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978215     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978216     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978217     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978218     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978219     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978220     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978221     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978222     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978223     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978224     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978225     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978226     5  0.1043      0.977  0  0 0.040  0 0.960
#> ERR978227     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978228     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978229     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978230     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978231     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978232     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978233     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978234     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978235     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978236     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978237     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978238     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978239     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978240     1  0.0000      1.000  1  0 0.000  0 0.000
#> ERR978241     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978242     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978243     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978244     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978245     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978246     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978247     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978248     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978249     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978250     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978251     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978252     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978253     4  0.0000      1.000  0  0 0.000  1 0.000
#> ERR978254     4  0.0000      1.000  0  0 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.940  0 1.000 0.000 0.000 0.000 0.000
#> ERR978123     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978124     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978125     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978126     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978127     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978128     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978129     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978130     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978131     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978132     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978133     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978134     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978135     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978136     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978137     3  0.1204      0.970  0 0.000 0.944 0.056 0.000 0.000
#> ERR978138     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978139     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978140     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978141     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978142     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978143     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978144     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978145     3  0.0458      0.965  0 0.000 0.984 0.000 0.016 0.000
#> ERR978146     3  0.0000      0.966  0 0.000 1.000 0.000 0.000 0.000
#> ERR978147     3  0.0000      0.966  0 0.000 1.000 0.000 0.000 0.000
#> ERR978148     3  0.0000      0.966  0 0.000 1.000 0.000 0.000 0.000
#> ERR978149     3  0.0000      0.966  0 0.000 1.000 0.000 0.000 0.000
#> ERR978150     3  0.0000      0.966  0 0.000 1.000 0.000 0.000 0.000
#> ERR978151     3  0.0000      0.966  0 0.000 1.000 0.000 0.000 0.000
#> ERR978152     3  0.0000      0.966  0 0.000 1.000 0.000 0.000 0.000
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978170     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978171     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978172     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978173     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978174     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978175     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978176     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978177     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978178     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978179     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978180     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978181     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978182     4  0.2854      1.000  0 0.000 0.000 0.792 0.000 0.208
#> ERR978183     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978184     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978185     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978186     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978187     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978188     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978189     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978190     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978191     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978192     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978193     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978194     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978195     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978196     2  0.2300      0.931  0 0.856 0.000 0.144 0.000 0.000
#> ERR978197     5  0.1349      0.969  0 0.000 0.004 0.056 0.940 0.000
#> ERR978198     5  0.1349      0.969  0 0.000 0.004 0.056 0.940 0.000
#> ERR978199     5  0.1349      0.969  0 0.000 0.004 0.056 0.940 0.000
#> ERR978200     5  0.1349      0.969  0 0.000 0.004 0.056 0.940 0.000
#> ERR978201     5  0.1349      0.969  0 0.000 0.004 0.056 0.940 0.000
#> ERR978202     5  0.1349      0.969  0 0.000 0.004 0.056 0.940 0.000
#> ERR978203     5  0.1349      0.969  0 0.000 0.004 0.056 0.940 0.000
#> ERR978204     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978205     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978206     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978207     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978208     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978209     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978210     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978211     5  0.1204      0.971  0 0.000 0.000 0.056 0.944 0.000
#> ERR978212     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978213     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978214     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978215     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978216     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978217     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978218     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978219     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978220     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978221     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978222     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978223     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978224     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978225     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978226     5  0.0000      0.971  0 0.000 0.000 0.000 1.000 0.000
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978241     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978242     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978243     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978244     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978245     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978246     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978247     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978248     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978249     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978250     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978251     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978252     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978253     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000
#> ERR978254     6  0.0000      1.000  0 0.000 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000          0.326 0.675   0.675
#> 3 3 0.716           0.824       0.894          0.891 0.686   0.534
#> 4 4 1.000           0.957       0.974          0.171 0.724   0.397
#> 5 5 1.000           0.975       0.988          0.114 0.917   0.702
#> 6 6 0.978           0.905       0.902          0.022 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 4

There is also optional best \(k\) = 2 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2   0.000      0.742  0 1.000 0.000
#> ERR978108     2   0.000      0.742  0 1.000 0.000
#> ERR978109     2   0.000      0.742  0 1.000 0.000
#> ERR978110     2   0.000      0.742  0 1.000 0.000
#> ERR978111     2   0.000      0.742  0 1.000 0.000
#> ERR978112     2   0.000      0.742  0 1.000 0.000
#> ERR978113     2   0.000      0.742  0 1.000 0.000
#> ERR978114     2   0.000      0.742  0 1.000 0.000
#> ERR978115     2   0.000      0.742  0 1.000 0.000
#> ERR978116     2   0.000      0.742  0 1.000 0.000
#> ERR978117     2   0.000      0.742  0 1.000 0.000
#> ERR978118     2   0.000      0.742  0 1.000 0.000
#> ERR978119     2   0.000      0.742  0 1.000 0.000
#> ERR978120     2   0.000      0.742  0 1.000 0.000
#> ERR978121     2   0.000      0.742  0 1.000 0.000
#> ERR978122     2   0.000      0.742  0 1.000 0.000
#> ERR978123     3   0.000      0.962  0 0.000 1.000
#> ERR978124     3   0.000      0.962  0 0.000 1.000
#> ERR978125     3   0.000      0.962  0 0.000 1.000
#> ERR978126     3   0.000      0.962  0 0.000 1.000
#> ERR978127     3   0.000      0.962  0 0.000 1.000
#> ERR978128     3   0.000      0.962  0 0.000 1.000
#> ERR978129     3   0.000      0.962  0 0.000 1.000
#> ERR978130     3   0.000      0.962  0 0.000 1.000
#> ERR978131     3   0.581      0.208  0 0.336 0.664
#> ERR978132     3   0.465      0.618  0 0.208 0.792
#> ERR978133     3   0.319      0.811  0 0.112 0.888
#> ERR978134     3   0.280      0.843  0 0.092 0.908
#> ERR978135     3   0.271      0.849  0 0.088 0.912
#> ERR978136     3   0.450      0.646  0 0.196 0.804
#> ERR978137     3   0.543      0.402  0 0.284 0.716
#> ERR978138     3   0.000      0.962  0 0.000 1.000
#> ERR978139     3   0.000      0.962  0 0.000 1.000
#> ERR978140     3   0.000      0.962  0 0.000 1.000
#> ERR978141     3   0.000      0.962  0 0.000 1.000
#> ERR978142     3   0.000      0.962  0 0.000 1.000
#> ERR978143     3   0.000      0.962  0 0.000 1.000
#> ERR978144     3   0.000      0.962  0 0.000 1.000
#> ERR978145     3   0.000      0.962  0 0.000 1.000
#> ERR978146     3   0.000      0.962  0 0.000 1.000
#> ERR978147     3   0.000      0.962  0 0.000 1.000
#> ERR978148     3   0.000      0.962  0 0.000 1.000
#> ERR978149     3   0.000      0.962  0 0.000 1.000
#> ERR978150     3   0.000      0.962  0 0.000 1.000
#> ERR978151     3   0.000      0.962  0 0.000 1.000
#> ERR978152     3   0.000      0.962  0 0.000 1.000
#> ERR978153     1   0.000      1.000  1 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000
#> ERR978169     3   0.000      0.962  0 0.000 1.000
#> ERR978170     3   0.000      0.962  0 0.000 1.000
#> ERR978171     3   0.000      0.962  0 0.000 1.000
#> ERR978172     3   0.000      0.962  0 0.000 1.000
#> ERR978173     3   0.000      0.962  0 0.000 1.000
#> ERR978174     3   0.000      0.962  0 0.000 1.000
#> ERR978175     3   0.000      0.962  0 0.000 1.000
#> ERR978176     3   0.000      0.962  0 0.000 1.000
#> ERR978177     3   0.000      0.962  0 0.000 1.000
#> ERR978178     3   0.000      0.962  0 0.000 1.000
#> ERR978179     3   0.000      0.962  0 0.000 1.000
#> ERR978180     3   0.000      0.962  0 0.000 1.000
#> ERR978181     3   0.000      0.962  0 0.000 1.000
#> ERR978182     3   0.000      0.962  0 0.000 1.000
#> ERR978183     2   0.000      0.742  0 1.000 0.000
#> ERR978184     2   0.000      0.742  0 1.000 0.000
#> ERR978185     2   0.000      0.742  0 1.000 0.000
#> ERR978186     2   0.000      0.742  0 1.000 0.000
#> ERR978187     2   0.000      0.742  0 1.000 0.000
#> ERR978188     2   0.000      0.742  0 1.000 0.000
#> ERR978189     2   0.000      0.742  0 1.000 0.000
#> ERR978190     2   0.000      0.742  0 1.000 0.000
#> ERR978191     2   0.000      0.742  0 1.000 0.000
#> ERR978192     2   0.000      0.742  0 1.000 0.000
#> ERR978193     2   0.000      0.742  0 1.000 0.000
#> ERR978194     2   0.000      0.742  0 1.000 0.000
#> ERR978195     2   0.000      0.742  0 1.000 0.000
#> ERR978196     2   0.000      0.742  0 1.000 0.000
#> ERR978197     2   0.614      0.629  0 0.596 0.404
#> ERR978198     2   0.621      0.590  0 0.572 0.428
#> ERR978199     2   0.623      0.575  0 0.564 0.436
#> ERR978200     2   0.624      0.567  0 0.560 0.440
#> ERR978201     2   0.621      0.590  0 0.572 0.428
#> ERR978202     2   0.618      0.610  0 0.584 0.416
#> ERR978203     2   0.614      0.629  0 0.596 0.404
#> ERR978204     2   0.610      0.644  0 0.608 0.392
#> ERR978205     2   0.611      0.639  0 0.604 0.396
#> ERR978206     2   0.613      0.634  0 0.600 0.400
#> ERR978207     2   0.613      0.634  0 0.600 0.400
#> ERR978208     2   0.613      0.634  0 0.600 0.400
#> ERR978209     2   0.613      0.634  0 0.600 0.400
#> ERR978210     2   0.613      0.634  0 0.600 0.400
#> ERR978211     2   0.610      0.644  0 0.608 0.392
#> ERR978212     2   0.599      0.663  0 0.632 0.368
#> ERR978213     2   0.604      0.655  0 0.620 0.380
#> ERR978214     2   0.604      0.655  0 0.620 0.380
#> ERR978215     2   0.608      0.648  0 0.612 0.388
#> ERR978216     2   0.603      0.658  0 0.624 0.376
#> ERR978217     2   0.603      0.658  0 0.624 0.376
#> ERR978218     2   0.590      0.670  0 0.648 0.352
#> ERR978219     2   0.599      0.662  0 0.632 0.368
#> ERR978220     2   0.608      0.648  0 0.612 0.388
#> ERR978221     2   0.608      0.648  0 0.612 0.388
#> ERR978222     2   0.610      0.644  0 0.608 0.392
#> ERR978223     2   0.606      0.651  0 0.616 0.384
#> ERR978224     2   0.606      0.651  0 0.616 0.384
#> ERR978225     2   0.601      0.660  0 0.628 0.372
#> ERR978226     2   0.595      0.666  0 0.640 0.360
#> ERR978227     1   0.000      1.000  1 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000
#> ERR978241     3   0.000      0.962  0 0.000 1.000
#> ERR978242     3   0.000      0.962  0 0.000 1.000
#> ERR978243     3   0.000      0.962  0 0.000 1.000
#> ERR978244     3   0.000      0.962  0 0.000 1.000
#> ERR978245     3   0.000      0.962  0 0.000 1.000
#> ERR978246     3   0.000      0.962  0 0.000 1.000
#> ERR978247     3   0.000      0.962  0 0.000 1.000
#> ERR978248     2   0.514      0.683  0 0.748 0.252
#> ERR978249     2   0.601      0.569  0 0.628 0.372
#> ERR978250     2   0.625      0.427  0 0.556 0.444
#> ERR978251     2   0.626      0.416  0 0.552 0.448
#> ERR978252     2   0.621      0.467  0 0.572 0.428
#> ERR978253     2   0.595      0.579  0 0.640 0.360
#> ERR978254     2   0.540      0.673  0 0.720 0.280

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978123     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978124     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978125     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978126     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978127     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978128     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978129     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978130     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978131     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978132     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978133     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978134     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978135     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978136     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978137     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978138     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978139     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978140     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978141     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978142     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978143     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978144     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978145     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978146     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978147     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978148     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978149     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978150     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978151     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978152     3  0.0000      0.976  0 0.000 1.000 0.000
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978170     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978171     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978172     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978173     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978174     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978175     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978176     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978177     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978178     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978179     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978180     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978181     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978182     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978183     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978197     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978198     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978199     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978200     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978201     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978202     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978203     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978204     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978205     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978206     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978207     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978208     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978209     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978210     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978211     3  0.1211      0.977  0 0.000 0.960 0.040
#> ERR978212     3  0.0657      0.970  0 0.012 0.984 0.004
#> ERR978213     3  0.0524      0.972  0 0.008 0.988 0.004
#> ERR978214     3  0.0524      0.972  0 0.004 0.988 0.008
#> ERR978215     3  0.0804      0.968  0 0.008 0.980 0.012
#> ERR978216     3  0.0657      0.970  0 0.012 0.984 0.004
#> ERR978217     3  0.0657      0.970  0 0.012 0.984 0.004
#> ERR978218     3  0.0657      0.970  0 0.012 0.984 0.004
#> ERR978219     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978220     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978221     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978222     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978223     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978224     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978225     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978226     3  0.0188      0.975  0 0.000 0.996 0.004
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978241     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978242     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978243     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978244     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978245     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978246     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978247     4  0.0000      0.907  0 0.000 0.000 1.000
#> ERR978248     4  0.5872      0.465  0 0.384 0.040 0.576
#> ERR978249     4  0.5639      0.581  0 0.324 0.040 0.636
#> ERR978250     4  0.5442      0.634  0 0.288 0.040 0.672
#> ERR978251     4  0.5168      0.682  0 0.248 0.040 0.712
#> ERR978252     4  0.5489      0.623  0 0.296 0.040 0.664
#> ERR978253     4  0.5658      0.574  0 0.328 0.040 0.632
#> ERR978254     4  0.5894      0.447  0 0.392 0.040 0.568

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978123     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978124     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978125     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978126     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978127     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978128     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978129     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978130     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978131     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978132     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978133     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978134     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978135     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978136     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978137     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978138     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978139     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978140     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978141     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978142     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978143     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978144     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978145     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978146     5   0.120      0.955  0 0.000 0.048 0.000 0.952
#> ERR978147     5   0.134      0.948  0 0.000 0.056 0.000 0.944
#> ERR978148     5   0.127      0.952  0 0.000 0.052 0.000 0.948
#> ERR978149     5   0.120      0.955  0 0.000 0.048 0.000 0.952
#> ERR978150     5   0.127      0.952  0 0.000 0.052 0.000 0.948
#> ERR978151     5   0.154      0.937  0 0.000 0.068 0.000 0.932
#> ERR978152     5   0.154      0.937  0 0.000 0.068 0.000 0.932
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978170     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978171     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978172     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978173     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978174     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978175     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978176     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978177     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978178     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978179     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978180     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978181     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978182     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978197     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978198     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978199     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978200     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978201     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978202     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978203     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978204     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978205     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978206     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978207     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978208     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978209     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978210     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978211     3   0.000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978212     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978213     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978214     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978215     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978216     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978217     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978218     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978219     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978220     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978221     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978222     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978223     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978224     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978225     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978226     5   0.000      0.985  0 0.000 0.000 0.000 1.000
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978242     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978243     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978244     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978245     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978246     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978247     4   0.000      0.948  0 0.000 0.000 1.000 0.000
#> ERR978248     4   0.446      0.390  0 0.008 0.000 0.588 0.404
#> ERR978249     4   0.340      0.744  0 0.004 0.000 0.780 0.216
#> ERR978250     4   0.127      0.915  0 0.000 0.000 0.948 0.052
#> ERR978251     4   0.088      0.929  0 0.000 0.000 0.968 0.032
#> ERR978252     4   0.164      0.904  0 0.004 0.000 0.932 0.064
#> ERR978253     4   0.364      0.699  0 0.004 0.000 0.748 0.248
#> ERR978254     4   0.444      0.482  0 0.012 0.000 0.624 0.364

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4    p5 p6
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978123     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978124     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978125     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978126     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978127     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978128     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978129     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978130     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978131     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978132     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978133     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978134     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978135     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978136     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978137     3  0.0000      0.993  0  0 1.000 0.000 0.000 NA
#> ERR978138     5  0.0000      0.744  0  0 0.000 0.000 1.000 NA
#> ERR978139     5  0.0405      0.744  0  0 0.000 0.004 0.988 NA
#> ERR978140     5  0.0260      0.742  0  0 0.000 0.008 0.992 NA
#> ERR978141     5  0.0260      0.742  0  0 0.000 0.008 0.992 NA
#> ERR978142     5  0.0260      0.742  0  0 0.000 0.008 0.992 NA
#> ERR978143     5  0.0260      0.742  0  0 0.000 0.008 0.992 NA
#> ERR978144     5  0.0260      0.745  0  0 0.000 0.000 0.992 NA
#> ERR978145     5  0.0260      0.745  0  0 0.000 0.000 0.992 NA
#> ERR978146     5  0.1262      0.731  0  0 0.008 0.020 0.956 NA
#> ERR978147     5  0.1262      0.731  0  0 0.008 0.020 0.956 NA
#> ERR978148     5  0.1262      0.731  0  0 0.008 0.020 0.956 NA
#> ERR978149     5  0.1262      0.731  0  0 0.008 0.020 0.956 NA
#> ERR978150     5  0.1262      0.731  0  0 0.008 0.020 0.956 NA
#> ERR978151     5  0.1262      0.731  0  0 0.008 0.020 0.956 NA
#> ERR978152     5  0.1262      0.731  0  0 0.008 0.020 0.956 NA
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978169     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978170     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978171     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978172     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978173     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978174     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978175     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978176     4  0.3887      0.859  0  0 0.000 0.632 0.008 NA
#> ERR978177     4  0.3887      0.859  0  0 0.000 0.632 0.008 NA
#> ERR978178     4  0.3887      0.859  0  0 0.000 0.632 0.008 NA
#> ERR978179     4  0.3887      0.859  0  0 0.000 0.632 0.008 NA
#> ERR978180     4  0.3887      0.859  0  0 0.000 0.632 0.008 NA
#> ERR978181     4  0.3887      0.859  0  0 0.000 0.632 0.008 NA
#> ERR978182     4  0.3887      0.859  0  0 0.000 0.632 0.008 NA
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.000 0.000 NA
#> ERR978197     3  0.0260      0.992  0  0 0.992 0.000 0.000 NA
#> ERR978198     3  0.0260      0.992  0  0 0.992 0.000 0.000 NA
#> ERR978199     3  0.0260      0.992  0  0 0.992 0.000 0.000 NA
#> ERR978200     3  0.0260      0.992  0  0 0.992 0.000 0.000 NA
#> ERR978201     3  0.0260      0.992  0  0 0.992 0.000 0.000 NA
#> ERR978202     3  0.0260      0.992  0  0 0.992 0.000 0.000 NA
#> ERR978203     3  0.0260      0.992  0  0 0.992 0.000 0.000 NA
#> ERR978204     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978205     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978206     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978207     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978208     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978209     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978210     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978211     3  0.0725      0.985  0  0 0.976 0.012 0.000 NA
#> ERR978212     5  0.5962      0.694  0  0 0.000 0.228 0.424 NA
#> ERR978213     5  0.5890      0.710  0  0 0.000 0.212 0.448 NA
#> ERR978214     5  0.5771      0.724  0  0 0.000 0.188 0.476 NA
#> ERR978215     5  0.5688      0.730  0  0 0.000 0.176 0.496 NA
#> ERR978216     5  0.5849      0.717  0  0 0.000 0.204 0.460 NA
#> ERR978217     5  0.5890      0.710  0  0 0.000 0.212 0.448 NA
#> ERR978218     5  0.5975      0.691  0  0 0.000 0.232 0.420 NA
#> ERR978219     5  0.5763      0.725  0  0 0.000 0.188 0.480 NA
#> ERR978220     5  0.5688      0.730  0  0 0.000 0.176 0.496 NA
#> ERR978221     5  0.5590      0.733  0  0 0.000 0.160 0.512 NA
#> ERR978222     5  0.5498      0.735  0  0 0.000 0.148 0.528 NA
#> ERR978223     5  0.5487      0.735  0  0 0.000 0.148 0.532 NA
#> ERR978224     5  0.5665      0.731  0  0 0.000 0.172 0.500 NA
#> ERR978225     5  0.5849      0.717  0  0 0.000 0.204 0.460 NA
#> ERR978226     5  0.5811      0.721  0  0 0.000 0.196 0.468 NA
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.000 0.000 NA
#> ERR978241     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978242     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978243     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978244     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978245     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978246     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978247     4  0.3838      0.871  0  0 0.000 0.552 0.000 NA
#> ERR978248     4  0.2070      0.536  0  0 0.000 0.892 0.008 NA
#> ERR978249     4  0.1524      0.584  0  0 0.000 0.932 0.008 NA
#> ERR978250     4  0.0622      0.629  0  0 0.000 0.980 0.008 NA
#> ERR978251     4  0.0405      0.642  0  0 0.000 0.988 0.008 NA
#> ERR978252     4  0.0622      0.629  0  0 0.000 0.980 0.008 NA
#> ERR978253     4  0.1524      0.585  0  0 0.000 0.932 0.008 NA
#> ERR978254     4  0.1970      0.545  0  0 0.000 0.900 0.008 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.198           0.748       0.784         0.3844 0.520   0.520
#> 3 3 0.569           0.775       0.846         0.4856 0.923   0.852
#> 4 4 0.831           0.859       0.910         0.2609 0.835   0.626
#> 5 5 0.899           0.957       0.877         0.0861 0.917   0.702
#> 6 6 0.938           0.958       0.969         0.0451 0.982   0.907

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2   0.000      0.755 0.000 1.000
#> ERR978108     2   0.000      0.755 0.000 1.000
#> ERR978109     2   0.000      0.755 0.000 1.000
#> ERR978110     2   0.000      0.755 0.000 1.000
#> ERR978111     2   0.000      0.755 0.000 1.000
#> ERR978112     2   0.000      0.755 0.000 1.000
#> ERR978113     2   0.000      0.755 0.000 1.000
#> ERR978114     2   0.000      0.755 0.000 1.000
#> ERR978115     2   0.000      0.755 0.000 1.000
#> ERR978116     2   0.000      0.755 0.000 1.000
#> ERR978117     2   0.000      0.755 0.000 1.000
#> ERR978118     2   0.000      0.755 0.000 1.000
#> ERR978119     2   0.000      0.755 0.000 1.000
#> ERR978120     2   0.000      0.755 0.000 1.000
#> ERR978121     2   0.000      0.755 0.000 1.000
#> ERR978122     2   0.000      0.755 0.000 1.000
#> ERR978123     2   0.839      0.745 0.268 0.732
#> ERR978124     2   0.839      0.745 0.268 0.732
#> ERR978125     2   0.839      0.745 0.268 0.732
#> ERR978126     2   0.839      0.745 0.268 0.732
#> ERR978127     2   0.839      0.745 0.268 0.732
#> ERR978128     2   0.839      0.745 0.268 0.732
#> ERR978129     2   0.839      0.745 0.268 0.732
#> ERR978130     2   0.839      0.745 0.268 0.732
#> ERR978131     2   0.839      0.745 0.268 0.732
#> ERR978132     2   0.839      0.745 0.268 0.732
#> ERR978133     2   0.839      0.745 0.268 0.732
#> ERR978134     2   0.839      0.745 0.268 0.732
#> ERR978135     2   0.839      0.745 0.268 0.732
#> ERR978136     2   0.839      0.745 0.268 0.732
#> ERR978137     2   0.839      0.745 0.268 0.732
#> ERR978138     2   0.644      0.824 0.164 0.836
#> ERR978139     2   0.644      0.824 0.164 0.836
#> ERR978140     2   0.644      0.824 0.164 0.836
#> ERR978141     2   0.644      0.824 0.164 0.836
#> ERR978142     2   0.644      0.824 0.164 0.836
#> ERR978143     2   0.644      0.824 0.164 0.836
#> ERR978144     2   0.644      0.824 0.164 0.836
#> ERR978145     2   0.644      0.824 0.164 0.836
#> ERR978146     2   0.644      0.824 0.164 0.836
#> ERR978147     2   0.644      0.824 0.164 0.836
#> ERR978148     2   0.644      0.824 0.164 0.836
#> ERR978149     2   0.644      0.824 0.164 0.836
#> ERR978150     2   0.644      0.824 0.164 0.836
#> ERR978151     2   0.644      0.824 0.164 0.836
#> ERR978152     2   0.644      0.824 0.164 0.836
#> ERR978153     1   0.722      0.755 0.800 0.200
#> ERR978154     1   0.722      0.755 0.800 0.200
#> ERR978155     1   0.722      0.755 0.800 0.200
#> ERR978156     1   0.722      0.755 0.800 0.200
#> ERR978157     1   0.722      0.755 0.800 0.200
#> ERR978158     1   0.722      0.755 0.800 0.200
#> ERR978159     1   0.722      0.755 0.800 0.200
#> ERR978160     1   0.722      0.755 0.800 0.200
#> ERR978161     1   0.722      0.755 0.800 0.200
#> ERR978162     1   0.722      0.755 0.800 0.200
#> ERR978163     1   0.722      0.755 0.800 0.200
#> ERR978164     1   0.722      0.755 0.800 0.200
#> ERR978165     1   0.722      0.755 0.800 0.200
#> ERR978166     1   0.722      0.755 0.800 0.200
#> ERR978167     1   0.722      0.755 0.800 0.200
#> ERR978168     1   0.722      0.755 0.800 0.200
#> ERR978169     1   0.722      0.703 0.800 0.200
#> ERR978170     1   0.722      0.703 0.800 0.200
#> ERR978171     1   0.722      0.703 0.800 0.200
#> ERR978172     1   0.722      0.703 0.800 0.200
#> ERR978173     1   0.722      0.703 0.800 0.200
#> ERR978174     1   0.722      0.703 0.800 0.200
#> ERR978175     1   0.722      0.703 0.800 0.200
#> ERR978176     1   0.866      0.612 0.712 0.288
#> ERR978177     1   0.866      0.612 0.712 0.288
#> ERR978178     1   0.866      0.612 0.712 0.288
#> ERR978179     1   0.866      0.612 0.712 0.288
#> ERR978180     1   0.866      0.612 0.712 0.288
#> ERR978181     1   0.866      0.612 0.712 0.288
#> ERR978182     1   0.866      0.612 0.712 0.288
#> ERR978183     2   0.000      0.755 0.000 1.000
#> ERR978184     2   0.000      0.755 0.000 1.000
#> ERR978185     2   0.000      0.755 0.000 1.000
#> ERR978186     2   0.000      0.755 0.000 1.000
#> ERR978187     2   0.000      0.755 0.000 1.000
#> ERR978188     2   0.000      0.755 0.000 1.000
#> ERR978189     2   0.000      0.755 0.000 1.000
#> ERR978190     2   0.000      0.755 0.000 1.000
#> ERR978191     2   0.000      0.755 0.000 1.000
#> ERR978192     2   0.000      0.755 0.000 1.000
#> ERR978193     2   0.000      0.755 0.000 1.000
#> ERR978194     2   0.000      0.755 0.000 1.000
#> ERR978195     2   0.000      0.755 0.000 1.000
#> ERR978196     2   0.000      0.755 0.000 1.000
#> ERR978197     2   0.839      0.745 0.268 0.732
#> ERR978198     2   0.839      0.745 0.268 0.732
#> ERR978199     2   0.839      0.745 0.268 0.732
#> ERR978200     2   0.839      0.745 0.268 0.732
#> ERR978201     2   0.839      0.745 0.268 0.732
#> ERR978202     2   0.839      0.745 0.268 0.732
#> ERR978203     2   0.839      0.745 0.268 0.732
#> ERR978204     2   0.839      0.745 0.268 0.732
#> ERR978205     2   0.839      0.745 0.268 0.732
#> ERR978206     2   0.839      0.745 0.268 0.732
#> ERR978207     2   0.839      0.745 0.268 0.732
#> ERR978208     2   0.839      0.745 0.268 0.732
#> ERR978209     2   0.839      0.745 0.268 0.732
#> ERR978210     2   0.839      0.745 0.268 0.732
#> ERR978211     2   0.839      0.745 0.268 0.732
#> ERR978212     2   0.644      0.824 0.164 0.836
#> ERR978213     2   0.644      0.824 0.164 0.836
#> ERR978214     2   0.644      0.824 0.164 0.836
#> ERR978215     2   0.644      0.824 0.164 0.836
#> ERR978216     2   0.644      0.824 0.164 0.836
#> ERR978217     2   0.644      0.824 0.164 0.836
#> ERR978218     2   0.644      0.824 0.164 0.836
#> ERR978219     2   0.644      0.824 0.164 0.836
#> ERR978220     2   0.644      0.824 0.164 0.836
#> ERR978221     2   0.644      0.824 0.164 0.836
#> ERR978222     2   0.644      0.824 0.164 0.836
#> ERR978223     2   0.644      0.824 0.164 0.836
#> ERR978224     2   0.644      0.824 0.164 0.836
#> ERR978225     2   0.644      0.824 0.164 0.836
#> ERR978226     2   0.644      0.824 0.164 0.836
#> ERR978227     1   0.722      0.755 0.800 0.200
#> ERR978228     1   0.722      0.755 0.800 0.200
#> ERR978229     1   0.722      0.755 0.800 0.200
#> ERR978230     1   0.722      0.755 0.800 0.200
#> ERR978231     1   0.722      0.755 0.800 0.200
#> ERR978232     1   0.722      0.755 0.800 0.200
#> ERR978233     1   0.722      0.755 0.800 0.200
#> ERR978234     1   0.722      0.755 0.800 0.200
#> ERR978235     1   0.722      0.755 0.800 0.200
#> ERR978236     1   0.722      0.755 0.800 0.200
#> ERR978237     1   0.722      0.755 0.800 0.200
#> ERR978238     1   0.722      0.755 0.800 0.200
#> ERR978239     1   0.722      0.755 0.800 0.200
#> ERR978240     1   0.722      0.755 0.800 0.200
#> ERR978241     1   0.722      0.703 0.800 0.200
#> ERR978242     1   0.722      0.703 0.800 0.200
#> ERR978243     1   0.722      0.703 0.800 0.200
#> ERR978244     1   0.722      0.703 0.800 0.200
#> ERR978245     1   0.722      0.703 0.800 0.200
#> ERR978246     1   0.722      0.703 0.800 0.200
#> ERR978247     1   0.722      0.703 0.800 0.200
#> ERR978248     1   0.891      0.600 0.692 0.308
#> ERR978249     1   0.891      0.600 0.692 0.308
#> ERR978250     1   0.891      0.600 0.692 0.308
#> ERR978251     1   0.891      0.600 0.692 0.308
#> ERR978252     1   0.891      0.600 0.692 0.308
#> ERR978253     1   0.891      0.600 0.692 0.308
#> ERR978254     1   0.891      0.600 0.692 0.308

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.510      0.681 0.000 0.752 0.248
#> ERR978108     2   0.510      0.681 0.000 0.752 0.248
#> ERR978109     2   0.510      0.681 0.000 0.752 0.248
#> ERR978110     2   0.510      0.681 0.000 0.752 0.248
#> ERR978111     2   0.510      0.681 0.000 0.752 0.248
#> ERR978112     2   0.510      0.681 0.000 0.752 0.248
#> ERR978113     2   0.510      0.681 0.000 0.752 0.248
#> ERR978114     2   0.510      0.681 0.000 0.752 0.248
#> ERR978115     2   0.510      0.681 0.000 0.752 0.248
#> ERR978116     2   0.510      0.681 0.000 0.752 0.248
#> ERR978117     2   0.510      0.681 0.000 0.752 0.248
#> ERR978118     2   0.510      0.681 0.000 0.752 0.248
#> ERR978119     2   0.510      0.681 0.000 0.752 0.248
#> ERR978120     2   0.510      0.681 0.000 0.752 0.248
#> ERR978121     2   0.510      0.681 0.000 0.752 0.248
#> ERR978122     2   0.510      0.681 0.000 0.752 0.248
#> ERR978123     2   0.484      0.553 0.000 0.776 0.224
#> ERR978124     2   0.484      0.553 0.000 0.776 0.224
#> ERR978125     2   0.484      0.553 0.000 0.776 0.224
#> ERR978126     2   0.484      0.553 0.000 0.776 0.224
#> ERR978127     2   0.484      0.553 0.000 0.776 0.224
#> ERR978128     2   0.484      0.553 0.000 0.776 0.224
#> ERR978129     2   0.484      0.553 0.000 0.776 0.224
#> ERR978130     2   0.484      0.553 0.000 0.776 0.224
#> ERR978131     2   0.484      0.553 0.000 0.776 0.224
#> ERR978132     2   0.484      0.553 0.000 0.776 0.224
#> ERR978133     2   0.484      0.553 0.000 0.776 0.224
#> ERR978134     2   0.484      0.553 0.000 0.776 0.224
#> ERR978135     2   0.484      0.553 0.000 0.776 0.224
#> ERR978136     2   0.484      0.553 0.000 0.776 0.224
#> ERR978137     2   0.484      0.553 0.000 0.776 0.224
#> ERR978138     2   0.000      0.741 0.000 1.000 0.000
#> ERR978139     2   0.000      0.741 0.000 1.000 0.000
#> ERR978140     2   0.000      0.741 0.000 1.000 0.000
#> ERR978141     2   0.000      0.741 0.000 1.000 0.000
#> ERR978142     2   0.000      0.741 0.000 1.000 0.000
#> ERR978143     2   0.000      0.741 0.000 1.000 0.000
#> ERR978144     2   0.000      0.741 0.000 1.000 0.000
#> ERR978145     2   0.000      0.741 0.000 1.000 0.000
#> ERR978146     2   0.000      0.741 0.000 1.000 0.000
#> ERR978147     2   0.000      0.741 0.000 1.000 0.000
#> ERR978148     2   0.000      0.741 0.000 1.000 0.000
#> ERR978149     2   0.000      0.741 0.000 1.000 0.000
#> ERR978150     2   0.000      0.741 0.000 1.000 0.000
#> ERR978151     2   0.000      0.741 0.000 1.000 0.000
#> ERR978152     2   0.000      0.741 0.000 1.000 0.000
#> ERR978153     1   0.000      1.000 1.000 0.000 0.000
#> ERR978154     1   0.000      1.000 1.000 0.000 0.000
#> ERR978155     1   0.000      1.000 1.000 0.000 0.000
#> ERR978156     1   0.000      1.000 1.000 0.000 0.000
#> ERR978157     1   0.000      1.000 1.000 0.000 0.000
#> ERR978158     1   0.000      1.000 1.000 0.000 0.000
#> ERR978159     1   0.000      1.000 1.000 0.000 0.000
#> ERR978160     1   0.000      1.000 1.000 0.000 0.000
#> ERR978161     1   0.000      1.000 1.000 0.000 0.000
#> ERR978162     1   0.000      1.000 1.000 0.000 0.000
#> ERR978163     1   0.000      1.000 1.000 0.000 0.000
#> ERR978164     1   0.000      1.000 1.000 0.000 0.000
#> ERR978165     1   0.000      1.000 1.000 0.000 0.000
#> ERR978166     1   0.000      1.000 1.000 0.000 0.000
#> ERR978167     1   0.000      1.000 1.000 0.000 0.000
#> ERR978168     1   0.000      1.000 1.000 0.000 0.000
#> ERR978169     3   0.528      0.919 0.004 0.244 0.752
#> ERR978170     3   0.528      0.919 0.004 0.244 0.752
#> ERR978171     3   0.528      0.919 0.004 0.244 0.752
#> ERR978172     3   0.528      0.919 0.004 0.244 0.752
#> ERR978173     3   0.528      0.919 0.004 0.244 0.752
#> ERR978174     3   0.528      0.919 0.004 0.244 0.752
#> ERR978175     3   0.528      0.919 0.004 0.244 0.752
#> ERR978176     3   0.603      0.910 0.004 0.336 0.660
#> ERR978177     3   0.603      0.910 0.004 0.336 0.660
#> ERR978178     3   0.603      0.910 0.004 0.336 0.660
#> ERR978179     3   0.603      0.910 0.004 0.336 0.660
#> ERR978180     3   0.603      0.910 0.004 0.336 0.660
#> ERR978181     3   0.603      0.910 0.004 0.336 0.660
#> ERR978182     3   0.603      0.910 0.004 0.336 0.660
#> ERR978183     2   0.510      0.681 0.000 0.752 0.248
#> ERR978184     2   0.510      0.681 0.000 0.752 0.248
#> ERR978185     2   0.510      0.681 0.000 0.752 0.248
#> ERR978186     2   0.510      0.681 0.000 0.752 0.248
#> ERR978187     2   0.510      0.681 0.000 0.752 0.248
#> ERR978188     2   0.510      0.681 0.000 0.752 0.248
#> ERR978189     2   0.510      0.681 0.000 0.752 0.248
#> ERR978190     2   0.510      0.681 0.000 0.752 0.248
#> ERR978191     2   0.510      0.681 0.000 0.752 0.248
#> ERR978192     2   0.510      0.681 0.000 0.752 0.248
#> ERR978193     2   0.510      0.681 0.000 0.752 0.248
#> ERR978194     2   0.510      0.681 0.000 0.752 0.248
#> ERR978195     2   0.510      0.681 0.000 0.752 0.248
#> ERR978196     2   0.510      0.681 0.000 0.752 0.248
#> ERR978197     2   0.484      0.553 0.000 0.776 0.224
#> ERR978198     2   0.484      0.553 0.000 0.776 0.224
#> ERR978199     2   0.484      0.553 0.000 0.776 0.224
#> ERR978200     2   0.484      0.553 0.000 0.776 0.224
#> ERR978201     2   0.484      0.553 0.000 0.776 0.224
#> ERR978202     2   0.484      0.553 0.000 0.776 0.224
#> ERR978203     2   0.484      0.553 0.000 0.776 0.224
#> ERR978204     2   0.484      0.553 0.000 0.776 0.224
#> ERR978205     2   0.484      0.553 0.000 0.776 0.224
#> ERR978206     2   0.484      0.553 0.000 0.776 0.224
#> ERR978207     2   0.484      0.553 0.000 0.776 0.224
#> ERR978208     2   0.484      0.553 0.000 0.776 0.224
#> ERR978209     2   0.484      0.553 0.000 0.776 0.224
#> ERR978210     2   0.484      0.553 0.000 0.776 0.224
#> ERR978211     2   0.484      0.553 0.000 0.776 0.224
#> ERR978212     2   0.000      0.741 0.000 1.000 0.000
#> ERR978213     2   0.000      0.741 0.000 1.000 0.000
#> ERR978214     2   0.000      0.741 0.000 1.000 0.000
#> ERR978215     2   0.000      0.741 0.000 1.000 0.000
#> ERR978216     2   0.000      0.741 0.000 1.000 0.000
#> ERR978217     2   0.000      0.741 0.000 1.000 0.000
#> ERR978218     2   0.000      0.741 0.000 1.000 0.000
#> ERR978219     2   0.000      0.741 0.000 1.000 0.000
#> ERR978220     2   0.000      0.741 0.000 1.000 0.000
#> ERR978221     2   0.000      0.741 0.000 1.000 0.000
#> ERR978222     2   0.000      0.741 0.000 1.000 0.000
#> ERR978223     2   0.000      0.741 0.000 1.000 0.000
#> ERR978224     2   0.000      0.741 0.000 1.000 0.000
#> ERR978225     2   0.000      0.741 0.000 1.000 0.000
#> ERR978226     2   0.000      0.741 0.000 1.000 0.000
#> ERR978227     1   0.000      1.000 1.000 0.000 0.000
#> ERR978228     1   0.000      1.000 1.000 0.000 0.000
#> ERR978229     1   0.000      1.000 1.000 0.000 0.000
#> ERR978230     1   0.000      1.000 1.000 0.000 0.000
#> ERR978231     1   0.000      1.000 1.000 0.000 0.000
#> ERR978232     1   0.000      1.000 1.000 0.000 0.000
#> ERR978233     1   0.000      1.000 1.000 0.000 0.000
#> ERR978234     1   0.000      1.000 1.000 0.000 0.000
#> ERR978235     1   0.000      1.000 1.000 0.000 0.000
#> ERR978236     1   0.000      1.000 1.000 0.000 0.000
#> ERR978237     1   0.000      1.000 1.000 0.000 0.000
#> ERR978238     1   0.000      1.000 1.000 0.000 0.000
#> ERR978239     1   0.000      1.000 1.000 0.000 0.000
#> ERR978240     1   0.000      1.000 1.000 0.000 0.000
#> ERR978241     3   0.528      0.919 0.004 0.244 0.752
#> ERR978242     3   0.528      0.919 0.004 0.244 0.752
#> ERR978243     3   0.528      0.919 0.004 0.244 0.752
#> ERR978244     3   0.528      0.919 0.004 0.244 0.752
#> ERR978245     3   0.528      0.919 0.004 0.244 0.752
#> ERR978246     3   0.528      0.919 0.004 0.244 0.752
#> ERR978247     3   0.528      0.919 0.004 0.244 0.752
#> ERR978248     3   0.615      0.890 0.004 0.356 0.640
#> ERR978249     3   0.615      0.890 0.004 0.356 0.640
#> ERR978250     3   0.615      0.890 0.004 0.356 0.640
#> ERR978251     3   0.615      0.890 0.004 0.356 0.640
#> ERR978252     3   0.615      0.890 0.004 0.356 0.640
#> ERR978253     3   0.615      0.890 0.004 0.356 0.640
#> ERR978254     3   0.615      0.890 0.004 0.356 0.640

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1   p2    p3    p4
#> ERR978107     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978108     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978109     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978110     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978111     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978112     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978113     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978114     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978115     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978116     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978117     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978118     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978119     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978120     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978121     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978122     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978123     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978124     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978125     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978126     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978127     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978128     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978129     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978130     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978131     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978132     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978133     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978134     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978135     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978136     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978137     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978138     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978139     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978140     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978141     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978142     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978143     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978144     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978145     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978146     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978147     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978148     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978149     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978150     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978151     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978152     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978153     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978154     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978155     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978156     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978157     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978158     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978159     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978160     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978161     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978162     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978163     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978164     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978165     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978166     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978167     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978168     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978169     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978170     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978171     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978172     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978173     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978174     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978175     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978176     4   0.499      0.922 0.000 0.00 0.472 0.528
#> ERR978177     4   0.499      0.922 0.000 0.00 0.472 0.528
#> ERR978178     4   0.499      0.922 0.000 0.00 0.472 0.528
#> ERR978179     4   0.499      0.922 0.000 0.00 0.472 0.528
#> ERR978180     4   0.499      0.922 0.000 0.00 0.472 0.528
#> ERR978181     4   0.499      0.922 0.000 0.00 0.472 0.528
#> ERR978182     4   0.499      0.922 0.000 0.00 0.472 0.528
#> ERR978183     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978184     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978185     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978186     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978187     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978188     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978189     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978190     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978191     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978192     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978193     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978194     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978195     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978196     2   0.000      1.000 0.000 1.00 0.000 0.000
#> ERR978197     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978198     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978199     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978200     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978201     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978202     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978203     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978204     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978205     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978206     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978207     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978208     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978209     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978210     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978211     3   0.000      0.635 0.000 0.00 1.000 0.000
#> ERR978212     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978213     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978214     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978215     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978216     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978217     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978218     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978219     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978220     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978221     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978222     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978223     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978224     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978225     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978226     3   0.513      0.737 0.388 0.00 0.604 0.008
#> ERR978227     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978228     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978229     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978230     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978231     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978232     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978233     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978234     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978235     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978236     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978237     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978238     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978239     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978240     1   0.482      1.000 0.612 0.00 0.000 0.388
#> ERR978241     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978242     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978243     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978244     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978245     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978246     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978247     4   0.484      0.932 0.000 0.00 0.396 0.604
#> ERR978248     4   0.560      0.917 0.000 0.02 0.472 0.508
#> ERR978249     4   0.560      0.917 0.000 0.02 0.472 0.508
#> ERR978250     4   0.560      0.917 0.000 0.02 0.472 0.508
#> ERR978251     4   0.560      0.917 0.000 0.02 0.472 0.508
#> ERR978252     4   0.560      0.917 0.000 0.02 0.472 0.508
#> ERR978253     4   0.560      0.917 0.000 0.02 0.472 0.508
#> ERR978254     4   0.560      0.917 0.000 0.02 0.472 0.508

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1   p2    p3    p4    p5
#> ERR978107     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978123     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978124     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978125     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978126     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978127     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978128     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978129     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978130     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978131     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978132     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978133     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978134     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978135     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978136     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978137     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978138     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978139     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978140     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978141     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978142     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978143     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978144     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978145     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978146     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978147     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978148     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978149     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978150     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978151     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978152     5   0.154      0.942  0 0.00 0.068 0.000 0.932
#> ERR978153     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978169     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978170     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978171     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978172     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978173     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978174     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978175     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978176     4   0.439      0.830  0 0.00 0.380 0.612 0.008
#> ERR978177     4   0.439      0.830  0 0.00 0.380 0.612 0.008
#> ERR978178     4   0.439      0.830  0 0.00 0.380 0.612 0.008
#> ERR978179     4   0.439      0.830  0 0.00 0.380 0.612 0.008
#> ERR978180     4   0.439      0.830  0 0.00 0.380 0.612 0.008
#> ERR978181     4   0.439      0.830  0 0.00 0.380 0.612 0.008
#> ERR978182     4   0.439      0.830  0 0.00 0.380 0.612 0.008
#> ERR978183     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.00 0.000 0.000 0.000
#> ERR978197     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978198     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978199     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978200     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978201     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978202     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978203     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978204     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978205     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978206     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978207     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978208     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978209     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978210     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978211     3   0.377      1.000  0 0.00 0.704 0.000 0.296
#> ERR978212     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978213     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978214     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978215     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978216     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978217     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978218     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978219     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978220     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978221     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978222     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978223     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978224     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978225     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978226     5   0.000      0.945  0 0.00 0.000 0.000 1.000
#> ERR978227     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.00 0.000 0.000 0.000
#> ERR978241     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978242     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978243     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978244     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978245     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978246     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978247     4   0.000      0.841  0 0.00 0.000 1.000 0.000
#> ERR978248     4   0.494      0.825  0 0.02 0.380 0.592 0.008
#> ERR978249     4   0.494      0.825  0 0.02 0.380 0.592 0.008
#> ERR978250     4   0.494      0.825  0 0.02 0.380 0.592 0.008
#> ERR978251     4   0.494      0.825  0 0.02 0.380 0.592 0.008
#> ERR978252     4   0.494      0.825  0 0.02 0.380 0.592 0.008
#> ERR978253     4   0.494      0.825  0 0.02 0.380 0.592 0.008
#> ERR978254     4   0.494      0.825  0 0.02 0.380 0.592 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3   p4    p5   p6
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978123     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978124     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978125     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978126     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978127     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978128     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978129     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978130     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978131     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978132     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978133     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978134     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978135     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978136     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978137     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978138     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978139     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978140     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978141     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978142     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978143     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978144     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978145     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978146     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978147     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978148     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978149     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978150     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978151     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978152     5  0.3371      0.787  0  0 0.292 0.00 0.708 0.00
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978169     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978170     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978171     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978172     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978173     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978174     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978175     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978176     6  0.0547      0.989  0  0 0.000 0.02 0.000 0.98
#> ERR978177     6  0.0547      0.989  0  0 0.000 0.02 0.000 0.98
#> ERR978178     6  0.0547      0.989  0  0 0.000 0.02 0.000 0.98
#> ERR978179     6  0.0547      0.989  0  0 0.000 0.02 0.000 0.98
#> ERR978180     6  0.0547      0.989  0  0 0.000 0.02 0.000 0.98
#> ERR978181     6  0.0547      0.989  0  0 0.000 0.02 0.000 0.98
#> ERR978182     6  0.0547      0.989  0  0 0.000 0.02 0.000 0.98
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.00 0.000 0.00
#> ERR978197     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978198     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978199     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978200     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978201     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978202     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978203     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978204     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978205     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978206     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978207     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978208     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978209     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978210     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978211     3  0.0000      1.000  0  0 1.000 0.00 0.000 0.00
#> ERR978212     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978213     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978214     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978215     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978216     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978217     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978218     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978219     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978220     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978221     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978222     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978223     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978224     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978225     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978226     5  0.0000      0.806  0  0 0.000 0.00 1.000 0.00
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.00 0.000 0.00
#> ERR978241     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978242     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978243     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978244     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978245     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978246     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978247     4  0.0000      1.000  0  0 0.000 1.00 0.000 0.00
#> ERR978248     6  0.0000      0.989  0  0 0.000 0.00 0.000 1.00
#> ERR978249     6  0.0000      0.989  0  0 0.000 0.00 0.000 1.00
#> ERR978250     6  0.0000      0.989  0  0 0.000 0.00 0.000 1.00
#> ERR978251     6  0.0000      0.989  0  0 0.000 0.00 0.000 1.00
#> ERR978252     6  0.0000      0.989  0  0 0.000 0.00 0.000 1.00
#> ERR978253     6  0.0000      0.989  0  0 0.000 0.00 0.000 1.00
#> ERR978254     6  0.0000      0.989  0  0 0.000 0.00 0.000 1.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.153           0.710       0.757         0.3813 0.675   0.675
#> 3 3 0.243           0.675       0.756         0.5098 0.724   0.592
#> 4 4 0.535           0.716       0.691         0.2111 0.807   0.554
#> 5 5 0.659           0.786       0.720         0.0718 0.929   0.737
#> 6 6 0.702           0.746       0.745         0.0623 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2   0.998      0.589 0.476 0.524
#> ERR978108     2   0.998      0.589 0.476 0.524
#> ERR978109     2   0.998      0.589 0.476 0.524
#> ERR978110     2   0.998      0.589 0.476 0.524
#> ERR978111     2   0.998      0.589 0.476 0.524
#> ERR978112     2   0.998      0.589 0.476 0.524
#> ERR978113     2   0.998      0.589 0.476 0.524
#> ERR978114     2   0.998      0.589 0.476 0.524
#> ERR978115     2   0.998      0.589 0.476 0.524
#> ERR978116     2   0.998      0.589 0.476 0.524
#> ERR978117     2   0.998      0.589 0.476 0.524
#> ERR978118     2   0.998      0.589 0.476 0.524
#> ERR978119     2   0.998      0.589 0.476 0.524
#> ERR978120     2   0.998      0.589 0.476 0.524
#> ERR978121     2   0.998      0.589 0.476 0.524
#> ERR978122     2   0.998      0.589 0.476 0.524
#> ERR978123     2   0.430      0.659 0.088 0.912
#> ERR978124     2   0.430      0.659 0.088 0.912
#> ERR978125     2   0.430      0.659 0.088 0.912
#> ERR978126     2   0.430      0.659 0.088 0.912
#> ERR978127     2   0.430      0.659 0.088 0.912
#> ERR978128     2   0.430      0.659 0.088 0.912
#> ERR978129     2   0.430      0.659 0.088 0.912
#> ERR978130     2   0.430      0.659 0.088 0.912
#> ERR978131     2   0.430      0.659 0.088 0.912
#> ERR978132     2   0.430      0.659 0.088 0.912
#> ERR978133     2   0.430      0.659 0.088 0.912
#> ERR978134     2   0.430      0.659 0.088 0.912
#> ERR978135     2   0.430      0.659 0.088 0.912
#> ERR978136     2   0.430      0.659 0.088 0.912
#> ERR978137     2   0.430      0.659 0.088 0.912
#> ERR978138     2   0.242      0.671 0.040 0.960
#> ERR978139     2   0.242      0.671 0.040 0.960
#> ERR978140     2   0.242      0.671 0.040 0.960
#> ERR978141     2   0.242      0.671 0.040 0.960
#> ERR978142     2   0.242      0.671 0.040 0.960
#> ERR978143     2   0.242      0.671 0.040 0.960
#> ERR978144     2   0.242      0.671 0.040 0.960
#> ERR978145     2   0.242      0.671 0.040 0.960
#> ERR978146     2   0.204      0.666 0.032 0.968
#> ERR978147     2   0.204      0.666 0.032 0.968
#> ERR978148     2   0.204      0.666 0.032 0.968
#> ERR978149     2   0.204      0.666 0.032 0.968
#> ERR978150     2   0.204      0.666 0.032 0.968
#> ERR978151     2   0.204      0.666 0.032 0.968
#> ERR978152     2   0.204      0.666 0.032 0.968
#> ERR978153     1   0.991      1.000 0.556 0.444
#> ERR978154     1   0.991      1.000 0.556 0.444
#> ERR978155     1   0.991      1.000 0.556 0.444
#> ERR978156     1   0.991      1.000 0.556 0.444
#> ERR978157     1   0.991      1.000 0.556 0.444
#> ERR978158     1   0.991      1.000 0.556 0.444
#> ERR978159     1   0.991      1.000 0.556 0.444
#> ERR978160     1   0.991      1.000 0.556 0.444
#> ERR978161     1   0.991      1.000 0.556 0.444
#> ERR978162     1   0.991      1.000 0.556 0.444
#> ERR978163     1   0.991      1.000 0.556 0.444
#> ERR978164     1   0.991      1.000 0.556 0.444
#> ERR978165     1   0.991      1.000 0.556 0.444
#> ERR978166     1   0.991      1.000 0.556 0.444
#> ERR978167     1   0.991      1.000 0.556 0.444
#> ERR978168     1   0.991      1.000 0.556 0.444
#> ERR978169     2   0.584      0.572 0.140 0.860
#> ERR978170     2   0.584      0.572 0.140 0.860
#> ERR978171     2   0.584      0.572 0.140 0.860
#> ERR978172     2   0.584      0.572 0.140 0.860
#> ERR978173     2   0.584      0.572 0.140 0.860
#> ERR978174     2   0.584      0.572 0.140 0.860
#> ERR978175     2   0.584      0.572 0.140 0.860
#> ERR978176     2   0.615      0.569 0.152 0.848
#> ERR978177     2   0.615      0.569 0.152 0.848
#> ERR978178     2   0.615      0.569 0.152 0.848
#> ERR978179     2   0.615      0.569 0.152 0.848
#> ERR978180     2   0.615      0.569 0.152 0.848
#> ERR978181     2   0.615      0.569 0.152 0.848
#> ERR978182     2   0.615      0.569 0.152 0.848
#> ERR978183     2   0.998      0.589 0.472 0.528
#> ERR978184     2   0.998      0.589 0.472 0.528
#> ERR978185     2   0.998      0.589 0.472 0.528
#> ERR978186     2   0.998      0.589 0.472 0.528
#> ERR978187     2   0.998      0.589 0.472 0.528
#> ERR978188     2   0.998      0.589 0.472 0.528
#> ERR978189     2   0.998      0.589 0.472 0.528
#> ERR978190     2   0.998      0.589 0.472 0.528
#> ERR978191     2   0.998      0.589 0.472 0.528
#> ERR978192     2   0.998      0.589 0.472 0.528
#> ERR978193     2   0.998      0.589 0.472 0.528
#> ERR978194     2   0.998      0.589 0.472 0.528
#> ERR978195     2   0.998      0.589 0.472 0.528
#> ERR978196     2   0.998      0.589 0.472 0.528
#> ERR978197     2   0.494      0.700 0.108 0.892
#> ERR978198     2   0.494      0.700 0.108 0.892
#> ERR978199     2   0.494      0.700 0.108 0.892
#> ERR978200     2   0.494      0.700 0.108 0.892
#> ERR978201     2   0.494      0.700 0.108 0.892
#> ERR978202     2   0.494      0.700 0.108 0.892
#> ERR978203     2   0.494      0.700 0.108 0.892
#> ERR978204     2   0.518      0.702 0.116 0.884
#> ERR978205     2   0.518      0.702 0.116 0.884
#> ERR978206     2   0.518      0.702 0.116 0.884
#> ERR978207     2   0.518      0.702 0.116 0.884
#> ERR978208     2   0.518      0.702 0.116 0.884
#> ERR978209     2   0.518      0.702 0.116 0.884
#> ERR978210     2   0.518      0.702 0.116 0.884
#> ERR978211     2   0.518      0.702 0.116 0.884
#> ERR978212     2   0.706      0.693 0.192 0.808
#> ERR978213     2   0.706      0.693 0.192 0.808
#> ERR978214     2   0.706      0.693 0.192 0.808
#> ERR978215     2   0.706      0.693 0.192 0.808
#> ERR978216     2   0.706      0.693 0.192 0.808
#> ERR978217     2   0.706      0.693 0.192 0.808
#> ERR978218     2   0.706      0.693 0.192 0.808
#> ERR978219     2   0.706      0.693 0.192 0.808
#> ERR978220     2   0.706      0.693 0.192 0.808
#> ERR978221     2   0.706      0.693 0.192 0.808
#> ERR978222     2   0.706      0.693 0.192 0.808
#> ERR978223     2   0.706      0.693 0.192 0.808
#> ERR978224     2   0.706      0.693 0.192 0.808
#> ERR978225     2   0.706      0.693 0.192 0.808
#> ERR978226     2   0.697      0.693 0.188 0.812
#> ERR978227     1   0.991      1.000 0.556 0.444
#> ERR978228     1   0.991      1.000 0.556 0.444
#> ERR978229     1   0.991      1.000 0.556 0.444
#> ERR978230     1   0.991      1.000 0.556 0.444
#> ERR978231     1   0.991      1.000 0.556 0.444
#> ERR978232     1   0.991      1.000 0.556 0.444
#> ERR978233     1   0.991      1.000 0.556 0.444
#> ERR978234     1   0.991      1.000 0.556 0.444
#> ERR978235     1   0.991      1.000 0.556 0.444
#> ERR978236     1   0.991      1.000 0.556 0.444
#> ERR978237     1   0.991      1.000 0.556 0.444
#> ERR978238     1   0.991      1.000 0.556 0.444
#> ERR978239     1   0.991      1.000 0.556 0.444
#> ERR978240     1   0.991      1.000 0.556 0.444
#> ERR978241     2   0.563      0.576 0.132 0.868
#> ERR978242     2   0.563      0.576 0.132 0.868
#> ERR978243     2   0.563      0.576 0.132 0.868
#> ERR978244     2   0.563      0.576 0.132 0.868
#> ERR978245     2   0.563      0.576 0.132 0.868
#> ERR978246     2   0.563      0.576 0.132 0.868
#> ERR978247     2   0.563      0.576 0.132 0.868
#> ERR978248     2   0.881      0.664 0.300 0.700
#> ERR978249     2   0.881      0.664 0.300 0.700
#> ERR978250     2   0.881      0.664 0.300 0.700
#> ERR978251     2   0.881      0.664 0.300 0.700
#> ERR978252     2   0.881      0.664 0.300 0.700
#> ERR978253     2   0.881      0.664 0.300 0.700
#> ERR978254     2   0.881      0.664 0.300 0.700

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978108     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978109     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978110     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978111     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978112     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978113     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978114     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978115     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978116     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978117     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978118     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978119     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978120     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978121     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978122     2   0.516     0.8241 0.008 0.776 0.216
#> ERR978123     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978124     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978125     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978126     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978127     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978128     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978129     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978130     3   0.432     0.6382 0.088 0.044 0.868
#> ERR978131     3   0.453     0.6384 0.088 0.052 0.860
#> ERR978132     3   0.453     0.6384 0.088 0.052 0.860
#> ERR978133     3   0.453     0.6384 0.088 0.052 0.860
#> ERR978134     3   0.453     0.6384 0.088 0.052 0.860
#> ERR978135     3   0.453     0.6384 0.088 0.052 0.860
#> ERR978136     3   0.453     0.6384 0.088 0.052 0.860
#> ERR978137     3   0.453     0.6384 0.088 0.052 0.860
#> ERR978138     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978139     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978140     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978141     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978142     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978143     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978144     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978145     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978146     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978147     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978148     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978149     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978150     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978151     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978152     3   0.591     0.6369 0.068 0.144 0.788
#> ERR978153     1   0.280     0.9722 0.924 0.016 0.060
#> ERR978154     1   0.280     0.9722 0.924 0.016 0.060
#> ERR978155     1   0.280     0.9722 0.924 0.016 0.060
#> ERR978156     1   0.280     0.9722 0.924 0.016 0.060
#> ERR978157     1   0.280     0.9722 0.924 0.016 0.060
#> ERR978158     1   0.280     0.9722 0.924 0.016 0.060
#> ERR978159     1   0.280     0.9722 0.924 0.016 0.060
#> ERR978160     1   0.295     0.9711 0.920 0.020 0.060
#> ERR978161     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978162     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978163     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978164     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978165     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978166     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978167     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978168     1   0.295     0.9723 0.920 0.020 0.060
#> ERR978169     3   0.833     0.5689 0.208 0.164 0.628
#> ERR978170     3   0.833     0.5689 0.208 0.164 0.628
#> ERR978171     3   0.833     0.5689 0.208 0.164 0.628
#> ERR978172     3   0.833     0.5689 0.208 0.164 0.628
#> ERR978173     3   0.833     0.5689 0.208 0.164 0.628
#> ERR978174     3   0.833     0.5689 0.208 0.164 0.628
#> ERR978175     3   0.833     0.5689 0.208 0.164 0.628
#> ERR978176     3   0.891     0.5476 0.216 0.212 0.572
#> ERR978177     3   0.891     0.5476 0.216 0.212 0.572
#> ERR978178     3   0.891     0.5476 0.216 0.212 0.572
#> ERR978179     3   0.891     0.5476 0.216 0.212 0.572
#> ERR978180     3   0.891     0.5476 0.216 0.212 0.572
#> ERR978181     3   0.891     0.5476 0.216 0.212 0.572
#> ERR978182     3   0.891     0.5476 0.216 0.212 0.572
#> ERR978183     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978184     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978185     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978186     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978187     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978188     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978189     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978190     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978191     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978192     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978193     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978194     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978195     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978196     2   0.484     0.8224 0.016 0.816 0.168
#> ERR978197     3   0.579     0.6153 0.084 0.116 0.800
#> ERR978198     3   0.579     0.6153 0.084 0.116 0.800
#> ERR978199     3   0.579     0.6153 0.084 0.116 0.800
#> ERR978200     3   0.579     0.6153 0.084 0.116 0.800
#> ERR978201     3   0.579     0.6153 0.084 0.116 0.800
#> ERR978202     3   0.579     0.6153 0.084 0.116 0.800
#> ERR978203     3   0.579     0.6153 0.084 0.116 0.800
#> ERR978204     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978205     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978206     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978207     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978208     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978209     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978210     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978211     3   0.571     0.6129 0.080 0.116 0.804
#> ERR978212     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978213     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978214     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978215     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978216     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978217     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978218     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978219     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978220     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978221     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978222     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978223     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978224     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978225     3   0.760     0.4135 0.056 0.344 0.600
#> ERR978226     3   0.758     0.4206 0.056 0.340 0.604
#> ERR978227     1   0.473     0.9685 0.852 0.088 0.060
#> ERR978228     1   0.473     0.9685 0.852 0.088 0.060
#> ERR978229     1   0.473     0.9685 0.852 0.088 0.060
#> ERR978230     1   0.473     0.9685 0.852 0.088 0.060
#> ERR978231     1   0.473     0.9685 0.852 0.088 0.060
#> ERR978232     1   0.473     0.9685 0.852 0.088 0.060
#> ERR978233     1   0.473     0.9685 0.852 0.088 0.060
#> ERR978234     1   0.481     0.9685 0.848 0.092 0.060
#> ERR978235     1   0.481     0.9685 0.848 0.092 0.060
#> ERR978236     1   0.481     0.9685 0.848 0.092 0.060
#> ERR978237     1   0.481     0.9685 0.848 0.092 0.060
#> ERR978238     1   0.481     0.9685 0.848 0.092 0.060
#> ERR978239     1   0.481     0.9685 0.848 0.092 0.060
#> ERR978240     1   0.481     0.9685 0.848 0.092 0.060
#> ERR978241     3   0.859     0.5675 0.220 0.176 0.604
#> ERR978242     3   0.859     0.5675 0.220 0.176 0.604
#> ERR978243     3   0.859     0.5675 0.220 0.176 0.604
#> ERR978244     3   0.859     0.5675 0.220 0.176 0.604
#> ERR978245     3   0.859     0.5675 0.220 0.176 0.604
#> ERR978246     3   0.859     0.5675 0.220 0.176 0.604
#> ERR978247     3   0.859     0.5675 0.220 0.176 0.604
#> ERR978248     2   0.898    -0.0305 0.132 0.484 0.384
#> ERR978249     2   0.898    -0.0305 0.132 0.484 0.384
#> ERR978250     2   0.898    -0.0305 0.132 0.484 0.384
#> ERR978251     2   0.898    -0.0305 0.132 0.484 0.384
#> ERR978252     2   0.898    -0.0305 0.132 0.484 0.384
#> ERR978253     2   0.898    -0.0305 0.132 0.484 0.384
#> ERR978254     2   0.898    -0.0305 0.132 0.484 0.384

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> ERR978107     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978108     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978109     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978110     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978111     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978112     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978113     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978114     2  0.3093      0.921 0.004 0.892 0.064 0.040
#> ERR978115     2  0.3168      0.921 0.004 0.888 0.068 0.040
#> ERR978116     2  0.3168      0.921 0.004 0.888 0.068 0.040
#> ERR978117     2  0.3168      0.921 0.004 0.888 0.068 0.040
#> ERR978118     2  0.3168      0.921 0.004 0.888 0.068 0.040
#> ERR978119     2  0.3168      0.921 0.004 0.888 0.068 0.040
#> ERR978120     2  0.3168      0.921 0.004 0.888 0.068 0.040
#> ERR978121     2  0.3168      0.921 0.004 0.888 0.068 0.040
#> ERR978122     2  0.3312      0.921 0.008 0.884 0.068 0.040
#> ERR978123     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978124     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978125     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978126     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978127     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978128     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978129     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978130     3  0.6935      0.871 0.076 0.044 0.640 0.240
#> ERR978131     3  0.6977      0.870 0.084 0.040 0.636 0.240
#> ERR978132     3  0.6977      0.870 0.084 0.040 0.636 0.240
#> ERR978133     3  0.6977      0.870 0.084 0.040 0.636 0.240
#> ERR978134     3  0.6977      0.870 0.084 0.040 0.636 0.240
#> ERR978135     3  0.6977      0.870 0.084 0.040 0.636 0.240
#> ERR978136     3  0.6977      0.870 0.084 0.040 0.636 0.240
#> ERR978137     3  0.6977      0.870 0.084 0.040 0.636 0.240
#> ERR978138     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978139     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978140     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978141     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978142     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978143     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978144     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978145     4  0.7443      0.356 0.020 0.108 0.368 0.504
#> ERR978146     4  0.7369      0.341 0.020 0.100 0.376 0.504
#> ERR978147     4  0.7369      0.341 0.020 0.100 0.376 0.504
#> ERR978148     4  0.7369      0.341 0.020 0.100 0.376 0.504
#> ERR978149     4  0.7369      0.341 0.020 0.100 0.376 0.504
#> ERR978150     4  0.7369      0.341 0.020 0.100 0.376 0.504
#> ERR978151     4  0.7369      0.341 0.020 0.100 0.376 0.504
#> ERR978152     4  0.7369      0.341 0.020 0.100 0.376 0.504
#> ERR978153     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978154     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978155     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978156     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978157     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978158     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978159     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978160     1  0.0469      0.945 0.988 0.000 0.000 0.012
#> ERR978161     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978162     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978163     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978164     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978165     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978166     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978167     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978168     1  0.0657      0.945 0.984 0.000 0.004 0.012
#> ERR978169     4  0.6023      0.400 0.064 0.044 0.160 0.732
#> ERR978170     4  0.6023      0.400 0.064 0.044 0.160 0.732
#> ERR978171     4  0.6023      0.400 0.064 0.044 0.160 0.732
#> ERR978172     4  0.6023      0.400 0.064 0.044 0.160 0.732
#> ERR978173     4  0.6023      0.400 0.064 0.044 0.160 0.732
#> ERR978174     4  0.6023      0.400 0.064 0.044 0.160 0.732
#> ERR978175     4  0.6023      0.400 0.064 0.044 0.160 0.732
#> ERR978176     4  0.4670      0.481 0.064 0.056 0.052 0.828
#> ERR978177     4  0.4670      0.481 0.064 0.056 0.052 0.828
#> ERR978178     4  0.4670      0.481 0.064 0.056 0.052 0.828
#> ERR978179     4  0.4670      0.481 0.064 0.056 0.052 0.828
#> ERR978180     4  0.4670      0.481 0.064 0.056 0.052 0.828
#> ERR978181     4  0.4670      0.481 0.064 0.056 0.052 0.828
#> ERR978182     4  0.4670      0.481 0.064 0.056 0.052 0.828
#> ERR978183     2  0.2189      0.908 0.004 0.932 0.044 0.020
#> ERR978184     2  0.2189      0.908 0.004 0.932 0.044 0.020
#> ERR978185     2  0.2189      0.908 0.004 0.932 0.044 0.020
#> ERR978186     2  0.2189      0.908 0.004 0.932 0.044 0.020
#> ERR978187     2  0.2189      0.908 0.004 0.932 0.044 0.020
#> ERR978188     2  0.2189      0.908 0.004 0.932 0.044 0.020
#> ERR978189     2  0.2189      0.908 0.004 0.932 0.044 0.020
#> ERR978190     2  0.2383      0.909 0.004 0.924 0.048 0.024
#> ERR978191     2  0.2383      0.909 0.004 0.924 0.048 0.024
#> ERR978192     2  0.2383      0.909 0.004 0.924 0.048 0.024
#> ERR978193     2  0.2383      0.909 0.004 0.924 0.048 0.024
#> ERR978194     2  0.2383      0.909 0.004 0.924 0.048 0.024
#> ERR978195     2  0.2383      0.909 0.004 0.924 0.048 0.024
#> ERR978196     2  0.2383      0.909 0.004 0.924 0.048 0.024
#> ERR978197     3  0.7081      0.870 0.076 0.084 0.664 0.176
#> ERR978198     3  0.7081      0.870 0.076 0.084 0.664 0.176
#> ERR978199     3  0.7081      0.870 0.076 0.084 0.664 0.176
#> ERR978200     3  0.7081      0.870 0.076 0.084 0.664 0.176
#> ERR978201     3  0.7081      0.870 0.076 0.084 0.664 0.176
#> ERR978202     3  0.7081      0.870 0.076 0.084 0.664 0.176
#> ERR978203     3  0.7081      0.870 0.076 0.084 0.664 0.176
#> ERR978204     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978205     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978206     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978207     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978208     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978209     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978210     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978211     3  0.7019      0.855 0.084 0.088 0.676 0.152
#> ERR978212     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978213     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978214     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978215     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978216     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978217     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978218     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978219     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978220     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978221     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978222     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978223     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978224     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978225     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978226     4  0.8265      0.453 0.016 0.264 0.308 0.412
#> ERR978227     1  0.3908      0.937 0.844 0.008 0.116 0.032
#> ERR978228     1  0.3908      0.937 0.844 0.008 0.116 0.032
#> ERR978229     1  0.3908      0.937 0.844 0.008 0.116 0.032
#> ERR978230     1  0.3908      0.937 0.844 0.008 0.116 0.032
#> ERR978231     1  0.3908      0.937 0.844 0.008 0.116 0.032
#> ERR978232     1  0.3908      0.937 0.844 0.008 0.116 0.032
#> ERR978233     1  0.3908      0.937 0.844 0.008 0.116 0.032
#> ERR978234     1  0.3877      0.937 0.840 0.004 0.124 0.032
#> ERR978235     1  0.3877      0.937 0.840 0.004 0.124 0.032
#> ERR978236     1  0.3877      0.937 0.840 0.004 0.124 0.032
#> ERR978237     1  0.3877      0.937 0.840 0.004 0.124 0.032
#> ERR978238     1  0.3877      0.937 0.840 0.004 0.124 0.032
#> ERR978239     1  0.3877      0.937 0.840 0.004 0.124 0.032
#> ERR978240     1  0.3877      0.937 0.840 0.004 0.124 0.032
#> ERR978241     4  0.5506      0.446 0.064 0.040 0.124 0.772
#> ERR978242     4  0.5506      0.446 0.064 0.040 0.124 0.772
#> ERR978243     4  0.5506      0.446 0.064 0.040 0.124 0.772
#> ERR978244     4  0.5506      0.446 0.064 0.040 0.124 0.772
#> ERR978245     4  0.5506      0.446 0.064 0.040 0.124 0.772
#> ERR978246     4  0.5506      0.446 0.064 0.040 0.124 0.772
#> ERR978247     4  0.5506      0.446 0.064 0.040 0.124 0.772
#> ERR978248     4  0.7098      0.423 0.044 0.328 0.056 0.572
#> ERR978249     4  0.7098      0.423 0.044 0.328 0.056 0.572
#> ERR978250     4  0.7098      0.423 0.044 0.328 0.056 0.572
#> ERR978251     4  0.7098      0.423 0.044 0.328 0.056 0.572
#> ERR978252     4  0.7098      0.423 0.044 0.328 0.056 0.572
#> ERR978253     4  0.7098      0.423 0.044 0.328 0.056 0.572
#> ERR978254     4  0.7098      0.423 0.044 0.328 0.056 0.572

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> ERR978107     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978108     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978109     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978110     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978111     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978112     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978113     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978114     2   0.164     0.8784 0.000 0.932 0.064 0.004 0.000
#> ERR978115     2   0.252     0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978116     2   0.252     0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978117     2   0.252     0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978118     2   0.252     0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978119     2   0.252     0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978120     2   0.252     0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978121     2   0.252     0.8779 0.000 0.900 0.068 0.008 0.024
#> ERR978122     2   0.261     0.8778 0.000 0.896 0.068 0.008 0.028
#> ERR978123     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978124     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978125     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978126     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978127     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978128     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978129     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978130     3   0.166     0.8504 0.020 0.008 0.948 0.020 0.004
#> ERR978131     3   0.176     0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978132     3   0.176     0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978133     3   0.176     0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978134     3   0.176     0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978135     3   0.176     0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978136     3   0.176     0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978137     3   0.176     0.8504 0.020 0.008 0.944 0.024 0.004
#> ERR978138     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978139     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978140     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978141     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978142     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978143     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978144     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978145     5   0.727     0.6311 0.016 0.060 0.396 0.084 0.444
#> ERR978146     5   0.727     0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978147     5   0.727     0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978148     5   0.727     0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978149     5   0.727     0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978150     5   0.727     0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978151     5   0.727     0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978152     5   0.727     0.6303 0.016 0.060 0.400 0.084 0.440
#> ERR978153     1   0.117     0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978154     1   0.117     0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978155     1   0.117     0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978156     1   0.117     0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978157     1   0.117     0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978158     1   0.117     0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978159     1   0.117     0.8924 0.960 0.000 0.008 0.000 0.032
#> ERR978160     1   0.140     0.8915 0.956 0.004 0.008 0.004 0.028
#> ERR978161     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978162     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978163     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978164     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978165     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978166     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978167     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978168     1   0.128     0.8925 0.960 0.008 0.008 0.024 0.000
#> ERR978169     4   0.739     0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978170     4   0.739     0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978171     4   0.739     0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978172     4   0.739     0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978173     4   0.739     0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978174     4   0.739     0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978175     4   0.739     0.8962 0.048 0.028 0.240 0.548 0.136
#> ERR978176     4   0.822     0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978177     4   0.822     0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978178     4   0.822     0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978179     4   0.822     0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978180     4   0.822     0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978181     4   0.822     0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978182     4   0.822     0.8286 0.048 0.056 0.184 0.460 0.252
#> ERR978183     2   0.553     0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978184     2   0.553     0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978185     2   0.553     0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978186     2   0.553     0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978187     2   0.553     0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978188     2   0.553     0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978189     2   0.553     0.8580 0.008 0.724 0.040 0.140 0.088
#> ERR978190     2   0.578     0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978191     2   0.578     0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978192     2   0.578     0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978193     2   0.578     0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978194     2   0.578     0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978195     2   0.578     0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978196     2   0.578     0.8587 0.004 0.696 0.044 0.160 0.096
#> ERR978197     3   0.444     0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978198     3   0.444     0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978199     3   0.444     0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978200     3   0.444     0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978201     3   0.444     0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978202     3   0.444     0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978203     3   0.444     0.8459 0.020 0.004 0.792 0.064 0.120
#> ERR978204     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978205     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978206     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978207     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978208     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978209     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978210     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978211     3   0.467     0.8411 0.020 0.008 0.780 0.068 0.124
#> ERR978212     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978213     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978214     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978215     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978216     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978217     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978218     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978219     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978220     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978221     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978222     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978223     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978224     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978225     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978226     5   0.546     0.6853 0.016 0.088 0.200 0.004 0.692
#> ERR978227     1   0.489     0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978228     1   0.489     0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978229     1   0.489     0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978230     1   0.489     0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978231     1   0.489     0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978232     1   0.489     0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978233     1   0.489     0.8790 0.764 0.020 0.008 0.128 0.080
#> ERR978234     1   0.476     0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978235     1   0.476     0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978236     1   0.476     0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978237     1   0.476     0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978238     1   0.476     0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978239     1   0.476     0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978240     1   0.476     0.8790 0.764 0.016 0.008 0.152 0.060
#> ERR978241     4   0.751     0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978242     4   0.751     0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978243     4   0.751     0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978244     4   0.751     0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978245     4   0.751     0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978246     4   0.751     0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978247     4   0.751     0.9008 0.048 0.028 0.216 0.540 0.168
#> ERR978248     5   0.853     0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978249     5   0.853     0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978250     5   0.853     0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978251     5   0.853     0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978252     5   0.853     0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978253     5   0.853     0.0131 0.044 0.168 0.120 0.204 0.464
#> ERR978254     5   0.853     0.0131 0.044 0.168 0.120 0.204 0.464

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> ERR978107     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978108     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978109     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978110     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978111     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978112     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978113     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978114     2  0.4813     0.8590 0.000 0.728 0.024 0.064 0.016 NA
#> ERR978115     2  0.4996     0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978116     2  0.4996     0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978117     2  0.4996     0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978118     2  0.4996     0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978119     2  0.4996     0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978120     2  0.4996     0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978121     2  0.4996     0.8599 0.000 0.692 0.024 0.052 0.016 NA
#> ERR978122     2  0.5053     0.8598 0.000 0.688 0.024 0.056 0.016 NA
#> ERR978123     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978124     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978125     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978126     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978127     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978128     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978129     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978130     3  0.2307     0.8152 0.028 0.016 0.908 0.044 0.004 NA
#> ERR978131     3  0.2935     0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978132     3  0.2935     0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978133     3  0.2935     0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978134     3  0.2935     0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978135     3  0.2935     0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978136     3  0.2935     0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978137     3  0.2935     0.8139 0.028 0.016 0.884 0.048 0.008 NA
#> ERR978138     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978139     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978140     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978141     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978142     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978143     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978144     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978145     5  0.7048     0.5740 0.020 0.004 0.316 0.100 0.472 NA
#> ERR978146     5  0.7163     0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978147     5  0.7163     0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978148     5  0.7163     0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978149     5  0.7163     0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978150     5  0.7163     0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978151     5  0.7163     0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978152     5  0.7163     0.5657 0.020 0.008 0.324 0.100 0.460 NA
#> ERR978153     1  0.3634     0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978154     1  0.3634     0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978155     1  0.3634     0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978156     1  0.3634     0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978157     1  0.3634     0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978158     1  0.3634     0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978159     1  0.3634     0.8524 0.696 0.000 0.000 0.008 0.000 NA
#> ERR978160     1  0.3935     0.8508 0.692 0.000 0.000 0.012 0.008 NA
#> ERR978161     1  0.4654     0.8525 0.696 0.004 0.004 0.040 0.016 NA
#> ERR978162     1  0.4552     0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978163     1  0.4552     0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978164     1  0.4552     0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978165     1  0.4552     0.8525 0.696 0.000 0.004 0.048 0.012 NA
#> ERR978166     1  0.4654     0.8525 0.696 0.004 0.004 0.040 0.016 NA
#> ERR978167     1  0.4654     0.8525 0.696 0.004 0.004 0.040 0.016 NA
#> ERR978168     1  0.4670     0.8528 0.696 0.004 0.004 0.036 0.020 NA
#> ERR978169     4  0.4047     0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978170     4  0.4047     0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978171     4  0.4047     0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978172     4  0.4047     0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978173     4  0.4047     0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978174     4  0.4047     0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978175     4  0.4047     0.8444 0.016 0.000 0.152 0.776 0.052 NA
#> ERR978176     4  0.6849     0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978177     4  0.6849     0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978178     4  0.6849     0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978179     4  0.6849     0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978180     4  0.6849     0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978181     4  0.6849     0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978182     4  0.6849     0.7490 0.024 0.008 0.112 0.584 0.156 NA
#> ERR978183     2  0.1230     0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978184     2  0.1230     0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978185     2  0.1230     0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978186     2  0.1230     0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978187     2  0.1230     0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978188     2  0.1230     0.8409 0.000 0.956 0.008 0.008 0.028 NA
#> ERR978189     2  0.1307     0.8409 0.000 0.952 0.008 0.008 0.032 NA
#> ERR978190     2  0.1988     0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978191     2  0.1988     0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978192     2  0.1988     0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978193     2  0.1988     0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978194     2  0.1988     0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978195     2  0.1988     0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978196     2  0.1988     0.8421 0.000 0.920 0.004 0.004 0.024 NA
#> ERR978197     3  0.5378     0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978198     3  0.5378     0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978199     3  0.5378     0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978200     3  0.5378     0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978201     3  0.5378     0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978202     3  0.5378     0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978203     3  0.5378     0.8073 0.028 0.016 0.720 0.028 0.072 NA
#> ERR978204     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978205     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978206     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978207     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978208     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978209     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978210     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978211     3  0.5903     0.7936 0.028 0.016 0.664 0.024 0.100 NA
#> ERR978212     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978213     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978214     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978215     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978216     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978217     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978218     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978219     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978220     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978221     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978222     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978223     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978224     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978225     5  0.3968     0.6403 0.020 0.060 0.104 0.012 0.804 NA
#> ERR978226     5  0.4058     0.6390 0.020 0.060 0.104 0.016 0.800 NA
#> ERR978227     1  0.1168     0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978228     1  0.1168     0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978229     1  0.1168     0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978230     1  0.1168     0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978231     1  0.1168     0.8349 0.956 0.000 0.000 0.016 0.028 NA
#> ERR978232     1  0.1176     0.8350 0.956 0.000 0.000 0.020 0.024 NA
#> ERR978233     1  0.1176     0.8350 0.956 0.000 0.000 0.020 0.024 NA
#> ERR978234     1  0.0865     0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978235     1  0.0865     0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978236     1  0.0865     0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978237     1  0.0865     0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978238     1  0.0865     0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978239     1  0.0865     0.8348 0.964 0.000 0.000 0.000 0.000 NA
#> ERR978240     1  0.1268     0.8348 0.952 0.004 0.000 0.000 0.008 NA
#> ERR978241     4  0.5045     0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978242     4  0.5045     0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978243     4  0.5045     0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978244     4  0.5045     0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978245     4  0.5045     0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978246     4  0.5045     0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978247     4  0.5045     0.8500 0.016 0.004 0.116 0.728 0.112 NA
#> ERR978248     5  0.8238     0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978249     5  0.8238     0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978250     5  0.8238     0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978251     5  0.8238     0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978252     5  0.8238     0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978253     5  0.8238     0.0125 0.028 0.116 0.032 0.276 0.388 NA
#> ERR978254     5  0.8238     0.0125 0.028 0.116 0.032 0.276 0.388 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.535           0.705       0.844         0.4752 0.520   0.520
#> 3 3 0.724           0.869       0.923         0.3162 0.609   0.403
#> 4 4 0.759           0.672       0.710         0.1720 0.807   0.554
#> 5 5 0.977           0.965       0.965         0.0953 0.923   0.716
#> 6 6 0.934           0.867       0.882         0.0274 0.986   0.931

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 5

There is also optional best \(k\) = 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2  0.9286      0.611 0.344 0.656
#> ERR978108     2  0.9286      0.611 0.344 0.656
#> ERR978109     2  0.9286      0.611 0.344 0.656
#> ERR978110     2  0.9286      0.611 0.344 0.656
#> ERR978111     2  0.9286      0.611 0.344 0.656
#> ERR978112     2  0.9286      0.611 0.344 0.656
#> ERR978113     2  0.9286      0.611 0.344 0.656
#> ERR978114     2  0.9286      0.611 0.344 0.656
#> ERR978115     2  0.9286      0.611 0.344 0.656
#> ERR978116     2  0.9286      0.611 0.344 0.656
#> ERR978117     2  0.9286      0.611 0.344 0.656
#> ERR978118     2  0.9286      0.611 0.344 0.656
#> ERR978119     2  0.9286      0.611 0.344 0.656
#> ERR978120     2  0.9286      0.611 0.344 0.656
#> ERR978121     2  0.9286      0.611 0.344 0.656
#> ERR978122     2  0.9286      0.611 0.344 0.656
#> ERR978123     2  0.3879      0.755 0.076 0.924
#> ERR978124     2  0.3879      0.755 0.076 0.924
#> ERR978125     2  0.3879      0.755 0.076 0.924
#> ERR978126     2  0.3879      0.755 0.076 0.924
#> ERR978127     2  0.3879      0.755 0.076 0.924
#> ERR978128     2  0.3879      0.755 0.076 0.924
#> ERR978129     2  0.3879      0.755 0.076 0.924
#> ERR978130     2  0.3879      0.755 0.076 0.924
#> ERR978131     2  0.3879      0.755 0.076 0.924
#> ERR978132     2  0.3879      0.755 0.076 0.924
#> ERR978133     2  0.3879      0.755 0.076 0.924
#> ERR978134     2  0.3879      0.755 0.076 0.924
#> ERR978135     2  0.3879      0.755 0.076 0.924
#> ERR978136     2  0.3879      0.755 0.076 0.924
#> ERR978137     2  0.3879      0.755 0.076 0.924
#> ERR978138     2  0.0672      0.807 0.008 0.992
#> ERR978139     2  0.0672      0.807 0.008 0.992
#> ERR978140     2  0.0672      0.807 0.008 0.992
#> ERR978141     2  0.0672      0.807 0.008 0.992
#> ERR978142     2  0.0672      0.807 0.008 0.992
#> ERR978143     2  0.0672      0.807 0.008 0.992
#> ERR978144     2  0.0672      0.807 0.008 0.992
#> ERR978145     2  0.0672      0.807 0.008 0.992
#> ERR978146     2  0.0672      0.807 0.008 0.992
#> ERR978147     2  0.0672      0.807 0.008 0.992
#> ERR978148     2  0.0672      0.807 0.008 0.992
#> ERR978149     2  0.0672      0.807 0.008 0.992
#> ERR978150     2  0.0672      0.807 0.008 0.992
#> ERR978151     2  0.0672      0.807 0.008 0.992
#> ERR978152     2  0.0672      0.807 0.008 0.992
#> ERR978153     1  0.0000      0.747 1.000 0.000
#> ERR978154     1  0.0000      0.747 1.000 0.000
#> ERR978155     1  0.0000      0.747 1.000 0.000
#> ERR978156     1  0.0000      0.747 1.000 0.000
#> ERR978157     1  0.0000      0.747 1.000 0.000
#> ERR978158     1  0.0000      0.747 1.000 0.000
#> ERR978159     1  0.0000      0.747 1.000 0.000
#> ERR978160     1  0.0000      0.747 1.000 0.000
#> ERR978161     1  0.0000      0.747 1.000 0.000
#> ERR978162     1  0.0000      0.747 1.000 0.000
#> ERR978163     1  0.0000      0.747 1.000 0.000
#> ERR978164     1  0.0000      0.747 1.000 0.000
#> ERR978165     1  0.0000      0.747 1.000 0.000
#> ERR978166     1  0.0000      0.747 1.000 0.000
#> ERR978167     1  0.0000      0.747 1.000 0.000
#> ERR978168     1  0.0000      0.747 1.000 0.000
#> ERR978169     1  0.9635      0.627 0.612 0.388
#> ERR978170     1  0.9635      0.627 0.612 0.388
#> ERR978171     1  0.9635      0.627 0.612 0.388
#> ERR978172     1  0.9635      0.627 0.612 0.388
#> ERR978173     1  0.9635      0.627 0.612 0.388
#> ERR978174     1  0.9635      0.627 0.612 0.388
#> ERR978175     1  0.9635      0.627 0.612 0.388
#> ERR978176     1  0.9635      0.627 0.612 0.388
#> ERR978177     1  0.9635      0.627 0.612 0.388
#> ERR978178     1  0.9635      0.627 0.612 0.388
#> ERR978179     1  0.9635      0.627 0.612 0.388
#> ERR978180     1  0.9635      0.627 0.612 0.388
#> ERR978181     1  0.9635      0.627 0.612 0.388
#> ERR978182     1  0.9635      0.627 0.612 0.388
#> ERR978183     2  0.9286      0.611 0.344 0.656
#> ERR978184     2  0.9286      0.611 0.344 0.656
#> ERR978185     2  0.9286      0.611 0.344 0.656
#> ERR978186     2  0.9286      0.611 0.344 0.656
#> ERR978187     2  0.9286      0.611 0.344 0.656
#> ERR978188     2  0.9286      0.611 0.344 0.656
#> ERR978189     2  0.9286      0.611 0.344 0.656
#> ERR978190     2  0.9286      0.611 0.344 0.656
#> ERR978191     2  0.9286      0.611 0.344 0.656
#> ERR978192     2  0.9286      0.611 0.344 0.656
#> ERR978193     2  0.9286      0.611 0.344 0.656
#> ERR978194     2  0.9286      0.611 0.344 0.656
#> ERR978195     2  0.9286      0.611 0.344 0.656
#> ERR978196     2  0.9286      0.611 0.344 0.656
#> ERR978197     2  0.0000      0.809 0.000 1.000
#> ERR978198     2  0.0000      0.809 0.000 1.000
#> ERR978199     2  0.0000      0.809 0.000 1.000
#> ERR978200     2  0.0000      0.809 0.000 1.000
#> ERR978201     2  0.0000      0.809 0.000 1.000
#> ERR978202     2  0.0000      0.809 0.000 1.000
#> ERR978203     2  0.0000      0.809 0.000 1.000
#> ERR978204     2  0.0000      0.809 0.000 1.000
#> ERR978205     2  0.0000      0.809 0.000 1.000
#> ERR978206     2  0.0000      0.809 0.000 1.000
#> ERR978207     2  0.0000      0.809 0.000 1.000
#> ERR978208     2  0.0000      0.809 0.000 1.000
#> ERR978209     2  0.0000      0.809 0.000 1.000
#> ERR978210     2  0.0000      0.809 0.000 1.000
#> ERR978211     2  0.0000      0.809 0.000 1.000
#> ERR978212     2  0.0000      0.809 0.000 1.000
#> ERR978213     2  0.0000      0.809 0.000 1.000
#> ERR978214     2  0.0000      0.809 0.000 1.000
#> ERR978215     2  0.0000      0.809 0.000 1.000
#> ERR978216     2  0.0000      0.809 0.000 1.000
#> ERR978217     2  0.0000      0.809 0.000 1.000
#> ERR978218     2  0.0000      0.809 0.000 1.000
#> ERR978219     2  0.0000      0.809 0.000 1.000
#> ERR978220     2  0.0000      0.809 0.000 1.000
#> ERR978221     2  0.0000      0.809 0.000 1.000
#> ERR978222     2  0.0000      0.809 0.000 1.000
#> ERR978223     2  0.0000      0.809 0.000 1.000
#> ERR978224     2  0.0000      0.809 0.000 1.000
#> ERR978225     2  0.0000      0.809 0.000 1.000
#> ERR978226     2  0.0000      0.809 0.000 1.000
#> ERR978227     1  0.0000      0.747 1.000 0.000
#> ERR978228     1  0.0000      0.747 1.000 0.000
#> ERR978229     1  0.0000      0.747 1.000 0.000
#> ERR978230     1  0.0000      0.747 1.000 0.000
#> ERR978231     1  0.0000      0.747 1.000 0.000
#> ERR978232     1  0.0000      0.747 1.000 0.000
#> ERR978233     1  0.0000      0.747 1.000 0.000
#> ERR978234     1  0.0000      0.747 1.000 0.000
#> ERR978235     1  0.0000      0.747 1.000 0.000
#> ERR978236     1  0.0000      0.747 1.000 0.000
#> ERR978237     1  0.0000      0.747 1.000 0.000
#> ERR978238     1  0.0000      0.747 1.000 0.000
#> ERR978239     1  0.0000      0.747 1.000 0.000
#> ERR978240     1  0.0000      0.747 1.000 0.000
#> ERR978241     1  0.9635      0.627 0.612 0.388
#> ERR978242     1  0.9635      0.627 0.612 0.388
#> ERR978243     1  0.9635      0.627 0.612 0.388
#> ERR978244     1  0.9635      0.627 0.612 0.388
#> ERR978245     1  0.9635      0.627 0.612 0.388
#> ERR978246     1  0.9635      0.627 0.612 0.388
#> ERR978247     1  0.9635      0.627 0.612 0.388
#> ERR978248     1  0.9996      0.385 0.512 0.488
#> ERR978249     1  0.9996      0.385 0.512 0.488
#> ERR978250     1  0.9996      0.385 0.512 0.488
#> ERR978251     1  0.9996      0.385 0.512 0.488
#> ERR978252     1  0.9996      0.385 0.512 0.488
#> ERR978253     1  0.9996      0.385 0.512 0.488
#> ERR978254     1  0.9996      0.385 0.512 0.488

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978108     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978109     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978110     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978111     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978112     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978113     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978114     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978115     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978116     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978117     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978118     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978119     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978120     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978121     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978122     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978123     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978124     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978125     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978126     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978127     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978128     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978129     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978130     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978131     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978132     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978133     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978134     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978135     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978136     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978137     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978138     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978139     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978140     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978141     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978142     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978143     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978144     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978145     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978146     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978147     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978148     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978149     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978150     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978151     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978152     3  0.0000      0.853 0.000 0.000 1.000
#> ERR978153     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978154     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978155     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978156     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978157     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978158     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978159     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978160     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978161     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978162     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978163     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978164     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978165     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978166     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978167     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978168     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978169     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978170     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978171     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978172     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978173     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978174     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978175     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978176     3  0.7453      0.634 0.092 0.228 0.680
#> ERR978177     3  0.7453      0.634 0.092 0.228 0.680
#> ERR978178     3  0.7453      0.634 0.092 0.228 0.680
#> ERR978179     3  0.7453      0.634 0.092 0.228 0.680
#> ERR978180     3  0.7453      0.634 0.092 0.228 0.680
#> ERR978181     3  0.7453      0.634 0.092 0.228 0.680
#> ERR978182     3  0.7453      0.634 0.092 0.228 0.680
#> ERR978183     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978184     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978185     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978186     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978187     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978188     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978189     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978190     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978191     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978192     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978193     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978194     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978195     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978196     2  0.0237      0.985 0.000 0.996 0.004
#> ERR978197     3  0.1860      0.843 0.000 0.052 0.948
#> ERR978198     3  0.1860      0.843 0.000 0.052 0.948
#> ERR978199     3  0.1860      0.843 0.000 0.052 0.948
#> ERR978200     3  0.1860      0.843 0.000 0.052 0.948
#> ERR978201     3  0.1860      0.843 0.000 0.052 0.948
#> ERR978202     3  0.1860      0.843 0.000 0.052 0.948
#> ERR978203     3  0.1860      0.843 0.000 0.052 0.948
#> ERR978204     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978205     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978206     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978207     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978208     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978209     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978210     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978211     3  0.2796      0.827 0.000 0.092 0.908
#> ERR978212     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978213     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978214     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978215     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978216     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978217     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978218     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978219     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978220     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978221     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978222     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978223     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978224     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978225     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978226     3  0.5733      0.597 0.000 0.324 0.676
#> ERR978227     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978228     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978229     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978230     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978231     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978232     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978233     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978234     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978235     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978236     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978237     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978238     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978239     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978240     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978241     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978242     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978243     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978244     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978245     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978246     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978247     3  0.5505      0.780 0.096 0.088 0.816
#> ERR978248     2  0.2689      0.935 0.032 0.932 0.036
#> ERR978249     2  0.2689      0.935 0.032 0.932 0.036
#> ERR978250     2  0.2689      0.935 0.032 0.932 0.036
#> ERR978251     2  0.2689      0.935 0.032 0.932 0.036
#> ERR978252     2  0.2689      0.935 0.032 0.932 0.036
#> ERR978253     2  0.2689      0.935 0.032 0.932 0.036
#> ERR978254     2  0.2689      0.935 0.032 0.932 0.036

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> ERR978107     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978108     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978109     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978110     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978111     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978112     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978113     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978114     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978115     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978116     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978117     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978118     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978119     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978120     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978121     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978122     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978123     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978124     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978125     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978126     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978127     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978128     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978129     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978130     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978131     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978132     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978133     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978134     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978135     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978136     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978137     4   0.510     0.3045 0.000 0.008 0.380 0.612
#> ERR978138     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978139     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978140     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978141     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978142     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978143     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978144     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978145     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978146     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978147     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978148     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978149     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978150     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978151     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978152     3   0.147     0.8922 0.000 0.000 0.948 0.052
#> ERR978153     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978154     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978155     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978156     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978157     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978158     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978159     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978160     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978161     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978162     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978163     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978164     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978165     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978166     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978167     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978168     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978169     4   0.536     0.1961 0.012 0.004 0.372 0.612
#> ERR978170     4   0.536     0.1961 0.012 0.004 0.372 0.612
#> ERR978171     4   0.536     0.1961 0.012 0.004 0.372 0.612
#> ERR978172     4   0.536     0.1961 0.012 0.004 0.372 0.612
#> ERR978173     4   0.536     0.1961 0.012 0.004 0.372 0.612
#> ERR978174     4   0.536     0.1961 0.012 0.004 0.372 0.612
#> ERR978175     4   0.536     0.1961 0.012 0.004 0.372 0.612
#> ERR978176     4   0.580     0.0958 0.016 0.008 0.464 0.512
#> ERR978177     4   0.580     0.0958 0.016 0.008 0.464 0.512
#> ERR978178     4   0.580     0.0958 0.016 0.008 0.464 0.512
#> ERR978179     4   0.580     0.0958 0.016 0.008 0.464 0.512
#> ERR978180     4   0.580     0.0958 0.016 0.008 0.464 0.512
#> ERR978181     4   0.580     0.0958 0.016 0.008 0.464 0.512
#> ERR978182     4   0.580     0.0958 0.016 0.008 0.464 0.512
#> ERR978183     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978184     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978185     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978186     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978187     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978188     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978189     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978190     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978191     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978192     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978193     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978194     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978195     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978196     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> ERR978197     4   0.524     0.2823 0.000 0.008 0.436 0.556
#> ERR978198     4   0.524     0.2823 0.000 0.008 0.436 0.556
#> ERR978199     4   0.524     0.2823 0.000 0.008 0.436 0.556
#> ERR978200     4   0.524     0.2823 0.000 0.008 0.436 0.556
#> ERR978201     4   0.524     0.2823 0.000 0.008 0.436 0.556
#> ERR978202     4   0.524     0.2823 0.000 0.008 0.436 0.556
#> ERR978203     4   0.524     0.2823 0.000 0.008 0.436 0.556
#> ERR978204     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978205     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978206     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978207     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978208     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978209     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978210     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978211     4   0.525     0.2779 0.000 0.008 0.440 0.552
#> ERR978212     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978213     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978214     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978215     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978216     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978217     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978218     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978219     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978220     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978221     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978222     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978223     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978224     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978225     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978226     3   0.222     0.8941 0.000 0.060 0.924 0.016
#> ERR978227     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978228     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978229     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978230     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978231     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978232     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978233     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978234     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978235     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978236     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978237     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978238     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978239     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978240     1   0.000     1.0000 1.000 0.000 0.000 0.000
#> ERR978241     4   0.538     0.1937 0.012 0.004 0.376 0.608
#> ERR978242     4   0.538     0.1937 0.012 0.004 0.376 0.608
#> ERR978243     4   0.538     0.1937 0.012 0.004 0.376 0.608
#> ERR978244     4   0.538     0.1937 0.012 0.004 0.376 0.608
#> ERR978245     4   0.538     0.1937 0.012 0.004 0.376 0.608
#> ERR978246     4   0.538     0.1937 0.012 0.004 0.376 0.608
#> ERR978247     4   0.538     0.1937 0.012 0.004 0.376 0.608
#> ERR978248     4   0.819     0.0696 0.008 0.324 0.312 0.356
#> ERR978249     4   0.819     0.0696 0.008 0.324 0.312 0.356
#> ERR978250     4   0.819     0.0696 0.008 0.324 0.312 0.356
#> ERR978251     4   0.819     0.0696 0.008 0.324 0.312 0.356
#> ERR978252     4   0.819     0.0696 0.008 0.324 0.312 0.356
#> ERR978253     4   0.819     0.0696 0.008 0.324 0.312 0.356
#> ERR978254     4   0.819     0.0696 0.008 0.324 0.312 0.356

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978123     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978124     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978125     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978126     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978127     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978128     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978129     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978130     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978131     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978132     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978133     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978134     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978135     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978136     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978137     3  0.1597      0.966  0 0.000 0.940 0.012 0.048
#> ERR978138     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978139     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978140     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978141     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978142     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978143     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978144     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978145     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978146     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978147     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978148     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978149     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978150     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978151     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978152     5  0.2473      0.927  0 0.000 0.032 0.072 0.896
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978170     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978171     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978172     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978173     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978174     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978175     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978176     4  0.0671      0.947  0 0.000 0.004 0.980 0.016
#> ERR978177     4  0.0671      0.947  0 0.000 0.004 0.980 0.016
#> ERR978178     4  0.0671      0.947  0 0.000 0.004 0.980 0.016
#> ERR978179     4  0.0671      0.947  0 0.000 0.004 0.980 0.016
#> ERR978180     4  0.0671      0.947  0 0.000 0.004 0.980 0.016
#> ERR978181     4  0.0671      0.947  0 0.000 0.004 0.980 0.016
#> ERR978182     4  0.0671      0.947  0 0.000 0.004 0.980 0.016
#> ERR978183     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978197     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978198     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978199     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978200     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978201     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978202     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978203     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978204     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978205     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978206     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978207     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978208     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978209     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978210     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978211     3  0.0162      0.966  0 0.000 0.996 0.000 0.004
#> ERR978212     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978213     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978214     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978215     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978216     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978217     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978218     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978219     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978220     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978221     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978222     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978223     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978224     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978225     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978226     5  0.1638      0.929  0 0.000 0.064 0.004 0.932
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978242     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978243     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978244     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978245     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978246     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978247     4  0.0898      0.951  0 0.000 0.020 0.972 0.008
#> ERR978248     4  0.3612      0.872  0 0.064 0.004 0.832 0.100
#> ERR978249     4  0.3612      0.872  0 0.064 0.004 0.832 0.100
#> ERR978250     4  0.3612      0.872  0 0.064 0.004 0.832 0.100
#> ERR978251     4  0.3612      0.872  0 0.064 0.004 0.832 0.100
#> ERR978252     4  0.3612      0.872  0 0.064 0.004 0.832 0.100
#> ERR978253     4  0.3612      0.872  0 0.064 0.004 0.832 0.100
#> ERR978254     4  0.3612      0.872  0 0.064 0.004 0.832 0.100

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000     0.9717 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978123     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978124     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978125     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978126     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978127     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978128     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978129     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978130     3  0.3062     0.9100 0.000 0.000 0.816 0.000 0.024 0.160
#> ERR978131     3  0.3025     0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978132     3  0.3025     0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978133     3  0.3025     0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978134     3  0.3025     0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978135     3  0.3025     0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978136     3  0.3025     0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978137     3  0.3025     0.9100 0.000 0.000 0.820 0.000 0.024 0.156
#> ERR978138     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978139     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978140     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978141     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978142     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978143     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978144     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978145     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978146     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978147     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978148     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978149     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978150     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978151     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978152     5  0.0547     0.8043 0.000 0.000 0.000 0.020 0.980 0.000
#> ERR978153     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000     0.9871 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978170     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978171     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978172     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978173     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978174     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978175     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978176     4  0.3756     0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978177     4  0.3756     0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978178     4  0.3756     0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978179     4  0.3756     0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978180     4  0.3756     0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978181     4  0.3756     0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978182     4  0.3756     0.0849 0.000 0.000 0.000 0.644 0.004 0.352
#> ERR978183     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978184     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978185     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978186     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978187     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978188     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978189     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978190     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978191     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978192     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978193     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978194     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978195     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978196     2  0.1327     0.9674 0.000 0.936 0.000 0.000 0.000 0.064
#> ERR978197     3  0.0508     0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978198     3  0.0508     0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978199     3  0.0508     0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978200     3  0.0508     0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978201     3  0.0508     0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978202     3  0.0508     0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978203     3  0.0508     0.9097 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978204     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978205     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978206     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978207     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978208     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978209     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978210     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978211     3  0.0508     0.9087 0.000 0.000 0.984 0.000 0.004 0.012
#> ERR978212     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978213     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978214     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978215     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978216     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978217     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978218     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978219     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978220     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978221     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978222     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978223     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978224     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978225     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978226     5  0.3954     0.7966 0.000 0.000 0.012 0.000 0.636 0.352
#> ERR978227     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978228     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978229     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978230     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978231     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978232     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978233     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978234     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978235     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978236     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978237     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978238     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978239     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978240     1  0.0790     0.9852 0.968 0.000 0.000 0.000 0.000 0.032
#> ERR978241     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978242     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978243     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978244     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978245     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978246     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978247     4  0.0000     0.7672 0.000 0.000 0.000 1.000 0.000 0.000
#> ERR978248     6  0.5395     1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978249     6  0.5395     1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978250     6  0.5395     1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978251     6  0.5395     1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978252     6  0.5395     1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978253     6  0.5395     1.0000 0.000 0.080 0.000 0.404 0.012 0.504
#> ERR978254     6  0.5395     1.0000 0.000 0.080 0.000 0.404 0.012 0.504

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 1.000           0.971       0.987         0.7712 0.757   0.640
#> 4 4 0.962           0.960       0.980         0.2710 0.840   0.630
#> 5 5 1.000           0.973       0.985         0.0898 0.929   0.737
#> 6 6 0.940           0.916       0.933         0.0344 0.970   0.849

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2   0.000      1.000  0 1.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000
#> ERR978123     3   0.000      0.977  0 0.000 1.000
#> ERR978124     3   0.000      0.977  0 0.000 1.000
#> ERR978125     3   0.000      0.977  0 0.000 1.000
#> ERR978126     3   0.000      0.977  0 0.000 1.000
#> ERR978127     3   0.000      0.977  0 0.000 1.000
#> ERR978128     3   0.000      0.977  0 0.000 1.000
#> ERR978129     3   0.000      0.977  0 0.000 1.000
#> ERR978130     3   0.000      0.977  0 0.000 1.000
#> ERR978131     3   0.000      0.977  0 0.000 1.000
#> ERR978132     3   0.000      0.977  0 0.000 1.000
#> ERR978133     3   0.000      0.977  0 0.000 1.000
#> ERR978134     3   0.000      0.977  0 0.000 1.000
#> ERR978135     3   0.000      0.977  0 0.000 1.000
#> ERR978136     3   0.000      0.977  0 0.000 1.000
#> ERR978137     3   0.000      0.977  0 0.000 1.000
#> ERR978138     3   0.000      0.977  0 0.000 1.000
#> ERR978139     3   0.000      0.977  0 0.000 1.000
#> ERR978140     3   0.000      0.977  0 0.000 1.000
#> ERR978141     3   0.000      0.977  0 0.000 1.000
#> ERR978142     3   0.000      0.977  0 0.000 1.000
#> ERR978143     3   0.000      0.977  0 0.000 1.000
#> ERR978144     3   0.000      0.977  0 0.000 1.000
#> ERR978145     3   0.000      0.977  0 0.000 1.000
#> ERR978146     3   0.000      0.977  0 0.000 1.000
#> ERR978147     3   0.000      0.977  0 0.000 1.000
#> ERR978148     3   0.000      0.977  0 0.000 1.000
#> ERR978149     3   0.000      0.977  0 0.000 1.000
#> ERR978150     3   0.000      0.977  0 0.000 1.000
#> ERR978151     3   0.000      0.977  0 0.000 1.000
#> ERR978152     3   0.000      0.977  0 0.000 1.000
#> ERR978153     1   0.000      1.000  1 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000
#> ERR978169     3   0.000      0.977  0 0.000 1.000
#> ERR978170     3   0.000      0.977  0 0.000 1.000
#> ERR978171     3   0.000      0.977  0 0.000 1.000
#> ERR978172     3   0.000      0.977  0 0.000 1.000
#> ERR978173     3   0.000      0.977  0 0.000 1.000
#> ERR978174     3   0.000      0.977  0 0.000 1.000
#> ERR978175     3   0.000      0.977  0 0.000 1.000
#> ERR978176     3   0.000      0.977  0 0.000 1.000
#> ERR978177     3   0.000      0.977  0 0.000 1.000
#> ERR978178     3   0.000      0.977  0 0.000 1.000
#> ERR978179     3   0.000      0.977  0 0.000 1.000
#> ERR978180     3   0.000      0.977  0 0.000 1.000
#> ERR978181     3   0.000      0.977  0 0.000 1.000
#> ERR978182     3   0.000      0.977  0 0.000 1.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000
#> ERR978197     3   0.000      0.977  0 0.000 1.000
#> ERR978198     3   0.000      0.977  0 0.000 1.000
#> ERR978199     3   0.000      0.977  0 0.000 1.000
#> ERR978200     3   0.000      0.977  0 0.000 1.000
#> ERR978201     3   0.000      0.977  0 0.000 1.000
#> ERR978202     3   0.000      0.977  0 0.000 1.000
#> ERR978203     3   0.000      0.977  0 0.000 1.000
#> ERR978204     3   0.000      0.977  0 0.000 1.000
#> ERR978205     3   0.000      0.977  0 0.000 1.000
#> ERR978206     3   0.000      0.977  0 0.000 1.000
#> ERR978207     3   0.000      0.977  0 0.000 1.000
#> ERR978208     3   0.000      0.977  0 0.000 1.000
#> ERR978209     3   0.000      0.977  0 0.000 1.000
#> ERR978210     3   0.000      0.977  0 0.000 1.000
#> ERR978211     3   0.000      0.977  0 0.000 1.000
#> ERR978212     3   0.000      0.977  0 0.000 1.000
#> ERR978213     3   0.000      0.977  0 0.000 1.000
#> ERR978214     3   0.000      0.977  0 0.000 1.000
#> ERR978215     3   0.000      0.977  0 0.000 1.000
#> ERR978216     3   0.000      0.977  0 0.000 1.000
#> ERR978217     3   0.000      0.977  0 0.000 1.000
#> ERR978218     3   0.000      0.977  0 0.000 1.000
#> ERR978219     3   0.000      0.977  0 0.000 1.000
#> ERR978220     3   0.000      0.977  0 0.000 1.000
#> ERR978221     3   0.000      0.977  0 0.000 1.000
#> ERR978222     3   0.000      0.977  0 0.000 1.000
#> ERR978223     3   0.000      0.977  0 0.000 1.000
#> ERR978224     3   0.000      0.977  0 0.000 1.000
#> ERR978225     3   0.000      0.977  0 0.000 1.000
#> ERR978226     3   0.000      0.977  0 0.000 1.000
#> ERR978227     1   0.000      1.000  1 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000
#> ERR978241     3   0.000      0.977  0 0.000 1.000
#> ERR978242     3   0.000      0.977  0 0.000 1.000
#> ERR978243     3   0.000      0.977  0 0.000 1.000
#> ERR978244     3   0.000      0.977  0 0.000 1.000
#> ERR978245     3   0.000      0.977  0 0.000 1.000
#> ERR978246     3   0.000      0.977  0 0.000 1.000
#> ERR978247     3   0.000      0.977  0 0.000 1.000
#> ERR978248     3   0.546      0.624  0 0.288 0.712
#> ERR978249     3   0.529      0.658  0 0.268 0.732
#> ERR978250     3   0.546      0.624  0 0.288 0.712
#> ERR978251     3   0.514      0.683  0 0.252 0.748
#> ERR978252     3   0.522      0.670  0 0.260 0.740
#> ERR978253     3   0.540      0.638  0 0.280 0.720
#> ERR978254     3   0.546      0.624  0 0.288 0.712

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978123     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978124     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978125     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978126     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978127     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978128     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978129     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978130     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978131     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978132     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978133     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978134     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978135     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978136     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978137     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978138     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978139     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978140     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978141     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978142     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978143     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978144     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978145     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978146     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978147     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978148     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978149     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978150     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978151     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978152     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978169     4   0.270      0.848  0 0.000 0.124 0.876
#> ERR978170     4   0.276      0.844  0 0.000 0.128 0.872
#> ERR978171     4   0.336      0.790  0 0.000 0.176 0.824
#> ERR978172     4   0.327      0.800  0 0.000 0.168 0.832
#> ERR978173     4   0.312      0.814  0 0.000 0.156 0.844
#> ERR978174     4   0.215      0.880  0 0.000 0.088 0.912
#> ERR978175     4   0.307      0.819  0 0.000 0.152 0.848
#> ERR978176     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978177     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978178     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978179     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978180     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978181     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978182     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978197     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978198     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978199     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978200     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978201     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978202     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978203     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978204     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978205     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978206     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978207     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978208     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978209     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978210     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978211     3   0.000      1.000  0 0.000 1.000 0.000
#> ERR978212     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978213     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978214     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978215     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978216     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978217     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978218     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978219     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978220     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978221     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978222     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978223     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978224     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978225     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978226     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978241     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978242     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978243     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978244     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978245     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978246     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978247     4   0.000      0.947  0 0.000 0.000 1.000
#> ERR978248     4   0.436      0.629  0 0.292 0.000 0.708
#> ERR978249     4   0.422      0.661  0 0.272 0.000 0.728
#> ERR978250     4   0.430      0.643  0 0.284 0.000 0.716
#> ERR978251     4   0.401      0.702  0 0.244 0.000 0.756
#> ERR978252     4   0.416      0.673  0 0.264 0.000 0.736
#> ERR978253     4   0.433      0.636  0 0.288 0.000 0.712
#> ERR978254     4   0.433      0.636  0 0.288 0.000 0.712

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978123     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978124     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978125     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978126     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978127     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978128     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978129     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978130     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978131     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978132     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978133     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978134     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978135     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978136     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978137     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978138     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978139     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978140     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978141     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978142     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978143     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978144     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978145     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978146     5  0.0290      0.939  0 0.000 0.008 0.000 0.992
#> ERR978147     5  0.0290      0.939  0 0.000 0.008 0.000 0.992
#> ERR978148     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978149     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978150     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978151     5  0.0290      0.939  0 0.000 0.008 0.000 0.992
#> ERR978152     5  0.0162      0.942  0 0.000 0.004 0.000 0.996
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978170     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978171     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978172     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978173     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978174     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978175     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978176     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978177     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978178     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978179     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978180     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978181     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978182     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978183     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978197     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978198     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978199     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978200     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978201     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978202     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978203     3  0.0000      0.992  0 0.000 1.000 0.000 0.000
#> ERR978204     3  0.0794      0.975  0 0.000 0.972 0.000 0.028
#> ERR978205     3  0.0794      0.975  0 0.000 0.972 0.000 0.028
#> ERR978206     3  0.0794      0.975  0 0.000 0.972 0.000 0.028
#> ERR978207     3  0.0794      0.975  0 0.000 0.972 0.000 0.028
#> ERR978208     3  0.0794      0.975  0 0.000 0.972 0.000 0.028
#> ERR978209     3  0.0794      0.975  0 0.000 0.972 0.000 0.028
#> ERR978210     3  0.0794      0.975  0 0.000 0.972 0.000 0.028
#> ERR978211     3  0.0290      0.988  0 0.000 0.992 0.000 0.008
#> ERR978212     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978213     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978214     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978215     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978216     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978217     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978218     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978219     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978220     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978221     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978222     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978223     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978224     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978225     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978226     5  0.0000      0.944  0 0.000 0.000 0.000 1.000
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978242     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978243     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978244     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978245     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978246     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978247     4  0.0000      1.000  0 0.000 0.000 1.000 0.000
#> ERR978248     5  0.4800      0.725  0 0.196 0.000 0.088 0.716
#> ERR978249     5  0.4800      0.725  0 0.196 0.000 0.088 0.716
#> ERR978250     5  0.4800      0.725  0 0.196 0.000 0.088 0.716
#> ERR978251     5  0.4734      0.733  0 0.188 0.000 0.088 0.724
#> ERR978252     5  0.4800      0.725  0 0.196 0.000 0.088 0.716
#> ERR978253     5  0.4800      0.725  0 0.196 0.000 0.088 0.716
#> ERR978254     5  0.4800      0.725  0 0.196 0.000 0.088 0.716

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4    p5    p6
#> ERR978107     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978123     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978124     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978125     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978126     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978127     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978128     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978129     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978130     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978131     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978132     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978133     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978134     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978135     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978136     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978137     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978138     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978139     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978140     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978141     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978142     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978143     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978144     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978145     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978146     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978147     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978148     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978149     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978150     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978151     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978152     5   0.000      1.000  0  0 0.000 0.000 1.000 0.000
#> ERR978153     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978169     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978170     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978171     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978172     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978173     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978174     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978175     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978176     4   0.374      0.710  0  0 0.000 0.608 0.000 0.392
#> ERR978177     4   0.374      0.710  0  0 0.000 0.608 0.000 0.392
#> ERR978178     4   0.374      0.710  0  0 0.000 0.608 0.000 0.392
#> ERR978179     4   0.374      0.710  0  0 0.000 0.608 0.000 0.392
#> ERR978180     4   0.374      0.710  0  0 0.000 0.608 0.000 0.392
#> ERR978181     4   0.374      0.710  0  0 0.000 0.608 0.000 0.392
#> ERR978182     4   0.374      0.710  0  0 0.000 0.608 0.000 0.392
#> ERR978183     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978197     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978198     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978199     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978200     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978201     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978202     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978203     3   0.000      0.951  0  0 1.000 0.000 0.000 0.000
#> ERR978204     3   0.270      0.812  0  0 0.812 0.000 0.000 0.188
#> ERR978205     3   0.234      0.851  0  0 0.852 0.000 0.000 0.148
#> ERR978206     3   0.249      0.837  0  0 0.836 0.000 0.000 0.164
#> ERR978207     3   0.273      0.807  0  0 0.808 0.000 0.000 0.192
#> ERR978208     3   0.273      0.807  0  0 0.808 0.000 0.000 0.192
#> ERR978209     3   0.263      0.821  0  0 0.820 0.000 0.000 0.180
#> ERR978210     3   0.263      0.821  0  0 0.820 0.000 0.000 0.180
#> ERR978211     3   0.144      0.908  0  0 0.928 0.000 0.000 0.072
#> ERR978212     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978213     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978214     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978215     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978216     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978217     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978218     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978219     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978220     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978221     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978222     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978223     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978224     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978225     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978226     6   0.374      0.768  0  0 0.000 0.000 0.392 0.608
#> ERR978227     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978241     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978242     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978243     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978244     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978245     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978246     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978247     4   0.000      0.875  0  0 0.000 1.000 0.000 0.000
#> ERR978248     6   0.000      0.614  0  0 0.000 0.000 0.000 1.000
#> ERR978249     6   0.000      0.614  0  0 0.000 0.000 0.000 1.000
#> ERR978250     6   0.000      0.614  0  0 0.000 0.000 0.000 1.000
#> ERR978251     6   0.000      0.614  0  0 0.000 0.000 0.000 1.000
#> ERR978252     6   0.000      0.614  0  0 0.000 0.000 0.000 1.000
#> ERR978253     6   0.000      0.614  0  0 0.000 0.000 0.000 1.000
#> ERR978254     6   0.000      0.614  0  0 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 0.616           0.782       0.856         0.8619 0.757   0.640
#> 4 4 0.741           0.825       0.877         0.1953 0.840   0.630
#> 5 5 0.811           0.774       0.808         0.0945 0.941   0.782
#> 6 6 0.802           0.783       0.777         0.0258 0.958   0.800

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2   0.000      1.000  0 1.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000
#> ERR978123     3   0.141      0.711  0 0.036 0.964
#> ERR978124     3   0.141      0.711  0 0.036 0.964
#> ERR978125     3   0.141      0.711  0 0.036 0.964
#> ERR978126     3   0.141      0.711  0 0.036 0.964
#> ERR978127     3   0.141      0.711  0 0.036 0.964
#> ERR978128     3   0.141      0.711  0 0.036 0.964
#> ERR978129     3   0.141      0.711  0 0.036 0.964
#> ERR978130     3   0.141      0.711  0 0.036 0.964
#> ERR978131     3   0.141      0.711  0 0.036 0.964
#> ERR978132     3   0.141      0.711  0 0.036 0.964
#> ERR978133     3   0.141      0.711  0 0.036 0.964
#> ERR978134     3   0.141      0.711  0 0.036 0.964
#> ERR978135     3   0.141      0.711  0 0.036 0.964
#> ERR978136     3   0.141      0.711  0 0.036 0.964
#> ERR978137     3   0.141      0.711  0 0.036 0.964
#> ERR978138     3   0.543      0.690  0 0.284 0.716
#> ERR978139     3   0.543      0.690  0 0.284 0.716
#> ERR978140     3   0.543      0.690  0 0.284 0.716
#> ERR978141     3   0.543      0.690  0 0.284 0.716
#> ERR978142     3   0.543      0.690  0 0.284 0.716
#> ERR978143     3   0.543      0.690  0 0.284 0.716
#> ERR978144     3   0.543      0.690  0 0.284 0.716
#> ERR978145     3   0.543      0.690  0 0.284 0.716
#> ERR978146     3   0.543      0.690  0 0.284 0.716
#> ERR978147     3   0.543      0.690  0 0.284 0.716
#> ERR978148     3   0.543      0.690  0 0.284 0.716
#> ERR978149     3   0.543      0.690  0 0.284 0.716
#> ERR978150     3   0.543      0.690  0 0.284 0.716
#> ERR978151     3   0.543      0.690  0 0.284 0.716
#> ERR978152     3   0.543      0.690  0 0.284 0.716
#> ERR978153     1   0.000      1.000  1 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000
#> ERR978169     3   0.556      0.539  0 0.300 0.700
#> ERR978170     3   0.556      0.539  0 0.300 0.700
#> ERR978171     3   0.556      0.539  0 0.300 0.700
#> ERR978172     3   0.556      0.539  0 0.300 0.700
#> ERR978173     3   0.556      0.539  0 0.300 0.700
#> ERR978174     3   0.556      0.539  0 0.300 0.700
#> ERR978175     3   0.556      0.539  0 0.300 0.700
#> ERR978176     3   0.618      0.499  0 0.416 0.584
#> ERR978177     3   0.618      0.499  0 0.416 0.584
#> ERR978178     3   0.618      0.499  0 0.416 0.584
#> ERR978179     3   0.618      0.499  0 0.416 0.584
#> ERR978180     3   0.618      0.499  0 0.416 0.584
#> ERR978181     3   0.618      0.499  0 0.416 0.584
#> ERR978182     3   0.618      0.499  0 0.416 0.584
#> ERR978183     2   0.000      1.000  0 1.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000
#> ERR978197     3   0.153      0.712  0 0.040 0.960
#> ERR978198     3   0.153      0.712  0 0.040 0.960
#> ERR978199     3   0.153      0.712  0 0.040 0.960
#> ERR978200     3   0.153      0.712  0 0.040 0.960
#> ERR978201     3   0.153      0.712  0 0.040 0.960
#> ERR978202     3   0.153      0.712  0 0.040 0.960
#> ERR978203     3   0.153      0.712  0 0.040 0.960
#> ERR978204     3   0.153      0.712  0 0.040 0.960
#> ERR978205     3   0.153      0.712  0 0.040 0.960
#> ERR978206     3   0.153      0.712  0 0.040 0.960
#> ERR978207     3   0.153      0.712  0 0.040 0.960
#> ERR978208     3   0.153      0.712  0 0.040 0.960
#> ERR978209     3   0.153      0.712  0 0.040 0.960
#> ERR978210     3   0.153      0.712  0 0.040 0.960
#> ERR978211     3   0.153      0.712  0 0.040 0.960
#> ERR978212     3   0.543      0.690  0 0.284 0.716
#> ERR978213     3   0.543      0.690  0 0.284 0.716
#> ERR978214     3   0.543      0.690  0 0.284 0.716
#> ERR978215     3   0.543      0.690  0 0.284 0.716
#> ERR978216     3   0.543      0.690  0 0.284 0.716
#> ERR978217     3   0.543      0.690  0 0.284 0.716
#> ERR978218     3   0.543      0.690  0 0.284 0.716
#> ERR978219     3   0.543      0.690  0 0.284 0.716
#> ERR978220     3   0.543      0.690  0 0.284 0.716
#> ERR978221     3   0.543      0.690  0 0.284 0.716
#> ERR978222     3   0.543      0.690  0 0.284 0.716
#> ERR978223     3   0.543      0.690  0 0.284 0.716
#> ERR978224     3   0.543      0.690  0 0.284 0.716
#> ERR978225     3   0.543      0.690  0 0.284 0.716
#> ERR978226     3   0.543      0.690  0 0.284 0.716
#> ERR978227     1   0.000      1.000  1 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000
#> ERR978241     3   0.627      0.473  0 0.452 0.548
#> ERR978242     3   0.627      0.473  0 0.452 0.548
#> ERR978243     3   0.627      0.473  0 0.452 0.548
#> ERR978244     3   0.627      0.473  0 0.452 0.548
#> ERR978245     3   0.627      0.473  0 0.452 0.548
#> ERR978246     3   0.627      0.473  0 0.452 0.548
#> ERR978247     3   0.627      0.473  0 0.452 0.548
#> ERR978248     3   0.631      0.434  0 0.488 0.512
#> ERR978249     3   0.631      0.434  0 0.488 0.512
#> ERR978250     3   0.631      0.434  0 0.488 0.512
#> ERR978251     3   0.631      0.434  0 0.488 0.512
#> ERR978252     3   0.631      0.434  0 0.488 0.512
#> ERR978253     3   0.631      0.434  0 0.488 0.512
#> ERR978254     3   0.631      0.434  0 0.488 0.512

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978123     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978124     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978125     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978126     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978127     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978128     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978129     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978130     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978131     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978132     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978133     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978134     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978135     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978136     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978137     3  0.0707      0.982  0 0.000 0.980 0.020
#> ERR978138     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978139     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978140     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978141     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978142     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978143     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978144     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978145     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978146     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978147     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978148     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978149     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978150     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978151     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978152     4  0.4961      0.545  0 0.000 0.448 0.552
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978169     4  0.3688      0.545  0 0.000 0.208 0.792
#> ERR978170     4  0.3688      0.545  0 0.000 0.208 0.792
#> ERR978171     4  0.3649      0.550  0 0.000 0.204 0.796
#> ERR978172     4  0.3649      0.550  0 0.000 0.204 0.796
#> ERR978173     4  0.3649      0.550  0 0.000 0.204 0.796
#> ERR978174     4  0.3649      0.550  0 0.000 0.204 0.796
#> ERR978175     4  0.3688      0.545  0 0.000 0.208 0.792
#> ERR978176     4  0.2921      0.598  0 0.000 0.140 0.860
#> ERR978177     4  0.2921      0.598  0 0.000 0.140 0.860
#> ERR978178     4  0.2921      0.598  0 0.000 0.140 0.860
#> ERR978179     4  0.2921      0.598  0 0.000 0.140 0.860
#> ERR978180     4  0.2921      0.598  0 0.000 0.140 0.860
#> ERR978181     4  0.2921      0.598  0 0.000 0.140 0.860
#> ERR978182     4  0.2921      0.598  0 0.000 0.140 0.860
#> ERR978183     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978197     3  0.0000      0.980  0 0.000 1.000 0.000
#> ERR978198     3  0.0000      0.980  0 0.000 1.000 0.000
#> ERR978199     3  0.0000      0.980  0 0.000 1.000 0.000
#> ERR978200     3  0.0000      0.980  0 0.000 1.000 0.000
#> ERR978201     3  0.0000      0.980  0 0.000 1.000 0.000
#> ERR978202     3  0.0000      0.980  0 0.000 1.000 0.000
#> ERR978203     3  0.0000      0.980  0 0.000 1.000 0.000
#> ERR978204     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978205     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978206     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978207     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978208     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978209     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978210     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978211     3  0.0336      0.977  0 0.000 0.992 0.008
#> ERR978212     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978213     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978214     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978215     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978216     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978217     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978218     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978219     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978220     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978221     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978222     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978223     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978224     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978225     4  0.4933      0.542  0 0.000 0.432 0.568
#> ERR978226     4  0.4967      0.541  0 0.000 0.452 0.548
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978241     4  0.2216      0.614  0 0.000 0.092 0.908
#> ERR978242     4  0.2216      0.614  0 0.000 0.092 0.908
#> ERR978243     4  0.2216      0.614  0 0.000 0.092 0.908
#> ERR978244     4  0.2216      0.614  0 0.000 0.092 0.908
#> ERR978245     4  0.2216      0.614  0 0.000 0.092 0.908
#> ERR978246     4  0.2216      0.614  0 0.000 0.092 0.908
#> ERR978247     4  0.2216      0.614  0 0.000 0.092 0.908
#> ERR978248     4  0.5160      0.589  0 0.136 0.104 0.760
#> ERR978249     4  0.5160      0.589  0 0.136 0.104 0.760
#> ERR978250     4  0.5160      0.589  0 0.136 0.104 0.760
#> ERR978251     4  0.5160      0.589  0 0.136 0.104 0.760
#> ERR978252     4  0.5160      0.589  0 0.136 0.104 0.760
#> ERR978253     4  0.5160      0.589  0 0.136 0.104 0.760
#> ERR978254     4  0.5160      0.589  0 0.136 0.104 0.760

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> ERR978107     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> ERR978123     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978124     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978125     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978126     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978127     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978128     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978129     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978130     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978131     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978132     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978133     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978134     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978135     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978136     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978137     3  0.4801      0.656 0.372 0.000 0.604 0.020 0.004
#> ERR978138     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978139     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978140     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978141     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978142     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978143     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978144     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978145     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978146     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978147     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978148     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978149     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978150     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978151     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978152     4  0.6028      0.490 0.372 0.000 0.008 0.524 0.096
#> ERR978153     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978154     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978155     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978156     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978157     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978158     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978159     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978160     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978161     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978162     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978163     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978164     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978165     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978166     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978167     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978168     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978169     4  0.4126      0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978170     4  0.4126      0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978171     4  0.4126      0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978172     4  0.4126      0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978173     4  0.4126      0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978174     4  0.4126      0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978175     4  0.4126      0.297 0.000 0.000 0.380 0.620 0.000
#> ERR978176     4  0.2462      0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978177     4  0.2462      0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978178     4  0.2462      0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978179     4  0.2462      0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978180     4  0.2462      0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978181     4  0.2462      0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978182     4  0.2462      0.611 0.000 0.000 0.112 0.880 0.008
#> ERR978183     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978184     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978185     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978186     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978187     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978188     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978189     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978190     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978191     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978192     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978193     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978194     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978195     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978196     2  0.0162      0.998 0.000 0.996 0.000 0.000 0.004
#> ERR978197     3  0.1121      0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978198     3  0.1121      0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978199     3  0.1121      0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978200     3  0.1121      0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978201     3  0.1121      0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978202     3  0.1121      0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978203     3  0.1121      0.583 0.000 0.000 0.956 0.044 0.000
#> ERR978204     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978205     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978206     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978207     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978208     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978209     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978210     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978211     3  0.1341      0.579 0.000 0.000 0.944 0.056 0.000
#> ERR978212     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978213     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978214     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978215     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978216     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978217     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978218     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978219     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978220     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978221     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978222     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978223     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978224     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978225     5  0.4464      0.988 0.000 0.000 0.408 0.008 0.584
#> ERR978226     5  0.6055      0.823 0.000 0.000 0.408 0.120 0.472
#> ERR978227     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978228     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978229     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978230     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978231     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978232     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978233     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978234     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978235     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978236     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978237     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978238     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978239     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978240     1  0.4101      1.000 0.628 0.000 0.000 0.000 0.372
#> ERR978241     4  0.2411      0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978242     4  0.2411      0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978243     4  0.2411      0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978244     4  0.2411      0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978245     4  0.2411      0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978246     4  0.2411      0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978247     4  0.2411      0.615 0.000 0.000 0.108 0.884 0.008
#> ERR978248     4  0.5405      0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978249     4  0.5405      0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978250     4  0.5405      0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978251     4  0.5405      0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978252     4  0.5405      0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978253     4  0.5405      0.491 0.000 0.136 0.016 0.700 0.148
#> ERR978254     4  0.5405      0.491 0.000 0.136 0.016 0.700 0.148

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.788  0 1.000 0.000 0.000 0.000 0.000
#> ERR978123     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978124     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978125     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978126     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978127     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978128     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978129     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978130     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978131     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978132     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978133     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978134     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978135     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978136     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978137     3  0.4473      0.649  0 0.000 0.584 0.000 0.036 0.380
#> ERR978138     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978139     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978140     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978141     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978142     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978143     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978144     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978145     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978146     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978147     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978148     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978149     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978150     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978151     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978152     6  0.0865      0.746  0 0.000 0.000 0.000 0.036 0.964
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.5368      0.608  0 0.000 0.400 0.488 0.000 0.112
#> ERR978170     4  0.5368      0.608  0 0.000 0.400 0.488 0.000 0.112
#> ERR978171     4  0.5368      0.608  0 0.000 0.400 0.488 0.000 0.112
#> ERR978172     4  0.5368      0.608  0 0.000 0.400 0.488 0.000 0.112
#> ERR978173     4  0.5368      0.608  0 0.000 0.400 0.488 0.000 0.112
#> ERR978174     4  0.5368      0.608  0 0.000 0.400 0.488 0.000 0.112
#> ERR978175     4  0.5368      0.608  0 0.000 0.400 0.488 0.000 0.112
#> ERR978176     4  0.5576      0.792  0 0.000 0.116 0.512 0.008 0.364
#> ERR978177     4  0.5576      0.792  0 0.000 0.116 0.512 0.008 0.364
#> ERR978178     4  0.5576      0.792  0 0.000 0.116 0.512 0.008 0.364
#> ERR978179     4  0.5576      0.792  0 0.000 0.116 0.512 0.008 0.364
#> ERR978180     4  0.5576      0.792  0 0.000 0.116 0.512 0.008 0.364
#> ERR978181     4  0.5576      0.792  0 0.000 0.116 0.512 0.008 0.364
#> ERR978182     4  0.5576      0.792  0 0.000 0.116 0.512 0.008 0.364
#> ERR978183     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978184     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978185     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978186     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978187     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978188     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978189     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978190     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978191     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978192     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978193     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978194     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978195     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978196     2  0.3867      0.752  0 0.512 0.000 0.488 0.000 0.000
#> ERR978197     3  0.4919      0.578  0 0.000 0.536 0.012 0.412 0.040
#> ERR978198     3  0.4919      0.578  0 0.000 0.536 0.012 0.412 0.040
#> ERR978199     3  0.4919      0.578  0 0.000 0.536 0.012 0.412 0.040
#> ERR978200     3  0.4919      0.578  0 0.000 0.536 0.012 0.412 0.040
#> ERR978201     3  0.4919      0.578  0 0.000 0.536 0.012 0.412 0.040
#> ERR978202     3  0.4919      0.578  0 0.000 0.536 0.012 0.412 0.040
#> ERR978203     3  0.4919      0.578  0 0.000 0.536 0.012 0.412 0.040
#> ERR978204     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978205     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978206     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978207     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978208     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978209     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978210     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978211     3  0.5499      0.563  0 0.000 0.500 0.036 0.412 0.052
#> ERR978212     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978213     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978214     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978215     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978216     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978217     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978218     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978219     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978220     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978221     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978222     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978223     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978224     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978225     5  0.0146      0.991  0 0.000 0.000 0.000 0.996 0.004
#> ERR978226     5  0.1714      0.863  0 0.000 0.000 0.000 0.908 0.092
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978241     4  0.5334      0.790  0 0.000 0.112 0.512 0.000 0.376
#> ERR978242     4  0.5334      0.790  0 0.000 0.112 0.512 0.000 0.376
#> ERR978243     4  0.5334      0.790  0 0.000 0.112 0.512 0.000 0.376
#> ERR978244     4  0.5334      0.790  0 0.000 0.112 0.512 0.000 0.376
#> ERR978245     4  0.5334      0.790  0 0.000 0.112 0.512 0.000 0.376
#> ERR978246     4  0.5334      0.790  0 0.000 0.112 0.512 0.000 0.376
#> ERR978247     4  0.5334      0.790  0 0.000 0.112 0.512 0.000 0.376
#> ERR978248     6  0.5585      0.456  0 0.000 0.416 0.000 0.140 0.444
#> ERR978249     6  0.5585      0.456  0 0.000 0.416 0.000 0.140 0.444
#> ERR978250     6  0.5585      0.456  0 0.000 0.416 0.000 0.140 0.444
#> ERR978251     6  0.5585      0.456  0 0.000 0.416 0.000 0.140 0.444
#> ERR978252     6  0.5585      0.456  0 0.000 0.416 0.000 0.140 0.444
#> ERR978253     6  0.5585      0.456  0 0.000 0.416 0.000 0.140 0.444
#> ERR978254     6  0.5585      0.456  0 0.000 0.416 0.000 0.140 0.444

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 1.000           0.962       0.984         0.7780 0.757   0.640
#> 4 4 0.769           0.833       0.873         0.2560 0.846   0.642
#> 5 5 1.000           1.000       1.000         0.1061 0.917   0.702
#> 6 6 0.964           0.942       0.947         0.0199 0.986   0.931

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2   0.000      1.000  0 1.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000
#> ERR978123     3   0.000      0.972  0 0.000 1.000
#> ERR978124     3   0.000      0.972  0 0.000 1.000
#> ERR978125     3   0.000      0.972  0 0.000 1.000
#> ERR978126     3   0.000      0.972  0 0.000 1.000
#> ERR978127     3   0.000      0.972  0 0.000 1.000
#> ERR978128     3   0.000      0.972  0 0.000 1.000
#> ERR978129     3   0.000      0.972  0 0.000 1.000
#> ERR978130     3   0.000      0.972  0 0.000 1.000
#> ERR978131     3   0.000      0.972  0 0.000 1.000
#> ERR978132     3   0.000      0.972  0 0.000 1.000
#> ERR978133     3   0.000      0.972  0 0.000 1.000
#> ERR978134     3   0.000      0.972  0 0.000 1.000
#> ERR978135     3   0.000      0.972  0 0.000 1.000
#> ERR978136     3   0.000      0.972  0 0.000 1.000
#> ERR978137     3   0.000      0.972  0 0.000 1.000
#> ERR978138     3   0.000      0.972  0 0.000 1.000
#> ERR978139     3   0.000      0.972  0 0.000 1.000
#> ERR978140     3   0.000      0.972  0 0.000 1.000
#> ERR978141     3   0.000      0.972  0 0.000 1.000
#> ERR978142     3   0.000      0.972  0 0.000 1.000
#> ERR978143     3   0.000      0.972  0 0.000 1.000
#> ERR978144     3   0.000      0.972  0 0.000 1.000
#> ERR978145     3   0.000      0.972  0 0.000 1.000
#> ERR978146     3   0.000      0.972  0 0.000 1.000
#> ERR978147     3   0.000      0.972  0 0.000 1.000
#> ERR978148     3   0.000      0.972  0 0.000 1.000
#> ERR978149     3   0.000      0.972  0 0.000 1.000
#> ERR978150     3   0.000      0.972  0 0.000 1.000
#> ERR978151     3   0.000      0.972  0 0.000 1.000
#> ERR978152     3   0.000      0.972  0 0.000 1.000
#> ERR978153     1   0.000      1.000  1 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000
#> ERR978169     3   0.000      0.972  0 0.000 1.000
#> ERR978170     3   0.000      0.972  0 0.000 1.000
#> ERR978171     3   0.000      0.972  0 0.000 1.000
#> ERR978172     3   0.000      0.972  0 0.000 1.000
#> ERR978173     3   0.000      0.972  0 0.000 1.000
#> ERR978174     3   0.000      0.972  0 0.000 1.000
#> ERR978175     3   0.000      0.972  0 0.000 1.000
#> ERR978176     3   0.000      0.972  0 0.000 1.000
#> ERR978177     3   0.000      0.972  0 0.000 1.000
#> ERR978178     3   0.000      0.972  0 0.000 1.000
#> ERR978179     3   0.000      0.972  0 0.000 1.000
#> ERR978180     3   0.000      0.972  0 0.000 1.000
#> ERR978181     3   0.000      0.972  0 0.000 1.000
#> ERR978182     3   0.000      0.972  0 0.000 1.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000
#> ERR978197     3   0.000      0.972  0 0.000 1.000
#> ERR978198     3   0.000      0.972  0 0.000 1.000
#> ERR978199     3   0.000      0.972  0 0.000 1.000
#> ERR978200     3   0.000      0.972  0 0.000 1.000
#> ERR978201     3   0.000      0.972  0 0.000 1.000
#> ERR978202     3   0.000      0.972  0 0.000 1.000
#> ERR978203     3   0.000      0.972  0 0.000 1.000
#> ERR978204     3   0.000      0.972  0 0.000 1.000
#> ERR978205     3   0.000      0.972  0 0.000 1.000
#> ERR978206     3   0.000      0.972  0 0.000 1.000
#> ERR978207     3   0.000      0.972  0 0.000 1.000
#> ERR978208     3   0.000      0.972  0 0.000 1.000
#> ERR978209     3   0.000      0.972  0 0.000 1.000
#> ERR978210     3   0.000      0.972  0 0.000 1.000
#> ERR978211     3   0.000      0.972  0 0.000 1.000
#> ERR978212     3   0.000      0.972  0 0.000 1.000
#> ERR978213     3   0.000      0.972  0 0.000 1.000
#> ERR978214     3   0.000      0.972  0 0.000 1.000
#> ERR978215     3   0.000      0.972  0 0.000 1.000
#> ERR978216     3   0.000      0.972  0 0.000 1.000
#> ERR978217     3   0.000      0.972  0 0.000 1.000
#> ERR978218     3   0.000      0.972  0 0.000 1.000
#> ERR978219     3   0.000      0.972  0 0.000 1.000
#> ERR978220     3   0.000      0.972  0 0.000 1.000
#> ERR978221     3   0.000      0.972  0 0.000 1.000
#> ERR978222     3   0.000      0.972  0 0.000 1.000
#> ERR978223     3   0.000      0.972  0 0.000 1.000
#> ERR978224     3   0.000      0.972  0 0.000 1.000
#> ERR978225     3   0.000      0.972  0 0.000 1.000
#> ERR978226     3   0.000      0.972  0 0.000 1.000
#> ERR978227     1   0.000      1.000  1 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000
#> ERR978241     3   0.000      0.972  0 0.000 1.000
#> ERR978242     3   0.000      0.972  0 0.000 1.000
#> ERR978243     3   0.000      0.972  0 0.000 1.000
#> ERR978244     3   0.000      0.972  0 0.000 1.000
#> ERR978245     3   0.000      0.972  0 0.000 1.000
#> ERR978246     3   0.000      0.972  0 0.000 1.000
#> ERR978247     3   0.000      0.972  0 0.000 1.000
#> ERR978248     3   0.617      0.348  0 0.412 0.588
#> ERR978249     3   0.579      0.534  0 0.332 0.668
#> ERR978250     3   0.579      0.534  0 0.332 0.668
#> ERR978251     3   0.543      0.621  0 0.284 0.716
#> ERR978252     3   0.562      0.580  0 0.308 0.692
#> ERR978253     3   0.581      0.526  0 0.336 0.664
#> ERR978254     3   0.603      0.439  0 0.376 0.624

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978123     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978124     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978125     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978126     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978127     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978128     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978129     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978130     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978131     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978132     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978133     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978134     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978135     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978136     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978137     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978138     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978139     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978140     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978141     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978142     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978143     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978144     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978145     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978146     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978147     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978148     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978149     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978150     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978151     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978152     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978169     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978170     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978171     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978172     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978173     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978174     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978175     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978176     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978177     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978178     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978179     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978180     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978181     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978182     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978183     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0 1.000 0.000 0.000
#> ERR978197     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978198     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978199     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978200     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978201     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978202     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978203     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978204     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978205     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978206     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978207     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978208     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978209     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978210     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978211     3  0.0000      0.677  0 0.000 1.000 0.000
#> ERR978212     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978213     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978214     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978215     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978216     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978217     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978218     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978219     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978220     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978221     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978222     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978223     3  0.5000      0.606  0 0.000 0.504 0.496
#> ERR978224     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978225     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978226     3  0.4999      0.610  0 0.000 0.508 0.492
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978241     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978242     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978243     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978244     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978245     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978246     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978247     4  0.3569      0.925  0 0.000 0.196 0.804
#> ERR978248     4  0.1661      0.749  0 0.052 0.004 0.944
#> ERR978249     4  0.1209      0.766  0 0.032 0.004 0.964
#> ERR978250     4  0.1488      0.775  0 0.032 0.012 0.956
#> ERR978251     4  0.1042      0.765  0 0.020 0.008 0.972
#> ERR978252     4  0.1820      0.784  0 0.036 0.020 0.944
#> ERR978253     4  0.0927      0.763  0 0.016 0.008 0.976
#> ERR978254     4  0.1452      0.766  0 0.036 0.008 0.956

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2 p3    p4 p5
#> ERR978107     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978108     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978109     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978110     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978111     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978112     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978113     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978114     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978115     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978116     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978117     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978118     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978119     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978120     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978121     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978122     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978123     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978124     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978125     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978126     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978127     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978128     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978129     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978130     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978131     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978132     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978133     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978134     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978135     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978136     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978137     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978138     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978139     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978140     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978141     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978142     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978143     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978144     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978145     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978146     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978147     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978148     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978149     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978150     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978151     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978152     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978153     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978154     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978155     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978156     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978157     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978158     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978159     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978160     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978161     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978162     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978163     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978164     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978165     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978166     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978167     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978168     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978169     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978170     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978171     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978172     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978173     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978174     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978175     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978176     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978177     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978178     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978179     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978180     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978181     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978182     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978183     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978184     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978185     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978186     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978187     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978188     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978189     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978190     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978191     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978192     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978193     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978194     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978195     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978196     2  0.0000      1.000  0 1.000  0 0.000  0
#> ERR978197     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978198     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978199     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978200     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978201     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978202     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978203     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978204     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978205     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978206     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978207     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978208     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978209     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978210     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978211     3  0.0000      1.000  0 0.000  1 0.000  0
#> ERR978212     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978213     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978214     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978215     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978216     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978217     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978218     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978219     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978220     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978221     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978222     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978223     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978224     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978225     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978226     5  0.0000      1.000  0 0.000  0 0.000  1
#> ERR978227     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978228     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978229     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978230     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978231     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978232     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978233     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978234     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978235     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978236     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978237     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978238     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978239     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978240     1  0.0000      1.000  1 0.000  0 0.000  0
#> ERR978241     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978242     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978243     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978244     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978245     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978246     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978247     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978248     4  0.0162      0.996  0 0.004  0 0.996  0
#> ERR978249     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978250     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978251     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978252     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978253     4  0.0000      1.000  0 0.000  0 1.000  0
#> ERR978254     4  0.0162      0.996  0 0.004  0 0.996  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978123     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978124     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978125     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978126     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978127     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978128     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978129     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978130     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978131     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978132     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978133     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978134     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978135     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978136     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978137     3  0.0146      0.998  0  0 0.996 0.000 0.000 0.004
#> ERR978138     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978139     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978140     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978141     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978142     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978143     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978144     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978145     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978146     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978147     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978148     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978149     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978150     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978151     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978152     5  0.1765      0.916  0  0 0.000 0.000 0.904 0.096
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978170     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978171     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978172     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978173     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978174     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978175     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978176     4  0.3428      0.555  0  0 0.000 0.696 0.000 0.304
#> ERR978177     4  0.3428      0.555  0  0 0.000 0.696 0.000 0.304
#> ERR978178     4  0.3428      0.555  0  0 0.000 0.696 0.000 0.304
#> ERR978179     4  0.3428      0.555  0  0 0.000 0.696 0.000 0.304
#> ERR978180     4  0.3428      0.555  0  0 0.000 0.696 0.000 0.304
#> ERR978181     4  0.3428      0.555  0  0 0.000 0.696 0.000 0.304
#> ERR978182     4  0.3428      0.555  0  0 0.000 0.696 0.000 0.304
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978197     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978198     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978199     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978200     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978201     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978202     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978203     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978204     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978205     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978206     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978207     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978208     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978209     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978210     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978211     3  0.0000      0.998  0  0 1.000 0.000 0.000 0.000
#> ERR978212     5  0.2454      0.845  0  0 0.000 0.000 0.840 0.160
#> ERR978213     5  0.2219      0.863  0  0 0.000 0.000 0.864 0.136
#> ERR978214     5  0.1663      0.889  0  0 0.000 0.000 0.912 0.088
#> ERR978215     5  0.1501      0.894  0  0 0.000 0.000 0.924 0.076
#> ERR978216     5  0.2048      0.873  0  0 0.000 0.000 0.880 0.120
#> ERR978217     5  0.2340      0.854  0  0 0.000 0.000 0.852 0.148
#> ERR978218     5  0.2854      0.800  0  0 0.000 0.000 0.792 0.208
#> ERR978219     5  0.1556      0.890  0  0 0.000 0.000 0.920 0.080
#> ERR978220     5  0.1007      0.902  0  0 0.000 0.000 0.956 0.044
#> ERR978221     5  0.0713      0.906  0  0 0.000 0.000 0.972 0.028
#> ERR978222     5  0.0713      0.906  0  0 0.000 0.000 0.972 0.028
#> ERR978223     5  0.0790      0.905  0  0 0.000 0.000 0.968 0.032
#> ERR978224     5  0.0865      0.904  0  0 0.000 0.000 0.964 0.036
#> ERR978225     5  0.1610      0.889  0  0 0.000 0.000 0.916 0.084
#> ERR978226     5  0.2562      0.822  0  0 0.000 0.000 0.828 0.172
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978242     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978243     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978244     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978245     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978246     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978247     4  0.0000      0.844  0  0 0.000 1.000 0.000 0.000
#> ERR978248     6  0.2854      0.979  0  0 0.000 0.208 0.000 0.792
#> ERR978249     6  0.2941      0.988  0  0 0.000 0.220 0.000 0.780
#> ERR978250     6  0.2969      0.986  0  0 0.000 0.224 0.000 0.776
#> ERR978251     6  0.3023      0.976  0  0 0.000 0.232 0.000 0.768
#> ERR978252     6  0.2969      0.986  0  0 0.000 0.224 0.000 0.776
#> ERR978253     6  0.2912      0.987  0  0 0.000 0.216 0.000 0.784
#> ERR978254     6  0.2883      0.984  0  0 0.000 0.212 0.000 0.788

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.259           0.815       0.791         0.3890 0.515   0.515
#> 3 3 0.419           0.887       0.836         0.5479 0.840   0.689
#> 4 4 0.765           0.853       0.864         0.1776 0.943   0.840
#> 5 5 0.841           0.888       0.903         0.1103 0.917   0.722
#> 6 6 0.899           0.904       0.926         0.0438 0.961   0.821

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2  0.7299      0.991 0.204 0.796
#> ERR978108     2  0.7299      0.991 0.204 0.796
#> ERR978109     2  0.7299      0.991 0.204 0.796
#> ERR978110     2  0.7299      0.991 0.204 0.796
#> ERR978111     2  0.7299      0.991 0.204 0.796
#> ERR978112     2  0.7299      0.991 0.204 0.796
#> ERR978113     2  0.7299      0.991 0.204 0.796
#> ERR978114     2  0.7299      0.991 0.204 0.796
#> ERR978115     2  0.7299      0.991 0.204 0.796
#> ERR978116     2  0.7299      0.991 0.204 0.796
#> ERR978117     2  0.7299      0.991 0.204 0.796
#> ERR978118     2  0.7299      0.991 0.204 0.796
#> ERR978119     2  0.7299      0.991 0.204 0.796
#> ERR978120     2  0.7299      0.991 0.204 0.796
#> ERR978121     2  0.7299      0.991 0.204 0.796
#> ERR978122     2  0.7299      0.991 0.204 0.796
#> ERR978123     1  0.8555      0.709 0.720 0.280
#> ERR978124     1  0.8555      0.709 0.720 0.280
#> ERR978125     1  0.8555      0.709 0.720 0.280
#> ERR978126     1  0.8555      0.709 0.720 0.280
#> ERR978127     1  0.8555      0.709 0.720 0.280
#> ERR978128     1  0.8555      0.709 0.720 0.280
#> ERR978129     1  0.8555      0.709 0.720 0.280
#> ERR978130     1  0.8555      0.709 0.720 0.280
#> ERR978131     1  0.8555      0.709 0.720 0.280
#> ERR978132     1  0.8555      0.709 0.720 0.280
#> ERR978133     1  0.8555      0.709 0.720 0.280
#> ERR978134     1  0.8555      0.709 0.720 0.280
#> ERR978135     1  0.8555      0.709 0.720 0.280
#> ERR978136     1  0.8555      0.709 0.720 0.280
#> ERR978137     1  0.8555      0.709 0.720 0.280
#> ERR978138     1  0.8555      0.709 0.720 0.280
#> ERR978139     1  0.8555      0.709 0.720 0.280
#> ERR978140     1  0.8555      0.709 0.720 0.280
#> ERR978141     1  0.8555      0.709 0.720 0.280
#> ERR978142     1  0.8555      0.709 0.720 0.280
#> ERR978143     1  0.8555      0.709 0.720 0.280
#> ERR978144     1  0.8555      0.709 0.720 0.280
#> ERR978145     1  0.8555      0.709 0.720 0.280
#> ERR978146     1  0.8555      0.709 0.720 0.280
#> ERR978147     1  0.8555      0.709 0.720 0.280
#> ERR978148     1  0.8555      0.709 0.720 0.280
#> ERR978149     1  0.8555      0.709 0.720 0.280
#> ERR978150     1  0.8555      0.709 0.720 0.280
#> ERR978151     1  0.8555      0.709 0.720 0.280
#> ERR978152     1  0.8555      0.709 0.720 0.280
#> ERR978153     1  0.0672      0.732 0.992 0.008
#> ERR978154     1  0.0672      0.732 0.992 0.008
#> ERR978155     1  0.0672      0.732 0.992 0.008
#> ERR978156     1  0.0672      0.732 0.992 0.008
#> ERR978157     1  0.0672      0.732 0.992 0.008
#> ERR978158     1  0.0672      0.732 0.992 0.008
#> ERR978159     1  0.0672      0.732 0.992 0.008
#> ERR978160     1  0.0672      0.732 0.992 0.008
#> ERR978161     1  0.0672      0.732 0.992 0.008
#> ERR978162     1  0.0672      0.732 0.992 0.008
#> ERR978163     1  0.0672      0.732 0.992 0.008
#> ERR978164     1  0.0672      0.732 0.992 0.008
#> ERR978165     1  0.0672      0.732 0.992 0.008
#> ERR978166     1  0.0672      0.732 0.992 0.008
#> ERR978167     1  0.0672      0.732 0.992 0.008
#> ERR978168     1  0.0672      0.732 0.992 0.008
#> ERR978169     1  0.9608      0.652 0.616 0.384
#> ERR978170     1  0.9608      0.652 0.616 0.384
#> ERR978171     1  0.9608      0.652 0.616 0.384
#> ERR978172     1  0.9608      0.652 0.616 0.384
#> ERR978173     1  0.9608      0.652 0.616 0.384
#> ERR978174     1  0.9608      0.652 0.616 0.384
#> ERR978175     1  0.9608      0.652 0.616 0.384
#> ERR978176     1  0.9608      0.652 0.616 0.384
#> ERR978177     1  0.9608      0.652 0.616 0.384
#> ERR978178     1  0.9608      0.652 0.616 0.384
#> ERR978179     1  0.9608      0.652 0.616 0.384
#> ERR978180     1  0.9608      0.652 0.616 0.384
#> ERR978181     1  0.9608      0.652 0.616 0.384
#> ERR978182     1  0.9608      0.652 0.616 0.384
#> ERR978183     2  0.7299      0.991 0.204 0.796
#> ERR978184     2  0.7299      0.991 0.204 0.796
#> ERR978185     2  0.7299      0.991 0.204 0.796
#> ERR978186     2  0.7299      0.991 0.204 0.796
#> ERR978187     2  0.7299      0.991 0.204 0.796
#> ERR978188     2  0.7299      0.991 0.204 0.796
#> ERR978189     2  0.7299      0.991 0.204 0.796
#> ERR978190     2  0.7299      0.991 0.204 0.796
#> ERR978191     2  0.7299      0.991 0.204 0.796
#> ERR978192     2  0.7299      0.991 0.204 0.796
#> ERR978193     2  0.7299      0.991 0.204 0.796
#> ERR978194     2  0.7299      0.991 0.204 0.796
#> ERR978195     2  0.7299      0.991 0.204 0.796
#> ERR978196     2  0.7299      0.991 0.204 0.796
#> ERR978197     2  0.7674      0.972 0.224 0.776
#> ERR978198     2  0.7674      0.972 0.224 0.776
#> ERR978199     2  0.7674      0.972 0.224 0.776
#> ERR978200     2  0.7674      0.972 0.224 0.776
#> ERR978201     2  0.7674      0.972 0.224 0.776
#> ERR978202     2  0.7674      0.972 0.224 0.776
#> ERR978203     2  0.7674      0.972 0.224 0.776
#> ERR978204     2  0.7674      0.972 0.224 0.776
#> ERR978205     2  0.7674      0.972 0.224 0.776
#> ERR978206     2  0.7674      0.972 0.224 0.776
#> ERR978207     2  0.7674      0.972 0.224 0.776
#> ERR978208     2  0.7674      0.972 0.224 0.776
#> ERR978209     2  0.7674      0.972 0.224 0.776
#> ERR978210     2  0.7674      0.972 0.224 0.776
#> ERR978211     2  0.7674      0.972 0.224 0.776
#> ERR978212     2  0.7299      0.991 0.204 0.796
#> ERR978213     2  0.7299      0.991 0.204 0.796
#> ERR978214     2  0.7299      0.991 0.204 0.796
#> ERR978215     2  0.7299      0.991 0.204 0.796
#> ERR978216     2  0.7299      0.991 0.204 0.796
#> ERR978217     2  0.7299      0.991 0.204 0.796
#> ERR978218     2  0.7299      0.991 0.204 0.796
#> ERR978219     2  0.7299      0.991 0.204 0.796
#> ERR978220     2  0.7299      0.991 0.204 0.796
#> ERR978221     2  0.7299      0.991 0.204 0.796
#> ERR978222     2  0.7299      0.991 0.204 0.796
#> ERR978223     2  0.7299      0.991 0.204 0.796
#> ERR978224     2  0.7299      0.991 0.204 0.796
#> ERR978225     2  0.7299      0.991 0.204 0.796
#> ERR978226     2  0.7299      0.991 0.204 0.796
#> ERR978227     1  0.0672      0.732 0.992 0.008
#> ERR978228     1  0.0672      0.732 0.992 0.008
#> ERR978229     1  0.0672      0.732 0.992 0.008
#> ERR978230     1  0.0672      0.732 0.992 0.008
#> ERR978231     1  0.0672      0.732 0.992 0.008
#> ERR978232     1  0.0672      0.732 0.992 0.008
#> ERR978233     1  0.0672      0.732 0.992 0.008
#> ERR978234     1  0.0672      0.732 0.992 0.008
#> ERR978235     1  0.0672      0.732 0.992 0.008
#> ERR978236     1  0.0672      0.732 0.992 0.008
#> ERR978237     1  0.0672      0.732 0.992 0.008
#> ERR978238     1  0.0672      0.732 0.992 0.008
#> ERR978239     1  0.0672      0.732 0.992 0.008
#> ERR978240     1  0.0672      0.732 0.992 0.008
#> ERR978241     1  0.8955      0.650 0.688 0.312
#> ERR978242     1  0.8955      0.650 0.688 0.312
#> ERR978243     1  0.8955      0.650 0.688 0.312
#> ERR978244     1  0.8955      0.650 0.688 0.312
#> ERR978245     1  0.8955      0.650 0.688 0.312
#> ERR978246     1  0.8955      0.650 0.688 0.312
#> ERR978247     1  0.8955      0.650 0.688 0.312
#> ERR978248     1  0.8955      0.650 0.688 0.312
#> ERR978249     1  0.8955      0.650 0.688 0.312
#> ERR978250     1  0.8955      0.650 0.688 0.312
#> ERR978251     1  0.8955      0.650 0.688 0.312
#> ERR978252     1  0.8955      0.650 0.688 0.312
#> ERR978253     1  0.8955      0.650 0.688 0.312
#> ERR978254     1  0.8955      0.650 0.688 0.312

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.000      0.913 0.000 1.000 0.000
#> ERR978108     2   0.000      0.913 0.000 1.000 0.000
#> ERR978109     2   0.000      0.913 0.000 1.000 0.000
#> ERR978110     2   0.000      0.913 0.000 1.000 0.000
#> ERR978111     2   0.000      0.913 0.000 1.000 0.000
#> ERR978112     2   0.000      0.913 0.000 1.000 0.000
#> ERR978113     2   0.000      0.913 0.000 1.000 0.000
#> ERR978114     2   0.000      0.913 0.000 1.000 0.000
#> ERR978115     2   0.000      0.913 0.000 1.000 0.000
#> ERR978116     2   0.000      0.913 0.000 1.000 0.000
#> ERR978117     2   0.000      0.913 0.000 1.000 0.000
#> ERR978118     2   0.000      0.913 0.000 1.000 0.000
#> ERR978119     2   0.000      0.913 0.000 1.000 0.000
#> ERR978120     2   0.000      0.913 0.000 1.000 0.000
#> ERR978121     2   0.000      0.913 0.000 1.000 0.000
#> ERR978122     2   0.000      0.913 0.000 1.000 0.000
#> ERR978123     3   0.811      0.863 0.212 0.144 0.644
#> ERR978124     3   0.811      0.863 0.212 0.144 0.644
#> ERR978125     3   0.811      0.863 0.212 0.144 0.644
#> ERR978126     3   0.811      0.863 0.212 0.144 0.644
#> ERR978127     3   0.811      0.863 0.212 0.144 0.644
#> ERR978128     3   0.811      0.863 0.212 0.144 0.644
#> ERR978129     3   0.811      0.863 0.212 0.144 0.644
#> ERR978130     3   0.811      0.863 0.212 0.144 0.644
#> ERR978131     3   0.811      0.863 0.212 0.144 0.644
#> ERR978132     3   0.811      0.863 0.212 0.144 0.644
#> ERR978133     3   0.811      0.863 0.212 0.144 0.644
#> ERR978134     3   0.811      0.863 0.212 0.144 0.644
#> ERR978135     3   0.811      0.863 0.212 0.144 0.644
#> ERR978136     3   0.811      0.863 0.212 0.144 0.644
#> ERR978137     3   0.811      0.863 0.212 0.144 0.644
#> ERR978138     3   0.817      0.862 0.212 0.148 0.640
#> ERR978139     3   0.817      0.862 0.212 0.148 0.640
#> ERR978140     3   0.817      0.862 0.212 0.148 0.640
#> ERR978141     3   0.817      0.862 0.212 0.148 0.640
#> ERR978142     3   0.817      0.862 0.212 0.148 0.640
#> ERR978143     3   0.817      0.862 0.212 0.148 0.640
#> ERR978144     3   0.817      0.862 0.212 0.148 0.640
#> ERR978145     3   0.817      0.862 0.212 0.148 0.640
#> ERR978146     3   0.817      0.862 0.212 0.148 0.640
#> ERR978147     3   0.817      0.862 0.212 0.148 0.640
#> ERR978148     3   0.817      0.862 0.212 0.148 0.640
#> ERR978149     3   0.817      0.862 0.212 0.148 0.640
#> ERR978150     3   0.817      0.862 0.212 0.148 0.640
#> ERR978151     3   0.817      0.862 0.212 0.148 0.640
#> ERR978152     3   0.817      0.862 0.212 0.148 0.640
#> ERR978153     1   0.000      1.000 1.000 0.000 0.000
#> ERR978154     1   0.000      1.000 1.000 0.000 0.000
#> ERR978155     1   0.000      1.000 1.000 0.000 0.000
#> ERR978156     1   0.000      1.000 1.000 0.000 0.000
#> ERR978157     1   0.000      1.000 1.000 0.000 0.000
#> ERR978158     1   0.000      1.000 1.000 0.000 0.000
#> ERR978159     1   0.000      1.000 1.000 0.000 0.000
#> ERR978160     1   0.000      1.000 1.000 0.000 0.000
#> ERR978161     1   0.000      1.000 1.000 0.000 0.000
#> ERR978162     1   0.000      1.000 1.000 0.000 0.000
#> ERR978163     1   0.000      1.000 1.000 0.000 0.000
#> ERR978164     1   0.000      1.000 1.000 0.000 0.000
#> ERR978165     1   0.000      1.000 1.000 0.000 0.000
#> ERR978166     1   0.000      1.000 1.000 0.000 0.000
#> ERR978167     1   0.000      1.000 1.000 0.000 0.000
#> ERR978168     1   0.000      1.000 1.000 0.000 0.000
#> ERR978169     3   0.000      0.696 0.000 0.000 1.000
#> ERR978170     3   0.000      0.696 0.000 0.000 1.000
#> ERR978171     3   0.000      0.696 0.000 0.000 1.000
#> ERR978172     3   0.000      0.696 0.000 0.000 1.000
#> ERR978173     3   0.000      0.696 0.000 0.000 1.000
#> ERR978174     3   0.000      0.696 0.000 0.000 1.000
#> ERR978175     3   0.000      0.696 0.000 0.000 1.000
#> ERR978176     3   0.000      0.696 0.000 0.000 1.000
#> ERR978177     3   0.000      0.696 0.000 0.000 1.000
#> ERR978178     3   0.000      0.696 0.000 0.000 1.000
#> ERR978179     3   0.000      0.696 0.000 0.000 1.000
#> ERR978180     3   0.000      0.696 0.000 0.000 1.000
#> ERR978181     3   0.000      0.696 0.000 0.000 1.000
#> ERR978182     3   0.000      0.696 0.000 0.000 1.000
#> ERR978183     2   0.000      0.913 0.000 1.000 0.000
#> ERR978184     2   0.000      0.913 0.000 1.000 0.000
#> ERR978185     2   0.000      0.913 0.000 1.000 0.000
#> ERR978186     2   0.000      0.913 0.000 1.000 0.000
#> ERR978187     2   0.000      0.913 0.000 1.000 0.000
#> ERR978188     2   0.000      0.913 0.000 1.000 0.000
#> ERR978189     2   0.000      0.913 0.000 1.000 0.000
#> ERR978190     2   0.000      0.913 0.000 1.000 0.000
#> ERR978191     2   0.000      0.913 0.000 1.000 0.000
#> ERR978192     2   0.000      0.913 0.000 1.000 0.000
#> ERR978193     2   0.000      0.913 0.000 1.000 0.000
#> ERR978194     2   0.000      0.913 0.000 1.000 0.000
#> ERR978195     2   0.000      0.913 0.000 1.000 0.000
#> ERR978196     2   0.000      0.913 0.000 1.000 0.000
#> ERR978197     2   0.388      0.879 0.000 0.848 0.152
#> ERR978198     2   0.388      0.879 0.000 0.848 0.152
#> ERR978199     2   0.388      0.879 0.000 0.848 0.152
#> ERR978200     2   0.388      0.879 0.000 0.848 0.152
#> ERR978201     2   0.388      0.879 0.000 0.848 0.152
#> ERR978202     2   0.388      0.879 0.000 0.848 0.152
#> ERR978203     2   0.388      0.879 0.000 0.848 0.152
#> ERR978204     2   0.388      0.879 0.000 0.848 0.152
#> ERR978205     2   0.388      0.879 0.000 0.848 0.152
#> ERR978206     2   0.388      0.879 0.000 0.848 0.152
#> ERR978207     2   0.388      0.879 0.000 0.848 0.152
#> ERR978208     2   0.388      0.879 0.000 0.848 0.152
#> ERR978209     2   0.388      0.879 0.000 0.848 0.152
#> ERR978210     2   0.388      0.879 0.000 0.848 0.152
#> ERR978211     2   0.388      0.879 0.000 0.848 0.152
#> ERR978212     2   0.327      0.903 0.000 0.884 0.116
#> ERR978213     2   0.327      0.903 0.000 0.884 0.116
#> ERR978214     2   0.327      0.903 0.000 0.884 0.116
#> ERR978215     2   0.327      0.903 0.000 0.884 0.116
#> ERR978216     2   0.327      0.903 0.000 0.884 0.116
#> ERR978217     2   0.327      0.903 0.000 0.884 0.116
#> ERR978218     2   0.327      0.903 0.000 0.884 0.116
#> ERR978219     2   0.327      0.903 0.000 0.884 0.116
#> ERR978220     2   0.327      0.903 0.000 0.884 0.116
#> ERR978221     2   0.327      0.903 0.000 0.884 0.116
#> ERR978222     2   0.327      0.903 0.000 0.884 0.116
#> ERR978223     2   0.327      0.903 0.000 0.884 0.116
#> ERR978224     2   0.327      0.903 0.000 0.884 0.116
#> ERR978225     2   0.327      0.903 0.000 0.884 0.116
#> ERR978226     2   0.327      0.903 0.000 0.884 0.116
#> ERR978227     1   0.000      1.000 1.000 0.000 0.000
#> ERR978228     1   0.000      1.000 1.000 0.000 0.000
#> ERR978229     1   0.000      1.000 1.000 0.000 0.000
#> ERR978230     1   0.000      1.000 1.000 0.000 0.000
#> ERR978231     1   0.000      1.000 1.000 0.000 0.000
#> ERR978232     1   0.000      1.000 1.000 0.000 0.000
#> ERR978233     1   0.000      1.000 1.000 0.000 0.000
#> ERR978234     1   0.000      1.000 1.000 0.000 0.000
#> ERR978235     1   0.000      1.000 1.000 0.000 0.000
#> ERR978236     1   0.000      1.000 1.000 0.000 0.000
#> ERR978237     1   0.000      1.000 1.000 0.000 0.000
#> ERR978238     1   0.000      1.000 1.000 0.000 0.000
#> ERR978239     1   0.000      1.000 1.000 0.000 0.000
#> ERR978240     1   0.000      1.000 1.000 0.000 0.000
#> ERR978241     3   0.800      0.829 0.212 0.136 0.652
#> ERR978242     3   0.800      0.829 0.212 0.136 0.652
#> ERR978243     3   0.800      0.829 0.212 0.136 0.652
#> ERR978244     3   0.800      0.829 0.212 0.136 0.652
#> ERR978245     3   0.800      0.829 0.212 0.136 0.652
#> ERR978246     3   0.800      0.829 0.212 0.136 0.652
#> ERR978247     3   0.800      0.829 0.212 0.136 0.652
#> ERR978248     3   0.800      0.829 0.212 0.136 0.652
#> ERR978249     3   0.800      0.829 0.212 0.136 0.652
#> ERR978250     3   0.800      0.829 0.212 0.136 0.652
#> ERR978251     3   0.800      0.829 0.212 0.136 0.652
#> ERR978252     3   0.800      0.829 0.212 0.136 0.652
#> ERR978253     3   0.800      0.829 0.212 0.136 0.652
#> ERR978254     3   0.800      0.829 0.212 0.136 0.652

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978108     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978109     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978110     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978111     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978112     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978113     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978114     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978115     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978116     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978117     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978118     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978119     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978120     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978121     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978122     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978123     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978124     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978125     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978126     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978127     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978128     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978129     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978130     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978131     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978132     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978133     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978134     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978135     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978136     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978137     3  0.0000      0.876  0 0.000 1.000 0.000
#> ERR978138     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978139     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978140     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978141     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978142     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978143     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978144     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978145     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978146     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978147     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978148     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978149     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978150     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978151     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978152     3  0.0188      0.876  0 0.004 0.996 0.000
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978169     4  0.1867      0.997  0 0.000 0.072 0.928
#> ERR978170     4  0.1867      0.997  0 0.000 0.072 0.928
#> ERR978171     4  0.1867      0.997  0 0.000 0.072 0.928
#> ERR978172     4  0.1867      0.997  0 0.000 0.072 0.928
#> ERR978173     4  0.1867      0.997  0 0.000 0.072 0.928
#> ERR978174     4  0.1867      0.997  0 0.000 0.072 0.928
#> ERR978175     4  0.1867      0.997  0 0.000 0.072 0.928
#> ERR978176     4  0.1940      0.997  0 0.000 0.076 0.924
#> ERR978177     4  0.1940      0.997  0 0.000 0.076 0.924
#> ERR978178     4  0.1940      0.997  0 0.000 0.076 0.924
#> ERR978179     4  0.1940      0.997  0 0.000 0.076 0.924
#> ERR978180     4  0.1940      0.997  0 0.000 0.076 0.924
#> ERR978181     4  0.1940      0.997  0 0.000 0.076 0.924
#> ERR978182     4  0.1940      0.997  0 0.000 0.076 0.924
#> ERR978183     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978184     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978185     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978186     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978187     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978188     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978189     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978190     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978191     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978192     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978193     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978194     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978195     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978196     2  0.0000      0.793  0 1.000 0.000 0.000
#> ERR978197     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978198     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978199     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978200     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978201     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978202     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978203     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978204     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978205     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978206     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978207     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978208     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978209     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978210     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978211     2  0.6058      0.750  0 0.632 0.296 0.072
#> ERR978212     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978213     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978214     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978215     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978216     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978217     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978218     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978219     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978220     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978221     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978222     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978223     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978224     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978225     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978226     2  0.5837      0.772  0 0.668 0.260 0.072
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978241     3  0.4605      0.665  0 0.000 0.664 0.336
#> ERR978242     3  0.4605      0.665  0 0.000 0.664 0.336
#> ERR978243     3  0.4605      0.665  0 0.000 0.664 0.336
#> ERR978244     3  0.4605      0.665  0 0.000 0.664 0.336
#> ERR978245     3  0.4605      0.665  0 0.000 0.664 0.336
#> ERR978246     3  0.4605      0.665  0 0.000 0.664 0.336
#> ERR978247     3  0.4605      0.665  0 0.000 0.664 0.336
#> ERR978248     3  0.4585      0.668  0 0.000 0.668 0.332
#> ERR978249     3  0.4585      0.668  0 0.000 0.668 0.332
#> ERR978250     3  0.4585      0.668  0 0.000 0.668 0.332
#> ERR978251     3  0.4585      0.668  0 0.000 0.668 0.332
#> ERR978252     3  0.4585      0.668  0 0.000 0.668 0.332
#> ERR978253     3  0.4585      0.668  0 0.000 0.668 0.332
#> ERR978254     3  0.4585      0.668  0 0.000 0.668 0.332

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978123     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978124     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978125     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978126     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978127     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978128     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978129     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978130     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978131     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978132     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978133     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978134     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978135     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978136     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978137     3   0.000      0.783  0 0.000 1.000 0.000 0.000
#> ERR978138     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978139     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978140     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978141     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978142     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978143     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978144     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978145     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978146     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978147     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978148     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978149     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978150     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978151     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978152     3   0.300      0.789  0 0.000 0.812 0.000 0.188
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4   0.000      0.977  0 0.000 0.000 1.000 0.000
#> ERR978170     4   0.000      0.977  0 0.000 0.000 1.000 0.000
#> ERR978171     4   0.000      0.977  0 0.000 0.000 1.000 0.000
#> ERR978172     4   0.000      0.977  0 0.000 0.000 1.000 0.000
#> ERR978173     4   0.000      0.977  0 0.000 0.000 1.000 0.000
#> ERR978174     4   0.000      0.977  0 0.000 0.000 1.000 0.000
#> ERR978175     4   0.000      0.977  0 0.000 0.000 1.000 0.000
#> ERR978176     4   0.120      0.977  0 0.000 0.000 0.952 0.048
#> ERR978177     4   0.120      0.977  0 0.000 0.000 0.952 0.048
#> ERR978178     4   0.120      0.977  0 0.000 0.000 0.952 0.048
#> ERR978179     4   0.120      0.977  0 0.000 0.000 0.952 0.048
#> ERR978180     4   0.120      0.977  0 0.000 0.000 0.952 0.048
#> ERR978181     4   0.120      0.977  0 0.000 0.000 0.952 0.048
#> ERR978182     4   0.120      0.977  0 0.000 0.000 0.952 0.048
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978197     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978198     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978199     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978200     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978201     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978202     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978203     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978204     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978205     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978206     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978207     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978208     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978209     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978210     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978211     5   0.440      0.835  0 0.028 0.276 0.000 0.696
#> ERR978212     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978213     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978214     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978215     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978216     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978217     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978218     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978219     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978220     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978221     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978222     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978223     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978224     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978225     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978226     5   0.120      0.838  0 0.048 0.000 0.000 0.952
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     3   0.577      0.652  0 0.000 0.600 0.264 0.136
#> ERR978242     3   0.577      0.652  0 0.000 0.600 0.264 0.136
#> ERR978243     3   0.577      0.652  0 0.000 0.600 0.264 0.136
#> ERR978244     3   0.577      0.652  0 0.000 0.600 0.264 0.136
#> ERR978245     3   0.577      0.652  0 0.000 0.600 0.264 0.136
#> ERR978246     3   0.577      0.652  0 0.000 0.600 0.264 0.136
#> ERR978247     3   0.577      0.652  0 0.000 0.600 0.264 0.136
#> ERR978248     3   0.590      0.652  0 0.000 0.600 0.216 0.184
#> ERR978249     3   0.590      0.652  0 0.000 0.600 0.216 0.184
#> ERR978250     3   0.590      0.652  0 0.000 0.600 0.216 0.184
#> ERR978251     3   0.590      0.652  0 0.000 0.600 0.216 0.184
#> ERR978252     3   0.590      0.652  0 0.000 0.600 0.216 0.184
#> ERR978253     3   0.590      0.652  0 0.000 0.600 0.216 0.184
#> ERR978254     3   0.590      0.652  0 0.000 0.600 0.216 0.184

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4    p5    p6
#> ERR978107     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978123     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978124     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978125     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978126     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978127     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978128     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978129     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978130     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978131     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978132     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978133     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978134     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978135     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978136     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978137     3   0.270      0.873  0  0 0.812 0.000 0.188 0.000
#> ERR978138     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978139     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978140     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978141     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978142     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978143     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978144     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978145     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978146     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978147     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978148     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978149     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978150     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978151     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978152     3   0.000      0.872  0  0 1.000 0.000 0.000 0.000
#> ERR978153     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978169     4   0.000      0.813  0  0 0.000 1.000 0.000 0.000
#> ERR978170     4   0.000      0.813  0  0 0.000 1.000 0.000 0.000
#> ERR978171     4   0.000      0.813  0  0 0.000 1.000 0.000 0.000
#> ERR978172     4   0.000      0.813  0  0 0.000 1.000 0.000 0.000
#> ERR978173     4   0.000      0.813  0  0 0.000 1.000 0.000 0.000
#> ERR978174     4   0.000      0.813  0  0 0.000 1.000 0.000 0.000
#> ERR978175     4   0.000      0.813  0  0 0.000 1.000 0.000 0.000
#> ERR978176     4   0.322      0.813  0  0 0.000 0.736 0.000 0.264
#> ERR978177     4   0.322      0.813  0  0 0.000 0.736 0.000 0.264
#> ERR978178     4   0.322      0.813  0  0 0.000 0.736 0.000 0.264
#> ERR978179     4   0.322      0.813  0  0 0.000 0.736 0.000 0.264
#> ERR978180     4   0.322      0.813  0  0 0.000 0.736 0.000 0.264
#> ERR978181     4   0.322      0.813  0  0 0.000 0.736 0.000 0.264
#> ERR978182     4   0.322      0.813  0  0 0.000 0.736 0.000 0.264
#> ERR978183     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978197     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978198     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978199     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978200     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978201     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978202     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978203     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978204     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978205     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978206     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978207     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978208     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978209     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978210     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978211     5   0.166      0.828  0  0 0.088 0.000 0.912 0.000
#> ERR978212     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978213     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978214     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978215     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978216     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978217     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978218     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978219     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978220     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978221     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978222     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978223     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978224     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978225     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978226     5   0.270      0.834  0  0 0.188 0.000 0.812 0.000
#> ERR978227     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978241     6   0.322      0.813  0  0 0.000 0.264 0.000 0.736
#> ERR978242     6   0.322      0.813  0  0 0.000 0.264 0.000 0.736
#> ERR978243     6   0.322      0.813  0  0 0.000 0.264 0.000 0.736
#> ERR978244     6   0.322      0.813  0  0 0.000 0.264 0.000 0.736
#> ERR978245     6   0.322      0.813  0  0 0.000 0.264 0.000 0.736
#> ERR978246     6   0.322      0.813  0  0 0.000 0.264 0.000 0.736
#> ERR978247     6   0.322      0.813  0  0 0.000 0.264 0.000 0.736
#> ERR978248     6   0.000      0.813  0  0 0.000 0.000 0.000 1.000
#> ERR978249     6   0.000      0.813  0  0 0.000 0.000 0.000 1.000
#> ERR978250     6   0.000      0.813  0  0 0.000 0.000 0.000 1.000
#> ERR978251     6   0.000      0.813  0  0 0.000 0.000 0.000 1.000
#> ERR978252     6   0.000      0.813  0  0 0.000 0.000 0.000 1.000
#> ERR978253     6   0.000      0.813  0  0 0.000 0.000 0.000 1.000
#> ERR978254     6   0.000      0.813  0  0 0.000 0.000 0.000 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.175           0.710       0.793         0.3827 0.675   0.675
#> 3 3 0.312           0.635       0.695         0.4978 0.686   0.534
#> 4 4 0.444           0.688       0.731         0.1976 0.724   0.397
#> 5 5 0.621           0.665       0.713         0.0917 1.000   1.000
#> 6 6 0.718           0.688       0.710         0.0606 0.917   0.702

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2  0.6438      0.690 0.164 0.836
#> ERR978108     2  0.6438      0.690 0.164 0.836
#> ERR978109     2  0.6438      0.690 0.164 0.836
#> ERR978110     2  0.6438      0.690 0.164 0.836
#> ERR978111     2  0.6438      0.690 0.164 0.836
#> ERR978112     2  0.6438      0.690 0.164 0.836
#> ERR978113     2  0.6438      0.690 0.164 0.836
#> ERR978114     2  0.6438      0.690 0.164 0.836
#> ERR978115     2  0.6438      0.690 0.164 0.836
#> ERR978116     2  0.6438      0.690 0.164 0.836
#> ERR978117     2  0.6438      0.690 0.164 0.836
#> ERR978118     2  0.6438      0.690 0.164 0.836
#> ERR978119     2  0.6438      0.690 0.164 0.836
#> ERR978120     2  0.6438      0.690 0.164 0.836
#> ERR978121     2  0.6438      0.690 0.164 0.836
#> ERR978122     2  0.6438      0.690 0.164 0.836
#> ERR978123     2  0.8386      0.585 0.268 0.732
#> ERR978124     2  0.8386      0.585 0.268 0.732
#> ERR978125     2  0.8386      0.585 0.268 0.732
#> ERR978126     2  0.8386      0.585 0.268 0.732
#> ERR978127     2  0.8386      0.585 0.268 0.732
#> ERR978128     2  0.8386      0.585 0.268 0.732
#> ERR978129     2  0.8386      0.585 0.268 0.732
#> ERR978130     2  0.8386      0.585 0.268 0.732
#> ERR978131     2  0.8386      0.585 0.268 0.732
#> ERR978132     2  0.8386      0.585 0.268 0.732
#> ERR978133     2  0.8386      0.585 0.268 0.732
#> ERR978134     2  0.8386      0.585 0.268 0.732
#> ERR978135     2  0.8386      0.585 0.268 0.732
#> ERR978136     2  0.8386      0.585 0.268 0.732
#> ERR978137     2  0.8386      0.585 0.268 0.732
#> ERR978138     2  0.7139      0.669 0.196 0.804
#> ERR978139     2  0.7139      0.669 0.196 0.804
#> ERR978140     2  0.7139      0.669 0.196 0.804
#> ERR978141     2  0.7139      0.669 0.196 0.804
#> ERR978142     2  0.7139      0.669 0.196 0.804
#> ERR978143     2  0.7139      0.669 0.196 0.804
#> ERR978144     2  0.7139      0.669 0.196 0.804
#> ERR978145     2  0.7139      0.669 0.196 0.804
#> ERR978146     2  0.7376      0.659 0.208 0.792
#> ERR978147     2  0.7376      0.659 0.208 0.792
#> ERR978148     2  0.7376      0.659 0.208 0.792
#> ERR978149     2  0.7376      0.659 0.208 0.792
#> ERR978150     2  0.7376      0.659 0.208 0.792
#> ERR978151     2  0.7376      0.659 0.208 0.792
#> ERR978152     2  0.7376      0.659 0.208 0.792
#> ERR978153     1  0.7950      1.000 0.760 0.240
#> ERR978154     1  0.7950      1.000 0.760 0.240
#> ERR978155     1  0.7950      1.000 0.760 0.240
#> ERR978156     1  0.7950      1.000 0.760 0.240
#> ERR978157     1  0.7950      1.000 0.760 0.240
#> ERR978158     1  0.7950      1.000 0.760 0.240
#> ERR978159     1  0.7950      1.000 0.760 0.240
#> ERR978160     1  0.7950      1.000 0.760 0.240
#> ERR978161     1  0.7950      1.000 0.760 0.240
#> ERR978162     1  0.7950      1.000 0.760 0.240
#> ERR978163     1  0.7950      1.000 0.760 0.240
#> ERR978164     1  0.7950      1.000 0.760 0.240
#> ERR978165     1  0.7950      1.000 0.760 0.240
#> ERR978166     1  0.7950      1.000 0.760 0.240
#> ERR978167     1  0.7950      1.000 0.760 0.240
#> ERR978168     1  0.7950      1.000 0.760 0.240
#> ERR978169     2  0.9970      0.374 0.468 0.532
#> ERR978170     2  0.9970      0.374 0.468 0.532
#> ERR978171     2  0.9970      0.374 0.468 0.532
#> ERR978172     2  0.9970      0.374 0.468 0.532
#> ERR978173     2  0.9970      0.374 0.468 0.532
#> ERR978174     2  0.9970      0.374 0.468 0.532
#> ERR978175     2  0.9970      0.374 0.468 0.532
#> ERR978176     2  0.9977      0.373 0.472 0.528
#> ERR978177     2  0.9977      0.373 0.472 0.528
#> ERR978178     2  0.9977      0.373 0.472 0.528
#> ERR978179     2  0.9977      0.373 0.472 0.528
#> ERR978180     2  0.9977      0.373 0.472 0.528
#> ERR978181     2  0.9977      0.373 0.472 0.528
#> ERR978182     2  0.9977      0.373 0.472 0.528
#> ERR978183     2  0.6438      0.690 0.164 0.836
#> ERR978184     2  0.6438      0.690 0.164 0.836
#> ERR978185     2  0.6438      0.690 0.164 0.836
#> ERR978186     2  0.6438      0.690 0.164 0.836
#> ERR978187     2  0.6438      0.690 0.164 0.836
#> ERR978188     2  0.6438      0.690 0.164 0.836
#> ERR978189     2  0.6438      0.690 0.164 0.836
#> ERR978190     2  0.6438      0.690 0.164 0.836
#> ERR978191     2  0.6438      0.690 0.164 0.836
#> ERR978192     2  0.6438      0.690 0.164 0.836
#> ERR978193     2  0.6438      0.690 0.164 0.836
#> ERR978194     2  0.6438      0.690 0.164 0.836
#> ERR978195     2  0.6438      0.690 0.164 0.836
#> ERR978196     2  0.6438      0.690 0.164 0.836
#> ERR978197     2  0.0000      0.741 0.000 1.000
#> ERR978198     2  0.0000      0.741 0.000 1.000
#> ERR978199     2  0.0000      0.741 0.000 1.000
#> ERR978200     2  0.0000      0.741 0.000 1.000
#> ERR978201     2  0.0000      0.741 0.000 1.000
#> ERR978202     2  0.0000      0.741 0.000 1.000
#> ERR978203     2  0.0000      0.741 0.000 1.000
#> ERR978204     2  0.0376      0.741 0.004 0.996
#> ERR978205     2  0.0376      0.741 0.004 0.996
#> ERR978206     2  0.0376      0.741 0.004 0.996
#> ERR978207     2  0.0376      0.741 0.004 0.996
#> ERR978208     2  0.0376      0.741 0.004 0.996
#> ERR978209     2  0.0376      0.741 0.004 0.996
#> ERR978210     2  0.0376      0.741 0.004 0.996
#> ERR978211     2  0.0376      0.741 0.004 0.996
#> ERR978212     2  0.0938      0.740 0.012 0.988
#> ERR978213     2  0.0938      0.740 0.012 0.988
#> ERR978214     2  0.0938      0.740 0.012 0.988
#> ERR978215     2  0.0938      0.740 0.012 0.988
#> ERR978216     2  0.0938      0.740 0.012 0.988
#> ERR978217     2  0.0938      0.740 0.012 0.988
#> ERR978218     2  0.0938      0.740 0.012 0.988
#> ERR978219     2  0.0938      0.740 0.012 0.988
#> ERR978220     2  0.0938      0.740 0.012 0.988
#> ERR978221     2  0.0938      0.740 0.012 0.988
#> ERR978222     2  0.0938      0.740 0.012 0.988
#> ERR978223     2  0.0938      0.740 0.012 0.988
#> ERR978224     2  0.0938      0.740 0.012 0.988
#> ERR978225     2  0.0938      0.740 0.012 0.988
#> ERR978226     2  0.0938      0.740 0.012 0.988
#> ERR978227     1  0.7950      1.000 0.760 0.240
#> ERR978228     1  0.7950      1.000 0.760 0.240
#> ERR978229     1  0.7950      1.000 0.760 0.240
#> ERR978230     1  0.7950      1.000 0.760 0.240
#> ERR978231     1  0.7950      1.000 0.760 0.240
#> ERR978232     1  0.7950      1.000 0.760 0.240
#> ERR978233     1  0.7950      1.000 0.760 0.240
#> ERR978234     1  0.7950      1.000 0.760 0.240
#> ERR978235     1  0.7950      1.000 0.760 0.240
#> ERR978236     1  0.7950      1.000 0.760 0.240
#> ERR978237     1  0.7950      1.000 0.760 0.240
#> ERR978238     1  0.7950      1.000 0.760 0.240
#> ERR978239     1  0.7950      1.000 0.760 0.240
#> ERR978240     1  0.7950      1.000 0.760 0.240
#> ERR978241     2  0.9795      0.441 0.416 0.584
#> ERR978242     2  0.9795      0.441 0.416 0.584
#> ERR978243     2  0.9795      0.441 0.416 0.584
#> ERR978244     2  0.9795      0.441 0.416 0.584
#> ERR978245     2  0.9795      0.441 0.416 0.584
#> ERR978246     2  0.9795      0.441 0.416 0.584
#> ERR978247     2  0.9795      0.441 0.416 0.584
#> ERR978248     2  0.5737      0.726 0.136 0.864
#> ERR978249     2  0.5737      0.726 0.136 0.864
#> ERR978250     2  0.5737      0.726 0.136 0.864
#> ERR978251     2  0.5737      0.726 0.136 0.864
#> ERR978252     2  0.5737      0.726 0.136 0.864
#> ERR978253     2  0.5737      0.726 0.136 0.864
#> ERR978254     2  0.5737      0.726 0.136 0.864

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.249      0.622 0.016 0.936 0.048
#> ERR978108     2   0.249      0.622 0.016 0.936 0.048
#> ERR978109     2   0.249      0.622 0.016 0.936 0.048
#> ERR978110     2   0.249      0.622 0.016 0.936 0.048
#> ERR978111     2   0.249      0.622 0.016 0.936 0.048
#> ERR978112     2   0.249      0.622 0.016 0.936 0.048
#> ERR978113     2   0.249      0.622 0.016 0.936 0.048
#> ERR978114     2   0.249      0.622 0.016 0.936 0.048
#> ERR978115     2   0.249      0.622 0.016 0.936 0.048
#> ERR978116     2   0.249      0.622 0.016 0.936 0.048
#> ERR978117     2   0.249      0.622 0.016 0.936 0.048
#> ERR978118     2   0.249      0.622 0.016 0.936 0.048
#> ERR978119     2   0.249      0.622 0.016 0.936 0.048
#> ERR978120     2   0.249      0.622 0.016 0.936 0.048
#> ERR978121     2   0.249      0.622 0.016 0.936 0.048
#> ERR978122     2   0.249      0.622 0.016 0.936 0.048
#> ERR978123     3   0.841      0.606 0.112 0.308 0.580
#> ERR978124     3   0.841      0.606 0.112 0.308 0.580
#> ERR978125     3   0.841      0.606 0.112 0.308 0.580
#> ERR978126     3   0.841      0.606 0.112 0.308 0.580
#> ERR978127     3   0.841      0.606 0.112 0.308 0.580
#> ERR978128     3   0.841      0.606 0.112 0.308 0.580
#> ERR978129     3   0.841      0.606 0.112 0.308 0.580
#> ERR978130     3   0.841      0.606 0.112 0.308 0.580
#> ERR978131     3   0.845      0.598 0.112 0.316 0.572
#> ERR978132     3   0.845      0.598 0.112 0.316 0.572
#> ERR978133     3   0.845      0.598 0.112 0.316 0.572
#> ERR978134     3   0.845      0.598 0.112 0.316 0.572
#> ERR978135     3   0.845      0.598 0.112 0.316 0.572
#> ERR978136     3   0.845      0.598 0.112 0.316 0.572
#> ERR978137     3   0.845      0.598 0.112 0.316 0.572
#> ERR978138     3   0.816      0.600 0.092 0.320 0.588
#> ERR978139     3   0.816      0.600 0.092 0.320 0.588
#> ERR978140     3   0.816      0.600 0.092 0.320 0.588
#> ERR978141     3   0.816      0.600 0.092 0.320 0.588
#> ERR978142     3   0.816      0.600 0.092 0.320 0.588
#> ERR978143     3   0.816      0.600 0.092 0.320 0.588
#> ERR978144     3   0.816      0.600 0.092 0.320 0.588
#> ERR978145     3   0.816      0.600 0.092 0.320 0.588
#> ERR978146     3   0.816      0.600 0.092 0.320 0.588
#> ERR978147     3   0.816      0.600 0.092 0.320 0.588
#> ERR978148     3   0.816      0.600 0.092 0.320 0.588
#> ERR978149     3   0.816      0.600 0.092 0.320 0.588
#> ERR978150     3   0.816      0.600 0.092 0.320 0.588
#> ERR978151     3   0.816      0.600 0.092 0.320 0.588
#> ERR978152     3   0.816      0.600 0.092 0.320 0.588
#> ERR978153     1   0.113      0.963 0.976 0.020 0.004
#> ERR978154     1   0.113      0.963 0.976 0.020 0.004
#> ERR978155     1   0.113      0.963 0.976 0.020 0.004
#> ERR978156     1   0.113      0.963 0.976 0.020 0.004
#> ERR978157     1   0.113      0.963 0.976 0.020 0.004
#> ERR978158     1   0.113      0.963 0.976 0.020 0.004
#> ERR978159     1   0.113      0.963 0.976 0.020 0.004
#> ERR978160     1   0.113      0.963 0.976 0.020 0.004
#> ERR978161     1   0.113      0.963 0.976 0.020 0.004
#> ERR978162     1   0.113      0.963 0.976 0.020 0.004
#> ERR978163     1   0.113      0.963 0.976 0.020 0.004
#> ERR978164     1   0.113      0.963 0.976 0.020 0.004
#> ERR978165     1   0.113      0.963 0.976 0.020 0.004
#> ERR978166     1   0.113      0.963 0.976 0.020 0.004
#> ERR978167     1   0.113      0.963 0.976 0.020 0.004
#> ERR978168     1   0.113      0.963 0.976 0.020 0.004
#> ERR978169     3   0.812      0.648 0.164 0.188 0.648
#> ERR978170     3   0.812      0.648 0.164 0.188 0.648
#> ERR978171     3   0.812      0.648 0.164 0.188 0.648
#> ERR978172     3   0.812      0.648 0.164 0.188 0.648
#> ERR978173     3   0.812      0.648 0.164 0.188 0.648
#> ERR978174     3   0.812      0.648 0.164 0.188 0.648
#> ERR978175     3   0.812      0.648 0.164 0.188 0.648
#> ERR978176     3   0.825      0.643 0.164 0.200 0.636
#> ERR978177     3   0.825      0.643 0.164 0.200 0.636
#> ERR978178     3   0.825      0.643 0.164 0.200 0.636
#> ERR978179     3   0.825      0.643 0.164 0.200 0.636
#> ERR978180     3   0.825      0.643 0.164 0.200 0.636
#> ERR978181     3   0.825      0.643 0.164 0.200 0.636
#> ERR978182     3   0.825      0.643 0.164 0.200 0.636
#> ERR978183     2   0.178      0.630 0.020 0.960 0.020
#> ERR978184     2   0.178      0.630 0.020 0.960 0.020
#> ERR978185     2   0.178      0.630 0.020 0.960 0.020
#> ERR978186     2   0.178      0.630 0.020 0.960 0.020
#> ERR978187     2   0.178      0.630 0.020 0.960 0.020
#> ERR978188     2   0.178      0.630 0.020 0.960 0.020
#> ERR978189     2   0.178      0.630 0.020 0.960 0.020
#> ERR978190     2   0.178      0.630 0.020 0.960 0.020
#> ERR978191     2   0.178      0.630 0.020 0.960 0.020
#> ERR978192     2   0.178      0.630 0.020 0.960 0.020
#> ERR978193     2   0.178      0.630 0.020 0.960 0.020
#> ERR978194     2   0.178      0.630 0.020 0.960 0.020
#> ERR978195     2   0.178      0.630 0.020 0.960 0.020
#> ERR978196     2   0.178      0.630 0.020 0.960 0.020
#> ERR978197     2   0.692      0.412 0.020 0.580 0.400
#> ERR978198     2   0.692      0.412 0.020 0.580 0.400
#> ERR978199     2   0.692      0.412 0.020 0.580 0.400
#> ERR978200     2   0.692      0.412 0.020 0.580 0.400
#> ERR978201     2   0.692      0.412 0.020 0.580 0.400
#> ERR978202     2   0.692      0.412 0.020 0.580 0.400
#> ERR978203     2   0.692      0.412 0.020 0.580 0.400
#> ERR978204     2   0.675      0.440 0.016 0.596 0.388
#> ERR978205     2   0.675      0.440 0.016 0.596 0.388
#> ERR978206     2   0.675      0.440 0.016 0.596 0.388
#> ERR978207     2   0.675      0.440 0.016 0.596 0.388
#> ERR978208     2   0.675      0.440 0.016 0.596 0.388
#> ERR978209     2   0.675      0.440 0.016 0.596 0.388
#> ERR978210     2   0.675      0.440 0.016 0.596 0.388
#> ERR978211     2   0.675      0.440 0.016 0.596 0.388
#> ERR978212     2   0.757      0.470 0.052 0.592 0.356
#> ERR978213     2   0.757      0.470 0.052 0.592 0.356
#> ERR978214     2   0.757      0.470 0.052 0.592 0.356
#> ERR978215     2   0.757      0.470 0.052 0.592 0.356
#> ERR978216     2   0.757      0.470 0.052 0.592 0.356
#> ERR978217     2   0.757      0.470 0.052 0.592 0.356
#> ERR978218     2   0.757      0.470 0.052 0.592 0.356
#> ERR978219     2   0.757      0.470 0.052 0.592 0.356
#> ERR978220     2   0.757      0.470 0.052 0.592 0.356
#> ERR978221     2   0.757      0.470 0.052 0.592 0.356
#> ERR978222     2   0.757      0.470 0.052 0.592 0.356
#> ERR978223     2   0.757      0.470 0.052 0.592 0.356
#> ERR978224     2   0.757      0.470 0.052 0.592 0.356
#> ERR978225     2   0.757      0.470 0.052 0.592 0.356
#> ERR978226     2   0.757      0.470 0.052 0.592 0.356
#> ERR978227     1   0.391      0.958 0.876 0.020 0.104
#> ERR978228     1   0.391      0.958 0.876 0.020 0.104
#> ERR978229     1   0.391      0.958 0.876 0.020 0.104
#> ERR978230     1   0.391      0.958 0.876 0.020 0.104
#> ERR978231     1   0.391      0.958 0.876 0.020 0.104
#> ERR978232     1   0.391      0.958 0.876 0.020 0.104
#> ERR978233     1   0.391      0.958 0.876 0.020 0.104
#> ERR978234     1   0.391      0.958 0.876 0.020 0.104
#> ERR978235     1   0.391      0.958 0.876 0.020 0.104
#> ERR978236     1   0.391      0.958 0.876 0.020 0.104
#> ERR978237     1   0.391      0.958 0.876 0.020 0.104
#> ERR978238     1   0.391      0.958 0.876 0.020 0.104
#> ERR978239     1   0.391      0.958 0.876 0.020 0.104
#> ERR978240     1   0.391      0.958 0.876 0.020 0.104
#> ERR978241     3   0.788      0.651 0.172 0.160 0.668
#> ERR978242     3   0.788      0.651 0.172 0.160 0.668
#> ERR978243     3   0.788      0.651 0.172 0.160 0.668
#> ERR978244     3   0.788      0.651 0.172 0.160 0.668
#> ERR978245     3   0.788      0.651 0.172 0.160 0.668
#> ERR978246     3   0.788      0.651 0.172 0.160 0.668
#> ERR978247     3   0.788      0.651 0.172 0.160 0.668
#> ERR978248     2   0.851      0.199 0.100 0.528 0.372
#> ERR978249     2   0.851      0.199 0.100 0.528 0.372
#> ERR978250     2   0.851      0.199 0.100 0.528 0.372
#> ERR978251     2   0.851      0.199 0.100 0.528 0.372
#> ERR978252     2   0.851      0.199 0.100 0.528 0.372
#> ERR978253     2   0.851      0.199 0.100 0.528 0.372
#> ERR978254     2   0.851      0.199 0.100 0.528 0.372

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> ERR978107     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978108     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978109     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978110     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978111     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978112     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978113     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978114     2  0.5127      0.882 0.016 0.776 0.152 0.056
#> ERR978115     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978116     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978117     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978118     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978119     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978120     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978121     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978122     2  0.4960      0.882 0.008 0.780 0.152 0.060
#> ERR978123     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978124     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978125     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978126     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978127     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978128     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978129     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978130     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978131     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978132     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978133     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978134     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978135     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978136     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978137     3  0.3322      0.486 0.040 0.032 0.892 0.036
#> ERR978138     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978139     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978140     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978141     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978142     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978143     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978144     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978145     3  0.5723      0.481 0.020 0.076 0.740 0.164
#> ERR978146     3  0.5589      0.481 0.020 0.076 0.752 0.152
#> ERR978147     3  0.5589      0.481 0.020 0.076 0.752 0.152
#> ERR978148     3  0.5589      0.481 0.020 0.076 0.752 0.152
#> ERR978149     3  0.5589      0.481 0.020 0.076 0.752 0.152
#> ERR978150     3  0.5589      0.481 0.020 0.076 0.752 0.152
#> ERR978151     3  0.5589      0.481 0.020 0.076 0.752 0.152
#> ERR978152     3  0.5589      0.481 0.020 0.076 0.752 0.152
#> ERR978153     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978154     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978155     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978156     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978157     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978158     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978159     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978160     1  0.4469      0.926 0.816 0.044 0.012 0.128
#> ERR978161     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978162     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978163     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978164     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978165     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978166     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978167     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978168     1  0.4360      0.926 0.816 0.032 0.012 0.140
#> ERR978169     4  0.7458      0.774 0.120 0.024 0.304 0.552
#> ERR978170     4  0.7458      0.774 0.120 0.024 0.304 0.552
#> ERR978171     4  0.7458      0.774 0.120 0.024 0.304 0.552
#> ERR978172     4  0.7458      0.774 0.120 0.024 0.304 0.552
#> ERR978173     4  0.7458      0.774 0.120 0.024 0.304 0.552
#> ERR978174     4  0.7458      0.774 0.120 0.024 0.304 0.552
#> ERR978175     4  0.7458      0.774 0.120 0.024 0.304 0.552
#> ERR978176     4  0.7708      0.777 0.116 0.040 0.296 0.548
#> ERR978177     4  0.7708      0.777 0.116 0.040 0.296 0.548
#> ERR978178     4  0.7708      0.777 0.116 0.040 0.296 0.548
#> ERR978179     4  0.7708      0.777 0.116 0.040 0.296 0.548
#> ERR978180     4  0.7708      0.777 0.116 0.040 0.296 0.548
#> ERR978181     4  0.7708      0.777 0.116 0.040 0.296 0.548
#> ERR978182     4  0.7708      0.777 0.116 0.040 0.296 0.548
#> ERR978183     2  0.4004      0.866 0.012 0.852 0.068 0.068
#> ERR978184     2  0.4004      0.866 0.012 0.852 0.068 0.068
#> ERR978185     2  0.4004      0.866 0.012 0.852 0.068 0.068
#> ERR978186     2  0.4004      0.866 0.012 0.852 0.068 0.068
#> ERR978187     2  0.4004      0.866 0.012 0.852 0.068 0.068
#> ERR978188     2  0.4004      0.866 0.012 0.852 0.068 0.068
#> ERR978189     2  0.4004      0.866 0.012 0.852 0.068 0.068
#> ERR978190     2  0.3876      0.866 0.008 0.856 0.068 0.068
#> ERR978191     2  0.3876      0.866 0.008 0.856 0.068 0.068
#> ERR978192     2  0.3876      0.866 0.008 0.856 0.068 0.068
#> ERR978193     2  0.3876      0.866 0.008 0.856 0.068 0.068
#> ERR978194     2  0.3876      0.866 0.008 0.856 0.068 0.068
#> ERR978195     2  0.3876      0.866 0.008 0.856 0.068 0.068
#> ERR978196     2  0.3876      0.866 0.008 0.856 0.068 0.068
#> ERR978197     3  0.5653      0.587 0.000 0.192 0.712 0.096
#> ERR978198     3  0.5653      0.587 0.000 0.192 0.712 0.096
#> ERR978199     3  0.5653      0.587 0.000 0.192 0.712 0.096
#> ERR978200     3  0.5653      0.587 0.000 0.192 0.712 0.096
#> ERR978201     3  0.5653      0.587 0.000 0.192 0.712 0.096
#> ERR978202     3  0.5653      0.587 0.000 0.192 0.712 0.096
#> ERR978203     3  0.5653      0.587 0.000 0.192 0.712 0.096
#> ERR978204     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978205     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978206     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978207     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978208     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978209     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978210     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978211     3  0.6195      0.561 0.000 0.252 0.648 0.100
#> ERR978212     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978213     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978214     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978215     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978216     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978217     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978218     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978219     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978220     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978221     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978222     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978223     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978224     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978225     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978226     3  0.7908      0.494 0.004 0.340 0.416 0.240
#> ERR978227     1  0.0657      0.917 0.984 0.004 0.012 0.000
#> ERR978228     1  0.0657      0.917 0.984 0.004 0.012 0.000
#> ERR978229     1  0.0657      0.917 0.984 0.004 0.012 0.000
#> ERR978230     1  0.0657      0.917 0.984 0.004 0.012 0.000
#> ERR978231     1  0.0657      0.917 0.984 0.004 0.012 0.000
#> ERR978232     1  0.0657      0.917 0.984 0.004 0.012 0.000
#> ERR978233     1  0.0657      0.917 0.984 0.004 0.012 0.000
#> ERR978234     1  0.0657      0.917 0.984 0.000 0.012 0.004
#> ERR978235     1  0.0657      0.917 0.984 0.000 0.012 0.004
#> ERR978236     1  0.0657      0.917 0.984 0.000 0.012 0.004
#> ERR978237     1  0.0657      0.917 0.984 0.000 0.012 0.004
#> ERR978238     1  0.0657      0.917 0.984 0.000 0.012 0.004
#> ERR978239     1  0.0657      0.917 0.984 0.000 0.012 0.004
#> ERR978240     1  0.0657      0.917 0.984 0.000 0.012 0.004
#> ERR978241     4  0.6840      0.761 0.104 0.004 0.332 0.560
#> ERR978242     4  0.6840      0.761 0.104 0.004 0.332 0.560
#> ERR978243     4  0.6840      0.761 0.104 0.004 0.332 0.560
#> ERR978244     4  0.6840      0.761 0.104 0.004 0.332 0.560
#> ERR978245     4  0.6840      0.761 0.104 0.004 0.332 0.560
#> ERR978246     4  0.6840      0.761 0.104 0.004 0.332 0.560
#> ERR978247     4  0.6840      0.761 0.104 0.004 0.332 0.560
#> ERR978248     4  0.9163      0.170 0.068 0.292 0.300 0.340
#> ERR978249     4  0.9163      0.170 0.068 0.292 0.300 0.340
#> ERR978250     4  0.9163      0.170 0.068 0.292 0.300 0.340
#> ERR978251     4  0.9163      0.170 0.068 0.292 0.300 0.340
#> ERR978252     4  0.9163      0.170 0.068 0.292 0.300 0.340
#> ERR978253     4  0.9163      0.170 0.068 0.292 0.300 0.340
#> ERR978254     4  0.9163      0.170 0.068 0.292 0.300 0.340

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4 p5
#> ERR978107     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978108     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978109     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978110     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978111     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978112     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978113     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978114     2  0.1310      0.869 0.000 0.956 0.020 0.024 NA
#> ERR978115     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978116     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978117     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978118     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978119     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978120     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978121     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978122     2  0.2006      0.869 0.000 0.932 0.020 0.024 NA
#> ERR978123     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978124     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978125     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978126     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978127     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978128     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978129     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978130     3  0.7699      0.468 0.028 0.048 0.500 0.164 NA
#> ERR978131     3  0.7729      0.469 0.028 0.052 0.500 0.160 NA
#> ERR978132     3  0.7729      0.469 0.028 0.052 0.500 0.160 NA
#> ERR978133     3  0.7729      0.469 0.028 0.052 0.500 0.160 NA
#> ERR978134     3  0.7729      0.469 0.028 0.052 0.500 0.160 NA
#> ERR978135     3  0.7729      0.469 0.028 0.052 0.500 0.160 NA
#> ERR978136     3  0.7729      0.469 0.028 0.052 0.500 0.160 NA
#> ERR978137     3  0.7729      0.469 0.028 0.052 0.500 0.160 NA
#> ERR978138     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978139     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978140     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978141     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978142     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978143     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978144     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978145     3  0.6147      0.438 0.016 0.028 0.624 0.268 NA
#> ERR978146     3  0.6420      0.430 0.016 0.028 0.596 0.280 NA
#> ERR978147     3  0.6420      0.430 0.016 0.028 0.596 0.280 NA
#> ERR978148     3  0.6420      0.430 0.016 0.028 0.596 0.280 NA
#> ERR978149     3  0.6420      0.430 0.016 0.028 0.596 0.280 NA
#> ERR978150     3  0.6420      0.430 0.016 0.028 0.596 0.280 NA
#> ERR978151     3  0.6420      0.430 0.016 0.028 0.596 0.280 NA
#> ERR978152     3  0.6420      0.430 0.016 0.028 0.596 0.280 NA
#> ERR978153     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978154     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978155     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978156     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978157     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978158     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978159     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978160     1  0.0000      0.881 1.000 0.000 0.000 0.000 NA
#> ERR978161     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978162     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978163     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978164     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978165     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978166     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978167     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978168     1  0.0566      0.881 0.984 0.000 0.004 0.012 NA
#> ERR978169     4  0.3800      0.770 0.068 0.020 0.060 0.844 NA
#> ERR978170     4  0.3800      0.770 0.068 0.020 0.060 0.844 NA
#> ERR978171     4  0.3800      0.770 0.068 0.020 0.060 0.844 NA
#> ERR978172     4  0.3800      0.770 0.068 0.020 0.060 0.844 NA
#> ERR978173     4  0.3800      0.770 0.068 0.020 0.060 0.844 NA
#> ERR978174     4  0.3800      0.770 0.068 0.020 0.060 0.844 NA
#> ERR978175     4  0.3800      0.770 0.068 0.020 0.060 0.844 NA
#> ERR978176     4  0.4759      0.773 0.068 0.024 0.052 0.800 NA
#> ERR978177     4  0.4759      0.773 0.068 0.024 0.052 0.800 NA
#> ERR978178     4  0.4759      0.773 0.068 0.024 0.052 0.800 NA
#> ERR978179     4  0.4759      0.773 0.068 0.024 0.052 0.800 NA
#> ERR978180     4  0.4759      0.773 0.068 0.024 0.052 0.800 NA
#> ERR978181     4  0.4759      0.773 0.068 0.024 0.052 0.800 NA
#> ERR978182     4  0.4759      0.773 0.068 0.024 0.052 0.800 NA
#> ERR978183     2  0.4604      0.851 0.000 0.748 0.040 0.020 NA
#> ERR978184     2  0.4604      0.851 0.000 0.748 0.040 0.020 NA
#> ERR978185     2  0.4604      0.851 0.000 0.748 0.040 0.020 NA
#> ERR978186     2  0.4604      0.851 0.000 0.748 0.040 0.020 NA
#> ERR978187     2  0.4604      0.851 0.000 0.748 0.040 0.020 NA
#> ERR978188     2  0.4604      0.851 0.000 0.748 0.040 0.020 NA
#> ERR978189     2  0.4658      0.851 0.000 0.748 0.040 0.024 NA
#> ERR978190     2  0.4558      0.851 0.000 0.728 0.040 0.008 NA
#> ERR978191     2  0.4558      0.851 0.000 0.728 0.040 0.008 NA
#> ERR978192     2  0.4558      0.851 0.000 0.728 0.040 0.008 NA
#> ERR978193     2  0.4558      0.851 0.000 0.728 0.040 0.008 NA
#> ERR978194     2  0.4558      0.851 0.000 0.728 0.040 0.008 NA
#> ERR978195     2  0.4558      0.851 0.000 0.728 0.040 0.008 NA
#> ERR978196     2  0.4558      0.851 0.000 0.728 0.040 0.008 NA
#> ERR978197     3  0.5440      0.535 0.000 0.132 0.696 0.016 NA
#> ERR978198     3  0.5440      0.535 0.000 0.132 0.696 0.016 NA
#> ERR978199     3  0.5440      0.535 0.000 0.132 0.696 0.016 NA
#> ERR978200     3  0.5440      0.535 0.000 0.132 0.696 0.016 NA
#> ERR978201     3  0.5440      0.535 0.000 0.132 0.696 0.016 NA
#> ERR978202     3  0.5440      0.535 0.000 0.132 0.696 0.016 NA
#> ERR978203     3  0.5440      0.535 0.000 0.132 0.696 0.016 NA
#> ERR978204     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978205     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978206     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978207     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978208     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978209     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978210     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978211     3  0.5384      0.522 0.000 0.156 0.696 0.012 NA
#> ERR978212     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978213     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978214     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978215     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978216     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978217     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978218     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978219     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978220     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978221     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978222     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978223     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978224     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978225     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978226     3  0.6594      0.439 0.004 0.176 0.632 0.104 NA
#> ERR978227     1  0.4497      0.859 0.716 0.000 0.008 0.028 NA
#> ERR978228     1  0.4497      0.859 0.716 0.000 0.008 0.028 NA
#> ERR978229     1  0.4497      0.859 0.716 0.000 0.008 0.028 NA
#> ERR978230     1  0.4497      0.859 0.716 0.000 0.008 0.028 NA
#> ERR978231     1  0.4497      0.859 0.716 0.000 0.008 0.028 NA
#> ERR978232     1  0.4497      0.859 0.716 0.000 0.008 0.028 NA
#> ERR978233     1  0.4497      0.859 0.716 0.000 0.008 0.028 NA
#> ERR978234     1  0.3968      0.859 0.716 0.004 0.000 0.004 NA
#> ERR978235     1  0.3968      0.859 0.716 0.004 0.000 0.004 NA
#> ERR978236     1  0.3934      0.859 0.716 0.000 0.000 0.008 NA
#> ERR978237     1  0.3934      0.859 0.716 0.000 0.000 0.008 NA
#> ERR978238     1  0.3934      0.859 0.716 0.000 0.000 0.008 NA
#> ERR978239     1  0.3968      0.859 0.716 0.004 0.000 0.004 NA
#> ERR978240     1  0.3968      0.859 0.716 0.004 0.000 0.004 NA
#> ERR978241     4  0.4874      0.765 0.064 0.008 0.100 0.780 NA
#> ERR978242     4  0.4874      0.765 0.064 0.008 0.100 0.780 NA
#> ERR978243     4  0.4874      0.765 0.064 0.008 0.100 0.780 NA
#> ERR978244     4  0.4874      0.765 0.064 0.008 0.100 0.780 NA
#> ERR978245     4  0.4874      0.765 0.064 0.008 0.100 0.780 NA
#> ERR978246     4  0.4874      0.765 0.064 0.008 0.100 0.780 NA
#> ERR978247     4  0.4874      0.765 0.064 0.008 0.100 0.780 NA
#> ERR978248     4  0.8878      0.316 0.040 0.176 0.324 0.332 NA
#> ERR978249     4  0.8878      0.316 0.040 0.176 0.324 0.332 NA
#> ERR978250     4  0.8878      0.316 0.040 0.176 0.324 0.332 NA
#> ERR978251     4  0.8878      0.316 0.040 0.176 0.324 0.332 NA
#> ERR978252     4  0.8878      0.316 0.040 0.176 0.324 0.332 NA
#> ERR978253     4  0.8878      0.316 0.040 0.176 0.324 0.332 NA
#> ERR978254     4  0.8878      0.316 0.040 0.176 0.324 0.332 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> ERR978107     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978108     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978109     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978110     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978111     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978112     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978113     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978114     2  0.5762      0.806 0.000 0.580 0.044 0.020 0.044 NA
#> ERR978115     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978116     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978117     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978118     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978119     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978120     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978121     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978122     2  0.5306      0.806 0.000 0.576 0.044 0.008 0.024 NA
#> ERR978123     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978124     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978125     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978126     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978127     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978128     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978129     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978130     3  0.6516      0.619 0.000 0.004 0.572 0.116 0.160 NA
#> ERR978131     3  0.6531      0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978132     3  0.6531      0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978133     3  0.6531      0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978134     3  0.6531      0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978135     3  0.6531      0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978136     3  0.6531      0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978137     3  0.6531      0.621 0.000 0.004 0.568 0.108 0.160 NA
#> ERR978138     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978139     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978140     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978141     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978142     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978143     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978144     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978145     5  0.7314      0.536 0.000 0.024 0.264 0.196 0.444 NA
#> ERR978146     5  0.7478      0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978147     5  0.7478      0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978148     5  0.7478      0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978149     5  0.7478      0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978150     5  0.7478      0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978151     5  0.7478      0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978152     5  0.7478      0.500 0.000 0.020 0.276 0.208 0.408 NA
#> ERR978153     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978154     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978155     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978156     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978157     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978158     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978159     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978160     1  0.0777      0.849 0.972 0.000 0.000 0.004 0.024 NA
#> ERR978161     1  0.0146      0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978162     1  0.0146      0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978163     1  0.0146      0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978164     1  0.0146      0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978165     1  0.0146      0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978166     1  0.0146      0.849 0.996 0.000 0.000 0.004 0.000 NA
#> ERR978167     1  0.0146      0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978168     1  0.0146      0.849 0.996 0.004 0.000 0.000 0.000 NA
#> ERR978169     4  0.1880      0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978170     4  0.1880      0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978171     4  0.1880      0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978172     4  0.1880      0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978173     4  0.1880      0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978174     4  0.1880      0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978175     4  0.1880      0.773 0.032 0.004 0.020 0.932 0.004 NA
#> ERR978176     4  0.3273      0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978177     4  0.3273      0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978178     4  0.3273      0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978179     4  0.3273      0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978180     4  0.3273      0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978181     4  0.3273      0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978182     4  0.3273      0.773 0.032 0.004 0.012 0.864 0.044 NA
#> ERR978183     2  0.0972      0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978184     2  0.0972      0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978185     2  0.0972      0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978186     2  0.0972      0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978187     2  0.0972      0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978188     2  0.0972      0.780 0.000 0.964 0.008 0.000 0.028 NA
#> ERR978189     2  0.1049      0.780 0.000 0.960 0.008 0.000 0.032 NA
#> ERR978190     2  0.0520      0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978191     2  0.0520      0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978192     2  0.0520      0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978193     2  0.0520      0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978194     2  0.0520      0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978195     2  0.0520      0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978196     2  0.0520      0.780 0.000 0.984 0.008 0.000 0.000 NA
#> ERR978197     3  0.1477      0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978198     3  0.1477      0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978199     3  0.1477      0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978200     3  0.1477      0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978201     3  0.1477      0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978202     3  0.1477      0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978203     3  0.1477      0.586 0.000 0.048 0.940 0.008 0.004 NA
#> ERR978204     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978205     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978206     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978207     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978208     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978209     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978210     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978211     3  0.2649      0.541 0.000 0.072 0.880 0.000 0.036 NA
#> ERR978212     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978213     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978214     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978215     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978216     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978217     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978218     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978219     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978220     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978221     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978222     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978223     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978224     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978225     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978226     5  0.6657      0.581 0.000 0.116 0.372 0.056 0.444 NA
#> ERR978227     1  0.4841      0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978228     1  0.4841      0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978229     1  0.4841      0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978230     1  0.4841      0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978231     1  0.4841      0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978232     1  0.4841      0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978233     1  0.4841      0.823 0.648 0.000 0.004 0.000 0.088 NA
#> ERR978234     1  0.4269      0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978235     1  0.4269      0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978236     1  0.4269      0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978237     1  0.4269      0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978238     1  0.4269      0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978239     1  0.4269      0.823 0.648 0.000 0.000 0.000 0.036 NA
#> ERR978240     1  0.4388      0.823 0.648 0.000 0.000 0.004 0.036 NA
#> ERR978241     4  0.4470      0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978242     4  0.4470      0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978243     4  0.4470      0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978244     4  0.4470      0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978245     4  0.4470      0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978246     4  0.4470      0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978247     4  0.4470      0.761 0.032 0.008 0.036 0.796 0.056 NA
#> ERR978248     4  0.8566      0.369 0.020 0.120 0.124 0.340 0.308 NA
#> ERR978249     4  0.8538      0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978250     4  0.8538      0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978251     4  0.8538      0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978252     4  0.8538      0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978253     4  0.8538      0.370 0.020 0.120 0.124 0.340 0.312 NA
#> ERR978254     4  0.8566      0.369 0.020 0.120 0.124 0.340 0.308 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.640           0.738       0.900         0.4902 0.502   0.502
#> 3 3 0.701           0.867       0.904         0.3133 0.759   0.563
#> 4 4 0.724           0.659       0.804         0.1407 0.726   0.383
#> 5 5 0.865           0.864       0.862         0.0941 0.899   0.634
#> 6 6 0.901           0.902       0.869         0.0274 0.979   0.894

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2  0.0000      0.873 0.000 1.000
#> ERR978108     2  0.0000      0.873 0.000 1.000
#> ERR978109     2  0.0000      0.873 0.000 1.000
#> ERR978110     2  0.0000      0.873 0.000 1.000
#> ERR978111     2  0.0000      0.873 0.000 1.000
#> ERR978112     2  0.0000      0.873 0.000 1.000
#> ERR978113     2  0.0000      0.873 0.000 1.000
#> ERR978114     2  0.0000      0.873 0.000 1.000
#> ERR978115     2  0.0000      0.873 0.000 1.000
#> ERR978116     2  0.0000      0.873 0.000 1.000
#> ERR978117     2  0.0000      0.873 0.000 1.000
#> ERR978118     2  0.0000      0.873 0.000 1.000
#> ERR978119     2  0.0000      0.873 0.000 1.000
#> ERR978120     2  0.0000      0.873 0.000 1.000
#> ERR978121     2  0.0000      0.873 0.000 1.000
#> ERR978122     2  0.0000      0.873 0.000 1.000
#> ERR978123     1  0.9896      0.265 0.560 0.440
#> ERR978124     1  0.9896      0.265 0.560 0.440
#> ERR978125     1  0.9896      0.265 0.560 0.440
#> ERR978126     1  0.9896      0.265 0.560 0.440
#> ERR978127     1  0.9896      0.265 0.560 0.440
#> ERR978128     1  0.9896      0.265 0.560 0.440
#> ERR978129     1  0.9896      0.265 0.560 0.440
#> ERR978130     1  0.9896      0.265 0.560 0.440
#> ERR978131     1  0.9896      0.265 0.560 0.440
#> ERR978132     1  0.9896      0.265 0.560 0.440
#> ERR978133     1  0.9896      0.265 0.560 0.440
#> ERR978134     1  0.9896      0.265 0.560 0.440
#> ERR978135     1  0.9896      0.265 0.560 0.440
#> ERR978136     1  0.9896      0.265 0.560 0.440
#> ERR978137     1  0.9896      0.265 0.560 0.440
#> ERR978138     2  0.9248      0.453 0.340 0.660
#> ERR978139     2  0.9248      0.453 0.340 0.660
#> ERR978140     2  0.9248      0.453 0.340 0.660
#> ERR978141     2  0.9248      0.453 0.340 0.660
#> ERR978142     2  0.9248      0.453 0.340 0.660
#> ERR978143     2  0.9248      0.453 0.340 0.660
#> ERR978144     2  0.9248      0.453 0.340 0.660
#> ERR978145     2  0.9248      0.453 0.340 0.660
#> ERR978146     2  0.9248      0.453 0.340 0.660
#> ERR978147     2  0.9248      0.453 0.340 0.660
#> ERR978148     2  0.9248      0.453 0.340 0.660
#> ERR978149     2  0.9248      0.453 0.340 0.660
#> ERR978150     2  0.9248      0.453 0.340 0.660
#> ERR978151     2  0.9248      0.453 0.340 0.660
#> ERR978152     2  0.9248      0.453 0.340 0.660
#> ERR978153     1  0.0000      0.871 1.000 0.000
#> ERR978154     1  0.0000      0.871 1.000 0.000
#> ERR978155     1  0.0000      0.871 1.000 0.000
#> ERR978156     1  0.0000      0.871 1.000 0.000
#> ERR978157     1  0.0000      0.871 1.000 0.000
#> ERR978158     1  0.0000      0.871 1.000 0.000
#> ERR978159     1  0.0000      0.871 1.000 0.000
#> ERR978160     1  0.0000      0.871 1.000 0.000
#> ERR978161     1  0.0000      0.871 1.000 0.000
#> ERR978162     1  0.0000      0.871 1.000 0.000
#> ERR978163     1  0.0000      0.871 1.000 0.000
#> ERR978164     1  0.0000      0.871 1.000 0.000
#> ERR978165     1  0.0000      0.871 1.000 0.000
#> ERR978166     1  0.0000      0.871 1.000 0.000
#> ERR978167     1  0.0000      0.871 1.000 0.000
#> ERR978168     1  0.0000      0.871 1.000 0.000
#> ERR978169     1  0.0376      0.871 0.996 0.004
#> ERR978170     1  0.0376      0.871 0.996 0.004
#> ERR978171     1  0.0376      0.871 0.996 0.004
#> ERR978172     1  0.0376      0.871 0.996 0.004
#> ERR978173     1  0.0376      0.871 0.996 0.004
#> ERR978174     1  0.0376      0.871 0.996 0.004
#> ERR978175     1  0.0376      0.871 0.996 0.004
#> ERR978176     1  0.0376      0.871 0.996 0.004
#> ERR978177     1  0.0376      0.871 0.996 0.004
#> ERR978178     1  0.0376      0.871 0.996 0.004
#> ERR978179     1  0.0376      0.871 0.996 0.004
#> ERR978180     1  0.0376      0.871 0.996 0.004
#> ERR978181     1  0.0376      0.871 0.996 0.004
#> ERR978182     1  0.0376      0.871 0.996 0.004
#> ERR978183     2  0.0000      0.873 0.000 1.000
#> ERR978184     2  0.0000      0.873 0.000 1.000
#> ERR978185     2  0.0000      0.873 0.000 1.000
#> ERR978186     2  0.0000      0.873 0.000 1.000
#> ERR978187     2  0.0000      0.873 0.000 1.000
#> ERR978188     2  0.0000      0.873 0.000 1.000
#> ERR978189     2  0.0000      0.873 0.000 1.000
#> ERR978190     2  0.0000      0.873 0.000 1.000
#> ERR978191     2  0.0000      0.873 0.000 1.000
#> ERR978192     2  0.0000      0.873 0.000 1.000
#> ERR978193     2  0.0000      0.873 0.000 1.000
#> ERR978194     2  0.0000      0.873 0.000 1.000
#> ERR978195     2  0.0000      0.873 0.000 1.000
#> ERR978196     2  0.0000      0.873 0.000 1.000
#> ERR978197     2  0.0000      0.873 0.000 1.000
#> ERR978198     2  0.0000      0.873 0.000 1.000
#> ERR978199     2  0.0000      0.873 0.000 1.000
#> ERR978200     2  0.0000      0.873 0.000 1.000
#> ERR978201     2  0.0000      0.873 0.000 1.000
#> ERR978202     2  0.0000      0.873 0.000 1.000
#> ERR978203     2  0.0000      0.873 0.000 1.000
#> ERR978204     2  0.0000      0.873 0.000 1.000
#> ERR978205     2  0.0000      0.873 0.000 1.000
#> ERR978206     2  0.0000      0.873 0.000 1.000
#> ERR978207     2  0.0000      0.873 0.000 1.000
#> ERR978208     2  0.0000      0.873 0.000 1.000
#> ERR978209     2  0.0000      0.873 0.000 1.000
#> ERR978210     2  0.0000      0.873 0.000 1.000
#> ERR978211     2  0.0000      0.873 0.000 1.000
#> ERR978212     2  0.0000      0.873 0.000 1.000
#> ERR978213     2  0.0000      0.873 0.000 1.000
#> ERR978214     2  0.0000      0.873 0.000 1.000
#> ERR978215     2  0.0000      0.873 0.000 1.000
#> ERR978216     2  0.0000      0.873 0.000 1.000
#> ERR978217     2  0.0000      0.873 0.000 1.000
#> ERR978218     2  0.0000      0.873 0.000 1.000
#> ERR978219     2  0.0000      0.873 0.000 1.000
#> ERR978220     2  0.0000      0.873 0.000 1.000
#> ERR978221     2  0.0000      0.873 0.000 1.000
#> ERR978222     2  0.0000      0.873 0.000 1.000
#> ERR978223     2  0.0000      0.873 0.000 1.000
#> ERR978224     2  0.0000      0.873 0.000 1.000
#> ERR978225     2  0.0000      0.873 0.000 1.000
#> ERR978226     2  0.0000      0.873 0.000 1.000
#> ERR978227     1  0.0000      0.871 1.000 0.000
#> ERR978228     1  0.0000      0.871 1.000 0.000
#> ERR978229     1  0.0000      0.871 1.000 0.000
#> ERR978230     1  0.0000      0.871 1.000 0.000
#> ERR978231     1  0.0000      0.871 1.000 0.000
#> ERR978232     1  0.0000      0.871 1.000 0.000
#> ERR978233     1  0.0000      0.871 1.000 0.000
#> ERR978234     1  0.0000      0.871 1.000 0.000
#> ERR978235     1  0.0000      0.871 1.000 0.000
#> ERR978236     1  0.0000      0.871 1.000 0.000
#> ERR978237     1  0.0000      0.871 1.000 0.000
#> ERR978238     1  0.0000      0.871 1.000 0.000
#> ERR978239     1  0.0000      0.871 1.000 0.000
#> ERR978240     1  0.0000      0.871 1.000 0.000
#> ERR978241     1  0.0376      0.871 0.996 0.004
#> ERR978242     1  0.0376      0.871 0.996 0.004
#> ERR978243     1  0.0376      0.871 0.996 0.004
#> ERR978244     1  0.0376      0.871 0.996 0.004
#> ERR978245     1  0.0376      0.871 0.996 0.004
#> ERR978246     1  0.0376      0.871 0.996 0.004
#> ERR978247     1  0.0376      0.871 0.996 0.004
#> ERR978248     2  0.9881      0.224 0.436 0.564
#> ERR978249     2  0.9881      0.224 0.436 0.564
#> ERR978250     2  0.9881      0.224 0.436 0.564
#> ERR978251     2  0.9881      0.224 0.436 0.564
#> ERR978252     2  0.9881      0.224 0.436 0.564
#> ERR978253     2  0.9881      0.224 0.436 0.564
#> ERR978254     2  0.9881      0.224 0.436 0.564

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978108     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978109     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978110     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978111     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978112     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978113     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978114     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978115     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978116     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978117     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978118     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978119     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978120     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978121     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978122     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978123     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978124     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978125     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978126     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978127     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978128     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978129     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978130     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978131     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978132     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978133     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978134     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978135     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978136     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978137     3  0.0829      0.861 0.004 0.012 0.984
#> ERR978138     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978139     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978140     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978141     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978142     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978143     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978144     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978145     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978146     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978147     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978148     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978149     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978150     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978151     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978152     3  0.0000      0.863 0.000 0.000 1.000
#> ERR978153     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978154     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978155     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978156     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978157     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978158     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978159     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978160     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978161     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978162     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978163     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978164     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978165     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978166     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978167     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978168     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978169     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978170     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978171     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978172     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978173     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978174     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978175     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978176     3  0.6746      0.775 0.192 0.076 0.732
#> ERR978177     3  0.6746      0.775 0.192 0.076 0.732
#> ERR978178     3  0.6746      0.775 0.192 0.076 0.732
#> ERR978179     3  0.6746      0.775 0.192 0.076 0.732
#> ERR978180     3  0.6746      0.775 0.192 0.076 0.732
#> ERR978181     3  0.6746      0.775 0.192 0.076 0.732
#> ERR978182     3  0.6746      0.775 0.192 0.076 0.732
#> ERR978183     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978184     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978185     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978186     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978187     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978188     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978189     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978190     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978191     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978192     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978193     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978194     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978195     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978196     2  0.0000      0.866 0.000 1.000 0.000
#> ERR978197     2  0.5465      0.792 0.000 0.712 0.288
#> ERR978198     2  0.5465      0.792 0.000 0.712 0.288
#> ERR978199     2  0.5465      0.792 0.000 0.712 0.288
#> ERR978200     2  0.5465      0.792 0.000 0.712 0.288
#> ERR978201     2  0.5465      0.792 0.000 0.712 0.288
#> ERR978202     2  0.5465      0.792 0.000 0.712 0.288
#> ERR978203     2  0.5465      0.792 0.000 0.712 0.288
#> ERR978204     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978205     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978206     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978207     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978208     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978209     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978210     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978211     2  0.5397      0.799 0.000 0.720 0.280
#> ERR978212     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978213     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978214     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978215     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978216     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978217     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978218     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978219     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978220     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978221     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978222     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978223     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978224     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978225     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978226     2  0.5138      0.822 0.000 0.748 0.252
#> ERR978227     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978228     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978229     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978230     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978231     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978232     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978233     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978234     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978235     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978236     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978237     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978238     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978239     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978240     1  0.0000      1.000 1.000 0.000 0.000
#> ERR978241     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978242     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978243     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978244     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978245     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978246     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978247     3  0.6662      0.779 0.192 0.072 0.736
#> ERR978248     2  0.2297      0.842 0.036 0.944 0.020
#> ERR978249     2  0.2297      0.842 0.036 0.944 0.020
#> ERR978250     2  0.2297      0.842 0.036 0.944 0.020
#> ERR978251     2  0.2297      0.842 0.036 0.944 0.020
#> ERR978252     2  0.2297      0.842 0.036 0.944 0.020
#> ERR978253     2  0.2297      0.842 0.036 0.944 0.020
#> ERR978254     2  0.2297      0.842 0.036 0.944 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> ERR978107     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978108     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978109     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978110     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978111     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978112     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978113     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978114     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978115     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978116     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978117     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978118     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978119     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978120     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978121     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978122     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978123     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978124     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978125     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978126     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978127     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978128     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978129     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978130     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978131     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978132     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978133     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978134     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978135     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978136     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978137     3   0.130      0.673 0.000 0.000 0.956 0.044
#> ERR978138     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978139     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978140     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978141     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978142     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978143     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978144     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978145     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978146     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978147     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978148     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978149     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978150     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978151     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978152     3   0.307      0.634 0.000 0.000 0.848 0.152
#> ERR978153     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978169     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978170     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978171     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978172     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978173     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978174     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978175     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978176     4   0.488      0.484 0.016 0.000 0.288 0.696
#> ERR978177     4   0.488      0.484 0.016 0.000 0.288 0.696
#> ERR978178     4   0.488      0.484 0.016 0.000 0.288 0.696
#> ERR978179     4   0.488      0.484 0.016 0.000 0.288 0.696
#> ERR978180     4   0.488      0.484 0.016 0.000 0.288 0.696
#> ERR978181     4   0.488      0.484 0.016 0.000 0.288 0.696
#> ERR978182     4   0.488      0.484 0.016 0.000 0.288 0.696
#> ERR978183     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978184     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978185     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978186     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978187     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978188     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978189     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978190     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978191     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978192     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978193     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978194     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978195     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978196     2   0.000      1.000 0.000 1.000 0.000 0.000
#> ERR978197     3   0.601      0.493 0.000 0.072 0.640 0.288
#> ERR978198     3   0.601      0.493 0.000 0.072 0.640 0.288
#> ERR978199     3   0.601      0.493 0.000 0.072 0.640 0.288
#> ERR978200     3   0.601      0.493 0.000 0.072 0.640 0.288
#> ERR978201     3   0.601      0.493 0.000 0.072 0.640 0.288
#> ERR978202     3   0.601      0.493 0.000 0.072 0.640 0.288
#> ERR978203     3   0.601      0.493 0.000 0.072 0.640 0.288
#> ERR978204     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978205     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978206     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978207     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978208     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978209     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978210     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978211     3   0.631      0.475 0.000 0.092 0.620 0.288
#> ERR978212     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978213     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978214     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978215     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978216     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978217     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978218     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978219     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978220     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978221     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978222     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978223     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978224     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978225     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978226     4   0.767     -0.147 0.000 0.212 0.392 0.396
#> ERR978227     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000 1.000 0.000 0.000 0.000
#> ERR978241     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978242     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978243     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978244     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978245     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978246     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978247     4   0.504      0.485 0.020 0.000 0.296 0.684
#> ERR978248     4   0.391      0.384 0.004 0.212 0.000 0.784
#> ERR978249     4   0.391      0.384 0.004 0.212 0.000 0.784
#> ERR978250     4   0.391      0.384 0.004 0.212 0.000 0.784
#> ERR978251     4   0.391      0.384 0.004 0.212 0.000 0.784
#> ERR978252     4   0.391      0.384 0.004 0.212 0.000 0.784
#> ERR978253     4   0.391      0.384 0.004 0.212 0.000 0.784
#> ERR978254     4   0.391      0.384 0.004 0.212 0.000 0.784

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978123     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978124     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978125     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978126     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978127     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978128     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978129     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978130     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978131     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978132     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978133     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978134     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978135     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978136     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978137     3  0.4268      0.724  0 0.000 0.648 0.008 0.344
#> ERR978138     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978139     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978140     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978141     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978142     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978143     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978144     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978145     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978146     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978147     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978148     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978149     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978150     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978151     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978152     5  0.2722      0.674  0 0.000 0.020 0.108 0.872
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978170     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978171     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978172     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978173     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978174     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978175     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978176     4  0.0324      0.954  0 0.000 0.004 0.992 0.004
#> ERR978177     4  0.0324      0.954  0 0.000 0.004 0.992 0.004
#> ERR978178     4  0.0324      0.954  0 0.000 0.004 0.992 0.004
#> ERR978179     4  0.0324      0.954  0 0.000 0.004 0.992 0.004
#> ERR978180     4  0.0324      0.954  0 0.000 0.004 0.992 0.004
#> ERR978181     4  0.0324      0.954  0 0.000 0.004 0.992 0.004
#> ERR978182     4  0.0324      0.954  0 0.000 0.004 0.992 0.004
#> ERR978183     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978197     3  0.0912      0.715  0 0.012 0.972 0.000 0.016
#> ERR978198     3  0.0912      0.715  0 0.012 0.972 0.000 0.016
#> ERR978199     3  0.0912      0.715  0 0.012 0.972 0.000 0.016
#> ERR978200     3  0.0912      0.715  0 0.012 0.972 0.000 0.016
#> ERR978201     3  0.0912      0.715  0 0.012 0.972 0.000 0.016
#> ERR978202     3  0.0912      0.715  0 0.012 0.972 0.000 0.016
#> ERR978203     3  0.0912      0.715  0 0.012 0.972 0.000 0.016
#> ERR978204     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978205     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978206     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978207     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978208     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978209     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978210     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978211     3  0.1281      0.706  0 0.012 0.956 0.000 0.032
#> ERR978212     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978213     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978214     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978215     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978216     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978217     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978218     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978219     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978220     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978221     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978222     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978223     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978224     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978225     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978226     5  0.4387      0.676  0 0.012 0.348 0.000 0.640
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978242     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978243     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978244     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978245     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978246     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978247     4  0.0000      0.956  0 0.000 0.000 1.000 0.000
#> ERR978248     4  0.3579      0.867  0 0.032 0.016 0.836 0.116
#> ERR978249     4  0.3579      0.867  0 0.032 0.016 0.836 0.116
#> ERR978250     4  0.3579      0.867  0 0.032 0.016 0.836 0.116
#> ERR978251     4  0.3579      0.867  0 0.032 0.016 0.836 0.116
#> ERR978252     4  0.3579      0.867  0 0.032 0.016 0.836 0.116
#> ERR978253     4  0.3579      0.867  0 0.032 0.016 0.836 0.116
#> ERR978254     4  0.3579      0.867  0 0.032 0.016 0.836 0.116

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> ERR978123     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978124     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978125     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978126     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978127     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978128     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978129     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978130     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978131     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978132     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978133     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978134     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978135     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978136     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978137     3  0.3244      0.702 0.000 0.000 0.732 0.000 0.268 0.000
#> ERR978138     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978139     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978140     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978141     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978142     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978143     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978144     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978145     5  0.5272      0.996 0.000 0.000 0.052 0.028 0.564 0.356
#> ERR978146     5  0.5261      0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978147     5  0.5261      0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978148     5  0.5261      0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978149     5  0.5261      0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978150     5  0.5261      0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978151     5  0.5261      0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978152     5  0.5261      0.996 0.000 0.000 0.052 0.028 0.568 0.352
#> ERR978153     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      0.994 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0260      0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978170     4  0.0260      0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978171     4  0.0260      0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978172     4  0.0260      0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978173     4  0.0260      0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978174     4  0.0260      0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978175     4  0.0260      0.902 0.000 0.000 0.000 0.992 0.008 0.000
#> ERR978176     4  0.1663      0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978177     4  0.1663      0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978178     4  0.1663      0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978179     4  0.1663      0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978180     4  0.1663      0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978181     4  0.1663      0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978182     4  0.1663      0.898 0.000 0.000 0.000 0.912 0.088 0.000
#> ERR978183     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978184     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978185     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978186     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978187     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978188     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978189     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978190     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978191     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978192     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978193     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978194     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978195     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978196     2  0.0914      0.986 0.000 0.968 0.016 0.000 0.016 0.000
#> ERR978197     3  0.3050      0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978198     3  0.3050      0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978199     3  0.3050      0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978200     3  0.3050      0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978201     3  0.3050      0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978202     3  0.3050      0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978203     3  0.3050      0.649 0.000 0.000 0.764 0.000 0.000 0.236
#> ERR978204     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978205     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978206     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978207     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978208     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978209     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978210     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978211     3  0.3482      0.586 0.000 0.000 0.684 0.000 0.000 0.316
#> ERR978212     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978213     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978214     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978215     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978216     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978217     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978218     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978219     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978220     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978221     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978222     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978223     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978224     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978225     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978226     6  0.0000      1.000 0.000 0.000 0.000 0.000 0.000 1.000
#> ERR978227     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978228     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978229     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978230     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978231     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978232     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978233     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978234     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978235     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978236     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978237     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978238     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978239     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978240     1  0.0458      0.993 0.984 0.000 0.000 0.000 0.016 0.000
#> ERR978241     4  0.0790      0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978242     4  0.0790      0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978243     4  0.0790      0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978244     4  0.0790      0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978245     4  0.0790      0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978246     4  0.0790      0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978247     4  0.0790      0.902 0.000 0.000 0.000 0.968 0.032 0.000
#> ERR978248     4  0.5228      0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978249     4  0.5228      0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978250     4  0.5228      0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978251     4  0.5228      0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978252     4  0.5228      0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978253     4  0.5228      0.773 0.000 0.004 0.012 0.656 0.200 0.128
#> ERR978254     4  0.5228      0.773 0.000 0.004 0.012 0.656 0.200 0.128

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 1.000           0.978       0.990         0.7654 0.757   0.640
#> 4 4 0.735           0.678       0.869         0.2602 0.822   0.588
#> 5 5 1.000           0.987       0.992         0.0996 0.855   0.518
#> 6 6 1.000           1.000       1.000         0.0403 0.959   0.800

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2   0.000      1.000  0 1.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000
#> ERR978123     3   0.000      0.983  0 0.000 1.000
#> ERR978124     3   0.000      0.983  0 0.000 1.000
#> ERR978125     3   0.000      0.983  0 0.000 1.000
#> ERR978126     3   0.000      0.983  0 0.000 1.000
#> ERR978127     3   0.000      0.983  0 0.000 1.000
#> ERR978128     3   0.000      0.983  0 0.000 1.000
#> ERR978129     3   0.000      0.983  0 0.000 1.000
#> ERR978130     3   0.000      0.983  0 0.000 1.000
#> ERR978131     3   0.000      0.983  0 0.000 1.000
#> ERR978132     3   0.000      0.983  0 0.000 1.000
#> ERR978133     3   0.000      0.983  0 0.000 1.000
#> ERR978134     3   0.000      0.983  0 0.000 1.000
#> ERR978135     3   0.000      0.983  0 0.000 1.000
#> ERR978136     3   0.000      0.983  0 0.000 1.000
#> ERR978137     3   0.000      0.983  0 0.000 1.000
#> ERR978138     3   0.000      0.983  0 0.000 1.000
#> ERR978139     3   0.000      0.983  0 0.000 1.000
#> ERR978140     3   0.000      0.983  0 0.000 1.000
#> ERR978141     3   0.000      0.983  0 0.000 1.000
#> ERR978142     3   0.000      0.983  0 0.000 1.000
#> ERR978143     3   0.000      0.983  0 0.000 1.000
#> ERR978144     3   0.000      0.983  0 0.000 1.000
#> ERR978145     3   0.000      0.983  0 0.000 1.000
#> ERR978146     3   0.000      0.983  0 0.000 1.000
#> ERR978147     3   0.000      0.983  0 0.000 1.000
#> ERR978148     3   0.000      0.983  0 0.000 1.000
#> ERR978149     3   0.000      0.983  0 0.000 1.000
#> ERR978150     3   0.000      0.983  0 0.000 1.000
#> ERR978151     3   0.000      0.983  0 0.000 1.000
#> ERR978152     3   0.000      0.983  0 0.000 1.000
#> ERR978153     1   0.000      1.000  1 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000
#> ERR978169     3   0.000      0.983  0 0.000 1.000
#> ERR978170     3   0.000      0.983  0 0.000 1.000
#> ERR978171     3   0.000      0.983  0 0.000 1.000
#> ERR978172     3   0.000      0.983  0 0.000 1.000
#> ERR978173     3   0.000      0.983  0 0.000 1.000
#> ERR978174     3   0.000      0.983  0 0.000 1.000
#> ERR978175     3   0.000      0.983  0 0.000 1.000
#> ERR978176     3   0.000      0.983  0 0.000 1.000
#> ERR978177     3   0.000      0.983  0 0.000 1.000
#> ERR978178     3   0.000      0.983  0 0.000 1.000
#> ERR978179     3   0.000      0.983  0 0.000 1.000
#> ERR978180     3   0.000      0.983  0 0.000 1.000
#> ERR978181     3   0.000      0.983  0 0.000 1.000
#> ERR978182     3   0.000      0.983  0 0.000 1.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000
#> ERR978197     3   0.000      0.983  0 0.000 1.000
#> ERR978198     3   0.000      0.983  0 0.000 1.000
#> ERR978199     3   0.000      0.983  0 0.000 1.000
#> ERR978200     3   0.000      0.983  0 0.000 1.000
#> ERR978201     3   0.000      0.983  0 0.000 1.000
#> ERR978202     3   0.000      0.983  0 0.000 1.000
#> ERR978203     3   0.000      0.983  0 0.000 1.000
#> ERR978204     3   0.000      0.983  0 0.000 1.000
#> ERR978205     3   0.000      0.983  0 0.000 1.000
#> ERR978206     3   0.000      0.983  0 0.000 1.000
#> ERR978207     3   0.000      0.983  0 0.000 1.000
#> ERR978208     3   0.000      0.983  0 0.000 1.000
#> ERR978209     3   0.000      0.983  0 0.000 1.000
#> ERR978210     3   0.000      0.983  0 0.000 1.000
#> ERR978211     3   0.000      0.983  0 0.000 1.000
#> ERR978212     3   0.000      0.983  0 0.000 1.000
#> ERR978213     3   0.000      0.983  0 0.000 1.000
#> ERR978214     3   0.000      0.983  0 0.000 1.000
#> ERR978215     3   0.000      0.983  0 0.000 1.000
#> ERR978216     3   0.000      0.983  0 0.000 1.000
#> ERR978217     3   0.000      0.983  0 0.000 1.000
#> ERR978218     3   0.000      0.983  0 0.000 1.000
#> ERR978219     3   0.000      0.983  0 0.000 1.000
#> ERR978220     3   0.000      0.983  0 0.000 1.000
#> ERR978221     3   0.000      0.983  0 0.000 1.000
#> ERR978222     3   0.000      0.983  0 0.000 1.000
#> ERR978223     3   0.000      0.983  0 0.000 1.000
#> ERR978224     3   0.000      0.983  0 0.000 1.000
#> ERR978225     3   0.000      0.983  0 0.000 1.000
#> ERR978226     3   0.000      0.983  0 0.000 1.000
#> ERR978227     1   0.000      1.000  1 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000
#> ERR978241     3   0.000      0.983  0 0.000 1.000
#> ERR978242     3   0.000      0.983  0 0.000 1.000
#> ERR978243     3   0.000      0.983  0 0.000 1.000
#> ERR978244     3   0.000      0.983  0 0.000 1.000
#> ERR978245     3   0.000      0.983  0 0.000 1.000
#> ERR978246     3   0.000      0.983  0 0.000 1.000
#> ERR978247     3   0.000      0.983  0 0.000 1.000
#> ERR978248     3   0.559      0.589  0 0.304 0.696
#> ERR978249     3   0.510      0.688  0 0.248 0.752
#> ERR978250     3   0.400      0.814  0 0.160 0.840
#> ERR978251     3   0.207      0.927  0 0.060 0.940
#> ERR978252     3   0.388      0.824  0 0.152 0.848
#> ERR978253     3   0.497      0.707  0 0.236 0.764
#> ERR978254     3   0.573      0.549  0 0.324 0.676

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978108     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978109     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978110     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978111     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978112     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978113     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978114     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978115     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978116     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978117     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978118     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978119     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978120     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978121     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978122     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978123     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978124     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978125     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978126     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978127     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978128     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978129     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978130     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978131     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978132     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978133     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978134     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978135     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978136     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978137     3  0.4454     0.4439  0 0.000 0.692 0.308
#> ERR978138     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978139     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978140     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978141     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978142     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978143     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978144     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978145     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978146     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978147     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978148     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978149     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978150     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978151     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978152     4  0.3569     0.6708  0 0.000 0.196 0.804
#> ERR978153     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978169     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978170     4  0.0336     0.7395  0 0.000 0.008 0.992
#> ERR978171     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978172     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978173     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978174     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978175     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978176     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978177     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978178     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978179     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978180     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978181     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978182     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978183     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978184     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978185     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978186     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978187     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978188     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978189     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978190     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978191     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978192     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978193     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978194     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978195     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978196     2  0.0000     1.0000  0 1.000 0.000 0.000
#> ERR978197     3  0.0000     0.5422  0 0.000 1.000 0.000
#> ERR978198     3  0.0000     0.5422  0 0.000 1.000 0.000
#> ERR978199     3  0.0000     0.5422  0 0.000 1.000 0.000
#> ERR978200     3  0.0000     0.5422  0 0.000 1.000 0.000
#> ERR978201     3  0.0000     0.5422  0 0.000 1.000 0.000
#> ERR978202     3  0.0000     0.5422  0 0.000 1.000 0.000
#> ERR978203     3  0.0000     0.5422  0 0.000 1.000 0.000
#> ERR978204     3  0.1940     0.5386  0 0.000 0.924 0.076
#> ERR978205     3  0.2081     0.5368  0 0.000 0.916 0.084
#> ERR978206     3  0.2281     0.5319  0 0.000 0.904 0.096
#> ERR978207     3  0.2281     0.5319  0 0.000 0.904 0.096
#> ERR978208     3  0.2408     0.5268  0 0.000 0.896 0.104
#> ERR978209     3  0.2281     0.5319  0 0.000 0.904 0.096
#> ERR978210     3  0.2081     0.5368  0 0.000 0.916 0.084
#> ERR978211     3  0.2011     0.5379  0 0.000 0.920 0.080
#> ERR978212     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978213     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978214     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978215     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978216     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978217     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978218     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978219     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978220     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978221     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978222     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978223     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978224     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978225     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978226     3  0.5000    -0.0457  0 0.000 0.504 0.496
#> ERR978227     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000     1.0000  1 0.000 0.000 0.000
#> ERR978241     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978242     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978243     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978244     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978245     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978246     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978247     4  0.0000     0.7474  0 0.000 0.000 1.000
#> ERR978248     4  0.6918     0.0982  0 0.108 0.420 0.472
#> ERR978249     4  0.6599     0.1025  0 0.080 0.432 0.488
#> ERR978250     4  0.5859     0.0586  0 0.032 0.472 0.496
#> ERR978251     4  0.5409     0.0245  0 0.012 0.492 0.496
#> ERR978252     4  0.6009     0.0621  0 0.040 0.468 0.492
#> ERR978253     4  0.6447     0.0845  0 0.068 0.448 0.484
#> ERR978254     4  0.6994     0.1032  0 0.116 0.412 0.472

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1 p2    p3    p4    p5
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978123     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978124     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978125     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978126     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978127     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978128     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978129     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978130     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978131     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978132     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978133     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978134     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978135     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978136     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978137     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978138     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978139     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978140     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978141     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978142     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978143     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978144     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978145     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978146     3  0.2561      0.864  0  0 0.856 0.000 0.144
#> ERR978147     3  0.2561      0.864  0  0 0.856 0.000 0.144
#> ERR978148     3  0.2377      0.878  0  0 0.872 0.000 0.128
#> ERR978149     3  0.2561      0.864  0  0 0.856 0.000 0.144
#> ERR978150     3  0.2561      0.864  0  0 0.856 0.000 0.144
#> ERR978151     3  0.2377      0.878  0  0 0.872 0.000 0.128
#> ERR978152     3  0.2179      0.890  0  0 0.888 0.000 0.112
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978169     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978170     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978171     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978172     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978173     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978174     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978175     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978176     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978177     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978178     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978179     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978180     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978181     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978182     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978197     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978198     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978199     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978200     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978201     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978202     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978203     3  0.0000      0.962  0  0 1.000 0.000 0.000
#> ERR978204     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978205     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978206     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978207     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978208     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978209     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978210     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978211     5  0.0404      0.990  0  0 0.012 0.000 0.988
#> ERR978212     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978213     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978214     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978215     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978216     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978217     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978218     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978219     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978220     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978221     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978222     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978223     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978224     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978225     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978226     5  0.0000      0.995  0  0 0.000 0.000 1.000
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978241     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978242     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978243     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978244     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978245     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978246     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978247     4  0.0000      1.000  0  0 0.000 1.000 0.000
#> ERR978248     5  0.0404      0.990  0  0 0.000 0.012 0.988
#> ERR978249     5  0.0404      0.990  0  0 0.000 0.012 0.988
#> ERR978250     5  0.0404      0.990  0  0 0.000 0.012 0.988
#> ERR978251     5  0.0404      0.990  0  0 0.000 0.012 0.988
#> ERR978252     5  0.0404      0.990  0  0 0.000 0.012 0.988
#> ERR978253     5  0.0404      0.990  0  0 0.000 0.012 0.988
#> ERR978254     5  0.0404      0.990  0  0 0.000 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107     2       0          1  0  1  0  0  0  0
#> ERR978108     2       0          1  0  1  0  0  0  0
#> ERR978109     2       0          1  0  1  0  0  0  0
#> ERR978110     2       0          1  0  1  0  0  0  0
#> ERR978111     2       0          1  0  1  0  0  0  0
#> ERR978112     2       0          1  0  1  0  0  0  0
#> ERR978113     2       0          1  0  1  0  0  0  0
#> ERR978114     2       0          1  0  1  0  0  0  0
#> ERR978115     2       0          1  0  1  0  0  0  0
#> ERR978116     2       0          1  0  1  0  0  0  0
#> ERR978117     2       0          1  0  1  0  0  0  0
#> ERR978118     2       0          1  0  1  0  0  0  0
#> ERR978119     2       0          1  0  1  0  0  0  0
#> ERR978120     2       0          1  0  1  0  0  0  0
#> ERR978121     2       0          1  0  1  0  0  0  0
#> ERR978122     2       0          1  0  1  0  0  0  0
#> ERR978123     3       0          1  0  0  1  0  0  0
#> ERR978124     3       0          1  0  0  1  0  0  0
#> ERR978125     3       0          1  0  0  1  0  0  0
#> ERR978126     3       0          1  0  0  1  0  0  0
#> ERR978127     3       0          1  0  0  1  0  0  0
#> ERR978128     3       0          1  0  0  1  0  0  0
#> ERR978129     3       0          1  0  0  1  0  0  0
#> ERR978130     3       0          1  0  0  1  0  0  0
#> ERR978131     3       0          1  0  0  1  0  0  0
#> ERR978132     3       0          1  0  0  1  0  0  0
#> ERR978133     3       0          1  0  0  1  0  0  0
#> ERR978134     3       0          1  0  0  1  0  0  0
#> ERR978135     3       0          1  0  0  1  0  0  0
#> ERR978136     3       0          1  0  0  1  0  0  0
#> ERR978137     3       0          1  0  0  1  0  0  0
#> ERR978138     6       0          1  0  0  0  0  0  1
#> ERR978139     6       0          1  0  0  0  0  0  1
#> ERR978140     6       0          1  0  0  0  0  0  1
#> ERR978141     6       0          1  0  0  0  0  0  1
#> ERR978142     6       0          1  0  0  0  0  0  1
#> ERR978143     6       0          1  0  0  0  0  0  1
#> ERR978144     6       0          1  0  0  0  0  0  1
#> ERR978145     6       0          1  0  0  0  0  0  1
#> ERR978146     6       0          1  0  0  0  0  0  1
#> ERR978147     6       0          1  0  0  0  0  0  1
#> ERR978148     6       0          1  0  0  0  0  0  1
#> ERR978149     6       0          1  0  0  0  0  0  1
#> ERR978150     6       0          1  0  0  0  0  0  1
#> ERR978151     6       0          1  0  0  0  0  0  1
#> ERR978152     6       0          1  0  0  0  0  0  1
#> ERR978153     1       0          1  1  0  0  0  0  0
#> ERR978154     1       0          1  1  0  0  0  0  0
#> ERR978155     1       0          1  1  0  0  0  0  0
#> ERR978156     1       0          1  1  0  0  0  0  0
#> ERR978157     1       0          1  1  0  0  0  0  0
#> ERR978158     1       0          1  1  0  0  0  0  0
#> ERR978159     1       0          1  1  0  0  0  0  0
#> ERR978160     1       0          1  1  0  0  0  0  0
#> ERR978161     1       0          1  1  0  0  0  0  0
#> ERR978162     1       0          1  1  0  0  0  0  0
#> ERR978163     1       0          1  1  0  0  0  0  0
#> ERR978164     1       0          1  1  0  0  0  0  0
#> ERR978165     1       0          1  1  0  0  0  0  0
#> ERR978166     1       0          1  1  0  0  0  0  0
#> ERR978167     1       0          1  1  0  0  0  0  0
#> ERR978168     1       0          1  1  0  0  0  0  0
#> ERR978169     4       0          1  0  0  0  1  0  0
#> ERR978170     4       0          1  0  0  0  1  0  0
#> ERR978171     4       0          1  0  0  0  1  0  0
#> ERR978172     4       0          1  0  0  0  1  0  0
#> ERR978173     4       0          1  0  0  0  1  0  0
#> ERR978174     4       0          1  0  0  0  1  0  0
#> ERR978175     4       0          1  0  0  0  1  0  0
#> ERR978176     4       0          1  0  0  0  1  0  0
#> ERR978177     4       0          1  0  0  0  1  0  0
#> ERR978178     4       0          1  0  0  0  1  0  0
#> ERR978179     4       0          1  0  0  0  1  0  0
#> ERR978180     4       0          1  0  0  0  1  0  0
#> ERR978181     4       0          1  0  0  0  1  0  0
#> ERR978182     4       0          1  0  0  0  1  0  0
#> ERR978183     2       0          1  0  1  0  0  0  0
#> ERR978184     2       0          1  0  1  0  0  0  0
#> ERR978185     2       0          1  0  1  0  0  0  0
#> ERR978186     2       0          1  0  1  0  0  0  0
#> ERR978187     2       0          1  0  1  0  0  0  0
#> ERR978188     2       0          1  0  1  0  0  0  0
#> ERR978189     2       0          1  0  1  0  0  0  0
#> ERR978190     2       0          1  0  1  0  0  0  0
#> ERR978191     2       0          1  0  1  0  0  0  0
#> ERR978192     2       0          1  0  1  0  0  0  0
#> ERR978193     2       0          1  0  1  0  0  0  0
#> ERR978194     2       0          1  0  1  0  0  0  0
#> ERR978195     2       0          1  0  1  0  0  0  0
#> ERR978196     2       0          1  0  1  0  0  0  0
#> ERR978197     3       0          1  0  0  1  0  0  0
#> ERR978198     3       0          1  0  0  1  0  0  0
#> ERR978199     3       0          1  0  0  1  0  0  0
#> ERR978200     3       0          1  0  0  1  0  0  0
#> ERR978201     3       0          1  0  0  1  0  0  0
#> ERR978202     3       0          1  0  0  1  0  0  0
#> ERR978203     3       0          1  0  0  1  0  0  0
#> ERR978204     5       0          1  0  0  0  0  1  0
#> ERR978205     5       0          1  0  0  0  0  1  0
#> ERR978206     5       0          1  0  0  0  0  1  0
#> ERR978207     5       0          1  0  0  0  0  1  0
#> ERR978208     5       0          1  0  0  0  0  1  0
#> ERR978209     5       0          1  0  0  0  0  1  0
#> ERR978210     5       0          1  0  0  0  0  1  0
#> ERR978211     5       0          1  0  0  0  0  1  0
#> ERR978212     5       0          1  0  0  0  0  1  0
#> ERR978213     5       0          1  0  0  0  0  1  0
#> ERR978214     5       0          1  0  0  0  0  1  0
#> ERR978215     5       0          1  0  0  0  0  1  0
#> ERR978216     5       0          1  0  0  0  0  1  0
#> ERR978217     5       0          1  0  0  0  0  1  0
#> ERR978218     5       0          1  0  0  0  0  1  0
#> ERR978219     5       0          1  0  0  0  0  1  0
#> ERR978220     5       0          1  0  0  0  0  1  0
#> ERR978221     5       0          1  0  0  0  0  1  0
#> ERR978222     5       0          1  0  0  0  0  1  0
#> ERR978223     5       0          1  0  0  0  0  1  0
#> ERR978224     5       0          1  0  0  0  0  1  0
#> ERR978225     5       0          1  0  0  0  0  1  0
#> ERR978226     5       0          1  0  0  0  0  1  0
#> ERR978227     1       0          1  1  0  0  0  0  0
#> ERR978228     1       0          1  1  0  0  0  0  0
#> ERR978229     1       0          1  1  0  0  0  0  0
#> ERR978230     1       0          1  1  0  0  0  0  0
#> ERR978231     1       0          1  1  0  0  0  0  0
#> ERR978232     1       0          1  1  0  0  0  0  0
#> ERR978233     1       0          1  1  0  0  0  0  0
#> ERR978234     1       0          1  1  0  0  0  0  0
#> ERR978235     1       0          1  1  0  0  0  0  0
#> ERR978236     1       0          1  1  0  0  0  0  0
#> ERR978237     1       0          1  1  0  0  0  0  0
#> ERR978238     1       0          1  1  0  0  0  0  0
#> ERR978239     1       0          1  1  0  0  0  0  0
#> ERR978240     1       0          1  1  0  0  0  0  0
#> ERR978241     4       0          1  0  0  0  1  0  0
#> ERR978242     4       0          1  0  0  0  1  0  0
#> ERR978243     4       0          1  0  0  0  1  0  0
#> ERR978244     4       0          1  0  0  0  1  0  0
#> ERR978245     4       0          1  0  0  0  1  0  0
#> ERR978246     4       0          1  0  0  0  1  0  0
#> ERR978247     4       0          1  0  0  0  1  0  0
#> ERR978248     5       0          1  0  0  0  0  1  0
#> ERR978249     5       0          1  0  0  0  0  1  0
#> ERR978250     5       0          1  0  0  0  0  1  0
#> ERR978251     5       0          1  0  0  0  0  1  0
#> ERR978252     5       0          1  0  0  0  0  1  0
#> ERR978253     5       0          1  0  0  0  0  1  0
#> ERR978254     5       0          1  0  0  0  0  1  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 0.809           0.844       0.908         0.8359 0.757   0.640
#> 4 4 0.763           0.695       0.841         0.2109 0.822   0.588
#> 5 5 1.000           0.990       0.993         0.1100 0.899   0.634
#> 6 6 0.956           0.969       0.952         0.0231 0.982   0.907

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2   0.604      1.000 0.000 0.620 0.380
#> ERR978108     2   0.604      1.000 0.000 0.620 0.380
#> ERR978109     2   0.604      1.000 0.000 0.620 0.380
#> ERR978110     2   0.604      1.000 0.000 0.620 0.380
#> ERR978111     2   0.604      1.000 0.000 0.620 0.380
#> ERR978112     2   0.604      1.000 0.000 0.620 0.380
#> ERR978113     2   0.604      1.000 0.000 0.620 0.380
#> ERR978114     2   0.604      1.000 0.000 0.620 0.380
#> ERR978115     2   0.604      1.000 0.000 0.620 0.380
#> ERR978116     2   0.604      1.000 0.000 0.620 0.380
#> ERR978117     2   0.604      1.000 0.000 0.620 0.380
#> ERR978118     2   0.604      1.000 0.000 0.620 0.380
#> ERR978119     2   0.604      1.000 0.000 0.620 0.380
#> ERR978120     2   0.604      1.000 0.000 0.620 0.380
#> ERR978121     2   0.604      1.000 0.000 0.620 0.380
#> ERR978122     2   0.604      1.000 0.000 0.620 0.380
#> ERR978123     3   0.576      0.837 0.000 0.328 0.672
#> ERR978124     3   0.576      0.837 0.000 0.328 0.672
#> ERR978125     3   0.576      0.837 0.000 0.328 0.672
#> ERR978126     3   0.576      0.837 0.000 0.328 0.672
#> ERR978127     3   0.576      0.837 0.000 0.328 0.672
#> ERR978128     3   0.576      0.837 0.000 0.328 0.672
#> ERR978129     3   0.576      0.837 0.000 0.328 0.672
#> ERR978130     3   0.576      0.837 0.000 0.328 0.672
#> ERR978131     3   0.576      0.837 0.000 0.328 0.672
#> ERR978132     3   0.576      0.837 0.000 0.328 0.672
#> ERR978133     3   0.576      0.837 0.000 0.328 0.672
#> ERR978134     3   0.576      0.837 0.000 0.328 0.672
#> ERR978135     3   0.576      0.837 0.000 0.328 0.672
#> ERR978136     3   0.576      0.837 0.000 0.328 0.672
#> ERR978137     3   0.576      0.837 0.000 0.328 0.672
#> ERR978138     3   0.576      0.837 0.000 0.328 0.672
#> ERR978139     3   0.576      0.837 0.000 0.328 0.672
#> ERR978140     3   0.576      0.837 0.000 0.328 0.672
#> ERR978141     3   0.576      0.837 0.000 0.328 0.672
#> ERR978142     3   0.576      0.837 0.000 0.328 0.672
#> ERR978143     3   0.576      0.837 0.000 0.328 0.672
#> ERR978144     3   0.576      0.837 0.000 0.328 0.672
#> ERR978145     3   0.576      0.837 0.000 0.328 0.672
#> ERR978146     3   0.576      0.837 0.000 0.328 0.672
#> ERR978147     3   0.576      0.837 0.000 0.328 0.672
#> ERR978148     3   0.576      0.837 0.000 0.328 0.672
#> ERR978149     3   0.576      0.837 0.000 0.328 0.672
#> ERR978150     3   0.576      0.837 0.000 0.328 0.672
#> ERR978151     3   0.576      0.837 0.000 0.328 0.672
#> ERR978152     3   0.576      0.837 0.000 0.328 0.672
#> ERR978153     1   0.000      1.000 1.000 0.000 0.000
#> ERR978154     1   0.000      1.000 1.000 0.000 0.000
#> ERR978155     1   0.000      1.000 1.000 0.000 0.000
#> ERR978156     1   0.000      1.000 1.000 0.000 0.000
#> ERR978157     1   0.000      1.000 1.000 0.000 0.000
#> ERR978158     1   0.000      1.000 1.000 0.000 0.000
#> ERR978159     1   0.000      1.000 1.000 0.000 0.000
#> ERR978160     1   0.000      1.000 1.000 0.000 0.000
#> ERR978161     1   0.000      1.000 1.000 0.000 0.000
#> ERR978162     1   0.000      1.000 1.000 0.000 0.000
#> ERR978163     1   0.000      1.000 1.000 0.000 0.000
#> ERR978164     1   0.000      1.000 1.000 0.000 0.000
#> ERR978165     1   0.000      1.000 1.000 0.000 0.000
#> ERR978166     1   0.000      1.000 1.000 0.000 0.000
#> ERR978167     1   0.000      1.000 1.000 0.000 0.000
#> ERR978168     1   0.000      1.000 1.000 0.000 0.000
#> ERR978169     3   0.199      0.543 0.048 0.004 0.948
#> ERR978170     3   0.199      0.543 0.048 0.004 0.948
#> ERR978171     3   0.199      0.543 0.048 0.004 0.948
#> ERR978172     3   0.199      0.543 0.048 0.004 0.948
#> ERR978173     3   0.199      0.543 0.048 0.004 0.948
#> ERR978174     3   0.199      0.543 0.048 0.004 0.948
#> ERR978175     3   0.199      0.543 0.048 0.004 0.948
#> ERR978176     3   0.218      0.538 0.032 0.020 0.948
#> ERR978177     3   0.218      0.538 0.032 0.020 0.948
#> ERR978178     3   0.218      0.538 0.032 0.020 0.948
#> ERR978179     3   0.218      0.538 0.032 0.020 0.948
#> ERR978180     3   0.218      0.538 0.032 0.020 0.948
#> ERR978181     3   0.218      0.538 0.032 0.020 0.948
#> ERR978182     3   0.218      0.538 0.032 0.020 0.948
#> ERR978183     2   0.604      1.000 0.000 0.620 0.380
#> ERR978184     2   0.604      1.000 0.000 0.620 0.380
#> ERR978185     2   0.604      1.000 0.000 0.620 0.380
#> ERR978186     2   0.604      1.000 0.000 0.620 0.380
#> ERR978187     2   0.604      1.000 0.000 0.620 0.380
#> ERR978188     2   0.604      1.000 0.000 0.620 0.380
#> ERR978189     2   0.604      1.000 0.000 0.620 0.380
#> ERR978190     2   0.604      1.000 0.000 0.620 0.380
#> ERR978191     2   0.604      1.000 0.000 0.620 0.380
#> ERR978192     2   0.604      1.000 0.000 0.620 0.380
#> ERR978193     2   0.604      1.000 0.000 0.620 0.380
#> ERR978194     2   0.604      1.000 0.000 0.620 0.380
#> ERR978195     2   0.604      1.000 0.000 0.620 0.380
#> ERR978196     2   0.604      1.000 0.000 0.620 0.380
#> ERR978197     3   0.604      0.829 0.000 0.380 0.620
#> ERR978198     3   0.604      0.829 0.000 0.380 0.620
#> ERR978199     3   0.604      0.829 0.000 0.380 0.620
#> ERR978200     3   0.604      0.829 0.000 0.380 0.620
#> ERR978201     3   0.604      0.829 0.000 0.380 0.620
#> ERR978202     3   0.604      0.829 0.000 0.380 0.620
#> ERR978203     3   0.604      0.829 0.000 0.380 0.620
#> ERR978204     3   0.604      0.829 0.000 0.380 0.620
#> ERR978205     3   0.604      0.829 0.000 0.380 0.620
#> ERR978206     3   0.604      0.829 0.000 0.380 0.620
#> ERR978207     3   0.604      0.829 0.000 0.380 0.620
#> ERR978208     3   0.604      0.829 0.000 0.380 0.620
#> ERR978209     3   0.604      0.829 0.000 0.380 0.620
#> ERR978210     3   0.604      0.829 0.000 0.380 0.620
#> ERR978211     3   0.604      0.829 0.000 0.380 0.620
#> ERR978212     3   0.604      0.829 0.000 0.380 0.620
#> ERR978213     3   0.604      0.829 0.000 0.380 0.620
#> ERR978214     3   0.604      0.829 0.000 0.380 0.620
#> ERR978215     3   0.604      0.829 0.000 0.380 0.620
#> ERR978216     3   0.604      0.829 0.000 0.380 0.620
#> ERR978217     3   0.604      0.829 0.000 0.380 0.620
#> ERR978218     3   0.604      0.829 0.000 0.380 0.620
#> ERR978219     3   0.604      0.829 0.000 0.380 0.620
#> ERR978220     3   0.604      0.829 0.000 0.380 0.620
#> ERR978221     3   0.604      0.829 0.000 0.380 0.620
#> ERR978222     3   0.604      0.829 0.000 0.380 0.620
#> ERR978223     3   0.604      0.829 0.000 0.380 0.620
#> ERR978224     3   0.604      0.829 0.000 0.380 0.620
#> ERR978225     3   0.604      0.829 0.000 0.380 0.620
#> ERR978226     3   0.590      0.834 0.000 0.352 0.648
#> ERR978227     1   0.000      1.000 1.000 0.000 0.000
#> ERR978228     1   0.000      1.000 1.000 0.000 0.000
#> ERR978229     1   0.000      1.000 1.000 0.000 0.000
#> ERR978230     1   0.000      1.000 1.000 0.000 0.000
#> ERR978231     1   0.000      1.000 1.000 0.000 0.000
#> ERR978232     1   0.000      1.000 1.000 0.000 0.000
#> ERR978233     1   0.000      1.000 1.000 0.000 0.000
#> ERR978234     1   0.000      1.000 1.000 0.000 0.000
#> ERR978235     1   0.000      1.000 1.000 0.000 0.000
#> ERR978236     1   0.000      1.000 1.000 0.000 0.000
#> ERR978237     1   0.000      1.000 1.000 0.000 0.000
#> ERR978238     1   0.000      1.000 1.000 0.000 0.000
#> ERR978239     1   0.000      1.000 1.000 0.000 0.000
#> ERR978240     1   0.000      1.000 1.000 0.000 0.000
#> ERR978241     3   0.199      0.521 0.004 0.048 0.948
#> ERR978242     3   0.199      0.521 0.004 0.048 0.948
#> ERR978243     3   0.199      0.521 0.004 0.048 0.948
#> ERR978244     3   0.199      0.521 0.004 0.048 0.948
#> ERR978245     3   0.199      0.521 0.004 0.048 0.948
#> ERR978246     3   0.199      0.521 0.004 0.048 0.948
#> ERR978247     3   0.199      0.521 0.004 0.048 0.948
#> ERR978248     3   0.218      0.531 0.020 0.032 0.948
#> ERR978249     3   0.218      0.531 0.020 0.032 0.948
#> ERR978250     3   0.218      0.531 0.020 0.032 0.948
#> ERR978251     3   0.218      0.531 0.020 0.032 0.948
#> ERR978252     3   0.218      0.531 0.020 0.032 0.948
#> ERR978253     3   0.218      0.531 0.020 0.032 0.948
#> ERR978254     3   0.218      0.531 0.020 0.032 0.948

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978123     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978124     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978125     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978126     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978127     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978128     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978129     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978130     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978131     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978132     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978133     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978134     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978135     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978136     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978137     4   0.500     -0.266  0 0.000 0.496 0.504
#> ERR978138     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978139     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978140     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978141     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978142     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978143     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978144     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978145     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978146     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978147     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978148     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978149     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978150     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978151     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978152     3   0.500      0.282  0 0.000 0.512 0.488
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978169     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978170     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978171     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978172     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978173     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978174     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978175     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978176     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978177     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978178     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978179     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978180     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978181     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978182     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978197     3   0.172      0.752  0 0.000 0.936 0.064
#> ERR978198     3   0.172      0.752  0 0.000 0.936 0.064
#> ERR978199     3   0.172      0.752  0 0.000 0.936 0.064
#> ERR978200     3   0.172      0.752  0 0.000 0.936 0.064
#> ERR978201     3   0.172      0.752  0 0.000 0.936 0.064
#> ERR978202     3   0.172      0.752  0 0.000 0.936 0.064
#> ERR978203     3   0.172      0.752  0 0.000 0.936 0.064
#> ERR978204     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978205     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978206     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978207     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978208     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978209     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978210     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978211     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978212     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978213     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978214     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978215     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978216     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978217     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978218     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978219     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978220     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978221     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978222     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978223     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978224     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978225     3   0.000      0.768  0 0.000 1.000 0.000
#> ERR978226     3   0.112      0.757  0 0.000 0.964 0.036
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978241     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978242     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978243     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978244     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978245     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978246     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978247     4   0.297      0.702  0 0.144 0.000 0.856
#> ERR978248     4   0.316      0.701  0 0.144 0.004 0.852
#> ERR978249     4   0.316      0.701  0 0.144 0.004 0.852
#> ERR978250     4   0.316      0.701  0 0.144 0.004 0.852
#> ERR978251     4   0.316      0.701  0 0.144 0.004 0.852
#> ERR978252     4   0.316      0.701  0 0.144 0.004 0.852
#> ERR978253     4   0.316      0.701  0 0.144 0.004 0.852
#> ERR978254     4   0.316      0.701  0 0.144 0.004 0.852

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1 p2    p3    p4    p5
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978123     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978124     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978125     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978126     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978127     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978128     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978129     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978130     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978131     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978132     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978133     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978134     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978135     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978136     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978137     3  0.0290      0.993  0  0 0.992 0.008 0.000
#> ERR978138     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978139     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978140     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978141     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978142     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978143     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978144     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978145     3  0.0510      0.983  0  0 0.984 0.000 0.016
#> ERR978146     3  0.0162      0.992  0  0 0.996 0.004 0.000
#> ERR978147     3  0.0162      0.992  0  0 0.996 0.004 0.000
#> ERR978148     3  0.0162      0.992  0  0 0.996 0.004 0.000
#> ERR978149     3  0.0162      0.992  0  0 0.996 0.004 0.000
#> ERR978150     3  0.0162      0.992  0  0 0.996 0.004 0.000
#> ERR978151     3  0.0162      0.992  0  0 0.996 0.004 0.000
#> ERR978152     3  0.0162      0.992  0  0 0.996 0.004 0.000
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978170     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978171     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978172     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978173     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978174     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978175     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978176     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978177     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978178     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978179     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978180     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978181     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978182     4  0.0000      0.997  0  0 0.000 1.000 0.000
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.000 0.000
#> ERR978197     5  0.1908      0.926  0  0 0.092 0.000 0.908
#> ERR978198     5  0.1908      0.926  0  0 0.092 0.000 0.908
#> ERR978199     5  0.1908      0.926  0  0 0.092 0.000 0.908
#> ERR978200     5  0.1908      0.926  0  0 0.092 0.000 0.908
#> ERR978201     5  0.1908      0.926  0  0 0.092 0.000 0.908
#> ERR978202     5  0.1908      0.926  0  0 0.092 0.000 0.908
#> ERR978203     5  0.1908      0.926  0  0 0.092 0.000 0.908
#> ERR978204     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978205     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978206     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978207     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978208     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978209     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978210     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978211     5  0.0404      0.975  0  0 0.012 0.000 0.988
#> ERR978212     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978213     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978214     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978215     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978216     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978217     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978218     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978219     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978220     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978221     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978222     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978223     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978224     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978225     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978226     5  0.0000      0.975  0  0 0.000 0.000 1.000
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.000 0.000
#> ERR978241     4  0.0162      0.997  0  0 0.004 0.996 0.000
#> ERR978242     4  0.0162      0.997  0  0 0.004 0.996 0.000
#> ERR978243     4  0.0162      0.997  0  0 0.004 0.996 0.000
#> ERR978244     4  0.0162      0.997  0  0 0.004 0.996 0.000
#> ERR978245     4  0.0162      0.997  0  0 0.004 0.996 0.000
#> ERR978246     4  0.0162      0.997  0  0 0.004 0.996 0.000
#> ERR978247     4  0.0162      0.997  0  0 0.004 0.996 0.000
#> ERR978248     4  0.0290      0.995  0  0 0.008 0.992 0.000
#> ERR978249     4  0.0290      0.995  0  0 0.008 0.992 0.000
#> ERR978250     4  0.0290      0.995  0  0 0.008 0.992 0.000
#> ERR978251     4  0.0290      0.995  0  0 0.008 0.992 0.000
#> ERR978252     4  0.0290      0.995  0  0 0.008 0.992 0.000
#> ERR978253     4  0.0290      0.995  0  0 0.008 0.992 0.000
#> ERR978254     4  0.0290      0.995  0  0 0.008 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.909  0 1.000 0.000 0.000 0.000 0.000
#> ERR978123     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978124     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978125     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978126     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978127     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978128     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978129     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978130     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978131     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978132     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978133     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978134     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978135     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978136     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978137     3  0.0260      0.992  0 0.000 0.992 0.008 0.000 0.000
#> ERR978138     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978139     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978140     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978141     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978142     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978143     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978144     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978145     3  0.0458      0.981  0 0.000 0.984 0.000 0.016 0.000
#> ERR978146     3  0.0146      0.991  0 0.000 0.996 0.004 0.000 0.000
#> ERR978147     3  0.0146      0.991  0 0.000 0.996 0.004 0.000 0.000
#> ERR978148     3  0.0146      0.991  0 0.000 0.996 0.004 0.000 0.000
#> ERR978149     3  0.0146      0.991  0 0.000 0.996 0.004 0.000 0.000
#> ERR978150     3  0.0146      0.991  0 0.000 0.996 0.004 0.000 0.000
#> ERR978151     3  0.0146      0.991  0 0.000 0.996 0.004 0.000 0.000
#> ERR978152     3  0.0146      0.991  0 0.000 0.996 0.004 0.000 0.000
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978170     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978171     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978172     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978173     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978174     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978175     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978176     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978177     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978178     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978179     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978180     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978181     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978182     4  0.0000      1.000  0 0.000 0.000 1.000 0.000 0.000
#> ERR978183     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978184     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978185     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978186     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978187     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978188     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978189     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978190     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978191     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978192     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978193     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978194     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978195     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978196     2  0.2912      0.895  0 0.784 0.000 0.000 0.000 0.216
#> ERR978197     5  0.1714      0.919  0 0.000 0.092 0.000 0.908 0.000
#> ERR978198     5  0.1714      0.919  0 0.000 0.092 0.000 0.908 0.000
#> ERR978199     5  0.1714      0.919  0 0.000 0.092 0.000 0.908 0.000
#> ERR978200     5  0.1714      0.919  0 0.000 0.092 0.000 0.908 0.000
#> ERR978201     5  0.1714      0.919  0 0.000 0.092 0.000 0.908 0.000
#> ERR978202     5  0.1714      0.919  0 0.000 0.092 0.000 0.908 0.000
#> ERR978203     5  0.1714      0.919  0 0.000 0.092 0.000 0.908 0.000
#> ERR978204     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978205     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978206     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978207     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978208     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978209     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978210     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978211     5  0.0363      0.971  0 0.000 0.012 0.000 0.988 0.000
#> ERR978212     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978213     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978214     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978215     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978216     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978217     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978218     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978219     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978220     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978221     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978222     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978223     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978224     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978225     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978226     5  0.0000      0.972  0 0.000 0.000 0.000 1.000 0.000
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978241     6  0.3023      0.996  0 0.000 0.004 0.212 0.000 0.784
#> ERR978242     6  0.3023      0.996  0 0.000 0.004 0.212 0.000 0.784
#> ERR978243     6  0.3023      0.996  0 0.000 0.004 0.212 0.000 0.784
#> ERR978244     6  0.3023      0.996  0 0.000 0.004 0.212 0.000 0.784
#> ERR978245     6  0.3023      0.996  0 0.000 0.004 0.212 0.000 0.784
#> ERR978246     6  0.3023      0.996  0 0.000 0.004 0.212 0.000 0.784
#> ERR978247     6  0.3023      0.996  0 0.000 0.004 0.212 0.000 0.784
#> ERR978248     6  0.3103      0.996  0 0.000 0.008 0.208 0.000 0.784
#> ERR978249     6  0.3103      0.996  0 0.000 0.008 0.208 0.000 0.784
#> ERR978250     6  0.3103      0.996  0 0.000 0.008 0.208 0.000 0.784
#> ERR978251     6  0.3103      0.996  0 0.000 0.008 0.208 0.000 0.784
#> ERR978252     6  0.3103      0.996  0 0.000 0.008 0.208 0.000 0.784
#> ERR978253     6  0.3103      0.996  0 0.000 0.008 0.208 0.000 0.784
#> ERR978254     6  0.3103      0.996  0 0.000 0.008 0.208 0.000 0.784

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 0.762           0.923       0.947         0.9434 0.686   0.534
#> 4 4 0.974           0.926       0.965         0.1393 0.742   0.426
#> 5 5 0.932           0.898       0.951         0.1101 0.902   0.659
#> 6 6 0.927           0.830       0.899         0.0285 0.972   0.861

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2  0.0000      0.866  0 1.000 0.000
#> ERR978108     2  0.0000      0.866  0 1.000 0.000
#> ERR978109     2  0.0000      0.866  0 1.000 0.000
#> ERR978110     2  0.0000      0.866  0 1.000 0.000
#> ERR978111     2  0.0000      0.866  0 1.000 0.000
#> ERR978112     2  0.0000      0.866  0 1.000 0.000
#> ERR978113     2  0.0000      0.866  0 1.000 0.000
#> ERR978114     2  0.0000      0.866  0 1.000 0.000
#> ERR978115     2  0.0000      0.866  0 1.000 0.000
#> ERR978116     2  0.0000      0.866  0 1.000 0.000
#> ERR978117     2  0.0000      0.866  0 1.000 0.000
#> ERR978118     2  0.0000      0.866  0 1.000 0.000
#> ERR978119     2  0.0000      0.866  0 1.000 0.000
#> ERR978120     2  0.0000      0.866  0 1.000 0.000
#> ERR978121     2  0.0000      0.866  0 1.000 0.000
#> ERR978122     2  0.0000      0.866  0 1.000 0.000
#> ERR978123     3  0.0000      1.000  0 0.000 1.000
#> ERR978124     3  0.0000      1.000  0 0.000 1.000
#> ERR978125     3  0.0000      1.000  0 0.000 1.000
#> ERR978126     3  0.0000      1.000  0 0.000 1.000
#> ERR978127     3  0.0000      1.000  0 0.000 1.000
#> ERR978128     3  0.0000      1.000  0 0.000 1.000
#> ERR978129     3  0.0000      1.000  0 0.000 1.000
#> ERR978130     3  0.0000      1.000  0 0.000 1.000
#> ERR978131     3  0.0237      0.995  0 0.004 0.996
#> ERR978132     3  0.0237      0.995  0 0.004 0.996
#> ERR978133     3  0.0000      1.000  0 0.000 1.000
#> ERR978134     3  0.0000      1.000  0 0.000 1.000
#> ERR978135     3  0.0000      1.000  0 0.000 1.000
#> ERR978136     3  0.0237      0.995  0 0.004 0.996
#> ERR978137     3  0.0237      0.995  0 0.004 0.996
#> ERR978138     3  0.0000      1.000  0 0.000 1.000
#> ERR978139     3  0.0000      1.000  0 0.000 1.000
#> ERR978140     3  0.0000      1.000  0 0.000 1.000
#> ERR978141     3  0.0000      1.000  0 0.000 1.000
#> ERR978142     3  0.0000      1.000  0 0.000 1.000
#> ERR978143     3  0.0000      1.000  0 0.000 1.000
#> ERR978144     3  0.0000      1.000  0 0.000 1.000
#> ERR978145     3  0.0000      1.000  0 0.000 1.000
#> ERR978146     3  0.0000      1.000  0 0.000 1.000
#> ERR978147     3  0.0000      1.000  0 0.000 1.000
#> ERR978148     3  0.0000      1.000  0 0.000 1.000
#> ERR978149     3  0.0000      1.000  0 0.000 1.000
#> ERR978150     3  0.0000      1.000  0 0.000 1.000
#> ERR978151     3  0.0000      1.000  0 0.000 1.000
#> ERR978152     3  0.0000      1.000  0 0.000 1.000
#> ERR978153     1  0.0000      1.000  1 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000
#> ERR978169     3  0.0000      1.000  0 0.000 1.000
#> ERR978170     3  0.0000      1.000  0 0.000 1.000
#> ERR978171     3  0.0000      1.000  0 0.000 1.000
#> ERR978172     3  0.0000      1.000  0 0.000 1.000
#> ERR978173     3  0.0000      1.000  0 0.000 1.000
#> ERR978174     3  0.0000      1.000  0 0.000 1.000
#> ERR978175     3  0.0000      1.000  0 0.000 1.000
#> ERR978176     3  0.0000      1.000  0 0.000 1.000
#> ERR978177     3  0.0000      1.000  0 0.000 1.000
#> ERR978178     3  0.0000      1.000  0 0.000 1.000
#> ERR978179     3  0.0000      1.000  0 0.000 1.000
#> ERR978180     3  0.0000      1.000  0 0.000 1.000
#> ERR978181     3  0.0000      1.000  0 0.000 1.000
#> ERR978182     3  0.0000      1.000  0 0.000 1.000
#> ERR978183     2  0.0000      0.866  0 1.000 0.000
#> ERR978184     2  0.0000      0.866  0 1.000 0.000
#> ERR978185     2  0.0000      0.866  0 1.000 0.000
#> ERR978186     2  0.0000      0.866  0 1.000 0.000
#> ERR978187     2  0.0000      0.866  0 1.000 0.000
#> ERR978188     2  0.0000      0.866  0 1.000 0.000
#> ERR978189     2  0.0000      0.866  0 1.000 0.000
#> ERR978190     2  0.0000      0.866  0 1.000 0.000
#> ERR978191     2  0.0000      0.866  0 1.000 0.000
#> ERR978192     2  0.0000      0.866  0 1.000 0.000
#> ERR978193     2  0.0000      0.866  0 1.000 0.000
#> ERR978194     2  0.0000      0.866  0 1.000 0.000
#> ERR978195     2  0.0000      0.866  0 1.000 0.000
#> ERR978196     2  0.0000      0.866  0 1.000 0.000
#> ERR978197     2  0.5497      0.748  0 0.708 0.292
#> ERR978198     2  0.5810      0.690  0 0.664 0.336
#> ERR978199     2  0.5968      0.644  0 0.636 0.364
#> ERR978200     2  0.5988      0.637  0 0.632 0.368
#> ERR978201     2  0.5905      0.664  0 0.648 0.352
#> ERR978202     2  0.5785      0.696  0 0.668 0.332
#> ERR978203     2  0.5621      0.729  0 0.692 0.308
#> ERR978204     2  0.4605      0.835  0 0.796 0.204
#> ERR978205     2  0.4605      0.835  0 0.796 0.204
#> ERR978206     2  0.4605      0.835  0 0.796 0.204
#> ERR978207     2  0.4605      0.835  0 0.796 0.204
#> ERR978208     2  0.4605      0.835  0 0.796 0.204
#> ERR978209     2  0.4605      0.835  0 0.796 0.204
#> ERR978210     2  0.4605      0.835  0 0.796 0.204
#> ERR978211     2  0.4605      0.835  0 0.796 0.204
#> ERR978212     2  0.4062      0.854  0 0.836 0.164
#> ERR978213     2  0.4121      0.852  0 0.832 0.168
#> ERR978214     2  0.4121      0.852  0 0.832 0.168
#> ERR978215     2  0.4178      0.851  0 0.828 0.172
#> ERR978216     2  0.4121      0.852  0 0.832 0.168
#> ERR978217     2  0.4121      0.852  0 0.832 0.168
#> ERR978218     2  0.4062      0.854  0 0.836 0.164
#> ERR978219     2  0.4452      0.842  0 0.808 0.192
#> ERR978220     2  0.4605      0.835  0 0.796 0.204
#> ERR978221     2  0.4504      0.839  0 0.804 0.196
#> ERR978222     2  0.4605      0.835  0 0.796 0.204
#> ERR978223     2  0.4555      0.837  0 0.800 0.200
#> ERR978224     2  0.4452      0.842  0 0.808 0.192
#> ERR978225     2  0.4399      0.844  0 0.812 0.188
#> ERR978226     2  0.4235      0.849  0 0.824 0.176
#> ERR978227     1  0.0000      1.000  1 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000
#> ERR978241     3  0.0000      1.000  0 0.000 1.000
#> ERR978242     3  0.0000      1.000  0 0.000 1.000
#> ERR978243     3  0.0000      1.000  0 0.000 1.000
#> ERR978244     3  0.0000      1.000  0 0.000 1.000
#> ERR978245     3  0.0000      1.000  0 0.000 1.000
#> ERR978246     3  0.0000      1.000  0 0.000 1.000
#> ERR978247     3  0.0000      1.000  0 0.000 1.000
#> ERR978248     2  0.2625      0.851  0 0.916 0.084
#> ERR978249     2  0.4062      0.800  0 0.836 0.164
#> ERR978250     2  0.4842      0.735  0 0.776 0.224
#> ERR978251     2  0.5216      0.685  0 0.740 0.260
#> ERR978252     2  0.4750      0.745  0 0.784 0.216
#> ERR978253     2  0.3686      0.819  0 0.860 0.140
#> ERR978254     2  0.2711      0.849  0 0.912 0.088

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978108     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978109     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978110     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978111     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978112     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978113     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978114     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978115     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978116     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978117     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978118     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978119     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978120     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978121     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978122     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978123     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978124     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978125     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978126     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978127     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978128     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978129     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978130     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978131     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978132     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978133     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978134     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978135     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978136     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978137     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978138     3  0.0000    0.96472  0 0.000 1.000 0.000
#> ERR978139     3  0.0000    0.96472  0 0.000 1.000 0.000
#> ERR978140     3  0.0188    0.96433  0 0.000 0.996 0.004
#> ERR978141     3  0.0188    0.96433  0 0.000 0.996 0.004
#> ERR978142     3  0.0188    0.96433  0 0.000 0.996 0.004
#> ERR978143     3  0.0000    0.96472  0 0.000 1.000 0.000
#> ERR978144     3  0.0000    0.96472  0 0.000 1.000 0.000
#> ERR978145     3  0.0000    0.96472  0 0.000 1.000 0.000
#> ERR978146     3  0.0336    0.96745  0 0.000 0.992 0.008
#> ERR978147     3  0.0336    0.96745  0 0.000 0.992 0.008
#> ERR978148     3  0.0469    0.96830  0 0.000 0.988 0.012
#> ERR978149     3  0.0469    0.96830  0 0.000 0.988 0.012
#> ERR978150     3  0.0336    0.96745  0 0.000 0.992 0.008
#> ERR978151     3  0.0336    0.96745  0 0.000 0.992 0.008
#> ERR978152     3  0.0336    0.96745  0 0.000 0.992 0.008
#> ERR978153     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978169     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978170     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978171     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978172     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978173     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978174     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978175     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978176     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978177     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978178     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978179     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978180     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978181     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978182     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978183     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978184     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978185     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978186     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978187     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978188     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978189     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978190     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978191     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978192     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978193     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978194     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978195     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978196     2  0.0000    0.94577  0 1.000 0.000 0.000
#> ERR978197     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978198     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978199     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978200     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978201     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978202     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978203     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978204     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978205     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978206     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978207     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978208     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978209     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978210     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978211     3  0.1022    0.97085  0 0.000 0.968 0.032
#> ERR978212     3  0.2401    0.90514  0 0.092 0.904 0.004
#> ERR978213     3  0.2266    0.91280  0 0.084 0.912 0.004
#> ERR978214     3  0.2197    0.91644  0 0.080 0.916 0.004
#> ERR978215     3  0.2197    0.91644  0 0.080 0.916 0.004
#> ERR978216     3  0.2197    0.91644  0 0.080 0.916 0.004
#> ERR978217     3  0.2125    0.91989  0 0.076 0.920 0.004
#> ERR978218     3  0.2401    0.90514  0 0.092 0.904 0.004
#> ERR978219     3  0.1302    0.94568  0 0.044 0.956 0.000
#> ERR978220     3  0.1118    0.95044  0 0.036 0.964 0.000
#> ERR978221     3  0.1211    0.94819  0 0.040 0.960 0.000
#> ERR978222     3  0.1209    0.95148  0 0.032 0.964 0.004
#> ERR978223     3  0.1302    0.94568  0 0.044 0.956 0.000
#> ERR978224     3  0.1211    0.94819  0 0.040 0.960 0.000
#> ERR978225     3  0.1302    0.94568  0 0.044 0.956 0.000
#> ERR978226     3  0.1792    0.92885  0 0.068 0.932 0.000
#> ERR978227     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000    1.00000  1 0.000 0.000 0.000
#> ERR978241     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978242     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978243     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978244     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978245     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978246     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978247     4  0.0000    0.93166  0 0.000 0.000 1.000
#> ERR978248     2  0.5615    0.37790  0 0.612 0.032 0.356
#> ERR978249     2  0.5746    0.27140  0 0.572 0.032 0.396
#> ERR978250     4  0.5859    0.02385  0 0.472 0.032 0.496
#> ERR978251     4  0.5792    0.21001  0 0.416 0.032 0.552
#> ERR978252     4  0.5861   -0.00731  0 0.480 0.032 0.488
#> ERR978253     2  0.5735    0.28311  0 0.576 0.032 0.392
#> ERR978254     2  0.5645    0.35833  0 0.604 0.032 0.364

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978123     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978124     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978125     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978126     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978127     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978128     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978129     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978130     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978131     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978132     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978133     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978134     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978135     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978136     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978137     3   0.000      0.855  0 0.000 1.000 0.000 0.000
#> ERR978138     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978139     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978140     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978141     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978142     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978143     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978144     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978145     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978146     3   0.297      0.757  0 0.000 0.816 0.000 0.184
#> ERR978147     3   0.314      0.740  0 0.000 0.796 0.000 0.204
#> ERR978148     3   0.369      0.734  0 0.000 0.780 0.020 0.200
#> ERR978149     3   0.374      0.733  0 0.000 0.780 0.024 0.196
#> ERR978150     3   0.327      0.742  0 0.000 0.796 0.004 0.200
#> ERR978151     3   0.273      0.775  0 0.000 0.840 0.000 0.160
#> ERR978152     3   0.265      0.781  0 0.000 0.848 0.000 0.152
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978170     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978171     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978172     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978173     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978174     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978175     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978176     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978177     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978178     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978179     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978180     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978181     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978182     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000 0.000
#> ERR978197     3   0.029      0.855  0 0.000 0.992 0.000 0.008
#> ERR978198     3   0.029      0.855  0 0.000 0.992 0.000 0.008
#> ERR978199     3   0.029      0.855  0 0.000 0.992 0.000 0.008
#> ERR978200     3   0.029      0.855  0 0.000 0.992 0.000 0.008
#> ERR978201     3   0.029      0.855  0 0.000 0.992 0.000 0.008
#> ERR978202     3   0.029      0.855  0 0.000 0.992 0.000 0.008
#> ERR978203     3   0.029      0.855  0 0.000 0.992 0.000 0.008
#> ERR978204     3   0.426      0.382  0 0.000 0.560 0.000 0.440
#> ERR978205     3   0.423      0.417  0 0.000 0.576 0.000 0.424
#> ERR978206     3   0.423      0.417  0 0.000 0.576 0.000 0.424
#> ERR978207     3   0.424      0.409  0 0.000 0.572 0.000 0.428
#> ERR978208     3   0.424      0.409  0 0.000 0.572 0.000 0.428
#> ERR978209     3   0.424      0.409  0 0.000 0.572 0.000 0.428
#> ERR978210     3   0.423      0.425  0 0.000 0.580 0.000 0.420
#> ERR978211     3   0.423      0.425  0 0.000 0.580 0.000 0.420
#> ERR978212     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978213     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978214     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978215     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978216     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978217     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978218     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978219     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978220     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978221     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978222     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978223     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978224     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978225     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978226     5   0.029      0.971  0 0.000 0.008 0.000 0.992
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978242     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978243     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978244     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978245     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978246     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978247     4   0.000      0.930  0 0.000 0.000 1.000 0.000
#> ERR978248     5   0.404      0.563  0 0.012 0.000 0.276 0.712
#> ERR978249     4   0.422      0.354  0 0.000 0.000 0.584 0.416
#> ERR978250     4   0.364      0.652  0 0.000 0.000 0.728 0.272
#> ERR978251     4   0.342      0.697  0 0.000 0.000 0.760 0.240
#> ERR978252     4   0.366      0.646  0 0.000 0.000 0.724 0.276
#> ERR978253     4   0.427      0.258  0 0.000 0.000 0.552 0.448
#> ERR978254     5   0.413      0.530  0 0.012 0.000 0.292 0.696

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978123     3  0.1501      0.874  0  0 0.924 0.000 0.000 0.076
#> ERR978124     3  0.1765      0.865  0  0 0.904 0.000 0.000 0.096
#> ERR978125     3  0.1910      0.857  0  0 0.892 0.000 0.000 0.108
#> ERR978126     3  0.1957      0.854  0  0 0.888 0.000 0.000 0.112
#> ERR978127     3  0.1910      0.857  0  0 0.892 0.000 0.000 0.108
#> ERR978128     3  0.1863      0.860  0  0 0.896 0.000 0.000 0.104
#> ERR978129     3  0.1610      0.871  0  0 0.916 0.000 0.000 0.084
#> ERR978130     3  0.1714      0.867  0  0 0.908 0.000 0.000 0.092
#> ERR978131     3  0.0363      0.894  0  0 0.988 0.000 0.000 0.012
#> ERR978132     3  0.0363      0.894  0  0 0.988 0.000 0.000 0.012
#> ERR978133     3  0.0363      0.894  0  0 0.988 0.000 0.000 0.012
#> ERR978134     3  0.0363      0.894  0  0 0.988 0.000 0.000 0.012
#> ERR978135     3  0.0363      0.894  0  0 0.988 0.000 0.000 0.012
#> ERR978136     3  0.0363      0.894  0  0 0.988 0.000 0.000 0.012
#> ERR978137     3  0.0363      0.894  0  0 0.988 0.000 0.000 0.012
#> ERR978138     5  0.3995     -0.507  0  0 0.004 0.000 0.516 0.480
#> ERR978139     5  0.3991     -0.478  0  0 0.004 0.000 0.524 0.472
#> ERR978140     5  0.3993     -0.489  0  0 0.004 0.000 0.520 0.476
#> ERR978141     5  0.3993     -0.489  0  0 0.004 0.000 0.520 0.476
#> ERR978142     5  0.3993     -0.489  0  0 0.004 0.000 0.520 0.476
#> ERR978143     5  0.3993     -0.489  0  0 0.004 0.000 0.520 0.476
#> ERR978144     5  0.3989     -0.468  0  0 0.004 0.000 0.528 0.468
#> ERR978145     5  0.3995     -0.509  0  0 0.004 0.000 0.516 0.480
#> ERR978146     6  0.4088      0.976  0  0 0.016 0.000 0.368 0.616
#> ERR978147     6  0.4303      0.983  0  0 0.016 0.008 0.360 0.616
#> ERR978148     6  0.4311      0.983  0  0 0.012 0.012 0.360 0.616
#> ERR978149     6  0.4219      0.976  0  0 0.008 0.012 0.360 0.620
#> ERR978150     6  0.4311      0.983  0  0 0.012 0.012 0.360 0.616
#> ERR978151     6  0.4211      0.983  0  0 0.016 0.004 0.364 0.616
#> ERR978152     6  0.4155      0.976  0  0 0.020 0.000 0.364 0.616
#> ERR978153     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978170     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978171     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978172     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978173     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978174     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978175     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978176     4  0.0937      0.921  0  0 0.000 0.960 0.000 0.040
#> ERR978177     4  0.0937      0.921  0  0 0.000 0.960 0.000 0.040
#> ERR978178     4  0.0937      0.921  0  0 0.000 0.960 0.000 0.040
#> ERR978179     4  0.0937      0.921  0  0 0.000 0.960 0.000 0.040
#> ERR978180     4  0.0937      0.921  0  0 0.000 0.960 0.000 0.040
#> ERR978181     4  0.0937      0.921  0  0 0.000 0.960 0.000 0.040
#> ERR978182     4  0.0937      0.921  0  0 0.000 0.960 0.000 0.040
#> ERR978183     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      1.000  0  1 0.000 0.000 0.000 0.000
#> ERR978197     3  0.1500      0.889  0  0 0.936 0.000 0.012 0.052
#> ERR978198     3  0.1152      0.892  0  0 0.952 0.000 0.004 0.044
#> ERR978199     3  0.1082      0.893  0  0 0.956 0.000 0.004 0.040
#> ERR978200     3  0.1082      0.893  0  0 0.956 0.000 0.004 0.040
#> ERR978201     3  0.1152      0.892  0  0 0.952 0.000 0.004 0.044
#> ERR978202     3  0.1152      0.892  0  0 0.952 0.000 0.004 0.044
#> ERR978203     3  0.1333      0.891  0  0 0.944 0.000 0.008 0.048
#> ERR978204     3  0.4226      0.796  0  0 0.736 0.000 0.112 0.152
#> ERR978205     3  0.4226      0.796  0  0 0.736 0.000 0.112 0.152
#> ERR978206     3  0.4226      0.796  0  0 0.736 0.000 0.112 0.152
#> ERR978207     3  0.4190      0.798  0  0 0.740 0.000 0.112 0.148
#> ERR978208     3  0.4226      0.796  0  0 0.736 0.000 0.112 0.152
#> ERR978209     3  0.4190      0.798  0  0 0.740 0.000 0.112 0.148
#> ERR978210     3  0.4226      0.796  0  0 0.736 0.000 0.112 0.152
#> ERR978211     3  0.4190      0.798  0  0 0.740 0.000 0.112 0.148
#> ERR978212     5  0.1204      0.614  0  0 0.000 0.000 0.944 0.056
#> ERR978213     5  0.0260      0.643  0  0 0.000 0.000 0.992 0.008
#> ERR978214     5  0.0790      0.641  0  0 0.000 0.000 0.968 0.032
#> ERR978215     5  0.1141      0.629  0  0 0.000 0.000 0.948 0.052
#> ERR978216     5  0.0363      0.644  0  0 0.000 0.000 0.988 0.012
#> ERR978217     5  0.0713      0.633  0  0 0.000 0.000 0.972 0.028
#> ERR978218     5  0.1610      0.584  0  0 0.000 0.000 0.916 0.084
#> ERR978219     5  0.1327      0.615  0  0 0.000 0.000 0.936 0.064
#> ERR978220     5  0.0458      0.646  0  0 0.000 0.000 0.984 0.016
#> ERR978221     5  0.1075      0.636  0  0 0.000 0.000 0.952 0.048
#> ERR978222     5  0.1204      0.630  0  0 0.000 0.000 0.944 0.056
#> ERR978223     5  0.1141      0.633  0  0 0.000 0.000 0.948 0.052
#> ERR978224     5  0.0632      0.646  0  0 0.000 0.000 0.976 0.024
#> ERR978225     5  0.1327      0.615  0  0 0.000 0.000 0.936 0.064
#> ERR978226     5  0.0790      0.644  0  0 0.000 0.000 0.968 0.032
#> ERR978227     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1  0 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0146      0.926  0  0 0.000 0.996 0.000 0.004
#> ERR978242     4  0.0146      0.926  0  0 0.000 0.996 0.000 0.004
#> ERR978243     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978244     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978245     4  0.0000      0.926  0  0 0.000 1.000 0.000 0.000
#> ERR978246     4  0.0146      0.926  0  0 0.000 0.996 0.000 0.004
#> ERR978247     4  0.0146      0.926  0  0 0.000 0.996 0.000 0.004
#> ERR978248     4  0.5277      0.660  0  0 0.000 0.592 0.152 0.256
#> ERR978249     4  0.4599      0.754  0  0 0.000 0.684 0.104 0.212
#> ERR978250     4  0.3786      0.823  0  0 0.000 0.768 0.064 0.168
#> ERR978251     4  0.3332      0.847  0  0 0.000 0.808 0.048 0.144
#> ERR978252     4  0.3806      0.822  0  0 0.000 0.768 0.068 0.164
#> ERR978253     4  0.4756      0.736  0  0 0.000 0.664 0.112 0.224
#> ERR978254     4  0.5219      0.670  0  0 0.000 0.604 0.152 0.244

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.579           0.783       0.881         0.2344 0.828   0.828
#> 3 3 1.000           1.000       1.000         0.9618 0.713   0.653
#> 4 4 1.000           1.000       1.000         0.5273 0.757   0.551
#> 5 5 0.879           0.889       0.863         0.0825 0.961   0.870
#> 6 6 1.000           0.988       0.990         0.0838 0.917   0.681

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4

There is also optional best \(k\) = 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette  p1  p2
#> ERR978107     2   0.000      0.850 0.0 1.0
#> ERR978108     2   0.000      0.850 0.0 1.0
#> ERR978109     2   0.000      0.850 0.0 1.0
#> ERR978110     2   0.000      0.850 0.0 1.0
#> ERR978111     2   0.000      0.850 0.0 1.0
#> ERR978112     2   0.000      0.850 0.0 1.0
#> ERR978113     2   0.000      0.850 0.0 1.0
#> ERR978114     2   0.000      0.850 0.0 1.0
#> ERR978115     2   0.000      0.850 0.0 1.0
#> ERR978116     2   0.000      0.850 0.0 1.0
#> ERR978117     2   0.000      0.850 0.0 1.0
#> ERR978118     2   0.000      0.850 0.0 1.0
#> ERR978119     2   0.000      0.850 0.0 1.0
#> ERR978120     2   0.000      0.850 0.0 1.0
#> ERR978121     2   0.000      0.850 0.0 1.0
#> ERR978122     2   0.000      0.850 0.0 1.0
#> ERR978123     2   0.000      0.850 0.0 1.0
#> ERR978124     2   0.000      0.850 0.0 1.0
#> ERR978125     2   0.000      0.850 0.0 1.0
#> ERR978126     2   0.000      0.850 0.0 1.0
#> ERR978127     2   0.000      0.850 0.0 1.0
#> ERR978128     2   0.000      0.850 0.0 1.0
#> ERR978129     2   0.000      0.850 0.0 1.0
#> ERR978130     2   0.000      0.850 0.0 1.0
#> ERR978131     2   0.000      0.850 0.0 1.0
#> ERR978132     2   0.000      0.850 0.0 1.0
#> ERR978133     2   0.000      0.850 0.0 1.0
#> ERR978134     2   0.000      0.850 0.0 1.0
#> ERR978135     2   0.000      0.850 0.0 1.0
#> ERR978136     2   0.000      0.850 0.0 1.0
#> ERR978137     2   0.000      0.850 0.0 1.0
#> ERR978138     2   0.000      0.850 0.0 1.0
#> ERR978139     2   0.000      0.850 0.0 1.0
#> ERR978140     2   0.000      0.850 0.0 1.0
#> ERR978141     2   0.000      0.850 0.0 1.0
#> ERR978142     2   0.000      0.850 0.0 1.0
#> ERR978143     2   0.000      0.850 0.0 1.0
#> ERR978144     2   0.000      0.850 0.0 1.0
#> ERR978145     2   0.000      0.850 0.0 1.0
#> ERR978146     2   0.000      0.850 0.0 1.0
#> ERR978147     2   0.000      0.850 0.0 1.0
#> ERR978148     2   0.000      0.850 0.0 1.0
#> ERR978149     2   0.000      0.850 0.0 1.0
#> ERR978150     2   0.000      0.850 0.0 1.0
#> ERR978151     2   0.000      0.850 0.0 1.0
#> ERR978152     2   0.000      0.850 0.0 1.0
#> ERR978153     2   0.971      0.452 0.4 0.6
#> ERR978154     2   0.971      0.452 0.4 0.6
#> ERR978155     2   0.971      0.452 0.4 0.6
#> ERR978156     2   0.971      0.452 0.4 0.6
#> ERR978157     2   0.971      0.452 0.4 0.6
#> ERR978158     2   0.971      0.452 0.4 0.6
#> ERR978159     2   0.971      0.452 0.4 0.6
#> ERR978160     2   0.971      0.452 0.4 0.6
#> ERR978161     2   0.971      0.452 0.4 0.6
#> ERR978162     2   0.971      0.452 0.4 0.6
#> ERR978163     2   0.971      0.452 0.4 0.6
#> ERR978164     2   0.971      0.452 0.4 0.6
#> ERR978165     2   0.971      0.452 0.4 0.6
#> ERR978166     2   0.971      0.452 0.4 0.6
#> ERR978167     2   0.971      0.452 0.4 0.6
#> ERR978168     2   0.971      0.452 0.4 0.6
#> ERR978169     1   0.971      1.000 0.6 0.4
#> ERR978170     1   0.971      1.000 0.6 0.4
#> ERR978171     1   0.971      1.000 0.6 0.4
#> ERR978172     1   0.971      1.000 0.6 0.4
#> ERR978173     1   0.971      1.000 0.6 0.4
#> ERR978174     1   0.971      1.000 0.6 0.4
#> ERR978175     1   0.971      1.000 0.6 0.4
#> ERR978176     1   0.971      1.000 0.6 0.4
#> ERR978177     1   0.971      1.000 0.6 0.4
#> ERR978178     1   0.971      1.000 0.6 0.4
#> ERR978179     1   0.971      1.000 0.6 0.4
#> ERR978180     1   0.971      1.000 0.6 0.4
#> ERR978181     1   0.971      1.000 0.6 0.4
#> ERR978182     1   0.971      1.000 0.6 0.4
#> ERR978183     2   0.000      0.850 0.0 1.0
#> ERR978184     2   0.000      0.850 0.0 1.0
#> ERR978185     2   0.000      0.850 0.0 1.0
#> ERR978186     2   0.000      0.850 0.0 1.0
#> ERR978187     2   0.000      0.850 0.0 1.0
#> ERR978188     2   0.000      0.850 0.0 1.0
#> ERR978189     2   0.000      0.850 0.0 1.0
#> ERR978190     2   0.000      0.850 0.0 1.0
#> ERR978191     2   0.000      0.850 0.0 1.0
#> ERR978192     2   0.000      0.850 0.0 1.0
#> ERR978193     2   0.000      0.850 0.0 1.0
#> ERR978194     2   0.000      0.850 0.0 1.0
#> ERR978195     2   0.000      0.850 0.0 1.0
#> ERR978196     2   0.000      0.850 0.0 1.0
#> ERR978197     2   0.000      0.850 0.0 1.0
#> ERR978198     2   0.000      0.850 0.0 1.0
#> ERR978199     2   0.000      0.850 0.0 1.0
#> ERR978200     2   0.000      0.850 0.0 1.0
#> ERR978201     2   0.000      0.850 0.0 1.0
#> ERR978202     2   0.000      0.850 0.0 1.0
#> ERR978203     2   0.000      0.850 0.0 1.0
#> ERR978204     2   0.000      0.850 0.0 1.0
#> ERR978205     2   0.000      0.850 0.0 1.0
#> ERR978206     2   0.000      0.850 0.0 1.0
#> ERR978207     2   0.000      0.850 0.0 1.0
#> ERR978208     2   0.000      0.850 0.0 1.0
#> ERR978209     2   0.000      0.850 0.0 1.0
#> ERR978210     2   0.000      0.850 0.0 1.0
#> ERR978211     2   0.000      0.850 0.0 1.0
#> ERR978212     2   0.000      0.850 0.0 1.0
#> ERR978213     2   0.000      0.850 0.0 1.0
#> ERR978214     2   0.000      0.850 0.0 1.0
#> ERR978215     2   0.000      0.850 0.0 1.0
#> ERR978216     2   0.000      0.850 0.0 1.0
#> ERR978217     2   0.000      0.850 0.0 1.0
#> ERR978218     2   0.000      0.850 0.0 1.0
#> ERR978219     2   0.000      0.850 0.0 1.0
#> ERR978220     2   0.000      0.850 0.0 1.0
#> ERR978221     2   0.000      0.850 0.0 1.0
#> ERR978222     2   0.000      0.850 0.0 1.0
#> ERR978223     2   0.000      0.850 0.0 1.0
#> ERR978224     2   0.000      0.850 0.0 1.0
#> ERR978225     2   0.000      0.850 0.0 1.0
#> ERR978226     2   0.000      0.850 0.0 1.0
#> ERR978227     2   0.971      0.452 0.4 0.6
#> ERR978228     2   0.971      0.452 0.4 0.6
#> ERR978229     2   0.971      0.452 0.4 0.6
#> ERR978230     2   0.971      0.452 0.4 0.6
#> ERR978231     2   0.971      0.452 0.4 0.6
#> ERR978232     2   0.971      0.452 0.4 0.6
#> ERR978233     2   0.971      0.452 0.4 0.6
#> ERR978234     2   0.971      0.452 0.4 0.6
#> ERR978235     2   0.971      0.452 0.4 0.6
#> ERR978236     2   0.971      0.452 0.4 0.6
#> ERR978237     2   0.971      0.452 0.4 0.6
#> ERR978238     2   0.971      0.452 0.4 0.6
#> ERR978239     2   0.971      0.452 0.4 0.6
#> ERR978240     2   0.971      0.452 0.4 0.6
#> ERR978241     2   0.000      0.850 0.0 1.0
#> ERR978242     2   0.000      0.850 0.0 1.0
#> ERR978243     2   0.000      0.850 0.0 1.0
#> ERR978244     2   0.000      0.850 0.0 1.0
#> ERR978245     2   0.000      0.850 0.0 1.0
#> ERR978246     2   0.000      0.850 0.0 1.0
#> ERR978247     2   0.000      0.850 0.0 1.0
#> ERR978248     2   0.000      0.850 0.0 1.0
#> ERR978249     2   0.000      0.850 0.0 1.0
#> ERR978250     2   0.000      0.850 0.0 1.0
#> ERR978251     2   0.000      0.850 0.0 1.0
#> ERR978252     2   0.000      0.850 0.0 1.0
#> ERR978253     2   0.000      0.850 0.0 1.0
#> ERR978254     2   0.000      0.850 0.0 1.0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1 p2 p3
#> ERR978107     2       0          1  0  1  0
#> ERR978108     2       0          1  0  1  0
#> ERR978109     2       0          1  0  1  0
#> ERR978110     2       0          1  0  1  0
#> ERR978111     2       0          1  0  1  0
#> ERR978112     2       0          1  0  1  0
#> ERR978113     2       0          1  0  1  0
#> ERR978114     2       0          1  0  1  0
#> ERR978115     2       0          1  0  1  0
#> ERR978116     2       0          1  0  1  0
#> ERR978117     2       0          1  0  1  0
#> ERR978118     2       0          1  0  1  0
#> ERR978119     2       0          1  0  1  0
#> ERR978120     2       0          1  0  1  0
#> ERR978121     2       0          1  0  1  0
#> ERR978122     2       0          1  0  1  0
#> ERR978123     2       0          1  0  1  0
#> ERR978124     2       0          1  0  1  0
#> ERR978125     2       0          1  0  1  0
#> ERR978126     2       0          1  0  1  0
#> ERR978127     2       0          1  0  1  0
#> ERR978128     2       0          1  0  1  0
#> ERR978129     2       0          1  0  1  0
#> ERR978130     2       0          1  0  1  0
#> ERR978131     2       0          1  0  1  0
#> ERR978132     2       0          1  0  1  0
#> ERR978133     2       0          1  0  1  0
#> ERR978134     2       0          1  0  1  0
#> ERR978135     2       0          1  0  1  0
#> ERR978136     2       0          1  0  1  0
#> ERR978137     2       0          1  0  1  0
#> ERR978138     2       0          1  0  1  0
#> ERR978139     2       0          1  0  1  0
#> ERR978140     2       0          1  0  1  0
#> ERR978141     2       0          1  0  1  0
#> ERR978142     2       0          1  0  1  0
#> ERR978143     2       0          1  0  1  0
#> ERR978144     2       0          1  0  1  0
#> ERR978145     2       0          1  0  1  0
#> ERR978146     2       0          1  0  1  0
#> ERR978147     2       0          1  0  1  0
#> ERR978148     2       0          1  0  1  0
#> ERR978149     2       0          1  0  1  0
#> ERR978150     2       0          1  0  1  0
#> ERR978151     2       0          1  0  1  0
#> ERR978152     2       0          1  0  1  0
#> ERR978153     1       0          1  1  0  0
#> ERR978154     1       0          1  1  0  0
#> ERR978155     1       0          1  1  0  0
#> ERR978156     1       0          1  1  0  0
#> ERR978157     1       0          1  1  0  0
#> ERR978158     1       0          1  1  0  0
#> ERR978159     1       0          1  1  0  0
#> ERR978160     1       0          1  1  0  0
#> ERR978161     1       0          1  1  0  0
#> ERR978162     1       0          1  1  0  0
#> ERR978163     1       0          1  1  0  0
#> ERR978164     1       0          1  1  0  0
#> ERR978165     1       0          1  1  0  0
#> ERR978166     1       0          1  1  0  0
#> ERR978167     1       0          1  1  0  0
#> ERR978168     1       0          1  1  0  0
#> ERR978169     3       0          1  0  0  1
#> ERR978170     3       0          1  0  0  1
#> ERR978171     3       0          1  0  0  1
#> ERR978172     3       0          1  0  0  1
#> ERR978173     3       0          1  0  0  1
#> ERR978174     3       0          1  0  0  1
#> ERR978175     3       0          1  0  0  1
#> ERR978176     3       0          1  0  0  1
#> ERR978177     3       0          1  0  0  1
#> ERR978178     3       0          1  0  0  1
#> ERR978179     3       0          1  0  0  1
#> ERR978180     3       0          1  0  0  1
#> ERR978181     3       0          1  0  0  1
#> ERR978182     3       0          1  0  0  1
#> ERR978183     2       0          1  0  1  0
#> ERR978184     2       0          1  0  1  0
#> ERR978185     2       0          1  0  1  0
#> ERR978186     2       0          1  0  1  0
#> ERR978187     2       0          1  0  1  0
#> ERR978188     2       0          1  0  1  0
#> ERR978189     2       0          1  0  1  0
#> ERR978190     2       0          1  0  1  0
#> ERR978191     2       0          1  0  1  0
#> ERR978192     2       0          1  0  1  0
#> ERR978193     2       0          1  0  1  0
#> ERR978194     2       0          1  0  1  0
#> ERR978195     2       0          1  0  1  0
#> ERR978196     2       0          1  0  1  0
#> ERR978197     2       0          1  0  1  0
#> ERR978198     2       0          1  0  1  0
#> ERR978199     2       0          1  0  1  0
#> ERR978200     2       0          1  0  1  0
#> ERR978201     2       0          1  0  1  0
#> ERR978202     2       0          1  0  1  0
#> ERR978203     2       0          1  0  1  0
#> ERR978204     2       0          1  0  1  0
#> ERR978205     2       0          1  0  1  0
#> ERR978206     2       0          1  0  1  0
#> ERR978207     2       0          1  0  1  0
#> ERR978208     2       0          1  0  1  0
#> ERR978209     2       0          1  0  1  0
#> ERR978210     2       0          1  0  1  0
#> ERR978211     2       0          1  0  1  0
#> ERR978212     2       0          1  0  1  0
#> ERR978213     2       0          1  0  1  0
#> ERR978214     2       0          1  0  1  0
#> ERR978215     2       0          1  0  1  0
#> ERR978216     2       0          1  0  1  0
#> ERR978217     2       0          1  0  1  0
#> ERR978218     2       0          1  0  1  0
#> ERR978219     2       0          1  0  1  0
#> ERR978220     2       0          1  0  1  0
#> ERR978221     2       0          1  0  1  0
#> ERR978222     2       0          1  0  1  0
#> ERR978223     2       0          1  0  1  0
#> ERR978224     2       0          1  0  1  0
#> ERR978225     2       0          1  0  1  0
#> ERR978226     2       0          1  0  1  0
#> ERR978227     1       0          1  1  0  0
#> ERR978228     1       0          1  1  0  0
#> ERR978229     1       0          1  1  0  0
#> ERR978230     1       0          1  1  0  0
#> ERR978231     1       0          1  1  0  0
#> ERR978232     1       0          1  1  0  0
#> ERR978233     1       0          1  1  0  0
#> ERR978234     1       0          1  1  0  0
#> ERR978235     1       0          1  1  0  0
#> ERR978236     1       0          1  1  0  0
#> ERR978237     1       0          1  1  0  0
#> ERR978238     1       0          1  1  0  0
#> ERR978239     1       0          1  1  0  0
#> ERR978240     1       0          1  1  0  0
#> ERR978241     2       0          1  0  1  0
#> ERR978242     2       0          1  0  1  0
#> ERR978243     2       0          1  0  1  0
#> ERR978244     2       0          1  0  1  0
#> ERR978245     2       0          1  0  1  0
#> ERR978246     2       0          1  0  1  0
#> ERR978247     2       0          1  0  1  0
#> ERR978248     2       0          1  0  1  0
#> ERR978249     2       0          1  0  1  0
#> ERR978250     2       0          1  0  1  0
#> ERR978251     2       0          1  0  1  0
#> ERR978252     2       0          1  0  1  0
#> ERR978253     2       0          1  0  1  0
#> ERR978254     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1 p2 p3 p4
#> ERR978107     2       0          1  0  1  0  0
#> ERR978108     2       0          1  0  1  0  0
#> ERR978109     2       0          1  0  1  0  0
#> ERR978110     2       0          1  0  1  0  0
#> ERR978111     2       0          1  0  1  0  0
#> ERR978112     2       0          1  0  1  0  0
#> ERR978113     2       0          1  0  1  0  0
#> ERR978114     2       0          1  0  1  0  0
#> ERR978115     2       0          1  0  1  0  0
#> ERR978116     2       0          1  0  1  0  0
#> ERR978117     2       0          1  0  1  0  0
#> ERR978118     2       0          1  0  1  0  0
#> ERR978119     2       0          1  0  1  0  0
#> ERR978120     2       0          1  0  1  0  0
#> ERR978121     2       0          1  0  1  0  0
#> ERR978122     2       0          1  0  1  0  0
#> ERR978123     3       0          1  0  0  1  0
#> ERR978124     3       0          1  0  0  1  0
#> ERR978125     3       0          1  0  0  1  0
#> ERR978126     3       0          1  0  0  1  0
#> ERR978127     3       0          1  0  0  1  0
#> ERR978128     3       0          1  0  0  1  0
#> ERR978129     3       0          1  0  0  1  0
#> ERR978130     3       0          1  0  0  1  0
#> ERR978131     3       0          1  0  0  1  0
#> ERR978132     3       0          1  0  0  1  0
#> ERR978133     3       0          1  0  0  1  0
#> ERR978134     3       0          1  0  0  1  0
#> ERR978135     3       0          1  0  0  1  0
#> ERR978136     3       0          1  0  0  1  0
#> ERR978137     3       0          1  0  0  1  0
#> ERR978138     3       0          1  0  0  1  0
#> ERR978139     3       0          1  0  0  1  0
#> ERR978140     3       0          1  0  0  1  0
#> ERR978141     3       0          1  0  0  1  0
#> ERR978142     3       0          1  0  0  1  0
#> ERR978143     3       0          1  0  0  1  0
#> ERR978144     3       0          1  0  0  1  0
#> ERR978145     3       0          1  0  0  1  0
#> ERR978146     3       0          1  0  0  1  0
#> ERR978147     3       0          1  0  0  1  0
#> ERR978148     3       0          1  0  0  1  0
#> ERR978149     3       0          1  0  0  1  0
#> ERR978150     3       0          1  0  0  1  0
#> ERR978151     3       0          1  0  0  1  0
#> ERR978152     3       0          1  0  0  1  0
#> ERR978153     1       0          1  1  0  0  0
#> ERR978154     1       0          1  1  0  0  0
#> ERR978155     1       0          1  1  0  0  0
#> ERR978156     1       0          1  1  0  0  0
#> ERR978157     1       0          1  1  0  0  0
#> ERR978158     1       0          1  1  0  0  0
#> ERR978159     1       0          1  1  0  0  0
#> ERR978160     1       0          1  1  0  0  0
#> ERR978161     1       0          1  1  0  0  0
#> ERR978162     1       0          1  1  0  0  0
#> ERR978163     1       0          1  1  0  0  0
#> ERR978164     1       0          1  1  0  0  0
#> ERR978165     1       0          1  1  0  0  0
#> ERR978166     1       0          1  1  0  0  0
#> ERR978167     1       0          1  1  0  0  0
#> ERR978168     1       0          1  1  0  0  0
#> ERR978169     4       0          1  0  0  0  1
#> ERR978170     4       0          1  0  0  0  1
#> ERR978171     4       0          1  0  0  0  1
#> ERR978172     4       0          1  0  0  0  1
#> ERR978173     4       0          1  0  0  0  1
#> ERR978174     4       0          1  0  0  0  1
#> ERR978175     4       0          1  0  0  0  1
#> ERR978176     4       0          1  0  0  0  1
#> ERR978177     4       0          1  0  0  0  1
#> ERR978178     4       0          1  0  0  0  1
#> ERR978179     4       0          1  0  0  0  1
#> ERR978180     4       0          1  0  0  0  1
#> ERR978181     4       0          1  0  0  0  1
#> ERR978182     4       0          1  0  0  0  1
#> ERR978183     2       0          1  0  1  0  0
#> ERR978184     2       0          1  0  1  0  0
#> ERR978185     2       0          1  0  1  0  0
#> ERR978186     2       0          1  0  1  0  0
#> ERR978187     2       0          1  0  1  0  0
#> ERR978188     2       0          1  0  1  0  0
#> ERR978189     2       0          1  0  1  0  0
#> ERR978190     2       0          1  0  1  0  0
#> ERR978191     2       0          1  0  1  0  0
#> ERR978192     2       0          1  0  1  0  0
#> ERR978193     2       0          1  0  1  0  0
#> ERR978194     2       0          1  0  1  0  0
#> ERR978195     2       0          1  0  1  0  0
#> ERR978196     2       0          1  0  1  0  0
#> ERR978197     2       0          1  0  1  0  0
#> ERR978198     2       0          1  0  1  0  0
#> ERR978199     2       0          1  0  1  0  0
#> ERR978200     2       0          1  0  1  0  0
#> ERR978201     2       0          1  0  1  0  0
#> ERR978202     2       0          1  0  1  0  0
#> ERR978203     2       0          1  0  1  0  0
#> ERR978204     2       0          1  0  1  0  0
#> ERR978205     2       0          1  0  1  0  0
#> ERR978206     2       0          1  0  1  0  0
#> ERR978207     2       0          1  0  1  0  0
#> ERR978208     2       0          1  0  1  0  0
#> ERR978209     2       0          1  0  1  0  0
#> ERR978210     2       0          1  0  1  0  0
#> ERR978211     2       0          1  0  1  0  0
#> ERR978212     2       0          1  0  1  0  0
#> ERR978213     2       0          1  0  1  0  0
#> ERR978214     2       0          1  0  1  0  0
#> ERR978215     2       0          1  0  1  0  0
#> ERR978216     2       0          1  0  1  0  0
#> ERR978217     2       0          1  0  1  0  0
#> ERR978218     2       0          1  0  1  0  0
#> ERR978219     2       0          1  0  1  0  0
#> ERR978220     2       0          1  0  1  0  0
#> ERR978221     2       0          1  0  1  0  0
#> ERR978222     2       0          1  0  1  0  0
#> ERR978223     2       0          1  0  1  0  0
#> ERR978224     2       0          1  0  1  0  0
#> ERR978225     2       0          1  0  1  0  0
#> ERR978226     2       0          1  0  1  0  0
#> ERR978227     1       0          1  1  0  0  0
#> ERR978228     1       0          1  1  0  0  0
#> ERR978229     1       0          1  1  0  0  0
#> ERR978230     1       0          1  1  0  0  0
#> ERR978231     1       0          1  1  0  0  0
#> ERR978232     1       0          1  1  0  0  0
#> ERR978233     1       0          1  1  0  0  0
#> ERR978234     1       0          1  1  0  0  0
#> ERR978235     1       0          1  1  0  0  0
#> ERR978236     1       0          1  1  0  0  0
#> ERR978237     1       0          1  1  0  0  0
#> ERR978238     1       0          1  1  0  0  0
#> ERR978239     1       0          1  1  0  0  0
#> ERR978240     1       0          1  1  0  0  0
#> ERR978241     3       0          1  0  0  1  0
#> ERR978242     3       0          1  0  0  1  0
#> ERR978243     3       0          1  0  0  1  0
#> ERR978244     3       0          1  0  0  1  0
#> ERR978245     3       0          1  0  0  1  0
#> ERR978246     3       0          1  0  0  1  0
#> ERR978247     3       0          1  0  0  1  0
#> ERR978248     3       0          1  0  0  1  0
#> ERR978249     3       0          1  0  0  1  0
#> ERR978250     3       0          1  0  0  1  0
#> ERR978251     3       0          1  0  0  1  0
#> ERR978252     3       0          1  0  0  1  0
#> ERR978253     3       0          1  0  0  1  0
#> ERR978254     3       0          1  0  0  1  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3 p4    p5
#> ERR978107     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978108     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978109     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978110     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978111     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978112     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978113     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978114     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978115     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978116     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978117     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978118     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978119     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978120     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978121     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978122     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978123     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978124     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978125     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978126     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978127     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978128     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978129     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978130     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978131     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978132     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978133     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978134     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978135     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978136     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978137     3   0.134      0.944  0 0.000 0.944  0 0.056
#> ERR978138     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978139     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978140     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978141     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978142     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978143     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978144     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978145     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978146     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978147     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978148     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978149     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978150     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978151     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978152     3   0.000      0.944  0 0.000 1.000  0 0.000
#> ERR978153     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978169     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978170     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978171     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978172     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978173     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978174     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978175     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978176     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978177     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978178     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978179     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978180     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978181     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978182     4   0.000      1.000  0 0.000 0.000  1 0.000
#> ERR978183     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978184     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978185     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978186     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978187     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978188     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978189     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978190     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978191     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978192     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978193     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978194     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978195     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978196     2   0.000      0.768  0 1.000 0.000  0 0.000
#> ERR978197     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978198     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978199     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978200     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978201     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978202     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978203     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978204     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978205     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978206     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978207     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978208     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978209     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978210     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978211     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978212     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978213     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978214     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978215     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978216     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978217     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978218     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978219     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978220     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978221     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978222     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978223     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978224     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978225     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978226     2   0.425      0.768  0 0.568 0.000  0 0.432
#> ERR978227     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000  0 0.000
#> ERR978241     5   0.430      0.941  0 0.000 0.488  0 0.512
#> ERR978242     5   0.430      0.941  0 0.000 0.488  0 0.512
#> ERR978243     5   0.430      0.941  0 0.000 0.488  0 0.512
#> ERR978244     5   0.430      0.941  0 0.000 0.488  0 0.512
#> ERR978245     5   0.430      0.941  0 0.000 0.488  0 0.512
#> ERR978246     5   0.430      0.941  0 0.000 0.488  0 0.512
#> ERR978247     5   0.430      0.941  0 0.000 0.488  0 0.512
#> ERR978248     5   0.425      0.941  0 0.000 0.432  0 0.568
#> ERR978249     5   0.425      0.941  0 0.000 0.432  0 0.568
#> ERR978250     5   0.425      0.941  0 0.000 0.432  0 0.568
#> ERR978251     5   0.425      0.941  0 0.000 0.432  0 0.568
#> ERR978252     5   0.425      0.941  0 0.000 0.432  0 0.568
#> ERR978253     5   0.425      0.941  0 0.000 0.432  0 0.568
#> ERR978254     5   0.425      0.941  0 0.000 0.432  0 0.568

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3 p4 p5    p6
#> ERR978107     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978108     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978109     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978110     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978111     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978112     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978113     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978114     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978115     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978116     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978117     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978118     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978119     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978120     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978121     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978122     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978123     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978124     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978125     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978126     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978127     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978128     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978129     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978130     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978131     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978132     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978133     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978134     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978135     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978136     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978137     3   0.000      0.962  0  0 1.000  0  0 0.000
#> ERR978138     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978139     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978140     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978141     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978142     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978143     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978144     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978145     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978146     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978147     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978148     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978149     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978150     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978151     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978152     3   0.139      0.962  0  0 0.932  0  0 0.068
#> ERR978153     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978154     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978155     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978156     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978157     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978158     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978159     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978160     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978161     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978162     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978163     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978164     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978165     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978166     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978167     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978168     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978169     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978170     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978171     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978172     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978173     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978174     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978175     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978176     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978177     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978178     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978179     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978180     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978181     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978182     4   0.000      1.000  0  0 0.000  1  0 0.000
#> ERR978183     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978184     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978185     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978186     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978187     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978188     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978189     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978190     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978191     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978192     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978193     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978194     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978195     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978196     2   0.000      1.000  0  1 0.000  0  0 0.000
#> ERR978197     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978198     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978199     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978200     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978201     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978202     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978203     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978204     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978205     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978206     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978207     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978208     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978209     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978210     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978211     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978212     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978213     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978214     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978215     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978216     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978217     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978218     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978219     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978220     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978221     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978222     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978223     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978224     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978225     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978226     5   0.000      1.000  0  0 0.000  0  1 0.000
#> ERR978227     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978228     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978229     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978230     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978231     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978232     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978233     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978234     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978235     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978236     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978237     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978238     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978239     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978240     1   0.000      1.000  1  0 0.000  0  0 0.000
#> ERR978241     6   0.000      0.953  0  0 0.000  0  0 1.000
#> ERR978242     6   0.000      0.953  0  0 0.000  0  0 1.000
#> ERR978243     6   0.000      0.953  0  0 0.000  0  0 1.000
#> ERR978244     6   0.000      0.953  0  0 0.000  0  0 1.000
#> ERR978245     6   0.000      0.953  0  0 0.000  0  0 1.000
#> ERR978246     6   0.000      0.953  0  0 0.000  0  0 1.000
#> ERR978247     6   0.000      0.953  0  0 0.000  0  0 1.000
#> ERR978248     6   0.139      0.953  0  0 0.068  0  0 0.932
#> ERR978249     6   0.139      0.953  0  0 0.068  0  0 0.932
#> ERR978250     6   0.139      0.953  0  0 0.068  0  0 0.932
#> ERR978251     6   0.139      0.953  0  0 0.068  0  0 0.932
#> ERR978252     6   0.139      0.953  0  0 0.068  0  0 0.932
#> ERR978253     6   0.139      0.953  0  0 0.068  0  0 0.932
#> ERR978254     6   0.139      0.953  0  0 0.068  0  0 0.932

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.300           0.701       0.773         0.3648 0.579   0.579
#> 3 3 0.610           0.897       0.874         0.5853 0.686   0.499
#> 4 4 0.609           0.804       0.815         0.1539 0.890   0.714
#> 5 5 0.632           0.797       0.739         0.1069 0.874   0.603
#> 6 6 0.665           0.768       0.743         0.0566 0.957   0.816

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2  0.0376     0.8464 0.004 0.996
#> ERR978108     2  0.0376     0.8464 0.004 0.996
#> ERR978109     2  0.0376     0.8464 0.004 0.996
#> ERR978110     2  0.0376     0.8464 0.004 0.996
#> ERR978111     2  0.0376     0.8464 0.004 0.996
#> ERR978112     2  0.0376     0.8464 0.004 0.996
#> ERR978113     2  0.0376     0.8464 0.004 0.996
#> ERR978114     2  0.0376     0.8464 0.004 0.996
#> ERR978115     2  0.0376     0.8464 0.004 0.996
#> ERR978116     2  0.0376     0.8464 0.004 0.996
#> ERR978117     2  0.0376     0.8464 0.004 0.996
#> ERR978118     2  0.0376     0.8464 0.004 0.996
#> ERR978119     2  0.0376     0.8464 0.004 0.996
#> ERR978120     2  0.0376     0.8464 0.004 0.996
#> ERR978121     2  0.0376     0.8464 0.004 0.996
#> ERR978122     2  0.0376     0.8464 0.004 0.996
#> ERR978123     2  0.7528     0.6561 0.216 0.784
#> ERR978124     2  0.7602     0.6541 0.220 0.780
#> ERR978125     2  0.7602     0.6541 0.220 0.780
#> ERR978126     2  0.7602     0.6541 0.220 0.780
#> ERR978127     2  0.7602     0.6541 0.220 0.780
#> ERR978128     2  0.7602     0.6541 0.220 0.780
#> ERR978129     2  0.7602     0.6541 0.220 0.780
#> ERR978130     2  0.7528     0.6561 0.216 0.784
#> ERR978131     2  0.7528     0.6561 0.216 0.784
#> ERR978132     2  0.7528     0.6561 0.216 0.784
#> ERR978133     2  0.7528     0.6561 0.216 0.784
#> ERR978134     2  0.7528     0.6561 0.216 0.784
#> ERR978135     2  0.7528     0.6561 0.216 0.784
#> ERR978136     2  0.7528     0.6561 0.216 0.784
#> ERR978137     2  0.7528     0.6561 0.216 0.784
#> ERR978138     2  0.8909     0.5810 0.308 0.692
#> ERR978139     2  0.8909     0.5810 0.308 0.692
#> ERR978140     2  0.8909     0.5810 0.308 0.692
#> ERR978141     2  0.8909     0.5810 0.308 0.692
#> ERR978142     2  0.8909     0.5810 0.308 0.692
#> ERR978143     2  0.8909     0.5810 0.308 0.692
#> ERR978144     2  0.8909     0.5810 0.308 0.692
#> ERR978145     2  0.8909     0.5810 0.308 0.692
#> ERR978146     2  0.8955     0.5744 0.312 0.688
#> ERR978147     2  0.8955     0.5744 0.312 0.688
#> ERR978148     2  0.8955     0.5744 0.312 0.688
#> ERR978149     2  0.8955     0.5744 0.312 0.688
#> ERR978150     2  0.8955     0.5744 0.312 0.688
#> ERR978151     2  0.8955     0.5744 0.312 0.688
#> ERR978152     2  0.8955     0.5744 0.312 0.688
#> ERR978153     1  0.7219     0.7713 0.800 0.200
#> ERR978154     1  0.7219     0.7713 0.800 0.200
#> ERR978155     1  0.7219     0.7713 0.800 0.200
#> ERR978156     1  0.7219     0.7713 0.800 0.200
#> ERR978157     1  0.7219     0.7713 0.800 0.200
#> ERR978158     1  0.7219     0.7713 0.800 0.200
#> ERR978159     1  0.7219     0.7713 0.800 0.200
#> ERR978160     1  0.7219     0.7713 0.800 0.200
#> ERR978161     1  0.7219     0.7713 0.800 0.200
#> ERR978162     1  0.7219     0.7713 0.800 0.200
#> ERR978163     1  0.7219     0.7713 0.800 0.200
#> ERR978164     1  0.7219     0.7713 0.800 0.200
#> ERR978165     1  0.7219     0.7713 0.800 0.200
#> ERR978166     1  0.7219     0.7713 0.800 0.200
#> ERR978167     1  0.7219     0.7713 0.800 0.200
#> ERR978168     1  0.7219     0.7713 0.800 0.200
#> ERR978169     1  0.9954     0.0998 0.540 0.460
#> ERR978170     1  0.9954     0.0998 0.540 0.460
#> ERR978171     1  0.9954     0.0998 0.540 0.460
#> ERR978172     1  0.9954     0.0998 0.540 0.460
#> ERR978173     1  0.9954     0.0998 0.540 0.460
#> ERR978174     1  0.9954     0.0998 0.540 0.460
#> ERR978175     1  0.9954     0.0998 0.540 0.460
#> ERR978176     1  0.9954     0.0998 0.540 0.460
#> ERR978177     1  0.9954     0.0998 0.540 0.460
#> ERR978178     1  0.9954     0.0998 0.540 0.460
#> ERR978179     1  0.9954     0.0998 0.540 0.460
#> ERR978180     1  0.9954     0.0998 0.540 0.460
#> ERR978181     1  0.9954     0.0998 0.540 0.460
#> ERR978182     1  0.9954     0.0998 0.540 0.460
#> ERR978183     2  0.0376     0.8464 0.004 0.996
#> ERR978184     2  0.0376     0.8464 0.004 0.996
#> ERR978185     2  0.0376     0.8464 0.004 0.996
#> ERR978186     2  0.0376     0.8464 0.004 0.996
#> ERR978187     2  0.0376     0.8464 0.004 0.996
#> ERR978188     2  0.0376     0.8464 0.004 0.996
#> ERR978189     2  0.0376     0.8464 0.004 0.996
#> ERR978190     2  0.0376     0.8464 0.004 0.996
#> ERR978191     2  0.0376     0.8464 0.004 0.996
#> ERR978192     2  0.0376     0.8464 0.004 0.996
#> ERR978193     2  0.0376     0.8464 0.004 0.996
#> ERR978194     2  0.0376     0.8464 0.004 0.996
#> ERR978195     2  0.0376     0.8464 0.004 0.996
#> ERR978196     2  0.0376     0.8464 0.004 0.996
#> ERR978197     2  0.0000     0.8467 0.000 1.000
#> ERR978198     2  0.0000     0.8467 0.000 1.000
#> ERR978199     2  0.0000     0.8467 0.000 1.000
#> ERR978200     2  0.0000     0.8467 0.000 1.000
#> ERR978201     2  0.0000     0.8467 0.000 1.000
#> ERR978202     2  0.0000     0.8467 0.000 1.000
#> ERR978203     2  0.0000     0.8467 0.000 1.000
#> ERR978204     2  0.0000     0.8467 0.000 1.000
#> ERR978205     2  0.0000     0.8467 0.000 1.000
#> ERR978206     2  0.0000     0.8467 0.000 1.000
#> ERR978207     2  0.0000     0.8467 0.000 1.000
#> ERR978208     2  0.0000     0.8467 0.000 1.000
#> ERR978209     2  0.0000     0.8467 0.000 1.000
#> ERR978210     2  0.0000     0.8467 0.000 1.000
#> ERR978211     2  0.0000     0.8467 0.000 1.000
#> ERR978212     2  0.0000     0.8467 0.000 1.000
#> ERR978213     2  0.0000     0.8467 0.000 1.000
#> ERR978214     2  0.0000     0.8467 0.000 1.000
#> ERR978215     2  0.0000     0.8467 0.000 1.000
#> ERR978216     2  0.0000     0.8467 0.000 1.000
#> ERR978217     2  0.0000     0.8467 0.000 1.000
#> ERR978218     2  0.0000     0.8467 0.000 1.000
#> ERR978219     2  0.0000     0.8467 0.000 1.000
#> ERR978220     2  0.0000     0.8467 0.000 1.000
#> ERR978221     2  0.0000     0.8467 0.000 1.000
#> ERR978222     2  0.0000     0.8467 0.000 1.000
#> ERR978223     2  0.0000     0.8467 0.000 1.000
#> ERR978224     2  0.0000     0.8467 0.000 1.000
#> ERR978225     2  0.0000     0.8467 0.000 1.000
#> ERR978226     2  0.0000     0.8467 0.000 1.000
#> ERR978227     1  0.7219     0.7713 0.800 0.200
#> ERR978228     1  0.7219     0.7713 0.800 0.200
#> ERR978229     1  0.7219     0.7713 0.800 0.200
#> ERR978230     1  0.7219     0.7713 0.800 0.200
#> ERR978231     1  0.7219     0.7713 0.800 0.200
#> ERR978232     1  0.7219     0.7713 0.800 0.200
#> ERR978233     1  0.7219     0.7713 0.800 0.200
#> ERR978234     1  0.7219     0.7713 0.800 0.200
#> ERR978235     1  0.7219     0.7713 0.800 0.200
#> ERR978236     1  0.7219     0.7713 0.800 0.200
#> ERR978237     1  0.7219     0.7713 0.800 0.200
#> ERR978238     1  0.7219     0.7713 0.800 0.200
#> ERR978239     1  0.7219     0.7713 0.800 0.200
#> ERR978240     1  0.7219     0.7713 0.800 0.200
#> ERR978241     2  0.9000     0.5688 0.316 0.684
#> ERR978242     2  0.9000     0.5688 0.316 0.684
#> ERR978243     2  0.9000     0.5688 0.316 0.684
#> ERR978244     2  0.9000     0.5688 0.316 0.684
#> ERR978245     2  0.9000     0.5688 0.316 0.684
#> ERR978246     2  0.9000     0.5688 0.316 0.684
#> ERR978247     2  0.9000     0.5688 0.316 0.684
#> ERR978248     2  0.0376     0.8464 0.004 0.996
#> ERR978249     2  0.0376     0.8464 0.004 0.996
#> ERR978250     2  0.0376     0.8464 0.004 0.996
#> ERR978251     2  0.0376     0.8464 0.004 0.996
#> ERR978252     2  0.0376     0.8464 0.004 0.996
#> ERR978253     2  0.0376     0.8464 0.004 0.996
#> ERR978254     2  0.0376     0.8464 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978108     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978109     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978110     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978111     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978112     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978113     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978114     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978115     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978116     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978117     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978118     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978119     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978120     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978121     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978122     2  0.0237      0.935 0.000 0.996 0.004
#> ERR978123     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978124     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978125     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978126     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978127     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978128     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978129     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978130     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978131     3  0.6282      0.818 0.012 0.324 0.664
#> ERR978132     3  0.6282      0.818 0.012 0.324 0.664
#> ERR978133     3  0.6282      0.818 0.012 0.324 0.664
#> ERR978134     3  0.6282      0.818 0.012 0.324 0.664
#> ERR978135     3  0.6282      0.818 0.012 0.324 0.664
#> ERR978136     3  0.6282      0.818 0.012 0.324 0.664
#> ERR978137     3  0.6282      0.818 0.012 0.324 0.664
#> ERR978138     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978139     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978140     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978141     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978142     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978143     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978144     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978145     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978146     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978147     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978148     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978149     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978150     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978151     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978152     3  0.5698      0.901 0.012 0.252 0.736
#> ERR978153     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978154     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978155     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978156     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978157     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978158     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978159     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978160     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978161     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978162     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978163     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978164     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978165     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978166     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978167     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978168     1  0.2443      0.967 0.940 0.032 0.028
#> ERR978169     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978170     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978171     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978172     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978173     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978174     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978175     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978176     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978177     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978178     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978179     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978180     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978181     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978182     3  0.4449      0.818 0.040 0.100 0.860
#> ERR978183     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978184     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978185     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978186     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978187     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978188     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978189     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978190     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978191     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978192     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978193     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978194     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978195     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978196     2  0.0661      0.935 0.008 0.988 0.004
#> ERR978197     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978198     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978199     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978200     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978201     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978202     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978203     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978204     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978205     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978206     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978207     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978208     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978209     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978210     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978211     2  0.2050      0.933 0.020 0.952 0.028
#> ERR978212     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978213     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978214     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978215     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978216     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978217     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978218     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978219     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978220     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978221     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978222     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978223     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978224     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978225     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978226     2  0.1905      0.936 0.016 0.956 0.028
#> ERR978227     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978228     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978229     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978230     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978231     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978232     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978233     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978234     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978235     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978236     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978237     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978238     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978239     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978240     1  0.4731      0.963 0.840 0.032 0.128
#> ERR978241     3  0.5406      0.891 0.020 0.200 0.780
#> ERR978242     3  0.5406      0.891 0.020 0.200 0.780
#> ERR978243     3  0.5406      0.891 0.020 0.200 0.780
#> ERR978244     3  0.5406      0.891 0.020 0.200 0.780
#> ERR978245     3  0.5406      0.891 0.020 0.200 0.780
#> ERR978246     3  0.5406      0.891 0.020 0.200 0.780
#> ERR978247     3  0.5406      0.891 0.020 0.200 0.780
#> ERR978248     2  0.5327      0.522 0.000 0.728 0.272
#> ERR978249     2  0.5397      0.502 0.000 0.720 0.280
#> ERR978250     2  0.5397      0.502 0.000 0.720 0.280
#> ERR978251     2  0.5397      0.502 0.000 0.720 0.280
#> ERR978252     2  0.5397      0.502 0.000 0.720 0.280
#> ERR978253     2  0.5397      0.502 0.000 0.720 0.280
#> ERR978254     2  0.5327      0.522 0.000 0.728 0.272

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> ERR978107     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978108     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978109     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978110     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978111     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978112     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978113     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978114     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978115     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978116     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978117     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978118     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978119     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978120     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978121     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978122     2  0.2867      0.768 0.000 0.884 0.104 0.012
#> ERR978123     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978124     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978125     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978126     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978127     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978128     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978129     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978130     3  0.0188      0.838 0.000 0.004 0.996 0.000
#> ERR978131     3  0.0707      0.832 0.000 0.020 0.980 0.000
#> ERR978132     3  0.0707      0.832 0.000 0.020 0.980 0.000
#> ERR978133     3  0.0707      0.832 0.000 0.020 0.980 0.000
#> ERR978134     3  0.0707      0.832 0.000 0.020 0.980 0.000
#> ERR978135     3  0.0707      0.832 0.000 0.020 0.980 0.000
#> ERR978136     3  0.0707      0.832 0.000 0.020 0.980 0.000
#> ERR978137     3  0.0707      0.832 0.000 0.020 0.980 0.000
#> ERR978138     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978139     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978140     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978141     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978142     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978143     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978144     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978145     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978146     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978147     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978148     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978149     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978150     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978151     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978152     3  0.2466      0.836 0.000 0.004 0.900 0.096
#> ERR978153     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978154     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978155     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978156     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978157     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978158     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978159     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978160     1  0.1339      0.923 0.964 0.004 0.008 0.024
#> ERR978161     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978162     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978163     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978164     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978165     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978166     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978167     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978168     1  0.1256      0.923 0.964 0.028 0.008 0.000
#> ERR978169     4  0.4188      0.988 0.004 0.000 0.244 0.752
#> ERR978170     4  0.4188      0.988 0.004 0.000 0.244 0.752
#> ERR978171     4  0.4188      0.988 0.004 0.000 0.244 0.752
#> ERR978172     4  0.4188      0.988 0.004 0.000 0.244 0.752
#> ERR978173     4  0.4188      0.988 0.004 0.000 0.244 0.752
#> ERR978174     4  0.4188      0.988 0.004 0.000 0.244 0.752
#> ERR978175     4  0.4188      0.988 0.004 0.000 0.244 0.752
#> ERR978176     4  0.5217      0.988 0.012 0.024 0.244 0.720
#> ERR978177     4  0.5217      0.988 0.012 0.024 0.244 0.720
#> ERR978178     4  0.5217      0.988 0.012 0.024 0.244 0.720
#> ERR978179     4  0.5217      0.988 0.012 0.024 0.244 0.720
#> ERR978180     4  0.5217      0.988 0.012 0.024 0.244 0.720
#> ERR978181     4  0.5217      0.988 0.012 0.024 0.244 0.720
#> ERR978182     4  0.5217      0.988 0.012 0.024 0.244 0.720
#> ERR978183     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978184     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978185     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978186     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978187     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978188     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978189     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978190     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978191     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978192     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978193     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978194     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978195     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978196     2  0.2593      0.769 0.000 0.892 0.104 0.004
#> ERR978197     2  0.6546      0.685 0.000 0.524 0.396 0.080
#> ERR978198     2  0.6546      0.685 0.000 0.524 0.396 0.080
#> ERR978199     2  0.6546      0.685 0.000 0.524 0.396 0.080
#> ERR978200     2  0.6546      0.685 0.000 0.524 0.396 0.080
#> ERR978201     2  0.6546      0.685 0.000 0.524 0.396 0.080
#> ERR978202     2  0.6546      0.685 0.000 0.524 0.396 0.080
#> ERR978203     2  0.6546      0.685 0.000 0.524 0.396 0.080
#> ERR978204     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978205     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978206     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978207     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978208     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978209     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978210     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978211     2  0.6347      0.696 0.000 0.548 0.384 0.068
#> ERR978212     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978213     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978214     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978215     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978216     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978217     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978218     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978219     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978220     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978221     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978222     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978223     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978224     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978225     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978226     2  0.6747      0.688 0.000 0.528 0.372 0.100
#> ERR978227     1  0.4322      0.916 0.828 0.060 0.008 0.104
#> ERR978228     1  0.4322      0.916 0.828 0.060 0.008 0.104
#> ERR978229     1  0.4322      0.916 0.828 0.060 0.008 0.104
#> ERR978230     1  0.4322      0.916 0.828 0.060 0.008 0.104
#> ERR978231     1  0.4322      0.916 0.828 0.060 0.008 0.104
#> ERR978232     1  0.4322      0.916 0.828 0.060 0.008 0.104
#> ERR978233     1  0.4322      0.916 0.828 0.060 0.008 0.104
#> ERR978234     1  0.4304      0.916 0.828 0.056 0.008 0.108
#> ERR978235     1  0.4304      0.916 0.828 0.056 0.008 0.108
#> ERR978236     1  0.4304      0.916 0.828 0.056 0.008 0.108
#> ERR978237     1  0.4304      0.916 0.828 0.056 0.008 0.108
#> ERR978238     1  0.4304      0.916 0.828 0.056 0.008 0.108
#> ERR978239     1  0.4304      0.916 0.828 0.056 0.008 0.108
#> ERR978240     1  0.4304      0.916 0.828 0.056 0.008 0.108
#> ERR978241     3  0.3400      0.721 0.000 0.000 0.820 0.180
#> ERR978242     3  0.3400      0.721 0.000 0.000 0.820 0.180
#> ERR978243     3  0.3400      0.721 0.000 0.000 0.820 0.180
#> ERR978244     3  0.3400      0.721 0.000 0.000 0.820 0.180
#> ERR978245     3  0.3400      0.721 0.000 0.000 0.820 0.180
#> ERR978246     3  0.3400      0.721 0.000 0.000 0.820 0.180
#> ERR978247     3  0.3400      0.721 0.000 0.000 0.820 0.180
#> ERR978248     3  0.4872      0.531 0.004 0.212 0.752 0.032
#> ERR978249     3  0.4872      0.531 0.004 0.212 0.752 0.032
#> ERR978250     3  0.4872      0.531 0.004 0.212 0.752 0.032
#> ERR978251     3  0.4872      0.531 0.004 0.212 0.752 0.032
#> ERR978252     3  0.4872      0.531 0.004 0.212 0.752 0.032
#> ERR978253     3  0.4872      0.531 0.004 0.212 0.752 0.032
#> ERR978254     3  0.4872      0.531 0.004 0.212 0.752 0.032

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> ERR978107     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978108     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978109     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978110     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978111     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978112     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978113     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978114     2   0.405      0.916 0.000 0.644 0.000 0.000 0.356
#> ERR978115     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978116     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978117     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978118     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978119     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978120     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978121     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978122     2   0.442      0.915 0.000 0.632 0.012 0.000 0.356
#> ERR978123     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978124     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978125     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978126     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978127     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978128     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978129     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978130     3   0.330      0.824 0.000 0.016 0.816 0.000 0.168
#> ERR978131     3   0.344      0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978132     3   0.344      0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978133     3   0.344      0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978134     3   0.344      0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978135     3   0.344      0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978136     3   0.344      0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978137     3   0.344      0.820 0.000 0.020 0.808 0.000 0.172
#> ERR978138     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978139     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978140     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978141     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978142     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978143     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978144     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978145     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978146     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978147     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978148     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978149     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978150     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978151     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978152     3   0.603      0.853 0.000 0.020 0.632 0.140 0.208
#> ERR978153     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978154     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978155     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978156     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978157     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978158     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978159     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978160     1   0.115      0.879 0.964 0.000 0.008 0.024 0.004
#> ERR978161     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978162     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978163     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978164     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978165     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978166     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978167     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978168     1   0.104      0.879 0.964 0.032 0.000 0.000 0.004
#> ERR978169     4   0.365      0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978170     4   0.365      0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978171     4   0.365      0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978172     4   0.365      0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978173     4   0.365      0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978174     4   0.365      0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978175     4   0.365      0.981 0.000 0.040 0.152 0.808 0.000
#> ERR978176     4   0.256      0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978177     4   0.256      0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978178     4   0.256      0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978179     4   0.256      0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978180     4   0.256      0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978181     4   0.256      0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978182     4   0.256      0.981 0.000 0.000 0.144 0.856 0.000
#> ERR978183     2   0.636      0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978184     2   0.636      0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978185     2   0.636      0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978186     2   0.636      0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978187     2   0.636      0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978188     2   0.636      0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978189     2   0.636      0.904 0.000 0.508 0.068 0.040 0.384
#> ERR978190     2   0.645      0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978191     2   0.645      0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978192     2   0.645      0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978193     2   0.645      0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978194     2   0.645      0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978195     2   0.645      0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978196     2   0.645      0.904 0.000 0.500 0.076 0.040 0.384
#> ERR978197     5   0.375      0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978198     5   0.375      0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978199     5   0.375      0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978200     5   0.375      0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978201     5   0.375      0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978202     5   0.375      0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978203     5   0.375      0.699 0.000 0.092 0.072 0.008 0.828
#> ERR978204     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978205     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978206     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978207     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978208     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978209     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978210     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978211     5   0.345      0.703 0.000 0.068 0.068 0.012 0.852
#> ERR978212     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978213     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978214     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978215     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978216     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978217     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978218     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978219     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978220     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978221     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978222     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978223     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978224     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978225     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978226     5   0.051      0.722 0.000 0.016 0.000 0.000 0.984
#> ERR978227     1   0.524      0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978228     1   0.524      0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978229     1   0.524      0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978230     1   0.524      0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978231     1   0.524      0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978232     1   0.524      0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978233     1   0.524      0.863 0.744 0.136 0.064 0.052 0.004
#> ERR978234     1   0.502      0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978235     1   0.502      0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978236     1   0.502      0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978237     1   0.502      0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978238     1   0.502      0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978239     1   0.502      0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978240     1   0.502      0.863 0.744 0.164 0.060 0.028 0.004
#> ERR978241     3   0.666      0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978242     3   0.666      0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978243     3   0.666      0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978244     3   0.666      0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978245     3   0.666      0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978246     3   0.666      0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978247     3   0.666      0.771 0.004 0.036 0.592 0.208 0.160
#> ERR978248     5   0.668     -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978249     5   0.668     -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978250     5   0.668     -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978251     5   0.668     -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978252     5   0.668     -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978253     5   0.668     -0.159 0.000 0.124 0.408 0.024 0.444
#> ERR978254     5   0.668     -0.159 0.000 0.124 0.408 0.024 0.444

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5 p6
#> ERR978107     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978108     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978109     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978110     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978111     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978112     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978113     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978114     2  0.5519      0.854 0.000 0.616 0.000 0.020 0.220 NA
#> ERR978115     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978116     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978117     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978118     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978119     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978120     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978121     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978122     2  0.5678      0.852 0.000 0.580 0.000 0.012 0.212 NA
#> ERR978123     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978124     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978125     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978126     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978127     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978128     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978129     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978130     3  0.0632      0.625 0.000 0.000 0.976 0.000 0.024 NA
#> ERR978131     3  0.1003      0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978132     3  0.1003      0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978133     3  0.1003      0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978134     3  0.1003      0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978135     3  0.1003      0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978136     3  0.1003      0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978137     3  0.1003      0.624 0.000 0.004 0.964 0.000 0.028 NA
#> ERR978138     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978139     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978140     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978141     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978142     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978143     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978144     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978145     3  0.6615      0.638 0.000 0.052 0.596 0.172 0.056 NA
#> ERR978146     3  0.6502      0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978147     3  0.6502      0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978148     3  0.6502      0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978149     3  0.6502      0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978150     3  0.6502      0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978151     3  0.6502      0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978152     3  0.6502      0.639 0.000 0.044 0.604 0.172 0.056 NA
#> ERR978153     1  0.0260      0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978154     1  0.0260      0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978155     1  0.0260      0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978156     1  0.0260      0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978157     1  0.0260      0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978158     1  0.0260      0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978159     1  0.0260      0.857 0.992 0.000 0.000 0.008 0.000 NA
#> ERR978160     1  0.0260      0.857 0.992 0.008 0.000 0.000 0.000 NA
#> ERR978161     1  0.1370      0.857 0.948 0.036 0.004 0.012 0.000 NA
#> ERR978162     1  0.1370      0.857 0.948 0.036 0.004 0.012 0.000 NA
#> ERR978163     1  0.1296      0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978164     1  0.1296      0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978165     1  0.1296      0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978166     1  0.1296      0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978167     1  0.1296      0.857 0.948 0.044 0.004 0.004 0.000 NA
#> ERR978168     1  0.1370      0.857 0.948 0.036 0.004 0.012 0.000 NA
#> ERR978169     4  0.3917      0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978170     4  0.3917      0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978171     4  0.3917      0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978172     4  0.3917      0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978173     4  0.3917      0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978174     4  0.3917      0.960 0.000 0.024 0.124 0.792 0.000 NA
#> ERR978175     4  0.3935      0.959 0.000 0.028 0.124 0.792 0.000 NA
#> ERR978176     4  0.2003      0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978177     4  0.2003      0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978178     4  0.2003      0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978179     4  0.2003      0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978180     4  0.2003      0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978181     4  0.2003      0.960 0.000 0.000 0.116 0.884 0.000 NA
#> ERR978182     4  0.2146      0.959 0.000 0.004 0.116 0.880 0.000 NA
#> ERR978183     2  0.3695      0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978184     2  0.3695      0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978185     2  0.3695      0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978186     2  0.3695      0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978187     2  0.3695      0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978188     2  0.3695      0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978189     2  0.3695      0.830 0.000 0.712 0.000 0.016 0.272 NA
#> ERR978190     2  0.4327      0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978191     2  0.4327      0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978192     2  0.4327      0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978193     2  0.4327      0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978194     2  0.4327      0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978195     2  0.4327      0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978196     2  0.4327      0.830 0.000 0.680 0.000 0.000 0.264 NA
#> ERR978197     5  0.3996      0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978198     5  0.3996      0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978199     5  0.3996      0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978200     5  0.3996      0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978201     5  0.3996      0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978202     5  0.3996      0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978203     5  0.3996      0.829 0.000 0.036 0.152 0.012 0.784 NA
#> ERR978204     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978205     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978206     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978207     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978208     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978209     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978210     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978211     5  0.3201      0.845 0.000 0.028 0.140 0.008 0.824 NA
#> ERR978212     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978213     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978214     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978215     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978216     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978217     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978218     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978219     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978220     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978221     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978222     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978223     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978224     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978225     5  0.4457      0.850 0.000 0.052 0.080 0.012 0.780 NA
#> ERR978226     5  0.4508      0.848 0.000 0.052 0.080 0.012 0.776 NA
#> ERR978227     1  0.3888      0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978228     1  0.3888      0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978229     1  0.3888      0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978230     1  0.3888      0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978231     1  0.3888      0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978232     1  0.3888      0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978233     1  0.3888      0.841 0.672 0.016 0.000 0.000 0.000 NA
#> ERR978234     1  0.4159      0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978235     1  0.4159      0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978236     1  0.4159      0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978237     1  0.4159      0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978238     1  0.4159      0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978239     1  0.4159      0.841 0.672 0.000 0.000 0.008 0.020 NA
#> ERR978240     1  0.4190      0.841 0.672 0.004 0.000 0.004 0.020 NA
#> ERR978241     3  0.7182      0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978242     3  0.7182      0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978243     3  0.7182      0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978244     3  0.7182      0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978245     3  0.7182      0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978246     3  0.7182      0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978247     3  0.7182      0.529 0.000 0.060 0.492 0.256 0.044 NA
#> ERR978248     3  0.7745      0.214 0.000 0.108 0.348 0.020 0.268 NA
#> ERR978249     3  0.7725      0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978250     3  0.7725      0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978251     3  0.7725      0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978252     3  0.7725      0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978253     3  0.7725      0.214 0.000 0.104 0.348 0.020 0.268 NA
#> ERR978254     3  0.7745      0.214 0.000 0.108 0.348 0.020 0.268 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.904           0.932       0.964         0.4975 0.501   0.501
#> 3 3 1.000           1.000       1.000         0.2862 0.859   0.719
#> 4 4 0.950           0.960       0.968         0.0838 0.950   0.862
#> 5 5 0.854           0.898       0.855         0.1006 0.898   0.672
#> 6 6 0.818           0.913       0.873         0.0545 0.981   0.908

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2  0.0000      1.000 0.000 1.000
#> ERR978108     2  0.0000      1.000 0.000 1.000
#> ERR978109     2  0.0000      1.000 0.000 1.000
#> ERR978110     2  0.0000      1.000 0.000 1.000
#> ERR978111     2  0.0000      1.000 0.000 1.000
#> ERR978112     2  0.0000      1.000 0.000 1.000
#> ERR978113     2  0.0000      1.000 0.000 1.000
#> ERR978114     2  0.0000      1.000 0.000 1.000
#> ERR978115     2  0.0000      1.000 0.000 1.000
#> ERR978116     2  0.0000      1.000 0.000 1.000
#> ERR978117     2  0.0000      1.000 0.000 1.000
#> ERR978118     2  0.0000      1.000 0.000 1.000
#> ERR978119     2  0.0000      1.000 0.000 1.000
#> ERR978120     2  0.0000      1.000 0.000 1.000
#> ERR978121     2  0.0000      1.000 0.000 1.000
#> ERR978122     2  0.0000      1.000 0.000 1.000
#> ERR978123     1  0.2043      0.921 0.968 0.032
#> ERR978124     1  0.2043      0.921 0.968 0.032
#> ERR978125     1  0.2043      0.921 0.968 0.032
#> ERR978126     1  0.2043      0.921 0.968 0.032
#> ERR978127     1  0.2043      0.921 0.968 0.032
#> ERR978128     1  0.2043      0.921 0.968 0.032
#> ERR978129     1  0.2043      0.921 0.968 0.032
#> ERR978130     1  0.2043      0.921 0.968 0.032
#> ERR978131     1  0.2778      0.912 0.952 0.048
#> ERR978132     1  0.2778      0.912 0.952 0.048
#> ERR978133     1  0.2778      0.912 0.952 0.048
#> ERR978134     1  0.2778      0.912 0.952 0.048
#> ERR978135     1  0.2778      0.912 0.952 0.048
#> ERR978136     1  0.2778      0.912 0.952 0.048
#> ERR978137     1  0.2778      0.912 0.952 0.048
#> ERR978138     1  0.9129      0.615 0.672 0.328
#> ERR978139     1  0.9129      0.615 0.672 0.328
#> ERR978140     1  0.9129      0.615 0.672 0.328
#> ERR978141     1  0.9129      0.615 0.672 0.328
#> ERR978142     1  0.9129      0.615 0.672 0.328
#> ERR978143     1  0.9129      0.615 0.672 0.328
#> ERR978144     1  0.9129      0.615 0.672 0.328
#> ERR978145     1  0.9129      0.615 0.672 0.328
#> ERR978146     1  0.8713      0.671 0.708 0.292
#> ERR978147     1  0.8713      0.671 0.708 0.292
#> ERR978148     1  0.8713      0.671 0.708 0.292
#> ERR978149     1  0.8713      0.671 0.708 0.292
#> ERR978150     1  0.8713      0.671 0.708 0.292
#> ERR978151     1  0.8713      0.671 0.708 0.292
#> ERR978152     1  0.8713      0.671 0.708 0.292
#> ERR978153     1  0.0000      0.932 1.000 0.000
#> ERR978154     1  0.0000      0.932 1.000 0.000
#> ERR978155     1  0.0000      0.932 1.000 0.000
#> ERR978156     1  0.0000      0.932 1.000 0.000
#> ERR978157     1  0.0000      0.932 1.000 0.000
#> ERR978158     1  0.0000      0.932 1.000 0.000
#> ERR978159     1  0.0000      0.932 1.000 0.000
#> ERR978160     1  0.0000      0.932 1.000 0.000
#> ERR978161     1  0.0000      0.932 1.000 0.000
#> ERR978162     1  0.0000      0.932 1.000 0.000
#> ERR978163     1  0.0000      0.932 1.000 0.000
#> ERR978164     1  0.0000      0.932 1.000 0.000
#> ERR978165     1  0.0000      0.932 1.000 0.000
#> ERR978166     1  0.0000      0.932 1.000 0.000
#> ERR978167     1  0.0000      0.932 1.000 0.000
#> ERR978168     1  0.0000      0.932 1.000 0.000
#> ERR978169     1  0.0000      0.932 1.000 0.000
#> ERR978170     1  0.0000      0.932 1.000 0.000
#> ERR978171     1  0.0000      0.932 1.000 0.000
#> ERR978172     1  0.0000      0.932 1.000 0.000
#> ERR978173     1  0.0000      0.932 1.000 0.000
#> ERR978174     1  0.0000      0.932 1.000 0.000
#> ERR978175     1  0.0000      0.932 1.000 0.000
#> ERR978176     1  0.0000      0.932 1.000 0.000
#> ERR978177     1  0.0000      0.932 1.000 0.000
#> ERR978178     1  0.0000      0.932 1.000 0.000
#> ERR978179     1  0.0000      0.932 1.000 0.000
#> ERR978180     1  0.0000      0.932 1.000 0.000
#> ERR978181     1  0.0000      0.932 1.000 0.000
#> ERR978182     1  0.0000      0.932 1.000 0.000
#> ERR978183     2  0.0000      1.000 0.000 1.000
#> ERR978184     2  0.0000      1.000 0.000 1.000
#> ERR978185     2  0.0000      1.000 0.000 1.000
#> ERR978186     2  0.0000      1.000 0.000 1.000
#> ERR978187     2  0.0000      1.000 0.000 1.000
#> ERR978188     2  0.0000      1.000 0.000 1.000
#> ERR978189     2  0.0000      1.000 0.000 1.000
#> ERR978190     2  0.0000      1.000 0.000 1.000
#> ERR978191     2  0.0000      1.000 0.000 1.000
#> ERR978192     2  0.0000      1.000 0.000 1.000
#> ERR978193     2  0.0000      1.000 0.000 1.000
#> ERR978194     2  0.0000      1.000 0.000 1.000
#> ERR978195     2  0.0000      1.000 0.000 1.000
#> ERR978196     2  0.0000      1.000 0.000 1.000
#> ERR978197     2  0.0000      1.000 0.000 1.000
#> ERR978198     2  0.0000      1.000 0.000 1.000
#> ERR978199     2  0.0000      1.000 0.000 1.000
#> ERR978200     2  0.0000      1.000 0.000 1.000
#> ERR978201     2  0.0000      1.000 0.000 1.000
#> ERR978202     2  0.0000      1.000 0.000 1.000
#> ERR978203     2  0.0000      1.000 0.000 1.000
#> ERR978204     2  0.0000      1.000 0.000 1.000
#> ERR978205     2  0.0000      1.000 0.000 1.000
#> ERR978206     2  0.0000      1.000 0.000 1.000
#> ERR978207     2  0.0000      1.000 0.000 1.000
#> ERR978208     2  0.0000      1.000 0.000 1.000
#> ERR978209     2  0.0000      1.000 0.000 1.000
#> ERR978210     2  0.0000      1.000 0.000 1.000
#> ERR978211     2  0.0000      1.000 0.000 1.000
#> ERR978212     2  0.0000      1.000 0.000 1.000
#> ERR978213     2  0.0000      1.000 0.000 1.000
#> ERR978214     2  0.0000      1.000 0.000 1.000
#> ERR978215     2  0.0000      1.000 0.000 1.000
#> ERR978216     2  0.0000      1.000 0.000 1.000
#> ERR978217     2  0.0000      1.000 0.000 1.000
#> ERR978218     2  0.0000      1.000 0.000 1.000
#> ERR978219     2  0.0000      1.000 0.000 1.000
#> ERR978220     2  0.0000      1.000 0.000 1.000
#> ERR978221     2  0.0000      1.000 0.000 1.000
#> ERR978222     2  0.0000      1.000 0.000 1.000
#> ERR978223     2  0.0000      1.000 0.000 1.000
#> ERR978224     2  0.0000      1.000 0.000 1.000
#> ERR978225     2  0.0000      1.000 0.000 1.000
#> ERR978226     2  0.0000      1.000 0.000 1.000
#> ERR978227     1  0.0000      0.932 1.000 0.000
#> ERR978228     1  0.0000      0.932 1.000 0.000
#> ERR978229     1  0.0000      0.932 1.000 0.000
#> ERR978230     1  0.0000      0.932 1.000 0.000
#> ERR978231     1  0.0000      0.932 1.000 0.000
#> ERR978232     1  0.0000      0.932 1.000 0.000
#> ERR978233     1  0.0000      0.932 1.000 0.000
#> ERR978234     1  0.0000      0.932 1.000 0.000
#> ERR978235     1  0.0000      0.932 1.000 0.000
#> ERR978236     1  0.0000      0.932 1.000 0.000
#> ERR978237     1  0.0000      0.932 1.000 0.000
#> ERR978238     1  0.0000      0.932 1.000 0.000
#> ERR978239     1  0.0000      0.932 1.000 0.000
#> ERR978240     1  0.0000      0.932 1.000 0.000
#> ERR978241     1  0.0376      0.931 0.996 0.004
#> ERR978242     1  0.0376      0.931 0.996 0.004
#> ERR978243     1  0.0376      0.931 0.996 0.004
#> ERR978244     1  0.0376      0.931 0.996 0.004
#> ERR978245     1  0.0376      0.931 0.996 0.004
#> ERR978246     1  0.0376      0.931 0.996 0.004
#> ERR978247     1  0.0376      0.931 0.996 0.004
#> ERR978248     2  0.0000      1.000 0.000 1.000
#> ERR978249     2  0.0000      1.000 0.000 1.000
#> ERR978250     2  0.0000      1.000 0.000 1.000
#> ERR978251     2  0.0000      1.000 0.000 1.000
#> ERR978252     2  0.0000      1.000 0.000 1.000
#> ERR978253     2  0.0000      1.000 0.000 1.000
#> ERR978254     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1 p2 p3
#> ERR978107     2       0          1  0  1  0
#> ERR978108     2       0          1  0  1  0
#> ERR978109     2       0          1  0  1  0
#> ERR978110     2       0          1  0  1  0
#> ERR978111     2       0          1  0  1  0
#> ERR978112     2       0          1  0  1  0
#> ERR978113     2       0          1  0  1  0
#> ERR978114     2       0          1  0  1  0
#> ERR978115     2       0          1  0  1  0
#> ERR978116     2       0          1  0  1  0
#> ERR978117     2       0          1  0  1  0
#> ERR978118     2       0          1  0  1  0
#> ERR978119     2       0          1  0  1  0
#> ERR978120     2       0          1  0  1  0
#> ERR978121     2       0          1  0  1  0
#> ERR978122     2       0          1  0  1  0
#> ERR978123     3       0          1  0  0  1
#> ERR978124     3       0          1  0  0  1
#> ERR978125     3       0          1  0  0  1
#> ERR978126     3       0          1  0  0  1
#> ERR978127     3       0          1  0  0  1
#> ERR978128     3       0          1  0  0  1
#> ERR978129     3       0          1  0  0  1
#> ERR978130     3       0          1  0  0  1
#> ERR978131     3       0          1  0  0  1
#> ERR978132     3       0          1  0  0  1
#> ERR978133     3       0          1  0  0  1
#> ERR978134     3       0          1  0  0  1
#> ERR978135     3       0          1  0  0  1
#> ERR978136     3       0          1  0  0  1
#> ERR978137     3       0          1  0  0  1
#> ERR978138     3       0          1  0  0  1
#> ERR978139     3       0          1  0  0  1
#> ERR978140     3       0          1  0  0  1
#> ERR978141     3       0          1  0  0  1
#> ERR978142     3       0          1  0  0  1
#> ERR978143     3       0          1  0  0  1
#> ERR978144     3       0          1  0  0  1
#> ERR978145     3       0          1  0  0  1
#> ERR978146     3       0          1  0  0  1
#> ERR978147     3       0          1  0  0  1
#> ERR978148     3       0          1  0  0  1
#> ERR978149     3       0          1  0  0  1
#> ERR978150     3       0          1  0  0  1
#> ERR978151     3       0          1  0  0  1
#> ERR978152     3       0          1  0  0  1
#> ERR978153     1       0          1  1  0  0
#> ERR978154     1       0          1  1  0  0
#> ERR978155     1       0          1  1  0  0
#> ERR978156     1       0          1  1  0  0
#> ERR978157     1       0          1  1  0  0
#> ERR978158     1       0          1  1  0  0
#> ERR978159     1       0          1  1  0  0
#> ERR978160     1       0          1  1  0  0
#> ERR978161     1       0          1  1  0  0
#> ERR978162     1       0          1  1  0  0
#> ERR978163     1       0          1  1  0  0
#> ERR978164     1       0          1  1  0  0
#> ERR978165     1       0          1  1  0  0
#> ERR978166     1       0          1  1  0  0
#> ERR978167     1       0          1  1  0  0
#> ERR978168     1       0          1  1  0  0
#> ERR978169     3       0          1  0  0  1
#> ERR978170     3       0          1  0  0  1
#> ERR978171     3       0          1  0  0  1
#> ERR978172     3       0          1  0  0  1
#> ERR978173     3       0          1  0  0  1
#> ERR978174     3       0          1  0  0  1
#> ERR978175     3       0          1  0  0  1
#> ERR978176     3       0          1  0  0  1
#> ERR978177     3       0          1  0  0  1
#> ERR978178     3       0          1  0  0  1
#> ERR978179     3       0          1  0  0  1
#> ERR978180     3       0          1  0  0  1
#> ERR978181     3       0          1  0  0  1
#> ERR978182     3       0          1  0  0  1
#> ERR978183     2       0          1  0  1  0
#> ERR978184     2       0          1  0  1  0
#> ERR978185     2       0          1  0  1  0
#> ERR978186     2       0          1  0  1  0
#> ERR978187     2       0          1  0  1  0
#> ERR978188     2       0          1  0  1  0
#> ERR978189     2       0          1  0  1  0
#> ERR978190     2       0          1  0  1  0
#> ERR978191     2       0          1  0  1  0
#> ERR978192     2       0          1  0  1  0
#> ERR978193     2       0          1  0  1  0
#> ERR978194     2       0          1  0  1  0
#> ERR978195     2       0          1  0  1  0
#> ERR978196     2       0          1  0  1  0
#> ERR978197     2       0          1  0  1  0
#> ERR978198     2       0          1  0  1  0
#> ERR978199     2       0          1  0  1  0
#> ERR978200     2       0          1  0  1  0
#> ERR978201     2       0          1  0  1  0
#> ERR978202     2       0          1  0  1  0
#> ERR978203     2       0          1  0  1  0
#> ERR978204     2       0          1  0  1  0
#> ERR978205     2       0          1  0  1  0
#> ERR978206     2       0          1  0  1  0
#> ERR978207     2       0          1  0  1  0
#> ERR978208     2       0          1  0  1  0
#> ERR978209     2       0          1  0  1  0
#> ERR978210     2       0          1  0  1  0
#> ERR978211     2       0          1  0  1  0
#> ERR978212     2       0          1  0  1  0
#> ERR978213     2       0          1  0  1  0
#> ERR978214     2       0          1  0  1  0
#> ERR978215     2       0          1  0  1  0
#> ERR978216     2       0          1  0  1  0
#> ERR978217     2       0          1  0  1  0
#> ERR978218     2       0          1  0  1  0
#> ERR978219     2       0          1  0  1  0
#> ERR978220     2       0          1  0  1  0
#> ERR978221     2       0          1  0  1  0
#> ERR978222     2       0          1  0  1  0
#> ERR978223     2       0          1  0  1  0
#> ERR978224     2       0          1  0  1  0
#> ERR978225     2       0          1  0  1  0
#> ERR978226     2       0          1  0  1  0
#> ERR978227     1       0          1  1  0  0
#> ERR978228     1       0          1  1  0  0
#> ERR978229     1       0          1  1  0  0
#> ERR978230     1       0          1  1  0  0
#> ERR978231     1       0          1  1  0  0
#> ERR978232     1       0          1  1  0  0
#> ERR978233     1       0          1  1  0  0
#> ERR978234     1       0          1  1  0  0
#> ERR978235     1       0          1  1  0  0
#> ERR978236     1       0          1  1  0  0
#> ERR978237     1       0          1  1  0  0
#> ERR978238     1       0          1  1  0  0
#> ERR978239     1       0          1  1  0  0
#> ERR978240     1       0          1  1  0  0
#> ERR978241     3       0          1  0  0  1
#> ERR978242     3       0          1  0  0  1
#> ERR978243     3       0          1  0  0  1
#> ERR978244     3       0          1  0  0  1
#> ERR978245     3       0          1  0  0  1
#> ERR978246     3       0          1  0  0  1
#> ERR978247     3       0          1  0  0  1
#> ERR978248     2       0          1  0  1  0
#> ERR978249     2       0          1  0  1  0
#> ERR978250     2       0          1  0  1  0
#> ERR978251     2       0          1  0  1  0
#> ERR978252     2       0          1  0  1  0
#> ERR978253     2       0          1  0  1  0
#> ERR978254     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978108     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978109     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978110     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978111     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978112     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978113     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978114     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978115     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978116     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978117     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978118     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978119     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978120     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978121     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978122     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978123     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978124     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978125     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978126     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978127     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978128     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978129     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978130     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978131     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978132     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978133     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978134     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978135     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978136     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978137     3  0.1022      1.000  0 0.000 0.968 0.032
#> ERR978138     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978139     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978140     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978141     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978142     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978143     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978144     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978145     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978146     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978147     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978148     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978149     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978150     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978151     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978152     4  0.3649      0.839  0 0.000 0.204 0.796
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978170     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978171     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978172     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978173     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978174     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978175     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978176     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978177     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978178     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978179     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978180     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978181     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978182     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978183     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978184     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978185     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978186     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978187     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978188     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978189     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978190     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978191     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978192     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978193     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978194     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978195     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978196     2  0.0000      0.984  0 1.000 0.000 0.000
#> ERR978197     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978198     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978199     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978200     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978201     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978202     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978203     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978204     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978205     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978206     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978207     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978208     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978209     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978210     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978211     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978212     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978213     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978214     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978215     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978216     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978217     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978218     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978219     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978220     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978221     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978222     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978223     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978224     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978225     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978226     2  0.0921      0.983  0 0.972 0.028 0.000
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978241     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978242     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978243     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978244     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978245     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978246     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978247     4  0.0000      0.899  0 0.000 0.000 1.000
#> ERR978248     2  0.1398      0.954  0 0.956 0.004 0.040
#> ERR978249     2  0.1398      0.954  0 0.956 0.004 0.040
#> ERR978250     2  0.1398      0.954  0 0.956 0.004 0.040
#> ERR978251     2  0.1398      0.954  0 0.956 0.004 0.040
#> ERR978252     2  0.1398      0.954  0 0.956 0.004 0.040
#> ERR978253     2  0.1398      0.954  0 0.956 0.004 0.040
#> ERR978254     2  0.1398      0.954  0 0.956 0.004 0.040

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978123     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978124     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978125     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978126     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978127     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978128     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978129     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978130     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978131     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978132     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978133     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978134     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978135     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978136     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978137     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> ERR978138     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978139     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978140     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978141     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978142     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978143     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978144     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978145     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978146     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978147     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978148     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978149     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978150     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978151     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978152     4  0.5342      0.771  0 0.000 0.172 0.672 0.156
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978170     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978171     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978172     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978173     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978174     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978175     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978176     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978177     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978178     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978179     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978180     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978181     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978182     4  0.0000      0.854  0 0.000 0.000 1.000 0.000
#> ERR978183     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      0.865  0 1.000 0.000 0.000 0.000
#> ERR978197     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978198     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978199     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978200     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978201     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978202     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978203     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978204     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978205     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978206     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978207     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978208     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978209     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978210     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978211     5  0.4443      0.968  0 0.472 0.004 0.000 0.524
#> ERR978212     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978213     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978214     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978215     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978216     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978217     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978218     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978219     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978220     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978221     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978222     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978223     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978224     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978225     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978226     5  0.4291      0.968  0 0.464 0.000 0.000 0.536
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0609      0.847  0 0.000 0.000 0.980 0.020
#> ERR978242     4  0.0609      0.847  0 0.000 0.000 0.980 0.020
#> ERR978243     4  0.0609      0.847  0 0.000 0.000 0.980 0.020
#> ERR978244     4  0.0609      0.847  0 0.000 0.000 0.980 0.020
#> ERR978245     4  0.0609      0.847  0 0.000 0.000 0.980 0.020
#> ERR978246     4  0.0609      0.847  0 0.000 0.000 0.980 0.020
#> ERR978247     4  0.0609      0.847  0 0.000 0.000 0.980 0.020
#> ERR978248     2  0.4856      0.489  0 0.584 0.000 0.028 0.388
#> ERR978249     2  0.4856      0.489  0 0.584 0.000 0.028 0.388
#> ERR978250     2  0.4856      0.489  0 0.584 0.000 0.028 0.388
#> ERR978251     2  0.4856      0.489  0 0.584 0.000 0.028 0.388
#> ERR978252     2  0.4856      0.489  0 0.584 0.000 0.028 0.388
#> ERR978253     2  0.4856      0.489  0 0.584 0.000 0.028 0.388
#> ERR978254     2  0.4856      0.489  0 0.584 0.000 0.028 0.388

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978108     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978109     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978110     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978111     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978112     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978113     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978114     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978115     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978116     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978117     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978118     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978119     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978120     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978121     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978122     2  0.2491      0.997 0.000 0.836 0.000 0.000 0.164 0.000
#> ERR978123     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978124     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978125     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978126     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978127     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978128     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978129     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978130     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> ERR978131     3  0.0146      0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978132     3  0.0146      0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978133     3  0.0146      0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978134     3  0.0146      0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978135     3  0.0146      0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978136     3  0.0146      0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978137     3  0.0146      0.998 0.000 0.004 0.996 0.000 0.000 0.000
#> ERR978138     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978139     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978140     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978141     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978142     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978143     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978144     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978145     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978146     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978147     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978148     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978149     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978150     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978151     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978152     4  0.1814      0.635 0.000 0.000 0.100 0.900 0.000 0.000
#> ERR978153     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      0.998 1.000 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978170     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978171     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978172     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978173     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978174     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978175     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978176     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978177     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978178     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978179     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978180     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978181     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978182     4  0.3810      0.750 0.000 0.000 0.000 0.572 0.000 0.428
#> ERR978183     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978184     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978185     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978186     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978187     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978188     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978189     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978190     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978191     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978192     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978193     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978194     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978195     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978196     2  0.2527      0.996 0.000 0.832 0.000 0.000 0.168 0.000
#> ERR978197     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978198     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978199     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978200     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978201     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978202     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978203     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978204     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978205     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978206     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978207     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978208     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978209     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978210     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978211     5  0.1863      0.939 0.000 0.044 0.000 0.000 0.920 0.036
#> ERR978212     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978213     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978214     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978215     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978216     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978217     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978218     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978219     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978220     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978221     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978222     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978223     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978224     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978225     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978226     5  0.0820      0.938 0.000 0.012 0.000 0.000 0.972 0.016
#> ERR978227     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978228     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978229     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978230     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978231     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978232     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978233     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978234     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978235     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978236     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978237     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978238     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978239     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978240     1  0.0146      0.998 0.996 0.000 0.000 0.000 0.000 0.004
#> ERR978241     4  0.3847      0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978242     4  0.3847      0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978243     4  0.3847      0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978244     4  0.3847      0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978245     4  0.3847      0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978246     4  0.3847      0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978247     4  0.3847      0.737 0.000 0.000 0.000 0.544 0.000 0.456
#> ERR978248     6  0.5227      1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978249     6  0.5227      1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978250     6  0.5227      1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978251     6  0.5227      1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978252     6  0.5227      1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978253     6  0.5227      1.000 0.000 0.368 0.000 0.004 0.088 0.540
#> ERR978254     6  0.5227      1.000 0.000 0.368 0.000 0.004 0.088 0.540

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 0.835           0.842       0.941         0.9643 0.681   0.527
#> 4 4 0.876           0.893       0.956         0.1018 0.852   0.629
#> 5 5 1.000           0.983       0.993         0.1177 0.854   0.551
#> 6 6 1.000           0.989       0.994         0.0403 0.970   0.856

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette p1    p2    p3
#> ERR978107     2  0.0000    0.89410  0 1.000 0.000
#> ERR978108     2  0.0000    0.89410  0 1.000 0.000
#> ERR978109     2  0.0000    0.89410  0 1.000 0.000
#> ERR978110     2  0.0000    0.89410  0 1.000 0.000
#> ERR978111     2  0.0000    0.89410  0 1.000 0.000
#> ERR978112     2  0.0000    0.89410  0 1.000 0.000
#> ERR978113     2  0.0000    0.89410  0 1.000 0.000
#> ERR978114     2  0.0000    0.89410  0 1.000 0.000
#> ERR978115     2  0.0000    0.89410  0 1.000 0.000
#> ERR978116     2  0.0000    0.89410  0 1.000 0.000
#> ERR978117     2  0.0000    0.89410  0 1.000 0.000
#> ERR978118     2  0.0000    0.89410  0 1.000 0.000
#> ERR978119     2  0.0000    0.89410  0 1.000 0.000
#> ERR978120     2  0.0000    0.89410  0 1.000 0.000
#> ERR978121     2  0.0000    0.89410  0 1.000 0.000
#> ERR978122     2  0.0000    0.89410  0 1.000 0.000
#> ERR978123     3  0.0000    0.93000  0 0.000 1.000
#> ERR978124     3  0.0000    0.93000  0 0.000 1.000
#> ERR978125     3  0.0000    0.93000  0 0.000 1.000
#> ERR978126     3  0.0000    0.93000  0 0.000 1.000
#> ERR978127     3  0.0000    0.93000  0 0.000 1.000
#> ERR978128     3  0.0000    0.93000  0 0.000 1.000
#> ERR978129     3  0.0000    0.93000  0 0.000 1.000
#> ERR978130     3  0.0000    0.93000  0 0.000 1.000
#> ERR978131     3  0.0000    0.93000  0 0.000 1.000
#> ERR978132     3  0.0000    0.93000  0 0.000 1.000
#> ERR978133     3  0.0000    0.93000  0 0.000 1.000
#> ERR978134     3  0.0000    0.93000  0 0.000 1.000
#> ERR978135     3  0.0000    0.93000  0 0.000 1.000
#> ERR978136     3  0.0000    0.93000  0 0.000 1.000
#> ERR978137     3  0.0000    0.93000  0 0.000 1.000
#> ERR978138     3  0.0000    0.93000  0 0.000 1.000
#> ERR978139     3  0.0000    0.93000  0 0.000 1.000
#> ERR978140     3  0.0000    0.93000  0 0.000 1.000
#> ERR978141     3  0.0000    0.93000  0 0.000 1.000
#> ERR978142     3  0.0000    0.93000  0 0.000 1.000
#> ERR978143     3  0.0000    0.93000  0 0.000 1.000
#> ERR978144     3  0.0000    0.93000  0 0.000 1.000
#> ERR978145     3  0.0000    0.93000  0 0.000 1.000
#> ERR978146     3  0.0000    0.93000  0 0.000 1.000
#> ERR978147     3  0.0000    0.93000  0 0.000 1.000
#> ERR978148     3  0.0000    0.93000  0 0.000 1.000
#> ERR978149     3  0.0000    0.93000  0 0.000 1.000
#> ERR978150     3  0.0000    0.93000  0 0.000 1.000
#> ERR978151     3  0.0000    0.93000  0 0.000 1.000
#> ERR978152     3  0.0000    0.93000  0 0.000 1.000
#> ERR978153     1  0.0000    1.00000  1 0.000 0.000
#> ERR978154     1  0.0000    1.00000  1 0.000 0.000
#> ERR978155     1  0.0000    1.00000  1 0.000 0.000
#> ERR978156     1  0.0000    1.00000  1 0.000 0.000
#> ERR978157     1  0.0000    1.00000  1 0.000 0.000
#> ERR978158     1  0.0000    1.00000  1 0.000 0.000
#> ERR978159     1  0.0000    1.00000  1 0.000 0.000
#> ERR978160     1  0.0000    1.00000  1 0.000 0.000
#> ERR978161     1  0.0000    1.00000  1 0.000 0.000
#> ERR978162     1  0.0000    1.00000  1 0.000 0.000
#> ERR978163     1  0.0000    1.00000  1 0.000 0.000
#> ERR978164     1  0.0000    1.00000  1 0.000 0.000
#> ERR978165     1  0.0000    1.00000  1 0.000 0.000
#> ERR978166     1  0.0000    1.00000  1 0.000 0.000
#> ERR978167     1  0.0000    1.00000  1 0.000 0.000
#> ERR978168     1  0.0000    1.00000  1 0.000 0.000
#> ERR978169     3  0.0000    0.93000  0 0.000 1.000
#> ERR978170     3  0.0000    0.93000  0 0.000 1.000
#> ERR978171     3  0.0000    0.93000  0 0.000 1.000
#> ERR978172     3  0.0000    0.93000  0 0.000 1.000
#> ERR978173     3  0.0000    0.93000  0 0.000 1.000
#> ERR978174     3  0.0000    0.93000  0 0.000 1.000
#> ERR978175     3  0.0000    0.93000  0 0.000 1.000
#> ERR978176     3  0.0000    0.93000  0 0.000 1.000
#> ERR978177     3  0.0000    0.93000  0 0.000 1.000
#> ERR978178     3  0.0000    0.93000  0 0.000 1.000
#> ERR978179     3  0.0000    0.93000  0 0.000 1.000
#> ERR978180     3  0.0000    0.93000  0 0.000 1.000
#> ERR978181     3  0.0000    0.93000  0 0.000 1.000
#> ERR978182     3  0.0000    0.93000  0 0.000 1.000
#> ERR978183     2  0.0000    0.89410  0 1.000 0.000
#> ERR978184     2  0.0000    0.89410  0 1.000 0.000
#> ERR978185     2  0.0000    0.89410  0 1.000 0.000
#> ERR978186     2  0.0000    0.89410  0 1.000 0.000
#> ERR978187     2  0.0000    0.89410  0 1.000 0.000
#> ERR978188     2  0.0000    0.89410  0 1.000 0.000
#> ERR978189     2  0.0000    0.89410  0 1.000 0.000
#> ERR978190     2  0.0000    0.89410  0 1.000 0.000
#> ERR978191     2  0.0000    0.89410  0 1.000 0.000
#> ERR978192     2  0.0000    0.89410  0 1.000 0.000
#> ERR978193     2  0.0000    0.89410  0 1.000 0.000
#> ERR978194     2  0.0000    0.89410  0 1.000 0.000
#> ERR978195     2  0.0000    0.89410  0 1.000 0.000
#> ERR978196     2  0.0000    0.89410  0 1.000 0.000
#> ERR978197     2  0.0000    0.89410  0 1.000 0.000
#> ERR978198     2  0.0592    0.88639  0 0.988 0.012
#> ERR978199     2  0.4121    0.74965  0 0.832 0.168
#> ERR978200     2  0.4750    0.69353  0 0.784 0.216
#> ERR978201     2  0.1643    0.86434  0 0.956 0.044
#> ERR978202     2  0.0000    0.89410  0 1.000 0.000
#> ERR978203     2  0.0000    0.89410  0 1.000 0.000
#> ERR978204     2  0.0000    0.89410  0 1.000 0.000
#> ERR978205     2  0.0000    0.89410  0 1.000 0.000
#> ERR978206     2  0.0000    0.89410  0 1.000 0.000
#> ERR978207     2  0.0000    0.89410  0 1.000 0.000
#> ERR978208     2  0.0000    0.89410  0 1.000 0.000
#> ERR978209     2  0.0000    0.89410  0 1.000 0.000
#> ERR978210     2  0.0000    0.89410  0 1.000 0.000
#> ERR978211     2  0.0000    0.89410  0 1.000 0.000
#> ERR978212     2  0.6309    0.06953  0 0.504 0.496
#> ERR978213     3  0.5948    0.39127  0 0.360 0.640
#> ERR978214     3  0.5650    0.50578  0 0.312 0.688
#> ERR978215     3  0.5529    0.53916  0 0.296 0.704
#> ERR978216     3  0.5810    0.45135  0 0.336 0.664
#> ERR978217     3  0.6302   -0.00608  0 0.480 0.520
#> ERR978218     2  0.6308    0.08461  0 0.508 0.492
#> ERR978219     2  0.4555    0.71266  0 0.800 0.200
#> ERR978220     2  0.6140    0.34615  0 0.596 0.404
#> ERR978221     2  0.6308    0.08461  0 0.508 0.492
#> ERR978222     3  0.6299    0.01032  0 0.476 0.524
#> ERR978223     2  0.6308    0.08461  0 0.508 0.492
#> ERR978224     2  0.6192    0.30544  0 0.580 0.420
#> ERR978225     2  0.4702    0.69781  0 0.788 0.212
#> ERR978226     2  0.6008    0.41984  0 0.628 0.372
#> ERR978227     1  0.0000    1.00000  1 0.000 0.000
#> ERR978228     1  0.0000    1.00000  1 0.000 0.000
#> ERR978229     1  0.0000    1.00000  1 0.000 0.000
#> ERR978230     1  0.0000    1.00000  1 0.000 0.000
#> ERR978231     1  0.0000    1.00000  1 0.000 0.000
#> ERR978232     1  0.0000    1.00000  1 0.000 0.000
#> ERR978233     1  0.0000    1.00000  1 0.000 0.000
#> ERR978234     1  0.0000    1.00000  1 0.000 0.000
#> ERR978235     1  0.0000    1.00000  1 0.000 0.000
#> ERR978236     1  0.0000    1.00000  1 0.000 0.000
#> ERR978237     1  0.0000    1.00000  1 0.000 0.000
#> ERR978238     1  0.0000    1.00000  1 0.000 0.000
#> ERR978239     1  0.0000    1.00000  1 0.000 0.000
#> ERR978240     1  0.0000    1.00000  1 0.000 0.000
#> ERR978241     3  0.0000    0.93000  0 0.000 1.000
#> ERR978242     3  0.0000    0.93000  0 0.000 1.000
#> ERR978243     3  0.0000    0.93000  0 0.000 1.000
#> ERR978244     3  0.0000    0.93000  0 0.000 1.000
#> ERR978245     3  0.0000    0.93000  0 0.000 1.000
#> ERR978246     3  0.0000    0.93000  0 0.000 1.000
#> ERR978247     3  0.0000    0.93000  0 0.000 1.000
#> ERR978248     2  0.6299    0.05963  0 0.524 0.476
#> ERR978249     3  0.6295    0.09706  0 0.472 0.528
#> ERR978250     3  0.4235    0.74998  0 0.176 0.824
#> ERR978251     3  0.3038    0.82806  0 0.104 0.896
#> ERR978252     3  0.4974    0.66510  0 0.236 0.764
#> ERR978253     3  0.6302    0.07012  0 0.480 0.520
#> ERR978254     2  0.6280    0.11486  0 0.540 0.460

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3 p4
#> ERR978107     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978108     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978109     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978110     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978111     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978112     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978113     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978114     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978115     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978116     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978117     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978118     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978119     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978120     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978121     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978122     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978123     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978124     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978125     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978126     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978127     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978128     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978129     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978130     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978131     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978132     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978133     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978134     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978135     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978136     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978137     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978138     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978139     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978140     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978141     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978142     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978143     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978144     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978145     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978146     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978147     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978148     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978149     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978150     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978151     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978152     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978153     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978154     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978155     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978156     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978157     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978158     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978159     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978160     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978161     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978162     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978163     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978164     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978165     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978166     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978167     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978168     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978169     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978170     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978171     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978172     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978173     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978174     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978175     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978176     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978177     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978178     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978179     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978180     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978181     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978182     4  0.0000      1.000  0 0.000 0.000  1
#> ERR978183     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978184     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978185     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978186     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978187     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978188     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978189     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978190     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978191     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978192     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978193     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978194     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978195     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978196     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978197     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978198     2  0.2469      0.843  0 0.892 0.108  0
#> ERR978199     2  0.4164      0.611  0 0.736 0.264  0
#> ERR978200     3  0.4989      0.161  0 0.472 0.528  0
#> ERR978201     2  0.3610      0.715  0 0.800 0.200  0
#> ERR978202     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978203     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978204     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978205     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978206     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978207     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978208     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978209     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978210     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978211     2  0.0000      0.965  0 1.000 0.000  0
#> ERR978212     3  0.4072      0.683  0 0.252 0.748  0
#> ERR978213     3  0.3356      0.765  0 0.176 0.824  0
#> ERR978214     3  0.2647      0.808  0 0.120 0.880  0
#> ERR978215     3  0.1474      0.854  0 0.052 0.948  0
#> ERR978216     3  0.3444      0.758  0 0.184 0.816  0
#> ERR978217     3  0.3649      0.741  0 0.204 0.796  0
#> ERR978218     3  0.4103      0.678  0 0.256 0.744  0
#> ERR978219     2  0.4193      0.590  0 0.732 0.268  0
#> ERR978220     3  0.4955      0.291  0 0.444 0.556  0
#> ERR978221     3  0.4382      0.617  0 0.296 0.704  0
#> ERR978222     3  0.3688      0.737  0 0.208 0.792  0
#> ERR978223     3  0.4643      0.530  0 0.344 0.656  0
#> ERR978224     3  0.4955      0.291  0 0.444 0.556  0
#> ERR978225     2  0.4776      0.318  0 0.624 0.376  0
#> ERR978226     3  0.5000      0.105  0 0.500 0.500  0
#> ERR978227     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978228     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978229     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978230     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978231     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978232     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978233     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978234     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978235     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978236     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978237     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978238     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978239     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978240     1  0.0000      1.000  1 0.000 0.000  0
#> ERR978241     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978242     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978243     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978244     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978245     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978246     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978247     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978248     3  0.4855      0.367  0 0.400 0.600  0
#> ERR978249     3  0.3975      0.662  0 0.240 0.760  0
#> ERR978250     3  0.0336      0.881  0 0.008 0.992  0
#> ERR978251     3  0.0000      0.886  0 0.000 1.000  0
#> ERR978252     3  0.0469      0.878  0 0.012 0.988  0
#> ERR978253     3  0.4193      0.626  0 0.268 0.732  0
#> ERR978254     3  0.4866      0.357  0 0.404 0.596  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1 p2    p3 p4    p5
#> ERR978107     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978108     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978109     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978110     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978111     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978112     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978113     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978114     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978115     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978116     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978117     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978118     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978119     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978120     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978121     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978122     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978123     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978124     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978125     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978126     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978127     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978128     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978129     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978130     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978131     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978132     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978133     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978134     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978135     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978136     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978137     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978138     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978139     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978140     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978141     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978142     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978143     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978144     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978145     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978146     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978147     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978148     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978149     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978150     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978151     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978152     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978153     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978154     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978155     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978156     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978157     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978158     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978159     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978160     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978161     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978162     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978163     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978164     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978165     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978166     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978167     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978168     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978169     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978170     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978171     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978172     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978173     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978174     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978175     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978176     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978177     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978178     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978179     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978180     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978181     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978182     4   0.000      1.000  0  0 0.000  1 0.000
#> ERR978183     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978184     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978185     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978186     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978187     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978188     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978189     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978190     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978191     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978192     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978193     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978194     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978195     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978196     2   0.000      1.000  0  1 0.000  0 0.000
#> ERR978197     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978198     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978199     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978200     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978201     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978202     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978203     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978204     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978205     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978206     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978207     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978208     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978209     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978210     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978211     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978212     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978213     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978214     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978215     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978216     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978217     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978218     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978219     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978220     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978221     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978222     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978223     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978224     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978225     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978226     5   0.000      0.963  0  0 0.000  0 1.000
#> ERR978227     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978228     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978229     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978230     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978231     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978232     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978233     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978234     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978235     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978236     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978237     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978238     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978239     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978240     1   0.000      1.000  1  0 0.000  0 0.000
#> ERR978241     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978242     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978243     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978244     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978245     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978246     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978247     3   0.000      1.000  0  0 1.000  0 0.000
#> ERR978248     5   0.120      0.923  0  0 0.048  0 0.952
#> ERR978249     5   0.285      0.797  0  0 0.172  0 0.828
#> ERR978250     5   0.314      0.758  0  0 0.204  0 0.796
#> ERR978251     5   0.366      0.658  0  0 0.276  0 0.724
#> ERR978252     5   0.304      0.773  0  0 0.192  0 0.808
#> ERR978253     5   0.285      0.797  0  0 0.172  0 0.828
#> ERR978254     5   0.112      0.926  0  0 0.044  0 0.956

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2    p3 p4    p5    p6
#> ERR978107     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978108     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978109     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978110     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978111     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978112     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978113     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978114     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978115     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978116     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978117     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978118     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978119     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978120     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978121     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978122     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978123     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978124     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978125     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978126     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978127     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978128     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978129     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978130     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978131     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978132     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978133     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978134     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978135     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978136     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978137     3   0.000      1.000  0  0 1.000  0 0.000 0.000
#> ERR978138     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978139     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978140     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978141     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978142     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978143     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978144     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978145     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978146     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978147     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978148     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978149     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978150     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978151     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978152     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978153     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978154     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978155     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978156     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978157     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978158     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978159     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978160     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978161     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978162     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978163     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978164     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978165     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978166     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978167     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978168     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978169     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978170     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978171     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978172     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978173     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978174     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978175     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978176     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978177     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978178     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978179     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978180     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978181     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978182     4   0.000      1.000  0  0 0.000  1 0.000 0.000
#> ERR978183     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978184     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978185     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978186     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978187     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978188     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978189     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978190     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978191     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978192     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978193     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978194     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978195     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978196     2   0.000      1.000  0  1 0.000  0 0.000 0.000
#> ERR978197     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978198     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978199     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978200     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978201     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978202     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978203     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978204     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978205     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978206     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978207     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978208     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978209     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978210     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978211     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978212     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978213     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978214     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978215     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978216     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978217     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978218     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978219     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978220     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978221     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978222     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978223     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978224     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978225     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978226     5   0.000      0.975  0  0 0.000  0 1.000 0.000
#> ERR978227     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978228     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978229     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978230     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978231     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978232     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978233     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978234     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978235     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978236     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978237     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978238     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978239     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978240     1   0.000      1.000  1  0 0.000  0 0.000 0.000
#> ERR978241     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978242     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978243     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978244     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978245     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978246     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978247     6   0.000      1.000  0  0 0.000  0 0.000 1.000
#> ERR978248     5   0.101      0.946  0  0 0.036  0 0.960 0.004
#> ERR978249     5   0.261      0.871  0  0 0.036  0 0.868 0.096
#> ERR978250     5   0.321      0.813  0  0 0.036  0 0.812 0.152
#> ERR978251     5   0.335      0.793  0  0 0.036  0 0.796 0.168
#> ERR978252     5   0.317      0.817  0  0 0.036  0 0.816 0.148
#> ERR978253     5   0.246      0.883  0  0 0.036  0 0.880 0.084
#> ERR978254     5   0.112      0.944  0  0 0.036  0 0.956 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3261 0.675   0.675
#> 3 3 0.585           0.885       0.870         0.8305 0.585   0.418
#> 4 4 0.765           0.903       0.923         0.1880 0.905   0.731
#> 5 5 0.905           0.960       0.963         0.1247 0.917   0.702
#> 6 6 1.000           1.000       1.000         0.0325 0.982   0.907

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> ERR978107     2       0          1  0  1
#> ERR978108     2       0          1  0  1
#> ERR978109     2       0          1  0  1
#> ERR978110     2       0          1  0  1
#> ERR978111     2       0          1  0  1
#> ERR978112     2       0          1  0  1
#> ERR978113     2       0          1  0  1
#> ERR978114     2       0          1  0  1
#> ERR978115     2       0          1  0  1
#> ERR978116     2       0          1  0  1
#> ERR978117     2       0          1  0  1
#> ERR978118     2       0          1  0  1
#> ERR978119     2       0          1  0  1
#> ERR978120     2       0          1  0  1
#> ERR978121     2       0          1  0  1
#> ERR978122     2       0          1  0  1
#> ERR978123     2       0          1  0  1
#> ERR978124     2       0          1  0  1
#> ERR978125     2       0          1  0  1
#> ERR978126     2       0          1  0  1
#> ERR978127     2       0          1  0  1
#> ERR978128     2       0          1  0  1
#> ERR978129     2       0          1  0  1
#> ERR978130     2       0          1  0  1
#> ERR978131     2       0          1  0  1
#> ERR978132     2       0          1  0  1
#> ERR978133     2       0          1  0  1
#> ERR978134     2       0          1  0  1
#> ERR978135     2       0          1  0  1
#> ERR978136     2       0          1  0  1
#> ERR978137     2       0          1  0  1
#> ERR978138     2       0          1  0  1
#> ERR978139     2       0          1  0  1
#> ERR978140     2       0          1  0  1
#> ERR978141     2       0          1  0  1
#> ERR978142     2       0          1  0  1
#> ERR978143     2       0          1  0  1
#> ERR978144     2       0          1  0  1
#> ERR978145     2       0          1  0  1
#> ERR978146     2       0          1  0  1
#> ERR978147     2       0          1  0  1
#> ERR978148     2       0          1  0  1
#> ERR978149     2       0          1  0  1
#> ERR978150     2       0          1  0  1
#> ERR978151     2       0          1  0  1
#> ERR978152     2       0          1  0  1
#> ERR978153     1       0          1  1  0
#> ERR978154     1       0          1  1  0
#> ERR978155     1       0          1  1  0
#> ERR978156     1       0          1  1  0
#> ERR978157     1       0          1  1  0
#> ERR978158     1       0          1  1  0
#> ERR978159     1       0          1  1  0
#> ERR978160     1       0          1  1  0
#> ERR978161     1       0          1  1  0
#> ERR978162     1       0          1  1  0
#> ERR978163     1       0          1  1  0
#> ERR978164     1       0          1  1  0
#> ERR978165     1       0          1  1  0
#> ERR978166     1       0          1  1  0
#> ERR978167     1       0          1  1  0
#> ERR978168     1       0          1  1  0
#> ERR978169     2       0          1  0  1
#> ERR978170     2       0          1  0  1
#> ERR978171     2       0          1  0  1
#> ERR978172     2       0          1  0  1
#> ERR978173     2       0          1  0  1
#> ERR978174     2       0          1  0  1
#> ERR978175     2       0          1  0  1
#> ERR978176     2       0          1  0  1
#> ERR978177     2       0          1  0  1
#> ERR978178     2       0          1  0  1
#> ERR978179     2       0          1  0  1
#> ERR978180     2       0          1  0  1
#> ERR978181     2       0          1  0  1
#> ERR978182     2       0          1  0  1
#> ERR978183     2       0          1  0  1
#> ERR978184     2       0          1  0  1
#> ERR978185     2       0          1  0  1
#> ERR978186     2       0          1  0  1
#> ERR978187     2       0          1  0  1
#> ERR978188     2       0          1  0  1
#> ERR978189     2       0          1  0  1
#> ERR978190     2       0          1  0  1
#> ERR978191     2       0          1  0  1
#> ERR978192     2       0          1  0  1
#> ERR978193     2       0          1  0  1
#> ERR978194     2       0          1  0  1
#> ERR978195     2       0          1  0  1
#> ERR978196     2       0          1  0  1
#> ERR978197     2       0          1  0  1
#> ERR978198     2       0          1  0  1
#> ERR978199     2       0          1  0  1
#> ERR978200     2       0          1  0  1
#> ERR978201     2       0          1  0  1
#> ERR978202     2       0          1  0  1
#> ERR978203     2       0          1  0  1
#> ERR978204     2       0          1  0  1
#> ERR978205     2       0          1  0  1
#> ERR978206     2       0          1  0  1
#> ERR978207     2       0          1  0  1
#> ERR978208     2       0          1  0  1
#> ERR978209     2       0          1  0  1
#> ERR978210     2       0          1  0  1
#> ERR978211     2       0          1  0  1
#> ERR978212     2       0          1  0  1
#> ERR978213     2       0          1  0  1
#> ERR978214     2       0          1  0  1
#> ERR978215     2       0          1  0  1
#> ERR978216     2       0          1  0  1
#> ERR978217     2       0          1  0  1
#> ERR978218     2       0          1  0  1
#> ERR978219     2       0          1  0  1
#> ERR978220     2       0          1  0  1
#> ERR978221     2       0          1  0  1
#> ERR978222     2       0          1  0  1
#> ERR978223     2       0          1  0  1
#> ERR978224     2       0          1  0  1
#> ERR978225     2       0          1  0  1
#> ERR978226     2       0          1  0  1
#> ERR978227     1       0          1  1  0
#> ERR978228     1       0          1  1  0
#> ERR978229     1       0          1  1  0
#> ERR978230     1       0          1  1  0
#> ERR978231     1       0          1  1  0
#> ERR978232     1       0          1  1  0
#> ERR978233     1       0          1  1  0
#> ERR978234     1       0          1  1  0
#> ERR978235     1       0          1  1  0
#> ERR978236     1       0          1  1  0
#> ERR978237     1       0          1  1  0
#> ERR978238     1       0          1  1  0
#> ERR978239     1       0          1  1  0
#> ERR978240     1       0          1  1  0
#> ERR978241     2       0          1  0  1
#> ERR978242     2       0          1  0  1
#> ERR978243     2       0          1  0  1
#> ERR978244     2       0          1  0  1
#> ERR978245     2       0          1  0  1
#> ERR978246     2       0          1  0  1
#> ERR978247     2       0          1  0  1
#> ERR978248     2       0          1  0  1
#> ERR978249     2       0          1  0  1
#> ERR978250     2       0          1  0  1
#> ERR978251     2       0          1  0  1
#> ERR978252     2       0          1  0  1
#> ERR978253     2       0          1  0  1
#> ERR978254     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette   p1    p2    p3
#> ERR978107     2   0.000      0.888 0.00 1.000 0.000
#> ERR978108     2   0.000      0.888 0.00 1.000 0.000
#> ERR978109     2   0.000      0.888 0.00 1.000 0.000
#> ERR978110     2   0.000      0.888 0.00 1.000 0.000
#> ERR978111     2   0.000      0.888 0.00 1.000 0.000
#> ERR978112     2   0.000      0.888 0.00 1.000 0.000
#> ERR978113     2   0.000      0.888 0.00 1.000 0.000
#> ERR978114     2   0.000      0.888 0.00 1.000 0.000
#> ERR978115     2   0.000      0.888 0.00 1.000 0.000
#> ERR978116     2   0.000      0.888 0.00 1.000 0.000
#> ERR978117     2   0.000      0.888 0.00 1.000 0.000
#> ERR978118     2   0.000      0.888 0.00 1.000 0.000
#> ERR978119     2   0.000      0.888 0.00 1.000 0.000
#> ERR978120     2   0.000      0.888 0.00 1.000 0.000
#> ERR978121     2   0.000      0.888 0.00 1.000 0.000
#> ERR978122     2   0.000      0.888 0.00 1.000 0.000
#> ERR978123     3   0.475      1.000 0.00 0.216 0.784
#> ERR978124     3   0.475      1.000 0.00 0.216 0.784
#> ERR978125     3   0.475      1.000 0.00 0.216 0.784
#> ERR978126     3   0.475      1.000 0.00 0.216 0.784
#> ERR978127     3   0.475      1.000 0.00 0.216 0.784
#> ERR978128     3   0.475      1.000 0.00 0.216 0.784
#> ERR978129     3   0.475      1.000 0.00 0.216 0.784
#> ERR978130     3   0.475      1.000 0.00 0.216 0.784
#> ERR978131     3   0.475      1.000 0.00 0.216 0.784
#> ERR978132     3   0.475      1.000 0.00 0.216 0.784
#> ERR978133     3   0.475      1.000 0.00 0.216 0.784
#> ERR978134     3   0.475      1.000 0.00 0.216 0.784
#> ERR978135     3   0.475      1.000 0.00 0.216 0.784
#> ERR978136     3   0.475      1.000 0.00 0.216 0.784
#> ERR978137     3   0.475      1.000 0.00 0.216 0.784
#> ERR978138     3   0.475      1.000 0.00 0.216 0.784
#> ERR978139     3   0.475      1.000 0.00 0.216 0.784
#> ERR978140     3   0.475      1.000 0.00 0.216 0.784
#> ERR978141     3   0.475      1.000 0.00 0.216 0.784
#> ERR978142     3   0.475      1.000 0.00 0.216 0.784
#> ERR978143     3   0.475      1.000 0.00 0.216 0.784
#> ERR978144     3   0.475      1.000 0.00 0.216 0.784
#> ERR978145     3   0.475      1.000 0.00 0.216 0.784
#> ERR978146     3   0.475      1.000 0.00 0.216 0.784
#> ERR978147     3   0.475      1.000 0.00 0.216 0.784
#> ERR978148     3   0.475      1.000 0.00 0.216 0.784
#> ERR978149     3   0.475      1.000 0.00 0.216 0.784
#> ERR978150     3   0.475      1.000 0.00 0.216 0.784
#> ERR978151     3   0.475      1.000 0.00 0.216 0.784
#> ERR978152     3   0.475      1.000 0.00 0.216 0.784
#> ERR978153     1   0.000      0.861 1.00 0.000 0.000
#> ERR978154     1   0.000      0.861 1.00 0.000 0.000
#> ERR978155     1   0.000      0.861 1.00 0.000 0.000
#> ERR978156     1   0.000      0.861 1.00 0.000 0.000
#> ERR978157     1   0.000      0.861 1.00 0.000 0.000
#> ERR978158     1   0.000      0.861 1.00 0.000 0.000
#> ERR978159     1   0.000      0.861 1.00 0.000 0.000
#> ERR978160     1   0.000      0.861 1.00 0.000 0.000
#> ERR978161     1   0.000      0.861 1.00 0.000 0.000
#> ERR978162     1   0.000      0.861 1.00 0.000 0.000
#> ERR978163     1   0.000      0.861 1.00 0.000 0.000
#> ERR978164     1   0.000      0.861 1.00 0.000 0.000
#> ERR978165     1   0.000      0.861 1.00 0.000 0.000
#> ERR978166     1   0.000      0.861 1.00 0.000 0.000
#> ERR978167     1   0.000      0.861 1.00 0.000 0.000
#> ERR978168     1   0.000      0.861 1.00 0.000 0.000
#> ERR978169     1   0.649      0.644 0.54 0.004 0.456
#> ERR978170     1   0.649      0.644 0.54 0.004 0.456
#> ERR978171     1   0.649      0.644 0.54 0.004 0.456
#> ERR978172     1   0.649      0.644 0.54 0.004 0.456
#> ERR978173     1   0.649      0.644 0.54 0.004 0.456
#> ERR978174     1   0.649      0.644 0.54 0.004 0.456
#> ERR978175     1   0.649      0.644 0.54 0.004 0.456
#> ERR978176     1   0.649      0.644 0.54 0.004 0.456
#> ERR978177     1   0.649      0.644 0.54 0.004 0.456
#> ERR978178     1   0.649      0.644 0.54 0.004 0.456
#> ERR978179     1   0.649      0.644 0.54 0.004 0.456
#> ERR978180     1   0.649      0.644 0.54 0.004 0.456
#> ERR978181     1   0.649      0.644 0.54 0.004 0.456
#> ERR978182     1   0.649      0.644 0.54 0.004 0.456
#> ERR978183     2   0.000      0.888 0.00 1.000 0.000
#> ERR978184     2   0.000      0.888 0.00 1.000 0.000
#> ERR978185     2   0.000      0.888 0.00 1.000 0.000
#> ERR978186     2   0.000      0.888 0.00 1.000 0.000
#> ERR978187     2   0.000      0.888 0.00 1.000 0.000
#> ERR978188     2   0.000      0.888 0.00 1.000 0.000
#> ERR978189     2   0.000      0.888 0.00 1.000 0.000
#> ERR978190     2   0.000      0.888 0.00 1.000 0.000
#> ERR978191     2   0.000      0.888 0.00 1.000 0.000
#> ERR978192     2   0.000      0.888 0.00 1.000 0.000
#> ERR978193     2   0.000      0.888 0.00 1.000 0.000
#> ERR978194     2   0.000      0.888 0.00 1.000 0.000
#> ERR978195     2   0.000      0.888 0.00 1.000 0.000
#> ERR978196     2   0.000      0.888 0.00 1.000 0.000
#> ERR978197     3   0.475      1.000 0.00 0.216 0.784
#> ERR978198     3   0.475      1.000 0.00 0.216 0.784
#> ERR978199     3   0.475      1.000 0.00 0.216 0.784
#> ERR978200     3   0.475      1.000 0.00 0.216 0.784
#> ERR978201     3   0.475      1.000 0.00 0.216 0.784
#> ERR978202     3   0.475      1.000 0.00 0.216 0.784
#> ERR978203     3   0.475      1.000 0.00 0.216 0.784
#> ERR978204     3   0.475      1.000 0.00 0.216 0.784
#> ERR978205     3   0.475      1.000 0.00 0.216 0.784
#> ERR978206     3   0.475      1.000 0.00 0.216 0.784
#> ERR978207     3   0.475      1.000 0.00 0.216 0.784
#> ERR978208     3   0.475      1.000 0.00 0.216 0.784
#> ERR978209     3   0.475      1.000 0.00 0.216 0.784
#> ERR978210     3   0.475      1.000 0.00 0.216 0.784
#> ERR978211     3   0.475      1.000 0.00 0.216 0.784
#> ERR978212     3   0.475      1.000 0.00 0.216 0.784
#> ERR978213     3   0.475      1.000 0.00 0.216 0.784
#> ERR978214     3   0.475      1.000 0.00 0.216 0.784
#> ERR978215     3   0.475      1.000 0.00 0.216 0.784
#> ERR978216     3   0.475      1.000 0.00 0.216 0.784
#> ERR978217     3   0.475      1.000 0.00 0.216 0.784
#> ERR978218     3   0.475      1.000 0.00 0.216 0.784
#> ERR978219     3   0.475      1.000 0.00 0.216 0.784
#> ERR978220     3   0.475      1.000 0.00 0.216 0.784
#> ERR978221     3   0.475      1.000 0.00 0.216 0.784
#> ERR978222     3   0.475      1.000 0.00 0.216 0.784
#> ERR978223     3   0.475      1.000 0.00 0.216 0.784
#> ERR978224     3   0.475      1.000 0.00 0.216 0.784
#> ERR978225     3   0.475      1.000 0.00 0.216 0.784
#> ERR978226     3   0.475      1.000 0.00 0.216 0.784
#> ERR978227     1   0.000      0.861 1.00 0.000 0.000
#> ERR978228     1   0.000      0.861 1.00 0.000 0.000
#> ERR978229     1   0.000      0.861 1.00 0.000 0.000
#> ERR978230     1   0.000      0.861 1.00 0.000 0.000
#> ERR978231     1   0.000      0.861 1.00 0.000 0.000
#> ERR978232     1   0.000      0.861 1.00 0.000 0.000
#> ERR978233     1   0.000      0.861 1.00 0.000 0.000
#> ERR978234     1   0.000      0.861 1.00 0.000 0.000
#> ERR978235     1   0.000      0.861 1.00 0.000 0.000
#> ERR978236     1   0.000      0.861 1.00 0.000 0.000
#> ERR978237     1   0.000      0.861 1.00 0.000 0.000
#> ERR978238     1   0.000      0.861 1.00 0.000 0.000
#> ERR978239     1   0.000      0.861 1.00 0.000 0.000
#> ERR978240     1   0.000      0.861 1.00 0.000 0.000
#> ERR978241     2   0.502      0.672 0.00 0.760 0.240
#> ERR978242     2   0.502      0.672 0.00 0.760 0.240
#> ERR978243     2   0.502      0.672 0.00 0.760 0.240
#> ERR978244     2   0.502      0.672 0.00 0.760 0.240
#> ERR978245     2   0.502      0.672 0.00 0.760 0.240
#> ERR978246     2   0.502      0.672 0.00 0.760 0.240
#> ERR978247     2   0.502      0.672 0.00 0.760 0.240
#> ERR978248     2   0.502      0.672 0.00 0.760 0.240
#> ERR978249     2   0.502      0.672 0.00 0.760 0.240
#> ERR978250     2   0.502      0.672 0.00 0.760 0.240
#> ERR978251     2   0.502      0.672 0.00 0.760 0.240
#> ERR978252     2   0.502      0.672 0.00 0.760 0.240
#> ERR978253     2   0.502      0.672 0.00 0.760 0.240
#> ERR978254     2   0.502      0.672 0.00 0.760 0.240

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978123     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978124     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978125     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978126     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978127     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978128     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978129     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978130     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978131     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978132     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978133     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978134     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978135     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978136     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978137     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978138     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978139     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978140     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978141     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978142     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978143     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978144     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978145     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978146     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978147     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978148     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978149     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978150     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978151     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978152     3   0.156      0.838  0 0.000 0.944 0.056
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978169     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978170     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978171     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978172     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978173     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978174     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978175     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978176     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978177     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978178     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978179     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978180     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978181     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978182     4   0.000      0.843  0 0.000 0.000 1.000
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000
#> ERR978197     3   0.389      0.838  0 0.184 0.804 0.012
#> ERR978198     3   0.381      0.839  0 0.188 0.804 0.008
#> ERR978199     3   0.381      0.839  0 0.188 0.804 0.008
#> ERR978200     3   0.371      0.840  0 0.192 0.804 0.004
#> ERR978201     3   0.381      0.839  0 0.188 0.804 0.008
#> ERR978202     3   0.381      0.839  0 0.188 0.804 0.008
#> ERR978203     3   0.389      0.838  0 0.184 0.804 0.012
#> ERR978204     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978205     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978206     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978207     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978208     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978209     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978210     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978211     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978212     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978213     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978214     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978215     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978216     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978217     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978218     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978219     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978220     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978221     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978222     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978223     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978224     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978225     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978226     3   0.357      0.841  0 0.196 0.804 0.000
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000
#> ERR978241     4   0.511      0.821  0 0.060 0.196 0.744
#> ERR978242     4   0.511      0.821  0 0.060 0.196 0.744
#> ERR978243     4   0.511      0.821  0 0.060 0.196 0.744
#> ERR978244     4   0.511      0.821  0 0.060 0.196 0.744
#> ERR978245     4   0.511      0.821  0 0.060 0.196 0.744
#> ERR978246     4   0.511      0.821  0 0.060 0.196 0.744
#> ERR978247     4   0.511      0.821  0 0.060 0.196 0.744
#> ERR978248     4   0.518      0.820  0 0.064 0.196 0.740
#> ERR978249     4   0.518      0.820  0 0.064 0.196 0.740
#> ERR978250     4   0.518      0.820  0 0.064 0.196 0.740
#> ERR978251     4   0.518      0.820  0 0.064 0.196 0.740
#> ERR978252     4   0.518      0.820  0 0.064 0.196 0.740
#> ERR978253     4   0.518      0.820  0 0.064 0.196 0.740
#> ERR978254     4   0.518      0.820  0 0.064 0.196 0.740

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4 p5
#> ERR978107     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978108     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978109     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978110     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978111     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978112     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978113     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978114     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978115     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978116     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978117     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978118     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978119     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978120     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978121     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978122     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978123     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978124     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978125     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978126     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978127     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978128     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978129     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978130     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978131     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978132     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978133     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978134     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978135     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978136     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978137     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978138     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978139     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978140     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978141     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978142     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978143     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978144     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978145     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978146     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978147     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978148     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978149     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978150     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978151     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978152     3   0.000      1.000  0 0.000 1.000 0.000  0
#> ERR978153     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978154     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978155     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978156     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978157     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978158     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978159     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978160     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978161     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978162     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978163     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978164     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978165     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978166     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978167     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978168     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978169     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978170     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978171     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978172     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978173     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978174     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978175     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978176     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978177     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978178     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978179     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978180     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978181     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978182     4   0.000      0.806  0 0.000 0.000 1.000  0
#> ERR978183     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978184     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978185     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978186     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978187     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978188     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978189     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978190     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978191     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978192     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978193     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978194     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978195     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978196     2   0.000      1.000  0 1.000 0.000 0.000  0
#> ERR978197     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978198     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978199     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978200     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978201     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978202     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978203     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978204     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978205     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978206     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978207     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978208     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978209     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978210     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978211     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978212     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978213     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978214     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978215     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978216     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978217     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978218     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978219     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978220     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978221     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978222     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978223     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978224     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978225     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978226     5   0.000      1.000  0 0.000 0.000 0.000  1
#> ERR978227     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978228     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978229     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978230     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978231     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978232     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978233     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978234     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978235     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978236     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978237     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978238     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978239     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978240     1   0.000      1.000  1 0.000 0.000 0.000  0
#> ERR978241     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978242     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978243     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978244     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978245     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978246     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978247     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978248     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978249     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978250     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978251     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978252     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978253     4   0.582      0.774  0 0.204 0.184 0.612  0
#> ERR978254     4   0.582      0.774  0 0.204 0.184 0.612  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1 p2 p3 p4 p5 p6
#> ERR978107     2       0          1  0  1  0  0  0  0
#> ERR978108     2       0          1  0  1  0  0  0  0
#> ERR978109     2       0          1  0  1  0  0  0  0
#> ERR978110     2       0          1  0  1  0  0  0  0
#> ERR978111     2       0          1  0  1  0  0  0  0
#> ERR978112     2       0          1  0  1  0  0  0  0
#> ERR978113     2       0          1  0  1  0  0  0  0
#> ERR978114     2       0          1  0  1  0  0  0  0
#> ERR978115     2       0          1  0  1  0  0  0  0
#> ERR978116     2       0          1  0  1  0  0  0  0
#> ERR978117     2       0          1  0  1  0  0  0  0
#> ERR978118     2       0          1  0  1  0  0  0  0
#> ERR978119     2       0          1  0  1  0  0  0  0
#> ERR978120     2       0          1  0  1  0  0  0  0
#> ERR978121     2       0          1  0  1  0  0  0  0
#> ERR978122     2       0          1  0  1  0  0  0  0
#> ERR978123     3       0          1  0  0  1  0  0  0
#> ERR978124     3       0          1  0  0  1  0  0  0
#> ERR978125     3       0          1  0  0  1  0  0  0
#> ERR978126     3       0          1  0  0  1  0  0  0
#> ERR978127     3       0          1  0  0  1  0  0  0
#> ERR978128     3       0          1  0  0  1  0  0  0
#> ERR978129     3       0          1  0  0  1  0  0  0
#> ERR978130     3       0          1  0  0  1  0  0  0
#> ERR978131     3       0          1  0  0  1  0  0  0
#> ERR978132     3       0          1  0  0  1  0  0  0
#> ERR978133     3       0          1  0  0  1  0  0  0
#> ERR978134     3       0          1  0  0  1  0  0  0
#> ERR978135     3       0          1  0  0  1  0  0  0
#> ERR978136     3       0          1  0  0  1  0  0  0
#> ERR978137     3       0          1  0  0  1  0  0  0
#> ERR978138     3       0          1  0  0  1  0  0  0
#> ERR978139     3       0          1  0  0  1  0  0  0
#> ERR978140     3       0          1  0  0  1  0  0  0
#> ERR978141     3       0          1  0  0  1  0  0  0
#> ERR978142     3       0          1  0  0  1  0  0  0
#> ERR978143     3       0          1  0  0  1  0  0  0
#> ERR978144     3       0          1  0  0  1  0  0  0
#> ERR978145     3       0          1  0  0  1  0  0  0
#> ERR978146     3       0          1  0  0  1  0  0  0
#> ERR978147     3       0          1  0  0  1  0  0  0
#> ERR978148     3       0          1  0  0  1  0  0  0
#> ERR978149     3       0          1  0  0  1  0  0  0
#> ERR978150     3       0          1  0  0  1  0  0  0
#> ERR978151     3       0          1  0  0  1  0  0  0
#> ERR978152     3       0          1  0  0  1  0  0  0
#> ERR978153     1       0          1  1  0  0  0  0  0
#> ERR978154     1       0          1  1  0  0  0  0  0
#> ERR978155     1       0          1  1  0  0  0  0  0
#> ERR978156     1       0          1  1  0  0  0  0  0
#> ERR978157     1       0          1  1  0  0  0  0  0
#> ERR978158     1       0          1  1  0  0  0  0  0
#> ERR978159     1       0          1  1  0  0  0  0  0
#> ERR978160     1       0          1  1  0  0  0  0  0
#> ERR978161     1       0          1  1  0  0  0  0  0
#> ERR978162     1       0          1  1  0  0  0  0  0
#> ERR978163     1       0          1  1  0  0  0  0  0
#> ERR978164     1       0          1  1  0  0  0  0  0
#> ERR978165     1       0          1  1  0  0  0  0  0
#> ERR978166     1       0          1  1  0  0  0  0  0
#> ERR978167     1       0          1  1  0  0  0  0  0
#> ERR978168     1       0          1  1  0  0  0  0  0
#> ERR978169     4       0          1  0  0  0  1  0  0
#> ERR978170     4       0          1  0  0  0  1  0  0
#> ERR978171     4       0          1  0  0  0  1  0  0
#> ERR978172     4       0          1  0  0  0  1  0  0
#> ERR978173     4       0          1  0  0  0  1  0  0
#> ERR978174     4       0          1  0  0  0  1  0  0
#> ERR978175     4       0          1  0  0  0  1  0  0
#> ERR978176     4       0          1  0  0  0  1  0  0
#> ERR978177     4       0          1  0  0  0  1  0  0
#> ERR978178     4       0          1  0  0  0  1  0  0
#> ERR978179     4       0          1  0  0  0  1  0  0
#> ERR978180     4       0          1  0  0  0  1  0  0
#> ERR978181     4       0          1  0  0  0  1  0  0
#> ERR978182     4       0          1  0  0  0  1  0  0
#> ERR978183     2       0          1  0  1  0  0  0  0
#> ERR978184     2       0          1  0  1  0  0  0  0
#> ERR978185     2       0          1  0  1  0  0  0  0
#> ERR978186     2       0          1  0  1  0  0  0  0
#> ERR978187     2       0          1  0  1  0  0  0  0
#> ERR978188     2       0          1  0  1  0  0  0  0
#> ERR978189     2       0          1  0  1  0  0  0  0
#> ERR978190     2       0          1  0  1  0  0  0  0
#> ERR978191     2       0          1  0  1  0  0  0  0
#> ERR978192     2       0          1  0  1  0  0  0  0
#> ERR978193     2       0          1  0  1  0  0  0  0
#> ERR978194     2       0          1  0  1  0  0  0  0
#> ERR978195     2       0          1  0  1  0  0  0  0
#> ERR978196     2       0          1  0  1  0  0  0  0
#> ERR978197     5       0          1  0  0  0  0  1  0
#> ERR978198     5       0          1  0  0  0  0  1  0
#> ERR978199     5       0          1  0  0  0  0  1  0
#> ERR978200     5       0          1  0  0  0  0  1  0
#> ERR978201     5       0          1  0  0  0  0  1  0
#> ERR978202     5       0          1  0  0  0  0  1  0
#> ERR978203     5       0          1  0  0  0  0  1  0
#> ERR978204     5       0          1  0  0  0  0  1  0
#> ERR978205     5       0          1  0  0  0  0  1  0
#> ERR978206     5       0          1  0  0  0  0  1  0
#> ERR978207     5       0          1  0  0  0  0  1  0
#> ERR978208     5       0          1  0  0  0  0  1  0
#> ERR978209     5       0          1  0  0  0  0  1  0
#> ERR978210     5       0          1  0  0  0  0  1  0
#> ERR978211     5       0          1  0  0  0  0  1  0
#> ERR978212     5       0          1  0  0  0  0  1  0
#> ERR978213     5       0          1  0  0  0  0  1  0
#> ERR978214     5       0          1  0  0  0  0  1  0
#> ERR978215     5       0          1  0  0  0  0  1  0
#> ERR978216     5       0          1  0  0  0  0  1  0
#> ERR978217     5       0          1  0  0  0  0  1  0
#> ERR978218     5       0          1  0  0  0  0  1  0
#> ERR978219     5       0          1  0  0  0  0  1  0
#> ERR978220     5       0          1  0  0  0  0  1  0
#> ERR978221     5       0          1  0  0  0  0  1  0
#> ERR978222     5       0          1  0  0  0  0  1  0
#> ERR978223     5       0          1  0  0  0  0  1  0
#> ERR978224     5       0          1  0  0  0  0  1  0
#> ERR978225     5       0          1  0  0  0  0  1  0
#> ERR978226     5       0          1  0  0  0  0  1  0
#> ERR978227     1       0          1  1  0  0  0  0  0
#> ERR978228     1       0          1  1  0  0  0  0  0
#> ERR978229     1       0          1  1  0  0  0  0  0
#> ERR978230     1       0          1  1  0  0  0  0  0
#> ERR978231     1       0          1  1  0  0  0  0  0
#> ERR978232     1       0          1  1  0  0  0  0  0
#> ERR978233     1       0          1  1  0  0  0  0  0
#> ERR978234     1       0          1  1  0  0  0  0  0
#> ERR978235     1       0          1  1  0  0  0  0  0
#> ERR978236     1       0          1  1  0  0  0  0  0
#> ERR978237     1       0          1  1  0  0  0  0  0
#> ERR978238     1       0          1  1  0  0  0  0  0
#> ERR978239     1       0          1  1  0  0  0  0  0
#> ERR978240     1       0          1  1  0  0  0  0  0
#> ERR978241     6       0          1  0  0  0  0  0  1
#> ERR978242     6       0          1  0  0  0  0  0  1
#> ERR978243     6       0          1  0  0  0  0  0  1
#> ERR978244     6       0          1  0  0  0  0  0  1
#> ERR978245     6       0          1  0  0  0  0  0  1
#> ERR978246     6       0          1  0  0  0  0  0  1
#> ERR978247     6       0          1  0  0  0  0  0  1
#> ERR978248     6       0          1  0  0  0  0  0  1
#> ERR978249     6       0          1  0  0  0  0  0  1
#> ERR978250     6       0          1  0  0  0  0  0  1
#> ERR978251     6       0          1  0  0  0  0  0  1
#> ERR978252     6       0          1  0  0  0  0  0  1
#> ERR978253     6       0          1  0  0  0  0  0  1
#> ERR978254     6       0          1  0  0  0  0  0  1

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14049 rows and 148 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.3263 0.675   0.675
#> 3 3 1.000           0.965       0.981         0.8695 0.710   0.570
#> 4 4 0.865           0.825       0.929         0.1765 0.796   0.526
#> 5 5 0.872           0.886       0.928         0.0802 0.866   0.573
#> 6 6 0.876           0.788       0.868         0.0510 0.944   0.757

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> ERR978107     2  0.0000      1.000 0.000 1.000
#> ERR978108     2  0.0000      1.000 0.000 1.000
#> ERR978109     2  0.0000      1.000 0.000 1.000
#> ERR978110     2  0.0000      1.000 0.000 1.000
#> ERR978111     2  0.0000      1.000 0.000 1.000
#> ERR978112     2  0.0000      1.000 0.000 1.000
#> ERR978113     2  0.0000      1.000 0.000 1.000
#> ERR978114     2  0.0000      1.000 0.000 1.000
#> ERR978115     2  0.0000      1.000 0.000 1.000
#> ERR978116     2  0.0000      1.000 0.000 1.000
#> ERR978117     2  0.0000      1.000 0.000 1.000
#> ERR978118     2  0.0000      1.000 0.000 1.000
#> ERR978119     2  0.0000      1.000 0.000 1.000
#> ERR978120     2  0.0000      1.000 0.000 1.000
#> ERR978121     2  0.0000      1.000 0.000 1.000
#> ERR978122     2  0.0000      1.000 0.000 1.000
#> ERR978123     2  0.0000      1.000 0.000 1.000
#> ERR978124     2  0.0000      1.000 0.000 1.000
#> ERR978125     2  0.0000      1.000 0.000 1.000
#> ERR978126     2  0.0000      1.000 0.000 1.000
#> ERR978127     2  0.0000      1.000 0.000 1.000
#> ERR978128     2  0.0000      1.000 0.000 1.000
#> ERR978129     2  0.0000      1.000 0.000 1.000
#> ERR978130     2  0.0000      1.000 0.000 1.000
#> ERR978131     2  0.0000      1.000 0.000 1.000
#> ERR978132     2  0.0000      1.000 0.000 1.000
#> ERR978133     2  0.0000      1.000 0.000 1.000
#> ERR978134     2  0.0000      1.000 0.000 1.000
#> ERR978135     2  0.0000      1.000 0.000 1.000
#> ERR978136     2  0.0000      1.000 0.000 1.000
#> ERR978137     2  0.0000      1.000 0.000 1.000
#> ERR978138     2  0.0000      1.000 0.000 1.000
#> ERR978139     2  0.0000      1.000 0.000 1.000
#> ERR978140     2  0.0000      1.000 0.000 1.000
#> ERR978141     2  0.0000      1.000 0.000 1.000
#> ERR978142     2  0.0000      1.000 0.000 1.000
#> ERR978143     2  0.0000      1.000 0.000 1.000
#> ERR978144     2  0.0000      1.000 0.000 1.000
#> ERR978145     2  0.0000      1.000 0.000 1.000
#> ERR978146     2  0.0000      1.000 0.000 1.000
#> ERR978147     2  0.0000      1.000 0.000 1.000
#> ERR978148     2  0.0000      1.000 0.000 1.000
#> ERR978149     2  0.0000      1.000 0.000 1.000
#> ERR978150     2  0.0000      1.000 0.000 1.000
#> ERR978151     2  0.0000      1.000 0.000 1.000
#> ERR978152     2  0.0000      1.000 0.000 1.000
#> ERR978153     1  0.0000      1.000 1.000 0.000
#> ERR978154     1  0.0000      1.000 1.000 0.000
#> ERR978155     1  0.0000      1.000 1.000 0.000
#> ERR978156     1  0.0000      1.000 1.000 0.000
#> ERR978157     1  0.0000      1.000 1.000 0.000
#> ERR978158     1  0.0000      1.000 1.000 0.000
#> ERR978159     1  0.0000      1.000 1.000 0.000
#> ERR978160     1  0.0000      1.000 1.000 0.000
#> ERR978161     1  0.0000      1.000 1.000 0.000
#> ERR978162     1  0.0000      1.000 1.000 0.000
#> ERR978163     1  0.0000      1.000 1.000 0.000
#> ERR978164     1  0.0000      1.000 1.000 0.000
#> ERR978165     1  0.0000      1.000 1.000 0.000
#> ERR978166     1  0.0000      1.000 1.000 0.000
#> ERR978167     1  0.0000      1.000 1.000 0.000
#> ERR978168     1  0.0000      1.000 1.000 0.000
#> ERR978169     2  0.0376      0.996 0.004 0.996
#> ERR978170     2  0.0672      0.992 0.008 0.992
#> ERR978171     2  0.0672      0.992 0.008 0.992
#> ERR978172     2  0.0672      0.992 0.008 0.992
#> ERR978173     2  0.0376      0.996 0.004 0.996
#> ERR978174     2  0.0000      1.000 0.000 1.000
#> ERR978175     2  0.0000      1.000 0.000 1.000
#> ERR978176     2  0.0000      1.000 0.000 1.000
#> ERR978177     2  0.0000      1.000 0.000 1.000
#> ERR978178     2  0.0000      1.000 0.000 1.000
#> ERR978179     2  0.0000      1.000 0.000 1.000
#> ERR978180     2  0.0000      1.000 0.000 1.000
#> ERR978181     2  0.0000      1.000 0.000 1.000
#> ERR978182     2  0.0000      1.000 0.000 1.000
#> ERR978183     2  0.0000      1.000 0.000 1.000
#> ERR978184     2  0.0000      1.000 0.000 1.000
#> ERR978185     2  0.0000      1.000 0.000 1.000
#> ERR978186     2  0.0000      1.000 0.000 1.000
#> ERR978187     2  0.0000      1.000 0.000 1.000
#> ERR978188     2  0.0000      1.000 0.000 1.000
#> ERR978189     2  0.0000      1.000 0.000 1.000
#> ERR978190     2  0.0000      1.000 0.000 1.000
#> ERR978191     2  0.0000      1.000 0.000 1.000
#> ERR978192     2  0.0000      1.000 0.000 1.000
#> ERR978193     2  0.0000      1.000 0.000 1.000
#> ERR978194     2  0.0000      1.000 0.000 1.000
#> ERR978195     2  0.0000      1.000 0.000 1.000
#> ERR978196     2  0.0000      1.000 0.000 1.000
#> ERR978197     2  0.0000      1.000 0.000 1.000
#> ERR978198     2  0.0000      1.000 0.000 1.000
#> ERR978199     2  0.0000      1.000 0.000 1.000
#> ERR978200     2  0.0000      1.000 0.000 1.000
#> ERR978201     2  0.0000      1.000 0.000 1.000
#> ERR978202     2  0.0000      1.000 0.000 1.000
#> ERR978203     2  0.0000      1.000 0.000 1.000
#> ERR978204     2  0.0000      1.000 0.000 1.000
#> ERR978205     2  0.0000      1.000 0.000 1.000
#> ERR978206     2  0.0000      1.000 0.000 1.000
#> ERR978207     2  0.0000      1.000 0.000 1.000
#> ERR978208     2  0.0000      1.000 0.000 1.000
#> ERR978209     2  0.0000      1.000 0.000 1.000
#> ERR978210     2  0.0000      1.000 0.000 1.000
#> ERR978211     2  0.0000      1.000 0.000 1.000
#> ERR978212     2  0.0000      1.000 0.000 1.000
#> ERR978213     2  0.0000      1.000 0.000 1.000
#> ERR978214     2  0.0000      1.000 0.000 1.000
#> ERR978215     2  0.0000      1.000 0.000 1.000
#> ERR978216     2  0.0000      1.000 0.000 1.000
#> ERR978217     2  0.0000      1.000 0.000 1.000
#> ERR978218     2  0.0000      1.000 0.000 1.000
#> ERR978219     2  0.0000      1.000 0.000 1.000
#> ERR978220     2  0.0000      1.000 0.000 1.000
#> ERR978221     2  0.0000      1.000 0.000 1.000
#> ERR978222     2  0.0000      1.000 0.000 1.000
#> ERR978223     2  0.0000      1.000 0.000 1.000
#> ERR978224     2  0.0000      1.000 0.000 1.000
#> ERR978225     2  0.0000      1.000 0.000 1.000
#> ERR978226     2  0.0000      1.000 0.000 1.000
#> ERR978227     1  0.0000      1.000 1.000 0.000
#> ERR978228     1  0.0000      1.000 1.000 0.000
#> ERR978229     1  0.0000      1.000 1.000 0.000
#> ERR978230     1  0.0000      1.000 1.000 0.000
#> ERR978231     1  0.0000      1.000 1.000 0.000
#> ERR978232     1  0.0000      1.000 1.000 0.000
#> ERR978233     1  0.0000      1.000 1.000 0.000
#> ERR978234     1  0.0000      1.000 1.000 0.000
#> ERR978235     1  0.0000      1.000 1.000 0.000
#> ERR978236     1  0.0000      1.000 1.000 0.000
#> ERR978237     1  0.0000      1.000 1.000 0.000
#> ERR978238     1  0.0000      1.000 1.000 0.000
#> ERR978239     1  0.0000      1.000 1.000 0.000
#> ERR978240     1  0.0000      1.000 1.000 0.000
#> ERR978241     2  0.0000      1.000 0.000 1.000
#> ERR978242     2  0.0000      1.000 0.000 1.000
#> ERR978243     2  0.0000      1.000 0.000 1.000
#> ERR978244     2  0.0000      1.000 0.000 1.000
#> ERR978245     2  0.0000      1.000 0.000 1.000
#> ERR978246     2  0.0000      1.000 0.000 1.000
#> ERR978247     2  0.0000      1.000 0.000 1.000
#> ERR978248     2  0.0000      1.000 0.000 1.000
#> ERR978249     2  0.0000      1.000 0.000 1.000
#> ERR978250     2  0.0000      1.000 0.000 1.000
#> ERR978251     2  0.0000      1.000 0.000 1.000
#> ERR978252     2  0.0000      1.000 0.000 1.000
#> ERR978253     2  0.0000      1.000 0.000 1.000
#> ERR978254     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> ERR978107     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978108     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978109     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978110     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978111     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978112     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978113     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978114     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978115     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978116     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978117     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978118     2  0.0237      0.986 0.000 0.996 0.004
#> ERR978119     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978120     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978121     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978122     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978123     2  0.4178      0.779 0.000 0.828 0.172
#> ERR978124     3  0.3752      0.836 0.000 0.144 0.856
#> ERR978125     3  0.1643      0.944 0.000 0.044 0.956
#> ERR978126     3  0.1031      0.958 0.000 0.024 0.976
#> ERR978127     3  0.1289      0.953 0.000 0.032 0.968
#> ERR978128     3  0.3412      0.860 0.000 0.124 0.876
#> ERR978129     2  0.6008      0.361 0.000 0.628 0.372
#> ERR978130     2  0.2878      0.884 0.000 0.904 0.096
#> ERR978131     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978132     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978133     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978134     2  0.0892      0.978 0.000 0.980 0.020
#> ERR978135     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978136     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978137     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978138     3  0.5859      0.528 0.000 0.344 0.656
#> ERR978139     3  0.1860      0.936 0.000 0.052 0.948
#> ERR978140     3  0.1031      0.958 0.000 0.024 0.976
#> ERR978141     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978142     3  0.1031      0.958 0.000 0.024 0.976
#> ERR978143     3  0.1289      0.953 0.000 0.032 0.968
#> ERR978144     3  0.3482      0.856 0.000 0.128 0.872
#> ERR978145     3  0.6192      0.339 0.000 0.420 0.580
#> ERR978146     3  0.1163      0.956 0.000 0.028 0.972
#> ERR978147     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978148     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978149     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978150     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978151     3  0.1031      0.958 0.000 0.024 0.976
#> ERR978152     3  0.1643      0.944 0.000 0.044 0.956
#> ERR978153     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978154     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978155     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978156     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978157     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978158     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978159     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978160     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978161     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978162     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978163     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978164     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978165     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978166     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978167     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978168     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978169     3  0.1015      0.954 0.008 0.012 0.980
#> ERR978170     3  0.1015      0.954 0.008 0.012 0.980
#> ERR978171     3  0.1015      0.954 0.008 0.012 0.980
#> ERR978172     3  0.1015      0.954 0.008 0.012 0.980
#> ERR978173     3  0.1015      0.954 0.008 0.012 0.980
#> ERR978174     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978175     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978176     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978177     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978178     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978179     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978180     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978181     3  0.0983      0.958 0.004 0.016 0.980
#> ERR978182     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978183     2  0.0424      0.984 0.000 0.992 0.008
#> ERR978184     2  0.0237      0.986 0.000 0.996 0.004
#> ERR978185     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978186     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978187     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978188     2  0.0424      0.984 0.000 0.992 0.008
#> ERR978189     2  0.0424      0.984 0.000 0.992 0.008
#> ERR978190     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978191     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978192     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978193     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978194     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978195     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978196     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978197     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978198     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978199     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978200     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978201     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978202     2  0.0424      0.984 0.000 0.992 0.008
#> ERR978203     2  0.0592      0.981 0.000 0.988 0.012
#> ERR978204     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978205     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978206     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978207     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978208     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978209     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978210     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978211     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978212     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978213     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978214     2  0.0237      0.986 0.000 0.996 0.004
#> ERR978215     2  0.0237      0.986 0.000 0.996 0.004
#> ERR978216     2  0.0237      0.986 0.000 0.996 0.004
#> ERR978217     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978218     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978219     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978220     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978221     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978222     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978223     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978224     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978225     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978226     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978227     1  0.0237      0.997 0.996 0.000 0.004
#> ERR978228     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978229     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978230     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978231     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978232     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978233     1  0.0237      0.997 0.996 0.000 0.004
#> ERR978234     1  0.0424      0.994 0.992 0.000 0.008
#> ERR978235     1  0.0237      0.997 0.996 0.000 0.004
#> ERR978236     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978237     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978238     1  0.0000      0.999 1.000 0.000 0.000
#> ERR978239     1  0.0237      0.997 0.996 0.000 0.004
#> ERR978240     1  0.0424      0.994 0.992 0.000 0.008
#> ERR978241     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978242     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978243     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978244     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978245     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978246     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978247     3  0.0892      0.959 0.000 0.020 0.980
#> ERR978248     2  0.0424      0.984 0.000 0.992 0.008
#> ERR978249     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978250     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978251     2  0.0237      0.986 0.000 0.996 0.004
#> ERR978252     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978253     2  0.0000      0.989 0.000 1.000 0.000
#> ERR978254     2  0.0592      0.981 0.000 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1    p2    p3    p4
#> ERR978107     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978108     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978109     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978110     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978111     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978112     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978113     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978114     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978115     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978116     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978117     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978118     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978119     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978120     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978121     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978122     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978123     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978124     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978125     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978126     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978127     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978128     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978129     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978130     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978131     3  0.0188      0.889  0 0.004 0.996 0.000
#> ERR978132     3  0.0188      0.889  0 0.004 0.996 0.000
#> ERR978133     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978134     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978135     3  0.0000      0.889  0 0.000 1.000 0.000
#> ERR978136     3  0.0188      0.889  0 0.004 0.996 0.000
#> ERR978137     3  0.0188      0.889  0 0.004 0.996 0.000
#> ERR978138     3  0.0376      0.890  0 0.004 0.992 0.004
#> ERR978139     3  0.0592      0.887  0 0.000 0.984 0.016
#> ERR978140     3  0.1211      0.877  0 0.000 0.960 0.040
#> ERR978141     3  0.2216      0.845  0 0.000 0.908 0.092
#> ERR978142     3  0.1389      0.873  0 0.000 0.952 0.048
#> ERR978143     3  0.1389      0.873  0 0.000 0.952 0.048
#> ERR978144     3  0.0469      0.888  0 0.000 0.988 0.012
#> ERR978145     3  0.0376      0.890  0 0.004 0.992 0.004
#> ERR978146     3  0.0188      0.889  0 0.000 0.996 0.004
#> ERR978147     3  0.0469      0.888  0 0.000 0.988 0.012
#> ERR978148     3  0.0592      0.887  0 0.000 0.984 0.016
#> ERR978149     3  0.0592      0.887  0 0.000 0.984 0.016
#> ERR978150     3  0.0592      0.887  0 0.000 0.984 0.016
#> ERR978151     3  0.0188      0.889  0 0.000 0.996 0.004
#> ERR978152     3  0.0188      0.889  0 0.000 0.996 0.004
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978169     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978170     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978171     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978172     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978173     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978174     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978175     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978176     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978177     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978178     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978179     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978180     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978181     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978182     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978183     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978184     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978185     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978186     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978187     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978188     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978189     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978190     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978191     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978192     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978193     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978194     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978195     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978196     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978197     3  0.2589      0.817  0 0.116 0.884 0.000
#> ERR978198     3  0.2149      0.843  0 0.088 0.912 0.000
#> ERR978199     3  0.2011      0.849  0 0.080 0.920 0.000
#> ERR978200     3  0.2081      0.847  0 0.084 0.916 0.000
#> ERR978201     3  0.2081      0.847  0 0.084 0.916 0.000
#> ERR978202     3  0.2216      0.840  0 0.092 0.908 0.000
#> ERR978203     3  0.2704      0.809  0 0.124 0.876 0.000
#> ERR978204     3  0.4855      0.306  0 0.400 0.600 0.000
#> ERR978205     3  0.4746      0.399  0 0.368 0.632 0.000
#> ERR978206     3  0.4713      0.420  0 0.360 0.640 0.000
#> ERR978207     3  0.4697      0.429  0 0.356 0.644 0.000
#> ERR978208     3  0.4585      0.483  0 0.332 0.668 0.000
#> ERR978209     3  0.4679      0.439  0 0.352 0.648 0.000
#> ERR978210     3  0.4804      0.353  0 0.384 0.616 0.000
#> ERR978211     3  0.4830      0.332  0 0.392 0.608 0.000
#> ERR978212     2  0.4967      0.245  0 0.548 0.452 0.000
#> ERR978213     2  0.4981      0.206  0 0.536 0.464 0.000
#> ERR978214     2  0.4933      0.301  0 0.568 0.432 0.000
#> ERR978215     2  0.4925      0.311  0 0.572 0.428 0.000
#> ERR978216     2  0.4967      0.245  0 0.548 0.452 0.000
#> ERR978217     2  0.4955      0.269  0 0.556 0.444 0.000
#> ERR978218     2  0.4888      0.347  0 0.588 0.412 0.000
#> ERR978219     2  0.4804      0.401  0 0.616 0.384 0.000
#> ERR978220     2  0.4961      0.258  0 0.552 0.448 0.000
#> ERR978221     2  0.4948      0.280  0 0.560 0.440 0.000
#> ERR978222     2  0.4898      0.339  0 0.584 0.416 0.000
#> ERR978223     2  0.4898      0.339  0 0.584 0.416 0.000
#> ERR978224     2  0.4866      0.363  0 0.596 0.404 0.000
#> ERR978225     2  0.4948      0.280  0 0.560 0.440 0.000
#> ERR978226     2  0.4994      0.146  0 0.520 0.480 0.000
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000
#> ERR978241     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978242     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978243     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978244     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978245     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978246     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978247     4  0.0188      1.000  0 0.000 0.004 0.996
#> ERR978248     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978249     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978250     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978251     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978252     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978253     2  0.0000      0.842  0 1.000 0.000 0.000
#> ERR978254     2  0.0000      0.842  0 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2    p3    p4    p5
#> ERR978107     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978123     3  0.2852      0.995  0 0.000 0.828 0.000 0.172
#> ERR978124     3  0.2852      0.995  0 0.000 0.828 0.000 0.172
#> ERR978125     3  0.2852      0.995  0 0.000 0.828 0.000 0.172
#> ERR978126     3  0.2813      0.992  0 0.000 0.832 0.000 0.168
#> ERR978127     3  0.2813      0.992  0 0.000 0.832 0.000 0.168
#> ERR978128     3  0.2852      0.995  0 0.000 0.828 0.000 0.172
#> ERR978129     3  0.2852      0.995  0 0.000 0.828 0.000 0.172
#> ERR978130     3  0.2813      0.992  0 0.000 0.832 0.000 0.168
#> ERR978131     3  0.2929      0.989  0 0.000 0.820 0.000 0.180
#> ERR978132     3  0.2891      0.995  0 0.000 0.824 0.000 0.176
#> ERR978133     3  0.2891      0.995  0 0.000 0.824 0.000 0.176
#> ERR978134     3  0.2891      0.995  0 0.000 0.824 0.000 0.176
#> ERR978135     3  0.2891      0.995  0 0.000 0.824 0.000 0.176
#> ERR978136     3  0.2891      0.995  0 0.000 0.824 0.000 0.176
#> ERR978137     3  0.2891      0.995  0 0.000 0.824 0.000 0.176
#> ERR978138     5  0.0404      0.776  0 0.000 0.012 0.000 0.988
#> ERR978139     5  0.0162      0.777  0 0.000 0.004 0.000 0.996
#> ERR978140     5  0.0162      0.777  0 0.000 0.004 0.000 0.996
#> ERR978141     5  0.0865      0.772  0 0.000 0.004 0.024 0.972
#> ERR978142     5  0.0451      0.777  0 0.000 0.004 0.008 0.988
#> ERR978143     5  0.0324      0.777  0 0.000 0.004 0.004 0.992
#> ERR978144     5  0.0290      0.777  0 0.000 0.008 0.000 0.992
#> ERR978145     5  0.0404      0.776  0 0.000 0.012 0.000 0.988
#> ERR978146     5  0.3895      0.438  0 0.000 0.320 0.000 0.680
#> ERR978147     5  0.3895      0.439  0 0.000 0.320 0.000 0.680
#> ERR978148     5  0.5028      0.455  0 0.000 0.260 0.072 0.668
#> ERR978149     5  0.5365      0.465  0 0.000 0.204 0.132 0.664
#> ERR978150     5  0.4520      0.467  0 0.000 0.284 0.032 0.684
#> ERR978151     5  0.3913      0.430  0 0.000 0.324 0.000 0.676
#> ERR978152     5  0.4074      0.338  0 0.000 0.364 0.000 0.636
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978170     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978171     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978172     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978173     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978174     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978175     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978176     4  0.0162      0.998  0 0.000 0.004 0.996 0.000
#> ERR978177     4  0.0162      0.998  0 0.000 0.004 0.996 0.000
#> ERR978178     4  0.0162      0.998  0 0.000 0.004 0.996 0.000
#> ERR978179     4  0.0162      0.998  0 0.000 0.004 0.996 0.000
#> ERR978180     4  0.0162      0.998  0 0.000 0.004 0.996 0.000
#> ERR978181     4  0.0162      0.998  0 0.000 0.004 0.996 0.000
#> ERR978182     4  0.0162      0.998  0 0.000 0.004 0.996 0.000
#> ERR978183     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978184     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978185     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978186     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978187     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978188     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978189     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978190     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      0.992  0 1.000 0.000 0.000 0.000
#> ERR978197     5  0.5696      0.308  0 0.096 0.344 0.000 0.560
#> ERR978198     5  0.5165      0.292  0 0.048 0.376 0.000 0.576
#> ERR978199     5  0.5071      0.150  0 0.036 0.424 0.000 0.540
#> ERR978200     5  0.4989      0.182  0 0.032 0.416 0.000 0.552
#> ERR978201     5  0.5195      0.259  0 0.048 0.388 0.000 0.564
#> ERR978202     5  0.5405      0.261  0 0.064 0.380 0.000 0.556
#> ERR978203     5  0.5793      0.280  0 0.104 0.348 0.000 0.548
#> ERR978204     5  0.3656      0.693  0 0.196 0.020 0.000 0.784
#> ERR978205     5  0.3241      0.744  0 0.144 0.024 0.000 0.832
#> ERR978206     5  0.3197      0.748  0 0.140 0.024 0.000 0.836
#> ERR978207     5  0.3197      0.748  0 0.140 0.024 0.000 0.836
#> ERR978208     5  0.3197      0.748  0 0.140 0.024 0.000 0.836
#> ERR978209     5  0.3106      0.753  0 0.132 0.024 0.000 0.844
#> ERR978210     5  0.3409      0.730  0 0.160 0.024 0.000 0.816
#> ERR978211     5  0.3656      0.693  0 0.196 0.020 0.000 0.784
#> ERR978212     5  0.1341      0.796  0 0.056 0.000 0.000 0.944
#> ERR978213     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978214     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978215     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978216     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978217     5  0.1341      0.797  0 0.056 0.000 0.000 0.944
#> ERR978218     5  0.1341      0.797  0 0.056 0.000 0.000 0.944
#> ERR978219     5  0.1410      0.795  0 0.060 0.000 0.000 0.940
#> ERR978220     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978221     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978222     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978223     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978224     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978225     5  0.1341      0.797  0 0.056 0.000 0.000 0.944
#> ERR978226     5  0.1270      0.797  0 0.052 0.000 0.000 0.948
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> ERR978241     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978242     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978243     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978244     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978245     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978246     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978247     4  0.0000      0.999  0 0.000 0.000 1.000 0.000
#> ERR978248     2  0.0963      0.964  0 0.964 0.000 0.000 0.036
#> ERR978249     2  0.0865      0.973  0 0.972 0.000 0.004 0.024
#> ERR978250     2  0.1485      0.955  0 0.948 0.000 0.020 0.032
#> ERR978251     2  0.1753      0.945  0 0.936 0.000 0.032 0.032
#> ERR978252     2  0.1168      0.964  0 0.960 0.000 0.008 0.032
#> ERR978253     2  0.0955      0.969  0 0.968 0.000 0.004 0.028
#> ERR978254     2  0.0703      0.974  0 0.976 0.000 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2    p3    p4    p5    p6
#> ERR978107     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978108     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978109     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978110     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978111     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978112     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978113     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978114     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978115     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978116     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978117     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978118     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978119     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978120     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978121     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978122     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978123     3  0.2480      0.627  0 0.000 0.872 0.000 0.024 0.104
#> ERR978124     3  0.2972      0.619  0 0.000 0.836 0.000 0.036 0.128
#> ERR978125     3  0.3083      0.615  0 0.000 0.828 0.000 0.040 0.132
#> ERR978126     3  0.3149      0.613  0 0.000 0.824 0.000 0.044 0.132
#> ERR978127     3  0.3108      0.614  0 0.000 0.828 0.000 0.044 0.128
#> ERR978128     3  0.2999      0.619  0 0.000 0.836 0.000 0.040 0.124
#> ERR978129     3  0.2889      0.622  0 0.000 0.848 0.000 0.044 0.108
#> ERR978130     3  0.2558      0.627  0 0.000 0.868 0.000 0.028 0.104
#> ERR978131     3  0.1297      0.602  0 0.000 0.948 0.000 0.012 0.040
#> ERR978132     3  0.0993      0.613  0 0.000 0.964 0.000 0.012 0.024
#> ERR978133     3  0.0914      0.619  0 0.000 0.968 0.000 0.016 0.016
#> ERR978134     3  0.0622      0.622  0 0.000 0.980 0.000 0.012 0.008
#> ERR978135     3  0.0725      0.619  0 0.000 0.976 0.000 0.012 0.012
#> ERR978136     3  0.0909      0.616  0 0.000 0.968 0.000 0.012 0.020
#> ERR978137     3  0.1151      0.609  0 0.000 0.956 0.000 0.012 0.032
#> ERR978138     5  0.1124      0.793  0 0.000 0.036 0.000 0.956 0.008
#> ERR978139     5  0.0935      0.791  0 0.000 0.032 0.000 0.964 0.004
#> ERR978140     5  0.1194      0.789  0 0.000 0.032 0.008 0.956 0.004
#> ERR978141     5  0.1332      0.788  0 0.000 0.028 0.012 0.952 0.008
#> ERR978142     5  0.1382      0.788  0 0.000 0.036 0.008 0.948 0.008
#> ERR978143     5  0.1382      0.788  0 0.000 0.036 0.008 0.948 0.008
#> ERR978144     5  0.1010      0.791  0 0.000 0.036 0.000 0.960 0.004
#> ERR978145     5  0.1225      0.793  0 0.000 0.036 0.000 0.952 0.012
#> ERR978146     5  0.3511      0.713  0 0.000 0.124 0.004 0.808 0.064
#> ERR978147     5  0.3835      0.705  0 0.000 0.116 0.016 0.796 0.072
#> ERR978148     5  0.4024      0.695  0 0.000 0.116 0.020 0.784 0.080
#> ERR978149     5  0.4148      0.695  0 0.000 0.104 0.028 0.780 0.088
#> ERR978150     5  0.3737      0.711  0 0.000 0.112 0.016 0.804 0.068
#> ERR978151     5  0.3677      0.707  0 0.000 0.124 0.008 0.800 0.068
#> ERR978152     5  0.3627      0.705  0 0.000 0.128 0.000 0.792 0.080
#> ERR978153     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978154     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978155     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978156     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978157     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978158     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978159     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978160     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978161     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978162     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978163     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978164     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978165     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978166     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978167     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978168     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978169     4  0.0000      0.966  0 0.000 0.000 1.000 0.000 0.000
#> ERR978170     4  0.0000      0.966  0 0.000 0.000 1.000 0.000 0.000
#> ERR978171     4  0.0000      0.966  0 0.000 0.000 1.000 0.000 0.000
#> ERR978172     4  0.0000      0.966  0 0.000 0.000 1.000 0.000 0.000
#> ERR978173     4  0.0000      0.966  0 0.000 0.000 1.000 0.000 0.000
#> ERR978174     4  0.0000      0.966  0 0.000 0.000 1.000 0.000 0.000
#> ERR978175     4  0.0000      0.966  0 0.000 0.000 1.000 0.000 0.000
#> ERR978176     4  0.0725      0.963  0 0.000 0.000 0.976 0.012 0.012
#> ERR978177     4  0.0725      0.963  0 0.000 0.000 0.976 0.012 0.012
#> ERR978178     4  0.0725      0.963  0 0.000 0.000 0.976 0.012 0.012
#> ERR978179     4  0.0725      0.963  0 0.000 0.000 0.976 0.012 0.012
#> ERR978180     4  0.0725      0.963  0 0.000 0.000 0.976 0.012 0.012
#> ERR978181     4  0.0725      0.963  0 0.000 0.000 0.976 0.012 0.012
#> ERR978182     4  0.0725      0.963  0 0.000 0.000 0.976 0.012 0.012
#> ERR978183     2  0.0363      0.913  0 0.988 0.000 0.000 0.000 0.012
#> ERR978184     2  0.0146      0.917  0 0.996 0.000 0.000 0.000 0.004
#> ERR978185     2  0.0146      0.917  0 0.996 0.000 0.000 0.000 0.004
#> ERR978186     2  0.0146      0.917  0 0.996 0.000 0.000 0.000 0.004
#> ERR978187     2  0.0146      0.917  0 0.996 0.000 0.000 0.000 0.004
#> ERR978188     2  0.0363      0.913  0 0.988 0.000 0.000 0.000 0.012
#> ERR978189     2  0.0363      0.913  0 0.988 0.000 0.000 0.000 0.012
#> ERR978190     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978191     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978192     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978193     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978194     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978195     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978196     2  0.0000      0.919  0 1.000 0.000 0.000 0.000 0.000
#> ERR978197     3  0.5615     -0.564  0 0.016 0.496 0.000 0.096 0.392
#> ERR978198     3  0.5330     -0.570  0 0.000 0.496 0.000 0.108 0.396
#> ERR978199     3  0.5260     -0.534  0 0.000 0.504 0.000 0.100 0.396
#> ERR978200     3  0.5290     -0.541  0 0.000 0.504 0.000 0.104 0.392
#> ERR978201     3  0.5325     -0.556  0 0.000 0.500 0.000 0.108 0.392
#> ERR978202     3  0.5453     -0.541  0 0.008 0.500 0.000 0.096 0.396
#> ERR978203     3  0.5550     -0.547  0 0.016 0.496 0.000 0.088 0.400
#> ERR978204     6  0.6510      0.911  0 0.056 0.368 0.000 0.140 0.436
#> ERR978205     6  0.6360      0.943  0 0.032 0.364 0.000 0.168 0.436
#> ERR978206     6  0.6488      0.938  0 0.040 0.360 0.000 0.172 0.428
#> ERR978207     6  0.6381      0.937  0 0.028 0.364 0.000 0.184 0.424
#> ERR978208     6  0.6322      0.933  0 0.024 0.368 0.000 0.184 0.424
#> ERR978209     6  0.6191      0.918  0 0.016 0.376 0.000 0.184 0.424
#> ERR978210     6  0.6508      0.936  0 0.048 0.364 0.000 0.156 0.432
#> ERR978211     6  0.6622      0.882  0 0.072 0.360 0.000 0.132 0.436
#> ERR978212     5  0.3213      0.772  0 0.008 0.004 0.000 0.784 0.204
#> ERR978213     5  0.2913      0.787  0 0.004 0.004 0.000 0.812 0.180
#> ERR978214     5  0.2913      0.787  0 0.004 0.004 0.000 0.812 0.180
#> ERR978215     5  0.2879      0.788  0 0.004 0.004 0.000 0.816 0.176
#> ERR978216     5  0.2913      0.787  0 0.004 0.004 0.000 0.812 0.180
#> ERR978217     5  0.3089      0.782  0 0.008 0.004 0.000 0.800 0.188
#> ERR978218     5  0.3213      0.772  0 0.008 0.004 0.000 0.784 0.204
#> ERR978219     5  0.3463      0.730  0 0.008 0.004 0.000 0.748 0.240
#> ERR978220     5  0.3221      0.757  0 0.004 0.004 0.000 0.772 0.220
#> ERR978221     5  0.3011      0.781  0 0.004 0.004 0.000 0.800 0.192
#> ERR978222     5  0.2979      0.784  0 0.004 0.004 0.000 0.804 0.188
#> ERR978223     5  0.2979      0.784  0 0.004 0.004 0.000 0.804 0.188
#> ERR978224     5  0.3192      0.761  0 0.004 0.004 0.000 0.776 0.216
#> ERR978225     5  0.3437      0.735  0 0.008 0.004 0.000 0.752 0.236
#> ERR978226     5  0.3276      0.746  0 0.004 0.004 0.000 0.764 0.228
#> ERR978227     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978228     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978229     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978230     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978231     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978232     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978233     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978234     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978235     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978236     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978237     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978238     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978239     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978240     1  0.0000      1.000  1 0.000 0.000 0.000 0.000 0.000
#> ERR978241     4  0.2145      0.931  0 0.000 0.000 0.900 0.028 0.072
#> ERR978242     4  0.2009      0.937  0 0.000 0.000 0.908 0.024 0.068
#> ERR978243     4  0.1745      0.945  0 0.000 0.000 0.924 0.020 0.056
#> ERR978244     4  0.1745      0.945  0 0.000 0.000 0.924 0.020 0.056
#> ERR978245     4  0.1867      0.942  0 0.000 0.000 0.916 0.020 0.064
#> ERR978246     4  0.1926      0.939  0 0.000 0.000 0.912 0.020 0.068
#> ERR978247     4  0.2221      0.928  0 0.000 0.000 0.896 0.032 0.072
#> ERR978248     2  0.5052      0.551  0 0.628 0.012 0.012 0.048 0.300
#> ERR978249     2  0.5582      0.541  0 0.608 0.004 0.068 0.044 0.276
#> ERR978250     2  0.6386      0.451  0 0.536 0.004 0.184 0.044 0.232
#> ERR978251     2  0.6438      0.356  0 0.484 0.000 0.264 0.036 0.216
#> ERR978252     2  0.6310      0.463  0 0.544 0.004 0.148 0.048 0.256
#> ERR978253     2  0.5344      0.538  0 0.612 0.004 0.040 0.048 0.296
#> ERR978254     2  0.4884      0.566  0 0.640 0.012 0.008 0.044 0.296

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0