cola Report for recount2:GTEx_liver

Date: 2019-12-25 22:44:30 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 17331   136

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
ATC:kmeans 2 1.000 0.986 0.994 **
ATC:pam 2 1.000 0.972 0.990 **
CV:mclust 2 1.000 0.958 0.980 **
SD:skmeans 3 0.999 0.977 0.989 ** 2
ATC:hclust 2 0.967 0.954 0.979 **
MAD:skmeans 3 0.949 0.926 0.972 * 2
SD:pam 2 0.949 0.946 0.969 *
SD:mclust 3 0.944 0.927 0.971 *
SD:NMF 4 0.944 0.884 0.954 * 2,3
CV:NMF 4 0.936 0.909 0.956 * 2,3
MAD:NMF 4 0.926 0.906 0.961 * 2,3
SD:kmeans 3 0.924 0.904 0.958 *
MAD:kmeans 3 0.918 0.937 0.968 * 2
ATC:skmeans 3 0.913 0.911 0.961 * 2
MAD:mclust 4 0.904 0.840 0.930 *
MAD:pam 2 0.895 0.923 0.968
ATC:mclust 3 0.877 0.883 0.952
CV:kmeans 3 0.864 0.899 0.946
CV:pam 3 0.859 0.922 0.962
CV:hclust 2 0.809 0.969 0.973
CV:skmeans 2 0.779 0.926 0.960
ATC:NMF 2 0.633 0.862 0.937
SD:hclust 4 0.551 0.669 0.823
MAD:hclust 2 0.313 0.701 0.853

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.969           0.947       0.978          0.494 0.503   0.503
#> CV:NMF      2 0.984           0.951       0.980          0.503 0.496   0.496
#> MAD:NMF     2 0.984           0.959       0.983          0.497 0.503   0.503
#> ATC:NMF     2 0.633           0.862       0.937          0.479 0.521   0.521
#> SD:skmeans  2 1.000           0.970       0.987          0.502 0.499   0.499
#> CV:skmeans  2 0.779           0.926       0.960          0.500 0.496   0.496
#> MAD:skmeans 2 0.969           0.946       0.978          0.503 0.498   0.498
#> ATC:skmeans 2 1.000           0.990       0.995          0.481 0.521   0.521
#> SD:mclust   2 0.539           0.929       0.935          0.339 0.688   0.688
#> CV:mclust   2 1.000           0.958       0.980          0.490 0.512   0.512
#> MAD:mclust  2 0.402           0.904       0.905          0.334 0.688   0.688
#> ATC:mclust  2 0.784           0.876       0.948          0.415 0.564   0.564
#> SD:kmeans   2 0.751           0.875       0.945          0.469 0.515   0.515
#> CV:kmeans   2 0.896           0.903       0.960          0.303 0.707   0.707
#> MAD:kmeans  2 0.939           0.934       0.974          0.493 0.507   0.507
#> ATC:kmeans  2 1.000           0.986       0.994          0.369 0.637   0.637
#> SD:pam      2 0.949           0.946       0.969          0.492 0.503   0.503
#> CV:pam      2 0.687           0.858       0.922          0.488 0.502   0.502
#> MAD:pam     2 0.895           0.923       0.968          0.489 0.505   0.505
#> ATC:pam     2 1.000           0.972       0.990          0.341 0.662   0.662
#> SD:hclust   2 0.359           0.667       0.860          0.413 0.576   0.576
#> CV:hclust   2 0.809           0.969       0.973          0.231 0.737   0.737
#> MAD:hclust  2 0.313           0.701       0.853          0.423 0.515   0.515
#> ATC:hclust  2 0.967           0.954       0.979          0.346 0.671   0.671
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.915           0.894       0.957          0.332 0.738   0.526
#> CV:NMF      3 0.920           0.907       0.953          0.305 0.783   0.588
#> MAD:NMF     3 0.954           0.920       0.967          0.324 0.755   0.552
#> ATC:NMF     3 0.619           0.816       0.896          0.337 0.797   0.629
#> SD:skmeans  3 0.999           0.977       0.989          0.313 0.781   0.587
#> CV:skmeans  3 0.814           0.870       0.943          0.316 0.736   0.521
#> MAD:skmeans 3 0.949           0.926       0.972          0.312 0.739   0.526
#> ATC:skmeans 3 0.913           0.911       0.961          0.322 0.777   0.593
#> SD:mclust   3 0.944           0.927       0.971          0.935 0.561   0.404
#> CV:mclust   3 0.634           0.727       0.869          0.310 0.759   0.560
#> MAD:mclust  3 0.893           0.921       0.967          0.964 0.532   0.376
#> ATC:mclust  3 0.877           0.883       0.952          0.571 0.687   0.491
#> SD:kmeans   3 0.924           0.904       0.958          0.367 0.693   0.480
#> CV:kmeans   3 0.864           0.899       0.946          1.009 0.609   0.475
#> MAD:kmeans  3 0.918           0.937       0.968          0.309 0.732   0.527
#> ATC:kmeans  3 0.888           0.935       0.971          0.715 0.644   0.477
#> SD:pam      3 0.879           0.909       0.961          0.303 0.737   0.532
#> CV:pam      3 0.859           0.922       0.962          0.231 0.826   0.677
#> MAD:pam     3 0.827           0.840       0.940          0.315 0.775   0.586
#> ATC:pam     3 0.658           0.833       0.867          0.818 0.646   0.490
#> SD:hclust   3 0.393           0.619       0.803          0.312 0.764   0.625
#> CV:hclust   3 0.795           0.917       0.948          0.355 0.990   0.987
#> MAD:hclust  3 0.334           0.543       0.783          0.321 0.864   0.749
#> ATC:hclust  3 0.475           0.631       0.745          0.644 0.698   0.550
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.944           0.884       0.954       0.064654 0.927   0.794
#> CV:NMF      4 0.936           0.909       0.956       0.093952 0.904   0.731
#> MAD:NMF     4 0.926           0.906       0.961       0.061781 0.927   0.798
#> ATC:NMF     4 0.829           0.835       0.930       0.148669 0.811   0.543
#> SD:skmeans  4 0.817           0.860       0.867       0.093226 0.919   0.769
#> CV:skmeans  4 0.792           0.809       0.893       0.116555 0.857   0.618
#> MAD:skmeans 4 0.812           0.701       0.859       0.099804 0.914   0.756
#> ATC:skmeans 4 0.771           0.810       0.896       0.106309 0.942   0.838
#> SD:mclust   4 0.748           0.781       0.902       0.000941 0.732   0.443
#> CV:mclust   4 0.745           0.805       0.894       0.111055 0.841   0.601
#> MAD:mclust  4 0.904           0.840       0.930       0.013090 0.811   0.571
#> ATC:mclust  4 0.695           0.734       0.862       0.057762 0.885   0.705
#> SD:kmeans   4 0.688           0.740       0.826       0.115203 0.872   0.660
#> CV:kmeans   4 0.661           0.721       0.825       0.152119 0.893   0.732
#> MAD:kmeans  4 0.658           0.762       0.841       0.120642 0.858   0.627
#> ATC:kmeans  4 0.618           0.615       0.752       0.131265 0.901   0.735
#> SD:pam      4 0.733           0.734       0.869       0.154340 0.898   0.717
#> CV:pam      4 0.663           0.698       0.867       0.171178 0.881   0.706
#> MAD:pam     4 0.725           0.697       0.860       0.153303 0.858   0.623
#> ATC:pam     4 0.668           0.787       0.884       0.161773 0.877   0.680
#> SD:hclust   4 0.551           0.669       0.823       0.148208 0.930   0.845
#> CV:hclust   4 0.424           0.652       0.739       0.521751 0.995   0.993
#> MAD:hclust  4 0.474           0.663       0.820       0.138226 0.816   0.621
#> ATC:hclust  4 0.484           0.663       0.801       0.107769 0.819   0.590
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.797           0.773       0.888         0.0751 0.900   0.689
#> CV:NMF      5 0.719           0.645       0.798         0.0673 0.974   0.908
#> MAD:NMF     5 0.795           0.781       0.890         0.0752 0.897   0.687
#> ATC:NMF     5 0.722           0.713       0.854         0.0664 0.844   0.513
#> SD:skmeans  5 0.809           0.697       0.825         0.0621 0.865   0.591
#> CV:skmeans  5 0.764           0.651       0.786         0.0711 0.862   0.552
#> MAD:skmeans 5 0.766           0.729       0.784         0.0632 0.885   0.632
#> ATC:skmeans 5 0.843           0.849       0.902         0.0811 0.917   0.732
#> SD:mclust   5 0.650           0.449       0.768         0.0899 0.838   0.612
#> CV:mclust   5 0.711           0.682       0.771         0.0798 0.807   0.447
#> MAD:mclust  5 0.797           0.787       0.873         0.1099 0.894   0.700
#> ATC:mclust  5 0.632           0.668       0.804         0.0538 0.930   0.789
#> SD:kmeans   5 0.715           0.707       0.797         0.0812 0.929   0.750
#> CV:kmeans   5 0.690           0.638       0.777         0.0815 0.939   0.808
#> MAD:kmeans  5 0.742           0.697       0.802         0.0738 0.936   0.770
#> ATC:kmeans  5 0.589           0.468       0.731         0.0726 0.839   0.518
#> SD:pam      5 0.703           0.576       0.784         0.0488 0.938   0.776
#> CV:pam      5 0.646           0.487       0.723         0.0794 0.896   0.687
#> MAD:pam     5 0.810           0.806       0.911         0.0729 0.860   0.532
#> ATC:pam     5 0.681           0.798       0.858         0.0368 0.972   0.902
#> SD:hclust   5 0.523           0.609       0.780         0.0665 0.979   0.946
#> CV:hclust   5 0.527           0.583       0.796         0.1113 0.795   0.718
#> MAD:hclust  5 0.518           0.623       0.794         0.0775 0.963   0.900
#> ATC:hclust  5 0.539           0.617       0.792         0.0759 0.918   0.768
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.781           0.743       0.862         0.0524 0.938   0.764
#> CV:NMF      6 0.687           0.496       0.689         0.0484 0.910   0.682
#> MAD:NMF     6 0.803           0.753       0.866         0.0539 0.944   0.788
#> ATC:NMF     6 0.775           0.716       0.862         0.0445 0.925   0.680
#> SD:skmeans  6 0.800           0.696       0.823         0.0479 0.924   0.706
#> CV:skmeans  6 0.795           0.735       0.863         0.0488 0.915   0.635
#> MAD:skmeans 6 0.808           0.723       0.834         0.0408 0.974   0.888
#> ATC:skmeans 6 0.853           0.825       0.895         0.0373 0.957   0.823
#> SD:mclust   6 0.723           0.705       0.775         0.1088 0.843   0.543
#> CV:mclust   6 0.771           0.783       0.865         0.0645 0.934   0.702
#> MAD:mclust  6 0.735           0.737       0.812         0.0787 0.889   0.603
#> ATC:mclust  6 0.660           0.605       0.778         0.0675 0.917   0.722
#> SD:kmeans   6 0.737           0.650       0.773         0.0475 0.935   0.732
#> CV:kmeans   6 0.715           0.560       0.748         0.0551 0.893   0.629
#> MAD:kmeans  6 0.734           0.679       0.766         0.0436 0.929   0.714
#> ATC:kmeans  6 0.653           0.562       0.710         0.0515 0.872   0.528
#> SD:pam      6 0.822           0.772       0.893         0.0531 0.874   0.527
#> CV:pam      6 0.682           0.675       0.739         0.0456 0.839   0.469
#> MAD:pam     6 0.821           0.792       0.903         0.0250 0.977   0.888
#> ATC:pam     6 0.771           0.779       0.863         0.0397 0.960   0.853
#> SD:hclust   6 0.537           0.570       0.778         0.0664 0.869   0.678
#> CV:hclust   6 0.526           0.563       0.776         0.0341 0.950   0.906
#> MAD:hclust  6 0.563           0.488       0.734         0.0723 0.942   0.831
#> ATC:hclust  6 0.567           0.651       0.814         0.0440 0.975   0.918

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.359           0.667       0.860         0.4128 0.576   0.576
#> 3 3 0.393           0.619       0.803         0.3117 0.764   0.625
#> 4 4 0.551           0.669       0.823         0.1482 0.930   0.845
#> 5 5 0.523           0.609       0.780         0.0665 0.979   0.946
#> 6 6 0.537           0.570       0.778         0.0664 0.869   0.678

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000     0.8246 1.000 0.000
#> SRR1349562     1  0.0000     0.8246 1.000 0.000
#> SRR1353376     2  0.8207     0.6206 0.256 0.744
#> SRR1499040     1  0.0376     0.8247 0.996 0.004
#> SRR1322312     1  0.0000     0.8246 1.000 0.000
#> SRR1324412     1  0.7219     0.7288 0.800 0.200
#> SRR1100991     1  0.7219     0.7288 0.800 0.200
#> SRR1349479     2  0.8207     0.6206 0.256 0.744
#> SRR1431248     1  0.4161     0.8055 0.916 0.084
#> SRR1405054     1  0.7139     0.7324 0.804 0.196
#> SRR1312266     1  0.0000     0.8246 1.000 0.000
#> SRR1409790     1  0.7219     0.7288 0.800 0.200
#> SRR1352507     1  0.7219     0.7288 0.800 0.200
#> SRR1383763     1  0.0000     0.8246 1.000 0.000
#> SRR1468314     2  0.1184     0.8014 0.016 0.984
#> SRR1473674     2  0.1184     0.8024 0.016 0.984
#> SRR1390499     1  0.0000     0.8246 1.000 0.000
#> SRR821043      2  0.0000     0.7950 0.000 1.000
#> SRR1455653     2  0.0000     0.7950 0.000 1.000
#> SRR1335236     2  0.1184     0.8024 0.016 0.984
#> SRR1095383     2  0.0672     0.7996 0.008 0.992
#> SRR1479489     1  0.0672     0.8257 0.992 0.008
#> SRR1310433     2  0.1184     0.8024 0.016 0.984
#> SRR1073435     2  0.9970     0.0972 0.468 0.532
#> SRR659649      1  0.9998     0.0530 0.508 0.492
#> SRR1395999     1  0.0000     0.8246 1.000 0.000
#> SRR1105248     2  0.8144     0.6250 0.252 0.748
#> SRR1338257     1  0.0672     0.8258 0.992 0.008
#> SRR1499395     1  0.9000     0.5538 0.684 0.316
#> SRR1350002     2  0.1184     0.8024 0.016 0.984
#> SRR1489757     1  0.7219     0.7288 0.800 0.200
#> SRR1414637     1  0.6048     0.7785 0.852 0.148
#> SRR1478113     2  0.0938     0.7996 0.012 0.988
#> SRR1322477     1  0.2603     0.8221 0.956 0.044
#> SRR1478789     1  1.0000     0.0372 0.504 0.496
#> SRR1414185     1  1.0000     0.0372 0.504 0.496
#> SRR1069141     2  0.1184     0.8024 0.016 0.984
#> SRR1376852     1  0.0000     0.8246 1.000 0.000
#> SRR1323491     1  0.0000     0.8246 1.000 0.000
#> SRR1338103     1  0.5178     0.7829 0.884 0.116
#> SRR1472012     1  0.3274     0.8189 0.940 0.060
#> SRR1340325     1  0.0938     0.8259 0.988 0.012
#> SRR1087321     1  1.0000     0.0372 0.504 0.496
#> SRR1488790     1  0.0000     0.8246 1.000 0.000
#> SRR1334866     1  0.5629     0.7877 0.868 0.132
#> SRR1089446     1  0.7376     0.7208 0.792 0.208
#> SRR1344445     1  0.7299     0.7253 0.796 0.204
#> SRR1412969     1  1.0000     0.0372 0.504 0.496
#> SRR1071668     1  0.7219     0.7288 0.800 0.200
#> SRR1075804     1  0.1414     0.8254 0.980 0.020
#> SRR1383283     2  0.9970     0.0972 0.468 0.532
#> SRR1350239     2  0.8207     0.6216 0.256 0.744
#> SRR1353878     1  0.0376     0.8251 0.996 0.004
#> SRR1375721     1  0.0000     0.8246 1.000 0.000
#> SRR1083983     1  0.4298     0.8083 0.912 0.088
#> SRR1090095     1  0.0000     0.8246 1.000 0.000
#> SRR1414792     1  0.0000     0.8246 1.000 0.000
#> SRR1075102     2  0.0938     0.7996 0.012 0.988
#> SRR1098737     1  0.1414     0.8254 0.980 0.020
#> SRR1349409     1  0.0000     0.8246 1.000 0.000
#> SRR1413008     2  0.8207     0.6216 0.256 0.744
#> SRR1407179     1  0.7745     0.7002 0.772 0.228
#> SRR1095913     2  0.9963     0.1114 0.464 0.536
#> SRR1403544     1  0.0000     0.8246 1.000 0.000
#> SRR1490546     1  0.0000     0.8246 1.000 0.000
#> SRR807971      1  0.7299     0.7253 0.796 0.204
#> SRR1436228     1  0.8661     0.6109 0.712 0.288
#> SRR1445218     2  0.1184     0.8024 0.016 0.984
#> SRR1485438     2  0.2236     0.7937 0.036 0.964
#> SRR1358143     1  0.0000     0.8246 1.000 0.000
#> SRR1328760     1  0.0376     0.8251 0.996 0.004
#> SRR1380806     1  0.0000     0.8246 1.000 0.000
#> SRR1379426     1  1.0000     0.0372 0.504 0.496
#> SRR1087007     1  1.0000     0.0372 0.504 0.496
#> SRR1086256     1  0.6048     0.7785 0.852 0.148
#> SRR1346734     2  0.0000     0.7950 0.000 1.000
#> SRR1414515     1  0.0000     0.8246 1.000 0.000
#> SRR1082151     1  0.4939     0.8008 0.892 0.108
#> SRR1349320     2  0.0938     0.7996 0.012 0.988
#> SRR1317554     2  0.0000     0.7950 0.000 1.000
#> SRR1076022     2  0.1184     0.8024 0.016 0.984
#> SRR1339573     1  0.8813     0.5869 0.700 0.300
#> SRR1455878     1  0.1414     0.8258 0.980 0.020
#> SRR1446203     1  1.0000     0.0375 0.504 0.496
#> SRR1387397     1  0.3733     0.8169 0.928 0.072
#> SRR1402590     1  0.0000     0.8246 1.000 0.000
#> SRR1317532     1  0.1184     0.8256 0.984 0.016
#> SRR1331488     1  0.5294     0.7888 0.880 0.120
#> SRR1499675     1  0.5178     0.7829 0.884 0.116
#> SRR1440467     2  0.9815     0.2642 0.420 0.580
#> SRR807995      2  0.1184     0.8024 0.016 0.984
#> SRR1476485     2  0.0000     0.7950 0.000 1.000
#> SRR1388214     1  0.1843     0.8253 0.972 0.028
#> SRR1456051     1  0.0000     0.8246 1.000 0.000
#> SRR1473275     1  0.8763     0.5924 0.704 0.296
#> SRR1444083     1  0.0672     0.8258 0.992 0.008
#> SRR1313807     2  0.9970     0.0972 0.468 0.532
#> SRR1470751     1  0.4939     0.8008 0.892 0.108
#> SRR1403434     2  0.9815     0.2642 0.420 0.580
#> SRR1390540     1  0.0000     0.8246 1.000 0.000
#> SRR1093861     2  0.1184     0.8024 0.016 0.984
#> SRR1325290     1  0.3431     0.8176 0.936 0.064
#> SRR1070689     1  0.0000     0.8246 1.000 0.000
#> SRR1384049     1  0.0000     0.8246 1.000 0.000
#> SRR1081184     1  0.0000     0.8246 1.000 0.000
#> SRR1324295     1  0.0000     0.8246 1.000 0.000
#> SRR1365313     1  0.8813     0.5871 0.700 0.300
#> SRR1321877     1  1.0000     0.0372 0.504 0.496
#> SRR815711      1  0.7299     0.7247 0.796 0.204
#> SRR1433476     2  0.8207     0.6206 0.256 0.744
#> SRR1101883     1  0.7299     0.7253 0.796 0.204
#> SRR1433729     2  0.9754     0.2889 0.408 0.592
#> SRR1341877     1  0.5178     0.7829 0.884 0.116
#> SRR1090556     1  0.5946     0.7723 0.856 0.144
#> SRR1357389     1  0.7219     0.7288 0.800 0.200
#> SRR1404227     2  0.9977     0.0798 0.472 0.528
#> SRR1376830     1  0.0000     0.8246 1.000 0.000
#> SRR1500661     1  0.0000     0.8246 1.000 0.000
#> SRR1080294     2  0.0672     0.7996 0.008 0.992
#> SRR1336314     2  0.0000     0.7950 0.000 1.000
#> SRR1102152     1  0.2043     0.8249 0.968 0.032
#> SRR1345244     1  1.0000     0.0372 0.504 0.496
#> SRR1478637     1  0.3431     0.8069 0.936 0.064
#> SRR1443776     1  1.0000     0.0372 0.504 0.496
#> SRR1120939     1  1.0000     0.0375 0.504 0.496
#> SRR1080117     1  1.0000     0.0372 0.504 0.496
#> SRR1102899     2  0.1184     0.8024 0.016 0.984
#> SRR1091865     1  0.1414     0.8261 0.980 0.020
#> SRR1361072     1  0.0000     0.8246 1.000 0.000
#> SRR1487890     1  0.0000     0.8246 1.000 0.000
#> SRR1349456     2  0.9977     0.0798 0.472 0.528
#> SRR1389384     1  0.4939     0.8008 0.892 0.108
#> SRR1316096     2  0.1184     0.8024 0.016 0.984
#> SRR1408512     1  0.2423     0.8237 0.960 0.040
#> SRR1447547     2  0.8207     0.6216 0.256 0.744
#> SRR1354053     2  0.0000     0.7950 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1349562     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1353376     3  0.5497     0.4114 0.000 0.292 0.708
#> SRR1499040     1  0.3879     0.7686 0.848 0.000 0.152
#> SRR1322312     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1324412     1  0.5988     0.4988 0.632 0.000 0.368
#> SRR1100991     1  0.5988     0.4988 0.632 0.000 0.368
#> SRR1349479     3  0.5497     0.4114 0.000 0.292 0.708
#> SRR1431248     1  0.5254     0.6800 0.736 0.000 0.264
#> SRR1405054     1  0.5560     0.5921 0.700 0.000 0.300
#> SRR1312266     1  0.0592     0.8140 0.988 0.000 0.012
#> SRR1409790     1  0.5988     0.4988 0.632 0.000 0.368
#> SRR1352507     1  0.5988     0.4988 0.632 0.000 0.368
#> SRR1383763     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1468314     3  0.5882     0.0926 0.000 0.348 0.652
#> SRR1473674     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1390499     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR821043      2  0.0000     0.9060 0.000 1.000 0.000
#> SRR1455653     2  0.2878     0.8665 0.000 0.904 0.096
#> SRR1335236     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1095383     2  0.5497     0.5979 0.000 0.708 0.292
#> SRR1479489     1  0.1643     0.8140 0.956 0.000 0.044
#> SRR1310433     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1073435     3  0.5643     0.6426 0.220 0.020 0.760
#> SRR659649      3  0.5058     0.6195 0.244 0.000 0.756
#> SRR1395999     1  0.0892     0.8149 0.980 0.000 0.020
#> SRR1105248     3  0.7164     0.1344 0.024 0.452 0.524
#> SRR1338257     1  0.1163     0.8149 0.972 0.000 0.028
#> SRR1499395     3  0.6225     0.1395 0.432 0.000 0.568
#> SRR1350002     3  0.5254     0.2324 0.000 0.264 0.736
#> SRR1489757     1  0.5988     0.4988 0.632 0.000 0.368
#> SRR1414637     1  0.5810     0.5952 0.664 0.000 0.336
#> SRR1478113     2  0.1529     0.8971 0.000 0.960 0.040
#> SRR1322477     1  0.4291     0.7537 0.820 0.000 0.180
#> SRR1478789     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1414185     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1069141     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1376852     1  0.3038     0.7947 0.896 0.000 0.104
#> SRR1323491     1  0.0237     0.8130 0.996 0.000 0.004
#> SRR1338103     1  0.5621     0.6215 0.692 0.000 0.308
#> SRR1472012     1  0.4887     0.7225 0.772 0.000 0.228
#> SRR1340325     1  0.1860     0.8124 0.948 0.000 0.052
#> SRR1087321     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1488790     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1334866     1  0.5678     0.6230 0.684 0.000 0.316
#> SRR1089446     1  0.6126     0.4339 0.600 0.000 0.400
#> SRR1344445     1  0.6079     0.4625 0.612 0.000 0.388
#> SRR1412969     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1071668     1  0.5988     0.4988 0.632 0.000 0.368
#> SRR1075804     1  0.1860     0.8115 0.948 0.000 0.052
#> SRR1383283     3  0.5643     0.6426 0.220 0.020 0.760
#> SRR1350239     3  0.7278     0.1250 0.028 0.456 0.516
#> SRR1353878     1  0.0892     0.8147 0.980 0.000 0.020
#> SRR1375721     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1083983     1  0.5178     0.6955 0.744 0.000 0.256
#> SRR1090095     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1414792     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1075102     2  0.1529     0.8971 0.000 0.960 0.040
#> SRR1098737     1  0.1860     0.8115 0.948 0.000 0.052
#> SRR1349409     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1413008     3  0.7278     0.1250 0.028 0.456 0.516
#> SRR1407179     1  0.6215     0.3919 0.572 0.000 0.428
#> SRR1095913     3  0.5772     0.6429 0.220 0.024 0.756
#> SRR1403544     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1490546     1  0.0424     0.8136 0.992 0.000 0.008
#> SRR807971      1  0.6079     0.4625 0.612 0.000 0.388
#> SRR1436228     1  0.6521     0.1587 0.504 0.004 0.492
#> SRR1445218     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1485438     3  0.5285     0.2596 0.004 0.244 0.752
#> SRR1358143     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1328760     1  0.0892     0.8147 0.980 0.000 0.020
#> SRR1380806     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1379426     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1087007     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1086256     1  0.5810     0.5952 0.664 0.000 0.336
#> SRR1346734     2  0.0000     0.9060 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1082151     1  0.5178     0.6950 0.744 0.000 0.256
#> SRR1349320     2  0.1529     0.8971 0.000 0.960 0.040
#> SRR1317554     2  0.0000     0.9060 0.000 1.000 0.000
#> SRR1076022     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1339573     3  0.6252     0.0757 0.444 0.000 0.556
#> SRR1455878     1  0.2711     0.8028 0.912 0.000 0.088
#> SRR1446203     3  0.5285     0.6224 0.244 0.004 0.752
#> SRR1387397     1  0.4842     0.7293 0.776 0.000 0.224
#> SRR1402590     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1317532     1  0.1411     0.8142 0.964 0.000 0.036
#> SRR1331488     1  0.4526     0.7501 0.856 0.040 0.104
#> SRR1499675     1  0.5650     0.6144 0.688 0.000 0.312
#> SRR1440467     3  0.6431     0.6472 0.156 0.084 0.760
#> SRR807995      3  0.5254     0.2324 0.000 0.264 0.736
#> SRR1476485     2  0.0000     0.9060 0.000 1.000 0.000
#> SRR1388214     1  0.2066     0.8102 0.940 0.000 0.060
#> SRR1456051     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1473275     3  0.6274     0.0384 0.456 0.000 0.544
#> SRR1444083     1  0.1163     0.8149 0.972 0.000 0.028
#> SRR1313807     3  0.5643     0.6426 0.220 0.020 0.760
#> SRR1470751     1  0.5178     0.6950 0.744 0.000 0.256
#> SRR1403434     3  0.6431     0.6472 0.156 0.084 0.760
#> SRR1390540     1  0.0237     0.8130 0.996 0.000 0.004
#> SRR1093861     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1325290     1  0.4931     0.7191 0.768 0.000 0.232
#> SRR1070689     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1384049     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1081184     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1365313     3  0.6513    -0.0757 0.476 0.004 0.520
#> SRR1321877     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR815711      1  0.6026     0.4813 0.624 0.000 0.376
#> SRR1433476     3  0.5497     0.4114 0.000 0.292 0.708
#> SRR1101883     1  0.6079     0.4625 0.612 0.000 0.388
#> SRR1433729     3  0.6562     0.6560 0.184 0.072 0.744
#> SRR1341877     1  0.5621     0.6215 0.692 0.000 0.308
#> SRR1090556     1  0.5810     0.5869 0.664 0.000 0.336
#> SRR1357389     1  0.6008     0.4906 0.628 0.000 0.372
#> SRR1404227     3  0.5595     0.6368 0.228 0.016 0.756
#> SRR1376830     1  0.0237     0.8130 0.996 0.000 0.004
#> SRR1500661     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1080294     2  0.5497     0.5979 0.000 0.708 0.292
#> SRR1336314     2  0.0000     0.9060 0.000 1.000 0.000
#> SRR1102152     1  0.2066     0.8098 0.940 0.000 0.060
#> SRR1345244     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1478637     1  0.5098     0.6912 0.752 0.000 0.248
#> SRR1443776     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1120939     3  0.5285     0.6224 0.244 0.004 0.752
#> SRR1080117     3  0.5016     0.6248 0.240 0.000 0.760
#> SRR1102899     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1091865     1  0.1529     0.8141 0.960 0.000 0.040
#> SRR1361072     1  0.0424     0.8136 0.992 0.000 0.008
#> SRR1487890     1  0.0000     0.8121 1.000 0.000 0.000
#> SRR1349456     3  0.5551     0.6399 0.224 0.016 0.760
#> SRR1389384     1  0.5178     0.6950 0.744 0.000 0.256
#> SRR1316096     3  0.5397     0.2087 0.000 0.280 0.720
#> SRR1408512     1  0.2959     0.7980 0.900 0.000 0.100
#> SRR1447547     3  0.7278     0.1250 0.028 0.456 0.516
#> SRR1354053     2  0.2878     0.8665 0.000 0.904 0.096

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1349562     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1353376     3  0.4560     0.5208 0.004 0.000 0.700 0.296
#> SRR1499040     1  0.4697     0.6314 0.696 0.000 0.296 0.008
#> SRR1322312     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1324412     1  0.5088     0.3791 0.572 0.000 0.424 0.004
#> SRR1100991     1  0.5088     0.3791 0.572 0.000 0.424 0.004
#> SRR1349479     3  0.4560     0.5208 0.004 0.000 0.700 0.296
#> SRR1431248     1  0.5182     0.5104 0.632 0.004 0.356 0.008
#> SRR1405054     1  0.4800     0.5198 0.656 0.000 0.340 0.004
#> SRR1312266     1  0.0921     0.7775 0.972 0.000 0.028 0.000
#> SRR1409790     1  0.5088     0.3791 0.572 0.000 0.424 0.004
#> SRR1352507     1  0.5088     0.3791 0.572 0.000 0.424 0.004
#> SRR1383763     1  0.2602     0.7154 0.908 0.008 0.076 0.008
#> SRR1468314     2  0.3307     0.8649 0.000 0.868 0.028 0.104
#> SRR1473674     2  0.1297     0.9719 0.000 0.964 0.020 0.016
#> SRR1390499     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR821043      4  0.0921     0.8442 0.000 0.028 0.000 0.972
#> SRR1455653     4  0.4428     0.6670 0.000 0.276 0.004 0.720
#> SRR1335236     2  0.1411     0.9726 0.000 0.960 0.020 0.020
#> SRR1095383     4  0.5163     0.2562 0.000 0.480 0.004 0.516
#> SRR1479489     1  0.1978     0.7745 0.928 0.000 0.068 0.004
#> SRR1310433     2  0.1411     0.9726 0.000 0.960 0.020 0.020
#> SRR1073435     3  0.3436     0.7938 0.080 0.036 0.876 0.008
#> SRR659649      3  0.2466     0.8010 0.096 0.000 0.900 0.004
#> SRR1395999     1  0.0817     0.7784 0.976 0.000 0.024 0.000
#> SRR1105248     3  0.6205     0.2090 0.020 0.020 0.500 0.460
#> SRR1338257     1  0.1389     0.7764 0.952 0.000 0.048 0.000
#> SRR1499395     3  0.4584     0.4916 0.300 0.000 0.696 0.004
#> SRR1350002     2  0.1118     0.9446 0.000 0.964 0.036 0.000
#> SRR1489757     1  0.5088     0.3791 0.572 0.000 0.424 0.004
#> SRR1414637     1  0.6450     0.4038 0.552 0.048 0.388 0.012
#> SRR1478113     4  0.1584     0.8392 0.000 0.036 0.012 0.952
#> SRR1322477     1  0.4785     0.6334 0.720 0.012 0.264 0.004
#> SRR1478789     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1414185     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1069141     2  0.1411     0.9726 0.000 0.960 0.020 0.020
#> SRR1376852     1  0.3448     0.7234 0.828 0.000 0.168 0.004
#> SRR1323491     1  0.0524     0.7768 0.988 0.000 0.008 0.004
#> SRR1338103     1  0.4898     0.4114 0.584 0.000 0.416 0.000
#> SRR1472012     1  0.4917     0.5629 0.656 0.000 0.336 0.008
#> SRR1340325     1  0.1978     0.7736 0.928 0.000 0.068 0.004
#> SRR1087321     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1488790     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1334866     1  0.5954     0.4309 0.572 0.028 0.392 0.008
#> SRR1089446     1  0.5158     0.2472 0.524 0.000 0.472 0.004
#> SRR1344445     1  0.5126     0.3313 0.552 0.000 0.444 0.004
#> SRR1412969     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1071668     1  0.5088     0.3791 0.572 0.000 0.424 0.004
#> SRR1075804     1  0.1474     0.7749 0.948 0.000 0.052 0.000
#> SRR1383283     3  0.3436     0.7938 0.080 0.036 0.876 0.008
#> SRR1350239     3  0.6383     0.1908 0.028 0.020 0.484 0.468
#> SRR1353878     1  0.1302     0.7768 0.956 0.000 0.044 0.000
#> SRR1375721     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1083983     1  0.5198     0.5231 0.628 0.004 0.360 0.008
#> SRR1090095     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1414792     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1075102     4  0.1584     0.8392 0.000 0.036 0.012 0.952
#> SRR1098737     1  0.1474     0.7749 0.948 0.000 0.052 0.000
#> SRR1349409     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1413008     3  0.6383     0.1908 0.028 0.020 0.484 0.468
#> SRR1407179     3  0.4977    -0.0788 0.460 0.000 0.540 0.000
#> SRR1095913     3  0.3526     0.7917 0.080 0.040 0.872 0.008
#> SRR1403544     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1490546     1  0.0657     0.7772 0.984 0.000 0.012 0.004
#> SRR807971      1  0.5126     0.3313 0.552 0.000 0.444 0.004
#> SRR1436228     3  0.5004     0.2111 0.392 0.004 0.604 0.000
#> SRR1445218     2  0.1411     0.9726 0.000 0.960 0.020 0.020
#> SRR1485438     2  0.1822     0.9199 0.004 0.944 0.044 0.008
#> SRR1358143     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1328760     1  0.1302     0.7768 0.956 0.000 0.044 0.000
#> SRR1380806     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1379426     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1087007     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1086256     1  0.6450     0.4038 0.552 0.048 0.388 0.012
#> SRR1346734     4  0.0817     0.8445 0.000 0.024 0.000 0.976
#> SRR1414515     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1082151     1  0.5868     0.5588 0.644 0.040 0.308 0.008
#> SRR1349320     4  0.1584     0.8392 0.000 0.036 0.012 0.952
#> SRR1317554     4  0.1389     0.8418 0.000 0.048 0.000 0.952
#> SRR1076022     2  0.1411     0.9726 0.000 0.960 0.020 0.020
#> SRR1339573     3  0.4655     0.4562 0.312 0.000 0.684 0.004
#> SRR1455878     1  0.2973     0.7406 0.856 0.000 0.144 0.000
#> SRR1446203     3  0.2651     0.8023 0.096 0.004 0.896 0.004
#> SRR1387397     1  0.4356     0.6299 0.708 0.000 0.292 0.000
#> SRR1402590     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1317532     1  0.1118     0.7778 0.964 0.000 0.036 0.000
#> SRR1331488     1  0.3942     0.7176 0.852 0.012 0.092 0.044
#> SRR1499675     1  0.4916     0.3938 0.576 0.000 0.424 0.000
#> SRR1440467     3  0.2522     0.7467 0.016 0.000 0.908 0.076
#> SRR807995      2  0.1118     0.9446 0.000 0.964 0.036 0.000
#> SRR1476485     4  0.0817     0.8445 0.000 0.024 0.000 0.976
#> SRR1388214     1  0.2081     0.7675 0.916 0.000 0.084 0.000
#> SRR1456051     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1473275     3  0.4720     0.4291 0.324 0.000 0.672 0.004
#> SRR1444083     1  0.1389     0.7764 0.952 0.000 0.048 0.000
#> SRR1313807     3  0.3436     0.7938 0.080 0.036 0.876 0.008
#> SRR1470751     1  0.5868     0.5588 0.644 0.040 0.308 0.008
#> SRR1403434     3  0.2522     0.7467 0.016 0.000 0.908 0.076
#> SRR1390540     1  0.0524     0.7768 0.988 0.000 0.008 0.004
#> SRR1093861     2  0.1297     0.9719 0.000 0.964 0.020 0.016
#> SRR1325290     1  0.4819     0.5558 0.652 0.000 0.344 0.004
#> SRR1070689     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1384049     1  0.2602     0.7154 0.908 0.008 0.076 0.008
#> SRR1081184     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1324295     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1365313     3  0.5024     0.3140 0.360 0.008 0.632 0.000
#> SRR1321877     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR815711      1  0.5132     0.3156 0.548 0.000 0.448 0.004
#> SRR1433476     3  0.4560     0.5208 0.004 0.000 0.700 0.296
#> SRR1101883     1  0.5126     0.3313 0.552 0.000 0.444 0.004
#> SRR1433729     3  0.4020     0.7569 0.044 0.056 0.860 0.040
#> SRR1341877     1  0.4898     0.4114 0.584 0.000 0.416 0.000
#> SRR1090556     1  0.4955     0.3560 0.556 0.000 0.444 0.000
#> SRR1357389     1  0.5097     0.3689 0.568 0.000 0.428 0.004
#> SRR1404227     3  0.3360     0.7947 0.084 0.036 0.876 0.004
#> SRR1376830     1  0.0524     0.7768 0.988 0.000 0.008 0.004
#> SRR1500661     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1080294     4  0.5163     0.2562 0.000 0.480 0.004 0.516
#> SRR1336314     4  0.0817     0.8445 0.000 0.024 0.000 0.976
#> SRR1102152     1  0.2149     0.7665 0.912 0.000 0.088 0.000
#> SRR1345244     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1478637     1  0.5299     0.4894 0.600 0.004 0.388 0.008
#> SRR1443776     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1120939     3  0.2651     0.8023 0.096 0.004 0.896 0.004
#> SRR1080117     3  0.2216     0.8050 0.092 0.000 0.908 0.000
#> SRR1102899     2  0.1411     0.9726 0.000 0.960 0.020 0.020
#> SRR1091865     1  0.1807     0.7755 0.940 0.008 0.052 0.000
#> SRR1361072     1  0.0657     0.7772 0.984 0.000 0.012 0.004
#> SRR1487890     1  0.0188     0.7753 0.996 0.000 0.000 0.004
#> SRR1349456     3  0.3292     0.7943 0.080 0.036 0.880 0.004
#> SRR1389384     1  0.5868     0.5588 0.644 0.040 0.308 0.008
#> SRR1316096     2  0.1297     0.9719 0.000 0.964 0.020 0.016
#> SRR1408512     1  0.2704     0.7516 0.876 0.000 0.124 0.000
#> SRR1447547     3  0.6383     0.1908 0.028 0.020 0.484 0.468
#> SRR1354053     4  0.4456     0.6638 0.000 0.280 0.004 0.716

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.1341     0.6557 0.944 0.000 0.000 0.000 0.056
#> SRR1349562     1  0.2127     0.6277 0.892 0.000 0.000 0.000 0.108
#> SRR1353376     3  0.5379     0.4616 0.004 0.000 0.672 0.208 0.116
#> SRR1499040     1  0.6349     0.3947 0.524 0.000 0.232 0.000 0.244
#> SRR1322312     1  0.2230     0.6229 0.884 0.000 0.000 0.000 0.116
#> SRR1324412     1  0.5402     0.3350 0.528 0.000 0.420 0.004 0.048
#> SRR1100991     1  0.5402     0.3350 0.528 0.000 0.420 0.004 0.048
#> SRR1349479     3  0.5379     0.4616 0.004 0.000 0.672 0.208 0.116
#> SRR1431248     1  0.5237     0.5104 0.628 0.000 0.300 0.000 0.072
#> SRR1405054     1  0.5107     0.4753 0.620 0.000 0.332 0.004 0.044
#> SRR1312266     1  0.1168     0.6791 0.960 0.000 0.008 0.000 0.032
#> SRR1409790     1  0.5402     0.3350 0.528 0.000 0.420 0.004 0.048
#> SRR1352507     1  0.5402     0.3350 0.528 0.000 0.420 0.004 0.048
#> SRR1383763     5  0.3852     1.0000 0.220 0.000 0.020 0.000 0.760
#> SRR1468314     2  0.2460     0.8294 0.000 0.900 0.024 0.072 0.004
#> SRR1473674     2  0.0486     0.8929 0.000 0.988 0.004 0.004 0.004
#> SRR1390499     1  0.1121     0.6604 0.956 0.000 0.000 0.000 0.044
#> SRR821043      4  0.1074     0.8904 0.000 0.016 0.012 0.968 0.004
#> SRR1455653     4  0.4283     0.6014 0.000 0.292 0.012 0.692 0.004
#> SRR1335236     2  0.0451     0.8945 0.000 0.988 0.004 0.008 0.000
#> SRR1095383     2  0.4803    -0.0565 0.000 0.496 0.012 0.488 0.004
#> SRR1479489     1  0.2300     0.6865 0.908 0.000 0.052 0.000 0.040
#> SRR1310433     2  0.0451     0.8945 0.000 0.988 0.004 0.008 0.000
#> SRR1073435     3  0.3766     0.7576 0.080 0.032 0.844 0.004 0.040
#> SRR659649      3  0.1864     0.7742 0.068 0.000 0.924 0.004 0.004
#> SRR1395999     1  0.0579     0.6782 0.984 0.000 0.008 0.000 0.008
#> SRR1105248     3  0.6198     0.1648 0.020 0.000 0.476 0.424 0.080
#> SRR1338257     1  0.1872     0.6821 0.928 0.000 0.020 0.000 0.052
#> SRR1499395     3  0.4219     0.5041 0.264 0.000 0.716 0.004 0.016
#> SRR1350002     2  0.1484     0.8664 0.000 0.944 0.008 0.000 0.048
#> SRR1489757     1  0.5402     0.3350 0.528 0.000 0.420 0.004 0.048
#> SRR1414637     1  0.6175     0.4066 0.536 0.008 0.336 0.000 0.120
#> SRR1478113     4  0.1205     0.8893 0.000 0.004 0.000 0.956 0.040
#> SRR1322477     1  0.4919     0.6086 0.700 0.004 0.228 0.000 0.068
#> SRR1478789     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1414185     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1069141     2  0.0451     0.8945 0.000 0.988 0.004 0.008 0.000
#> SRR1376852     1  0.3608     0.6603 0.812 0.000 0.148 0.000 0.040
#> SRR1323491     1  0.0794     0.6699 0.972 0.000 0.000 0.000 0.028
#> SRR1338103     1  0.5260     0.4367 0.592 0.000 0.348 0.000 0.060
#> SRR1472012     1  0.5182     0.5383 0.632 0.000 0.300 0.000 0.068
#> SRR1340325     1  0.2278     0.6879 0.908 0.000 0.060 0.000 0.032
#> SRR1087321     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1488790     1  0.1341     0.6563 0.944 0.000 0.000 0.000 0.056
#> SRR1334866     1  0.5855     0.4228 0.552 0.004 0.348 0.000 0.096
#> SRR1089446     1  0.5319     0.2202 0.492 0.000 0.464 0.004 0.040
#> SRR1344445     1  0.5303     0.2985 0.516 0.000 0.440 0.004 0.040
#> SRR1412969     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1071668     1  0.5396     0.3421 0.532 0.000 0.416 0.004 0.048
#> SRR1075804     1  0.1893     0.6877 0.928 0.000 0.048 0.000 0.024
#> SRR1383283     3  0.3766     0.7576 0.080 0.032 0.844 0.004 0.040
#> SRR1350239     3  0.6391     0.1431 0.028 0.000 0.460 0.428 0.084
#> SRR1353878     1  0.1740     0.6812 0.932 0.000 0.012 0.000 0.056
#> SRR1375721     1  0.2230     0.6229 0.884 0.000 0.000 0.000 0.116
#> SRR1083983     1  0.5338     0.5010 0.604 0.000 0.324 0.000 0.072
#> SRR1090095     1  0.1851     0.6399 0.912 0.000 0.000 0.000 0.088
#> SRR1414792     1  0.1851     0.6399 0.912 0.000 0.000 0.000 0.088
#> SRR1075102     4  0.1205     0.8893 0.000 0.004 0.000 0.956 0.040
#> SRR1098737     1  0.1893     0.6877 0.928 0.000 0.048 0.000 0.024
#> SRR1349409     1  0.2230     0.6229 0.884 0.000 0.000 0.000 0.116
#> SRR1413008     3  0.6391     0.1431 0.028 0.000 0.460 0.428 0.084
#> SRR1407179     3  0.5557    -0.1449 0.460 0.000 0.472 0.000 0.068
#> SRR1095913     3  0.3846     0.7555 0.080 0.036 0.840 0.004 0.040
#> SRR1403544     1  0.1792     0.6377 0.916 0.000 0.000 0.000 0.084
#> SRR1490546     1  0.0609     0.6693 0.980 0.000 0.000 0.000 0.020
#> SRR807971      1  0.5303     0.2985 0.516 0.000 0.440 0.004 0.040
#> SRR1436228     3  0.5542     0.1102 0.396 0.000 0.532 0.000 0.072
#> SRR1445218     2  0.0451     0.8945 0.000 0.988 0.004 0.008 0.000
#> SRR1485438     2  0.2005     0.8473 0.004 0.924 0.016 0.000 0.056
#> SRR1358143     1  0.2230     0.6229 0.884 0.000 0.000 0.000 0.116
#> SRR1328760     1  0.1740     0.6812 0.932 0.000 0.012 0.000 0.056
#> SRR1380806     1  0.2230     0.6229 0.884 0.000 0.000 0.000 0.116
#> SRR1379426     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1087007     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1086256     1  0.6175     0.4066 0.536 0.008 0.336 0.000 0.120
#> SRR1346734     4  0.0162     0.8962 0.000 0.004 0.000 0.996 0.000
#> SRR1414515     1  0.2127     0.6283 0.892 0.000 0.000 0.000 0.108
#> SRR1082151     1  0.5665     0.5386 0.620 0.004 0.268 0.000 0.108
#> SRR1349320     4  0.1205     0.8893 0.000 0.004 0.000 0.956 0.040
#> SRR1317554     4  0.1682     0.8820 0.000 0.044 0.012 0.940 0.004
#> SRR1076022     2  0.0451     0.8945 0.000 0.988 0.004 0.008 0.000
#> SRR1339573     3  0.4291     0.4704 0.276 0.000 0.704 0.004 0.016
#> SRR1455878     1  0.3134     0.6749 0.848 0.000 0.120 0.000 0.032
#> SRR1446203     3  0.2024     0.7748 0.068 0.004 0.920 0.004 0.004
#> SRR1387397     1  0.4755     0.6105 0.696 0.000 0.244 0.000 0.060
#> SRR1402590     1  0.1341     0.6557 0.944 0.000 0.000 0.000 0.056
#> SRR1317532     1  0.1579     0.6844 0.944 0.000 0.032 0.000 0.024
#> SRR1331488     1  0.4409     0.6005 0.800 0.000 0.092 0.040 0.068
#> SRR1499675     1  0.5143     0.4202 0.584 0.000 0.368 0.000 0.048
#> SRR1440467     3  0.1671     0.6717 0.000 0.000 0.924 0.000 0.076
#> SRR807995      2  0.1484     0.8664 0.000 0.944 0.008 0.000 0.048
#> SRR1476485     4  0.0162     0.8962 0.000 0.004 0.000 0.996 0.000
#> SRR1388214     1  0.2592     0.6832 0.892 0.000 0.052 0.000 0.056
#> SRR1456051     1  0.1121     0.6604 0.956 0.000 0.000 0.000 0.044
#> SRR1473275     3  0.4513     0.4437 0.284 0.000 0.688 0.004 0.024
#> SRR1444083     1  0.1872     0.6821 0.928 0.000 0.020 0.000 0.052
#> SRR1313807     3  0.3766     0.7576 0.080 0.032 0.844 0.004 0.040
#> SRR1470751     1  0.5665     0.5386 0.620 0.004 0.268 0.000 0.108
#> SRR1403434     3  0.1608     0.6755 0.000 0.000 0.928 0.000 0.072
#> SRR1390540     1  0.0794     0.6699 0.972 0.000 0.000 0.000 0.028
#> SRR1093861     2  0.0486     0.8929 0.000 0.988 0.004 0.004 0.004
#> SRR1325290     1  0.5325     0.5219 0.616 0.000 0.308 0.000 0.076
#> SRR1070689     1  0.2179     0.6242 0.888 0.000 0.000 0.000 0.112
#> SRR1384049     5  0.3852     1.0000 0.220 0.000 0.020 0.000 0.760
#> SRR1081184     1  0.2127     0.6277 0.892 0.000 0.000 0.000 0.108
#> SRR1324295     1  0.1792     0.6377 0.916 0.000 0.000 0.000 0.084
#> SRR1365313     3  0.5292     0.2187 0.368 0.004 0.580 0.000 0.048
#> SRR1321877     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR815711      1  0.5425     0.2749 0.508 0.000 0.440 0.004 0.048
#> SRR1433476     3  0.5379     0.4616 0.004 0.000 0.672 0.208 0.116
#> SRR1101883     1  0.5303     0.2985 0.516 0.000 0.440 0.004 0.040
#> SRR1433729     3  0.3894     0.7239 0.044 0.052 0.844 0.008 0.052
#> SRR1341877     1  0.5260     0.4367 0.592 0.000 0.348 0.000 0.060
#> SRR1090556     1  0.5449     0.3820 0.556 0.000 0.376 0.000 0.068
#> SRR1357389     1  0.5407     0.3275 0.524 0.000 0.424 0.004 0.048
#> SRR1404227     3  0.3667     0.7571 0.084 0.032 0.844 0.000 0.040
#> SRR1376830     1  0.0703     0.6684 0.976 0.000 0.000 0.000 0.024
#> SRR1500661     1  0.2230     0.6229 0.884 0.000 0.000 0.000 0.116
#> SRR1080294     2  0.4803    -0.0565 0.000 0.496 0.012 0.488 0.004
#> SRR1336314     4  0.0162     0.8962 0.000 0.004 0.000 0.996 0.000
#> SRR1102152     1  0.2661     0.6825 0.888 0.000 0.056 0.000 0.056
#> SRR1345244     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1478637     1  0.6623     0.2603 0.452 0.000 0.300 0.000 0.248
#> SRR1443776     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1120939     3  0.2024     0.7748 0.068 0.004 0.920 0.004 0.004
#> SRR1080117     3  0.1544     0.7771 0.068 0.000 0.932 0.000 0.000
#> SRR1102899     2  0.0451     0.8945 0.000 0.988 0.004 0.008 0.000
#> SRR1091865     1  0.2079     0.6806 0.916 0.000 0.020 0.000 0.064
#> SRR1361072     1  0.0609     0.6693 0.980 0.000 0.000 0.000 0.020
#> SRR1487890     1  0.2230     0.6229 0.884 0.000 0.000 0.000 0.116
#> SRR1349456     3  0.3609     0.7577 0.080 0.032 0.848 0.000 0.040
#> SRR1389384     1  0.5665     0.5386 0.620 0.004 0.268 0.000 0.108
#> SRR1316096     2  0.0486     0.8929 0.000 0.988 0.004 0.004 0.004
#> SRR1408512     1  0.2361     0.6879 0.892 0.000 0.096 0.000 0.012
#> SRR1447547     3  0.6391     0.1431 0.028 0.000 0.460 0.428 0.084
#> SRR1354053     4  0.4305     0.5962 0.000 0.296 0.012 0.688 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.1444     0.7203 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR1349562     1  0.2260     0.6919 0.860 0.000 0.000 0.000 0.140 0.000
#> SRR1353376     6  0.4293     0.7119 0.004 0.000 0.164 0.096 0.000 0.736
#> SRR1499040     1  0.6689     0.3010 0.484 0.000 0.212 0.000 0.240 0.064
#> SRR1322312     1  0.2340     0.6871 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1324412     3  0.5423     0.1809 0.452 0.000 0.460 0.000 0.072 0.016
#> SRR1100991     3  0.5423     0.1809 0.452 0.000 0.460 0.000 0.072 0.016
#> SRR1349479     6  0.4293     0.7119 0.004 0.000 0.164 0.096 0.000 0.736
#> SRR1431248     1  0.5749     0.4300 0.584 0.000 0.280 0.000 0.048 0.088
#> SRR1405054     1  0.5390     0.1068 0.544 0.000 0.356 0.000 0.088 0.012
#> SRR1312266     1  0.1082     0.7368 0.956 0.000 0.004 0.000 0.040 0.000
#> SRR1409790     3  0.5423     0.1809 0.452 0.000 0.460 0.000 0.072 0.016
#> SRR1352507     3  0.5423     0.1809 0.452 0.000 0.460 0.000 0.072 0.016
#> SRR1383763     5  0.2100     1.0000 0.112 0.000 0.004 0.000 0.884 0.000
#> SRR1468314     2  0.2263     0.8066 0.000 0.900 0.004 0.060 0.000 0.036
#> SRR1473674     2  0.0547     0.8591 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1390499     1  0.1075     0.7265 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR821043      4  0.1003     0.8645 0.000 0.020 0.000 0.964 0.000 0.016
#> SRR1455653     4  0.3916     0.5991 0.000 0.300 0.000 0.680 0.000 0.020
#> SRR1335236     2  0.0000     0.8617 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1095383     2  0.4337    -0.0238 0.000 0.500 0.000 0.480 0.000 0.020
#> SRR1479489     1  0.2407     0.7348 0.892 0.000 0.048 0.000 0.056 0.004
#> SRR1310433     2  0.0000     0.8617 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1073435     3  0.3143     0.4668 0.012 0.028 0.860 0.000 0.020 0.080
#> SRR659649      3  0.0520     0.5470 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR1395999     1  0.0767     0.7387 0.976 0.000 0.008 0.000 0.012 0.004
#> SRR1105248     6  0.6328     0.7074 0.000 0.000 0.180 0.308 0.032 0.480
#> SRR1338257     1  0.1701     0.7327 0.920 0.000 0.000 0.000 0.072 0.008
#> SRR1499395     3  0.3533     0.5400 0.196 0.000 0.776 0.000 0.020 0.008
#> SRR1350002     2  0.2762     0.7658 0.000 0.804 0.000 0.000 0.000 0.196
#> SRR1489757     3  0.5423     0.1809 0.452 0.000 0.460 0.000 0.072 0.016
#> SRR1414637     1  0.6740     0.2151 0.460 0.000 0.312 0.000 0.084 0.144
#> SRR1478113     4  0.1219     0.8582 0.000 0.000 0.000 0.948 0.004 0.048
#> SRR1322477     1  0.5454     0.5399 0.652 0.000 0.208 0.000 0.064 0.076
#> SRR1478789     3  0.0000     0.5476 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1414185     3  0.0547     0.5400 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1069141     2  0.0000     0.8617 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1376852     1  0.3818     0.6636 0.792 0.000 0.144 0.000 0.032 0.032
#> SRR1323491     1  0.0790     0.7335 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR1338103     1  0.5647     0.3182 0.544 0.000 0.348 0.000 0.044 0.064
#> SRR1472012     1  0.5921     0.4000 0.572 0.000 0.280 0.000 0.080 0.068
#> SRR1340325     1  0.2263     0.7370 0.900 0.000 0.036 0.000 0.060 0.004
#> SRR1087321     3  0.0000     0.5476 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1488790     1  0.1387     0.7216 0.932 0.000 0.000 0.000 0.068 0.000
#> SRR1334866     1  0.6542     0.2206 0.476 0.000 0.328 0.000 0.084 0.112
#> SRR1089446     3  0.5530     0.2506 0.420 0.000 0.480 0.000 0.084 0.016
#> SRR1344445     3  0.5333     0.2166 0.440 0.000 0.480 0.000 0.064 0.016
#> SRR1412969     3  0.0547     0.5400 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1071668     1  0.5647    -0.1725 0.456 0.000 0.432 0.000 0.096 0.016
#> SRR1075804     1  0.2527     0.7296 0.884 0.000 0.064 0.000 0.048 0.004
#> SRR1383283     3  0.3143     0.4668 0.012 0.028 0.860 0.000 0.020 0.080
#> SRR1350239     6  0.6449     0.7106 0.008 0.000 0.160 0.312 0.032 0.488
#> SRR1353878     1  0.1615     0.7344 0.928 0.000 0.004 0.000 0.064 0.004
#> SRR1375721     1  0.2340     0.6871 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1083983     1  0.6137     0.3263 0.536 0.000 0.304 0.000 0.088 0.072
#> SRR1090095     1  0.2053     0.7044 0.888 0.000 0.000 0.000 0.108 0.004
#> SRR1414792     1  0.2053     0.7044 0.888 0.000 0.000 0.000 0.108 0.004
#> SRR1075102     4  0.1219     0.8582 0.000 0.000 0.000 0.948 0.004 0.048
#> SRR1098737     1  0.2527     0.7296 0.884 0.000 0.064 0.000 0.048 0.004
#> SRR1349409     1  0.2340     0.6871 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1413008     6  0.6449     0.7106 0.008 0.000 0.160 0.312 0.032 0.488
#> SRR1407179     3  0.6019     0.1368 0.388 0.000 0.480 0.000 0.068 0.064
#> SRR1095913     3  0.3218     0.4635 0.012 0.032 0.856 0.000 0.020 0.080
#> SRR1403544     1  0.1814     0.7052 0.900 0.000 0.000 0.000 0.100 0.000
#> SRR1490546     1  0.0547     0.7332 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR807971      3  0.5333     0.2166 0.440 0.000 0.480 0.000 0.064 0.016
#> SRR1436228     3  0.5981     0.2955 0.324 0.000 0.536 0.000 0.068 0.072
#> SRR1445218     2  0.0000     0.8617 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1485438     2  0.3023     0.7462 0.004 0.784 0.000 0.000 0.000 0.212
#> SRR1358143     1  0.2340     0.6871 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1328760     1  0.1615     0.7344 0.928 0.000 0.004 0.000 0.064 0.004
#> SRR1380806     1  0.2340     0.6871 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1379426     3  0.0547     0.5400 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1087007     3  0.0547     0.5400 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1086256     1  0.6740     0.2151 0.460 0.000 0.312 0.000 0.084 0.144
#> SRR1346734     4  0.0000     0.8721 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.2219     0.6922 0.864 0.000 0.000 0.000 0.136 0.000
#> SRR1082151     1  0.6333     0.4093 0.552 0.000 0.244 0.000 0.084 0.120
#> SRR1349320     4  0.1219     0.8582 0.000 0.000 0.000 0.948 0.004 0.048
#> SRR1317554     4  0.1528     0.8551 0.000 0.048 0.000 0.936 0.000 0.016
#> SRR1076022     2  0.0146     0.8608 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1339573     3  0.3623     0.5394 0.208 0.000 0.764 0.000 0.020 0.008
#> SRR1455878     1  0.3603     0.6700 0.804 0.000 0.136 0.000 0.048 0.012
#> SRR1446203     3  0.0665     0.5460 0.000 0.004 0.980 0.000 0.008 0.008
#> SRR1387397     1  0.5291     0.5209 0.652 0.000 0.232 0.000 0.060 0.056
#> SRR1402590     1  0.1444     0.7203 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR1317532     1  0.2278     0.7374 0.900 0.000 0.052 0.000 0.044 0.004
#> SRR1331488     1  0.4813     0.6502 0.756 0.000 0.036 0.032 0.112 0.064
#> SRR1499675     1  0.5499     0.2905 0.536 0.000 0.372 0.000 0.044 0.048
#> SRR1440467     6  0.3860     0.4111 0.000 0.000 0.472 0.000 0.000 0.528
#> SRR807995      2  0.2762     0.7658 0.000 0.804 0.000 0.000 0.000 0.196
#> SRR1476485     4  0.0000     0.8721 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388214     1  0.2261     0.7259 0.884 0.000 0.004 0.000 0.104 0.008
#> SRR1456051     1  0.1075     0.7265 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR1473275     3  0.3834     0.5360 0.216 0.000 0.748 0.000 0.028 0.008
#> SRR1444083     1  0.1588     0.7329 0.924 0.000 0.000 0.000 0.072 0.004
#> SRR1313807     3  0.3143     0.4668 0.012 0.028 0.860 0.000 0.020 0.080
#> SRR1470751     1  0.6333     0.4093 0.552 0.000 0.244 0.000 0.084 0.120
#> SRR1403434     3  0.3634    -0.1566 0.000 0.000 0.644 0.000 0.000 0.356
#> SRR1390540     1  0.0790     0.7335 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR1093861     2  0.0547     0.8591 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1325290     1  0.6014     0.3798 0.560 0.000 0.284 0.000 0.092 0.064
#> SRR1070689     1  0.2300     0.6885 0.856 0.000 0.000 0.000 0.144 0.000
#> SRR1384049     5  0.2100     1.0000 0.112 0.000 0.004 0.000 0.884 0.000
#> SRR1081184     1  0.2260     0.6919 0.860 0.000 0.000 0.000 0.140 0.000
#> SRR1324295     1  0.1814     0.7052 0.900 0.000 0.000 0.000 0.100 0.000
#> SRR1365313     3  0.5556     0.3833 0.296 0.004 0.596 0.000 0.064 0.040
#> SRR1321877     3  0.0000     0.5476 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR815711      3  0.5613     0.2079 0.436 0.000 0.456 0.000 0.092 0.016
#> SRR1433476     6  0.4293     0.7119 0.004 0.000 0.164 0.096 0.000 0.736
#> SRR1101883     3  0.5333     0.2166 0.440 0.000 0.480 0.000 0.064 0.016
#> SRR1433729     3  0.3771     0.3360 0.000 0.048 0.792 0.000 0.016 0.144
#> SRR1341877     1  0.5647     0.3182 0.544 0.000 0.348 0.000 0.044 0.064
#> SRR1090556     1  0.5890     0.2509 0.512 0.000 0.364 0.000 0.060 0.064
#> SRR1357389     3  0.5345     0.1858 0.452 0.000 0.464 0.000 0.072 0.012
#> SRR1404227     3  0.3143     0.4715 0.012 0.028 0.860 0.000 0.020 0.080
#> SRR1376830     1  0.0632     0.7326 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1500661     1  0.2593     0.6905 0.844 0.000 0.008 0.000 0.148 0.000
#> SRR1080294     2  0.4337    -0.0238 0.000 0.500 0.000 0.480 0.000 0.020
#> SRR1336314     4  0.0000     0.8721 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1102152     1  0.2373     0.7242 0.880 0.000 0.008 0.000 0.104 0.008
#> SRR1345244     3  0.0000     0.5476 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1478637     1  0.7081     0.1200 0.412 0.000 0.280 0.000 0.220 0.088
#> SRR1443776     3  0.0000     0.5476 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1120939     3  0.0665     0.5460 0.000 0.004 0.980 0.000 0.008 0.008
#> SRR1080117     3  0.0547     0.5400 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1102899     2  0.0146     0.8608 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1091865     1  0.1895     0.7317 0.912 0.000 0.000 0.000 0.072 0.016
#> SRR1361072     1  0.0547     0.7332 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1487890     1  0.2340     0.6871 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1349456     3  0.3090     0.4697 0.012 0.028 0.864 0.000 0.020 0.076
#> SRR1389384     1  0.6333     0.4093 0.552 0.000 0.244 0.000 0.084 0.120
#> SRR1316096     2  0.0547     0.8591 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1408512     1  0.3075     0.6905 0.844 0.000 0.108 0.000 0.040 0.008
#> SRR1447547     6  0.6449     0.7106 0.008 0.000 0.160 0.312 0.032 0.488
#> SRR1354053     4  0.3853     0.5937 0.000 0.304 0.000 0.680 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.751           0.875       0.945         0.4694 0.515   0.515
#> 3 3 0.924           0.904       0.958         0.3674 0.693   0.480
#> 4 4 0.688           0.740       0.826         0.1152 0.872   0.660
#> 5 5 0.715           0.707       0.797         0.0812 0.929   0.750
#> 6 6 0.737           0.650       0.773         0.0475 0.935   0.732

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000     0.9636 1.000 0.000
#> SRR1349562     1  0.0000     0.9636 1.000 0.000
#> SRR1353376     2  0.0000     0.9006 0.000 1.000
#> SRR1499040     1  0.0000     0.9636 1.000 0.000
#> SRR1322312     1  0.0000     0.9636 1.000 0.000
#> SRR1324412     1  0.0000     0.9636 1.000 0.000
#> SRR1100991     1  0.0000     0.9636 1.000 0.000
#> SRR1349479     2  0.0000     0.9006 0.000 1.000
#> SRR1431248     1  0.7815     0.6555 0.768 0.232
#> SRR1405054     1  0.0000     0.9636 1.000 0.000
#> SRR1312266     1  0.0000     0.9636 1.000 0.000
#> SRR1409790     1  0.0000     0.9636 1.000 0.000
#> SRR1352507     1  0.0000     0.9636 1.000 0.000
#> SRR1383763     1  0.0000     0.9636 1.000 0.000
#> SRR1468314     2  0.0000     0.9006 0.000 1.000
#> SRR1473674     2  0.0000     0.9006 0.000 1.000
#> SRR1390499     1  0.0000     0.9636 1.000 0.000
#> SRR821043      2  0.0000     0.9006 0.000 1.000
#> SRR1455653     2  0.0000     0.9006 0.000 1.000
#> SRR1335236     2  0.0000     0.9006 0.000 1.000
#> SRR1095383     2  0.0000     0.9006 0.000 1.000
#> SRR1479489     1  0.0000     0.9636 1.000 0.000
#> SRR1310433     2  0.0000     0.9006 0.000 1.000
#> SRR1073435     2  0.0376     0.8994 0.004 0.996
#> SRR659649      1  0.9998    -0.1594 0.508 0.492
#> SRR1395999     1  0.0000     0.9636 1.000 0.000
#> SRR1105248     2  0.0938     0.8967 0.012 0.988
#> SRR1338257     1  0.0000     0.9636 1.000 0.000
#> SRR1499395     1  0.0000     0.9636 1.000 0.000
#> SRR1350002     2  0.0000     0.9006 0.000 1.000
#> SRR1489757     1  0.0000     0.9636 1.000 0.000
#> SRR1414637     1  0.8555     0.5571 0.720 0.280
#> SRR1478113     2  0.0000     0.9006 0.000 1.000
#> SRR1322477     1  0.0000     0.9636 1.000 0.000
#> SRR1478789     2  0.7950     0.7500 0.240 0.760
#> SRR1414185     2  0.9170     0.6083 0.332 0.668
#> SRR1069141     2  0.0000     0.9006 0.000 1.000
#> SRR1376852     1  0.0000     0.9636 1.000 0.000
#> SRR1323491     1  0.0000     0.9636 1.000 0.000
#> SRR1338103     1  0.0000     0.9636 1.000 0.000
#> SRR1472012     1  0.0000     0.9636 1.000 0.000
#> SRR1340325     1  0.0000     0.9636 1.000 0.000
#> SRR1087321     2  0.4161     0.8657 0.084 0.916
#> SRR1488790     1  0.0000     0.9636 1.000 0.000
#> SRR1334866     1  0.9983    -0.0678 0.524 0.476
#> SRR1089446     1  0.0000     0.9636 1.000 0.000
#> SRR1344445     1  0.0000     0.9636 1.000 0.000
#> SRR1412969     2  0.6887     0.7989 0.184 0.816
#> SRR1071668     1  0.0000     0.9636 1.000 0.000
#> SRR1075804     1  0.0000     0.9636 1.000 0.000
#> SRR1383283     2  0.0000     0.9006 0.000 1.000
#> SRR1350239     2  0.9996     0.2036 0.488 0.512
#> SRR1353878     1  0.0000     0.9636 1.000 0.000
#> SRR1375721     1  0.0000     0.9636 1.000 0.000
#> SRR1083983     1  0.0000     0.9636 1.000 0.000
#> SRR1090095     1  0.0000     0.9636 1.000 0.000
#> SRR1414792     1  0.0000     0.9636 1.000 0.000
#> SRR1075102     2  0.0000     0.9006 0.000 1.000
#> SRR1098737     1  0.0000     0.9636 1.000 0.000
#> SRR1349409     1  0.0000     0.9636 1.000 0.000
#> SRR1413008     2  0.9996     0.2036 0.488 0.512
#> SRR1407179     1  0.0000     0.9636 1.000 0.000
#> SRR1095913     2  0.0000     0.9006 0.000 1.000
#> SRR1403544     1  0.0000     0.9636 1.000 0.000
#> SRR1490546     1  0.0000     0.9636 1.000 0.000
#> SRR807971      1  0.0000     0.9636 1.000 0.000
#> SRR1436228     1  0.7056     0.7248 0.808 0.192
#> SRR1445218     2  0.0000     0.9006 0.000 1.000
#> SRR1485438     2  0.4431     0.8603 0.092 0.908
#> SRR1358143     1  0.0000     0.9636 1.000 0.000
#> SRR1328760     1  0.0000     0.9636 1.000 0.000
#> SRR1380806     1  0.0000     0.9636 1.000 0.000
#> SRR1379426     2  0.8327     0.7202 0.264 0.736
#> SRR1087007     2  0.8081     0.7419 0.248 0.752
#> SRR1086256     2  0.0000     0.9006 0.000 1.000
#> SRR1346734     2  0.0000     0.9006 0.000 1.000
#> SRR1414515     1  0.0000     0.9636 1.000 0.000
#> SRR1082151     1  0.7376     0.6970 0.792 0.208
#> SRR1349320     2  0.0000     0.9006 0.000 1.000
#> SRR1317554     2  0.0000     0.9006 0.000 1.000
#> SRR1076022     2  0.0000     0.9006 0.000 1.000
#> SRR1339573     1  0.0000     0.9636 1.000 0.000
#> SRR1455878     1  0.0000     0.9636 1.000 0.000
#> SRR1446203     2  0.8081     0.7419 0.248 0.752
#> SRR1387397     1  0.0000     0.9636 1.000 0.000
#> SRR1402590     1  0.0000     0.9636 1.000 0.000
#> SRR1317532     1  0.0000     0.9636 1.000 0.000
#> SRR1331488     1  0.0000     0.9636 1.000 0.000
#> SRR1499675     1  0.0000     0.9636 1.000 0.000
#> SRR1440467     2  0.4022     0.8676 0.080 0.920
#> SRR807995      2  0.0000     0.9006 0.000 1.000
#> SRR1476485     2  0.0000     0.9006 0.000 1.000
#> SRR1388214     1  0.0000     0.9636 1.000 0.000
#> SRR1456051     1  0.0000     0.9636 1.000 0.000
#> SRR1473275     1  0.0000     0.9636 1.000 0.000
#> SRR1444083     1  0.0000     0.9636 1.000 0.000
#> SRR1313807     2  0.0000     0.9006 0.000 1.000
#> SRR1470751     1  0.6531     0.7605 0.832 0.168
#> SRR1403434     2  0.6343     0.8168 0.160 0.840
#> SRR1390540     1  0.0000     0.9636 1.000 0.000
#> SRR1093861     2  0.0000     0.9006 0.000 1.000
#> SRR1325290     1  0.0000     0.9636 1.000 0.000
#> SRR1070689     1  0.0000     0.9636 1.000 0.000
#> SRR1384049     1  0.0000     0.9636 1.000 0.000
#> SRR1081184     1  0.0000     0.9636 1.000 0.000
#> SRR1324295     1  0.0000     0.9636 1.000 0.000
#> SRR1365313     2  0.8081     0.7419 0.248 0.752
#> SRR1321877     2  0.8081     0.7419 0.248 0.752
#> SRR815711      1  0.0000     0.9636 1.000 0.000
#> SRR1433476     2  0.2423     0.8859 0.040 0.960
#> SRR1101883     1  0.0000     0.9636 1.000 0.000
#> SRR1433729     2  0.0000     0.9006 0.000 1.000
#> SRR1341877     1  0.0000     0.9636 1.000 0.000
#> SRR1090556     1  0.0000     0.9636 1.000 0.000
#> SRR1357389     1  0.0000     0.9636 1.000 0.000
#> SRR1404227     2  0.8386     0.7145 0.268 0.732
#> SRR1376830     1  0.0000     0.9636 1.000 0.000
#> SRR1500661     1  0.0000     0.9636 1.000 0.000
#> SRR1080294     2  0.0000     0.9006 0.000 1.000
#> SRR1336314     2  0.0000     0.9006 0.000 1.000
#> SRR1102152     1  0.0000     0.9636 1.000 0.000
#> SRR1345244     2  0.8081     0.7419 0.248 0.752
#> SRR1478637     1  0.9996    -0.1124 0.512 0.488
#> SRR1443776     2  0.8081     0.7419 0.248 0.752
#> SRR1120939     2  0.8081     0.7419 0.248 0.752
#> SRR1080117     2  0.8327     0.7202 0.264 0.736
#> SRR1102899     2  0.0000     0.9006 0.000 1.000
#> SRR1091865     1  0.0000     0.9636 1.000 0.000
#> SRR1361072     1  0.0000     0.9636 1.000 0.000
#> SRR1487890     1  0.0000     0.9636 1.000 0.000
#> SRR1349456     2  0.0000     0.9006 0.000 1.000
#> SRR1389384     1  0.0000     0.9636 1.000 0.000
#> SRR1316096     2  0.0000     0.9006 0.000 1.000
#> SRR1408512     1  0.0000     0.9636 1.000 0.000
#> SRR1447547     2  0.7815     0.7578 0.232 0.768
#> SRR1354053     2  0.0000     0.9006 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1353376     2  0.0000     0.9926 0.000 1.000 0.000
#> SRR1499040     1  0.3816     0.8243 0.852 0.000 0.148
#> SRR1322312     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1324412     3  0.1529     0.9149 0.040 0.000 0.960
#> SRR1100991     3  0.1031     0.9266 0.024 0.000 0.976
#> SRR1349479     3  0.5465     0.6104 0.000 0.288 0.712
#> SRR1431248     3  0.6410     0.2585 0.420 0.004 0.576
#> SRR1405054     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1312266     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1409790     3  0.1031     0.9266 0.024 0.000 0.976
#> SRR1352507     3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1383763     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1468314     2  0.0424     0.9933 0.000 0.992 0.008
#> SRR1473674     2  0.0747     0.9907 0.000 0.984 0.016
#> SRR1390499     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR821043      2  0.0237     0.9935 0.000 0.996 0.004
#> SRR1455653     2  0.0237     0.9935 0.000 0.996 0.004
#> SRR1335236     2  0.0892     0.9907 0.000 0.980 0.020
#> SRR1095383     2  0.0237     0.9935 0.000 0.996 0.004
#> SRR1479489     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1310433     2  0.0747     0.9924 0.000 0.984 0.016
#> SRR1073435     3  0.0237     0.9293 0.000 0.004 0.996
#> SRR659649      3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1395999     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1105248     3  0.0747     0.9265 0.000 0.016 0.984
#> SRR1338257     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1499395     3  0.0424     0.9314 0.008 0.000 0.992
#> SRR1350002     2  0.0747     0.9907 0.000 0.984 0.016
#> SRR1489757     3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1414637     1  0.6398     0.4101 0.620 0.008 0.372
#> SRR1478113     2  0.0000     0.9926 0.000 1.000 0.000
#> SRR1322477     1  0.2400     0.9083 0.932 0.004 0.064
#> SRR1478789     3  0.0000     0.9292 0.000 0.000 1.000
#> SRR1414185     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1069141     2  0.0892     0.9907 0.000 0.980 0.020
#> SRR1376852     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1338103     1  0.6386     0.3040 0.584 0.004 0.412
#> SRR1472012     1  0.5678     0.5502 0.684 0.000 0.316
#> SRR1340325     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1087321     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1488790     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1334866     3  0.0475     0.9310 0.004 0.004 0.992
#> SRR1089446     3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1344445     3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1412969     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1071668     3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1075804     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1383283     3  0.2448     0.8788 0.000 0.076 0.924
#> SRR1350239     3  0.0983     0.9287 0.004 0.016 0.980
#> SRR1353878     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1083983     1  0.1289     0.9362 0.968 0.000 0.032
#> SRR1090095     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1075102     2  0.0000     0.9926 0.000 1.000 0.000
#> SRR1098737     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1413008     3  0.0983     0.9287 0.004 0.016 0.980
#> SRR1407179     3  0.0424     0.9314 0.008 0.000 0.992
#> SRR1095913     3  0.2625     0.8609 0.000 0.084 0.916
#> SRR1403544     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR807971      3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1436228     3  0.1267     0.9227 0.024 0.004 0.972
#> SRR1445218     2  0.0747     0.9924 0.000 0.984 0.016
#> SRR1485438     3  0.7067     0.1060 0.020 0.468 0.512
#> SRR1358143     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1379426     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1087007     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1086256     3  0.6260     0.2222 0.000 0.448 0.552
#> SRR1346734     2  0.0000     0.9926 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1082151     1  0.4465     0.7927 0.820 0.004 0.176
#> SRR1349320     2  0.0000     0.9926 0.000 1.000 0.000
#> SRR1317554     2  0.0237     0.9935 0.000 0.996 0.004
#> SRR1076022     2  0.0892     0.9907 0.000 0.980 0.020
#> SRR1339573     3  0.0424     0.9314 0.008 0.000 0.992
#> SRR1455878     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1446203     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1387397     1  0.2448     0.8996 0.924 0.000 0.076
#> SRR1402590     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1331488     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1499675     3  0.1529     0.9145 0.040 0.000 0.960
#> SRR1440467     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR807995      2  0.0747     0.9907 0.000 0.984 0.016
#> SRR1476485     2  0.0237     0.9935 0.000 0.996 0.004
#> SRR1388214     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1473275     3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1444083     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1313807     3  0.2625     0.8719 0.000 0.084 0.916
#> SRR1470751     1  0.2860     0.8911 0.912 0.004 0.084
#> SRR1403434     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1390540     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1093861     2  0.0892     0.9907 0.000 0.980 0.020
#> SRR1325290     1  0.4002     0.8099 0.840 0.000 0.160
#> SRR1070689     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1365313     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1321877     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR815711      3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1433476     3  0.2711     0.8744 0.000 0.088 0.912
#> SRR1101883     3  0.0892     0.9286 0.020 0.000 0.980
#> SRR1433729     2  0.0237     0.9935 0.000 0.996 0.004
#> SRR1341877     3  0.6180     0.2784 0.416 0.000 0.584
#> SRR1090556     3  0.6295     0.0882 0.472 0.000 0.528
#> SRR1357389     3  0.0747     0.9298 0.016 0.000 0.984
#> SRR1404227     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1376830     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1080294     2  0.0237     0.9935 0.000 0.996 0.004
#> SRR1336314     2  0.0000     0.9926 0.000 1.000 0.000
#> SRR1102152     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1345244     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1478637     3  0.0475     0.9310 0.004 0.004 0.992
#> SRR1443776     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1120939     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1080117     3  0.0237     0.9316 0.004 0.000 0.996
#> SRR1102899     2  0.0892     0.9907 0.000 0.980 0.020
#> SRR1091865     1  0.1129     0.9437 0.976 0.004 0.020
#> SRR1361072     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9586 1.000 0.000 0.000
#> SRR1349456     3  0.0424     0.9253 0.000 0.008 0.992
#> SRR1389384     1  0.4351     0.7995 0.828 0.004 0.168
#> SRR1316096     2  0.0747     0.9924 0.000 0.984 0.016
#> SRR1408512     1  0.0747     0.9478 0.984 0.000 0.016
#> SRR1447547     3  0.0983     0.9287 0.004 0.016 0.980
#> SRR1354053     2  0.0237     0.9935 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.4977    0.74520 0.000 0.460 0.000 0.540
#> SRR1499040     2  0.6898    0.59720 0.360 0.524 0.116 0.000
#> SRR1322312     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1100991     3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1349479     3  0.6783    0.27407 0.000 0.388 0.512 0.100
#> SRR1431248     2  0.6771    0.64813 0.248 0.600 0.152 0.000
#> SRR1405054     1  0.3485    0.81407 0.856 0.116 0.028 0.000
#> SRR1312266     1  0.0817    0.93331 0.976 0.024 0.000 0.000
#> SRR1409790     3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1352507     3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1383763     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1468314     4  0.3942    0.83330 0.000 0.236 0.000 0.764
#> SRR1473674     4  0.1004    0.80961 0.000 0.024 0.004 0.972
#> SRR1390499     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR821043      4  0.4679    0.81829 0.000 0.352 0.000 0.648
#> SRR1455653     4  0.4713    0.81554 0.000 0.360 0.000 0.640
#> SRR1335236     4  0.1042    0.80821 0.000 0.020 0.008 0.972
#> SRR1095383     4  0.4431    0.83044 0.000 0.304 0.000 0.696
#> SRR1479489     1  0.1302    0.91882 0.956 0.044 0.000 0.000
#> SRR1310433     4  0.0000    0.81743 0.000 0.000 0.000 1.000
#> SRR1073435     3  0.5495    0.50486 0.000 0.348 0.624 0.028
#> SRR659649      3  0.0188    0.83199 0.000 0.004 0.996 0.000
#> SRR1395999     1  0.4193    0.54898 0.732 0.268 0.000 0.000
#> SRR1105248     3  0.4973    0.59557 0.000 0.348 0.644 0.008
#> SRR1338257     1  0.2281    0.87596 0.904 0.096 0.000 0.000
#> SRR1499395     3  0.0336    0.83216 0.000 0.008 0.992 0.000
#> SRR1350002     4  0.1004    0.80961 0.000 0.024 0.004 0.972
#> SRR1489757     3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1414637     2  0.6777    0.65158 0.296 0.600 0.092 0.012
#> SRR1478113     2  0.4992   -0.69158 0.000 0.524 0.000 0.476
#> SRR1322477     2  0.5543    0.51569 0.424 0.556 0.020 0.000
#> SRR1478789     3  0.2125    0.81038 0.000 0.076 0.920 0.004
#> SRR1414185     3  0.1118    0.83351 0.000 0.036 0.964 0.000
#> SRR1069141     4  0.0592    0.81344 0.000 0.016 0.000 0.984
#> SRR1376852     1  0.3907    0.62873 0.768 0.232 0.000 0.000
#> SRR1323491     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1338103     2  0.6783    0.64942 0.304 0.572 0.124 0.000
#> SRR1472012     2  0.6574    0.61140 0.364 0.548 0.088 0.000
#> SRR1340325     1  0.1867    0.89486 0.928 0.072 0.000 0.000
#> SRR1087321     3  0.0921    0.83218 0.000 0.028 0.972 0.000
#> SRR1488790     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.5155   -0.00794 0.000 0.528 0.468 0.004
#> SRR1089446     3  0.2868    0.80647 0.000 0.136 0.864 0.000
#> SRR1344445     3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1412969     3  0.0921    0.83218 0.000 0.028 0.972 0.000
#> SRR1071668     3  0.2530    0.81496 0.000 0.112 0.888 0.000
#> SRR1075804     1  0.0707    0.93575 0.980 0.020 0.000 0.000
#> SRR1383283     3  0.5657    0.54216 0.000 0.312 0.644 0.044
#> SRR1350239     3  0.4331    0.71057 0.000 0.288 0.712 0.000
#> SRR1353878     1  0.2281    0.87596 0.904 0.096 0.000 0.000
#> SRR1375721     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1083983     2  0.5668    0.47763 0.444 0.532 0.024 0.000
#> SRR1090095     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1075102     2  0.4981   -0.67658 0.000 0.536 0.000 0.464
#> SRR1098737     1  0.1302    0.92191 0.956 0.044 0.000 0.000
#> SRR1349409     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1413008     3  0.4331    0.71057 0.000 0.288 0.712 0.000
#> SRR1407179     3  0.4877    0.39876 0.000 0.408 0.592 0.000
#> SRR1095913     3  0.5188    0.68869 0.000 0.096 0.756 0.148
#> SRR1403544     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR807971      3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1436228     2  0.6516    0.26966 0.048 0.588 0.344 0.020
#> SRR1445218     4  0.0000    0.81743 0.000 0.000 0.000 1.000
#> SRR1485438     2  0.6688    0.25983 0.000 0.536 0.096 0.368
#> SRR1358143     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.2081    0.88828 0.916 0.084 0.000 0.000
#> SRR1380806     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.1022    0.83329 0.000 0.032 0.968 0.000
#> SRR1087007     3  0.0921    0.83218 0.000 0.028 0.972 0.000
#> SRR1086256     2  0.6074    0.20016 0.000 0.600 0.340 0.060
#> SRR1346734     4  0.4790    0.80737 0.000 0.380 0.000 0.620
#> SRR1414515     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.6431    0.63212 0.324 0.604 0.060 0.012
#> SRR1349320     4  0.4898    0.78530 0.000 0.416 0.000 0.584
#> SRR1317554     4  0.4522    0.82765 0.000 0.320 0.000 0.680
#> SRR1076022     4  0.0895    0.81032 0.000 0.020 0.004 0.976
#> SRR1339573     3  0.0336    0.83216 0.000 0.008 0.992 0.000
#> SRR1455878     1  0.2973    0.81084 0.856 0.144 0.000 0.000
#> SRR1446203     3  0.0188    0.83207 0.000 0.004 0.996 0.000
#> SRR1387397     2  0.5821    0.50158 0.432 0.536 0.032 0.000
#> SRR1402590     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.2589    0.85004 0.884 0.116 0.000 0.000
#> SRR1331488     1  0.0188    0.94529 0.996 0.004 0.000 0.000
#> SRR1499675     3  0.6506   -0.02041 0.072 0.460 0.468 0.000
#> SRR1440467     3  0.1022    0.83287 0.000 0.032 0.968 0.000
#> SRR807995      4  0.2048    0.77116 0.000 0.064 0.008 0.928
#> SRR1476485     4  0.4790    0.80737 0.000 0.380 0.000 0.620
#> SRR1388214     1  0.2345    0.87117 0.900 0.100 0.000 0.000
#> SRR1456051     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.2469    0.81543 0.000 0.108 0.892 0.000
#> SRR1444083     1  0.2408    0.86588 0.896 0.104 0.000 0.000
#> SRR1313807     3  0.5280    0.70141 0.000 0.120 0.752 0.128
#> SRR1470751     2  0.5969    0.59128 0.360 0.600 0.028 0.012
#> SRR1403434     3  0.1022    0.83287 0.000 0.032 0.968 0.000
#> SRR1390540     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1093861     4  0.0895    0.81032 0.000 0.020 0.004 0.976
#> SRR1325290     2  0.6357    0.58348 0.388 0.544 0.068 0.000
#> SRR1070689     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1365313     3  0.5453    0.32378 0.000 0.388 0.592 0.020
#> SRR1321877     3  0.0817    0.83265 0.000 0.024 0.976 0.000
#> SRR815711      3  0.2530    0.81496 0.000 0.112 0.888 0.000
#> SRR1433476     3  0.5720    0.57399 0.000 0.296 0.652 0.052
#> SRR1101883     3  0.2589    0.81343 0.000 0.116 0.884 0.000
#> SRR1433729     4  0.4382    0.83134 0.000 0.296 0.000 0.704
#> SRR1341877     2  0.7001    0.62738 0.244 0.576 0.180 0.000
#> SRR1090556     2  0.6890    0.65405 0.268 0.580 0.152 0.000
#> SRR1357389     3  0.2216    0.82035 0.000 0.092 0.908 0.000
#> SRR1404227     3  0.3172    0.74072 0.000 0.160 0.840 0.000
#> SRR1376830     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1080294     4  0.4382    0.83138 0.000 0.296 0.000 0.704
#> SRR1336314     4  0.4804    0.80629 0.000 0.384 0.000 0.616
#> SRR1102152     1  0.1637    0.90617 0.940 0.060 0.000 0.000
#> SRR1345244     3  0.0817    0.83265 0.000 0.024 0.976 0.000
#> SRR1478637     2  0.5366    0.06263 0.000 0.548 0.440 0.012
#> SRR1443776     3  0.0817    0.83265 0.000 0.024 0.976 0.000
#> SRR1120939     3  0.0336    0.83261 0.000 0.008 0.992 0.000
#> SRR1080117     3  0.1022    0.83329 0.000 0.032 0.968 0.000
#> SRR1102899     4  0.0188    0.81681 0.000 0.004 0.000 0.996
#> SRR1091865     2  0.5497    0.43725 0.460 0.524 0.016 0.000
#> SRR1361072     1  0.0188    0.94529 0.996 0.004 0.000 0.000
#> SRR1487890     1  0.0000    0.94708 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.3833    0.77432 0.000 0.080 0.848 0.072
#> SRR1389384     2  0.6642    0.62389 0.344 0.576 0.068 0.012
#> SRR1316096     4  0.0469    0.81479 0.000 0.012 0.000 0.988
#> SRR1408512     2  0.5497    0.43725 0.460 0.524 0.016 0.000
#> SRR1447547     2  0.4164    0.25290 0.000 0.736 0.264 0.000
#> SRR1354053     4  0.4522    0.82765 0.000 0.320 0.000 0.680

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0510      0.886 0.984 0.000 0.000 0.016 0.000
#> SRR1349562     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.4780      0.586 0.000 0.248 0.000 0.692 0.060
#> SRR1499040     5  0.4947      0.709 0.068 0.000 0.160 0.028 0.744
#> SRR1322312     1  0.0290      0.884 0.992 0.000 0.000 0.008 0.000
#> SRR1324412     3  0.2233      0.737 0.000 0.000 0.892 0.004 0.104
#> SRR1100991     3  0.2358      0.734 0.000 0.000 0.888 0.008 0.104
#> SRR1349479     4  0.4494      0.279 0.000 0.012 0.232 0.728 0.028
#> SRR1431248     5  0.1934      0.823 0.040 0.000 0.008 0.020 0.932
#> SRR1405054     1  0.6903      0.562 0.564 0.000 0.244 0.072 0.120
#> SRR1312266     1  0.3639      0.836 0.824 0.000 0.000 0.076 0.100
#> SRR1409790     3  0.2233      0.737 0.000 0.000 0.892 0.004 0.104
#> SRR1352507     3  0.2074      0.739 0.000 0.000 0.896 0.000 0.104
#> SRR1383763     1  0.0404      0.884 0.988 0.000 0.000 0.012 0.000
#> SRR1468314     2  0.4508      0.096 0.000 0.648 0.000 0.332 0.020
#> SRR1473674     2  0.0451      0.825 0.000 0.988 0.000 0.008 0.004
#> SRR1390499     1  0.0162      0.886 0.996 0.000 0.000 0.004 0.000
#> SRR821043      4  0.4299      0.543 0.000 0.388 0.000 0.608 0.004
#> SRR1455653     4  0.4299      0.543 0.000 0.388 0.000 0.608 0.004
#> SRR1335236     2  0.0324      0.827 0.000 0.992 0.000 0.004 0.004
#> SRR1095383     2  0.4648     -0.321 0.000 0.524 0.000 0.464 0.012
#> SRR1479489     1  0.3863      0.843 0.836 0.000 0.052 0.072 0.040
#> SRR1310433     2  0.0579      0.826 0.000 0.984 0.000 0.008 0.008
#> SRR1073435     5  0.6158      0.265 0.000 0.000 0.264 0.184 0.552
#> SRR659649      3  0.2951      0.784 0.000 0.000 0.860 0.112 0.028
#> SRR1395999     1  0.5933      0.402 0.524 0.000 0.012 0.076 0.388
#> SRR1105248     4  0.5338     -0.102 0.000 0.000 0.400 0.544 0.056
#> SRR1338257     1  0.5548      0.762 0.712 0.000 0.060 0.076 0.152
#> SRR1499395     3  0.3495      0.788 0.000 0.000 0.812 0.160 0.028
#> SRR1350002     2  0.0566      0.822 0.000 0.984 0.000 0.012 0.004
#> SRR1489757     3  0.2074      0.739 0.000 0.000 0.896 0.000 0.104
#> SRR1414637     5  0.2790      0.822 0.052 0.008 0.008 0.036 0.896
#> SRR1478113     4  0.5082      0.564 0.000 0.220 0.000 0.684 0.096
#> SRR1322477     5  0.2734      0.806 0.076 0.000 0.008 0.028 0.888
#> SRR1478789     3  0.5382      0.717 0.000 0.000 0.656 0.224 0.120
#> SRR1414185     3  0.4133      0.789 0.000 0.000 0.768 0.180 0.052
#> SRR1069141     2  0.0324      0.830 0.000 0.992 0.000 0.004 0.004
#> SRR1376852     1  0.5425      0.343 0.520 0.000 0.000 0.060 0.420
#> SRR1323491     1  0.1270      0.882 0.948 0.000 0.000 0.052 0.000
#> SRR1338103     5  0.2576      0.824 0.056 0.000 0.008 0.036 0.900
#> SRR1472012     5  0.2433      0.825 0.056 0.000 0.012 0.024 0.908
#> SRR1340325     1  0.4712      0.816 0.784 0.000 0.064 0.076 0.076
#> SRR1087321     3  0.4269      0.785 0.000 0.000 0.756 0.188 0.056
#> SRR1488790     1  0.0290      0.886 0.992 0.000 0.000 0.008 0.000
#> SRR1334866     5  0.2983      0.777 0.000 0.000 0.076 0.056 0.868
#> SRR1089446     3  0.3521      0.608 0.000 0.000 0.764 0.004 0.232
#> SRR1344445     3  0.2074      0.739 0.000 0.000 0.896 0.000 0.104
#> SRR1412969     3  0.4238      0.785 0.000 0.000 0.756 0.192 0.052
#> SRR1071668     3  0.2074      0.739 0.000 0.000 0.896 0.000 0.104
#> SRR1075804     1  0.3586      0.839 0.828 0.000 0.000 0.076 0.096
#> SRR1383283     5  0.6464      0.176 0.000 0.004 0.284 0.196 0.516
#> SRR1350239     3  0.5073      0.534 0.000 0.000 0.688 0.212 0.100
#> SRR1353878     1  0.5485      0.765 0.716 0.000 0.056 0.076 0.152
#> SRR1375721     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1083983     5  0.3270      0.791 0.080 0.000 0.020 0.036 0.864
#> SRR1090095     1  0.0162      0.886 0.996 0.000 0.000 0.004 0.000
#> SRR1414792     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.5004      0.564 0.000 0.216 0.000 0.692 0.092
#> SRR1098737     1  0.3791      0.830 0.812 0.000 0.000 0.076 0.112
#> SRR1349409     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     3  0.5073      0.534 0.000 0.000 0.688 0.212 0.100
#> SRR1407179     5  0.5288      0.488 0.000 0.000 0.244 0.100 0.656
#> SRR1095913     3  0.6867      0.650 0.000 0.064 0.568 0.236 0.132
#> SRR1403544     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.2172      0.873 0.908 0.000 0.000 0.076 0.016
#> SRR807971      3  0.2074      0.739 0.000 0.000 0.896 0.000 0.104
#> SRR1436228     5  0.2200      0.809 0.008 0.004 0.032 0.032 0.924
#> SRR1445218     2  0.0579      0.826 0.000 0.984 0.000 0.008 0.008
#> SRR1485438     5  0.5206      0.318 0.000 0.416 0.004 0.036 0.544
#> SRR1358143     1  0.0404      0.884 0.988 0.000 0.000 0.012 0.000
#> SRR1328760     1  0.5275      0.778 0.732 0.000 0.048 0.076 0.144
#> SRR1380806     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.4133      0.789 0.000 0.000 0.768 0.180 0.052
#> SRR1087007     3  0.4168      0.788 0.000 0.000 0.764 0.184 0.052
#> SRR1086256     5  0.3046      0.777 0.000 0.020 0.028 0.076 0.876
#> SRR1346734     4  0.3999      0.587 0.000 0.344 0.000 0.656 0.000
#> SRR1414515     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     5  0.2769      0.817 0.068 0.008 0.004 0.028 0.892
#> SRR1349320     4  0.4520      0.593 0.000 0.284 0.000 0.684 0.032
#> SRR1317554     4  0.4533      0.434 0.000 0.448 0.000 0.544 0.008
#> SRR1076022     2  0.0000      0.830 0.000 1.000 0.000 0.000 0.000
#> SRR1339573     3  0.2951      0.784 0.000 0.000 0.860 0.112 0.028
#> SRR1455878     1  0.6469      0.579 0.584 0.000 0.064 0.076 0.276
#> SRR1446203     3  0.4065      0.788 0.000 0.000 0.772 0.180 0.048
#> SRR1387397     5  0.4146      0.765 0.068 0.000 0.048 0.064 0.820
#> SRR1402590     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.5863      0.722 0.676 0.000 0.060 0.076 0.188
#> SRR1331488     1  0.2006      0.876 0.916 0.000 0.000 0.072 0.012
#> SRR1499675     5  0.4085      0.728 0.008 0.000 0.104 0.084 0.804
#> SRR1440467     3  0.4234      0.787 0.000 0.000 0.760 0.184 0.056
#> SRR807995      2  0.0912      0.806 0.000 0.972 0.000 0.012 0.016
#> SRR1476485     4  0.3999      0.587 0.000 0.344 0.000 0.656 0.000
#> SRR1388214     1  0.5730      0.742 0.692 0.000 0.060 0.076 0.172
#> SRR1456051     1  0.1544      0.879 0.932 0.000 0.000 0.068 0.000
#> SRR1473275     3  0.2020      0.747 0.000 0.000 0.900 0.000 0.100
#> SRR1444083     1  0.5623      0.753 0.704 0.000 0.060 0.076 0.160
#> SRR1313807     3  0.6837      0.528 0.000 0.044 0.488 0.356 0.112
#> SRR1470751     5  0.2673      0.814 0.072 0.008 0.000 0.028 0.892
#> SRR1403434     3  0.4234      0.787 0.000 0.000 0.760 0.184 0.056
#> SRR1390540     1  0.1270      0.882 0.948 0.000 0.000 0.052 0.000
#> SRR1093861     2  0.0162      0.829 0.000 0.996 0.000 0.000 0.004
#> SRR1325290     5  0.2444      0.821 0.068 0.000 0.012 0.016 0.904
#> SRR1070689     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0404      0.884 0.988 0.000 0.000 0.012 0.000
#> SRR1081184     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     5  0.5841      0.416 0.000 0.000 0.256 0.148 0.596
#> SRR1321877     3  0.4269      0.785 0.000 0.000 0.756 0.188 0.056
#> SRR815711      3  0.2179      0.738 0.000 0.000 0.888 0.000 0.112
#> SRR1433476     4  0.5727     -0.235 0.000 0.008 0.384 0.540 0.068
#> SRR1101883     3  0.2074      0.739 0.000 0.000 0.896 0.000 0.104
#> SRR1433729     4  0.5124      0.335 0.000 0.480 0.004 0.488 0.028
#> SRR1341877     5  0.2780      0.816 0.032 0.000 0.032 0.040 0.896
#> SRR1090556     5  0.2342      0.818 0.040 0.000 0.024 0.020 0.916
#> SRR1357389     3  0.1544      0.747 0.000 0.000 0.932 0.000 0.068
#> SRR1404227     3  0.6464      0.373 0.000 0.000 0.476 0.200 0.324
#> SRR1376830     1  0.1341      0.881 0.944 0.000 0.000 0.056 0.000
#> SRR1500661     1  0.0162      0.886 0.996 0.000 0.000 0.004 0.000
#> SRR1080294     2  0.4735     -0.319 0.000 0.524 0.000 0.460 0.016
#> SRR1336314     4  0.3983      0.587 0.000 0.340 0.000 0.660 0.000
#> SRR1102152     1  0.4398      0.829 0.804 0.000 0.052 0.076 0.068
#> SRR1345244     3  0.4199      0.788 0.000 0.000 0.764 0.180 0.056
#> SRR1478637     5  0.2664      0.793 0.000 0.004 0.064 0.040 0.892
#> SRR1443776     3  0.4203      0.787 0.000 0.000 0.760 0.188 0.052
#> SRR1120939     3  0.4101      0.788 0.000 0.000 0.768 0.184 0.048
#> SRR1080117     3  0.4065      0.789 0.000 0.000 0.772 0.180 0.048
#> SRR1102899     2  0.0579      0.826 0.000 0.984 0.000 0.008 0.008
#> SRR1091865     5  0.3700      0.781 0.080 0.000 0.020 0.060 0.840
#> SRR1361072     1  0.3114      0.863 0.872 0.000 0.036 0.076 0.016
#> SRR1487890     1  0.0000      0.886 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.6433      0.683 0.000 0.044 0.604 0.232 0.120
#> SRR1389384     5  0.2527      0.817 0.072 0.004 0.004 0.020 0.900
#> SRR1316096     2  0.0162      0.829 0.000 0.996 0.000 0.004 0.000
#> SRR1408512     5  0.3706      0.779 0.076 0.000 0.020 0.064 0.840
#> SRR1447547     5  0.3319      0.730 0.000 0.000 0.020 0.160 0.820
#> SRR1354053     4  0.4552      0.384 0.000 0.468 0.000 0.524 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.2384     0.8183 0.884 0.000 0.000 0.032 0.000 0.084
#> SRR1349562     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1353376     4  0.4211     0.6862 0.000 0.088 0.004 0.788 0.040 0.080
#> SRR1499040     5  0.4103     0.7519 0.044 0.000 0.116 0.016 0.796 0.028
#> SRR1322312     1  0.4343     0.7853 0.724 0.000 0.004 0.084 0.000 0.188
#> SRR1324412     3  0.1148     0.7297 0.020 0.000 0.960 0.000 0.016 0.004
#> SRR1100991     3  0.1148     0.7297 0.020 0.000 0.960 0.000 0.016 0.004
#> SRR1349479     4  0.5548     0.1733 0.000 0.000 0.108 0.496 0.008 0.388
#> SRR1431248     5  0.1757     0.8390 0.008 0.000 0.000 0.012 0.928 0.052
#> SRR1405054     3  0.4968     0.0573 0.416 0.000 0.532 0.004 0.040 0.008
#> SRR1312266     1  0.2863     0.7592 0.864 0.000 0.000 0.036 0.088 0.012
#> SRR1409790     3  0.0458     0.7423 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1352507     3  0.0458     0.7423 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1383763     1  0.4498     0.7822 0.716 0.000 0.008 0.088 0.000 0.188
#> SRR1468314     2  0.4819     0.3254 0.000 0.648 0.004 0.276 0.004 0.068
#> SRR1473674     2  0.1268     0.7837 0.000 0.952 0.000 0.008 0.004 0.036
#> SRR1390499     1  0.3506     0.8154 0.792 0.000 0.000 0.052 0.000 0.156
#> SRR821043      4  0.3245     0.6606 0.000 0.228 0.000 0.764 0.000 0.008
#> SRR1455653     4  0.3190     0.6691 0.000 0.220 0.000 0.772 0.000 0.008
#> SRR1335236     2  0.0260     0.8026 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1095383     2  0.4873    -0.0714 0.000 0.508 0.000 0.440 0.004 0.048
#> SRR1479489     1  0.2846     0.7655 0.872 0.000 0.080 0.016 0.028 0.004
#> SRR1310433     2  0.0363     0.8043 0.000 0.988 0.000 0.000 0.000 0.012
#> SRR1073435     6  0.5658     0.0425 0.000 0.004 0.080 0.020 0.388 0.508
#> SRR659649      3  0.3647    -0.2765 0.000 0.000 0.640 0.000 0.000 0.360
#> SRR1395999     1  0.4955     0.2485 0.572 0.000 0.004 0.020 0.376 0.028
#> SRR1105248     4  0.6176     0.1133 0.000 0.000 0.204 0.436 0.012 0.348
#> SRR1338257     1  0.4541     0.6958 0.764 0.000 0.092 0.036 0.100 0.008
#> SRR1499395     3  0.4072    -0.5746 0.000 0.000 0.544 0.008 0.000 0.448
#> SRR1350002     2  0.1410     0.7786 0.000 0.944 0.000 0.008 0.004 0.044
#> SRR1489757     3  0.0458     0.7423 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1414637     5  0.1577     0.8332 0.008 0.000 0.000 0.016 0.940 0.036
#> SRR1478113     4  0.4057     0.6730 0.000 0.072 0.004 0.800 0.084 0.040
#> SRR1322477     5  0.2017     0.8238 0.048 0.000 0.004 0.020 0.920 0.008
#> SRR1478789     6  0.4620     0.6615 0.000 0.000 0.368 0.000 0.048 0.584
#> SRR1414185     6  0.4328     0.6937 0.000 0.000 0.460 0.020 0.000 0.520
#> SRR1069141     2  0.0000     0.8063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1376852     5  0.5082     0.2241 0.408 0.000 0.004 0.020 0.536 0.032
#> SRR1323491     1  0.0806     0.8053 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1338103     5  0.2153     0.8340 0.008 0.000 0.004 0.004 0.900 0.084
#> SRR1472012     5  0.1621     0.8386 0.008 0.000 0.004 0.004 0.936 0.048
#> SRR1340325     1  0.3798     0.7351 0.816 0.000 0.096 0.024 0.056 0.008
#> SRR1087321     6  0.4331     0.6943 0.000 0.000 0.464 0.020 0.000 0.516
#> SRR1488790     1  0.2724     0.8191 0.864 0.000 0.000 0.052 0.000 0.084
#> SRR1334866     5  0.1970     0.8163 0.000 0.000 0.000 0.008 0.900 0.092
#> SRR1089446     3  0.2527     0.6470 0.000 0.000 0.876 0.000 0.084 0.040
#> SRR1344445     3  0.0458     0.7423 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1412969     6  0.4442     0.6911 0.000 0.000 0.440 0.020 0.004 0.536
#> SRR1071668     3  0.0458     0.7423 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1075804     1  0.3340     0.7459 0.840 0.000 0.004 0.024 0.100 0.032
#> SRR1383283     6  0.5829     0.2123 0.000 0.004 0.100 0.024 0.340 0.532
#> SRR1350239     3  0.5438     0.4393 0.012 0.000 0.648 0.212 0.016 0.112
#> SRR1353878     1  0.4302     0.7074 0.780 0.000 0.084 0.028 0.100 0.008
#> SRR1375721     1  0.3660     0.8127 0.780 0.000 0.000 0.060 0.000 0.160
#> SRR1083983     5  0.1542     0.8252 0.052 0.000 0.004 0.008 0.936 0.000
#> SRR1090095     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1414792     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1075102     4  0.4012     0.6695 0.000 0.064 0.004 0.804 0.084 0.044
#> SRR1098737     1  0.3370     0.7468 0.840 0.000 0.004 0.028 0.096 0.032
#> SRR1349409     1  0.3660     0.8127 0.780 0.000 0.000 0.060 0.000 0.160
#> SRR1413008     3  0.5438     0.4393 0.012 0.000 0.648 0.212 0.016 0.112
#> SRR1407179     5  0.5084     0.5627 0.000 0.000 0.100 0.012 0.644 0.244
#> SRR1095913     6  0.5823     0.5822 0.000 0.068 0.220 0.020 0.056 0.636
#> SRR1403544     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1490546     1  0.1434     0.7940 0.948 0.000 0.000 0.024 0.020 0.008
#> SRR807971      3  0.0458     0.7423 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1436228     5  0.2194     0.8295 0.004 0.000 0.004 0.004 0.892 0.096
#> SRR1445218     2  0.0363     0.8043 0.000 0.988 0.000 0.000 0.000 0.012
#> SRR1485438     5  0.5300     0.3751 0.000 0.356 0.000 0.016 0.556 0.072
#> SRR1358143     1  0.4343     0.7853 0.724 0.000 0.004 0.084 0.000 0.188
#> SRR1328760     1  0.3980     0.7243 0.804 0.000 0.060 0.028 0.100 0.008
#> SRR1380806     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1379426     6  0.4333     0.6908 0.000 0.000 0.468 0.020 0.000 0.512
#> SRR1087007     6  0.4331     0.6943 0.000 0.000 0.464 0.020 0.000 0.516
#> SRR1086256     5  0.2586     0.8047 0.000 0.004 0.004 0.020 0.876 0.096
#> SRR1346734     4  0.2703     0.7069 0.000 0.172 0.000 0.824 0.004 0.000
#> SRR1414515     1  0.3660     0.8127 0.780 0.000 0.000 0.060 0.000 0.160
#> SRR1082151     5  0.2213     0.8237 0.012 0.000 0.000 0.032 0.908 0.048
#> SRR1349320     4  0.3908     0.7025 0.000 0.140 0.004 0.792 0.024 0.040
#> SRR1317554     4  0.4482     0.2893 0.000 0.416 0.000 0.552 0.000 0.032
#> SRR1076022     2  0.0000     0.8063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1339573     3  0.3647    -0.2802 0.000 0.000 0.640 0.000 0.000 0.360
#> SRR1455878     1  0.5774     0.4383 0.608 0.000 0.080 0.028 0.264 0.020
#> SRR1446203     6  0.4169     0.6779 0.000 0.000 0.456 0.012 0.000 0.532
#> SRR1387397     5  0.4488     0.7327 0.144 0.000 0.036 0.024 0.764 0.032
#> SRR1402590     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1317532     1  0.4995     0.6617 0.732 0.000 0.088 0.028 0.128 0.024
#> SRR1331488     1  0.2182     0.7894 0.916 0.000 0.004 0.032 0.028 0.020
#> SRR1499675     5  0.3403     0.7640 0.004 0.000 0.020 0.004 0.796 0.176
#> SRR1440467     6  0.4533     0.6888 0.000 0.000 0.432 0.020 0.008 0.540
#> SRR807995      2  0.1410     0.7786 0.000 0.944 0.000 0.008 0.004 0.044
#> SRR1476485     4  0.2738     0.7057 0.000 0.176 0.000 0.820 0.004 0.000
#> SRR1388214     1  0.4541     0.6958 0.764 0.000 0.092 0.036 0.100 0.008
#> SRR1456051     1  0.1124     0.8108 0.956 0.000 0.000 0.008 0.000 0.036
#> SRR1473275     3  0.0717     0.7357 0.000 0.000 0.976 0.000 0.016 0.008
#> SRR1444083     1  0.4586     0.6921 0.760 0.000 0.092 0.036 0.104 0.008
#> SRR1313807     6  0.5796     0.5038 0.000 0.072 0.120 0.064 0.056 0.688
#> SRR1470751     5  0.2213     0.8237 0.012 0.000 0.000 0.032 0.908 0.048
#> SRR1403434     6  0.4538     0.6898 0.000 0.000 0.436 0.020 0.008 0.536
#> SRR1390540     1  0.1065     0.8040 0.964 0.000 0.000 0.008 0.008 0.020
#> SRR1093861     2  0.0000     0.8063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1325290     5  0.1007     0.8387 0.008 0.000 0.004 0.004 0.968 0.016
#> SRR1070689     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1384049     1  0.4498     0.7822 0.716 0.000 0.008 0.088 0.000 0.188
#> SRR1081184     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1324295     1  0.3566     0.8147 0.788 0.000 0.000 0.056 0.000 0.156
#> SRR1365313     5  0.5019     0.3022 0.000 0.000 0.048 0.012 0.536 0.404
#> SRR1321877     6  0.4175     0.6940 0.000 0.000 0.464 0.012 0.000 0.524
#> SRR815711      3  0.1794     0.7018 0.000 0.000 0.924 0.000 0.036 0.040
#> SRR1433476     6  0.5917     0.2094 0.000 0.000 0.160 0.332 0.012 0.496
#> SRR1101883     3  0.0603     0.7410 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR1433729     2  0.6194    -0.1361 0.000 0.436 0.004 0.356 0.008 0.196
#> SRR1341877     5  0.2404     0.8291 0.008 0.000 0.004 0.004 0.880 0.104
#> SRR1090556     5  0.2276     0.8349 0.016 0.000 0.004 0.020 0.908 0.052
#> SRR1357389     3  0.0405     0.7335 0.000 0.000 0.988 0.000 0.008 0.004
#> SRR1404227     6  0.5768     0.5132 0.000 0.000 0.220 0.012 0.204 0.564
#> SRR1376830     1  0.2019     0.8180 0.900 0.000 0.000 0.012 0.000 0.088
#> SRR1500661     1  0.3812     0.8163 0.788 0.000 0.004 0.064 0.004 0.140
#> SRR1080294     2  0.5013    -0.0542 0.000 0.508 0.000 0.428 0.004 0.060
#> SRR1336314     4  0.2703     0.7069 0.000 0.172 0.000 0.824 0.004 0.000
#> SRR1102152     1  0.3666     0.7435 0.828 0.000 0.084 0.028 0.052 0.008
#> SRR1345244     6  0.4333     0.6908 0.000 0.000 0.468 0.020 0.000 0.512
#> SRR1478637     5  0.1668     0.8318 0.000 0.000 0.004 0.008 0.928 0.060
#> SRR1443776     6  0.4256     0.6945 0.000 0.000 0.464 0.016 0.000 0.520
#> SRR1120939     6  0.4165     0.6778 0.000 0.000 0.452 0.012 0.000 0.536
#> SRR1080117     6  0.4333     0.6908 0.000 0.000 0.468 0.020 0.000 0.512
#> SRR1102899     2  0.0547     0.8017 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1091865     5  0.2956     0.7912 0.092 0.000 0.004 0.036 0.860 0.008
#> SRR1361072     1  0.2298     0.7847 0.912 0.000 0.032 0.024 0.024 0.008
#> SRR1487890     1  0.3624     0.8134 0.784 0.000 0.000 0.060 0.000 0.156
#> SRR1349456     6  0.5737     0.5986 0.000 0.064 0.248 0.016 0.048 0.624
#> SRR1389384     5  0.1801     0.8304 0.012 0.000 0.004 0.012 0.932 0.040
#> SRR1316096     2  0.0000     0.8063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1408512     5  0.3617     0.7524 0.148 0.000 0.004 0.020 0.804 0.024
#> SRR1447547     5  0.5158     0.6017 0.008 0.000 0.008 0.188 0.668 0.128
#> SRR1354053     4  0.4253     0.1703 0.000 0.460 0.000 0.524 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.970       0.987         0.5021 0.499   0.499
#> 3 3 0.999           0.977       0.989         0.3130 0.781   0.587
#> 4 4 0.817           0.860       0.867         0.0932 0.919   0.769
#> 5 5 0.809           0.697       0.825         0.0621 0.865   0.591
#> 6 6 0.800           0.696       0.823         0.0479 0.924   0.706

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.983 1.000 0.000
#> SRR1349562     1  0.0000      0.983 1.000 0.000
#> SRR1353376     2  0.0000      0.991 0.000 1.000
#> SRR1499040     1  0.0000      0.983 1.000 0.000
#> SRR1322312     1  0.0000      0.983 1.000 0.000
#> SRR1324412     1  0.0000      0.983 1.000 0.000
#> SRR1100991     1  0.0000      0.983 1.000 0.000
#> SRR1349479     2  0.0000      0.991 0.000 1.000
#> SRR1431248     2  0.3114      0.936 0.056 0.944
#> SRR1405054     1  0.0000      0.983 1.000 0.000
#> SRR1312266     1  0.0000      0.983 1.000 0.000
#> SRR1409790     1  0.0000      0.983 1.000 0.000
#> SRR1352507     1  0.0000      0.983 1.000 0.000
#> SRR1383763     1  0.0000      0.983 1.000 0.000
#> SRR1468314     2  0.0000      0.991 0.000 1.000
#> SRR1473674     2  0.0000      0.991 0.000 1.000
#> SRR1390499     1  0.0000      0.983 1.000 0.000
#> SRR821043      2  0.0000      0.991 0.000 1.000
#> SRR1455653     2  0.0000      0.991 0.000 1.000
#> SRR1335236     2  0.0000      0.991 0.000 1.000
#> SRR1095383     2  0.0000      0.991 0.000 1.000
#> SRR1479489     1  0.0000      0.983 1.000 0.000
#> SRR1310433     2  0.0000      0.991 0.000 1.000
#> SRR1073435     2  0.0000      0.991 0.000 1.000
#> SRR659649      2  0.0376      0.987 0.004 0.996
#> SRR1395999     1  0.0000      0.983 1.000 0.000
#> SRR1105248     2  0.0000      0.991 0.000 1.000
#> SRR1338257     1  0.0000      0.983 1.000 0.000
#> SRR1499395     1  0.7299      0.751 0.796 0.204
#> SRR1350002     2  0.0000      0.991 0.000 1.000
#> SRR1489757     1  0.0000      0.983 1.000 0.000
#> SRR1414637     2  0.7056      0.764 0.192 0.808
#> SRR1478113     2  0.0000      0.991 0.000 1.000
#> SRR1322477     1  0.0000      0.983 1.000 0.000
#> SRR1478789     2  0.0000      0.991 0.000 1.000
#> SRR1414185     2  0.0000      0.991 0.000 1.000
#> SRR1069141     2  0.0000      0.991 0.000 1.000
#> SRR1376852     1  0.0000      0.983 1.000 0.000
#> SRR1323491     1  0.0000      0.983 1.000 0.000
#> SRR1338103     1  0.1414      0.965 0.980 0.020
#> SRR1472012     1  0.0000      0.983 1.000 0.000
#> SRR1340325     1  0.0000      0.983 1.000 0.000
#> SRR1087321     2  0.0000      0.991 0.000 1.000
#> SRR1488790     1  0.0000      0.983 1.000 0.000
#> SRR1334866     2  0.0000      0.991 0.000 1.000
#> SRR1089446     1  0.3114      0.931 0.944 0.056
#> SRR1344445     1  0.0000      0.983 1.000 0.000
#> SRR1412969     2  0.0000      0.991 0.000 1.000
#> SRR1071668     1  0.0000      0.983 1.000 0.000
#> SRR1075804     1  0.0000      0.983 1.000 0.000
#> SRR1383283     2  0.0000      0.991 0.000 1.000
#> SRR1350239     2  0.0000      0.991 0.000 1.000
#> SRR1353878     1  0.0000      0.983 1.000 0.000
#> SRR1375721     1  0.0000      0.983 1.000 0.000
#> SRR1083983     1  0.0000      0.983 1.000 0.000
#> SRR1090095     1  0.0000      0.983 1.000 0.000
#> SRR1414792     1  0.0000      0.983 1.000 0.000
#> SRR1075102     2  0.0000      0.991 0.000 1.000
#> SRR1098737     1  0.0000      0.983 1.000 0.000
#> SRR1349409     1  0.0000      0.983 1.000 0.000
#> SRR1413008     2  0.0000      0.991 0.000 1.000
#> SRR1407179     1  0.4562      0.888 0.904 0.096
#> SRR1095913     2  0.0000      0.991 0.000 1.000
#> SRR1403544     1  0.0000      0.983 1.000 0.000
#> SRR1490546     1  0.0000      0.983 1.000 0.000
#> SRR807971      1  0.0000      0.983 1.000 0.000
#> SRR1436228     2  0.0000      0.991 0.000 1.000
#> SRR1445218     2  0.0000      0.991 0.000 1.000
#> SRR1485438     2  0.0000      0.991 0.000 1.000
#> SRR1358143     1  0.0000      0.983 1.000 0.000
#> SRR1328760     1  0.0000      0.983 1.000 0.000
#> SRR1380806     1  0.0000      0.983 1.000 0.000
#> SRR1379426     2  0.0000      0.991 0.000 1.000
#> SRR1087007     2  0.0000      0.991 0.000 1.000
#> SRR1086256     2  0.0000      0.991 0.000 1.000
#> SRR1346734     2  0.0000      0.991 0.000 1.000
#> SRR1414515     1  0.0000      0.983 1.000 0.000
#> SRR1082151     2  0.4690      0.886 0.100 0.900
#> SRR1349320     2  0.0000      0.991 0.000 1.000
#> SRR1317554     2  0.0000      0.991 0.000 1.000
#> SRR1076022     2  0.0000      0.991 0.000 1.000
#> SRR1339573     1  0.9209      0.512 0.664 0.336
#> SRR1455878     1  0.0000      0.983 1.000 0.000
#> SRR1446203     2  0.0000      0.991 0.000 1.000
#> SRR1387397     1  0.0000      0.983 1.000 0.000
#> SRR1402590     1  0.0000      0.983 1.000 0.000
#> SRR1317532     1  0.0000      0.983 1.000 0.000
#> SRR1331488     1  0.0000      0.983 1.000 0.000
#> SRR1499675     1  0.9608      0.388 0.616 0.384
#> SRR1440467     2  0.0000      0.991 0.000 1.000
#> SRR807995      2  0.0000      0.991 0.000 1.000
#> SRR1476485     2  0.0000      0.991 0.000 1.000
#> SRR1388214     1  0.0000      0.983 1.000 0.000
#> SRR1456051     1  0.0000      0.983 1.000 0.000
#> SRR1473275     1  0.0000      0.983 1.000 0.000
#> SRR1444083     1  0.0000      0.983 1.000 0.000
#> SRR1313807     2  0.0000      0.991 0.000 1.000
#> SRR1470751     2  0.7139      0.761 0.196 0.804
#> SRR1403434     2  0.0000      0.991 0.000 1.000
#> SRR1390540     1  0.0000      0.983 1.000 0.000
#> SRR1093861     2  0.0000      0.991 0.000 1.000
#> SRR1325290     1  0.0000      0.983 1.000 0.000
#> SRR1070689     1  0.0000      0.983 1.000 0.000
#> SRR1384049     1  0.0000      0.983 1.000 0.000
#> SRR1081184     1  0.0000      0.983 1.000 0.000
#> SRR1324295     1  0.0000      0.983 1.000 0.000
#> SRR1365313     2  0.0000      0.991 0.000 1.000
#> SRR1321877     2  0.0000      0.991 0.000 1.000
#> SRR815711      1  0.0000      0.983 1.000 0.000
#> SRR1433476     2  0.0000      0.991 0.000 1.000
#> SRR1101883     1  0.0000      0.983 1.000 0.000
#> SRR1433729     2  0.0000      0.991 0.000 1.000
#> SRR1341877     1  0.0000      0.983 1.000 0.000
#> SRR1090556     1  0.0000      0.983 1.000 0.000
#> SRR1357389     1  0.0000      0.983 1.000 0.000
#> SRR1404227     2  0.0000      0.991 0.000 1.000
#> SRR1376830     1  0.0000      0.983 1.000 0.000
#> SRR1500661     1  0.0000      0.983 1.000 0.000
#> SRR1080294     2  0.0000      0.991 0.000 1.000
#> SRR1336314     2  0.0000      0.991 0.000 1.000
#> SRR1102152     1  0.0000      0.983 1.000 0.000
#> SRR1345244     2  0.0000      0.991 0.000 1.000
#> SRR1478637     2  0.0000      0.991 0.000 1.000
#> SRR1443776     2  0.0000      0.991 0.000 1.000
#> SRR1120939     2  0.0000      0.991 0.000 1.000
#> SRR1080117     2  0.0000      0.991 0.000 1.000
#> SRR1102899     2  0.0000      0.991 0.000 1.000
#> SRR1091865     1  0.0000      0.983 1.000 0.000
#> SRR1361072     1  0.0000      0.983 1.000 0.000
#> SRR1487890     1  0.0000      0.983 1.000 0.000
#> SRR1349456     2  0.0000      0.991 0.000 1.000
#> SRR1389384     1  0.5294      0.858 0.880 0.120
#> SRR1316096     2  0.0000      0.991 0.000 1.000
#> SRR1408512     1  0.0000      0.983 1.000 0.000
#> SRR1447547     2  0.0000      0.991 0.000 1.000
#> SRR1354053     2  0.0000      0.991 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.989 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1499040     1  0.2796      0.894 0.908 0.000 0.092
#> SRR1322312     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1324412     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1100991     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1349479     2  0.0592      0.977 0.000 0.988 0.012
#> SRR1431248     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1405054     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1312266     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1409790     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1352507     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1383763     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1468314     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1473674     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1390499     1  0.0000      0.989 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.985 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1335236     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1095383     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1310433     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1073435     2  0.0000      0.985 0.000 1.000 0.000
#> SRR659649      3  0.0000      0.994 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1105248     2  0.1411      0.956 0.000 0.964 0.036
#> SRR1338257     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1350002     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1489757     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1414637     2  0.0237      0.982 0.004 0.996 0.000
#> SRR1478113     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1322477     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1478789     3  0.1411      0.961 0.000 0.036 0.964
#> SRR1414185     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1069141     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1376852     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1338103     1  0.1411      0.954 0.964 0.036 0.000
#> SRR1472012     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1340325     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1334866     2  0.0424      0.980 0.000 0.992 0.008
#> SRR1089446     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1344445     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1412969     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1071668     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1075804     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1383283     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1350239     3  0.2537      0.914 0.000 0.080 0.920
#> SRR1353878     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1083983     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1090095     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1098737     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1413008     3  0.2537      0.914 0.000 0.080 0.920
#> SRR1407179     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1095913     2  0.0237      0.983 0.000 0.996 0.004
#> SRR1403544     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.989 1.000 0.000 0.000
#> SRR807971      3  0.0000      0.994 0.000 0.000 1.000
#> SRR1436228     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1445218     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1485438     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1358143     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1086256     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1346734     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1082151     2  0.0592      0.975 0.012 0.988 0.000
#> SRR1349320     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1076022     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1339573     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1455878     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1446203     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1387397     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1331488     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1499675     1  0.7067      0.349 0.596 0.028 0.376
#> SRR1440467     3  0.0000      0.994 0.000 0.000 1.000
#> SRR807995      2  0.0000      0.985 0.000 1.000 0.000
#> SRR1476485     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1473275     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1444083     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1313807     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1470751     2  0.0747      0.971 0.016 0.984 0.000
#> SRR1403434     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1093861     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1325290     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1070689     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1365313     2  0.4291      0.783 0.000 0.820 0.180
#> SRR1321877     3  0.0000      0.994 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.994 0.000 0.000 1.000
#> SRR1433476     2  0.1529      0.953 0.000 0.960 0.040
#> SRR1101883     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1433729     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1341877     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1090556     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1357389     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1404227     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1080294     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1336314     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1102152     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1345244     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1478637     2  0.3267      0.872 0.000 0.884 0.116
#> SRR1443776     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.994 0.000 0.000 1.000
#> SRR1102899     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1091865     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1349456     2  0.4555      0.761 0.000 0.800 0.200
#> SRR1389384     1  0.2625      0.902 0.916 0.084 0.000
#> SRR1316096     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1408512     1  0.0000      0.989 1.000 0.000 0.000
#> SRR1447547     2  0.0000      0.985 0.000 1.000 0.000
#> SRR1354053     2  0.0000      0.985 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1499040     1  0.5166     0.7583 0.756 0.012 0.044 0.188
#> SRR1322312     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1100991     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1349479     4  0.4252     0.7912 0.000 0.252 0.004 0.744
#> SRR1431248     4  0.3610     0.5354 0.000 0.200 0.000 0.800
#> SRR1405054     1  0.2944     0.8426 0.868 0.000 0.128 0.004
#> SRR1312266     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1409790     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1352507     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1383763     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1468314     4  0.4972     0.7815 0.000 0.456 0.000 0.544
#> SRR1473674     2  0.0469     0.7713 0.000 0.988 0.000 0.012
#> SRR1390499     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR821043      4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1455653     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1335236     2  0.0592     0.7697 0.000 0.984 0.000 0.016
#> SRR1095383     4  0.4961     0.7912 0.000 0.448 0.000 0.552
#> SRR1479489     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.1022     0.7571 0.000 0.968 0.000 0.032
#> SRR1073435     4  0.4933     0.7903 0.000 0.432 0.000 0.568
#> SRR659649      3  0.0336     0.9333 0.000 0.000 0.992 0.008
#> SRR1395999     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.5018     0.8606 0.000 0.332 0.012 0.656
#> SRR1338257     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1499395     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1350002     2  0.0336     0.7725 0.000 0.992 0.000 0.008
#> SRR1489757     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1414637     2  0.3649     0.7244 0.000 0.796 0.000 0.204
#> SRR1478113     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1322477     1  0.4549     0.7752 0.776 0.036 0.000 0.188
#> SRR1478789     2  0.6545     0.5056 0.000 0.632 0.216 0.152
#> SRR1414185     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1069141     2  0.0921     0.7613 0.000 0.972 0.000 0.028
#> SRR1376852     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.4994     0.7377 0.744 0.048 0.000 0.208
#> SRR1472012     1  0.4137     0.7808 0.780 0.012 0.000 0.208
#> SRR1340325     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1488790     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.4781     0.6374 0.000 0.660 0.004 0.336
#> SRR1089446     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1344445     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1412969     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1071668     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1075804     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1383283     4  0.4933     0.7903 0.000 0.432 0.000 0.568
#> SRR1350239     4  0.4897     0.4958 0.000 0.008 0.332 0.660
#> SRR1353878     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1375721     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.3172     0.8371 0.840 0.000 0.000 0.160
#> SRR1090095     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1098737     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.4897     0.4958 0.000 0.008 0.332 0.660
#> SRR1407179     3  0.1792     0.9303 0.000 0.000 0.932 0.068
#> SRR1095913     2  0.1042     0.7651 0.000 0.972 0.008 0.020
#> SRR1403544     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR807971      3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1436228     2  0.3726     0.7223 0.000 0.788 0.000 0.212
#> SRR1445218     2  0.1022     0.7571 0.000 0.968 0.000 0.032
#> SRR1485438     2  0.3649     0.7244 0.000 0.796 0.000 0.204
#> SRR1358143     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1380806     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1087007     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1086256     2  0.0817     0.7739 0.000 0.976 0.000 0.024
#> SRR1346734     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1414515     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.4356     0.6573 0.000 0.708 0.000 0.292
#> SRR1349320     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1317554     4  0.4661     0.8657 0.000 0.348 0.000 0.652
#> SRR1076022     2  0.0707     0.7676 0.000 0.980 0.000 0.020
#> SRR1339573     3  0.2408     0.9354 0.000 0.000 0.896 0.104
#> SRR1455878     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.2281     0.9361 0.000 0.000 0.904 0.096
#> SRR1387397     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1402590     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1331488     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1499675     1  0.8785     0.0886 0.416 0.136 0.088 0.360
#> SRR1440467     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR807995      2  0.0188     0.7739 0.000 0.996 0.000 0.004
#> SRR1476485     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1388214     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1456051     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1444083     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1313807     4  0.4605     0.7173 0.000 0.336 0.000 0.664
#> SRR1470751     2  0.4356     0.6573 0.000 0.708 0.000 0.292
#> SRR1403434     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1390540     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.0707     0.7676 0.000 0.980 0.000 0.020
#> SRR1325290     1  0.4253     0.7776 0.776 0.016 0.000 0.208
#> SRR1070689     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.4919     0.6643 0.000 0.752 0.048 0.200
#> SRR1321877     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR815711      3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1433476     4  0.3908     0.7455 0.000 0.212 0.004 0.784
#> SRR1101883     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1433729     4  0.4961     0.7912 0.000 0.448 0.000 0.552
#> SRR1341877     1  0.3351     0.8434 0.844 0.008 0.000 0.148
#> SRR1090556     1  0.1474     0.9251 0.948 0.000 0.000 0.052
#> SRR1357389     3  0.0188     0.9321 0.000 0.000 0.996 0.004
#> SRR1404227     3  0.5293     0.8086 0.000 0.100 0.748 0.152
#> SRR1376830     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1080294     4  0.4961     0.7912 0.000 0.448 0.000 0.552
#> SRR1336314     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1102152     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1345244     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1478637     2  0.3870     0.7221 0.000 0.788 0.004 0.208
#> SRR1443776     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1120939     3  0.2281     0.9361 0.000 0.000 0.904 0.096
#> SRR1080117     3  0.2760     0.9323 0.000 0.000 0.872 0.128
#> SRR1102899     2  0.1022     0.7571 0.000 0.968 0.000 0.032
#> SRR1091865     1  0.3695     0.8277 0.828 0.016 0.000 0.156
#> SRR1361072     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9583 1.000 0.000 0.000 0.000
#> SRR1349456     2  0.4197     0.6745 0.000 0.808 0.036 0.156
#> SRR1389384     2  0.7159     0.4510 0.260 0.552 0.000 0.188
#> SRR1316096     2  0.0921     0.7613 0.000 0.972 0.000 0.028
#> SRR1408512     1  0.0188     0.9567 0.996 0.000 0.000 0.004
#> SRR1447547     4  0.4643     0.8670 0.000 0.344 0.000 0.656
#> SRR1354053     4  0.4661     0.8657 0.000 0.348 0.000 0.652

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0162     0.9344 0.996 0.000 0.004 0.000 0.000
#> SRR1349562     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1499040     5  0.5234     0.2635 0.436 0.036 0.004 0.000 0.524
#> SRR1322312     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1100991     2  0.0162     0.9019 0.000 0.996 0.004 0.000 0.000
#> SRR1349479     4  0.2127     0.6363 0.000 0.000 0.108 0.892 0.000
#> SRR1431248     5  0.2623     0.6177 0.004 0.000 0.016 0.096 0.884
#> SRR1405054     2  0.4173     0.3922 0.300 0.688 0.012 0.000 0.000
#> SRR1312266     1  0.0865     0.9235 0.972 0.000 0.004 0.000 0.024
#> SRR1409790     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1352507     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1383763     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1468314     4  0.2612     0.7029 0.000 0.000 0.124 0.868 0.008
#> SRR1473674     4  0.6701     0.4246 0.000 0.000 0.272 0.428 0.300
#> SRR1390499     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1455653     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1335236     4  0.6706     0.4283 0.000 0.000 0.284 0.428 0.288
#> SRR1095383     4  0.2280     0.7053 0.000 0.000 0.120 0.880 0.000
#> SRR1479489     1  0.0404     0.9321 0.988 0.000 0.012 0.000 0.000
#> SRR1310433     4  0.6638     0.4521 0.000 0.000 0.272 0.452 0.276
#> SRR1073435     4  0.3975     0.6736 0.000 0.000 0.144 0.792 0.064
#> SRR659649      3  0.4307     0.4401 0.000 0.496 0.504 0.000 0.000
#> SRR1395999     1  0.0290     0.9335 0.992 0.000 0.008 0.000 0.000
#> SRR1105248     4  0.0955     0.6906 0.000 0.004 0.028 0.968 0.000
#> SRR1338257     1  0.1106     0.9207 0.964 0.000 0.012 0.000 0.024
#> SRR1499395     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1350002     4  0.6718     0.4122 0.000 0.000 0.272 0.420 0.308
#> SRR1489757     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1414637     5  0.3704     0.6136 0.000 0.000 0.092 0.088 0.820
#> SRR1478113     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1322477     5  0.4288     0.4046 0.384 0.000 0.004 0.000 0.612
#> SRR1478789     3  0.0451     0.5256 0.000 0.004 0.988 0.000 0.008
#> SRR1414185     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1069141     4  0.6672     0.4404 0.000 0.000 0.272 0.440 0.288
#> SRR1376852     1  0.2648     0.7937 0.848 0.000 0.000 0.000 0.152
#> SRR1323491     1  0.0162     0.9344 0.996 0.000 0.004 0.000 0.000
#> SRR1338103     5  0.4736     0.4902 0.312 0.000 0.028 0.004 0.656
#> SRR1472012     5  0.4329     0.4938 0.312 0.000 0.016 0.000 0.672
#> SRR1340325     1  0.0404     0.9321 0.988 0.000 0.012 0.000 0.000
#> SRR1087321     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1488790     1  0.0162     0.9344 0.996 0.000 0.004 0.000 0.000
#> SRR1334866     5  0.2966     0.6295 0.000 0.000 0.184 0.000 0.816
#> SRR1089446     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1344445     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1412969     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1071668     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1075804     1  0.1121     0.9064 0.956 0.000 0.000 0.000 0.044
#> SRR1383283     4  0.3386     0.6943 0.000 0.000 0.128 0.832 0.040
#> SRR1350239     4  0.4273    -0.0128 0.000 0.448 0.000 0.552 0.000
#> SRR1353878     1  0.1106     0.9207 0.964 0.000 0.012 0.000 0.024
#> SRR1375721     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.4552    -0.0536 0.524 0.000 0.008 0.000 0.468
#> SRR1090095     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1098737     1  0.1121     0.9064 0.956 0.000 0.000 0.000 0.044
#> SRR1349409     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.4273    -0.0128 0.000 0.448 0.000 0.552 0.000
#> SRR1407179     2  0.6631     0.0164 0.000 0.440 0.324 0.000 0.236
#> SRR1095913     3  0.6271    -0.4985 0.000 0.000 0.440 0.412 0.148
#> SRR1403544     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0290     0.9335 0.992 0.000 0.008 0.000 0.000
#> SRR807971      2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1436228     5  0.2270     0.6394 0.000 0.000 0.076 0.020 0.904
#> SRR1445218     4  0.6638     0.4521 0.000 0.000 0.272 0.452 0.276
#> SRR1485438     5  0.4786     0.5299 0.000 0.000 0.188 0.092 0.720
#> SRR1358143     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.1106     0.9207 0.964 0.000 0.012 0.000 0.024
#> SRR1380806     1  0.0162     0.9341 0.996 0.000 0.004 0.000 0.000
#> SRR1379426     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1087007     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1086256     4  0.6686     0.4202 0.000 0.000 0.256 0.428 0.316
#> SRR1346734     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     5  0.4334     0.5880 0.000 0.000 0.140 0.092 0.768
#> SRR1349320     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1317554     4  0.1608     0.7097 0.000 0.000 0.072 0.928 0.000
#> SRR1076022     4  0.6672     0.4404 0.000 0.000 0.272 0.440 0.288
#> SRR1339573     3  0.3999     0.7288 0.000 0.344 0.656 0.000 0.000
#> SRR1455878     1  0.1877     0.8902 0.924 0.000 0.012 0.000 0.064
#> SRR1446203     3  0.4524     0.7248 0.000 0.336 0.644 0.000 0.020
#> SRR1387397     1  0.3403     0.7726 0.820 0.008 0.012 0.000 0.160
#> SRR1402590     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.1331     0.9093 0.952 0.000 0.008 0.000 0.040
#> SRR1331488     1  0.0162     0.9344 0.996 0.000 0.004 0.000 0.000
#> SRR1499675     3  0.6948    -0.1875 0.244 0.000 0.384 0.008 0.364
#> SRR1440467     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR807995      4  0.6758     0.3609 0.000 0.000 0.272 0.392 0.336
#> SRR1476485     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1388214     1  0.1106     0.9207 0.964 0.000 0.012 0.000 0.024
#> SRR1456051     1  0.0290     0.9335 0.992 0.000 0.008 0.000 0.000
#> SRR1473275     2  0.0703     0.8760 0.000 0.976 0.024 0.000 0.000
#> SRR1444083     1  0.1106     0.9207 0.964 0.000 0.012 0.000 0.024
#> SRR1313807     4  0.3574     0.6825 0.000 0.000 0.168 0.804 0.028
#> SRR1470751     5  0.4334     0.5880 0.000 0.000 0.140 0.092 0.768
#> SRR1403434     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1390540     1  0.0162     0.9344 0.996 0.000 0.004 0.000 0.000
#> SRR1093861     4  0.6672     0.4404 0.000 0.000 0.272 0.440 0.288
#> SRR1325290     5  0.4066     0.4752 0.324 0.000 0.004 0.000 0.672
#> SRR1070689     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     3  0.4009     0.0805 0.000 0.000 0.684 0.004 0.312
#> SRR1321877     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR815711      2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1433476     4  0.3039     0.5511 0.000 0.000 0.192 0.808 0.000
#> SRR1101883     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1433729     4  0.2280     0.7053 0.000 0.000 0.120 0.880 0.000
#> SRR1341877     1  0.5852     0.2279 0.556 0.000 0.116 0.000 0.328
#> SRR1090556     1  0.4851     0.4171 0.624 0.000 0.036 0.000 0.340
#> SRR1357389     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> SRR1404227     3  0.5038     0.5876 0.000 0.132 0.704 0.000 0.164
#> SRR1376830     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1080294     4  0.2280     0.7053 0.000 0.000 0.120 0.880 0.000
#> SRR1336314     4  0.0000     0.7051 0.000 0.000 0.000 1.000 0.000
#> SRR1102152     1  0.1106     0.9207 0.964 0.000 0.012 0.000 0.024
#> SRR1345244     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1478637     5  0.2676     0.6460 0.000 0.000 0.080 0.036 0.884
#> SRR1443776     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1120939     3  0.4524     0.7248 0.000 0.336 0.644 0.000 0.020
#> SRR1080117     3  0.3857     0.7599 0.000 0.312 0.688 0.000 0.000
#> SRR1102899     4  0.6638     0.4521 0.000 0.000 0.272 0.452 0.276
#> SRR1091865     1  0.4644    -0.0385 0.528 0.000 0.012 0.000 0.460
#> SRR1361072     1  0.0404     0.9321 0.988 0.000 0.012 0.000 0.000
#> SRR1487890     1  0.0000     0.9350 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.1124     0.5064 0.000 0.000 0.960 0.004 0.036
#> SRR1389384     5  0.4113     0.6434 0.076 0.000 0.140 0.000 0.784
#> SRR1316096     4  0.6661     0.4445 0.000 0.000 0.272 0.444 0.284
#> SRR1408512     1  0.2843     0.8119 0.848 0.000 0.008 0.000 0.144
#> SRR1447547     4  0.0290     0.7013 0.000 0.000 0.000 0.992 0.008
#> SRR1354053     4  0.1851     0.7092 0.000 0.000 0.088 0.912 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0458     0.9015 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1349562     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.0000     0.7339 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1499040     5  0.7425     0.3931 0.264 0.268 0.124 0.000 0.344 0.000
#> SRR1322312     1  0.0146     0.9029 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1324412     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1100991     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1349479     4  0.2738     0.5945 0.000 0.004 0.000 0.820 0.000 0.176
#> SRR1431248     5  0.4243     0.5634 0.000 0.104 0.028 0.096 0.772 0.000
#> SRR1405054     3  0.1910     0.7913 0.108 0.000 0.892 0.000 0.000 0.000
#> SRR1312266     1  0.2122     0.8668 0.912 0.040 0.008 0.000 0.040 0.000
#> SRR1409790     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1352507     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1383763     1  0.0790     0.8883 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR1468314     4  0.3717     0.4100 0.000 0.384 0.000 0.616 0.000 0.000
#> SRR1473674     2  0.3290     0.5921 0.000 0.744 0.004 0.252 0.000 0.000
#> SRR1390499     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.1007     0.7232 0.000 0.044 0.000 0.956 0.000 0.000
#> SRR1455653     4  0.1267     0.7171 0.000 0.060 0.000 0.940 0.000 0.000
#> SRR1335236     2  0.3309     0.5827 0.000 0.720 0.000 0.280 0.000 0.000
#> SRR1095383     4  0.3563     0.5037 0.000 0.336 0.000 0.664 0.000 0.000
#> SRR1479489     1  0.0363     0.9030 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1310433     2  0.3351     0.5751 0.000 0.712 0.000 0.288 0.000 0.000
#> SRR1073435     4  0.5871     0.3515 0.000 0.312 0.000 0.468 0.220 0.000
#> SRR659649      6  0.2664     0.7319 0.000 0.000 0.184 0.000 0.000 0.816
#> SRR1395999     1  0.0508     0.9022 0.984 0.000 0.004 0.000 0.012 0.000
#> SRR1105248     4  0.0551     0.7287 0.000 0.004 0.000 0.984 0.004 0.008
#> SRR1338257     1  0.2122     0.8660 0.912 0.040 0.008 0.000 0.040 0.000
#> SRR1499395     6  0.0000     0.9272 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1350002     2  0.3678     0.5925 0.000 0.748 0.016 0.228 0.008 0.000
#> SRR1489757     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1414637     2  0.5638    -0.0157 0.000 0.548 0.096 0.024 0.332 0.000
#> SRR1478113     4  0.0291     0.7318 0.000 0.004 0.000 0.992 0.004 0.000
#> SRR1322477     5  0.7354     0.3970 0.236 0.304 0.096 0.004 0.360 0.000
#> SRR1478789     6  0.1958     0.8237 0.000 0.100 0.000 0.000 0.004 0.896
#> SRR1414185     6  0.0146     0.9270 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1069141     2  0.3351     0.5751 0.000 0.712 0.000 0.288 0.000 0.000
#> SRR1376852     1  0.3672     0.3686 0.632 0.000 0.000 0.000 0.368 0.000
#> SRR1323491     1  0.0458     0.9015 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1338103     5  0.1265     0.6183 0.044 0.008 0.000 0.000 0.948 0.000
#> SRR1472012     5  0.3206     0.6155 0.048 0.108 0.008 0.000 0.836 0.000
#> SRR1340325     1  0.0777     0.8984 0.972 0.000 0.004 0.000 0.024 0.000
#> SRR1087321     6  0.0000     0.9272 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1488790     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1334866     2  0.6003    -0.2385 0.000 0.444 0.064 0.000 0.428 0.064
#> SRR1089446     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1344445     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1412969     6  0.0146     0.9270 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1071668     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1075804     1  0.2933     0.7095 0.796 0.000 0.004 0.000 0.200 0.000
#> SRR1383283     4  0.4775     0.4609 0.000 0.348 0.000 0.588 0.064 0.000
#> SRR1350239     4  0.3830     0.4282 0.000 0.008 0.280 0.704 0.004 0.004
#> SRR1353878     1  0.2122     0.8660 0.912 0.040 0.008 0.000 0.040 0.000
#> SRR1375721     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.6698    -0.3716 0.396 0.156 0.064 0.000 0.384 0.000
#> SRR1090095     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.0291     0.7318 0.000 0.004 0.000 0.992 0.004 0.000
#> SRR1098737     1  0.2964     0.7131 0.792 0.000 0.004 0.000 0.204 0.000
#> SRR1349409     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.3830     0.4282 0.000 0.008 0.280 0.704 0.004 0.004
#> SRR1407179     5  0.4002     0.3999 0.000 0.000 0.260 0.000 0.704 0.036
#> SRR1095913     2  0.5539     0.3679 0.000 0.548 0.000 0.272 0.000 0.180
#> SRR1403544     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0858     0.8971 0.968 0.000 0.004 0.000 0.028 0.000
#> SRR807971      3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1436228     5  0.3420     0.4508 0.000 0.240 0.012 0.000 0.748 0.000
#> SRR1445218     2  0.3351     0.5751 0.000 0.712 0.000 0.288 0.000 0.000
#> SRR1485438     2  0.4832     0.2379 0.000 0.696 0.080 0.024 0.200 0.000
#> SRR1358143     1  0.0146     0.9029 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1328760     1  0.2051     0.8689 0.916 0.036 0.008 0.000 0.040 0.000
#> SRR1380806     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1379426     6  0.0146     0.9270 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1087007     6  0.0000     0.9272 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1086256     2  0.3773     0.5853 0.000 0.752 0.000 0.204 0.044 0.000
#> SRR1346734     4  0.0000     0.7339 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082151     2  0.5617     0.0712 0.000 0.628 0.104 0.048 0.220 0.000
#> SRR1349320     4  0.0000     0.7339 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1317554     4  0.3309     0.5669 0.000 0.280 0.000 0.720 0.000 0.000
#> SRR1076022     2  0.3309     0.5827 0.000 0.720 0.000 0.280 0.000 0.000
#> SRR1339573     6  0.0865     0.9057 0.000 0.000 0.036 0.000 0.000 0.964
#> SRR1455878     1  0.4074     0.5004 0.656 0.016 0.004 0.000 0.324 0.000
#> SRR1446203     6  0.2003     0.8819 0.000 0.000 0.044 0.000 0.044 0.912
#> SRR1387397     5  0.4537    -0.0474 0.484 0.004 0.024 0.000 0.488 0.000
#> SRR1402590     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.2738     0.7560 0.820 0.000 0.004 0.000 0.176 0.000
#> SRR1331488     1  0.0547     0.9010 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1499675     5  0.3459     0.5725 0.044 0.008 0.000 0.004 0.820 0.124
#> SRR1440467     6  0.0146     0.9270 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR807995      2  0.3678     0.5925 0.000 0.748 0.016 0.228 0.008 0.000
#> SRR1476485     4  0.0000     0.7339 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388214     1  0.2190     0.8644 0.908 0.040 0.008 0.000 0.044 0.000
#> SRR1456051     1  0.0692     0.8998 0.976 0.000 0.004 0.000 0.020 0.000
#> SRR1473275     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1444083     1  0.2122     0.8660 0.912 0.040 0.008 0.000 0.040 0.000
#> SRR1313807     4  0.4765     0.4665 0.000 0.352 0.000 0.592 0.052 0.004
#> SRR1470751     2  0.5773     0.0443 0.000 0.612 0.104 0.056 0.228 0.000
#> SRR1403434     6  0.0146     0.9270 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1390540     1  0.0458     0.9015 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1093861     2  0.3309     0.5827 0.000 0.720 0.000 0.280 0.000 0.000
#> SRR1325290     5  0.4574     0.5704 0.036 0.172 0.060 0.000 0.732 0.000
#> SRR1070689     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0632     0.8935 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1081184     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     2  0.5834     0.1024 0.000 0.468 0.000 0.000 0.328 0.204
#> SRR1321877     6  0.0000     0.9272 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815711      3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1433476     4  0.2838     0.5875 0.000 0.004 0.000 0.808 0.000 0.188
#> SRR1101883     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1433729     4  0.3578     0.4979 0.000 0.340 0.000 0.660 0.000 0.000
#> SRR1341877     5  0.3210     0.5968 0.168 0.000 0.000 0.000 0.804 0.028
#> SRR1090556     5  0.2805     0.5808 0.184 0.000 0.004 0.000 0.812 0.000
#> SRR1357389     3  0.1910     0.9852 0.000 0.000 0.892 0.000 0.000 0.108
#> SRR1404227     6  0.4493     0.4394 0.000 0.040 0.000 0.000 0.364 0.596
#> SRR1376830     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.0363     0.8996 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1080294     4  0.3578     0.4979 0.000 0.340 0.000 0.660 0.000 0.000
#> SRR1336314     4  0.0000     0.7339 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1102152     1  0.2009     0.8677 0.916 0.040 0.004 0.000 0.040 0.000
#> SRR1345244     6  0.0000     0.9272 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1478637     5  0.5497     0.2212 0.000 0.392 0.092 0.012 0.504 0.000
#> SRR1443776     6  0.0000     0.9272 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1120939     6  0.2070     0.8795 0.000 0.000 0.044 0.000 0.048 0.908
#> SRR1080117     6  0.0146     0.9270 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1102899     2  0.3371     0.5690 0.000 0.708 0.000 0.292 0.000 0.000
#> SRR1091865     1  0.7257    -0.2836 0.384 0.264 0.104 0.000 0.248 0.000
#> SRR1361072     1  0.0935     0.8956 0.964 0.000 0.004 0.000 0.032 0.000
#> SRR1487890     1  0.0000     0.9043 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349456     6  0.4145     0.6430 0.000 0.220 0.000 0.004 0.052 0.724
#> SRR1389384     2  0.5390    -0.0157 0.020 0.612 0.104 0.000 0.264 0.000
#> SRR1316096     2  0.3330     0.5791 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1408512     1  0.4426     0.3754 0.596 0.020 0.008 0.000 0.376 0.000
#> SRR1447547     4  0.0508     0.7279 0.000 0.012 0.000 0.984 0.004 0.000
#> SRR1354053     4  0.3446     0.5379 0.000 0.308 0.000 0.692 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.949           0.946       0.969         0.4923 0.503   0.503
#> 3 3 0.879           0.909       0.961         0.3032 0.737   0.532
#> 4 4 0.733           0.734       0.869         0.1543 0.898   0.717
#> 5 5 0.703           0.576       0.784         0.0488 0.938   0.776
#> 6 6 0.822           0.772       0.893         0.0531 0.874   0.527

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.978 1.000 0.000
#> SRR1349562     1  0.0000      0.978 1.000 0.000
#> SRR1353376     2  0.0000      0.959 0.000 1.000
#> SRR1499040     1  0.1414      0.963 0.980 0.020
#> SRR1322312     1  0.0000      0.978 1.000 0.000
#> SRR1324412     1  0.8386      0.629 0.732 0.268
#> SRR1100991     1  0.3584      0.920 0.932 0.068
#> SRR1349479     2  0.0000      0.959 0.000 1.000
#> SRR1431248     2  0.9977      0.152 0.472 0.528
#> SRR1405054     1  0.0000      0.978 1.000 0.000
#> SRR1312266     1  0.0000      0.978 1.000 0.000
#> SRR1409790     2  0.5294      0.900 0.120 0.880
#> SRR1352507     2  0.3733      0.941 0.072 0.928
#> SRR1383763     1  0.0000      0.978 1.000 0.000
#> SRR1468314     2  0.0000      0.959 0.000 1.000
#> SRR1473674     2  0.0000      0.959 0.000 1.000
#> SRR1390499     1  0.0000      0.978 1.000 0.000
#> SRR821043      2  0.0000      0.959 0.000 1.000
#> SRR1455653     2  0.0000      0.959 0.000 1.000
#> SRR1335236     2  0.0000      0.959 0.000 1.000
#> SRR1095383     2  0.0000      0.959 0.000 1.000
#> SRR1479489     1  0.0000      0.978 1.000 0.000
#> SRR1310433     2  0.0000      0.959 0.000 1.000
#> SRR1073435     2  0.0000      0.959 0.000 1.000
#> SRR659649      2  0.3733      0.941 0.072 0.928
#> SRR1395999     1  0.0000      0.978 1.000 0.000
#> SRR1105248     2  0.0000      0.959 0.000 1.000
#> SRR1338257     1  0.0000      0.978 1.000 0.000
#> SRR1499395     2  0.3733      0.941 0.072 0.928
#> SRR1350002     2  0.0000      0.959 0.000 1.000
#> SRR1489757     2  0.4562      0.923 0.096 0.904
#> SRR1414637     1  0.7299      0.749 0.796 0.204
#> SRR1478113     2  0.2948      0.931 0.052 0.948
#> SRR1322477     1  0.1633      0.960 0.976 0.024
#> SRR1478789     2  0.0000      0.959 0.000 1.000
#> SRR1414185     2  0.3733      0.941 0.072 0.928
#> SRR1069141     2  0.0000      0.959 0.000 1.000
#> SRR1376852     1  0.0000      0.978 1.000 0.000
#> SRR1323491     1  0.0000      0.978 1.000 0.000
#> SRR1338103     1  0.6343      0.809 0.840 0.160
#> SRR1472012     1  0.0672      0.972 0.992 0.008
#> SRR1340325     1  0.0000      0.978 1.000 0.000
#> SRR1087321     2  0.0000      0.959 0.000 1.000
#> SRR1488790     1  0.0000      0.978 1.000 0.000
#> SRR1334866     2  0.3733      0.941 0.072 0.928
#> SRR1089446     2  0.3733      0.941 0.072 0.928
#> SRR1344445     2  0.3733      0.941 0.072 0.928
#> SRR1412969     2  0.2236      0.952 0.036 0.964
#> SRR1071668     2  0.4298      0.930 0.088 0.912
#> SRR1075804     1  0.0000      0.978 1.000 0.000
#> SRR1383283     2  0.0000      0.959 0.000 1.000
#> SRR1350239     2  0.3733      0.941 0.072 0.928
#> SRR1353878     1  0.0000      0.978 1.000 0.000
#> SRR1375721     1  0.0000      0.978 1.000 0.000
#> SRR1083983     1  0.0000      0.978 1.000 0.000
#> SRR1090095     1  0.0000      0.978 1.000 0.000
#> SRR1414792     1  0.0000      0.978 1.000 0.000
#> SRR1075102     2  0.0000      0.959 0.000 1.000
#> SRR1098737     1  0.0000      0.978 1.000 0.000
#> SRR1349409     1  0.0000      0.978 1.000 0.000
#> SRR1413008     2  0.3733      0.941 0.072 0.928
#> SRR1407179     2  0.3879      0.939 0.076 0.924
#> SRR1095913     2  0.0000      0.959 0.000 1.000
#> SRR1403544     1  0.0000      0.978 1.000 0.000
#> SRR1490546     1  0.0000      0.978 1.000 0.000
#> SRR807971      2  0.3733      0.941 0.072 0.928
#> SRR1436228     2  0.7139      0.800 0.196 0.804
#> SRR1445218     2  0.0000      0.959 0.000 1.000
#> SRR1485438     2  0.0938      0.955 0.012 0.988
#> SRR1358143     1  0.0000      0.978 1.000 0.000
#> SRR1328760     1  0.0000      0.978 1.000 0.000
#> SRR1380806     1  0.0000      0.978 1.000 0.000
#> SRR1379426     2  0.3733      0.941 0.072 0.928
#> SRR1087007     2  0.0000      0.959 0.000 1.000
#> SRR1086256     2  0.0000      0.959 0.000 1.000
#> SRR1346734     2  0.0000      0.959 0.000 1.000
#> SRR1414515     1  0.0000      0.978 1.000 0.000
#> SRR1082151     1  0.6247      0.820 0.844 0.156
#> SRR1349320     2  0.0000      0.959 0.000 1.000
#> SRR1317554     2  0.0000      0.959 0.000 1.000
#> SRR1076022     2  0.0000      0.959 0.000 1.000
#> SRR1339573     2  0.3733      0.941 0.072 0.928
#> SRR1455878     1  0.0000      0.978 1.000 0.000
#> SRR1446203     2  0.0000      0.959 0.000 1.000
#> SRR1387397     1  0.0000      0.978 1.000 0.000
#> SRR1402590     1  0.0000      0.978 1.000 0.000
#> SRR1317532     1  0.0000      0.978 1.000 0.000
#> SRR1331488     1  0.0376      0.975 0.996 0.004
#> SRR1499675     2  0.3733      0.941 0.072 0.928
#> SRR1440467     2  0.3733      0.941 0.072 0.928
#> SRR807995      2  0.0000      0.959 0.000 1.000
#> SRR1476485     2  0.0000      0.959 0.000 1.000
#> SRR1388214     1  0.0000      0.978 1.000 0.000
#> SRR1456051     1  0.0000      0.978 1.000 0.000
#> SRR1473275     2  0.4562      0.923 0.096 0.904
#> SRR1444083     1  0.0000      0.978 1.000 0.000
#> SRR1313807     2  0.0000      0.959 0.000 1.000
#> SRR1470751     1  0.5294      0.864 0.880 0.120
#> SRR1403434     2  0.3584      0.943 0.068 0.932
#> SRR1390540     1  0.0000      0.978 1.000 0.000
#> SRR1093861     2  0.0000      0.959 0.000 1.000
#> SRR1325290     1  0.0672      0.973 0.992 0.008
#> SRR1070689     1  0.0000      0.978 1.000 0.000
#> SRR1384049     1  0.0000      0.978 1.000 0.000
#> SRR1081184     1  0.0000      0.978 1.000 0.000
#> SRR1324295     1  0.0000      0.978 1.000 0.000
#> SRR1365313     2  0.0000      0.959 0.000 1.000
#> SRR1321877     2  0.3733      0.941 0.072 0.928
#> SRR815711      2  0.3733      0.941 0.072 0.928
#> SRR1433476     2  0.3431      0.944 0.064 0.936
#> SRR1101883     2  0.3733      0.941 0.072 0.928
#> SRR1433729     2  0.0000      0.959 0.000 1.000
#> SRR1341877     2  0.5059      0.908 0.112 0.888
#> SRR1090556     1  0.3114      0.932 0.944 0.056
#> SRR1357389     2  0.3733      0.941 0.072 0.928
#> SRR1404227     2  0.0000      0.959 0.000 1.000
#> SRR1376830     1  0.0000      0.978 1.000 0.000
#> SRR1500661     1  0.0000      0.978 1.000 0.000
#> SRR1080294     2  0.0000      0.959 0.000 1.000
#> SRR1336314     2  0.0000      0.959 0.000 1.000
#> SRR1102152     1  0.0000      0.978 1.000 0.000
#> SRR1345244     2  0.3733      0.941 0.072 0.928
#> SRR1478637     2  0.1843      0.954 0.028 0.972
#> SRR1443776     2  0.0000      0.959 0.000 1.000
#> SRR1120939     2  0.0000      0.959 0.000 1.000
#> SRR1080117     2  0.0000      0.959 0.000 1.000
#> SRR1102899     2  0.0000      0.959 0.000 1.000
#> SRR1091865     1  0.0000      0.978 1.000 0.000
#> SRR1361072     1  0.0000      0.978 1.000 0.000
#> SRR1487890     1  0.0000      0.978 1.000 0.000
#> SRR1349456     2  0.0000      0.959 0.000 1.000
#> SRR1389384     1  0.5946      0.835 0.856 0.144
#> SRR1316096     2  0.0000      0.959 0.000 1.000
#> SRR1408512     1  0.0376      0.975 0.996 0.004
#> SRR1447547     2  0.3733      0.941 0.072 0.928
#> SRR1354053     2  0.0000      0.959 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.981 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1353376     2  0.1289      0.922 0.000 0.968 0.032
#> SRR1499040     1  0.5465      0.597 0.712 0.000 0.288
#> SRR1322312     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1324412     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1100991     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1349479     2  0.6126      0.340 0.000 0.600 0.400
#> SRR1431248     3  0.1015      0.927 0.012 0.008 0.980
#> SRR1405054     3  0.4887      0.729 0.228 0.000 0.772
#> SRR1312266     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1409790     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1352507     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1383763     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1468314     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1473674     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1390499     1  0.0000      0.981 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.943 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1335236     2  0.4702      0.742 0.000 0.788 0.212
#> SRR1095383     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1310433     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1073435     3  0.0424      0.933 0.000 0.008 0.992
#> SRR659649      3  0.0000      0.936 0.000 0.000 1.000
#> SRR1395999     1  0.1529      0.941 0.960 0.000 0.040
#> SRR1105248     3  0.5178      0.645 0.000 0.256 0.744
#> SRR1338257     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1350002     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1489757     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1414637     3  0.4796      0.736 0.220 0.000 0.780
#> SRR1478113     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1322477     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1478789     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1414185     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1069141     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1376852     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1338103     3  0.4796      0.736 0.220 0.000 0.780
#> SRR1472012     3  0.6274      0.246 0.456 0.000 0.544
#> SRR1340325     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1334866     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1089446     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1344445     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1412969     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1071668     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1075804     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1383283     3  0.1411      0.912 0.000 0.036 0.964
#> SRR1350239     3  0.0424      0.933 0.000 0.008 0.992
#> SRR1353878     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1083983     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1090095     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1075102     2  0.1964      0.903 0.000 0.944 0.056
#> SRR1098737     1  0.0892      0.962 0.980 0.000 0.020
#> SRR1349409     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1413008     3  0.0424      0.933 0.000 0.008 0.992
#> SRR1407179     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1095913     3  0.0424      0.933 0.000 0.008 0.992
#> SRR1403544     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.981 1.000 0.000 0.000
#> SRR807971      3  0.0000      0.936 0.000 0.000 1.000
#> SRR1436228     3  0.0475      0.933 0.004 0.004 0.992
#> SRR1445218     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1485438     3  0.0892      0.922 0.000 0.020 0.980
#> SRR1358143     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1086256     2  0.3752      0.816 0.000 0.856 0.144
#> SRR1346734     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1082151     1  0.1163      0.954 0.972 0.000 0.028
#> SRR1349320     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1076022     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1339573     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1455878     1  0.2448      0.900 0.924 0.000 0.076
#> SRR1446203     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1387397     3  0.5327      0.671 0.272 0.000 0.728
#> SRR1402590     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1317532     3  0.5327      0.671 0.272 0.000 0.728
#> SRR1331488     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1499675     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1440467     3  0.0000      0.936 0.000 0.000 1.000
#> SRR807995      2  0.4452      0.768 0.000 0.808 0.192
#> SRR1476485     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1473275     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1444083     3  0.5968      0.500 0.364 0.000 0.636
#> SRR1313807     3  0.0424      0.933 0.000 0.008 0.992
#> SRR1470751     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1403434     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1093861     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1325290     3  0.5431      0.652 0.284 0.000 0.716
#> SRR1070689     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1365313     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1321877     3  0.0000      0.936 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.936 0.000 0.000 1.000
#> SRR1433476     3  0.0892      0.925 0.000 0.020 0.980
#> SRR1101883     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1433729     2  0.6204      0.258 0.000 0.576 0.424
#> SRR1341877     3  0.3752      0.812 0.144 0.000 0.856
#> SRR1090556     3  0.4796      0.736 0.220 0.000 0.780
#> SRR1357389     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1404227     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1080294     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1336314     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1102152     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1345244     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1478637     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1443776     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.936 0.000 0.000 1.000
#> SRR1102899     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1091865     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.981 1.000 0.000 0.000
#> SRR1349456     3  0.1289      0.912 0.000 0.032 0.968
#> SRR1389384     1  0.5016      0.680 0.760 0.000 0.240
#> SRR1316096     2  0.0000      0.943 0.000 1.000 0.000
#> SRR1408512     1  0.2625      0.891 0.916 0.000 0.084
#> SRR1447547     3  0.0661      0.931 0.004 0.008 0.988
#> SRR1354053     2  0.0000      0.943 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1353376     2  0.4874     0.7172 0.000 0.764 0.180 0.056
#> SRR1499040     1  0.5769     0.3611 0.588 0.000 0.376 0.036
#> SRR1322312     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1324412     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1100991     4  0.4817     0.5322 0.000 0.000 0.388 0.612
#> SRR1349479     3  0.4164     0.5226 0.000 0.264 0.736 0.000
#> SRR1431248     4  0.0000     0.6723 0.000 0.000 0.000 1.000
#> SRR1405054     4  0.4719     0.5977 0.180 0.000 0.048 0.772
#> SRR1312266     1  0.0592     0.8858 0.984 0.000 0.000 0.016
#> SRR1409790     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1352507     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1383763     1  0.0817     0.8818 0.976 0.000 0.000 0.024
#> SRR1468314     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1473674     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1390499     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR821043      2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1455653     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1335236     2  0.4877     0.3334 0.000 0.592 0.408 0.000
#> SRR1095383     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1479489     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1073435     4  0.0707     0.6763 0.000 0.000 0.020 0.980
#> SRR659649      3  0.4431     0.3324 0.000 0.000 0.696 0.304
#> SRR1395999     1  0.2149     0.8550 0.912 0.000 0.000 0.088
#> SRR1105248     4  0.4585     0.3592 0.000 0.000 0.332 0.668
#> SRR1338257     1  0.1557     0.8692 0.944 0.000 0.000 0.056
#> SRR1499395     3  0.0336     0.8631 0.000 0.000 0.992 0.008
#> SRR1350002     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1489757     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1414637     4  0.1510     0.6575 0.016 0.000 0.028 0.956
#> SRR1478113     2  0.2313     0.8793 0.000 0.924 0.044 0.032
#> SRR1322477     1  0.4804     0.5842 0.616 0.000 0.000 0.384
#> SRR1478789     3  0.0921     0.8607 0.000 0.000 0.972 0.028
#> SRR1414185     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1376852     1  0.3610     0.7762 0.800 0.000 0.000 0.200
#> SRR1323491     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1338103     4  0.0000     0.6723 0.000 0.000 0.000 1.000
#> SRR1472012     4  0.4456     0.3093 0.280 0.000 0.004 0.716
#> SRR1340325     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR1488790     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1334866     3  0.1867     0.8259 0.000 0.000 0.928 0.072
#> SRR1089446     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1344445     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1412969     3  0.0707     0.8638 0.000 0.000 0.980 0.020
#> SRR1071668     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1075804     1  0.4522     0.6627 0.680 0.000 0.000 0.320
#> SRR1383283     3  0.4985     0.1544 0.000 0.000 0.532 0.468
#> SRR1350239     4  0.1211     0.6774 0.000 0.000 0.040 0.960
#> SRR1353878     1  0.1022     0.8798 0.968 0.000 0.000 0.032
#> SRR1375721     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.4250     0.7031 0.724 0.000 0.000 0.276
#> SRR1090095     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1075102     2  0.4415     0.7803 0.000 0.804 0.056 0.140
#> SRR1098737     1  0.4790     0.5875 0.620 0.000 0.000 0.380
#> SRR1349409     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.1716     0.6745 0.000 0.000 0.064 0.936
#> SRR1407179     4  0.0921     0.6776 0.000 0.000 0.028 0.972
#> SRR1095913     3  0.4804     0.1145 0.000 0.000 0.616 0.384
#> SRR1403544     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0336     0.8880 0.992 0.000 0.000 0.008
#> SRR807971      4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1436228     4  0.0592     0.6760 0.000 0.000 0.016 0.984
#> SRR1445218     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1485438     4  0.5632     0.2207 0.000 0.036 0.340 0.624
#> SRR1358143     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.3074     0.8146 0.848 0.000 0.000 0.152
#> SRR1380806     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.0817     0.8624 0.000 0.000 0.976 0.024
#> SRR1087007     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR1086256     4  0.7883    -0.0579 0.000 0.300 0.316 0.384
#> SRR1346734     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1082151     1  0.6179     0.5028 0.552 0.000 0.056 0.392
#> SRR1349320     2  0.0707     0.9150 0.000 0.980 0.000 0.020
#> SRR1317554     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1076022     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1339573     3  0.1716     0.8077 0.000 0.000 0.936 0.064
#> SRR1455878     1  0.4961     0.4570 0.552 0.000 0.000 0.448
#> SRR1446203     4  0.4955     0.4350 0.000 0.000 0.444 0.556
#> SRR1387397     4  0.0921     0.6768 0.000 0.000 0.028 0.972
#> SRR1402590     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1317532     4  0.0804     0.6753 0.008 0.000 0.012 0.980
#> SRR1331488     1  0.2868     0.8270 0.864 0.000 0.000 0.136
#> SRR1499675     4  0.3172     0.5719 0.000 0.000 0.160 0.840
#> SRR1440467     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR807995      2  0.5280     0.7140 0.000 0.752 0.124 0.124
#> SRR1476485     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1388214     1  0.2921     0.8227 0.860 0.000 0.000 0.140
#> SRR1456051     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1473275     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1444083     4  0.3610     0.5699 0.200 0.000 0.000 0.800
#> SRR1313807     3  0.3356     0.7011 0.000 0.000 0.824 0.176
#> SRR1470751     1  0.6090     0.5230 0.564 0.000 0.052 0.384
#> SRR1403434     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0336     0.8880 0.992 0.000 0.000 0.008
#> SRR1093861     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1325290     4  0.2401     0.6162 0.092 0.000 0.004 0.904
#> SRR1070689     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1365313     3  0.2973     0.7568 0.000 0.000 0.856 0.144
#> SRR1321877     3  0.0592     0.8654 0.000 0.000 0.984 0.016
#> SRR815711      4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1433476     3  0.0336     0.8666 0.000 0.000 0.992 0.008
#> SRR1101883     4  0.4643     0.5593 0.000 0.000 0.344 0.656
#> SRR1433729     2  0.7414     0.2327 0.000 0.492 0.188 0.320
#> SRR1341877     4  0.2216     0.6269 0.000 0.000 0.092 0.908
#> SRR1090556     4  0.0000     0.6723 0.000 0.000 0.000 1.000
#> SRR1357389     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1404227     3  0.2921     0.7888 0.000 0.000 0.860 0.140
#> SRR1376830     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.2281     0.8438 0.904 0.000 0.000 0.096
#> SRR1080294     2  0.2589     0.8345 0.000 0.884 0.116 0.000
#> SRR1336314     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1102152     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1345244     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR1478637     4  0.3764     0.5076 0.000 0.000 0.216 0.784
#> SRR1443776     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR1120939     4  0.4830     0.5299 0.000 0.000 0.392 0.608
#> SRR1080117     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.0188     0.9251 0.000 0.996 0.004 0.000
#> SRR1091865     1  0.4164     0.7133 0.736 0.000 0.000 0.264
#> SRR1361072     1  0.0592     0.8863 0.984 0.000 0.000 0.016
#> SRR1487890     1  0.0000     0.8900 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.0921     0.8607 0.000 0.000 0.972 0.028
#> SRR1389384     1  0.6893     0.5221 0.564 0.000 0.136 0.300
#> SRR1316096     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> SRR1408512     1  0.5147     0.4481 0.536 0.000 0.004 0.460
#> SRR1447547     4  0.0000     0.6723 0.000 0.000 0.000 1.000
#> SRR1354053     2  0.0000     0.9272 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.6343    -0.0609 0.000 0.240 0.208 0.548 0.004
#> SRR1499040     1  0.6206     0.3615 0.504 0.000 0.152 0.344 0.000
#> SRR1322312     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1100991     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1349479     3  0.2230     0.7712 0.000 0.000 0.884 0.116 0.000
#> SRR1431248     5  0.4268     0.4760 0.000 0.000 0.000 0.444 0.556
#> SRR1405054     5  0.1478     0.6786 0.064 0.000 0.000 0.000 0.936
#> SRR1312266     1  0.3366     0.6747 0.768 0.000 0.000 0.232 0.000
#> SRR1409790     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1352507     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1383763     1  0.0566     0.8224 0.984 0.000 0.000 0.004 0.012
#> SRR1468314     2  0.5218     0.3969 0.000 0.624 0.068 0.308 0.000
#> SRR1473674     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1390499     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.4291    -0.0989 0.000 0.464 0.000 0.536 0.000
#> SRR1455653     4  0.4291    -0.0989 0.000 0.464 0.000 0.536 0.000
#> SRR1335236     2  0.2074     0.6745 0.000 0.896 0.104 0.000 0.000
#> SRR1095383     2  0.5600     0.3577 0.000 0.588 0.096 0.316 0.000
#> SRR1479489     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1310433     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1073435     5  0.3631     0.6709 0.000 0.000 0.072 0.104 0.824
#> SRR659649      3  0.4304     0.0957 0.000 0.000 0.516 0.000 0.484
#> SRR1395999     1  0.3942     0.6324 0.728 0.000 0.000 0.260 0.012
#> SRR1105248     5  0.4182     0.1969 0.000 0.000 0.400 0.000 0.600
#> SRR1338257     1  0.4045     0.5520 0.644 0.000 0.000 0.356 0.000
#> SRR1499395     3  0.1544     0.8295 0.000 0.000 0.932 0.000 0.068
#> SRR1350002     2  0.0404     0.7657 0.000 0.988 0.000 0.012 0.000
#> SRR1489757     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1414637     5  0.4648     0.4380 0.012 0.000 0.000 0.464 0.524
#> SRR1478113     4  0.4037     0.0370 0.000 0.288 0.004 0.704 0.004
#> SRR1322477     4  0.6277    -0.1647 0.384 0.000 0.000 0.464 0.152
#> SRR1478789     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1414185     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1069141     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1376852     1  0.4762     0.5973 0.700 0.000 0.000 0.236 0.064
#> SRR1323491     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1338103     5  0.3177     0.6515 0.000 0.000 0.000 0.208 0.792
#> SRR1472012     5  0.6819    -0.0201 0.312 0.000 0.000 0.340 0.348
#> SRR1340325     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     3  0.3730     0.5371 0.000 0.000 0.712 0.288 0.000
#> SRR1089446     5  0.3491     0.6216 0.000 0.000 0.228 0.004 0.768
#> SRR1344445     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1412969     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1071668     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1075804     1  0.6124     0.3351 0.520 0.000 0.000 0.336 0.144
#> SRR1383283     3  0.3715     0.5994 0.000 0.000 0.736 0.004 0.260
#> SRR1350239     5  0.0324     0.6912 0.000 0.000 0.004 0.004 0.992
#> SRR1353878     1  0.4045     0.5511 0.644 0.000 0.000 0.356 0.000
#> SRR1375721     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.6127     0.2965 0.484 0.000 0.000 0.384 0.132
#> SRR1090095     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.3607     0.0673 0.000 0.244 0.000 0.752 0.004
#> SRR1098737     1  0.6282     0.2914 0.496 0.000 0.000 0.340 0.164
#> SRR1349409     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     5  0.0324     0.6912 0.000 0.000 0.004 0.004 0.992
#> SRR1407179     5  0.2891     0.6643 0.000 0.000 0.000 0.176 0.824
#> SRR1095913     3  0.5915     0.0933 0.000 0.108 0.508 0.000 0.384
#> SRR1403544     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR807971      5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1436228     5  0.3274     0.6495 0.000 0.000 0.000 0.220 0.780
#> SRR1445218     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1485438     2  0.5236     0.0793 0.000 0.492 0.000 0.464 0.044
#> SRR1358143     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.5176     0.4547 0.572 0.000 0.000 0.380 0.048
#> SRR1380806     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1087007     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1086256     4  0.6324     0.0505 0.000 0.032 0.196 0.616 0.156
#> SRR1346734     4  0.4430    -0.0879 0.000 0.456 0.000 0.540 0.004
#> SRR1414515     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     4  0.6462    -0.2017 0.404 0.000 0.004 0.436 0.156
#> SRR1349320     4  0.4430    -0.0879 0.000 0.456 0.000 0.540 0.004
#> SRR1317554     4  0.4291    -0.0989 0.000 0.464 0.000 0.536 0.000
#> SRR1076022     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1339573     3  0.0510     0.8725 0.000 0.000 0.984 0.000 0.016
#> SRR1455878     1  0.6706     0.1298 0.404 0.000 0.000 0.348 0.248
#> SRR1446203     5  0.3774     0.5414 0.000 0.000 0.296 0.000 0.704
#> SRR1387397     5  0.3983     0.5701 0.000 0.000 0.000 0.340 0.660
#> SRR1402590     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     5  0.3983     0.5667 0.000 0.000 0.000 0.340 0.660
#> SRR1331488     1  0.4323     0.5525 0.656 0.000 0.000 0.332 0.012
#> SRR1499675     5  0.5673     0.4848 0.000 0.000 0.252 0.132 0.616
#> SRR1440467     3  0.0162     0.8790 0.000 0.000 0.996 0.000 0.004
#> SRR807995      2  0.2020     0.6693 0.000 0.900 0.000 0.100 0.000
#> SRR1476485     4  0.4434    -0.0933 0.000 0.460 0.000 0.536 0.004
#> SRR1388214     1  0.4846     0.4783 0.588 0.000 0.000 0.384 0.028
#> SRR1456051     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1473275     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1444083     5  0.4682     0.5127 0.024 0.000 0.000 0.356 0.620
#> SRR1313807     3  0.1043     0.8525 0.000 0.000 0.960 0.000 0.040
#> SRR1470751     4  0.6419    -0.1646 0.384 0.000 0.004 0.460 0.152
#> SRR1403434     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1390540     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1325290     5  0.5557     0.3478 0.068 0.000 0.000 0.464 0.468
#> SRR1070689     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     3  0.2362     0.8004 0.000 0.000 0.900 0.076 0.024
#> SRR1321877     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR815711      5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1433476     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1101883     5  0.2648     0.6712 0.000 0.000 0.152 0.000 0.848
#> SRR1433729     3  0.7862     0.0292 0.000 0.136 0.384 0.124 0.356
#> SRR1341877     5  0.5114     0.5448 0.000 0.000 0.052 0.340 0.608
#> SRR1090556     5  0.3999     0.5646 0.000 0.000 0.000 0.344 0.656
#> SRR1357389     5  0.2690     0.6700 0.000 0.000 0.156 0.000 0.844
#> SRR1404227     3  0.0671     0.8697 0.000 0.000 0.980 0.004 0.016
#> SRR1376830     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.2270     0.7611 0.904 0.000 0.000 0.076 0.020
#> SRR1080294     2  0.6569     0.2840 0.000 0.464 0.232 0.304 0.000
#> SRR1336314     4  0.4430    -0.0879 0.000 0.456 0.000 0.540 0.004
#> SRR1102152     1  0.2280     0.7526 0.880 0.000 0.000 0.120 0.000
#> SRR1345244     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     5  0.5250     0.4760 0.000 0.000 0.048 0.416 0.536
#> SRR1443776     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1120939     5  0.3586     0.5897 0.000 0.000 0.264 0.000 0.736
#> SRR1080117     3  0.0000     0.8810 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1091865     1  0.6132     0.2889 0.480 0.000 0.000 0.388 0.132
#> SRR1361072     1  0.0290     0.8285 0.992 0.000 0.000 0.008 0.000
#> SRR1487890     1  0.0000     0.8325 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.0162     0.8792 0.000 0.000 0.996 0.004 0.000
#> SRR1389384     4  0.6679    -0.1781 0.388 0.000 0.020 0.456 0.136
#> SRR1316096     2  0.0000     0.7748 0.000 1.000 0.000 0.000 0.000
#> SRR1408512     4  0.6439    -0.1247 0.356 0.000 0.000 0.460 0.184
#> SRR1447547     5  0.2970     0.6658 0.000 0.000 0.004 0.168 0.828
#> SRR1354053     2  0.4210     0.2765 0.000 0.588 0.000 0.412 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0260    0.95388 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1349562     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.0458    0.93341 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1499040     5  0.3861    0.44429 0.352 0.000 0.000 0.000 0.640 0.008
#> SRR1322312     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1100991     3  0.0260    0.84443 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1349479     6  0.0146    0.92686 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR1431248     5  0.1003    0.72145 0.000 0.000 0.020 0.016 0.964 0.000
#> SRR1405054     3  0.0405    0.84372 0.004 0.000 0.988 0.000 0.008 0.000
#> SRR1312266     5  0.3857    0.15233 0.468 0.000 0.000 0.000 0.532 0.000
#> SRR1409790     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1352507     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1383763     1  0.0976    0.93232 0.968 0.000 0.008 0.008 0.016 0.000
#> SRR1468314     2  0.3405    0.65958 0.000 0.724 0.000 0.272 0.000 0.004
#> SRR1473674     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1390499     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.2300    0.85262 0.000 0.144 0.000 0.856 0.000 0.000
#> SRR1455653     4  0.1663    0.90570 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1335236     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1095383     2  0.3555    0.64531 0.000 0.712 0.000 0.280 0.000 0.008
#> SRR1479489     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310433     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1073435     3  0.4354    0.70840 0.000 0.000 0.752 0.016 0.120 0.112
#> SRR659649      3  0.3823    0.17033 0.000 0.000 0.564 0.000 0.000 0.436
#> SRR1395999     5  0.3982    0.29088 0.460 0.000 0.004 0.000 0.536 0.000
#> SRR1105248     3  0.4676    0.14794 0.000 0.000 0.528 0.044 0.000 0.428
#> SRR1338257     5  0.3050    0.63102 0.236 0.000 0.000 0.000 0.764 0.000
#> SRR1499395     6  0.1957    0.82875 0.000 0.000 0.112 0.000 0.000 0.888
#> SRR1350002     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489757     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1414637     5  0.0891    0.72023 0.000 0.000 0.008 0.024 0.968 0.000
#> SRR1478113     4  0.0508    0.94461 0.000 0.012 0.000 0.984 0.000 0.004
#> SRR1322477     5  0.0260    0.72248 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1478789     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1414185     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1069141     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1376852     1  0.3650    0.52192 0.716 0.000 0.008 0.004 0.272 0.000
#> SRR1323491     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1338103     3  0.3797    0.52962 0.000 0.000 0.692 0.016 0.292 0.000
#> SRR1472012     5  0.5484    0.49836 0.136 0.000 0.240 0.016 0.608 0.000
#> SRR1340325     1  0.0458    0.94771 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1087321     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1488790     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1334866     5  0.2941    0.61401 0.000 0.000 0.000 0.000 0.780 0.220
#> SRR1089446     3  0.2019    0.81211 0.000 0.000 0.900 0.000 0.012 0.088
#> SRR1344445     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1412969     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1071668     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1075804     5  0.4358    0.43601 0.380 0.000 0.008 0.016 0.596 0.000
#> SRR1383283     6  0.2662    0.79832 0.000 0.000 0.120 0.000 0.024 0.856
#> SRR1350239     3  0.2162    0.80165 0.000 0.000 0.896 0.088 0.012 0.004
#> SRR1353878     5  0.3592    0.46618 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1375721     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     5  0.1663    0.71912 0.088 0.000 0.000 0.000 0.912 0.000
#> SRR1090095     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000    0.93389 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1098737     5  0.4641    0.49316 0.340 0.000 0.028 0.016 0.616 0.000
#> SRR1349409     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1413008     3  0.2162    0.80117 0.000 0.000 0.896 0.088 0.012 0.004
#> SRR1407179     3  0.4039    0.39908 0.000 0.000 0.632 0.016 0.352 0.000
#> SRR1095913     6  0.3857   -0.00635 0.000 0.000 0.468 0.000 0.000 0.532
#> SRR1403544     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0146    0.95719 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR807971      3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1436228     5  0.3558    0.54112 0.000 0.000 0.248 0.016 0.736 0.000
#> SRR1445218     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1485438     5  0.4002    0.51751 0.000 0.284 0.008 0.016 0.692 0.000
#> SRR1358143     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1328760     5  0.1863    0.70811 0.104 0.000 0.000 0.000 0.896 0.000
#> SRR1380806     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1379426     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1087007     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1086256     5  0.2258    0.70799 0.000 0.008 0.008 0.056 0.908 0.020
#> SRR1346734     4  0.0547    0.94865 0.000 0.020 0.000 0.980 0.000 0.000
#> SRR1414515     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082151     5  0.0547    0.72407 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1349320     4  0.0547    0.94865 0.000 0.020 0.000 0.980 0.000 0.000
#> SRR1317554     4  0.2300    0.85262 0.000 0.144 0.000 0.856 0.000 0.000
#> SRR1076022     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1339573     6  0.0458    0.91917 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR1455878     5  0.4403    0.53792 0.304 0.000 0.048 0.000 0.648 0.000
#> SRR1446203     3  0.2527    0.75509 0.000 0.000 0.832 0.000 0.000 0.168
#> SRR1387397     5  0.3515    0.45233 0.000 0.000 0.324 0.000 0.676 0.000
#> SRR1402590     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     5  0.3634    0.35736 0.000 0.000 0.356 0.000 0.644 0.000
#> SRR1331488     5  0.3804    0.36205 0.424 0.000 0.000 0.000 0.576 0.000
#> SRR1499675     3  0.6448    0.09744 0.000 0.000 0.368 0.016 0.344 0.272
#> SRR1440467     6  0.0146    0.92664 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR807995      2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476485     4  0.0547    0.94865 0.000 0.020 0.000 0.980 0.000 0.000
#> SRR1388214     5  0.1814    0.70954 0.100 0.000 0.000 0.000 0.900 0.000
#> SRR1456051     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1473275     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1444083     5  0.4074    0.40380 0.016 0.000 0.324 0.004 0.656 0.000
#> SRR1313807     6  0.0260    0.92257 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1470751     5  0.0146    0.72314 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1403434     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1390540     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1325290     5  0.0717    0.72118 0.000 0.000 0.008 0.016 0.976 0.000
#> SRR1070689     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     6  0.2036    0.84599 0.000 0.000 0.008 0.016 0.064 0.912
#> SRR1321877     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815711      3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1433476     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1101883     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1433729     6  0.5652    0.09637 0.000 0.020 0.392 0.092 0.000 0.496
#> SRR1341877     5  0.5046    0.37181 0.000 0.000 0.320 0.016 0.604 0.060
#> SRR1090556     5  0.4110    0.32659 0.000 0.000 0.376 0.016 0.608 0.000
#> SRR1357389     3  0.0260    0.84851 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1404227     6  0.0508    0.92033 0.000 0.000 0.012 0.004 0.000 0.984
#> SRR1376830     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.1728    0.87526 0.924 0.000 0.008 0.004 0.064 0.000
#> SRR1080294     2  0.3756    0.65107 0.000 0.712 0.000 0.268 0.000 0.020
#> SRR1336314     4  0.0547    0.94865 0.000 0.020 0.000 0.980 0.000 0.000
#> SRR1102152     1  0.3747    0.25043 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1345244     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1478637     5  0.1630    0.71845 0.000 0.000 0.024 0.016 0.940 0.020
#> SRR1443776     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1120939     3  0.2260    0.78107 0.000 0.000 0.860 0.000 0.000 0.140
#> SRR1080117     6  0.0000    0.92860 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1102899     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091865     5  0.1327    0.71753 0.064 0.000 0.000 0.000 0.936 0.000
#> SRR1361072     1  0.2416    0.77149 0.844 0.000 0.000 0.000 0.156 0.000
#> SRR1487890     1  0.0000    0.96032 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349456     6  0.0146    0.92663 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR1389384     5  0.0146    0.72261 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1316096     2  0.0000    0.90490 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1408512     5  0.0000    0.72226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1447547     3  0.4166    0.70220 0.000 0.000 0.748 0.088 0.160 0.004
#> SRR1354053     2  0.3428    0.61235 0.000 0.696 0.000 0.304 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.539           0.929       0.935       0.338515 0.688   0.688
#> 3 3 0.944           0.927       0.971       0.934817 0.561   0.404
#> 4 4 0.748           0.781       0.902       0.000941 0.732   0.443
#> 5 5 0.650           0.449       0.768       0.089925 0.838   0.612
#> 6 6 0.723           0.705       0.775       0.108847 0.843   0.543

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.915 1.000 0.000
#> SRR1349562     1  0.0000      0.915 1.000 0.000
#> SRR1353376     2  0.0376      0.999 0.004 0.996
#> SRR1499040     1  0.1414      0.919 0.980 0.020
#> SRR1322312     1  0.0000      0.915 1.000 0.000
#> SRR1324412     1  0.6343      0.909 0.840 0.160
#> SRR1100991     1  0.6343      0.909 0.840 0.160
#> SRR1349479     1  0.6247      0.909 0.844 0.156
#> SRR1431248     1  0.3114      0.919 0.944 0.056
#> SRR1405054     1  0.6343      0.909 0.840 0.160
#> SRR1312266     1  0.1633      0.919 0.976 0.024
#> SRR1409790     1  0.6343      0.909 0.840 0.160
#> SRR1352507     1  0.6343      0.909 0.840 0.160
#> SRR1383763     1  0.0000      0.915 1.000 0.000
#> SRR1468314     2  0.0376      0.999 0.004 0.996
#> SRR1473674     2  0.0376      0.999 0.004 0.996
#> SRR1390499     1  0.0000      0.915 1.000 0.000
#> SRR821043      2  0.0376      0.999 0.004 0.996
#> SRR1455653     2  0.0376      0.999 0.004 0.996
#> SRR1335236     2  0.0376      0.999 0.004 0.996
#> SRR1095383     2  0.0376      0.999 0.004 0.996
#> SRR1479489     1  0.1184      0.918 0.984 0.016
#> SRR1310433     2  0.0376      0.999 0.004 0.996
#> SRR1073435     1  0.6247      0.909 0.844 0.156
#> SRR659649      1  0.6343      0.909 0.840 0.160
#> SRR1395999     1  0.0000      0.915 1.000 0.000
#> SRR1105248     1  0.6247      0.909 0.844 0.156
#> SRR1338257     1  0.0000      0.915 1.000 0.000
#> SRR1499395     1  0.6343      0.909 0.840 0.160
#> SRR1350002     2  0.0376      0.999 0.004 0.996
#> SRR1489757     1  0.6343      0.909 0.840 0.160
#> SRR1414637     1  0.2778      0.920 0.952 0.048
#> SRR1478113     2  0.0376      0.999 0.004 0.996
#> SRR1322477     1  0.1633      0.919 0.976 0.024
#> SRR1478789     1  0.6247      0.909 0.844 0.156
#> SRR1414185     1  0.6343      0.909 0.840 0.160
#> SRR1069141     2  0.0376      0.999 0.004 0.996
#> SRR1376852     1  0.0000      0.915 1.000 0.000
#> SRR1323491     1  0.0000      0.915 1.000 0.000
#> SRR1338103     1  0.3114      0.919 0.944 0.056
#> SRR1472012     1  0.3114      0.919 0.944 0.056
#> SRR1340325     1  0.1633      0.919 0.976 0.024
#> SRR1087321     1  0.6343      0.909 0.840 0.160
#> SRR1488790     1  0.0000      0.915 1.000 0.000
#> SRR1334866     1  0.6247      0.909 0.844 0.156
#> SRR1089446     1  0.6343      0.909 0.840 0.160
#> SRR1344445     1  0.6343      0.909 0.840 0.160
#> SRR1412969     1  0.6247      0.909 0.844 0.156
#> SRR1071668     1  0.6343      0.909 0.840 0.160
#> SRR1075804     1  0.0000      0.915 1.000 0.000
#> SRR1383283     1  0.6247      0.909 0.844 0.156
#> SRR1350239     1  0.6247      0.909 0.844 0.156
#> SRR1353878     1  0.0000      0.915 1.000 0.000
#> SRR1375721     1  0.0000      0.915 1.000 0.000
#> SRR1083983     1  0.1414      0.919 0.980 0.020
#> SRR1090095     1  0.0000      0.915 1.000 0.000
#> SRR1414792     1  0.0000      0.915 1.000 0.000
#> SRR1075102     2  0.0376      0.999 0.004 0.996
#> SRR1098737     1  0.0000      0.915 1.000 0.000
#> SRR1349409     1  0.0000      0.915 1.000 0.000
#> SRR1413008     1  0.6247      0.909 0.844 0.156
#> SRR1407179     1  0.6247      0.909 0.844 0.156
#> SRR1095913     1  0.6247      0.909 0.844 0.156
#> SRR1403544     1  0.0000      0.915 1.000 0.000
#> SRR1490546     1  0.0000      0.915 1.000 0.000
#> SRR807971      1  0.6343      0.909 0.840 0.160
#> SRR1436228     1  0.5629      0.913 0.868 0.132
#> SRR1445218     2  0.0376      0.999 0.004 0.996
#> SRR1485438     2  0.1633      0.977 0.024 0.976
#> SRR1358143     1  0.0000      0.915 1.000 0.000
#> SRR1328760     1  0.0000      0.915 1.000 0.000
#> SRR1380806     1  0.0938      0.917 0.988 0.012
#> SRR1379426     1  0.6343      0.909 0.840 0.160
#> SRR1087007     1  0.6343      0.909 0.840 0.160
#> SRR1086256     1  0.6343      0.907 0.840 0.160
#> SRR1346734     2  0.0376      0.999 0.004 0.996
#> SRR1414515     1  0.0000      0.915 1.000 0.000
#> SRR1082151     1  0.1633      0.919 0.976 0.024
#> SRR1349320     2  0.0376      0.999 0.004 0.996
#> SRR1317554     2  0.0376      0.999 0.004 0.996
#> SRR1076022     2  0.0376      0.999 0.004 0.996
#> SRR1339573     1  0.6343      0.909 0.840 0.160
#> SRR1455878     1  0.0376      0.915 0.996 0.004
#> SRR1446203     1  0.6343      0.909 0.840 0.160
#> SRR1387397     1  0.1843      0.919 0.972 0.028
#> SRR1402590     1  0.0000      0.915 1.000 0.000
#> SRR1317532     1  0.1414      0.919 0.980 0.020
#> SRR1331488     1  0.0000      0.915 1.000 0.000
#> SRR1499675     1  0.6247      0.909 0.844 0.156
#> SRR1440467     1  0.6343      0.909 0.840 0.160
#> SRR807995      2  0.0376      0.999 0.004 0.996
#> SRR1476485     2  0.0376      0.999 0.004 0.996
#> SRR1388214     1  0.0000      0.915 1.000 0.000
#> SRR1456051     1  0.0000      0.915 1.000 0.000
#> SRR1473275     1  0.6343      0.909 0.840 0.160
#> SRR1444083     1  0.0000      0.915 1.000 0.000
#> SRR1313807     1  0.6247      0.909 0.844 0.156
#> SRR1470751     1  0.1633      0.919 0.976 0.024
#> SRR1403434     1  0.6343      0.909 0.840 0.160
#> SRR1390540     1  0.0000      0.915 1.000 0.000
#> SRR1093861     2  0.0376      0.999 0.004 0.996
#> SRR1325290     1  0.1633      0.919 0.976 0.024
#> SRR1070689     1  0.0000      0.915 1.000 0.000
#> SRR1384049     1  0.0000      0.915 1.000 0.000
#> SRR1081184     1  0.0000      0.915 1.000 0.000
#> SRR1324295     1  0.0000      0.915 1.000 0.000
#> SRR1365313     1  0.6247      0.909 0.844 0.156
#> SRR1321877     1  0.6343      0.909 0.840 0.160
#> SRR815711      1  0.6343      0.909 0.840 0.160
#> SRR1433476     1  0.6247      0.909 0.844 0.156
#> SRR1101883     1  0.6343      0.909 0.840 0.160
#> SRR1433729     1  0.6343      0.907 0.840 0.160
#> SRR1341877     1  0.4161      0.918 0.916 0.084
#> SRR1090556     1  0.3114      0.919 0.944 0.056
#> SRR1357389     1  0.6343      0.909 0.840 0.160
#> SRR1404227     1  0.6247      0.909 0.844 0.156
#> SRR1376830     1  0.0000      0.915 1.000 0.000
#> SRR1500661     1  0.0000      0.915 1.000 0.000
#> SRR1080294     2  0.0376      0.999 0.004 0.996
#> SRR1336314     2  0.0376      0.999 0.004 0.996
#> SRR1102152     1  0.0000      0.915 1.000 0.000
#> SRR1345244     1  0.6343      0.909 0.840 0.160
#> SRR1478637     1  0.6247      0.909 0.844 0.156
#> SRR1443776     1  0.6343      0.909 0.840 0.160
#> SRR1120939     1  0.6343      0.909 0.840 0.160
#> SRR1080117     1  0.6343      0.909 0.840 0.160
#> SRR1102899     2  0.0376      0.999 0.004 0.996
#> SRR1091865     1  0.1184      0.918 0.984 0.016
#> SRR1361072     1  0.0000      0.915 1.000 0.000
#> SRR1487890     1  0.0000      0.915 1.000 0.000
#> SRR1349456     1  0.6247      0.909 0.844 0.156
#> SRR1389384     1  0.1633      0.919 0.976 0.024
#> SRR1316096     2  0.0376      0.999 0.004 0.996
#> SRR1408512     1  0.0938      0.917 0.988 0.012
#> SRR1447547     1  0.6247      0.909 0.844 0.156
#> SRR1354053     2  0.0376      0.999 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1353376     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1499040     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1322312     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1324412     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1100991     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1349479     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1431248     1  0.5968     0.4677 0.636 0.364 0.000
#> SRR1405054     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1312266     2  0.6305    -0.0335 0.484 0.516 0.000
#> SRR1409790     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1352507     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1383763     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1468314     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1473674     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1390499     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR821043      2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1455653     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1335236     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1095383     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1479489     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1073435     2  0.1163     0.9545 0.000 0.972 0.028
#> SRR659649      3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1395999     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1105248     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1338257     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1499395     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1350002     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1489757     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1414637     2  0.3482     0.8328 0.128 0.872 0.000
#> SRR1478113     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1322477     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1478789     3  0.5678     0.5396 0.000 0.316 0.684
#> SRR1414185     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1069141     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1376852     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1338103     1  0.2959     0.8680 0.900 0.100 0.000
#> SRR1472012     1  0.2711     0.8802 0.912 0.088 0.000
#> SRR1340325     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1087321     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1488790     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1334866     1  0.6314     0.3957 0.604 0.392 0.004
#> SRR1089446     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1344445     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1412969     3  0.1964     0.9202 0.000 0.056 0.944
#> SRR1071668     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1075804     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1383283     2  0.0237     0.9767 0.000 0.996 0.004
#> SRR1350239     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1353878     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1083983     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1090095     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1075102     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1098737     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1413008     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1407179     3  0.0237     0.9714 0.000 0.004 0.996
#> SRR1095913     2  0.0237     0.9767 0.000 0.996 0.004
#> SRR1403544     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR807971      3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1436228     1  0.6079     0.4120 0.612 0.388 0.000
#> SRR1445218     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1485438     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1358143     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1379426     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1087007     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1086256     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1346734     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1082151     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1349320     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1317554     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1076022     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1339573     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1455878     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1446203     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1387397     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1402590     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1331488     1  0.5363     0.6314 0.724 0.276 0.000
#> SRR1499675     1  0.6053     0.6430 0.720 0.260 0.020
#> SRR1440467     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR807995      2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1476485     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1388214     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1473275     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1444083     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1313807     2  0.2165     0.9156 0.000 0.936 0.064
#> SRR1470751     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1403434     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1390540     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1325290     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1070689     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1365313     2  0.0747     0.9661 0.000 0.984 0.016
#> SRR1321877     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR815711      3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1433476     2  0.0237     0.9766 0.000 0.996 0.004
#> SRR1101883     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1433729     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1341877     1  0.3686     0.8245 0.860 0.140 0.000
#> SRR1090556     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1357389     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1404227     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1376830     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1080294     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1336314     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1102152     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1345244     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1478637     1  0.6140     0.3716 0.596 0.404 0.000
#> SRR1443776     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1120939     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1080117     3  0.0000     0.9749 0.000 0.000 1.000
#> SRR1102899     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1091865     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1361072     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1349456     3  0.6215     0.2514 0.000 0.428 0.572
#> SRR1389384     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1316096     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1408512     1  0.0000     0.9555 1.000 0.000 0.000
#> SRR1447547     2  0.0000     0.9797 0.000 1.000 0.000
#> SRR1354053     2  0.0000     0.9797 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0188      0.833 0.000 0.004 0.000 0.996
#> SRR1499040     3  0.4992      0.278 0.476 0.000 0.524 0.000
#> SRR1322312     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.0592      0.808 0.016 0.000 0.984 0.000
#> SRR1100991     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1349479     4  0.6147      0.169 0.000 0.048 0.464 0.488
#> SRR1431248     3  0.5396      0.296 0.464 0.000 0.524 0.012
#> SRR1405054     3  0.0921      0.803 0.028 0.000 0.972 0.000
#> SRR1312266     1  0.1637      0.898 0.940 0.000 0.000 0.060
#> SRR1409790     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1352507     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1383763     1  0.3400      0.727 0.820 0.000 0.180 0.000
#> SRR1468314     4  0.4855      0.370 0.000 0.400 0.000 0.600
#> SRR1473674     2  0.1637      0.977 0.000 0.940 0.000 0.060
#> SRR1390499     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1455653     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1335236     2  0.0469      0.933 0.000 0.988 0.000 0.012
#> SRR1095383     4  0.4916      0.366 0.000 0.424 0.000 0.576
#> SRR1479489     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.1389      0.978 0.000 0.952 0.000 0.048
#> SRR1073435     3  0.1854      0.799 0.000 0.048 0.940 0.012
#> SRR659649      3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1105248     3  0.2197      0.795 0.000 0.048 0.928 0.024
#> SRR1338257     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR1499395     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.1716      0.974 0.000 0.936 0.000 0.064
#> SRR1489757     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1414637     3  0.6292      0.352 0.416 0.000 0.524 0.060
#> SRR1478113     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1322477     3  0.4992      0.278 0.476 0.000 0.524 0.000
#> SRR1478789     3  0.1722      0.801 0.000 0.048 0.944 0.008
#> SRR1414185     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.1389      0.978 0.000 0.952 0.000 0.048
#> SRR1376852     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR1338103     1  0.5250      0.312 0.640 0.004 0.344 0.012
#> SRR1472012     3  0.5925      0.332 0.444 0.028 0.524 0.004
#> SRR1340325     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1488790     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1334866     3  0.4026      0.753 0.092 0.048 0.848 0.012
#> SRR1089446     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1344445     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1412969     3  0.1576      0.802 0.000 0.048 0.948 0.004
#> SRR1071668     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1075804     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1383283     3  0.1854      0.799 0.000 0.048 0.940 0.012
#> SRR1350239     3  0.2197      0.795 0.000 0.048 0.928 0.024
#> SRR1353878     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR1375721     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1090095     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1349409     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1413008     3  0.2197      0.795 0.000 0.048 0.928 0.024
#> SRR1407179     3  0.1489      0.803 0.000 0.044 0.952 0.004
#> SRR1095913     3  0.1854      0.799 0.000 0.048 0.940 0.012
#> SRR1403544     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR807971      3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1436228     3  0.6257      0.523 0.332 0.048 0.608 0.012
#> SRR1445218     2  0.1557      0.975 0.000 0.944 0.000 0.056
#> SRR1485438     3  0.6235      0.235 0.000 0.420 0.524 0.056
#> SRR1358143     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1087007     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1086256     3  0.6484      0.326 0.016 0.388 0.552 0.044
#> SRR1346734     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1082151     3  0.6292      0.352 0.416 0.000 0.524 0.060
#> SRR1349320     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1317554     4  0.2868      0.734 0.000 0.136 0.000 0.864
#> SRR1076022     2  0.1557      0.978 0.000 0.944 0.000 0.056
#> SRR1339573     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1455878     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1387397     1  0.4888      0.112 0.588 0.000 0.412 0.000
#> SRR1402590     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1331488     3  0.5325      0.287 0.468 0.004 0.524 0.004
#> SRR1499675     3  0.5438      0.666 0.208 0.048 0.732 0.012
#> SRR1440467     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR807995      2  0.1637      0.977 0.000 0.940 0.000 0.060
#> SRR1476485     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.3725      0.724 0.812 0.008 0.180 0.000
#> SRR1456051     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1444083     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR1313807     3  0.1722      0.801 0.000 0.048 0.944 0.008
#> SRR1470751     3  0.6292      0.352 0.416 0.000 0.524 0.060
#> SRR1403434     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR1093861     2  0.1389      0.974 0.000 0.952 0.000 0.048
#> SRR1325290     3  0.4992      0.278 0.476 0.000 0.524 0.000
#> SRR1070689     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1365313     3  0.1854      0.799 0.000 0.048 0.940 0.012
#> SRR1321877     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR815711      3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1433476     3  0.2586      0.786 0.000 0.048 0.912 0.040
#> SRR1101883     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1433729     3  0.4589      0.643 0.000 0.048 0.784 0.168
#> SRR1341877     3  0.6487      0.398 0.404 0.048 0.536 0.012
#> SRR1090556     3  0.4992      0.278 0.476 0.000 0.524 0.000
#> SRR1357389     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1404227     3  0.0817      0.809 0.000 0.024 0.976 0.000
#> SRR1376830     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1080294     4  0.6398      0.433 0.000 0.344 0.080 0.576
#> SRR1336314     4  0.0000      0.835 0.000 0.000 0.000 1.000
#> SRR1102152     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR1345244     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1478637     3  0.6405      0.456 0.372 0.048 0.568 0.012
#> SRR1443776     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1120939     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1080117     3  0.0000      0.813 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.0469      0.933 0.000 0.988 0.000 0.012
#> SRR1091865     1  0.2589      0.827 0.884 0.000 0.116 0.000
#> SRR1361072     1  0.0336      0.952 0.992 0.008 0.000 0.000
#> SRR1487890     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.1854      0.799 0.000 0.048 0.940 0.012
#> SRR1389384     3  0.4992      0.278 0.476 0.000 0.524 0.000
#> SRR1316096     2  0.1474      0.978 0.000 0.948 0.000 0.052
#> SRR1408512     1  0.3123      0.768 0.844 0.000 0.156 0.000
#> SRR1447547     3  0.6693      0.454 0.368 0.048 0.560 0.024
#> SRR1354053     4  0.0000      0.835 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.3876     0.5765 0.684 0.000 0.000 0.000 0.316
#> SRR1349562     1  0.0404     0.5064 0.988 0.000 0.000 0.000 0.012
#> SRR1353376     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1499040     1  0.6372    -0.4389 0.492 0.000 0.324 0.000 0.184
#> SRR1322312     1  0.0162     0.5167 0.996 0.000 0.000 0.000 0.004
#> SRR1324412     3  0.5603     0.5778 0.076 0.012 0.624 0.000 0.288
#> SRR1100991     3  0.4086     0.6829 0.000 0.012 0.704 0.000 0.284
#> SRR1349479     4  0.5562     0.3863 0.000 0.000 0.296 0.604 0.100
#> SRR1431248     1  0.7466    -0.6744 0.404 0.004 0.296 0.028 0.268
#> SRR1405054     3  0.6593    -0.0597 0.212 0.000 0.420 0.000 0.368
#> SRR1312266     1  0.5024     0.5567 0.572 0.004 0.000 0.028 0.396
#> SRR1409790     3  0.4086     0.6829 0.000 0.012 0.704 0.000 0.284
#> SRR1352507     3  0.4086     0.6829 0.000 0.012 0.704 0.000 0.284
#> SRR1383763     1  0.4793     0.2140 0.700 0.000 0.232 0.000 0.068
#> SRR1468314     4  0.3381     0.7583 0.000 0.176 0.000 0.808 0.016
#> SRR1473674     2  0.1043     0.9140 0.000 0.960 0.000 0.040 0.000
#> SRR1390499     1  0.0000     0.5149 1.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1455653     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1335236     2  0.1121     0.9131 0.000 0.956 0.000 0.044 0.000
#> SRR1095383     4  0.3163     0.7705 0.000 0.164 0.000 0.824 0.012
#> SRR1479489     1  0.5470     0.5014 0.612 0.000 0.092 0.000 0.296
#> SRR1310433     2  0.0510     0.9099 0.000 0.984 0.000 0.016 0.000
#> SRR1073435     3  0.5655     0.4406 0.000 0.004 0.600 0.304 0.092
#> SRR659649      3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1395999     1  0.4150     0.5800 0.612 0.000 0.000 0.000 0.388
#> SRR1105248     3  0.5895     0.1320 0.000 0.000 0.456 0.444 0.100
#> SRR1338257     1  0.4249     0.5632 0.568 0.000 0.000 0.000 0.432
#> SRR1499395     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1350002     2  0.1121     0.9121 0.000 0.956 0.000 0.044 0.000
#> SRR1489757     3  0.4086     0.6829 0.000 0.012 0.704 0.000 0.284
#> SRR1414637     1  0.7617    -0.6845 0.404 0.008 0.292 0.032 0.264
#> SRR1478113     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1322477     1  0.6673    -0.5356 0.440 0.000 0.276 0.000 0.284
#> SRR1478789     3  0.1026     0.6436 0.000 0.004 0.968 0.024 0.004
#> SRR1414185     3  0.3612     0.6889 0.000 0.000 0.732 0.000 0.268
#> SRR1069141     2  0.0963     0.9111 0.000 0.964 0.000 0.036 0.000
#> SRR1376852     1  0.4808     0.5686 0.620 0.000 0.032 0.000 0.348
#> SRR1323491     1  0.4219     0.5718 0.584 0.000 0.000 0.000 0.416
#> SRR1338103     1  0.6926    -0.6205 0.428 0.000 0.300 0.008 0.264
#> SRR1472012     1  0.6930    -0.5269 0.464 0.004 0.292 0.008 0.232
#> SRR1340325     1  0.4150     0.5800 0.612 0.000 0.000 0.000 0.388
#> SRR1087321     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.0000     0.5149 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     3  0.7436    -0.8080 0.304 0.004 0.412 0.028 0.252
#> SRR1089446     3  0.3814     0.6875 0.000 0.004 0.720 0.000 0.276
#> SRR1344445     3  0.3707     0.6865 0.000 0.000 0.716 0.000 0.284
#> SRR1412969     3  0.3967     0.6876 0.000 0.000 0.724 0.012 0.264
#> SRR1071668     3  0.4086     0.6829 0.000 0.012 0.704 0.000 0.284
#> SRR1075804     1  0.4150     0.5800 0.612 0.000 0.000 0.000 0.388
#> SRR1383283     3  0.5747     0.4109 0.000 0.004 0.576 0.328 0.092
#> SRR1350239     3  0.5895     0.1320 0.000 0.000 0.456 0.444 0.100
#> SRR1353878     1  0.4210     0.5735 0.588 0.000 0.000 0.000 0.412
#> SRR1375721     1  0.0162     0.5167 0.996 0.000 0.000 0.000 0.004
#> SRR1083983     1  0.5516     0.4936 0.608 0.000 0.096 0.000 0.296
#> SRR1090095     1  0.3876     0.5806 0.684 0.000 0.000 0.000 0.316
#> SRR1414792     1  0.0290     0.5183 0.992 0.000 0.000 0.000 0.008
#> SRR1075102     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1098737     1  0.4150     0.5800 0.612 0.000 0.000 0.000 0.388
#> SRR1349409     1  0.0000     0.5149 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     3  0.5895     0.1320 0.000 0.000 0.456 0.444 0.100
#> SRR1407179     3  0.0775     0.6521 0.004 0.004 0.980 0.004 0.008
#> SRR1095913     3  0.1630     0.6299 0.000 0.016 0.944 0.036 0.004
#> SRR1403544     1  0.0000     0.5149 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.4227     0.5698 0.580 0.000 0.000 0.000 0.420
#> SRR807971      3  0.4086     0.6829 0.000 0.012 0.704 0.000 0.284
#> SRR1436228     1  0.7483    -0.7336 0.388 0.004 0.320 0.028 0.260
#> SRR1445218     2  0.0510     0.9099 0.000 0.984 0.000 0.016 0.000
#> SRR1485438     2  0.7527    -0.1714 0.008 0.444 0.292 0.036 0.220
#> SRR1358143     1  0.0000     0.5149 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.4161     0.5794 0.608 0.000 0.000 0.000 0.392
#> SRR1380806     1  0.2127     0.5454 0.892 0.000 0.000 0.000 0.108
#> SRR1379426     3  0.3586     0.6895 0.000 0.000 0.736 0.000 0.264
#> SRR1087007     3  0.3508     0.6906 0.000 0.000 0.748 0.000 0.252
#> SRR1086256     5  0.8337     0.0000 0.296 0.032 0.292 0.048 0.332
#> SRR1346734     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1414515     1  0.0162     0.5167 0.996 0.000 0.000 0.000 0.004
#> SRR1082151     1  0.7468    -0.6663 0.404 0.004 0.292 0.028 0.272
#> SRR1349320     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1317554     4  0.1792     0.8289 0.000 0.084 0.000 0.916 0.000
#> SRR1076022     2  0.0794     0.9160 0.000 0.972 0.000 0.028 0.000
#> SRR1339573     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1455878     1  0.5099     0.5481 0.612 0.000 0.052 0.000 0.336
#> SRR1446203     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1387397     1  0.5717     0.0543 0.608 0.000 0.260 0.000 0.132
#> SRR1402590     1  0.0404     0.5064 0.988 0.000 0.000 0.000 0.012
#> SRR1317532     1  0.4299     0.5784 0.608 0.000 0.004 0.000 0.388
#> SRR1331488     1  0.4524     0.5656 0.572 0.000 0.004 0.004 0.420
#> SRR1499675     3  0.7058    -0.7395 0.388 0.004 0.424 0.024 0.160
#> SRR1440467     3  0.3424     0.6908 0.000 0.000 0.760 0.000 0.240
#> SRR807995      2  0.1043     0.9140 0.000 0.960 0.000 0.040 0.000
#> SRR1476485     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1388214     1  0.4249     0.5632 0.568 0.000 0.000 0.000 0.432
#> SRR1456051     1  0.0000     0.5149 1.000 0.000 0.000 0.000 0.000
#> SRR1473275     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1444083     1  0.4249     0.5632 0.568 0.000 0.000 0.000 0.432
#> SRR1313807     3  0.5607     0.4425 0.000 0.004 0.604 0.304 0.088
#> SRR1470751     1  0.7487    -0.6814 0.396 0.004 0.292 0.028 0.280
#> SRR1403434     3  0.3586     0.6895 0.000 0.000 0.736 0.000 0.264
#> SRR1390540     1  0.4210     0.5735 0.588 0.000 0.000 0.000 0.412
#> SRR1093861     2  0.0703     0.9145 0.000 0.976 0.000 0.024 0.000
#> SRR1325290     1  0.6683    -0.5813 0.436 0.000 0.292 0.000 0.272
#> SRR1070689     1  0.0404     0.5064 0.988 0.000 0.000 0.000 0.012
#> SRR1384049     1  0.3774     0.5765 0.704 0.000 0.000 0.000 0.296
#> SRR1081184     1  0.0404     0.5064 0.988 0.000 0.000 0.000 0.012
#> SRR1324295     1  0.0404     0.5064 0.988 0.000 0.000 0.000 0.012
#> SRR1365313     3  0.6626    -0.4588 0.280 0.004 0.560 0.028 0.128
#> SRR1321877     3  0.0162     0.6596 0.000 0.000 0.996 0.000 0.004
#> SRR815711      3  0.3707     0.6865 0.000 0.000 0.716 0.000 0.284
#> SRR1433476     3  0.5708     0.3824 0.000 0.000 0.556 0.348 0.096
#> SRR1101883     3  0.3707     0.6865 0.000 0.000 0.716 0.000 0.284
#> SRR1433729     4  0.5630     0.6971 0.000 0.140 0.056 0.708 0.096
#> SRR1341877     1  0.7230    -0.6812 0.412 0.000 0.320 0.024 0.244
#> SRR1090556     1  0.6671    -0.5715 0.440 0.000 0.292 0.000 0.268
#> SRR1357389     3  0.4086     0.6829 0.000 0.012 0.704 0.000 0.284
#> SRR1404227     3  0.0486     0.6559 0.000 0.004 0.988 0.004 0.004
#> SRR1376830     1  0.1478     0.5343 0.936 0.000 0.000 0.000 0.064
#> SRR1500661     1  0.4150     0.5800 0.612 0.000 0.000 0.000 0.388
#> SRR1080294     4  0.3463     0.7735 0.000 0.156 0.008 0.820 0.016
#> SRR1336314     4  0.0162     0.8567 0.000 0.004 0.000 0.996 0.000
#> SRR1102152     1  0.4201     0.5750 0.592 0.000 0.000 0.000 0.408
#> SRR1345244     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     3  0.7488    -0.8373 0.316 0.004 0.388 0.028 0.264
#> SRR1443776     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1120939     3  0.0000     0.6616 0.000 0.000 1.000 0.000 0.000
#> SRR1080117     3  0.3586     0.6895 0.000 0.000 0.736 0.000 0.264
#> SRR1102899     2  0.1121     0.9131 0.000 0.956 0.000 0.044 0.000
#> SRR1091865     1  0.5353     0.5053 0.576 0.000 0.064 0.000 0.360
#> SRR1361072     1  0.4192     0.5764 0.596 0.000 0.000 0.000 0.404
#> SRR1487890     1  0.0000     0.5149 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.1653     0.6284 0.000 0.024 0.944 0.028 0.004
#> SRR1389384     1  0.6683    -0.5813 0.436 0.000 0.292 0.000 0.272
#> SRR1316096     2  0.0404     0.9080 0.000 0.988 0.000 0.012 0.000
#> SRR1408512     1  0.5717     0.4336 0.572 0.000 0.104 0.000 0.324
#> SRR1447547     4  0.6242    -0.1503 0.004 0.000 0.428 0.444 0.124
#> SRR1354053     4  0.1671     0.8324 0.000 0.076 0.000 0.924 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.5508     0.7341 0.564 0.000 0.224 0.000 0.212 0.000
#> SRR1349562     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1499040     5  0.4350     0.4442 0.292 0.000 0.000 0.000 0.660 0.048
#> SRR1322312     1  0.0865     0.6494 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1324412     3  0.3198     0.9116 0.000 0.000 0.740 0.000 0.000 0.260
#> SRR1100991     3  0.3198     0.9116 0.000 0.000 0.740 0.000 0.000 0.260
#> SRR1349479     4  0.2669     0.7842 0.000 0.000 0.008 0.836 0.000 0.156
#> SRR1431248     5  0.4308     0.7367 0.048 0.000 0.016 0.088 0.792 0.056
#> SRR1405054     3  0.6884     0.4792 0.088 0.000 0.468 0.000 0.192 0.252
#> SRR1312266     1  0.5834     0.7158 0.520 0.000 0.244 0.004 0.232 0.000
#> SRR1409790     3  0.3198     0.9116 0.000 0.000 0.740 0.000 0.000 0.260
#> SRR1352507     3  0.3244     0.9057 0.000 0.000 0.732 0.000 0.000 0.268
#> SRR1383763     5  0.3756    -0.0155 0.400 0.000 0.000 0.000 0.600 0.000
#> SRR1468314     4  0.2212     0.8273 0.000 0.112 0.008 0.880 0.000 0.000
#> SRR1473674     2  0.1444     0.9260 0.000 0.928 0.000 0.072 0.000 0.000
#> SRR1390499     1  0.0260     0.6419 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR821043      4  0.0363     0.8579 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR1455653     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1335236     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1095383     4  0.2266     0.8291 0.000 0.108 0.012 0.880 0.000 0.000
#> SRR1479489     1  0.5667     0.7194 0.532 0.000 0.240 0.000 0.228 0.000
#> SRR1310433     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1073435     6  0.5216     0.4062 0.000 0.000 0.004 0.256 0.128 0.612
#> SRR659649      6  0.1444     0.7588 0.000 0.000 0.072 0.000 0.000 0.928
#> SRR1395999     1  0.5587     0.7303 0.548 0.000 0.240 0.000 0.212 0.000
#> SRR1105248     4  0.3445     0.6491 0.000 0.000 0.008 0.732 0.000 0.260
#> SRR1338257     1  0.5684     0.7272 0.528 0.000 0.244 0.000 0.228 0.000
#> SRR1499395     6  0.1814     0.7174 0.000 0.000 0.100 0.000 0.000 0.900
#> SRR1350002     2  0.1663     0.9128 0.000 0.912 0.000 0.088 0.000 0.000
#> SRR1489757     3  0.3198     0.9116 0.000 0.000 0.740 0.000 0.000 0.260
#> SRR1414637     5  0.3847     0.7437 0.064 0.000 0.000 0.068 0.812 0.056
#> SRR1478113     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1322477     5  0.2455     0.7172 0.080 0.000 0.016 0.000 0.888 0.016
#> SRR1478789     6  0.0291     0.8052 0.000 0.000 0.004 0.000 0.004 0.992
#> SRR1414185     6  0.0632     0.8050 0.000 0.000 0.024 0.000 0.000 0.976
#> SRR1069141     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1376852     1  0.5571     0.7267 0.552 0.000 0.220 0.000 0.228 0.000
#> SRR1323491     1  0.5684     0.7272 0.528 0.000 0.244 0.000 0.228 0.000
#> SRR1338103     5  0.2837     0.7532 0.088 0.000 0.000 0.000 0.856 0.056
#> SRR1472012     5  0.4445     0.4662 0.288 0.000 0.000 0.000 0.656 0.056
#> SRR1340325     1  0.5565     0.7309 0.552 0.000 0.240 0.000 0.208 0.000
#> SRR1087321     6  0.0000     0.8089 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1488790     1  0.0146     0.6412 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1334866     5  0.3812     0.5613 0.016 0.000 0.004 0.000 0.712 0.268
#> SRR1089446     6  0.5469    -0.3960 0.000 0.000 0.408 0.000 0.124 0.468
#> SRR1344445     3  0.3563     0.8428 0.000 0.000 0.664 0.000 0.000 0.336
#> SRR1412969     6  0.0458     0.8079 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR1071668     3  0.3198     0.9116 0.000 0.000 0.740 0.000 0.000 0.260
#> SRR1075804     1  0.5583     0.7304 0.548 0.000 0.244 0.000 0.208 0.000
#> SRR1383283     6  0.3942     0.3715 0.000 0.000 0.004 0.368 0.004 0.624
#> SRR1350239     4  0.4408     0.5456 0.000 0.000 0.056 0.664 0.000 0.280
#> SRR1353878     1  0.5646     0.7293 0.536 0.000 0.244 0.000 0.220 0.000
#> SRR1375721     1  0.0865     0.6494 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1083983     1  0.5911     0.5634 0.432 0.000 0.212 0.000 0.356 0.000
#> SRR1090095     1  0.5088     0.7242 0.628 0.000 0.220 0.000 0.152 0.000
#> SRR1414792     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1098737     1  0.5684     0.7263 0.528 0.000 0.244 0.000 0.228 0.000
#> SRR1349409     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.4515     0.4905 0.000 0.000 0.056 0.640 0.000 0.304
#> SRR1407179     6  0.2300     0.6745 0.000 0.000 0.000 0.000 0.144 0.856
#> SRR1095913     6  0.1615     0.7553 0.000 0.000 0.004 0.064 0.004 0.928
#> SRR1403544     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.5684     0.7272 0.528 0.000 0.244 0.000 0.228 0.000
#> SRR807971      3  0.3198     0.9116 0.000 0.000 0.740 0.000 0.000 0.260
#> SRR1436228     5  0.3731     0.6326 0.024 0.000 0.000 0.008 0.756 0.212
#> SRR1445218     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1485438     5  0.6581     0.2421 0.000 0.308 0.000 0.168 0.468 0.056
#> SRR1358143     1  0.0260     0.6425 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1328760     1  0.5684     0.7193 0.528 0.000 0.244 0.000 0.228 0.000
#> SRR1380806     1  0.3501     0.6911 0.804 0.000 0.116 0.000 0.080 0.000
#> SRR1379426     6  0.0547     0.8072 0.000 0.000 0.020 0.000 0.000 0.980
#> SRR1087007     6  0.0547     0.8072 0.000 0.000 0.020 0.000 0.000 0.980
#> SRR1086256     5  0.4819     0.5894 0.016 0.008 0.000 0.180 0.712 0.084
#> SRR1346734     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.0865     0.6494 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1082151     5  0.4152     0.7170 0.024 0.000 0.016 0.116 0.792 0.052
#> SRR1349320     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1317554     4  0.1958     0.8339 0.000 0.100 0.004 0.896 0.000 0.000
#> SRR1076022     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1339573     6  0.1910     0.7112 0.000 0.000 0.108 0.000 0.000 0.892
#> SRR1455878     1  0.5565     0.7309 0.552 0.000 0.240 0.000 0.208 0.000
#> SRR1446203     6  0.0000     0.8089 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1387397     1  0.6206     0.6009 0.448 0.000 0.224 0.000 0.316 0.012
#> SRR1402590     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.5855     0.6886 0.484 0.000 0.240 0.000 0.276 0.000
#> SRR1331488     1  0.6023     0.5490 0.392 0.000 0.244 0.000 0.364 0.000
#> SRR1499675     5  0.4371     0.2709 0.020 0.000 0.004 0.000 0.580 0.396
#> SRR1440467     6  0.0547     0.8072 0.000 0.000 0.020 0.000 0.000 0.980
#> SRR807995      2  0.1327     0.9314 0.000 0.936 0.000 0.064 0.000 0.000
#> SRR1476485     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388214     1  0.6004     0.6347 0.416 0.000 0.244 0.000 0.340 0.000
#> SRR1456051     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1473275     6  0.3424     0.6379 0.000 0.000 0.092 0.000 0.096 0.812
#> SRR1444083     1  0.5961     0.6687 0.444 0.000 0.244 0.000 0.312 0.000
#> SRR1313807     6  0.3329     0.5611 0.000 0.000 0.004 0.236 0.004 0.756
#> SRR1470751     5  0.4195     0.7131 0.024 0.000 0.016 0.120 0.788 0.052
#> SRR1403434     6  0.0547     0.8072 0.000 0.000 0.020 0.000 0.000 0.980
#> SRR1390540     1  0.5684     0.7272 0.528 0.000 0.244 0.000 0.228 0.000
#> SRR1093861     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1325290     5  0.2608     0.7529 0.080 0.000 0.000 0.000 0.872 0.048
#> SRR1070689     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.5488     0.7317 0.568 0.000 0.220 0.000 0.212 0.000
#> SRR1081184     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     6  0.4284     0.1736 0.012 0.000 0.004 0.000 0.440 0.544
#> SRR1321877     6  0.0000     0.8089 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815711      3  0.3684     0.7799 0.000 0.000 0.628 0.000 0.000 0.372
#> SRR1433476     6  0.4098    -0.0677 0.000 0.000 0.008 0.496 0.000 0.496
#> SRR1101883     3  0.3578     0.8378 0.000 0.000 0.660 0.000 0.000 0.340
#> SRR1433729     4  0.3000     0.8250 0.000 0.088 0.012 0.856 0.000 0.044
#> SRR1341877     5  0.3073     0.7532 0.080 0.000 0.000 0.000 0.840 0.080
#> SRR1090556     5  0.2660     0.7516 0.084 0.000 0.000 0.000 0.868 0.048
#> SRR1357389     3  0.3198     0.9116 0.000 0.000 0.740 0.000 0.000 0.260
#> SRR1404227     6  0.0000     0.8089 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1376830     1  0.2266     0.6692 0.880 0.000 0.012 0.000 0.108 0.000
#> SRR1500661     1  0.5565     0.7309 0.552 0.000 0.240 0.000 0.208 0.000
#> SRR1080294     4  0.2266     0.8291 0.000 0.108 0.012 0.880 0.000 0.000
#> SRR1336314     4  0.0000     0.8609 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1102152     1  0.5738     0.7120 0.516 0.000 0.244 0.000 0.240 0.000
#> SRR1345244     6  0.0146     0.8088 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1478637     5  0.4353     0.6605 0.020 0.000 0.004 0.060 0.752 0.164
#> SRR1443776     6  0.0000     0.8089 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1120939     6  0.0000     0.8089 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1080117     6  0.0547     0.8072 0.000 0.000 0.020 0.000 0.000 0.980
#> SRR1102899     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091865     5  0.3118     0.6358 0.092 0.000 0.072 0.000 0.836 0.000
#> SRR1361072     1  0.5703     0.7255 0.524 0.000 0.244 0.000 0.232 0.000
#> SRR1487890     1  0.0000     0.6397 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349456     6  0.1493     0.7634 0.000 0.000 0.004 0.056 0.004 0.936
#> SRR1389384     5  0.2925     0.7532 0.080 0.000 0.008 0.000 0.860 0.052
#> SRR1316096     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1408512     5  0.5853    -0.3015 0.312 0.000 0.216 0.000 0.472 0.000
#> SRR1447547     4  0.4972     0.3252 0.000 0.000 0.008 0.564 0.056 0.372
#> SRR1354053     4  0.1814     0.8342 0.000 0.100 0.000 0.900 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.969           0.947       0.978         0.4942 0.503   0.503
#> 3 3 0.915           0.894       0.957         0.3319 0.738   0.526
#> 4 4 0.944           0.884       0.954         0.0647 0.927   0.794
#> 5 5 0.797           0.773       0.888         0.0751 0.900   0.689
#> 6 6 0.781           0.743       0.862         0.0524 0.938   0.764

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.987 1.000 0.000
#> SRR1349562     1  0.0000      0.987 1.000 0.000
#> SRR1353376     2  0.0000      0.964 0.000 1.000
#> SRR1499040     1  0.0000      0.987 1.000 0.000
#> SRR1322312     1  0.0000      0.987 1.000 0.000
#> SRR1324412     1  0.0000      0.987 1.000 0.000
#> SRR1100991     1  0.0000      0.987 1.000 0.000
#> SRR1349479     2  0.0000      0.964 0.000 1.000
#> SRR1431248     1  0.8661      0.583 0.712 0.288
#> SRR1405054     1  0.0000      0.987 1.000 0.000
#> SRR1312266     1  0.0000      0.987 1.000 0.000
#> SRR1409790     1  0.0000      0.987 1.000 0.000
#> SRR1352507     1  0.0000      0.987 1.000 0.000
#> SRR1383763     1  0.0000      0.987 1.000 0.000
#> SRR1468314     2  0.0000      0.964 0.000 1.000
#> SRR1473674     2  0.0000      0.964 0.000 1.000
#> SRR1390499     1  0.0000      0.987 1.000 0.000
#> SRR821043      2  0.0000      0.964 0.000 1.000
#> SRR1455653     2  0.0000      0.964 0.000 1.000
#> SRR1335236     2  0.0000      0.964 0.000 1.000
#> SRR1095383     2  0.0000      0.964 0.000 1.000
#> SRR1479489     1  0.0000      0.987 1.000 0.000
#> SRR1310433     2  0.0000      0.964 0.000 1.000
#> SRR1073435     2  0.0000      0.964 0.000 1.000
#> SRR659649      2  0.9460      0.466 0.364 0.636
#> SRR1395999     1  0.0000      0.987 1.000 0.000
#> SRR1105248     2  0.0000      0.964 0.000 1.000
#> SRR1338257     1  0.0000      0.987 1.000 0.000
#> SRR1499395     1  0.0000      0.987 1.000 0.000
#> SRR1350002     2  0.0000      0.964 0.000 1.000
#> SRR1489757     1  0.0000      0.987 1.000 0.000
#> SRR1414637     1  0.9393      0.436 0.644 0.356
#> SRR1478113     2  0.0000      0.964 0.000 1.000
#> SRR1322477     1  0.0000      0.987 1.000 0.000
#> SRR1478789     2  0.0000      0.964 0.000 1.000
#> SRR1414185     2  0.9087      0.552 0.324 0.676
#> SRR1069141     2  0.0000      0.964 0.000 1.000
#> SRR1376852     1  0.0000      0.987 1.000 0.000
#> SRR1323491     1  0.0000      0.987 1.000 0.000
#> SRR1338103     1  0.0000      0.987 1.000 0.000
#> SRR1472012     1  0.0000      0.987 1.000 0.000
#> SRR1340325     1  0.0000      0.987 1.000 0.000
#> SRR1087321     2  0.0000      0.964 0.000 1.000
#> SRR1488790     1  0.0000      0.987 1.000 0.000
#> SRR1334866     2  0.4431      0.881 0.092 0.908
#> SRR1089446     1  0.0000      0.987 1.000 0.000
#> SRR1344445     1  0.0000      0.987 1.000 0.000
#> SRR1412969     2  0.0000      0.964 0.000 1.000
#> SRR1071668     1  0.0000      0.987 1.000 0.000
#> SRR1075804     1  0.0000      0.987 1.000 0.000
#> SRR1383283     2  0.0000      0.964 0.000 1.000
#> SRR1350239     2  0.7950      0.698 0.240 0.760
#> SRR1353878     1  0.0000      0.987 1.000 0.000
#> SRR1375721     1  0.0000      0.987 1.000 0.000
#> SRR1083983     1  0.0000      0.987 1.000 0.000
#> SRR1090095     1  0.0000      0.987 1.000 0.000
#> SRR1414792     1  0.0000      0.987 1.000 0.000
#> SRR1075102     2  0.0000      0.964 0.000 1.000
#> SRR1098737     1  0.0000      0.987 1.000 0.000
#> SRR1349409     1  0.0000      0.987 1.000 0.000
#> SRR1413008     2  0.8081      0.685 0.248 0.752
#> SRR1407179     1  0.0000      0.987 1.000 0.000
#> SRR1095913     2  0.0000      0.964 0.000 1.000
#> SRR1403544     1  0.0000      0.987 1.000 0.000
#> SRR1490546     1  0.0000      0.987 1.000 0.000
#> SRR807971      1  0.0000      0.987 1.000 0.000
#> SRR1436228     2  0.9815      0.322 0.420 0.580
#> SRR1445218     2  0.0000      0.964 0.000 1.000
#> SRR1485438     2  0.0000      0.964 0.000 1.000
#> SRR1358143     1  0.0000      0.987 1.000 0.000
#> SRR1328760     1  0.0000      0.987 1.000 0.000
#> SRR1380806     1  0.0000      0.987 1.000 0.000
#> SRR1379426     2  0.1843      0.942 0.028 0.972
#> SRR1087007     2  0.0000      0.964 0.000 1.000
#> SRR1086256     2  0.0000      0.964 0.000 1.000
#> SRR1346734     2  0.0000      0.964 0.000 1.000
#> SRR1414515     1  0.0000      0.987 1.000 0.000
#> SRR1082151     2  0.9248      0.519 0.340 0.660
#> SRR1349320     2  0.0000      0.964 0.000 1.000
#> SRR1317554     2  0.0000      0.964 0.000 1.000
#> SRR1076022     2  0.0000      0.964 0.000 1.000
#> SRR1339573     1  0.0000      0.987 1.000 0.000
#> SRR1455878     1  0.0000      0.987 1.000 0.000
#> SRR1446203     2  0.0000      0.964 0.000 1.000
#> SRR1387397     1  0.0000      0.987 1.000 0.000
#> SRR1402590     1  0.0000      0.987 1.000 0.000
#> SRR1317532     1  0.0000      0.987 1.000 0.000
#> SRR1331488     1  0.0000      0.987 1.000 0.000
#> SRR1499675     1  0.0000      0.987 1.000 0.000
#> SRR1440467     2  0.0000      0.964 0.000 1.000
#> SRR807995      2  0.0000      0.964 0.000 1.000
#> SRR1476485     2  0.0000      0.964 0.000 1.000
#> SRR1388214     1  0.0000      0.987 1.000 0.000
#> SRR1456051     1  0.0000      0.987 1.000 0.000
#> SRR1473275     1  0.0000      0.987 1.000 0.000
#> SRR1444083     1  0.0000      0.987 1.000 0.000
#> SRR1313807     2  0.0000      0.964 0.000 1.000
#> SRR1470751     1  0.8555      0.592 0.720 0.280
#> SRR1403434     2  0.0376      0.961 0.004 0.996
#> SRR1390540     1  0.0000      0.987 1.000 0.000
#> SRR1093861     2  0.0000      0.964 0.000 1.000
#> SRR1325290     1  0.0000      0.987 1.000 0.000
#> SRR1070689     1  0.0000      0.987 1.000 0.000
#> SRR1384049     1  0.0000      0.987 1.000 0.000
#> SRR1081184     1  0.0000      0.987 1.000 0.000
#> SRR1324295     1  0.0000      0.987 1.000 0.000
#> SRR1365313     2  0.0672      0.958 0.008 0.992
#> SRR1321877     2  0.0376      0.961 0.004 0.996
#> SRR815711      1  0.0000      0.987 1.000 0.000
#> SRR1433476     2  0.0000      0.964 0.000 1.000
#> SRR1101883     1  0.0000      0.987 1.000 0.000
#> SRR1433729     2  0.0000      0.964 0.000 1.000
#> SRR1341877     1  0.0000      0.987 1.000 0.000
#> SRR1090556     1  0.0000      0.987 1.000 0.000
#> SRR1357389     1  0.0000      0.987 1.000 0.000
#> SRR1404227     2  0.0000      0.964 0.000 1.000
#> SRR1376830     1  0.0000      0.987 1.000 0.000
#> SRR1500661     1  0.0000      0.987 1.000 0.000
#> SRR1080294     2  0.0000      0.964 0.000 1.000
#> SRR1336314     2  0.0000      0.964 0.000 1.000
#> SRR1102152     1  0.0000      0.987 1.000 0.000
#> SRR1345244     2  0.0672      0.958 0.008 0.992
#> SRR1478637     2  0.0000      0.964 0.000 1.000
#> SRR1443776     2  0.0000      0.964 0.000 1.000
#> SRR1120939     2  0.0000      0.964 0.000 1.000
#> SRR1080117     2  0.0000      0.964 0.000 1.000
#> SRR1102899     2  0.0000      0.964 0.000 1.000
#> SRR1091865     1  0.0000      0.987 1.000 0.000
#> SRR1361072     1  0.0000      0.987 1.000 0.000
#> SRR1487890     1  0.0000      0.987 1.000 0.000
#> SRR1349456     2  0.0000      0.964 0.000 1.000
#> SRR1389384     1  0.0000      0.987 1.000 0.000
#> SRR1316096     2  0.0000      0.964 0.000 1.000
#> SRR1408512     1  0.0000      0.987 1.000 0.000
#> SRR1447547     2  0.0000      0.964 0.000 1.000
#> SRR1354053     2  0.0000      0.964 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.980 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1499040     1  0.4346      0.771 0.816 0.000 0.184
#> SRR1322312     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1324412     3  0.0892      0.955 0.020 0.000 0.980
#> SRR1100991     3  0.0747      0.959 0.016 0.000 0.984
#> SRR1349479     3  0.0747      0.960 0.000 0.016 0.984
#> SRR1431248     2  0.5882      0.459 0.348 0.652 0.000
#> SRR1405054     3  0.2448      0.887 0.076 0.000 0.924
#> SRR1312266     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1409790     3  0.0424      0.967 0.008 0.000 0.992
#> SRR1352507     3  0.0237      0.971 0.004 0.000 0.996
#> SRR1383763     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1468314     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1473674     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1390499     1  0.0000      0.980 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.893 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1335236     2  0.0747      0.884 0.000 0.984 0.016
#> SRR1095383     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1479489     1  0.1163      0.954 0.972 0.000 0.028
#> SRR1310433     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1073435     2  0.6215      0.303 0.000 0.572 0.428
#> SRR659649      3  0.0000      0.974 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1105248     2  0.6045      0.420 0.000 0.620 0.380
#> SRR1338257     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1350002     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1489757     3  0.0237      0.971 0.004 0.000 0.996
#> SRR1414637     2  0.6267      0.171 0.452 0.548 0.000
#> SRR1478113     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1322477     1  0.0424      0.973 0.992 0.008 0.000
#> SRR1478789     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1414185     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1069141     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1376852     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1338103     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1472012     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1340325     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1334866     2  0.6090      0.617 0.020 0.716 0.264
#> SRR1089446     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1344445     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1412969     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1071668     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1075804     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1383283     2  0.5859      0.496 0.000 0.656 0.344
#> SRR1350239     3  0.0661      0.966 0.004 0.008 0.988
#> SRR1353878     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1083983     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1090095     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1098737     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1413008     3  0.0661      0.966 0.004 0.008 0.988
#> SRR1407179     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1095913     2  0.6305      0.113 0.000 0.516 0.484
#> SRR1403544     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.980 1.000 0.000 0.000
#> SRR807971      3  0.0000      0.974 0.000 0.000 1.000
#> SRR1436228     2  0.8543      0.538 0.268 0.592 0.140
#> SRR1445218     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1485438     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1358143     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1086256     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1346734     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1082151     2  0.5016      0.664 0.240 0.760 0.000
#> SRR1349320     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1076022     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1339573     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1455878     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1446203     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1387397     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1331488     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1499675     1  0.6148      0.428 0.640 0.004 0.356
#> SRR1440467     3  0.0000      0.974 0.000 0.000 1.000
#> SRR807995      2  0.0000      0.893 0.000 1.000 0.000
#> SRR1476485     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1473275     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1444083     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1313807     3  0.6126      0.248 0.000 0.400 0.600
#> SRR1470751     1  0.6111      0.295 0.604 0.396 0.000
#> SRR1403434     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1093861     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1325290     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1070689     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1365313     3  0.5621      0.498 0.000 0.308 0.692
#> SRR1321877     3  0.0000      0.974 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.974 0.000 0.000 1.000
#> SRR1433476     2  0.6308      0.105 0.000 0.508 0.492
#> SRR1101883     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1433729     2  0.0747      0.884 0.000 0.984 0.016
#> SRR1341877     1  0.1643      0.936 0.956 0.000 0.044
#> SRR1090556     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1357389     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1404227     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1080294     2  0.0747      0.884 0.000 0.984 0.016
#> SRR1336314     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1102152     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1345244     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1478637     2  0.0237      0.891 0.000 0.996 0.004
#> SRR1443776     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1102899     2  0.0237      0.891 0.000 0.996 0.004
#> SRR1091865     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1349456     3  0.0000      0.974 0.000 0.000 1.000
#> SRR1389384     1  0.0747      0.965 0.984 0.016 0.000
#> SRR1316096     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1408512     1  0.0000      0.980 1.000 0.000 0.000
#> SRR1447547     2  0.0000      0.893 0.000 1.000 0.000
#> SRR1354053     2  0.0000      0.893 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> SRR1499040     1  0.0469      0.978 0.988 0.012 0.000 0.000
#> SRR1322312     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1100991     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1349479     3  0.2530      0.854 0.000 0.000 0.888 0.112
#> SRR1431248     1  0.0707      0.971 0.980 0.020 0.000 0.000
#> SRR1405054     3  0.0188      0.971 0.004 0.000 0.996 0.000
#> SRR1312266     1  0.0707      0.969 0.980 0.000 0.000 0.020
#> SRR1409790     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1352507     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1383763     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1468314     2  0.0469      0.839 0.000 0.988 0.000 0.012
#> SRR1473674     2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1390499     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0188      0.857 0.000 0.004 0.000 0.996
#> SRR1455653     4  0.4522      0.467 0.000 0.320 0.000 0.680
#> SRR1335236     2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1095383     2  0.3873      0.647 0.000 0.772 0.000 0.228
#> SRR1479489     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.0469      0.839 0.000 0.988 0.000 0.012
#> SRR1073435     2  0.5016      0.371 0.000 0.600 0.396 0.004
#> SRR659649      3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.1557      0.829 0.000 0.000 0.056 0.944
#> SRR1338257     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1499395     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1489757     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1414637     2  0.4713      0.366 0.360 0.640 0.000 0.000
#> SRR1478113     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> SRR1322477     1  0.0336      0.981 0.992 0.008 0.000 0.000
#> SRR1478789     3  0.2081      0.893 0.000 0.084 0.916 0.000
#> SRR1414185     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1376852     1  0.0188      0.983 0.996 0.004 0.000 0.000
#> SRR1323491     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.0469      0.978 0.988 0.012 0.000 0.000
#> SRR1472012     1  0.0469      0.978 0.988 0.012 0.000 0.000
#> SRR1340325     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1488790     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> SRR1089446     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1344445     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1412969     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1071668     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1075804     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1383283     2  0.4482      0.593 0.000 0.728 0.264 0.008
#> SRR1350239     4  0.1474      0.832 0.000 0.000 0.052 0.948
#> SRR1353878     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.0188      0.983 0.996 0.004 0.000 0.000
#> SRR1090095     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1349409     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.1118      0.842 0.000 0.000 0.036 0.964
#> SRR1407179     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1095913     2  0.5050      0.310 0.000 0.588 0.408 0.004
#> SRR1403544     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR807971      3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1436228     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> SRR1445218     2  0.0336      0.840 0.000 0.992 0.000 0.008
#> SRR1485438     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> SRR1358143     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1087007     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1086256     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> SRR1346734     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.4933      0.250 0.432 0.568 0.000 0.000
#> SRR1349320     4  0.0188      0.858 0.000 0.004 0.000 0.996
#> SRR1317554     4  0.4713      0.369 0.000 0.360 0.000 0.640
#> SRR1076022     2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1339573     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1455878     1  0.0188      0.983 0.996 0.004 0.000 0.000
#> SRR1446203     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1387397     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1402590     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1331488     4  0.4948      0.207 0.440 0.000 0.000 0.560
#> SRR1499675     1  0.4898      0.278 0.584 0.000 0.416 0.000
#> SRR1440467     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR807995      2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1476485     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1456051     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1444083     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1313807     3  0.2469      0.860 0.000 0.108 0.892 0.000
#> SRR1470751     1  0.2281      0.886 0.904 0.096 0.000 0.000
#> SRR1403434     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1325290     1  0.0336      0.981 0.992 0.008 0.000 0.000
#> SRR1070689     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.4605      0.502 0.000 0.664 0.336 0.000
#> SRR1321877     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR815711      3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1433476     4  0.4804      0.352 0.000 0.000 0.384 0.616
#> SRR1101883     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1433729     2  0.4453      0.616 0.000 0.744 0.012 0.244
#> SRR1341877     1  0.0817      0.961 0.976 0.000 0.024 0.000
#> SRR1090556     1  0.0188      0.983 0.996 0.004 0.000 0.000
#> SRR1357389     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1404227     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1376830     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1080294     2  0.2868      0.748 0.000 0.864 0.000 0.136
#> SRR1336314     4  0.0000      0.859 0.000 0.000 0.000 1.000
#> SRR1102152     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1345244     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1478637     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> SRR1443776     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1120939     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1080117     3  0.0000      0.976 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.0469      0.839 0.000 0.988 0.000 0.012
#> SRR1091865     1  0.0336      0.981 0.992 0.008 0.000 0.000
#> SRR1361072     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.4948      0.165 0.000 0.440 0.560 0.000
#> SRR1389384     1  0.1637      0.929 0.940 0.060 0.000 0.000
#> SRR1316096     2  0.0188      0.842 0.000 0.996 0.000 0.004
#> SRR1408512     1  0.0000      0.986 1.000 0.000 0.000 0.000
#> SRR1447547     4  0.0707      0.849 0.000 0.020 0.000 0.980
#> SRR1354053     2  0.3266      0.716 0.000 0.832 0.000 0.168

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1349562     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1353376     4  0.2471     0.7906 0.000 0.136 0.000 0.864 0.000
#> SRR1499040     5  0.6220     0.3256 0.188 0.000 0.272 0.000 0.540
#> SRR1322312     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.0290     0.9710 0.000 0.000 0.992 0.000 0.008
#> SRR1100991     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1349479     3  0.2270     0.8951 0.000 0.020 0.904 0.076 0.000
#> SRR1431248     5  0.5086     0.4881 0.200 0.096 0.000 0.004 0.700
#> SRR1405054     3  0.0324     0.9706 0.004 0.000 0.992 0.000 0.004
#> SRR1312266     1  0.5043     0.6539 0.704 0.000 0.000 0.160 0.136
#> SRR1409790     3  0.0162     0.9731 0.000 0.000 0.996 0.000 0.004
#> SRR1352507     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1383763     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1468314     2  0.3395     0.5592 0.000 0.764 0.000 0.000 0.236
#> SRR1473674     5  0.3336     0.5385 0.000 0.228 0.000 0.000 0.772
#> SRR1390499     1  0.0404     0.9316 0.988 0.000 0.000 0.000 0.012
#> SRR821043      4  0.2300     0.8284 0.000 0.072 0.000 0.904 0.024
#> SRR1455653     4  0.5594     0.4400 0.000 0.136 0.000 0.632 0.232
#> SRR1335236     2  0.4294     0.0991 0.000 0.532 0.000 0.000 0.468
#> SRR1095383     2  0.3262     0.6204 0.000 0.840 0.000 0.036 0.124
#> SRR1479489     1  0.0798     0.9254 0.976 0.000 0.008 0.000 0.016
#> SRR1310433     2  0.3305     0.5628 0.000 0.776 0.000 0.000 0.224
#> SRR1073435     2  0.2157     0.6246 0.004 0.920 0.040 0.000 0.036
#> SRR659649      3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1395999     1  0.2116     0.8942 0.912 0.008 0.000 0.004 0.076
#> SRR1105248     4  0.0955     0.8516 0.000 0.004 0.028 0.968 0.000
#> SRR1338257     1  0.3111     0.8288 0.840 0.000 0.004 0.012 0.144
#> SRR1499395     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1350002     5  0.2773     0.5960 0.000 0.164 0.000 0.000 0.836
#> SRR1489757     3  0.0162     0.9731 0.000 0.000 0.996 0.000 0.004
#> SRR1414637     5  0.4478     0.5898 0.144 0.100 0.000 0.000 0.756
#> SRR1478113     4  0.1732     0.8360 0.000 0.000 0.000 0.920 0.080
#> SRR1322477     1  0.2648     0.8320 0.848 0.000 0.000 0.000 0.152
#> SRR1478789     3  0.1831     0.9162 0.000 0.076 0.920 0.000 0.004
#> SRR1414185     3  0.0162     0.9733 0.000 0.004 0.996 0.000 0.000
#> SRR1069141     5  0.4242     0.1588 0.000 0.428 0.000 0.000 0.572
#> SRR1376852     1  0.1331     0.9132 0.952 0.008 0.000 0.000 0.040
#> SRR1323491     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1338103     1  0.4609     0.7213 0.744 0.152 0.000 0.000 0.104
#> SRR1472012     1  0.4262     0.7636 0.776 0.124 0.000 0.000 0.100
#> SRR1340325     1  0.2623     0.8454 0.884 0.000 0.096 0.004 0.016
#> SRR1087321     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     2  0.3864     0.5691 0.028 0.820 0.028 0.000 0.124
#> SRR1089446     3  0.1792     0.9056 0.000 0.084 0.916 0.000 0.000
#> SRR1344445     3  0.0162     0.9731 0.000 0.000 0.996 0.000 0.004
#> SRR1412969     3  0.0324     0.9726 0.000 0.004 0.992 0.000 0.004
#> SRR1071668     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1075804     1  0.1195     0.9160 0.960 0.012 0.000 0.000 0.028
#> SRR1383283     2  0.1179     0.6346 0.004 0.964 0.016 0.000 0.016
#> SRR1350239     4  0.3177     0.6929 0.000 0.000 0.208 0.792 0.000
#> SRR1353878     1  0.1282     0.9162 0.952 0.000 0.000 0.004 0.044
#> SRR1375721     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.2420     0.8832 0.896 0.008 0.008 0.000 0.088
#> SRR1090095     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1075102     4  0.0404     0.8535 0.000 0.000 0.000 0.988 0.012
#> SRR1098737     1  0.1059     0.9216 0.968 0.008 0.000 0.004 0.020
#> SRR1349409     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.2929     0.7264 0.000 0.000 0.180 0.820 0.000
#> SRR1407179     2  0.6083     0.0665 0.052 0.464 0.452 0.000 0.032
#> SRR1095913     3  0.4904     0.5448 0.000 0.240 0.688 0.000 0.072
#> SRR1403544     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1490546     1  0.0324     0.9316 0.992 0.000 0.000 0.004 0.004
#> SRR807971      3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1436228     2  0.4657     0.4589 0.108 0.740 0.000 0.000 0.152
#> SRR1445218     2  0.3480     0.5454 0.000 0.752 0.000 0.000 0.248
#> SRR1485438     5  0.3661     0.4746 0.000 0.276 0.000 0.000 0.724
#> SRR1358143     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.1026     0.9229 0.968 0.000 0.004 0.004 0.024
#> SRR1380806     1  0.0324     0.9309 0.992 0.000 0.004 0.000 0.004
#> SRR1379426     3  0.0324     0.9726 0.000 0.004 0.992 0.000 0.004
#> SRR1087007     3  0.0794     0.9615 0.000 0.028 0.972 0.000 0.000
#> SRR1086256     2  0.2852     0.5762 0.000 0.828 0.000 0.000 0.172
#> SRR1346734     4  0.0162     0.8534 0.000 0.004 0.000 0.996 0.000
#> SRR1414515     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     5  0.1205     0.6374 0.004 0.040 0.000 0.000 0.956
#> SRR1349320     4  0.1478     0.8439 0.000 0.000 0.000 0.936 0.064
#> SRR1317554     2  0.4712     0.5651 0.000 0.732 0.000 0.168 0.100
#> SRR1076022     2  0.3366     0.5588 0.000 0.768 0.000 0.000 0.232
#> SRR1339573     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1455878     1  0.2046     0.8970 0.916 0.000 0.016 0.000 0.068
#> SRR1446203     3  0.0162     0.9732 0.000 0.004 0.996 0.000 0.000
#> SRR1387397     1  0.2915     0.8336 0.860 0.116 0.000 0.000 0.024
#> SRR1402590     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.0162     0.9312 0.996 0.000 0.000 0.000 0.004
#> SRR1331488     1  0.4192     0.3360 0.596 0.000 0.000 0.404 0.000
#> SRR1499675     2  0.6834     0.1170 0.376 0.472 0.108 0.000 0.044
#> SRR1440467     3  0.1197     0.9450 0.000 0.048 0.952 0.000 0.000
#> SRR807995      5  0.2471     0.6120 0.000 0.136 0.000 0.000 0.864
#> SRR1476485     4  0.0162     0.8534 0.000 0.004 0.000 0.996 0.000
#> SRR1388214     1  0.0955     0.9239 0.968 0.000 0.000 0.004 0.028
#> SRR1456051     1  0.0290     0.9316 0.992 0.000 0.000 0.000 0.008
#> SRR1473275     3  0.0290     0.9718 0.000 0.000 0.992 0.000 0.008
#> SRR1444083     1  0.4328     0.7715 0.788 0.000 0.032 0.036 0.144
#> SRR1313807     2  0.2646     0.5874 0.000 0.868 0.124 0.004 0.004
#> SRR1470751     5  0.1485     0.6441 0.032 0.020 0.000 0.000 0.948
#> SRR1403434     3  0.0880     0.9583 0.000 0.032 0.968 0.000 0.000
#> SRR1390540     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1093861     5  0.4242     0.1554 0.000 0.428 0.000 0.000 0.572
#> SRR1325290     1  0.3940     0.7381 0.756 0.024 0.000 0.000 0.220
#> SRR1070689     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1324295     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1365313     2  0.1662     0.6333 0.004 0.936 0.056 0.000 0.004
#> SRR1321877     3  0.0324     0.9726 0.000 0.004 0.992 0.000 0.004
#> SRR815711      3  0.0963     0.9525 0.000 0.036 0.964 0.000 0.000
#> SRR1433476     2  0.6060     0.1350 0.000 0.492 0.124 0.384 0.000
#> SRR1101883     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1433729     2  0.2116     0.6382 0.000 0.924 0.008 0.040 0.028
#> SRR1341877     1  0.3966     0.7517 0.784 0.176 0.004 0.000 0.036
#> SRR1090556     1  0.5436     0.7099 0.724 0.120 0.032 0.004 0.120
#> SRR1357389     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1404227     2  0.4622     0.1571 0.000 0.548 0.440 0.000 0.012
#> SRR1376830     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1500661     1  0.0000     0.9321 1.000 0.000 0.000 0.000 0.000
#> SRR1080294     2  0.2517     0.6309 0.000 0.884 0.004 0.008 0.104
#> SRR1336314     4  0.1697     0.8403 0.000 0.008 0.000 0.932 0.060
#> SRR1102152     1  0.1082     0.9204 0.964 0.000 0.008 0.000 0.028
#> SRR1345244     3  0.0324     0.9730 0.000 0.004 0.992 0.000 0.004
#> SRR1478637     5  0.2707     0.5752 0.008 0.132 0.000 0.000 0.860
#> SRR1443776     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1120939     3  0.0404     0.9692 0.000 0.012 0.988 0.000 0.000
#> SRR1080117     3  0.0000     0.9742 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.2424     0.6190 0.000 0.868 0.000 0.000 0.132
#> SRR1091865     5  0.3521     0.5365 0.232 0.000 0.000 0.004 0.764
#> SRR1361072     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1487890     1  0.0162     0.9320 0.996 0.000 0.000 0.000 0.004
#> SRR1349456     2  0.1638     0.6326 0.000 0.932 0.064 0.000 0.004
#> SRR1389384     5  0.2690     0.6102 0.156 0.000 0.000 0.000 0.844
#> SRR1316096     2  0.4283     0.1404 0.000 0.544 0.000 0.000 0.456
#> SRR1408512     1  0.1403     0.9117 0.952 0.024 0.000 0.000 0.024
#> SRR1447547     4  0.4169     0.6942 0.000 0.000 0.028 0.732 0.240
#> SRR1354053     2  0.6229     0.1127 0.000 0.464 0.000 0.144 0.392

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.3934     0.4891 0.000 0.000 0.000 0.676 0.020 0.304
#> SRR1499040     2  0.5572     0.4197 0.024 0.612 0.228 0.000 0.136 0.000
#> SRR1322312     1  0.0146     0.9172 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1324412     3  0.0508     0.9423 0.004 0.000 0.984 0.000 0.012 0.000
#> SRR1100991     3  0.0458     0.9443 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1349479     3  0.3220     0.8562 0.000 0.004 0.840 0.056 0.004 0.096
#> SRR1431248     5  0.4178     0.4291 0.004 0.316 0.000 0.016 0.660 0.004
#> SRR1405054     3  0.0820     0.9381 0.012 0.000 0.972 0.000 0.016 0.000
#> SRR1312266     1  0.5437     0.4434 0.592 0.088 0.000 0.296 0.024 0.000
#> SRR1409790     3  0.0363     0.9430 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1352507     3  0.0146     0.9446 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1383763     1  0.0146     0.9172 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1468314     6  0.1663     0.6657 0.000 0.088 0.000 0.000 0.000 0.912
#> SRR1473674     2  0.3189     0.5813 0.000 0.760 0.000 0.000 0.004 0.236
#> SRR1390499     1  0.0717     0.9129 0.976 0.008 0.000 0.000 0.016 0.000
#> SRR821043      6  0.4141     0.1094 0.000 0.012 0.000 0.432 0.000 0.556
#> SRR1455653     4  0.5232     0.3044 0.000 0.116 0.000 0.564 0.000 0.320
#> SRR1335236     6  0.3881     0.3333 0.000 0.396 0.000 0.000 0.004 0.600
#> SRR1095383     6  0.1649     0.6415 0.000 0.000 0.000 0.036 0.032 0.932
#> SRR1479489     1  0.1528     0.8860 0.936 0.000 0.048 0.000 0.016 0.000
#> SRR1310433     6  0.1663     0.6648 0.000 0.088 0.000 0.000 0.000 0.912
#> SRR1073435     5  0.3744     0.5960 0.000 0.000 0.044 0.000 0.756 0.200
#> SRR659649      3  0.0000     0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1395999     1  0.4251     0.6741 0.716 0.076 0.000 0.000 0.208 0.000
#> SRR1105248     4  0.1049     0.8195 0.000 0.000 0.032 0.960 0.000 0.008
#> SRR1338257     1  0.4352     0.7673 0.780 0.120 0.036 0.016 0.048 0.000
#> SRR1499395     3  0.1152     0.9420 0.000 0.004 0.952 0.000 0.044 0.000
#> SRR1350002     2  0.2178     0.7129 0.000 0.868 0.000 0.000 0.000 0.132
#> SRR1489757     3  0.0260     0.9440 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1414637     2  0.3352     0.6893 0.000 0.792 0.000 0.000 0.176 0.032
#> SRR1478113     4  0.1616     0.8171 0.000 0.048 0.000 0.932 0.020 0.000
#> SRR1322477     1  0.2618     0.8403 0.860 0.116 0.000 0.000 0.024 0.000
#> SRR1478789     3  0.4624     0.6847 0.000 0.008 0.692 0.000 0.220 0.080
#> SRR1414185     3  0.2792     0.9109 0.000 0.004 0.876 0.016 0.076 0.028
#> SRR1069141     6  0.3868     0.1043 0.000 0.492 0.000 0.000 0.000 0.508
#> SRR1376852     1  0.3003     0.7829 0.812 0.016 0.000 0.000 0.172 0.000
#> SRR1323491     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1338103     5  0.2393     0.6743 0.064 0.040 0.000 0.000 0.892 0.004
#> SRR1472012     5  0.3041     0.6270 0.128 0.040 0.000 0.000 0.832 0.000
#> SRR1340325     1  0.3603     0.7689 0.804 0.012 0.136 0.000 0.048 0.000
#> SRR1087321     3  0.0777     0.9449 0.000 0.004 0.972 0.000 0.024 0.000
#> SRR1488790     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1334866     5  0.4193     0.5953 0.036 0.044 0.004 0.000 0.776 0.140
#> SRR1089446     3  0.1760     0.9299 0.004 0.000 0.928 0.000 0.020 0.048
#> SRR1344445     3  0.0260     0.9445 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1412969     3  0.2213     0.9132 0.000 0.004 0.888 0.000 0.100 0.008
#> SRR1071668     3  0.0363     0.9430 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1075804     1  0.3023     0.7088 0.768 0.000 0.000 0.000 0.232 0.000
#> SRR1383283     6  0.4241     0.1837 0.000 0.004 0.020 0.000 0.348 0.628
#> SRR1350239     4  0.2632     0.7303 0.000 0.000 0.164 0.832 0.004 0.000
#> SRR1353878     1  0.1151     0.9038 0.956 0.032 0.000 0.000 0.012 0.000
#> SRR1375721     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.4805     0.4703 0.608 0.052 0.008 0.000 0.332 0.000
#> SRR1090095     1  0.0146     0.9172 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1414792     1  0.0146     0.9171 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1075102     4  0.1092     0.8243 0.000 0.020 0.000 0.960 0.020 0.000
#> SRR1098737     1  0.3128     0.7792 0.812 0.008 0.000 0.012 0.168 0.000
#> SRR1349409     1  0.0146     0.9172 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1413008     4  0.2662     0.7417 0.000 0.004 0.152 0.840 0.004 0.000
#> SRR1407179     5  0.3534     0.6237 0.000 0.000 0.124 0.000 0.800 0.076
#> SRR1095913     5  0.6675     0.2964 0.000 0.064 0.276 0.000 0.476 0.184
#> SRR1403544     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0260     0.9163 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR807971      3  0.0260     0.9454 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1436228     5  0.4775     0.6312 0.048 0.068 0.000 0.000 0.724 0.160
#> SRR1445218     6  0.1814     0.6609 0.000 0.100 0.000 0.000 0.000 0.900
#> SRR1485438     2  0.3081     0.6139 0.000 0.776 0.000 0.000 0.004 0.220
#> SRR1358143     1  0.0260     0.9164 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1328760     1  0.0820     0.9114 0.972 0.012 0.000 0.000 0.016 0.000
#> SRR1380806     1  0.0520     0.9127 0.984 0.000 0.008 0.000 0.008 0.000
#> SRR1379426     3  0.2806     0.8782 0.000 0.004 0.844 0.000 0.136 0.016
#> SRR1087007     3  0.2776     0.8896 0.000 0.004 0.860 0.000 0.104 0.032
#> SRR1086256     5  0.4548     0.4053 0.000 0.056 0.000 0.000 0.632 0.312
#> SRR1346734     4  0.0363     0.8209 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1414515     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082151     2  0.0865     0.7622 0.000 0.964 0.000 0.000 0.000 0.036
#> SRR1349320     4  0.1720     0.8176 0.000 0.040 0.000 0.928 0.032 0.000
#> SRR1317554     6  0.1814     0.6454 0.000 0.000 0.000 0.100 0.000 0.900
#> SRR1076022     6  0.5039     0.5045 0.000 0.176 0.000 0.000 0.184 0.640
#> SRR1339573     3  0.0692     0.9442 0.000 0.004 0.976 0.000 0.020 0.000
#> SRR1455878     1  0.2647     0.8501 0.868 0.044 0.000 0.000 0.088 0.000
#> SRR1446203     3  0.0937     0.9396 0.000 0.000 0.960 0.000 0.040 0.000
#> SRR1387397     1  0.3765     0.3211 0.596 0.000 0.000 0.000 0.404 0.000
#> SRR1402590     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.0363     0.9160 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1331488     1  0.2092     0.8321 0.876 0.000 0.000 0.124 0.000 0.000
#> SRR1499675     5  0.2420     0.6697 0.032 0.000 0.008 0.000 0.892 0.068
#> SRR1440467     3  0.2809     0.8621 0.000 0.004 0.848 0.000 0.020 0.128
#> SRR807995      2  0.1663     0.7429 0.000 0.912 0.000 0.000 0.000 0.088
#> SRR1476485     4  0.0260     0.8212 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1388214     1  0.1448     0.9009 0.948 0.016 0.012 0.000 0.024 0.000
#> SRR1456051     1  0.0622     0.9133 0.980 0.008 0.000 0.000 0.012 0.000
#> SRR1473275     3  0.0858     0.9446 0.000 0.004 0.968 0.000 0.028 0.000
#> SRR1444083     1  0.5545     0.6239 0.680 0.152 0.112 0.032 0.024 0.000
#> SRR1313807     6  0.4319     0.0476 0.000 0.000 0.024 0.000 0.400 0.576
#> SRR1470751     2  0.0551     0.7617 0.000 0.984 0.000 0.004 0.004 0.008
#> SRR1403434     3  0.2009     0.9319 0.000 0.004 0.916 0.000 0.040 0.040
#> SRR1390540     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1093861     6  0.3843     0.2174 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1325290     5  0.5440     0.2633 0.348 0.132 0.000 0.000 0.520 0.000
#> SRR1070689     1  0.0146     0.9172 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1384049     1  0.0146     0.9172 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1081184     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     6  0.4329     0.0921 0.000 0.008 0.012 0.000 0.404 0.576
#> SRR1321877     3  0.2006     0.9130 0.000 0.004 0.892 0.000 0.104 0.000
#> SRR815711      3  0.0909     0.9448 0.000 0.000 0.968 0.000 0.020 0.012
#> SRR1433476     6  0.4861     0.5216 0.000 0.004 0.024 0.156 0.100 0.716
#> SRR1101883     3  0.1141     0.9382 0.000 0.000 0.948 0.000 0.052 0.000
#> SRR1433729     5  0.4556     0.1905 0.000 0.000 0.020 0.008 0.516 0.456
#> SRR1341877     5  0.2726     0.6620 0.112 0.000 0.000 0.000 0.856 0.032
#> SRR1090556     5  0.3206     0.6411 0.104 0.068 0.000 0.000 0.828 0.000
#> SRR1357389     3  0.0000     0.9448 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1404227     5  0.2609     0.6507 0.000 0.000 0.036 0.000 0.868 0.096
#> SRR1376830     1  0.0146     0.9171 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1500661     1  0.0260     0.9165 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1080294     6  0.1845     0.6142 0.000 0.000 0.004 0.008 0.072 0.916
#> SRR1336314     4  0.2214     0.7821 0.000 0.096 0.000 0.888 0.000 0.016
#> SRR1102152     1  0.1341     0.8952 0.948 0.000 0.028 0.000 0.024 0.000
#> SRR1345244     3  0.1219     0.9419 0.000 0.004 0.948 0.000 0.048 0.000
#> SRR1478637     2  0.3659     0.4340 0.000 0.636 0.000 0.000 0.364 0.000
#> SRR1443776     3  0.0935     0.9437 0.000 0.004 0.964 0.000 0.032 0.000
#> SRR1120939     3  0.1524     0.9233 0.000 0.000 0.932 0.000 0.060 0.008
#> SRR1080117     3  0.1555     0.9345 0.000 0.004 0.932 0.000 0.060 0.004
#> SRR1102899     6  0.0914     0.6582 0.000 0.016 0.000 0.000 0.016 0.968
#> SRR1091865     2  0.1693     0.7432 0.020 0.932 0.000 0.004 0.044 0.000
#> SRR1361072     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9175 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349456     5  0.4484     0.1580 0.000 0.008 0.016 0.000 0.516 0.460
#> SRR1389384     2  0.2458     0.7342 0.068 0.892 0.000 0.000 0.016 0.024
#> SRR1316096     6  0.2631     0.6149 0.000 0.180 0.000 0.000 0.000 0.820
#> SRR1408512     1  0.1814     0.8638 0.900 0.000 0.000 0.000 0.100 0.000
#> SRR1447547     4  0.4328     0.6445 0.000 0.212 0.000 0.708 0.080 0.000
#> SRR1354053     6  0.5296     0.4403 0.000 0.236 0.000 0.168 0.000 0.596

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.809           0.969       0.973         0.2306 0.737   0.737
#> 3 3 0.795           0.917       0.948         0.3546 0.990   0.987
#> 4 4 0.424           0.652       0.739         0.5218 0.995   0.993
#> 5 5 0.527           0.583       0.796         0.1113 0.795   0.718
#> 6 6 0.526           0.563       0.776         0.0341 0.950   0.906

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.996 1.000 0.000
#> SRR1349562     1  0.0000      0.996 1.000 0.000
#> SRR1353376     2  0.7299      0.882 0.204 0.796
#> SRR1499040     1  0.0000      0.996 1.000 0.000
#> SRR1322312     1  0.0000      0.996 1.000 0.000
#> SRR1324412     1  0.0000      0.996 1.000 0.000
#> SRR1100991     1  0.0000      0.996 1.000 0.000
#> SRR1349479     2  0.8327      0.832 0.264 0.736
#> SRR1431248     1  0.0000      0.996 1.000 0.000
#> SRR1405054     1  0.0000      0.996 1.000 0.000
#> SRR1312266     1  0.0000      0.996 1.000 0.000
#> SRR1409790     1  0.0000      0.996 1.000 0.000
#> SRR1352507     1  0.0000      0.996 1.000 0.000
#> SRR1383763     1  0.0000      0.996 1.000 0.000
#> SRR1468314     1  0.0376      0.992 0.996 0.004
#> SRR1473674     1  0.0376      0.992 0.996 0.004
#> SRR1390499     1  0.0000      0.996 1.000 0.000
#> SRR821043      2  0.0000      0.835 0.000 1.000
#> SRR1455653     2  0.0000      0.835 0.000 1.000
#> SRR1335236     1  0.0376      0.992 0.996 0.004
#> SRR1095383     2  0.7453      0.879 0.212 0.788
#> SRR1479489     1  0.0000      0.996 1.000 0.000
#> SRR1310433     1  0.0376      0.992 0.996 0.004
#> SRR1073435     1  0.0000      0.996 1.000 0.000
#> SRR659649      1  0.0000      0.996 1.000 0.000
#> SRR1395999     1  0.0000      0.996 1.000 0.000
#> SRR1105248     2  0.6887      0.882 0.184 0.816
#> SRR1338257     1  0.0000      0.996 1.000 0.000
#> SRR1499395     1  0.0000      0.996 1.000 0.000
#> SRR1350002     1  0.0376      0.992 0.996 0.004
#> SRR1489757     1  0.0000      0.996 1.000 0.000
#> SRR1414637     1  0.0000      0.996 1.000 0.000
#> SRR1478113     2  0.7139      0.883 0.196 0.804
#> SRR1322477     1  0.1633      0.970 0.976 0.024
#> SRR1478789     1  0.0000      0.996 1.000 0.000
#> SRR1414185     1  0.5178      0.842 0.884 0.116
#> SRR1069141     1  0.0376      0.992 0.996 0.004
#> SRR1376852     1  0.0000      0.996 1.000 0.000
#> SRR1323491     1  0.0000      0.996 1.000 0.000
#> SRR1338103     1  0.0000      0.996 1.000 0.000
#> SRR1472012     1  0.0000      0.996 1.000 0.000
#> SRR1340325     1  0.0000      0.996 1.000 0.000
#> SRR1087321     1  0.0000      0.996 1.000 0.000
#> SRR1488790     1  0.0000      0.996 1.000 0.000
#> SRR1334866     1  0.0000      0.996 1.000 0.000
#> SRR1089446     1  0.0000      0.996 1.000 0.000
#> SRR1344445     1  0.0000      0.996 1.000 0.000
#> SRR1412969     1  0.0672      0.988 0.992 0.008
#> SRR1071668     1  0.0000      0.996 1.000 0.000
#> SRR1075804     1  0.1633      0.970 0.976 0.024
#> SRR1383283     1  0.0000      0.996 1.000 0.000
#> SRR1350239     2  0.8016      0.856 0.244 0.756
#> SRR1353878     1  0.0000      0.996 1.000 0.000
#> SRR1375721     1  0.0000      0.996 1.000 0.000
#> SRR1083983     1  0.0000      0.996 1.000 0.000
#> SRR1090095     1  0.0000      0.996 1.000 0.000
#> SRR1414792     1  0.0000      0.996 1.000 0.000
#> SRR1075102     2  0.7139      0.883 0.196 0.804
#> SRR1098737     1  0.1633      0.970 0.976 0.024
#> SRR1349409     1  0.0000      0.996 1.000 0.000
#> SRR1413008     2  0.8016      0.856 0.244 0.756
#> SRR1407179     1  0.0000      0.996 1.000 0.000
#> SRR1095913     1  0.0000      0.996 1.000 0.000
#> SRR1403544     1  0.0000      0.996 1.000 0.000
#> SRR1490546     1  0.0000      0.996 1.000 0.000
#> SRR807971      1  0.0000      0.996 1.000 0.000
#> SRR1436228     1  0.0000      0.996 1.000 0.000
#> SRR1445218     1  0.0376      0.992 0.996 0.004
#> SRR1485438     1  0.0000      0.996 1.000 0.000
#> SRR1358143     1  0.0000      0.996 1.000 0.000
#> SRR1328760     1  0.0000      0.996 1.000 0.000
#> SRR1380806     1  0.0000      0.996 1.000 0.000
#> SRR1379426     1  0.5178      0.842 0.884 0.116
#> SRR1087007     1  0.0000      0.996 1.000 0.000
#> SRR1086256     1  0.0376      0.992 0.996 0.004
#> SRR1346734     2  0.0000      0.835 0.000 1.000
#> SRR1414515     1  0.0000      0.996 1.000 0.000
#> SRR1082151     1  0.0000      0.996 1.000 0.000
#> SRR1349320     2  0.7139      0.883 0.196 0.804
#> SRR1317554     2  0.0376      0.836 0.004 0.996
#> SRR1076022     1  0.0376      0.992 0.996 0.004
#> SRR1339573     1  0.0000      0.996 1.000 0.000
#> SRR1455878     1  0.0000      0.996 1.000 0.000
#> SRR1446203     1  0.0000      0.996 1.000 0.000
#> SRR1387397     1  0.0000      0.996 1.000 0.000
#> SRR1402590     1  0.0000      0.996 1.000 0.000
#> SRR1317532     1  0.1633      0.970 0.976 0.024
#> SRR1331488     2  0.7950      0.859 0.240 0.760
#> SRR1499675     1  0.0000      0.996 1.000 0.000
#> SRR1440467     1  0.0672      0.988 0.992 0.008
#> SRR807995      1  0.0376      0.992 0.996 0.004
#> SRR1476485     2  0.0000      0.835 0.000 1.000
#> SRR1388214     1  0.0000      0.996 1.000 0.000
#> SRR1456051     1  0.0000      0.996 1.000 0.000
#> SRR1473275     1  0.0000      0.996 1.000 0.000
#> SRR1444083     1  0.0000      0.996 1.000 0.000
#> SRR1313807     1  0.0000      0.996 1.000 0.000
#> SRR1470751     1  0.0000      0.996 1.000 0.000
#> SRR1403434     1  0.0672      0.988 0.992 0.008
#> SRR1390540     1  0.0000      0.996 1.000 0.000
#> SRR1093861     1  0.0376      0.992 0.996 0.004
#> SRR1325290     1  0.0000      0.996 1.000 0.000
#> SRR1070689     1  0.0000      0.996 1.000 0.000
#> SRR1384049     1  0.0000      0.996 1.000 0.000
#> SRR1081184     1  0.0000      0.996 1.000 0.000
#> SRR1324295     1  0.0000      0.996 1.000 0.000
#> SRR1365313     1  0.0000      0.996 1.000 0.000
#> SRR1321877     1  0.0000      0.996 1.000 0.000
#> SRR815711      1  0.0000      0.996 1.000 0.000
#> SRR1433476     2  0.9427      0.670 0.360 0.640
#> SRR1101883     1  0.0000      0.996 1.000 0.000
#> SRR1433729     2  0.7453      0.879 0.212 0.788
#> SRR1341877     1  0.0000      0.996 1.000 0.000
#> SRR1090556     1  0.0000      0.996 1.000 0.000
#> SRR1357389     1  0.0000      0.996 1.000 0.000
#> SRR1404227     1  0.0000      0.996 1.000 0.000
#> SRR1376830     1  0.0000      0.996 1.000 0.000
#> SRR1500661     1  0.0000      0.996 1.000 0.000
#> SRR1080294     2  0.7453      0.879 0.212 0.788
#> SRR1336314     2  0.0000      0.835 0.000 1.000
#> SRR1102152     1  0.0000      0.996 1.000 0.000
#> SRR1345244     1  0.0000      0.996 1.000 0.000
#> SRR1478637     1  0.0000      0.996 1.000 0.000
#> SRR1443776     1  0.0000      0.996 1.000 0.000
#> SRR1120939     1  0.0000      0.996 1.000 0.000
#> SRR1080117     1  0.0000      0.996 1.000 0.000
#> SRR1102899     1  0.1184      0.980 0.984 0.016
#> SRR1091865     1  0.0000      0.996 1.000 0.000
#> SRR1361072     1  0.0000      0.996 1.000 0.000
#> SRR1487890     1  0.0000      0.996 1.000 0.000
#> SRR1349456     1  0.0000      0.996 1.000 0.000
#> SRR1389384     1  0.0000      0.996 1.000 0.000
#> SRR1316096     1  0.0376      0.992 0.996 0.004
#> SRR1408512     1  0.0000      0.996 1.000 0.000
#> SRR1447547     2  0.8016      0.856 0.244 0.756
#> SRR1354053     2  0.0000      0.835 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0237      0.956 0.996 0.000 0.004
#> SRR1349562     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1353376     2  0.2492      0.881 0.016 0.936 0.048
#> SRR1499040     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1322312     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1324412     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1100991     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1349479     2  0.1182      0.853 0.012 0.976 0.012
#> SRR1431248     1  0.0475      0.956 0.992 0.004 0.004
#> SRR1405054     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1312266     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1409790     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1352507     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1383763     1  0.0000      0.956 1.000 0.000 0.000
#> SRR1468314     1  0.3784      0.874 0.864 0.132 0.004
#> SRR1473674     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1390499     1  0.0237      0.956 0.996 0.000 0.004
#> SRR821043      3  0.0592      0.939 0.000 0.012 0.988
#> SRR1455653     3  0.3686      0.869 0.000 0.140 0.860
#> SRR1335236     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1095383     2  0.2176      0.883 0.020 0.948 0.032
#> SRR1479489     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1310433     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1073435     1  0.2301      0.932 0.936 0.060 0.004
#> SRR659649      1  0.0592      0.956 0.988 0.012 0.000
#> SRR1395999     1  0.0237      0.957 0.996 0.004 0.000
#> SRR1105248     2  0.2902      0.875 0.016 0.920 0.064
#> SRR1338257     1  0.0475      0.956 0.992 0.004 0.004
#> SRR1499395     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1350002     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1489757     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1414637     1  0.2796      0.910 0.908 0.092 0.000
#> SRR1478113     2  0.3610      0.875 0.016 0.888 0.096
#> SRR1322477     1  0.1647      0.943 0.960 0.036 0.004
#> SRR1478789     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1414185     1  0.4293      0.819 0.832 0.164 0.004
#> SRR1069141     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1376852     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1323491     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1338103     1  0.1031      0.953 0.976 0.024 0.000
#> SRR1472012     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1340325     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1087321     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1488790     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1334866     1  0.2261      0.927 0.932 0.068 0.000
#> SRR1089446     1  0.5115      0.773 0.768 0.228 0.004
#> SRR1344445     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1412969     1  0.2680      0.922 0.924 0.068 0.008
#> SRR1071668     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1075804     1  0.1267      0.945 0.972 0.024 0.004
#> SRR1383283     1  0.2496      0.926 0.928 0.068 0.004
#> SRR1350239     2  0.2846      0.875 0.020 0.924 0.056
#> SRR1353878     1  0.0000      0.956 1.000 0.000 0.000
#> SRR1375721     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1083983     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1090095     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1414792     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1075102     2  0.3995      0.865 0.016 0.868 0.116
#> SRR1098737     1  0.1267      0.945 0.972 0.024 0.004
#> SRR1349409     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1413008     2  0.2846      0.875 0.020 0.924 0.056
#> SRR1407179     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1095913     1  0.3030      0.908 0.904 0.092 0.004
#> SRR1403544     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1490546     1  0.0237      0.956 0.996 0.000 0.004
#> SRR807971      1  0.0592      0.956 0.988 0.012 0.000
#> SRR1436228     1  0.0747      0.956 0.984 0.016 0.000
#> SRR1445218     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1485438     1  0.1643      0.944 0.956 0.044 0.000
#> SRR1358143     1  0.0000      0.956 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.956 1.000 0.000 0.000
#> SRR1380806     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1379426     1  0.4047      0.833 0.848 0.148 0.004
#> SRR1087007     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1086256     1  0.2711      0.913 0.912 0.088 0.000
#> SRR1346734     3  0.0747      0.940 0.000 0.016 0.984
#> SRR1414515     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1082151     1  0.1525      0.947 0.964 0.032 0.004
#> SRR1349320     2  0.3610      0.875 0.016 0.888 0.096
#> SRR1317554     2  0.5058      0.568 0.000 0.756 0.244
#> SRR1076022     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1339573     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1455878     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1446203     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1387397     1  0.0747      0.956 0.984 0.016 0.000
#> SRR1402590     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1317532     1  0.1267      0.945 0.972 0.024 0.004
#> SRR1331488     2  0.6283      0.591 0.176 0.760 0.064
#> SRR1499675     1  0.1163      0.950 0.972 0.028 0.000
#> SRR1440467     1  0.5461      0.746 0.748 0.244 0.008
#> SRR807995      1  0.4629      0.818 0.808 0.188 0.004
#> SRR1476485     3  0.0747      0.940 0.000 0.016 0.984
#> SRR1388214     1  0.0661      0.956 0.988 0.008 0.004
#> SRR1456051     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1473275     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1444083     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1313807     1  0.2496      0.926 0.928 0.068 0.004
#> SRR1470751     1  0.1525      0.947 0.964 0.032 0.004
#> SRR1403434     1  0.5461      0.746 0.748 0.244 0.008
#> SRR1390540     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1093861     1  0.4409      0.834 0.824 0.172 0.004
#> SRR1325290     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1070689     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1384049     1  0.0000      0.956 1.000 0.000 0.000
#> SRR1081184     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1324295     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1365313     1  0.0892      0.954 0.980 0.020 0.000
#> SRR1321877     1  0.0747      0.955 0.984 0.016 0.000
#> SRR815711      1  0.5115      0.773 0.768 0.228 0.004
#> SRR1433476     2  0.3695      0.690 0.108 0.880 0.012
#> SRR1101883     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1433729     2  0.2313      0.882 0.024 0.944 0.032
#> SRR1341877     1  0.1031      0.953 0.976 0.024 0.000
#> SRR1090556     1  0.0475      0.956 0.992 0.004 0.004
#> SRR1357389     1  0.0892      0.955 0.980 0.020 0.000
#> SRR1404227     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1376830     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1500661     1  0.0000      0.956 1.000 0.000 0.000
#> SRR1080294     2  0.2313      0.882 0.024 0.944 0.032
#> SRR1336314     3  0.0747      0.938 0.000 0.016 0.984
#> SRR1102152     1  0.2400      0.927 0.932 0.064 0.004
#> SRR1345244     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1478637     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1443776     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1120939     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1080117     1  0.0747      0.955 0.984 0.016 0.000
#> SRR1102899     1  0.4784      0.804 0.796 0.200 0.004
#> SRR1091865     1  0.0829      0.955 0.984 0.012 0.004
#> SRR1361072     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1487890     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1349456     1  0.0592      0.956 0.988 0.012 0.000
#> SRR1389384     1  0.0475      0.956 0.992 0.004 0.004
#> SRR1316096     1  0.4629      0.818 0.808 0.188 0.004
#> SRR1408512     1  0.0237      0.957 0.996 0.004 0.000
#> SRR1447547     2  0.2384      0.863 0.008 0.936 0.056
#> SRR1354053     3  0.3686      0.869 0.000 0.140 0.860

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR1349562     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1353376     4  0.5793     0.6082 0.012 0.012 0.448 0.528
#> SRR1499040     1  0.0524     0.7538 0.988 0.008 0.000 0.004
#> SRR1322312     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1324412     1  0.1124     0.7528 0.972 0.012 0.012 0.004
#> SRR1100991     1  0.1124     0.7528 0.972 0.012 0.012 0.004
#> SRR1349479     3  0.4456     0.3486 0.004 0.000 0.716 0.280
#> SRR1431248     1  0.4608     0.7448 0.692 0.304 0.000 0.004
#> SRR1405054     1  0.3801     0.7579 0.780 0.220 0.000 0.000
#> SRR1312266     1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR1409790     1  0.1124     0.7528 0.972 0.012 0.012 0.004
#> SRR1352507     1  0.0188     0.7514 0.996 0.000 0.000 0.004
#> SRR1383763     1  0.4304     0.7492 0.716 0.284 0.000 0.000
#> SRR1468314     1  0.4406     0.4709 0.700 0.000 0.000 0.300
#> SRR1473674     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1390499     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR821043      2  0.5646     0.9286 0.000 0.672 0.272 0.056
#> SRR1455653     2  0.6661     0.8436 0.000 0.604 0.264 0.132
#> SRR1335236     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1095383     4  0.5383     0.6126 0.012 0.000 0.452 0.536
#> SRR1479489     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1310433     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1073435     1  0.2530     0.6910 0.888 0.000 0.000 0.112
#> SRR659649      1  0.0188     0.7514 0.996 0.000 0.000 0.004
#> SRR1395999     1  0.4560     0.7466 0.700 0.296 0.000 0.004
#> SRR1105248     4  0.6176     0.5890 0.012 0.028 0.452 0.508
#> SRR1338257     1  0.4741     0.7320 0.668 0.328 0.000 0.004
#> SRR1499395     1  0.0188     0.7514 0.996 0.000 0.000 0.004
#> SRR1350002     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1489757     1  0.1124     0.7528 0.972 0.012 0.012 0.004
#> SRR1414637     1  0.2976     0.6879 0.872 0.008 0.000 0.120
#> SRR1478113     4  0.5497     0.6083 0.012 0.020 0.300 0.668
#> SRR1322477     1  0.5496     0.7244 0.652 0.312 0.000 0.036
#> SRR1478789     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1414185     1  0.4287     0.6598 0.828 0.004 0.080 0.088
#> SRR1069141     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1376852     1  0.4454     0.7426 0.692 0.308 0.000 0.000
#> SRR1323491     1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR1338103     1  0.3224     0.7611 0.864 0.120 0.000 0.016
#> SRR1472012     1  0.0524     0.7538 0.988 0.008 0.000 0.004
#> SRR1340325     1  0.4477     0.7416 0.688 0.312 0.000 0.000
#> SRR1087321     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1488790     1  0.4522     0.7371 0.680 0.320 0.000 0.000
#> SRR1334866     1  0.2480     0.7119 0.904 0.008 0.000 0.088
#> SRR1089446     1  0.4302     0.5593 0.756 0.004 0.236 0.004
#> SRR1344445     1  0.0188     0.7514 0.996 0.000 0.000 0.004
#> SRR1412969     1  0.2408     0.7222 0.920 0.004 0.060 0.016
#> SRR1071668     1  0.1124     0.7528 0.972 0.012 0.012 0.004
#> SRR1075804     1  0.5250     0.7241 0.660 0.316 0.000 0.024
#> SRR1383283     1  0.2704     0.6810 0.876 0.000 0.000 0.124
#> SRR1350239     4  0.5375     0.4358 0.008 0.004 0.416 0.572
#> SRR1353878     1  0.4406     0.7456 0.700 0.300 0.000 0.000
#> SRR1375721     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1083983     1  0.0524     0.7538 0.988 0.008 0.000 0.004
#> SRR1090095     1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR1414792     1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR1075102     4  0.5662     0.5844 0.012 0.024 0.312 0.652
#> SRR1098737     1  0.5250     0.7241 0.660 0.316 0.000 0.024
#> SRR1349409     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1413008     4  0.5375     0.4358 0.008 0.004 0.416 0.572
#> SRR1407179     1  0.0188     0.7517 0.996 0.000 0.000 0.004
#> SRR1095913     1  0.3074     0.6551 0.848 0.000 0.000 0.152
#> SRR1403544     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1490546     1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR807971      1  0.0188     0.7514 0.996 0.000 0.000 0.004
#> SRR1436228     1  0.2799     0.7616 0.884 0.108 0.000 0.008
#> SRR1445218     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1485438     1  0.4134     0.5274 0.740 0.000 0.000 0.260
#> SRR1358143     1  0.4304     0.7492 0.716 0.284 0.000 0.000
#> SRR1328760     1  0.4406     0.7456 0.700 0.300 0.000 0.000
#> SRR1380806     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1379426     1  0.4004     0.6745 0.844 0.004 0.064 0.088
#> SRR1087007     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1086256     1  0.2918     0.6911 0.876 0.008 0.000 0.116
#> SRR1346734     2  0.5716     0.9293 0.000 0.668 0.272 0.060
#> SRR1414515     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1082151     1  0.5343     0.7445 0.708 0.240 0.000 0.052
#> SRR1349320     4  0.5497     0.6083 0.012 0.020 0.300 0.668
#> SRR1317554     3  0.7544    -0.0398 0.000 0.196 0.452 0.352
#> SRR1076022     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1339573     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1455878     1  0.4454     0.7426 0.692 0.308 0.000 0.000
#> SRR1446203     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1387397     1  0.2799     0.7616 0.884 0.108 0.000 0.008
#> SRR1402590     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1317532     1  0.5250     0.7241 0.660 0.316 0.000 0.024
#> SRR1331488     4  0.7856     0.0333 0.144 0.032 0.300 0.524
#> SRR1499675     1  0.1356     0.7479 0.960 0.008 0.032 0.000
#> SRR1440467     1  0.4664     0.5304 0.736 0.004 0.248 0.012
#> SRR807995      1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1476485     2  0.5716     0.9293 0.000 0.668 0.272 0.060
#> SRR1388214     1  0.4877     0.7310 0.664 0.328 0.000 0.008
#> SRR1456051     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1473275     1  0.0188     0.7517 0.996 0.000 0.000 0.004
#> SRR1444083     1  0.4500     0.7395 0.684 0.316 0.000 0.000
#> SRR1313807     1  0.2704     0.6810 0.876 0.000 0.000 0.124
#> SRR1470751     1  0.5343     0.7445 0.708 0.240 0.000 0.052
#> SRR1403434     1  0.4664     0.5304 0.736 0.004 0.248 0.012
#> SRR1390540     1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR1093861     1  0.4992     0.1348 0.524 0.000 0.000 0.476
#> SRR1325290     1  0.0524     0.7538 0.988 0.008 0.000 0.004
#> SRR1070689     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1384049     1  0.4304     0.7492 0.716 0.284 0.000 0.000
#> SRR1081184     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1324295     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1365313     1  0.0469     0.7494 0.988 0.000 0.000 0.012
#> SRR1321877     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR815711      1  0.4302     0.5593 0.756 0.004 0.236 0.004
#> SRR1433476     3  0.6468     0.2397 0.096 0.004 0.624 0.276
#> SRR1101883     1  0.0188     0.7514 0.996 0.000 0.000 0.004
#> SRR1433729     4  0.5488     0.6135 0.016 0.000 0.452 0.532
#> SRR1341877     1  0.3224     0.7611 0.864 0.120 0.000 0.016
#> SRR1090556     1  0.4608     0.7448 0.692 0.304 0.000 0.004
#> SRR1357389     1  0.0524     0.7492 0.988 0.000 0.008 0.004
#> SRR1404227     1  0.0188     0.7517 0.996 0.000 0.000 0.004
#> SRR1376830     1  0.4454     0.7426 0.692 0.308 0.000 0.000
#> SRR1500661     1  0.4304     0.7492 0.716 0.284 0.000 0.000
#> SRR1080294     4  0.5488     0.6135 0.016 0.000 0.452 0.532
#> SRR1336314     2  0.5716     0.9290 0.000 0.668 0.272 0.060
#> SRR1102152     1  0.6238     0.7076 0.632 0.276 0.000 0.092
#> SRR1345244     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1478637     1  0.0524     0.7538 0.988 0.008 0.000 0.004
#> SRR1443776     1  0.0188     0.7514 0.996 0.000 0.000 0.004
#> SRR1120939     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1080117     1  0.0336     0.7503 0.992 0.000 0.000 0.008
#> SRR1102899     1  0.5296     0.0722 0.500 0.000 0.008 0.492
#> SRR1091865     1  0.4872     0.7506 0.728 0.244 0.000 0.028
#> SRR1361072     1  0.4564     0.7326 0.672 0.328 0.000 0.000
#> SRR1487890     1  0.4477     0.7410 0.688 0.312 0.000 0.000
#> SRR1349456     1  0.0817     0.7449 0.976 0.000 0.000 0.024
#> SRR1389384     1  0.4327     0.7563 0.768 0.216 0.000 0.016
#> SRR1316096     1  0.4999     0.0975 0.508 0.000 0.000 0.492
#> SRR1408512     1  0.4560     0.7466 0.700 0.296 0.000 0.004
#> SRR1447547     3  0.5080     0.2444 0.000 0.004 0.576 0.420
#> SRR1354053     2  0.6661     0.8436 0.000 0.604 0.264 0.132

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR1349562     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     3  0.4114    0.69708 0.000 0.000 0.624 0.000 0.376
#> SRR1499040     1  0.4074    0.53680 0.636 0.364 0.000 0.000 0.000
#> SRR1322312     1  0.0162    0.70935 0.996 0.004 0.000 0.000 0.000
#> SRR1324412     1  0.4570    0.53377 0.632 0.348 0.020 0.000 0.000
#> SRR1100991     1  0.4570    0.53377 0.632 0.348 0.020 0.000 0.000
#> SRR1349479     3  0.0000    0.56238 0.000 0.000 1.000 0.000 0.000
#> SRR1431248     1  0.1281    0.70826 0.956 0.032 0.000 0.000 0.012
#> SRR1405054     1  0.2377    0.68103 0.872 0.128 0.000 0.000 0.000
#> SRR1312266     1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR1409790     1  0.4570    0.53377 0.632 0.348 0.020 0.000 0.000
#> SRR1352507     1  0.4354    0.52454 0.624 0.368 0.008 0.000 0.000
#> SRR1383763     1  0.0880    0.71002 0.968 0.032 0.000 0.000 0.000
#> SRR1468314     2  0.4121    0.54929 0.208 0.760 0.008 0.000 0.024
#> SRR1473674     2  0.0794    0.59738 0.000 0.972 0.000 0.000 0.028
#> SRR1390499     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.0000    0.92895 0.000 0.000 0.000 1.000 0.000
#> SRR1455653     4  0.2964    0.85858 0.000 0.000 0.120 0.856 0.024
#> SRR1335236     2  0.0404    0.59750 0.000 0.988 0.000 0.000 0.012
#> SRR1095383     3  0.5359    0.75359 0.000 0.100 0.644 0.000 0.256
#> SRR1479489     1  0.0162    0.70935 0.996 0.004 0.000 0.000 0.000
#> SRR1310433     2  0.0880    0.59616 0.000 0.968 0.000 0.000 0.032
#> SRR1073435     2  0.4684   -0.05007 0.452 0.536 0.004 0.000 0.008
#> SRR659649      1  0.4354    0.52454 0.624 0.368 0.008 0.000 0.000
#> SRR1395999     1  0.1364    0.70905 0.952 0.036 0.000 0.000 0.012
#> SRR1105248     3  0.4759    0.71973 0.000 0.004 0.636 0.024 0.336
#> SRR1338257     1  0.0609    0.69947 0.980 0.000 0.000 0.000 0.020
#> SRR1499395     1  0.4380    0.51417 0.616 0.376 0.008 0.000 0.000
#> SRR1350002     2  0.0880    0.59616 0.000 0.968 0.000 0.000 0.032
#> SRR1489757     1  0.4570    0.53377 0.632 0.348 0.020 0.000 0.000
#> SRR1414637     2  0.4747   -0.17523 0.484 0.500 0.000 0.000 0.016
#> SRR1478113     5  0.0609    0.74217 0.000 0.000 0.000 0.020 0.980
#> SRR1322477     1  0.1626    0.68431 0.940 0.016 0.000 0.000 0.044
#> SRR1478789     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1414185     1  0.6814    0.32445 0.524 0.304 0.040 0.000 0.132
#> SRR1069141     2  0.0880    0.59616 0.000 0.968 0.000 0.000 0.032
#> SRR1376852     1  0.0162    0.70968 0.996 0.004 0.000 0.000 0.000
#> SRR1323491     1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR1338103     1  0.3534    0.61555 0.744 0.256 0.000 0.000 0.000
#> SRR1472012     1  0.4074    0.53680 0.636 0.364 0.000 0.000 0.000
#> SRR1340325     1  0.0324    0.70917 0.992 0.004 0.000 0.000 0.004
#> SRR1087321     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1488790     1  0.0290    0.70536 0.992 0.000 0.000 0.000 0.008
#> SRR1334866     1  0.4740    0.25008 0.516 0.468 0.000 0.000 0.016
#> SRR1089446     1  0.6685    0.03466 0.416 0.340 0.244 0.000 0.000
#> SRR1344445     1  0.4354    0.52454 0.624 0.368 0.008 0.000 0.000
#> SRR1412969     1  0.5634    0.43384 0.568 0.352 0.076 0.000 0.004
#> SRR1071668     1  0.4570    0.53377 0.632 0.348 0.020 0.000 0.000
#> SRR1075804     1  0.1121    0.68869 0.956 0.000 0.000 0.000 0.044
#> SRR1383283     2  0.4670    0.00241 0.440 0.548 0.004 0.000 0.008
#> SRR1350239     5  0.3648    0.73822 0.000 0.004 0.188 0.016 0.792
#> SRR1353878     1  0.0992    0.71019 0.968 0.024 0.000 0.000 0.008
#> SRR1375721     1  0.0162    0.70935 0.996 0.004 0.000 0.000 0.000
#> SRR1083983     1  0.4074    0.53680 0.636 0.364 0.000 0.000 0.000
#> SRR1090095     1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR1414792     1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR1075102     5  0.1043    0.73320 0.000 0.000 0.000 0.040 0.960
#> SRR1098737     1  0.1121    0.68869 0.956 0.000 0.000 0.000 0.044
#> SRR1349409     1  0.0162    0.70935 0.996 0.004 0.000 0.000 0.000
#> SRR1413008     5  0.3648    0.73822 0.000 0.004 0.188 0.016 0.792
#> SRR1407179     1  0.4138    0.51226 0.616 0.384 0.000 0.000 0.000
#> SRR1095913     2  0.4806    0.11027 0.408 0.572 0.004 0.000 0.016
#> SRR1403544     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR807971      1  0.4354    0.52454 0.624 0.368 0.008 0.000 0.000
#> SRR1436228     1  0.3586    0.61164 0.736 0.264 0.000 0.000 0.000
#> SRR1445218     2  0.0880    0.59616 0.000 0.968 0.000 0.000 0.032
#> SRR1485438     2  0.3561    0.47371 0.260 0.740 0.000 0.000 0.000
#> SRR1358143     1  0.0963    0.70975 0.964 0.036 0.000 0.000 0.000
#> SRR1328760     1  0.0992    0.71019 0.968 0.024 0.000 0.000 0.008
#> SRR1380806     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     1  0.6548    0.35475 0.536 0.308 0.024 0.000 0.132
#> SRR1087007     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1086256     2  0.4747   -0.19128 0.488 0.496 0.000 0.000 0.016
#> SRR1346734     4  0.0510    0.93075 0.000 0.000 0.000 0.984 0.016
#> SRR1414515     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     1  0.3039    0.64704 0.836 0.152 0.000 0.000 0.012
#> SRR1349320     5  0.0609    0.74217 0.000 0.000 0.000 0.020 0.980
#> SRR1317554     3  0.5631    0.63736 0.000 0.000 0.636 0.200 0.164
#> SRR1076022     2  0.0404    0.59750 0.000 0.988 0.000 0.000 0.012
#> SRR1339573     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1455878     1  0.0162    0.70968 0.996 0.004 0.000 0.000 0.000
#> SRR1446203     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1387397     1  0.3586    0.61164 0.736 0.264 0.000 0.000 0.000
#> SRR1402590     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.1121    0.68869 0.956 0.000 0.000 0.000 0.044
#> SRR1331488     5  0.2806    0.46408 0.152 0.004 0.000 0.000 0.844
#> SRR1499675     1  0.4822    0.51474 0.616 0.352 0.032 0.000 0.000
#> SRR1440467     1  0.6743   -0.02532 0.396 0.340 0.264 0.000 0.000
#> SRR807995      2  0.0880    0.59616 0.000 0.968 0.000 0.000 0.032
#> SRR1476485     4  0.0290    0.92955 0.000 0.000 0.000 0.992 0.008
#> SRR1388214     1  0.0771    0.69741 0.976 0.004 0.000 0.000 0.020
#> SRR1456051     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1473275     1  0.4138    0.51226 0.616 0.384 0.000 0.000 0.000
#> SRR1444083     1  0.0693    0.70713 0.980 0.008 0.000 0.000 0.012
#> SRR1313807     2  0.4670    0.00241 0.440 0.548 0.004 0.000 0.008
#> SRR1470751     1  0.3039    0.64704 0.836 0.152 0.000 0.000 0.012
#> SRR1403434     1  0.6743   -0.02532 0.396 0.340 0.264 0.000 0.000
#> SRR1390540     1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR1093861     2  0.0693    0.60192 0.012 0.980 0.000 0.000 0.008
#> SRR1325290     1  0.4074    0.53680 0.636 0.364 0.000 0.000 0.000
#> SRR1070689     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0963    0.70975 0.964 0.036 0.000 0.000 0.000
#> SRR1081184     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     1  0.4161    0.49944 0.608 0.392 0.000 0.000 0.000
#> SRR1321877     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR815711      1  0.6685    0.03466 0.416 0.340 0.244 0.000 0.000
#> SRR1433476     3  0.1965    0.41870 0.096 0.000 0.904 0.000 0.000
#> SRR1101883     1  0.4354    0.52454 0.624 0.368 0.008 0.000 0.000
#> SRR1433729     3  0.5382    0.75299 0.000 0.104 0.644 0.000 0.252
#> SRR1341877     1  0.3534    0.61555 0.744 0.256 0.000 0.000 0.000
#> SRR1090556     1  0.1195    0.70816 0.960 0.028 0.000 0.000 0.012
#> SRR1357389     1  0.4525    0.52506 0.624 0.360 0.016 0.000 0.000
#> SRR1404227     1  0.4138    0.51226 0.616 0.384 0.000 0.000 0.000
#> SRR1376830     1  0.0162    0.70968 0.996 0.004 0.000 0.000 0.000
#> SRR1500661     1  0.0880    0.71002 0.968 0.032 0.000 0.000 0.000
#> SRR1080294     3  0.5403    0.75022 0.000 0.108 0.644 0.000 0.248
#> SRR1336314     4  0.0404    0.93134 0.000 0.000 0.000 0.988 0.012
#> SRR1102152     1  0.3146    0.58384 0.844 0.128 0.000 0.000 0.028
#> SRR1345244     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1478637     1  0.4074    0.53680 0.636 0.364 0.000 0.000 0.000
#> SRR1443776     1  0.4276    0.51358 0.616 0.380 0.004 0.000 0.000
#> SRR1120939     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1080117     1  0.4288    0.50763 0.612 0.384 0.004 0.000 0.000
#> SRR1102899     2  0.1484    0.57400 0.000 0.944 0.008 0.000 0.048
#> SRR1091865     1  0.2471    0.66971 0.864 0.136 0.000 0.000 0.000
#> SRR1361072     1  0.0510    0.70140 0.984 0.000 0.000 0.000 0.016
#> SRR1487890     1  0.0000    0.70853 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     1  0.4341    0.47170 0.592 0.404 0.004 0.000 0.000
#> SRR1389384     1  0.3010    0.65809 0.824 0.172 0.000 0.000 0.004
#> SRR1316096     2  0.0880    0.59616 0.000 0.968 0.000 0.000 0.032
#> SRR1408512     1  0.1364    0.70905 0.952 0.036 0.000 0.000 0.012
#> SRR1447547     5  0.4482    0.59435 0.000 0.000 0.348 0.016 0.636
#> SRR1354053     4  0.2964    0.85858 0.000 0.000 0.120 0.856 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0777     0.6847 0.972 0.000 0.000 0.004 0.000 0.024
#> SRR1349562     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1353376     4  0.5217     0.5190 0.000 0.000 0.232 0.608 0.000 0.160
#> SRR1499040     1  0.3852     0.4780 0.612 0.384 0.000 0.004 0.000 0.000
#> SRR1322312     1  0.0291     0.6974 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR1324412     1  0.4121     0.4669 0.604 0.380 0.000 0.000 0.000 0.016
#> SRR1100991     1  0.4121     0.4669 0.604 0.380 0.000 0.000 0.000 0.016
#> SRR1349479     6  0.3586     0.8142 0.000 0.004 0.004 0.280 0.000 0.712
#> SRR1431248     1  0.1624     0.6936 0.936 0.040 0.000 0.004 0.000 0.020
#> SRR1405054     1  0.2300     0.6548 0.856 0.144 0.000 0.000 0.000 0.000
#> SRR1312266     1  0.0777     0.6887 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1409790     1  0.4121     0.4669 0.604 0.380 0.000 0.000 0.000 0.016
#> SRR1352507     1  0.3890     0.4587 0.596 0.400 0.000 0.000 0.000 0.004
#> SRR1383763     1  0.0935     0.6969 0.964 0.032 0.000 0.004 0.000 0.000
#> SRR1468314     2  0.3875     0.5679 0.188 0.768 0.008 0.028 0.000 0.008
#> SRR1473674     2  0.1793     0.4855 0.000 0.928 0.004 0.032 0.000 0.036
#> SRR1390499     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR821043      5  0.0363     0.7945 0.000 0.000 0.000 0.012 0.988 0.000
#> SRR1455653     5  0.5263     0.7699 0.000 0.000 0.012 0.248 0.624 0.116
#> SRR1335236     2  0.1391     0.5044 0.000 0.944 0.000 0.040 0.000 0.016
#> SRR1095383     4  0.3013     0.7970 0.000 0.068 0.088 0.844 0.000 0.000
#> SRR1479489     1  0.0291     0.6974 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR1310433     2  0.1716     0.4830 0.000 0.932 0.004 0.028 0.000 0.036
#> SRR1073435     2  0.4635     0.0608 0.432 0.536 0.004 0.024 0.000 0.004
#> SRR659649      1  0.3890     0.4587 0.596 0.400 0.000 0.000 0.000 0.004
#> SRR1395999     1  0.1464     0.6952 0.944 0.036 0.000 0.004 0.000 0.016
#> SRR1105248     4  0.2882     0.7296 0.000 0.000 0.180 0.812 0.008 0.000
#> SRR1338257     1  0.0777     0.6849 0.972 0.000 0.000 0.004 0.000 0.024
#> SRR1499395     1  0.3907     0.4466 0.588 0.408 0.000 0.000 0.000 0.004
#> SRR1350002     2  0.1716     0.4830 0.000 0.932 0.004 0.028 0.000 0.036
#> SRR1489757     1  0.4121     0.4669 0.604 0.380 0.000 0.000 0.000 0.016
#> SRR1414637     2  0.4950    -0.0795 0.468 0.484 0.008 0.036 0.000 0.004
#> SRR1478113     3  0.0547     0.7622 0.000 0.000 0.980 0.020 0.000 0.000
#> SRR1322477     1  0.2109     0.6718 0.920 0.024 0.024 0.004 0.000 0.028
#> SRR1478789     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1414185     1  0.6285     0.2049 0.496 0.336 0.128 0.008 0.000 0.032
#> SRR1069141     2  0.1716     0.4830 0.000 0.932 0.004 0.028 0.000 0.036
#> SRR1376852     1  0.0291     0.6977 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR1323491     1  0.0777     0.6847 0.972 0.000 0.000 0.004 0.000 0.024
#> SRR1338103     1  0.3405     0.5705 0.724 0.272 0.000 0.004 0.000 0.000
#> SRR1472012     1  0.3852     0.4780 0.612 0.384 0.000 0.004 0.000 0.000
#> SRR1340325     1  0.0405     0.6970 0.988 0.004 0.000 0.000 0.000 0.008
#> SRR1087321     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1488790     1  0.0405     0.6936 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR1334866     1  0.4886     0.1714 0.500 0.456 0.008 0.032 0.000 0.004
#> SRR1089446     2  0.6116     0.3383 0.304 0.364 0.000 0.000 0.000 0.332
#> SRR1344445     1  0.3890     0.4587 0.596 0.400 0.000 0.000 0.000 0.004
#> SRR1412969     1  0.5336     0.2759 0.516 0.384 0.004 0.000 0.000 0.096
#> SRR1071668     1  0.4121     0.4669 0.604 0.380 0.000 0.000 0.000 0.016
#> SRR1075804     1  0.1341     0.6736 0.948 0.000 0.024 0.000 0.000 0.028
#> SRR1383283     2  0.4619     0.1094 0.420 0.548 0.004 0.024 0.000 0.004
#> SRR1350239     3  0.2946     0.7233 0.000 0.000 0.812 0.012 0.000 0.176
#> SRR1353878     1  0.1088     0.6967 0.960 0.024 0.000 0.000 0.000 0.016
#> SRR1375721     1  0.0291     0.6974 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR1083983     1  0.3852     0.4780 0.612 0.384 0.000 0.004 0.000 0.000
#> SRR1090095     1  0.0777     0.6847 0.972 0.000 0.000 0.004 0.000 0.024
#> SRR1414792     1  0.0777     0.6847 0.972 0.000 0.000 0.004 0.000 0.024
#> SRR1075102     3  0.1092     0.7535 0.000 0.000 0.960 0.020 0.020 0.000
#> SRR1098737     1  0.1700     0.6780 0.936 0.012 0.024 0.000 0.000 0.028
#> SRR1349409     1  0.0291     0.6974 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR1413008     3  0.2946     0.7233 0.000 0.000 0.812 0.012 0.000 0.176
#> SRR1407179     1  0.3774     0.4503 0.592 0.408 0.000 0.000 0.000 0.000
#> SRR1095913     2  0.4860     0.2082 0.388 0.564 0.008 0.036 0.000 0.004
#> SRR1403544     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1490546     1  0.0777     0.6847 0.972 0.000 0.000 0.004 0.000 0.024
#> SRR807971      1  0.3890     0.4587 0.596 0.400 0.000 0.000 0.000 0.004
#> SRR1436228     1  0.3448     0.5673 0.716 0.280 0.000 0.004 0.000 0.000
#> SRR1445218     2  0.1716     0.4830 0.000 0.932 0.004 0.028 0.000 0.036
#> SRR1485438     2  0.3887     0.5095 0.248 0.724 0.000 0.008 0.000 0.020
#> SRR1358143     1  0.1010     0.6966 0.960 0.036 0.000 0.004 0.000 0.000
#> SRR1328760     1  0.1088     0.6967 0.960 0.024 0.000 0.000 0.000 0.016
#> SRR1380806     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1379426     1  0.6021     0.2449 0.508 0.340 0.128 0.008 0.000 0.016
#> SRR1087007     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1086256     2  0.4951    -0.0976 0.472 0.480 0.008 0.036 0.000 0.004
#> SRR1346734     5  0.2841     0.8167 0.000 0.000 0.012 0.128 0.848 0.012
#> SRR1414515     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1082151     1  0.2951     0.6225 0.820 0.168 0.004 0.004 0.000 0.004
#> SRR1349320     3  0.0547     0.7622 0.000 0.000 0.980 0.020 0.000 0.000
#> SRR1317554     4  0.1644     0.6171 0.000 0.000 0.004 0.920 0.076 0.000
#> SRR1076022     2  0.1391     0.5044 0.000 0.944 0.000 0.040 0.000 0.016
#> SRR1339573     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1455878     1  0.0146     0.6983 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1446203     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1387397     1  0.3448     0.5673 0.716 0.280 0.000 0.004 0.000 0.000
#> SRR1402590     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1317532     1  0.1341     0.6736 0.948 0.000 0.024 0.000 0.000 0.028
#> SRR1331488     3  0.3219     0.4723 0.148 0.000 0.820 0.012 0.000 0.020
#> SRR1499675     1  0.4409     0.4419 0.588 0.380 0.000 0.000 0.000 0.032
#> SRR1440467     2  0.6100     0.3687 0.284 0.364 0.000 0.000 0.000 0.352
#> SRR807995      2  0.1716     0.4830 0.000 0.932 0.004 0.028 0.000 0.036
#> SRR1476485     5  0.1180     0.7818 0.000 0.000 0.012 0.016 0.960 0.012
#> SRR1388214     1  0.1036     0.6799 0.964 0.000 0.004 0.008 0.000 0.024
#> SRR1456051     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1473275     1  0.3774     0.4503 0.592 0.408 0.000 0.000 0.000 0.000
#> SRR1444083     1  0.0806     0.6926 0.972 0.008 0.000 0.000 0.000 0.020
#> SRR1313807     2  0.4619     0.1094 0.420 0.548 0.004 0.024 0.000 0.004
#> SRR1470751     1  0.2951     0.6225 0.820 0.168 0.004 0.004 0.000 0.004
#> SRR1403434     2  0.6100     0.3687 0.284 0.364 0.000 0.000 0.000 0.352
#> SRR1390540     1  0.0632     0.6867 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1093861     2  0.1820     0.5147 0.012 0.928 0.000 0.044 0.000 0.016
#> SRR1325290     1  0.3852     0.4780 0.612 0.384 0.000 0.004 0.000 0.000
#> SRR1070689     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1384049     1  0.1152     0.6956 0.952 0.044 0.000 0.004 0.000 0.000
#> SRR1081184     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1324295     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1365313     1  0.3782     0.4398 0.588 0.412 0.000 0.000 0.000 0.000
#> SRR1321877     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR815711      2  0.6116     0.3383 0.304 0.364 0.000 0.000 0.000 0.332
#> SRR1433476     6  0.3023     0.8358 0.000 0.008 0.004 0.180 0.000 0.808
#> SRR1101883     1  0.3890     0.4587 0.596 0.400 0.000 0.000 0.000 0.004
#> SRR1433729     4  0.3017     0.7954 0.000 0.072 0.084 0.844 0.000 0.000
#> SRR1341877     1  0.3405     0.5705 0.724 0.272 0.000 0.004 0.000 0.000
#> SRR1090556     1  0.1478     0.6942 0.944 0.032 0.000 0.004 0.000 0.020
#> SRR1357389     1  0.4150     0.4526 0.592 0.392 0.000 0.000 0.000 0.016
#> SRR1404227     1  0.3774     0.4503 0.592 0.408 0.000 0.000 0.000 0.000
#> SRR1376830     1  0.0291     0.6977 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR1500661     1  0.0935     0.6969 0.964 0.032 0.000 0.004 0.000 0.000
#> SRR1080294     4  0.2965     0.7922 0.000 0.072 0.080 0.848 0.000 0.000
#> SRR1336314     5  0.4266     0.8135 0.000 0.000 0.012 0.116 0.756 0.116
#> SRR1102152     1  0.2695     0.5684 0.844 0.144 0.004 0.008 0.000 0.000
#> SRR1345244     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1478637     1  0.3852     0.4780 0.612 0.384 0.000 0.004 0.000 0.000
#> SRR1443776     1  0.3782     0.4465 0.588 0.412 0.000 0.000 0.000 0.000
#> SRR1120939     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1080117     1  0.3789     0.4395 0.584 0.416 0.000 0.000 0.000 0.000
#> SRR1102899     2  0.2479     0.4878 0.000 0.892 0.028 0.064 0.000 0.016
#> SRR1091865     1  0.2442     0.6484 0.852 0.144 0.000 0.000 0.000 0.004
#> SRR1361072     1  0.0632     0.6867 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1487890     1  0.0146     0.6966 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1349456     1  0.3823     0.3972 0.564 0.436 0.000 0.000 0.000 0.000
#> SRR1389384     1  0.2979     0.6294 0.804 0.188 0.004 0.000 0.000 0.004
#> SRR1316096     2  0.1716     0.4830 0.000 0.932 0.004 0.028 0.000 0.036
#> SRR1408512     1  0.1464     0.6952 0.944 0.036 0.000 0.004 0.000 0.016
#> SRR1447547     3  0.3804     0.5062 0.000 0.000 0.656 0.008 0.000 0.336
#> SRR1354053     5  0.5263     0.7699 0.000 0.000 0.012 0.248 0.624 0.116

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.896           0.903       0.960         0.3033 0.707   0.707
#> 3 3 0.864           0.899       0.946         1.0087 0.609   0.475
#> 4 4 0.661           0.721       0.825         0.1521 0.893   0.732
#> 5 5 0.690           0.638       0.777         0.0815 0.939   0.808
#> 6 6 0.715           0.560       0.748         0.0551 0.893   0.629

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0672     0.9653 0.992 0.008
#> SRR1349562     1  0.0672     0.9653 0.992 0.008
#> SRR1353376     2  0.0000     0.9104 0.000 1.000
#> SRR1499040     1  0.0376     0.9646 0.996 0.004
#> SRR1322312     1  0.0672     0.9653 0.992 0.008
#> SRR1324412     1  0.0376     0.9646 0.996 0.004
#> SRR1100991     1  0.0376     0.9646 0.996 0.004
#> SRR1349479     2  0.0672     0.9066 0.008 0.992
#> SRR1431248     1  0.0672     0.9653 0.992 0.008
#> SRR1405054     1  0.0672     0.9653 0.992 0.008
#> SRR1312266     1  0.0672     0.9653 0.992 0.008
#> SRR1409790     1  0.0376     0.9646 0.996 0.004
#> SRR1352507     1  0.0672     0.9653 0.992 0.008
#> SRR1383763     1  0.0672     0.9653 0.992 0.008
#> SRR1468314     2  0.9922     0.2330 0.448 0.552
#> SRR1473674     1  0.8608     0.5794 0.716 0.284
#> SRR1390499     1  0.0672     0.9653 0.992 0.008
#> SRR821043      2  0.0000     0.9104 0.000 1.000
#> SRR1455653     2  0.0000     0.9104 0.000 1.000
#> SRR1335236     1  0.5946     0.8148 0.856 0.144
#> SRR1095383     2  0.0672     0.9066 0.008 0.992
#> SRR1479489     1  0.0376     0.9652 0.996 0.004
#> SRR1310433     2  0.9922     0.2330 0.448 0.552
#> SRR1073435     1  0.0376     0.9646 0.996 0.004
#> SRR659649      1  0.0376     0.9646 0.996 0.004
#> SRR1395999     1  0.0672     0.9653 0.992 0.008
#> SRR1105248     2  0.0376     0.9106 0.004 0.996
#> SRR1338257     1  0.0672     0.9653 0.992 0.008
#> SRR1499395     1  0.0376     0.9646 0.996 0.004
#> SRR1350002     1  0.9732     0.2754 0.596 0.404
#> SRR1489757     1  0.0376     0.9646 0.996 0.004
#> SRR1414637     1  0.0376     0.9646 0.996 0.004
#> SRR1478113     2  0.0376     0.9106 0.004 0.996
#> SRR1322477     1  0.0672     0.9653 0.992 0.008
#> SRR1478789     1  0.0376     0.9646 0.996 0.004
#> SRR1414185     1  0.3274     0.9157 0.940 0.060
#> SRR1069141     1  0.9850     0.1970 0.572 0.428
#> SRR1376852     1  0.0672     0.9653 0.992 0.008
#> SRR1323491     1  0.0672     0.9653 0.992 0.008
#> SRR1338103     1  0.0000     0.9648 1.000 0.000
#> SRR1472012     1  0.0376     0.9646 0.996 0.004
#> SRR1340325     1  0.0672     0.9653 0.992 0.008
#> SRR1087321     1  0.0376     0.9646 0.996 0.004
#> SRR1488790     1  0.0672     0.9653 0.992 0.008
#> SRR1334866     1  0.0376     0.9646 0.996 0.004
#> SRR1089446     1  0.0376     0.9646 0.996 0.004
#> SRR1344445     1  0.0376     0.9646 0.996 0.004
#> SRR1412969     1  0.3274     0.9157 0.940 0.060
#> SRR1071668     1  0.0376     0.9646 0.996 0.004
#> SRR1075804     1  0.0672     0.9653 0.992 0.008
#> SRR1383283     1  0.0376     0.9646 0.996 0.004
#> SRR1350239     2  0.0376     0.9106 0.004 0.996
#> SRR1353878     1  0.0672     0.9653 0.992 0.008
#> SRR1375721     1  0.0672     0.9653 0.992 0.008
#> SRR1083983     1  0.0376     0.9646 0.996 0.004
#> SRR1090095     1  0.0672     0.9653 0.992 0.008
#> SRR1414792     1  0.0672     0.9653 0.992 0.008
#> SRR1075102     2  0.0376     0.9106 0.004 0.996
#> SRR1098737     1  0.0672     0.9653 0.992 0.008
#> SRR1349409     1  0.0672     0.9653 0.992 0.008
#> SRR1413008     2  0.0376     0.9106 0.004 0.996
#> SRR1407179     1  0.0376     0.9646 0.996 0.004
#> SRR1095913     1  0.1184     0.9569 0.984 0.016
#> SRR1403544     1  0.0672     0.9653 0.992 0.008
#> SRR1490546     1  0.0672     0.9653 0.992 0.008
#> SRR807971      1  0.0376     0.9646 0.996 0.004
#> SRR1436228     1  0.0376     0.9646 0.996 0.004
#> SRR1445218     2  0.9922     0.2330 0.448 0.552
#> SRR1485438     1  0.0376     0.9646 0.996 0.004
#> SRR1358143     1  0.0376     0.9652 0.996 0.004
#> SRR1328760     1  0.0672     0.9653 0.992 0.008
#> SRR1380806     1  0.0672     0.9653 0.992 0.008
#> SRR1379426     1  0.0376     0.9646 0.996 0.004
#> SRR1087007     1  0.0376     0.9646 0.996 0.004
#> SRR1086256     1  0.0376     0.9646 0.996 0.004
#> SRR1346734     2  0.0376     0.9106 0.004 0.996
#> SRR1414515     1  0.0672     0.9653 0.992 0.008
#> SRR1082151     1  0.0672     0.9653 0.992 0.008
#> SRR1349320     2  0.0376     0.9106 0.004 0.996
#> SRR1317554     2  0.0000     0.9104 0.000 1.000
#> SRR1076022     1  0.7139     0.7389 0.804 0.196
#> SRR1339573     1  0.0376     0.9646 0.996 0.004
#> SRR1455878     1  0.0672     0.9653 0.992 0.008
#> SRR1446203     1  0.0376     0.9646 0.996 0.004
#> SRR1387397     1  0.0672     0.9653 0.992 0.008
#> SRR1402590     1  0.0672     0.9653 0.992 0.008
#> SRR1317532     1  0.0672     0.9653 0.992 0.008
#> SRR1331488     2  0.9580     0.4106 0.380 0.620
#> SRR1499675     1  0.0376     0.9646 0.996 0.004
#> SRR1440467     1  0.3274     0.9157 0.940 0.060
#> SRR807995      1  0.7139     0.7389 0.804 0.196
#> SRR1476485     2  0.0376     0.9106 0.004 0.996
#> SRR1388214     1  0.0672     0.9653 0.992 0.008
#> SRR1456051     1  0.0672     0.9653 0.992 0.008
#> SRR1473275     1  0.0376     0.9646 0.996 0.004
#> SRR1444083     1  0.0672     0.9653 0.992 0.008
#> SRR1313807     1  0.1184     0.9569 0.984 0.016
#> SRR1470751     1  0.0672     0.9653 0.992 0.008
#> SRR1403434     1  0.3274     0.9157 0.940 0.060
#> SRR1390540     1  0.0672     0.9653 0.992 0.008
#> SRR1093861     1  0.5946     0.8148 0.856 0.144
#> SRR1325290     1  0.0376     0.9646 0.996 0.004
#> SRR1070689     1  0.0672     0.9653 0.992 0.008
#> SRR1384049     1  0.0672     0.9653 0.992 0.008
#> SRR1081184     1  0.0672     0.9653 0.992 0.008
#> SRR1324295     1  0.0672     0.9653 0.992 0.008
#> SRR1365313     1  0.0376     0.9646 0.996 0.004
#> SRR1321877     1  0.0376     0.9646 0.996 0.004
#> SRR815711      1  0.0376     0.9646 0.996 0.004
#> SRR1433476     2  0.0672     0.9066 0.008 0.992
#> SRR1101883     1  0.0376     0.9646 0.996 0.004
#> SRR1433729     2  0.5946     0.7913 0.144 0.856
#> SRR1341877     1  0.0672     0.9653 0.992 0.008
#> SRR1090556     1  0.0672     0.9653 0.992 0.008
#> SRR1357389     1  0.0376     0.9646 0.996 0.004
#> SRR1404227     1  0.0376     0.9646 0.996 0.004
#> SRR1376830     1  0.0672     0.9653 0.992 0.008
#> SRR1500661     1  0.0672     0.9653 0.992 0.008
#> SRR1080294     2  0.0672     0.9066 0.008 0.992
#> SRR1336314     2  0.0376     0.9106 0.004 0.996
#> SRR1102152     1  0.0672     0.9653 0.992 0.008
#> SRR1345244     1  0.0376     0.9646 0.996 0.004
#> SRR1478637     1  0.0376     0.9646 0.996 0.004
#> SRR1443776     1  0.0376     0.9646 0.996 0.004
#> SRR1120939     1  0.0376     0.9646 0.996 0.004
#> SRR1080117     1  0.0376     0.9646 0.996 0.004
#> SRR1102899     1  0.9732     0.2754 0.596 0.404
#> SRR1091865     1  0.0672     0.9653 0.992 0.008
#> SRR1361072     1  0.0672     0.9653 0.992 0.008
#> SRR1487890     1  0.0672     0.9653 0.992 0.008
#> SRR1349456     1  0.0376     0.9646 0.996 0.004
#> SRR1389384     1  0.0672     0.9650 0.992 0.008
#> SRR1316096     1  0.9963     0.0632 0.536 0.464
#> SRR1408512     1  0.0672     0.9653 0.992 0.008
#> SRR1447547     2  0.0376     0.9106 0.004 0.996
#> SRR1354053     2  0.0000     0.9104 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.963 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1499040     3  0.3752      0.846 0.144 0.000 0.856
#> SRR1322312     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1324412     3  0.1860      0.931 0.052 0.000 0.948
#> SRR1100991     3  0.1964      0.928 0.056 0.000 0.944
#> SRR1349479     2  0.1031      0.941 0.000 0.976 0.024
#> SRR1431248     1  0.0424      0.955 0.992 0.000 0.008
#> SRR1405054     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1312266     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1409790     3  0.1411      0.932 0.036 0.000 0.964
#> SRR1352507     3  0.4062      0.812 0.164 0.000 0.836
#> SRR1383763     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1468314     3  0.4504      0.765 0.000 0.196 0.804
#> SRR1473674     3  0.3941      0.807 0.000 0.156 0.844
#> SRR1390499     1  0.0000      0.963 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.952 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1335236     3  0.0661      0.916 0.004 0.008 0.988
#> SRR1095383     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1310433     3  0.4555      0.760 0.000 0.200 0.800
#> SRR1073435     3  0.1411      0.933 0.036 0.000 0.964
#> SRR659649      3  0.1643      0.934 0.044 0.000 0.956
#> SRR1395999     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1105248     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1338257     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1499395     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1350002     3  0.4555      0.760 0.000 0.200 0.800
#> SRR1489757     3  0.1753      0.932 0.048 0.000 0.952
#> SRR1414637     3  0.0592      0.921 0.012 0.000 0.988
#> SRR1478113     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1322477     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1478789     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1414185     3  0.1399      0.930 0.028 0.004 0.968
#> SRR1069141     3  0.4555      0.760 0.000 0.200 0.800
#> SRR1376852     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1338103     1  0.5859      0.461 0.656 0.000 0.344
#> SRR1472012     3  0.3879      0.836 0.152 0.000 0.848
#> SRR1340325     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1087321     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1488790     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1334866     3  0.1411      0.933 0.036 0.000 0.964
#> SRR1089446     3  0.1289      0.932 0.032 0.000 0.968
#> SRR1344445     3  0.1753      0.932 0.048 0.000 0.952
#> SRR1412969     3  0.1399      0.930 0.028 0.004 0.968
#> SRR1071668     3  0.1753      0.932 0.048 0.000 0.952
#> SRR1075804     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1383283     3  0.1289      0.932 0.032 0.000 0.968
#> SRR1350239     2  0.1031      0.941 0.000 0.976 0.024
#> SRR1353878     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1083983     1  0.6079      0.351 0.612 0.000 0.388
#> SRR1090095     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1098737     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1413008     2  0.1031      0.941 0.000 0.976 0.024
#> SRR1407179     3  0.2165      0.923 0.064 0.000 0.936
#> SRR1095913     3  0.0592      0.921 0.012 0.000 0.988
#> SRR1403544     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.963 1.000 0.000 0.000
#> SRR807971      3  0.1753      0.932 0.048 0.000 0.952
#> SRR1436228     3  0.2165      0.924 0.064 0.000 0.936
#> SRR1445218     3  0.4555      0.760 0.000 0.200 0.800
#> SRR1485438     3  0.1031      0.922 0.024 0.000 0.976
#> SRR1358143     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1379426     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1087007     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1086256     3  0.0592      0.921 0.012 0.000 0.988
#> SRR1346734     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1082151     1  0.5835      0.511 0.660 0.000 0.340
#> SRR1349320     2  0.0424      0.948 0.000 0.992 0.008
#> SRR1317554     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1076022     3  0.1163      0.907 0.000 0.028 0.972
#> SRR1339573     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1455878     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1446203     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1387397     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1331488     2  0.6154      0.297 0.408 0.592 0.000
#> SRR1499675     3  0.1289      0.932 0.032 0.000 0.968
#> SRR1440467     3  0.1399      0.930 0.028 0.004 0.968
#> SRR807995      3  0.3038      0.855 0.000 0.104 0.896
#> SRR1476485     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1473275     3  0.2261      0.920 0.068 0.000 0.932
#> SRR1444083     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1313807     3  0.1031      0.928 0.024 0.000 0.976
#> SRR1470751     1  0.1289      0.926 0.968 0.000 0.032
#> SRR1403434     3  0.1399      0.930 0.028 0.004 0.968
#> SRR1390540     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1093861     3  0.0829      0.915 0.004 0.012 0.984
#> SRR1325290     3  0.2261      0.920 0.068 0.000 0.932
#> SRR1070689     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1365313     3  0.1753      0.933 0.048 0.000 0.952
#> SRR1321877     3  0.1643      0.934 0.044 0.000 0.956
#> SRR815711      3  0.1289      0.932 0.032 0.000 0.968
#> SRR1433476     3  0.5905      0.454 0.000 0.352 0.648
#> SRR1101883     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1433729     3  0.4931      0.747 0.000 0.232 0.768
#> SRR1341877     1  0.3192      0.834 0.888 0.000 0.112
#> SRR1090556     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1357389     3  0.1289      0.932 0.032 0.000 0.968
#> SRR1404227     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1376830     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1080294     3  0.6280      0.204 0.000 0.460 0.540
#> SRR1336314     2  0.0000      0.952 0.000 1.000 0.000
#> SRR1102152     1  0.0892      0.940 0.980 0.000 0.020
#> SRR1345244     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1478637     3  0.1860      0.931 0.052 0.000 0.948
#> SRR1443776     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1120939     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1080117     3  0.1643      0.934 0.044 0.000 0.956
#> SRR1102899     3  0.3340      0.840 0.000 0.120 0.880
#> SRR1091865     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1349456     3  0.1411      0.933 0.036 0.000 0.964
#> SRR1389384     1  0.5905      0.440 0.648 0.000 0.352
#> SRR1316096     3  0.4555      0.760 0.000 0.200 0.800
#> SRR1408512     1  0.0000      0.963 1.000 0.000 0.000
#> SRR1447547     2  0.5650      0.553 0.000 0.688 0.312
#> SRR1354053     2  0.0000      0.952 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.2814    0.87816 0.868 0.132 0.000 0.000
#> SRR1349562     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1353376     4  0.1211    0.88953 0.000 0.040 0.000 0.960
#> SRR1499040     3  0.7381    0.27766 0.180 0.328 0.492 0.000
#> SRR1322312     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1324412     3  0.1174    0.70325 0.020 0.012 0.968 0.000
#> SRR1100991     3  0.2197    0.68883 0.080 0.004 0.916 0.000
#> SRR1349479     4  0.6597    0.45235 0.000 0.088 0.372 0.540
#> SRR1431248     1  0.4904    0.80046 0.744 0.216 0.040 0.000
#> SRR1405054     1  0.0336    0.89813 0.992 0.008 0.000 0.000
#> SRR1312266     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1409790     3  0.1398    0.68782 0.004 0.040 0.956 0.000
#> SRR1352507     3  0.4671    0.57659 0.028 0.220 0.752 0.000
#> SRR1383763     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1468314     2  0.5694    0.75566 0.000 0.696 0.224 0.080
#> SRR1473674     2  0.5803    0.80416 0.000 0.700 0.196 0.104
#> SRR1390499     1  0.0592    0.89827 0.984 0.016 0.000 0.000
#> SRR821043      4  0.0188    0.90049 0.000 0.004 0.000 0.996
#> SRR1455653     4  0.0000    0.90045 0.000 0.000 0.000 1.000
#> SRR1335236     2  0.4134    0.79168 0.000 0.740 0.260 0.000
#> SRR1095383     4  0.1389    0.88657 0.000 0.048 0.000 0.952
#> SRR1479489     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1310433     2  0.5850    0.79651 0.000 0.700 0.184 0.116
#> SRR1073435     3  0.3893    0.65279 0.008 0.196 0.796 0.000
#> SRR659649      3  0.2413    0.72110 0.020 0.064 0.916 0.000
#> SRR1395999     1  0.1302    0.89540 0.956 0.044 0.000 0.000
#> SRR1105248     4  0.1211    0.88953 0.000 0.040 0.000 0.960
#> SRR1338257     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1499395     3  0.2021    0.72144 0.012 0.056 0.932 0.000
#> SRR1350002     2  0.5963    0.79988 0.000 0.688 0.196 0.116
#> SRR1489757     3  0.0937    0.70597 0.012 0.012 0.976 0.000
#> SRR1414637     2  0.4220    0.79212 0.004 0.748 0.248 0.000
#> SRR1478113     4  0.0188    0.90049 0.000 0.004 0.000 0.996
#> SRR1322477     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1478789     3  0.5271    0.46227 0.020 0.340 0.640 0.000
#> SRR1414185     3  0.1902    0.66949 0.004 0.064 0.932 0.000
#> SRR1069141     2  0.5850    0.79651 0.000 0.700 0.184 0.116
#> SRR1376852     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1323491     1  0.2647    0.88118 0.880 0.120 0.000 0.000
#> SRR1338103     1  0.7093    0.21533 0.568 0.220 0.212 0.000
#> SRR1472012     3  0.7710    0.21589 0.256 0.296 0.448 0.000
#> SRR1340325     1  0.0336    0.89866 0.992 0.008 0.000 0.000
#> SRR1087321     3  0.2124    0.71893 0.008 0.068 0.924 0.000
#> SRR1488790     1  0.0188    0.89838 0.996 0.004 0.000 0.000
#> SRR1334866     3  0.4872    0.43924 0.004 0.356 0.640 0.000
#> SRR1089446     3  0.1661    0.67988 0.004 0.052 0.944 0.000
#> SRR1344445     3  0.2413    0.72156 0.020 0.064 0.916 0.000
#> SRR1412969     3  0.1743    0.68349 0.004 0.056 0.940 0.000
#> SRR1071668     3  0.2385    0.72029 0.028 0.052 0.920 0.000
#> SRR1075804     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1383283     3  0.4814    0.50357 0.008 0.316 0.676 0.000
#> SRR1350239     4  0.4231    0.80992 0.000 0.080 0.096 0.824
#> SRR1353878     1  0.2530    0.88577 0.888 0.112 0.000 0.000
#> SRR1375721     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1083983     1  0.7827   -0.25884 0.412 0.288 0.300 0.000
#> SRR1090095     1  0.2530    0.88238 0.888 0.112 0.000 0.000
#> SRR1414792     1  0.2530    0.88238 0.888 0.112 0.000 0.000
#> SRR1075102     4  0.0188    0.90049 0.000 0.004 0.000 0.996
#> SRR1098737     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1349409     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1413008     4  0.4231    0.80992 0.000 0.080 0.096 0.824
#> SRR1407179     3  0.6881    0.36296 0.120 0.340 0.540 0.000
#> SRR1095913     2  0.4103    0.79171 0.000 0.744 0.256 0.000
#> SRR1403544     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1490546     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR807971      3  0.2385    0.72029 0.028 0.052 0.920 0.000
#> SRR1436228     3  0.6688    0.32298 0.096 0.368 0.536 0.000
#> SRR1445218     2  0.5850    0.79651 0.000 0.700 0.184 0.116
#> SRR1485438     2  0.4328    0.79173 0.008 0.748 0.244 0.000
#> SRR1358143     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1328760     1  0.2814    0.88063 0.868 0.132 0.000 0.000
#> SRR1380806     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1379426     3  0.2522    0.71967 0.016 0.076 0.908 0.000
#> SRR1087007     3  0.2300    0.72123 0.016 0.064 0.920 0.000
#> SRR1086256     2  0.4103    0.79171 0.000 0.744 0.256 0.000
#> SRR1346734     4  0.0188    0.90049 0.000 0.004 0.000 0.996
#> SRR1414515     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1082151     2  0.5272    0.57714 0.136 0.752 0.112 0.000
#> SRR1349320     4  0.0469    0.89745 0.000 0.012 0.000 0.988
#> SRR1317554     4  0.0000    0.90045 0.000 0.000 0.000 1.000
#> SRR1076022     2  0.4283    0.79513 0.000 0.740 0.256 0.004
#> SRR1339573     3  0.2335    0.72176 0.020 0.060 0.920 0.000
#> SRR1455878     1  0.0336    0.89797 0.992 0.008 0.000 0.000
#> SRR1446203     3  0.4797    0.57522 0.020 0.260 0.720 0.000
#> SRR1387397     1  0.1211    0.89551 0.960 0.040 0.000 0.000
#> SRR1402590     1  0.0000    0.89830 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1331488     4  0.7867    0.00475 0.380 0.196 0.008 0.416
#> SRR1499675     3  0.0779    0.70075 0.004 0.016 0.980 0.000
#> SRR1440467     3  0.1743    0.68349 0.004 0.056 0.940 0.000
#> SRR807995      2  0.4485    0.80008 0.000 0.740 0.248 0.012
#> SRR1476485     4  0.0188    0.90049 0.000 0.004 0.000 0.996
#> SRR1388214     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1456051     1  0.0000    0.89830 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.6824    0.38756 0.120 0.324 0.556 0.000
#> SRR1444083     1  0.3498    0.86707 0.832 0.160 0.008 0.000
#> SRR1313807     3  0.3908    0.64088 0.004 0.212 0.784 0.000
#> SRR1470751     2  0.4453    0.41294 0.244 0.744 0.012 0.000
#> SRR1403434     3  0.1743    0.68349 0.004 0.056 0.940 0.000
#> SRR1390540     1  0.3257    0.87124 0.844 0.152 0.004 0.000
#> SRR1093861     2  0.4103    0.79171 0.000 0.744 0.256 0.000
#> SRR1325290     3  0.7290    0.31750 0.168 0.328 0.504 0.000
#> SRR1070689     1  0.0000    0.89830 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0336    0.89797 0.992 0.008 0.000 0.000
#> SRR1081184     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1324295     1  0.0000    0.89830 1.000 0.000 0.000 0.000
#> SRR1365313     3  0.5632    0.44384 0.036 0.340 0.624 0.000
#> SRR1321877     3  0.5213    0.48181 0.020 0.328 0.652 0.000
#> SRR815711      3  0.1398    0.68668 0.004 0.040 0.956 0.000
#> SRR1433476     3  0.4869    0.49789 0.000 0.088 0.780 0.132
#> SRR1101883     3  0.2335    0.72151 0.020 0.060 0.920 0.000
#> SRR1433729     2  0.7450    0.27817 0.000 0.424 0.404 0.172
#> SRR1341877     1  0.5056    0.80535 0.760 0.164 0.076 0.000
#> SRR1090556     1  0.4793    0.81279 0.756 0.204 0.040 0.000
#> SRR1357389     3  0.1305    0.68899 0.004 0.036 0.960 0.000
#> SRR1404227     3  0.5271    0.46227 0.020 0.340 0.640 0.000
#> SRR1376830     1  0.0336    0.89797 0.992 0.008 0.000 0.000
#> SRR1500661     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1080294     3  0.7650   -0.14822 0.000 0.364 0.424 0.212
#> SRR1336314     4  0.0188    0.90049 0.000 0.004 0.000 0.996
#> SRR1102152     1  0.2408    0.88573 0.896 0.104 0.000 0.000
#> SRR1345244     3  0.2300    0.72123 0.016 0.064 0.920 0.000
#> SRR1478637     3  0.5823    0.42279 0.044 0.348 0.608 0.000
#> SRR1443776     3  0.5233    0.47593 0.020 0.332 0.648 0.000
#> SRR1120939     3  0.2924    0.70777 0.016 0.100 0.884 0.000
#> SRR1080117     3  0.2300    0.72123 0.016 0.064 0.920 0.000
#> SRR1102899     2  0.5067    0.80883 0.000 0.736 0.216 0.048
#> SRR1091865     1  0.2345    0.88820 0.900 0.100 0.000 0.000
#> SRR1361072     1  0.3401    0.86961 0.840 0.152 0.008 0.000
#> SRR1487890     1  0.0188    0.89772 0.996 0.004 0.000 0.000
#> SRR1349456     3  0.4990    0.44628 0.008 0.352 0.640 0.000
#> SRR1389384     1  0.7143   -0.12925 0.460 0.408 0.132 0.000
#> SRR1316096     2  0.5850    0.79651 0.000 0.700 0.184 0.116
#> SRR1408512     1  0.3300    0.87405 0.848 0.144 0.008 0.000
#> SRR1447547     3  0.7497   -0.05206 0.000 0.224 0.496 0.280
#> SRR1354053     4  0.0000    0.90045 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.2074     0.6748 0.896 0.000 0.000 0.000 0.104
#> SRR1349562     1  0.4278     0.7355 0.548 0.000 0.000 0.000 0.452
#> SRR1353376     4  0.2519     0.9079 0.000 0.016 0.000 0.884 0.100
#> SRR1499040     5  0.6235     0.6384 0.020 0.084 0.416 0.000 0.480
#> SRR1322312     1  0.4300     0.7250 0.524 0.000 0.000 0.000 0.476
#> SRR1324412     3  0.1074     0.6794 0.004 0.012 0.968 0.000 0.016
#> SRR1100991     3  0.0566     0.6821 0.004 0.000 0.984 0.000 0.012
#> SRR1349479     3  0.7552     0.2073 0.000 0.064 0.420 0.180 0.336
#> SRR1431248     1  0.3007     0.4599 0.864 0.004 0.104 0.000 0.028
#> SRR1405054     1  0.4302     0.7234 0.520 0.000 0.000 0.000 0.480
#> SRR1312266     1  0.0000     0.6459 1.000 0.000 0.000 0.000 0.000
#> SRR1409790     3  0.3609     0.6061 0.004 0.032 0.816 0.000 0.148
#> SRR1352507     3  0.1992     0.6601 0.032 0.000 0.924 0.000 0.044
#> SRR1383763     1  0.4300     0.7250 0.524 0.000 0.000 0.000 0.476
#> SRR1468314     2  0.2765     0.8227 0.000 0.896 0.036 0.024 0.044
#> SRR1473674     2  0.2082     0.8455 0.000 0.928 0.024 0.032 0.016
#> SRR1390499     1  0.3999     0.7345 0.656 0.000 0.000 0.000 0.344
#> SRR821043      4  0.0162     0.9445 0.000 0.000 0.000 0.996 0.004
#> SRR1455653     4  0.0162     0.9452 0.000 0.000 0.000 0.996 0.004
#> SRR1335236     2  0.1845     0.8422 0.000 0.928 0.056 0.000 0.016
#> SRR1095383     4  0.3134     0.8881 0.000 0.032 0.000 0.848 0.120
#> SRR1479489     1  0.4287     0.7247 0.540 0.000 0.000 0.000 0.460
#> SRR1310433     2  0.1854     0.8397 0.000 0.936 0.020 0.036 0.008
#> SRR1073435     3  0.4275     0.5708 0.020 0.104 0.800 0.000 0.076
#> SRR659649      3  0.0000     0.6819 0.000 0.000 1.000 0.000 0.000
#> SRR1395999     1  0.4060     0.7118 0.640 0.000 0.000 0.000 0.360
#> SRR1105248     4  0.2573     0.9077 0.000 0.016 0.000 0.880 0.104
#> SRR1338257     1  0.0000     0.6459 1.000 0.000 0.000 0.000 0.000
#> SRR1499395     3  0.0290     0.6807 0.000 0.000 0.992 0.000 0.008
#> SRR1350002     2  0.2165     0.8448 0.000 0.924 0.024 0.036 0.016
#> SRR1489757     3  0.0968     0.6803 0.004 0.012 0.972 0.000 0.012
#> SRR1414637     2  0.5104     0.6611 0.004 0.700 0.100 0.000 0.196
#> SRR1478113     4  0.0671     0.9445 0.000 0.004 0.000 0.980 0.016
#> SRR1322477     1  0.0162     0.6432 0.996 0.000 0.000 0.000 0.004
#> SRR1478789     3  0.5258     0.2990 0.000 0.140 0.680 0.000 0.180
#> SRR1414185     3  0.4479     0.5276 0.000 0.036 0.700 0.000 0.264
#> SRR1069141     2  0.1728     0.8405 0.000 0.940 0.020 0.036 0.004
#> SRR1376852     1  0.4287     0.7247 0.540 0.000 0.000 0.000 0.460
#> SRR1323491     1  0.2648     0.6865 0.848 0.000 0.000 0.000 0.152
#> SRR1338103     5  0.6822     0.6291 0.120 0.044 0.320 0.000 0.516
#> SRR1472012     5  0.5762     0.6569 0.020 0.048 0.404 0.000 0.528
#> SRR1340325     1  0.4249     0.7377 0.568 0.000 0.000 0.000 0.432
#> SRR1087321     3  0.0290     0.6807 0.000 0.000 0.992 0.000 0.008
#> SRR1488790     1  0.4262     0.7384 0.560 0.000 0.000 0.000 0.440
#> SRR1334866     3  0.5392     0.2602 0.000 0.144 0.664 0.000 0.192
#> SRR1089446     3  0.4210     0.5600 0.000 0.036 0.740 0.000 0.224
#> SRR1344445     3  0.0162     0.6817 0.004 0.000 0.996 0.000 0.000
#> SRR1412969     3  0.4210     0.5600 0.000 0.036 0.740 0.000 0.224
#> SRR1071668     3  0.0451     0.6824 0.004 0.000 0.988 0.000 0.008
#> SRR1075804     1  0.0000     0.6459 1.000 0.000 0.000 0.000 0.000
#> SRR1383283     3  0.4805     0.4349 0.000 0.128 0.728 0.000 0.144
#> SRR1350239     4  0.4325     0.8188 0.000 0.048 0.004 0.756 0.192
#> SRR1353878     1  0.3039     0.7062 0.808 0.000 0.000 0.000 0.192
#> SRR1375721     1  0.4300     0.7250 0.524 0.000 0.000 0.000 0.476
#> SRR1083983     5  0.6219     0.6622 0.056 0.044 0.364 0.000 0.536
#> SRR1090095     1  0.2929     0.6925 0.820 0.000 0.000 0.000 0.180
#> SRR1414792     1  0.2966     0.6930 0.816 0.000 0.000 0.000 0.184
#> SRR1075102     4  0.0671     0.9445 0.000 0.004 0.000 0.980 0.016
#> SRR1098737     1  0.0162     0.6432 0.996 0.000 0.000 0.000 0.004
#> SRR1349409     1  0.4300     0.7250 0.524 0.000 0.000 0.000 0.476
#> SRR1413008     4  0.4325     0.8188 0.000 0.048 0.004 0.756 0.192
#> SRR1407179     5  0.6163     0.5905 0.020 0.076 0.448 0.000 0.456
#> SRR1095913     2  0.4936     0.6742 0.000 0.712 0.116 0.000 0.172
#> SRR1403544     1  0.4291     0.7321 0.536 0.000 0.000 0.000 0.464
#> SRR1490546     1  0.0162     0.6475 0.996 0.000 0.000 0.000 0.004
#> SRR807971      3  0.0451     0.6824 0.004 0.000 0.988 0.000 0.008
#> SRR1436228     3  0.6802    -0.5895 0.020 0.152 0.416 0.000 0.412
#> SRR1445218     2  0.1854     0.8397 0.000 0.936 0.020 0.036 0.008
#> SRR1485438     2  0.5187     0.6651 0.008 0.704 0.108 0.000 0.180
#> SRR1358143     1  0.4300     0.7250 0.524 0.000 0.000 0.000 0.476
#> SRR1328760     1  0.2929     0.7036 0.820 0.000 0.000 0.000 0.180
#> SRR1380806     1  0.4300     0.7250 0.524 0.000 0.000 0.000 0.476
#> SRR1379426     3  0.1043     0.6782 0.000 0.000 0.960 0.000 0.040
#> SRR1087007     3  0.0290     0.6807 0.000 0.000 0.992 0.000 0.008
#> SRR1086256     2  0.4797     0.6876 0.000 0.724 0.104 0.000 0.172
#> SRR1346734     4  0.0162     0.9445 0.000 0.000 0.000 0.996 0.004
#> SRR1414515     1  0.4302     0.7234 0.520 0.000 0.000 0.000 0.480
#> SRR1082151     2  0.6569     0.4675 0.264 0.556 0.024 0.000 0.156
#> SRR1349320     4  0.0912     0.9423 0.000 0.012 0.000 0.972 0.016
#> SRR1317554     4  0.0162     0.9452 0.000 0.000 0.000 0.996 0.004
#> SRR1076022     2  0.1740     0.8429 0.000 0.932 0.056 0.000 0.012
#> SRR1339573     3  0.0290     0.6807 0.000 0.000 0.992 0.000 0.008
#> SRR1455878     1  0.4283     0.7238 0.544 0.000 0.000 0.000 0.456
#> SRR1446203     3  0.3390     0.5491 0.000 0.060 0.840 0.000 0.100
#> SRR1387397     1  0.3796     0.7132 0.700 0.000 0.000 0.000 0.300
#> SRR1402590     1  0.4262     0.7384 0.560 0.000 0.000 0.000 0.440
#> SRR1317532     1  0.0290     0.6453 0.992 0.000 0.000 0.000 0.008
#> SRR1331488     1  0.4712     0.3169 0.736 0.004 0.000 0.180 0.080
#> SRR1499675     3  0.1364     0.6757 0.000 0.012 0.952 0.000 0.036
#> SRR1440467     3  0.4210     0.5600 0.000 0.036 0.740 0.000 0.224
#> SRR807995      2  0.1988     0.8452 0.000 0.928 0.048 0.008 0.016
#> SRR1476485     4  0.0290     0.9443 0.000 0.000 0.000 0.992 0.008
#> SRR1388214     1  0.0000     0.6459 1.000 0.000 0.000 0.000 0.000
#> SRR1456051     1  0.4249     0.7394 0.568 0.000 0.000 0.000 0.432
#> SRR1473275     3  0.5743    -0.5272 0.008 0.064 0.500 0.000 0.428
#> SRR1444083     1  0.0000     0.6459 1.000 0.000 0.000 0.000 0.000
#> SRR1313807     3  0.3749     0.5818 0.000 0.104 0.816 0.000 0.080
#> SRR1470751     2  0.5983     0.3567 0.380 0.504 0.000 0.000 0.116
#> SRR1403434     3  0.4210     0.5600 0.000 0.036 0.740 0.000 0.224
#> SRR1390540     1  0.0880     0.6522 0.968 0.000 0.000 0.000 0.032
#> SRR1093861     2  0.1845     0.8422 0.000 0.928 0.056 0.000 0.016
#> SRR1325290     5  0.6114     0.6208 0.020 0.072 0.436 0.000 0.472
#> SRR1070689     1  0.4262     0.7384 0.560 0.000 0.000 0.000 0.440
#> SRR1384049     1  0.4256     0.7399 0.564 0.000 0.000 0.000 0.436
#> SRR1081184     1  0.4294     0.7294 0.532 0.000 0.000 0.000 0.468
#> SRR1324295     1  0.4268     0.7379 0.556 0.000 0.000 0.000 0.444
#> SRR1365313     3  0.5444     0.2333 0.000 0.140 0.656 0.000 0.204
#> SRR1321877     3  0.4138     0.4613 0.000 0.064 0.776 0.000 0.160
#> SRR815711      3  0.4150     0.5643 0.000 0.036 0.748 0.000 0.216
#> SRR1433476     3  0.5654     0.4154 0.000 0.064 0.584 0.012 0.340
#> SRR1101883     3  0.0451     0.6824 0.004 0.000 0.988 0.000 0.008
#> SRR1433729     3  0.7639     0.0608 0.000 0.352 0.412 0.088 0.148
#> SRR1341877     1  0.4914     0.3271 0.712 0.000 0.180 0.000 0.108
#> SRR1090556     1  0.2787     0.5075 0.880 0.004 0.088 0.000 0.028
#> SRR1357389     3  0.3321     0.6144 0.000 0.032 0.832 0.000 0.136
#> SRR1404227     3  0.4444     0.4199 0.000 0.072 0.748 0.000 0.180
#> SRR1376830     1  0.4287     0.7247 0.540 0.000 0.000 0.000 0.460
#> SRR1500661     1  0.4287     0.7330 0.540 0.000 0.000 0.000 0.460
#> SRR1080294     3  0.7255     0.0702 0.000 0.372 0.428 0.052 0.148
#> SRR1336314     4  0.0162     0.9445 0.000 0.000 0.000 0.996 0.004
#> SRR1102152     1  0.3642     0.7049 0.760 0.008 0.000 0.000 0.232
#> SRR1345244     3  0.0290     0.6807 0.000 0.000 0.992 0.000 0.008
#> SRR1478637     3  0.6737    -0.4732 0.020 0.148 0.468 0.000 0.364
#> SRR1443776     3  0.4138     0.4613 0.000 0.064 0.776 0.000 0.160
#> SRR1120939     3  0.0162     0.6815 0.000 0.000 0.996 0.000 0.004
#> SRR1080117     3  0.0290     0.6807 0.000 0.000 0.992 0.000 0.008
#> SRR1102899     2  0.1756     0.8447 0.000 0.940 0.036 0.016 0.008
#> SRR1091865     1  0.3424     0.6998 0.760 0.000 0.000 0.000 0.240
#> SRR1361072     1  0.0794     0.6506 0.972 0.000 0.000 0.000 0.028
#> SRR1487890     1  0.4302     0.7234 0.520 0.000 0.000 0.000 0.480
#> SRR1349456     3  0.4698     0.3978 0.000 0.096 0.732 0.000 0.172
#> SRR1389384     5  0.8214     0.4603 0.216 0.184 0.188 0.000 0.412
#> SRR1316096     2  0.1854     0.8397 0.000 0.936 0.020 0.036 0.008
#> SRR1408512     1  0.1908     0.6814 0.908 0.000 0.000 0.000 0.092
#> SRR1447547     5  0.8256    -0.0951 0.320 0.060 0.260 0.020 0.340
#> SRR1354053     4  0.0162     0.9452 0.000 0.000 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      5  0.3944    0.53712 0.428 0.000 0.000 0.000 0.568 0.004
#> SRR1349562     1  0.0146    0.85618 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1353376     4  0.3893    0.83538 0.000 0.000 0.000 0.768 0.092 0.140
#> SRR1499040     6  0.6724    0.31207 0.120 0.032 0.384 0.000 0.032 0.432
#> SRR1322312     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.0717    0.61781 0.000 0.000 0.976 0.000 0.008 0.016
#> SRR1100991     3  0.0520    0.61996 0.000 0.000 0.984 0.000 0.008 0.008
#> SRR1349479     6  0.6343   -0.01188 0.000 0.032 0.292 0.020 0.120 0.536
#> SRR1431248     5  0.4270    0.73358 0.164 0.000 0.036 0.000 0.756 0.044
#> SRR1405054     1  0.0146    0.85425 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1312266     5  0.3445    0.78248 0.260 0.000 0.000 0.000 0.732 0.008
#> SRR1409790     3  0.2848    0.50085 0.000 0.000 0.816 0.000 0.008 0.176
#> SRR1352507     3  0.1844    0.59371 0.004 0.000 0.924 0.000 0.048 0.024
#> SRR1383763     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1468314     2  0.2420    0.71236 0.000 0.884 0.000 0.000 0.040 0.076
#> SRR1473674     2  0.1296    0.75268 0.000 0.948 0.004 0.004 0.000 0.044
#> SRR1390499     1  0.1387    0.79499 0.932 0.000 0.000 0.000 0.068 0.000
#> SRR821043      4  0.0520    0.90097 0.000 0.000 0.000 0.984 0.008 0.008
#> SRR1455653     4  0.0622    0.90238 0.000 0.000 0.000 0.980 0.008 0.012
#> SRR1335236     2  0.1082    0.75312 0.000 0.956 0.004 0.000 0.000 0.040
#> SRR1095383     4  0.5633    0.72426 0.000 0.048 0.000 0.636 0.124 0.192
#> SRR1479489     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310433     2  0.1485    0.73951 0.000 0.944 0.000 0.004 0.024 0.028
#> SRR1073435     3  0.4711    0.46017 0.000 0.048 0.740 0.000 0.100 0.112
#> SRR659649      3  0.0508    0.62116 0.000 0.000 0.984 0.000 0.012 0.004
#> SRR1395999     1  0.3608    0.42265 0.716 0.000 0.000 0.000 0.272 0.012
#> SRR1105248     4  0.3985    0.83514 0.000 0.000 0.000 0.760 0.100 0.140
#> SRR1338257     5  0.3564    0.78109 0.264 0.000 0.000 0.000 0.724 0.012
#> SRR1499395     3  0.1556    0.60503 0.000 0.000 0.920 0.000 0.000 0.080
#> SRR1350002     2  0.1296    0.75268 0.000 0.948 0.004 0.004 0.000 0.044
#> SRR1489757     3  0.0622    0.61906 0.000 0.000 0.980 0.000 0.008 0.012
#> SRR1414637     2  0.6149    0.24791 0.004 0.480 0.088 0.000 0.048 0.380
#> SRR1478113     4  0.1152    0.89992 0.000 0.000 0.000 0.952 0.044 0.004
#> SRR1322477     5  0.3163    0.77942 0.232 0.000 0.000 0.000 0.764 0.004
#> SRR1478789     3  0.4355    0.11491 0.000 0.024 0.556 0.000 0.000 0.420
#> SRR1414185     3  0.5073    0.25277 0.000 0.004 0.548 0.000 0.072 0.376
#> SRR1069141     2  0.0653    0.74689 0.000 0.980 0.000 0.004 0.012 0.004
#> SRR1376852     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1323491     1  0.3996   -0.32256 0.512 0.000 0.000 0.000 0.484 0.004
#> SRR1338103     6  0.6924    0.38696 0.244 0.012 0.328 0.000 0.032 0.384
#> SRR1472012     6  0.6768    0.37342 0.176 0.016 0.348 0.000 0.032 0.428
#> SRR1340325     1  0.0146    0.85633 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1087321     3  0.1728    0.61085 0.000 0.004 0.924 0.000 0.008 0.064
#> SRR1488790     1  0.0547    0.84780 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1334866     3  0.5052    0.02809 0.004 0.028 0.512 0.000 0.020 0.436
#> SRR1089446     3  0.4902    0.27413 0.000 0.004 0.572 0.000 0.060 0.364
#> SRR1344445     3  0.0820    0.62085 0.000 0.000 0.972 0.000 0.012 0.016
#> SRR1412969     3  0.5009    0.26709 0.000 0.004 0.560 0.000 0.068 0.368
#> SRR1071668     3  0.0260    0.62114 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1075804     5  0.3244    0.77903 0.268 0.000 0.000 0.000 0.732 0.000
#> SRR1383283     3  0.5160    0.22788 0.000 0.048 0.604 0.000 0.032 0.316
#> SRR1350239     4  0.4596    0.75675 0.000 0.000 0.000 0.672 0.088 0.240
#> SRR1353878     1  0.4181   -0.32558 0.512 0.000 0.000 0.000 0.476 0.012
#> SRR1375721     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     6  0.6975    0.39633 0.244 0.016 0.308 0.000 0.032 0.400
#> SRR1090095     1  0.3659    0.14050 0.636 0.000 0.000 0.000 0.364 0.000
#> SRR1414792     1  0.3050    0.50692 0.764 0.000 0.000 0.000 0.236 0.000
#> SRR1075102     4  0.1219    0.89948 0.000 0.000 0.000 0.948 0.048 0.004
#> SRR1098737     5  0.3175    0.78305 0.256 0.000 0.000 0.000 0.744 0.000
#> SRR1349409     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.4596    0.75675 0.000 0.000 0.000 0.672 0.088 0.240
#> SRR1407179     3  0.6022   -0.25436 0.104 0.016 0.444 0.000 0.012 0.424
#> SRR1095913     2  0.6282    0.19100 0.000 0.460 0.128 0.000 0.044 0.368
#> SRR1403544     1  0.0405    0.85453 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1490546     5  0.3288    0.77324 0.276 0.000 0.000 0.000 0.724 0.000
#> SRR807971      3  0.0622    0.61964 0.000 0.000 0.980 0.000 0.012 0.008
#> SRR1436228     6  0.7221    0.35187 0.116 0.052 0.340 0.000 0.056 0.436
#> SRR1445218     2  0.1485    0.73951 0.000 0.944 0.000 0.004 0.024 0.028
#> SRR1485438     2  0.6183    0.25071 0.004 0.492 0.108 0.000 0.040 0.356
#> SRR1358143     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1328760     5  0.4179    0.40209 0.472 0.000 0.000 0.000 0.516 0.012
#> SRR1380806     1  0.0000    0.85650 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.1889    0.59938 0.000 0.004 0.920 0.000 0.020 0.056
#> SRR1087007     3  0.1829    0.61103 0.000 0.004 0.920 0.000 0.012 0.064
#> SRR1086256     2  0.5967    0.26055 0.000 0.488 0.088 0.000 0.044 0.380
#> SRR1346734     4  0.0508    0.90045 0.000 0.000 0.000 0.984 0.012 0.004
#> SRR1414515     1  0.0405    0.85453 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1082151     5  0.6829   -0.02278 0.024 0.324 0.016 0.000 0.408 0.228
#> SRR1349320     4  0.1850    0.89814 0.000 0.008 0.000 0.924 0.052 0.016
#> SRR1317554     4  0.1176    0.89934 0.000 0.000 0.000 0.956 0.020 0.024
#> SRR1076022     2  0.0937    0.75387 0.000 0.960 0.000 0.000 0.000 0.040
#> SRR1339573     3  0.1444    0.60797 0.000 0.000 0.928 0.000 0.000 0.072
#> SRR1455878     1  0.1327    0.80220 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1446203     3  0.2848    0.51519 0.000 0.008 0.816 0.000 0.000 0.176
#> SRR1387397     1  0.4192   -0.05421 0.572 0.000 0.000 0.000 0.412 0.016
#> SRR1402590     1  0.0363    0.85362 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1317532     5  0.3244    0.77903 0.268 0.000 0.000 0.000 0.732 0.000
#> SRR1331488     5  0.3894    0.70334 0.152 0.000 0.000 0.064 0.776 0.008
#> SRR1499675     3  0.1367    0.60822 0.000 0.000 0.944 0.000 0.012 0.044
#> SRR1440467     3  0.4961    0.26987 0.000 0.004 0.564 0.000 0.064 0.368
#> SRR807995      2  0.1152    0.75220 0.000 0.952 0.004 0.000 0.000 0.044
#> SRR1476485     4  0.0717    0.90034 0.000 0.000 0.000 0.976 0.016 0.008
#> SRR1388214     5  0.3221    0.78090 0.264 0.000 0.000 0.000 0.736 0.000
#> SRR1456051     1  0.0363    0.85362 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1473275     3  0.5098   -0.03856 0.052 0.012 0.512 0.000 0.000 0.424
#> SRR1444083     5  0.3420    0.78045 0.240 0.000 0.000 0.000 0.748 0.012
#> SRR1313807     3  0.4664    0.47724 0.000 0.076 0.740 0.000 0.048 0.136
#> SRR1470751     5  0.6697    0.11301 0.040 0.304 0.004 0.000 0.444 0.208
#> SRR1403434     3  0.4961    0.26987 0.000 0.004 0.564 0.000 0.064 0.368
#> SRR1390540     5  0.3728    0.68949 0.344 0.000 0.000 0.000 0.652 0.004
#> SRR1093861     2  0.1219    0.75209 0.000 0.948 0.004 0.000 0.000 0.048
#> SRR1325290     6  0.6552    0.30616 0.132 0.016 0.392 0.000 0.032 0.428
#> SRR1070689     1  0.0260    0.85531 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1384049     1  0.1075    0.82929 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR1081184     1  0.0146    0.85618 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1324295     1  0.0458    0.85336 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1365313     3  0.4827    0.06590 0.008 0.024 0.536 0.000 0.008 0.424
#> SRR1321877     3  0.3945    0.22071 0.000 0.008 0.612 0.000 0.000 0.380
#> SRR815711      3  0.4700    0.29929 0.000 0.000 0.600 0.000 0.060 0.340
#> SRR1433476     6  0.5774   -0.04740 0.000 0.024 0.328 0.000 0.112 0.536
#> SRR1101883     3  0.0622    0.61964 0.000 0.000 0.980 0.000 0.012 0.008
#> SRR1433729     2  0.7902    0.21568 0.000 0.356 0.240 0.032 0.112 0.260
#> SRR1341877     5  0.6551    0.45956 0.188 0.004 0.200 0.000 0.540 0.068
#> SRR1090556     5  0.4268    0.73954 0.172 0.000 0.032 0.000 0.752 0.044
#> SRR1357389     3  0.2743    0.51177 0.000 0.000 0.828 0.000 0.008 0.164
#> SRR1404227     3  0.4205    0.13046 0.000 0.016 0.564 0.000 0.000 0.420
#> SRR1376830     1  0.1007    0.82394 0.956 0.000 0.000 0.000 0.044 0.000
#> SRR1500661     1  0.0363    0.84981 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1080294     2  0.7520    0.22613 0.000 0.372 0.244 0.008 0.112 0.264
#> SRR1336314     4  0.0405    0.90044 0.000 0.000 0.000 0.988 0.008 0.004
#> SRR1102152     1  0.4489   -0.05046 0.568 0.008 0.000 0.000 0.404 0.020
#> SRR1345244     3  0.1700    0.60275 0.000 0.004 0.916 0.000 0.000 0.080
#> SRR1478637     3  0.6178   -0.19528 0.048 0.040 0.448 0.000 0.032 0.432
#> SRR1443776     3  0.3741    0.32110 0.000 0.008 0.672 0.000 0.000 0.320
#> SRR1120939     3  0.1075    0.61272 0.000 0.000 0.952 0.000 0.000 0.048
#> SRR1080117     3  0.1728    0.61085 0.000 0.004 0.924 0.000 0.008 0.064
#> SRR1102899     2  0.1649    0.73900 0.000 0.932 0.000 0.000 0.036 0.032
#> SRR1091865     5  0.5561    0.32721 0.428 0.000 0.000 0.000 0.436 0.136
#> SRR1361072     5  0.3601    0.73319 0.312 0.000 0.000 0.000 0.684 0.004
#> SRR1487890     1  0.0146    0.85475 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1349456     3  0.4516    0.11920 0.000 0.020 0.552 0.000 0.008 0.420
#> SRR1389384     6  0.7954    0.30959 0.168 0.072 0.108 0.000 0.220 0.432
#> SRR1316096     2  0.1321    0.74182 0.000 0.952 0.000 0.004 0.020 0.024
#> SRR1408512     5  0.3564    0.76873 0.264 0.000 0.000 0.000 0.724 0.012
#> SRR1447547     6  0.5704   -0.00676 0.000 0.000 0.152 0.004 0.344 0.500
#> SRR1354053     4  0.0622    0.90238 0.000 0.000 0.000 0.980 0.008 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.779           0.926       0.960         0.4996 0.496   0.496
#> 3 3 0.814           0.870       0.943         0.3158 0.736   0.521
#> 4 4 0.792           0.809       0.893         0.1166 0.857   0.618
#> 5 5 0.764           0.651       0.786         0.0711 0.862   0.552
#> 6 6 0.795           0.735       0.863         0.0488 0.915   0.635

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0672      0.973 0.992 0.008
#> SRR1349562     1  0.0000      0.976 1.000 0.000
#> SRR1353376     2  0.0000      0.940 0.000 1.000
#> SRR1499040     1  0.0000      0.976 1.000 0.000
#> SRR1322312     1  0.0000      0.976 1.000 0.000
#> SRR1324412     2  0.9000      0.635 0.316 0.684
#> SRR1100991     1  0.0000      0.976 1.000 0.000
#> SRR1349479     2  0.0000      0.940 0.000 1.000
#> SRR1431248     1  0.0672      0.973 0.992 0.008
#> SRR1405054     1  0.0000      0.976 1.000 0.000
#> SRR1312266     1  0.0672      0.973 0.992 0.008
#> SRR1409790     2  0.7602      0.789 0.220 0.780
#> SRR1352507     2  0.6973      0.818 0.188 0.812
#> SRR1383763     1  0.0000      0.976 1.000 0.000
#> SRR1468314     2  0.0000      0.940 0.000 1.000
#> SRR1473674     2  0.0672      0.940 0.008 0.992
#> SRR1390499     1  0.0000      0.976 1.000 0.000
#> SRR821043      2  0.0000      0.940 0.000 1.000
#> SRR1455653     2  0.0000      0.940 0.000 1.000
#> SRR1335236     2  0.0672      0.940 0.008 0.992
#> SRR1095383     2  0.0000      0.940 0.000 1.000
#> SRR1479489     1  0.0000      0.976 1.000 0.000
#> SRR1310433     2  0.0000      0.940 0.000 1.000
#> SRR1073435     2  0.0000      0.940 0.000 1.000
#> SRR659649      2  0.6973      0.824 0.188 0.812
#> SRR1395999     1  0.0000      0.976 1.000 0.000
#> SRR1105248     2  0.0000      0.940 0.000 1.000
#> SRR1338257     1  0.0672      0.973 0.992 0.008
#> SRR1499395     2  0.6973      0.824 0.188 0.812
#> SRR1350002     2  0.0672      0.940 0.008 0.992
#> SRR1489757     2  0.7528      0.794 0.216 0.784
#> SRR1414637     1  0.9732      0.350 0.596 0.404
#> SRR1478113     2  0.0000      0.940 0.000 1.000
#> SRR1322477     1  0.0672      0.973 0.992 0.008
#> SRR1478789     2  0.7299      0.808 0.204 0.796
#> SRR1414185     2  0.0000      0.940 0.000 1.000
#> SRR1069141     2  0.0672      0.940 0.008 0.992
#> SRR1376852     1  0.0000      0.976 1.000 0.000
#> SRR1323491     1  0.0672      0.973 0.992 0.008
#> SRR1338103     1  0.0000      0.976 1.000 0.000
#> SRR1472012     1  0.0000      0.976 1.000 0.000
#> SRR1340325     1  0.0000      0.976 1.000 0.000
#> SRR1087321     2  0.0672      0.940 0.008 0.992
#> SRR1488790     1  0.0000      0.976 1.000 0.000
#> SRR1334866     2  0.0672      0.940 0.008 0.992
#> SRR1089446     2  0.0938      0.938 0.012 0.988
#> SRR1344445     2  0.7376      0.804 0.208 0.792
#> SRR1412969     2  0.0672      0.940 0.008 0.992
#> SRR1071668     1  0.5178      0.848 0.884 0.116
#> SRR1075804     1  0.0672      0.973 0.992 0.008
#> SRR1383283     2  0.0672      0.940 0.008 0.992
#> SRR1350239     2  0.0000      0.940 0.000 1.000
#> SRR1353878     1  0.0000      0.976 1.000 0.000
#> SRR1375721     1  0.0000      0.976 1.000 0.000
#> SRR1083983     1  0.0000      0.976 1.000 0.000
#> SRR1090095     1  0.0672      0.973 0.992 0.008
#> SRR1414792     1  0.0672      0.973 0.992 0.008
#> SRR1075102     2  0.0000      0.940 0.000 1.000
#> SRR1098737     1  0.0672      0.973 0.992 0.008
#> SRR1349409     1  0.0000      0.976 1.000 0.000
#> SRR1413008     2  0.0000      0.940 0.000 1.000
#> SRR1407179     1  0.0000      0.976 1.000 0.000
#> SRR1095913     2  0.0672      0.940 0.008 0.992
#> SRR1403544     1  0.0000      0.976 1.000 0.000
#> SRR1490546     1  0.0672      0.973 0.992 0.008
#> SRR807971      2  0.7376      0.804 0.208 0.792
#> SRR1436228     1  0.0000      0.976 1.000 0.000
#> SRR1445218     2  0.0000      0.940 0.000 1.000
#> SRR1485438     1  0.1414      0.961 0.980 0.020
#> SRR1358143     1  0.0000      0.976 1.000 0.000
#> SRR1328760     1  0.0000      0.976 1.000 0.000
#> SRR1380806     1  0.0000      0.976 1.000 0.000
#> SRR1379426     2  0.0000      0.940 0.000 1.000
#> SRR1087007     2  0.0672      0.940 0.008 0.992
#> SRR1086256     2  0.0672      0.940 0.008 0.992
#> SRR1346734     2  0.0000      0.940 0.000 1.000
#> SRR1414515     1  0.0000      0.976 1.000 0.000
#> SRR1082151     1  0.3114      0.926 0.944 0.056
#> SRR1349320     2  0.0000      0.940 0.000 1.000
#> SRR1317554     2  0.0000      0.940 0.000 1.000
#> SRR1076022     2  0.0672      0.940 0.008 0.992
#> SRR1339573     2  0.7376      0.804 0.208 0.792
#> SRR1455878     1  0.0000      0.976 1.000 0.000
#> SRR1446203     2  0.7139      0.816 0.196 0.804
#> SRR1387397     1  0.0000      0.976 1.000 0.000
#> SRR1402590     1  0.0000      0.976 1.000 0.000
#> SRR1317532     1  0.0672      0.973 0.992 0.008
#> SRR1331488     1  0.7139      0.759 0.804 0.196
#> SRR1499675     2  0.1843      0.931 0.028 0.972
#> SRR1440467     2  0.0672      0.940 0.008 0.992
#> SRR807995      2  0.0672      0.940 0.008 0.992
#> SRR1476485     2  0.0000      0.940 0.000 1.000
#> SRR1388214     1  0.0672      0.973 0.992 0.008
#> SRR1456051     1  0.0000      0.976 1.000 0.000
#> SRR1473275     1  0.0000      0.976 1.000 0.000
#> SRR1444083     1  0.0672      0.973 0.992 0.008
#> SRR1313807     2  0.0000      0.940 0.000 1.000
#> SRR1470751     1  0.6531      0.797 0.832 0.168
#> SRR1403434     2  0.0672      0.940 0.008 0.992
#> SRR1390540     1  0.0672      0.973 0.992 0.008
#> SRR1093861     2  0.0672      0.940 0.008 0.992
#> SRR1325290     1  0.0000      0.976 1.000 0.000
#> SRR1070689     1  0.0000      0.976 1.000 0.000
#> SRR1384049     1  0.0000      0.976 1.000 0.000
#> SRR1081184     1  0.0000      0.976 1.000 0.000
#> SRR1324295     1  0.0000      0.976 1.000 0.000
#> SRR1365313     1  0.9129      0.447 0.672 0.328
#> SRR1321877     2  0.7376      0.804 0.208 0.792
#> SRR815711      2  0.1633      0.933 0.024 0.976
#> SRR1433476     2  0.0000      0.940 0.000 1.000
#> SRR1101883     2  0.7219      0.812 0.200 0.800
#> SRR1433729     2  0.0000      0.940 0.000 1.000
#> SRR1341877     1  0.0672      0.973 0.992 0.008
#> SRR1090556     1  0.0672      0.973 0.992 0.008
#> SRR1357389     2  0.6973      0.824 0.188 0.812
#> SRR1404227     2  0.7376      0.804 0.208 0.792
#> SRR1376830     1  0.0000      0.976 1.000 0.000
#> SRR1500661     1  0.0000      0.976 1.000 0.000
#> SRR1080294     2  0.0000      0.940 0.000 1.000
#> SRR1336314     2  0.0000      0.940 0.000 1.000
#> SRR1102152     1  0.3274      0.921 0.940 0.060
#> SRR1345244     2  0.6973      0.824 0.188 0.812
#> SRR1478637     1  0.0000      0.976 1.000 0.000
#> SRR1443776     2  0.6973      0.824 0.188 0.812
#> SRR1120939     2  0.6343      0.845 0.160 0.840
#> SRR1080117     2  0.0672      0.940 0.008 0.992
#> SRR1102899     2  0.0672      0.940 0.008 0.992
#> SRR1091865     1  0.0000      0.976 1.000 0.000
#> SRR1361072     1  0.0672      0.973 0.992 0.008
#> SRR1487890     1  0.0000      0.976 1.000 0.000
#> SRR1349456     2  0.0672      0.940 0.008 0.992
#> SRR1389384     1  0.0000      0.976 1.000 0.000
#> SRR1316096     2  0.0000      0.940 0.000 1.000
#> SRR1408512     1  0.0000      0.976 1.000 0.000
#> SRR1447547     2  0.0000      0.940 0.000 1.000
#> SRR1354053     2  0.0000      0.940 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.979 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1499040     3  0.4346      0.746 0.184 0.000 0.816
#> SRR1322312     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1324412     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1100991     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1349479     2  0.0424      0.904 0.000 0.992 0.008
#> SRR1431248     1  0.0424      0.973 0.992 0.008 0.000
#> SRR1405054     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1312266     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1409790     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1352507     2  0.5497      0.607 0.000 0.708 0.292
#> SRR1383763     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1468314     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1473674     2  0.6154      0.230 0.000 0.592 0.408
#> SRR1390499     1  0.0000      0.979 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.906 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1335236     3  0.4605      0.735 0.000 0.204 0.796
#> SRR1095383     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1310433     2  0.3267      0.810 0.000 0.884 0.116
#> SRR1073435     2  0.1163      0.892 0.000 0.972 0.028
#> SRR659649      3  0.0000      0.899 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1105248     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1338257     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1350002     2  0.5859      0.415 0.000 0.656 0.344
#> SRR1489757     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1414637     3  0.5529      0.616 0.000 0.296 0.704
#> SRR1478113     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1322477     1  0.0237      0.976 0.996 0.004 0.000
#> SRR1478789     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1414185     2  0.4887      0.701 0.000 0.772 0.228
#> SRR1069141     2  0.6079      0.294 0.000 0.612 0.388
#> SRR1376852     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1338103     1  0.5431      0.581 0.716 0.000 0.284
#> SRR1472012     3  0.4399      0.742 0.188 0.000 0.812
#> SRR1340325     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1334866     3  0.0424      0.896 0.000 0.008 0.992
#> SRR1089446     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1344445     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1412969     3  0.0892      0.887 0.000 0.020 0.980
#> SRR1071668     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1075804     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1383283     3  0.4235      0.765 0.000 0.176 0.824
#> SRR1350239     2  0.0424      0.904 0.000 0.992 0.008
#> SRR1353878     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1083983     3  0.5988      0.468 0.368 0.000 0.632
#> SRR1090095     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1098737     1  0.2356      0.912 0.928 0.072 0.000
#> SRR1349409     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1413008     2  0.0424      0.904 0.000 0.992 0.008
#> SRR1407179     3  0.2356      0.851 0.072 0.000 0.928
#> SRR1095913     3  0.6026      0.466 0.000 0.376 0.624
#> SRR1403544     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.979 1.000 0.000 0.000
#> SRR807971      3  0.0000      0.899 0.000 0.000 1.000
#> SRR1436228     3  0.4796      0.706 0.220 0.000 0.780
#> SRR1445218     2  0.0424      0.903 0.000 0.992 0.008
#> SRR1485438     3  0.6243      0.745 0.100 0.124 0.776
#> SRR1358143     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1379426     2  0.4974      0.691 0.000 0.764 0.236
#> SRR1087007     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1086256     3  0.5497      0.622 0.000 0.292 0.708
#> SRR1346734     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1082151     1  0.4099      0.818 0.852 0.140 0.008
#> SRR1349320     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1076022     3  0.6111      0.422 0.000 0.396 0.604
#> SRR1339573     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1455878     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1446203     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1387397     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1331488     2  0.5178      0.616 0.256 0.744 0.000
#> SRR1499675     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1440467     3  0.0000      0.899 0.000 0.000 1.000
#> SRR807995      3  0.6126      0.412 0.000 0.400 0.600
#> SRR1476485     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1473275     3  0.0424      0.895 0.008 0.000 0.992
#> SRR1444083     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1313807     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1470751     1  0.4605      0.730 0.796 0.204 0.000
#> SRR1403434     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1093861     3  0.5497      0.622 0.000 0.292 0.708
#> SRR1325290     3  0.1860      0.867 0.052 0.000 0.948
#> SRR1070689     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1365313     3  0.0424      0.895 0.008 0.000 0.992
#> SRR1321877     3  0.0000      0.899 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.899 0.000 0.000 1.000
#> SRR1433476     2  0.4121      0.770 0.000 0.832 0.168
#> SRR1101883     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1433729     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1341877     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1090556     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1357389     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1404227     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1080294     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1336314     2  0.0000      0.906 0.000 1.000 0.000
#> SRR1102152     1  0.2878      0.880 0.904 0.096 0.000
#> SRR1345244     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1478637     3  0.1163      0.883 0.028 0.000 0.972
#> SRR1443776     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1102899     3  0.6126      0.412 0.000 0.400 0.600
#> SRR1091865     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1349456     3  0.0000      0.899 0.000 0.000 1.000
#> SRR1389384     1  0.4121      0.777 0.832 0.000 0.168
#> SRR1316096     2  0.2261      0.858 0.000 0.932 0.068
#> SRR1408512     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1447547     2  0.0424      0.904 0.000 0.992 0.008
#> SRR1354053     2  0.0000      0.906 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1499040     2  0.4331      0.480 0.000 0.712 0.288 0.000
#> SRR1322312     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1100991     3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1349479     4  0.3569      0.790 0.000 0.000 0.196 0.804
#> SRR1431248     1  0.4164      0.635 0.736 0.000 0.000 0.264
#> SRR1405054     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1312266     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1409790     3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1352507     4  0.4454      0.657 0.000 0.000 0.308 0.692
#> SRR1383763     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1468314     4  0.3400      0.708 0.000 0.180 0.000 0.820
#> SRR1473674     2  0.3610      0.706 0.000 0.800 0.000 0.200
#> SRR1390499     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1455653     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1335236     2  0.3528      0.710 0.000 0.808 0.000 0.192
#> SRR1095383     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1479489     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.3801      0.692 0.000 0.780 0.000 0.220
#> SRR1073435     4  0.4454      0.627 0.000 0.308 0.000 0.692
#> SRR659649      3  0.3400      0.843 0.000 0.180 0.820 0.000
#> SRR1395999     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1338257     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1499395     3  0.2921      0.847 0.000 0.140 0.860 0.000
#> SRR1350002     2  0.3801      0.692 0.000 0.780 0.000 0.220
#> SRR1489757     3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1414637     2  0.3528      0.710 0.000 0.808 0.000 0.192
#> SRR1478113     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1322477     1  0.4277      0.606 0.720 0.000 0.000 0.280
#> SRR1478789     2  0.4382      0.467 0.000 0.704 0.296 0.000
#> SRR1414185     3  0.4605      0.286 0.000 0.000 0.664 0.336
#> SRR1069141     2  0.3801      0.692 0.000 0.780 0.000 0.220
#> SRR1376852     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1338103     2  0.5099      0.327 0.380 0.612 0.008 0.000
#> SRR1472012     2  0.4331      0.480 0.000 0.712 0.288 0.000
#> SRR1340325     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.3528      0.838 0.000 0.192 0.808 0.000
#> SRR1488790     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.4222      0.498 0.000 0.728 0.272 0.000
#> SRR1089446     3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1344445     3  0.3444      0.842 0.000 0.184 0.816 0.000
#> SRR1412969     3  0.0188      0.843 0.000 0.000 0.996 0.004
#> SRR1071668     3  0.0592      0.847 0.000 0.016 0.984 0.000
#> SRR1075804     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1383283     2  0.2081      0.712 0.000 0.916 0.000 0.084
#> SRR1350239     4  0.3528      0.793 0.000 0.000 0.192 0.808
#> SRR1353878     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1083983     2  0.5810      0.477 0.256 0.672 0.072 0.000
#> SRR1090095     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.4817      0.362 0.612 0.000 0.000 0.388
#> SRR1349409     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.3528      0.793 0.000 0.000 0.192 0.808
#> SRR1407179     2  0.4356      0.474 0.000 0.708 0.292 0.000
#> SRR1095913     2  0.3528      0.710 0.000 0.808 0.000 0.192
#> SRR1403544     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR807971      3  0.3400      0.843 0.000 0.180 0.820 0.000
#> SRR1436228     2  0.0000      0.686 0.000 1.000 0.000 0.000
#> SRR1445218     2  0.3801      0.692 0.000 0.780 0.000 0.220
#> SRR1485438     2  0.0336      0.690 0.000 0.992 0.000 0.008
#> SRR1358143     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.6806      0.353 0.000 0.112 0.544 0.344
#> SRR1087007     3  0.3528      0.838 0.000 0.192 0.808 0.000
#> SRR1086256     2  0.3528      0.710 0.000 0.808 0.000 0.192
#> SRR1346734     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.3852      0.708 0.012 0.808 0.000 0.180
#> SRR1349320     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1317554     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1076022     2  0.3528      0.710 0.000 0.808 0.000 0.192
#> SRR1339573     3  0.3528      0.838 0.000 0.192 0.808 0.000
#> SRR1455878     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.3764      0.817 0.000 0.216 0.784 0.000
#> SRR1387397     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1402590     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1331488     4  0.3569      0.702 0.196 0.000 0.000 0.804
#> SRR1499675     3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1440467     3  0.0188      0.843 0.000 0.000 0.996 0.004
#> SRR807995      2  0.3569      0.708 0.000 0.804 0.000 0.196
#> SRR1476485     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1456051     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1473275     2  0.4866      0.184 0.000 0.596 0.404 0.000
#> SRR1444083     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1313807     4  0.0592      0.890 0.000 0.016 0.000 0.984
#> SRR1470751     2  0.4059      0.700 0.012 0.788 0.000 0.200
#> SRR1403434     3  0.0188      0.843 0.000 0.000 0.996 0.004
#> SRR1390540     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.3528      0.710 0.000 0.808 0.000 0.192
#> SRR1325290     2  0.4331      0.480 0.000 0.712 0.288 0.000
#> SRR1070689     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.4356      0.474 0.000 0.708 0.292 0.000
#> SRR1321877     3  0.3837      0.809 0.000 0.224 0.776 0.000
#> SRR815711      3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1433476     4  0.3764      0.770 0.000 0.000 0.216 0.784
#> SRR1101883     3  0.3400      0.843 0.000 0.180 0.820 0.000
#> SRR1433729     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1341877     1  0.3356      0.766 0.824 0.176 0.000 0.000
#> SRR1090556     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1357389     3  0.0000      0.845 0.000 0.000 1.000 0.000
#> SRR1404227     2  0.4477      0.435 0.000 0.688 0.312 0.000
#> SRR1376830     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1080294     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1336314     4  0.0000      0.902 0.000 0.000 0.000 1.000
#> SRR1102152     1  0.4635      0.740 0.796 0.124 0.000 0.080
#> SRR1345244     3  0.3528      0.838 0.000 0.192 0.808 0.000
#> SRR1478637     2  0.4277      0.489 0.000 0.720 0.280 0.000
#> SRR1443776     3  0.3837      0.809 0.000 0.224 0.776 0.000
#> SRR1120939     3  0.3569      0.835 0.000 0.196 0.804 0.000
#> SRR1080117     3  0.3528      0.838 0.000 0.192 0.808 0.000
#> SRR1102899     2  0.3764      0.695 0.000 0.784 0.000 0.216
#> SRR1091865     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1361072     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1349456     2  0.4382      0.467 0.000 0.704 0.296 0.000
#> SRR1389384     2  0.2469      0.652 0.108 0.892 0.000 0.000
#> SRR1316096     2  0.3801      0.692 0.000 0.780 0.000 0.220
#> SRR1408512     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1447547     4  0.3569      0.790 0.000 0.000 0.196 0.804
#> SRR1354053     4  0.0000      0.902 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      5  0.4262     0.8868 0.440 0.000 0.000 0.000 0.560
#> SRR1349562     1  0.0609     0.7000 0.980 0.000 0.000 0.000 0.020
#> SRR1353376     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1499040     3  0.8431    -0.0574 0.304 0.196 0.316 0.000 0.184
#> SRR1322312     1  0.0000     0.7098 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.4960     0.7427 0.000 0.000 0.688 0.080 0.232
#> SRR1100991     3  0.4960     0.7427 0.000 0.000 0.688 0.080 0.232
#> SRR1349479     4  0.2127     0.7649 0.000 0.000 0.000 0.892 0.108
#> SRR1431248     5  0.4517     0.8371 0.372 0.008 0.000 0.004 0.616
#> SRR1405054     1  0.0162     0.7087 0.996 0.000 0.000 0.000 0.004
#> SRR1312266     5  0.4249     0.8926 0.432 0.000 0.000 0.000 0.568
#> SRR1409790     3  0.4960     0.7427 0.000 0.000 0.688 0.080 0.232
#> SRR1352507     4  0.6246     0.2751 0.000 0.000 0.232 0.544 0.224
#> SRR1383763     1  0.0162     0.7087 0.996 0.000 0.000 0.000 0.004
#> SRR1468314     4  0.4262     0.4077 0.000 0.440 0.000 0.560 0.000
#> SRR1473674     2  0.0290     0.8756 0.000 0.992 0.000 0.008 0.000
#> SRR1390499     1  0.2561     0.5000 0.856 0.000 0.000 0.000 0.144
#> SRR821043      4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1455653     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1335236     2  0.0000     0.8781 0.000 1.000 0.000 0.000 0.000
#> SRR1095383     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1479489     1  0.0162     0.7089 0.996 0.000 0.000 0.000 0.004
#> SRR1310433     2  0.0404     0.8735 0.000 0.988 0.000 0.012 0.000
#> SRR1073435     4  0.5337     0.4967 0.000 0.344 0.056 0.596 0.004
#> SRR659649      3  0.2707     0.7764 0.000 0.000 0.860 0.008 0.132
#> SRR1395999     1  0.1043     0.6863 0.960 0.000 0.000 0.000 0.040
#> SRR1105248     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1338257     5  0.4249     0.8926 0.432 0.000 0.000 0.000 0.568
#> SRR1499395     3  0.2408     0.7761 0.000 0.000 0.892 0.016 0.092
#> SRR1350002     2  0.0290     0.8756 0.000 0.992 0.000 0.008 0.000
#> SRR1489757     3  0.4960     0.7427 0.000 0.000 0.688 0.080 0.232
#> SRR1414637     2  0.0609     0.8739 0.000 0.980 0.000 0.000 0.020
#> SRR1478113     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1322477     5  0.4707     0.8618 0.392 0.000 0.000 0.020 0.588
#> SRR1478789     3  0.5502     0.4204 0.000 0.192 0.652 0.000 0.156
#> SRR1414185     4  0.6051    -0.1027 0.000 0.000 0.404 0.476 0.120
#> SRR1069141     2  0.0290     0.8756 0.000 0.992 0.000 0.008 0.000
#> SRR1376852     1  0.0510     0.7017 0.984 0.000 0.000 0.000 0.016
#> SRR1323491     1  0.4305    -0.7697 0.512 0.000 0.000 0.000 0.488
#> SRR1338103     1  0.6464     0.2545 0.524 0.008 0.296 0.000 0.172
#> SRR1472012     1  0.6599     0.2553 0.520 0.012 0.284 0.000 0.184
#> SRR1340325     1  0.0880     0.6909 0.968 0.000 0.000 0.000 0.032
#> SRR1087321     3  0.0000     0.7571 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.1410     0.6595 0.940 0.000 0.000 0.000 0.060
#> SRR1334866     2  0.6296     0.3286 0.000 0.480 0.360 0.000 0.160
#> SRR1089446     3  0.5032     0.7413 0.000 0.000 0.688 0.092 0.220
#> SRR1344445     3  0.2707     0.7764 0.000 0.000 0.860 0.008 0.132
#> SRR1412969     3  0.5073     0.7384 0.000 0.000 0.688 0.100 0.212
#> SRR1071668     3  0.4823     0.7466 0.000 0.000 0.700 0.072 0.228
#> SRR1075804     5  0.4249     0.8926 0.432 0.000 0.000 0.000 0.568
#> SRR1383283     2  0.2193     0.8385 0.000 0.912 0.060 0.000 0.028
#> SRR1350239     4  0.0162     0.8184 0.000 0.000 0.000 0.996 0.004
#> SRR1353878     1  0.3274     0.3279 0.780 0.000 0.000 0.000 0.220
#> SRR1375721     1  0.0000     0.7098 1.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.6400     0.3239 0.564 0.012 0.240 0.000 0.184
#> SRR1090095     1  0.4305    -0.7697 0.512 0.000 0.000 0.000 0.488
#> SRR1414792     1  0.4304    -0.7613 0.516 0.000 0.000 0.000 0.484
#> SRR1075102     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1098737     5  0.4590     0.8851 0.420 0.000 0.000 0.012 0.568
#> SRR1349409     1  0.0000     0.7098 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.0162     0.8184 0.000 0.000 0.000 0.996 0.004
#> SRR1407179     1  0.7979    -0.0395 0.364 0.108 0.348 0.000 0.180
#> SRR1095913     2  0.0000     0.8781 0.000 1.000 0.000 0.000 0.000
#> SRR1403544     1  0.0290     0.7074 0.992 0.000 0.000 0.000 0.008
#> SRR1490546     5  0.4249     0.8926 0.432 0.000 0.000 0.000 0.568
#> SRR807971      3  0.2629     0.7762 0.000 0.000 0.860 0.004 0.136
#> SRR1436228     2  0.6915     0.4869 0.036 0.536 0.228 0.000 0.200
#> SRR1445218     2  0.0290     0.8756 0.000 0.992 0.000 0.008 0.000
#> SRR1485438     2  0.3442     0.7908 0.000 0.836 0.060 0.000 0.104
#> SRR1358143     1  0.0000     0.7098 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.4150    -0.4217 0.612 0.000 0.000 0.000 0.388
#> SRR1380806     1  0.0000     0.7098 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     4  0.4743     0.0826 0.000 0.000 0.472 0.512 0.016
#> SRR1087007     3  0.0000     0.7571 0.000 0.000 1.000 0.000 0.000
#> SRR1086256     2  0.0290     0.8768 0.000 0.992 0.000 0.000 0.008
#> SRR1346734     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1414515     1  0.0000     0.7098 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     2  0.1608     0.8461 0.000 0.928 0.000 0.000 0.072
#> SRR1349320     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1317554     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1076022     2  0.0000     0.8781 0.000 1.000 0.000 0.000 0.000
#> SRR1339573     3  0.0000     0.7571 0.000 0.000 1.000 0.000 0.000
#> SRR1455878     1  0.0404     0.7044 0.988 0.000 0.000 0.000 0.012
#> SRR1446203     3  0.1281     0.7395 0.000 0.012 0.956 0.000 0.032
#> SRR1387397     1  0.1410     0.6863 0.940 0.000 0.000 0.000 0.060
#> SRR1402590     1  0.1121     0.6787 0.956 0.000 0.000 0.000 0.044
#> SRR1317532     5  0.4262     0.8865 0.440 0.000 0.000 0.000 0.560
#> SRR1331488     5  0.5393     0.0189 0.056 0.000 0.000 0.440 0.504
#> SRR1499675     3  0.5115     0.7418 0.000 0.000 0.676 0.092 0.232
#> SRR1440467     3  0.5032     0.7413 0.000 0.000 0.688 0.092 0.220
#> SRR807995      2  0.0000     0.8781 0.000 1.000 0.000 0.000 0.000
#> SRR1476485     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1388214     5  0.4249     0.8926 0.432 0.000 0.000 0.000 0.568
#> SRR1456051     1  0.1270     0.6698 0.948 0.000 0.000 0.000 0.052
#> SRR1473275     3  0.5064     0.5793 0.068 0.032 0.736 0.000 0.164
#> SRR1444083     5  0.4210     0.8815 0.412 0.000 0.000 0.000 0.588
#> SRR1313807     4  0.2773     0.8074 0.000 0.164 0.000 0.836 0.000
#> SRR1470751     2  0.1732     0.8405 0.000 0.920 0.000 0.000 0.080
#> SRR1403434     3  0.5032     0.7413 0.000 0.000 0.688 0.092 0.220
#> SRR1390540     5  0.4306     0.7967 0.492 0.000 0.000 0.000 0.508
#> SRR1093861     2  0.0000     0.8781 0.000 1.000 0.000 0.000 0.000
#> SRR1325290     1  0.7650     0.1216 0.436 0.076 0.304 0.000 0.184
#> SRR1070689     1  0.0794     0.6941 0.972 0.000 0.000 0.000 0.028
#> SRR1384049     1  0.0404     0.7053 0.988 0.000 0.000 0.000 0.012
#> SRR1081184     1  0.0162     0.7089 0.996 0.000 0.000 0.000 0.004
#> SRR1324295     1  0.1197     0.6744 0.952 0.000 0.000 0.000 0.048
#> SRR1365313     3  0.6057     0.3351 0.008 0.224 0.604 0.000 0.164
#> SRR1321877     3  0.3183     0.6535 0.000 0.016 0.828 0.000 0.156
#> SRR815711      3  0.5032     0.7413 0.000 0.000 0.688 0.092 0.220
#> SRR1433476     4  0.2674     0.7450 0.000 0.000 0.012 0.868 0.120
#> SRR1101883     3  0.2753     0.7759 0.000 0.000 0.856 0.008 0.136
#> SRR1433729     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1341877     1  0.6100    -0.4772 0.448 0.000 0.124 0.000 0.428
#> SRR1090556     5  0.4138     0.8516 0.384 0.000 0.000 0.000 0.616
#> SRR1357389     3  0.4960     0.7427 0.000 0.000 0.688 0.080 0.232
#> SRR1404227     3  0.4734     0.5487 0.000 0.108 0.732 0.000 0.160
#> SRR1376830     1  0.0162     0.7089 0.996 0.000 0.000 0.000 0.004
#> SRR1500661     1  0.0162     0.7089 0.996 0.000 0.000 0.000 0.004
#> SRR1080294     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1336314     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000
#> SRR1102152     1  0.5128     0.3365 0.656 0.268 0.000 0.000 0.076
#> SRR1345244     3  0.0000     0.7571 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     2  0.7046     0.3850 0.032 0.484 0.300 0.000 0.184
#> SRR1443776     3  0.3098     0.6596 0.000 0.016 0.836 0.000 0.148
#> SRR1120939     3  0.1638     0.7690 0.000 0.004 0.932 0.000 0.064
#> SRR1080117     3  0.0000     0.7571 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.0290     0.8762 0.000 0.992 0.000 0.008 0.000
#> SRR1091865     1  0.2605     0.5799 0.852 0.000 0.000 0.000 0.148
#> SRR1361072     5  0.4287     0.8593 0.460 0.000 0.000 0.000 0.540
#> SRR1487890     1  0.0000     0.7098 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.5562     0.4058 0.000 0.200 0.644 0.000 0.156
#> SRR1389384     2  0.7231     0.5400 0.132 0.560 0.128 0.000 0.180
#> SRR1316096     2  0.0290     0.8756 0.000 0.992 0.000 0.008 0.000
#> SRR1408512     5  0.4273     0.8696 0.448 0.000 0.000 0.000 0.552
#> SRR1447547     4  0.2074     0.7678 0.000 0.000 0.000 0.896 0.104
#> SRR1354053     4  0.1908     0.8615 0.000 0.092 0.000 0.908 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      5  0.2854     0.8705 0.208 0.000 0.000 0.000 0.792 0.000
#> SRR1349562     1  0.0260     0.8825 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1353376     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1499040     6  0.2095     0.7064 0.028 0.016 0.000 0.000 0.040 0.916
#> SRR1322312     1  0.0146     0.8828 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1324412     3  0.0260     0.7864 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1100991     3  0.0862     0.7850 0.004 0.000 0.972 0.000 0.008 0.016
#> SRR1349479     4  0.4033     0.7148 0.000 0.000 0.168 0.756 0.072 0.004
#> SRR1431248     5  0.2222     0.8505 0.084 0.008 0.000 0.000 0.896 0.012
#> SRR1405054     1  0.0632     0.8691 0.976 0.000 0.024 0.000 0.000 0.000
#> SRR1312266     5  0.2300     0.8913 0.144 0.000 0.000 0.000 0.856 0.000
#> SRR1409790     3  0.0405     0.7856 0.000 0.000 0.988 0.000 0.008 0.004
#> SRR1352507     3  0.3444     0.6961 0.000 0.000 0.812 0.140 0.012 0.036
#> SRR1383763     1  0.0146     0.8828 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1468314     4  0.3789     0.3503 0.000 0.416 0.000 0.584 0.000 0.000
#> SRR1473674     2  0.0260     0.9230 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1390499     1  0.0935     0.8682 0.964 0.000 0.000 0.000 0.032 0.004
#> SRR821043      4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1455653     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1335236     2  0.0291     0.9228 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1095383     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1479489     1  0.0717     0.8730 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1310433     2  0.0458     0.9211 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1073435     4  0.5721     0.4082 0.000 0.332 0.036 0.560 0.008 0.064
#> SRR659649      3  0.3572     0.6519 0.000 0.000 0.764 0.000 0.032 0.204
#> SRR1395999     1  0.2302     0.7870 0.872 0.000 0.000 0.000 0.120 0.008
#> SRR1105248     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1338257     5  0.2442     0.8911 0.144 0.000 0.000 0.000 0.852 0.004
#> SRR1499395     3  0.5097     0.1876 0.000 0.000 0.508 0.004 0.068 0.420
#> SRR1350002     2  0.0405     0.9228 0.000 0.988 0.000 0.008 0.000 0.004
#> SRR1489757     3  0.0508     0.7860 0.000 0.000 0.984 0.000 0.004 0.012
#> SRR1414637     2  0.2362     0.8401 0.000 0.860 0.000 0.004 0.000 0.136
#> SRR1478113     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1322477     5  0.2538     0.8803 0.124 0.000 0.000 0.016 0.860 0.000
#> SRR1478789     6  0.0881     0.7099 0.000 0.008 0.008 0.000 0.012 0.972
#> SRR1414185     3  0.5804     0.5040 0.000 0.000 0.580 0.280 0.088 0.052
#> SRR1069141     2  0.0260     0.9230 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1376852     1  0.0603     0.8759 0.980 0.000 0.000 0.000 0.016 0.004
#> SRR1323491     1  0.3828    -0.0705 0.560 0.000 0.000 0.000 0.440 0.000
#> SRR1338103     6  0.4378     0.4968 0.280 0.012 0.000 0.000 0.032 0.676
#> SRR1472012     6  0.2881     0.6758 0.084 0.012 0.000 0.000 0.040 0.864
#> SRR1340325     1  0.0603     0.8793 0.980 0.000 0.000 0.000 0.016 0.004
#> SRR1087321     6  0.4735     0.0746 0.000 0.000 0.432 0.000 0.048 0.520
#> SRR1488790     1  0.0363     0.8802 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1334866     6  0.1225     0.7103 0.000 0.036 0.000 0.000 0.012 0.952
#> SRR1089446     3  0.1732     0.7743 0.000 0.000 0.920 0.004 0.072 0.004
#> SRR1344445     3  0.2805     0.7026 0.000 0.000 0.828 0.000 0.012 0.160
#> SRR1412969     3  0.4284     0.7034 0.000 0.000 0.768 0.028 0.092 0.112
#> SRR1071668     3  0.0891     0.7845 0.000 0.000 0.968 0.000 0.008 0.024
#> SRR1075804     5  0.2631     0.8878 0.180 0.000 0.000 0.000 0.820 0.000
#> SRR1383283     2  0.3829     0.6581 0.000 0.720 0.008 0.004 0.008 0.260
#> SRR1350239     4  0.0458     0.9093 0.000 0.000 0.016 0.984 0.000 0.000
#> SRR1353878     1  0.3337     0.5626 0.736 0.000 0.000 0.000 0.260 0.004
#> SRR1375721     1  0.0000     0.8824 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     6  0.4484     0.5161 0.252 0.012 0.000 0.000 0.048 0.688
#> SRR1090095     1  0.3828    -0.0703 0.560 0.000 0.000 0.000 0.440 0.000
#> SRR1414792     1  0.3620     0.2835 0.648 0.000 0.000 0.000 0.352 0.000
#> SRR1075102     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1098737     5  0.2932     0.8885 0.164 0.000 0.000 0.016 0.820 0.000
#> SRR1349409     1  0.0146     0.8828 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1413008     4  0.0458     0.9093 0.000 0.000 0.016 0.984 0.000 0.000
#> SRR1407179     6  0.2024     0.7081 0.028 0.016 0.000 0.000 0.036 0.920
#> SRR1095913     2  0.0405     0.9220 0.000 0.988 0.000 0.004 0.000 0.008
#> SRR1403544     1  0.0000     0.8824 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     5  0.2562     0.8903 0.172 0.000 0.000 0.000 0.828 0.000
#> SRR807971      3  0.2730     0.7110 0.000 0.000 0.836 0.000 0.012 0.152
#> SRR1436228     6  0.4400     0.4787 0.012 0.228 0.000 0.000 0.052 0.708
#> SRR1445218     2  0.0363     0.9225 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR1485438     2  0.2212     0.8480 0.000 0.880 0.000 0.000 0.008 0.112
#> SRR1358143     1  0.0291     0.8817 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1328760     5  0.3993     0.2660 0.476 0.000 0.000 0.000 0.520 0.004
#> SRR1380806     1  0.0146     0.8828 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1379426     3  0.7009     0.3475 0.000 0.000 0.392 0.348 0.096 0.164
#> SRR1087007     6  0.4676     0.0984 0.000 0.000 0.428 0.000 0.044 0.528
#> SRR1086256     2  0.1806     0.8787 0.000 0.908 0.000 0.004 0.000 0.088
#> SRR1346734     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1414515     1  0.0000     0.8824 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082151     2  0.1398     0.8977 0.000 0.940 0.000 0.000 0.052 0.008
#> SRR1349320     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1317554     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1076022     2  0.0146     0.9230 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1339573     6  0.4460     0.0739 0.000 0.000 0.452 0.000 0.028 0.520
#> SRR1455878     1  0.0632     0.8762 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1446203     6  0.4434     0.1526 0.000 0.000 0.428 0.000 0.028 0.544
#> SRR1387397     1  0.1082     0.8671 0.956 0.000 0.000 0.000 0.040 0.004
#> SRR1402590     1  0.0363     0.8802 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1317532     5  0.2730     0.8826 0.192 0.000 0.000 0.000 0.808 0.000
#> SRR1331488     5  0.3298     0.6273 0.008 0.000 0.000 0.236 0.756 0.000
#> SRR1499675     3  0.4338     0.5666 0.000 0.000 0.716 0.004 0.072 0.208
#> SRR1440467     3  0.2579     0.7673 0.000 0.000 0.876 0.004 0.088 0.032
#> SRR807995      2  0.0405     0.9234 0.000 0.988 0.000 0.008 0.000 0.004
#> SRR1476485     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1388214     5  0.2558     0.8925 0.156 0.000 0.000 0.000 0.840 0.004
#> SRR1456051     1  0.0858     0.8736 0.968 0.000 0.000 0.000 0.028 0.004
#> SRR1473275     6  0.1446     0.7137 0.012 0.012 0.012 0.000 0.012 0.952
#> SRR1444083     5  0.2442     0.8911 0.144 0.000 0.000 0.000 0.852 0.004
#> SRR1313807     4  0.1765     0.8545 0.000 0.096 0.000 0.904 0.000 0.000
#> SRR1470751     2  0.2431     0.8319 0.000 0.860 0.000 0.000 0.132 0.008
#> SRR1403434     3  0.2579     0.7673 0.000 0.000 0.876 0.004 0.088 0.032
#> SRR1390540     5  0.3706     0.5967 0.380 0.000 0.000 0.000 0.620 0.000
#> SRR1093861     2  0.0291     0.9228 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1325290     6  0.2422     0.6965 0.052 0.012 0.000 0.000 0.040 0.896
#> SRR1070689     1  0.0260     0.8813 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1384049     1  0.0146     0.8828 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1081184     1  0.0146     0.8828 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1324295     1  0.0363     0.8802 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1365313     6  0.0976     0.7128 0.000 0.016 0.008 0.000 0.008 0.968
#> SRR1321877     6  0.1391     0.6920 0.000 0.000 0.040 0.000 0.016 0.944
#> SRR815711      3  0.1732     0.7743 0.000 0.000 0.920 0.004 0.072 0.004
#> SRR1433476     4  0.4144     0.6781 0.000 0.000 0.200 0.728 0.072 0.000
#> SRR1101883     3  0.2783     0.7116 0.000 0.000 0.836 0.000 0.016 0.148
#> SRR1433729     4  0.0260     0.9190 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1341877     1  0.5125     0.0865 0.540 0.004 0.000 0.000 0.380 0.076
#> SRR1090556     5  0.2070     0.8572 0.092 0.000 0.000 0.000 0.896 0.012
#> SRR1357389     3  0.0291     0.7860 0.000 0.000 0.992 0.000 0.004 0.004
#> SRR1404227     6  0.0405     0.7112 0.000 0.004 0.008 0.000 0.000 0.988
#> SRR1376830     1  0.0937     0.8639 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR1500661     1  0.0000     0.8824 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1080294     4  0.0260     0.9190 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1336314     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1102152     1  0.5170     0.3904 0.592 0.312 0.000 0.000 0.088 0.008
#> SRR1345244     6  0.4676     0.0984 0.000 0.000 0.428 0.000 0.044 0.528
#> SRR1478637     6  0.1793     0.7069 0.004 0.032 0.000 0.000 0.036 0.928
#> SRR1443776     6  0.3794     0.4697 0.000 0.000 0.248 0.000 0.028 0.724
#> SRR1120939     3  0.4034     0.4343 0.000 0.000 0.652 0.000 0.020 0.328
#> SRR1080117     6  0.4676     0.0984 0.000 0.000 0.428 0.000 0.044 0.528
#> SRR1102899     2  0.0458     0.9211 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1091865     1  0.3650     0.5632 0.716 0.004 0.000 0.000 0.272 0.008
#> SRR1361072     5  0.2996     0.8519 0.228 0.000 0.000 0.000 0.772 0.000
#> SRR1487890     1  0.0000     0.8824 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349456     6  0.1116     0.7045 0.000 0.004 0.008 0.000 0.028 0.960
#> SRR1389384     2  0.6581     0.3177 0.156 0.492 0.000 0.000 0.068 0.284
#> SRR1316096     2  0.0363     0.9225 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR1408512     5  0.2871     0.8758 0.192 0.000 0.000 0.000 0.804 0.004
#> SRR1447547     4  0.3566     0.7485 0.000 0.000 0.156 0.788 0.056 0.000
#> SRR1354053     4  0.0146     0.9207 0.000 0.004 0.000 0.996 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.687           0.858       0.922         0.4882 0.502   0.502
#> 3 3 0.859           0.922       0.962         0.2311 0.826   0.677
#> 4 4 0.663           0.698       0.867         0.1712 0.881   0.706
#> 5 5 0.646           0.487       0.723         0.0794 0.896   0.687
#> 6 6 0.682           0.675       0.739         0.0456 0.839   0.469

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.962 1.000 0.000
#> SRR1349562     1  0.0000      0.962 1.000 0.000
#> SRR1353376     2  0.0938      0.877 0.012 0.988
#> SRR1499040     2  0.7139      0.798 0.196 0.804
#> SRR1322312     1  0.0000      0.962 1.000 0.000
#> SRR1324412     2  0.3584      0.897 0.068 0.932
#> SRR1100991     2  0.6801      0.823 0.180 0.820
#> SRR1349479     2  0.0000      0.876 0.000 1.000
#> SRR1431248     1  0.0000      0.962 1.000 0.000
#> SRR1405054     1  0.0000      0.962 1.000 0.000
#> SRR1312266     1  0.0000      0.962 1.000 0.000
#> SRR1409790     2  0.3584      0.897 0.068 0.932
#> SRR1352507     2  0.9754      0.481 0.408 0.592
#> SRR1383763     1  0.0000      0.962 1.000 0.000
#> SRR1468314     2  0.0000      0.876 0.000 1.000
#> SRR1473674     2  0.6438      0.817 0.164 0.836
#> SRR1390499     1  0.0000      0.962 1.000 0.000
#> SRR821043      2  0.0000      0.876 0.000 1.000
#> SRR1455653     2  0.5946      0.802 0.144 0.856
#> SRR1335236     2  0.0000      0.876 0.000 1.000
#> SRR1095383     2  0.0000      0.876 0.000 1.000
#> SRR1479489     1  0.0000      0.962 1.000 0.000
#> SRR1310433     2  0.0000      0.876 0.000 1.000
#> SRR1073435     2  0.9977      0.318 0.472 0.528
#> SRR659649      2  0.3584      0.897 0.068 0.932
#> SRR1395999     1  0.0000      0.962 1.000 0.000
#> SRR1105248     2  0.8861      0.610 0.304 0.696
#> SRR1338257     1  0.0000      0.962 1.000 0.000
#> SRR1499395     2  0.3584      0.897 0.068 0.932
#> SRR1350002     2  0.8713      0.618 0.292 0.708
#> SRR1489757     2  0.3733      0.896 0.072 0.928
#> SRR1414637     2  0.9732      0.489 0.404 0.596
#> SRR1478113     2  0.9248      0.528 0.340 0.660
#> SRR1322477     1  0.0000      0.962 1.000 0.000
#> SRR1478789     2  0.3584      0.897 0.068 0.932
#> SRR1414185     2  0.3584      0.897 0.068 0.932
#> SRR1069141     2  0.0000      0.876 0.000 1.000
#> SRR1376852     1  0.0000      0.962 1.000 0.000
#> SRR1323491     1  0.0000      0.962 1.000 0.000
#> SRR1338103     1  0.0000      0.962 1.000 0.000
#> SRR1472012     1  0.8813      0.505 0.700 0.300
#> SRR1340325     1  0.0000      0.962 1.000 0.000
#> SRR1087321     2  0.1184      0.882 0.016 0.984
#> SRR1488790     1  0.0000      0.962 1.000 0.000
#> SRR1334866     2  0.3584      0.897 0.068 0.932
#> SRR1089446     2  0.3584      0.897 0.068 0.932
#> SRR1344445     2  0.3584      0.897 0.068 0.932
#> SRR1412969     2  0.3584      0.897 0.068 0.932
#> SRR1071668     2  0.5178      0.870 0.116 0.884
#> SRR1075804     1  0.0000      0.962 1.000 0.000
#> SRR1383283     2  0.3584      0.897 0.068 0.932
#> SRR1350239     2  0.9460      0.504 0.364 0.636
#> SRR1353878     1  0.0000      0.962 1.000 0.000
#> SRR1375721     1  0.0000      0.962 1.000 0.000
#> SRR1083983     1  0.8144      0.592 0.748 0.252
#> SRR1090095     1  0.0000      0.962 1.000 0.000
#> SRR1414792     1  0.0000      0.962 1.000 0.000
#> SRR1075102     1  0.6801      0.779 0.820 0.180
#> SRR1098737     1  0.0000      0.962 1.000 0.000
#> SRR1349409     1  0.0000      0.962 1.000 0.000
#> SRR1413008     2  0.9460      0.504 0.364 0.636
#> SRR1407179     2  0.9393      0.577 0.356 0.644
#> SRR1095913     2  0.6973      0.812 0.188 0.812
#> SRR1403544     1  0.0000      0.962 1.000 0.000
#> SRR1490546     1  0.0000      0.962 1.000 0.000
#> SRR807971      2  0.3584      0.897 0.068 0.932
#> SRR1436228     1  0.8555      0.550 0.720 0.280
#> SRR1445218     2  0.0000      0.876 0.000 1.000
#> SRR1485438     2  0.6148      0.843 0.152 0.848
#> SRR1358143     1  0.0000      0.962 1.000 0.000
#> SRR1328760     1  0.0000      0.962 1.000 0.000
#> SRR1380806     1  0.0000      0.962 1.000 0.000
#> SRR1379426     2  0.3584      0.897 0.068 0.932
#> SRR1087007     2  0.3431      0.897 0.064 0.936
#> SRR1086256     2  0.3431      0.897 0.064 0.936
#> SRR1346734     2  0.9323      0.511 0.348 0.652
#> SRR1414515     1  0.0000      0.962 1.000 0.000
#> SRR1082151     1  0.0000      0.962 1.000 0.000
#> SRR1349320     2  0.9209      0.535 0.336 0.664
#> SRR1317554     2  0.3879      0.855 0.076 0.924
#> SRR1076022     2  0.0000      0.876 0.000 1.000
#> SRR1339573     2  0.3584      0.897 0.068 0.932
#> SRR1455878     1  0.0000      0.962 1.000 0.000
#> SRR1446203     2  0.3584      0.897 0.068 0.932
#> SRR1387397     1  0.0000      0.962 1.000 0.000
#> SRR1402590     1  0.0000      0.962 1.000 0.000
#> SRR1317532     1  0.0000      0.962 1.000 0.000
#> SRR1331488     1  0.0000      0.962 1.000 0.000
#> SRR1499675     2  0.5294      0.871 0.120 0.880
#> SRR1440467     2  0.2423      0.891 0.040 0.960
#> SRR807995      2  0.3431      0.894 0.064 0.936
#> SRR1476485     2  0.9963      0.199 0.464 0.536
#> SRR1388214     1  0.0000      0.962 1.000 0.000
#> SRR1456051     1  0.0000      0.962 1.000 0.000
#> SRR1473275     2  0.3584      0.897 0.068 0.932
#> SRR1444083     1  0.0000      0.962 1.000 0.000
#> SRR1313807     2  0.6887      0.774 0.184 0.816
#> SRR1470751     1  0.0376      0.958 0.996 0.004
#> SRR1403434     2  0.1843      0.887 0.028 0.972
#> SRR1390540     1  0.0000      0.962 1.000 0.000
#> SRR1093861     2  0.2236      0.890 0.036 0.964
#> SRR1325290     2  0.4022      0.892 0.080 0.920
#> SRR1070689     1  0.0000      0.962 1.000 0.000
#> SRR1384049     1  0.0000      0.962 1.000 0.000
#> SRR1081184     1  0.0000      0.962 1.000 0.000
#> SRR1324295     1  0.0000      0.962 1.000 0.000
#> SRR1365313     2  0.3584      0.897 0.068 0.932
#> SRR1321877     2  0.3584      0.897 0.068 0.932
#> SRR815711      2  0.3584      0.897 0.068 0.932
#> SRR1433476     2  0.0938      0.881 0.012 0.988
#> SRR1101883     2  0.3584      0.897 0.068 0.932
#> SRR1433729     2  0.0000      0.876 0.000 1.000
#> SRR1341877     1  0.0000      0.962 1.000 0.000
#> SRR1090556     1  0.0000      0.962 1.000 0.000
#> SRR1357389     2  0.3584      0.897 0.068 0.932
#> SRR1404227     2  0.3584      0.897 0.068 0.932
#> SRR1376830     1  0.0000      0.962 1.000 0.000
#> SRR1500661     1  0.0000      0.962 1.000 0.000
#> SRR1080294     2  0.0000      0.876 0.000 1.000
#> SRR1336314     1  0.9896      0.164 0.560 0.440
#> SRR1102152     1  0.0000      0.962 1.000 0.000
#> SRR1345244     2  0.3584      0.897 0.068 0.932
#> SRR1478637     2  0.3584      0.897 0.068 0.932
#> SRR1443776     2  0.3584      0.897 0.068 0.932
#> SRR1120939     2  0.2948      0.894 0.052 0.948
#> SRR1080117     2  0.3584      0.897 0.068 0.932
#> SRR1102899     2  0.0000      0.876 0.000 1.000
#> SRR1091865     1  0.0000      0.962 1.000 0.000
#> SRR1361072     1  0.0000      0.962 1.000 0.000
#> SRR1487890     1  0.0000      0.962 1.000 0.000
#> SRR1349456     2  0.3584      0.897 0.068 0.932
#> SRR1389384     1  0.9608      0.213 0.616 0.384
#> SRR1316096     2  0.0000      0.876 0.000 1.000
#> SRR1408512     1  0.0000      0.962 1.000 0.000
#> SRR1447547     1  0.5946      0.788 0.856 0.144
#> SRR1354053     2  0.8144      0.676 0.252 0.748

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.987 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1353376     2  0.2796      0.871 0.000 0.908 0.092
#> SRR1499040     3  0.3482      0.823 0.128 0.000 0.872
#> SRR1322312     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1324412     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1100991     3  0.0747      0.934 0.016 0.000 0.984
#> SRR1349479     3  0.5138      0.619 0.000 0.252 0.748
#> SRR1431248     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1405054     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1312266     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1409790     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1352507     3  0.1529      0.916 0.040 0.000 0.960
#> SRR1383763     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1468314     3  0.2959      0.877 0.000 0.100 0.900
#> SRR1473674     3  0.3989      0.852 0.012 0.124 0.864
#> SRR1390499     1  0.0000      0.987 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.907 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.907 0.000 1.000 0.000
#> SRR1335236     3  0.3340      0.861 0.000 0.120 0.880
#> SRR1095383     2  0.6079      0.476 0.000 0.612 0.388
#> SRR1479489     1  0.2066      0.911 0.940 0.000 0.060
#> SRR1310433     3  0.3412      0.858 0.000 0.124 0.876
#> SRR1073435     1  0.5968      0.379 0.636 0.000 0.364
#> SRR659649      3  0.0000      0.943 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1105248     2  0.3619      0.844 0.000 0.864 0.136
#> SRR1338257     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1350002     3  0.5875      0.771 0.056 0.160 0.784
#> SRR1489757     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1414637     3  0.1529      0.916 0.040 0.000 0.960
#> SRR1478113     2  0.0000      0.907 0.000 1.000 0.000
#> SRR1322477     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1478789     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1414185     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1069141     3  0.3551      0.851 0.000 0.132 0.868
#> SRR1376852     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1338103     1  0.0237      0.982 0.996 0.000 0.004
#> SRR1472012     3  0.5178      0.632 0.256 0.000 0.744
#> SRR1340325     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1334866     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1089446     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1344445     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1412969     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1071668     3  0.0424      0.939 0.008 0.000 0.992
#> SRR1075804     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1383283     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1350239     2  0.5012      0.787 0.008 0.788 0.204
#> SRR1353878     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1083983     3  0.3551      0.822 0.132 0.000 0.868
#> SRR1090095     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1075102     2  0.0237      0.906 0.004 0.996 0.000
#> SRR1098737     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1413008     2  0.5012      0.787 0.008 0.788 0.204
#> SRR1407179     3  0.4702      0.707 0.212 0.000 0.788
#> SRR1095913     3  0.1411      0.919 0.036 0.000 0.964
#> SRR1403544     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.987 1.000 0.000 0.000
#> SRR807971      3  0.0000      0.943 0.000 0.000 1.000
#> SRR1436228     3  0.4002      0.780 0.160 0.000 0.840
#> SRR1445218     3  0.5058      0.714 0.000 0.244 0.756
#> SRR1485438     3  0.0424      0.939 0.008 0.000 0.992
#> SRR1358143     1  0.1643      0.933 0.956 0.000 0.044
#> SRR1328760     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1086256     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1346734     2  0.0000      0.907 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1082151     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1349320     2  0.1163      0.900 0.000 0.972 0.028
#> SRR1317554     2  0.0000      0.907 0.000 1.000 0.000
#> SRR1076022     3  0.3412      0.858 0.000 0.124 0.876
#> SRR1339573     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1455878     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1446203     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1387397     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1331488     1  0.2878      0.886 0.904 0.096 0.000
#> SRR1499675     3  0.1163      0.926 0.028 0.000 0.972
#> SRR1440467     3  0.0000      0.943 0.000 0.000 1.000
#> SRR807995      3  0.3826      0.853 0.008 0.124 0.868
#> SRR1476485     2  0.0000      0.907 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1473275     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1444083     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1313807     3  0.0892      0.931 0.020 0.000 0.980
#> SRR1470751     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1403434     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1093861     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1325290     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1070689     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1365313     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1321877     3  0.0000      0.943 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.943 0.000 0.000 1.000
#> SRR1433476     3  0.0237      0.941 0.000 0.004 0.996
#> SRR1101883     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1433729     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1341877     1  0.0237      0.982 0.996 0.000 0.004
#> SRR1090556     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1357389     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1404227     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1080294     3  0.2261      0.891 0.000 0.068 0.932
#> SRR1336314     2  0.0000      0.907 0.000 1.000 0.000
#> SRR1102152     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1345244     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1478637     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1443776     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1102899     3  0.1411      0.924 0.000 0.036 0.964
#> SRR1091865     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1349456     3  0.0000      0.943 0.000 0.000 1.000
#> SRR1389384     3  0.4002      0.775 0.160 0.000 0.840
#> SRR1316096     3  0.3816      0.835 0.000 0.148 0.852
#> SRR1408512     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1447547     2  0.8518      0.655 0.208 0.612 0.180
#> SRR1354053     2  0.0000      0.907 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1349562     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1353376     4  0.0000     0.8904 0.000 0.000 0.000 1.000
#> SRR1499040     2  0.6560     0.5124 0.132 0.620 0.248 0.000
#> SRR1322312     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1324412     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1100991     3  0.4188     0.5282 0.004 0.244 0.752 0.000
#> SRR1349479     3  0.3172     0.6242 0.000 0.000 0.840 0.160
#> SRR1431248     1  0.0592     0.9176 0.984 0.016 0.000 0.000
#> SRR1405054     1  0.4819     0.4795 0.652 0.004 0.344 0.000
#> SRR1312266     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1409790     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1352507     3  0.0895     0.7272 0.020 0.004 0.976 0.000
#> SRR1383763     1  0.0707     0.9190 0.980 0.020 0.000 0.000
#> SRR1468314     3  0.4761     0.2093 0.000 0.372 0.628 0.000
#> SRR1473674     2  0.3649     0.5571 0.000 0.796 0.204 0.000
#> SRR1390499     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR821043      4  0.0336     0.8892 0.000 0.008 0.000 0.992
#> SRR1455653     4  0.0707     0.8844 0.000 0.020 0.000 0.980
#> SRR1335236     2  0.0592     0.6538 0.000 0.984 0.016 0.000
#> SRR1095383     4  0.5105     0.2218 0.000 0.004 0.432 0.564
#> SRR1479489     1  0.5004     0.4574 0.604 0.392 0.004 0.000
#> SRR1310433     2  0.4304     0.4659 0.000 0.716 0.284 0.000
#> SRR1073435     3  0.5883     0.3703 0.060 0.300 0.640 0.000
#> SRR659649      3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.4855     0.4303 0.600 0.400 0.000 0.000
#> SRR1105248     4  0.1211     0.8690 0.000 0.000 0.040 0.960
#> SRR1338257     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1499395     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.1489     0.6502 0.004 0.952 0.044 0.000
#> SRR1489757     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1414637     2  0.2412     0.6695 0.008 0.908 0.084 0.000
#> SRR1478113     4  0.0000     0.8904 0.000 0.000 0.000 1.000
#> SRR1322477     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1478789     3  0.4977    -0.0347 0.000 0.460 0.540 0.000
#> SRR1414185     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.4222     0.4807 0.000 0.728 0.272 0.000
#> SRR1376852     1  0.3610     0.7655 0.800 0.200 0.000 0.000
#> SRR1323491     1  0.0188     0.9227 0.996 0.004 0.000 0.000
#> SRR1338103     1  0.4543     0.5729 0.676 0.324 0.000 0.000
#> SRR1472012     2  0.6586     0.5059 0.184 0.632 0.184 0.000
#> SRR1340325     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1087321     3  0.3907     0.5270 0.000 0.232 0.768 0.000
#> SRR1488790     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1334866     3  0.4999    -0.1236 0.000 0.492 0.508 0.000
#> SRR1089446     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1344445     3  0.2081     0.7012 0.000 0.084 0.916 0.000
#> SRR1412969     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1071668     3  0.4008     0.5322 0.000 0.244 0.756 0.000
#> SRR1075804     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1383283     3  0.4406     0.4577 0.000 0.300 0.700 0.000
#> SRR1350239     4  0.3850     0.7278 0.004 0.004 0.188 0.804
#> SRR1353878     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1375721     1  0.3975     0.7132 0.760 0.240 0.000 0.000
#> SRR1083983     2  0.6262     0.4974 0.092 0.628 0.280 0.000
#> SRR1090095     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1414792     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1075102     4  0.0000     0.8904 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1349409     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1413008     4  0.3933     0.7175 0.004 0.004 0.196 0.796
#> SRR1407179     2  0.6576     0.4967 0.200 0.632 0.168 0.000
#> SRR1095913     2  0.4837     0.3977 0.004 0.648 0.348 0.000
#> SRR1403544     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1490546     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR807971      3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1436228     2  0.5627     0.5656 0.068 0.692 0.240 0.000
#> SRR1445218     2  0.3208     0.6010 0.000 0.848 0.148 0.004
#> SRR1485438     2  0.2281     0.6703 0.000 0.904 0.096 0.000
#> SRR1358143     1  0.4401     0.6681 0.724 0.272 0.004 0.000
#> SRR1328760     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1380806     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1379426     3  0.0817     0.7335 0.000 0.024 0.976 0.000
#> SRR1087007     3  0.4103     0.4870 0.000 0.256 0.744 0.000
#> SRR1086256     2  0.2281     0.6703 0.000 0.904 0.096 0.000
#> SRR1346734     4  0.0000     0.8904 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.3123     0.8114 0.844 0.156 0.000 0.000
#> SRR1082151     1  0.3219     0.7864 0.836 0.164 0.000 0.000
#> SRR1349320     4  0.0188     0.8893 0.000 0.004 0.000 0.996
#> SRR1317554     4  0.0000     0.8904 0.000 0.000 0.000 1.000
#> SRR1076022     2  0.0592     0.6538 0.000 0.984 0.016 0.000
#> SRR1339573     3  0.3837     0.5383 0.000 0.224 0.776 0.000
#> SRR1455878     1  0.3764     0.7352 0.784 0.216 0.000 0.000
#> SRR1446203     3  0.2589     0.6706 0.000 0.116 0.884 0.000
#> SRR1387397     1  0.0336     0.9227 0.992 0.008 0.000 0.000
#> SRR1402590     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1317532     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1331488     1  0.2714     0.8360 0.884 0.004 0.000 0.112
#> SRR1499675     3  0.4584     0.4448 0.004 0.300 0.696 0.000
#> SRR1440467     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR807995      2  0.0469     0.6523 0.000 0.988 0.012 0.000
#> SRR1476485     4  0.0000     0.8904 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1456051     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1473275     2  0.4804     0.3850 0.000 0.616 0.384 0.000
#> SRR1444083     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1313807     3  0.3972     0.5984 0.008 0.204 0.788 0.000
#> SRR1470751     1  0.3123     0.7947 0.844 0.156 0.000 0.000
#> SRR1403434     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0188     0.9227 0.996 0.004 0.000 0.000
#> SRR1093861     2  0.2281     0.6703 0.000 0.904 0.096 0.000
#> SRR1325290     2  0.4790     0.3932 0.000 0.620 0.380 0.000
#> SRR1070689     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1384049     1  0.0336     0.9228 0.992 0.008 0.000 0.000
#> SRR1081184     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1324295     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1365313     2  0.4877     0.3316 0.000 0.592 0.408 0.000
#> SRR1321877     3  0.4661     0.2631 0.000 0.348 0.652 0.000
#> SRR815711      3  0.3942     0.5435 0.000 0.236 0.764 0.000
#> SRR1433476     3  0.0592     0.7330 0.000 0.000 0.984 0.016
#> SRR1101883     3  0.1389     0.7235 0.000 0.048 0.952 0.000
#> SRR1433729     3  0.0895     0.7313 0.000 0.004 0.976 0.020
#> SRR1341877     1  0.0336     0.9214 0.992 0.008 0.000 0.000
#> SRR1090556     1  0.2921     0.8215 0.860 0.140 0.000 0.000
#> SRR1357389     3  0.0000     0.7406 0.000 0.000 1.000 0.000
#> SRR1404227     2  0.4790     0.3932 0.000 0.620 0.380 0.000
#> SRR1376830     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1500661     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1080294     3  0.0779     0.7362 0.000 0.016 0.980 0.004
#> SRR1336314     4  0.0921     0.8815 0.000 0.028 0.000 0.972
#> SRR1102152     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1345244     3  0.3801     0.5430 0.000 0.220 0.780 0.000
#> SRR1478637     2  0.4790     0.3932 0.000 0.620 0.380 0.000
#> SRR1443776     3  0.4356     0.4112 0.000 0.292 0.708 0.000
#> SRR1120939     3  0.4008     0.5322 0.000 0.244 0.756 0.000
#> SRR1080117     3  0.3907     0.5276 0.000 0.232 0.768 0.000
#> SRR1102899     2  0.4713     0.4133 0.000 0.640 0.360 0.000
#> SRR1091865     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1361072     1  0.0188     0.9221 0.996 0.004 0.000 0.000
#> SRR1487890     1  0.0469     0.9226 0.988 0.012 0.000 0.000
#> SRR1349456     3  0.4776     0.2049 0.000 0.376 0.624 0.000
#> SRR1389384     3  0.7395    -0.1083 0.176 0.344 0.480 0.000
#> SRR1316096     2  0.4277     0.4660 0.000 0.720 0.280 0.000
#> SRR1408512     1  0.4661     0.5371 0.652 0.348 0.000 0.000
#> SRR1447547     4  0.7044     0.5085 0.168 0.004 0.240 0.588
#> SRR1354053     4  0.2011     0.8552 0.000 0.080 0.000 0.920

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1349562     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.1282     0.8813 0.000 0.004 0.000 0.952 0.044
#> SRR1499040     3  0.8150     0.2425 0.112 0.248 0.372 0.000 0.268
#> SRR1322312     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.1704     0.6632 0.068 0.000 0.928 0.000 0.004
#> SRR1100991     3  0.3506     0.6647 0.040 0.036 0.856 0.000 0.068
#> SRR1349479     3  0.5686     0.4272 0.000 0.004 0.624 0.116 0.256
#> SRR1431248     1  0.4549     0.0468 0.528 0.008 0.000 0.000 0.464
#> SRR1405054     5  0.6665     0.3187 0.300 0.000 0.260 0.000 0.440
#> SRR1312266     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1409790     3  0.1410     0.6777 0.000 0.000 0.940 0.000 0.060
#> SRR1352507     3  0.3684     0.3664 0.000 0.000 0.720 0.000 0.280
#> SRR1383763     1  0.1282     0.5350 0.952 0.004 0.000 0.000 0.044
#> SRR1468314     3  0.5028     0.0810 0.000 0.444 0.524 0.000 0.032
#> SRR1473674     2  0.1251     0.7986 0.000 0.956 0.036 0.000 0.008
#> SRR1390499     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.0771     0.8831 0.000 0.020 0.000 0.976 0.004
#> SRR1455653     4  0.1485     0.8727 0.000 0.032 0.000 0.948 0.020
#> SRR1335236     2  0.0162     0.8003 0.000 0.996 0.000 0.000 0.004
#> SRR1095383     4  0.5180     0.5950 0.000 0.004 0.260 0.664 0.072
#> SRR1479489     1  0.3573     0.3550 0.812 0.036 0.000 0.000 0.152
#> SRR1310433     2  0.2104     0.7740 0.000 0.916 0.060 0.000 0.024
#> SRR1073435     5  0.5652    -0.2185 0.004 0.068 0.404 0.000 0.524
#> SRR659649      3  0.0162     0.6934 0.000 0.000 0.996 0.000 0.004
#> SRR1395999     5  0.4921     0.3798 0.340 0.040 0.000 0.000 0.620
#> SRR1105248     4  0.2264     0.8705 0.000 0.004 0.024 0.912 0.060
#> SRR1338257     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1499395     3  0.0162     0.6919 0.000 0.000 0.996 0.000 0.004
#> SRR1350002     2  0.0566     0.8017 0.000 0.984 0.012 0.000 0.004
#> SRR1489757     3  0.0162     0.6919 0.000 0.000 0.996 0.000 0.004
#> SRR1414637     2  0.5798     0.5691 0.000 0.556 0.108 0.000 0.336
#> SRR1478113     4  0.0000     0.8826 0.000 0.000 0.000 1.000 0.000
#> SRR1322477     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1478789     3  0.6297     0.4495 0.000 0.212 0.532 0.000 0.256
#> SRR1414185     3  0.2929     0.6224 0.000 0.000 0.820 0.000 0.180
#> SRR1069141     2  0.1341     0.7917 0.000 0.944 0.056 0.000 0.000
#> SRR1376852     1  0.3134     0.4272 0.848 0.032 0.000 0.000 0.120
#> SRR1323491     1  0.4171     0.1417 0.604 0.000 0.000 0.000 0.396
#> SRR1338103     5  0.5976     0.4170 0.168 0.072 0.084 0.000 0.676
#> SRR1472012     1  0.8424    -0.3364 0.308 0.260 0.152 0.000 0.280
#> SRR1340325     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1087321     3  0.3810     0.6282 0.000 0.168 0.792 0.000 0.040
#> SRR1488790     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     3  0.6362     0.4410 0.000 0.224 0.520 0.000 0.256
#> SRR1089446     3  0.2929     0.6224 0.000 0.000 0.820 0.000 0.180
#> SRR1344445     3  0.2595     0.6955 0.000 0.032 0.888 0.000 0.080
#> SRR1412969     3  0.2929     0.6224 0.000 0.000 0.820 0.000 0.180
#> SRR1071668     3  0.2228     0.6893 0.000 0.048 0.912 0.000 0.040
#> SRR1075804     1  0.4126     0.1820 0.620 0.000 0.000 0.000 0.380
#> SRR1383283     3  0.5660     0.5314 0.000 0.124 0.612 0.000 0.264
#> SRR1350239     4  0.5243     0.7366 0.000 0.004 0.104 0.684 0.208
#> SRR1353878     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1375721     1  0.2612     0.4251 0.868 0.008 0.000 0.000 0.124
#> SRR1083983     1  0.7404    -0.0550 0.504 0.100 0.128 0.000 0.268
#> SRR1090095     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.1270     0.8785 0.000 0.000 0.000 0.948 0.052
#> SRR1098737     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1349409     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.5125     0.7283 0.000 0.004 0.176 0.704 0.116
#> SRR1407179     1  0.8441    -0.3308 0.304 0.260 0.156 0.000 0.280
#> SRR1095913     2  0.6351     0.3991 0.000 0.516 0.280 0.000 0.204
#> SRR1403544     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR807971      3  0.0609     0.6952 0.000 0.000 0.980 0.000 0.020
#> SRR1436228     2  0.7062     0.1337 0.016 0.384 0.224 0.000 0.376
#> SRR1445218     2  0.1211     0.7903 0.000 0.960 0.016 0.000 0.024
#> SRR1485438     2  0.3546     0.7595 0.004 0.832 0.116 0.000 0.048
#> SRR1358143     1  0.2771     0.4162 0.860 0.012 0.000 0.000 0.128
#> SRR1328760     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1380806     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.0703     0.6960 0.000 0.000 0.976 0.000 0.024
#> SRR1087007     3  0.5032     0.5973 0.000 0.168 0.704 0.000 0.128
#> SRR1086256     2  0.4808     0.6603 0.000 0.724 0.108 0.000 0.168
#> SRR1346734     4  0.0000     0.8826 0.000 0.000 0.000 1.000 0.000
#> SRR1414515     1  0.2230     0.4432 0.884 0.000 0.000 0.000 0.116
#> SRR1082151     1  0.5114    -0.0831 0.492 0.036 0.000 0.000 0.472
#> SRR1349320     4  0.0290     0.8835 0.000 0.008 0.000 0.992 0.000
#> SRR1317554     4  0.0703     0.8811 0.000 0.000 0.000 0.976 0.024
#> SRR1076022     2  0.2153     0.7980 0.000 0.916 0.040 0.000 0.044
#> SRR1339573     3  0.4989     0.6000 0.000 0.168 0.708 0.000 0.124
#> SRR1455878     5  0.4446     0.2645 0.400 0.008 0.000 0.000 0.592
#> SRR1446203     3  0.2773     0.6924 0.000 0.020 0.868 0.000 0.112
#> SRR1387397     1  0.1965     0.5045 0.904 0.000 0.000 0.000 0.096
#> SRR1402590     1  0.0290     0.5509 0.992 0.000 0.000 0.000 0.008
#> SRR1317532     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1331488     1  0.5603    -0.0917 0.476 0.000 0.000 0.072 0.452
#> SRR1499675     3  0.5245     0.6049 0.000 0.064 0.608 0.000 0.328
#> SRR1440467     3  0.2929     0.6224 0.000 0.000 0.820 0.000 0.180
#> SRR807995      2  0.0162     0.8003 0.000 0.996 0.000 0.000 0.004
#> SRR1476485     4  0.1197     0.8794 0.000 0.000 0.000 0.952 0.048
#> SRR1388214     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1456051     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1473275     3  0.6596     0.3821 0.000 0.256 0.464 0.000 0.280
#> SRR1444083     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1313807     3  0.4735     0.5906 0.000 0.044 0.672 0.000 0.284
#> SRR1470751     1  0.5047    -0.0720 0.496 0.032 0.000 0.000 0.472
#> SRR1403434     3  0.2929     0.6224 0.000 0.000 0.820 0.000 0.180
#> SRR1390540     1  0.3857     0.2651 0.688 0.000 0.000 0.000 0.312
#> SRR1093861     2  0.3339     0.7561 0.000 0.840 0.112 0.000 0.048
#> SRR1325290     3  0.6610     0.3770 0.000 0.260 0.460 0.000 0.280
#> SRR1070689     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.1341     0.5306 0.944 0.000 0.000 0.000 0.056
#> SRR1081184     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.3210     0.4000 0.788 0.000 0.000 0.000 0.212
#> SRR1365313     3  0.6532     0.4031 0.000 0.240 0.480 0.000 0.280
#> SRR1321877     3  0.6120     0.4731 0.000 0.196 0.564 0.000 0.240
#> SRR815711      3  0.4119     0.6123 0.000 0.036 0.752 0.000 0.212
#> SRR1433476     3  0.3109     0.6154 0.000 0.000 0.800 0.000 0.200
#> SRR1101883     3  0.2677     0.6907 0.000 0.016 0.872 0.000 0.112
#> SRR1433729     3  0.2511     0.6906 0.000 0.024 0.908 0.024 0.044
#> SRR1341877     5  0.5447     0.3003 0.400 0.000 0.064 0.000 0.536
#> SRR1090556     5  0.4656     0.0205 0.480 0.012 0.000 0.000 0.508
#> SRR1357389     3  0.1792     0.6675 0.000 0.000 0.916 0.000 0.084
#> SRR1404227     3  0.6610     0.3770 0.000 0.260 0.460 0.000 0.280
#> SRR1376830     1  0.0510     0.5485 0.984 0.000 0.000 0.000 0.016
#> SRR1500661     1  0.0510     0.5487 0.984 0.000 0.000 0.000 0.016
#> SRR1080294     3  0.3154     0.6828 0.000 0.012 0.836 0.004 0.148
#> SRR1336314     4  0.0880     0.8779 0.000 0.032 0.000 0.968 0.000
#> SRR1102152     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1345244     3  0.3810     0.6283 0.000 0.168 0.792 0.000 0.040
#> SRR1478637     3  0.6610     0.3770 0.000 0.260 0.460 0.000 0.280
#> SRR1443776     3  0.5102     0.5908 0.000 0.176 0.696 0.000 0.128
#> SRR1120939     3  0.2074     0.6909 0.000 0.036 0.920 0.000 0.044
#> SRR1080117     3  0.5032     0.5973 0.000 0.168 0.704 0.000 0.128
#> SRR1102899     2  0.3283     0.7624 0.000 0.832 0.140 0.000 0.028
#> SRR1091865     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1361072     1  0.4291     0.0746 0.536 0.000 0.000 0.000 0.464
#> SRR1487890     1  0.0000     0.5524 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.6265     0.4564 0.000 0.220 0.540 0.000 0.240
#> SRR1389384     5  0.6193     0.3462 0.072 0.044 0.292 0.000 0.592
#> SRR1316096     2  0.1893     0.7834 0.000 0.928 0.048 0.000 0.024
#> SRR1408512     5  0.4671     0.3957 0.332 0.028 0.000 0.000 0.640
#> SRR1447547     4  0.6296     0.5907 0.012 0.000 0.120 0.524 0.344
#> SRR1354053     4  0.3284     0.7962 0.000 0.148 0.000 0.828 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1349562     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1353376     4  0.4316     0.7752 0.100 0.100 0.000 0.768 0.000 0.032
#> SRR1499040     6  0.3364     0.6971 0.012 0.000 0.132 0.000 0.036 0.820
#> SRR1322312     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1324412     3  0.0717     0.7210 0.000 0.000 0.976 0.000 0.016 0.008
#> SRR1100991     3  0.3025     0.6345 0.000 0.000 0.820 0.000 0.024 0.156
#> SRR1349479     3  0.7437     0.2620 0.280 0.080 0.460 0.052 0.000 0.128
#> SRR1431248     5  0.1444     0.7862 0.000 0.000 0.000 0.000 0.928 0.072
#> SRR1405054     5  0.2697     0.6376 0.000 0.000 0.188 0.000 0.812 0.000
#> SRR1312266     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1409790     3  0.0260     0.7246 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1352507     3  0.3370     0.5892 0.000 0.000 0.804 0.000 0.148 0.048
#> SRR1383763     1  0.3828     0.8678 0.560 0.000 0.000 0.000 0.440 0.000
#> SRR1468314     2  0.4682     0.1800 0.000 0.556 0.396 0.000 0.000 0.048
#> SRR1473674     2  0.2402     0.8313 0.000 0.856 0.004 0.000 0.000 0.140
#> SRR1390499     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR821043      4  0.2366     0.7903 0.056 0.024 0.000 0.900 0.000 0.020
#> SRR1455653     4  0.1556     0.7665 0.000 0.080 0.000 0.920 0.000 0.000
#> SRR1335236     2  0.2300     0.8314 0.000 0.856 0.000 0.000 0.000 0.144
#> SRR1095383     4  0.7958     0.6063 0.172 0.112 0.208 0.436 0.000 0.072
#> SRR1479489     1  0.5208     0.7210 0.604 0.000 0.000 0.000 0.248 0.148
#> SRR1310433     2  0.1625     0.7914 0.000 0.928 0.012 0.000 0.000 0.060
#> SRR1073435     6  0.4763     0.5705 0.000 0.004 0.172 0.000 0.136 0.688
#> SRR659649      3  0.1151     0.7227 0.000 0.012 0.956 0.000 0.000 0.032
#> SRR1395999     5  0.2697     0.6819 0.000 0.000 0.000 0.000 0.812 0.188
#> SRR1105248     4  0.6730     0.7308 0.252 0.064 0.024 0.536 0.000 0.124
#> SRR1338257     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499395     3  0.1625     0.7177 0.000 0.012 0.928 0.000 0.000 0.060
#> SRR1350002     2  0.2300     0.8314 0.000 0.856 0.000 0.000 0.000 0.144
#> SRR1489757     3  0.0632     0.7218 0.000 0.000 0.976 0.000 0.000 0.024
#> SRR1414637     6  0.4808     0.0249 0.000 0.360 0.000 0.000 0.064 0.576
#> SRR1478113     4  0.0146     0.7851 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1322477     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1478789     6  0.4004     0.5386 0.000 0.012 0.368 0.000 0.000 0.620
#> SRR1414185     3  0.3617     0.6831 0.144 0.012 0.800 0.000 0.000 0.044
#> SRR1069141     2  0.2446     0.8282 0.000 0.864 0.012 0.000 0.000 0.124
#> SRR1376852     1  0.5104     0.8068 0.540 0.000 0.000 0.000 0.372 0.088
#> SRR1323491     5  0.1387     0.7447 0.068 0.000 0.000 0.000 0.932 0.000
#> SRR1338103     6  0.3835     0.4480 0.012 0.000 0.000 0.000 0.320 0.668
#> SRR1472012     6  0.3058     0.5987 0.124 0.000 0.012 0.000 0.024 0.840
#> SRR1340325     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1087321     3  0.2841     0.6414 0.000 0.012 0.824 0.000 0.000 0.164
#> SRR1488790     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1334866     6  0.3911     0.5424 0.000 0.008 0.368 0.000 0.000 0.624
#> SRR1089446     3  0.3268     0.6820 0.144 0.000 0.812 0.000 0.000 0.044
#> SRR1344445     3  0.3151     0.5916 0.000 0.000 0.748 0.000 0.000 0.252
#> SRR1412969     3  0.3617     0.6831 0.144 0.012 0.800 0.000 0.000 0.044
#> SRR1071668     3  0.2260     0.6759 0.000 0.000 0.860 0.000 0.000 0.140
#> SRR1075804     5  0.2340     0.5858 0.148 0.000 0.000 0.000 0.852 0.000
#> SRR1383283     6  0.3859     0.5980 0.000 0.020 0.288 0.000 0.000 0.692
#> SRR1350239     4  0.7405     0.6916 0.308 0.060 0.064 0.444 0.000 0.124
#> SRR1353878     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1375721     1  0.4420     0.8901 0.604 0.000 0.000 0.000 0.360 0.036
#> SRR1083983     1  0.5540     0.1614 0.504 0.000 0.036 0.000 0.056 0.404
#> SRR1090095     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1414792     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1075102     4  0.5138     0.7597 0.176 0.036 0.000 0.684 0.000 0.104
#> SRR1098737     5  0.0260     0.8191 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1349409     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1413008     4  0.7773     0.6797 0.248 0.060 0.124 0.444 0.000 0.124
#> SRR1407179     6  0.3170     0.6059 0.112 0.000 0.016 0.000 0.032 0.840
#> SRR1095913     6  0.4968     0.4453 0.000 0.248 0.120 0.000 0.000 0.632
#> SRR1403544     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1490546     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR807971      3  0.1444     0.7153 0.000 0.000 0.928 0.000 0.000 0.072
#> SRR1436228     6  0.3426     0.6378 0.000 0.064 0.048 0.000 0.048 0.840
#> SRR1445218     2  0.1610     0.8003 0.000 0.916 0.000 0.000 0.000 0.084
#> SRR1485438     2  0.4555     0.7151 0.000 0.660 0.048 0.000 0.008 0.284
#> SRR1358143     1  0.4563     0.8757 0.604 0.000 0.000 0.000 0.348 0.048
#> SRR1328760     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1380806     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1379426     3  0.1686     0.7161 0.000 0.012 0.924 0.000 0.000 0.064
#> SRR1087007     6  0.4181     0.2689 0.000 0.012 0.476 0.000 0.000 0.512
#> SRR1086256     2  0.3868     0.4089 0.000 0.508 0.000 0.000 0.000 0.492
#> SRR1346734     4  0.0363     0.7810 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR1414515     1  0.4312     0.8996 0.604 0.000 0.000 0.000 0.368 0.028
#> SRR1082151     5  0.1444     0.7872 0.000 0.000 0.000 0.000 0.928 0.072
#> SRR1349320     4  0.3306     0.7786 0.052 0.044 0.000 0.848 0.000 0.056
#> SRR1317554     4  0.1267     0.7742 0.000 0.060 0.000 0.940 0.000 0.000
#> SRR1076022     2  0.3351     0.7511 0.000 0.712 0.000 0.000 0.000 0.288
#> SRR1339573     3  0.4184    -0.2651 0.000 0.012 0.500 0.000 0.000 0.488
#> SRR1455878     5  0.1387     0.7865 0.000 0.000 0.000 0.000 0.932 0.068
#> SRR1446203     3  0.3558     0.5824 0.000 0.016 0.736 0.000 0.000 0.248
#> SRR1387397     5  0.3857    -0.6819 0.468 0.000 0.000 0.000 0.532 0.000
#> SRR1402590     1  0.3765     0.9199 0.596 0.000 0.000 0.000 0.404 0.000
#> SRR1317532     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1331488     5  0.1391     0.7959 0.016 0.000 0.000 0.040 0.944 0.000
#> SRR1499675     6  0.4302     0.4884 0.028 0.000 0.324 0.000 0.004 0.644
#> SRR1440467     3  0.3617     0.6831 0.144 0.012 0.800 0.000 0.000 0.044
#> SRR807995      2  0.2340     0.8312 0.000 0.852 0.000 0.000 0.000 0.148
#> SRR1476485     4  0.4651     0.7675 0.132 0.032 0.000 0.736 0.000 0.100
#> SRR1388214     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1456051     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1473275     6  0.2854     0.6928 0.000 0.000 0.208 0.000 0.000 0.792
#> SRR1444083     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1313807     6  0.5224     0.5654 0.000 0.060 0.276 0.000 0.036 0.628
#> SRR1470751     5  0.1610     0.7772 0.000 0.000 0.000 0.000 0.916 0.084
#> SRR1403434     3  0.3617     0.6831 0.144 0.012 0.800 0.000 0.000 0.044
#> SRR1390540     5  0.2664     0.5045 0.184 0.000 0.000 0.000 0.816 0.000
#> SRR1093861     2  0.3758     0.7043 0.000 0.668 0.008 0.000 0.000 0.324
#> SRR1325290     6  0.2854     0.6963 0.000 0.000 0.208 0.000 0.000 0.792
#> SRR1070689     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1384049     1  0.3857     0.8171 0.532 0.000 0.000 0.000 0.468 0.000
#> SRR1081184     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1324295     5  0.3578    -0.2222 0.340 0.000 0.000 0.000 0.660 0.000
#> SRR1365313     6  0.3215     0.6722 0.000 0.004 0.240 0.000 0.000 0.756
#> SRR1321877     6  0.4101     0.4683 0.000 0.012 0.408 0.000 0.000 0.580
#> SRR815711      3  0.4196     0.6436 0.144 0.000 0.740 0.000 0.000 0.116
#> SRR1433476     3  0.4573     0.6559 0.144 0.068 0.744 0.000 0.000 0.044
#> SRR1101883     3  0.3175     0.5396 0.000 0.000 0.744 0.000 0.000 0.256
#> SRR1433729     3  0.4789     0.5576 0.012 0.064 0.724 0.024 0.000 0.176
#> SRR1341877     5  0.2664     0.6669 0.000 0.000 0.000 0.000 0.816 0.184
#> SRR1090556     5  0.2772     0.6845 0.000 0.000 0.004 0.000 0.816 0.180
#> SRR1357389     3  0.0622     0.7233 0.000 0.012 0.980 0.000 0.000 0.008
#> SRR1404227     6  0.2793     0.6992 0.000 0.000 0.200 0.000 0.000 0.800
#> SRR1376830     1  0.3782     0.9107 0.588 0.000 0.000 0.000 0.412 0.000
#> SRR1500661     1  0.3797     0.9008 0.580 0.000 0.000 0.000 0.420 0.000
#> SRR1080294     3  0.5037    -0.1756 0.004 0.064 0.524 0.000 0.000 0.408
#> SRR1336314     4  0.0937     0.7754 0.000 0.040 0.000 0.960 0.000 0.000
#> SRR1102152     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1345244     3  0.2912     0.6338 0.000 0.012 0.816 0.000 0.000 0.172
#> SRR1478637     6  0.2454     0.6992 0.000 0.000 0.160 0.000 0.000 0.840
#> SRR1443776     3  0.4076     0.1273 0.000 0.012 0.592 0.000 0.000 0.396
#> SRR1120939     3  0.2941     0.6150 0.000 0.000 0.780 0.000 0.000 0.220
#> SRR1080117     3  0.3967     0.2632 0.000 0.012 0.632 0.000 0.000 0.356
#> SRR1102899     2  0.3675     0.7368 0.004 0.796 0.124 0.000 0.000 0.076
#> SRR1091865     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1361072     5  0.0000     0.8226 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1487890     1  0.3747     0.9271 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1349456     6  0.3659     0.5474 0.000 0.000 0.364 0.000 0.000 0.636
#> SRR1389384     5  0.5113     0.2969 0.000 0.000 0.144 0.000 0.620 0.236
#> SRR1316096     2  0.1967     0.8099 0.000 0.904 0.012 0.000 0.000 0.084
#> SRR1408512     5  0.2912     0.6506 0.000 0.000 0.000 0.000 0.784 0.216
#> SRR1447547     4  0.8192     0.5908 0.336 0.060 0.092 0.340 0.012 0.160
#> SRR1354053     4  0.4595     0.6844 0.040 0.264 0.000 0.676 0.000 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.958       0.980         0.4899 0.512   0.512
#> 3 3 0.634           0.727       0.869         0.3101 0.759   0.560
#> 4 4 0.745           0.805       0.894         0.1111 0.841   0.601
#> 5 5 0.711           0.682       0.771         0.0798 0.807   0.447
#> 6 6 0.771           0.783       0.865         0.0645 0.934   0.702

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.990 1.000 0.000
#> SRR1349562     1  0.0000      0.990 1.000 0.000
#> SRR1353376     2  0.0000      0.972 0.000 1.000
#> SRR1499040     2  0.9933      0.231 0.452 0.548
#> SRR1322312     1  0.0000      0.990 1.000 0.000
#> SRR1324412     2  0.0000      0.972 0.000 1.000
#> SRR1100991     2  0.1633      0.964 0.024 0.976
#> SRR1349479     2  0.0000      0.972 0.000 1.000
#> SRR1431248     1  0.0000      0.990 1.000 0.000
#> SRR1405054     1  0.0000      0.990 1.000 0.000
#> SRR1312266     1  0.0000      0.990 1.000 0.000
#> SRR1409790     2  0.0000      0.972 0.000 1.000
#> SRR1352507     2  0.1633      0.964 0.024 0.976
#> SRR1383763     1  0.0000      0.990 1.000 0.000
#> SRR1468314     2  0.0000      0.972 0.000 1.000
#> SRR1473674     2  0.0000      0.972 0.000 1.000
#> SRR1390499     1  0.0000      0.990 1.000 0.000
#> SRR821043      2  0.0000      0.972 0.000 1.000
#> SRR1455653     2  0.0000      0.972 0.000 1.000
#> SRR1335236     2  0.0000      0.972 0.000 1.000
#> SRR1095383     2  0.0000      0.972 0.000 1.000
#> SRR1479489     1  0.0000      0.990 1.000 0.000
#> SRR1310433     2  0.0000      0.972 0.000 1.000
#> SRR1073435     2  0.3431      0.935 0.064 0.936
#> SRR659649      2  0.2043      0.959 0.032 0.968
#> SRR1395999     1  0.0000      0.990 1.000 0.000
#> SRR1105248     2  0.0000      0.972 0.000 1.000
#> SRR1338257     1  0.0000      0.990 1.000 0.000
#> SRR1499395     2  0.0000      0.972 0.000 1.000
#> SRR1350002     2  0.0000      0.972 0.000 1.000
#> SRR1489757     2  0.0000      0.972 0.000 1.000
#> SRR1414637     2  0.0000      0.972 0.000 1.000
#> SRR1478113     2  0.0000      0.972 0.000 1.000
#> SRR1322477     1  0.0000      0.990 1.000 0.000
#> SRR1478789     2  0.3879      0.924 0.076 0.924
#> SRR1414185     2  0.0000      0.972 0.000 1.000
#> SRR1069141     2  0.0000      0.972 0.000 1.000
#> SRR1376852     1  0.0000      0.990 1.000 0.000
#> SRR1323491     1  0.0000      0.990 1.000 0.000
#> SRR1338103     1  0.0000      0.990 1.000 0.000
#> SRR1472012     1  0.0000      0.990 1.000 0.000
#> SRR1340325     1  0.0000      0.990 1.000 0.000
#> SRR1087321     2  0.0376      0.971 0.004 0.996
#> SRR1488790     1  0.0000      0.990 1.000 0.000
#> SRR1334866     2  0.2423      0.954 0.040 0.960
#> SRR1089446     2  0.0000      0.972 0.000 1.000
#> SRR1344445     2  0.2423      0.954 0.040 0.960
#> SRR1412969     2  0.0000      0.972 0.000 1.000
#> SRR1071668     2  0.1633      0.964 0.024 0.976
#> SRR1075804     1  0.0000      0.990 1.000 0.000
#> SRR1383283     2  0.2603      0.951 0.044 0.956
#> SRR1350239     2  0.0000      0.972 0.000 1.000
#> SRR1353878     1  0.0000      0.990 1.000 0.000
#> SRR1375721     1  0.0000      0.990 1.000 0.000
#> SRR1083983     1  0.0000      0.990 1.000 0.000
#> SRR1090095     1  0.0000      0.990 1.000 0.000
#> SRR1414792     1  0.0000      0.990 1.000 0.000
#> SRR1075102     2  0.0000      0.972 0.000 1.000
#> SRR1098737     1  0.0000      0.990 1.000 0.000
#> SRR1349409     1  0.0000      0.990 1.000 0.000
#> SRR1413008     2  0.0000      0.972 0.000 1.000
#> SRR1407179     2  0.7602      0.750 0.220 0.780
#> SRR1095913     2  0.0000      0.972 0.000 1.000
#> SRR1403544     1  0.0000      0.990 1.000 0.000
#> SRR1490546     1  0.0000      0.990 1.000 0.000
#> SRR807971      2  0.1633      0.964 0.024 0.976
#> SRR1436228     2  0.7219      0.780 0.200 0.800
#> SRR1445218     2  0.0000      0.972 0.000 1.000
#> SRR1485438     2  0.0938      0.968 0.012 0.988
#> SRR1358143     1  0.0000      0.990 1.000 0.000
#> SRR1328760     1  0.0000      0.990 1.000 0.000
#> SRR1380806     1  0.0000      0.990 1.000 0.000
#> SRR1379426     2  0.0000      0.972 0.000 1.000
#> SRR1087007     2  0.1633      0.964 0.024 0.976
#> SRR1086256     2  0.0000      0.972 0.000 1.000
#> SRR1346734     2  0.0000      0.972 0.000 1.000
#> SRR1414515     1  0.0000      0.990 1.000 0.000
#> SRR1082151     2  0.1633      0.962 0.024 0.976
#> SRR1349320     2  0.0000      0.972 0.000 1.000
#> SRR1317554     2  0.0000      0.972 0.000 1.000
#> SRR1076022     2  0.0000      0.972 0.000 1.000
#> SRR1339573     2  0.1633      0.964 0.024 0.976
#> SRR1455878     1  0.0000      0.990 1.000 0.000
#> SRR1446203     2  0.2043      0.959 0.032 0.968
#> SRR1387397     1  0.0000      0.990 1.000 0.000
#> SRR1402590     1  0.0000      0.990 1.000 0.000
#> SRR1317532     1  0.0000      0.990 1.000 0.000
#> SRR1331488     1  0.1633      0.967 0.976 0.024
#> SRR1499675     2  0.0000      0.972 0.000 1.000
#> SRR1440467     2  0.0000      0.972 0.000 1.000
#> SRR807995      2  0.0000      0.972 0.000 1.000
#> SRR1476485     2  0.0000      0.972 0.000 1.000
#> SRR1388214     1  0.0000      0.990 1.000 0.000
#> SRR1456051     1  0.0000      0.990 1.000 0.000
#> SRR1473275     2  0.5842      0.856 0.140 0.860
#> SRR1444083     1  0.0000      0.990 1.000 0.000
#> SRR1313807     2  0.0000      0.972 0.000 1.000
#> SRR1470751     2  0.0000      0.972 0.000 1.000
#> SRR1403434     2  0.0000      0.972 0.000 1.000
#> SRR1390540     1  0.0000      0.990 1.000 0.000
#> SRR1093861     2  0.0000      0.972 0.000 1.000
#> SRR1325290     1  0.9775      0.243 0.588 0.412
#> SRR1070689     1  0.0000      0.990 1.000 0.000
#> SRR1384049     1  0.0000      0.990 1.000 0.000
#> SRR1081184     1  0.0000      0.990 1.000 0.000
#> SRR1324295     1  0.0000      0.990 1.000 0.000
#> SRR1365313     2  0.6801      0.807 0.180 0.820
#> SRR1321877     2  0.2603      0.951 0.044 0.956
#> SRR815711      2  0.0000      0.972 0.000 1.000
#> SRR1433476     2  0.0000      0.972 0.000 1.000
#> SRR1101883     2  0.1633      0.964 0.024 0.976
#> SRR1433729     2  0.0000      0.972 0.000 1.000
#> SRR1341877     1  0.0000      0.990 1.000 0.000
#> SRR1090556     1  0.0000      0.990 1.000 0.000
#> SRR1357389     2  0.0000      0.972 0.000 1.000
#> SRR1404227     2  0.3879      0.924 0.076 0.924
#> SRR1376830     1  0.0000      0.990 1.000 0.000
#> SRR1500661     1  0.0000      0.990 1.000 0.000
#> SRR1080294     2  0.0000      0.972 0.000 1.000
#> SRR1336314     2  0.0000      0.972 0.000 1.000
#> SRR1102152     1  0.2423      0.952 0.960 0.040
#> SRR1345244     2  0.1633      0.964 0.024 0.976
#> SRR1478637     2  0.7139      0.785 0.196 0.804
#> SRR1443776     2  0.3584      0.931 0.068 0.932
#> SRR1120939     2  0.1633      0.964 0.024 0.976
#> SRR1080117     2  0.1633      0.964 0.024 0.976
#> SRR1102899     2  0.0000      0.972 0.000 1.000
#> SRR1091865     1  0.0000      0.990 1.000 0.000
#> SRR1361072     1  0.0000      0.990 1.000 0.000
#> SRR1487890     1  0.0000      0.990 1.000 0.000
#> SRR1349456     2  0.1633      0.964 0.024 0.976
#> SRR1389384     1  0.2948      0.936 0.948 0.052
#> SRR1316096     2  0.0000      0.972 0.000 1.000
#> SRR1408512     1  0.0000      0.990 1.000 0.000
#> SRR1447547     2  0.0000      0.972 0.000 1.000
#> SRR1354053     2  0.0000      0.972 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1353376     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1499040     3  0.6526     0.6481 0.036 0.260 0.704
#> SRR1322312     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1324412     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1100991     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1349479     2  0.1289     0.7989 0.000 0.968 0.032
#> SRR1431248     1  0.7368     0.3290 0.604 0.044 0.352
#> SRR1405054     1  0.7581    -0.0300 0.496 0.040 0.464
#> SRR1312266     1  0.0592     0.9368 0.988 0.000 0.012
#> SRR1409790     3  0.2066     0.7032 0.000 0.060 0.940
#> SRR1352507     3  0.4931     0.6809 0.000 0.232 0.768
#> SRR1383763     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1468314     2  0.4887     0.6961 0.000 0.772 0.228
#> SRR1473674     2  0.5621     0.5382 0.000 0.692 0.308
#> SRR1390499     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR821043      2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1455653     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1335236     2  0.5291     0.6280 0.000 0.732 0.268
#> SRR1095383     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1479489     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1310433     2  0.4605     0.7249 0.000 0.796 0.204
#> SRR1073435     3  0.5873     0.6042 0.004 0.312 0.684
#> SRR659649      3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1395999     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1105248     2  0.1289     0.7989 0.000 0.968 0.032
#> SRR1338257     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1499395     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1350002     2  0.5058     0.6652 0.000 0.756 0.244
#> SRR1489757     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1414637     3  0.6169     0.5387 0.004 0.360 0.636
#> SRR1478113     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1322477     1  0.9701    -0.0878 0.456 0.260 0.284
#> SRR1478789     3  0.4887     0.6798 0.000 0.228 0.772
#> SRR1414185     3  0.5363     0.4840 0.000 0.276 0.724
#> SRR1069141     2  0.4654     0.7211 0.000 0.792 0.208
#> SRR1376852     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1338103     3  0.6225     0.2889 0.432 0.000 0.568
#> SRR1472012     3  0.6816     0.1611 0.472 0.012 0.516
#> SRR1340325     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1087321     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1488790     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1334866     3  0.5465     0.6370 0.000 0.288 0.712
#> SRR1089446     3  0.4504     0.5741 0.000 0.196 0.804
#> SRR1344445     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1412969     3  0.4504     0.5739 0.000 0.196 0.804
#> SRR1071668     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1075804     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1383283     3  0.5929     0.5961 0.004 0.320 0.676
#> SRR1350239     2  0.1289     0.7989 0.000 0.968 0.032
#> SRR1353878     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1083983     3  0.6274     0.2235 0.456 0.000 0.544
#> SRR1090095     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1075102     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1098737     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1413008     2  0.1289     0.7989 0.000 0.968 0.032
#> SRR1407179     3  0.6414     0.6578 0.036 0.248 0.716
#> SRR1095913     3  0.6330     0.4672 0.004 0.396 0.600
#> SRR1403544     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR807971      3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1436228     3  0.6897     0.6120 0.040 0.292 0.668
#> SRR1445218     2  0.4605     0.7249 0.000 0.796 0.204
#> SRR1485438     3  0.6008     0.5817 0.004 0.332 0.664
#> SRR1358143     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1328760     1  0.0237     0.9427 0.996 0.000 0.004
#> SRR1380806     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1379426     3  0.4654     0.6938 0.000 0.208 0.792
#> SRR1087007     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1086256     3  0.6033     0.5763 0.004 0.336 0.660
#> SRR1346734     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1082151     3  0.6318     0.5454 0.008 0.356 0.636
#> SRR1349320     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1317554     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1076022     2  0.6140     0.2375 0.000 0.596 0.404
#> SRR1339573     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1455878     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1446203     3  0.3412     0.7244 0.000 0.124 0.876
#> SRR1387397     1  0.1753     0.9061 0.952 0.000 0.048
#> SRR1402590     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1331488     1  0.6008     0.4655 0.628 0.372 0.000
#> SRR1499675     3  0.0424     0.7283 0.000 0.008 0.992
#> SRR1440467     3  0.4931     0.5432 0.000 0.232 0.768
#> SRR807995      2  0.6252     0.0631 0.000 0.556 0.444
#> SRR1476485     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1388214     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1473275     3  0.4351     0.7129 0.004 0.168 0.828
#> SRR1444083     1  0.2280     0.8981 0.940 0.008 0.052
#> SRR1313807     3  0.5926     0.5319 0.000 0.356 0.644
#> SRR1470751     3  0.6521     0.2105 0.004 0.492 0.504
#> SRR1403434     3  0.4931     0.5432 0.000 0.232 0.768
#> SRR1390540     1  0.1620     0.9214 0.964 0.012 0.024
#> SRR1093861     2  0.6095     0.2852 0.000 0.608 0.392
#> SRR1325290     3  0.6875     0.6504 0.056 0.244 0.700
#> SRR1070689     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1365313     3  0.5098     0.6681 0.000 0.248 0.752
#> SRR1321877     3  0.3686     0.7207 0.000 0.140 0.860
#> SRR815711      3  0.4178     0.6027 0.000 0.172 0.828
#> SRR1433476     2  0.5178     0.6690 0.000 0.744 0.256
#> SRR1101883     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1433729     2  0.4796     0.7181 0.000 0.780 0.220
#> SRR1341877     1  0.4178     0.7636 0.828 0.000 0.172
#> SRR1090556     1  0.5397     0.5852 0.720 0.000 0.280
#> SRR1357389     3  0.0237     0.7275 0.000 0.004 0.996
#> SRR1404227     3  0.3816     0.7183 0.000 0.148 0.852
#> SRR1376830     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1080294     2  0.4399     0.7453 0.000 0.812 0.188
#> SRR1336314     2  0.0000     0.8089 0.000 1.000 0.000
#> SRR1102152     3  0.9735     0.3122 0.316 0.244 0.440
#> SRR1345244     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1478637     3  0.5864     0.6351 0.008 0.288 0.704
#> SRR1443776     3  0.3482     0.7236 0.000 0.128 0.872
#> SRR1120939     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1080117     3  0.0000     0.7284 0.000 0.000 1.000
#> SRR1102899     2  0.4842     0.7017 0.000 0.776 0.224
#> SRR1091865     3  0.9317     0.3329 0.388 0.164 0.448
#> SRR1361072     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9455 1.000 0.000 0.000
#> SRR1349456     3  0.4702     0.6906 0.000 0.212 0.788
#> SRR1389384     3  0.7815     0.6005 0.096 0.260 0.644
#> SRR1316096     2  0.4654     0.7211 0.000 0.792 0.208
#> SRR1408512     1  0.1411     0.9177 0.964 0.000 0.036
#> SRR1447547     2  0.1289     0.7989 0.000 0.968 0.032
#> SRR1354053     2  0.0000     0.8089 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0657     0.9761 0.000 0.012 0.004 0.984
#> SRR1499040     1  0.7387     0.2907 0.520 0.224 0.256 0.000
#> SRR1322312     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.1488     0.8378 0.000 0.032 0.956 0.012
#> SRR1100991     3  0.0188     0.8518 0.000 0.000 0.996 0.004
#> SRR1349479     4  0.1305     0.9464 0.000 0.036 0.004 0.960
#> SRR1431248     1  0.4499     0.7447 0.792 0.160 0.048 0.000
#> SRR1405054     1  0.3498     0.7579 0.832 0.008 0.160 0.000
#> SRR1312266     1  0.0817     0.8937 0.976 0.024 0.000 0.000
#> SRR1409790     3  0.2142     0.8226 0.000 0.056 0.928 0.016
#> SRR1352507     3  0.3946     0.7520 0.004 0.012 0.812 0.172
#> SRR1383763     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1468314     2  0.5168     0.0568 0.004 0.500 0.000 0.496
#> SRR1473674     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1390499     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1455653     4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1335236     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1095383     4  0.0657     0.9761 0.000 0.012 0.004 0.984
#> SRR1479489     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1073435     3  0.5654     0.5784 0.028 0.276 0.680 0.016
#> SRR659649      3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.0188     0.9040 0.996 0.004 0.000 0.000
#> SRR1105248     4  0.0376     0.9738 0.000 0.004 0.004 0.992
#> SRR1338257     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1499395     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1489757     3  0.0524     0.8498 0.000 0.004 0.988 0.008
#> SRR1414637     2  0.4706     0.7087 0.000 0.748 0.224 0.028
#> SRR1478113     4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1322477     1  0.4305     0.7644 0.808 0.160 0.012 0.020
#> SRR1478789     3  0.3808     0.7338 0.012 0.176 0.812 0.000
#> SRR1414185     3  0.5030     0.7086 0.000 0.060 0.752 0.188
#> SRR1069141     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1376852     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.6709     0.4920 0.616 0.212 0.172 0.000
#> SRR1472012     1  0.7026     0.4079 0.572 0.180 0.248 0.000
#> SRR1340325     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0592     0.8481 0.000 0.016 0.984 0.000
#> SRR1488790     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1334866     3  0.5382     0.5875 0.016 0.280 0.688 0.016
#> SRR1089446     3  0.4638     0.7432 0.000 0.060 0.788 0.152
#> SRR1344445     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1412969     3  0.4685     0.7404 0.000 0.060 0.784 0.156
#> SRR1071668     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1075804     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1383283     3  0.5369     0.5625 0.012 0.296 0.676 0.016
#> SRR1350239     4  0.0657     0.9653 0.000 0.012 0.004 0.984
#> SRR1353878     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.6757     0.4866 0.612 0.196 0.192 0.000
#> SRR1090095     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1098737     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.0657     0.9653 0.000 0.012 0.004 0.984
#> SRR1407179     1  0.7445     0.2632 0.508 0.224 0.268 0.000
#> SRR1095913     2  0.5143     0.6816 0.004 0.720 0.244 0.032
#> SRR1403544     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR807971      3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1436228     2  0.5069     0.5432 0.016 0.664 0.320 0.000
#> SRR1445218     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1485438     2  0.4040     0.6773 0.000 0.752 0.248 0.000
#> SRR1358143     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.3105     0.7860 0.000 0.004 0.856 0.140
#> SRR1087007     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1086256     2  0.4485     0.6818 0.000 0.740 0.248 0.012
#> SRR1346734     4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1414515     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.4599     0.7153 0.000 0.760 0.212 0.028
#> SRR1349320     4  0.0592     0.9740 0.000 0.016 0.000 0.984
#> SRR1317554     4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1076022     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1339573     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1455878     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.2760     0.7866 0.000 0.128 0.872 0.000
#> SRR1387397     1  0.1389     0.8782 0.952 0.048 0.000 0.000
#> SRR1402590     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1331488     1  0.5050     0.3253 0.588 0.004 0.000 0.408
#> SRR1499675     3  0.0188     0.8518 0.000 0.000 0.996 0.004
#> SRR1440467     3  0.4685     0.7404 0.000 0.060 0.784 0.156
#> SRR807995      2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1476485     4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1388214     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.5929     0.5806 0.108 0.204 0.688 0.000
#> SRR1444083     1  0.2831     0.8189 0.876 0.120 0.004 0.000
#> SRR1313807     3  0.5172     0.6255 0.000 0.260 0.704 0.036
#> SRR1470751     2  0.5174     0.7552 0.000 0.756 0.092 0.152
#> SRR1403434     3  0.4685     0.7404 0.000 0.060 0.784 0.156
#> SRR1390540     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1325290     1  0.7558     0.1970 0.480 0.224 0.296 0.000
#> SRR1070689     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1365313     3  0.4095     0.7128 0.016 0.192 0.792 0.000
#> SRR1321877     3  0.3024     0.7701 0.000 0.148 0.852 0.000
#> SRR815711      3  0.4055     0.7768 0.000 0.060 0.832 0.108
#> SRR1433476     4  0.2021     0.9210 0.000 0.056 0.012 0.932
#> SRR1101883     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1433729     4  0.2714     0.8407 0.000 0.112 0.004 0.884
#> SRR1341877     1  0.4352     0.7694 0.816 0.104 0.080 0.000
#> SRR1090556     1  0.4499     0.7447 0.792 0.160 0.048 0.000
#> SRR1357389     3  0.1854     0.8297 0.000 0.048 0.940 0.012
#> SRR1404227     3  0.3450     0.7575 0.008 0.156 0.836 0.000
#> SRR1376830     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1080294     4  0.0779     0.9742 0.000 0.016 0.004 0.980
#> SRR1336314     4  0.0469     0.9772 0.000 0.012 0.000 0.988
#> SRR1102152     1  0.6820     0.4552 0.604 0.304 0.032 0.060
#> SRR1345244     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1478637     2  0.5483     0.2262 0.016 0.536 0.448 0.000
#> SRR1443776     3  0.3074     0.7665 0.000 0.152 0.848 0.000
#> SRR1120939     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1080117     3  0.0000     0.8524 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1091865     1  0.5614     0.4882 0.628 0.336 0.036 0.000
#> SRR1361072     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9060 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.3681     0.7375 0.008 0.176 0.816 0.000
#> SRR1389384     2  0.5522     0.6670 0.120 0.732 0.148 0.000
#> SRR1316096     2  0.2081     0.8174 0.000 0.916 0.000 0.084
#> SRR1408512     1  0.0469     0.8998 0.988 0.012 0.000 0.000
#> SRR1447547     4  0.1398     0.9428 0.000 0.040 0.004 0.956
#> SRR1354053     4  0.0469     0.9772 0.000 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.1043     0.5584 0.960 0.000 0.000 0.000 0.040
#> SRR1349562     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1353376     4  0.0162     0.9269 0.000 0.000 0.004 0.996 0.000
#> SRR1499040     2  0.7189     0.7210 0.088 0.552 0.200 0.000 0.160
#> SRR1322312     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1324412     3  0.3093     0.8519 0.000 0.000 0.824 0.008 0.168
#> SRR1100991     3  0.0290     0.9068 0.000 0.000 0.992 0.000 0.008
#> SRR1349479     4  0.2719     0.8751 0.000 0.000 0.004 0.852 0.144
#> SRR1431248     1  0.4589     0.4110 0.724 0.212 0.064 0.000 0.000
#> SRR1405054     1  0.5107    -0.1293 0.632 0.040 0.008 0.000 0.320
#> SRR1312266     1  0.0566     0.5940 0.984 0.012 0.004 0.000 0.000
#> SRR1409790     3  0.3246     0.8427 0.000 0.000 0.808 0.008 0.184
#> SRR1352507     3  0.1121     0.8969 0.008 0.016 0.968 0.004 0.004
#> SRR1383763     5  0.4304     0.8329 0.484 0.000 0.000 0.000 0.516
#> SRR1468314     2  0.3515     0.6537 0.000 0.844 0.008 0.084 0.064
#> SRR1473674     2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1390499     1  0.4287    -0.6557 0.540 0.000 0.000 0.000 0.460
#> SRR821043      4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1455653     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1335236     2  0.1924     0.6972 0.000 0.924 0.008 0.004 0.064
#> SRR1095383     4  0.1928     0.9009 0.000 0.072 0.004 0.920 0.004
#> SRR1479489     5  0.4291     0.8849 0.464 0.000 0.000 0.000 0.536
#> SRR1310433     2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1073435     2  0.6956     0.6845 0.096 0.544 0.276 0.000 0.084
#> SRR659649      3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1395999     1  0.4686    -0.1319 0.644 0.016 0.008 0.000 0.332
#> SRR1105248     4  0.0324     0.9261 0.000 0.000 0.004 0.992 0.004
#> SRR1338257     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR1499395     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1350002     2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1489757     3  0.1410     0.8948 0.000 0.000 0.940 0.000 0.060
#> SRR1414637     2  0.1197     0.7292 0.000 0.952 0.048 0.000 0.000
#> SRR1478113     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1322477     1  0.2536     0.5211 0.868 0.128 0.004 0.000 0.000
#> SRR1478789     2  0.6645     0.7344 0.044 0.588 0.208 0.000 0.160
#> SRR1414185     3  0.3586     0.8344 0.000 0.000 0.792 0.020 0.188
#> SRR1069141     2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1376852     5  0.4302     0.8453 0.480 0.000 0.000 0.000 0.520
#> SRR1323491     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR1338103     2  0.7320     0.6740 0.160 0.540 0.200 0.000 0.100
#> SRR1472012     2  0.7189     0.7210 0.088 0.552 0.200 0.000 0.160
#> SRR1340325     1  0.4088    -0.2810 0.632 0.000 0.000 0.000 0.368
#> SRR1087321     3  0.0963     0.8715 0.000 0.036 0.964 0.000 0.000
#> SRR1488790     5  0.4235     0.9602 0.424 0.000 0.000 0.000 0.576
#> SRR1334866     2  0.6554     0.7323 0.036 0.588 0.220 0.000 0.156
#> SRR1089446     3  0.3586     0.8344 0.000 0.000 0.792 0.020 0.188
#> SRR1344445     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1412969     3  0.3586     0.8344 0.000 0.000 0.792 0.020 0.188
#> SRR1071668     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1075804     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR1383283     2  0.6426     0.7243 0.024 0.584 0.236 0.000 0.156
#> SRR1350239     4  0.2286     0.8941 0.000 0.000 0.004 0.888 0.108
#> SRR1353878     1  0.3913    -0.0820 0.676 0.000 0.000 0.000 0.324
#> SRR1375721     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1083983     2  0.7371     0.7080 0.108 0.536 0.200 0.000 0.156
#> SRR1090095     1  0.0162     0.5962 0.996 0.000 0.000 0.000 0.004
#> SRR1414792     1  0.1121     0.5545 0.956 0.000 0.000 0.000 0.044
#> SRR1075102     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1098737     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR1349409     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1413008     4  0.2233     0.8958 0.000 0.000 0.004 0.892 0.104
#> SRR1407179     2  0.7142     0.7227 0.084 0.556 0.200 0.000 0.160
#> SRR1095913     2  0.1661     0.7269 0.000 0.940 0.036 0.000 0.024
#> SRR1403544     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1490546     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR807971      3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1436228     2  0.6744     0.7333 0.052 0.584 0.204 0.000 0.160
#> SRR1445218     2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1485438     2  0.2646     0.7383 0.004 0.868 0.124 0.000 0.004
#> SRR1358143     1  0.4305    -0.7518 0.512 0.000 0.000 0.000 0.488
#> SRR1328760     1  0.3857    -0.0326 0.688 0.000 0.000 0.000 0.312
#> SRR1380806     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1379426     3  0.1285     0.8738 0.000 0.036 0.956 0.004 0.004
#> SRR1087007     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1086256     2  0.1792     0.7357 0.000 0.916 0.084 0.000 0.000
#> SRR1346734     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1414515     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1082151     2  0.2770     0.7341 0.044 0.880 0.076 0.000 0.000
#> SRR1349320     4  0.2561     0.8563 0.000 0.144 0.000 0.856 0.000
#> SRR1317554     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1076022     2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1339573     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1455878     1  0.4242    -0.5426 0.572 0.000 0.000 0.000 0.428
#> SRR1446203     2  0.7065     0.5703 0.036 0.448 0.360 0.000 0.156
#> SRR1387397     1  0.4470    -0.0891 0.656 0.008 0.008 0.000 0.328
#> SRR1402590     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1317532     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR1331488     4  0.1544     0.8813 0.068 0.000 0.000 0.932 0.000
#> SRR1499675     3  0.0162     0.9071 0.000 0.000 0.996 0.000 0.004
#> SRR1440467     3  0.3586     0.8344 0.000 0.000 0.792 0.020 0.188
#> SRR807995      2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1476485     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1388214     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR1456051     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1473275     2  0.6592     0.7357 0.044 0.596 0.200 0.000 0.160
#> SRR1444083     1  0.0566     0.5940 0.984 0.012 0.004 0.000 0.000
#> SRR1313807     2  0.6720     0.5446 0.000 0.492 0.372 0.076 0.060
#> SRR1470751     2  0.3265     0.6599 0.012 0.848 0.020 0.120 0.000
#> SRR1403434     3  0.3586     0.8344 0.000 0.000 0.792 0.020 0.188
#> SRR1390540     1  0.0324     0.5961 0.992 0.000 0.004 0.004 0.000
#> SRR1093861     2  0.1924     0.6972 0.000 0.924 0.008 0.004 0.064
#> SRR1325290     2  0.7189     0.7210 0.088 0.552 0.200 0.000 0.160
#> SRR1070689     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1384049     1  0.3876    -0.0488 0.684 0.000 0.000 0.000 0.316
#> SRR1081184     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1324295     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1365313     2  0.6592     0.7357 0.044 0.596 0.200 0.000 0.160
#> SRR1321877     2  0.6721     0.7143 0.036 0.560 0.244 0.000 0.160
#> SRR815711      3  0.3391     0.8394 0.000 0.000 0.800 0.012 0.188
#> SRR1433476     4  0.3160     0.8455 0.000 0.000 0.004 0.808 0.188
#> SRR1101883     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1433729     4  0.4791     0.2668 0.000 0.392 0.012 0.588 0.008
#> SRR1341877     1  0.3112     0.4952 0.856 0.044 0.100 0.000 0.000
#> SRR1090556     1  0.4950     0.3054 0.612 0.348 0.040 0.000 0.000
#> SRR1357389     3  0.3086     0.8478 0.000 0.000 0.816 0.004 0.180
#> SRR1404227     2  0.6645     0.7344 0.044 0.588 0.208 0.000 0.160
#> SRR1376830     5  0.4287     0.8957 0.460 0.000 0.000 0.000 0.540
#> SRR1500661     1  0.4045    -0.2255 0.644 0.000 0.000 0.000 0.356
#> SRR1080294     4  0.2818     0.8668 0.000 0.128 0.004 0.860 0.008
#> SRR1336314     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000
#> SRR1102152     2  0.5180    -0.0236 0.476 0.492 0.012 0.020 0.000
#> SRR1345244     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     2  0.6553     0.7349 0.040 0.596 0.204 0.000 0.160
#> SRR1443776     2  0.6420     0.6569 0.008 0.524 0.308 0.000 0.160
#> SRR1120939     3  0.0798     0.8892 0.000 0.016 0.976 0.000 0.008
#> SRR1080117     3  0.0000     0.9071 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.1831     0.6962 0.000 0.920 0.000 0.004 0.076
#> SRR1091865     1  0.4659     0.0290 0.500 0.488 0.012 0.000 0.000
#> SRR1361072     1  0.0000     0.5990 1.000 0.000 0.000 0.000 0.000
#> SRR1487890     5  0.4227     0.9664 0.420 0.000 0.000 0.000 0.580
#> SRR1349456     2  0.6562     0.7315 0.036 0.588 0.216 0.000 0.160
#> SRR1389384     2  0.6261     0.4972 0.296 0.524 0.180 0.000 0.000
#> SRR1316096     2  0.1768     0.6952 0.000 0.924 0.000 0.004 0.072
#> SRR1408512     1  0.4557     0.3269 0.656 0.324 0.012 0.000 0.008
#> SRR1447547     4  0.3048     0.8545 0.000 0.000 0.004 0.820 0.176
#> SRR1354053     4  0.0000     0.9279 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1349562     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1353376     4  0.0820     0.9214 0.012 0.016 0.000 0.972 0.000 0.000
#> SRR1499040     6  0.0000     0.8471 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1322312     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1324412     3  0.2571     0.8769 0.064 0.000 0.876 0.000 0.000 0.060
#> SRR1100991     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1349479     4  0.3564     0.8686 0.088 0.016 0.076 0.820 0.000 0.000
#> SRR1431248     5  0.2003     0.7758 0.000 0.000 0.000 0.000 0.884 0.116
#> SRR1405054     5  0.4779     0.4291 0.040 0.000 0.008 0.000 0.568 0.384
#> SRR1312266     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1409790     3  0.1556     0.8452 0.080 0.000 0.920 0.000 0.000 0.000
#> SRR1352507     3  0.3564     0.8655 0.008 0.000 0.808 0.000 0.060 0.124
#> SRR1383763     1  0.2006     0.9158 0.892 0.000 0.000 0.000 0.104 0.004
#> SRR1468314     2  0.4497     0.3665 0.000 0.624 0.000 0.328 0.000 0.048
#> SRR1473674     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1390499     1  0.3854     0.2066 0.536 0.000 0.000 0.000 0.464 0.000
#> SRR821043      4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1455653     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1335236     2  0.0547     0.8429 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1095383     4  0.2288     0.8831 0.004 0.116 0.004 0.876 0.000 0.000
#> SRR1479489     1  0.2006     0.9158 0.892 0.000 0.000 0.000 0.104 0.004
#> SRR1310433     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1073435     6  0.4970     0.5499 0.000 0.004 0.120 0.000 0.224 0.652
#> SRR659649      3  0.2378     0.8997 0.000 0.000 0.848 0.000 0.000 0.152
#> SRR1395999     5  0.5176     0.5841 0.188 0.000 0.000 0.000 0.620 0.192
#> SRR1105248     4  0.0964     0.9211 0.012 0.016 0.004 0.968 0.000 0.000
#> SRR1338257     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499395     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1350002     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1489757     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1414637     2  0.3868    -0.0425 0.000 0.504 0.000 0.000 0.000 0.496
#> SRR1478113     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1322477     5  0.0458     0.8114 0.000 0.000 0.000 0.000 0.984 0.016
#> SRR1478789     6  0.0146     0.8470 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1414185     3  0.1556     0.8452 0.080 0.000 0.920 0.000 0.000 0.000
#> SRR1069141     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1376852     1  0.2006     0.9158 0.892 0.000 0.000 0.000 0.104 0.004
#> SRR1323491     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1338103     6  0.2266     0.7638 0.012 0.000 0.000 0.000 0.108 0.880
#> SRR1472012     6  0.0000     0.8471 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1340325     1  0.3991     0.1850 0.524 0.000 0.000 0.000 0.472 0.004
#> SRR1087321     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1488790     1  0.3464     0.6041 0.688 0.000 0.000 0.000 0.312 0.000
#> SRR1334866     6  0.0146     0.8470 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1089446     3  0.1556     0.8452 0.080 0.000 0.920 0.000 0.000 0.000
#> SRR1344445     3  0.2454     0.8849 0.000 0.000 0.840 0.000 0.000 0.160
#> SRR1412969     3  0.1556     0.8452 0.080 0.000 0.920 0.000 0.000 0.000
#> SRR1071668     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1075804     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1383283     6  0.2252     0.8144 0.000 0.028 0.044 0.000 0.020 0.908
#> SRR1350239     4  0.3185     0.8841 0.060 0.016 0.076 0.848 0.000 0.000
#> SRR1353878     5  0.2838     0.6812 0.188 0.000 0.000 0.000 0.808 0.004
#> SRR1375721     1  0.1765     0.9218 0.904 0.000 0.000 0.000 0.096 0.000
#> SRR1083983     6  0.0547     0.8365 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR1090095     5  0.2048     0.7286 0.120 0.000 0.000 0.000 0.880 0.000
#> SRR1414792     5  0.2048     0.7286 0.120 0.000 0.000 0.000 0.880 0.000
#> SRR1075102     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1098737     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1349409     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1413008     4  0.3125     0.8861 0.056 0.016 0.076 0.852 0.000 0.000
#> SRR1407179     6  0.0000     0.8471 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1095913     2  0.3993     0.0263 0.000 0.520 0.004 0.000 0.000 0.476
#> SRR1403544     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1490546     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR807971      3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1436228     6  0.0146     0.8461 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1445218     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1485438     6  0.3659     0.4020 0.000 0.364 0.000 0.000 0.000 0.636
#> SRR1358143     1  0.2006     0.9158 0.892 0.000 0.000 0.000 0.104 0.004
#> SRR1328760     5  0.2703     0.6991 0.172 0.000 0.000 0.000 0.824 0.004
#> SRR1380806     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1379426     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1087007     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1086256     6  0.3797     0.2444 0.000 0.420 0.000 0.000 0.000 0.580
#> SRR1346734     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1082151     6  0.5718     0.0406 0.000 0.396 0.000 0.000 0.164 0.440
#> SRR1349320     4  0.2631     0.8125 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1317554     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1076022     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1339573     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1455878     1  0.3736     0.7951 0.776 0.000 0.000 0.000 0.156 0.068
#> SRR1446203     6  0.2697     0.7010 0.000 0.000 0.188 0.000 0.000 0.812
#> SRR1387397     5  0.4787     0.6283 0.184 0.000 0.000 0.000 0.672 0.144
#> SRR1402590     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1317532     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1331488     4  0.2456     0.8649 0.004 0.012 0.004 0.880 0.100 0.000
#> SRR1499675     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1440467     3  0.1556     0.8452 0.080 0.000 0.920 0.000 0.000 0.000
#> SRR807995      2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1476485     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388214     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1456051     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1473275     6  0.0000     0.8471 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1444083     5  0.0146     0.8134 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1313807     6  0.6407     0.3781 0.004 0.120 0.300 0.060 0.000 0.516
#> SRR1470751     2  0.6049     0.0640 0.000 0.428 0.000 0.004 0.216 0.352
#> SRR1403434     3  0.1556     0.8452 0.080 0.000 0.920 0.000 0.000 0.000
#> SRR1390540     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1093861     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1325290     6  0.0000     0.8471 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1070689     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1384049     5  0.2871     0.6767 0.192 0.000 0.000 0.000 0.804 0.004
#> SRR1081184     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1324295     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1365313     6  0.0146     0.8470 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1321877     6  0.0937     0.8279 0.000 0.000 0.040 0.000 0.000 0.960
#> SRR815711      3  0.1501     0.8466 0.076 0.000 0.924 0.000 0.000 0.000
#> SRR1433476     4  0.4081     0.8376 0.088 0.016 0.120 0.776 0.000 0.000
#> SRR1101883     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1433729     4  0.2531     0.8742 0.008 0.128 0.004 0.860 0.000 0.000
#> SRR1341877     5  0.2969     0.6773 0.000 0.000 0.000 0.000 0.776 0.224
#> SRR1090556     5  0.3714     0.5339 0.004 0.000 0.000 0.000 0.656 0.340
#> SRR1357389     3  0.1141     0.8540 0.052 0.000 0.948 0.000 0.000 0.000
#> SRR1404227     6  0.0146     0.8470 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1376830     1  0.1765     0.9219 0.904 0.000 0.000 0.000 0.096 0.000
#> SRR1500661     5  0.4273     0.3038 0.380 0.000 0.000 0.000 0.596 0.024
#> SRR1080294     4  0.2884     0.8433 0.008 0.164 0.004 0.824 0.000 0.000
#> SRR1336314     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1102152     5  0.4015     0.4290 0.004 0.004 0.000 0.000 0.596 0.396
#> SRR1345244     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1478637     6  0.0000     0.8471 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1443776     6  0.1204     0.8193 0.000 0.000 0.056 0.000 0.000 0.944
#> SRR1120939     3  0.2454     0.8871 0.000 0.000 0.840 0.000 0.000 0.160
#> SRR1080117     3  0.2135     0.9146 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1102899     2  0.0603     0.8425 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1091865     5  0.4033     0.4112 0.004 0.004 0.000 0.000 0.588 0.404
#> SRR1361072     5  0.0000     0.8141 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1487890     1  0.1663     0.9245 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1349456     6  0.0260     0.8459 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1389384     6  0.4990     0.5257 0.000 0.204 0.000 0.000 0.152 0.644
#> SRR1316096     2  0.0458     0.8455 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1408512     5  0.3426     0.6335 0.004 0.000 0.000 0.000 0.720 0.276
#> SRR1447547     4  0.4081     0.8376 0.088 0.016 0.120 0.776 0.000 0.000
#> SRR1354053     4  0.0000     0.9241 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.984           0.951       0.980         0.5034 0.496   0.496
#> 3 3 0.920           0.907       0.953         0.3055 0.783   0.588
#> 4 4 0.936           0.909       0.956         0.0940 0.904   0.731
#> 5 5 0.719           0.645       0.798         0.0673 0.974   0.908
#> 6 6 0.687           0.496       0.689         0.0484 0.910   0.682

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.985 1.000 0.000
#> SRR1349562     1  0.0000      0.985 1.000 0.000
#> SRR1353376     2  0.0000      0.974 0.000 1.000
#> SRR1499040     1  0.0000      0.985 1.000 0.000
#> SRR1322312     1  0.0000      0.985 1.000 0.000
#> SRR1324412     1  0.0000      0.985 1.000 0.000
#> SRR1100991     1  0.0000      0.985 1.000 0.000
#> SRR1349479     2  0.0000      0.974 0.000 1.000
#> SRR1431248     1  0.0000      0.985 1.000 0.000
#> SRR1405054     1  0.0000      0.985 1.000 0.000
#> SRR1312266     1  0.0000      0.985 1.000 0.000
#> SRR1409790     1  0.1633      0.962 0.976 0.024
#> SRR1352507     2  0.8499      0.634 0.276 0.724
#> SRR1383763     1  0.0000      0.985 1.000 0.000
#> SRR1468314     2  0.0000      0.974 0.000 1.000
#> SRR1473674     2  0.0000      0.974 0.000 1.000
#> SRR1390499     1  0.0000      0.985 1.000 0.000
#> SRR821043      2  0.0000      0.974 0.000 1.000
#> SRR1455653     2  0.0000      0.974 0.000 1.000
#> SRR1335236     2  0.0000      0.974 0.000 1.000
#> SRR1095383     2  0.0000      0.974 0.000 1.000
#> SRR1479489     1  0.0000      0.985 1.000 0.000
#> SRR1310433     2  0.0000      0.974 0.000 1.000
#> SRR1073435     2  0.0000      0.974 0.000 1.000
#> SRR659649      2  0.0000      0.974 0.000 1.000
#> SRR1395999     1  0.0000      0.985 1.000 0.000
#> SRR1105248     2  0.0000      0.974 0.000 1.000
#> SRR1338257     1  0.0000      0.985 1.000 0.000
#> SRR1499395     2  0.0000      0.974 0.000 1.000
#> SRR1350002     2  0.0000      0.974 0.000 1.000
#> SRR1489757     1  0.9754      0.284 0.592 0.408
#> SRR1414637     2  0.0000      0.974 0.000 1.000
#> SRR1478113     2  0.0000      0.974 0.000 1.000
#> SRR1322477     1  0.0000      0.985 1.000 0.000
#> SRR1478789     2  0.0000      0.974 0.000 1.000
#> SRR1414185     2  0.0000      0.974 0.000 1.000
#> SRR1069141     2  0.0000      0.974 0.000 1.000
#> SRR1376852     1  0.0000      0.985 1.000 0.000
#> SRR1323491     1  0.0000      0.985 1.000 0.000
#> SRR1338103     1  0.0000      0.985 1.000 0.000
#> SRR1472012     1  0.0000      0.985 1.000 0.000
#> SRR1340325     1  0.0000      0.985 1.000 0.000
#> SRR1087321     2  0.0000      0.974 0.000 1.000
#> SRR1488790     1  0.0000      0.985 1.000 0.000
#> SRR1334866     2  0.0000      0.974 0.000 1.000
#> SRR1089446     2  0.0000      0.974 0.000 1.000
#> SRR1344445     1  0.9661      0.329 0.608 0.392
#> SRR1412969     2  0.0000      0.974 0.000 1.000
#> SRR1071668     1  0.0000      0.985 1.000 0.000
#> SRR1075804     1  0.0000      0.985 1.000 0.000
#> SRR1383283     2  0.0000      0.974 0.000 1.000
#> SRR1350239     2  0.0000      0.974 0.000 1.000
#> SRR1353878     1  0.0000      0.985 1.000 0.000
#> SRR1375721     1  0.0000      0.985 1.000 0.000
#> SRR1083983     1  0.0000      0.985 1.000 0.000
#> SRR1090095     1  0.0000      0.985 1.000 0.000
#> SRR1414792     1  0.0000      0.985 1.000 0.000
#> SRR1075102     2  0.0000      0.974 0.000 1.000
#> SRR1098737     1  0.0000      0.985 1.000 0.000
#> SRR1349409     1  0.0000      0.985 1.000 0.000
#> SRR1413008     2  0.0000      0.974 0.000 1.000
#> SRR1407179     1  0.0000      0.985 1.000 0.000
#> SRR1095913     2  0.0000      0.974 0.000 1.000
#> SRR1403544     1  0.0000      0.985 1.000 0.000
#> SRR1490546     1  0.0000      0.985 1.000 0.000
#> SRR807971      1  0.3114      0.929 0.944 0.056
#> SRR1436228     1  0.4022      0.903 0.920 0.080
#> SRR1445218     2  0.0000      0.974 0.000 1.000
#> SRR1485438     2  0.0672      0.967 0.008 0.992
#> SRR1358143     1  0.0000      0.985 1.000 0.000
#> SRR1328760     1  0.0000      0.985 1.000 0.000
#> SRR1380806     1  0.0000      0.985 1.000 0.000
#> SRR1379426     2  0.0000      0.974 0.000 1.000
#> SRR1087007     2  0.0000      0.974 0.000 1.000
#> SRR1086256     2  0.0000      0.974 0.000 1.000
#> SRR1346734     2  0.0000      0.974 0.000 1.000
#> SRR1414515     1  0.0000      0.985 1.000 0.000
#> SRR1082151     2  0.9775      0.321 0.412 0.588
#> SRR1349320     2  0.0000      0.974 0.000 1.000
#> SRR1317554     2  0.0000      0.974 0.000 1.000
#> SRR1076022     2  0.0000      0.974 0.000 1.000
#> SRR1339573     2  0.5408      0.852 0.124 0.876
#> SRR1455878     1  0.0000      0.985 1.000 0.000
#> SRR1446203     2  0.0000      0.974 0.000 1.000
#> SRR1387397     1  0.0000      0.985 1.000 0.000
#> SRR1402590     1  0.0000      0.985 1.000 0.000
#> SRR1317532     1  0.0000      0.985 1.000 0.000
#> SRR1331488     1  0.0000      0.985 1.000 0.000
#> SRR1499675     2  0.1843      0.950 0.028 0.972
#> SRR1440467     2  0.0000      0.974 0.000 1.000
#> SRR807995      2  0.0000      0.974 0.000 1.000
#> SRR1476485     2  0.0000      0.974 0.000 1.000
#> SRR1388214     1  0.0000      0.985 1.000 0.000
#> SRR1456051     1  0.0000      0.985 1.000 0.000
#> SRR1473275     1  0.0000      0.985 1.000 0.000
#> SRR1444083     1  0.0000      0.985 1.000 0.000
#> SRR1313807     2  0.0000      0.974 0.000 1.000
#> SRR1470751     2  0.9286      0.487 0.344 0.656
#> SRR1403434     2  0.0000      0.974 0.000 1.000
#> SRR1390540     1  0.0000      0.985 1.000 0.000
#> SRR1093861     2  0.0000      0.974 0.000 1.000
#> SRR1325290     1  0.0000      0.985 1.000 0.000
#> SRR1070689     1  0.0000      0.985 1.000 0.000
#> SRR1384049     1  0.0000      0.985 1.000 0.000
#> SRR1081184     1  0.0000      0.985 1.000 0.000
#> SRR1324295     1  0.0000      0.985 1.000 0.000
#> SRR1365313     2  0.8909      0.573 0.308 0.692
#> SRR1321877     2  0.0000      0.974 0.000 1.000
#> SRR815711      2  0.0000      0.974 0.000 1.000
#> SRR1433476     2  0.0000      0.974 0.000 1.000
#> SRR1101883     2  0.6247      0.813 0.156 0.844
#> SRR1433729     2  0.0000      0.974 0.000 1.000
#> SRR1341877     1  0.0000      0.985 1.000 0.000
#> SRR1090556     1  0.0000      0.985 1.000 0.000
#> SRR1357389     2  0.4562      0.883 0.096 0.904
#> SRR1404227     2  0.0376      0.970 0.004 0.996
#> SRR1376830     1  0.0000      0.985 1.000 0.000
#> SRR1500661     1  0.0000      0.985 1.000 0.000
#> SRR1080294     2  0.0000      0.974 0.000 1.000
#> SRR1336314     2  0.0000      0.974 0.000 1.000
#> SRR1102152     1  0.0000      0.985 1.000 0.000
#> SRR1345244     2  0.0000      0.974 0.000 1.000
#> SRR1478637     2  0.0000      0.974 0.000 1.000
#> SRR1443776     2  0.0000      0.974 0.000 1.000
#> SRR1120939     2  0.0000      0.974 0.000 1.000
#> SRR1080117     2  0.0000      0.974 0.000 1.000
#> SRR1102899     2  0.0000      0.974 0.000 1.000
#> SRR1091865     1  0.0000      0.985 1.000 0.000
#> SRR1361072     1  0.0000      0.985 1.000 0.000
#> SRR1487890     1  0.0000      0.985 1.000 0.000
#> SRR1349456     2  0.0000      0.974 0.000 1.000
#> SRR1389384     1  0.0000      0.985 1.000 0.000
#> SRR1316096     2  0.0000      0.974 0.000 1.000
#> SRR1408512     1  0.0000      0.985 1.000 0.000
#> SRR1447547     2  0.0000      0.974 0.000 1.000
#> SRR1354053     2  0.0000      0.974 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.974 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1353376     2  0.1860      0.906 0.000 0.948 0.052
#> SRR1499040     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1322312     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1324412     3  0.1031      0.934 0.024 0.000 0.976
#> SRR1100991     3  0.2066      0.901 0.060 0.000 0.940
#> SRR1349479     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1431248     1  0.2796      0.901 0.908 0.092 0.000
#> SRR1405054     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1312266     1  0.1964      0.933 0.944 0.056 0.000
#> SRR1409790     3  0.1163      0.931 0.028 0.000 0.972
#> SRR1352507     3  0.1860      0.912 0.000 0.052 0.948
#> SRR1383763     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1468314     2  0.1753      0.924 0.000 0.952 0.048
#> SRR1473674     2  0.1753      0.924 0.000 0.952 0.048
#> SRR1390499     1  0.0000      0.974 1.000 0.000 0.000
#> SRR821043      2  0.1529      0.911 0.000 0.960 0.040
#> SRR1455653     2  0.0000      0.911 0.000 1.000 0.000
#> SRR1335236     2  0.2356      0.915 0.000 0.928 0.072
#> SRR1095383     2  0.1860      0.906 0.000 0.948 0.052
#> SRR1479489     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1310433     2  0.2066      0.921 0.000 0.940 0.060
#> SRR1073435     2  0.3619      0.881 0.000 0.864 0.136
#> SRR659649      3  0.0000      0.950 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1105248     2  0.1964      0.904 0.000 0.944 0.056
#> SRR1338257     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1350002     2  0.1753      0.924 0.000 0.952 0.048
#> SRR1489757     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1414637     2  0.1753      0.924 0.000 0.952 0.048
#> SRR1478113     2  0.1529      0.911 0.000 0.960 0.040
#> SRR1322477     1  0.5905      0.497 0.648 0.352 0.000
#> SRR1478789     3  0.1860      0.912 0.000 0.052 0.948
#> SRR1414185     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1069141     2  0.1860      0.924 0.000 0.948 0.052
#> SRR1376852     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1338103     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1472012     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1340325     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1334866     2  0.6307      0.129 0.000 0.512 0.488
#> SRR1089446     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1344445     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1412969     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1071668     3  0.1753      0.913 0.048 0.000 0.952
#> SRR1075804     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1383283     2  0.2356      0.915 0.000 0.928 0.072
#> SRR1350239     3  0.4346      0.785 0.000 0.184 0.816
#> SRR1353878     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1083983     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1090095     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1075102     2  0.1643      0.909 0.000 0.956 0.044
#> SRR1098737     1  0.1860      0.936 0.948 0.052 0.000
#> SRR1349409     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1413008     3  0.4452      0.774 0.000 0.192 0.808
#> SRR1407179     1  0.0424      0.968 0.992 0.000 0.008
#> SRR1095913     2  0.2066      0.921 0.000 0.940 0.060
#> SRR1403544     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.974 1.000 0.000 0.000
#> SRR807971      3  0.0892      0.937 0.020 0.000 0.980
#> SRR1436228     2  0.6299      0.075 0.476 0.524 0.000
#> SRR1445218     2  0.1753      0.924 0.000 0.952 0.048
#> SRR1485438     2  0.2096      0.923 0.004 0.944 0.052
#> SRR1358143     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1379426     3  0.0237      0.948 0.000 0.004 0.996
#> SRR1087007     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1086256     2  0.1860      0.924 0.000 0.948 0.052
#> SRR1346734     2  0.1411      0.911 0.000 0.964 0.036
#> SRR1414515     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1082151     2  0.0475      0.913 0.004 0.992 0.004
#> SRR1349320     2  0.1529      0.911 0.000 0.960 0.040
#> SRR1317554     2  0.1163      0.913 0.000 0.972 0.028
#> SRR1076022     2  0.1860      0.924 0.000 0.948 0.052
#> SRR1339573     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1455878     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1446203     3  0.0237      0.948 0.000 0.004 0.996
#> SRR1387397     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1331488     1  0.6927      0.547 0.664 0.296 0.040
#> SRR1499675     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1440467     3  0.0000      0.950 0.000 0.000 1.000
#> SRR807995      2  0.1753      0.924 0.000 0.952 0.048
#> SRR1476485     2  0.1643      0.909 0.000 0.956 0.044
#> SRR1388214     1  0.0747      0.963 0.984 0.016 0.000
#> SRR1456051     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1473275     3  0.6291      0.147 0.468 0.000 0.532
#> SRR1444083     1  0.1860      0.936 0.948 0.052 0.000
#> SRR1313807     2  0.3267      0.896 0.000 0.884 0.116
#> SRR1470751     2  0.0000      0.911 0.000 1.000 0.000
#> SRR1403434     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1093861     2  0.2066      0.921 0.000 0.940 0.060
#> SRR1325290     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1070689     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1365313     3  0.6049      0.693 0.204 0.040 0.756
#> SRR1321877     3  0.0424      0.945 0.000 0.008 0.992
#> SRR815711      3  0.0000      0.950 0.000 0.000 1.000
#> SRR1433476     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1101883     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1433729     2  0.4605      0.801 0.000 0.796 0.204
#> SRR1341877     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1090556     1  0.2066      0.929 0.940 0.060 0.000
#> SRR1357389     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1404227     3  0.1267      0.932 0.024 0.004 0.972
#> SRR1376830     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1080294     2  0.6154      0.429 0.000 0.592 0.408
#> SRR1336314     2  0.0000      0.911 0.000 1.000 0.000
#> SRR1102152     1  0.5529      0.575 0.704 0.296 0.000
#> SRR1345244     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1478637     2  0.1860      0.924 0.000 0.948 0.052
#> SRR1443776     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1102899     2  0.2356      0.915 0.000 0.928 0.072
#> SRR1091865     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1349456     3  0.1529      0.921 0.000 0.040 0.960
#> SRR1389384     1  0.4062      0.802 0.836 0.164 0.000
#> SRR1316096     2  0.1860      0.924 0.000 0.948 0.052
#> SRR1408512     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1447547     3  0.4654      0.750 0.000 0.208 0.792
#> SRR1354053     2  0.0000      0.911 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.2973     0.8068 0.000 0.144 0.000 0.856
#> SRR1499040     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1322312     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.0188     0.9570 0.000 0.000 0.996 0.004
#> SRR1100991     3  0.0657     0.9548 0.004 0.000 0.984 0.012
#> SRR1349479     3  0.1557     0.9389 0.000 0.000 0.944 0.056
#> SRR1431248     1  0.3942     0.6748 0.764 0.000 0.000 0.236
#> SRR1405054     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1312266     4  0.3266     0.7587 0.168 0.000 0.000 0.832
#> SRR1409790     3  0.1557     0.9389 0.000 0.000 0.944 0.056
#> SRR1352507     3  0.0469     0.9551 0.000 0.000 0.988 0.012
#> SRR1383763     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1468314     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1473674     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1390499     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0817     0.8644 0.000 0.024 0.000 0.976
#> SRR1455653     2  0.3907     0.6570 0.000 0.768 0.000 0.232
#> SRR1335236     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1095383     4  0.1211     0.8666 0.000 0.040 0.000 0.960
#> SRR1479489     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1073435     2  0.7628     0.0481 0.000 0.440 0.212 0.348
#> SRR659649      3  0.0000     0.9569 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.0188     0.8565 0.000 0.000 0.004 0.996
#> SRR1338257     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1499395     3  0.0188     0.9570 0.000 0.000 0.996 0.004
#> SRR1350002     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1489757     3  0.0336     0.9564 0.000 0.000 0.992 0.008
#> SRR1414637     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1478113     4  0.1637     0.8637 0.000 0.060 0.000 0.940
#> SRR1322477     4  0.3764     0.7106 0.216 0.000 0.000 0.784
#> SRR1478789     3  0.2654     0.8570 0.000 0.108 0.888 0.004
#> SRR1414185     3  0.1557     0.9389 0.000 0.000 0.944 0.056
#> SRR1069141     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1376852     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.1398     0.9395 0.956 0.000 0.040 0.004
#> SRR1472012     1  0.0188     0.9757 0.996 0.000 0.004 0.000
#> SRR1340325     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1488790     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.1661     0.8964 0.000 0.944 0.052 0.004
#> SRR1089446     3  0.1389     0.9425 0.000 0.000 0.952 0.048
#> SRR1344445     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1412969     3  0.1557     0.9389 0.000 0.000 0.944 0.056
#> SRR1071668     3  0.0000     0.9569 0.000 0.000 1.000 0.000
#> SRR1075804     1  0.0188     0.9760 0.996 0.000 0.000 0.004
#> SRR1383283     2  0.0921     0.9238 0.000 0.972 0.000 0.028
#> SRR1350239     4  0.2345     0.8063 0.000 0.000 0.100 0.900
#> SRR1353878     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1090095     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.1557     0.8645 0.000 0.056 0.000 0.944
#> SRR1098737     4  0.4855     0.3713 0.400 0.000 0.000 0.600
#> SRR1349409     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.0817     0.8523 0.000 0.000 0.024 0.976
#> SRR1407179     1  0.1743     0.9220 0.940 0.000 0.056 0.004
#> SRR1095913     2  0.0188     0.9401 0.000 0.996 0.004 0.000
#> SRR1403544     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0707     0.9641 0.980 0.000 0.000 0.020
#> SRR807971      3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1436228     2  0.1209     0.9155 0.000 0.964 0.032 0.004
#> SRR1445218     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1485438     2  0.0779     0.9292 0.000 0.980 0.016 0.004
#> SRR1358143     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.0336     0.9566 0.000 0.000 0.992 0.008
#> SRR1087007     3  0.0188     0.9571 0.000 0.000 0.996 0.004
#> SRR1086256     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1346734     4  0.1637     0.8637 0.000 0.060 0.000 0.940
#> SRR1414515     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1349320     4  0.1716     0.8624 0.000 0.064 0.000 0.936
#> SRR1317554     4  0.4522     0.5283 0.000 0.320 0.000 0.680
#> SRR1076022     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1339573     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1455878     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1387397     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1402590     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.1118     0.9497 0.964 0.000 0.000 0.036
#> SRR1331488     4  0.1211     0.8527 0.040 0.000 0.000 0.960
#> SRR1499675     3  0.1022     0.9491 0.000 0.000 0.968 0.032
#> SRR1440467     3  0.1474     0.9408 0.000 0.000 0.948 0.052
#> SRR807995      2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1476485     4  0.1211     0.8664 0.000 0.040 0.000 0.960
#> SRR1388214     1  0.3907     0.6959 0.768 0.000 0.000 0.232
#> SRR1456051     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.4632     0.5032 0.308 0.000 0.688 0.004
#> SRR1444083     1  0.3873     0.6912 0.772 0.000 0.000 0.228
#> SRR1313807     4  0.3320     0.8348 0.000 0.056 0.068 0.876
#> SRR1470751     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1403434     3  0.1557     0.9389 0.000 0.000 0.944 0.056
#> SRR1390540     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1325290     1  0.1302     0.9390 0.956 0.000 0.044 0.000
#> SRR1070689     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0336     0.9733 0.992 0.000 0.000 0.008
#> SRR1081184     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1365313     3  0.5869     0.6294 0.096 0.196 0.704 0.004
#> SRR1321877     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR815711      3  0.1557     0.9389 0.000 0.000 0.944 0.056
#> SRR1433476     3  0.1557     0.9389 0.000 0.000 0.944 0.056
#> SRR1101883     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1433729     2  0.4018     0.6874 0.000 0.772 0.224 0.004
#> SRR1341877     1  0.0657     0.9663 0.984 0.000 0.012 0.004
#> SRR1090556     1  0.0336     0.9726 0.992 0.008 0.000 0.000
#> SRR1357389     3  0.0188     0.9570 0.000 0.000 0.996 0.004
#> SRR1404227     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1376830     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1080294     3  0.1661     0.9234 0.000 0.052 0.944 0.004
#> SRR1336314     4  0.2081     0.8534 0.000 0.084 0.000 0.916
#> SRR1102152     2  0.2216     0.8335 0.092 0.908 0.000 0.000
#> SRR1345244     3  0.0000     0.9569 0.000 0.000 1.000 0.000
#> SRR1478637     2  0.0336     0.9375 0.000 0.992 0.008 0.000
#> SRR1443776     3  0.0895     0.9455 0.000 0.020 0.976 0.004
#> SRR1120939     3  0.0188     0.9564 0.000 0.000 0.996 0.004
#> SRR1080117     3  0.0000     0.9569 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1091865     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1361072     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9786 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.0657     0.9510 0.000 0.012 0.984 0.004
#> SRR1389384     1  0.1302     0.9396 0.956 0.044 0.000 0.000
#> SRR1316096     2  0.0000     0.9423 0.000 1.000 0.000 0.000
#> SRR1408512     1  0.1118     0.9496 0.964 0.000 0.000 0.036
#> SRR1447547     4  0.4331     0.5603 0.000 0.000 0.288 0.712
#> SRR1354053     2  0.1716     0.8887 0.000 0.936 0.000 0.064

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.2471     0.8141 0.864 0.000 0.000 0.000 0.136
#> SRR1349562     1  0.0290     0.8699 0.992 0.000 0.000 0.000 0.008
#> SRR1353376     4  0.6398     0.5789 0.000 0.092 0.164 0.644 0.100
#> SRR1499040     1  0.5429     0.6449 0.676 0.096 0.000 0.012 0.216
#> SRR1322312     1  0.0162     0.8697 0.996 0.000 0.000 0.000 0.004
#> SRR1324412     3  0.3109     0.6511 0.000 0.000 0.800 0.000 0.200
#> SRR1100991     3  0.3398     0.6351 0.004 0.000 0.780 0.000 0.216
#> SRR1349479     3  0.1018     0.5806 0.000 0.000 0.968 0.016 0.016
#> SRR1431248     1  0.7084     0.0435 0.396 0.012 0.000 0.308 0.284
#> SRR1405054     1  0.1243     0.8627 0.960 0.000 0.004 0.008 0.028
#> SRR1312266     4  0.5787     0.5242 0.204 0.000 0.000 0.616 0.180
#> SRR1409790     3  0.3224     0.6280 0.000 0.000 0.824 0.016 0.160
#> SRR1352507     3  0.4584     0.5926 0.000 0.000 0.660 0.028 0.312
#> SRR1383763     1  0.0290     0.8708 0.992 0.000 0.000 0.000 0.008
#> SRR1468314     2  0.1410     0.8322 0.000 0.940 0.000 0.000 0.060
#> SRR1473674     2  0.0404     0.8306 0.000 0.988 0.000 0.000 0.012
#> SRR1390499     1  0.0404     0.8695 0.988 0.000 0.000 0.000 0.012
#> SRR821043      4  0.6102     0.5766 0.000 0.044 0.236 0.632 0.088
#> SRR1455653     2  0.4618     0.6619 0.000 0.724 0.000 0.208 0.068
#> SRR1335236     2  0.0162     0.8335 0.000 0.996 0.000 0.000 0.004
#> SRR1095383     4  0.4643     0.6555 0.000 0.024 0.064 0.768 0.144
#> SRR1479489     1  0.0162     0.8701 0.996 0.000 0.000 0.000 0.004
#> SRR1310433     2  0.1608     0.8304 0.000 0.928 0.000 0.000 0.072
#> SRR1073435     5  0.6768     0.2965 0.000 0.232 0.076 0.108 0.584
#> SRR659649      3  0.4644     0.3848 0.000 0.000 0.528 0.012 0.460
#> SRR1395999     1  0.0963     0.8687 0.964 0.000 0.000 0.000 0.036
#> SRR1105248     4  0.1809     0.7317 0.000 0.000 0.012 0.928 0.060
#> SRR1338257     1  0.4444     0.7191 0.748 0.000 0.000 0.072 0.180
#> SRR1499395     3  0.2813     0.6450 0.000 0.000 0.832 0.000 0.168
#> SRR1350002     2  0.0609     0.8287 0.000 0.980 0.000 0.000 0.020
#> SRR1489757     3  0.3177     0.6407 0.000 0.000 0.792 0.000 0.208
#> SRR1414637     2  0.3766     0.7290 0.000 0.728 0.000 0.004 0.268
#> SRR1478113     4  0.0955     0.7417 0.000 0.028 0.000 0.968 0.004
#> SRR1322477     4  0.5619     0.5385 0.208 0.000 0.000 0.636 0.156
#> SRR1478789     3  0.5484     0.3609 0.000 0.080 0.584 0.000 0.336
#> SRR1414185     3  0.4535     0.3426 0.000 0.000 0.752 0.140 0.108
#> SRR1069141     2  0.0000     0.8330 0.000 1.000 0.000 0.000 0.000
#> SRR1376852     1  0.1697     0.8516 0.932 0.000 0.000 0.008 0.060
#> SRR1323491     1  0.0290     0.8698 0.992 0.000 0.000 0.000 0.008
#> SRR1338103     1  0.3983     0.5549 0.660 0.000 0.000 0.000 0.340
#> SRR1472012     1  0.4054     0.7078 0.744 0.000 0.008 0.012 0.236
#> SRR1340325     1  0.1043     0.8648 0.960 0.000 0.000 0.000 0.040
#> SRR1087321     3  0.3480     0.6244 0.000 0.000 0.752 0.000 0.248
#> SRR1488790     1  0.0000     0.8699 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     5  0.5691    -0.3391 0.008 0.460 0.048 0.004 0.480
#> SRR1089446     3  0.0798     0.5857 0.000 0.000 0.976 0.016 0.008
#> SRR1344445     3  0.4356     0.5807 0.000 0.000 0.648 0.012 0.340
#> SRR1412969     3  0.1549     0.5770 0.000 0.000 0.944 0.016 0.040
#> SRR1071668     3  0.3586     0.6301 0.000 0.000 0.736 0.000 0.264
#> SRR1075804     1  0.1485     0.8628 0.948 0.000 0.000 0.032 0.020
#> SRR1383283     2  0.4636     0.6569 0.000 0.664 0.004 0.024 0.308
#> SRR1350239     4  0.4111     0.6617 0.000 0.000 0.120 0.788 0.092
#> SRR1353878     1  0.2471     0.8155 0.864 0.000 0.000 0.000 0.136
#> SRR1375721     1  0.0404     0.8691 0.988 0.000 0.000 0.000 0.012
#> SRR1083983     1  0.3318     0.7677 0.808 0.000 0.000 0.012 0.180
#> SRR1090095     1  0.0162     0.8697 0.996 0.000 0.000 0.000 0.004
#> SRR1414792     1  0.0290     0.8699 0.992 0.000 0.000 0.000 0.008
#> SRR1075102     4  0.0794     0.7419 0.000 0.028 0.000 0.972 0.000
#> SRR1098737     4  0.5901     0.3092 0.344 0.000 0.000 0.540 0.116
#> SRR1349409     1  0.0162     0.8697 0.996 0.000 0.000 0.000 0.004
#> SRR1413008     4  0.3754     0.6803 0.000 0.000 0.100 0.816 0.084
#> SRR1407179     1  0.4767     0.3267 0.560 0.000 0.020 0.000 0.420
#> SRR1095913     2  0.3039     0.7761 0.000 0.808 0.000 0.000 0.192
#> SRR1403544     1  0.0162     0.8697 0.996 0.000 0.000 0.000 0.004
#> SRR1490546     1  0.4437     0.7283 0.760 0.000 0.000 0.100 0.140
#> SRR807971      3  0.3990     0.6078 0.000 0.000 0.688 0.004 0.308
#> SRR1436228     2  0.4372     0.7302 0.072 0.756 0.000 0.000 0.172
#> SRR1445218     2  0.1851     0.8263 0.000 0.912 0.000 0.000 0.088
#> SRR1485438     2  0.2127     0.7986 0.000 0.892 0.000 0.000 0.108
#> SRR1358143     1  0.0290     0.8694 0.992 0.000 0.000 0.000 0.008
#> SRR1328760     1  0.3488     0.7735 0.808 0.000 0.000 0.024 0.168
#> SRR1380806     1  0.0162     0.8701 0.996 0.000 0.000 0.000 0.004
#> SRR1379426     3  0.5260     0.3733 0.000 0.000 0.604 0.064 0.332
#> SRR1087007     3  0.4016     0.5776 0.000 0.000 0.716 0.012 0.272
#> SRR1086256     2  0.3210     0.7664 0.000 0.788 0.000 0.000 0.212
#> SRR1346734     4  0.1830     0.7370 0.000 0.028 0.000 0.932 0.040
#> SRR1414515     1  0.1197     0.8573 0.952 0.000 0.000 0.000 0.048
#> SRR1082151     2  0.2852     0.7290 0.000 0.828 0.000 0.000 0.172
#> SRR1349320     4  0.1251     0.7420 0.000 0.036 0.000 0.956 0.008
#> SRR1317554     4  0.7185    -0.0384 0.000 0.352 0.024 0.404 0.220
#> SRR1076022     2  0.2813     0.7904 0.000 0.832 0.000 0.000 0.168
#> SRR1339573     3  0.3906     0.6165 0.000 0.000 0.704 0.004 0.292
#> SRR1455878     1  0.2130     0.8520 0.908 0.000 0.000 0.012 0.080
#> SRR1446203     3  0.3837     0.6081 0.000 0.000 0.692 0.000 0.308
#> SRR1387397     1  0.1478     0.8575 0.936 0.000 0.000 0.000 0.064
#> SRR1402590     1  0.0000     0.8699 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.4087     0.6885 0.756 0.000 0.000 0.208 0.036
#> SRR1331488     4  0.0510     0.7379 0.016 0.000 0.000 0.984 0.000
#> SRR1499675     3  0.2338     0.5083 0.000 0.000 0.884 0.004 0.112
#> SRR1440467     3  0.0912     0.5834 0.000 0.000 0.972 0.016 0.012
#> SRR807995      2  0.0510     0.8298 0.000 0.984 0.000 0.000 0.016
#> SRR1476485     4  0.1281     0.7396 0.000 0.012 0.000 0.956 0.032
#> SRR1388214     1  0.4164     0.7646 0.784 0.000 0.000 0.096 0.120
#> SRR1456051     1  0.0963     0.8654 0.964 0.000 0.000 0.000 0.036
#> SRR1473275     5  0.6002    -0.2131 0.112 0.000 0.436 0.000 0.452
#> SRR1444083     1  0.6161     0.4038 0.556 0.000 0.000 0.248 0.196
#> SRR1313807     4  0.5902     0.2033 0.000 0.044 0.028 0.476 0.452
#> SRR1470751     2  0.3039     0.7084 0.000 0.808 0.000 0.000 0.192
#> SRR1403434     3  0.1018     0.5806 0.000 0.000 0.968 0.016 0.016
#> SRR1390540     1  0.1270     0.8545 0.948 0.000 0.000 0.000 0.052
#> SRR1093861     2  0.0162     0.8340 0.000 0.996 0.000 0.000 0.004
#> SRR1325290     1  0.4822     0.5427 0.632 0.000 0.016 0.012 0.340
#> SRR1070689     1  0.0162     0.8701 0.996 0.000 0.000 0.000 0.004
#> SRR1384049     1  0.0671     0.8688 0.980 0.000 0.000 0.016 0.004
#> SRR1081184     1  0.0162     0.8701 0.996 0.000 0.000 0.000 0.004
#> SRR1324295     1  0.0162     0.8703 0.996 0.000 0.000 0.000 0.004
#> SRR1365313     5  0.7079     0.3855 0.044 0.196 0.240 0.000 0.520
#> SRR1321877     3  0.3983     0.5411 0.000 0.000 0.660 0.000 0.340
#> SRR815711      3  0.0912     0.5834 0.000 0.000 0.972 0.016 0.012
#> SRR1433476     3  0.2770     0.4799 0.000 0.000 0.880 0.044 0.076
#> SRR1101883     3  0.4127     0.6022 0.000 0.000 0.680 0.008 0.312
#> SRR1433729     2  0.5805     0.3644 0.000 0.520 0.040 0.028 0.412
#> SRR1341877     1  0.3661     0.6465 0.724 0.000 0.000 0.000 0.276
#> SRR1090556     1  0.5709     0.5935 0.636 0.008 0.000 0.116 0.240
#> SRR1357389     3  0.2929     0.6452 0.000 0.000 0.820 0.000 0.180
#> SRR1404227     5  0.4235    -0.0945 0.000 0.000 0.424 0.000 0.576
#> SRR1376830     1  0.0671     0.8697 0.980 0.000 0.000 0.004 0.016
#> SRR1500661     1  0.0162     0.8697 0.996 0.000 0.000 0.000 0.004
#> SRR1080294     3  0.8022    -0.3327 0.000 0.172 0.376 0.120 0.332
#> SRR1336314     4  0.4096     0.6408 0.000 0.200 0.000 0.760 0.040
#> SRR1102152     2  0.1768     0.7871 0.072 0.924 0.000 0.000 0.004
#> SRR1345244     3  0.3508     0.6234 0.000 0.000 0.748 0.000 0.252
#> SRR1478637     2  0.4695     0.5601 0.000 0.644 0.012 0.012 0.332
#> SRR1443776     3  0.4455     0.4474 0.000 0.008 0.588 0.000 0.404
#> SRR1120939     3  0.3796     0.6120 0.000 0.000 0.700 0.000 0.300
#> SRR1080117     3  0.3508     0.6206 0.000 0.000 0.748 0.000 0.252
#> SRR1102899     2  0.3210     0.7666 0.000 0.788 0.000 0.000 0.212
#> SRR1091865     1  0.6211     0.5173 0.572 0.156 0.000 0.008 0.264
#> SRR1361072     1  0.0404     0.8707 0.988 0.000 0.000 0.000 0.012
#> SRR1487890     1  0.0290     0.8698 0.992 0.000 0.000 0.000 0.008
#> SRR1349456     5  0.4961    -0.0276 0.000 0.028 0.448 0.000 0.524
#> SRR1389384     1  0.6918     0.2757 0.432 0.216 0.000 0.012 0.340
#> SRR1316096     2  0.0404     0.8347 0.000 0.988 0.000 0.000 0.012
#> SRR1408512     1  0.2570     0.8189 0.888 0.000 0.000 0.028 0.084
#> SRR1447547     3  0.5931    -0.2817 0.000 0.000 0.460 0.436 0.104
#> SRR1354053     2  0.1741     0.8295 0.000 0.936 0.000 0.040 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.2631    0.71665 0.820 0.000 0.000 0.000 0.180 0.000
#> SRR1349562     1  0.0260    0.81318 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1353376     4  0.4410    0.53218 0.000 0.032 0.000 0.724 0.036 0.208
#> SRR1499040     5  0.6874    0.37324 0.376 0.068 0.012 0.000 0.416 0.128
#> SRR1322312     1  0.0146    0.81292 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1324412     3  0.3515   -0.00191 0.000 0.000 0.676 0.000 0.000 0.324
#> SRR1100991     3  0.3892    0.17083 0.020 0.000 0.752 0.000 0.020 0.208
#> SRR1349479     6  0.3907    0.53761 0.000 0.000 0.408 0.004 0.000 0.588
#> SRR1431248     5  0.6285    0.15107 0.172 0.012 0.044 0.192 0.580 0.000
#> SRR1405054     1  0.2006    0.77327 0.904 0.000 0.016 0.000 0.080 0.000
#> SRR1312266     4  0.5868    0.09131 0.168 0.000 0.000 0.428 0.400 0.004
#> SRR1409790     3  0.3707   -0.06063 0.000 0.000 0.680 0.000 0.008 0.312
#> SRR1352507     3  0.2813    0.42279 0.000 0.000 0.864 0.036 0.092 0.008
#> SRR1383763     1  0.0405    0.81369 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1468314     2  0.1124    0.78117 0.000 0.956 0.000 0.000 0.036 0.008
#> SRR1473674     2  0.1082    0.77403 0.000 0.956 0.000 0.000 0.040 0.004
#> SRR1390499     1  0.0713    0.81037 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR821043      4  0.6261    0.22672 0.000 0.184 0.000 0.420 0.020 0.376
#> SRR1455653     2  0.3926    0.68479 0.000 0.768 0.000 0.176 0.040 0.016
#> SRR1335236     2  0.0508    0.78031 0.000 0.984 0.000 0.000 0.012 0.004
#> SRR1095383     4  0.4237    0.60090 0.000 0.024 0.020 0.788 0.052 0.116
#> SRR1479489     1  0.0865    0.80724 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1310433     2  0.1370    0.77689 0.000 0.948 0.000 0.004 0.036 0.012
#> SRR1073435     3  0.7739    0.11586 0.000 0.144 0.424 0.036 0.140 0.256
#> SRR659649      3  0.4557    0.37700 0.000 0.000 0.660 0.000 0.268 0.072
#> SRR1395999     1  0.2250    0.78197 0.888 0.000 0.000 0.000 0.092 0.020
#> SRR1105248     4  0.0964    0.67241 0.000 0.004 0.000 0.968 0.012 0.016
#> SRR1338257     1  0.4680    0.17684 0.524 0.000 0.028 0.008 0.440 0.000
#> SRR1499395     3  0.5250    0.15039 0.000 0.000 0.540 0.000 0.108 0.352
#> SRR1350002     2  0.1285    0.77001 0.000 0.944 0.000 0.000 0.052 0.004
#> SRR1489757     3  0.3014    0.21754 0.000 0.000 0.804 0.000 0.012 0.184
#> SRR1414637     2  0.5509    0.43641 0.000 0.540 0.000 0.000 0.300 0.160
#> SRR1478113     4  0.1152    0.67555 0.000 0.004 0.000 0.952 0.044 0.000
#> SRR1322477     4  0.5535    0.32808 0.172 0.000 0.000 0.572 0.252 0.004
#> SRR1478789     3  0.5992    0.35169 0.000 0.024 0.564 0.004 0.160 0.248
#> SRR1414185     6  0.6444    0.33912 0.000 0.000 0.164 0.216 0.076 0.544
#> SRR1069141     2  0.0363    0.77967 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1376852     1  0.2340    0.71162 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1323491     1  0.0146    0.81292 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1338103     1  0.7190   -0.19063 0.420 0.000 0.096 0.004 0.196 0.284
#> SRR1472012     1  0.6277   -0.35438 0.412 0.000 0.024 0.000 0.392 0.172
#> SRR1340325     1  0.1958    0.77834 0.896 0.000 0.000 0.000 0.100 0.004
#> SRR1087321     3  0.4338    0.37789 0.000 0.000 0.716 0.004 0.072 0.208
#> SRR1488790     1  0.0000    0.81338 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1334866     5  0.7735   -0.01948 0.000 0.144 0.208 0.012 0.340 0.296
#> SRR1089446     6  0.3789    0.53389 0.000 0.000 0.416 0.000 0.000 0.584
#> SRR1344445     3  0.2909    0.41941 0.000 0.000 0.836 0.000 0.136 0.028
#> SRR1412969     6  0.4436    0.47006 0.000 0.000 0.324 0.004 0.036 0.636
#> SRR1071668     3  0.2538    0.34009 0.000 0.000 0.860 0.000 0.016 0.124
#> SRR1075804     1  0.2277    0.78309 0.892 0.000 0.000 0.032 0.076 0.000
#> SRR1383283     2  0.6771    0.49071 0.000 0.524 0.040 0.032 0.156 0.248
#> SRR1350239     4  0.6412    0.45787 0.000 0.000 0.124 0.564 0.200 0.112
#> SRR1353878     1  0.2664    0.70784 0.816 0.000 0.000 0.000 0.184 0.000
#> SRR1375721     1  0.0405    0.81098 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1083983     1  0.5171    0.02903 0.560 0.000 0.000 0.000 0.336 0.104
#> SRR1090095     1  0.0000    0.81338 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0790    0.80850 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR1075102     4  0.1219    0.67382 0.000 0.004 0.000 0.948 0.048 0.000
#> SRR1098737     4  0.6755   -0.02364 0.308 0.000 0.032 0.400 0.256 0.004
#> SRR1349409     1  0.0146    0.81292 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1413008     4  0.5791    0.52910 0.000 0.000 0.088 0.632 0.188 0.092
#> SRR1407179     3  0.7432   -0.12601 0.232 0.000 0.404 0.004 0.132 0.228
#> SRR1095913     2  0.6365    0.51058 0.000 0.544 0.096 0.000 0.104 0.256
#> SRR1403544     1  0.0146    0.81292 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1490546     1  0.4009    0.53890 0.684 0.000 0.000 0.028 0.288 0.000
#> SRR807971      3  0.0363    0.44383 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1436228     2  0.6801    0.45351 0.040 0.524 0.020 0.004 0.204 0.208
#> SRR1445218     2  0.1857    0.77183 0.000 0.924 0.000 0.004 0.044 0.028
#> SRR1485438     2  0.3938    0.69083 0.000 0.784 0.008 0.004 0.136 0.068
#> SRR1358143     1  0.0146    0.81292 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1328760     1  0.3772    0.50264 0.672 0.000 0.000 0.004 0.320 0.004
#> SRR1380806     1  0.0000    0.81338 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.6796    0.23961 0.000 0.000 0.432 0.056 0.224 0.288
#> SRR1087007     3  0.5542    0.31535 0.000 0.000 0.560 0.020 0.096 0.324
#> SRR1086256     2  0.4952    0.63272 0.000 0.672 0.000 0.008 0.132 0.188
#> SRR1346734     4  0.0508    0.67460 0.000 0.004 0.000 0.984 0.000 0.012
#> SRR1414515     1  0.1643    0.76780 0.924 0.000 0.000 0.000 0.068 0.008
#> SRR1082151     2  0.3445    0.60233 0.000 0.732 0.000 0.000 0.260 0.008
#> SRR1349320     4  0.1082    0.67597 0.000 0.004 0.000 0.956 0.040 0.000
#> SRR1317554     4  0.6487    0.25987 0.000 0.240 0.000 0.528 0.072 0.160
#> SRR1076022     2  0.3997    0.69934 0.000 0.760 0.000 0.000 0.108 0.132
#> SRR1339573     3  0.2815    0.42494 0.000 0.000 0.848 0.000 0.032 0.120
#> SRR1455878     1  0.3893    0.64825 0.744 0.000 0.016 0.000 0.220 0.020
#> SRR1446203     3  0.1082    0.44804 0.000 0.000 0.956 0.000 0.004 0.040
#> SRR1387397     1  0.3966    0.67816 0.772 0.000 0.008 0.000 0.148 0.072
#> SRR1402590     1  0.0146    0.81326 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1317532     1  0.5324    0.29092 0.588 0.000 0.000 0.280 0.128 0.004
#> SRR1331488     4  0.1003    0.67598 0.004 0.000 0.000 0.964 0.028 0.004
#> SRR1499675     6  0.4893    0.34690 0.004 0.000 0.224 0.000 0.112 0.660
#> SRR1440467     6  0.3782    0.53560 0.000 0.000 0.412 0.000 0.000 0.588
#> SRR807995      2  0.1152    0.77333 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1476485     4  0.0291    0.67559 0.000 0.004 0.000 0.992 0.000 0.004
#> SRR1388214     1  0.3770    0.65426 0.752 0.000 0.000 0.032 0.212 0.004
#> SRR1456051     1  0.1863    0.77920 0.896 0.000 0.000 0.000 0.104 0.000
#> SRR1473275     3  0.6185    0.37375 0.056 0.000 0.584 0.004 0.152 0.204
#> SRR1444083     1  0.5746   -0.05117 0.448 0.000 0.016 0.108 0.428 0.000
#> SRR1313807     4  0.7851    0.17889 0.000 0.028 0.224 0.384 0.128 0.236
#> SRR1470751     2  0.3575    0.57472 0.000 0.708 0.000 0.000 0.284 0.008
#> SRR1403434     6  0.3782    0.53560 0.000 0.000 0.412 0.000 0.000 0.588
#> SRR1390540     1  0.1858    0.75629 0.912 0.000 0.000 0.000 0.076 0.012
#> SRR1093861     2  0.0291    0.78128 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1325290     5  0.7187    0.36858 0.284 0.000 0.100 0.000 0.396 0.220
#> SRR1070689     1  0.0000    0.81338 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.1606    0.78238 0.932 0.000 0.000 0.056 0.004 0.008
#> SRR1081184     1  0.0000    0.81338 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0146    0.81326 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1365313     6  0.7693   -0.21281 0.032 0.056 0.300 0.004 0.292 0.316
#> SRR1321877     3  0.5224    0.37047 0.000 0.000 0.608 0.000 0.164 0.228
#> SRR815711      6  0.3789    0.53389 0.000 0.000 0.416 0.000 0.000 0.584
#> SRR1433476     6  0.4835    0.51304 0.000 0.000 0.336 0.072 0.000 0.592
#> SRR1101883     3  0.1921    0.43978 0.000 0.000 0.916 0.000 0.052 0.032
#> SRR1433729     6  0.8440   -0.19259 0.000 0.248 0.260 0.060 0.160 0.272
#> SRR1341877     1  0.6971    0.06658 0.536 0.000 0.080 0.028 0.196 0.160
#> SRR1090556     5  0.7690    0.20736 0.348 0.028 0.128 0.056 0.404 0.036
#> SRR1357389     3  0.3547   -0.05161 0.000 0.000 0.668 0.000 0.000 0.332
#> SRR1404227     3  0.5638    0.26776 0.000 0.000 0.504 0.004 0.140 0.352
#> SRR1376830     1  0.1141    0.80218 0.948 0.000 0.000 0.000 0.052 0.000
#> SRR1500661     1  0.0146    0.81292 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1080294     3  0.8347    0.02349 0.000 0.244 0.332 0.124 0.072 0.228
#> SRR1336314     2  0.5514    0.02877 0.000 0.464 0.000 0.420 0.112 0.004
#> SRR1102152     2  0.2122    0.72254 0.076 0.900 0.000 0.000 0.024 0.000
#> SRR1345244     3  0.4582    0.36624 0.000 0.000 0.684 0.000 0.100 0.216
#> SRR1478637     5  0.6757    0.15442 0.004 0.268 0.052 0.000 0.468 0.208
#> SRR1443776     3  0.5597    0.37103 0.000 0.000 0.568 0.004 0.224 0.204
#> SRR1120939     3  0.1967    0.42216 0.000 0.000 0.904 0.000 0.012 0.084
#> SRR1080117     3  0.4768    0.35224 0.000 0.000 0.668 0.008 0.080 0.244
#> SRR1102899     2  0.4321    0.70001 0.000 0.760 0.004 0.016 0.080 0.140
#> SRR1091865     5  0.6033    0.30732 0.352 0.212 0.000 0.000 0.432 0.004
#> SRR1361072     1  0.0777    0.81166 0.972 0.000 0.000 0.000 0.024 0.004
#> SRR1487890     1  0.0260    0.81193 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1349456     3  0.6464    0.24245 0.000 0.012 0.388 0.004 0.256 0.340
#> SRR1389384     5  0.6997    0.43673 0.168 0.216 0.008 0.004 0.512 0.092
#> SRR1316096     2  0.0291    0.78098 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1408512     1  0.3953    0.65817 0.800 0.000 0.000 0.052 0.048 0.100
#> SRR1447547     6  0.7240    0.21524 0.000 0.000 0.176 0.240 0.152 0.432
#> SRR1354053     2  0.1503    0.77997 0.000 0.944 0.000 0.016 0.032 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.313           0.701       0.853         0.4232 0.515   0.515
#> 3 3 0.334           0.543       0.783         0.3208 0.864   0.749
#> 4 4 0.474           0.663       0.820         0.1382 0.816   0.621
#> 5 5 0.518           0.623       0.794         0.0775 0.963   0.900
#> 6 6 0.563           0.488       0.734         0.0723 0.942   0.831

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000     0.8578 1.000 0.000
#> SRR1349562     1  0.0000     0.8578 1.000 0.000
#> SRR1353376     2  0.8207     0.6617 0.256 0.744
#> SRR1499040     1  0.5059     0.8144 0.888 0.112
#> SRR1322312     1  0.0000     0.8578 1.000 0.000
#> SRR1324412     1  0.8081     0.6129 0.752 0.248
#> SRR1100991     1  0.8081     0.6129 0.752 0.248
#> SRR1349479     2  0.8207     0.6617 0.256 0.744
#> SRR1431248     1  0.6801     0.7529 0.820 0.180
#> SRR1405054     1  0.7674     0.6590 0.776 0.224
#> SRR1312266     1  0.0000     0.8578 1.000 0.000
#> SRR1409790     1  0.8081     0.6129 0.752 0.248
#> SRR1352507     1  0.8081     0.6129 0.752 0.248
#> SRR1383763     1  0.0000     0.8578 1.000 0.000
#> SRR1468314     2  0.3733     0.7094 0.072 0.928
#> SRR1473674     2  0.0376     0.7131 0.004 0.996
#> SRR1390499     1  0.0000     0.8578 1.000 0.000
#> SRR821043      2  0.0000     0.7110 0.000 1.000
#> SRR1455653     2  0.0000     0.7110 0.000 1.000
#> SRR1335236     2  0.0376     0.7131 0.004 0.996
#> SRR1095383     2  0.0000     0.7110 0.000 1.000
#> SRR1479489     1  0.1843     0.8509 0.972 0.028
#> SRR1310433     2  0.0376     0.7131 0.004 0.996
#> SRR1073435     2  0.9358     0.5890 0.352 0.648
#> SRR659649      2  0.9933     0.4173 0.452 0.548
#> SRR1395999     1  0.1414     0.8549 0.980 0.020
#> SRR1105248     2  0.9635     0.5317 0.388 0.612
#> SRR1338257     1  0.0376     0.8579 0.996 0.004
#> SRR1499395     2  0.9988     0.3254 0.480 0.520
#> SRR1350002     2  0.0376     0.7131 0.004 0.996
#> SRR1489757     1  0.8081     0.6129 0.752 0.248
#> SRR1414637     1  0.6801     0.7504 0.820 0.180
#> SRR1478113     2  0.3431     0.7093 0.064 0.936
#> SRR1322477     1  0.5294     0.8129 0.880 0.120
#> SRR1478789     2  0.9933     0.4173 0.452 0.548
#> SRR1414185     2  0.9933     0.4173 0.452 0.548
#> SRR1069141     2  0.0376     0.7131 0.004 0.996
#> SRR1376852     1  0.2043     0.8507 0.968 0.032
#> SRR1323491     1  0.0000     0.8578 1.000 0.000
#> SRR1338103     1  0.6973     0.7377 0.812 0.188
#> SRR1472012     1  0.5629     0.8016 0.868 0.132
#> SRR1340325     1  0.0376     0.8579 0.996 0.004
#> SRR1087321     2  0.9933     0.4173 0.452 0.548
#> SRR1488790     1  0.0000     0.8578 1.000 0.000
#> SRR1334866     1  0.6438     0.7692 0.836 0.164
#> SRR1089446     1  0.7674     0.6690 0.776 0.224
#> SRR1344445     1  0.8861     0.5016 0.696 0.304
#> SRR1412969     2  0.9933     0.4173 0.452 0.548
#> SRR1071668     1  0.8016     0.6231 0.756 0.244
#> SRR1075804     1  0.1414     0.8563 0.980 0.020
#> SRR1383283     2  0.9358     0.5890 0.352 0.648
#> SRR1350239     2  0.9686     0.5178 0.396 0.604
#> SRR1353878     1  0.0000     0.8578 1.000 0.000
#> SRR1375721     1  0.0000     0.8578 1.000 0.000
#> SRR1083983     1  0.5737     0.7975 0.864 0.136
#> SRR1090095     1  0.0000     0.8578 1.000 0.000
#> SRR1414792     1  0.0000     0.8578 1.000 0.000
#> SRR1075102     2  0.3431     0.7093 0.064 0.936
#> SRR1098737     1  0.1414     0.8563 0.980 0.020
#> SRR1349409     1  0.0000     0.8578 1.000 0.000
#> SRR1413008     2  0.9686     0.5178 0.396 0.604
#> SRR1407179     1  0.8443     0.6018 0.728 0.272
#> SRR1095913     2  0.9358     0.5880 0.352 0.648
#> SRR1403544     1  0.0000     0.8578 1.000 0.000
#> SRR1490546     1  0.0000     0.8578 1.000 0.000
#> SRR807971      1  0.8861     0.5016 0.696 0.304
#> SRR1436228     1  0.8267     0.6337 0.740 0.260
#> SRR1445218     2  0.0376     0.7131 0.004 0.996
#> SRR1485438     2  0.0376     0.7131 0.004 0.996
#> SRR1358143     1  0.0000     0.8578 1.000 0.000
#> SRR1328760     1  0.0000     0.8578 1.000 0.000
#> SRR1380806     1  0.0000     0.8578 1.000 0.000
#> SRR1379426     2  0.9933     0.4173 0.452 0.548
#> SRR1087007     2  0.9933     0.4173 0.452 0.548
#> SRR1086256     1  0.6887     0.7453 0.816 0.184
#> SRR1346734     2  0.0000     0.7110 0.000 1.000
#> SRR1414515     1  0.0000     0.8578 1.000 0.000
#> SRR1082151     1  0.4815     0.8167 0.896 0.104
#> SRR1349320     2  0.3431     0.7093 0.064 0.936
#> SRR1317554     2  0.0000     0.7110 0.000 1.000
#> SRR1076022     2  0.0376     0.7131 0.004 0.996
#> SRR1339573     1  0.9944    -0.0781 0.544 0.456
#> SRR1455878     1  0.1843     0.8533 0.972 0.028
#> SRR1446203     2  0.9933     0.4173 0.452 0.548
#> SRR1387397     1  0.5737     0.8015 0.864 0.136
#> SRR1402590     1  0.0000     0.8578 1.000 0.000
#> SRR1317532     1  0.1184     0.8568 0.984 0.016
#> SRR1331488     1  0.0938     0.8569 0.988 0.012
#> SRR1499675     1  0.6973     0.7377 0.812 0.188
#> SRR1440467     2  0.8327     0.6576 0.264 0.736
#> SRR807995      2  0.0376     0.7131 0.004 0.996
#> SRR1476485     2  0.0000     0.7110 0.000 1.000
#> SRR1388214     1  0.0672     0.8577 0.992 0.008
#> SRR1456051     1  0.0000     0.8578 1.000 0.000
#> SRR1473275     1  0.9732     0.1631 0.596 0.404
#> SRR1444083     1  0.0376     0.8579 0.996 0.004
#> SRR1313807     2  0.9248     0.6007 0.340 0.660
#> SRR1470751     1  0.4815     0.8167 0.896 0.104
#> SRR1403434     2  0.8763     0.6371 0.296 0.704
#> SRR1390540     1  0.0000     0.8578 1.000 0.000
#> SRR1093861     2  0.0376     0.7131 0.004 0.996
#> SRR1325290     1  0.5629     0.8016 0.868 0.132
#> SRR1070689     1  0.0000     0.8578 1.000 0.000
#> SRR1384049     1  0.0000     0.8578 1.000 0.000
#> SRR1081184     1  0.0000     0.8578 1.000 0.000
#> SRR1324295     1  0.0000     0.8578 1.000 0.000
#> SRR1365313     1  0.8861     0.5270 0.696 0.304
#> SRR1321877     2  0.9933     0.4173 0.452 0.548
#> SRR815711      1  0.7883     0.6384 0.764 0.236
#> SRR1433476     2  0.8207     0.6617 0.256 0.744
#> SRR1101883     1  0.8861     0.5016 0.696 0.304
#> SRR1433729     2  0.8386     0.6519 0.268 0.732
#> SRR1341877     1  0.6973     0.7377 0.812 0.188
#> SRR1090556     1  0.7299     0.7191 0.796 0.204
#> SRR1357389     1  0.8207     0.5980 0.744 0.256
#> SRR1404227     2  0.9358     0.5880 0.352 0.648
#> SRR1376830     1  0.0000     0.8578 1.000 0.000
#> SRR1500661     1  0.0000     0.8578 1.000 0.000
#> SRR1080294     2  0.0000     0.7110 0.000 1.000
#> SRR1336314     2  0.0000     0.7110 0.000 1.000
#> SRR1102152     1  0.0938     0.8568 0.988 0.012
#> SRR1345244     2  0.9933     0.4173 0.452 0.548
#> SRR1478637     1  0.6148     0.7792 0.848 0.152
#> SRR1443776     2  0.9933     0.4173 0.452 0.548
#> SRR1120939     2  0.9933     0.4173 0.452 0.548
#> SRR1080117     2  0.9933     0.4173 0.452 0.548
#> SRR1102899     2  0.0376     0.7131 0.004 0.996
#> SRR1091865     1  0.1184     0.8566 0.984 0.016
#> SRR1361072     1  0.0000     0.8578 1.000 0.000
#> SRR1487890     1  0.0000     0.8578 1.000 0.000
#> SRR1349456     2  0.9358     0.5880 0.352 0.648
#> SRR1389384     1  0.4815     0.8167 0.896 0.104
#> SRR1316096     2  0.0376     0.7131 0.004 0.996
#> SRR1408512     1  0.4431     0.8289 0.908 0.092
#> SRR1447547     2  0.9635     0.5301 0.388 0.612
#> SRR1354053     2  0.0000     0.7110 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1349562     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1353376     3  0.4555    0.52187 0.000 0.200 0.800
#> SRR1499040     1  0.5497    0.64144 0.708 0.000 0.292
#> SRR1322312     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1324412     1  0.6295    0.18450 0.528 0.000 0.472
#> SRR1100991     1  0.6295    0.18450 0.528 0.000 0.472
#> SRR1349479     3  0.4504    0.52246 0.000 0.196 0.804
#> SRR1431248     1  0.6282    0.51859 0.612 0.004 0.384
#> SRR1405054     1  0.6215    0.30627 0.572 0.000 0.428
#> SRR1312266     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1409790     1  0.6295    0.18450 0.528 0.000 0.472
#> SRR1352507     1  0.6295    0.18450 0.528 0.000 0.472
#> SRR1383763     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1468314     3  0.6252   -0.21174 0.000 0.444 0.556
#> SRR1473674     3  0.6045   -0.15241 0.000 0.380 0.620
#> SRR1390499     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR821043      2  0.0424    0.83249 0.000 0.992 0.008
#> SRR1455653     2  0.2165    0.82405 0.000 0.936 0.064
#> SRR1335236     3  0.6244   -0.26667 0.000 0.440 0.560
#> SRR1095383     2  0.5216    0.63219 0.000 0.740 0.260
#> SRR1479489     1  0.2711    0.76509 0.912 0.000 0.088
#> SRR1310433     3  0.6252   -0.27564 0.000 0.444 0.556
#> SRR1073435     3  0.5663    0.63643 0.096 0.096 0.808
#> SRR659649      3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1395999     1  0.1860    0.77023 0.948 0.000 0.052
#> SRR1105248     3  0.7653    0.58845 0.140 0.176 0.684
#> SRR1338257     1  0.2537    0.76838 0.920 0.000 0.080
#> SRR1499395     3  0.4796    0.59526 0.220 0.000 0.780
#> SRR1350002     3  0.5882   -0.09455 0.000 0.348 0.652
#> SRR1489757     1  0.6295    0.18450 0.528 0.000 0.472
#> SRR1414637     1  0.6434    0.52573 0.612 0.008 0.380
#> SRR1478113     2  0.4326    0.75055 0.012 0.844 0.144
#> SRR1322477     1  0.5178    0.67263 0.744 0.000 0.256
#> SRR1478789     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1414185     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1069141     3  0.6244   -0.26667 0.000 0.440 0.560
#> SRR1376852     1  0.3412    0.75385 0.876 0.000 0.124
#> SRR1323491     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1338103     1  0.6026    0.52847 0.624 0.000 0.376
#> SRR1472012     1  0.5835    0.59127 0.660 0.000 0.340
#> SRR1340325     1  0.2796    0.76502 0.908 0.000 0.092
#> SRR1087321     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1488790     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1334866     1  0.6209    0.55188 0.628 0.004 0.368
#> SRR1089446     1  0.6641    0.27158 0.544 0.008 0.448
#> SRR1344445     3  0.6280    0.00686 0.460 0.000 0.540
#> SRR1412969     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1071668     1  0.6291    0.20385 0.532 0.000 0.468
#> SRR1075804     1  0.2711    0.76759 0.912 0.000 0.088
#> SRR1383283     3  0.5663    0.63643 0.096 0.096 0.808
#> SRR1350239     3  0.7917    0.57625 0.152 0.184 0.664
#> SRR1353878     1  0.1411    0.77501 0.964 0.000 0.036
#> SRR1375721     1  0.0237    0.77514 0.996 0.000 0.004
#> SRR1083983     1  0.5859    0.58459 0.656 0.000 0.344
#> SRR1090095     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1414792     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1075102     2  0.4326    0.75055 0.012 0.844 0.144
#> SRR1098737     1  0.2711    0.76759 0.912 0.000 0.088
#> SRR1349409     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1413008     3  0.7917    0.57625 0.152 0.184 0.664
#> SRR1407179     1  0.6307    0.28390 0.512 0.000 0.488
#> SRR1095913     3  0.5965    0.63936 0.108 0.100 0.792
#> SRR1403544     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1490546     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR807971      3  0.6280    0.00686 0.460 0.000 0.540
#> SRR1436228     1  0.6505    0.33177 0.528 0.004 0.468
#> SRR1445218     3  0.6252   -0.27564 0.000 0.444 0.556
#> SRR1485438     3  0.5882   -0.09455 0.000 0.348 0.652
#> SRR1358143     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1328760     1  0.1411    0.77501 0.964 0.000 0.036
#> SRR1380806     1  0.0237    0.77419 0.996 0.000 0.004
#> SRR1379426     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1087007     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1086256     1  0.6451    0.51816 0.608 0.008 0.384
#> SRR1346734     2  0.0424    0.83249 0.000 0.992 0.008
#> SRR1414515     1  0.0237    0.77514 0.996 0.000 0.004
#> SRR1082151     1  0.5397    0.65266 0.720 0.000 0.280
#> SRR1349320     2  0.4326    0.75055 0.012 0.844 0.144
#> SRR1317554     2  0.0592    0.83280 0.000 0.988 0.012
#> SRR1076022     3  0.6291   -0.28874 0.000 0.468 0.532
#> SRR1339573     3  0.5465    0.47585 0.288 0.000 0.712
#> SRR1455878     1  0.3482    0.75364 0.872 0.000 0.128
#> SRR1446203     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1387397     1  0.5650    0.62616 0.688 0.000 0.312
#> SRR1402590     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1317532     1  0.2796    0.76718 0.908 0.000 0.092
#> SRR1331488     1  0.0661    0.77184 0.988 0.008 0.004
#> SRR1499675     1  0.6026    0.52847 0.624 0.000 0.376
#> SRR1440467     3  0.4399    0.52939 0.000 0.188 0.812
#> SRR807995      3  0.5926   -0.11025 0.000 0.356 0.644
#> SRR1476485     2  0.0424    0.83249 0.000 0.992 0.008
#> SRR1388214     1  0.3116    0.75957 0.892 0.000 0.108
#> SRR1456051     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1473275     3  0.5926    0.33456 0.356 0.000 0.644
#> SRR1444083     1  0.2537    0.76827 0.920 0.000 0.080
#> SRR1313807     3  0.5961    0.63022 0.096 0.112 0.792
#> SRR1470751     1  0.5397    0.65266 0.720 0.000 0.280
#> SRR1403434     3  0.5119    0.57712 0.032 0.152 0.816
#> SRR1390540     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1093861     3  0.6111   -0.18111 0.000 0.396 0.604
#> SRR1325290     1  0.5835    0.59127 0.660 0.000 0.340
#> SRR1070689     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1384049     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1081184     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1324295     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1365313     3  0.6516   -0.20155 0.480 0.004 0.516
#> SRR1321877     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR815711      1  0.6280    0.22983 0.540 0.000 0.460
#> SRR1433476     3  0.4555    0.52187 0.000 0.200 0.800
#> SRR1101883     3  0.6280    0.00686 0.460 0.000 0.540
#> SRR1433729     3  0.7295    0.51157 0.072 0.252 0.676
#> SRR1341877     1  0.6026    0.52847 0.624 0.000 0.376
#> SRR1090556     1  0.6154    0.48233 0.592 0.000 0.408
#> SRR1357389     1  0.6302    0.16031 0.520 0.000 0.480
#> SRR1404227     3  0.5965    0.63936 0.108 0.100 0.792
#> SRR1376830     1  0.0237    0.77514 0.996 0.000 0.004
#> SRR1500661     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1080294     2  0.5216    0.63219 0.000 0.740 0.260
#> SRR1336314     2  0.0424    0.83249 0.000 0.992 0.008
#> SRR1102152     1  0.3340    0.75487 0.880 0.000 0.120
#> SRR1345244     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1478637     1  0.6169    0.55908 0.636 0.004 0.360
#> SRR1443776     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1120939     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1080117     3  0.4399    0.63796 0.188 0.000 0.812
#> SRR1102899     2  0.6260    0.30214 0.000 0.552 0.448
#> SRR1091865     1  0.2625    0.76866 0.916 0.000 0.084
#> SRR1361072     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1487890     1  0.0000    0.77468 1.000 0.000 0.000
#> SRR1349456     3  0.5965    0.63936 0.108 0.100 0.792
#> SRR1389384     1  0.5397    0.65266 0.720 0.000 0.280
#> SRR1316096     3  0.6140   -0.19650 0.000 0.404 0.596
#> SRR1408512     1  0.4887    0.69698 0.772 0.000 0.228
#> SRR1447547     3  0.7909    0.57444 0.148 0.188 0.664
#> SRR1354053     2  0.2261    0.82312 0.000 0.932 0.068

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1349562     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1353376     3  0.4079     0.6040 0.000 0.020 0.800 0.180
#> SRR1499040     1  0.6323     0.4838 0.592 0.012 0.348 0.048
#> SRR1322312     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1324412     3  0.4761     0.4804 0.372 0.000 0.628 0.000
#> SRR1100991     3  0.4761     0.4804 0.372 0.000 0.628 0.000
#> SRR1349479     3  0.3881     0.6084 0.000 0.016 0.812 0.172
#> SRR1431248     1  0.6519     0.3592 0.548 0.012 0.388 0.052
#> SRR1405054     3  0.4961     0.2974 0.448 0.000 0.552 0.000
#> SRR1312266     1  0.0000     0.8119 1.000 0.000 0.000 0.000
#> SRR1409790     3  0.4761     0.4804 0.372 0.000 0.628 0.000
#> SRR1352507     3  0.4761     0.4804 0.372 0.000 0.628 0.000
#> SRR1383763     1  0.3025     0.7500 0.896 0.044 0.056 0.004
#> SRR1468314     2  0.5452     0.6641 0.000 0.736 0.156 0.108
#> SRR1473674     2  0.2730     0.8220 0.000 0.896 0.088 0.016
#> SRR1390499     1  0.0188     0.8119 0.996 0.004 0.000 0.000
#> SRR821043      4  0.2868     0.8276 0.000 0.136 0.000 0.864
#> SRR1455653     4  0.4877     0.6274 0.000 0.328 0.008 0.664
#> SRR1335236     2  0.2586     0.8265 0.000 0.912 0.048 0.040
#> SRR1095383     2  0.5881     0.1084 0.000 0.544 0.036 0.420
#> SRR1479489     1  0.2281     0.7882 0.904 0.000 0.096 0.000
#> SRR1310433     2  0.2675     0.8256 0.000 0.908 0.048 0.044
#> SRR1073435     3  0.4990     0.6446 0.032 0.100 0.804 0.064
#> SRR659649      3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1395999     1  0.1722     0.8045 0.944 0.000 0.048 0.008
#> SRR1105248     3  0.5166     0.6628 0.080 0.004 0.764 0.152
#> SRR1338257     1  0.2281     0.7878 0.904 0.000 0.096 0.000
#> SRR1499395     3  0.1978     0.7372 0.068 0.004 0.928 0.000
#> SRR1350002     2  0.3525     0.8015 0.000 0.860 0.100 0.040
#> SRR1489757     3  0.4761     0.4804 0.372 0.000 0.628 0.000
#> SRR1414637     1  0.7105     0.4315 0.556 0.020 0.336 0.088
#> SRR1478113     4  0.2352     0.7849 0.012 0.016 0.044 0.928
#> SRR1322477     1  0.5281     0.6411 0.716 0.008 0.244 0.032
#> SRR1478789     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1414185     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1069141     2  0.2586     0.8265 0.000 0.912 0.048 0.040
#> SRR1376852     1  0.3142     0.7703 0.860 0.000 0.132 0.008
#> SRR1323491     1  0.0188     0.8120 0.996 0.000 0.000 0.004
#> SRR1338103     1  0.5482     0.3657 0.572 0.004 0.412 0.012
#> SRR1472012     1  0.6235     0.4623 0.588 0.008 0.356 0.048
#> SRR1340325     1  0.2530     0.7793 0.888 0.000 0.112 0.000
#> SRR1087321     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1488790     1  0.0188     0.8120 0.996 0.000 0.000 0.004
#> SRR1334866     1  0.6838     0.4564 0.572 0.016 0.336 0.076
#> SRR1089446     3  0.5244     0.3171 0.436 0.000 0.556 0.008
#> SRR1344445     3  0.4431     0.5751 0.304 0.000 0.696 0.000
#> SRR1412969     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1071668     3  0.4877     0.4090 0.408 0.000 0.592 0.000
#> SRR1075804     1  0.2773     0.7836 0.880 0.000 0.116 0.004
#> SRR1383283     3  0.4990     0.6446 0.032 0.100 0.804 0.064
#> SRR1350239     3  0.5477     0.6437 0.092 0.000 0.728 0.180
#> SRR1353878     1  0.1302     0.8068 0.956 0.000 0.044 0.000
#> SRR1375721     1  0.0564     0.8125 0.988 0.004 0.004 0.004
#> SRR1083983     1  0.6158     0.4610 0.592 0.004 0.352 0.052
#> SRR1090095     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1414792     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1075102     4  0.2352     0.7849 0.012 0.016 0.044 0.928
#> SRR1098737     1  0.2773     0.7836 0.880 0.000 0.116 0.004
#> SRR1349409     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1413008     3  0.5477     0.6437 0.092 0.000 0.728 0.180
#> SRR1407179     3  0.5778     0.0360 0.444 0.008 0.532 0.016
#> SRR1095913     3  0.4914     0.6390 0.032 0.116 0.804 0.048
#> SRR1403544     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1490546     1  0.0000     0.8119 1.000 0.000 0.000 0.000
#> SRR807971      3  0.4431     0.5751 0.304 0.000 0.696 0.000
#> SRR1436228     3  0.5909    -0.0281 0.460 0.012 0.512 0.016
#> SRR1445218     2  0.2675     0.8256 0.000 0.908 0.048 0.044
#> SRR1485438     2  0.3525     0.8015 0.000 0.860 0.100 0.040
#> SRR1358143     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1328760     1  0.1302     0.8068 0.956 0.000 0.044 0.000
#> SRR1380806     1  0.0712     0.8117 0.984 0.004 0.008 0.004
#> SRR1379426     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1087007     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1086256     1  0.7119     0.4221 0.552 0.020 0.340 0.088
#> SRR1346734     4  0.2216     0.8385 0.000 0.092 0.000 0.908
#> SRR1414515     1  0.0564     0.8125 0.988 0.004 0.004 0.004
#> SRR1082151     1  0.5837     0.5929 0.668 0.008 0.276 0.048
#> SRR1349320     4  0.2352     0.7849 0.012 0.016 0.044 0.928
#> SRR1317554     4  0.3688     0.7875 0.000 0.208 0.000 0.792
#> SRR1076022     2  0.3168     0.8189 0.000 0.884 0.060 0.056
#> SRR1339573     3  0.3052     0.7205 0.136 0.004 0.860 0.000
#> SRR1455878     1  0.3249     0.7657 0.852 0.000 0.140 0.008
#> SRR1446203     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1387397     1  0.5378     0.5038 0.632 0.004 0.348 0.016
#> SRR1402590     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1317532     1  0.2654     0.7870 0.888 0.000 0.108 0.004
#> SRR1331488     1  0.0927     0.8113 0.976 0.000 0.016 0.008
#> SRR1499675     1  0.5375     0.3593 0.572 0.004 0.416 0.008
#> SRR1440467     3  0.3790     0.6166 0.000 0.016 0.820 0.164
#> SRR807995      2  0.3399     0.8080 0.000 0.868 0.092 0.040
#> SRR1476485     4  0.2216     0.8385 0.000 0.092 0.000 0.908
#> SRR1388214     1  0.3074     0.7517 0.848 0.000 0.152 0.000
#> SRR1456051     1  0.0188     0.8119 0.996 0.004 0.000 0.000
#> SRR1473275     3  0.3791     0.6778 0.200 0.000 0.796 0.004
#> SRR1444083     1  0.2281     0.7876 0.904 0.000 0.096 0.000
#> SRR1313807     3  0.5147     0.6318 0.032 0.116 0.792 0.060
#> SRR1470751     1  0.5837     0.5929 0.668 0.008 0.276 0.048
#> SRR1403434     3  0.3271     0.6477 0.000 0.012 0.856 0.132
#> SRR1390540     1  0.0188     0.8120 0.996 0.000 0.000 0.004
#> SRR1093861     2  0.2266     0.8267 0.000 0.912 0.084 0.004
#> SRR1325290     1  0.6291     0.4653 0.588 0.008 0.352 0.052
#> SRR1070689     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1384049     1  0.3025     0.7500 0.896 0.044 0.056 0.004
#> SRR1081184     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1324295     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1365313     3  0.5614     0.1737 0.412 0.012 0.568 0.008
#> SRR1321877     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR815711      3  0.4898     0.3879 0.416 0.000 0.584 0.000
#> SRR1433476     3  0.4079     0.6040 0.000 0.020 0.800 0.180
#> SRR1101883     3  0.4431     0.5751 0.304 0.000 0.696 0.000
#> SRR1433729     3  0.6396     0.4682 0.016 0.228 0.668 0.088
#> SRR1341877     1  0.5482     0.3657 0.572 0.004 0.412 0.012
#> SRR1090556     1  0.5773     0.2774 0.536 0.008 0.440 0.016
#> SRR1357389     3  0.4730     0.4913 0.364 0.000 0.636 0.000
#> SRR1404227     3  0.4914     0.6390 0.032 0.116 0.804 0.048
#> SRR1376830     1  0.0336     0.8120 0.992 0.000 0.008 0.000
#> SRR1500661     1  0.0376     0.8115 0.992 0.004 0.000 0.004
#> SRR1080294     2  0.5881     0.1084 0.000 0.544 0.036 0.420
#> SRR1336314     4  0.2216     0.8385 0.000 0.092 0.000 0.908
#> SRR1102152     1  0.3266     0.7397 0.832 0.000 0.168 0.000
#> SRR1345244     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1478637     1  0.6674     0.3167 0.520 0.016 0.412 0.052
#> SRR1443776     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1120939     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1080117     3  0.1305     0.7364 0.036 0.004 0.960 0.000
#> SRR1102899     2  0.4462     0.7430 0.000 0.804 0.064 0.132
#> SRR1091865     1  0.2777     0.7829 0.888 0.004 0.104 0.004
#> SRR1361072     1  0.0000     0.8119 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0376     0.8113 0.992 0.004 0.000 0.004
#> SRR1349456     3  0.4914     0.6390 0.032 0.116 0.804 0.048
#> SRR1389384     1  0.5837     0.5929 0.668 0.008 0.276 0.048
#> SRR1316096     2  0.2266     0.8281 0.000 0.912 0.084 0.004
#> SRR1408512     1  0.4631     0.6411 0.728 0.004 0.260 0.008
#> SRR1447547     3  0.5926     0.6240 0.088 0.008 0.704 0.200
#> SRR1354053     4  0.4897     0.6194 0.000 0.332 0.008 0.660

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.1121     0.6580 0.956 0.000 0.000 0.000 0.044
#> SRR1349562     1  0.2424     0.5984 0.868 0.000 0.000 0.000 0.132
#> SRR1353376     3  0.4534     0.6425 0.000 0.016 0.764 0.056 0.164
#> SRR1499040     1  0.6948     0.2891 0.484 0.004 0.268 0.012 0.232
#> SRR1322312     1  0.2648     0.5701 0.848 0.000 0.000 0.000 0.152
#> SRR1324412     3  0.4418     0.5127 0.332 0.000 0.652 0.000 0.016
#> SRR1100991     3  0.4592     0.5059 0.332 0.000 0.644 0.000 0.024
#> SRR1349479     3  0.4361     0.6460 0.000 0.016 0.776 0.048 0.160
#> SRR1431248     1  0.6772     0.4724 0.528 0.008 0.276 0.012 0.176
#> SRR1405054     3  0.5728     0.2145 0.432 0.000 0.484 0.000 0.084
#> SRR1312266     1  0.0404     0.6708 0.988 0.000 0.000 0.000 0.012
#> SRR1409790     3  0.4418     0.5127 0.332 0.000 0.652 0.000 0.016
#> SRR1352507     3  0.4418     0.5127 0.332 0.000 0.652 0.000 0.016
#> SRR1383763     5  0.5624     1.0000 0.320 0.004 0.084 0.000 0.592
#> SRR1468314     2  0.4687     0.6653 0.000 0.772 0.136 0.044 0.048
#> SRR1473674     2  0.2878     0.8342 0.000 0.888 0.048 0.016 0.048
#> SRR1390499     1  0.0880     0.6629 0.968 0.000 0.000 0.000 0.032
#> SRR821043      4  0.3667     0.7717 0.000 0.140 0.000 0.812 0.048
#> SRR1455653     4  0.5185     0.5171 0.000 0.384 0.000 0.568 0.048
#> SRR1335236     2  0.0833     0.8399 0.000 0.976 0.016 0.004 0.004
#> SRR1095383     2  0.5719     0.2993 0.000 0.604 0.004 0.288 0.104
#> SRR1479489     1  0.2359     0.6768 0.904 0.000 0.060 0.000 0.036
#> SRR1310433     2  0.0671     0.8391 0.000 0.980 0.016 0.004 0.000
#> SRR1073435     3  0.4661     0.6595 0.028 0.084 0.776 0.000 0.112
#> SRR659649      3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1395999     1  0.1493     0.6860 0.948 0.000 0.024 0.000 0.028
#> SRR1105248     3  0.5498     0.6632 0.060 0.004 0.732 0.100 0.104
#> SRR1338257     1  0.2325     0.6803 0.904 0.000 0.028 0.000 0.068
#> SRR1499395     3  0.0880     0.7254 0.032 0.000 0.968 0.000 0.000
#> SRR1350002     2  0.3681     0.8138 0.000 0.848 0.052 0.044 0.056
#> SRR1489757     3  0.4418     0.5127 0.332 0.000 0.652 0.000 0.016
#> SRR1414637     1  0.7252     0.4915 0.536 0.008 0.208 0.048 0.200
#> SRR1478113     4  0.2533     0.7758 0.008 0.008 0.000 0.888 0.096
#> SRR1322477     1  0.5340     0.6002 0.700 0.004 0.180 0.008 0.108
#> SRR1478789     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1414185     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1069141     2  0.0833     0.8399 0.000 0.976 0.016 0.004 0.004
#> SRR1376852     1  0.3051     0.6820 0.864 0.000 0.076 0.000 0.060
#> SRR1323491     1  0.0609     0.6721 0.980 0.000 0.000 0.000 0.020
#> SRR1338103     1  0.5933     0.4694 0.556 0.004 0.332 0.000 0.108
#> SRR1472012     1  0.6607     0.4728 0.540 0.004 0.232 0.008 0.216
#> SRR1340325     1  0.2632     0.6780 0.888 0.000 0.040 0.000 0.072
#> SRR1087321     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.0794     0.6649 0.972 0.000 0.000 0.000 0.028
#> SRR1334866     1  0.6949     0.5047 0.552 0.004 0.204 0.036 0.204
#> SRR1089446     3  0.5812     0.1864 0.432 0.000 0.476 0.000 0.092
#> SRR1344445     3  0.4065     0.5853 0.264 0.000 0.720 0.000 0.016
#> SRR1412969     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1071668     3  0.5678     0.3318 0.392 0.000 0.524 0.000 0.084
#> SRR1075804     1  0.3116     0.6822 0.860 0.000 0.064 0.000 0.076
#> SRR1383283     3  0.4661     0.6595 0.028 0.084 0.776 0.000 0.112
#> SRR1350239     3  0.6087     0.6317 0.072 0.004 0.684 0.112 0.128
#> SRR1353878     1  0.1300     0.6832 0.956 0.000 0.016 0.000 0.028
#> SRR1375721     1  0.2561     0.5798 0.856 0.000 0.000 0.000 0.144
#> SRR1083983     1  0.6527     0.5049 0.564 0.004 0.236 0.012 0.184
#> SRR1090095     1  0.2561     0.5774 0.856 0.000 0.000 0.000 0.144
#> SRR1414792     1  0.2471     0.5842 0.864 0.000 0.000 0.000 0.136
#> SRR1075102     4  0.2533     0.7758 0.008 0.008 0.000 0.888 0.096
#> SRR1098737     1  0.3116     0.6822 0.860 0.000 0.064 0.000 0.076
#> SRR1349409     1  0.2648     0.5701 0.848 0.000 0.000 0.000 0.152
#> SRR1413008     3  0.6087     0.6317 0.072 0.004 0.684 0.112 0.128
#> SRR1407179     1  0.6304     0.1873 0.432 0.004 0.432 0.000 0.132
#> SRR1095913     3  0.4671     0.6558 0.028 0.104 0.776 0.000 0.092
#> SRR1403544     1  0.2127     0.6231 0.892 0.000 0.000 0.000 0.108
#> SRR1490546     1  0.0404     0.6711 0.988 0.000 0.000 0.000 0.012
#> SRR807971      3  0.4065     0.5853 0.264 0.000 0.720 0.000 0.016
#> SRR1436228     1  0.6326     0.2434 0.452 0.004 0.408 0.000 0.136
#> SRR1445218     2  0.0671     0.8391 0.000 0.980 0.016 0.004 0.000
#> SRR1485438     2  0.3681     0.8138 0.000 0.848 0.052 0.044 0.056
#> SRR1358143     1  0.2605     0.5733 0.852 0.000 0.000 0.000 0.148
#> SRR1328760     1  0.1300     0.6832 0.956 0.000 0.016 0.000 0.028
#> SRR1380806     1  0.2513     0.6163 0.876 0.000 0.008 0.000 0.116
#> SRR1379426     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1087007     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1086256     1  0.7275     0.4863 0.532 0.008 0.212 0.048 0.200
#> SRR1346734     4  0.1197     0.8077 0.000 0.048 0.000 0.952 0.000
#> SRR1414515     1  0.2329     0.6011 0.876 0.000 0.000 0.000 0.124
#> SRR1082151     1  0.5900     0.5749 0.652 0.004 0.176 0.012 0.156
#> SRR1349320     4  0.2533     0.7758 0.008 0.008 0.000 0.888 0.096
#> SRR1317554     4  0.4615     0.7013 0.000 0.252 0.000 0.700 0.048
#> SRR1076022     2  0.1372     0.8344 0.000 0.956 0.016 0.004 0.024
#> SRR1339573     3  0.2020     0.7022 0.100 0.000 0.900 0.000 0.000
#> SRR1455878     1  0.3354     0.6770 0.844 0.000 0.088 0.000 0.068
#> SRR1446203     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1387397     1  0.5689     0.5336 0.616 0.000 0.248 0.000 0.136
#> SRR1402590     1  0.1121     0.6580 0.956 0.000 0.000 0.000 0.044
#> SRR1317532     1  0.2719     0.6866 0.884 0.000 0.068 0.000 0.048
#> SRR1331488     1  0.1569     0.6782 0.948 0.000 0.012 0.008 0.032
#> SRR1499675     1  0.5844     0.4614 0.556 0.004 0.344 0.000 0.096
#> SRR1440467     3  0.4218     0.6520 0.000 0.016 0.784 0.040 0.160
#> SRR807995      2  0.3537     0.8189 0.000 0.856 0.052 0.040 0.052
#> SRR1476485     4  0.1197     0.8077 0.000 0.048 0.000 0.952 0.000
#> SRR1388214     1  0.3464     0.6648 0.836 0.000 0.068 0.000 0.096
#> SRR1456051     1  0.0794     0.6648 0.972 0.000 0.000 0.000 0.028
#> SRR1473275     3  0.3163     0.6652 0.164 0.000 0.824 0.000 0.012
#> SRR1444083     1  0.2300     0.6793 0.904 0.000 0.024 0.000 0.072
#> SRR1313807     3  0.4825     0.6497 0.028 0.104 0.764 0.000 0.104
#> SRR1470751     1  0.5900     0.5749 0.652 0.004 0.176 0.012 0.156
#> SRR1403434     3  0.3587     0.6782 0.000 0.012 0.824 0.024 0.140
#> SRR1390540     1  0.0510     0.6701 0.984 0.000 0.000 0.000 0.016
#> SRR1093861     2  0.2464     0.8391 0.000 0.904 0.044 0.004 0.048
#> SRR1325290     1  0.6686     0.4729 0.540 0.004 0.228 0.012 0.216
#> SRR1070689     1  0.2424     0.5984 0.868 0.000 0.000 0.000 0.132
#> SRR1384049     5  0.5624     1.0000 0.320 0.004 0.084 0.000 0.592
#> SRR1081184     1  0.2424     0.5984 0.868 0.000 0.000 0.000 0.132
#> SRR1324295     1  0.2179     0.6201 0.888 0.000 0.000 0.000 0.112
#> SRR1365313     3  0.6125    -0.0763 0.404 0.004 0.480 0.000 0.112
#> SRR1321877     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR815711      3  0.5697     0.2978 0.404 0.000 0.512 0.000 0.084
#> SRR1433476     3  0.4506     0.6426 0.000 0.016 0.764 0.052 0.168
#> SRR1101883     3  0.4157     0.5829 0.264 0.000 0.716 0.000 0.020
#> SRR1433729     3  0.5995     0.5190 0.012 0.220 0.640 0.008 0.120
#> SRR1341877     1  0.5933     0.4694 0.556 0.004 0.332 0.000 0.108
#> SRR1090556     1  0.6192     0.4277 0.520 0.004 0.344 0.000 0.132
#> SRR1357389     3  0.5203     0.4735 0.332 0.000 0.608 0.000 0.060
#> SRR1404227     3  0.4671     0.6558 0.028 0.104 0.776 0.000 0.092
#> SRR1376830     1  0.0451     0.6745 0.988 0.000 0.004 0.000 0.008
#> SRR1500661     1  0.2605     0.5868 0.852 0.000 0.000 0.000 0.148
#> SRR1080294     2  0.5719     0.2993 0.000 0.604 0.004 0.288 0.104
#> SRR1336314     4  0.1197     0.8077 0.000 0.048 0.000 0.952 0.000
#> SRR1102152     1  0.3535     0.6572 0.832 0.000 0.088 0.000 0.080
#> SRR1345244     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     1  0.7227     0.2504 0.420 0.008 0.320 0.012 0.240
#> SRR1443776     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1120939     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1080117     3  0.0000     0.7298 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.2990     0.7807 0.000 0.876 0.012 0.032 0.080
#> SRR1091865     1  0.2654     0.6803 0.888 0.000 0.048 0.000 0.064
#> SRR1361072     1  0.0404     0.6711 0.988 0.000 0.000 0.000 0.012
#> SRR1487890     1  0.2329     0.6054 0.876 0.000 0.000 0.000 0.124
#> SRR1349456     3  0.4671     0.6558 0.028 0.104 0.776 0.000 0.092
#> SRR1389384     1  0.5900     0.5749 0.652 0.004 0.176 0.012 0.156
#> SRR1316096     2  0.2230     0.8405 0.000 0.912 0.044 0.000 0.044
#> SRR1408512     1  0.4909     0.6070 0.716 0.000 0.164 0.000 0.120
#> SRR1447547     3  0.6499     0.6079 0.068 0.012 0.656 0.120 0.144
#> SRR1354053     4  0.5195     0.5085 0.000 0.388 0.000 0.564 0.048

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0937     0.6484 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1349562     1  0.2562     0.6129 0.828 0.000 0.000 0.000 0.000 0.172
#> SRR1353376     3  0.6094     0.3641 0.000 0.008 0.496 0.012 0.332 0.152
#> SRR1499040     1  0.7115    -0.5351 0.400 0.000 0.160 0.000 0.324 0.116
#> SRR1322312     1  0.2793     0.5898 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR1324412     3  0.5284     0.3999 0.280 0.000 0.600 0.000 0.112 0.008
#> SRR1100991     3  0.5426     0.3768 0.280 0.000 0.584 0.000 0.128 0.008
#> SRR1349479     3  0.6004     0.3735 0.000 0.008 0.508 0.008 0.320 0.156
#> SRR1431248     5  0.5633     0.7289 0.420 0.000 0.128 0.000 0.448 0.004
#> SRR1405054     3  0.6217    -0.0528 0.360 0.000 0.396 0.000 0.236 0.008
#> SRR1312266     1  0.0146     0.6437 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1409790     3  0.5284     0.3999 0.280 0.000 0.600 0.000 0.112 0.008
#> SRR1352507     3  0.5284     0.3999 0.280 0.000 0.600 0.000 0.112 0.008
#> SRR1383763     6  0.3312     1.0000 0.180 0.000 0.028 0.000 0.000 0.792
#> SRR1468314     2  0.5421     0.6309 0.000 0.716 0.072 0.040 0.112 0.060
#> SRR1473674     2  0.2290     0.8134 0.000 0.892 0.004 0.000 0.084 0.020
#> SRR1390499     1  0.0790     0.6491 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR821043      4  0.3703     0.7206 0.000 0.084 0.000 0.816 0.072 0.028
#> SRR1455653     4  0.5559     0.4314 0.000 0.376 0.000 0.524 0.072 0.028
#> SRR1335236     2  0.0436     0.8222 0.000 0.988 0.004 0.004 0.004 0.000
#> SRR1095383     2  0.6315     0.2666 0.000 0.532 0.000 0.244 0.176 0.048
#> SRR1479489     1  0.2492     0.5679 0.888 0.000 0.036 0.000 0.068 0.008
#> SRR1310433     2  0.0291     0.8214 0.000 0.992 0.004 0.004 0.000 0.000
#> SRR1073435     3  0.5284     0.5172 0.012 0.016 0.656 0.000 0.228 0.088
#> SRR659649      3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1395999     1  0.1327     0.6253 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1105248     3  0.5361     0.5357 0.004 0.000 0.600 0.092 0.292 0.012
#> SRR1338257     1  0.2118     0.5606 0.888 0.000 0.000 0.000 0.104 0.008
#> SRR1499395     3  0.0909     0.6547 0.020 0.000 0.968 0.000 0.012 0.000
#> SRR1350002     2  0.2932     0.7885 0.000 0.840 0.004 0.000 0.132 0.024
#> SRR1489757     3  0.5284     0.3999 0.280 0.000 0.600 0.000 0.112 0.008
#> SRR1414637     5  0.4808     0.7280 0.408 0.000 0.056 0.000 0.536 0.000
#> SRR1478113     4  0.2454     0.7364 0.000 0.000 0.000 0.840 0.160 0.000
#> SRR1322477     1  0.4763    -0.3710 0.592 0.000 0.064 0.000 0.344 0.000
#> SRR1478789     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1414185     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1069141     2  0.0436     0.8222 0.000 0.988 0.004 0.004 0.004 0.000
#> SRR1376852     1  0.2980     0.4530 0.808 0.000 0.012 0.000 0.180 0.000
#> SRR1323491     1  0.0405     0.6452 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1338103     1  0.6001    -0.6265 0.448 0.004 0.208 0.000 0.340 0.000
#> SRR1472012     5  0.5931     0.7365 0.424 0.000 0.092 0.000 0.448 0.036
#> SRR1340325     1  0.2520     0.5413 0.872 0.000 0.012 0.000 0.108 0.008
#> SRR1087321     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1488790     1  0.0790     0.6495 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1334866     5  0.4829     0.7302 0.424 0.000 0.056 0.000 0.520 0.000
#> SRR1089446     3  0.6313    -0.1196 0.368 0.000 0.380 0.000 0.240 0.012
#> SRR1344445     3  0.4762     0.4827 0.216 0.000 0.676 0.000 0.104 0.004
#> SRR1412969     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1071668     3  0.6165     0.0823 0.324 0.000 0.436 0.000 0.232 0.008
#> SRR1075804     1  0.2902     0.4152 0.800 0.000 0.004 0.000 0.196 0.000
#> SRR1383283     3  0.5284     0.5172 0.012 0.016 0.656 0.000 0.228 0.088
#> SRR1350239     3  0.5816     0.5068 0.016 0.000 0.560 0.104 0.308 0.012
#> SRR1353878     1  0.1462     0.6085 0.936 0.000 0.000 0.000 0.056 0.008
#> SRR1375721     1  0.2902     0.5941 0.800 0.000 0.000 0.000 0.004 0.196
#> SRR1083983     5  0.5187     0.7317 0.440 0.000 0.088 0.000 0.472 0.000
#> SRR1090095     1  0.2664     0.6026 0.816 0.000 0.000 0.000 0.000 0.184
#> SRR1414792     1  0.2597     0.6085 0.824 0.000 0.000 0.000 0.000 0.176
#> SRR1075102     4  0.2454     0.7364 0.000 0.000 0.000 0.840 0.160 0.000
#> SRR1098737     1  0.2902     0.4152 0.800 0.000 0.004 0.000 0.196 0.000
#> SRR1349409     1  0.2793     0.5898 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR1413008     3  0.5816     0.5068 0.016 0.000 0.560 0.104 0.308 0.012
#> SRR1407179     5  0.6360     0.5997 0.328 0.004 0.304 0.000 0.360 0.004
#> SRR1095913     3  0.5417     0.5256 0.012 0.036 0.672 0.000 0.192 0.088
#> SRR1403544     1  0.2340     0.6232 0.852 0.000 0.000 0.000 0.000 0.148
#> SRR1490546     1  0.0260     0.6459 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR807971      3  0.4762     0.4827 0.216 0.000 0.676 0.000 0.104 0.004
#> SRR1436228     5  0.6436     0.6194 0.348 0.004 0.284 0.000 0.356 0.008
#> SRR1445218     2  0.0291     0.8214 0.000 0.992 0.004 0.004 0.000 0.000
#> SRR1485438     2  0.2932     0.7885 0.000 0.840 0.004 0.000 0.132 0.024
#> SRR1358143     1  0.2762     0.5926 0.804 0.000 0.000 0.000 0.000 0.196
#> SRR1328760     1  0.1462     0.6085 0.936 0.000 0.000 0.000 0.056 0.008
#> SRR1380806     1  0.2743     0.6155 0.828 0.000 0.008 0.000 0.000 0.164
#> SRR1379426     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1087007     3  0.0363     0.6563 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1086256     5  0.4851     0.7309 0.404 0.000 0.060 0.000 0.536 0.000
#> SRR1346734     4  0.0000     0.7552 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.2668     0.6149 0.828 0.000 0.000 0.000 0.004 0.168
#> SRR1082151     1  0.4660    -0.5073 0.540 0.000 0.044 0.000 0.416 0.000
#> SRR1349320     4  0.2454     0.7364 0.000 0.000 0.000 0.840 0.160 0.000
#> SRR1317554     4  0.5058     0.6331 0.000 0.240 0.000 0.660 0.072 0.028
#> SRR1076022     2  0.2238     0.7850 0.000 0.900 0.004 0.004 0.076 0.016
#> SRR1339573     3  0.2512     0.6363 0.060 0.000 0.880 0.000 0.060 0.000
#> SRR1455878     1  0.3315     0.3919 0.780 0.000 0.020 0.000 0.200 0.000
#> SRR1446203     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1387397     1  0.5552    -0.4947 0.532 0.000 0.136 0.000 0.328 0.004
#> SRR1402590     1  0.0937     0.6484 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1317532     1  0.2768     0.4891 0.832 0.000 0.012 0.000 0.156 0.000
#> SRR1331488     1  0.1230     0.6354 0.956 0.000 0.000 0.008 0.028 0.008
#> SRR1499675     1  0.6061    -0.6047 0.448 0.004 0.236 0.000 0.312 0.000
#> SRR1440467     3  0.5774     0.3785 0.000 0.008 0.516 0.000 0.320 0.156
#> SRR807995      2  0.2848     0.7936 0.000 0.848 0.004 0.000 0.124 0.024
#> SRR1476485     4  0.0000     0.7552 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388214     1  0.2814     0.4523 0.820 0.000 0.000 0.000 0.172 0.008
#> SRR1456051     1  0.0713     0.6494 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1473275     3  0.3595     0.5909 0.120 0.000 0.796 0.000 0.084 0.000
#> SRR1444083     1  0.2118     0.5603 0.888 0.000 0.000 0.000 0.104 0.008
#> SRR1313807     3  0.5599     0.5076 0.012 0.036 0.644 0.000 0.220 0.088
#> SRR1470751     1  0.4660    -0.5073 0.540 0.000 0.044 0.000 0.416 0.000
#> SRR1403434     3  0.4737     0.5076 0.000 0.008 0.664 0.000 0.256 0.072
#> SRR1390540     1  0.0363     0.6468 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1093861     2  0.2069     0.8179 0.000 0.908 0.004 0.000 0.068 0.020
#> SRR1325290     5  0.5895     0.7345 0.424 0.000 0.088 0.000 0.452 0.036
#> SRR1070689     1  0.2562     0.6129 0.828 0.000 0.000 0.000 0.000 0.172
#> SRR1384049     6  0.3312     1.0000 0.180 0.000 0.028 0.000 0.000 0.792
#> SRR1081184     1  0.2562     0.6129 0.828 0.000 0.000 0.000 0.000 0.172
#> SRR1324295     1  0.2378     0.6221 0.848 0.000 0.000 0.000 0.000 0.152
#> SRR1365313     3  0.6430    -0.5440 0.312 0.004 0.380 0.000 0.296 0.008
#> SRR1321877     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR815711      3  0.6183     0.0395 0.336 0.000 0.424 0.000 0.232 0.008
#> SRR1433476     3  0.6033     0.3643 0.000 0.008 0.496 0.008 0.332 0.156
#> SRR1101883     3  0.4803     0.4793 0.216 0.000 0.672 0.000 0.108 0.004
#> SRR1433729     3  0.6695     0.3552 0.000 0.156 0.484 0.000 0.280 0.080
#> SRR1341877     1  0.6001    -0.6265 0.448 0.004 0.208 0.000 0.340 0.000
#> SRR1090556     1  0.6197    -0.6576 0.412 0.004 0.220 0.000 0.360 0.004
#> SRR1357389     3  0.5737     0.3215 0.276 0.000 0.544 0.000 0.172 0.008
#> SRR1404227     3  0.5417     0.5256 0.012 0.036 0.672 0.000 0.192 0.088
#> SRR1376830     1  0.0820     0.6464 0.972 0.000 0.000 0.000 0.012 0.016
#> SRR1500661     1  0.3014     0.5971 0.804 0.000 0.000 0.000 0.012 0.184
#> SRR1080294     2  0.6315     0.2666 0.000 0.532 0.000 0.244 0.176 0.048
#> SRR1336314     4  0.0000     0.7552 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1102152     1  0.3316     0.4431 0.812 0.000 0.028 0.000 0.152 0.008
#> SRR1345244     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1478637     5  0.7197     0.6055 0.320 0.000 0.192 0.000 0.380 0.108
#> SRR1443776     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1120939     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1080117     3  0.0000     0.6579 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1102899     2  0.3472     0.7274 0.000 0.812 0.004 0.004 0.136 0.044
#> SRR1091865     1  0.2656     0.5295 0.860 0.000 0.012 0.000 0.120 0.008
#> SRR1361072     1  0.0146     0.6442 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1487890     1  0.2562     0.6124 0.828 0.000 0.000 0.000 0.000 0.172
#> SRR1349456     3  0.5417     0.5256 0.012 0.036 0.672 0.000 0.192 0.088
#> SRR1389384     1  0.4660    -0.5073 0.540 0.000 0.044 0.000 0.416 0.000
#> SRR1316096     2  0.1951     0.8194 0.000 0.916 0.004 0.000 0.060 0.020
#> SRR1408512     1  0.4756    -0.1698 0.636 0.000 0.068 0.000 0.292 0.004
#> SRR1447547     3  0.5827     0.4775 0.012 0.000 0.532 0.104 0.340 0.012
#> SRR1354053     4  0.5566     0.4221 0.000 0.380 0.000 0.520 0.072 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.939           0.934       0.974         0.4932 0.507   0.507
#> 3 3 0.918           0.937       0.968         0.3090 0.732   0.527
#> 4 4 0.658           0.762       0.841         0.1206 0.858   0.627
#> 5 5 0.742           0.697       0.802         0.0738 0.936   0.770
#> 6 6 0.734           0.679       0.766         0.0436 0.929   0.714

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.971 1.000 0.000
#> SRR1349562     1  0.0000      0.971 1.000 0.000
#> SRR1353376     2  0.0000      0.974 0.000 1.000
#> SRR1499040     1  0.0000      0.971 1.000 0.000
#> SRR1322312     1  0.0000      0.971 1.000 0.000
#> SRR1324412     1  0.0000      0.971 1.000 0.000
#> SRR1100991     1  0.0000      0.971 1.000 0.000
#> SRR1349479     2  0.0000      0.974 0.000 1.000
#> SRR1431248     1  0.7883      0.694 0.764 0.236
#> SRR1405054     1  0.0000      0.971 1.000 0.000
#> SRR1312266     1  0.0000      0.971 1.000 0.000
#> SRR1409790     1  0.0000      0.971 1.000 0.000
#> SRR1352507     1  0.0000      0.971 1.000 0.000
#> SRR1383763     1  0.0000      0.971 1.000 0.000
#> SRR1468314     2  0.0000      0.974 0.000 1.000
#> SRR1473674     2  0.0000      0.974 0.000 1.000
#> SRR1390499     1  0.0000      0.971 1.000 0.000
#> SRR821043      2  0.0000      0.974 0.000 1.000
#> SRR1455653     2  0.0000      0.974 0.000 1.000
#> SRR1335236     2  0.0000      0.974 0.000 1.000
#> SRR1095383     2  0.0000      0.974 0.000 1.000
#> SRR1479489     1  0.0000      0.971 1.000 0.000
#> SRR1310433     2  0.0000      0.974 0.000 1.000
#> SRR1073435     2  0.0000      0.974 0.000 1.000
#> SRR659649      2  0.0376      0.972 0.004 0.996
#> SRR1395999     1  0.0000      0.971 1.000 0.000
#> SRR1105248     2  0.0000      0.974 0.000 1.000
#> SRR1338257     1  0.0000      0.971 1.000 0.000
#> SRR1499395     1  0.9427      0.447 0.640 0.360
#> SRR1350002     2  0.0000      0.974 0.000 1.000
#> SRR1489757     1  0.0000      0.971 1.000 0.000
#> SRR1414637     1  0.7219      0.750 0.800 0.200
#> SRR1478113     2  0.0000      0.974 0.000 1.000
#> SRR1322477     1  0.0000      0.971 1.000 0.000
#> SRR1478789     2  0.0376      0.972 0.004 0.996
#> SRR1414185     2  0.0376      0.972 0.004 0.996
#> SRR1069141     2  0.0000      0.974 0.000 1.000
#> SRR1376852     1  0.0000      0.971 1.000 0.000
#> SRR1323491     1  0.0000      0.971 1.000 0.000
#> SRR1338103     1  0.2043      0.943 0.968 0.032
#> SRR1472012     1  0.0000      0.971 1.000 0.000
#> SRR1340325     1  0.0000      0.971 1.000 0.000
#> SRR1087321     2  0.0000      0.974 0.000 1.000
#> SRR1488790     1  0.0000      0.971 1.000 0.000
#> SRR1334866     2  0.8386      0.626 0.268 0.732
#> SRR1089446     1  0.0000      0.971 1.000 0.000
#> SRR1344445     1  0.0672      0.964 0.992 0.008
#> SRR1412969     2  0.0000      0.974 0.000 1.000
#> SRR1071668     1  0.0000      0.971 1.000 0.000
#> SRR1075804     1  0.0000      0.971 1.000 0.000
#> SRR1383283     2  0.0000      0.974 0.000 1.000
#> SRR1350239     1  0.9922      0.201 0.552 0.448
#> SRR1353878     1  0.0000      0.971 1.000 0.000
#> SRR1375721     1  0.0000      0.971 1.000 0.000
#> SRR1083983     1  0.0000      0.971 1.000 0.000
#> SRR1090095     1  0.0000      0.971 1.000 0.000
#> SRR1414792     1  0.0000      0.971 1.000 0.000
#> SRR1075102     2  0.0000      0.974 0.000 1.000
#> SRR1098737     1  0.0000      0.971 1.000 0.000
#> SRR1349409     1  0.0000      0.971 1.000 0.000
#> SRR1413008     1  0.9922      0.201 0.552 0.448
#> SRR1407179     1  0.6973      0.766 0.812 0.188
#> SRR1095913     2  0.0000      0.974 0.000 1.000
#> SRR1403544     1  0.0000      0.971 1.000 0.000
#> SRR1490546     1  0.0000      0.971 1.000 0.000
#> SRR807971      1  0.0000      0.971 1.000 0.000
#> SRR1436228     2  0.9358      0.449 0.352 0.648
#> SRR1445218     2  0.0000      0.974 0.000 1.000
#> SRR1485438     2  0.0376      0.972 0.004 0.996
#> SRR1358143     1  0.0000      0.971 1.000 0.000
#> SRR1328760     1  0.0000      0.971 1.000 0.000
#> SRR1380806     1  0.0000      0.971 1.000 0.000
#> SRR1379426     2  0.0376      0.972 0.004 0.996
#> SRR1087007     2  0.0376      0.972 0.004 0.996
#> SRR1086256     2  0.0000      0.974 0.000 1.000
#> SRR1346734     2  0.0000      0.974 0.000 1.000
#> SRR1414515     1  0.0000      0.971 1.000 0.000
#> SRR1082151     1  0.0000      0.971 1.000 0.000
#> SRR1349320     2  0.0000      0.974 0.000 1.000
#> SRR1317554     2  0.0000      0.974 0.000 1.000
#> SRR1076022     2  0.0000      0.974 0.000 1.000
#> SRR1339573     2  0.9954      0.127 0.460 0.540
#> SRR1455878     1  0.0000      0.971 1.000 0.000
#> SRR1446203     2  0.0376      0.972 0.004 0.996
#> SRR1387397     1  0.0000      0.971 1.000 0.000
#> SRR1402590     1  0.0000      0.971 1.000 0.000
#> SRR1317532     1  0.0000      0.971 1.000 0.000
#> SRR1331488     1  0.0000      0.971 1.000 0.000
#> SRR1499675     1  0.6887      0.772 0.816 0.184
#> SRR1440467     2  0.0000      0.974 0.000 1.000
#> SRR807995      2  0.0000      0.974 0.000 1.000
#> SRR1476485     2  0.0000      0.974 0.000 1.000
#> SRR1388214     1  0.0000      0.971 1.000 0.000
#> SRR1456051     1  0.0000      0.971 1.000 0.000
#> SRR1473275     1  0.0000      0.971 1.000 0.000
#> SRR1444083     1  0.0000      0.971 1.000 0.000
#> SRR1313807     2  0.0000      0.974 0.000 1.000
#> SRR1470751     1  0.0000      0.971 1.000 0.000
#> SRR1403434     2  0.0000      0.974 0.000 1.000
#> SRR1390540     1  0.0000      0.971 1.000 0.000
#> SRR1093861     2  0.0000      0.974 0.000 1.000
#> SRR1325290     1  0.0000      0.971 1.000 0.000
#> SRR1070689     1  0.0000      0.971 1.000 0.000
#> SRR1384049     1  0.0000      0.971 1.000 0.000
#> SRR1081184     1  0.0000      0.971 1.000 0.000
#> SRR1324295     1  0.0000      0.971 1.000 0.000
#> SRR1365313     2  0.0376      0.972 0.004 0.996
#> SRR1321877     2  0.0376      0.972 0.004 0.996
#> SRR815711      1  0.0000      0.971 1.000 0.000
#> SRR1433476     2  0.0000      0.974 0.000 1.000
#> SRR1101883     1  0.3431      0.912 0.936 0.064
#> SRR1433729     2  0.0000      0.974 0.000 1.000
#> SRR1341877     1  0.0672      0.964 0.992 0.008
#> SRR1090556     1  0.0000      0.971 1.000 0.000
#> SRR1357389     1  0.0000      0.971 1.000 0.000
#> SRR1404227     2  0.0376      0.972 0.004 0.996
#> SRR1376830     1  0.0000      0.971 1.000 0.000
#> SRR1500661     1  0.0000      0.971 1.000 0.000
#> SRR1080294     2  0.0000      0.974 0.000 1.000
#> SRR1336314     2  0.0000      0.974 0.000 1.000
#> SRR1102152     1  0.0000      0.971 1.000 0.000
#> SRR1345244     2  0.0376      0.972 0.004 0.996
#> SRR1478637     2  0.8555      0.604 0.280 0.720
#> SRR1443776     2  0.0376      0.972 0.004 0.996
#> SRR1120939     2  0.0376      0.972 0.004 0.996
#> SRR1080117     2  0.0376      0.972 0.004 0.996
#> SRR1102899     2  0.0000      0.974 0.000 1.000
#> SRR1091865     1  0.0000      0.971 1.000 0.000
#> SRR1361072     1  0.0000      0.971 1.000 0.000
#> SRR1487890     1  0.0000      0.971 1.000 0.000
#> SRR1349456     2  0.0000      0.974 0.000 1.000
#> SRR1389384     1  0.0000      0.971 1.000 0.000
#> SRR1316096     2  0.0000      0.974 0.000 1.000
#> SRR1408512     1  0.0000      0.971 1.000 0.000
#> SRR1447547     2  0.0376      0.972 0.004 0.996
#> SRR1354053     2  0.0000      0.974 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.967 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1499040     1  0.4555      0.769 0.800 0.000 0.200
#> SRR1322312     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1324412     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1100991     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1349479     3  0.3038      0.885 0.000 0.104 0.896
#> SRR1431248     1  0.5692      0.651 0.724 0.008 0.268
#> SRR1405054     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1312266     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1409790     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1352507     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1383763     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1468314     2  0.0237      0.988 0.000 0.996 0.004
#> SRR1473674     2  0.0892      0.985 0.000 0.980 0.020
#> SRR1390499     1  0.0000      0.967 1.000 0.000 0.000
#> SRR821043      2  0.0237      0.988 0.000 0.996 0.004
#> SRR1455653     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1335236     2  0.1031      0.985 0.000 0.976 0.024
#> SRR1095383     2  0.0237      0.988 0.000 0.996 0.004
#> SRR1479489     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1310433     2  0.1031      0.985 0.000 0.976 0.024
#> SRR1073435     3  0.3752      0.838 0.000 0.144 0.856
#> SRR659649      3  0.0000      0.950 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1105248     3  0.0892      0.945 0.000 0.020 0.980
#> SRR1338257     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1350002     2  0.0892      0.985 0.000 0.980 0.020
#> SRR1489757     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1414637     1  0.4742      0.846 0.848 0.048 0.104
#> SRR1478113     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1322477     1  0.0424      0.962 0.992 0.000 0.008
#> SRR1478789     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1414185     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1069141     2  0.1031      0.985 0.000 0.976 0.024
#> SRR1376852     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1338103     1  0.4931      0.747 0.784 0.004 0.212
#> SRR1472012     1  0.3551      0.852 0.868 0.000 0.132
#> SRR1340325     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1334866     3  0.0237      0.949 0.000 0.004 0.996
#> SRR1089446     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1344445     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1412969     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1071668     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1075804     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1383283     3  0.4702      0.757 0.000 0.212 0.788
#> SRR1350239     3  0.1031      0.944 0.000 0.024 0.976
#> SRR1353878     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1083983     1  0.1031      0.951 0.976 0.000 0.024
#> SRR1090095     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1098737     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1413008     3  0.1031      0.944 0.000 0.024 0.976
#> SRR1407179     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1095913     3  0.4504      0.754 0.000 0.196 0.804
#> SRR1403544     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.967 1.000 0.000 0.000
#> SRR807971      3  0.1031      0.944 0.024 0.000 0.976
#> SRR1436228     3  0.4784      0.741 0.200 0.004 0.796
#> SRR1445218     2  0.0592      0.987 0.000 0.988 0.012
#> SRR1485438     2  0.1643      0.965 0.000 0.956 0.044
#> SRR1358143     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1086256     2  0.2165      0.944 0.000 0.936 0.064
#> SRR1346734     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1082151     1  0.2096      0.927 0.944 0.004 0.052
#> SRR1349320     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1317554     2  0.0237      0.988 0.000 0.996 0.004
#> SRR1076022     2  0.1031      0.985 0.000 0.976 0.024
#> SRR1339573     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1455878     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1446203     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1387397     1  0.1031      0.951 0.976 0.000 0.024
#> SRR1402590     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1331488     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1499675     3  0.4796      0.722 0.220 0.000 0.780
#> SRR1440467     3  0.0000      0.950 0.000 0.000 1.000
#> SRR807995      2  0.0892      0.985 0.000 0.980 0.020
#> SRR1476485     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1473275     3  0.1031      0.944 0.024 0.000 0.976
#> SRR1444083     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1313807     3  0.5591      0.592 0.000 0.304 0.696
#> SRR1470751     1  0.0661      0.960 0.988 0.004 0.008
#> SRR1403434     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1093861     2  0.1031      0.985 0.000 0.976 0.024
#> SRR1325290     1  0.2400      0.916 0.932 0.004 0.064
#> SRR1070689     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1365313     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1321877     3  0.0000      0.950 0.000 0.000 1.000
#> SRR815711      3  0.1031      0.944 0.024 0.000 0.976
#> SRR1433476     3  0.3941      0.833 0.000 0.156 0.844
#> SRR1101883     3  0.0892      0.945 0.020 0.000 0.980
#> SRR1433729     2  0.0237      0.988 0.000 0.996 0.004
#> SRR1341877     1  0.6095      0.383 0.608 0.000 0.392
#> SRR1090556     1  0.4887      0.726 0.772 0.000 0.228
#> SRR1357389     3  0.0237      0.950 0.004 0.000 0.996
#> SRR1404227     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1080294     2  0.0237      0.988 0.000 0.996 0.004
#> SRR1336314     2  0.0000      0.987 0.000 1.000 0.000
#> SRR1102152     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1345244     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1478637     3  0.1753      0.923 0.000 0.048 0.952
#> SRR1443776     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.950 0.000 0.000 1.000
#> SRR1102899     2  0.1031      0.985 0.000 0.976 0.024
#> SRR1091865     1  0.0424      0.962 0.992 0.000 0.008
#> SRR1361072     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.967 1.000 0.000 0.000
#> SRR1349456     3  0.4452      0.760 0.000 0.192 0.808
#> SRR1389384     1  0.2096      0.927 0.944 0.004 0.052
#> SRR1316096     2  0.1031      0.985 0.000 0.976 0.024
#> SRR1408512     1  0.0424      0.962 0.992 0.000 0.008
#> SRR1447547     3  0.1031      0.944 0.000 0.024 0.976
#> SRR1354053     2  0.0237      0.988 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.4567    0.61070 0.000 0.244 0.016 0.740
#> SRR1499040     2  0.7289    0.54675 0.200 0.532 0.268 0.000
#> SRR1322312     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1100991     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1349479     3  0.4868    0.66208 0.000 0.040 0.748 0.212
#> SRR1431248     2  0.5672    0.74493 0.276 0.668 0.056 0.000
#> SRR1405054     1  0.3764    0.77472 0.816 0.172 0.012 0.000
#> SRR1312266     1  0.0336    0.93156 0.992 0.008 0.000 0.000
#> SRR1409790     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1352507     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1383763     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1468314     4  0.0817    0.84550 0.000 0.024 0.000 0.976
#> SRR1473674     4  0.4228    0.82984 0.000 0.232 0.008 0.760
#> SRR1390499     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR821043      4  0.1389    0.83495 0.000 0.048 0.000 0.952
#> SRR1455653     4  0.1474    0.83371 0.000 0.052 0.000 0.948
#> SRR1335236     4  0.4468    0.82520 0.000 0.232 0.016 0.752
#> SRR1095383     4  0.0000    0.84462 0.000 0.000 0.000 1.000
#> SRR1479489     1  0.2281    0.87059 0.904 0.096 0.000 0.000
#> SRR1310433     4  0.3726    0.83704 0.000 0.212 0.000 0.788
#> SRR1073435     3  0.7499   -0.05781 0.000 0.400 0.420 0.180
#> SRR659649      3  0.0000    0.82879 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.4500    0.45712 0.684 0.316 0.000 0.000
#> SRR1105248     3  0.5807    0.67844 0.000 0.160 0.708 0.132
#> SRR1338257     1  0.2647    0.84980 0.880 0.120 0.000 0.000
#> SRR1499395     3  0.0188    0.82943 0.000 0.004 0.996 0.000
#> SRR1350002     4  0.4228    0.82984 0.000 0.232 0.008 0.760
#> SRR1489757     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1414637     2  0.5393    0.74511 0.268 0.688 0.044 0.000
#> SRR1478113     2  0.5353    0.15793 0.000 0.556 0.012 0.432
#> SRR1322477     2  0.5311    0.70203 0.328 0.648 0.024 0.000
#> SRR1478789     3  0.0657    0.82831 0.000 0.012 0.984 0.004
#> SRR1414185     3  0.0592    0.83001 0.000 0.016 0.984 0.000
#> SRR1069141     4  0.4194    0.83119 0.000 0.228 0.008 0.764
#> SRR1376852     1  0.4454    0.44162 0.692 0.308 0.000 0.000
#> SRR1323491     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1338103     2  0.5668    0.73540 0.300 0.652 0.048 0.000
#> SRR1472012     2  0.5636    0.72914 0.308 0.648 0.044 0.000
#> SRR1340325     1  0.2530    0.85569 0.888 0.112 0.000 0.000
#> SRR1087321     3  0.0469    0.82955 0.000 0.012 0.988 0.000
#> SRR1488790     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.4776    0.35162 0.000 0.624 0.376 0.000
#> SRR1089446     3  0.4164    0.71830 0.000 0.264 0.736 0.000
#> SRR1344445     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1412969     3  0.0592    0.83001 0.000 0.016 0.984 0.000
#> SRR1071668     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1075804     1  0.0336    0.93156 0.992 0.008 0.000 0.000
#> SRR1383283     3  0.7883   -0.02943 0.000 0.316 0.384 0.300
#> SRR1350239     3  0.5781    0.68685 0.000 0.252 0.676 0.072
#> SRR1353878     1  0.2647    0.84980 0.880 0.120 0.000 0.000
#> SRR1375721     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1083983     2  0.4564    0.68544 0.328 0.672 0.000 0.000
#> SRR1090095     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1075102     2  0.5408    0.21820 0.000 0.576 0.016 0.408
#> SRR1098737     1  0.0592    0.92748 0.984 0.016 0.000 0.000
#> SRR1349409     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1413008     3  0.5781    0.68685 0.000 0.252 0.676 0.072
#> SRR1407179     3  0.4985    0.15168 0.000 0.468 0.532 0.000
#> SRR1095913     3  0.4399    0.63648 0.000 0.020 0.768 0.212
#> SRR1403544     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR807971      3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1436228     2  0.6363    0.64415 0.120 0.672 0.200 0.008
#> SRR1445218     4  0.3726    0.83704 0.000 0.212 0.000 0.788
#> SRR1485438     2  0.4735    0.34216 0.000 0.784 0.068 0.148
#> SRR1358143     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.2530    0.85749 0.888 0.112 0.000 0.000
#> SRR1380806     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.0592    0.83001 0.000 0.016 0.984 0.000
#> SRR1087007     3  0.0592    0.83001 0.000 0.016 0.984 0.000
#> SRR1086256     2  0.6563    0.48890 0.000 0.632 0.160 0.208
#> SRR1346734     4  0.1637    0.83085 0.000 0.060 0.000 0.940
#> SRR1414515     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.5442    0.73840 0.288 0.672 0.040 0.000
#> SRR1349320     4  0.3873    0.65499 0.000 0.228 0.000 0.772
#> SRR1317554     4  0.1302    0.83624 0.000 0.044 0.000 0.956
#> SRR1076022     4  0.3907    0.83225 0.000 0.232 0.000 0.768
#> SRR1339573     3  0.0188    0.82943 0.000 0.004 0.996 0.000
#> SRR1455878     1  0.3172    0.79823 0.840 0.160 0.000 0.000
#> SRR1446203     3  0.0469    0.82955 0.000 0.012 0.988 0.000
#> SRR1387397     2  0.4720    0.69168 0.324 0.672 0.004 0.000
#> SRR1402590     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.3074    0.80816 0.848 0.152 0.000 0.000
#> SRR1331488     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1499675     2  0.6566    0.63165 0.140 0.624 0.236 0.000
#> SRR1440467     3  0.0469    0.82955 0.000 0.012 0.988 0.000
#> SRR807995      4  0.4630    0.81195 0.000 0.252 0.016 0.732
#> SRR1476485     4  0.1637    0.83085 0.000 0.060 0.000 0.940
#> SRR1388214     1  0.2921    0.82518 0.860 0.140 0.000 0.000
#> SRR1456051     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.3074    0.79754 0.000 0.152 0.848 0.000
#> SRR1444083     1  0.2973    0.81978 0.856 0.144 0.000 0.000
#> SRR1313807     4  0.5503   -0.00433 0.000 0.016 0.468 0.516
#> SRR1470751     2  0.5321    0.73171 0.296 0.672 0.032 0.000
#> SRR1403434     3  0.0592    0.83001 0.000 0.016 0.984 0.000
#> SRR1390540     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1093861     4  0.4228    0.82984 0.000 0.232 0.008 0.760
#> SRR1325290     2  0.5578    0.72516 0.312 0.648 0.040 0.000
#> SRR1070689     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.5292    0.12739 0.000 0.512 0.480 0.008
#> SRR1321877     3  0.0469    0.82955 0.000 0.012 0.988 0.000
#> SRR815711      3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1433476     3  0.6118    0.58242 0.000 0.120 0.672 0.208
#> SRR1101883     3  0.3311    0.79285 0.000 0.172 0.828 0.000
#> SRR1433729     4  0.0592    0.84229 0.000 0.016 0.000 0.984
#> SRR1341877     2  0.6015    0.74261 0.268 0.652 0.080 0.000
#> SRR1090556     2  0.5207    0.72887 0.292 0.680 0.028 0.000
#> SRR1357389     3  0.2760    0.80724 0.000 0.128 0.872 0.000
#> SRR1404227     3  0.2868    0.74853 0.000 0.136 0.864 0.000
#> SRR1376830     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1080294     4  0.0000    0.84462 0.000 0.000 0.000 1.000
#> SRR1336314     4  0.1637    0.83085 0.000 0.060 0.000 0.940
#> SRR1102152     1  0.2011    0.88406 0.920 0.080 0.000 0.000
#> SRR1345244     3  0.0469    0.82955 0.000 0.012 0.988 0.000
#> SRR1478637     2  0.4855    0.38976 0.000 0.644 0.352 0.004
#> SRR1443776     3  0.0469    0.82955 0.000 0.012 0.988 0.000
#> SRR1120939     3  0.0469    0.82955 0.000 0.012 0.988 0.000
#> SRR1080117     3  0.0592    0.83001 0.000 0.016 0.984 0.000
#> SRR1102899     4  0.3726    0.83704 0.000 0.212 0.000 0.788
#> SRR1091865     2  0.4564    0.68544 0.328 0.672 0.000 0.000
#> SRR1361072     1  0.1022    0.91764 0.968 0.032 0.000 0.000
#> SRR1487890     1  0.0000    0.93579 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.4472    0.62482 0.000 0.020 0.760 0.220
#> SRR1389384     2  0.5489    0.73503 0.296 0.664 0.040 0.000
#> SRR1316096     4  0.3873    0.83329 0.000 0.228 0.000 0.772
#> SRR1408512     2  0.4741    0.68906 0.328 0.668 0.004 0.000
#> SRR1447547     2  0.5714    0.52629 0.000 0.716 0.156 0.128
#> SRR1354053     4  0.0817    0.84148 0.000 0.024 0.000 0.976

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0703     0.8914 0.976 0.024 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.8900 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.4031     0.4529 0.000 0.044 0.000 0.772 0.184
#> SRR1499040     5  0.5704     0.6120 0.036 0.072 0.228 0.000 0.664
#> SRR1322312     1  0.1282     0.8728 0.952 0.044 0.000 0.000 0.004
#> SRR1324412     3  0.2236     0.7371 0.000 0.024 0.908 0.000 0.068
#> SRR1100991     3  0.2491     0.7285 0.000 0.036 0.896 0.000 0.068
#> SRR1349479     3  0.6961     0.3623 0.000 0.224 0.416 0.348 0.012
#> SRR1431248     5  0.1331     0.8308 0.040 0.008 0.000 0.000 0.952
#> SRR1405054     1  0.6962     0.5942 0.556 0.124 0.248 0.000 0.072
#> SRR1312266     1  0.2707     0.8754 0.876 0.100 0.000 0.000 0.024
#> SRR1409790     3  0.1544     0.7513 0.000 0.000 0.932 0.000 0.068
#> SRR1352507     3  0.1544     0.7513 0.000 0.000 0.932 0.000 0.068
#> SRR1383763     1  0.1357     0.8714 0.948 0.048 0.000 0.000 0.004
#> SRR1468314     4  0.3809     0.2504 0.000 0.256 0.000 0.736 0.008
#> SRR1473674     2  0.4752     0.6988 0.000 0.568 0.000 0.412 0.020
#> SRR1390499     1  0.0000     0.8900 1.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.1121     0.5106 0.000 0.044 0.000 0.956 0.000
#> SRR1455653     4  0.1121     0.5106 0.000 0.044 0.000 0.956 0.000
#> SRR1335236     2  0.4235     0.7258 0.000 0.576 0.000 0.424 0.000
#> SRR1095383     4  0.3783     0.2619 0.000 0.252 0.000 0.740 0.008
#> SRR1479489     1  0.4814     0.8211 0.764 0.128 0.076 0.000 0.032
#> SRR1310433     2  0.4262     0.7239 0.000 0.560 0.000 0.440 0.000
#> SRR1073435     5  0.6433     0.5127 0.000 0.172 0.144 0.056 0.628
#> SRR659649      3  0.3769     0.7930 0.000 0.180 0.788 0.000 0.032
#> SRR1395999     1  0.5902     0.4592 0.556 0.124 0.000 0.000 0.320
#> SRR1105248     3  0.6946     0.3062 0.000 0.140 0.468 0.356 0.036
#> SRR1338257     1  0.5436     0.7944 0.728 0.124 0.080 0.000 0.068
#> SRR1499395     3  0.4073     0.7951 0.000 0.216 0.752 0.000 0.032
#> SRR1350002     2  0.4893     0.6908 0.000 0.568 0.000 0.404 0.028
#> SRR1489757     3  0.1544     0.7513 0.000 0.000 0.932 0.000 0.068
#> SRR1414637     5  0.1913     0.8286 0.044 0.016 0.000 0.008 0.932
#> SRR1478113     4  0.4630     0.1926 0.000 0.016 0.000 0.588 0.396
#> SRR1322477     5  0.2067     0.8312 0.048 0.032 0.000 0.000 0.920
#> SRR1478789     3  0.4424     0.7848 0.000 0.224 0.728 0.000 0.048
#> SRR1414185     3  0.4073     0.7951 0.000 0.216 0.752 0.000 0.032
#> SRR1069141     2  0.4249     0.7296 0.000 0.568 0.000 0.432 0.000
#> SRR1376852     5  0.5810     0.0339 0.428 0.092 0.000 0.000 0.480
#> SRR1323491     1  0.1851     0.8857 0.912 0.088 0.000 0.000 0.000
#> SRR1338103     5  0.1764     0.8306 0.064 0.008 0.000 0.000 0.928
#> SRR1472012     5  0.1544     0.8299 0.068 0.000 0.000 0.000 0.932
#> SRR1340325     1  0.5158     0.8054 0.744 0.124 0.088 0.000 0.044
#> SRR1087321     3  0.4104     0.7944 0.000 0.220 0.748 0.000 0.032
#> SRR1488790     1  0.0703     0.8916 0.976 0.024 0.000 0.000 0.000
#> SRR1334866     5  0.1493     0.8004 0.000 0.028 0.024 0.000 0.948
#> SRR1089446     3  0.3756     0.5463 0.000 0.008 0.744 0.000 0.248
#> SRR1344445     3  0.1544     0.7513 0.000 0.000 0.932 0.000 0.068
#> SRR1412969     3  0.4104     0.7943 0.000 0.220 0.748 0.000 0.032
#> SRR1071668     3  0.1544     0.7513 0.000 0.000 0.932 0.000 0.068
#> SRR1075804     1  0.2824     0.8740 0.872 0.096 0.000 0.000 0.032
#> SRR1383283     5  0.7749     0.2806 0.000 0.196 0.144 0.168 0.492
#> SRR1350239     3  0.4049     0.6498 0.000 0.000 0.792 0.124 0.084
#> SRR1353878     1  0.5380     0.7977 0.732 0.124 0.076 0.000 0.068
#> SRR1375721     1  0.0703     0.8851 0.976 0.024 0.000 0.000 0.000
#> SRR1083983     5  0.3151     0.8082 0.068 0.064 0.004 0.000 0.864
#> SRR1090095     1  0.0000     0.8900 1.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.8900 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.4527     0.2082 0.000 0.012 0.000 0.596 0.392
#> SRR1098737     1  0.2879     0.8727 0.868 0.100 0.000 0.000 0.032
#> SRR1349409     1  0.0703     0.8851 0.976 0.024 0.000 0.000 0.000
#> SRR1413008     3  0.4049     0.6498 0.000 0.000 0.792 0.124 0.084
#> SRR1407179     5  0.5043     0.5821 0.000 0.136 0.160 0.000 0.704
#> SRR1095913     3  0.6508     0.4774 0.000 0.400 0.484 0.064 0.052
#> SRR1403544     1  0.0162     0.8900 0.996 0.004 0.000 0.000 0.000
#> SRR1490546     1  0.2020     0.8814 0.900 0.100 0.000 0.000 0.000
#> SRR807971      3  0.1544     0.7513 0.000 0.000 0.932 0.000 0.068
#> SRR1436228     5  0.1498     0.8250 0.024 0.016 0.008 0.000 0.952
#> SRR1445218     2  0.4262     0.7239 0.000 0.560 0.000 0.440 0.000
#> SRR1485438     5  0.4430     0.4706 0.000 0.360 0.000 0.012 0.628
#> SRR1358143     1  0.1282     0.8728 0.952 0.044 0.000 0.000 0.004
#> SRR1328760     1  0.5263     0.8041 0.740 0.124 0.072 0.000 0.064
#> SRR1380806     1  0.0290     0.8907 0.992 0.008 0.000 0.000 0.000
#> SRR1379426     3  0.4073     0.7951 0.000 0.216 0.752 0.000 0.032
#> SRR1087007     3  0.4163     0.7916 0.000 0.228 0.740 0.000 0.032
#> SRR1086256     5  0.2313     0.7871 0.000 0.032 0.012 0.040 0.916
#> SRR1346734     4  0.0162     0.5256 0.000 0.000 0.000 0.996 0.004
#> SRR1414515     1  0.0703     0.8851 0.976 0.024 0.000 0.000 0.000
#> SRR1082151     5  0.2438     0.8288 0.044 0.040 0.000 0.008 0.908
#> SRR1349320     4  0.3048     0.4690 0.000 0.004 0.000 0.820 0.176
#> SRR1317554     4  0.3231     0.3587 0.000 0.196 0.000 0.800 0.004
#> SRR1076022     2  0.4249     0.7296 0.000 0.568 0.000 0.432 0.000
#> SRR1339573     3  0.4010     0.7954 0.000 0.208 0.760 0.000 0.032
#> SRR1455878     1  0.7098     0.4941 0.536 0.120 0.080 0.000 0.264
#> SRR1446203     3  0.4104     0.7944 0.000 0.220 0.748 0.000 0.032
#> SRR1387397     5  0.5018     0.7340 0.064 0.108 0.068 0.000 0.760
#> SRR1402590     1  0.0162     0.8900 0.996 0.004 0.000 0.000 0.000
#> SRR1317532     1  0.5956     0.7534 0.688 0.124 0.080 0.000 0.108
#> SRR1331488     1  0.2179     0.8836 0.896 0.100 0.000 0.000 0.004
#> SRR1499675     5  0.2777     0.8146 0.040 0.036 0.028 0.000 0.896
#> SRR1440467     3  0.4210     0.7918 0.000 0.224 0.740 0.000 0.036
#> SRR807995      2  0.5019     0.6783 0.000 0.568 0.000 0.396 0.036
#> SRR1476485     4  0.0162     0.5256 0.000 0.000 0.000 0.996 0.004
#> SRR1388214     1  0.5550     0.7870 0.720 0.124 0.080 0.000 0.076
#> SRR1456051     1  0.1792     0.8853 0.916 0.084 0.000 0.000 0.000
#> SRR1473275     3  0.1671     0.7557 0.000 0.000 0.924 0.000 0.076
#> SRR1444083     1  0.5550     0.7864 0.720 0.124 0.080 0.000 0.076
#> SRR1313807     2  0.7070    -0.1645 0.000 0.412 0.152 0.400 0.036
#> SRR1470751     5  0.2438     0.8288 0.044 0.040 0.000 0.008 0.908
#> SRR1403434     3  0.4210     0.7918 0.000 0.224 0.740 0.000 0.036
#> SRR1390540     1  0.1851     0.8857 0.912 0.088 0.000 0.000 0.000
#> SRR1093861     2  0.4249     0.7296 0.000 0.568 0.000 0.432 0.000
#> SRR1325290     5  0.1704     0.8301 0.068 0.004 0.000 0.000 0.928
#> SRR1070689     1  0.0162     0.8900 0.996 0.004 0.000 0.000 0.000
#> SRR1384049     1  0.1357     0.8714 0.948 0.048 0.000 0.000 0.004
#> SRR1081184     1  0.0000     0.8900 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8900 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     5  0.4417     0.6404 0.000 0.148 0.092 0.000 0.760
#> SRR1321877     3  0.4104     0.7944 0.000 0.220 0.748 0.000 0.032
#> SRR815711      3  0.2136     0.7409 0.000 0.008 0.904 0.000 0.088
#> SRR1433476     4  0.7449    -0.2430 0.000 0.196 0.352 0.404 0.048
#> SRR1101883     3  0.1544     0.7513 0.000 0.000 0.932 0.000 0.068
#> SRR1433729     4  0.3890     0.2851 0.000 0.252 0.000 0.736 0.012
#> SRR1341877     5  0.1956     0.8321 0.052 0.012 0.008 0.000 0.928
#> SRR1090556     5  0.2353     0.8271 0.060 0.028 0.004 0.000 0.908
#> SRR1357389     3  0.0794     0.7584 0.000 0.000 0.972 0.000 0.028
#> SRR1404227     3  0.6616     0.2868 0.000 0.216 0.404 0.000 0.380
#> SRR1376830     1  0.1478     0.8886 0.936 0.064 0.000 0.000 0.000
#> SRR1500661     1  0.0510     0.8914 0.984 0.016 0.000 0.000 0.000
#> SRR1080294     4  0.3783     0.2619 0.000 0.252 0.000 0.740 0.008
#> SRR1336314     4  0.0579     0.5229 0.000 0.008 0.000 0.984 0.008
#> SRR1102152     1  0.4649     0.8262 0.772 0.128 0.076 0.000 0.024
#> SRR1345244     3  0.4073     0.7951 0.000 0.216 0.752 0.000 0.032
#> SRR1478637     5  0.1300     0.8081 0.000 0.016 0.028 0.000 0.956
#> SRR1443776     3  0.4104     0.7944 0.000 0.220 0.748 0.000 0.032
#> SRR1120939     3  0.4104     0.7944 0.000 0.220 0.748 0.000 0.032
#> SRR1080117     3  0.4073     0.7951 0.000 0.216 0.752 0.000 0.032
#> SRR1102899     2  0.4415     0.7161 0.000 0.552 0.000 0.444 0.004
#> SRR1091865     5  0.3465     0.7936 0.052 0.104 0.004 0.000 0.840
#> SRR1361072     1  0.3590     0.8582 0.828 0.128 0.036 0.000 0.008
#> SRR1487890     1  0.0290     0.8894 0.992 0.008 0.000 0.000 0.000
#> SRR1349456     2  0.6515    -0.4359 0.000 0.444 0.440 0.072 0.044
#> SRR1389384     5  0.2228     0.8305 0.048 0.040 0.000 0.000 0.912
#> SRR1316096     2  0.4256     0.7278 0.000 0.564 0.000 0.436 0.000
#> SRR1408512     5  0.3567     0.7869 0.068 0.092 0.004 0.000 0.836
#> SRR1447547     5  0.3023     0.7671 0.000 0.008 0.028 0.096 0.868
#> SRR1354053     4  0.3521     0.3034 0.000 0.232 0.000 0.764 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.1549      0.820 0.936 0.000 0.044 0.020 0.000 0.000
#> SRR1349562     1  0.0000      0.816 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.4955      0.725 0.000 0.084 0.032 0.724 0.148 0.012
#> SRR1499040     5  0.5804      0.629 0.008 0.000 0.208 0.044 0.628 0.112
#> SRR1322312     1  0.2471      0.769 0.888 0.000 0.052 0.056 0.004 0.000
#> SRR1324412     3  0.4147      0.749 0.000 0.000 0.552 0.000 0.012 0.436
#> SRR1100991     3  0.4116      0.737 0.000 0.000 0.572 0.000 0.012 0.416
#> SRR1349479     6  0.4077      0.544 0.000 0.000 0.044 0.212 0.008 0.736
#> SRR1431248     5  0.1442      0.805 0.012 0.000 0.040 0.004 0.944 0.000
#> SRR1405054     3  0.4188      0.208 0.208 0.000 0.736 0.004 0.044 0.008
#> SRR1312266     1  0.4219      0.790 0.760 0.000 0.144 0.080 0.016 0.000
#> SRR1409790     3  0.4177      0.759 0.000 0.000 0.520 0.000 0.012 0.468
#> SRR1352507     3  0.4177      0.759 0.000 0.000 0.520 0.000 0.012 0.468
#> SRR1383763     1  0.2711      0.762 0.872 0.000 0.056 0.068 0.004 0.000
#> SRR1468314     2  0.4610      0.435 0.000 0.664 0.056 0.272 0.008 0.000
#> SRR1473674     2  0.3219      0.669 0.000 0.852 0.060 0.056 0.032 0.000
#> SRR1390499     1  0.0146      0.817 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR821043      4  0.3833      0.572 0.000 0.344 0.008 0.648 0.000 0.000
#> SRR1455653     4  0.3774      0.600 0.000 0.328 0.008 0.664 0.000 0.000
#> SRR1335236     2  0.1116      0.737 0.000 0.960 0.028 0.004 0.000 0.008
#> SRR1095383     2  0.4555      0.381 0.000 0.628 0.036 0.328 0.008 0.000
#> SRR1479489     1  0.5239      0.667 0.560 0.000 0.348 0.084 0.008 0.000
#> SRR1310433     2  0.0458      0.745 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1073435     5  0.5898      0.519 0.000 0.028 0.084 0.048 0.644 0.196
#> SRR659649      6  0.0858      0.739 0.000 0.000 0.028 0.004 0.000 0.968
#> SRR1395999     1  0.7123      0.304 0.396 0.000 0.228 0.088 0.288 0.000
#> SRR1105248     6  0.6655     -0.104 0.000 0.000 0.300 0.312 0.028 0.360
#> SRR1338257     1  0.5692      0.649 0.536 0.000 0.348 0.084 0.032 0.000
#> SRR1499395     6  0.0146      0.767 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1350002     2  0.3542      0.655 0.000 0.832 0.068 0.056 0.044 0.000
#> SRR1489757     3  0.4177      0.759 0.000 0.000 0.520 0.000 0.012 0.468
#> SRR1414637     5  0.1933      0.796 0.012 0.000 0.032 0.032 0.924 0.000
#> SRR1478113     4  0.4170      0.671 0.000 0.016 0.040 0.736 0.208 0.000
#> SRR1322477     5  0.3100      0.782 0.012 0.000 0.128 0.024 0.836 0.000
#> SRR1478789     6  0.2341      0.715 0.000 0.000 0.032 0.012 0.056 0.900
#> SRR1414185     6  0.0146      0.767 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1069141     2  0.0632      0.743 0.000 0.976 0.024 0.000 0.000 0.000
#> SRR1376852     5  0.6517      0.312 0.280 0.000 0.136 0.076 0.508 0.000
#> SRR1323491     1  0.3183      0.808 0.828 0.000 0.112 0.060 0.000 0.000
#> SRR1338103     5  0.1262      0.803 0.016 0.000 0.020 0.008 0.956 0.000
#> SRR1472012     5  0.1672      0.806 0.016 0.000 0.048 0.004 0.932 0.000
#> SRR1340325     1  0.5381      0.656 0.548 0.000 0.352 0.088 0.012 0.000
#> SRR1087321     6  0.0436      0.769 0.000 0.000 0.004 0.004 0.004 0.988
#> SRR1488790     1  0.1719      0.820 0.924 0.000 0.060 0.016 0.000 0.000
#> SRR1334866     5  0.1251      0.794 0.000 0.000 0.012 0.008 0.956 0.024
#> SRR1089446     3  0.5458      0.625 0.000 0.000 0.536 0.000 0.144 0.320
#> SRR1344445     3  0.4177      0.759 0.000 0.000 0.520 0.000 0.012 0.468
#> SRR1412969     6  0.0000      0.768 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1071668     3  0.4177      0.759 0.000 0.000 0.520 0.000 0.012 0.468
#> SRR1075804     1  0.4588      0.783 0.744 0.000 0.140 0.072 0.044 0.000
#> SRR1383283     5  0.7319      0.188 0.000 0.052 0.076 0.112 0.464 0.296
#> SRR1350239     3  0.5643      0.608 0.000 0.000 0.556 0.136 0.012 0.296
#> SRR1353878     1  0.5671      0.657 0.544 0.000 0.340 0.084 0.032 0.000
#> SRR1375721     1  0.1334      0.801 0.948 0.000 0.020 0.032 0.000 0.000
#> SRR1083983     5  0.3630      0.766 0.016 0.000 0.136 0.044 0.804 0.000
#> SRR1090095     1  0.0000      0.816 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000      0.816 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.4280      0.673 0.000 0.020 0.040 0.728 0.212 0.000
#> SRR1098737     1  0.4748      0.777 0.728 0.000 0.152 0.076 0.044 0.000
#> SRR1349409     1  0.1334      0.801 0.948 0.000 0.020 0.032 0.000 0.000
#> SRR1413008     3  0.5643      0.608 0.000 0.000 0.556 0.136 0.012 0.296
#> SRR1407179     5  0.4026      0.690 0.000 0.000 0.040 0.036 0.780 0.144
#> SRR1095913     6  0.5395      0.570 0.000 0.124 0.052 0.032 0.080 0.712
#> SRR1403544     1  0.0146      0.816 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1490546     1  0.3912      0.789 0.760 0.000 0.164 0.076 0.000 0.000
#> SRR807971      3  0.4177      0.759 0.000 0.000 0.520 0.000 0.012 0.468
#> SRR1436228     5  0.0653      0.799 0.012 0.000 0.004 0.004 0.980 0.000
#> SRR1445218     2  0.0458      0.745 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1485438     5  0.6052      0.342 0.000 0.320 0.084 0.064 0.532 0.000
#> SRR1358143     1  0.2471      0.769 0.888 0.000 0.052 0.056 0.004 0.000
#> SRR1328760     1  0.5650      0.669 0.552 0.000 0.332 0.084 0.032 0.000
#> SRR1380806     1  0.0146      0.816 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1379426     6  0.0146      0.767 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1087007     6  0.0146      0.769 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1086256     5  0.1642      0.776 0.000 0.004 0.028 0.032 0.936 0.000
#> SRR1346734     4  0.3265      0.721 0.000 0.248 0.004 0.748 0.000 0.000
#> SRR1414515     1  0.1176      0.803 0.956 0.000 0.020 0.024 0.000 0.000
#> SRR1082151     5  0.3806      0.768 0.012 0.000 0.112 0.080 0.796 0.000
#> SRR1349320     4  0.4695      0.734 0.000 0.104 0.032 0.732 0.132 0.000
#> SRR1317554     2  0.4536      0.162 0.000 0.560 0.028 0.408 0.004 0.000
#> SRR1076022     2  0.0260      0.746 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1339573     6  0.0508      0.760 0.000 0.000 0.012 0.004 0.000 0.984
#> SRR1455878     3  0.7206     -0.340 0.284 0.000 0.344 0.084 0.288 0.000
#> SRR1446203     6  0.1562      0.750 0.000 0.000 0.032 0.024 0.004 0.940
#> SRR1387397     5  0.4525      0.708 0.016 0.000 0.180 0.080 0.724 0.000
#> SRR1402590     1  0.0146      0.816 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1317532     1  0.6432      0.593 0.480 0.000 0.340 0.088 0.092 0.000
#> SRR1331488     1  0.3963      0.795 0.756 0.000 0.164 0.080 0.000 0.000
#> SRR1499675     5  0.2145      0.793 0.016 0.000 0.020 0.012 0.920 0.032
#> SRR1440467     6  0.0508      0.766 0.000 0.000 0.012 0.000 0.004 0.984
#> SRR807995      2  0.3607      0.651 0.000 0.828 0.068 0.056 0.048 0.000
#> SRR1476485     4  0.3265      0.721 0.000 0.248 0.004 0.748 0.000 0.000
#> SRR1388214     1  0.5846      0.627 0.512 0.000 0.364 0.084 0.040 0.000
#> SRR1456051     1  0.3159      0.809 0.832 0.000 0.100 0.068 0.000 0.000
#> SRR1473275     3  0.4183      0.743 0.000 0.000 0.508 0.000 0.012 0.480
#> SRR1444083     1  0.5719      0.635 0.524 0.000 0.360 0.084 0.032 0.000
#> SRR1313807     6  0.7807      0.185 0.000 0.212 0.092 0.164 0.076 0.456
#> SRR1470751     5  0.3806      0.768 0.012 0.000 0.112 0.080 0.796 0.000
#> SRR1403434     6  0.0508      0.766 0.000 0.000 0.012 0.000 0.004 0.984
#> SRR1390540     1  0.3313      0.807 0.816 0.000 0.124 0.060 0.000 0.000
#> SRR1093861     2  0.0790      0.740 0.000 0.968 0.032 0.000 0.000 0.000
#> SRR1325290     5  0.1738      0.805 0.016 0.000 0.052 0.004 0.928 0.000
#> SRR1070689     1  0.0000      0.816 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.2649      0.765 0.876 0.000 0.052 0.068 0.004 0.000
#> SRR1081184     1  0.0000      0.816 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000      0.816 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     5  0.4226      0.625 0.000 0.000 0.032 0.032 0.744 0.192
#> SRR1321877     6  0.0551      0.769 0.000 0.000 0.004 0.008 0.004 0.984
#> SRR815711      3  0.4863      0.727 0.000 0.000 0.528 0.000 0.060 0.412
#> SRR1433476     6  0.5775      0.190 0.000 0.012 0.056 0.388 0.032 0.512
#> SRR1101883     3  0.4175      0.758 0.000 0.000 0.524 0.000 0.012 0.464
#> SRR1433729     2  0.5335      0.340 0.000 0.596 0.084 0.300 0.020 0.000
#> SRR1341877     5  0.1520      0.803 0.016 0.000 0.020 0.008 0.948 0.008
#> SRR1090556     5  0.1932      0.803 0.016 0.000 0.040 0.020 0.924 0.000
#> SRR1357389     3  0.4091      0.752 0.000 0.000 0.520 0.000 0.008 0.472
#> SRR1404227     6  0.5241      0.108 0.000 0.000 0.036 0.032 0.432 0.500
#> SRR1376830     1  0.2688      0.815 0.868 0.000 0.068 0.064 0.000 0.000
#> SRR1500661     1  0.1088      0.819 0.960 0.000 0.024 0.016 0.000 0.000
#> SRR1080294     2  0.4555      0.381 0.000 0.628 0.036 0.328 0.008 0.000
#> SRR1336314     4  0.3276      0.725 0.000 0.228 0.004 0.764 0.004 0.000
#> SRR1102152     1  0.5339      0.662 0.552 0.000 0.352 0.084 0.012 0.000
#> SRR1345244     6  0.0146      0.767 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1478637     5  0.1528      0.793 0.000 0.000 0.016 0.028 0.944 0.012
#> SRR1443776     6  0.0551      0.769 0.000 0.000 0.004 0.008 0.004 0.984
#> SRR1120939     6  0.1642      0.748 0.000 0.000 0.032 0.028 0.004 0.936
#> SRR1080117     6  0.0146      0.767 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1102899     2  0.0458      0.745 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1091865     5  0.4576      0.719 0.020 0.000 0.176 0.080 0.724 0.000
#> SRR1361072     1  0.4634      0.740 0.656 0.000 0.264 0.080 0.000 0.000
#> SRR1487890     1  0.0520      0.813 0.984 0.000 0.008 0.008 0.000 0.000
#> SRR1349456     6  0.5613      0.547 0.000 0.152 0.064 0.032 0.064 0.688
#> SRR1389384     5  0.3710      0.771 0.012 0.000 0.108 0.076 0.804 0.000
#> SRR1316096     2  0.0260      0.746 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1408512     5  0.4395      0.717 0.016 0.000 0.164 0.080 0.740 0.000
#> SRR1447547     5  0.3492      0.715 0.000 0.000 0.076 0.120 0.804 0.000
#> SRR1354053     2  0.4088      0.327 0.000 0.616 0.016 0.368 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.969           0.946       0.978         0.5026 0.498   0.498
#> 3 3 0.949           0.926       0.972         0.3121 0.739   0.526
#> 4 4 0.812           0.701       0.859         0.0998 0.914   0.756
#> 5 5 0.766           0.729       0.784         0.0632 0.885   0.632
#> 6 6 0.808           0.723       0.834         0.0408 0.974   0.888

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.974 1.000 0.000
#> SRR1349562     1  0.0000      0.974 1.000 0.000
#> SRR1353376     2  0.0000      0.980 0.000 1.000
#> SRR1499040     1  0.0000      0.974 1.000 0.000
#> SRR1322312     1  0.0000      0.974 1.000 0.000
#> SRR1324412     1  0.0000      0.974 1.000 0.000
#> SRR1100991     1  0.0000      0.974 1.000 0.000
#> SRR1349479     2  0.0000      0.980 0.000 1.000
#> SRR1431248     2  0.9661      0.348 0.392 0.608
#> SRR1405054     1  0.0000      0.974 1.000 0.000
#> SRR1312266     1  0.0000      0.974 1.000 0.000
#> SRR1409790     1  0.0000      0.974 1.000 0.000
#> SRR1352507     1  0.0000      0.974 1.000 0.000
#> SRR1383763     1  0.0000      0.974 1.000 0.000
#> SRR1468314     2  0.0000      0.980 0.000 1.000
#> SRR1473674     2  0.0000      0.980 0.000 1.000
#> SRR1390499     1  0.0000      0.974 1.000 0.000
#> SRR821043      2  0.0000      0.980 0.000 1.000
#> SRR1455653     2  0.0000      0.980 0.000 1.000
#> SRR1335236     2  0.0000      0.980 0.000 1.000
#> SRR1095383     2  0.0000      0.980 0.000 1.000
#> SRR1479489     1  0.0000      0.974 1.000 0.000
#> SRR1310433     2  0.0000      0.980 0.000 1.000
#> SRR1073435     2  0.0000      0.980 0.000 1.000
#> SRR659649      2  0.0000      0.980 0.000 1.000
#> SRR1395999     1  0.0000      0.974 1.000 0.000
#> SRR1105248     2  0.0000      0.980 0.000 1.000
#> SRR1338257     1  0.0000      0.974 1.000 0.000
#> SRR1499395     2  0.0000      0.980 0.000 1.000
#> SRR1350002     2  0.0000      0.980 0.000 1.000
#> SRR1489757     1  0.0000      0.974 1.000 0.000
#> SRR1414637     1  0.7219      0.752 0.800 0.200
#> SRR1478113     2  0.0000      0.980 0.000 1.000
#> SRR1322477     1  0.0000      0.974 1.000 0.000
#> SRR1478789     2  0.0000      0.980 0.000 1.000
#> SRR1414185     2  0.0000      0.980 0.000 1.000
#> SRR1069141     2  0.0000      0.980 0.000 1.000
#> SRR1376852     1  0.0000      0.974 1.000 0.000
#> SRR1323491     1  0.0000      0.974 1.000 0.000
#> SRR1338103     1  0.4562      0.885 0.904 0.096
#> SRR1472012     1  0.0000      0.974 1.000 0.000
#> SRR1340325     1  0.0000      0.974 1.000 0.000
#> SRR1087321     2  0.0000      0.980 0.000 1.000
#> SRR1488790     1  0.0000      0.974 1.000 0.000
#> SRR1334866     2  0.0000      0.980 0.000 1.000
#> SRR1089446     1  0.8661      0.600 0.712 0.288
#> SRR1344445     1  0.5519      0.847 0.872 0.128
#> SRR1412969     2  0.0000      0.980 0.000 1.000
#> SRR1071668     1  0.0376      0.971 0.996 0.004
#> SRR1075804     1  0.0000      0.974 1.000 0.000
#> SRR1383283     2  0.0000      0.980 0.000 1.000
#> SRR1350239     2  0.0000      0.980 0.000 1.000
#> SRR1353878     1  0.0000      0.974 1.000 0.000
#> SRR1375721     1  0.0000      0.974 1.000 0.000
#> SRR1083983     1  0.0000      0.974 1.000 0.000
#> SRR1090095     1  0.0000      0.974 1.000 0.000
#> SRR1414792     1  0.0000      0.974 1.000 0.000
#> SRR1075102     2  0.0000      0.980 0.000 1.000
#> SRR1098737     1  0.0000      0.974 1.000 0.000
#> SRR1349409     1  0.0000      0.974 1.000 0.000
#> SRR1413008     2  0.0000      0.980 0.000 1.000
#> SRR1407179     2  0.9686      0.337 0.396 0.604
#> SRR1095913     2  0.0000      0.980 0.000 1.000
#> SRR1403544     1  0.0000      0.974 1.000 0.000
#> SRR1490546     1  0.0000      0.974 1.000 0.000
#> SRR807971      1  0.0000      0.974 1.000 0.000
#> SRR1436228     2  0.0000      0.980 0.000 1.000
#> SRR1445218     2  0.0000      0.980 0.000 1.000
#> SRR1485438     2  0.0000      0.980 0.000 1.000
#> SRR1358143     1  0.0000      0.974 1.000 0.000
#> SRR1328760     1  0.0000      0.974 1.000 0.000
#> SRR1380806     1  0.0000      0.974 1.000 0.000
#> SRR1379426     2  0.0000      0.980 0.000 1.000
#> SRR1087007     2  0.0000      0.980 0.000 1.000
#> SRR1086256     2  0.0000      0.980 0.000 1.000
#> SRR1346734     2  0.0000      0.980 0.000 1.000
#> SRR1414515     1  0.0000      0.974 1.000 0.000
#> SRR1082151     1  0.4022      0.901 0.920 0.080
#> SRR1349320     2  0.0000      0.980 0.000 1.000
#> SRR1317554     2  0.0000      0.980 0.000 1.000
#> SRR1076022     2  0.0000      0.980 0.000 1.000
#> SRR1339573     2  0.0000      0.980 0.000 1.000
#> SRR1455878     1  0.0000      0.974 1.000 0.000
#> SRR1446203     2  0.0000      0.980 0.000 1.000
#> SRR1387397     1  0.0000      0.974 1.000 0.000
#> SRR1402590     1  0.0000      0.974 1.000 0.000
#> SRR1317532     1  0.0000      0.974 1.000 0.000
#> SRR1331488     1  0.0000      0.974 1.000 0.000
#> SRR1499675     2  0.9850      0.245 0.428 0.572
#> SRR1440467     2  0.0000      0.980 0.000 1.000
#> SRR807995      2  0.0000      0.980 0.000 1.000
#> SRR1476485     2  0.0000      0.980 0.000 1.000
#> SRR1388214     1  0.0000      0.974 1.000 0.000
#> SRR1456051     1  0.0000      0.974 1.000 0.000
#> SRR1473275     1  0.0376      0.971 0.996 0.004
#> SRR1444083     1  0.0000      0.974 1.000 0.000
#> SRR1313807     2  0.0000      0.980 0.000 1.000
#> SRR1470751     1  0.0000      0.974 1.000 0.000
#> SRR1403434     2  0.0000      0.980 0.000 1.000
#> SRR1390540     1  0.0000      0.974 1.000 0.000
#> SRR1093861     2  0.0000      0.980 0.000 1.000
#> SRR1325290     1  0.0000      0.974 1.000 0.000
#> SRR1070689     1  0.0000      0.974 1.000 0.000
#> SRR1384049     1  0.0000      0.974 1.000 0.000
#> SRR1081184     1  0.0000      0.974 1.000 0.000
#> SRR1324295     1  0.0000      0.974 1.000 0.000
#> SRR1365313     2  0.0000      0.980 0.000 1.000
#> SRR1321877     2  0.0000      0.980 0.000 1.000
#> SRR815711      1  0.8661      0.600 0.712 0.288
#> SRR1433476     2  0.0000      0.980 0.000 1.000
#> SRR1101883     1  0.7602      0.722 0.780 0.220
#> SRR1433729     2  0.0000      0.980 0.000 1.000
#> SRR1341877     1  0.3274      0.921 0.940 0.060
#> SRR1090556     1  0.0000      0.974 1.000 0.000
#> SRR1357389     1  0.9608      0.385 0.616 0.384
#> SRR1404227     2  0.0000      0.980 0.000 1.000
#> SRR1376830     1  0.0000      0.974 1.000 0.000
#> SRR1500661     1  0.0000      0.974 1.000 0.000
#> SRR1080294     2  0.0000      0.980 0.000 1.000
#> SRR1336314     2  0.0000      0.980 0.000 1.000
#> SRR1102152     1  0.0000      0.974 1.000 0.000
#> SRR1345244     2  0.0000      0.980 0.000 1.000
#> SRR1478637     2  0.0000      0.980 0.000 1.000
#> SRR1443776     2  0.0000      0.980 0.000 1.000
#> SRR1120939     2  0.0000      0.980 0.000 1.000
#> SRR1080117     2  0.0000      0.980 0.000 1.000
#> SRR1102899     2  0.0000      0.980 0.000 1.000
#> SRR1091865     1  0.0000      0.974 1.000 0.000
#> SRR1361072     1  0.0000      0.974 1.000 0.000
#> SRR1487890     1  0.0000      0.974 1.000 0.000
#> SRR1349456     2  0.0000      0.980 0.000 1.000
#> SRR1389384     1  0.0000      0.974 1.000 0.000
#> SRR1316096     2  0.0000      0.980 0.000 1.000
#> SRR1408512     1  0.0000      0.974 1.000 0.000
#> SRR1447547     2  0.0000      0.980 0.000 1.000
#> SRR1354053     2  0.0000      0.980 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1353376     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1499040     1  0.4504     0.7473 0.804 0.000 0.196
#> SRR1322312     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1324412     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1100991     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1349479     3  0.0237     0.9593 0.000 0.004 0.996
#> SRR1431248     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1405054     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1312266     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1409790     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1352507     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1383763     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1468314     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1473674     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1390499     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR821043      2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1455653     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1335236     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1095383     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1479489     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1073435     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR659649      3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1395999     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1105248     3  0.6079     0.3607 0.000 0.388 0.612
#> SRR1338257     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1499395     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1350002     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1489757     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1414637     2  0.0592     0.9493 0.012 0.988 0.000
#> SRR1478113     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1322477     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1478789     3  0.6235     0.2392 0.000 0.436 0.564
#> SRR1414185     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1069141     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1376852     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1338103     1  0.4555     0.7405 0.800 0.200 0.000
#> SRR1472012     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1340325     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1087321     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1488790     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1334866     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1089446     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1344445     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1412969     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1071668     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1075804     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1383283     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1350239     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1353878     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1083983     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1090095     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1075102     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1098737     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1413008     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1407179     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1095913     2  0.4235     0.7593 0.000 0.824 0.176
#> SRR1403544     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR807971      3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1436228     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1445218     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1485438     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1358143     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1379426     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1087007     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1086256     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1346734     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1082151     2  0.5706     0.5194 0.320 0.680 0.000
#> SRR1349320     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1317554     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1076022     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1339573     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1455878     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1446203     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1387397     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1402590     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1331488     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1499675     1  0.6280     0.1344 0.540 0.460 0.000
#> SRR1440467     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR807995      2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1476485     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1388214     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1473275     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1444083     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1313807     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1470751     2  0.6305     0.0535 0.484 0.516 0.000
#> SRR1403434     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1390540     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1325290     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1070689     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1365313     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1321877     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR815711      3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1433476     2  0.5216     0.6211 0.000 0.740 0.260
#> SRR1101883     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1433729     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1341877     1  0.2625     0.8933 0.916 0.084 0.000
#> SRR1090556     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1357389     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1404227     3  0.6168     0.3075 0.000 0.412 0.588
#> SRR1376830     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1080294     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1336314     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1102152     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1345244     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1478637     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1443776     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1120939     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1080117     3  0.0000     0.9629 0.000 0.000 1.000
#> SRR1102899     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1091865     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1361072     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1349456     2  0.4178     0.7651 0.000 0.828 0.172
#> SRR1389384     1  0.4931     0.6900 0.768 0.232 0.000
#> SRR1316096     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1408512     1  0.0000     0.9779 1.000 0.000 0.000
#> SRR1447547     2  0.0000     0.9611 0.000 1.000 0.000
#> SRR1354053     2  0.0000     0.9611 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1499040     2  0.7846     0.0883 0.272 0.392 0.336 0.000
#> SRR1322312     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1100991     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1349479     4  0.6404     0.2135 0.000 0.096 0.296 0.608
#> SRR1431248     4  0.4948     0.0705 0.000 0.440 0.000 0.560
#> SRR1405054     1  0.2281     0.8466 0.904 0.000 0.096 0.000
#> SRR1312266     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1409790     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1352507     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1383763     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1468314     4  0.1118     0.6926 0.000 0.036 0.000 0.964
#> SRR1473674     4  0.4999     0.0351 0.000 0.492 0.000 0.508
#> SRR1390499     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1455653     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1335236     4  0.4999     0.0351 0.000 0.492 0.000 0.508
#> SRR1095383     4  0.0817     0.6981 0.000 0.024 0.000 0.976
#> SRR1479489     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1310433     4  0.4989     0.0809 0.000 0.472 0.000 0.528
#> SRR1073435     4  0.1211     0.6932 0.000 0.040 0.000 0.960
#> SRR659649      3  0.0921     0.9105 0.000 0.028 0.972 0.000
#> SRR1395999     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.3801     0.4696 0.000 0.000 0.220 0.780
#> SRR1338257     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1499395     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1350002     2  0.4992    -0.0128 0.000 0.524 0.000 0.476
#> SRR1489757     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1414637     2  0.2345     0.5695 0.000 0.900 0.000 0.100
#> SRR1478113     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1322477     1  0.4898     0.4431 0.584 0.416 0.000 0.000
#> SRR1478789     2  0.7080     0.3016 0.000 0.568 0.236 0.196
#> SRR1414185     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1069141     4  0.4998     0.0455 0.000 0.488 0.000 0.512
#> SRR1376852     1  0.2868     0.8233 0.864 0.136 0.000 0.000
#> SRR1323491     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.6575     0.2695 0.508 0.412 0.000 0.080
#> SRR1472012     1  0.4888     0.4548 0.588 0.412 0.000 0.000
#> SRR1340325     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1488790     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.0188     0.5523 0.000 0.996 0.000 0.004
#> SRR1089446     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1344445     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1412969     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1071668     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1075804     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1383283     4  0.1022     0.6945 0.000 0.032 0.000 0.968
#> SRR1350239     3  0.5000     0.1160 0.000 0.000 0.504 0.496
#> SRR1353878     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.4406     0.6336 0.700 0.300 0.000 0.000
#> SRR1090095     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1413008     3  0.5000     0.1160 0.000 0.000 0.504 0.496
#> SRR1407179     3  0.2973     0.8744 0.000 0.144 0.856 0.000
#> SRR1095913     4  0.5776     0.0203 0.000 0.468 0.028 0.504
#> SRR1403544     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR807971      3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1436228     2  0.2281     0.5703 0.000 0.904 0.000 0.096
#> SRR1445218     4  0.4989     0.0809 0.000 0.472 0.000 0.528
#> SRR1485438     2  0.2408     0.5679 0.000 0.896 0.000 0.104
#> SRR1358143     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1087007     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1086256     2  0.4994    -0.0253 0.000 0.520 0.000 0.480
#> SRR1346734     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.3525     0.5647 0.040 0.860 0.000 0.100
#> SRR1349320     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1317554     4  0.0469     0.7005 0.000 0.012 0.000 0.988
#> SRR1076022     4  0.4999     0.0351 0.000 0.492 0.000 0.508
#> SRR1339573     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1455878     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1387397     1  0.0592     0.9262 0.984 0.016 0.000 0.000
#> SRR1402590     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1331488     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1499675     2  0.7971     0.1305 0.364 0.380 0.004 0.252
#> SRR1440467     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR807995      2  0.4925     0.1259 0.000 0.572 0.000 0.428
#> SRR1476485     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1444083     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1313807     4  0.2530     0.6320 0.000 0.112 0.000 0.888
#> SRR1470751     2  0.3611     0.5537 0.080 0.860 0.000 0.060
#> SRR1403434     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1390540     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1093861     4  0.4999     0.0351 0.000 0.492 0.000 0.508
#> SRR1325290     1  0.4888     0.4548 0.588 0.412 0.000 0.000
#> SRR1070689     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.4543     0.2587 0.000 0.676 0.000 0.324
#> SRR1321877     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR815711      3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1433476     4  0.3716     0.5615 0.000 0.096 0.052 0.852
#> SRR1101883     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1433729     4  0.0817     0.6981 0.000 0.024 0.000 0.976
#> SRR1341877     1  0.4624     0.5850 0.660 0.340 0.000 0.000
#> SRR1090556     1  0.3726     0.7461 0.788 0.212 0.000 0.000
#> SRR1357389     3  0.0000     0.9079 0.000 0.000 1.000 0.000
#> SRR1404227     2  0.7238     0.2708 0.000 0.508 0.332 0.160
#> SRR1376830     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1080294     4  0.0817     0.6981 0.000 0.024 0.000 0.976
#> SRR1336314     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1102152     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1345244     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1478637     2  0.2281     0.5703 0.000 0.904 0.000 0.096
#> SRR1443776     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1120939     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1080117     3  0.2281     0.9134 0.000 0.096 0.904 0.000
#> SRR1102899     4  0.4989     0.0809 0.000 0.472 0.000 0.528
#> SRR1091865     1  0.4605     0.5805 0.664 0.336 0.000 0.000
#> SRR1361072     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9374 1.000 0.000 0.000 0.000
#> SRR1349456     2  0.5691     0.0718 0.000 0.564 0.028 0.408
#> SRR1389384     2  0.2921     0.5215 0.140 0.860 0.000 0.000
#> SRR1316096     4  0.4998     0.0455 0.000 0.488 0.000 0.512
#> SRR1408512     1  0.1118     0.9114 0.964 0.036 0.000 0.000
#> SRR1447547     4  0.0000     0.7009 0.000 0.000 0.000 1.000
#> SRR1354053     4  0.0469     0.7005 0.000 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     2  0.4682     0.7381 0.000 0.620 0.000 0.356 0.024
#> SRR1499040     5  0.6891     0.4968 0.208 0.000 0.176 0.052 0.564
#> SRR1322312     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1100991     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1349479     3  0.6041     0.1800 0.000 0.128 0.516 0.356 0.000
#> SRR1431248     5  0.3112     0.6209 0.000 0.100 0.000 0.044 0.856
#> SRR1405054     4  0.4171     0.2142 0.396 0.000 0.000 0.604 0.000
#> SRR1312266     1  0.0290     0.9386 0.992 0.000 0.000 0.000 0.008
#> SRR1409790     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1352507     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1383763     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1468314     2  0.3424     0.7591 0.000 0.760 0.000 0.240 0.000
#> SRR1473674     2  0.2629     0.5986 0.000 0.860 0.000 0.004 0.136
#> SRR1390499     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR821043      2  0.4511     0.7389 0.000 0.628 0.000 0.356 0.016
#> SRR1455653     2  0.4654     0.7405 0.000 0.628 0.000 0.348 0.024
#> SRR1335236     2  0.2905     0.6053 0.000 0.868 0.036 0.000 0.096
#> SRR1095383     2  0.3452     0.7593 0.000 0.756 0.000 0.244 0.000
#> SRR1479489     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1310433     2  0.1792     0.6430 0.000 0.916 0.000 0.000 0.084
#> SRR1073435     2  0.4933     0.7190 0.000 0.688 0.000 0.236 0.076
#> SRR659649      3  0.2329     0.5469 0.000 0.000 0.876 0.124 0.000
#> SRR1395999     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1105248     2  0.5464     0.6121 0.000 0.476 0.036 0.476 0.012
#> SRR1338257     1  0.0404     0.9363 0.988 0.000 0.000 0.000 0.012
#> SRR1499395     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1350002     2  0.3160     0.5334 0.000 0.808 0.000 0.004 0.188
#> SRR1489757     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1414637     5  0.2338     0.6515 0.000 0.112 0.000 0.004 0.884
#> SRR1478113     2  0.4696     0.7362 0.000 0.616 0.000 0.360 0.024
#> SRR1322477     5  0.3838     0.5971 0.280 0.000 0.000 0.004 0.716
#> SRR1478789     3  0.4414     0.4311 0.000 0.376 0.616 0.004 0.004
#> SRR1414185     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1069141     2  0.1792     0.6430 0.000 0.916 0.000 0.000 0.084
#> SRR1376852     1  0.4251     0.3568 0.624 0.000 0.000 0.004 0.372
#> SRR1323491     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1338103     5  0.3891     0.6730 0.136 0.016 0.000 0.036 0.812
#> SRR1472012     5  0.3141     0.6731 0.152 0.000 0.000 0.016 0.832
#> SRR1340325     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     5  0.5575     0.5458 0.000 0.196 0.132 0.008 0.664
#> SRR1089446     4  0.4505     0.8244 0.000 0.000 0.384 0.604 0.012
#> SRR1344445     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1412969     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1071668     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1075804     1  0.2763     0.7894 0.848 0.000 0.000 0.004 0.148
#> SRR1383283     2  0.3934     0.7557 0.000 0.740 0.000 0.244 0.016
#> SRR1350239     4  0.2688     0.3529 0.000 0.056 0.036 0.896 0.012
#> SRR1353878     1  0.0404     0.9363 0.988 0.000 0.000 0.000 0.012
#> SRR1375721     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.4268     0.0097 0.556 0.000 0.000 0.000 0.444
#> SRR1090095     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     2  0.4696     0.7362 0.000 0.616 0.000 0.360 0.024
#> SRR1098737     1  0.2806     0.7843 0.844 0.000 0.000 0.004 0.152
#> SRR1349409     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.2688     0.3529 0.000 0.056 0.036 0.896 0.012
#> SRR1407179     3  0.7411     0.2326 0.000 0.056 0.444 0.176 0.324
#> SRR1095913     2  0.3106     0.5647 0.000 0.844 0.132 0.000 0.024
#> SRR1403544     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR807971      4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1436228     5  0.2628     0.6530 0.000 0.088 0.000 0.028 0.884
#> SRR1445218     2  0.1792     0.6430 0.000 0.916 0.000 0.000 0.084
#> SRR1485438     5  0.4166     0.5084 0.000 0.348 0.000 0.004 0.648
#> SRR1358143     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.0404     0.9363 0.988 0.000 0.000 0.000 0.012
#> SRR1380806     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1087007     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1086256     2  0.3123     0.5970 0.000 0.812 0.000 0.004 0.184
#> SRR1346734     2  0.4682     0.7381 0.000 0.620 0.000 0.356 0.024
#> SRR1414515     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     5  0.4975     0.5880 0.040 0.272 0.000 0.012 0.676
#> SRR1349320     2  0.4682     0.7381 0.000 0.620 0.000 0.356 0.024
#> SRR1317554     2  0.3835     0.7590 0.000 0.732 0.000 0.260 0.008
#> SRR1076022     2  0.1965     0.6340 0.000 0.904 0.000 0.000 0.096
#> SRR1339573     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1455878     1  0.3231     0.7316 0.800 0.000 0.000 0.004 0.196
#> SRR1446203     3  0.0162     0.7636 0.000 0.004 0.996 0.000 0.000
#> SRR1387397     1  0.4086     0.5719 0.704 0.000 0.000 0.012 0.284
#> SRR1402590     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.2763     0.7894 0.848 0.000 0.000 0.004 0.148
#> SRR1331488     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1499675     5  0.7549     0.4808 0.108 0.088 0.188 0.040 0.576
#> SRR1440467     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR807995      2  0.3266     0.5147 0.000 0.796 0.000 0.004 0.200
#> SRR1476485     2  0.4682     0.7381 0.000 0.620 0.000 0.356 0.024
#> SRR1388214     1  0.0404     0.9363 0.988 0.000 0.000 0.000 0.012
#> SRR1456051     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1473275     4  0.4210     0.8130 0.000 0.000 0.412 0.588 0.000
#> SRR1444083     1  0.0404     0.9363 0.988 0.000 0.000 0.000 0.012
#> SRR1313807     2  0.4589     0.7437 0.000 0.704 0.048 0.248 0.000
#> SRR1470751     5  0.4990     0.6109 0.056 0.248 0.000 0.008 0.688
#> SRR1403434     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1390540     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1093861     2  0.1965     0.6340 0.000 0.904 0.000 0.000 0.096
#> SRR1325290     5  0.2843     0.6762 0.144 0.000 0.000 0.008 0.848
#> SRR1070689     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     3  0.7171     0.1017 0.000 0.388 0.388 0.028 0.196
#> SRR1321877     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR815711      4  0.4310     0.8328 0.000 0.000 0.392 0.604 0.004
#> SRR1433476     2  0.6906     0.5020 0.000 0.404 0.232 0.356 0.008
#> SRR1101883     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1433729     2  0.3452     0.7593 0.000 0.756 0.000 0.244 0.000
#> SRR1341877     5  0.5848     0.5098 0.308 0.008 0.036 0.036 0.612
#> SRR1090556     5  0.4934     0.4004 0.364 0.000 0.000 0.036 0.600
#> SRR1357389     4  0.4171     0.8361 0.000 0.000 0.396 0.604 0.000
#> SRR1404227     3  0.6537     0.3668 0.000 0.304 0.544 0.028 0.124
#> SRR1376830     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1080294     2  0.3452     0.7593 0.000 0.756 0.000 0.244 0.000
#> SRR1336314     2  0.4682     0.7381 0.000 0.620 0.000 0.356 0.024
#> SRR1102152     1  0.0404     0.9363 0.988 0.000 0.000 0.000 0.012
#> SRR1345244     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     5  0.4040     0.5780 0.000 0.276 0.000 0.012 0.712
#> SRR1443776     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1120939     3  0.0609     0.7517 0.000 0.020 0.980 0.000 0.000
#> SRR1080117     3  0.0000     0.7667 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.1792     0.6430 0.000 0.916 0.000 0.000 0.084
#> SRR1091865     5  0.4452     0.1722 0.496 0.000 0.000 0.004 0.500
#> SRR1361072     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9434 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.4367     0.3918 0.000 0.416 0.580 0.004 0.000
#> SRR1389384     5  0.5282     0.6337 0.100 0.220 0.000 0.004 0.676
#> SRR1316096     2  0.1851     0.6402 0.000 0.912 0.000 0.000 0.088
#> SRR1408512     1  0.3838     0.5944 0.716 0.000 0.000 0.004 0.280
#> SRR1447547     2  0.4696     0.7362 0.000 0.616 0.000 0.360 0.024
#> SRR1354053     2  0.3835     0.7590 0.000 0.732 0.000 0.260 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0260     0.9263 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1349562     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.4749     0.6514 0.000 0.020 0.092 0.708 0.180 0.000
#> SRR1499040     2  0.4225     0.5589 0.140 0.768 0.060 0.000 0.000 0.032
#> SRR1322312     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1100991     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1349479     6  0.5227     0.4472 0.000 0.000 0.092 0.256 0.020 0.632
#> SRR1431248     5  0.4252     0.4181 0.000 0.312 0.000 0.036 0.652 0.000
#> SRR1405054     3  0.2234     0.7155 0.124 0.000 0.872 0.000 0.004 0.000
#> SRR1312266     1  0.1257     0.9133 0.952 0.020 0.000 0.000 0.028 0.000
#> SRR1409790     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1352507     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1383763     1  0.0363     0.9215 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1468314     4  0.0146     0.7137 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1473674     4  0.4616     0.4200 0.000 0.384 0.036 0.576 0.004 0.000
#> SRR1390499     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.4321     0.6626 0.000 0.008 0.092 0.740 0.160 0.000
#> SRR1455653     4  0.4119     0.6692 0.000 0.008 0.084 0.760 0.148 0.000
#> SRR1335236     4  0.5187     0.5810 0.000 0.200 0.036 0.684 0.008 0.072
#> SRR1095383     4  0.0146     0.7132 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1479489     1  0.1082     0.9152 0.956 0.004 0.000 0.000 0.040 0.000
#> SRR1310433     4  0.3769     0.6433 0.000 0.188 0.036 0.768 0.008 0.000
#> SRR1073435     4  0.3634     0.4455 0.000 0.000 0.008 0.696 0.296 0.000
#> SRR659649      6  0.1610     0.8189 0.000 0.000 0.084 0.000 0.000 0.916
#> SRR1395999     1  0.1049     0.9170 0.960 0.008 0.000 0.000 0.032 0.000
#> SRR1105248     4  0.6266     0.5443 0.000 0.020 0.184 0.584 0.180 0.032
#> SRR1338257     1  0.1720     0.9003 0.928 0.032 0.000 0.000 0.040 0.000
#> SRR1499395     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1350002     4  0.4682     0.3641 0.000 0.420 0.036 0.540 0.004 0.000
#> SRR1489757     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1414637     2  0.2489     0.6176 0.000 0.860 0.000 0.012 0.128 0.000
#> SRR1478113     4  0.4749     0.6514 0.000 0.020 0.092 0.708 0.180 0.000
#> SRR1322477     2  0.3790     0.5485 0.104 0.780 0.000 0.000 0.116 0.000
#> SRR1478789     6  0.2509     0.7736 0.000 0.000 0.036 0.088 0.000 0.876
#> SRR1414185     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1069141     4  0.3860     0.6353 0.000 0.200 0.036 0.756 0.008 0.000
#> SRR1376852     1  0.4806     0.1997 0.560 0.060 0.000 0.000 0.380 0.000
#> SRR1323491     1  0.0260     0.9263 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1338103     5  0.3590     0.5688 0.032 0.188 0.000 0.004 0.776 0.000
#> SRR1472012     5  0.3871     0.4421 0.016 0.308 0.000 0.000 0.676 0.000
#> SRR1340325     1  0.0937     0.9165 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR1087321     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1488790     1  0.0146     0.9269 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1334866     2  0.4722     0.5077 0.000 0.720 0.000 0.024 0.156 0.100
#> SRR1089446     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1344445     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1412969     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1071668     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1075804     1  0.3198     0.6258 0.740 0.000 0.000 0.000 0.260 0.000
#> SRR1383283     4  0.1082     0.7053 0.000 0.000 0.004 0.956 0.040 0.000
#> SRR1350239     3  0.5536     0.3869 0.000 0.020 0.620 0.184 0.176 0.000
#> SRR1353878     1  0.1720     0.9003 0.928 0.032 0.000 0.000 0.040 0.000
#> SRR1375721     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     2  0.5560     0.1760 0.384 0.476 0.000 0.000 0.140 0.000
#> SRR1090095     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.4749     0.6514 0.000 0.020 0.092 0.708 0.180 0.000
#> SRR1098737     1  0.3244     0.6121 0.732 0.000 0.000 0.000 0.268 0.000
#> SRR1349409     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1413008     3  0.5536     0.3869 0.000 0.020 0.620 0.184 0.176 0.000
#> SRR1407179     5  0.4048     0.5088 0.000 0.000 0.188 0.024 0.756 0.032
#> SRR1095913     4  0.5308     0.4471 0.000 0.040 0.036 0.628 0.012 0.284
#> SRR1403544     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0937     0.9165 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR807971      3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1436228     5  0.4185     0.3966 0.000 0.332 0.004 0.020 0.644 0.000
#> SRR1445218     4  0.3769     0.6433 0.000 0.188 0.036 0.768 0.008 0.000
#> SRR1485438     2  0.2164     0.6101 0.000 0.908 0.028 0.056 0.008 0.000
#> SRR1358143     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.1720     0.9003 0.928 0.032 0.000 0.000 0.040 0.000
#> SRR1380806     1  0.0146     0.9269 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1379426     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1087007     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1086256     4  0.5101     0.5642 0.000 0.200 0.024 0.672 0.104 0.000
#> SRR1346734     4  0.4749     0.6514 0.000 0.020 0.092 0.708 0.180 0.000
#> SRR1414515     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082151     2  0.0291     0.6661 0.004 0.992 0.000 0.000 0.004 0.000
#> SRR1349320     4  0.4749     0.6514 0.000 0.020 0.092 0.708 0.180 0.000
#> SRR1317554     4  0.0717     0.7137 0.000 0.000 0.016 0.976 0.008 0.000
#> SRR1076022     4  0.3860     0.6353 0.000 0.200 0.036 0.756 0.008 0.000
#> SRR1339573     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1455878     1  0.4263     0.4203 0.600 0.024 0.000 0.000 0.376 0.000
#> SRR1446203     6  0.0692     0.8885 0.000 0.000 0.004 0.000 0.020 0.976
#> SRR1387397     5  0.4353     0.2405 0.384 0.028 0.000 0.000 0.588 0.000
#> SRR1402590     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.3330     0.6327 0.716 0.000 0.000 0.000 0.284 0.000
#> SRR1331488     1  0.0146     0.9268 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1499675     5  0.4399     0.5801 0.016 0.084 0.004 0.056 0.792 0.048
#> SRR1440467     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR807995      4  0.4771     0.3786 0.000 0.412 0.036 0.544 0.008 0.000
#> SRR1476485     4  0.4749     0.6514 0.000 0.020 0.092 0.708 0.180 0.000
#> SRR1388214     1  0.1720     0.9003 0.928 0.032 0.000 0.000 0.040 0.000
#> SRR1456051     1  0.0865     0.9180 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1473275     3  0.2219     0.9026 0.000 0.000 0.864 0.000 0.000 0.136
#> SRR1444083     1  0.1720     0.9003 0.928 0.032 0.000 0.000 0.040 0.000
#> SRR1313807     4  0.1418     0.6987 0.000 0.000 0.000 0.944 0.032 0.024
#> SRR1470751     2  0.0291     0.6661 0.004 0.992 0.000 0.000 0.004 0.000
#> SRR1403434     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1390540     1  0.0260     0.9263 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1093861     4  0.3860     0.6353 0.000 0.200 0.036 0.756 0.008 0.000
#> SRR1325290     2  0.4258    -0.0726 0.016 0.516 0.000 0.000 0.468 0.000
#> SRR1070689     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0260     0.9237 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1081184     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     5  0.8035     0.0751 0.000 0.188 0.036 0.264 0.360 0.152
#> SRR1321877     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815711      3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1433476     4  0.7033     0.4268 0.000 0.012 0.092 0.496 0.172 0.228
#> SRR1101883     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1433729     4  0.0291     0.7134 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1341877     5  0.4045     0.5739 0.136 0.076 0.000 0.004 0.776 0.008
#> SRR1090556     5  0.3293     0.5460 0.140 0.048 0.000 0.000 0.812 0.000
#> SRR1357389     3  0.2135     0.9105 0.000 0.000 0.872 0.000 0.000 0.128
#> SRR1404227     6  0.6634     0.0395 0.000 0.000 0.036 0.232 0.320 0.412
#> SRR1376830     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.0458     0.9197 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1080294     4  0.0146     0.7132 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1336314     4  0.4749     0.6514 0.000 0.020 0.092 0.708 0.180 0.000
#> SRR1102152     1  0.1644     0.9029 0.932 0.028 0.000 0.000 0.040 0.000
#> SRR1345244     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1478637     2  0.3123     0.5863 0.000 0.832 0.000 0.056 0.112 0.000
#> SRR1443776     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1120939     6  0.1053     0.8815 0.000 0.000 0.004 0.012 0.020 0.964
#> SRR1080117     6  0.0000     0.9019 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1102899     4  0.3737     0.6453 0.000 0.184 0.036 0.772 0.008 0.000
#> SRR1091865     2  0.3989     0.4614 0.236 0.720 0.000 0.000 0.044 0.000
#> SRR1361072     1  0.0937     0.9165 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR1487890     1  0.0000     0.9272 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349456     6  0.4897     0.4605 0.000 0.000 0.036 0.312 0.028 0.624
#> SRR1389384     2  0.0692     0.6682 0.020 0.976 0.000 0.000 0.004 0.000
#> SRR1316096     4  0.3800     0.6407 0.000 0.192 0.036 0.764 0.008 0.000
#> SRR1408512     1  0.4555     0.2550 0.540 0.036 0.000 0.000 0.424 0.000
#> SRR1447547     4  0.4779     0.6488 0.000 0.020 0.092 0.704 0.184 0.000
#> SRR1354053     4  0.0717     0.7137 0.000 0.000 0.016 0.976 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.895           0.923       0.968         0.4895 0.505   0.505
#> 3 3 0.827           0.840       0.940         0.3151 0.775   0.586
#> 4 4 0.725           0.697       0.860         0.1533 0.858   0.623
#> 5 5 0.810           0.806       0.911         0.0729 0.860   0.532
#> 6 6 0.821           0.792       0.903         0.0250 0.977   0.888

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.946 1.000 0.000
#> SRR1349562     1  0.0000      0.946 1.000 0.000
#> SRR1353376     2  0.0376      0.980 0.004 0.996
#> SRR1499040     1  0.9977      0.160 0.528 0.472
#> SRR1322312     1  0.0000      0.946 1.000 0.000
#> SRR1324412     2  0.8763      0.559 0.296 0.704
#> SRR1100991     1  0.9983      0.140 0.524 0.476
#> SRR1349479     2  0.0000      0.981 0.000 1.000
#> SRR1431248     2  0.8861      0.544 0.304 0.696
#> SRR1405054     1  0.0000      0.946 1.000 0.000
#> SRR1312266     1  0.0000      0.946 1.000 0.000
#> SRR1409790     2  0.0938      0.974 0.012 0.988
#> SRR1352507     2  0.0376      0.980 0.004 0.996
#> SRR1383763     1  0.0000      0.946 1.000 0.000
#> SRR1468314     2  0.0000      0.981 0.000 1.000
#> SRR1473674     2  0.0000      0.981 0.000 1.000
#> SRR1390499     1  0.0000      0.946 1.000 0.000
#> SRR821043      2  0.0000      0.981 0.000 1.000
#> SRR1455653     2  0.0000      0.981 0.000 1.000
#> SRR1335236     2  0.0000      0.981 0.000 1.000
#> SRR1095383     2  0.0000      0.981 0.000 1.000
#> SRR1479489     1  0.0000      0.946 1.000 0.000
#> SRR1310433     2  0.0000      0.981 0.000 1.000
#> SRR1073435     2  0.0376      0.980 0.004 0.996
#> SRR659649      2  0.0000      0.981 0.000 1.000
#> SRR1395999     1  0.0000      0.946 1.000 0.000
#> SRR1105248     2  0.0376      0.980 0.004 0.996
#> SRR1338257     1  0.0000      0.946 1.000 0.000
#> SRR1499395     2  0.0000      0.981 0.000 1.000
#> SRR1350002     2  0.0672      0.976 0.008 0.992
#> SRR1489757     2  0.0376      0.980 0.004 0.996
#> SRR1414637     1  0.8955      0.566 0.688 0.312
#> SRR1478113     2  0.7602      0.708 0.220 0.780
#> SRR1322477     1  0.0000      0.946 1.000 0.000
#> SRR1478789     2  0.0000      0.981 0.000 1.000
#> SRR1414185     2  0.0000      0.981 0.000 1.000
#> SRR1069141     2  0.0000      0.981 0.000 1.000
#> SRR1376852     1  0.0000      0.946 1.000 0.000
#> SRR1323491     1  0.0000      0.946 1.000 0.000
#> SRR1338103     1  0.7815      0.698 0.768 0.232
#> SRR1472012     1  0.5519      0.829 0.872 0.128
#> SRR1340325     1  0.0000      0.946 1.000 0.000
#> SRR1087321     2  0.0000      0.981 0.000 1.000
#> SRR1488790     1  0.0000      0.946 1.000 0.000
#> SRR1334866     2  0.0000      0.981 0.000 1.000
#> SRR1089446     2  0.0376      0.980 0.004 0.996
#> SRR1344445     2  0.0376      0.980 0.004 0.996
#> SRR1412969     2  0.0000      0.981 0.000 1.000
#> SRR1071668     2  0.0376      0.980 0.004 0.996
#> SRR1075804     1  0.0000      0.946 1.000 0.000
#> SRR1383283     2  0.0000      0.981 0.000 1.000
#> SRR1350239     2  0.0938      0.974 0.012 0.988
#> SRR1353878     1  0.0000      0.946 1.000 0.000
#> SRR1375721     1  0.0000      0.946 1.000 0.000
#> SRR1083983     1  0.0000      0.946 1.000 0.000
#> SRR1090095     1  0.0000      0.946 1.000 0.000
#> SRR1414792     1  0.0000      0.946 1.000 0.000
#> SRR1075102     2  0.3274      0.927 0.060 0.940
#> SRR1098737     1  0.0000      0.946 1.000 0.000
#> SRR1349409     1  0.0000      0.946 1.000 0.000
#> SRR1413008     2  0.0938      0.974 0.012 0.988
#> SRR1407179     2  0.0938      0.974 0.012 0.988
#> SRR1095913     2  0.0000      0.981 0.000 1.000
#> SRR1403544     1  0.0000      0.946 1.000 0.000
#> SRR1490546     1  0.0000      0.946 1.000 0.000
#> SRR807971      2  0.0376      0.980 0.004 0.996
#> SRR1436228     2  0.6247      0.806 0.156 0.844
#> SRR1445218     2  0.0000      0.981 0.000 1.000
#> SRR1485438     2  0.0672      0.976 0.008 0.992
#> SRR1358143     1  0.0000      0.946 1.000 0.000
#> SRR1328760     1  0.0000      0.946 1.000 0.000
#> SRR1380806     1  0.0000      0.946 1.000 0.000
#> SRR1379426     2  0.0000      0.981 0.000 1.000
#> SRR1087007     2  0.0000      0.981 0.000 1.000
#> SRR1086256     2  0.0000      0.981 0.000 1.000
#> SRR1346734     2  0.0000      0.981 0.000 1.000
#> SRR1414515     1  0.0000      0.946 1.000 0.000
#> SRR1082151     1  0.9427      0.460 0.640 0.360
#> SRR1349320     2  0.0000      0.981 0.000 1.000
#> SRR1317554     2  0.0000      0.981 0.000 1.000
#> SRR1076022     2  0.0000      0.981 0.000 1.000
#> SRR1339573     2  0.0000      0.981 0.000 1.000
#> SRR1455878     1  0.0000      0.946 1.000 0.000
#> SRR1446203     2  0.0000      0.981 0.000 1.000
#> SRR1387397     1  0.0000      0.946 1.000 0.000
#> SRR1402590     1  0.0000      0.946 1.000 0.000
#> SRR1317532     1  0.0000      0.946 1.000 0.000
#> SRR1331488     1  0.0000      0.946 1.000 0.000
#> SRR1499675     2  0.0376      0.980 0.004 0.996
#> SRR1440467     2  0.0000      0.981 0.000 1.000
#> SRR807995      2  0.0000      0.981 0.000 1.000
#> SRR1476485     2  0.0000      0.981 0.000 1.000
#> SRR1388214     1  0.0000      0.946 1.000 0.000
#> SRR1456051     1  0.0000      0.946 1.000 0.000
#> SRR1473275     2  0.0000      0.981 0.000 1.000
#> SRR1444083     1  0.0000      0.946 1.000 0.000
#> SRR1313807     2  0.0000      0.981 0.000 1.000
#> SRR1470751     1  0.0938      0.937 0.988 0.012
#> SRR1403434     2  0.0000      0.981 0.000 1.000
#> SRR1390540     1  0.0000      0.946 1.000 0.000
#> SRR1093861     2  0.0000      0.981 0.000 1.000
#> SRR1325290     1  0.6531      0.784 0.832 0.168
#> SRR1070689     1  0.0000      0.946 1.000 0.000
#> SRR1384049     1  0.0000      0.946 1.000 0.000
#> SRR1081184     1  0.0000      0.946 1.000 0.000
#> SRR1324295     1  0.0000      0.946 1.000 0.000
#> SRR1365313     2  0.0000      0.981 0.000 1.000
#> SRR1321877     2  0.0000      0.981 0.000 1.000
#> SRR815711      2  0.0376      0.980 0.004 0.996
#> SRR1433476     2  0.0376      0.980 0.004 0.996
#> SRR1101883     2  0.0376      0.980 0.004 0.996
#> SRR1433729     2  0.0000      0.981 0.000 1.000
#> SRR1341877     2  0.5408      0.852 0.124 0.876
#> SRR1090556     1  0.9977      0.156 0.528 0.472
#> SRR1357389     2  0.0376      0.980 0.004 0.996
#> SRR1404227     2  0.0000      0.981 0.000 1.000
#> SRR1376830     1  0.0000      0.946 1.000 0.000
#> SRR1500661     1  0.0000      0.946 1.000 0.000
#> SRR1080294     2  0.0000      0.981 0.000 1.000
#> SRR1336314     2  0.0938      0.974 0.012 0.988
#> SRR1102152     1  0.0000      0.946 1.000 0.000
#> SRR1345244     2  0.0000      0.981 0.000 1.000
#> SRR1478637     2  0.0000      0.981 0.000 1.000
#> SRR1443776     2  0.0000      0.981 0.000 1.000
#> SRR1120939     2  0.0000      0.981 0.000 1.000
#> SRR1080117     2  0.0000      0.981 0.000 1.000
#> SRR1102899     2  0.0000      0.981 0.000 1.000
#> SRR1091865     1  0.0000      0.946 1.000 0.000
#> SRR1361072     1  0.0000      0.946 1.000 0.000
#> SRR1487890     1  0.0000      0.946 1.000 0.000
#> SRR1349456     2  0.0000      0.981 0.000 1.000
#> SRR1389384     1  0.9393      0.468 0.644 0.356
#> SRR1316096     2  0.0000      0.981 0.000 1.000
#> SRR1408512     1  0.0376      0.943 0.996 0.004
#> SRR1447547     2  0.2603      0.944 0.044 0.956
#> SRR1354053     2  0.0000      0.981 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1349562     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1353376     2  0.3752    0.83273 0.000 0.856 0.144
#> SRR1499040     3  0.6104    0.42586 0.348 0.004 0.648
#> SRR1322312     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1324412     3  0.0237    0.90098 0.004 0.000 0.996
#> SRR1100991     3  0.0237    0.90098 0.004 0.000 0.996
#> SRR1349479     3  0.3482    0.79704 0.000 0.128 0.872
#> SRR1431248     3  0.1989    0.86870 0.048 0.004 0.948
#> SRR1405054     1  0.6307    0.00867 0.512 0.000 0.488
#> SRR1312266     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1409790     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1352507     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1383763     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1468314     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1473674     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1390499     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR821043      2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1455653     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1335236     2  0.4504    0.76382 0.000 0.804 0.196
#> SRR1095383     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1479489     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1310433     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1073435     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR659649      3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1395999     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1105248     3  0.6309    0.03969 0.000 0.496 0.504
#> SRR1338257     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1499395     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1350002     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1489757     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1414637     3  0.6680    0.05937 0.484 0.008 0.508
#> SRR1478113     2  0.1411    0.94433 0.000 0.964 0.036
#> SRR1322477     1  0.0237    0.93407 0.996 0.004 0.000
#> SRR1478789     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1414185     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1069141     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1376852     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1323491     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1338103     3  0.6518    0.06570 0.484 0.004 0.512
#> SRR1472012     3  0.6489    0.16187 0.456 0.004 0.540
#> SRR1340325     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1087321     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1488790     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1334866     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1089446     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1344445     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1412969     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1071668     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1075804     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1383283     3  0.6111    0.35288 0.000 0.396 0.604
#> SRR1350239     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1353878     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1375721     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1083983     1  0.0592    0.92761 0.988 0.000 0.012
#> SRR1090095     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1414792     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1075102     2  0.4178    0.79332 0.000 0.828 0.172
#> SRR1098737     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1349409     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1413008     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1407179     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1095913     3  0.0424    0.89980 0.000 0.008 0.992
#> SRR1403544     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1490546     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR807971      3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1436228     3  0.1765    0.87509 0.040 0.004 0.956
#> SRR1445218     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1485438     3  0.4002    0.75146 0.000 0.160 0.840
#> SRR1358143     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1328760     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1380806     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1379426     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1087007     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1086256     2  0.1163    0.95035 0.000 0.972 0.028
#> SRR1346734     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1414515     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1082151     1  0.0829    0.92491 0.984 0.004 0.012
#> SRR1349320     2  0.0424    0.96277 0.000 0.992 0.008
#> SRR1317554     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1076022     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1339573     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1455878     1  0.5591    0.52292 0.696 0.000 0.304
#> SRR1446203     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1387397     1  0.6295    0.06801 0.528 0.000 0.472
#> SRR1402590     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1317532     1  0.6286    0.09520 0.536 0.000 0.464
#> SRR1331488     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1499675     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1440467     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR807995      2  0.3116    0.87606 0.000 0.892 0.108
#> SRR1476485     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1388214     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1456051     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1473275     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1444083     1  0.5859    0.43544 0.656 0.000 0.344
#> SRR1313807     3  0.0424    0.89986 0.000 0.008 0.992
#> SRR1470751     1  0.0237    0.93407 0.996 0.004 0.000
#> SRR1403434     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1390540     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1093861     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1325290     3  0.6520    0.05224 0.488 0.004 0.508
#> SRR1070689     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1384049     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1081184     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1324295     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1365313     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1321877     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR815711      3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1433476     3  0.4235    0.74267 0.000 0.176 0.824
#> SRR1101883     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1433729     2  0.2878    0.88841 0.000 0.904 0.096
#> SRR1341877     3  0.5158    0.66079 0.232 0.004 0.764
#> SRR1090556     3  0.6505    0.12128 0.468 0.004 0.528
#> SRR1357389     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1404227     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1376830     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1500661     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1080294     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1336314     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1102152     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1345244     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1478637     3  0.0237    0.90180 0.000 0.004 0.996
#> SRR1443776     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1120939     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1080117     3  0.0000    0.90281 0.000 0.000 1.000
#> SRR1102899     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1091865     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1361072     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1487890     1  0.0000    0.93740 1.000 0.000 0.000
#> SRR1349456     3  0.3879    0.76026 0.000 0.152 0.848
#> SRR1389384     1  0.6495    0.09673 0.536 0.004 0.460
#> SRR1316096     2  0.0000    0.96716 0.000 1.000 0.000
#> SRR1408512     1  0.3500    0.81775 0.880 0.004 0.116
#> SRR1447547     3  0.1765    0.87509 0.040 0.004 0.956
#> SRR1354053     2  0.0000    0.96716 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1353376     2  0.4636     0.7517 0.000 0.772 0.188 0.040
#> SRR1499040     3  0.6954     0.2134 0.384 0.000 0.500 0.116
#> SRR1322312     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.5691     0.5013 0.024 0.000 0.508 0.468
#> SRR1100991     3  0.4999     0.4899 0.000 0.000 0.508 0.492
#> SRR1349479     3  0.2081     0.6490 0.000 0.084 0.916 0.000
#> SRR1431248     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1405054     4  0.5682     0.1977 0.456 0.000 0.024 0.520
#> SRR1312266     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1409790     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1352507     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1383763     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1468314     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1473674     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1390499     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR821043      2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1455653     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1335236     2  0.4072     0.6544 0.000 0.748 0.252 0.000
#> SRR1095383     2  0.0336     0.9378 0.000 0.992 0.008 0.000
#> SRR1479489     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1073435     4  0.0817     0.6960 0.000 0.000 0.024 0.976
#> SRR659649      3  0.4382     0.6102 0.000 0.000 0.704 0.296
#> SRR1395999     1  0.3266     0.7673 0.832 0.000 0.000 0.168
#> SRR1105248     4  0.5386     0.5020 0.000 0.056 0.236 0.708
#> SRR1338257     1  0.1637     0.8591 0.940 0.000 0.000 0.060
#> SRR1499395     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1489757     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1414637     4  0.0376     0.7160 0.004 0.004 0.000 0.992
#> SRR1478113     2  0.2011     0.8795 0.000 0.920 0.000 0.080
#> SRR1322477     4  0.4985     0.0014 0.468 0.000 0.000 0.532
#> SRR1478789     3  0.0188     0.7028 0.000 0.000 0.996 0.004
#> SRR1414185     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1376852     4  0.5000    -0.0850 0.496 0.000 0.000 0.504
#> SRR1323491     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1338103     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1472012     4  0.1022     0.7116 0.032 0.000 0.000 0.968
#> SRR1340325     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1488790     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1334866     3  0.3074     0.5680 0.000 0.000 0.848 0.152
#> SRR1089446     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1344445     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1412969     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1071668     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1075804     1  0.5000     0.0550 0.504 0.000 0.000 0.496
#> SRR1383283     4  0.4713     0.3575 0.000 0.000 0.360 0.640
#> SRR1350239     4  0.2973     0.5200 0.000 0.000 0.144 0.856
#> SRR1353878     1  0.3074     0.7831 0.848 0.000 0.000 0.152
#> SRR1375721     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.3801     0.7113 0.780 0.000 0.000 0.220
#> SRR1090095     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1075102     2  0.3649     0.7441 0.000 0.796 0.000 0.204
#> SRR1098737     4  0.4985     0.0014 0.468 0.000 0.000 0.532
#> SRR1349409     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.3123     0.4960 0.000 0.000 0.156 0.844
#> SRR1407179     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1095913     3  0.3400     0.6518 0.000 0.000 0.820 0.180
#> SRR1403544     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR807971      3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1436228     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1445218     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1485438     4  0.5209     0.5822 0.000 0.140 0.104 0.756
#> SRR1358143     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.3801     0.7113 0.780 0.000 0.000 0.220
#> SRR1380806     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1087007     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1086256     4  0.5833     0.0674 0.000 0.440 0.032 0.528
#> SRR1346734     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1082151     1  0.4661     0.6472 0.728 0.000 0.016 0.256
#> SRR1349320     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1317554     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1076022     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1339573     3  0.0336     0.7039 0.000 0.000 0.992 0.008
#> SRR1455878     4  0.3311     0.6421 0.172 0.000 0.000 0.828
#> SRR1446203     3  0.4866     0.5604 0.000 0.000 0.596 0.404
#> SRR1387397     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1402590     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1317532     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1331488     1  0.4989     0.1275 0.528 0.000 0.000 0.472
#> SRR1499675     4  0.3123     0.6238 0.000 0.000 0.156 0.844
#> SRR1440467     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR807995      2  0.4454     0.5221 0.000 0.692 0.000 0.308
#> SRR1476485     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1388214     1  0.3356     0.7598 0.824 0.000 0.000 0.176
#> SRR1456051     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1444083     4  0.4948     0.1782 0.440 0.000 0.000 0.560
#> SRR1313807     3  0.4605     0.2767 0.000 0.000 0.664 0.336
#> SRR1470751     1  0.4360     0.6666 0.744 0.000 0.008 0.248
#> SRR1403434     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1325290     4  0.0592     0.7156 0.016 0.000 0.000 0.984
#> SRR1070689     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1365313     3  0.4564     0.2629 0.000 0.000 0.672 0.328
#> SRR1321877     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR815711      3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1433476     3  0.3355     0.5771 0.000 0.160 0.836 0.004
#> SRR1101883     3  0.4989     0.5212 0.000 0.000 0.528 0.472
#> SRR1433729     2  0.3790     0.7927 0.000 0.820 0.164 0.016
#> SRR1341877     4  0.1716     0.6927 0.000 0.000 0.064 0.936
#> SRR1090556     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1357389     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1404227     3  0.1211     0.6977 0.000 0.000 0.960 0.040
#> SRR1376830     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.4477     0.4573 0.688 0.000 0.000 0.312
#> SRR1080294     2  0.1792     0.8952 0.000 0.932 0.068 0.000
#> SRR1336314     2  0.0336     0.9370 0.000 0.992 0.000 0.008
#> SRR1102152     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1345244     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1478637     4  0.2704     0.6541 0.000 0.000 0.124 0.876
#> SRR1443776     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1120939     3  0.4985     0.5275 0.000 0.000 0.532 0.468
#> SRR1080117     3  0.0000     0.7045 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1091865     1  0.3801     0.7113 0.780 0.000 0.000 0.220
#> SRR1361072     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.8995 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.0188     0.7028 0.000 0.000 0.996 0.004
#> SRR1389384     1  0.7641     0.1142 0.440 0.000 0.344 0.216
#> SRR1316096     2  0.0000     0.9422 0.000 1.000 0.000 0.000
#> SRR1408512     4  0.4761     0.2978 0.372 0.000 0.000 0.628
#> SRR1447547     4  0.0000     0.7153 0.000 0.000 0.000 1.000
#> SRR1354053     2  0.0000     0.9422 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     2  0.3521     0.6907 0.000 0.764 0.232 0.004 0.000
#> SRR1499040     1  0.4307    -0.0598 0.504 0.000 0.000 0.000 0.496
#> SRR1322312     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1100991     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1349479     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1431248     5  0.0000     0.7703 0.000 0.000 0.000 0.000 1.000
#> SRR1405054     4  0.0162     0.9299 0.000 0.000 0.000 0.996 0.004
#> SRR1312266     1  0.2690     0.7827 0.844 0.000 0.000 0.000 0.156
#> SRR1409790     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1352507     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1383763     1  0.0162     0.9429 0.996 0.000 0.000 0.000 0.004
#> SRR1468314     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1473674     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1390499     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR821043      2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1455653     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1335236     2  0.4182     0.3210 0.000 0.600 0.400 0.000 0.000
#> SRR1095383     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1479489     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1073435     5  0.6478     0.0134 0.000 0.000 0.184 0.396 0.420
#> SRR659649      4  0.3003     0.7371 0.000 0.000 0.188 0.812 0.000
#> SRR1395999     5  0.4268     0.3649 0.444 0.000 0.000 0.000 0.556
#> SRR1105248     4  0.3242     0.6961 0.000 0.000 0.216 0.784 0.000
#> SRR1338257     1  0.3752     0.5622 0.708 0.000 0.000 0.000 0.292
#> SRR1499395     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1350002     2  0.1121     0.8945 0.000 0.956 0.000 0.000 0.044
#> SRR1489757     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1414637     5  0.0000     0.7703 0.000 0.000 0.000 0.000 1.000
#> SRR1478113     2  0.3491     0.6728 0.000 0.768 0.000 0.004 0.228
#> SRR1322477     5  0.0000     0.7703 0.000 0.000 0.000 0.000 1.000
#> SRR1478789     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1414185     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1069141     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1376852     5  0.2773     0.7328 0.164 0.000 0.000 0.000 0.836
#> SRR1323491     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1338103     5  0.3395     0.6322 0.000 0.000 0.000 0.236 0.764
#> SRR1472012     5  0.1608     0.7560 0.000 0.000 0.000 0.072 0.928
#> SRR1340325     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     5  0.3816     0.5032 0.000 0.000 0.304 0.000 0.696
#> SRR1089446     4  0.3123     0.7677 0.000 0.000 0.160 0.828 0.012
#> SRR1344445     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1412969     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1071668     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1075804     5  0.2690     0.7357 0.156 0.000 0.000 0.000 0.844
#> SRR1383283     3  0.2605     0.7915 0.000 0.000 0.852 0.148 0.000
#> SRR1350239     4  0.0000     0.9306 0.000 0.000 0.000 1.000 0.000
#> SRR1353878     5  0.4171     0.3641 0.396 0.000 0.000 0.000 0.604
#> SRR1375721     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1083983     5  0.3730     0.5768 0.288 0.000 0.000 0.000 0.712
#> SRR1090095     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     2  0.3612     0.6700 0.000 0.764 0.000 0.008 0.228
#> SRR1098737     5  0.2690     0.7357 0.156 0.000 0.000 0.000 0.844
#> SRR1349409     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.0000     0.9306 0.000 0.000 0.000 1.000 0.000
#> SRR1407179     5  0.3932     0.4957 0.000 0.000 0.000 0.328 0.672
#> SRR1095913     3  0.3109     0.7267 0.000 0.000 0.800 0.200 0.000
#> SRR1403544     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR807971      4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1436228     5  0.0510     0.7690 0.000 0.000 0.000 0.016 0.984
#> SRR1445218     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1485438     5  0.0000     0.7703 0.000 0.000 0.000 0.000 1.000
#> SRR1358143     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     5  0.4602     0.6136 0.240 0.000 0.000 0.052 0.708
#> SRR1380806     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1087007     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1086256     5  0.2674     0.7073 0.000 0.140 0.000 0.004 0.856
#> SRR1346734     2  0.0162     0.9195 0.000 0.996 0.000 0.004 0.000
#> SRR1414515     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1082151     5  0.3561     0.6155 0.260 0.000 0.000 0.000 0.740
#> SRR1349320     2  0.0451     0.9163 0.000 0.988 0.000 0.004 0.008
#> SRR1317554     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1076022     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1339573     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1455878     5  0.2248     0.7501 0.012 0.000 0.000 0.088 0.900
#> SRR1446203     3  0.4101     0.4132 0.000 0.000 0.628 0.372 0.000
#> SRR1387397     5  0.0703     0.7683 0.000 0.000 0.000 0.024 0.976
#> SRR1402590     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     5  0.2690     0.7094 0.000 0.000 0.000 0.156 0.844
#> SRR1331488     5  0.3074     0.7165 0.196 0.000 0.000 0.000 0.804
#> SRR1499675     5  0.5970     0.4223 0.000 0.000 0.184 0.228 0.588
#> SRR1440467     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR807995      2  0.3730     0.5871 0.000 0.712 0.000 0.000 0.288
#> SRR1476485     2  0.0162     0.9195 0.000 0.996 0.000 0.004 0.000
#> SRR1388214     5  0.3796     0.5607 0.300 0.000 0.000 0.000 0.700
#> SRR1456051     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1473275     4  0.1197     0.9008 0.000 0.000 0.048 0.952 0.000
#> SRR1444083     4  0.4390     0.2002 0.004 0.000 0.000 0.568 0.428
#> SRR1313807     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1470751     5  0.3612     0.6056 0.268 0.000 0.000 0.000 0.732
#> SRR1403434     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1390540     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1325290     5  0.0000     0.7703 0.000 0.000 0.000 0.000 1.000
#> SRR1070689     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     3  0.3730     0.5547 0.000 0.000 0.712 0.000 0.288
#> SRR1321877     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR815711      4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1433476     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1101883     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1433729     2  0.3300     0.7280 0.000 0.792 0.204 0.004 0.000
#> SRR1341877     5  0.2690     0.7094 0.000 0.000 0.000 0.156 0.844
#> SRR1090556     5  0.2690     0.7094 0.000 0.000 0.000 0.156 0.844
#> SRR1357389     4  0.0162     0.9334 0.000 0.000 0.004 0.996 0.000
#> SRR1404227     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1376830     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.3730     0.5032 0.712 0.000 0.000 0.000 0.288
#> SRR1080294     2  0.1410     0.8826 0.000 0.940 0.060 0.000 0.000
#> SRR1336314     2  0.1205     0.8951 0.000 0.956 0.000 0.004 0.040
#> SRR1102152     1  0.2690     0.7827 0.844 0.000 0.000 0.000 0.156
#> SRR1345244     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     5  0.0162     0.7701 0.000 0.000 0.000 0.004 0.996
#> SRR1443776     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1120939     3  0.4161     0.3666 0.000 0.000 0.608 0.392 0.000
#> SRR1080117     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1091865     5  0.3730     0.5768 0.288 0.000 0.000 0.000 0.712
#> SRR1361072     1  0.1270     0.8936 0.948 0.000 0.000 0.000 0.052
#> SRR1487890     1  0.0000     0.9464 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.0000     0.9307 0.000 0.000 1.000 0.000 0.000
#> SRR1389384     5  0.1792     0.7555 0.084 0.000 0.000 0.000 0.916
#> SRR1316096     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000
#> SRR1408512     5  0.0000     0.7703 0.000 0.000 0.000 0.000 1.000
#> SRR1447547     5  0.4171     0.3615 0.000 0.000 0.000 0.396 0.604
#> SRR1354053     2  0.0000     0.9208 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.0291     0.7742 0.000 0.004 0.000 0.992 0.000 0.004
#> SRR1499040     1  0.4086     0.0299 0.528 0.000 0.000 0.008 0.464 0.000
#> SRR1322312     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1100991     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1349479     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1431248     5  0.0632     0.7757 0.000 0.000 0.000 0.024 0.976 0.000
#> SRR1405054     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1312266     1  0.2212     0.8342 0.880 0.000 0.000 0.008 0.112 0.000
#> SRR1409790     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1352507     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1383763     1  0.0146     0.9490 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1468314     4  0.3862     0.4177 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1473674     2  0.0146     0.9190 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1390499     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.2823     0.7133 0.000 0.204 0.000 0.796 0.000 0.000
#> SRR1455653     4  0.2003     0.7506 0.000 0.116 0.000 0.884 0.000 0.000
#> SRR1335236     2  0.0000     0.9218 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1095383     4  0.3862     0.4177 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1479489     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9218 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1073435     5  0.5816     0.0185 0.000 0.000 0.388 0.000 0.428 0.184
#> SRR659649      3  0.2664     0.7376 0.000 0.000 0.816 0.000 0.000 0.184
#> SRR1395999     5  0.3684     0.5193 0.372 0.000 0.000 0.000 0.628 0.000
#> SRR1105248     3  0.3023     0.6780 0.000 0.000 0.768 0.000 0.000 0.232
#> SRR1338257     1  0.3323     0.6486 0.752 0.000 0.000 0.008 0.240 0.000
#> SRR1499395     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1350002     2  0.0146     0.9180 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1489757     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1414637     5  0.0260     0.7761 0.000 0.000 0.000 0.008 0.992 0.000
#> SRR1478113     4  0.0146     0.7739 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1322477     5  0.0260     0.7761 0.000 0.000 0.000 0.008 0.992 0.000
#> SRR1478789     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1414185     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1069141     2  0.0000     0.9218 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1376852     5  0.2260     0.7465 0.140 0.000 0.000 0.000 0.860 0.000
#> SRR1323491     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1338103     5  0.2941     0.6518 0.000 0.000 0.220 0.000 0.780 0.000
#> SRR1472012     5  0.1141     0.7748 0.000 0.000 0.052 0.000 0.948 0.000
#> SRR1340325     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1087321     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1488790     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1334866     5  0.3595     0.5556 0.000 0.000 0.000 0.008 0.704 0.288
#> SRR1089446     3  0.3149     0.7790 0.000 0.000 0.824 0.000 0.044 0.132
#> SRR1344445     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1412969     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1071668     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1075804     5  0.1957     0.7574 0.112 0.000 0.000 0.000 0.888 0.000
#> SRR1383283     6  0.2340     0.7943 0.000 0.000 0.148 0.000 0.000 0.852
#> SRR1350239     3  0.1714     0.8665 0.000 0.000 0.908 0.092 0.000 0.000
#> SRR1353878     5  0.4051     0.2848 0.432 0.000 0.000 0.008 0.560 0.000
#> SRR1375721     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     5  0.3349     0.6562 0.244 0.000 0.000 0.008 0.748 0.000
#> SRR1090095     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.0260     0.7713 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1098737     5  0.1957     0.7574 0.112 0.000 0.000 0.000 0.888 0.000
#> SRR1349409     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1413008     3  0.0865     0.9063 0.000 0.000 0.964 0.036 0.000 0.000
#> SRR1407179     5  0.3446     0.5194 0.000 0.000 0.308 0.000 0.692 0.000
#> SRR1095913     6  0.2793     0.7293 0.000 0.000 0.200 0.000 0.000 0.800
#> SRR1403544     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR807971      3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1436228     5  0.0458     0.7785 0.000 0.000 0.016 0.000 0.984 0.000
#> SRR1445218     2  0.0146     0.9189 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1485438     2  0.3998    -0.0460 0.000 0.504 0.000 0.004 0.492 0.000
#> SRR1358143     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1328760     5  0.4105     0.6550 0.236 0.000 0.036 0.008 0.720 0.000
#> SRR1380806     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1379426     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1087007     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1086256     5  0.2333     0.7303 0.000 0.004 0.000 0.120 0.872 0.004
#> SRR1346734     4  0.0260     0.7761 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1414515     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082151     5  0.4254     0.6647 0.216 0.000 0.000 0.072 0.712 0.000
#> SRR1349320     4  0.0260     0.7761 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1317554     4  0.2823     0.7133 0.000 0.204 0.000 0.796 0.000 0.000
#> SRR1076022     2  0.0000     0.9218 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1339573     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1455878     5  0.1606     0.7756 0.008 0.000 0.056 0.004 0.932 0.000
#> SRR1446203     6  0.3672     0.4203 0.000 0.000 0.368 0.000 0.000 0.632
#> SRR1387397     5  0.0520     0.7779 0.000 0.000 0.008 0.008 0.984 0.000
#> SRR1402590     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     5  0.1957     0.7509 0.000 0.000 0.112 0.000 0.888 0.000
#> SRR1331488     5  0.2664     0.7280 0.184 0.000 0.000 0.000 0.816 0.000
#> SRR1499675     5  0.4937     0.5234 0.000 0.000 0.196 0.000 0.652 0.152
#> SRR1440467     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR807995      2  0.0000     0.9218 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476485     4  0.0260     0.7761 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1388214     5  0.3575     0.6076 0.284 0.000 0.000 0.008 0.708 0.000
#> SRR1456051     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1473275     3  0.1007     0.8960 0.000 0.000 0.956 0.000 0.000 0.044
#> SRR1444083     3  0.4456     0.3447 0.024 0.000 0.608 0.008 0.360 0.000
#> SRR1313807     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1470751     5  0.3245     0.6750 0.228 0.000 0.000 0.008 0.764 0.000
#> SRR1403434     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1390540     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9218 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1325290     5  0.0260     0.7761 0.000 0.000 0.000 0.008 0.992 0.000
#> SRR1070689     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     6  0.3151     0.6247 0.000 0.000 0.000 0.000 0.252 0.748
#> SRR1321877     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815711      3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1433476     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1101883     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1433729     4  0.4853     0.2922 0.000 0.004 0.052 0.556 0.000 0.388
#> SRR1341877     5  0.1957     0.7509 0.000 0.000 0.112 0.000 0.888 0.000
#> SRR1090556     5  0.1957     0.7509 0.000 0.000 0.112 0.000 0.888 0.000
#> SRR1357389     3  0.0000     0.9250 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1404227     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1376830     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.3126     0.6026 0.752 0.000 0.000 0.000 0.248 0.000
#> SRR1080294     4  0.3991     0.4177 0.000 0.472 0.000 0.524 0.000 0.004
#> SRR1336314     4  0.0260     0.7761 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1102152     1  0.2212     0.8342 0.880 0.000 0.000 0.008 0.112 0.000
#> SRR1345244     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1478637     5  0.0146     0.7767 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1443776     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1120939     6  0.3727     0.3738 0.000 0.000 0.388 0.000 0.000 0.612
#> SRR1080117     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1102899     2  0.0000     0.9218 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091865     5  0.3349     0.6562 0.244 0.000 0.000 0.008 0.748 0.000
#> SRR1361072     1  0.1663     0.8584 0.912 0.000 0.000 0.000 0.088 0.000
#> SRR1487890     1  0.0000     0.9524 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1349456     6  0.0000     0.9291 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1389384     5  0.1701     0.7655 0.072 0.000 0.000 0.008 0.920 0.000
#> SRR1316096     2  0.0458     0.9048 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1408512     5  0.0000     0.7761 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1447547     5  0.5479     0.1663 0.000 0.000 0.388 0.128 0.484 0.000
#> SRR1354053     4  0.3862     0.4177 0.000 0.476 0.000 0.524 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.402           0.904       0.905         0.3340 0.688   0.688
#> 3 3 0.893           0.921       0.967         0.9643 0.532   0.376
#> 4 4 0.904           0.840       0.930         0.0131 0.811   0.571
#> 5 5 0.797           0.787       0.873         0.1099 0.894   0.700
#> 6 6 0.735           0.737       0.812         0.0787 0.889   0.603

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.912 1.000 0.000
#> SRR1349562     1  0.0000      0.912 1.000 0.000
#> SRR1353376     2  0.6623      0.957 0.172 0.828
#> SRR1499040     1  0.2603      0.911 0.956 0.044
#> SRR1322312     1  0.0000      0.912 1.000 0.000
#> SRR1324412     1  0.7602      0.849 0.780 0.220
#> SRR1100991     1  0.7602      0.849 0.780 0.220
#> SRR1349479     1  0.5059      0.895 0.888 0.112
#> SRR1431248     1  0.2778      0.911 0.952 0.048
#> SRR1405054     1  0.7528      0.849 0.784 0.216
#> SRR1312266     1  0.1843      0.913 0.972 0.028
#> SRR1409790     1  0.7602      0.849 0.780 0.220
#> SRR1352507     1  0.7602      0.849 0.780 0.220
#> SRR1383763     1  0.0938      0.913 0.988 0.012
#> SRR1468314     2  0.4939      0.958 0.108 0.892
#> SRR1473674     2  0.6623      0.957 0.172 0.828
#> SRR1390499     1  0.0000      0.912 1.000 0.000
#> SRR821043      2  0.6438      0.958 0.164 0.836
#> SRR1455653     2  0.6531      0.958 0.168 0.832
#> SRR1335236     2  0.4939      0.958 0.108 0.892
#> SRR1095383     2  0.4939      0.958 0.108 0.892
#> SRR1479489     1  0.1414      0.913 0.980 0.020
#> SRR1310433     2  0.4939      0.958 0.108 0.892
#> SRR1073435     1  0.5059      0.895 0.888 0.112
#> SRR659649      1  0.7602      0.849 0.780 0.220
#> SRR1395999     1  0.0000      0.912 1.000 0.000
#> SRR1105248     1  0.5059      0.895 0.888 0.112
#> SRR1338257     1  0.0000      0.912 1.000 0.000
#> SRR1499395     1  0.7602      0.849 0.780 0.220
#> SRR1350002     2  0.6623      0.957 0.172 0.828
#> SRR1489757     1  0.7602      0.849 0.780 0.220
#> SRR1414637     1  0.2778      0.911 0.952 0.048
#> SRR1478113     2  0.6623      0.957 0.172 0.828
#> SRR1322477     1  0.2778      0.911 0.952 0.048
#> SRR1478789     1  0.5059      0.895 0.888 0.112
#> SRR1414185     1  0.7602      0.849 0.780 0.220
#> SRR1069141     2  0.4939      0.958 0.108 0.892
#> SRR1376852     1  0.0000      0.912 1.000 0.000
#> SRR1323491     1  0.0000      0.912 1.000 0.000
#> SRR1338103     1  0.2778      0.911 0.952 0.048
#> SRR1472012     1  0.2603      0.911 0.956 0.044
#> SRR1340325     1  0.1633      0.913 0.976 0.024
#> SRR1087321     1  0.7602      0.849 0.780 0.220
#> SRR1488790     1  0.0000      0.912 1.000 0.000
#> SRR1334866     1  0.2948      0.910 0.948 0.052
#> SRR1089446     1  0.7602      0.849 0.780 0.220
#> SRR1344445     1  0.7602      0.849 0.780 0.220
#> SRR1412969     1  0.5059      0.895 0.888 0.112
#> SRR1071668     1  0.7602      0.849 0.780 0.220
#> SRR1075804     1  0.0000      0.912 1.000 0.000
#> SRR1383283     1  0.5059      0.895 0.888 0.112
#> SRR1350239     1  0.5059      0.895 0.888 0.112
#> SRR1353878     1  0.0000      0.912 1.000 0.000
#> SRR1375721     1  0.0000      0.912 1.000 0.000
#> SRR1083983     1  0.0000      0.912 1.000 0.000
#> SRR1090095     1  0.0000      0.912 1.000 0.000
#> SRR1414792     1  0.0000      0.912 1.000 0.000
#> SRR1075102     2  0.6623      0.957 0.172 0.828
#> SRR1098737     1  0.0000      0.912 1.000 0.000
#> SRR1349409     1  0.0000      0.912 1.000 0.000
#> SRR1413008     1  0.5059      0.895 0.888 0.112
#> SRR1407179     1  0.5059      0.895 0.888 0.112
#> SRR1095913     1  0.5059      0.895 0.888 0.112
#> SRR1403544     1  0.0000      0.912 1.000 0.000
#> SRR1490546     1  0.0000      0.912 1.000 0.000
#> SRR807971      1  0.7602      0.849 0.780 0.220
#> SRR1436228     1  0.2778      0.911 0.952 0.048
#> SRR1445218     2  0.4939      0.958 0.108 0.892
#> SRR1485438     2  0.6623      0.957 0.172 0.828
#> SRR1358143     1  0.0000      0.912 1.000 0.000
#> SRR1328760     1  0.0000      0.912 1.000 0.000
#> SRR1380806     1  0.0376      0.912 0.996 0.004
#> SRR1379426     1  0.7602      0.849 0.780 0.220
#> SRR1087007     1  0.7602      0.849 0.780 0.220
#> SRR1086256     1  0.2778      0.911 0.952 0.048
#> SRR1346734     2  0.6623      0.957 0.172 0.828
#> SRR1414515     1  0.0000      0.912 1.000 0.000
#> SRR1082151     1  0.2778      0.911 0.952 0.048
#> SRR1349320     2  0.6623      0.957 0.172 0.828
#> SRR1317554     2  0.4939      0.958 0.108 0.892
#> SRR1076022     2  0.5178      0.959 0.116 0.884
#> SRR1339573     1  0.7602      0.849 0.780 0.220
#> SRR1455878     1  0.0000      0.912 1.000 0.000
#> SRR1446203     1  0.7602      0.849 0.780 0.220
#> SRR1387397     1  0.1843      0.913 0.972 0.028
#> SRR1402590     1  0.0000      0.912 1.000 0.000
#> SRR1317532     1  0.1414      0.913 0.980 0.020
#> SRR1331488     1  0.0000      0.912 1.000 0.000
#> SRR1499675     1  0.2778      0.911 0.952 0.048
#> SRR1440467     1  0.7602      0.849 0.780 0.220
#> SRR807995      2  0.6623      0.957 0.172 0.828
#> SRR1476485     2  0.6623      0.957 0.172 0.828
#> SRR1388214     1  0.0000      0.912 1.000 0.000
#> SRR1456051     1  0.0000      0.912 1.000 0.000
#> SRR1473275     1  0.7602      0.849 0.780 0.220
#> SRR1444083     1  0.0000      0.912 1.000 0.000
#> SRR1313807     1  0.5059      0.895 0.888 0.112
#> SRR1470751     1  0.2778      0.911 0.952 0.048
#> SRR1403434     1  0.7602      0.849 0.780 0.220
#> SRR1390540     1  0.0000      0.912 1.000 0.000
#> SRR1093861     2  0.4939      0.958 0.108 0.892
#> SRR1325290     1  0.2778      0.911 0.952 0.048
#> SRR1070689     1  0.0000      0.912 1.000 0.000
#> SRR1384049     1  0.0000      0.912 1.000 0.000
#> SRR1081184     1  0.0000      0.912 1.000 0.000
#> SRR1324295     1  0.0000      0.912 1.000 0.000
#> SRR1365313     1  0.5059      0.895 0.888 0.112
#> SRR1321877     1  0.7602      0.849 0.780 0.220
#> SRR815711      1  0.7602      0.849 0.780 0.220
#> SRR1433476     1  0.5059      0.895 0.888 0.112
#> SRR1101883     1  0.7602      0.849 0.780 0.220
#> SRR1433729     1  0.8207      0.732 0.744 0.256
#> SRR1341877     1  0.2778      0.911 0.952 0.048
#> SRR1090556     1  0.2778      0.911 0.952 0.048
#> SRR1357389     1  0.7602      0.849 0.780 0.220
#> SRR1404227     1  0.5059      0.895 0.888 0.112
#> SRR1376830     1  0.0000      0.912 1.000 0.000
#> SRR1500661     1  0.0000      0.912 1.000 0.000
#> SRR1080294     2  0.4939      0.958 0.108 0.892
#> SRR1336314     2  0.6623      0.957 0.172 0.828
#> SRR1102152     1  0.0000      0.912 1.000 0.000
#> SRR1345244     1  0.7602      0.849 0.780 0.220
#> SRR1478637     1  0.2778      0.911 0.952 0.048
#> SRR1443776     1  0.7602      0.849 0.780 0.220
#> SRR1120939     1  0.7602      0.849 0.780 0.220
#> SRR1080117     1  0.7602      0.849 0.780 0.220
#> SRR1102899     2  0.4939      0.958 0.108 0.892
#> SRR1091865     1  0.0376      0.912 0.996 0.004
#> SRR1361072     1  0.0000      0.912 1.000 0.000
#> SRR1487890     1  0.0000      0.912 1.000 0.000
#> SRR1349456     1  0.5059      0.895 0.888 0.112
#> SRR1389384     1  0.2778      0.911 0.952 0.048
#> SRR1316096     2  0.4939      0.958 0.108 0.892
#> SRR1408512     1  0.0672      0.912 0.992 0.008
#> SRR1447547     1  0.2778      0.911 0.952 0.048
#> SRR1354053     2  0.4939      0.958 0.108 0.892

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1353376     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1499040     1  0.9758    -0.0345 0.412 0.232 0.356
#> SRR1322312     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1324412     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1100991     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1349479     2  0.0747     0.9467 0.000 0.984 0.016
#> SRR1431248     2  0.5926     0.4410 0.356 0.644 0.000
#> SRR1405054     3  0.3192     0.8572 0.112 0.000 0.888
#> SRR1312266     1  0.5138     0.6610 0.748 0.252 0.000
#> SRR1409790     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1352507     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1383763     1  0.3752     0.8257 0.856 0.144 0.000
#> SRR1468314     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1473674     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1390499     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR821043      2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1455653     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1335236     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1095383     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1479489     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1310433     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1073435     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR659649      3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1395999     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1105248     2  0.0592     0.9497 0.000 0.988 0.012
#> SRR1338257     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1499395     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1350002     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1489757     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1414637     2  0.3816     0.8060 0.148 0.852 0.000
#> SRR1478113     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1322477     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1478789     2  0.5810     0.5036 0.000 0.664 0.336
#> SRR1414185     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1069141     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1376852     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1338103     1  0.4555     0.7484 0.800 0.200 0.000
#> SRR1472012     1  0.4235     0.7811 0.824 0.176 0.000
#> SRR1340325     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1087321     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1488790     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1334866     2  0.4235     0.7734 0.176 0.824 0.000
#> SRR1089446     3  0.3879     0.8155 0.000 0.152 0.848
#> SRR1344445     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1412969     3  0.1860     0.9244 0.000 0.052 0.948
#> SRR1071668     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1075804     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1383283     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1350239     2  0.0747     0.9467 0.000 0.984 0.016
#> SRR1353878     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1083983     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1090095     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1075102     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1098737     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1413008     2  0.0747     0.9467 0.000 0.984 0.016
#> SRR1407179     3  0.4796     0.7062 0.000 0.220 0.780
#> SRR1095913     2  0.5835     0.4953 0.000 0.660 0.340
#> SRR1403544     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR807971      3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1436228     2  0.1643     0.9178 0.044 0.956 0.000
#> SRR1445218     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1485438     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1358143     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1379426     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1087007     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1086256     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1346734     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1082151     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1349320     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1317554     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1076022     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1339573     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1455878     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1446203     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1387397     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1402590     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1331488     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1499675     1  0.5529     0.5833 0.704 0.296 0.000
#> SRR1440467     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR807995      2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1476485     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1388214     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1473275     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1444083     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1313807     2  0.0237     0.9552 0.000 0.996 0.004
#> SRR1470751     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1403434     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1390540     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1325290     1  0.0892     0.9471 0.980 0.020 0.000
#> SRR1070689     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1365313     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1321877     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR815711      3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1433476     2  0.0592     0.9497 0.000 0.988 0.012
#> SRR1101883     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1433729     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1341877     1  0.4062     0.7970 0.836 0.164 0.000
#> SRR1090556     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1357389     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1404227     3  0.5529     0.5641 0.000 0.296 0.704
#> SRR1376830     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1080294     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1336314     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1102152     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1345244     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1478637     2  0.0237     0.9547 0.004 0.996 0.000
#> SRR1443776     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1120939     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1080117     3  0.0000     0.9710 0.000 0.000 1.000
#> SRR1102899     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1091865     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1361072     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1349456     2  0.5785     0.5123 0.000 0.668 0.332
#> SRR1389384     1  0.1163     0.9406 0.972 0.028 0.000
#> SRR1316096     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1408512     1  0.0000     0.9639 1.000 0.000 0.000
#> SRR1447547     2  0.0000     0.9576 0.000 1.000 0.000
#> SRR1354053     2  0.0000     0.9576 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1349562     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1353376     4  0.2081     0.8232 0.000 0.084 0.000 0.916
#> SRR1499040     1  0.4817     0.3613 0.612 0.000 0.388 0.000
#> SRR1322312     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1324412     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1100991     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1349479     3  0.1792     0.8672 0.000 0.000 0.932 0.068
#> SRR1431248     1  0.1888     0.9197 0.940 0.044 0.000 0.016
#> SRR1405054     3  0.3688     0.6342 0.208 0.000 0.792 0.000
#> SRR1312266     1  0.1109     0.9422 0.968 0.028 0.000 0.004
#> SRR1409790     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1352507     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1383763     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1468314     2  0.4916     0.2204 0.000 0.576 0.000 0.424
#> SRR1473674     2  0.1118     0.8644 0.000 0.964 0.000 0.036
#> SRR1390499     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR821043      4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1455653     4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1335236     2  0.1792     0.8294 0.000 0.932 0.000 0.068
#> SRR1095383     2  0.4985     0.2132 0.000 0.532 0.000 0.468
#> SRR1479489     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1310433     2  0.0817     0.8642 0.000 0.976 0.000 0.024
#> SRR1073435     4  0.7588     0.0563 0.116 0.020 0.408 0.456
#> SRR659649      3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1105248     3  0.4985     0.1918 0.000 0.000 0.532 0.468
#> SRR1338257     1  0.0188     0.9599 0.996 0.004 0.000 0.000
#> SRR1499395     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.1302     0.8592 0.000 0.956 0.000 0.044
#> SRR1489757     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1414637     1  0.1888     0.9197 0.940 0.044 0.000 0.016
#> SRR1478113     4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1322477     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1478789     3  0.1938     0.8715 0.000 0.012 0.936 0.052
#> SRR1414185     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.0921     0.8633 0.000 0.972 0.000 0.028
#> SRR1376852     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.0188     0.9592 0.996 0.000 0.000 0.004
#> SRR1472012     1  0.0188     0.9592 0.996 0.000 0.000 0.004
#> SRR1340325     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0336     0.9004 0.000 0.000 0.992 0.008
#> SRR1488790     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1334866     1  0.2197     0.9108 0.928 0.024 0.000 0.048
#> SRR1089446     3  0.3444     0.6647 0.184 0.000 0.816 0.000
#> SRR1344445     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1412969     3  0.1302     0.8821 0.000 0.000 0.956 0.044
#> SRR1071668     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1075804     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1383283     3  0.6754     0.0265 0.000 0.092 0.464 0.444
#> SRR1350239     3  0.5155     0.1828 0.004 0.000 0.528 0.468
#> SRR1353878     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1083983     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1090095     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1414792     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1075102     4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1098737     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1349409     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1413008     3  0.5755     0.1986 0.028 0.000 0.528 0.444
#> SRR1407179     3  0.1474     0.8778 0.000 0.000 0.948 0.052
#> SRR1095913     3  0.4144     0.7716 0.000 0.104 0.828 0.068
#> SRR1403544     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1490546     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR807971      3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1436228     1  0.0927     0.9494 0.976 0.008 0.000 0.016
#> SRR1445218     2  0.1118     0.8644 0.000 0.964 0.000 0.036
#> SRR1485438     2  0.1297     0.8419 0.020 0.964 0.000 0.016
#> SRR1358143     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1328760     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0188     0.9603 0.996 0.004 0.000 0.000
#> SRR1379426     3  0.0188     0.9021 0.000 0.000 0.996 0.004
#> SRR1087007     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1086256     1  0.5695     0.0533 0.500 0.476 0.000 0.024
#> SRR1346734     4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1414515     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1082151     1  0.2002     0.9167 0.936 0.044 0.000 0.020
#> SRR1349320     4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1317554     4  0.3266     0.7217 0.000 0.168 0.000 0.832
#> SRR1076022     2  0.1118     0.8644 0.000 0.964 0.000 0.036
#> SRR1339573     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1455878     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1387397     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1402590     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1317532     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1331488     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1499675     1  0.1389     0.9300 0.952 0.000 0.000 0.048
#> SRR1440467     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR807995      2  0.1118     0.8644 0.000 0.964 0.000 0.036
#> SRR1476485     4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1388214     1  0.0188     0.9599 0.996 0.004 0.000 0.000
#> SRR1456051     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1473275     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1444083     1  0.0188     0.9599 0.996 0.004 0.000 0.000
#> SRR1313807     3  0.2048     0.8651 0.000 0.008 0.928 0.064
#> SRR1470751     1  0.2214     0.9102 0.928 0.044 0.000 0.028
#> SRR1403434     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.0921     0.8633 0.000 0.972 0.000 0.028
#> SRR1325290     1  0.0188     0.9592 0.996 0.000 0.000 0.004
#> SRR1070689     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1384049     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1081184     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1324295     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1365313     1  0.6603     0.5966 0.696 0.080 0.168 0.056
#> SRR1321877     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR815711      3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1433476     3  0.5151     0.1930 0.000 0.004 0.532 0.464
#> SRR1101883     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1433729     4  0.7307     0.0564 0.000 0.376 0.156 0.468
#> SRR1341877     1  0.0188     0.9592 0.996 0.000 0.000 0.004
#> SRR1090556     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1357389     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1404227     3  0.1389     0.8799 0.000 0.000 0.952 0.048
#> SRR1376830     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1500661     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1080294     2  0.5155     0.2048 0.000 0.528 0.004 0.468
#> SRR1336314     4  0.1302     0.8532 0.000 0.044 0.000 0.956
#> SRR1102152     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1345244     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1478637     1  0.3636     0.7842 0.820 0.172 0.000 0.008
#> SRR1443776     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1120939     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1080117     3  0.0000     0.9037 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.1557     0.8421 0.000 0.944 0.000 0.056
#> SRR1091865     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1361072     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0707     0.9577 0.980 0.020 0.000 0.000
#> SRR1349456     3  0.3687     0.8018 0.000 0.080 0.856 0.064
#> SRR1389384     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1316096     2  0.0921     0.8649 0.000 0.972 0.000 0.028
#> SRR1408512     1  0.0000     0.9606 1.000 0.000 0.000 0.000
#> SRR1447547     1  0.3945     0.7273 0.780 0.000 0.004 0.216
#> SRR1354053     4  0.2011     0.8292 0.000 0.080 0.000 0.920

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0451   0.957580 0.988 0.000 0.000 0.004 0.008
#> SRR1349562     1  0.1831   0.904097 0.920 0.000 0.000 0.004 0.076
#> SRR1353376     4  0.1830   0.878031 0.000 0.040 0.000 0.932 0.028
#> SRR1499040     5  0.6990   0.491015 0.280 0.008 0.312 0.000 0.400
#> SRR1322312     1  0.0771   0.954275 0.976 0.000 0.000 0.004 0.020
#> SRR1324412     3  0.1153   0.860931 0.004 0.000 0.964 0.024 0.008
#> SRR1100991     3  0.1153   0.860931 0.004 0.000 0.964 0.024 0.008
#> SRR1349479     3  0.6777   0.173139 0.000 0.024 0.472 0.360 0.144
#> SRR1431248     5  0.4295   0.849745 0.236 0.028 0.000 0.004 0.732
#> SRR1405054     3  0.4943   0.315768 0.376 0.000 0.596 0.016 0.012
#> SRR1312266     1  0.0740   0.953349 0.980 0.008 0.000 0.004 0.008
#> SRR1409790     3  0.0992   0.861945 0.000 0.000 0.968 0.024 0.008
#> SRR1352507     3  0.0992   0.861945 0.000 0.000 0.968 0.024 0.008
#> SRR1383763     1  0.1648   0.908616 0.940 0.020 0.000 0.000 0.040
#> SRR1468314     2  0.6218   0.080442 0.000 0.488 0.000 0.364 0.148
#> SRR1473674     2  0.0324   0.771487 0.000 0.992 0.000 0.004 0.004
#> SRR1390499     1  0.0671   0.955482 0.980 0.000 0.000 0.004 0.016
#> SRR821043      4  0.1544   0.880801 0.000 0.068 0.000 0.932 0.000
#> SRR1455653     4  0.0963   0.903264 0.000 0.036 0.000 0.964 0.000
#> SRR1335236     2  0.0771   0.770176 0.000 0.976 0.000 0.004 0.020
#> SRR1095383     2  0.6294   0.050897 0.000 0.468 0.000 0.376 0.156
#> SRR1479489     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1310433     2  0.0451   0.773658 0.000 0.988 0.000 0.004 0.008
#> SRR1073435     3  0.7462   0.229097 0.004 0.040 0.448 0.216 0.292
#> SRR659649      3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1395999     1  0.0404   0.957168 0.988 0.000 0.000 0.000 0.012
#> SRR1105248     3  0.6888   0.128241 0.000 0.020 0.448 0.360 0.172
#> SRR1338257     1  0.0798   0.952904 0.976 0.000 0.000 0.008 0.016
#> SRR1499395     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1350002     2  0.1282   0.742778 0.000 0.952 0.000 0.044 0.004
#> SRR1489757     3  0.0992   0.861945 0.000 0.000 0.968 0.024 0.008
#> SRR1414637     5  0.4240   0.847379 0.228 0.036 0.000 0.000 0.736
#> SRR1478113     4  0.0963   0.903264 0.000 0.036 0.000 0.964 0.000
#> SRR1322477     5  0.3612   0.843018 0.268 0.000 0.000 0.000 0.732
#> SRR1478789     3  0.2124   0.832687 0.000 0.056 0.916 0.000 0.028
#> SRR1414185     3  0.0000   0.866334 0.000 0.000 1.000 0.000 0.000
#> SRR1069141     2  0.0566   0.773067 0.000 0.984 0.000 0.004 0.012
#> SRR1376852     1  0.0510   0.956193 0.984 0.000 0.000 0.000 0.016
#> SRR1323491     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1338103     5  0.4437   0.805478 0.316 0.020 0.000 0.000 0.664
#> SRR1472012     5  0.4829   0.468649 0.484 0.020 0.000 0.000 0.496
#> SRR1340325     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1087321     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1488790     1  0.0566   0.956717 0.984 0.000 0.000 0.004 0.012
#> SRR1334866     5  0.4185   0.840091 0.216 0.024 0.008 0.000 0.752
#> SRR1089446     3  0.1205   0.841929 0.040 0.000 0.956 0.004 0.000
#> SRR1344445     3  0.0290   0.865836 0.000 0.000 0.992 0.000 0.008
#> SRR1412969     3  0.0579   0.863990 0.000 0.008 0.984 0.000 0.008
#> SRR1071668     3  0.0992   0.861945 0.000 0.000 0.968 0.024 0.008
#> SRR1075804     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1383283     3  0.7210   0.308699 0.000 0.044 0.496 0.244 0.216
#> SRR1350239     3  0.6100   0.529481 0.000 0.020 0.628 0.180 0.172
#> SRR1353878     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1375721     1  0.0771   0.954275 0.976 0.000 0.000 0.004 0.020
#> SRR1083983     1  0.0794   0.946780 0.972 0.000 0.000 0.000 0.028
#> SRR1090095     1  0.0566   0.956717 0.984 0.000 0.000 0.004 0.012
#> SRR1414792     1  0.0671   0.955482 0.980 0.000 0.000 0.004 0.016
#> SRR1075102     4  0.0963   0.903264 0.000 0.036 0.000 0.964 0.000
#> SRR1098737     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1349409     1  0.0865   0.952048 0.972 0.000 0.000 0.004 0.024
#> SRR1413008     3  0.5970   0.554436 0.000 0.020 0.644 0.164 0.172
#> SRR1407179     3  0.1399   0.853671 0.000 0.028 0.952 0.000 0.020
#> SRR1095913     3  0.3844   0.708915 0.000 0.180 0.788 0.004 0.028
#> SRR1403544     1  0.0865   0.952048 0.972 0.000 0.000 0.004 0.024
#> SRR1490546     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR807971      3  0.0992   0.861945 0.000 0.000 0.968 0.024 0.008
#> SRR1436228     5  0.4485   0.846232 0.224 0.036 0.008 0.000 0.732
#> SRR1445218     2  0.0324   0.773119 0.000 0.992 0.000 0.004 0.004
#> SRR1485438     2  0.4235   0.167780 0.000 0.576 0.000 0.000 0.424
#> SRR1358143     1  0.0771   0.954275 0.976 0.000 0.000 0.004 0.020
#> SRR1328760     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1380806     1  0.0451   0.957580 0.988 0.000 0.000 0.004 0.008
#> SRR1379426     3  0.0000   0.866334 0.000 0.000 1.000 0.000 0.000
#> SRR1087007     3  0.0162   0.866429 0.000 0.000 0.996 0.000 0.004
#> SRR1086256     5  0.6178   0.762121 0.184 0.076 0.016 0.052 0.672
#> SRR1346734     4  0.0963   0.903264 0.000 0.036 0.000 0.964 0.000
#> SRR1414515     1  0.0771   0.954275 0.976 0.000 0.000 0.004 0.020
#> SRR1082151     5  0.4347   0.848851 0.232 0.032 0.000 0.004 0.732
#> SRR1349320     4  0.0963   0.903264 0.000 0.036 0.000 0.964 0.000
#> SRR1317554     4  0.4444   0.421728 0.000 0.364 0.000 0.624 0.012
#> SRR1076022     2  0.0162   0.772927 0.000 0.996 0.000 0.000 0.004
#> SRR1339573     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1455878     1  0.0404   0.957168 0.988 0.000 0.000 0.000 0.012
#> SRR1446203     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1387397     1  0.0510   0.956193 0.984 0.000 0.000 0.000 0.016
#> SRR1402590     1  0.1831   0.904097 0.920 0.000 0.000 0.004 0.076
#> SRR1317532     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1331488     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1499675     5  0.4217   0.849445 0.232 0.020 0.008 0.000 0.740
#> SRR1440467     3  0.0162   0.866429 0.000 0.000 0.996 0.000 0.004
#> SRR807995      2  0.0162   0.772927 0.000 0.996 0.000 0.000 0.004
#> SRR1476485     4  0.0963   0.903264 0.000 0.036 0.000 0.964 0.000
#> SRR1388214     1  0.0798   0.952904 0.976 0.000 0.000 0.008 0.016
#> SRR1456051     1  0.0671   0.955482 0.980 0.000 0.000 0.004 0.016
#> SRR1473275     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1444083     1  0.0798   0.952904 0.976 0.000 0.000 0.008 0.016
#> SRR1313807     3  0.7116   0.403304 0.000 0.064 0.544 0.208 0.184
#> SRR1470751     5  0.4584   0.841767 0.220 0.032 0.000 0.016 0.732
#> SRR1403434     3  0.0000   0.866334 0.000 0.000 1.000 0.000 0.000
#> SRR1390540     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1093861     2  0.0566   0.773067 0.000 0.984 0.000 0.004 0.012
#> SRR1325290     5  0.4206   0.833897 0.288 0.016 0.000 0.000 0.696
#> SRR1070689     1  0.1831   0.904097 0.920 0.000 0.000 0.004 0.076
#> SRR1384049     1  0.0566   0.957136 0.984 0.000 0.000 0.004 0.012
#> SRR1081184     1  0.1831   0.904097 0.920 0.000 0.000 0.004 0.076
#> SRR1324295     1  0.1831   0.904097 0.920 0.000 0.000 0.004 0.076
#> SRR1365313     5  0.6817   0.656481 0.184 0.060 0.172 0.000 0.584
#> SRR1321877     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR815711      3  0.0290   0.865836 0.000 0.000 0.992 0.000 0.008
#> SRR1433476     3  0.6980   0.120359 0.000 0.024 0.444 0.356 0.176
#> SRR1101883     3  0.0290   0.865836 0.000 0.000 0.992 0.000 0.008
#> SRR1433729     2  0.6465  -0.000579 0.000 0.440 0.000 0.376 0.184
#> SRR1341877     5  0.4114   0.843310 0.272 0.016 0.000 0.000 0.712
#> SRR1090556     5  0.4232   0.810916 0.312 0.012 0.000 0.000 0.676
#> SRR1357389     3  0.0992   0.861945 0.000 0.000 0.968 0.024 0.008
#> SRR1404227     3  0.1469   0.850851 0.000 0.036 0.948 0.000 0.016
#> SRR1376830     1  0.0566   0.958618 0.984 0.000 0.000 0.004 0.012
#> SRR1500661     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1080294     2  0.6288   0.062996 0.000 0.472 0.000 0.372 0.156
#> SRR1336314     4  0.0963   0.903264 0.000 0.036 0.000 0.964 0.000
#> SRR1102152     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1345244     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1478637     5  0.4514   0.805902 0.188 0.072 0.000 0.000 0.740
#> SRR1443776     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1120939     3  0.0510   0.865960 0.000 0.000 0.984 0.000 0.016
#> SRR1080117     3  0.0000   0.866334 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.0771   0.770176 0.000 0.976 0.000 0.004 0.020
#> SRR1091865     1  0.3774   0.383084 0.704 0.000 0.000 0.000 0.296
#> SRR1361072     1  0.0290   0.958858 0.992 0.000 0.000 0.000 0.008
#> SRR1487890     1  0.0865   0.952048 0.972 0.000 0.000 0.004 0.024
#> SRR1349456     3  0.4565   0.506398 0.000 0.308 0.664 0.000 0.028
#> SRR1389384     5  0.3916   0.848582 0.256 0.012 0.000 0.000 0.732
#> SRR1316096     2  0.0162   0.772927 0.000 0.996 0.000 0.000 0.004
#> SRR1408512     1  0.3039   0.666518 0.808 0.000 0.000 0.000 0.192
#> SRR1447547     5  0.7541  -0.103693 0.024 0.020 0.304 0.204 0.448
#> SRR1354053     4  0.4138   0.394251 0.000 0.384 0.000 0.616 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.1829      0.799 0.920 0.004 0.000 0.000 0.012 0.064
#> SRR1349562     1  0.4702      0.726 0.660 0.004 0.000 0.000 0.076 0.260
#> SRR1353376     4  0.0692      0.709 0.000 0.020 0.000 0.976 0.004 0.000
#> SRR1499040     5  0.4145      0.698 0.252 0.000 0.048 0.000 0.700 0.000
#> SRR1322312     1  0.3825      0.761 0.744 0.004 0.000 0.000 0.032 0.220
#> SRR1324412     3  0.0146      0.802 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1100991     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1349479     4  0.5528      0.455 0.000 0.000 0.252 0.556 0.000 0.192
#> SRR1431248     5  0.2006      0.862 0.104 0.004 0.000 0.000 0.892 0.000
#> SRR1405054     3  0.5249      0.349 0.244 0.000 0.600 0.000 0.156 0.000
#> SRR1312266     1  0.0777      0.796 0.972 0.004 0.000 0.000 0.024 0.000
#> SRR1409790     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1352507     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1383763     5  0.4453      0.358 0.372 0.000 0.000 0.000 0.592 0.036
#> SRR1468314     4  0.3894      0.646 0.000 0.220 0.000 0.740 0.004 0.036
#> SRR1473674     2  0.0891      0.971 0.000 0.968 0.000 0.024 0.000 0.008
#> SRR1390499     1  0.4637      0.733 0.672 0.004 0.000 0.000 0.076 0.248
#> SRR821043      4  0.1910      0.695 0.000 0.108 0.000 0.892 0.000 0.000
#> SRR1455653     4  0.1327      0.705 0.000 0.064 0.000 0.936 0.000 0.000
#> SRR1335236     2  0.0862      0.972 0.000 0.972 0.000 0.008 0.004 0.016
#> SRR1095383     4  0.3905      0.649 0.000 0.212 0.000 0.744 0.004 0.040
#> SRR1479489     1  0.2527      0.673 0.832 0.000 0.000 0.000 0.168 0.000
#> SRR1310433     2  0.0291      0.982 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1073435     4  0.6412      0.433 0.000 0.016 0.236 0.512 0.016 0.220
#> SRR659649      6  0.3578      0.907 0.000 0.000 0.340 0.000 0.000 0.660
#> SRR1395999     1  0.0547      0.797 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1105248     4  0.5546      0.449 0.000 0.000 0.256 0.552 0.000 0.192
#> SRR1338257     1  0.0713      0.795 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR1499395     6  0.3804      0.777 0.000 0.000 0.424 0.000 0.000 0.576
#> SRR1350002     2  0.1398      0.949 0.000 0.940 0.000 0.052 0.000 0.008
#> SRR1489757     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1414637     5  0.2282      0.857 0.088 0.024 0.000 0.000 0.888 0.000
#> SRR1478113     4  0.0146      0.709 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1322477     5  0.1910      0.862 0.108 0.000 0.000 0.000 0.892 0.000
#> SRR1478789     6  0.4119      0.881 0.000 0.016 0.280 0.008 0.004 0.692
#> SRR1414185     6  0.3634      0.888 0.000 0.000 0.356 0.000 0.000 0.644
#> SRR1069141     2  0.0653      0.978 0.000 0.980 0.000 0.004 0.004 0.012
#> SRR1376852     1  0.1075      0.795 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR1323491     1  0.0547      0.796 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1338103     5  0.1910      0.862 0.108 0.000 0.000 0.000 0.892 0.000
#> SRR1472012     5  0.2738      0.811 0.176 0.000 0.000 0.000 0.820 0.004
#> SRR1340325     1  0.0632      0.796 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1087321     6  0.3619      0.919 0.000 0.000 0.316 0.004 0.000 0.680
#> SRR1488790     1  0.3727      0.770 0.768 0.004 0.000 0.000 0.040 0.188
#> SRR1334866     5  0.2788      0.846 0.084 0.004 0.012 0.004 0.876 0.020
#> SRR1089446     3  0.3916      0.585 0.036 0.000 0.780 0.008 0.164 0.012
#> SRR1344445     3  0.0146      0.802 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1412969     6  0.3636      0.920 0.000 0.000 0.320 0.004 0.000 0.676
#> SRR1071668     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1075804     1  0.0632      0.797 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1383283     4  0.6143      0.442 0.000 0.016 0.236 0.524 0.004 0.220
#> SRR1350239     4  0.6183      0.156 0.000 0.000 0.404 0.444 0.104 0.048
#> SRR1353878     1  0.0547      0.796 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1375721     1  0.3770      0.763 0.752 0.004 0.000 0.000 0.032 0.212
#> SRR1083983     1  0.3330      0.490 0.716 0.000 0.000 0.000 0.284 0.000
#> SRR1090095     1  0.1615      0.799 0.928 0.004 0.000 0.000 0.004 0.064
#> SRR1414792     1  0.4610      0.732 0.672 0.004 0.000 0.000 0.072 0.252
#> SRR1075102     4  0.0146      0.709 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1098737     1  0.0865      0.789 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1349409     1  0.4818      0.728 0.664 0.004 0.000 0.000 0.100 0.232
#> SRR1413008     3  0.6700     -0.132 0.008 0.000 0.404 0.392 0.148 0.048
#> SRR1407179     6  0.6932      0.303 0.016 0.016 0.296 0.004 0.292 0.376
#> SRR1095913     6  0.4662      0.810 0.000 0.068 0.228 0.008 0.004 0.692
#> SRR1403544     1  0.4754      0.730 0.668 0.004 0.000 0.000 0.092 0.236
#> SRR1490546     1  0.0547      0.796 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR807971      3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1436228     5  0.2020      0.860 0.096 0.000 0.000 0.000 0.896 0.008
#> SRR1445218     2  0.0291      0.982 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1485438     5  0.5379      0.172 0.016 0.396 0.000 0.072 0.516 0.000
#> SRR1358143     1  0.3987      0.757 0.732 0.004 0.000 0.000 0.040 0.224
#> SRR1328760     1  0.2597      0.666 0.824 0.000 0.000 0.000 0.176 0.000
#> SRR1380806     1  0.1668      0.800 0.928 0.004 0.000 0.000 0.008 0.060
#> SRR1379426     6  0.3515      0.921 0.000 0.000 0.324 0.000 0.000 0.676
#> SRR1087007     6  0.3515      0.921 0.000 0.000 0.324 0.000 0.000 0.676
#> SRR1086256     5  0.3558      0.718 0.004 0.048 0.012 0.096 0.832 0.008
#> SRR1346734     4  0.0146      0.709 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1414515     1  0.3825      0.761 0.744 0.004 0.000 0.000 0.032 0.220
#> SRR1082151     5  0.2203      0.856 0.084 0.004 0.000 0.016 0.896 0.000
#> SRR1349320     4  0.0146      0.709 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1317554     4  0.3370      0.652 0.000 0.212 0.000 0.772 0.004 0.012
#> SRR1076022     2  0.0405      0.982 0.000 0.988 0.000 0.004 0.000 0.008
#> SRR1339573     6  0.3828      0.743 0.000 0.000 0.440 0.000 0.000 0.560
#> SRR1455878     1  0.1387      0.771 0.932 0.000 0.000 0.000 0.068 0.000
#> SRR1446203     6  0.3499      0.921 0.000 0.000 0.320 0.000 0.000 0.680
#> SRR1387397     1  0.2762      0.640 0.804 0.000 0.000 0.000 0.196 0.000
#> SRR1402590     1  0.4632      0.730 0.668 0.004 0.000 0.000 0.072 0.256
#> SRR1317532     1  0.2562      0.666 0.828 0.000 0.000 0.000 0.172 0.000
#> SRR1331488     1  0.2562      0.666 0.828 0.000 0.000 0.000 0.172 0.000
#> SRR1499675     5  0.2255      0.856 0.088 0.000 0.000 0.004 0.892 0.016
#> SRR1440467     6  0.3515      0.921 0.000 0.000 0.324 0.000 0.000 0.676
#> SRR807995      2  0.0520      0.980 0.000 0.984 0.000 0.008 0.000 0.008
#> SRR1476485     4  0.0146      0.709 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1388214     1  0.2597      0.665 0.824 0.000 0.000 0.000 0.176 0.000
#> SRR1456051     1  0.4610      0.732 0.672 0.004 0.000 0.000 0.072 0.252
#> SRR1473275     3  0.5826     -0.290 0.008 0.000 0.484 0.000 0.152 0.356
#> SRR1444083     1  0.2597      0.665 0.824 0.000 0.000 0.000 0.176 0.000
#> SRR1313807     4  0.6265      0.389 0.000 0.016 0.236 0.496 0.004 0.248
#> SRR1470751     5  0.2342      0.857 0.088 0.004 0.000 0.020 0.888 0.000
#> SRR1403434     6  0.3515      0.921 0.000 0.000 0.324 0.000 0.000 0.676
#> SRR1390540     1  0.0458      0.796 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1093861     2  0.0551      0.980 0.000 0.984 0.000 0.004 0.004 0.008
#> SRR1325290     5  0.1863      0.862 0.104 0.000 0.000 0.000 0.896 0.000
#> SRR1070689     1  0.4821      0.726 0.660 0.004 0.000 0.000 0.096 0.240
#> SRR1384049     1  0.2649      0.795 0.876 0.004 0.000 0.000 0.068 0.052
#> SRR1081184     1  0.4632      0.730 0.668 0.004 0.000 0.000 0.072 0.256
#> SRR1324295     1  0.4681      0.728 0.664 0.004 0.000 0.000 0.076 0.256
#> SRR1365313     5  0.6413      0.328 0.016 0.016 0.172 0.040 0.608 0.148
#> SRR1321877     6  0.3499      0.921 0.000 0.000 0.320 0.000 0.000 0.680
#> SRR815711      3  0.1732      0.734 0.004 0.000 0.920 0.000 0.072 0.004
#> SRR1433476     4  0.5745      0.438 0.000 0.004 0.256 0.536 0.000 0.204
#> SRR1101883     3  0.0146      0.802 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1433729     4  0.4223      0.659 0.000 0.192 0.000 0.732 0.004 0.072
#> SRR1341877     5  0.1910      0.862 0.108 0.000 0.000 0.000 0.892 0.000
#> SRR1090556     5  0.2300      0.846 0.144 0.000 0.000 0.000 0.856 0.000
#> SRR1357389     3  0.0000      0.805 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1404227     6  0.3848      0.898 0.000 0.012 0.292 0.004 0.000 0.692
#> SRR1376830     1  0.4439      0.743 0.692 0.004 0.000 0.000 0.064 0.240
#> SRR1500661     1  0.0806      0.798 0.972 0.000 0.000 0.000 0.020 0.008
#> SRR1080294     4  0.3933      0.646 0.000 0.216 0.000 0.740 0.004 0.040
#> SRR1336314     4  0.0146      0.709 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1102152     1  0.2597      0.666 0.824 0.000 0.000 0.000 0.176 0.000
#> SRR1345244     6  0.3515      0.921 0.000 0.000 0.324 0.000 0.000 0.676
#> SRR1478637     5  0.2517      0.849 0.080 0.016 0.000 0.008 0.888 0.008
#> SRR1443776     6  0.3499      0.921 0.000 0.000 0.320 0.000 0.000 0.680
#> SRR1120939     6  0.3499      0.921 0.000 0.000 0.320 0.000 0.000 0.680
#> SRR1080117     6  0.3515      0.921 0.000 0.000 0.324 0.000 0.000 0.676
#> SRR1102899     2  0.0653      0.978 0.000 0.980 0.000 0.004 0.004 0.012
#> SRR1091865     5  0.3409      0.699 0.300 0.000 0.000 0.000 0.700 0.000
#> SRR1361072     1  0.1387      0.770 0.932 0.000 0.000 0.000 0.068 0.000
#> SRR1487890     1  0.4754      0.730 0.668 0.004 0.000 0.000 0.092 0.236
#> SRR1349456     6  0.4634      0.816 0.000 0.064 0.232 0.008 0.004 0.692
#> SRR1389384     5  0.1863      0.862 0.104 0.000 0.000 0.000 0.896 0.000
#> SRR1316096     2  0.0405      0.982 0.000 0.988 0.000 0.004 0.000 0.008
#> SRR1408512     5  0.3833      0.385 0.444 0.000 0.000 0.000 0.556 0.000
#> SRR1447547     4  0.7862      0.207 0.028 0.000 0.232 0.388 0.216 0.136
#> SRR1354053     4  0.2912      0.652 0.000 0.216 0.000 0.784 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.984           0.959       0.983         0.4971 0.503   0.503
#> 3 3 0.954           0.920       0.967         0.3235 0.755   0.552
#> 4 4 0.926           0.906       0.961         0.0618 0.927   0.798
#> 5 5 0.795           0.781       0.890         0.0752 0.897   0.687
#> 6 6 0.803           0.753       0.866         0.0539 0.944   0.788

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.982 1.000 0.000
#> SRR1349562     1  0.0000      0.982 1.000 0.000
#> SRR1353376     2  0.0000      0.983 0.000 1.000
#> SRR1499040     1  0.0000      0.982 1.000 0.000
#> SRR1322312     1  0.0000      0.982 1.000 0.000
#> SRR1324412     1  0.0000      0.982 1.000 0.000
#> SRR1100991     1  0.0000      0.982 1.000 0.000
#> SRR1349479     2  0.0000      0.983 0.000 1.000
#> SRR1431248     1  0.9427      0.445 0.640 0.360
#> SRR1405054     1  0.0000      0.982 1.000 0.000
#> SRR1312266     1  0.0000      0.982 1.000 0.000
#> SRR1409790     1  0.0000      0.982 1.000 0.000
#> SRR1352507     1  0.0000      0.982 1.000 0.000
#> SRR1383763     1  0.0000      0.982 1.000 0.000
#> SRR1468314     2  0.0000      0.983 0.000 1.000
#> SRR1473674     2  0.0000      0.983 0.000 1.000
#> SRR1390499     1  0.0000      0.982 1.000 0.000
#> SRR821043      2  0.0000      0.983 0.000 1.000
#> SRR1455653     2  0.0000      0.983 0.000 1.000
#> SRR1335236     2  0.0000      0.983 0.000 1.000
#> SRR1095383     2  0.0000      0.983 0.000 1.000
#> SRR1479489     1  0.0000      0.982 1.000 0.000
#> SRR1310433     2  0.0000      0.983 0.000 1.000
#> SRR1073435     2  0.0000      0.983 0.000 1.000
#> SRR659649      2  0.0376      0.980 0.004 0.996
#> SRR1395999     1  0.0000      0.982 1.000 0.000
#> SRR1105248     2  0.0000      0.983 0.000 1.000
#> SRR1338257     1  0.0000      0.982 1.000 0.000
#> SRR1499395     1  0.9754      0.310 0.592 0.408
#> SRR1350002     2  0.0000      0.983 0.000 1.000
#> SRR1489757     1  0.0000      0.982 1.000 0.000
#> SRR1414637     1  0.6048      0.824 0.852 0.148
#> SRR1478113     2  0.0000      0.983 0.000 1.000
#> SRR1322477     1  0.0000      0.982 1.000 0.000
#> SRR1478789     2  0.0000      0.983 0.000 1.000
#> SRR1414185     2  0.0672      0.976 0.008 0.992
#> SRR1069141     2  0.0000      0.983 0.000 1.000
#> SRR1376852     1  0.0000      0.982 1.000 0.000
#> SRR1323491     1  0.0000      0.982 1.000 0.000
#> SRR1338103     1  0.0000      0.982 1.000 0.000
#> SRR1472012     1  0.0000      0.982 1.000 0.000
#> SRR1340325     1  0.0000      0.982 1.000 0.000
#> SRR1087321     2  0.0000      0.983 0.000 1.000
#> SRR1488790     1  0.0000      0.982 1.000 0.000
#> SRR1334866     2  0.0672      0.976 0.008 0.992
#> SRR1089446     1  0.0000      0.982 1.000 0.000
#> SRR1344445     1  0.0000      0.982 1.000 0.000
#> SRR1412969     2  0.0000      0.983 0.000 1.000
#> SRR1071668     1  0.0000      0.982 1.000 0.000
#> SRR1075804     1  0.0000      0.982 1.000 0.000
#> SRR1383283     2  0.0000      0.983 0.000 1.000
#> SRR1350239     2  0.8327      0.640 0.264 0.736
#> SRR1353878     1  0.0000      0.982 1.000 0.000
#> SRR1375721     1  0.0000      0.982 1.000 0.000
#> SRR1083983     1  0.0000      0.982 1.000 0.000
#> SRR1090095     1  0.0000      0.982 1.000 0.000
#> SRR1414792     1  0.0000      0.982 1.000 0.000
#> SRR1075102     2  0.0000      0.983 0.000 1.000
#> SRR1098737     1  0.0000      0.982 1.000 0.000
#> SRR1349409     1  0.0000      0.982 1.000 0.000
#> SRR1413008     2  0.8713      0.587 0.292 0.708
#> SRR1407179     1  0.5842      0.835 0.860 0.140
#> SRR1095913     2  0.0000      0.983 0.000 1.000
#> SRR1403544     1  0.0000      0.982 1.000 0.000
#> SRR1490546     1  0.0000      0.982 1.000 0.000
#> SRR807971      1  0.0000      0.982 1.000 0.000
#> SRR1436228     2  0.2423      0.945 0.040 0.960
#> SRR1445218     2  0.0000      0.983 0.000 1.000
#> SRR1485438     2  0.0000      0.983 0.000 1.000
#> SRR1358143     1  0.0000      0.982 1.000 0.000
#> SRR1328760     1  0.0000      0.982 1.000 0.000
#> SRR1380806     1  0.0000      0.982 1.000 0.000
#> SRR1379426     2  0.0000      0.983 0.000 1.000
#> SRR1087007     2  0.0000      0.983 0.000 1.000
#> SRR1086256     2  0.0000      0.983 0.000 1.000
#> SRR1346734     2  0.0000      0.983 0.000 1.000
#> SRR1414515     1  0.0000      0.982 1.000 0.000
#> SRR1082151     1  0.6623      0.789 0.828 0.172
#> SRR1349320     2  0.0000      0.983 0.000 1.000
#> SRR1317554     2  0.0000      0.983 0.000 1.000
#> SRR1076022     2  0.0000      0.983 0.000 1.000
#> SRR1339573     2  0.9460      0.428 0.364 0.636
#> SRR1455878     1  0.0000      0.982 1.000 0.000
#> SRR1446203     2  0.0000      0.983 0.000 1.000
#> SRR1387397     1  0.0000      0.982 1.000 0.000
#> SRR1402590     1  0.0000      0.982 1.000 0.000
#> SRR1317532     1  0.0000      0.982 1.000 0.000
#> SRR1331488     1  0.0000      0.982 1.000 0.000
#> SRR1499675     1  0.1184      0.969 0.984 0.016
#> SRR1440467     2  0.0000      0.983 0.000 1.000
#> SRR807995      2  0.0000      0.983 0.000 1.000
#> SRR1476485     2  0.0000      0.983 0.000 1.000
#> SRR1388214     1  0.0000      0.982 1.000 0.000
#> SRR1456051     1  0.0000      0.982 1.000 0.000
#> SRR1473275     1  0.0000      0.982 1.000 0.000
#> SRR1444083     1  0.0000      0.982 1.000 0.000
#> SRR1313807     2  0.0000      0.983 0.000 1.000
#> SRR1470751     1  0.0376      0.979 0.996 0.004
#> SRR1403434     2  0.0000      0.983 0.000 1.000
#> SRR1390540     1  0.0000      0.982 1.000 0.000
#> SRR1093861     2  0.0000      0.983 0.000 1.000
#> SRR1325290     1  0.0000      0.982 1.000 0.000
#> SRR1070689     1  0.0000      0.982 1.000 0.000
#> SRR1384049     1  0.0000      0.982 1.000 0.000
#> SRR1081184     1  0.0000      0.982 1.000 0.000
#> SRR1324295     1  0.0000      0.982 1.000 0.000
#> SRR1365313     2  0.0000      0.983 0.000 1.000
#> SRR1321877     2  0.0000      0.983 0.000 1.000
#> SRR815711      1  0.0672      0.976 0.992 0.008
#> SRR1433476     2  0.0000      0.983 0.000 1.000
#> SRR1101883     1  0.1843      0.957 0.972 0.028
#> SRR1433729     2  0.0000      0.983 0.000 1.000
#> SRR1341877     1  0.0000      0.982 1.000 0.000
#> SRR1090556     1  0.0000      0.982 1.000 0.000
#> SRR1357389     1  0.1843      0.958 0.972 0.028
#> SRR1404227     2  0.0000      0.983 0.000 1.000
#> SRR1376830     1  0.0000      0.982 1.000 0.000
#> SRR1500661     1  0.0000      0.982 1.000 0.000
#> SRR1080294     2  0.0000      0.983 0.000 1.000
#> SRR1336314     2  0.0000      0.983 0.000 1.000
#> SRR1102152     1  0.0000      0.982 1.000 0.000
#> SRR1345244     2  0.0000      0.983 0.000 1.000
#> SRR1478637     2  0.0000      0.983 0.000 1.000
#> SRR1443776     2  0.0000      0.983 0.000 1.000
#> SRR1120939     2  0.0000      0.983 0.000 1.000
#> SRR1080117     2  0.0000      0.983 0.000 1.000
#> SRR1102899     2  0.0000      0.983 0.000 1.000
#> SRR1091865     1  0.0000      0.982 1.000 0.000
#> SRR1361072     1  0.0000      0.982 1.000 0.000
#> SRR1487890     1  0.0000      0.982 1.000 0.000
#> SRR1349456     2  0.0000      0.983 0.000 1.000
#> SRR1389384     1  0.0000      0.982 1.000 0.000
#> SRR1316096     2  0.0000      0.983 0.000 1.000
#> SRR1408512     1  0.0000      0.982 1.000 0.000
#> SRR1447547     2  0.0000      0.983 0.000 1.000
#> SRR1354053     2  0.0000      0.983 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.973 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1499040     1  0.6244      0.217 0.560 0.000 0.440
#> SRR1322312     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1324412     3  0.1163      0.952 0.028 0.000 0.972
#> SRR1100991     3  0.0592      0.969 0.012 0.000 0.988
#> SRR1349479     3  0.0237      0.973 0.000 0.004 0.996
#> SRR1431248     2  0.6154      0.276 0.408 0.592 0.000
#> SRR1405054     3  0.2356      0.902 0.072 0.000 0.928
#> SRR1312266     1  0.0237      0.970 0.996 0.004 0.000
#> SRR1409790     3  0.0424      0.972 0.008 0.000 0.992
#> SRR1352507     3  0.0424      0.972 0.008 0.000 0.992
#> SRR1383763     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1468314     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1473674     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1390499     1  0.0000      0.973 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.941 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1335236     2  0.0592      0.937 0.000 0.988 0.012
#> SRR1095383     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1479489     1  0.2711      0.889 0.912 0.000 0.088
#> SRR1310433     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1073435     2  0.3038      0.858 0.000 0.896 0.104
#> SRR659649      3  0.0000      0.975 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1105248     3  0.6026      0.346 0.000 0.376 0.624
#> SRR1338257     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1350002     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1489757     3  0.0424      0.972 0.008 0.000 0.992
#> SRR1414637     1  0.5431      0.607 0.716 0.284 0.000
#> SRR1478113     2  0.0237      0.938 0.004 0.996 0.000
#> SRR1322477     1  0.0424      0.967 0.992 0.008 0.000
#> SRR1478789     3  0.0237      0.973 0.000 0.004 0.996
#> SRR1414185     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1069141     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1376852     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1338103     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1472012     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1340325     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1087321     3  0.0237      0.973 0.000 0.004 0.996
#> SRR1488790     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1334866     2  0.2187      0.911 0.028 0.948 0.024
#> SRR1089446     3  0.0424      0.972 0.008 0.000 0.992
#> SRR1344445     3  0.0237      0.975 0.004 0.000 0.996
#> SRR1412969     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1071668     3  0.0237      0.975 0.004 0.000 0.996
#> SRR1075804     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1383283     2  0.1860      0.907 0.000 0.948 0.052
#> SRR1350239     3  0.0475      0.974 0.004 0.004 0.992
#> SRR1353878     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1083983     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1090095     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1098737     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1413008     3  0.0237      0.975 0.004 0.000 0.996
#> SRR1407179     3  0.0237      0.975 0.004 0.000 0.996
#> SRR1095913     2  0.6126      0.352 0.000 0.600 0.400
#> SRR1403544     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.973 1.000 0.000 0.000
#> SRR807971      3  0.0424      0.972 0.008 0.000 0.992
#> SRR1436228     2  0.1289      0.918 0.032 0.968 0.000
#> SRR1445218     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1485438     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1358143     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1380806     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1379426     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1086256     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1346734     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1082151     1  0.6154      0.311 0.592 0.408 0.000
#> SRR1349320     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1076022     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1339573     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1455878     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1446203     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1387397     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1317532     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1331488     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1499675     1  0.4399      0.758 0.812 0.000 0.188
#> SRR1440467     3  0.0000      0.975 0.000 0.000 1.000
#> SRR807995      2  0.0000      0.941 0.000 1.000 0.000
#> SRR1476485     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1473275     3  0.0424      0.972 0.008 0.000 0.992
#> SRR1444083     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1313807     2  0.5291      0.645 0.000 0.732 0.268
#> SRR1470751     1  0.2537      0.898 0.920 0.080 0.000
#> SRR1403434     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1390540     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1093861     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1325290     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1070689     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1365313     2  0.5968      0.460 0.000 0.636 0.364
#> SRR1321877     3  0.0000      0.975 0.000 0.000 1.000
#> SRR815711      3  0.0237      0.975 0.004 0.000 0.996
#> SRR1433476     2  0.6045      0.422 0.000 0.620 0.380
#> SRR1101883     3  0.0237      0.975 0.004 0.000 0.996
#> SRR1433729     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1341877     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1090556     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1357389     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1404227     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1080294     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1336314     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1102152     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1345244     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1478637     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1443776     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.975 0.000 0.000 1.000
#> SRR1102899     2  0.0424      0.939 0.000 0.992 0.008
#> SRR1091865     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1349456     3  0.5058      0.657 0.000 0.244 0.756
#> SRR1389384     1  0.0424      0.967 0.992 0.008 0.000
#> SRR1316096     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1408512     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1447547     2  0.0000      0.941 0.000 1.000 0.000
#> SRR1354053     2  0.0000      0.941 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0336     0.8817 0.000 0.008 0.000 0.992
#> SRR1499040     1  0.3450     0.7932 0.836 0.008 0.156 0.000
#> SRR1322312     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1100991     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1349479     3  0.0707     0.9505 0.000 0.000 0.980 0.020
#> SRR1431248     1  0.2805     0.8705 0.888 0.100 0.000 0.012
#> SRR1405054     3  0.0336     0.9594 0.008 0.000 0.992 0.000
#> SRR1312266     1  0.0921     0.9531 0.972 0.000 0.000 0.028
#> SRR1409790     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1352507     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1383763     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1468314     2  0.0921     0.9162 0.000 0.972 0.000 0.028
#> SRR1473674     2  0.0000     0.9265 0.000 1.000 0.000 0.000
#> SRR1390499     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0188     0.8828 0.000 0.004 0.000 0.996
#> SRR1455653     4  0.4776     0.3737 0.000 0.376 0.000 0.624
#> SRR1335236     2  0.0188     0.9266 0.000 0.996 0.000 0.004
#> SRR1095383     2  0.2921     0.8224 0.000 0.860 0.000 0.140
#> SRR1479489     1  0.0336     0.9685 0.992 0.000 0.008 0.000
#> SRR1310433     2  0.0336     0.9257 0.000 0.992 0.000 0.008
#> SRR1073435     2  0.2861     0.8403 0.000 0.888 0.096 0.016
#> SRR659649      3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.3486     0.7629 0.000 0.000 0.188 0.812
#> SRR1338257     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1499395     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.0000     0.9265 0.000 1.000 0.000 0.000
#> SRR1489757     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1414637     1  0.4543     0.5436 0.676 0.324 0.000 0.000
#> SRR1478113     4  0.0188     0.8828 0.000 0.004 0.000 0.996
#> SRR1322477     1  0.0336     0.9695 0.992 0.008 0.000 0.000
#> SRR1478789     3  0.4643     0.4565 0.000 0.344 0.656 0.000
#> SRR1414185     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.0188     0.9266 0.000 0.996 0.000 0.004
#> SRR1376852     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.0336     0.9696 0.992 0.008 0.000 0.000
#> SRR1472012     1  0.0524     0.9674 0.988 0.008 0.004 0.000
#> SRR1340325     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1087321     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1488790     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.0895     0.9090 0.020 0.976 0.004 0.000
#> SRR1089446     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1344445     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1412969     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1071668     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1075804     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1383283     2  0.1854     0.8949 0.000 0.940 0.048 0.012
#> SRR1350239     4  0.2216     0.8432 0.000 0.000 0.092 0.908
#> SRR1353878     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1083983     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1090095     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000     0.8828 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.2408     0.8357 0.000 0.000 0.104 0.896
#> SRR1407179     3  0.1182     0.9386 0.016 0.016 0.968 0.000
#> SRR1095913     2  0.5163     0.0650 0.000 0.516 0.480 0.004
#> SRR1403544     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR807971      3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1436228     2  0.0188     0.9242 0.004 0.996 0.000 0.000
#> SRR1445218     2  0.0336     0.9257 0.000 0.992 0.000 0.008
#> SRR1485438     2  0.0000     0.9265 0.000 1.000 0.000 0.000
#> SRR1358143     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1087007     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1086256     2  0.0000     0.9265 0.000 1.000 0.000 0.000
#> SRR1346734     4  0.0000     0.8828 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1082151     1  0.3400     0.7815 0.820 0.180 0.000 0.000
#> SRR1349320     4  0.0336     0.8820 0.000 0.008 0.000 0.992
#> SRR1317554     4  0.4989     0.0667 0.000 0.472 0.000 0.528
#> SRR1076022     2  0.0188     0.9266 0.000 0.996 0.000 0.004
#> SRR1339573     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1455878     1  0.0188     0.9715 0.996 0.000 0.004 0.000
#> SRR1446203     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1387397     1  0.0188     0.9715 0.996 0.000 0.004 0.000
#> SRR1402590     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1331488     1  0.4605     0.5011 0.664 0.000 0.000 0.336
#> SRR1499675     1  0.3448     0.7742 0.828 0.000 0.168 0.004
#> SRR1440467     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR807995      2  0.0000     0.9265 0.000 1.000 0.000 0.000
#> SRR1476485     4  0.0000     0.8828 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1456051     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1444083     1  0.0188     0.9718 0.996 0.000 0.000 0.004
#> SRR1313807     3  0.5928     0.0161 0.000 0.456 0.508 0.036
#> SRR1470751     1  0.0592     0.9638 0.984 0.016 0.000 0.000
#> SRR1403434     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9265 0.000 1.000 0.000 0.000
#> SRR1325290     1  0.0336     0.9695 0.992 0.008 0.000 0.000
#> SRR1070689     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.2197     0.8617 0.000 0.916 0.080 0.004
#> SRR1321877     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR815711      3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1433476     4  0.3311     0.7795 0.000 0.000 0.172 0.828
#> SRR1101883     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1433729     2  0.3710     0.7549 0.000 0.804 0.004 0.192
#> SRR1341877     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1090556     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1357389     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1404227     3  0.0188     0.9657 0.000 0.004 0.996 0.000
#> SRR1376830     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1080294     2  0.2530     0.8517 0.000 0.888 0.000 0.112
#> SRR1336314     4  0.0188     0.8828 0.000 0.004 0.000 0.996
#> SRR1102152     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1345244     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1478637     2  0.0000     0.9265 0.000 1.000 0.000 0.000
#> SRR1443776     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1120939     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1080117     3  0.0000     0.9692 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.0336     0.9257 0.000 0.992 0.000 0.008
#> SRR1091865     1  0.0336     0.9695 0.992 0.008 0.000 0.000
#> SRR1361072     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1487890     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1349456     2  0.1209     0.9092 0.000 0.964 0.032 0.004
#> SRR1389384     1  0.1302     0.9393 0.956 0.044 0.000 0.000
#> SRR1316096     2  0.0188     0.9266 0.000 0.996 0.000 0.004
#> SRR1408512     1  0.0000     0.9741 1.000 0.000 0.000 0.000
#> SRR1447547     4  0.0895     0.8762 0.004 0.020 0.000 0.976
#> SRR1354053     2  0.3569     0.7514 0.000 0.804 0.000 0.196

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.2890     0.7530 0.000 0.160 0.000 0.836 0.004
#> SRR1499040     3  0.6466    -0.0912 0.156 0.004 0.420 0.000 0.420
#> SRR1322312     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.0404     0.9349 0.000 0.000 0.988 0.000 0.012
#> SRR1100991     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1349479     3  0.1830     0.9058 0.000 0.040 0.932 0.028 0.000
#> SRR1431248     5  0.6456     0.2916 0.344 0.128 0.000 0.016 0.512
#> SRR1405054     3  0.0566     0.9325 0.012 0.000 0.984 0.000 0.004
#> SRR1312266     1  0.3909     0.7123 0.760 0.000 0.000 0.216 0.024
#> SRR1409790     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1352507     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1383763     1  0.0290     0.9372 0.992 0.000 0.000 0.000 0.008
#> SRR1468314     2  0.3783     0.5982 0.000 0.740 0.000 0.008 0.252
#> SRR1473674     5  0.2127     0.6524 0.000 0.108 0.000 0.000 0.892
#> SRR1390499     1  0.0290     0.9372 0.992 0.000 0.000 0.000 0.008
#> SRR821043      4  0.1845     0.8378 0.000 0.056 0.000 0.928 0.016
#> SRR1455653     4  0.4866     0.5151 0.000 0.052 0.000 0.664 0.284
#> SRR1335236     5  0.4302    -0.0122 0.000 0.480 0.000 0.000 0.520
#> SRR1095383     2  0.3565     0.6727 0.000 0.816 0.000 0.040 0.144
#> SRR1479489     1  0.1153     0.9255 0.964 0.004 0.008 0.000 0.024
#> SRR1310433     2  0.3508     0.5973 0.000 0.748 0.000 0.000 0.252
#> SRR1073435     2  0.1668     0.6846 0.000 0.940 0.032 0.000 0.028
#> SRR659649      3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1395999     1  0.1357     0.9211 0.948 0.004 0.000 0.000 0.048
#> SRR1105248     4  0.2189     0.8230 0.000 0.012 0.084 0.904 0.000
#> SRR1338257     1  0.3439     0.8449 0.856 0.000 0.040 0.024 0.080
#> SRR1499395     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1350002     5  0.1851     0.6586 0.000 0.088 0.000 0.000 0.912
#> SRR1489757     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1414637     5  0.4763     0.5543 0.212 0.076 0.000 0.000 0.712
#> SRR1478113     4  0.1671     0.8403 0.000 0.000 0.000 0.924 0.076
#> SRR1322477     1  0.1981     0.8931 0.920 0.016 0.000 0.000 0.064
#> SRR1478789     3  0.4425     0.6236 0.000 0.244 0.716 0.000 0.040
#> SRR1414185     3  0.1251     0.9224 0.000 0.036 0.956 0.008 0.000
#> SRR1069141     5  0.3932     0.3931 0.000 0.328 0.000 0.000 0.672
#> SRR1376852     1  0.1195     0.9257 0.960 0.012 0.000 0.000 0.028
#> SRR1323491     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1338103     1  0.4612     0.7133 0.736 0.180 0.000 0.000 0.084
#> SRR1472012     1  0.4035     0.7729 0.784 0.156 0.000 0.000 0.060
#> SRR1340325     1  0.3399     0.7607 0.812 0.000 0.168 0.000 0.020
#> SRR1087321     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1334866     2  0.5346     0.4563 0.168 0.692 0.008 0.000 0.132
#> SRR1089446     3  0.2707     0.8174 0.008 0.132 0.860 0.000 0.000
#> SRR1344445     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1412969     3  0.0162     0.9401 0.000 0.004 0.996 0.000 0.000
#> SRR1071668     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1075804     1  0.2196     0.8972 0.916 0.056 0.000 0.004 0.024
#> SRR1383283     2  0.1153     0.6935 0.000 0.964 0.024 0.004 0.008
#> SRR1350239     4  0.3424     0.6835 0.000 0.000 0.240 0.760 0.000
#> SRR1353878     1  0.0703     0.9312 0.976 0.000 0.000 0.000 0.024
#> SRR1375721     1  0.0324     0.9365 0.992 0.004 0.000 0.000 0.004
#> SRR1083983     1  0.2131     0.9058 0.920 0.008 0.016 0.000 0.056
#> SRR1090095     1  0.0290     0.9372 0.992 0.000 0.000 0.000 0.008
#> SRR1414792     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.0510     0.8511 0.000 0.000 0.000 0.984 0.016
#> SRR1098737     1  0.2125     0.9001 0.920 0.052 0.000 0.004 0.024
#> SRR1349409     1  0.0162     0.9380 0.996 0.000 0.000 0.000 0.004
#> SRR1413008     4  0.3480     0.6752 0.000 0.000 0.248 0.752 0.000
#> SRR1407179     2  0.4887     0.4710 0.048 0.692 0.252 0.000 0.008
#> SRR1095913     3  0.5336     0.4503 0.000 0.288 0.628 0.000 0.084
#> SRR1403544     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0290     0.9372 0.992 0.000 0.000 0.000 0.008
#> SRR807971      3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1436228     2  0.4595     0.4716 0.172 0.740 0.000 0.000 0.088
#> SRR1445218     2  0.3752     0.5473 0.000 0.708 0.000 0.000 0.292
#> SRR1485438     5  0.2179     0.6490 0.000 0.112 0.000 0.000 0.888
#> SRR1358143     1  0.0162     0.9379 0.996 0.000 0.000 0.000 0.004
#> SRR1328760     1  0.0955     0.9268 0.968 0.004 0.000 0.000 0.028
#> SRR1380806     1  0.0451     0.9352 0.988 0.004 0.000 0.000 0.008
#> SRR1379426     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1087007     3  0.1341     0.9139 0.000 0.056 0.944 0.000 0.000
#> SRR1086256     2  0.3274     0.6106 0.000 0.780 0.000 0.000 0.220
#> SRR1346734     4  0.0404     0.8512 0.000 0.012 0.000 0.988 0.000
#> SRR1414515     1  0.0162     0.9375 0.996 0.004 0.000 0.000 0.000
#> SRR1082151     5  0.1410     0.6623 0.060 0.000 0.000 0.000 0.940
#> SRR1349320     4  0.1484     0.8488 0.000 0.008 0.000 0.944 0.048
#> SRR1317554     2  0.4665     0.6363 0.000 0.740 0.000 0.148 0.112
#> SRR1076022     2  0.3636     0.5714 0.000 0.728 0.000 0.000 0.272
#> SRR1339573     3  0.0162     0.9405 0.000 0.004 0.996 0.000 0.000
#> SRR1455878     1  0.0290     0.9375 0.992 0.000 0.000 0.000 0.008
#> SRR1446203     3  0.0404     0.9377 0.000 0.012 0.988 0.000 0.000
#> SRR1387397     1  0.2573     0.8636 0.880 0.104 0.000 0.000 0.016
#> SRR1402590     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.0693     0.9334 0.980 0.008 0.000 0.000 0.012
#> SRR1331488     1  0.3661     0.6467 0.724 0.000 0.000 0.276 0.000
#> SRR1499675     2  0.5518     0.1524 0.408 0.540 0.024 0.000 0.028
#> SRR1440467     3  0.1544     0.9050 0.000 0.068 0.932 0.000 0.000
#> SRR807995      5  0.1608     0.6607 0.000 0.072 0.000 0.000 0.928
#> SRR1476485     4  0.0404     0.8512 0.000 0.012 0.000 0.988 0.000
#> SRR1388214     1  0.0865     0.9287 0.972 0.004 0.000 0.000 0.024
#> SRR1456051     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1473275     3  0.0290     0.9373 0.000 0.000 0.992 0.000 0.008
#> SRR1444083     1  0.4634     0.7419 0.780 0.000 0.120 0.040 0.060
#> SRR1313807     2  0.1638     0.6823 0.000 0.932 0.064 0.004 0.000
#> SRR1470751     5  0.2411     0.6491 0.108 0.008 0.000 0.000 0.884
#> SRR1403434     3  0.1121     0.9213 0.000 0.044 0.956 0.000 0.000
#> SRR1390540     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1093861     5  0.3816     0.4360 0.000 0.304 0.000 0.000 0.696
#> SRR1325290     1  0.3152     0.8295 0.840 0.024 0.000 0.000 0.136
#> SRR1070689     1  0.0162     0.9379 0.996 0.000 0.000 0.000 0.004
#> SRR1384049     1  0.0290     0.9372 0.992 0.000 0.000 0.000 0.008
#> SRR1081184     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     2  0.1106     0.6961 0.000 0.964 0.012 0.000 0.024
#> SRR1321877     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR815711      3  0.1270     0.9157 0.000 0.052 0.948 0.000 0.000
#> SRR1433476     2  0.5770     0.2356 0.000 0.532 0.096 0.372 0.000
#> SRR1101883     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1433729     2  0.2513     0.7028 0.000 0.904 0.020 0.016 0.060
#> SRR1341877     1  0.3929     0.7362 0.764 0.208 0.000 0.000 0.028
#> SRR1090556     1  0.4318     0.7493 0.764 0.176 0.000 0.004 0.056
#> SRR1357389     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1404227     2  0.3003     0.5728 0.000 0.812 0.188 0.000 0.000
#> SRR1376830     1  0.0000     0.9381 1.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.0162     0.9379 0.996 0.000 0.000 0.000 0.004
#> SRR1080294     2  0.3005     0.6886 0.000 0.856 0.008 0.012 0.124
#> SRR1336314     4  0.1831     0.8360 0.000 0.004 0.000 0.920 0.076
#> SRR1102152     1  0.1653     0.9122 0.944 0.004 0.024 0.000 0.028
#> SRR1345244     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     5  0.2329     0.6288 0.000 0.124 0.000 0.000 0.876
#> SRR1443776     3  0.0162     0.9405 0.000 0.004 0.996 0.000 0.000
#> SRR1120939     3  0.1043     0.9243 0.000 0.040 0.960 0.000 0.000
#> SRR1080117     3  0.0000     0.9416 0.000 0.000 1.000 0.000 0.000
#> SRR1102899     2  0.2561     0.6766 0.000 0.856 0.000 0.000 0.144
#> SRR1091865     5  0.3832     0.5365 0.232 0.004 0.004 0.004 0.756
#> SRR1361072     1  0.0162     0.9379 0.996 0.000 0.000 0.000 0.004
#> SRR1487890     1  0.0162     0.9375 0.996 0.004 0.000 0.000 0.000
#> SRR1349456     2  0.2291     0.6972 0.000 0.908 0.056 0.000 0.036
#> SRR1389384     5  0.2605     0.6271 0.148 0.000 0.000 0.000 0.852
#> SRR1316096     5  0.4305    -0.0493 0.000 0.488 0.000 0.000 0.512
#> SRR1408512     1  0.1211     0.9248 0.960 0.024 0.000 0.000 0.016
#> SRR1447547     4  0.3299     0.7897 0.000 0.004 0.016 0.828 0.152
#> SRR1354053     2  0.6517     0.2487 0.000 0.468 0.000 0.212 0.320

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0146     0.9092 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1349562     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     6  0.4366     0.1410 0.000 0.004 0.000 0.440 0.016 0.540
#> SRR1499040     2  0.5600     0.1945 0.036 0.520 0.380 0.000 0.064 0.000
#> SRR1322312     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324412     3  0.0458     0.9111 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1100991     3  0.0692     0.9118 0.000 0.004 0.976 0.000 0.020 0.000
#> SRR1349479     3  0.4011     0.7207 0.000 0.000 0.732 0.028 0.012 0.228
#> SRR1431248     5  0.4088     0.6555 0.012 0.200 0.000 0.044 0.744 0.000
#> SRR1405054     3  0.1232     0.8998 0.024 0.004 0.956 0.000 0.016 0.000
#> SRR1312266     1  0.4566     0.1962 0.520 0.016 0.000 0.452 0.012 0.000
#> SRR1409790     3  0.0508     0.9108 0.000 0.004 0.984 0.000 0.012 0.000
#> SRR1352507     3  0.0405     0.9113 0.000 0.004 0.988 0.000 0.008 0.000
#> SRR1383763     1  0.0508     0.9081 0.984 0.000 0.000 0.004 0.012 0.000
#> SRR1468314     6  0.2094     0.6989 0.000 0.080 0.000 0.000 0.020 0.900
#> SRR1473674     2  0.1563     0.7897 0.000 0.932 0.000 0.000 0.012 0.056
#> SRR1390499     1  0.0891     0.9040 0.968 0.000 0.000 0.008 0.024 0.000
#> SRR821043      6  0.3797     0.2395 0.000 0.000 0.000 0.420 0.000 0.580
#> SRR1455653     4  0.4946     0.5014 0.000 0.120 0.000 0.656 0.004 0.220
#> SRR1335236     6  0.4802     0.0154 0.000 0.452 0.000 0.000 0.052 0.496
#> SRR1095383     6  0.0665     0.7020 0.000 0.004 0.000 0.008 0.008 0.980
#> SRR1479489     1  0.1536     0.8881 0.940 0.004 0.016 0.000 0.040 0.000
#> SRR1310433     6  0.1616     0.7064 0.000 0.048 0.000 0.000 0.020 0.932
#> SRR1073435     5  0.3161     0.7034 0.008 0.000 0.028 0.000 0.828 0.136
#> SRR659649      3  0.0363     0.9122 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1395999     1  0.3542     0.7590 0.784 0.016 0.000 0.016 0.184 0.000
#> SRR1105248     4  0.1807     0.8303 0.000 0.000 0.060 0.920 0.000 0.020
#> SRR1338257     1  0.4144     0.8041 0.812 0.056 0.044 0.048 0.040 0.000
#> SRR1499395     3  0.1152     0.9108 0.000 0.000 0.952 0.000 0.044 0.004
#> SRR1350002     2  0.1297     0.7959 0.000 0.948 0.000 0.000 0.012 0.040
#> SRR1489757     3  0.0508     0.9108 0.000 0.004 0.984 0.000 0.012 0.000
#> SRR1414637     2  0.1643     0.7787 0.008 0.924 0.000 0.000 0.068 0.000
#> SRR1478113     4  0.1575     0.8410 0.000 0.032 0.000 0.936 0.032 0.000
#> SRR1322477     1  0.2631     0.8275 0.856 0.128 0.000 0.004 0.012 0.000
#> SRR1478789     3  0.5040     0.6125 0.000 0.012 0.652 0.000 0.100 0.236
#> SRR1414185     3  0.2322     0.8895 0.000 0.004 0.896 0.000 0.036 0.064
#> SRR1069141     2  0.4482     0.2622 0.000 0.580 0.000 0.000 0.036 0.384
#> SRR1376852     1  0.2730     0.7738 0.808 0.000 0.000 0.000 0.192 0.000
#> SRR1323491     1  0.0405     0.9085 0.988 0.000 0.000 0.004 0.008 0.000
#> SRR1338103     5  0.2630     0.7605 0.088 0.012 0.000 0.012 0.880 0.008
#> SRR1472012     5  0.3279     0.6862 0.176 0.028 0.000 0.000 0.796 0.000
#> SRR1340325     1  0.3896     0.7566 0.784 0.000 0.136 0.012 0.068 0.000
#> SRR1087321     3  0.1225     0.9115 0.000 0.000 0.952 0.000 0.036 0.012
#> SRR1488790     1  0.0260     0.9089 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1334866     5  0.5952     0.5713 0.132 0.068 0.008 0.000 0.636 0.156
#> SRR1089446     3  0.2985     0.8546 0.028 0.004 0.864 0.000 0.020 0.084
#> SRR1344445     3  0.0260     0.9123 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1412969     3  0.1989     0.8995 0.000 0.004 0.916 0.000 0.052 0.028
#> SRR1071668     3  0.0603     0.9102 0.000 0.004 0.980 0.000 0.016 0.000
#> SRR1075804     1  0.3695     0.6453 0.712 0.000 0.000 0.016 0.272 0.000
#> SRR1383283     6  0.3713     0.5175 0.000 0.004 0.008 0.000 0.284 0.704
#> SRR1350239     4  0.2912     0.6953 0.000 0.000 0.216 0.784 0.000 0.000
#> SRR1353878     1  0.1375     0.9010 0.952 0.008 0.004 0.008 0.028 0.000
#> SRR1375721     1  0.0458     0.9063 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1083983     1  0.3891     0.7501 0.768 0.064 0.004 0.000 0.164 0.000
#> SRR1090095     1  0.0603     0.9070 0.980 0.000 0.000 0.004 0.016 0.000
#> SRR1414792     1  0.0291     0.9092 0.992 0.000 0.000 0.004 0.004 0.000
#> SRR1075102     4  0.0713     0.8443 0.000 0.000 0.000 0.972 0.028 0.000
#> SRR1098737     1  0.4201     0.5584 0.664 0.000 0.000 0.036 0.300 0.000
#> SRR1349409     1  0.0260     0.9095 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1413008     4  0.2871     0.7222 0.000 0.000 0.192 0.804 0.004 0.000
#> SRR1407179     5  0.3142     0.7097 0.008 0.000 0.108 0.000 0.840 0.044
#> SRR1095913     3  0.6546    -0.1692 0.000 0.060 0.404 0.000 0.400 0.136
#> SRR1403544     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     1  0.0891     0.9040 0.968 0.000 0.000 0.008 0.024 0.000
#> SRR807971      3  0.0363     0.9115 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1436228     5  0.3893     0.7128 0.028 0.056 0.000 0.000 0.796 0.120
#> SRR1445218     6  0.2706     0.6852 0.000 0.104 0.000 0.000 0.036 0.860
#> SRR1485438     2  0.1895     0.7776 0.000 0.912 0.000 0.000 0.016 0.072
#> SRR1358143     1  0.0260     0.9095 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1328760     1  0.0893     0.9048 0.972 0.004 0.004 0.004 0.016 0.000
#> SRR1380806     1  0.1074     0.8972 0.960 0.000 0.012 0.000 0.028 0.000
#> SRR1379426     3  0.2173     0.8981 0.000 0.004 0.904 0.000 0.064 0.028
#> SRR1087007     3  0.2389     0.8898 0.000 0.000 0.888 0.000 0.060 0.052
#> SRR1086256     5  0.5067     0.4569 0.000 0.120 0.000 0.000 0.612 0.268
#> SRR1346734     4  0.0790     0.8395 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1414515     1  0.0363     0.9075 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1082151     2  0.0653     0.7999 0.004 0.980 0.000 0.004 0.000 0.012
#> SRR1349320     4  0.1642     0.8425 0.000 0.028 0.000 0.936 0.032 0.004
#> SRR1317554     6  0.1349     0.6965 0.000 0.004 0.000 0.056 0.000 0.940
#> SRR1076022     6  0.5781     0.0841 0.000 0.176 0.000 0.000 0.396 0.428
#> SRR1339573     3  0.0777     0.9120 0.000 0.000 0.972 0.000 0.024 0.004
#> SRR1455878     1  0.1753     0.8730 0.912 0.004 0.000 0.000 0.084 0.000
#> SRR1446203     3  0.1075     0.9025 0.000 0.000 0.952 0.000 0.048 0.000
#> SRR1387397     1  0.3765     0.3470 0.596 0.000 0.000 0.000 0.404 0.000
#> SRR1402590     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     1  0.1367     0.8944 0.944 0.000 0.000 0.012 0.044 0.000
#> SRR1331488     1  0.1788     0.8716 0.916 0.000 0.000 0.076 0.004 0.004
#> SRR1499675     5  0.2639     0.7602 0.084 0.000 0.008 0.000 0.876 0.032
#> SRR1440467     3  0.4105     0.5244 0.000 0.000 0.632 0.000 0.020 0.348
#> SRR807995      2  0.1176     0.7996 0.000 0.956 0.000 0.000 0.020 0.024
#> SRR1476485     4  0.0790     0.8395 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1388214     1  0.1536     0.8881 0.940 0.004 0.016 0.000 0.040 0.000
#> SRR1456051     1  0.0260     0.9095 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1473275     3  0.0692     0.9120 0.000 0.004 0.976 0.000 0.020 0.000
#> SRR1444083     1  0.4800     0.6696 0.724 0.008 0.156 0.092 0.020 0.000
#> SRR1313807     6  0.3575     0.4978 0.000 0.000 0.008 0.000 0.284 0.708
#> SRR1470751     2  0.0665     0.7997 0.008 0.980 0.000 0.004 0.000 0.008
#> SRR1403434     3  0.2651     0.8629 0.000 0.000 0.860 0.000 0.028 0.112
#> SRR1390540     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1093861     2  0.4150     0.2865 0.000 0.592 0.000 0.000 0.016 0.392
#> SRR1325290     1  0.5096     0.4469 0.596 0.112 0.000 0.000 0.292 0.000
#> SRR1070689     1  0.0260     0.9089 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1384049     1  0.0405     0.9088 0.988 0.000 0.000 0.004 0.008 0.000
#> SRR1081184     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     6  0.4014     0.4097 0.004 0.004 0.004 0.000 0.348 0.640
#> SRR1321877     3  0.1563     0.9078 0.000 0.000 0.932 0.000 0.056 0.012
#> SRR815711      3  0.1059     0.9112 0.000 0.004 0.964 0.000 0.016 0.016
#> SRR1433476     6  0.3429     0.6322 0.000 0.008 0.012 0.128 0.028 0.824
#> SRR1101883     3  0.1152     0.9031 0.000 0.004 0.952 0.000 0.044 0.000
#> SRR1433729     5  0.4608     0.3146 0.000 0.012 0.020 0.004 0.604 0.360
#> SRR1341877     5  0.2809     0.7463 0.128 0.000 0.004 0.000 0.848 0.020
#> SRR1090556     5  0.2876     0.7370 0.132 0.008 0.000 0.016 0.844 0.000
#> SRR1357389     3  0.0508     0.9116 0.000 0.004 0.984 0.000 0.012 0.000
#> SRR1404227     5  0.2744     0.7203 0.000 0.000 0.064 0.000 0.864 0.072
#> SRR1376830     1  0.0000     0.9092 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.0363     0.9082 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1080294     6  0.0777     0.6992 0.000 0.004 0.000 0.000 0.024 0.972
#> SRR1336314     4  0.1700     0.8321 0.000 0.048 0.000 0.928 0.000 0.024
#> SRR1102152     1  0.1708     0.8830 0.932 0.004 0.024 0.000 0.040 0.000
#> SRR1345244     3  0.1391     0.9077 0.000 0.000 0.944 0.000 0.040 0.016
#> SRR1478637     2  0.3073     0.6473 0.000 0.788 0.000 0.008 0.204 0.000
#> SRR1443776     3  0.1408     0.9096 0.000 0.000 0.944 0.000 0.036 0.020
#> SRR1120939     3  0.1787     0.8846 0.000 0.004 0.920 0.000 0.068 0.008
#> SRR1080117     3  0.1707     0.9063 0.000 0.004 0.928 0.000 0.056 0.012
#> SRR1102899     6  0.1657     0.6997 0.000 0.016 0.000 0.000 0.056 0.928
#> SRR1091865     2  0.1806     0.7661 0.044 0.928 0.000 0.008 0.020 0.000
#> SRR1361072     1  0.0436     0.9096 0.988 0.004 0.000 0.004 0.004 0.000
#> SRR1487890     1  0.0260     0.9083 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1349456     6  0.4131     0.3628 0.000 0.000 0.020 0.000 0.356 0.624
#> SRR1389384     2  0.1148     0.7928 0.020 0.960 0.000 0.000 0.016 0.004
#> SRR1316096     6  0.3098     0.6424 0.000 0.164 0.000 0.000 0.024 0.812
#> SRR1408512     1  0.1556     0.8766 0.920 0.000 0.000 0.000 0.080 0.000
#> SRR1447547     4  0.4174     0.7274 0.000 0.100 0.012 0.764 0.124 0.000
#> SRR1354053     6  0.5923     0.4962 0.000 0.172 0.000 0.196 0.040 0.592

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.967           0.954       0.979         0.3459 0.671   0.671
#> 3 3 0.475           0.631       0.745         0.6438 0.698   0.550
#> 4 4 0.484           0.663       0.801         0.1078 0.819   0.590
#> 5 5 0.539           0.617       0.792         0.0759 0.918   0.768
#> 6 6 0.567           0.651       0.814         0.0440 0.975   0.918

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.976 1.000 0.000
#> SRR1349562     1  0.0000      0.976 1.000 0.000
#> SRR1353376     2  0.0000      0.985 0.000 1.000
#> SRR1499040     1  0.0000      0.976 1.000 0.000
#> SRR1322312     1  0.0000      0.976 1.000 0.000
#> SRR1324412     1  0.0000      0.976 1.000 0.000
#> SRR1100991     1  0.0000      0.976 1.000 0.000
#> SRR1349479     2  0.0000      0.985 0.000 1.000
#> SRR1431248     1  0.1184      0.966 0.984 0.016
#> SRR1405054     1  0.0672      0.972 0.992 0.008
#> SRR1312266     1  0.0000      0.976 1.000 0.000
#> SRR1409790     1  0.0000      0.976 1.000 0.000
#> SRR1352507     1  0.0000      0.976 1.000 0.000
#> SRR1383763     1  0.0000      0.976 1.000 0.000
#> SRR1468314     2  0.0000      0.985 0.000 1.000
#> SRR1473674     1  0.7299      0.755 0.796 0.204
#> SRR1390499     1  0.0000      0.976 1.000 0.000
#> SRR821043      2  0.0000      0.985 0.000 1.000
#> SRR1455653     2  0.0000      0.985 0.000 1.000
#> SRR1335236     1  0.7299      0.755 0.796 0.204
#> SRR1095383     2  0.0000      0.985 0.000 1.000
#> SRR1479489     1  0.0000      0.976 1.000 0.000
#> SRR1310433     2  0.0000      0.985 0.000 1.000
#> SRR1073435     2  0.2603      0.958 0.044 0.956
#> SRR659649      1  0.6623      0.798 0.828 0.172
#> SRR1395999     1  0.0000      0.976 1.000 0.000
#> SRR1105248     1  0.9710      0.368 0.600 0.400
#> SRR1338257     1  0.0000      0.976 1.000 0.000
#> SRR1499395     1  0.0000      0.976 1.000 0.000
#> SRR1350002     1  0.2778      0.937 0.952 0.048
#> SRR1489757     1  0.0000      0.976 1.000 0.000
#> SRR1414637     1  0.0938      0.969 0.988 0.012
#> SRR1478113     2  0.0000      0.985 0.000 1.000
#> SRR1322477     1  0.1184      0.966 0.984 0.016
#> SRR1478789     1  0.0000      0.976 1.000 0.000
#> SRR1414185     1  0.0376      0.974 0.996 0.004
#> SRR1069141     1  0.7299      0.755 0.796 0.204
#> SRR1376852     1  0.0000      0.976 1.000 0.000
#> SRR1323491     1  0.0000      0.976 1.000 0.000
#> SRR1338103     1  0.0000      0.976 1.000 0.000
#> SRR1472012     1  0.0000      0.976 1.000 0.000
#> SRR1340325     1  0.0000      0.976 1.000 0.000
#> SRR1087321     1  0.0000      0.976 1.000 0.000
#> SRR1488790     1  0.0000      0.976 1.000 0.000
#> SRR1334866     1  0.0938      0.969 0.988 0.012
#> SRR1089446     1  0.1184      0.966 0.984 0.016
#> SRR1344445     1  0.0000      0.976 1.000 0.000
#> SRR1412969     1  0.0376      0.974 0.996 0.004
#> SRR1071668     1  0.0672      0.972 0.992 0.008
#> SRR1075804     1  0.0000      0.976 1.000 0.000
#> SRR1383283     2  0.0938      0.981 0.012 0.988
#> SRR1350239     1  0.9710      0.368 0.600 0.400
#> SRR1353878     1  0.0000      0.976 1.000 0.000
#> SRR1375721     1  0.0000      0.976 1.000 0.000
#> SRR1083983     1  0.0000      0.976 1.000 0.000
#> SRR1090095     1  0.0000      0.976 1.000 0.000
#> SRR1414792     1  0.0000      0.976 1.000 0.000
#> SRR1075102     2  0.0000      0.985 0.000 1.000
#> SRR1098737     1  0.0000      0.976 1.000 0.000
#> SRR1349409     1  0.0000      0.976 1.000 0.000
#> SRR1413008     1  0.9710      0.368 0.600 0.400
#> SRR1407179     1  0.0000      0.976 1.000 0.000
#> SRR1095913     1  0.0000      0.976 1.000 0.000
#> SRR1403544     1  0.0000      0.976 1.000 0.000
#> SRR1490546     1  0.0000      0.976 1.000 0.000
#> SRR807971      1  0.0000      0.976 1.000 0.000
#> SRR1436228     1  0.0938      0.969 0.988 0.012
#> SRR1445218     2  0.0938      0.981 0.012 0.988
#> SRR1485438     1  0.0000      0.976 1.000 0.000
#> SRR1358143     1  0.0000      0.976 1.000 0.000
#> SRR1328760     1  0.0000      0.976 1.000 0.000
#> SRR1380806     1  0.0000      0.976 1.000 0.000
#> SRR1379426     1  0.0376      0.974 0.996 0.004
#> SRR1087007     1  0.0376      0.974 0.996 0.004
#> SRR1086256     1  0.0938      0.969 0.988 0.012
#> SRR1346734     2  0.0000      0.985 0.000 1.000
#> SRR1414515     1  0.0000      0.976 1.000 0.000
#> SRR1082151     1  0.0000      0.976 1.000 0.000
#> SRR1349320     2  0.0000      0.985 0.000 1.000
#> SRR1317554     2  0.0000      0.985 0.000 1.000
#> SRR1076022     2  0.1184      0.979 0.016 0.984
#> SRR1339573     1  0.0000      0.976 1.000 0.000
#> SRR1455878     1  0.0000      0.976 1.000 0.000
#> SRR1446203     1  0.6623      0.798 0.828 0.172
#> SRR1387397     1  0.0000      0.976 1.000 0.000
#> SRR1402590     1  0.0000      0.976 1.000 0.000
#> SRR1317532     1  0.0672      0.972 0.992 0.008
#> SRR1331488     1  0.3584      0.919 0.932 0.068
#> SRR1499675     1  0.0000      0.976 1.000 0.000
#> SRR1440467     2  0.3584      0.935 0.068 0.932
#> SRR807995      1  0.0000      0.976 1.000 0.000
#> SRR1476485     2  0.0000      0.985 0.000 1.000
#> SRR1388214     1  0.0376      0.974 0.996 0.004
#> SRR1456051     1  0.0000      0.976 1.000 0.000
#> SRR1473275     1  0.0000      0.976 1.000 0.000
#> SRR1444083     1  0.0000      0.976 1.000 0.000
#> SRR1313807     2  0.0938      0.981 0.012 0.988
#> SRR1470751     1  0.0000      0.976 1.000 0.000
#> SRR1403434     2  0.3584      0.935 0.068 0.932
#> SRR1390540     1  0.0000      0.976 1.000 0.000
#> SRR1093861     2  0.4298      0.911 0.088 0.912
#> SRR1325290     1  0.0000      0.976 1.000 0.000
#> SRR1070689     1  0.0000      0.976 1.000 0.000
#> SRR1384049     1  0.0000      0.976 1.000 0.000
#> SRR1081184     1  0.0000      0.976 1.000 0.000
#> SRR1324295     1  0.0000      0.976 1.000 0.000
#> SRR1365313     1  0.0938      0.969 0.988 0.012
#> SRR1321877     1  0.0000      0.976 1.000 0.000
#> SRR815711      1  0.0376      0.974 0.996 0.004
#> SRR1433476     2  0.0000      0.985 0.000 1.000
#> SRR1101883     1  0.0000      0.976 1.000 0.000
#> SRR1433729     2  0.2603      0.958 0.044 0.956
#> SRR1341877     1  0.0000      0.976 1.000 0.000
#> SRR1090556     1  0.0000      0.976 1.000 0.000
#> SRR1357389     1  0.0000      0.976 1.000 0.000
#> SRR1404227     1  0.0000      0.976 1.000 0.000
#> SRR1376830     1  0.0000      0.976 1.000 0.000
#> SRR1500661     1  0.0000      0.976 1.000 0.000
#> SRR1080294     2  0.0000      0.985 0.000 1.000
#> SRR1336314     2  0.0000      0.985 0.000 1.000
#> SRR1102152     1  0.0000      0.976 1.000 0.000
#> SRR1345244     1  0.0000      0.976 1.000 0.000
#> SRR1478637     1  0.0000      0.976 1.000 0.000
#> SRR1443776     1  0.0000      0.976 1.000 0.000
#> SRR1120939     1  0.0000      0.976 1.000 0.000
#> SRR1080117     1  0.0376      0.974 0.996 0.004
#> SRR1102899     2  0.1184      0.979 0.016 0.984
#> SRR1091865     1  0.0000      0.976 1.000 0.000
#> SRR1361072     1  0.0000      0.976 1.000 0.000
#> SRR1487890     1  0.0000      0.976 1.000 0.000
#> SRR1349456     1  0.0000      0.976 1.000 0.000
#> SRR1389384     1  0.0000      0.976 1.000 0.000
#> SRR1316096     2  0.0000      0.985 0.000 1.000
#> SRR1408512     1  0.0000      0.976 1.000 0.000
#> SRR1447547     1  0.2948      0.934 0.948 0.052
#> SRR1354053     2  0.0000      0.985 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.6180      0.764 0.584 0.000 0.416
#> SRR1349562     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1353376     2  0.0424      0.929 0.008 0.992 0.000
#> SRR1499040     1  0.5397      0.895 0.720 0.000 0.280
#> SRR1322312     1  0.5397      0.895 0.720 0.000 0.280
#> SRR1324412     3  0.6260     -0.291 0.448 0.000 0.552
#> SRR1100991     3  0.6260     -0.291 0.448 0.000 0.552
#> SRR1349479     2  0.0000      0.929 0.000 1.000 0.000
#> SRR1431248     3  0.0661      0.670 0.008 0.004 0.988
#> SRR1405054     3  0.0237      0.672 0.004 0.000 0.996
#> SRR1312266     1  0.5706      0.902 0.680 0.000 0.320
#> SRR1409790     3  0.6225     -0.228 0.432 0.000 0.568
#> SRR1352507     3  0.5529      0.266 0.296 0.000 0.704
#> SRR1383763     1  0.5397      0.895 0.720 0.000 0.280
#> SRR1468314     2  0.0237      0.928 0.004 0.996 0.000
#> SRR1473674     3  0.5292      0.507 0.228 0.008 0.764
#> SRR1390499     1  0.5529      0.909 0.704 0.000 0.296
#> SRR821043      2  0.1529      0.925 0.040 0.960 0.000
#> SRR1455653     2  0.1529      0.925 0.040 0.960 0.000
#> SRR1335236     3  0.5292      0.507 0.228 0.008 0.764
#> SRR1095383     2  0.1529      0.925 0.040 0.960 0.000
#> SRR1479489     1  0.5733      0.901 0.676 0.000 0.324
#> SRR1310433     2  0.0237      0.928 0.004 0.996 0.000
#> SRR1073435     2  0.6059      0.884 0.188 0.764 0.048
#> SRR659649      3  0.4465      0.551 0.176 0.004 0.820
#> SRR1395999     1  0.5678      0.908 0.684 0.000 0.316
#> SRR1105248     3  0.8568      0.254 0.168 0.228 0.604
#> SRR1338257     1  0.5785      0.895 0.668 0.000 0.332
#> SRR1499395     3  0.5706      0.271 0.320 0.000 0.680
#> SRR1350002     3  0.2774      0.628 0.072 0.008 0.920
#> SRR1489757     3  0.6225     -0.228 0.432 0.000 0.568
#> SRR1414637     3  0.0892      0.671 0.020 0.000 0.980
#> SRR1478113     2  0.3752      0.920 0.144 0.856 0.000
#> SRR1322477     3  0.0661      0.670 0.008 0.004 0.988
#> SRR1478789     3  0.1643      0.671 0.044 0.000 0.956
#> SRR1414185     3  0.0424      0.673 0.008 0.000 0.992
#> SRR1069141     3  0.5292      0.507 0.228 0.008 0.764
#> SRR1376852     1  0.5650      0.909 0.688 0.000 0.312
#> SRR1323491     1  0.6180      0.764 0.584 0.000 0.416
#> SRR1338103     1  0.5882      0.876 0.652 0.000 0.348
#> SRR1472012     1  0.6309      0.502 0.504 0.000 0.496
#> SRR1340325     1  0.5785      0.895 0.668 0.000 0.332
#> SRR1087321     3  0.1643      0.671 0.044 0.000 0.956
#> SRR1488790     1  0.6140      0.788 0.596 0.000 0.404
#> SRR1334866     3  0.0424      0.671 0.008 0.000 0.992
#> SRR1089446     3  0.0661      0.671 0.008 0.004 0.988
#> SRR1344445     3  0.6225     -0.228 0.432 0.000 0.568
#> SRR1412969     3  0.0424      0.673 0.008 0.000 0.992
#> SRR1071668     3  0.0237      0.672 0.004 0.000 0.996
#> SRR1075804     1  0.5706      0.902 0.680 0.000 0.320
#> SRR1383283     2  0.5167      0.897 0.192 0.792 0.016
#> SRR1350239     3  0.8568      0.254 0.168 0.228 0.604
#> SRR1353878     1  0.5785      0.895 0.668 0.000 0.332
#> SRR1375721     1  0.5650      0.909 0.688 0.000 0.312
#> SRR1083983     1  0.6274      0.630 0.544 0.000 0.456
#> SRR1090095     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1414792     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1075102     2  0.3752      0.920 0.144 0.856 0.000
#> SRR1098737     1  0.5706      0.902 0.680 0.000 0.320
#> SRR1349409     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1413008     3  0.8568      0.254 0.168 0.228 0.604
#> SRR1407179     3  0.5465      0.387 0.288 0.000 0.712
#> SRR1095913     3  0.3619      0.613 0.136 0.000 0.864
#> SRR1403544     1  0.5650      0.909 0.688 0.000 0.312
#> SRR1490546     1  0.6305      0.606 0.516 0.000 0.484
#> SRR807971      3  0.5529      0.266 0.296 0.000 0.704
#> SRR1436228     3  0.0424      0.671 0.008 0.000 0.992
#> SRR1445218     2  0.1999      0.925 0.036 0.952 0.012
#> SRR1485438     3  0.3412      0.614 0.124 0.000 0.876
#> SRR1358143     1  0.5397      0.895 0.720 0.000 0.280
#> SRR1328760     1  0.5650      0.909 0.688 0.000 0.312
#> SRR1380806     1  0.5431      0.899 0.716 0.000 0.284
#> SRR1379426     3  0.1031      0.672 0.024 0.000 0.976
#> SRR1087007     3  0.0424      0.673 0.008 0.000 0.992
#> SRR1086256     3  0.0424      0.671 0.008 0.000 0.992
#> SRR1346734     2  0.1529      0.925 0.040 0.960 0.000
#> SRR1414515     1  0.5650      0.909 0.688 0.000 0.312
#> SRR1082151     3  0.3619      0.603 0.136 0.000 0.864
#> SRR1349320     2  0.3752      0.920 0.144 0.856 0.000
#> SRR1317554     2  0.1529      0.925 0.040 0.960 0.000
#> SRR1076022     2  0.5305      0.896 0.192 0.788 0.020
#> SRR1339573     3  0.5859      0.198 0.344 0.000 0.656
#> SRR1455878     1  0.6307      0.537 0.512 0.000 0.488
#> SRR1446203     3  0.4465      0.551 0.176 0.004 0.820
#> SRR1387397     3  0.5431      0.350 0.284 0.000 0.716
#> SRR1402590     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1317532     3  0.6299     -0.456 0.476 0.000 0.524
#> SRR1331488     3  0.2527      0.639 0.044 0.020 0.936
#> SRR1499675     3  0.6192     -0.214 0.420 0.000 0.580
#> SRR1440467     2  0.6710      0.866 0.196 0.732 0.072
#> SRR807995      3  0.3412      0.614 0.124 0.000 0.876
#> SRR1476485     2  0.1529      0.925 0.040 0.960 0.000
#> SRR1388214     3  0.0892      0.672 0.020 0.000 0.980
#> SRR1456051     1  0.5678      0.908 0.684 0.000 0.316
#> SRR1473275     3  0.5859      0.198 0.344 0.000 0.656
#> SRR1444083     1  0.5810      0.891 0.664 0.000 0.336
#> SRR1313807     2  0.5167      0.897 0.192 0.792 0.016
#> SRR1470751     3  0.3619      0.603 0.136 0.000 0.864
#> SRR1403434     2  0.6710      0.866 0.196 0.732 0.072
#> SRR1390540     1  0.6235      0.728 0.564 0.000 0.436
#> SRR1093861     2  0.6756      0.858 0.232 0.712 0.056
#> SRR1325290     3  0.6309     -0.509 0.500 0.000 0.500
#> SRR1070689     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1384049     1  0.5397      0.895 0.720 0.000 0.280
#> SRR1081184     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1324295     1  0.5529      0.909 0.704 0.000 0.296
#> SRR1365313     3  0.0424      0.671 0.008 0.000 0.992
#> SRR1321877     3  0.1643      0.671 0.044 0.000 0.956
#> SRR815711      3  0.0000      0.672 0.000 0.000 1.000
#> SRR1433476     2  0.0000      0.929 0.000 1.000 0.000
#> SRR1101883     3  0.5529      0.266 0.296 0.000 0.704
#> SRR1433729     2  0.6059      0.884 0.188 0.764 0.048
#> SRR1341877     3  0.6252     -0.317 0.444 0.000 0.556
#> SRR1090556     3  0.5431      0.350 0.284 0.000 0.716
#> SRR1357389     3  0.5706      0.271 0.320 0.000 0.680
#> SRR1404227     3  0.4842      0.501 0.224 0.000 0.776
#> SRR1376830     1  0.5650      0.909 0.688 0.000 0.312
#> SRR1500661     3  0.6286     -0.399 0.464 0.000 0.536
#> SRR1080294     2  0.1529      0.925 0.040 0.960 0.000
#> SRR1336314     2  0.3752      0.920 0.144 0.856 0.000
#> SRR1102152     3  0.6204     -0.203 0.424 0.000 0.576
#> SRR1345244     3  0.1643      0.671 0.044 0.000 0.956
#> SRR1478637     3  0.6280     -0.293 0.460 0.000 0.540
#> SRR1443776     3  0.1643      0.671 0.044 0.000 0.956
#> SRR1120939     3  0.2711      0.648 0.088 0.000 0.912
#> SRR1080117     3  0.1031      0.672 0.024 0.000 0.976
#> SRR1102899     2  0.5305      0.896 0.192 0.788 0.020
#> SRR1091865     3  0.5760      0.218 0.328 0.000 0.672
#> SRR1361072     1  0.6305      0.606 0.516 0.000 0.484
#> SRR1487890     1  0.5431      0.899 0.716 0.000 0.284
#> SRR1349456     3  0.1529      0.672 0.040 0.000 0.960
#> SRR1389384     3  0.3619      0.603 0.136 0.000 0.864
#> SRR1316096     2  0.0237      0.928 0.004 0.996 0.000
#> SRR1408512     3  0.6274     -0.370 0.456 0.000 0.544
#> SRR1447547     3  0.1878      0.649 0.044 0.004 0.952
#> SRR1354053     2  0.1529      0.925 0.040 0.960 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.4103     0.6807 0.744 0.000 0.256 0.000
#> SRR1349562     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1353376     2  0.4134     0.6967 0.000 0.740 0.000 0.260
#> SRR1499040     1  0.0804     0.7356 0.980 0.000 0.008 0.012
#> SRR1322312     1  0.0804     0.7356 0.980 0.000 0.008 0.012
#> SRR1324412     1  0.4817     0.4716 0.612 0.000 0.388 0.000
#> SRR1100991     1  0.4817     0.4716 0.612 0.000 0.388 0.000
#> SRR1349479     2  0.4222     0.6878 0.000 0.728 0.000 0.272
#> SRR1431248     3  0.2973     0.7975 0.096 0.020 0.884 0.000
#> SRR1405054     3  0.2466     0.8001 0.096 0.004 0.900 0.000
#> SRR1312266     1  0.2530     0.7811 0.888 0.000 0.112 0.000
#> SRR1409790     1  0.4907     0.4002 0.580 0.000 0.420 0.000
#> SRR1352507     3  0.4866     0.2302 0.404 0.000 0.596 0.000
#> SRR1383763     1  0.0804     0.7356 0.980 0.000 0.008 0.012
#> SRR1468314     2  0.4356     0.6662 0.000 0.708 0.000 0.292
#> SRR1473674     3  0.4323     0.6341 0.000 0.204 0.776 0.020
#> SRR1390499     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR821043      4  0.2345     0.8156 0.000 0.100 0.000 0.900
#> SRR1455653     4  0.2345     0.8156 0.000 0.100 0.000 0.900
#> SRR1335236     3  0.4323     0.6341 0.000 0.204 0.776 0.020
#> SRR1095383     4  0.2868     0.7852 0.000 0.136 0.000 0.864
#> SRR1479489     1  0.2216     0.7847 0.908 0.000 0.092 0.000
#> SRR1310433     2  0.4697     0.5798 0.000 0.644 0.000 0.356
#> SRR1073435     2  0.1452     0.7777 0.000 0.956 0.036 0.008
#> SRR659649      3  0.4151     0.6895 0.016 0.180 0.800 0.004
#> SRR1395999     1  0.2081     0.7856 0.916 0.000 0.084 0.000
#> SRR1105248     3  0.6588     0.4220 0.020 0.248 0.648 0.084
#> SRR1338257     1  0.2647     0.7809 0.880 0.000 0.120 0.000
#> SRR1499395     3  0.4925     0.1574 0.428 0.000 0.572 0.000
#> SRR1350002     3  0.3094     0.7545 0.032 0.048 0.900 0.020
#> SRR1489757     1  0.4907     0.4002 0.580 0.000 0.420 0.000
#> SRR1414637     3  0.2799     0.7990 0.108 0.008 0.884 0.000
#> SRR1478113     4  0.5916     0.6190 0.000 0.272 0.072 0.656
#> SRR1322477     3  0.2973     0.7975 0.096 0.020 0.884 0.000
#> SRR1478789     3  0.2773     0.7951 0.116 0.000 0.880 0.004
#> SRR1414185     3  0.2408     0.7995 0.104 0.000 0.896 0.000
#> SRR1069141     3  0.4323     0.6341 0.000 0.204 0.776 0.020
#> SRR1376852     1  0.1716     0.7825 0.936 0.000 0.064 0.000
#> SRR1323491     1  0.4103     0.6807 0.744 0.000 0.256 0.000
#> SRR1338103     1  0.2921     0.7726 0.860 0.000 0.140 0.000
#> SRR1472012     1  0.4250     0.6459 0.724 0.000 0.276 0.000
#> SRR1340325     1  0.2530     0.7825 0.888 0.000 0.112 0.000
#> SRR1087321     3  0.2773     0.7951 0.116 0.000 0.880 0.004
#> SRR1488790     1  0.3764     0.7188 0.784 0.000 0.216 0.000
#> SRR1334866     3  0.2611     0.7994 0.096 0.008 0.896 0.000
#> SRR1089446     3  0.2741     0.7993 0.096 0.012 0.892 0.000
#> SRR1344445     1  0.4907     0.4002 0.580 0.000 0.420 0.000
#> SRR1412969     3  0.2408     0.7995 0.104 0.000 0.896 0.000
#> SRR1071668     3  0.2466     0.8001 0.096 0.004 0.900 0.000
#> SRR1075804     1  0.2530     0.7811 0.888 0.000 0.112 0.000
#> SRR1383283     2  0.0524     0.7834 0.000 0.988 0.004 0.008
#> SRR1350239     3  0.6588     0.4220 0.020 0.248 0.648 0.084
#> SRR1353878     1  0.2530     0.7825 0.888 0.000 0.112 0.000
#> SRR1375721     1  0.1940     0.7852 0.924 0.000 0.076 0.000
#> SRR1083983     1  0.4103     0.6793 0.744 0.000 0.256 0.000
#> SRR1090095     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1414792     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1075102     4  0.5916     0.6190 0.000 0.272 0.072 0.656
#> SRR1098737     1  0.2530     0.7811 0.888 0.000 0.112 0.000
#> SRR1349409     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1413008     3  0.6588     0.4220 0.020 0.248 0.648 0.084
#> SRR1407179     3  0.4998     0.0100 0.488 0.000 0.512 0.000
#> SRR1095913     3  0.3837     0.6965 0.224 0.000 0.776 0.000
#> SRR1403544     1  0.1940     0.7852 0.924 0.000 0.076 0.000
#> SRR1490546     1  0.4661     0.5513 0.652 0.000 0.348 0.000
#> SRR807971      3  0.4866     0.2302 0.404 0.000 0.596 0.000
#> SRR1436228     3  0.2611     0.7994 0.096 0.008 0.896 0.000
#> SRR1445218     2  0.3764     0.7246 0.000 0.784 0.000 0.216
#> SRR1485438     3  0.4212     0.7208 0.216 0.000 0.772 0.012
#> SRR1358143     1  0.0804     0.7356 0.980 0.000 0.008 0.012
#> SRR1328760     1  0.1940     0.7852 0.924 0.000 0.076 0.000
#> SRR1380806     1  0.0657     0.7561 0.984 0.000 0.012 0.004
#> SRR1379426     3  0.2760     0.7933 0.128 0.000 0.872 0.000
#> SRR1087007     3  0.2408     0.7995 0.104 0.000 0.896 0.000
#> SRR1086256     3  0.2611     0.7994 0.096 0.008 0.896 0.000
#> SRR1346734     4  0.2345     0.8156 0.000 0.100 0.000 0.900
#> SRR1414515     1  0.1940     0.7852 0.924 0.000 0.076 0.000
#> SRR1082151     3  0.4313     0.6749 0.260 0.000 0.736 0.004
#> SRR1349320     4  0.5916     0.6190 0.000 0.272 0.072 0.656
#> SRR1317554     4  0.2345     0.8156 0.000 0.100 0.000 0.900
#> SRR1076022     2  0.0524     0.7835 0.000 0.988 0.004 0.008
#> SRR1339573     1  0.4977     0.1716 0.540 0.000 0.460 0.000
#> SRR1455878     1  0.4250     0.6540 0.724 0.000 0.276 0.000
#> SRR1446203     3  0.4151     0.6895 0.016 0.180 0.800 0.004
#> SRR1387397     3  0.4888     0.2696 0.412 0.000 0.588 0.000
#> SRR1402590     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1317532     1  0.5203     0.3699 0.576 0.008 0.416 0.000
#> SRR1331488     3  0.3977     0.7738 0.084 0.052 0.852 0.012
#> SRR1499675     1  0.4961     0.3265 0.552 0.000 0.448 0.000
#> SRR1440467     2  0.1637     0.7517 0.000 0.940 0.060 0.000
#> SRR807995      3  0.4212     0.7208 0.216 0.000 0.772 0.012
#> SRR1476485     4  0.2345     0.8156 0.000 0.100 0.000 0.900
#> SRR1388214     3  0.3088     0.7935 0.128 0.008 0.864 0.000
#> SRR1456051     1  0.2081     0.7856 0.916 0.000 0.084 0.000
#> SRR1473275     1  0.4977     0.1716 0.540 0.000 0.460 0.000
#> SRR1444083     1  0.2589     0.7816 0.884 0.000 0.116 0.000
#> SRR1313807     2  0.0524     0.7834 0.000 0.988 0.004 0.008
#> SRR1470751     3  0.4313     0.6749 0.260 0.000 0.736 0.004
#> SRR1403434     2  0.1637     0.7517 0.000 0.940 0.060 0.000
#> SRR1390540     1  0.4406     0.6306 0.700 0.000 0.300 0.000
#> SRR1093861     2  0.2256     0.7360 0.000 0.924 0.056 0.020
#> SRR1325290     1  0.4406     0.6229 0.700 0.000 0.300 0.000
#> SRR1070689     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1384049     1  0.0804     0.7356 0.980 0.000 0.008 0.012
#> SRR1081184     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1324295     1  0.1389     0.7787 0.952 0.000 0.048 0.000
#> SRR1365313     3  0.2611     0.7994 0.096 0.008 0.896 0.000
#> SRR1321877     3  0.2773     0.7951 0.116 0.000 0.880 0.004
#> SRR815711      3  0.2281     0.7991 0.096 0.000 0.904 0.000
#> SRR1433476     2  0.4250     0.6844 0.000 0.724 0.000 0.276
#> SRR1101883     3  0.4866     0.2302 0.404 0.000 0.596 0.000
#> SRR1433729     2  0.1452     0.7777 0.000 0.956 0.036 0.008
#> SRR1341877     1  0.4877     0.4361 0.592 0.000 0.408 0.000
#> SRR1090556     3  0.4888     0.2696 0.412 0.000 0.588 0.000
#> SRR1357389     3  0.4898     0.1989 0.416 0.000 0.584 0.000
#> SRR1404227     3  0.4564     0.5020 0.328 0.000 0.672 0.000
#> SRR1376830     1  0.1716     0.7825 0.936 0.000 0.064 0.000
#> SRR1500661     1  0.4830     0.4775 0.608 0.000 0.392 0.000
#> SRR1080294     4  0.2868     0.7852 0.000 0.136 0.000 0.864
#> SRR1336314     4  0.5916     0.6190 0.000 0.272 0.072 0.656
#> SRR1102152     1  0.4941     0.3593 0.564 0.000 0.436 0.000
#> SRR1345244     3  0.2773     0.7951 0.116 0.000 0.880 0.004
#> SRR1478637     1  0.4673     0.5346 0.700 0.000 0.292 0.008
#> SRR1443776     3  0.2773     0.7951 0.116 0.000 0.880 0.004
#> SRR1120939     3  0.3266     0.7578 0.168 0.000 0.832 0.000
#> SRR1080117     3  0.2760     0.7933 0.128 0.000 0.872 0.000
#> SRR1102899     2  0.0524     0.7835 0.000 0.988 0.004 0.008
#> SRR1091865     1  0.5165     0.0898 0.512 0.000 0.484 0.004
#> SRR1361072     1  0.4661     0.5513 0.652 0.000 0.348 0.000
#> SRR1487890     1  0.0657     0.7561 0.984 0.000 0.012 0.004
#> SRR1349456     3  0.2714     0.7963 0.112 0.000 0.884 0.004
#> SRR1389384     3  0.4313     0.6749 0.260 0.000 0.736 0.004
#> SRR1316096     2  0.4697     0.5798 0.000 0.644 0.000 0.356
#> SRR1408512     1  0.4898     0.4214 0.584 0.000 0.416 0.000
#> SRR1447547     3  0.3652     0.7840 0.092 0.052 0.856 0.000
#> SRR1354053     4  0.2345     0.8156 0.000 0.100 0.000 0.900

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.4046     0.6416 0.696 0.000 0.296 0.000 0.008
#> SRR1349562     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1353376     2  0.0771     0.7324 0.000 0.976 0.000 0.020 0.004
#> SRR1499040     1  0.0451     0.7030 0.988 0.000 0.004 0.000 0.008
#> SRR1322312     1  0.0451     0.7030 0.988 0.000 0.004 0.000 0.008
#> SRR1324412     1  0.4287     0.3100 0.540 0.000 0.460 0.000 0.000
#> SRR1100991     1  0.4287     0.3100 0.540 0.000 0.460 0.000 0.000
#> SRR1349479     2  0.0324     0.7265 0.000 0.992 0.000 0.004 0.004
#> SRR1431248     3  0.1356     0.6774 0.012 0.004 0.956 0.000 0.028
#> SRR1405054     3  0.0693     0.6888 0.012 0.000 0.980 0.000 0.008
#> SRR1312266     1  0.2763     0.7690 0.848 0.000 0.148 0.000 0.004
#> SRR1409790     1  0.4307     0.2014 0.504 0.000 0.496 0.000 0.000
#> SRR1352507     3  0.3895     0.3905 0.320 0.000 0.680 0.000 0.000
#> SRR1383763     1  0.0451     0.7030 0.988 0.000 0.004 0.000 0.008
#> SRR1468314     2  0.0865     0.7089 0.000 0.972 0.000 0.004 0.024
#> SRR1473674     5  0.3756     0.6134 0.000 0.008 0.248 0.000 0.744
#> SRR1390499     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR821043      4  0.6071     0.8111 0.000 0.300 0.000 0.548 0.152
#> SRR1455653     4  0.6071     0.8111 0.000 0.300 0.000 0.548 0.152
#> SRR1335236     5  0.3756     0.6134 0.000 0.008 0.248 0.000 0.744
#> SRR1095383     4  0.6186     0.7797 0.000 0.336 0.000 0.512 0.152
#> SRR1479489     1  0.2127     0.7782 0.892 0.000 0.108 0.000 0.000
#> SRR1310433     2  0.2136     0.6363 0.000 0.904 0.000 0.008 0.088
#> SRR1073435     2  0.5205     0.7974 0.000 0.696 0.036 0.040 0.228
#> SRR659649      3  0.3300     0.4319 0.000 0.004 0.792 0.000 0.204
#> SRR1395999     1  0.2020     0.7794 0.900 0.000 0.100 0.000 0.000
#> SRR1105248     3  0.5795     0.1756 0.012 0.008 0.572 0.356 0.052
#> SRR1338257     1  0.2719     0.7744 0.852 0.000 0.144 0.000 0.004
#> SRR1499395     3  0.4151     0.3374 0.344 0.000 0.652 0.000 0.004
#> SRR1350002     5  0.4367     0.6442 0.000 0.004 0.416 0.000 0.580
#> SRR1489757     1  0.4307     0.2014 0.504 0.000 0.496 0.000 0.000
#> SRR1414637     3  0.1211     0.6821 0.024 0.000 0.960 0.000 0.016
#> SRR1478113     4  0.0162     0.6529 0.000 0.004 0.000 0.996 0.000
#> SRR1322477     3  0.1356     0.6774 0.012 0.004 0.956 0.000 0.028
#> SRR1478789     3  0.1281     0.6879 0.032 0.000 0.956 0.000 0.012
#> SRR1414185     3  0.0771     0.6914 0.020 0.000 0.976 0.000 0.004
#> SRR1069141     5  0.3756     0.6134 0.000 0.008 0.248 0.000 0.744
#> SRR1376852     1  0.1732     0.7747 0.920 0.000 0.080 0.000 0.000
#> SRR1323491     1  0.4046     0.6416 0.696 0.000 0.296 0.000 0.008
#> SRR1338103     1  0.3048     0.7610 0.820 0.000 0.176 0.000 0.004
#> SRR1472012     1  0.3837     0.6151 0.692 0.000 0.308 0.000 0.000
#> SRR1340325     1  0.2471     0.7763 0.864 0.000 0.136 0.000 0.000
#> SRR1087321     3  0.1281     0.6879 0.032 0.000 0.956 0.000 0.012
#> SRR1488790     1  0.3715     0.6882 0.736 0.000 0.260 0.000 0.004
#> SRR1334866     3  0.0912     0.6862 0.012 0.000 0.972 0.000 0.016
#> SRR1089446     3  0.1173     0.6816 0.012 0.004 0.964 0.000 0.020
#> SRR1344445     1  0.4307     0.2014 0.504 0.000 0.496 0.000 0.000
#> SRR1412969     3  0.0771     0.6914 0.020 0.000 0.976 0.000 0.004
#> SRR1071668     3  0.0693     0.6888 0.012 0.000 0.980 0.000 0.008
#> SRR1075804     1  0.2763     0.7690 0.848 0.000 0.148 0.000 0.004
#> SRR1383283     2  0.4243     0.8084 0.000 0.712 0.000 0.024 0.264
#> SRR1350239     3  0.5795     0.1756 0.012 0.008 0.572 0.356 0.052
#> SRR1353878     1  0.2471     0.7763 0.864 0.000 0.136 0.000 0.000
#> SRR1375721     1  0.1908     0.7786 0.908 0.000 0.092 0.000 0.000
#> SRR1083983     1  0.3752     0.6499 0.708 0.000 0.292 0.000 0.000
#> SRR1090095     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1414792     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1075102     4  0.0162     0.6529 0.000 0.004 0.000 0.996 0.000
#> SRR1098737     1  0.2763     0.7690 0.848 0.000 0.148 0.000 0.004
#> SRR1349409     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1413008     3  0.5795     0.1756 0.012 0.008 0.572 0.356 0.052
#> SRR1407179     3  0.4256     0.1147 0.436 0.000 0.564 0.000 0.000
#> SRR1095913     3  0.2798     0.6215 0.140 0.000 0.852 0.000 0.008
#> SRR1403544     1  0.1908     0.7786 0.908 0.000 0.092 0.000 0.000
#> SRR1490546     1  0.4455     0.4650 0.588 0.000 0.404 0.000 0.008
#> SRR807971      3  0.3895     0.3905 0.320 0.000 0.680 0.000 0.000
#> SRR1436228     3  0.0912     0.6840 0.012 0.000 0.972 0.000 0.016
#> SRR1445218     2  0.1845     0.7612 0.000 0.928 0.000 0.016 0.056
#> SRR1485438     5  0.6377     0.7292 0.180 0.000 0.336 0.000 0.484
#> SRR1358143     1  0.0451     0.7030 0.988 0.000 0.004 0.000 0.008
#> SRR1328760     1  0.1908     0.7786 0.908 0.000 0.092 0.000 0.000
#> SRR1380806     1  0.0771     0.7317 0.976 0.000 0.020 0.000 0.004
#> SRR1379426     3  0.1282     0.6931 0.044 0.000 0.952 0.000 0.004
#> SRR1087007     3  0.0771     0.6914 0.020 0.000 0.976 0.000 0.004
#> SRR1086256     3  0.0912     0.6840 0.012 0.000 0.972 0.000 0.016
#> SRR1346734     4  0.6071     0.8111 0.000 0.300 0.000 0.548 0.152
#> SRR1414515     1  0.1908     0.7786 0.908 0.000 0.092 0.000 0.000
#> SRR1082151     5  0.6507     0.7116 0.212 0.000 0.316 0.000 0.472
#> SRR1349320     4  0.0162     0.6529 0.000 0.004 0.000 0.996 0.000
#> SRR1317554     4  0.6071     0.8111 0.000 0.300 0.000 0.548 0.152
#> SRR1076022     2  0.4229     0.8085 0.000 0.704 0.000 0.020 0.276
#> SRR1339573     3  0.4300    -0.0166 0.476 0.000 0.524 0.000 0.000
#> SRR1455878     1  0.3949     0.6318 0.696 0.000 0.300 0.000 0.004
#> SRR1446203     3  0.3300     0.4319 0.000 0.004 0.792 0.000 0.204
#> SRR1387397     3  0.4166     0.3467 0.348 0.000 0.648 0.000 0.004
#> SRR1402590     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1317532     1  0.4744     0.2470 0.508 0.000 0.476 0.000 0.016
#> SRR1331488     3  0.2631     0.6230 0.012 0.004 0.904 0.036 0.044
#> SRR1499675     3  0.4450    -0.1947 0.488 0.000 0.508 0.000 0.004
#> SRR1440467     2  0.4597     0.7944 0.000 0.696 0.044 0.000 0.260
#> SRR807995      5  0.6377     0.7292 0.180 0.000 0.336 0.000 0.484
#> SRR1476485     4  0.6071     0.8111 0.000 0.300 0.000 0.548 0.152
#> SRR1388214     3  0.1725     0.6881 0.044 0.000 0.936 0.000 0.020
#> SRR1456051     1  0.2020     0.7794 0.900 0.000 0.100 0.000 0.000
#> SRR1473275     3  0.4300    -0.0166 0.476 0.000 0.524 0.000 0.000
#> SRR1444083     1  0.2516     0.7754 0.860 0.000 0.140 0.000 0.000
#> SRR1313807     2  0.4243     0.8084 0.000 0.712 0.000 0.024 0.264
#> SRR1470751     5  0.6507     0.7116 0.212 0.000 0.316 0.000 0.472
#> SRR1403434     2  0.4597     0.7944 0.000 0.696 0.044 0.000 0.260
#> SRR1390540     1  0.4298     0.5619 0.640 0.000 0.352 0.000 0.008
#> SRR1093861     2  0.4822     0.7716 0.000 0.632 0.016 0.012 0.340
#> SRR1325290     1  0.3966     0.5828 0.664 0.000 0.336 0.000 0.000
#> SRR1070689     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1384049     1  0.0451     0.7030 0.988 0.000 0.004 0.000 0.008
#> SRR1081184     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1324295     1  0.1478     0.7699 0.936 0.000 0.064 0.000 0.000
#> SRR1365313     3  0.0912     0.6840 0.012 0.000 0.972 0.000 0.016
#> SRR1321877     3  0.1281     0.6879 0.032 0.000 0.956 0.000 0.012
#> SRR815711      3  0.0807     0.6870 0.012 0.000 0.976 0.000 0.012
#> SRR1433476     2  0.0451     0.7237 0.000 0.988 0.000 0.004 0.008
#> SRR1101883     3  0.3895     0.3905 0.320 0.000 0.680 0.000 0.000
#> SRR1433729     2  0.5205     0.7974 0.000 0.696 0.036 0.040 0.228
#> SRR1341877     1  0.4546     0.3183 0.532 0.000 0.460 0.000 0.008
#> SRR1090556     3  0.4166     0.3467 0.348 0.000 0.648 0.000 0.004
#> SRR1357389     3  0.4101     0.3655 0.332 0.000 0.664 0.000 0.004
#> SRR1404227     3  0.3607     0.5349 0.244 0.000 0.752 0.000 0.004
#> SRR1376830     1  0.1732     0.7747 0.920 0.000 0.080 0.000 0.000
#> SRR1500661     1  0.4528     0.3689 0.548 0.000 0.444 0.000 0.008
#> SRR1080294     4  0.6186     0.7797 0.000 0.336 0.000 0.512 0.152
#> SRR1336314     4  0.0162     0.6529 0.000 0.004 0.000 0.996 0.000
#> SRR1102152     3  0.4304    -0.1644 0.484 0.000 0.516 0.000 0.000
#> SRR1345244     3  0.1281     0.6879 0.032 0.000 0.956 0.000 0.012
#> SRR1478637     1  0.4201     0.4819 0.664 0.000 0.328 0.000 0.008
#> SRR1443776     3  0.1281     0.6879 0.032 0.000 0.956 0.000 0.012
#> SRR1120939     3  0.2077     0.6610 0.084 0.000 0.908 0.000 0.008
#> SRR1080117     3  0.1282     0.6931 0.044 0.000 0.952 0.000 0.004
#> SRR1102899     2  0.4229     0.8085 0.000 0.704 0.000 0.020 0.276
#> SRR1091865     1  0.6438     0.1661 0.496 0.000 0.292 0.000 0.212
#> SRR1361072     1  0.4455     0.4650 0.588 0.000 0.404 0.000 0.008
#> SRR1487890     1  0.0771     0.7317 0.976 0.000 0.020 0.000 0.004
#> SRR1349456     3  0.1195     0.6878 0.028 0.000 0.960 0.000 0.012
#> SRR1389384     5  0.6507     0.7116 0.212 0.000 0.316 0.000 0.472
#> SRR1316096     2  0.2136     0.6363 0.000 0.904 0.000 0.008 0.088
#> SRR1408512     1  0.4552     0.3009 0.524 0.000 0.468 0.000 0.008
#> SRR1447547     3  0.2229     0.6470 0.012 0.004 0.920 0.012 0.052
#> SRR1354053     4  0.6071     0.8111 0.000 0.300 0.000 0.548 0.152

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.3445     0.6571 0.732 0.008 0.260 0.000 0.000 0.000
#> SRR1349562     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1353376     6  0.3575     0.7281 0.000 0.000 0.000 0.284 0.008 0.708
#> SRR1499040     1  0.2509     0.6625 0.876 0.036 0.000 0.000 0.088 0.000
#> SRR1322312     1  0.2509     0.6625 0.876 0.036 0.000 0.000 0.088 0.000
#> SRR1324412     1  0.4457     0.3348 0.544 0.008 0.432 0.000 0.016 0.000
#> SRR1100991     1  0.4457     0.3348 0.544 0.008 0.432 0.000 0.016 0.000
#> SRR1349479     6  0.3409     0.7195 0.000 0.000 0.000 0.300 0.000 0.700
#> SRR1431248     3  0.1138     0.7436 0.004 0.024 0.960 0.000 0.000 0.012
#> SRR1405054     3  0.0603     0.7532 0.004 0.016 0.980 0.000 0.000 0.000
#> SRR1312266     1  0.2165     0.7519 0.884 0.008 0.108 0.000 0.000 0.000
#> SRR1409790     1  0.4654     0.2360 0.504 0.016 0.464 0.000 0.016 0.000
#> SRR1352507     3  0.3619     0.3785 0.316 0.004 0.680 0.000 0.000 0.000
#> SRR1383763     1  0.2509     0.6625 0.876 0.036 0.000 0.000 0.088 0.000
#> SRR1468314     6  0.3499     0.6996 0.000 0.000 0.000 0.320 0.000 0.680
#> SRR1473674     2  0.2134     0.5325 0.000 0.904 0.044 0.000 0.000 0.052
#> SRR1390499     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR821043      4  0.0000     0.9831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1455653     4  0.0000     0.9831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1335236     2  0.2134     0.5325 0.000 0.904 0.044 0.000 0.000 0.052
#> SRR1095383     4  0.0937     0.9490 0.000 0.000 0.000 0.960 0.000 0.040
#> SRR1479489     1  0.1644     0.7584 0.920 0.000 0.076 0.000 0.004 0.000
#> SRR1310433     6  0.3852     0.6141 0.000 0.000 0.000 0.384 0.004 0.612
#> SRR1073435     6  0.1693     0.7754 0.000 0.012 0.032 0.000 0.020 0.936
#> SRR659649      3  0.3767     0.5315 0.000 0.260 0.720 0.000 0.004 0.016
#> SRR1395999     1  0.1555     0.7588 0.932 0.004 0.060 0.000 0.004 0.000
#> SRR1105248     3  0.4894     0.2713 0.000 0.040 0.584 0.000 0.360 0.016
#> SRR1338257     1  0.2053     0.7586 0.888 0.004 0.108 0.000 0.000 0.000
#> SRR1499395     3  0.4746     0.3219 0.332 0.036 0.616 0.000 0.016 0.000
#> SRR1350002     2  0.2823     0.6270 0.000 0.796 0.204 0.000 0.000 0.000
#> SRR1489757     1  0.4654     0.2360 0.504 0.016 0.464 0.000 0.016 0.000
#> SRR1414637     3  0.1485     0.7464 0.028 0.024 0.944 0.000 0.004 0.000
#> SRR1478113     5  0.1908     1.0000 0.000 0.000 0.000 0.096 0.900 0.004
#> SRR1322477     3  0.1138     0.7436 0.004 0.024 0.960 0.000 0.000 0.012
#> SRR1478789     3  0.1951     0.7471 0.020 0.060 0.916 0.000 0.004 0.000
#> SRR1414185     3  0.1196     0.7524 0.008 0.040 0.952 0.000 0.000 0.000
#> SRR1069141     2  0.2134     0.5325 0.000 0.904 0.044 0.000 0.000 0.052
#> SRR1376852     1  0.1442     0.7505 0.944 0.012 0.040 0.000 0.004 0.000
#> SRR1323491     1  0.3445     0.6571 0.732 0.008 0.260 0.000 0.000 0.000
#> SRR1338103     1  0.2766     0.7473 0.844 0.008 0.140 0.000 0.008 0.000
#> SRR1472012     1  0.3555     0.6191 0.712 0.000 0.280 0.000 0.008 0.000
#> SRR1340325     1  0.1958     0.7600 0.896 0.004 0.100 0.000 0.000 0.000
#> SRR1087321     3  0.1951     0.7471 0.020 0.060 0.916 0.000 0.004 0.000
#> SRR1488790     1  0.2969     0.6981 0.776 0.000 0.224 0.000 0.000 0.000
#> SRR1334866     3  0.1080     0.7514 0.004 0.032 0.960 0.000 0.004 0.000
#> SRR1089446     3  0.0982     0.7471 0.004 0.020 0.968 0.000 0.004 0.004
#> SRR1344445     1  0.4654     0.2360 0.504 0.016 0.464 0.000 0.016 0.000
#> SRR1412969     3  0.1196     0.7524 0.008 0.040 0.952 0.000 0.000 0.000
#> SRR1071668     3  0.0603     0.7532 0.004 0.016 0.980 0.000 0.000 0.000
#> SRR1075804     1  0.2165     0.7519 0.884 0.008 0.108 0.000 0.000 0.000
#> SRR1383283     6  0.0146     0.7884 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1350239     3  0.4894     0.2713 0.000 0.040 0.584 0.000 0.360 0.016
#> SRR1353878     1  0.1958     0.7600 0.896 0.004 0.100 0.000 0.000 0.000
#> SRR1375721     1  0.1285     0.7577 0.944 0.000 0.052 0.000 0.004 0.000
#> SRR1083983     1  0.3337     0.6560 0.736 0.004 0.260 0.000 0.000 0.000
#> SRR1090095     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1414792     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1075102     5  0.1908     1.0000 0.000 0.000 0.000 0.096 0.900 0.004
#> SRR1098737     1  0.2165     0.7519 0.884 0.008 0.108 0.000 0.000 0.000
#> SRR1349409     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1413008     3  0.4894     0.2713 0.000 0.040 0.584 0.000 0.360 0.016
#> SRR1407179     3  0.4546     0.1343 0.432 0.012 0.540 0.000 0.016 0.000
#> SRR1095913     3  0.3529     0.6892 0.120 0.048 0.816 0.000 0.016 0.000
#> SRR1403544     1  0.1285     0.7577 0.944 0.000 0.052 0.000 0.004 0.000
#> SRR1490546     1  0.3992     0.5126 0.624 0.012 0.364 0.000 0.000 0.000
#> SRR807971      3  0.3619     0.3785 0.316 0.004 0.680 0.000 0.000 0.000
#> SRR1436228     3  0.0922     0.7490 0.004 0.024 0.968 0.000 0.004 0.000
#> SRR1445218     6  0.3109     0.7579 0.000 0.000 0.000 0.224 0.004 0.772
#> SRR1485438     2  0.5796     0.7187 0.124 0.620 0.200 0.000 0.056 0.000
#> SRR1358143     1  0.2509     0.6625 0.876 0.036 0.000 0.000 0.088 0.000
#> SRR1328760     1  0.1285     0.7577 0.944 0.000 0.052 0.000 0.004 0.000
#> SRR1380806     1  0.1769     0.7082 0.924 0.012 0.004 0.000 0.060 0.000
#> SRR1379426     3  0.1713     0.7553 0.028 0.044 0.928 0.000 0.000 0.000
#> SRR1087007     3  0.1196     0.7524 0.008 0.040 0.952 0.000 0.000 0.000
#> SRR1086256     3  0.0922     0.7490 0.004 0.024 0.968 0.000 0.004 0.000
#> SRR1346734     4  0.0000     0.9831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.1285     0.7577 0.944 0.000 0.052 0.000 0.004 0.000
#> SRR1082151     2  0.5900     0.7067 0.176 0.596 0.188 0.000 0.040 0.000
#> SRR1349320     5  0.1908     1.0000 0.000 0.000 0.000 0.096 0.900 0.004
#> SRR1317554     4  0.0000     0.9831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1076022     6  0.0436     0.7884 0.000 0.004 0.000 0.004 0.004 0.988
#> SRR1339573     3  0.4756    -0.0369 0.456 0.008 0.504 0.000 0.032 0.000
#> SRR1455878     1  0.3221     0.6508 0.736 0.000 0.264 0.000 0.000 0.000
#> SRR1446203     3  0.3767     0.5315 0.000 0.260 0.720 0.000 0.004 0.016
#> SRR1387397     3  0.4026     0.2706 0.376 0.012 0.612 0.000 0.000 0.000
#> SRR1402590     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1317532     1  0.4229     0.3438 0.548 0.016 0.436 0.000 0.000 0.000
#> SRR1331488     3  0.2152     0.7032 0.000 0.036 0.912 0.000 0.040 0.012
#> SRR1499675     1  0.4410     0.2480 0.508 0.012 0.472 0.000 0.008 0.000
#> SRR1440467     6  0.3422     0.7256 0.000 0.168 0.040 0.000 0.000 0.792
#> SRR807995      2  0.5796     0.7187 0.124 0.620 0.200 0.000 0.056 0.000
#> SRR1476485     4  0.0000     0.9831 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388214     3  0.2002     0.7403 0.056 0.020 0.916 0.000 0.000 0.008
#> SRR1456051     1  0.1555     0.7588 0.932 0.004 0.060 0.000 0.004 0.000
#> SRR1473275     3  0.4756    -0.0369 0.456 0.008 0.504 0.000 0.032 0.000
#> SRR1444083     1  0.1863     0.7592 0.896 0.000 0.104 0.000 0.000 0.000
#> SRR1313807     6  0.0146     0.7884 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1470751     2  0.5900     0.7067 0.176 0.596 0.188 0.000 0.040 0.000
#> SRR1403434     6  0.3422     0.7256 0.000 0.168 0.040 0.000 0.000 0.792
#> SRR1390540     1  0.3802     0.5929 0.676 0.012 0.312 0.000 0.000 0.000
#> SRR1093861     6  0.1806     0.7465 0.000 0.088 0.000 0.000 0.004 0.908
#> SRR1325290     1  0.3827     0.5888 0.680 0.004 0.308 0.000 0.008 0.000
#> SRR1070689     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1384049     1  0.2509     0.6625 0.876 0.036 0.000 0.000 0.088 0.000
#> SRR1081184     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1324295     1  0.0909     0.7429 0.968 0.012 0.020 0.000 0.000 0.000
#> SRR1365313     3  0.0922     0.7490 0.004 0.024 0.968 0.000 0.004 0.000
#> SRR1321877     3  0.1951     0.7471 0.020 0.060 0.916 0.000 0.004 0.000
#> SRR815711      3  0.0603     0.7509 0.004 0.016 0.980 0.000 0.000 0.000
#> SRR1433476     6  0.3428     0.7161 0.000 0.000 0.000 0.304 0.000 0.696
#> SRR1101883     3  0.3619     0.3785 0.316 0.004 0.680 0.000 0.000 0.000
#> SRR1433729     6  0.1693     0.7754 0.000 0.012 0.032 0.000 0.020 0.936
#> SRR1341877     1  0.4285     0.3774 0.552 0.008 0.432 0.000 0.008 0.000
#> SRR1090556     3  0.4026     0.2706 0.376 0.012 0.612 0.000 0.000 0.000
#> SRR1357389     3  0.4703     0.3505 0.320 0.036 0.628 0.000 0.016 0.000
#> SRR1404227     3  0.4221     0.5623 0.236 0.032 0.716 0.000 0.016 0.000
#> SRR1376830     1  0.1442     0.7505 0.944 0.012 0.040 0.000 0.004 0.000
#> SRR1500661     1  0.4018     0.4319 0.580 0.008 0.412 0.000 0.000 0.000
#> SRR1080294     4  0.0937     0.9490 0.000 0.000 0.000 0.960 0.000 0.040
#> SRR1336314     5  0.1908     1.0000 0.000 0.000 0.000 0.096 0.900 0.004
#> SRR1102152     1  0.4500     0.1946 0.492 0.012 0.484 0.000 0.012 0.000
#> SRR1345244     3  0.1951     0.7471 0.020 0.060 0.916 0.000 0.004 0.000
#> SRR1478637     1  0.4943     0.4366 0.596 0.004 0.328 0.000 0.072 0.000
#> SRR1443776     3  0.1951     0.7471 0.020 0.060 0.916 0.000 0.004 0.000
#> SRR1120939     3  0.2895     0.7256 0.064 0.052 0.868 0.000 0.016 0.000
#> SRR1080117     3  0.1713     0.7553 0.028 0.044 0.928 0.000 0.000 0.000
#> SRR1102899     6  0.0436     0.7884 0.000 0.004 0.000 0.004 0.004 0.988
#> SRR1091865     1  0.6456     0.1410 0.472 0.288 0.204 0.000 0.036 0.000
#> SRR1361072     1  0.3992     0.5126 0.624 0.012 0.364 0.000 0.000 0.000
#> SRR1487890     1  0.1769     0.7082 0.924 0.012 0.004 0.000 0.060 0.000
#> SRR1349456     3  0.1889     0.7477 0.020 0.056 0.920 0.000 0.004 0.000
#> SRR1389384     2  0.5900     0.7067 0.176 0.596 0.188 0.000 0.040 0.000
#> SRR1316096     6  0.3852     0.6141 0.000 0.000 0.000 0.384 0.004 0.612
#> SRR1408512     1  0.4057     0.3793 0.556 0.008 0.436 0.000 0.000 0.000
#> SRR1447547     3  0.1963     0.7242 0.004 0.044 0.924 0.000 0.016 0.012
#> SRR1354053     4  0.0000     0.9831 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.986       0.994         0.3689 0.637   0.637
#> 3 3 0.888           0.935       0.971         0.7151 0.644   0.477
#> 4 4 0.618           0.615       0.752         0.1313 0.901   0.735
#> 5 5 0.589           0.468       0.731         0.0726 0.839   0.518
#> 6 6 0.653           0.562       0.710         0.0515 0.872   0.528

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1   0.000      0.993 1.000 0.000
#> SRR1349562     1   0.000      0.993 1.000 0.000
#> SRR1353376     2   0.000      1.000 0.000 1.000
#> SRR1499040     1   0.000      0.993 1.000 0.000
#> SRR1322312     1   0.000      0.993 1.000 0.000
#> SRR1324412     1   0.000      0.993 1.000 0.000
#> SRR1100991     1   0.000      0.993 1.000 0.000
#> SRR1349479     2   0.000      1.000 0.000 1.000
#> SRR1431248     1   0.000      0.993 1.000 0.000
#> SRR1405054     1   0.000      0.993 1.000 0.000
#> SRR1312266     1   0.000      0.993 1.000 0.000
#> SRR1409790     1   0.000      0.993 1.000 0.000
#> SRR1352507     1   0.000      0.993 1.000 0.000
#> SRR1383763     1   0.000      0.993 1.000 0.000
#> SRR1468314     2   0.000      1.000 0.000 1.000
#> SRR1473674     2   0.000      1.000 0.000 1.000
#> SRR1390499     1   0.000      0.993 1.000 0.000
#> SRR821043      2   0.000      1.000 0.000 1.000
#> SRR1455653     2   0.000      1.000 0.000 1.000
#> SRR1335236     1   0.000      0.993 1.000 0.000
#> SRR1095383     2   0.000      1.000 0.000 1.000
#> SRR1479489     1   0.000      0.993 1.000 0.000
#> SRR1310433     2   0.000      1.000 0.000 1.000
#> SRR1073435     2   0.000      1.000 0.000 1.000
#> SRR659649      1   0.000      0.993 1.000 0.000
#> SRR1395999     1   0.000      0.993 1.000 0.000
#> SRR1105248     2   0.000      1.000 0.000 1.000
#> SRR1338257     1   0.000      0.993 1.000 0.000
#> SRR1499395     1   0.000      0.993 1.000 0.000
#> SRR1350002     1   0.000      0.993 1.000 0.000
#> SRR1489757     1   0.000      0.993 1.000 0.000
#> SRR1414637     1   0.000      0.993 1.000 0.000
#> SRR1478113     2   0.000      1.000 0.000 1.000
#> SRR1322477     1   0.000      0.993 1.000 0.000
#> SRR1478789     1   0.000      0.993 1.000 0.000
#> SRR1414185     1   0.000      0.993 1.000 0.000
#> SRR1069141     2   0.000      1.000 0.000 1.000
#> SRR1376852     1   0.000      0.993 1.000 0.000
#> SRR1323491     1   0.000      0.993 1.000 0.000
#> SRR1338103     1   0.000      0.993 1.000 0.000
#> SRR1472012     1   0.000      0.993 1.000 0.000
#> SRR1340325     1   0.000      0.993 1.000 0.000
#> SRR1087321     1   0.000      0.993 1.000 0.000
#> SRR1488790     1   0.000      0.993 1.000 0.000
#> SRR1334866     1   0.000      0.993 1.000 0.000
#> SRR1089446     1   0.000      0.993 1.000 0.000
#> SRR1344445     1   0.000      0.993 1.000 0.000
#> SRR1412969     1   0.000      0.993 1.000 0.000
#> SRR1071668     1   0.000      0.993 1.000 0.000
#> SRR1075804     1   0.000      0.993 1.000 0.000
#> SRR1383283     2   0.000      1.000 0.000 1.000
#> SRR1350239     2   0.000      1.000 0.000 1.000
#> SRR1353878     1   0.000      0.993 1.000 0.000
#> SRR1375721     1   0.000      0.993 1.000 0.000
#> SRR1083983     1   0.000      0.993 1.000 0.000
#> SRR1090095     1   0.000      0.993 1.000 0.000
#> SRR1414792     1   0.000      0.993 1.000 0.000
#> SRR1075102     2   0.000      1.000 0.000 1.000
#> SRR1098737     1   0.000      0.993 1.000 0.000
#> SRR1349409     1   0.000      0.993 1.000 0.000
#> SRR1413008     1   0.929      0.479 0.656 0.344
#> SRR1407179     1   0.000      0.993 1.000 0.000
#> SRR1095913     1   0.000      0.993 1.000 0.000
#> SRR1403544     1   0.000      0.993 1.000 0.000
#> SRR1490546     1   0.000      0.993 1.000 0.000
#> SRR807971      1   0.000      0.993 1.000 0.000
#> SRR1436228     1   0.000      0.993 1.000 0.000
#> SRR1445218     2   0.000      1.000 0.000 1.000
#> SRR1485438     1   0.000      0.993 1.000 0.000
#> SRR1358143     1   0.000      0.993 1.000 0.000
#> SRR1328760     1   0.000      0.993 1.000 0.000
#> SRR1380806     1   0.000      0.993 1.000 0.000
#> SRR1379426     1   0.000      0.993 1.000 0.000
#> SRR1087007     1   0.000      0.993 1.000 0.000
#> SRR1086256     1   0.000      0.993 1.000 0.000
#> SRR1346734     2   0.000      1.000 0.000 1.000
#> SRR1414515     1   0.000      0.993 1.000 0.000
#> SRR1082151     1   0.000      0.993 1.000 0.000
#> SRR1349320     2   0.000      1.000 0.000 1.000
#> SRR1317554     2   0.000      1.000 0.000 1.000
#> SRR1076022     2   0.000      1.000 0.000 1.000
#> SRR1339573     1   0.000      0.993 1.000 0.000
#> SRR1455878     1   0.000      0.993 1.000 0.000
#> SRR1446203     1   0.000      0.993 1.000 0.000
#> SRR1387397     1   0.000      0.993 1.000 0.000
#> SRR1402590     1   0.000      0.993 1.000 0.000
#> SRR1317532     1   0.000      0.993 1.000 0.000
#> SRR1331488     1   0.000      0.993 1.000 0.000
#> SRR1499675     1   0.000      0.993 1.000 0.000
#> SRR1440467     2   0.000      1.000 0.000 1.000
#> SRR807995      1   0.000      0.993 1.000 0.000
#> SRR1476485     2   0.000      1.000 0.000 1.000
#> SRR1388214     1   0.000      0.993 1.000 0.000
#> SRR1456051     1   0.000      0.993 1.000 0.000
#> SRR1473275     1   0.000      0.993 1.000 0.000
#> SRR1444083     1   0.000      0.993 1.000 0.000
#> SRR1313807     2   0.000      1.000 0.000 1.000
#> SRR1470751     1   0.000      0.993 1.000 0.000
#> SRR1403434     2   0.000      1.000 0.000 1.000
#> SRR1390540     1   0.000      0.993 1.000 0.000
#> SRR1093861     2   0.000      1.000 0.000 1.000
#> SRR1325290     1   0.000      0.993 1.000 0.000
#> SRR1070689     1   0.000      0.993 1.000 0.000
#> SRR1384049     1   0.000      0.993 1.000 0.000
#> SRR1081184     1   0.000      0.993 1.000 0.000
#> SRR1324295     1   0.000      0.993 1.000 0.000
#> SRR1365313     1   0.000      0.993 1.000 0.000
#> SRR1321877     1   0.000      0.993 1.000 0.000
#> SRR815711      1   0.000      0.993 1.000 0.000
#> SRR1433476     2   0.000      1.000 0.000 1.000
#> SRR1101883     1   0.000      0.993 1.000 0.000
#> SRR1433729     2   0.000      1.000 0.000 1.000
#> SRR1341877     1   0.000      0.993 1.000 0.000
#> SRR1090556     1   0.000      0.993 1.000 0.000
#> SRR1357389     1   0.000      0.993 1.000 0.000
#> SRR1404227     1   0.000      0.993 1.000 0.000
#> SRR1376830     1   0.000      0.993 1.000 0.000
#> SRR1500661     1   0.000      0.993 1.000 0.000
#> SRR1080294     2   0.000      1.000 0.000 1.000
#> SRR1336314     2   0.000      1.000 0.000 1.000
#> SRR1102152     1   0.000      0.993 1.000 0.000
#> SRR1345244     1   0.000      0.993 1.000 0.000
#> SRR1478637     1   0.000      0.993 1.000 0.000
#> SRR1443776     1   0.000      0.993 1.000 0.000
#> SRR1120939     1   0.000      0.993 1.000 0.000
#> SRR1080117     1   0.000      0.993 1.000 0.000
#> SRR1102899     2   0.000      1.000 0.000 1.000
#> SRR1091865     1   0.000      0.993 1.000 0.000
#> SRR1361072     1   0.000      0.993 1.000 0.000
#> SRR1487890     1   0.000      0.993 1.000 0.000
#> SRR1349456     1   0.000      0.993 1.000 0.000
#> SRR1389384     1   0.000      0.993 1.000 0.000
#> SRR1316096     2   0.000      1.000 0.000 1.000
#> SRR1408512     1   0.000      0.993 1.000 0.000
#> SRR1447547     1   0.975      0.318 0.592 0.408
#> SRR1354053     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.988 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1499040     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1322312     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1324412     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1100991     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1349479     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1431248     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1405054     3  0.4346      0.781 0.184 0.000 0.816
#> SRR1312266     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1409790     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1352507     3  0.3116      0.865 0.108 0.000 0.892
#> SRR1383763     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1468314     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1473674     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1390499     1  0.0000      0.988 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.982 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1335236     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1095383     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1310433     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1073435     3  0.3340      0.847 0.000 0.120 0.880
#> SRR659649      3  0.0000      0.937 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1105248     3  0.3340      0.847 0.000 0.120 0.880
#> SRR1338257     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1499395     3  0.3482      0.837 0.128 0.000 0.872
#> SRR1350002     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1489757     1  0.0424      0.980 0.992 0.000 0.008
#> SRR1414637     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1478113     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1322477     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1478789     3  0.0892      0.927 0.020 0.000 0.980
#> SRR1414185     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1069141     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1376852     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1338103     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1472012     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1340325     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1334866     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1089446     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1344445     1  0.0424      0.980 0.992 0.000 0.008
#> SRR1412969     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1071668     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1075804     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1383283     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1350239     3  0.1163      0.922 0.000 0.028 0.972
#> SRR1353878     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1083983     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1090095     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1098737     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1413008     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1407179     1  0.0424      0.980 0.992 0.000 0.008
#> SRR1095913     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1403544     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1490546     1  0.3116      0.865 0.892 0.000 0.108
#> SRR807971      3  0.1643      0.914 0.044 0.000 0.956
#> SRR1436228     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1445218     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1485438     3  0.4654      0.745 0.208 0.000 0.792
#> SRR1358143     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1086256     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1346734     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1082151     3  0.4654      0.745 0.208 0.000 0.792
#> SRR1349320     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1076022     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1339573     1  0.0424      0.980 0.992 0.000 0.008
#> SRR1455878     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1446203     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1387397     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1317532     3  0.3116      0.865 0.108 0.000 0.892
#> SRR1331488     3  0.3038      0.869 0.104 0.000 0.896
#> SRR1499675     3  0.2537      0.889 0.080 0.000 0.920
#> SRR1440467     3  0.0237      0.934 0.000 0.004 0.996
#> SRR807995      3  0.4654      0.745 0.208 0.000 0.792
#> SRR1476485     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1388214     3  0.3116      0.865 0.108 0.000 0.892
#> SRR1456051     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1473275     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1444083     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1313807     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1470751     3  0.0592      0.931 0.012 0.000 0.988
#> SRR1403434     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1390540     1  0.5058      0.666 0.756 0.000 0.244
#> SRR1093861     2  0.6111      0.345 0.000 0.604 0.396
#> SRR1325290     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1070689     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1365313     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1321877     3  0.0000      0.937 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.937 0.000 0.000 1.000
#> SRR1433476     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1101883     3  0.1753      0.911 0.048 0.000 0.952
#> SRR1433729     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1341877     3  0.6305      0.159 0.484 0.000 0.516
#> SRR1090556     3  0.2796      0.879 0.092 0.000 0.908
#> SRR1357389     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1404227     3  0.2356      0.890 0.072 0.000 0.928
#> SRR1376830     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1080294     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1336314     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1102152     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1345244     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1478637     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1443776     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1102899     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1091865     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1361072     3  0.6126      0.380 0.400 0.000 0.600
#> SRR1487890     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1349456     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1389384     3  0.1529      0.915 0.040 0.000 0.960
#> SRR1316096     2  0.0000      0.982 0.000 1.000 0.000
#> SRR1408512     1  0.4452      0.752 0.808 0.000 0.192
#> SRR1447547     3  0.0000      0.937 0.000 0.000 1.000
#> SRR1354053     2  0.0000      0.982 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.2973    0.65519 0.856 0.144 0.000 0.000
#> SRR1349562     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1353376     4  0.1867    0.95188 0.000 0.072 0.000 0.928
#> SRR1499040     1  0.4008    0.79122 0.756 0.244 0.000 0.000
#> SRR1322312     1  0.4008    0.79122 0.756 0.244 0.000 0.000
#> SRR1324412     1  0.0707    0.77090 0.980 0.020 0.000 0.000
#> SRR1100991     1  0.1610    0.75186 0.952 0.032 0.016 0.000
#> SRR1349479     4  0.1716    0.95407 0.000 0.064 0.000 0.936
#> SRR1431248     2  0.7219    0.55399 0.148 0.488 0.364 0.000
#> SRR1405054     2  0.7688    0.63065 0.260 0.456 0.284 0.000
#> SRR1312266     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1409790     1  0.2722    0.71499 0.904 0.032 0.064 0.000
#> SRR1352507     2  0.7705    0.60946 0.244 0.444 0.312 0.000
#> SRR1383763     1  0.4008    0.79122 0.756 0.244 0.000 0.000
#> SRR1468314     4  0.1557    0.95493 0.000 0.056 0.000 0.944
#> SRR1473674     3  0.3873    0.47421 0.000 0.228 0.772 0.000
#> SRR1390499     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR821043      4  0.0000    0.95141 0.000 0.000 0.000 1.000
#> SRR1455653     4  0.0000    0.95141 0.000 0.000 0.000 1.000
#> SRR1335236     3  0.2704    0.54000 0.000 0.124 0.876 0.000
#> SRR1095383     4  0.1557    0.95493 0.000 0.056 0.000 0.944
#> SRR1479489     1  0.2469    0.78653 0.892 0.108 0.000 0.000
#> SRR1310433     4  0.1716    0.95379 0.000 0.064 0.000 0.936
#> SRR1073435     2  0.5460    0.26222 0.000 0.632 0.340 0.028
#> SRR659649      3  0.0336    0.56824 0.000 0.008 0.992 0.000
#> SRR1395999     1  0.3444    0.79181 0.816 0.184 0.000 0.000
#> SRR1105248     2  0.5821    0.27920 0.000 0.592 0.368 0.040
#> SRR1338257     1  0.1022    0.75944 0.968 0.032 0.000 0.000
#> SRR1499395     3  0.5168    0.41798 0.248 0.040 0.712 0.000
#> SRR1350002     3  0.2814    0.53649 0.000 0.132 0.868 0.000
#> SRR1489757     1  0.4720    0.48486 0.768 0.044 0.188 0.000
#> SRR1414637     2  0.7416    0.62160 0.244 0.516 0.240 0.000
#> SRR1478113     4  0.2345    0.92329 0.000 0.100 0.000 0.900
#> SRR1322477     3  0.5294   -0.35782 0.008 0.484 0.508 0.000
#> SRR1478789     3  0.5466    0.47585 0.220 0.068 0.712 0.000
#> SRR1414185     3  0.1389    0.54225 0.000 0.048 0.952 0.000
#> SRR1069141     3  0.3873    0.47421 0.000 0.228 0.772 0.000
#> SRR1376852     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1323491     1  0.2973    0.65519 0.856 0.144 0.000 0.000
#> SRR1338103     1  0.1474    0.74921 0.948 0.052 0.000 0.000
#> SRR1472012     1  0.0921    0.75959 0.972 0.028 0.000 0.000
#> SRR1340325     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1087321     3  0.0188    0.57032 0.000 0.004 0.996 0.000
#> SRR1488790     1  0.2973    0.65519 0.856 0.144 0.000 0.000
#> SRR1334866     3  0.7732   -0.50686 0.228 0.384 0.388 0.000
#> SRR1089446     3  0.5000   -0.30921 0.000 0.500 0.500 0.000
#> SRR1344445     1  0.3421    0.67544 0.868 0.044 0.088 0.000
#> SRR1412969     3  0.0469    0.56677 0.000 0.012 0.988 0.000
#> SRR1071668     3  0.4746   -0.13380 0.000 0.368 0.632 0.000
#> SRR1075804     1  0.2921    0.66050 0.860 0.140 0.000 0.000
#> SRR1383283     4  0.3486    0.89737 0.000 0.188 0.000 0.812
#> SRR1350239     2  0.5212    0.33442 0.000 0.572 0.420 0.008
#> SRR1353878     1  0.3975    0.79175 0.760 0.240 0.000 0.000
#> SRR1375721     1  0.0336    0.76742 0.992 0.008 0.000 0.000
#> SRR1083983     1  0.1302    0.75131 0.956 0.044 0.000 0.000
#> SRR1090095     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1414792     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1075102     4  0.0817    0.94612 0.000 0.024 0.000 0.976
#> SRR1098737     1  0.4817   -0.00166 0.612 0.388 0.000 0.000
#> SRR1349409     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1413008     2  0.5212    0.33442 0.000 0.572 0.420 0.008
#> SRR1407179     1  0.2892    0.70462 0.896 0.036 0.068 0.000
#> SRR1095913     3  0.4420    0.45147 0.240 0.012 0.748 0.000
#> SRR1403544     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1490546     1  0.6506   -0.48634 0.468 0.460 0.072 0.000
#> SRR807971      2  0.7705    0.60946 0.244 0.444 0.312 0.000
#> SRR1436228     3  0.5070   -0.18987 0.004 0.416 0.580 0.000
#> SRR1445218     4  0.2921    0.92761 0.000 0.140 0.000 0.860
#> SRR1485438     3  0.6192    0.43884 0.244 0.104 0.652 0.000
#> SRR1358143     1  0.4008    0.79122 0.756 0.244 0.000 0.000
#> SRR1328760     1  0.1302    0.75131 0.956 0.044 0.000 0.000
#> SRR1380806     1  0.4008    0.79122 0.756 0.244 0.000 0.000
#> SRR1379426     3  0.5343    0.41063 0.240 0.052 0.708 0.000
#> SRR1087007     3  0.0469    0.56677 0.000 0.012 0.988 0.000
#> SRR1086256     3  0.4985   -0.19653 0.000 0.468 0.532 0.000
#> SRR1346734     4  0.0000    0.95141 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1082151     3  0.6587    0.39855 0.252 0.132 0.616 0.000
#> SRR1349320     4  0.1557    0.94341 0.000 0.056 0.000 0.944
#> SRR1317554     4  0.0000    0.95141 0.000 0.000 0.000 1.000
#> SRR1076022     4  0.2921    0.92761 0.000 0.140 0.000 0.860
#> SRR1339573     1  0.3144    0.73726 0.884 0.044 0.072 0.000
#> SRR1455878     1  0.1474    0.74921 0.948 0.052 0.000 0.000
#> SRR1446203     3  0.0000    0.57014 0.000 0.000 1.000 0.000
#> SRR1387397     1  0.2805    0.69164 0.888 0.100 0.012 0.000
#> SRR1402590     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1317532     2  0.7578    0.63579 0.236 0.480 0.284 0.000
#> SRR1331488     2  0.7058    0.53552 0.136 0.520 0.344 0.000
#> SRR1499675     2  0.7636    0.62972 0.248 0.468 0.284 0.000
#> SRR1440467     3  0.4328    0.42072 0.000 0.244 0.748 0.008
#> SRR807995      3  0.6301    0.42510 0.260 0.104 0.636 0.000
#> SRR1476485     4  0.0000    0.95141 0.000 0.000 0.000 1.000
#> SRR1388214     2  0.7594    0.64064 0.264 0.480 0.256 0.000
#> SRR1456051     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1473275     1  0.2675    0.75654 0.908 0.044 0.048 0.000
#> SRR1444083     1  0.1118    0.75554 0.964 0.036 0.000 0.000
#> SRR1313807     4  0.3486    0.89737 0.000 0.188 0.000 0.812
#> SRR1470751     3  0.7211    0.27804 0.248 0.204 0.548 0.000
#> SRR1403434     3  0.4713    0.26575 0.000 0.360 0.640 0.000
#> SRR1390540     2  0.6924    0.48984 0.428 0.464 0.108 0.000
#> SRR1093861     3  0.7176    0.28951 0.000 0.252 0.552 0.196
#> SRR1325290     1  0.1302    0.75131 0.956 0.044 0.000 0.000
#> SRR1070689     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1384049     1  0.4008    0.79122 0.756 0.244 0.000 0.000
#> SRR1081184     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1324295     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1365313     3  0.1209    0.56649 0.004 0.032 0.964 0.000
#> SRR1321877     3  0.2773    0.54368 0.116 0.004 0.880 0.000
#> SRR815711      3  0.4936   -0.14863 0.004 0.372 0.624 0.000
#> SRR1433476     4  0.1557    0.95493 0.000 0.056 0.000 0.944
#> SRR1101883     2  0.7705    0.60946 0.244 0.444 0.312 0.000
#> SRR1433729     2  0.4999   -0.00487 0.000 0.508 0.492 0.000
#> SRR1341877     2  0.7631    0.60964 0.320 0.456 0.224 0.000
#> SRR1090556     2  0.7594    0.63917 0.256 0.480 0.264 0.000
#> SRR1357389     3  0.5106    0.42235 0.240 0.040 0.720 0.000
#> SRR1404227     3  0.5021    0.43094 0.240 0.036 0.724 0.000
#> SRR1376830     1  0.4008    0.79203 0.756 0.244 0.000 0.000
#> SRR1500661     1  0.1389    0.75147 0.952 0.048 0.000 0.000
#> SRR1080294     4  0.1557    0.95493 0.000 0.056 0.000 0.944
#> SRR1336314     4  0.0921    0.94640 0.000 0.028 0.000 0.972
#> SRR1102152     1  0.3439    0.66018 0.868 0.048 0.084 0.000
#> SRR1345244     3  0.0000    0.57014 0.000 0.000 1.000 0.000
#> SRR1478637     1  0.2021    0.76763 0.936 0.040 0.024 0.000
#> SRR1443776     3  0.3751    0.49528 0.196 0.004 0.800 0.000
#> SRR1120939     3  0.2271    0.55819 0.076 0.008 0.916 0.000
#> SRR1080117     3  0.5188    0.41695 0.240 0.044 0.716 0.000
#> SRR1102899     4  0.2921    0.92761 0.000 0.140 0.000 0.860
#> SRR1091865     1  0.1302    0.75131 0.956 0.044 0.000 0.000
#> SRR1361072     2  0.7564    0.60370 0.328 0.464 0.208 0.000
#> SRR1487890     1  0.4008    0.79122 0.756 0.244 0.000 0.000
#> SRR1349456     3  0.0188    0.56938 0.000 0.004 0.996 0.000
#> SRR1389384     3  0.6506    0.41109 0.240 0.132 0.628 0.000
#> SRR1316096     4  0.1716    0.95379 0.000 0.064 0.000 0.936
#> SRR1408512     2  0.7231    0.53211 0.392 0.464 0.144 0.000
#> SRR1447547     2  0.4933    0.31728 0.000 0.568 0.432 0.000
#> SRR1354053     4  0.0000    0.95141 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      5  0.4546   -0.14350 0.460 0.000 0.008 0.000 0.532
#> SRR1349562     1  0.0000    0.76169 1.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.4183    0.80185 0.000 0.136 0.000 0.780 0.084
#> SRR1499040     1  0.1197    0.75103 0.952 0.048 0.000 0.000 0.000
#> SRR1322312     1  0.1197    0.75103 0.952 0.048 0.000 0.000 0.000
#> SRR1324412     1  0.5941    0.58885 0.660 0.032 0.128 0.000 0.180
#> SRR1100991     1  0.7132    0.37880 0.484 0.032 0.248 0.000 0.236
#> SRR1349479     4  0.0992    0.84781 0.000 0.024 0.000 0.968 0.008
#> SRR1431248     5  0.4323    0.47789 0.004 0.044 0.200 0.000 0.752
#> SRR1405054     5  0.3660    0.51568 0.016 0.008 0.176 0.000 0.800
#> SRR1312266     1  0.1908    0.73586 0.908 0.000 0.000 0.000 0.092
#> SRR1409790     3  0.7258    0.11048 0.284 0.032 0.448 0.000 0.236
#> SRR1352507     5  0.4589   -0.00323 0.004 0.004 0.472 0.000 0.520
#> SRR1383763     1  0.1197    0.75103 0.952 0.048 0.000 0.000 0.000
#> SRR1468314     4  0.0290    0.85068 0.000 0.008 0.000 0.992 0.000
#> SRR1473674     2  0.4283    0.53347 0.000 0.692 0.292 0.004 0.012
#> SRR1390499     1  0.0000    0.76169 1.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.2519    0.84478 0.000 0.100 0.000 0.884 0.016
#> SRR1455653     4  0.2519    0.84478 0.000 0.100 0.000 0.884 0.016
#> SRR1335236     2  0.4731    0.31807 0.000 0.528 0.456 0.000 0.016
#> SRR1095383     4  0.0162    0.85107 0.000 0.004 0.000 0.996 0.000
#> SRR1479489     1  0.5456    0.62773 0.708 0.032 0.100 0.000 0.160
#> SRR1310433     4  0.0324    0.85120 0.000 0.004 0.000 0.992 0.004
#> SRR1073435     2  0.6633    0.22407 0.000 0.464 0.084 0.044 0.408
#> SRR659649      3  0.3098    0.44088 0.000 0.148 0.836 0.000 0.016
#> SRR1395999     1  0.2536    0.71374 0.868 0.000 0.004 0.000 0.128
#> SRR1105248     5  0.6428   -0.22799 0.000 0.408 0.096 0.024 0.472
#> SRR1338257     1  0.4682    0.36957 0.564 0.000 0.016 0.000 0.420
#> SRR1499395     3  0.2674    0.55182 0.000 0.004 0.856 0.000 0.140
#> SRR1350002     2  0.4731    0.31483 0.000 0.528 0.456 0.000 0.016
#> SRR1489757     3  0.6870    0.22520 0.172 0.032 0.524 0.000 0.272
#> SRR1414637     5  0.3727    0.50991 0.004 0.068 0.104 0.000 0.824
#> SRR1478113     4  0.6482    0.43877 0.000 0.332 0.000 0.468 0.200
#> SRR1322477     5  0.5000    0.40448 0.004 0.068 0.240 0.000 0.688
#> SRR1478789     3  0.2790    0.52207 0.000 0.052 0.880 0.000 0.068
#> SRR1414185     3  0.3319    0.43867 0.000 0.160 0.820 0.000 0.020
#> SRR1069141     2  0.4037    0.53914 0.000 0.704 0.288 0.004 0.004
#> SRR1376852     1  0.0290    0.76266 0.992 0.000 0.000 0.000 0.008
#> SRR1323491     5  0.4546   -0.14350 0.460 0.000 0.008 0.000 0.532
#> SRR1338103     1  0.5297    0.20691 0.476 0.000 0.048 0.000 0.476
#> SRR1472012     1  0.6019    0.37123 0.520 0.012 0.084 0.000 0.384
#> SRR1340325     1  0.1197    0.75701 0.952 0.000 0.000 0.000 0.048
#> SRR1087321     3  0.2011    0.49591 0.000 0.088 0.908 0.000 0.004
#> SRR1488790     5  0.4546   -0.14350 0.460 0.000 0.008 0.000 0.532
#> SRR1334866     3  0.5360    0.21318 0.000 0.060 0.556 0.000 0.384
#> SRR1089446     5  0.6718   -0.19174 0.000 0.328 0.260 0.000 0.412
#> SRR1344445     3  0.7191    0.16061 0.232 0.032 0.468 0.000 0.268
#> SRR1412969     3  0.3061    0.45313 0.000 0.136 0.844 0.000 0.020
#> SRR1071668     3  0.5210    0.30389 0.000 0.132 0.684 0.000 0.184
#> SRR1075804     5  0.4449   -0.19233 0.484 0.000 0.004 0.000 0.512
#> SRR1383283     4  0.4736    0.56091 0.000 0.312 0.004 0.656 0.028
#> SRR1350239     5  0.5979   -0.10196 0.000 0.360 0.120 0.000 0.520
#> SRR1353878     1  0.1012    0.76296 0.968 0.012 0.000 0.000 0.020
#> SRR1375721     1  0.5653    0.53587 0.632 0.012 0.088 0.000 0.268
#> SRR1083983     1  0.6164    0.22373 0.448 0.012 0.092 0.000 0.448
#> SRR1090095     1  0.0510    0.76116 0.984 0.000 0.000 0.000 0.016
#> SRR1414792     1  0.0404    0.76195 0.988 0.000 0.000 0.000 0.012
#> SRR1075102     4  0.4035    0.80887 0.000 0.156 0.000 0.784 0.060
#> SRR1098737     5  0.3585    0.42080 0.220 0.004 0.004 0.000 0.772
#> SRR1349409     1  0.0000    0.76169 1.000 0.000 0.000 0.000 0.000
#> SRR1413008     5  0.5979   -0.10196 0.000 0.360 0.120 0.000 0.520
#> SRR1407179     3  0.7299    0.09660 0.288 0.032 0.436 0.000 0.244
#> SRR1095913     3  0.2674    0.55093 0.000 0.012 0.868 0.000 0.120
#> SRR1403544     1  0.0000    0.76169 1.000 0.000 0.000 0.000 0.000
#> SRR1490546     5  0.3717    0.53054 0.144 0.012 0.028 0.000 0.816
#> SRR807971      3  0.4449    0.04739 0.000 0.004 0.512 0.000 0.484
#> SRR1436228     5  0.5953    0.15937 0.000 0.124 0.336 0.000 0.540
#> SRR1445218     4  0.2773    0.77183 0.000 0.164 0.000 0.836 0.000
#> SRR1485438     3  0.5843    0.21206 0.000 0.304 0.572 0.000 0.124
#> SRR1358143     1  0.1197    0.75103 0.952 0.048 0.000 0.000 0.000
#> SRR1328760     1  0.6069    0.30017 0.484 0.012 0.084 0.000 0.420
#> SRR1380806     1  0.0963    0.75593 0.964 0.036 0.000 0.000 0.000
#> SRR1379426     3  0.2605    0.55081 0.000 0.000 0.852 0.000 0.148
#> SRR1087007     3  0.2921    0.46249 0.000 0.124 0.856 0.000 0.020
#> SRR1086256     5  0.6667   -0.22435 0.000 0.364 0.232 0.000 0.404
#> SRR1346734     4  0.2519    0.84478 0.000 0.100 0.000 0.884 0.016
#> SRR1414515     1  0.1205    0.75960 0.956 0.004 0.000 0.000 0.040
#> SRR1082151     3  0.6172    0.24462 0.000 0.280 0.544 0.000 0.176
#> SRR1349320     4  0.4647    0.78822 0.000 0.172 0.000 0.736 0.092
#> SRR1317554     4  0.2519    0.84478 0.000 0.100 0.000 0.884 0.016
#> SRR1076022     4  0.2773    0.77183 0.000 0.164 0.000 0.836 0.000
#> SRR1339573     3  0.7110    0.08990 0.328 0.036 0.464 0.000 0.172
#> SRR1455878     5  0.5353   -0.24883 0.472 0.000 0.052 0.000 0.476
#> SRR1446203     3  0.2763    0.43803 0.000 0.148 0.848 0.000 0.004
#> SRR1387397     5  0.6192    0.03248 0.348 0.012 0.108 0.000 0.532
#> SRR1402590     1  0.0000    0.76169 1.000 0.000 0.000 0.000 0.000
#> SRR1317532     5  0.4196    0.50648 0.012 0.036 0.176 0.000 0.776
#> SRR1331488     5  0.4343    0.36313 0.000 0.136 0.096 0.000 0.768
#> SRR1499675     5  0.3167    0.51648 0.008 0.008 0.148 0.000 0.836
#> SRR1440467     2  0.7185    0.48325 0.000 0.488 0.324 0.112 0.076
#> SRR807995      3  0.6100    0.21431 0.004 0.304 0.556 0.000 0.136
#> SRR1476485     4  0.2519    0.84478 0.000 0.100 0.000 0.884 0.016
#> SRR1388214     5  0.3883    0.52275 0.012 0.032 0.152 0.000 0.804
#> SRR1456051     1  0.1341    0.75496 0.944 0.000 0.000 0.000 0.056
#> SRR1473275     1  0.7155    0.16903 0.416 0.032 0.372 0.000 0.180
#> SRR1444083     1  0.6064    0.36384 0.516 0.012 0.088 0.000 0.384
#> SRR1313807     4  0.4736    0.56091 0.000 0.312 0.004 0.656 0.028
#> SRR1470751     5  0.6909    0.00691 0.008 0.268 0.288 0.000 0.436
#> SRR1403434     2  0.7354    0.47042 0.000 0.476 0.320 0.100 0.104
#> SRR1390540     5  0.3730    0.53750 0.112 0.012 0.048 0.000 0.828
#> SRR1093861     2  0.5183    0.49698 0.000 0.692 0.104 0.200 0.004
#> SRR1325290     5  0.5904   -0.24963 0.452 0.012 0.068 0.000 0.468
#> SRR1070689     1  0.0162    0.76054 0.996 0.000 0.000 0.000 0.004
#> SRR1384049     1  0.1197    0.75103 0.952 0.048 0.000 0.000 0.000
#> SRR1081184     1  0.0000    0.76169 1.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000    0.76169 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     3  0.3994    0.39841 0.000 0.140 0.792 0.000 0.068
#> SRR1321877     3  0.2046    0.51607 0.000 0.068 0.916 0.000 0.016
#> SRR815711      3  0.5516    0.24820 0.000 0.128 0.640 0.000 0.232
#> SRR1433476     4  0.0992    0.84781 0.000 0.024 0.000 0.968 0.008
#> SRR1101883     5  0.4415    0.08567 0.000 0.004 0.444 0.000 0.552
#> SRR1433729     2  0.7175    0.45806 0.000 0.528 0.112 0.092 0.268
#> SRR1341877     5  0.3051    0.52398 0.028 0.000 0.120 0.000 0.852
#> SRR1090556     5  0.3443    0.51671 0.008 0.012 0.164 0.000 0.816
#> SRR1357389     3  0.1732    0.55342 0.000 0.000 0.920 0.000 0.080
#> SRR1404227     3  0.2891    0.53795 0.000 0.000 0.824 0.000 0.176
#> SRR1376830     1  0.0290    0.76266 0.992 0.000 0.000 0.000 0.008
#> SRR1500661     1  0.5296    0.23213 0.484 0.000 0.048 0.000 0.468
#> SRR1080294     4  0.0324    0.85120 0.000 0.004 0.000 0.992 0.004
#> SRR1336314     4  0.4170    0.80281 0.000 0.140 0.000 0.780 0.080
#> SRR1102152     1  0.7442    0.16846 0.376 0.032 0.280 0.000 0.312
#> SRR1345244     3  0.2583    0.45672 0.000 0.132 0.864 0.000 0.004
#> SRR1478637     1  0.6540    0.53770 0.600 0.040 0.180 0.000 0.180
#> SRR1443776     3  0.1626    0.52587 0.000 0.044 0.940 0.000 0.016
#> SRR1120939     3  0.1764    0.51153 0.000 0.064 0.928 0.000 0.008
#> SRR1080117     3  0.2516    0.55268 0.000 0.000 0.860 0.000 0.140
#> SRR1102899     4  0.2773    0.77183 0.000 0.164 0.000 0.836 0.000
#> SRR1091865     1  0.6476    0.31127 0.472 0.012 0.132 0.000 0.384
#> SRR1361072     5  0.3940    0.53739 0.044 0.012 0.136 0.000 0.808
#> SRR1487890     1  0.0880    0.75726 0.968 0.032 0.000 0.000 0.000
#> SRR1349456     3  0.2674    0.44815 0.000 0.140 0.856 0.000 0.004
#> SRR1389384     3  0.6166    0.25133 0.000 0.272 0.548 0.000 0.180
#> SRR1316096     4  0.0324    0.85120 0.000 0.004 0.000 0.992 0.004
#> SRR1408512     5  0.3421    0.53091 0.080 0.000 0.080 0.000 0.840
#> SRR1447547     5  0.5996   -0.09895 0.000 0.352 0.124 0.000 0.524
#> SRR1354053     4  0.2519    0.84478 0.000 0.100 0.000 0.884 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      5  0.4385     0.6112 0.236 0.052 0.004 0.000 0.704 0.004
#> SRR1349562     1  0.0000     0.8545 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.4554     0.5874 0.000 0.024 0.000 0.568 0.008 0.400
#> SRR1499040     1  0.2101     0.8208 0.912 0.028 0.008 0.000 0.000 0.052
#> SRR1322312     1  0.1780     0.8266 0.924 0.028 0.000 0.000 0.000 0.048
#> SRR1324412     1  0.7405     0.2261 0.436 0.108 0.280 0.000 0.156 0.020
#> SRR1100991     3  0.7027     0.3490 0.152 0.108 0.528 0.000 0.192 0.020
#> SRR1349479     4  0.2163     0.7397 0.000 0.016 0.000 0.892 0.000 0.092
#> SRR1431248     5  0.3646     0.4383 0.000 0.012 0.068 0.000 0.808 0.112
#> SRR1405054     5  0.2663     0.5297 0.000 0.012 0.084 0.000 0.876 0.028
#> SRR1312266     1  0.3254     0.7648 0.816 0.048 0.000 0.000 0.136 0.000
#> SRR1409790     3  0.6135     0.4480 0.068 0.108 0.628 0.000 0.176 0.020
#> SRR1352507     3  0.4528     0.4414 0.000 0.016 0.632 0.000 0.328 0.024
#> SRR1383763     1  0.1780     0.8266 0.924 0.028 0.000 0.000 0.000 0.048
#> SRR1468314     4  0.0820     0.7672 0.000 0.012 0.000 0.972 0.000 0.016
#> SRR1473674     2  0.4267     0.5492 0.000 0.732 0.116 0.000 0.000 0.152
#> SRR1390499     1  0.0000     0.8545 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR821043      4  0.3703     0.7570 0.000 0.060 0.000 0.800 0.012 0.128
#> SRR1455653     4  0.3703     0.7570 0.000 0.060 0.000 0.800 0.012 0.128
#> SRR1335236     2  0.4212     0.5959 0.000 0.688 0.264 0.000 0.000 0.048
#> SRR1095383     4  0.0260     0.7708 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1479489     1  0.6726     0.4461 0.572 0.108 0.132 0.000 0.168 0.020
#> SRR1310433     4  0.0363     0.7713 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR1073435     6  0.5503     0.6166 0.000 0.108 0.012 0.020 0.216 0.644
#> SRR659649      3  0.4275     0.4362 0.000 0.192 0.728 0.000 0.004 0.076
#> SRR1395999     1  0.4033     0.6903 0.760 0.080 0.000 0.000 0.156 0.004
#> SRR1105248     6  0.4103     0.6285 0.000 0.016 0.016 0.004 0.244 0.720
#> SRR1338257     5  0.5738     0.3532 0.376 0.080 0.020 0.000 0.516 0.008
#> SRR1499395     3  0.1867     0.5534 0.000 0.020 0.916 0.000 0.064 0.000
#> SRR1350002     2  0.3641     0.6249 0.000 0.748 0.224 0.000 0.000 0.028
#> SRR1489757     3  0.5808     0.4652 0.048 0.108 0.656 0.000 0.168 0.020
#> SRR1414637     5  0.3564     0.4584 0.000 0.076 0.016 0.000 0.820 0.088
#> SRR1478113     6  0.5086    -0.0536 0.000 0.032 0.000 0.272 0.056 0.640
#> SRR1322477     5  0.4404     0.3435 0.000 0.024 0.088 0.000 0.752 0.136
#> SRR1478789     3  0.3183     0.4900 0.000 0.128 0.828 0.000 0.004 0.040
#> SRR1414185     3  0.4551     0.4544 0.000 0.160 0.724 0.000 0.012 0.104
#> SRR1069141     2  0.4624     0.5137 0.000 0.688 0.120 0.000 0.000 0.192
#> SRR1376852     1  0.1657     0.8400 0.928 0.016 0.000 0.000 0.056 0.000
#> SRR1323491     5  0.4385     0.6112 0.236 0.052 0.004 0.000 0.704 0.004
#> SRR1338103     5  0.5243     0.5778 0.252 0.068 0.024 0.000 0.648 0.008
#> SRR1472012     5  0.6323     0.5090 0.268 0.092 0.068 0.000 0.560 0.012
#> SRR1340325     1  0.3393     0.7634 0.820 0.068 0.000 0.000 0.108 0.004
#> SRR1087321     3  0.3381     0.4733 0.000 0.156 0.800 0.000 0.000 0.044
#> SRR1488790     5  0.4410     0.6077 0.240 0.052 0.004 0.000 0.700 0.004
#> SRR1334866     3  0.6094     0.2579 0.000 0.064 0.516 0.000 0.336 0.084
#> SRR1089446     6  0.6891     0.5587 0.000 0.112 0.124 0.000 0.340 0.424
#> SRR1344445     3  0.6085     0.4512 0.064 0.108 0.632 0.000 0.176 0.020
#> SRR1412969     3  0.4341     0.4559 0.000 0.168 0.736 0.000 0.008 0.088
#> SRR1071668     3  0.5360     0.4596 0.000 0.084 0.688 0.000 0.116 0.112
#> SRR1075804     5  0.4352     0.5683 0.280 0.052 0.000 0.000 0.668 0.000
#> SRR1383283     4  0.4957     0.2953 0.000 0.072 0.000 0.544 0.000 0.384
#> SRR1350239     6  0.4677     0.6332 0.000 0.024 0.028 0.000 0.308 0.640
#> SRR1353878     1  0.2773     0.8083 0.868 0.064 0.000 0.000 0.064 0.004
#> SRR1375721     1  0.6492    -0.2028 0.420 0.092 0.064 0.000 0.416 0.008
#> SRR1083983     5  0.6336     0.5539 0.216 0.096 0.088 0.000 0.588 0.012
#> SRR1090095     1  0.1625     0.8413 0.928 0.012 0.000 0.000 0.060 0.000
#> SRR1414792     1  0.1563     0.8424 0.932 0.012 0.000 0.000 0.056 0.000
#> SRR1075102     4  0.5004     0.6477 0.000 0.052 0.000 0.612 0.020 0.316
#> SRR1098737     5  0.2308     0.6138 0.076 0.012 0.000 0.000 0.896 0.016
#> SRR1349409     1  0.0000     0.8545 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1413008     6  0.4677     0.6332 0.000 0.024 0.028 0.000 0.308 0.640
#> SRR1407179     3  0.6313     0.4366 0.076 0.108 0.608 0.000 0.188 0.020
#> SRR1095913     3  0.1995     0.5430 0.000 0.052 0.912 0.000 0.036 0.000
#> SRR1403544     1  0.0000     0.8545 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     5  0.1716     0.5919 0.036 0.004 0.000 0.000 0.932 0.028
#> SRR807971      3  0.4397     0.4509 0.000 0.012 0.648 0.000 0.316 0.024
#> SRR1436228     5  0.5894     0.0793 0.000 0.092 0.140 0.000 0.632 0.136
#> SRR1445218     4  0.3678     0.6668 0.000 0.084 0.000 0.788 0.000 0.128
#> SRR1485438     2  0.4571     0.6263 0.000 0.636 0.312 0.000 0.048 0.004
#> SRR1358143     1  0.1780     0.8266 0.924 0.028 0.000 0.000 0.000 0.048
#> SRR1328760     5  0.6603     0.4854 0.264 0.088 0.100 0.000 0.536 0.012
#> SRR1380806     1  0.0806     0.8471 0.972 0.020 0.000 0.000 0.000 0.008
#> SRR1379426     3  0.1682     0.5567 0.000 0.020 0.928 0.000 0.052 0.000
#> SRR1087007     3  0.4069     0.4754 0.000 0.148 0.764 0.000 0.008 0.080
#> SRR1086256     6  0.6882     0.5517 0.000 0.136 0.100 0.000 0.344 0.420
#> SRR1346734     4  0.3703     0.7570 0.000 0.060 0.000 0.800 0.012 0.128
#> SRR1414515     1  0.3285     0.7629 0.820 0.064 0.000 0.000 0.116 0.000
#> SRR1082151     2  0.4886     0.6181 0.000 0.612 0.312 0.000 0.072 0.004
#> SRR1349320     4  0.4709     0.5856 0.000 0.032 0.000 0.548 0.008 0.412
#> SRR1317554     4  0.3703     0.7570 0.000 0.060 0.000 0.800 0.012 0.128
#> SRR1076022     4  0.3686     0.6657 0.000 0.088 0.000 0.788 0.000 0.124
#> SRR1339573     3  0.6417     0.4159 0.136 0.112 0.612 0.000 0.120 0.020
#> SRR1455878     5  0.5428     0.5687 0.256 0.068 0.028 0.000 0.636 0.012
#> SRR1446203     3  0.4275     0.4362 0.000 0.192 0.728 0.000 0.004 0.076
#> SRR1387397     5  0.5977     0.6044 0.136 0.096 0.108 0.000 0.648 0.012
#> SRR1402590     1  0.0000     0.8545 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     5  0.3634     0.4424 0.000 0.012 0.064 0.000 0.808 0.116
#> SRR1331488     5  0.4508     0.0830 0.000 0.012 0.040 0.000 0.668 0.280
#> SRR1499675     5  0.2414     0.5494 0.000 0.012 0.056 0.000 0.896 0.036
#> SRR1440467     6  0.7496     0.2242 0.000 0.224 0.164 0.164 0.012 0.436
#> SRR807995      2  0.4612     0.6271 0.000 0.636 0.308 0.000 0.052 0.004
#> SRR1476485     4  0.3703     0.7570 0.000 0.060 0.000 0.800 0.012 0.128
#> SRR1388214     5  0.3308     0.4811 0.000 0.012 0.064 0.000 0.836 0.088
#> SRR1456051     1  0.3435     0.7495 0.804 0.060 0.000 0.000 0.136 0.000
#> SRR1473275     3  0.6758     0.3837 0.168 0.108 0.568 0.000 0.136 0.020
#> SRR1444083     5  0.6913     0.3557 0.320 0.092 0.112 0.000 0.464 0.012
#> SRR1313807     4  0.4949     0.3056 0.000 0.072 0.000 0.548 0.000 0.380
#> SRR1470751     2  0.5310     0.3575 0.000 0.544 0.088 0.000 0.360 0.008
#> SRR1403434     6  0.7404     0.2601 0.000 0.220 0.172 0.132 0.016 0.460
#> SRR1390540     5  0.1672     0.5863 0.016 0.004 0.012 0.000 0.940 0.028
#> SRR1093861     2  0.6122     0.1204 0.000 0.516 0.020 0.220 0.000 0.244
#> SRR1325290     5  0.6095     0.5673 0.220 0.088 0.072 0.000 0.608 0.012
#> SRR1070689     1  0.0632     0.8513 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1384049     1  0.1780     0.8266 0.924 0.028 0.000 0.000 0.000 0.048
#> SRR1081184     1  0.0000     0.8545 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8545 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     3  0.5679     0.3634 0.000 0.180 0.640 0.000 0.060 0.120
#> SRR1321877     3  0.3023     0.4940 0.000 0.120 0.836 0.000 0.000 0.044
#> SRR815711      3  0.5735     0.3889 0.000 0.068 0.632 0.000 0.196 0.104
#> SRR1433476     4  0.1838     0.7527 0.000 0.016 0.000 0.916 0.000 0.068
#> SRR1101883     3  0.4570     0.3949 0.000 0.012 0.596 0.000 0.368 0.024
#> SRR1433729     6  0.6423     0.4859 0.000 0.176 0.028 0.108 0.080 0.608
#> SRR1341877     5  0.1151     0.5960 0.000 0.012 0.032 0.000 0.956 0.000
#> SRR1090556     5  0.2860     0.5146 0.000 0.012 0.068 0.000 0.868 0.052
#> SRR1357389     3  0.1194     0.5588 0.000 0.004 0.956 0.000 0.032 0.008
#> SRR1404227     3  0.2988     0.5340 0.000 0.060 0.852 0.000 0.084 0.004
#> SRR1376830     1  0.1500     0.8430 0.936 0.012 0.000 0.000 0.052 0.000
#> SRR1500661     5  0.5427     0.5399 0.280 0.072 0.024 0.000 0.616 0.008
#> SRR1080294     4  0.0291     0.7709 0.000 0.004 0.000 0.992 0.000 0.004
#> SRR1336314     4  0.4658     0.6383 0.000 0.040 0.000 0.612 0.008 0.340
#> SRR1102152     3  0.7610     0.0336 0.196 0.112 0.400 0.000 0.272 0.020
#> SRR1345244     3  0.4163     0.4444 0.000 0.184 0.740 0.000 0.004 0.072
#> SRR1478637     3  0.7788    -0.0164 0.336 0.124 0.356 0.000 0.148 0.036
#> SRR1443776     3  0.2728     0.5079 0.000 0.100 0.860 0.000 0.000 0.040
#> SRR1120939     3  0.2365     0.5191 0.000 0.072 0.888 0.000 0.000 0.040
#> SRR1080117     3  0.1616     0.5571 0.000 0.020 0.932 0.000 0.048 0.000
#> SRR1102899     4  0.3686     0.6657 0.000 0.088 0.000 0.788 0.000 0.124
#> SRR1091865     5  0.6916     0.4600 0.252 0.108 0.120 0.000 0.508 0.012
#> SRR1361072     5  0.2534     0.5538 0.008 0.012 0.052 0.000 0.896 0.032
#> SRR1487890     1  0.0520     0.8514 0.984 0.008 0.000 0.000 0.000 0.008
#> SRR1349456     3  0.4275     0.4333 0.000 0.192 0.728 0.000 0.004 0.076
#> SRR1389384     2  0.5135     0.6029 0.000 0.592 0.308 0.000 0.096 0.004
#> SRR1316096     4  0.0363     0.7713 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR1408512     5  0.0922     0.5940 0.004 0.004 0.024 0.000 0.968 0.000
#> SRR1447547     6  0.5245     0.6288 0.000 0.044 0.036 0.000 0.340 0.580
#> SRR1354053     4  0.3703     0.7570 0.000 0.060 0.000 0.800 0.012 0.128

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.990       0.995         0.4814 0.521   0.521
#> 3 3 0.913           0.911       0.961         0.3216 0.777   0.593
#> 4 4 0.771           0.810       0.896         0.1063 0.942   0.838
#> 5 5 0.843           0.849       0.902         0.0811 0.917   0.732
#> 6 6 0.853           0.825       0.895         0.0373 0.957   0.823

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1   0.000      0.993 1.000 0.000
#> SRR1349562     1   0.000      0.993 1.000 0.000
#> SRR1353376     2   0.000      0.999 0.000 1.000
#> SRR1499040     1   0.000      0.993 1.000 0.000
#> SRR1322312     1   0.000      0.993 1.000 0.000
#> SRR1324412     1   0.000      0.993 1.000 0.000
#> SRR1100991     1   0.000      0.993 1.000 0.000
#> SRR1349479     2   0.000      0.999 0.000 1.000
#> SRR1431248     2   0.000      0.999 0.000 1.000
#> SRR1405054     1   0.000      0.993 1.000 0.000
#> SRR1312266     1   0.000      0.993 1.000 0.000
#> SRR1409790     1   0.000      0.993 1.000 0.000
#> SRR1352507     1   0.000      0.993 1.000 0.000
#> SRR1383763     1   0.000      0.993 1.000 0.000
#> SRR1468314     2   0.000      0.999 0.000 1.000
#> SRR1473674     2   0.000      0.999 0.000 1.000
#> SRR1390499     1   0.000      0.993 1.000 0.000
#> SRR821043      2   0.000      0.999 0.000 1.000
#> SRR1455653     2   0.000      0.999 0.000 1.000
#> SRR1335236     2   0.000      0.999 0.000 1.000
#> SRR1095383     2   0.000      0.999 0.000 1.000
#> SRR1479489     1   0.000      0.993 1.000 0.000
#> SRR1310433     2   0.000      0.999 0.000 1.000
#> SRR1073435     2   0.000      0.999 0.000 1.000
#> SRR659649      2   0.000      0.999 0.000 1.000
#> SRR1395999     1   0.000      0.993 1.000 0.000
#> SRR1105248     2   0.000      0.999 0.000 1.000
#> SRR1338257     1   0.000      0.993 1.000 0.000
#> SRR1499395     1   0.000      0.993 1.000 0.000
#> SRR1350002     2   0.000      0.999 0.000 1.000
#> SRR1489757     1   0.000      0.993 1.000 0.000
#> SRR1414637     1   0.000      0.993 1.000 0.000
#> SRR1478113     2   0.000      0.999 0.000 1.000
#> SRR1322477     2   0.000      0.999 0.000 1.000
#> SRR1478789     1   0.000      0.993 1.000 0.000
#> SRR1414185     2   0.000      0.999 0.000 1.000
#> SRR1069141     2   0.000      0.999 0.000 1.000
#> SRR1376852     1   0.000      0.993 1.000 0.000
#> SRR1323491     1   0.000      0.993 1.000 0.000
#> SRR1338103     1   0.000      0.993 1.000 0.000
#> SRR1472012     1   0.000      0.993 1.000 0.000
#> SRR1340325     1   0.000      0.993 1.000 0.000
#> SRR1087321     2   0.204      0.967 0.032 0.968
#> SRR1488790     1   0.000      0.993 1.000 0.000
#> SRR1334866     1   0.738      0.740 0.792 0.208
#> SRR1089446     2   0.000      0.999 0.000 1.000
#> SRR1344445     1   0.000      0.993 1.000 0.000
#> SRR1412969     2   0.000      0.999 0.000 1.000
#> SRR1071668     2   0.000      0.999 0.000 1.000
#> SRR1075804     1   0.000      0.993 1.000 0.000
#> SRR1383283     2   0.000      0.999 0.000 1.000
#> SRR1350239     2   0.000      0.999 0.000 1.000
#> SRR1353878     1   0.000      0.993 1.000 0.000
#> SRR1375721     1   0.000      0.993 1.000 0.000
#> SRR1083983     1   0.000      0.993 1.000 0.000
#> SRR1090095     1   0.000      0.993 1.000 0.000
#> SRR1414792     1   0.000      0.993 1.000 0.000
#> SRR1075102     2   0.000      0.999 0.000 1.000
#> SRR1098737     1   0.000      0.993 1.000 0.000
#> SRR1349409     1   0.000      0.993 1.000 0.000
#> SRR1413008     2   0.000      0.999 0.000 1.000
#> SRR1407179     1   0.000      0.993 1.000 0.000
#> SRR1095913     1   0.000      0.993 1.000 0.000
#> SRR1403544     1   0.000      0.993 1.000 0.000
#> SRR1490546     1   0.000      0.993 1.000 0.000
#> SRR807971      1   0.000      0.993 1.000 0.000
#> SRR1436228     2   0.000      0.999 0.000 1.000
#> SRR1445218     2   0.000      0.999 0.000 1.000
#> SRR1485438     1   0.000      0.993 1.000 0.000
#> SRR1358143     1   0.000      0.993 1.000 0.000
#> SRR1328760     1   0.000      0.993 1.000 0.000
#> SRR1380806     1   0.000      0.993 1.000 0.000
#> SRR1379426     1   0.000      0.993 1.000 0.000
#> SRR1087007     2   0.000      0.999 0.000 1.000
#> SRR1086256     2   0.000      0.999 0.000 1.000
#> SRR1346734     2   0.000      0.999 0.000 1.000
#> SRR1414515     1   0.000      0.993 1.000 0.000
#> SRR1082151     1   0.000      0.993 1.000 0.000
#> SRR1349320     2   0.000      0.999 0.000 1.000
#> SRR1317554     2   0.000      0.999 0.000 1.000
#> SRR1076022     2   0.000      0.999 0.000 1.000
#> SRR1339573     1   0.000      0.993 1.000 0.000
#> SRR1455878     1   0.000      0.993 1.000 0.000
#> SRR1446203     2   0.000      0.999 0.000 1.000
#> SRR1387397     1   0.000      0.993 1.000 0.000
#> SRR1402590     1   0.000      0.993 1.000 0.000
#> SRR1317532     1   0.795      0.688 0.760 0.240
#> SRR1331488     2   0.000      0.999 0.000 1.000
#> SRR1499675     1   0.000      0.993 1.000 0.000
#> SRR1440467     2   0.000      0.999 0.000 1.000
#> SRR807995      1   0.000      0.993 1.000 0.000
#> SRR1476485     2   0.000      0.999 0.000 1.000
#> SRR1388214     1   0.000      0.993 1.000 0.000
#> SRR1456051     1   0.000      0.993 1.000 0.000
#> SRR1473275     1   0.000      0.993 1.000 0.000
#> SRR1444083     1   0.000      0.993 1.000 0.000
#> SRR1313807     2   0.000      0.999 0.000 1.000
#> SRR1470751     1   0.000      0.993 1.000 0.000
#> SRR1403434     2   0.000      0.999 0.000 1.000
#> SRR1390540     1   0.000      0.993 1.000 0.000
#> SRR1093861     2   0.000      0.999 0.000 1.000
#> SRR1325290     1   0.000      0.993 1.000 0.000
#> SRR1070689     1   0.000      0.993 1.000 0.000
#> SRR1384049     1   0.000      0.993 1.000 0.000
#> SRR1081184     1   0.000      0.993 1.000 0.000
#> SRR1324295     1   0.000      0.993 1.000 0.000
#> SRR1365313     2   0.184      0.971 0.028 0.972
#> SRR1321877     1   0.204      0.962 0.968 0.032
#> SRR815711      2   0.000      0.999 0.000 1.000
#> SRR1433476     2   0.000      0.999 0.000 1.000
#> SRR1101883     1   0.000      0.993 1.000 0.000
#> SRR1433729     2   0.000      0.999 0.000 1.000
#> SRR1341877     1   0.000      0.993 1.000 0.000
#> SRR1090556     1   0.000      0.993 1.000 0.000
#> SRR1357389     1   0.000      0.993 1.000 0.000
#> SRR1404227     1   0.000      0.993 1.000 0.000
#> SRR1376830     1   0.000      0.993 1.000 0.000
#> SRR1500661     1   0.000      0.993 1.000 0.000
#> SRR1080294     2   0.000      0.999 0.000 1.000
#> SRR1336314     2   0.000      0.999 0.000 1.000
#> SRR1102152     1   0.000      0.993 1.000 0.000
#> SRR1345244     2   0.000      0.999 0.000 1.000
#> SRR1478637     1   0.000      0.993 1.000 0.000
#> SRR1443776     1   0.000      0.993 1.000 0.000
#> SRR1120939     1   0.494      0.878 0.892 0.108
#> SRR1080117     1   0.000      0.993 1.000 0.000
#> SRR1102899     2   0.000      0.999 0.000 1.000
#> SRR1091865     1   0.000      0.993 1.000 0.000
#> SRR1361072     1   0.000      0.993 1.000 0.000
#> SRR1487890     1   0.000      0.993 1.000 0.000
#> SRR1349456     2   0.000      0.999 0.000 1.000
#> SRR1389384     1   0.000      0.993 1.000 0.000
#> SRR1316096     2   0.000      0.999 0.000 1.000
#> SRR1408512     1   0.000      0.993 1.000 0.000
#> SRR1447547     2   0.000      0.999 0.000 1.000
#> SRR1354053     2   0.000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000      0.975 1.000 0.000 0.000
#> SRR1349562     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1499040     1  0.0592      0.963 0.988 0.000 0.012
#> SRR1322312     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1324412     1  0.0592      0.963 0.988 0.000 0.012
#> SRR1100991     1  0.4555      0.696 0.800 0.000 0.200
#> SRR1349479     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1431248     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1405054     1  0.0237      0.971 0.996 0.000 0.004
#> SRR1312266     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1409790     3  0.6079      0.509 0.388 0.000 0.612
#> SRR1352507     3  0.6079      0.509 0.388 0.000 0.612
#> SRR1383763     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1468314     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1473674     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1390499     1  0.0000      0.975 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.996 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1335236     3  0.1163      0.842 0.000 0.028 0.972
#> SRR1095383     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1310433     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1073435     2  0.0000      0.996 0.000 1.000 0.000
#> SRR659649      3  0.0000      0.862 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1105248     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1338257     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1499395     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1350002     2  0.4002      0.816 0.000 0.840 0.160
#> SRR1489757     3  0.6079      0.509 0.388 0.000 0.612
#> SRR1414637     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1478113     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1322477     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1478789     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1414185     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1069141     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1376852     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1323491     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1338103     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1472012     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1340325     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1488790     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1334866     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1089446     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1344445     3  0.6095      0.501 0.392 0.000 0.608
#> SRR1412969     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1071668     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1075804     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1383283     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1350239     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1353878     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1083983     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1090095     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1098737     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1349409     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1413008     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1407179     1  0.6154      0.127 0.592 0.000 0.408
#> SRR1095913     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1403544     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1490546     1  0.0000      0.975 1.000 0.000 0.000
#> SRR807971      3  0.3879      0.777 0.152 0.000 0.848
#> SRR1436228     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1445218     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1485438     3  0.6095      0.473 0.392 0.000 0.608
#> SRR1358143     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1328760     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1380806     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1086256     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1346734     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1082151     1  0.1753      0.926 0.952 0.000 0.048
#> SRR1349320     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1076022     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1339573     3  0.6045      0.522 0.380 0.000 0.620
#> SRR1455878     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1446203     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1387397     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1402590     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1317532     1  0.5733      0.501 0.676 0.324 0.000
#> SRR1331488     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1499675     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1440467     2  0.0000      0.996 0.000 1.000 0.000
#> SRR807995      3  0.6192      0.414 0.420 0.000 0.580
#> SRR1476485     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1388214     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1456051     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1473275     3  0.6244      0.387 0.440 0.000 0.560
#> SRR1444083     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1313807     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1470751     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1403434     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1390540     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1093861     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1325290     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1070689     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1365313     3  0.1289      0.839 0.000 0.032 0.968
#> SRR1321877     3  0.0000      0.862 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.862 0.000 0.000 1.000
#> SRR1433476     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1101883     3  0.6079      0.509 0.388 0.000 0.612
#> SRR1433729     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1341877     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1090556     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1357389     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1404227     3  0.2066      0.836 0.060 0.000 0.940
#> SRR1376830     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1500661     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1080294     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1336314     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1102152     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1345244     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1478637     1  0.4555      0.696 0.800 0.000 0.200
#> SRR1443776     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1102899     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1091865     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1361072     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1487890     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1349456     3  0.0000      0.862 0.000 0.000 1.000
#> SRR1389384     1  0.2165      0.907 0.936 0.000 0.064
#> SRR1316096     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1408512     1  0.0000      0.975 1.000 0.000 0.000
#> SRR1447547     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1354053     2  0.0000      0.996 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.4134      0.725 0.740 0.260 0.000 0.000
#> SRR1349562     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1499040     1  0.0779      0.870 0.980 0.004 0.016 0.000
#> SRR1322312     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1324412     1  0.4456      0.525 0.716 0.004 0.280 0.000
#> SRR1100991     1  0.4584      0.487 0.696 0.004 0.300 0.000
#> SRR1349479     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1431248     4  0.4343      0.624 0.004 0.264 0.000 0.732
#> SRR1405054     1  0.6164      0.630 0.644 0.264 0.092 0.000
#> SRR1312266     1  0.1389      0.863 0.952 0.048 0.000 0.000
#> SRR1409790     3  0.3908      0.682 0.212 0.004 0.784 0.000
#> SRR1352507     3  0.4059      0.692 0.200 0.012 0.788 0.000
#> SRR1383763     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1468314     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1473674     2  0.4679      0.420 0.000 0.648 0.000 0.352
#> SRR1390499     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR821043      4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1455653     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1335236     2  0.4737      0.511 0.000 0.728 0.252 0.020
#> SRR1095383     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1479489     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1310433     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1073435     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR659649      3  0.2408      0.824 0.000 0.104 0.896 0.000
#> SRR1395999     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1105248     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1338257     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1499395     3  0.0895      0.817 0.020 0.004 0.976 0.000
#> SRR1350002     2  0.5395      0.601 0.000 0.732 0.084 0.184
#> SRR1489757     3  0.3870      0.687 0.208 0.004 0.788 0.000
#> SRR1414637     2  0.3400      0.616 0.180 0.820 0.000 0.000
#> SRR1478113     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1322477     4  0.2081      0.874 0.000 0.084 0.000 0.916
#> SRR1478789     3  0.2704      0.814 0.000 0.124 0.876 0.000
#> SRR1414185     3  0.2408      0.824 0.000 0.104 0.896 0.000
#> SRR1069141     4  0.4948      0.142 0.000 0.440 0.000 0.560
#> SRR1376852     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1323491     1  0.3907      0.749 0.768 0.232 0.000 0.000
#> SRR1338103     1  0.1867      0.851 0.928 0.072 0.000 0.000
#> SRR1472012     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1340325     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1087321     3  0.2589      0.818 0.000 0.116 0.884 0.000
#> SRR1488790     1  0.4164      0.721 0.736 0.264 0.000 0.000
#> SRR1334866     2  0.5232      0.491 0.012 0.644 0.340 0.004
#> SRR1089446     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1344445     3  0.3945      0.677 0.216 0.004 0.780 0.000
#> SRR1412969     3  0.2408      0.824 0.000 0.104 0.896 0.000
#> SRR1071668     3  0.1389      0.825 0.000 0.048 0.952 0.000
#> SRR1075804     1  0.3219      0.796 0.836 0.164 0.000 0.000
#> SRR1383283     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1350239     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1353878     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1375721     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1083983     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1090095     1  0.2281      0.840 0.904 0.096 0.000 0.000
#> SRR1414792     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1075102     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.4164      0.721 0.736 0.264 0.000 0.000
#> SRR1349409     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1413008     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1407179     1  0.4819      0.382 0.652 0.004 0.344 0.000
#> SRR1095913     3  0.3117      0.792 0.092 0.028 0.880 0.000
#> SRR1403544     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.4164      0.721 0.736 0.264 0.000 0.000
#> SRR807971      3  0.2300      0.801 0.064 0.016 0.920 0.000
#> SRR1436228     2  0.4454      0.479 0.000 0.692 0.000 0.308
#> SRR1445218     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1485438     2  0.4632      0.677 0.308 0.688 0.004 0.000
#> SRR1358143     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1328760     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1380806     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1379426     3  0.1824      0.806 0.060 0.004 0.936 0.000
#> SRR1087007     3  0.2345      0.825 0.000 0.100 0.900 0.000
#> SRR1086256     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1346734     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.4522      0.674 0.320 0.680 0.000 0.000
#> SRR1349320     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1317554     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1076022     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1339573     3  0.3908      0.682 0.212 0.004 0.784 0.000
#> SRR1455878     1  0.1474      0.863 0.948 0.052 0.000 0.000
#> SRR1446203     3  0.2530      0.820 0.000 0.112 0.888 0.000
#> SRR1387397     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1402590     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.6273      0.582 0.636 0.264 0.000 0.100
#> SRR1331488     4  0.2921      0.808 0.000 0.140 0.000 0.860
#> SRR1499675     1  0.4134      0.725 0.740 0.260 0.000 0.000
#> SRR1440467     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR807995      2  0.4655      0.677 0.312 0.684 0.004 0.000
#> SRR1476485     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.4164      0.721 0.736 0.264 0.000 0.000
#> SRR1456051     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1473275     3  0.4978      0.371 0.384 0.004 0.612 0.000
#> SRR1444083     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1313807     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1470751     2  0.4624      0.653 0.340 0.660 0.000 0.000
#> SRR1403434     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1390540     1  0.4164      0.721 0.736 0.264 0.000 0.000
#> SRR1093861     4  0.4643      0.418 0.000 0.344 0.000 0.656
#> SRR1325290     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1070689     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1384049     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1081184     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000      0.882 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.5184      0.553 0.000 0.732 0.212 0.056
#> SRR1321877     3  0.2589      0.818 0.000 0.116 0.884 0.000
#> SRR815711      3  0.1118      0.824 0.000 0.036 0.964 0.000
#> SRR1433476     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1101883     3  0.4175      0.690 0.200 0.016 0.784 0.000
#> SRR1433729     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1341877     1  0.4134      0.725 0.740 0.260 0.000 0.000
#> SRR1090556     1  0.4164      0.721 0.736 0.264 0.000 0.000
#> SRR1357389     3  0.0000      0.818 0.000 0.000 1.000 0.000
#> SRR1404227     3  0.3249      0.751 0.140 0.008 0.852 0.000
#> SRR1376830     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1500661     1  0.0188      0.882 0.996 0.004 0.000 0.000
#> SRR1080294     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1336314     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1102152     1  0.1824      0.835 0.936 0.004 0.060 0.000
#> SRR1345244     3  0.2589      0.818 0.000 0.116 0.884 0.000
#> SRR1478637     1  0.3306      0.708 0.840 0.004 0.156 0.000
#> SRR1443776     3  0.2408      0.824 0.000 0.104 0.896 0.000
#> SRR1120939     3  0.2216      0.825 0.000 0.092 0.908 0.000
#> SRR1080117     3  0.0376      0.817 0.004 0.004 0.992 0.000
#> SRR1102899     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1091865     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1361072     1  0.4164      0.721 0.736 0.264 0.000 0.000
#> SRR1487890     1  0.0188      0.881 0.996 0.004 0.000 0.000
#> SRR1349456     3  0.2647      0.815 0.000 0.120 0.880 0.000
#> SRR1389384     2  0.4522      0.674 0.320 0.680 0.000 0.000
#> SRR1316096     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1408512     1  0.3726      0.761 0.788 0.212 0.000 0.000
#> SRR1447547     4  0.0000      0.960 0.000 0.000 0.000 1.000
#> SRR1354053     4  0.0000      0.960 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      5  0.3266      0.729 0.200 0.004 0.000 0.000 0.796
#> SRR1349562     1  0.0324      0.960 0.992 0.004 0.000 0.000 0.004
#> SRR1353376     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1499040     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1322312     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1324412     1  0.4201      0.662 0.752 0.000 0.204 0.000 0.044
#> SRR1100991     1  0.4201      0.662 0.752 0.000 0.204 0.000 0.044
#> SRR1349479     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1431248     5  0.1484      0.756 0.000 0.008 0.000 0.048 0.944
#> SRR1405054     5  0.0693      0.768 0.012 0.000 0.008 0.000 0.980
#> SRR1312266     1  0.0955      0.944 0.968 0.004 0.000 0.000 0.028
#> SRR1409790     3  0.3995      0.673 0.180 0.000 0.776 0.000 0.044
#> SRR1352507     3  0.3844      0.690 0.164 0.000 0.792 0.000 0.044
#> SRR1383763     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1468314     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1473674     2  0.3366      0.640 0.000 0.768 0.000 0.232 0.000
#> SRR1390499     1  0.0451      0.959 0.988 0.004 0.000 0.000 0.008
#> SRR821043      4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1455653     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1335236     2  0.1831      0.731 0.000 0.920 0.076 0.000 0.004
#> SRR1095383     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1310433     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1073435     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR659649      3  0.3209      0.793 0.000 0.180 0.812 0.000 0.008
#> SRR1395999     1  0.0162      0.960 0.996 0.004 0.000 0.000 0.000
#> SRR1105248     4  0.0162      0.972 0.000 0.000 0.000 0.996 0.004
#> SRR1338257     1  0.0162      0.960 0.996 0.004 0.000 0.000 0.000
#> SRR1499395     3  0.1205      0.783 0.004 0.000 0.956 0.000 0.040
#> SRR1350002     2  0.0290      0.771 0.000 0.992 0.008 0.000 0.000
#> SRR1489757     3  0.3844      0.690 0.164 0.000 0.792 0.000 0.044
#> SRR1414637     2  0.3488      0.790 0.168 0.808 0.000 0.000 0.024
#> SRR1478113     4  0.0290      0.970 0.000 0.000 0.000 0.992 0.008
#> SRR1322477     5  0.4435      0.427 0.000 0.016 0.000 0.336 0.648
#> SRR1478789     3  0.3455      0.777 0.000 0.208 0.784 0.000 0.008
#> SRR1414185     3  0.3171      0.794 0.000 0.176 0.816 0.000 0.008
#> SRR1069141     4  0.4227      0.258 0.000 0.420 0.000 0.580 0.000
#> SRR1376852     1  0.0451      0.959 0.988 0.004 0.000 0.000 0.008
#> SRR1323491     5  0.3689      0.673 0.256 0.004 0.000 0.000 0.740
#> SRR1338103     1  0.0865      0.948 0.972 0.004 0.000 0.000 0.024
#> SRR1472012     1  0.0290      0.960 0.992 0.000 0.000 0.000 0.008
#> SRR1340325     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1087321     3  0.3318      0.788 0.000 0.192 0.800 0.000 0.008
#> SRR1488790     5  0.1768      0.816 0.072 0.004 0.000 0.000 0.924
#> SRR1334866     2  0.2964      0.741 0.004 0.840 0.152 0.000 0.004
#> SRR1089446     4  0.0324      0.968 0.000 0.004 0.000 0.992 0.004
#> SRR1344445     3  0.3995      0.673 0.180 0.000 0.776 0.000 0.044
#> SRR1412969     3  0.3282      0.790 0.000 0.188 0.804 0.000 0.008
#> SRR1071668     3  0.2660      0.798 0.000 0.128 0.864 0.000 0.008
#> SRR1075804     1  0.3884      0.523 0.708 0.004 0.000 0.000 0.288
#> SRR1383283     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1350239     4  0.0290      0.970 0.000 0.000 0.000 0.992 0.008
#> SRR1353878     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1375721     1  0.0162      0.961 0.996 0.000 0.000 0.000 0.004
#> SRR1083983     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1090095     1  0.3430      0.669 0.776 0.004 0.000 0.000 0.220
#> SRR1414792     1  0.0671      0.954 0.980 0.004 0.000 0.000 0.016
#> SRR1075102     4  0.0162      0.972 0.000 0.000 0.000 0.996 0.004
#> SRR1098737     5  0.1892      0.812 0.080 0.004 0.000 0.000 0.916
#> SRR1349409     1  0.0451      0.959 0.988 0.004 0.000 0.000 0.008
#> SRR1413008     4  0.0290      0.970 0.000 0.000 0.000 0.992 0.008
#> SRR1407179     1  0.1907      0.893 0.928 0.000 0.044 0.000 0.028
#> SRR1095913     3  0.2675      0.777 0.020 0.040 0.900 0.000 0.040
#> SRR1403544     1  0.0290      0.960 0.992 0.000 0.000 0.000 0.008
#> SRR1490546     5  0.1571      0.817 0.060 0.004 0.000 0.000 0.936
#> SRR807971      3  0.1408      0.782 0.008 0.000 0.948 0.000 0.044
#> SRR1436228     2  0.3970      0.723 0.000 0.800 0.000 0.104 0.096
#> SRR1445218     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1485438     2  0.2471      0.820 0.136 0.864 0.000 0.000 0.000
#> SRR1358143     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1328760     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1380806     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1379426     3  0.1331      0.783 0.008 0.000 0.952 0.000 0.040
#> SRR1087007     3  0.3171      0.794 0.000 0.176 0.816 0.000 0.008
#> SRR1086256     4  0.0324      0.968 0.000 0.004 0.000 0.992 0.004
#> SRR1346734     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1414515     1  0.0290      0.960 0.992 0.000 0.000 0.000 0.008
#> SRR1082151     2  0.2891      0.803 0.176 0.824 0.000 0.000 0.000
#> SRR1349320     4  0.0162      0.972 0.000 0.000 0.000 0.996 0.004
#> SRR1317554     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1076022     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1339573     3  0.3922      0.675 0.180 0.000 0.780 0.000 0.040
#> SRR1455878     1  0.0865      0.948 0.972 0.004 0.000 0.000 0.024
#> SRR1446203     3  0.3318      0.788 0.000 0.192 0.800 0.000 0.008
#> SRR1387397     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1402590     1  0.0451      0.959 0.988 0.004 0.000 0.000 0.008
#> SRR1317532     5  0.1522      0.806 0.044 0.000 0.000 0.012 0.944
#> SRR1331488     5  0.2813      0.654 0.000 0.000 0.000 0.168 0.832
#> SRR1499675     5  0.3814      0.650 0.276 0.004 0.000 0.000 0.720
#> SRR1440467     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR807995      2  0.2561      0.819 0.144 0.856 0.000 0.000 0.000
#> SRR1476485     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1388214     5  0.1410      0.817 0.060 0.000 0.000 0.000 0.940
#> SRR1456051     1  0.0566      0.957 0.984 0.004 0.000 0.000 0.012
#> SRR1473275     3  0.5230      0.135 0.452 0.000 0.504 0.000 0.044
#> SRR1444083     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1313807     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1470751     2  0.2929      0.793 0.180 0.820 0.000 0.000 0.000
#> SRR1403434     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1390540     5  0.1410      0.817 0.060 0.000 0.000 0.000 0.940
#> SRR1093861     4  0.4030      0.431 0.000 0.352 0.000 0.648 0.000
#> SRR1325290     1  0.0290      0.960 0.992 0.000 0.000 0.000 0.008
#> SRR1070689     1  0.0566      0.957 0.984 0.004 0.000 0.000 0.012
#> SRR1384049     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1081184     1  0.0162      0.960 0.996 0.004 0.000 0.000 0.000
#> SRR1324295     1  0.0162      0.960 0.996 0.004 0.000 0.000 0.000
#> SRR1365313     2  0.1764      0.739 0.000 0.928 0.064 0.000 0.008
#> SRR1321877     3  0.3318      0.788 0.000 0.192 0.800 0.000 0.008
#> SRR815711      3  0.2411      0.798 0.000 0.108 0.884 0.000 0.008
#> SRR1433476     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1101883     3  0.3882      0.686 0.168 0.000 0.788 0.000 0.044
#> SRR1433729     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1341877     5  0.3579      0.694 0.240 0.004 0.000 0.000 0.756
#> SRR1090556     5  0.1410      0.817 0.060 0.000 0.000 0.000 0.940
#> SRR1357389     3  0.1121      0.783 0.000 0.000 0.956 0.000 0.044
#> SRR1404227     3  0.2798      0.760 0.060 0.008 0.888 0.000 0.044
#> SRR1376830     1  0.0451      0.959 0.988 0.004 0.000 0.000 0.008
#> SRR1500661     1  0.0566      0.957 0.984 0.004 0.000 0.000 0.012
#> SRR1080294     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1336314     4  0.0162      0.972 0.000 0.000 0.000 0.996 0.004
#> SRR1102152     1  0.1907      0.890 0.928 0.000 0.028 0.000 0.044
#> SRR1345244     3  0.3318      0.788 0.000 0.192 0.800 0.000 0.008
#> SRR1478637     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1443776     3  0.3246      0.792 0.000 0.184 0.808 0.000 0.008
#> SRR1120939     3  0.3171      0.795 0.000 0.176 0.816 0.000 0.008
#> SRR1080117     3  0.1205      0.783 0.004 0.000 0.956 0.000 0.040
#> SRR1102899     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1091865     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1361072     5  0.1410      0.817 0.060 0.000 0.000 0.000 0.940
#> SRR1487890     1  0.0000      0.961 1.000 0.000 0.000 0.000 0.000
#> SRR1349456     3  0.3388      0.783 0.000 0.200 0.792 0.000 0.008
#> SRR1389384     2  0.2852      0.806 0.172 0.828 0.000 0.000 0.000
#> SRR1316096     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000
#> SRR1408512     5  0.4452      0.160 0.496 0.004 0.000 0.000 0.500
#> SRR1447547     4  0.0290      0.970 0.000 0.000 0.000 0.992 0.008
#> SRR1354053     4  0.0000      0.974 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      5  0.3601     0.6197 0.312 0.004 0.000 0.000 0.684 0.000
#> SRR1349562     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1353376     4  0.1845     0.9009 0.000 0.008 0.072 0.916 0.004 0.000
#> SRR1499040     1  0.0363     0.9471 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1322312     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1324412     3  0.2762     0.6916 0.196 0.000 0.804 0.000 0.000 0.000
#> SRR1100991     3  0.2762     0.6916 0.196 0.000 0.804 0.000 0.000 0.000
#> SRR1349479     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1431248     5  0.0603     0.7234 0.000 0.000 0.004 0.016 0.980 0.000
#> SRR1405054     5  0.3279     0.6499 0.028 0.000 0.176 0.000 0.796 0.000
#> SRR1312266     1  0.0777     0.9335 0.972 0.004 0.000 0.000 0.024 0.000
#> SRR1409790     3  0.3394     0.8493 0.052 0.000 0.804 0.000 0.000 0.144
#> SRR1352507     3  0.3315     0.8503 0.040 0.000 0.804 0.000 0.000 0.156
#> SRR1383763     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1468314     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1473674     2  0.3650     0.5787 0.000 0.716 0.004 0.272 0.000 0.008
#> SRR1390499     1  0.0146     0.9523 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR821043      4  0.1701     0.9016 0.000 0.008 0.072 0.920 0.000 0.000
#> SRR1455653     4  0.1845     0.9009 0.000 0.008 0.072 0.916 0.004 0.000
#> SRR1335236     2  0.4304     0.1968 0.000 0.536 0.008 0.008 0.000 0.448
#> SRR1095383     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1479489     1  0.0260     0.9507 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR1310433     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1073435     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR659649      6  0.0000     0.8953 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1395999     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1105248     4  0.3322     0.8678 0.000 0.012 0.104 0.832 0.052 0.000
#> SRR1338257     1  0.0291     0.9503 0.992 0.004 0.000 0.000 0.004 0.000
#> SRR1499395     3  0.3531     0.7625 0.000 0.000 0.672 0.000 0.000 0.328
#> SRR1350002     2  0.1141     0.8370 0.000 0.948 0.000 0.000 0.000 0.052
#> SRR1489757     3  0.3315     0.8503 0.040 0.000 0.804 0.000 0.000 0.156
#> SRR1414637     2  0.0748     0.8468 0.004 0.976 0.004 0.000 0.016 0.000
#> SRR1478113     4  0.3322     0.8678 0.000 0.012 0.104 0.832 0.052 0.000
#> SRR1322477     5  0.5292     0.3772 0.000 0.016 0.108 0.252 0.624 0.000
#> SRR1478789     6  0.0622     0.8855 0.000 0.012 0.008 0.000 0.000 0.980
#> SRR1414185     6  0.0260     0.8915 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1069141     4  0.4587     0.3424 0.000 0.372 0.004 0.588 0.000 0.036
#> SRR1376852     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1323491     5  0.3841     0.5058 0.380 0.004 0.000 0.000 0.616 0.000
#> SRR1338103     1  0.1219     0.9085 0.948 0.004 0.000 0.000 0.048 0.000
#> SRR1472012     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1340325     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1087321     6  0.0000     0.8953 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1488790     5  0.1806     0.7752 0.088 0.004 0.000 0.000 0.908 0.000
#> SRR1334866     2  0.2753     0.8068 0.000 0.872 0.092 0.004 0.016 0.016
#> SRR1089446     4  0.2742     0.8281 0.000 0.036 0.072 0.876 0.016 0.000
#> SRR1344445     3  0.3394     0.8493 0.052 0.000 0.804 0.000 0.000 0.144
#> SRR1412969     6  0.0146     0.8939 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1071668     6  0.3126     0.5899 0.000 0.000 0.248 0.000 0.000 0.752
#> SRR1075804     1  0.3601     0.4556 0.684 0.004 0.000 0.000 0.312 0.000
#> SRR1383283     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1350239     4  0.3383     0.8653 0.000 0.012 0.104 0.828 0.056 0.000
#> SRR1353878     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1083983     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1090095     1  0.3189     0.6283 0.760 0.004 0.000 0.000 0.236 0.000
#> SRR1414792     1  0.0405     0.9476 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1075102     4  0.3322     0.8678 0.000 0.012 0.104 0.832 0.052 0.000
#> SRR1098737     5  0.2149     0.7689 0.104 0.004 0.004 0.000 0.888 0.000
#> SRR1349409     1  0.0146     0.9523 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1413008     4  0.3383     0.8653 0.000 0.012 0.104 0.828 0.056 0.000
#> SRR1407179     1  0.2793     0.7221 0.800 0.000 0.200 0.000 0.000 0.000
#> SRR1095913     3  0.4090     0.7422 0.004 0.016 0.652 0.000 0.000 0.328
#> SRR1403544     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1490546     5  0.1471     0.7771 0.064 0.004 0.000 0.000 0.932 0.000
#> SRR807971      3  0.2762     0.8283 0.000 0.000 0.804 0.000 0.000 0.196
#> SRR1436228     2  0.4116     0.7422 0.000 0.780 0.088 0.108 0.024 0.000
#> SRR1445218     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1485438     2  0.1297     0.8613 0.040 0.948 0.000 0.000 0.000 0.012
#> SRR1358143     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1328760     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1380806     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1379426     3  0.3547     0.7585 0.000 0.000 0.668 0.000 0.000 0.332
#> SRR1087007     6  0.0260     0.8915 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1086256     4  0.2380     0.8497 0.000 0.036 0.048 0.900 0.016 0.000
#> SRR1346734     4  0.1901     0.8998 0.000 0.008 0.076 0.912 0.004 0.000
#> SRR1414515     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082151     2  0.1265     0.8598 0.044 0.948 0.000 0.000 0.000 0.008
#> SRR1349320     4  0.3127     0.8739 0.000 0.012 0.104 0.844 0.040 0.000
#> SRR1317554     4  0.1701     0.9016 0.000 0.008 0.072 0.920 0.000 0.000
#> SRR1076022     4  0.0146     0.9060 0.000 0.000 0.004 0.996 0.000 0.000
#> SRR1339573     3  0.4007     0.8339 0.052 0.000 0.728 0.000 0.000 0.220
#> SRR1455878     1  0.1700     0.8730 0.916 0.004 0.000 0.000 0.080 0.000
#> SRR1446203     6  0.0000     0.8953 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1387397     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1402590     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317532     5  0.0653     0.7279 0.004 0.000 0.004 0.012 0.980 0.000
#> SRR1331488     5  0.3710     0.5953 0.000 0.012 0.108 0.076 0.804 0.000
#> SRR1499675     5  0.4118     0.4646 0.396 0.004 0.008 0.000 0.592 0.000
#> SRR1440467     4  0.2730     0.7793 0.000 0.000 0.012 0.836 0.000 0.152
#> SRR807995      2  0.1297     0.8613 0.040 0.948 0.000 0.000 0.000 0.012
#> SRR1476485     4  0.1845     0.9009 0.000 0.008 0.072 0.916 0.004 0.000
#> SRR1388214     5  0.1349     0.7712 0.056 0.004 0.000 0.000 0.940 0.000
#> SRR1456051     1  0.0146     0.9523 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1473275     3  0.3558     0.7946 0.112 0.000 0.800 0.000 0.000 0.088
#> SRR1444083     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1313807     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1470751     2  0.1196     0.8598 0.040 0.952 0.000 0.000 0.000 0.008
#> SRR1403434     4  0.2531     0.8015 0.000 0.000 0.012 0.856 0.000 0.132
#> SRR1390540     5  0.1444     0.7780 0.072 0.000 0.000 0.000 0.928 0.000
#> SRR1093861     4  0.3411     0.6415 0.000 0.232 0.008 0.756 0.000 0.004
#> SRR1325290     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1070689     1  0.0291     0.9503 0.992 0.004 0.000 0.000 0.004 0.000
#> SRR1384049     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1365313     6  0.6763     0.0104 0.000 0.348 0.088 0.084 0.016 0.464
#> SRR1321877     6  0.0000     0.8953 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815711      6  0.5766     0.3271 0.000 0.036 0.392 0.044 0.016 0.512
#> SRR1433476     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1101883     3  0.3394     0.8493 0.052 0.000 0.804 0.000 0.000 0.144
#> SRR1433729     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1341877     5  0.3976     0.5031 0.380 0.004 0.004 0.000 0.612 0.000
#> SRR1090556     5  0.1701     0.7777 0.072 0.000 0.008 0.000 0.920 0.000
#> SRR1357389     3  0.2793     0.8262 0.000 0.000 0.800 0.000 0.000 0.200
#> SRR1404227     3  0.3724     0.7658 0.012 0.004 0.716 0.000 0.000 0.268
#> SRR1376830     1  0.0146     0.9523 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9538 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1080294     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1336314     4  0.3322     0.8678 0.000 0.012 0.104 0.832 0.052 0.000
#> SRR1102152     1  0.2340     0.7864 0.852 0.000 0.148 0.000 0.000 0.000
#> SRR1345244     6  0.0000     0.8953 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1478637     1  0.0363     0.9471 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1443776     6  0.0000     0.8953 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1120939     6  0.0260     0.8916 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1080117     3  0.3547     0.7585 0.000 0.000 0.668 0.000 0.000 0.332
#> SRR1102899     4  0.0146     0.9060 0.000 0.000 0.004 0.996 0.000 0.000
#> SRR1091865     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1361072     5  0.1327     0.7766 0.064 0.000 0.000 0.000 0.936 0.000
#> SRR1487890     1  0.0146     0.9533 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1349456     6  0.0458     0.8859 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR1389384     2  0.1265     0.8598 0.044 0.948 0.000 0.000 0.000 0.008
#> SRR1316096     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1408512     1  0.3930     0.1032 0.576 0.004 0.000 0.000 0.420 0.000
#> SRR1447547     4  0.3322     0.8678 0.000 0.012 0.104 0.832 0.052 0.000
#> SRR1354053     4  0.1845     0.9009 0.000 0.008 0.072 0.916 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.972       0.990         0.3414 0.662   0.662
#> 3 3 0.658           0.833       0.867         0.8184 0.646   0.490
#> 4 4 0.668           0.787       0.884         0.1618 0.877   0.680
#> 5 5 0.681           0.798       0.858         0.0368 0.972   0.902
#> 6 6 0.771           0.779       0.863         0.0397 0.960   0.853

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000      0.992 1.000 0.000
#> SRR1349562     1  0.0000      0.992 1.000 0.000
#> SRR1353376     2  0.0000      0.981 0.000 1.000
#> SRR1499040     1  0.0000      0.992 1.000 0.000
#> SRR1322312     1  0.0000      0.992 1.000 0.000
#> SRR1324412     1  0.0000      0.992 1.000 0.000
#> SRR1100991     1  0.0000      0.992 1.000 0.000
#> SRR1349479     2  0.0000      0.981 0.000 1.000
#> SRR1431248     1  0.0000      0.992 1.000 0.000
#> SRR1405054     1  0.0000      0.992 1.000 0.000
#> SRR1312266     1  0.0000      0.992 1.000 0.000
#> SRR1409790     1  0.0000      0.992 1.000 0.000
#> SRR1352507     1  0.0000      0.992 1.000 0.000
#> SRR1383763     1  0.0000      0.992 1.000 0.000
#> SRR1468314     2  0.0000      0.981 0.000 1.000
#> SRR1473674     1  0.9909      0.178 0.556 0.444
#> SRR1390499     1  0.0000      0.992 1.000 0.000
#> SRR821043      2  0.0000      0.981 0.000 1.000
#> SRR1455653     2  0.0000      0.981 0.000 1.000
#> SRR1335236     1  0.0000      0.992 1.000 0.000
#> SRR1095383     2  0.0000      0.981 0.000 1.000
#> SRR1479489     1  0.0000      0.992 1.000 0.000
#> SRR1310433     2  0.0000      0.981 0.000 1.000
#> SRR1073435     2  0.4690      0.879 0.100 0.900
#> SRR659649      1  0.0000      0.992 1.000 0.000
#> SRR1395999     1  0.0000      0.992 1.000 0.000
#> SRR1105248     1  0.9850      0.230 0.572 0.428
#> SRR1338257     1  0.0000      0.992 1.000 0.000
#> SRR1499395     1  0.0000      0.992 1.000 0.000
#> SRR1350002     1  0.0000      0.992 1.000 0.000
#> SRR1489757     1  0.0000      0.992 1.000 0.000
#> SRR1414637     1  0.0000      0.992 1.000 0.000
#> SRR1478113     2  0.0938      0.971 0.012 0.988
#> SRR1322477     1  0.0000      0.992 1.000 0.000
#> SRR1478789     1  0.0000      0.992 1.000 0.000
#> SRR1414185     1  0.0000      0.992 1.000 0.000
#> SRR1069141     2  0.9775      0.292 0.412 0.588
#> SRR1376852     1  0.0000      0.992 1.000 0.000
#> SRR1323491     1  0.0000      0.992 1.000 0.000
#> SRR1338103     1  0.0000      0.992 1.000 0.000
#> SRR1472012     1  0.0000      0.992 1.000 0.000
#> SRR1340325     1  0.0000      0.992 1.000 0.000
#> SRR1087321     1  0.0000      0.992 1.000 0.000
#> SRR1488790     1  0.0000      0.992 1.000 0.000
#> SRR1334866     1  0.0000      0.992 1.000 0.000
#> SRR1089446     1  0.0000      0.992 1.000 0.000
#> SRR1344445     1  0.0000      0.992 1.000 0.000
#> SRR1412969     1  0.0000      0.992 1.000 0.000
#> SRR1071668     1  0.0000      0.992 1.000 0.000
#> SRR1075804     1  0.0000      0.992 1.000 0.000
#> SRR1383283     2  0.0000      0.981 0.000 1.000
#> SRR1350239     1  0.0000      0.992 1.000 0.000
#> SRR1353878     1  0.0000      0.992 1.000 0.000
#> SRR1375721     1  0.0000      0.992 1.000 0.000
#> SRR1083983     1  0.0000      0.992 1.000 0.000
#> SRR1090095     1  0.0000      0.992 1.000 0.000
#> SRR1414792     1  0.0000      0.992 1.000 0.000
#> SRR1075102     2  0.0000      0.981 0.000 1.000
#> SRR1098737     1  0.0000      0.992 1.000 0.000
#> SRR1349409     1  0.0000      0.992 1.000 0.000
#> SRR1413008     1  0.0000      0.992 1.000 0.000
#> SRR1407179     1  0.0000      0.992 1.000 0.000
#> SRR1095913     1  0.0000      0.992 1.000 0.000
#> SRR1403544     1  0.0000      0.992 1.000 0.000
#> SRR1490546     1  0.0000      0.992 1.000 0.000
#> SRR807971      1  0.0000      0.992 1.000 0.000
#> SRR1436228     1  0.0000      0.992 1.000 0.000
#> SRR1445218     2  0.0000      0.981 0.000 1.000
#> SRR1485438     1  0.0000      0.992 1.000 0.000
#> SRR1358143     1  0.0000      0.992 1.000 0.000
#> SRR1328760     1  0.0000      0.992 1.000 0.000
#> SRR1380806     1  0.0000      0.992 1.000 0.000
#> SRR1379426     1  0.0000      0.992 1.000 0.000
#> SRR1087007     1  0.0000      0.992 1.000 0.000
#> SRR1086256     1  0.0000      0.992 1.000 0.000
#> SRR1346734     2  0.0000      0.981 0.000 1.000
#> SRR1414515     1  0.0000      0.992 1.000 0.000
#> SRR1082151     1  0.0000      0.992 1.000 0.000
#> SRR1349320     2  0.0000      0.981 0.000 1.000
#> SRR1317554     2  0.0000      0.981 0.000 1.000
#> SRR1076022     2  0.0000      0.981 0.000 1.000
#> SRR1339573     1  0.0000      0.992 1.000 0.000
#> SRR1455878     1  0.0000      0.992 1.000 0.000
#> SRR1446203     1  0.0000      0.992 1.000 0.000
#> SRR1387397     1  0.0000      0.992 1.000 0.000
#> SRR1402590     1  0.0000      0.992 1.000 0.000
#> SRR1317532     1  0.0000      0.992 1.000 0.000
#> SRR1331488     1  0.0000      0.992 1.000 0.000
#> SRR1499675     1  0.0000      0.992 1.000 0.000
#> SRR1440467     2  0.0000      0.981 0.000 1.000
#> SRR807995      1  0.0000      0.992 1.000 0.000
#> SRR1476485     2  0.0000      0.981 0.000 1.000
#> SRR1388214     1  0.0000      0.992 1.000 0.000
#> SRR1456051     1  0.0000      0.992 1.000 0.000
#> SRR1473275     1  0.0000      0.992 1.000 0.000
#> SRR1444083     1  0.0000      0.992 1.000 0.000
#> SRR1313807     2  0.0000      0.981 0.000 1.000
#> SRR1470751     1  0.0000      0.992 1.000 0.000
#> SRR1403434     2  0.0000      0.981 0.000 1.000
#> SRR1390540     1  0.0000      0.992 1.000 0.000
#> SRR1093861     2  0.0000      0.981 0.000 1.000
#> SRR1325290     1  0.0000      0.992 1.000 0.000
#> SRR1070689     1  0.0000      0.992 1.000 0.000
#> SRR1384049     1  0.0000      0.992 1.000 0.000
#> SRR1081184     1  0.0000      0.992 1.000 0.000
#> SRR1324295     1  0.0000      0.992 1.000 0.000
#> SRR1365313     1  0.0000      0.992 1.000 0.000
#> SRR1321877     1  0.0000      0.992 1.000 0.000
#> SRR815711      1  0.0000      0.992 1.000 0.000
#> SRR1433476     2  0.0000      0.981 0.000 1.000
#> SRR1101883     1  0.0000      0.992 1.000 0.000
#> SRR1433729     2  0.0000      0.981 0.000 1.000
#> SRR1341877     1  0.0000      0.992 1.000 0.000
#> SRR1090556     1  0.0000      0.992 1.000 0.000
#> SRR1357389     1  0.0000      0.992 1.000 0.000
#> SRR1404227     1  0.0000      0.992 1.000 0.000
#> SRR1376830     1  0.0000      0.992 1.000 0.000
#> SRR1500661     1  0.0000      0.992 1.000 0.000
#> SRR1080294     2  0.0000      0.981 0.000 1.000
#> SRR1336314     2  0.0000      0.981 0.000 1.000
#> SRR1102152     1  0.0000      0.992 1.000 0.000
#> SRR1345244     1  0.0000      0.992 1.000 0.000
#> SRR1478637     1  0.0000      0.992 1.000 0.000
#> SRR1443776     1  0.0000      0.992 1.000 0.000
#> SRR1120939     1  0.0000      0.992 1.000 0.000
#> SRR1080117     1  0.0000      0.992 1.000 0.000
#> SRR1102899     2  0.0000      0.981 0.000 1.000
#> SRR1091865     1  0.0000      0.992 1.000 0.000
#> SRR1361072     1  0.0000      0.992 1.000 0.000
#> SRR1487890     1  0.0000      0.992 1.000 0.000
#> SRR1349456     1  0.0000      0.992 1.000 0.000
#> SRR1389384     1  0.0000      0.992 1.000 0.000
#> SRR1316096     2  0.0000      0.981 0.000 1.000
#> SRR1408512     1  0.0000      0.992 1.000 0.000
#> SRR1447547     1  0.0000      0.992 1.000 0.000
#> SRR1354053     2  0.0000      0.981 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.3038      0.886 0.896 0.000 0.104
#> SRR1349562     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1353376     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1499040     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1322312     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1324412     3  0.3879      0.791 0.152 0.000 0.848
#> SRR1100991     3  0.3752      0.795 0.144 0.000 0.856
#> SRR1349479     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1431248     3  0.6062      0.456 0.384 0.000 0.616
#> SRR1405054     3  0.3686      0.799 0.140 0.000 0.860
#> SRR1312266     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1409790     3  0.1753      0.855 0.048 0.000 0.952
#> SRR1352507     3  0.0592      0.867 0.012 0.000 0.988
#> SRR1383763     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1468314     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1473674     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1390499     1  0.0000      0.932 1.000 0.000 0.000
#> SRR821043      2  0.0000      0.963 0.000 1.000 0.000
#> SRR1455653     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1335236     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1095383     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1479489     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1310433     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1073435     3  0.0000      0.870 0.000 0.000 1.000
#> SRR659649      3  0.0000      0.870 0.000 0.000 1.000
#> SRR1395999     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1105248     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1338257     1  0.3752      0.843 0.856 0.000 0.144
#> SRR1499395     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1350002     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1489757     3  0.0237      0.869 0.004 0.000 0.996
#> SRR1414637     3  0.6062      0.456 0.384 0.000 0.616
#> SRR1478113     3  0.6305      0.144 0.000 0.484 0.516
#> SRR1322477     3  0.3340      0.815 0.120 0.000 0.880
#> SRR1478789     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1414185     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1069141     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1376852     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1323491     1  0.3340      0.871 0.880 0.000 0.120
#> SRR1338103     1  0.3116      0.883 0.892 0.000 0.108
#> SRR1472012     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1340325     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1087321     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1488790     1  0.2959      0.888 0.900 0.000 0.100
#> SRR1334866     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1089446     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1344445     3  0.2711      0.835 0.088 0.000 0.912
#> SRR1412969     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1071668     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1075804     1  0.2796      0.893 0.908 0.000 0.092
#> SRR1383283     2  0.1643      0.932 0.000 0.956 0.044
#> SRR1350239     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1353878     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1375721     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1083983     1  0.3116      0.883 0.892 0.000 0.108
#> SRR1090095     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1414792     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1075102     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1098737     3  0.6252      0.311 0.444 0.000 0.556
#> SRR1349409     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1413008     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1407179     1  0.3116      0.883 0.892 0.000 0.108
#> SRR1095913     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1403544     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1490546     3  0.6299      0.206 0.476 0.000 0.524
#> SRR807971      3  0.0000      0.870 0.000 0.000 1.000
#> SRR1436228     3  0.3116      0.823 0.108 0.000 0.892
#> SRR1445218     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1485438     1  0.3551      0.860 0.868 0.000 0.132
#> SRR1358143     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1328760     1  0.3038      0.886 0.896 0.000 0.104
#> SRR1380806     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1379426     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1087007     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1086256     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1346734     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1414515     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1082151     1  0.4654      0.756 0.792 0.000 0.208
#> SRR1349320     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1317554     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1076022     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1339573     3  0.6154      0.309 0.408 0.000 0.592
#> SRR1455878     1  0.2448      0.902 0.924 0.000 0.076
#> SRR1446203     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1387397     3  0.6154      0.403 0.408 0.000 0.592
#> SRR1402590     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1317532     3  0.5138      0.680 0.252 0.000 0.748
#> SRR1331488     3  0.1529      0.858 0.040 0.000 0.960
#> SRR1499675     3  0.5810      0.546 0.336 0.000 0.664
#> SRR1440467     2  0.6140      0.423 0.000 0.596 0.404
#> SRR807995      1  0.1163      0.924 0.972 0.000 0.028
#> SRR1476485     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1388214     3  0.2959      0.828 0.100 0.000 0.900
#> SRR1456051     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1473275     1  0.3752      0.792 0.856 0.000 0.144
#> SRR1444083     3  0.6252      0.311 0.444 0.000 0.556
#> SRR1313807     2  0.3752      0.841 0.000 0.856 0.144
#> SRR1470751     1  0.5216      0.653 0.740 0.000 0.260
#> SRR1403434     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1390540     3  0.6154      0.403 0.408 0.000 0.592
#> SRR1093861     2  0.5254      0.687 0.000 0.736 0.264
#> SRR1325290     1  0.3941      0.828 0.844 0.000 0.156
#> SRR1070689     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1384049     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1081184     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1324295     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1365313     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1321877     3  0.0000      0.870 0.000 0.000 1.000
#> SRR815711      3  0.0000      0.870 0.000 0.000 1.000
#> SRR1433476     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1101883     3  0.1289      0.860 0.032 0.000 0.968
#> SRR1433729     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1341877     3  0.6260      0.299 0.448 0.000 0.552
#> SRR1090556     3  0.5178      0.675 0.256 0.000 0.744
#> SRR1357389     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1404227     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1376830     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1500661     1  0.3038      0.886 0.896 0.000 0.104
#> SRR1080294     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1336314     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1102152     3  0.3752      0.795 0.144 0.000 0.856
#> SRR1345244     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1478637     1  0.0237      0.931 0.996 0.000 0.004
#> SRR1443776     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1120939     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1080117     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1102899     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1091865     1  0.3116      0.883 0.892 0.000 0.108
#> SRR1361072     3  0.5178      0.675 0.256 0.000 0.744
#> SRR1487890     1  0.0000      0.932 1.000 0.000 0.000
#> SRR1349456     3  0.0000      0.870 0.000 0.000 1.000
#> SRR1389384     1  0.6062      0.337 0.616 0.000 0.384
#> SRR1316096     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1408512     3  0.6154      0.403 0.408 0.000 0.592
#> SRR1447547     3  0.1163      0.862 0.028 0.000 0.972
#> SRR1354053     2  0.0000      0.963 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.4830     0.5585 0.608 0.000 0.392 0.000
#> SRR1349562     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.0336     0.9576 0.000 0.008 0.000 0.992
#> SRR1499040     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1322312     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.5092     0.7685 0.096 0.140 0.764 0.000
#> SRR1100991     3  0.4906     0.7760 0.084 0.140 0.776 0.000
#> SRR1349479     4  0.0336     0.9576 0.000 0.008 0.000 0.992
#> SRR1431248     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1405054     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1312266     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1409790     3  0.4387     0.7805 0.024 0.200 0.776 0.000
#> SRR1352507     3  0.3837     0.7743 0.000 0.224 0.776 0.000
#> SRR1383763     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1468314     4  0.0592     0.9554 0.000 0.016 0.000 0.984
#> SRR1473674     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> SRR1390499     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1455653     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1335236     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1095383     4  0.0336     0.9576 0.000 0.008 0.000 0.992
#> SRR1479489     1  0.2675     0.7864 0.892 0.100 0.008 0.000
#> SRR1310433     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1073435     3  0.1022     0.8278 0.000 0.032 0.968 0.000
#> SRR659649      2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1395999     1  0.0336     0.8374 0.992 0.000 0.008 0.000
#> SRR1105248     3  0.1022     0.8278 0.000 0.032 0.968 0.000
#> SRR1338257     1  0.3400     0.7632 0.820 0.000 0.180 0.000
#> SRR1499395     2  0.4356     0.4360 0.000 0.708 0.292 0.000
#> SRR1350002     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1489757     3  0.3837     0.7743 0.000 0.224 0.776 0.000
#> SRR1414637     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1478113     4  0.5253     0.4360 0.000 0.016 0.360 0.624
#> SRR1322477     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1478789     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1414185     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1069141     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> SRR1376852     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.3764     0.7366 0.784 0.000 0.216 0.000
#> SRR1338103     1  0.4697     0.5966 0.644 0.000 0.356 0.000
#> SRR1472012     1  0.3569     0.7647 0.804 0.000 0.196 0.000
#> SRR1340325     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1087321     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1488790     1  0.4193     0.7093 0.732 0.000 0.268 0.000
#> SRR1334866     3  0.4605     0.6588 0.000 0.336 0.664 0.000
#> SRR1089446     3  0.4989     0.1943 0.000 0.472 0.528 0.000
#> SRR1344445     3  0.4852     0.7791 0.072 0.152 0.776 0.000
#> SRR1412969     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1071668     3  0.3942     0.7677 0.000 0.236 0.764 0.000
#> SRR1075804     1  0.4134     0.7181 0.740 0.000 0.260 0.000
#> SRR1383283     4  0.2813     0.8856 0.000 0.024 0.080 0.896
#> SRR1350239     3  0.0592     0.8355 0.000 0.016 0.984 0.000
#> SRR1353878     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0336     0.8374 0.992 0.000 0.008 0.000
#> SRR1083983     1  0.4697     0.5966 0.644 0.000 0.356 0.000
#> SRR1090095     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1414792     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1098737     3  0.0336     0.8352 0.008 0.000 0.992 0.000
#> SRR1349409     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1413008     3  0.0592     0.8355 0.000 0.016 0.984 0.000
#> SRR1407179     1  0.6377     0.5931 0.632 0.112 0.256 0.000
#> SRR1095913     3  0.3907     0.7704 0.000 0.232 0.768 0.000
#> SRR1403544     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1490546     3  0.2589     0.7466 0.116 0.000 0.884 0.000
#> SRR807971      3  0.3907     0.7704 0.000 0.232 0.768 0.000
#> SRR1436228     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1445218     4  0.0707     0.9538 0.000 0.020 0.000 0.980
#> SRR1485438     2  0.5452     0.0180 0.428 0.556 0.016 0.000
#> SRR1358143     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.3764     0.7424 0.784 0.000 0.216 0.000
#> SRR1380806     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1379426     3  0.4679     0.6350 0.000 0.352 0.648 0.000
#> SRR1087007     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1086256     3  0.3764     0.7440 0.000 0.216 0.784 0.000
#> SRR1346734     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0336     0.8374 0.992 0.000 0.008 0.000
#> SRR1082151     1  0.6724     0.5929 0.612 0.224 0.164 0.000
#> SRR1349320     4  0.0336     0.9576 0.000 0.008 0.000 0.992
#> SRR1317554     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1076022     4  0.0817     0.9518 0.000 0.024 0.000 0.976
#> SRR1339573     1  0.7674    -0.0167 0.428 0.220 0.352 0.000
#> SRR1455878     1  0.4522     0.6494 0.680 0.000 0.320 0.000
#> SRR1446203     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1387397     3  0.2760     0.7765 0.128 0.000 0.872 0.000
#> SRR1402590     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1317532     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1331488     3  0.0336     0.8354 0.000 0.008 0.992 0.000
#> SRR1499675     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1440467     2  0.2760     0.7538 0.000 0.872 0.000 0.128
#> SRR807995      1  0.5147     0.7006 0.740 0.200 0.060 0.000
#> SRR1476485     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1388214     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1456051     1  0.0336     0.8374 0.992 0.000 0.008 0.000
#> SRR1473275     1  0.4869     0.7281 0.780 0.132 0.088 0.000
#> SRR1444083     3  0.3907     0.6893 0.232 0.000 0.768 0.000
#> SRR1313807     4  0.3873     0.6903 0.000 0.228 0.000 0.772
#> SRR1470751     1  0.4972     0.3803 0.544 0.000 0.456 0.000
#> SRR1403434     2  0.0000     0.8924 0.000 1.000 0.000 0.000
#> SRR1390540     3  0.1211     0.8190 0.040 0.000 0.960 0.000
#> SRR1093861     2  0.4431     0.4843 0.000 0.696 0.000 0.304
#> SRR1325290     1  0.4761     0.5691 0.628 0.000 0.372 0.000
#> SRR1070689     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1081184     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.4040     0.6252 0.000 0.752 0.248 0.000
#> SRR1321877     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR815711      3  0.3907     0.7704 0.000 0.232 0.768 0.000
#> SRR1433476     4  0.0592     0.9554 0.000 0.016 0.000 0.984
#> SRR1101883     3  0.2921     0.8148 0.000 0.140 0.860 0.000
#> SRR1433729     3  0.4134     0.7226 0.000 0.260 0.740 0.000
#> SRR1341877     3  0.1211     0.8190 0.040 0.000 0.960 0.000
#> SRR1090556     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1357389     3  0.3907     0.7704 0.000 0.232 0.768 0.000
#> SRR1404227     3  0.4277     0.7280 0.000 0.280 0.720 0.000
#> SRR1376830     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.4222     0.7050 0.728 0.000 0.272 0.000
#> SRR1080294     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1336314     4  0.1022     0.9359 0.000 0.000 0.032 0.968
#> SRR1102152     3  0.4906     0.7760 0.084 0.140 0.776 0.000
#> SRR1345244     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1478637     1  0.4010     0.7683 0.836 0.100 0.064 0.000
#> SRR1443776     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1120939     3  0.4907     0.4965 0.000 0.420 0.580 0.000
#> SRR1080117     3  0.4661     0.6410 0.000 0.348 0.652 0.000
#> SRR1102899     4  0.0817     0.9518 0.000 0.024 0.000 0.976
#> SRR1091865     1  0.6221     0.6083 0.644 0.100 0.256 0.000
#> SRR1361072     3  0.0000     0.8380 0.000 0.000 1.000 0.000
#> SRR1487890     1  0.0000     0.8385 1.000 0.000 0.000 0.000
#> SRR1349456     2  0.0817     0.9063 0.000 0.976 0.024 0.000
#> SRR1389384     1  0.7747     0.2583 0.432 0.316 0.252 0.000
#> SRR1316096     4  0.0000     0.9582 0.000 0.000 0.000 1.000
#> SRR1408512     3  0.0592     0.8327 0.016 0.000 0.984 0.000
#> SRR1447547     3  0.0592     0.8355 0.000 0.016 0.984 0.000
#> SRR1354053     4  0.0000     0.9582 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.3318     0.8169 0.800 0.000 0.000 0.008 0.192
#> SRR1349562     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1353376     2  0.1043     0.9153 0.000 0.960 0.000 0.040 0.000
#> SRR1499040     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1322312     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1324412     5  0.2308     0.8155 0.048 0.000 0.036 0.004 0.912
#> SRR1100991     5  0.3011     0.8377 0.016 0.000 0.140 0.000 0.844
#> SRR1349479     2  0.1043     0.9153 0.000 0.960 0.000 0.040 0.000
#> SRR1431248     5  0.0000     0.8281 0.000 0.000 0.000 0.000 1.000
#> SRR1405054     5  0.2074     0.8392 0.000 0.000 0.104 0.000 0.896
#> SRR1312266     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1409790     5  0.2674     0.8370 0.004 0.000 0.140 0.000 0.856
#> SRR1352507     5  0.2561     0.8358 0.000 0.000 0.144 0.000 0.856
#> SRR1383763     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1468314     2  0.0703     0.9176 0.000 0.976 0.000 0.024 0.000
#> SRR1473674     3  0.0703     0.8653 0.000 0.024 0.976 0.000 0.000
#> SRR1390499     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR821043      4  0.2852     0.9119 0.000 0.172 0.000 0.828 0.000
#> SRR1455653     4  0.2852     0.9119 0.000 0.172 0.000 0.828 0.000
#> SRR1335236     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1095383     2  0.1043     0.9153 0.000 0.960 0.000 0.040 0.000
#> SRR1479489     1  0.3183     0.8342 0.856 0.000 0.028 0.008 0.108
#> SRR1310433     2  0.2424     0.8042 0.000 0.868 0.000 0.132 0.000
#> SRR1073435     5  0.5355     0.6089 0.000 0.220 0.000 0.120 0.660
#> SRR659649      3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1395999     1  0.2411     0.8383 0.884 0.000 0.000 0.008 0.108
#> SRR1105248     5  0.5355     0.6089 0.000 0.220 0.000 0.120 0.660
#> SRR1338257     1  0.2707     0.8370 0.860 0.000 0.000 0.008 0.132
#> SRR1499395     3  0.3661     0.5107 0.000 0.000 0.724 0.000 0.276
#> SRR1350002     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1489757     5  0.2561     0.8358 0.000 0.000 0.144 0.000 0.856
#> SRR1414637     5  0.0000     0.8281 0.000 0.000 0.000 0.000 1.000
#> SRR1478113     4  0.1997     0.7520 0.000 0.040 0.000 0.924 0.036
#> SRR1322477     5  0.1695     0.8076 0.044 0.000 0.008 0.008 0.940
#> SRR1478789     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1414185     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1069141     3  0.2450     0.7859 0.000 0.028 0.896 0.076 0.000
#> SRR1376852     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1323491     1  0.3421     0.8068 0.788 0.000 0.000 0.008 0.204
#> SRR1338103     1  0.3885     0.7613 0.724 0.000 0.000 0.008 0.268
#> SRR1472012     1  0.3809     0.7718 0.736 0.000 0.000 0.008 0.256
#> SRR1340325     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1087321     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1488790     1  0.2929     0.8313 0.840 0.000 0.000 0.008 0.152
#> SRR1334866     5  0.3109     0.8033 0.000 0.000 0.200 0.000 0.800
#> SRR1089446     5  0.4862     0.5023 0.000 0.032 0.364 0.000 0.604
#> SRR1344445     5  0.2674     0.8370 0.004 0.000 0.140 0.000 0.856
#> SRR1412969     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1071668     5  0.2648     0.8327 0.000 0.000 0.152 0.000 0.848
#> SRR1075804     1  0.2886     0.8323 0.844 0.000 0.000 0.008 0.148
#> SRR1383283     2  0.0000     0.9139 0.000 1.000 0.000 0.000 0.000
#> SRR1350239     5  0.2964     0.8030 0.000 0.024 0.000 0.120 0.856
#> SRR1353878     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1375721     1  0.2411     0.8383 0.884 0.000 0.000 0.008 0.108
#> SRR1083983     1  0.3885     0.7613 0.724 0.000 0.000 0.008 0.268
#> SRR1090095     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1414792     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1075102     4  0.2852     0.9119 0.000 0.172 0.000 0.828 0.000
#> SRR1098737     5  0.1408     0.8017 0.044 0.000 0.000 0.008 0.948
#> SRR1349409     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1413008     5  0.2964     0.8030 0.000 0.024 0.000 0.120 0.856
#> SRR1407179     1  0.4598     0.7567 0.716 0.000 0.036 0.008 0.240
#> SRR1095913     5  0.2605     0.8341 0.000 0.000 0.148 0.000 0.852
#> SRR1403544     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1490546     5  0.4147     0.3414 0.316 0.000 0.000 0.008 0.676
#> SRR807971      5  0.2605     0.8341 0.000 0.000 0.148 0.000 0.852
#> SRR1436228     5  0.2074     0.8392 0.000 0.000 0.104 0.000 0.896
#> SRR1445218     2  0.0000     0.9139 0.000 1.000 0.000 0.000 0.000
#> SRR1485438     3  0.6177    -0.0486 0.388 0.000 0.496 0.008 0.108
#> SRR1358143     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1328760     1  0.3132     0.8243 0.820 0.000 0.000 0.008 0.172
#> SRR1380806     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1379426     5  0.3242     0.7901 0.000 0.000 0.216 0.000 0.784
#> SRR1087007     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1086256     5  0.3326     0.8129 0.000 0.024 0.152 0.000 0.824
#> SRR1346734     4  0.2852     0.9119 0.000 0.172 0.000 0.828 0.000
#> SRR1414515     1  0.2411     0.8383 0.884 0.000 0.000 0.008 0.108
#> SRR1082151     1  0.5683     0.6854 0.652 0.000 0.200 0.008 0.140
#> SRR1349320     4  0.4219     0.4574 0.000 0.416 0.000 0.584 0.000
#> SRR1317554     4  0.2852     0.9119 0.000 0.172 0.000 0.828 0.000
#> SRR1076022     2  0.0000     0.9139 0.000 1.000 0.000 0.000 0.000
#> SRR1339573     5  0.5223     0.4196 0.316 0.000 0.048 0.008 0.628
#> SRR1455878     1  0.3885     0.7613 0.724 0.000 0.000 0.008 0.268
#> SRR1446203     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1387397     5  0.1082     0.8164 0.028 0.000 0.000 0.008 0.964
#> SRR1402590     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1317532     5  0.0000     0.8281 0.000 0.000 0.000 0.000 1.000
#> SRR1331488     5  0.2873     0.8044 0.000 0.020 0.000 0.120 0.860
#> SRR1499675     5  0.0000     0.8281 0.000 0.000 0.000 0.000 1.000
#> SRR1440467     3  0.3796     0.5225 0.000 0.300 0.700 0.000 0.000
#> SRR807995      1  0.5503     0.7068 0.672 0.000 0.192 0.008 0.128
#> SRR1476485     4  0.2852     0.9119 0.000 0.172 0.000 0.828 0.000
#> SRR1388214     5  0.2074     0.8392 0.000 0.000 0.104 0.000 0.896
#> SRR1456051     1  0.1908     0.8420 0.908 0.000 0.000 0.000 0.092
#> SRR1473275     1  0.4425     0.7778 0.740 0.000 0.036 0.008 0.216
#> SRR1444083     5  0.2077     0.7967 0.084 0.000 0.000 0.008 0.908
#> SRR1313807     2  0.0000     0.9139 0.000 1.000 0.000 0.000 0.000
#> SRR1470751     1  0.4367     0.6041 0.620 0.000 0.000 0.008 0.372
#> SRR1403434     3  0.3274     0.6697 0.000 0.220 0.780 0.000 0.000
#> SRR1390540     5  0.3209     0.6581 0.180 0.000 0.000 0.008 0.812
#> SRR1093861     2  0.3913     0.4455 0.000 0.676 0.324 0.000 0.000
#> SRR1325290     1  0.3980     0.7440 0.708 0.000 0.000 0.008 0.284
#> SRR1070689     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1384049     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1081184     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1324295     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1365313     3  0.3143     0.6657 0.000 0.000 0.796 0.000 0.204
#> SRR1321877     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR815711      5  0.2605     0.8341 0.000 0.000 0.148 0.000 0.852
#> SRR1433476     2  0.0703     0.9176 0.000 0.976 0.000 0.024 0.000
#> SRR1101883     5  0.2329     0.8390 0.000 0.000 0.124 0.000 0.876
#> SRR1433729     5  0.6715     0.5556 0.000 0.220 0.068 0.120 0.592
#> SRR1341877     5  0.3093     0.6779 0.168 0.000 0.000 0.008 0.824
#> SRR1090556     5  0.0000     0.8281 0.000 0.000 0.000 0.000 1.000
#> SRR1357389     5  0.2605     0.8341 0.000 0.000 0.148 0.000 0.852
#> SRR1404227     5  0.2966     0.8151 0.000 0.000 0.184 0.000 0.816
#> SRR1376830     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1500661     1  0.3013     0.8289 0.832 0.000 0.000 0.008 0.160
#> SRR1080294     2  0.1197     0.9096 0.000 0.952 0.000 0.048 0.000
#> SRR1336314     4  0.1270     0.8106 0.000 0.052 0.000 0.948 0.000
#> SRR1102152     5  0.3902     0.8299 0.048 0.000 0.136 0.008 0.808
#> SRR1345244     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1478637     1  0.3852     0.8136 0.796 0.000 0.028 0.008 0.168
#> SRR1443776     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1120939     5  0.3913     0.6580 0.000 0.000 0.324 0.000 0.676
#> SRR1080117     5  0.3210     0.7934 0.000 0.000 0.212 0.000 0.788
#> SRR1102899     2  0.0000     0.9139 0.000 1.000 0.000 0.000 0.000
#> SRR1091865     1  0.4443     0.7632 0.724 0.000 0.028 0.008 0.240
#> SRR1361072     5  0.0404     0.8320 0.000 0.000 0.012 0.000 0.988
#> SRR1487890     1  0.1121     0.8466 0.956 0.000 0.000 0.044 0.000
#> SRR1349456     3  0.0000     0.8846 0.000 0.000 1.000 0.000 0.000
#> SRR1389384     1  0.6599     0.4515 0.508 0.000 0.284 0.008 0.200
#> SRR1316096     2  0.2020     0.8523 0.000 0.900 0.000 0.100 0.000
#> SRR1408512     5  0.1894     0.7823 0.072 0.000 0.000 0.008 0.920
#> SRR1447547     5  0.2964     0.8030 0.000 0.024 0.000 0.120 0.856
#> SRR1354053     4  0.2852     0.9119 0.000 0.172 0.000 0.828 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.0777      0.784 0.972 0.000 0.024 0.000 0.004 0.000
#> SRR1349562     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1353376     2  0.1267      0.891 0.000 0.940 0.000 0.060 0.000 0.000
#> SRR1499040     1  0.3528      0.785 0.700 0.000 0.004 0.000 0.296 0.000
#> SRR1322312     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1324412     3  0.2531      0.770 0.128 0.000 0.860 0.000 0.004 0.008
#> SRR1100991     3  0.1410      0.804 0.044 0.000 0.944 0.000 0.004 0.008
#> SRR1349479     2  0.1267      0.891 0.000 0.940 0.000 0.060 0.000 0.000
#> SRR1431248     3  0.1958      0.775 0.100 0.000 0.896 0.000 0.004 0.000
#> SRR1405054     3  0.0146      0.808 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1312266     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1409790     3  0.0405      0.809 0.000 0.000 0.988 0.000 0.004 0.008
#> SRR1352507     3  0.0692      0.806 0.000 0.000 0.976 0.000 0.004 0.020
#> SRR1383763     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1468314     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1473674     6  0.0291      0.954 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR1390499     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR821043      4  0.1663      0.918 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1455653     4  0.1663      0.918 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1335236     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1095383     2  0.1387      0.887 0.000 0.932 0.000 0.068 0.000 0.000
#> SRR1479489     1  0.0603      0.788 0.980 0.000 0.016 0.000 0.000 0.004
#> SRR1310433     2  0.2003      0.845 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR1073435     3  0.4833      0.596 0.000 0.132 0.728 0.088 0.052 0.000
#> SRR659649      6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1395999     1  0.1913      0.799 0.908 0.000 0.012 0.000 0.080 0.000
#> SRR1105248     5  0.5358      0.792 0.000 0.100 0.100 0.088 0.704 0.008
#> SRR1338257     1  0.2250      0.798 0.888 0.000 0.020 0.000 0.092 0.000
#> SRR1499395     6  0.3126      0.617 0.000 0.000 0.248 0.000 0.000 0.752
#> SRR1350002     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1489757     3  0.0508      0.809 0.000 0.000 0.984 0.000 0.004 0.012
#> SRR1414637     3  0.0405      0.807 0.008 0.000 0.988 0.000 0.004 0.000
#> SRR1478113     5  0.4022      0.623 0.000 0.020 0.000 0.272 0.700 0.008
#> SRR1322477     3  0.3508      0.632 0.292 0.000 0.704 0.000 0.004 0.000
#> SRR1478789     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1414185     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1069141     6  0.0260      0.950 0.000 0.008 0.000 0.000 0.000 0.992
#> SRR1376852     1  0.3189      0.792 0.760 0.000 0.004 0.000 0.236 0.000
#> SRR1323491     1  0.0713      0.784 0.972 0.000 0.028 0.000 0.000 0.000
#> SRR1338103     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1472012     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1340325     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1087321     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1488790     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1334866     3  0.1556      0.779 0.000 0.000 0.920 0.000 0.000 0.080
#> SRR1089446     3  0.3911      0.350 0.000 0.008 0.624 0.000 0.000 0.368
#> SRR1344445     3  0.0508      0.809 0.000 0.000 0.984 0.000 0.004 0.012
#> SRR1412969     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1071668     3  0.0790      0.804 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1075804     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1383283     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1350239     5  0.4585      0.855 0.000 0.000 0.200 0.088 0.704 0.008
#> SRR1353878     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1375721     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1083983     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1090095     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1414792     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1075102     4  0.1663      0.918 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1098737     3  0.3528      0.629 0.296 0.000 0.700 0.000 0.004 0.000
#> SRR1349409     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1413008     5  0.4585      0.855 0.000 0.000 0.200 0.088 0.704 0.008
#> SRR1407179     1  0.2070      0.759 0.892 0.000 0.100 0.000 0.000 0.008
#> SRR1095913     3  0.0713      0.805 0.000 0.000 0.972 0.000 0.000 0.028
#> SRR1403544     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1490546     1  0.3966     -0.162 0.552 0.000 0.444 0.000 0.004 0.000
#> SRR807971      3  0.0692      0.806 0.000 0.000 0.976 0.000 0.004 0.020
#> SRR1436228     3  0.0291      0.809 0.004 0.000 0.992 0.000 0.004 0.000
#> SRR1445218     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1485438     1  0.4165      0.178 0.536 0.000 0.012 0.000 0.000 0.452
#> SRR1358143     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1328760     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1380806     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1379426     3  0.1863      0.764 0.000 0.000 0.896 0.000 0.000 0.104
#> SRR1087007     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1086256     3  0.1858      0.768 0.000 0.004 0.904 0.000 0.000 0.092
#> SRR1346734     4  0.1663      0.918 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1414515     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1082151     1  0.2164      0.766 0.900 0.000 0.032 0.000 0.000 0.068
#> SRR1349320     4  0.3860      0.135 0.000 0.472 0.000 0.528 0.000 0.000
#> SRR1317554     4  0.1663      0.918 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1076022     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1339573     3  0.4893      0.313 0.440 0.000 0.512 0.000 0.012 0.036
#> SRR1455878     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1446203     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1387397     3  0.2178      0.759 0.132 0.000 0.868 0.000 0.000 0.000
#> SRR1402590     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1317532     3  0.2053      0.771 0.108 0.000 0.888 0.000 0.004 0.000
#> SRR1331488     5  0.5358      0.760 0.104 0.000 0.096 0.088 0.704 0.008
#> SRR1499675     3  0.2520      0.747 0.152 0.000 0.844 0.000 0.004 0.000
#> SRR1440467     6  0.2178      0.839 0.000 0.132 0.000 0.000 0.000 0.868
#> SRR807995      1  0.1913      0.771 0.908 0.000 0.012 0.000 0.000 0.080
#> SRR1476485     4  0.1663      0.918 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1388214     3  0.0146      0.808 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1456051     1  0.2260      0.800 0.860 0.000 0.000 0.000 0.140 0.000
#> SRR1473275     1  0.2213      0.756 0.888 0.000 0.100 0.000 0.004 0.008
#> SRR1444083     3  0.3489      0.636 0.288 0.000 0.708 0.000 0.004 0.000
#> SRR1313807     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1470751     1  0.2048      0.692 0.880 0.000 0.120 0.000 0.000 0.000
#> SRR1403434     6  0.2178      0.839 0.000 0.132 0.000 0.000 0.000 0.868
#> SRR1390540     3  0.3915      0.465 0.412 0.000 0.584 0.000 0.004 0.000
#> SRR1093861     2  0.3695      0.353 0.000 0.624 0.000 0.000 0.000 0.376
#> SRR1325290     1  0.0865      0.778 0.964 0.000 0.036 0.000 0.000 0.000
#> SRR1070689     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1384049     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1081184     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1324295     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1365313     6  0.2221      0.859 0.032 0.000 0.072 0.000 0.000 0.896
#> SRR1321877     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR815711      3  0.0713      0.805 0.000 0.000 0.972 0.000 0.000 0.028
#> SRR1433476     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1101883     3  0.0508      0.809 0.000 0.000 0.984 0.000 0.004 0.012
#> SRR1433729     3  0.7264      0.270 0.000 0.132 0.548 0.088 0.148 0.084
#> SRR1341877     3  0.3890      0.485 0.400 0.000 0.596 0.000 0.004 0.000
#> SRR1090556     3  0.0405      0.807 0.008 0.000 0.988 0.000 0.004 0.000
#> SRR1357389     3  0.0692      0.806 0.000 0.000 0.976 0.000 0.004 0.020
#> SRR1404227     3  0.1444      0.786 0.000 0.000 0.928 0.000 0.000 0.072
#> SRR1376830     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1500661     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1080294     2  0.1814      0.863 0.000 0.900 0.000 0.100 0.000 0.000
#> SRR1336314     4  0.0146      0.790 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1102152     3  0.3437      0.684 0.236 0.000 0.752 0.000 0.004 0.008
#> SRR1345244     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1478637     1  0.0622      0.788 0.980 0.000 0.012 0.000 0.000 0.008
#> SRR1443776     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1120939     3  0.2491      0.726 0.000 0.000 0.836 0.000 0.000 0.164
#> SRR1080117     3  0.1814      0.766 0.000 0.000 0.900 0.000 0.000 0.100
#> SRR1102899     2  0.0000      0.905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091865     1  0.0547      0.788 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR1361072     3  0.2100      0.769 0.112 0.000 0.884 0.000 0.004 0.000
#> SRR1487890     1  0.3371      0.790 0.708 0.000 0.000 0.000 0.292 0.000
#> SRR1349456     6  0.0260      0.957 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR1389384     1  0.3914      0.570 0.768 0.000 0.128 0.000 0.000 0.104
#> SRR1316096     2  0.1957      0.850 0.000 0.888 0.000 0.112 0.000 0.000
#> SRR1408512     3  0.3619      0.604 0.316 0.000 0.680 0.000 0.004 0.000
#> SRR1447547     5  0.4585      0.855 0.000 0.000 0.200 0.088 0.704 0.008
#> SRR1354053     4  0.1663      0.918 0.000 0.088 0.000 0.912 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.784           0.876       0.948         0.4147 0.564   0.564
#> 3 3 0.877           0.883       0.952         0.5706 0.687   0.491
#> 4 4 0.695           0.734       0.862         0.0578 0.885   0.705
#> 5 5 0.632           0.668       0.804         0.0538 0.930   0.789
#> 6 6 0.660           0.605       0.778         0.0675 0.917   0.722

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1   0.000      0.973 1.000 0.000
#> SRR1349562     1   0.000      0.973 1.000 0.000
#> SRR1353376     2   0.000      0.875 0.000 1.000
#> SRR1499040     1   0.000      0.973 1.000 0.000
#> SRR1322312     1   0.000      0.973 1.000 0.000
#> SRR1324412     1   0.000      0.973 1.000 0.000
#> SRR1100991     1   0.000      0.973 1.000 0.000
#> SRR1349479     2   0.932      0.563 0.348 0.652
#> SRR1431248     1   0.850      0.535 0.724 0.276
#> SRR1405054     1   0.000      0.973 1.000 0.000
#> SRR1312266     1   0.000      0.973 1.000 0.000
#> SRR1409790     1   0.000      0.973 1.000 0.000
#> SRR1352507     1   0.000      0.973 1.000 0.000
#> SRR1383763     1   0.000      0.973 1.000 0.000
#> SRR1468314     2   0.000      0.875 0.000 1.000
#> SRR1473674     2   0.000      0.875 0.000 1.000
#> SRR1390499     1   0.000      0.973 1.000 0.000
#> SRR821043      2   0.000      0.875 0.000 1.000
#> SRR1455653     2   0.000      0.875 0.000 1.000
#> SRR1335236     2   0.000      0.875 0.000 1.000
#> SRR1095383     2   0.000      0.875 0.000 1.000
#> SRR1479489     1   0.000      0.973 1.000 0.000
#> SRR1310433     2   0.000      0.875 0.000 1.000
#> SRR1073435     2   0.929      0.570 0.344 0.656
#> SRR659649      1   0.000      0.973 1.000 0.000
#> SRR1395999     1   0.000      0.973 1.000 0.000
#> SRR1105248     2   0.952      0.521 0.372 0.628
#> SRR1338257     1   0.000      0.973 1.000 0.000
#> SRR1499395     1   0.000      0.973 1.000 0.000
#> SRR1350002     2   0.000      0.875 0.000 1.000
#> SRR1489757     1   0.000      0.973 1.000 0.000
#> SRR1414637     2   0.000      0.875 0.000 1.000
#> SRR1478113     2   0.000      0.875 0.000 1.000
#> SRR1322477     1   1.000     -0.222 0.504 0.496
#> SRR1478789     1   1.000     -0.180 0.504 0.496
#> SRR1414185     1   0.000      0.973 1.000 0.000
#> SRR1069141     2   0.000      0.875 0.000 1.000
#> SRR1376852     1   0.000      0.973 1.000 0.000
#> SRR1323491     1   0.000      0.973 1.000 0.000
#> SRR1338103     1   0.000      0.973 1.000 0.000
#> SRR1472012     1   0.000      0.973 1.000 0.000
#> SRR1340325     1   0.000      0.973 1.000 0.000
#> SRR1087321     1   0.584      0.806 0.860 0.140
#> SRR1488790     1   0.000      0.973 1.000 0.000
#> SRR1334866     1   0.000      0.973 1.000 0.000
#> SRR1089446     1   0.000      0.973 1.000 0.000
#> SRR1344445     1   0.000      0.973 1.000 0.000
#> SRR1412969     1   0.000      0.973 1.000 0.000
#> SRR1071668     1   0.000      0.973 1.000 0.000
#> SRR1075804     1   0.000      0.973 1.000 0.000
#> SRR1383283     2   0.929      0.570 0.344 0.656
#> SRR1350239     2   1.000      0.250 0.488 0.512
#> SRR1353878     1   0.000      0.973 1.000 0.000
#> SRR1375721     1   0.000      0.973 1.000 0.000
#> SRR1083983     1   0.000      0.973 1.000 0.000
#> SRR1090095     1   0.000      0.973 1.000 0.000
#> SRR1414792     1   0.000      0.973 1.000 0.000
#> SRR1075102     2   0.000      0.875 0.000 1.000
#> SRR1098737     1   0.000      0.973 1.000 0.000
#> SRR1349409     1   0.000      0.973 1.000 0.000
#> SRR1413008     2   1.000      0.250 0.488 0.512
#> SRR1407179     1   0.000      0.973 1.000 0.000
#> SRR1095913     1   0.563      0.818 0.868 0.132
#> SRR1403544     1   0.000      0.973 1.000 0.000
#> SRR1490546     1   0.000      0.973 1.000 0.000
#> SRR807971      1   0.000      0.973 1.000 0.000
#> SRR1436228     2   0.929      0.570 0.344 0.656
#> SRR1445218     2   0.000      0.875 0.000 1.000
#> SRR1485438     2   0.000      0.875 0.000 1.000
#> SRR1358143     1   0.000      0.973 1.000 0.000
#> SRR1328760     1   0.000      0.973 1.000 0.000
#> SRR1380806     1   0.000      0.973 1.000 0.000
#> SRR1379426     1   0.000      0.973 1.000 0.000
#> SRR1087007     1   0.000      0.973 1.000 0.000
#> SRR1086256     2   0.866      0.643 0.288 0.712
#> SRR1346734     2   0.000      0.875 0.000 1.000
#> SRR1414515     1   0.000      0.973 1.000 0.000
#> SRR1082151     2   0.000      0.875 0.000 1.000
#> SRR1349320     2   0.000      0.875 0.000 1.000
#> SRR1317554     2   0.000      0.875 0.000 1.000
#> SRR1076022     2   0.000      0.875 0.000 1.000
#> SRR1339573     1   0.000      0.973 1.000 0.000
#> SRR1455878     1   0.000      0.973 1.000 0.000
#> SRR1446203     1   0.000      0.973 1.000 0.000
#> SRR1387397     1   0.000      0.973 1.000 0.000
#> SRR1402590     1   0.000      0.973 1.000 0.000
#> SRR1317532     1   0.000      0.973 1.000 0.000
#> SRR1331488     2   1.000      0.237 0.492 0.508
#> SRR1499675     1   0.000      0.973 1.000 0.000
#> SRR1440467     1   0.584      0.806 0.860 0.140
#> SRR807995      2   0.000      0.875 0.000 1.000
#> SRR1476485     2   0.000      0.875 0.000 1.000
#> SRR1388214     1   0.000      0.973 1.000 0.000
#> SRR1456051     1   0.000      0.973 1.000 0.000
#> SRR1473275     1   0.000      0.973 1.000 0.000
#> SRR1444083     1   0.000      0.973 1.000 0.000
#> SRR1313807     2   0.932      0.563 0.348 0.652
#> SRR1470751     2   0.000      0.875 0.000 1.000
#> SRR1403434     1   0.584      0.806 0.860 0.140
#> SRR1390540     1   0.000      0.973 1.000 0.000
#> SRR1093861     2   0.000      0.875 0.000 1.000
#> SRR1325290     1   0.000      0.973 1.000 0.000
#> SRR1070689     1   0.000      0.973 1.000 0.000
#> SRR1384049     1   0.000      0.973 1.000 0.000
#> SRR1081184     1   0.000      0.973 1.000 0.000
#> SRR1324295     1   0.000      0.973 1.000 0.000
#> SRR1365313     1   0.714      0.719 0.804 0.196
#> SRR1321877     1   0.000      0.973 1.000 0.000
#> SRR815711      1   0.000      0.973 1.000 0.000
#> SRR1433476     2   0.929      0.570 0.344 0.656
#> SRR1101883     1   0.000      0.973 1.000 0.000
#> SRR1433729     2   0.760      0.715 0.220 0.780
#> SRR1341877     1   0.000      0.973 1.000 0.000
#> SRR1090556     1   0.000      0.973 1.000 0.000
#> SRR1357389     1   0.000      0.973 1.000 0.000
#> SRR1404227     1   0.000      0.973 1.000 0.000
#> SRR1376830     1   0.000      0.973 1.000 0.000
#> SRR1500661     1   0.000      0.973 1.000 0.000
#> SRR1080294     2   0.000      0.875 0.000 1.000
#> SRR1336314     2   0.000      0.875 0.000 1.000
#> SRR1102152     1   0.000      0.973 1.000 0.000
#> SRR1345244     1   0.000      0.973 1.000 0.000
#> SRR1478637     1   0.000      0.973 1.000 0.000
#> SRR1443776     1   0.000      0.973 1.000 0.000
#> SRR1120939     1   0.000      0.973 1.000 0.000
#> SRR1080117     1   0.000      0.973 1.000 0.000
#> SRR1102899     2   0.000      0.875 0.000 1.000
#> SRR1091865     1   0.000      0.973 1.000 0.000
#> SRR1361072     1   0.000      0.973 1.000 0.000
#> SRR1487890     1   0.000      0.973 1.000 0.000
#> SRR1349456     1   0.469      0.860 0.900 0.100
#> SRR1389384     2   0.000      0.875 0.000 1.000
#> SRR1316096     2   0.000      0.875 0.000 1.000
#> SRR1408512     1   0.000      0.973 1.000 0.000
#> SRR1447547     2   1.000      0.250 0.488 0.512
#> SRR1354053     2   0.000      0.875 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1349562     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1353376     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1499040     1  0.3752     0.8055 0.856 0.000 0.144
#> SRR1322312     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1324412     3  0.0892     0.9116 0.020 0.000 0.980
#> SRR1100991     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1349479     3  0.6045     0.4414 0.000 0.380 0.620
#> SRR1431248     1  0.0661     0.9447 0.988 0.008 0.004
#> SRR1405054     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1312266     1  0.4555     0.7470 0.800 0.200 0.000
#> SRR1409790     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1352507     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1383763     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1468314     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1473674     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1390499     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR821043      2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1455653     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1335236     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1095383     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1479489     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1310433     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1073435     2  0.5763     0.5943 0.276 0.716 0.008
#> SRR659649      3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1395999     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1105248     1  0.6721     0.3688 0.604 0.380 0.016
#> SRR1338257     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1499395     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1350002     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1489757     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1414637     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1478113     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1322477     1  0.3644     0.8324 0.872 0.124 0.004
#> SRR1478789     3  0.5926     0.4918 0.000 0.356 0.644
#> SRR1414185     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1069141     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1376852     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1323491     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1338103     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1472012     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1340325     1  0.0424     0.9471 0.992 0.000 0.008
#> SRR1087321     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1488790     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1334866     1  0.0237     0.9494 0.996 0.000 0.004
#> SRR1089446     3  0.1529     0.8986 0.000 0.040 0.960
#> SRR1344445     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1412969     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1071668     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1075804     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1383283     3  0.6180     0.3560 0.000 0.416 0.584
#> SRR1350239     1  0.6126     0.4578 0.644 0.352 0.004
#> SRR1353878     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1375721     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1083983     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1090095     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1414792     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1075102     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1098737     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1349409     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1413008     1  0.6081     0.4758 0.652 0.344 0.004
#> SRR1407179     3  0.1860     0.8833 0.052 0.000 0.948
#> SRR1095913     1  0.9191    -0.0724 0.432 0.148 0.420
#> SRR1403544     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1490546     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR807971      3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1436228     2  0.5815     0.5399 0.304 0.692 0.004
#> SRR1445218     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1485438     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1358143     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1328760     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1380806     1  0.2165     0.8984 0.936 0.000 0.064
#> SRR1379426     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1087007     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1086256     2  0.0983     0.9442 0.016 0.980 0.004
#> SRR1346734     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1414515     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1082151     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1349320     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1317554     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1076022     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1339573     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1455878     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1446203     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1387397     1  0.0237     0.9494 0.996 0.000 0.004
#> SRR1402590     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1317532     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1331488     1  0.5016     0.6739 0.760 0.240 0.000
#> SRR1499675     1  0.0237     0.9494 0.996 0.000 0.004
#> SRR1440467     3  0.4887     0.7014 0.000 0.228 0.772
#> SRR807995      2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1476485     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1388214     1  0.0747     0.9418 0.984 0.000 0.016
#> SRR1456051     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1473275     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1444083     1  0.0747     0.9420 0.984 0.000 0.016
#> SRR1313807     3  0.6062     0.4327 0.000 0.384 0.616
#> SRR1470751     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1403434     3  0.4887     0.7014 0.000 0.228 0.772
#> SRR1390540     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1093861     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1325290     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1070689     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1384049     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1081184     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1324295     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1365313     2  0.7029     0.0626 0.020 0.540 0.440
#> SRR1321877     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR815711      3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1433476     3  0.6252     0.2800 0.000 0.444 0.556
#> SRR1101883     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1433729     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1341877     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1090556     1  0.0237     0.9494 0.996 0.000 0.004
#> SRR1357389     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1404227     3  0.0892     0.9118 0.020 0.000 0.980
#> SRR1376830     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1500661     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1080294     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1336314     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1102152     1  0.0592     0.9449 0.988 0.000 0.012
#> SRR1345244     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1478637     1  0.0237     0.9494 0.996 0.000 0.004
#> SRR1443776     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1120939     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1080117     3  0.0000     0.9267 0.000 0.000 1.000
#> SRR1102899     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1091865     1  0.0237     0.9494 0.996 0.000 0.004
#> SRR1361072     1  0.0424     0.9471 0.992 0.000 0.008
#> SRR1487890     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1349456     3  0.0237     0.9243 0.000 0.004 0.996
#> SRR1389384     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1316096     2  0.0000     0.9629 0.000 1.000 0.000
#> SRR1408512     1  0.0000     0.9513 1.000 0.000 0.000
#> SRR1447547     1  0.5690     0.5889 0.708 0.288 0.004
#> SRR1354053     2  0.0000     0.9629 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.2281      0.888 0.904 0.096 0.000 0.000
#> SRR1349562     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1353376     4  0.1151      0.570 0.000 0.024 0.008 0.968
#> SRR1499040     1  0.3569      0.794 0.804 0.000 0.196 0.000
#> SRR1322312     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.3123      0.771 0.156 0.000 0.844 0.000
#> SRR1100991     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1349479     4  0.7106      0.347 0.000 0.148 0.324 0.528
#> SRR1431248     1  0.4456      0.849 0.804 0.148 0.044 0.004
#> SRR1405054     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1312266     1  0.4597      0.841 0.800 0.148 0.008 0.044
#> SRR1409790     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1352507     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1383763     1  0.0592      0.902 0.984 0.000 0.016 0.000
#> SRR1468314     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1473674     2  0.3444      0.768 0.000 0.816 0.000 0.184
#> SRR1390499     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR821043      4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1455653     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1335236     2  0.4961      0.754 0.000 0.552 0.000 0.448
#> SRR1095383     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1479489     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1310433     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1073435     4  0.7831      0.394 0.220 0.148 0.052 0.580
#> SRR659649      3  0.1059      0.914 0.012 0.016 0.972 0.000
#> SRR1395999     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.8512      0.362 0.260 0.156 0.076 0.508
#> SRR1338257     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1499395     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1350002     2  0.3444      0.768 0.000 0.816 0.000 0.184
#> SRR1489757     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1414637     4  0.7292     -0.658 0.080 0.440 0.024 0.456
#> SRR1478113     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1322477     1  0.4456      0.849 0.804 0.148 0.044 0.004
#> SRR1478789     3  0.8005      0.213 0.016 0.332 0.456 0.196
#> SRR1414185     3  0.0469      0.919 0.012 0.000 0.988 0.000
#> SRR1069141     2  0.4977      0.740 0.000 0.540 0.000 0.460
#> SRR1376852     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.4008      0.858 0.820 0.148 0.032 0.000
#> SRR1472012     1  0.3523      0.875 0.856 0.112 0.032 0.000
#> SRR1340325     1  0.1118      0.895 0.964 0.000 0.036 0.000
#> SRR1087321     3  0.3808      0.789 0.012 0.160 0.824 0.004
#> SRR1488790     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1334866     1  0.4188      0.853 0.812 0.148 0.040 0.000
#> SRR1089446     3  0.3880      0.798 0.020 0.136 0.836 0.008
#> SRR1344445     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1412969     3  0.1059      0.914 0.012 0.016 0.972 0.000
#> SRR1071668     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1075804     1  0.3024      0.868 0.852 0.148 0.000 0.000
#> SRR1383283     4  0.7092      0.350 0.000 0.148 0.320 0.532
#> SRR1350239     4  0.8353      0.357 0.276 0.156 0.060 0.508
#> SRR1353878     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1375721     1  0.0592      0.902 0.984 0.000 0.016 0.000
#> SRR1083983     1  0.1059      0.903 0.972 0.012 0.016 0.000
#> SRR1090095     1  0.1940      0.893 0.924 0.076 0.000 0.000
#> SRR1414792     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1098737     1  0.3024      0.868 0.852 0.148 0.000 0.000
#> SRR1349409     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.8308      0.355 0.280 0.156 0.056 0.508
#> SRR1407179     3  0.2704      0.815 0.124 0.000 0.876 0.000
#> SRR1095913     1  0.8057      0.592 0.596 0.148 0.120 0.136
#> SRR1403544     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.3257      0.866 0.844 0.152 0.004 0.000
#> SRR807971      3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1436228     1  0.7472      0.548 0.568 0.292 0.036 0.104
#> SRR1445218     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1485438     2  0.3486      0.769 0.000 0.812 0.000 0.188
#> SRR1358143     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.0592      0.902 0.984 0.000 0.016 0.000
#> SRR1380806     1  0.3444      0.788 0.816 0.000 0.184 0.000
#> SRR1379426     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1087007     3  0.1059      0.914 0.012 0.016 0.972 0.000
#> SRR1086256     4  0.7512      0.280 0.236 0.152 0.028 0.584
#> SRR1346734     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0188      0.903 0.996 0.000 0.004 0.000
#> SRR1082151     2  0.4961      0.755 0.000 0.552 0.000 0.448
#> SRR1349320     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1317554     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1076022     4  0.4697     -0.394 0.000 0.356 0.000 0.644
#> SRR1339573     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1455878     1  0.0592      0.902 0.984 0.000 0.016 0.000
#> SRR1446203     3  0.1388      0.911 0.012 0.028 0.960 0.000
#> SRR1387397     1  0.0592      0.902 0.984 0.000 0.016 0.000
#> SRR1402590     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.3962      0.859 0.820 0.152 0.028 0.000
#> SRR1331488     4  0.8326      0.161 0.372 0.152 0.044 0.432
#> SRR1499675     1  0.3958      0.860 0.824 0.144 0.032 0.000
#> SRR1440467     3  0.5392      0.104 0.012 0.000 0.528 0.460
#> SRR807995      2  0.3444      0.768 0.000 0.816 0.000 0.184
#> SRR1476485     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.4686      0.839 0.788 0.144 0.068 0.000
#> SRR1456051     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1444083     1  0.1716      0.864 0.936 0.000 0.064 0.000
#> SRR1313807     4  0.7106      0.347 0.000 0.148 0.324 0.528
#> SRR1470751     2  0.4967      0.751 0.000 0.548 0.000 0.452
#> SRR1403434     3  0.4485      0.625 0.012 0.000 0.740 0.248
#> SRR1390540     1  0.3300      0.869 0.848 0.144 0.008 0.000
#> SRR1093861     4  0.4977     -0.630 0.000 0.460 0.000 0.540
#> SRR1325290     1  0.4008      0.858 0.820 0.148 0.032 0.000
#> SRR1070689     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.0188      0.903 0.996 0.000 0.004 0.000
#> SRR1081184     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1365313     1  0.9193      0.232 0.408 0.204 0.292 0.096
#> SRR1321877     3  0.1388      0.911 0.012 0.028 0.960 0.000
#> SRR815711      3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1433476     4  0.7077      0.352 0.000 0.148 0.316 0.536
#> SRR1101883     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1433729     4  0.4274      0.498 0.000 0.148 0.044 0.808
#> SRR1341877     1  0.3958      0.860 0.824 0.144 0.032 0.000
#> SRR1090556     1  0.4008      0.858 0.820 0.148 0.032 0.000
#> SRR1357389     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1404227     3  0.2919      0.855 0.060 0.044 0.896 0.000
#> SRR1376830     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1500661     1  0.0592      0.902 0.984 0.000 0.016 0.000
#> SRR1080294     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1336314     4  0.0000      0.581 0.000 0.000 0.000 1.000
#> SRR1102152     1  0.1118      0.898 0.964 0.000 0.036 0.000
#> SRR1345244     3  0.1388      0.911 0.012 0.028 0.960 0.000
#> SRR1478637     1  0.4274      0.851 0.808 0.148 0.044 0.000
#> SRR1443776     3  0.1388      0.911 0.012 0.028 0.960 0.000
#> SRR1120939     3  0.1059      0.914 0.012 0.016 0.972 0.000
#> SRR1080117     3  0.0707      0.923 0.020 0.000 0.980 0.000
#> SRR1102899     4  0.2530      0.399 0.000 0.112 0.000 0.888
#> SRR1091865     1  0.4188      0.853 0.812 0.148 0.040 0.000
#> SRR1361072     1  0.2399      0.895 0.920 0.048 0.032 0.000
#> SRR1487890     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.3271      0.824 0.012 0.132 0.856 0.000
#> SRR1389384     2  0.7126      0.619 0.068 0.480 0.024 0.428
#> SRR1316096     4  0.1474      0.510 0.000 0.052 0.000 0.948
#> SRR1408512     1  0.3913      0.860 0.824 0.148 0.028 0.000
#> SRR1447547     4  0.8369      0.348 0.288 0.152 0.060 0.500
#> SRR1354053     4  0.0000      0.581 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.2424   0.767940 0.868 0.000 0.000 0.000 0.132
#> SRR1349562     1  0.2813   0.710494 0.832 0.000 0.000 0.168 0.000
#> SRR1353376     5  0.3885  -0.091749 0.000 0.040 0.000 0.176 0.784
#> SRR1499040     3  0.6994   0.460543 0.232 0.000 0.552 0.156 0.060
#> SRR1322312     1  0.3731   0.716291 0.800 0.000 0.040 0.160 0.000
#> SRR1324412     3  0.1544   0.847004 0.068 0.000 0.932 0.000 0.000
#> SRR1100991     3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1349479     5  0.2162   0.439789 0.000 0.012 0.064 0.008 0.916
#> SRR1431248     1  0.5295   0.646193 0.648 0.000 0.064 0.008 0.280
#> SRR1405054     3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1312266     1  0.4040   0.694324 0.712 0.000 0.012 0.000 0.276
#> SRR1409790     3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1352507     3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1383763     1  0.6691   0.666736 0.616 0.000 0.088 0.160 0.136
#> SRR1468314     5  0.4394  -0.183733 0.000 0.048 0.000 0.220 0.732
#> SRR1473674     2  0.0000   0.770864 0.000 1.000 0.000 0.000 0.000
#> SRR1390499     1  0.2732   0.716100 0.840 0.000 0.000 0.160 0.000
#> SRR821043      4  0.4327   0.992152 0.000 0.008 0.000 0.632 0.360
#> SRR1455653     4  0.4327   0.992152 0.000 0.008 0.000 0.632 0.360
#> SRR1335236     2  0.0566   0.773610 0.000 0.984 0.000 0.012 0.004
#> SRR1095383     5  0.4461  -0.192196 0.000 0.052 0.000 0.220 0.728
#> SRR1479489     3  0.1043   0.861484 0.040 0.000 0.960 0.000 0.000
#> SRR1310433     5  0.6141  -0.333814 0.000 0.244 0.000 0.196 0.560
#> SRR1073435     5  0.1739   0.456726 0.024 0.000 0.032 0.004 0.940
#> SRR659649      3  0.1173   0.855718 0.012 0.000 0.964 0.020 0.004
#> SRR1395999     1  0.0162   0.777678 0.996 0.000 0.000 0.004 0.000
#> SRR1105248     5  0.4938   0.297987 0.332 0.000 0.028 0.008 0.632
#> SRR1338257     1  0.0000   0.778170 1.000 0.000 0.000 0.000 0.000
#> SRR1499395     3  0.0771   0.860695 0.020 0.000 0.976 0.004 0.000
#> SRR1350002     2  0.0000   0.770864 0.000 1.000 0.000 0.000 0.000
#> SRR1489757     3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1414637     2  0.5384   0.665024 0.016 0.744 0.032 0.096 0.112
#> SRR1478113     4  0.4380   0.981539 0.000 0.008 0.000 0.616 0.376
#> SRR1322477     1  0.5295   0.645526 0.648 0.000 0.064 0.008 0.280
#> SRR1478789     3  0.7272   0.389290 0.068 0.140 0.544 0.008 0.240
#> SRR1414185     3  0.0693   0.857084 0.012 0.000 0.980 0.008 0.000
#> SRR1069141     2  0.1281   0.769026 0.000 0.956 0.000 0.012 0.032
#> SRR1376852     1  0.2471   0.728719 0.864 0.000 0.000 0.136 0.000
#> SRR1323491     1  0.2179   0.773426 0.896 0.000 0.000 0.004 0.100
#> SRR1338103     1  0.4475   0.681357 0.692 0.000 0.032 0.000 0.276
#> SRR1472012     1  0.3191   0.774381 0.860 0.000 0.052 0.004 0.084
#> SRR1340325     1  0.0794   0.780544 0.972 0.000 0.028 0.000 0.000
#> SRR1087321     3  0.5233   0.654032 0.000 0.000 0.684 0.148 0.168
#> SRR1488790     1  0.0162   0.778989 0.996 0.000 0.004 0.000 0.000
#> SRR1334866     1  0.5230   0.656744 0.660 0.000 0.064 0.008 0.268
#> SRR1089446     3  0.6253   0.218234 0.188 0.000 0.532 0.000 0.280
#> SRR1344445     3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1412969     3  0.0451   0.852134 0.004 0.000 0.988 0.008 0.000
#> SRR1071668     3  0.1124   0.862396 0.036 0.000 0.960 0.000 0.004
#> SRR1075804     1  0.3814   0.699199 0.720 0.000 0.004 0.000 0.276
#> SRR1383283     5  0.1605   0.451342 0.000 0.012 0.040 0.004 0.944
#> SRR1350239     5  0.4984   0.268286 0.344 0.000 0.028 0.008 0.620
#> SRR1353878     1  0.0000   0.778170 1.000 0.000 0.000 0.000 0.000
#> SRR1375721     1  0.1894   0.775800 0.920 0.000 0.072 0.008 0.000
#> SRR1083983     1  0.1041   0.783258 0.964 0.000 0.032 0.000 0.004
#> SRR1090095     1  0.2852   0.757459 0.828 0.000 0.000 0.000 0.172
#> SRR1414792     1  0.0404   0.777285 0.988 0.000 0.000 0.012 0.000
#> SRR1075102     4  0.4380   0.981539 0.000 0.008 0.000 0.616 0.376
#> SRR1098737     1  0.3661   0.701158 0.724 0.000 0.000 0.000 0.276
#> SRR1349409     1  0.2773   0.713536 0.836 0.000 0.000 0.164 0.000
#> SRR1413008     5  0.5060   0.260773 0.344 0.000 0.032 0.008 0.616
#> SRR1407179     3  0.3419   0.731455 0.180 0.000 0.804 0.016 0.000
#> SRR1095913     1  0.5682   0.673823 0.668 0.000 0.132 0.016 0.184
#> SRR1403544     1  0.3106   0.734103 0.844 0.000 0.024 0.132 0.000
#> SRR1490546     1  0.4016   0.699344 0.716 0.000 0.012 0.000 0.272
#> SRR807971      3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1436228     1  0.7153   0.513526 0.540 0.116 0.064 0.008 0.272
#> SRR1445218     2  0.6567  -0.153530 0.000 0.432 0.000 0.208 0.360
#> SRR1485438     2  0.0404   0.773392 0.000 0.988 0.000 0.012 0.000
#> SRR1358143     1  0.3875   0.707772 0.792 0.000 0.048 0.160 0.000
#> SRR1328760     1  0.0898   0.782204 0.972 0.000 0.020 0.008 0.000
#> SRR1380806     3  0.4392   0.455689 0.380 0.000 0.612 0.008 0.000
#> SRR1379426     3  0.0771   0.860588 0.020 0.000 0.976 0.004 0.000
#> SRR1087007     3  0.0693   0.857084 0.012 0.000 0.980 0.008 0.000
#> SRR1086256     1  0.5995   0.526886 0.576 0.016 0.064 0.008 0.336
#> SRR1346734     4  0.4327   0.992152 0.000 0.008 0.000 0.632 0.360
#> SRR1414515     1  0.1331   0.778418 0.952 0.000 0.040 0.008 0.000
#> SRR1082151     2  0.1518   0.771319 0.000 0.952 0.016 0.012 0.020
#> SRR1349320     4  0.4380   0.981539 0.000 0.008 0.000 0.616 0.376
#> SRR1317554     4  0.4327   0.992152 0.000 0.008 0.000 0.632 0.360
#> SRR1076022     2  0.5093   0.545524 0.000 0.696 0.000 0.180 0.124
#> SRR1339573     3  0.0963   0.862391 0.036 0.000 0.964 0.000 0.000
#> SRR1455878     1  0.0162   0.778989 0.996 0.000 0.004 0.000 0.000
#> SRR1446203     3  0.2930   0.787377 0.000 0.000 0.832 0.164 0.004
#> SRR1387397     1  0.1041   0.783046 0.964 0.000 0.032 0.004 0.000
#> SRR1402590     1  0.2773   0.710884 0.836 0.000 0.000 0.164 0.000
#> SRR1317532     1  0.4550   0.682145 0.692 0.000 0.028 0.004 0.276
#> SRR1331488     5  0.5028  -0.094219 0.444 0.000 0.032 0.000 0.524
#> SRR1499675     1  0.4425   0.723198 0.744 0.000 0.048 0.004 0.204
#> SRR1440467     3  0.4387   0.451493 0.000 0.000 0.640 0.012 0.348
#> SRR807995      2  0.0000   0.770864 0.000 1.000 0.000 0.000 0.000
#> SRR1476485     4  0.4327   0.992152 0.000 0.008 0.000 0.632 0.360
#> SRR1388214     1  0.4764   0.716494 0.716 0.000 0.052 0.008 0.224
#> SRR1456051     1  0.0404   0.777285 0.988 0.000 0.000 0.012 0.000
#> SRR1473275     3  0.1121   0.860483 0.044 0.000 0.956 0.000 0.000
#> SRR1444083     1  0.1410   0.767395 0.940 0.000 0.060 0.000 0.000
#> SRR1313807     5  0.1444   0.452995 0.000 0.012 0.040 0.000 0.948
#> SRR1470751     2  0.1518   0.771319 0.000 0.952 0.016 0.012 0.020
#> SRR1403434     3  0.4306   0.494021 0.000 0.000 0.660 0.012 0.328
#> SRR1390540     1  0.3554   0.737625 0.776 0.000 0.004 0.004 0.216
#> SRR1093861     2  0.1740   0.757184 0.000 0.932 0.000 0.012 0.056
#> SRR1325290     1  0.4204   0.729258 0.756 0.000 0.048 0.000 0.196
#> SRR1070689     1  0.2377   0.735399 0.872 0.000 0.000 0.128 0.000
#> SRR1384049     1  0.3774   0.722925 0.808 0.000 0.032 0.152 0.008
#> SRR1081184     1  0.2732   0.713584 0.840 0.000 0.000 0.160 0.000
#> SRR1324295     1  0.2773   0.710884 0.836 0.000 0.000 0.164 0.000
#> SRR1365313     1  0.6729   0.557007 0.564 0.036 0.112 0.008 0.280
#> SRR1321877     3  0.2930   0.787377 0.000 0.000 0.832 0.164 0.004
#> SRR815711      3  0.0898   0.860406 0.020 0.000 0.972 0.008 0.000
#> SRR1433476     5  0.1444   0.452995 0.000 0.012 0.040 0.000 0.948
#> SRR1101883     3  0.1043   0.861675 0.040 0.000 0.960 0.000 0.000
#> SRR1433729     5  0.1442   0.437202 0.004 0.012 0.032 0.000 0.952
#> SRR1341877     1  0.4218   0.733064 0.760 0.000 0.040 0.004 0.196
#> SRR1090556     1  0.4697   0.710043 0.720 0.000 0.048 0.008 0.224
#> SRR1357389     3  0.0609   0.860482 0.020 0.000 0.980 0.000 0.000
#> SRR1404227     3  0.4155   0.721866 0.140 0.000 0.796 0.016 0.048
#> SRR1376830     1  0.2561   0.726674 0.856 0.000 0.000 0.144 0.000
#> SRR1500661     1  0.0000   0.778170 1.000 0.000 0.000 0.000 0.000
#> SRR1080294     5  0.4333  -0.166141 0.000 0.048 0.000 0.212 0.740
#> SRR1336314     4  0.4327   0.992152 0.000 0.008 0.000 0.632 0.360
#> SRR1102152     1  0.2095   0.780761 0.920 0.000 0.060 0.012 0.008
#> SRR1345244     3  0.2930   0.787377 0.000 0.000 0.832 0.164 0.004
#> SRR1478637     1  0.5575   0.681968 0.680 0.000 0.128 0.016 0.176
#> SRR1443776     3  0.2930   0.787377 0.000 0.000 0.832 0.164 0.004
#> SRR1120939     3  0.1908   0.818827 0.000 0.000 0.908 0.092 0.000
#> SRR1080117     3  0.0771   0.860588 0.020 0.000 0.976 0.004 0.000
#> SRR1102899     2  0.6434  -0.000154 0.000 0.432 0.000 0.176 0.392
#> SRR1091865     1  0.5053   0.664539 0.668 0.000 0.060 0.004 0.268
#> SRR1361072     1  0.3678   0.756113 0.804 0.000 0.020 0.008 0.168
#> SRR1487890     1  0.3731   0.710214 0.800 0.000 0.040 0.160 0.000
#> SRR1349456     3  0.5198   0.659608 0.000 0.000 0.688 0.148 0.164
#> SRR1389384     2  0.6445   0.380525 0.100 0.644 0.052 0.012 0.192
#> SRR1316096     2  0.6456  -0.038420 0.000 0.468 0.000 0.192 0.340
#> SRR1408512     1  0.4558   0.699945 0.708 0.000 0.036 0.004 0.252
#> SRR1447547     5  0.5022   0.273062 0.332 0.000 0.048 0.000 0.620
#> SRR1354053     4  0.4327   0.992152 0.000 0.008 0.000 0.632 0.360

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.3999    -0.4160 0.500 0.000 0.000 0.000 0.496 0.004
#> SRR1349562     1  0.2491     0.7112 0.868 0.000 0.000 0.000 0.020 0.112
#> SRR1353376     6  0.4947     0.6349 0.000 0.008 0.000 0.416 0.048 0.528
#> SRR1499040     3  0.6089     0.2575 0.352 0.000 0.488 0.000 0.128 0.032
#> SRR1322312     1  0.3058     0.7138 0.848 0.000 0.020 0.000 0.024 0.108
#> SRR1324412     3  0.1918     0.7935 0.088 0.000 0.904 0.000 0.008 0.000
#> SRR1100991     3  0.0547     0.8340 0.020 0.000 0.980 0.000 0.000 0.000
#> SRR1349479     6  0.5225     0.8197 0.000 0.008 0.004 0.240 0.112 0.636
#> SRR1431248     5  0.5021     0.5880 0.288 0.000 0.012 0.004 0.632 0.064
#> SRR1405054     3  0.0777     0.8326 0.024 0.000 0.972 0.000 0.004 0.000
#> SRR1312266     5  0.4076     0.5575 0.396 0.000 0.000 0.000 0.592 0.012
#> SRR1409790     3  0.0405     0.8346 0.008 0.000 0.988 0.000 0.004 0.000
#> SRR1352507     3  0.0692     0.8334 0.020 0.000 0.976 0.000 0.004 0.000
#> SRR1383763     1  0.4640     0.6680 0.744 0.000 0.044 0.000 0.092 0.120
#> SRR1468314     4  0.4326    -0.4941 0.000 0.008 0.000 0.496 0.008 0.488
#> SRR1473674     2  0.0146     0.8294 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1390499     1  0.2573     0.7114 0.864 0.000 0.000 0.000 0.024 0.112
#> SRR821043      4  0.0000     0.7545 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1455653     4  0.0000     0.7545 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1335236     2  0.0790     0.8347 0.000 0.968 0.000 0.032 0.000 0.000
#> SRR1095383     4  0.4326    -0.4941 0.000 0.008 0.000 0.496 0.008 0.488
#> SRR1479489     3  0.1010     0.8299 0.036 0.000 0.960 0.000 0.004 0.000
#> SRR1310433     4  0.5523    -0.2396 0.000 0.140 0.000 0.500 0.000 0.360
#> SRR1073435     5  0.6281    -0.0828 0.004 0.004 0.012 0.300 0.488 0.192
#> SRR659649      3  0.1738     0.8308 0.000 0.004 0.928 0.000 0.016 0.052
#> SRR1395999     1  0.0603     0.7360 0.980 0.000 0.000 0.000 0.016 0.004
#> SRR1105248     5  0.5859     0.2380 0.032 0.000 0.008 0.252 0.596 0.112
#> SRR1338257     1  0.1806     0.7019 0.908 0.000 0.000 0.000 0.088 0.004
#> SRR1499395     3  0.0508     0.8356 0.004 0.000 0.984 0.000 0.000 0.012
#> SRR1350002     2  0.0146     0.8294 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1489757     3  0.0405     0.8346 0.008 0.000 0.988 0.000 0.004 0.000
#> SRR1414637     2  0.5590     0.6525 0.024 0.668 0.000 0.128 0.156 0.024
#> SRR1478113     4  0.0146     0.7529 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1322477     5  0.4985     0.5886 0.280 0.000 0.012 0.004 0.640 0.064
#> SRR1478789     3  0.7790     0.4527 0.088 0.112 0.500 0.036 0.220 0.044
#> SRR1414185     3  0.1442     0.8327 0.000 0.004 0.944 0.000 0.012 0.040
#> SRR1069141     2  0.1471     0.8212 0.000 0.932 0.000 0.064 0.004 0.000
#> SRR1376852     1  0.2118     0.7233 0.888 0.000 0.000 0.000 0.008 0.104
#> SRR1323491     1  0.3868    -0.3952 0.508 0.000 0.000 0.000 0.492 0.000
#> SRR1338103     1  0.4655     0.0519 0.576 0.000 0.008 0.000 0.384 0.032
#> SRR1472012     1  0.2568     0.7023 0.876 0.000 0.012 0.000 0.096 0.016
#> SRR1340325     1  0.1549     0.7376 0.936 0.000 0.020 0.000 0.044 0.000
#> SRR1087321     3  0.5331     0.6312 0.000 0.000 0.580 0.000 0.268 0.152
#> SRR1488790     1  0.1010     0.7329 0.960 0.000 0.000 0.000 0.036 0.004
#> SRR1334866     1  0.4842     0.4672 0.648 0.000 0.012 0.004 0.284 0.052
#> SRR1089446     1  0.7670     0.0329 0.372 0.004 0.368 0.100 0.108 0.048
#> SRR1344445     3  0.0363     0.8348 0.012 0.000 0.988 0.000 0.000 0.000
#> SRR1412969     3  0.1864     0.8284 0.000 0.004 0.924 0.000 0.032 0.040
#> SRR1071668     3  0.0653     0.8359 0.004 0.000 0.980 0.000 0.004 0.012
#> SRR1075804     5  0.3747     0.5597 0.396 0.000 0.000 0.000 0.604 0.000
#> SRR1383283     6  0.5558     0.8332 0.000 0.008 0.012 0.276 0.108 0.596
#> SRR1350239     5  0.5421     0.2560 0.032 0.000 0.000 0.252 0.624 0.092
#> SRR1353878     1  0.0653     0.7407 0.980 0.000 0.004 0.000 0.004 0.012
#> SRR1375721     1  0.2811     0.7233 0.872 0.000 0.032 0.000 0.076 0.020
#> SRR1083983     1  0.1410     0.7348 0.944 0.000 0.008 0.000 0.044 0.004
#> SRR1090095     5  0.3867     0.4186 0.488 0.000 0.000 0.000 0.512 0.000
#> SRR1414792     1  0.0713     0.7372 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR1075102     4  0.0146     0.7529 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1098737     5  0.3774     0.5395 0.408 0.000 0.000 0.000 0.592 0.000
#> SRR1349409     1  0.2527     0.7140 0.868 0.000 0.000 0.000 0.024 0.108
#> SRR1413008     5  0.5421     0.2560 0.032 0.000 0.000 0.252 0.624 0.092
#> SRR1407179     3  0.4682     0.6871 0.172 0.004 0.728 0.000 0.068 0.028
#> SRR1095913     1  0.5461     0.5003 0.644 0.000 0.048 0.016 0.248 0.044
#> SRR1403544     1  0.1679     0.7407 0.936 0.000 0.012 0.000 0.016 0.036
#> SRR1490546     5  0.3823     0.5012 0.436 0.000 0.000 0.000 0.564 0.000
#> SRR807971      3  0.0405     0.8346 0.008 0.000 0.988 0.000 0.004 0.000
#> SRR1436228     1  0.7024    -0.1369 0.412 0.092 0.012 0.020 0.400 0.064
#> SRR1445218     4  0.4184    -0.0900 0.000 0.488 0.000 0.500 0.000 0.012
#> SRR1485438     2  0.0363     0.8315 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR1358143     1  0.3217     0.7067 0.840 0.000 0.024 0.000 0.028 0.108
#> SRR1328760     1  0.2195     0.7330 0.904 0.000 0.012 0.000 0.068 0.016
#> SRR1380806     3  0.4563     0.4169 0.348 0.000 0.604 0.000 0.048 0.000
#> SRR1379426     3  0.1780     0.8289 0.004 0.004 0.932 0.000 0.036 0.024
#> SRR1087007     3  0.1536     0.8311 0.000 0.004 0.940 0.000 0.016 0.040
#> SRR1086256     5  0.5804     0.5926 0.216 0.012 0.012 0.048 0.648 0.064
#> SRR1346734     4  0.0000     0.7545 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1414515     1  0.1321     0.7404 0.952 0.000 0.024 0.000 0.020 0.004
#> SRR1082151     2  0.1080     0.8350 0.000 0.960 0.000 0.032 0.004 0.004
#> SRR1349320     4  0.0146     0.7529 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1317554     4  0.0000     0.7545 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1076022     2  0.3230     0.6955 0.000 0.776 0.000 0.212 0.000 0.012
#> SRR1339573     3  0.0260     0.8346 0.008 0.000 0.992 0.000 0.000 0.000
#> SRR1455878     1  0.1088     0.7371 0.960 0.000 0.000 0.000 0.024 0.016
#> SRR1446203     3  0.5118     0.6998 0.000 0.004 0.640 0.000 0.148 0.208
#> SRR1387397     1  0.1838     0.7365 0.928 0.000 0.012 0.000 0.040 0.020
#> SRR1402590     1  0.2212     0.7159 0.880 0.000 0.000 0.000 0.008 0.112
#> SRR1317532     5  0.3789     0.5272 0.416 0.000 0.000 0.000 0.584 0.000
#> SRR1331488     5  0.5516     0.4726 0.132 0.000 0.000 0.224 0.620 0.024
#> SRR1499675     1  0.3516     0.6358 0.792 0.000 0.012 0.000 0.172 0.024
#> SRR1440467     3  0.5752     0.5438 0.000 0.004 0.624 0.208 0.040 0.124
#> SRR807995      2  0.0146     0.8294 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1476485     4  0.0000     0.7545 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388214     1  0.3979     0.1907 0.628 0.000 0.012 0.000 0.360 0.000
#> SRR1456051     1  0.0520     0.7382 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR1473275     3  0.1408     0.8323 0.020 0.000 0.944 0.000 0.036 0.000
#> SRR1444083     1  0.2383     0.7290 0.900 0.000 0.052 0.000 0.028 0.020
#> SRR1313807     6  0.5466     0.8356 0.000 0.008 0.012 0.256 0.108 0.616
#> SRR1470751     2  0.1080     0.8350 0.000 0.960 0.000 0.032 0.004 0.004
#> SRR1403434     3  0.5549     0.5784 0.000 0.004 0.648 0.192 0.036 0.120
#> SRR1390540     5  0.3857     0.4398 0.468 0.000 0.000 0.000 0.532 0.000
#> SRR1093861     2  0.1141     0.8292 0.000 0.948 0.000 0.052 0.000 0.000
#> SRR1325290     1  0.3392     0.6541 0.820 0.000 0.012 0.000 0.128 0.040
#> SRR1070689     1  0.2560     0.7229 0.872 0.000 0.000 0.000 0.036 0.092
#> SRR1384049     1  0.2822     0.7137 0.856 0.000 0.004 0.000 0.032 0.108
#> SRR1081184     1  0.2500     0.7135 0.868 0.000 0.004 0.000 0.012 0.116
#> SRR1324295     1  0.2491     0.7112 0.868 0.000 0.000 0.000 0.020 0.112
#> SRR1365313     1  0.6156     0.4575 0.620 0.028 0.052 0.016 0.236 0.048
#> SRR1321877     3  0.5118     0.6998 0.000 0.004 0.640 0.000 0.148 0.208
#> SRR815711      3  0.0922     0.8352 0.004 0.004 0.968 0.000 0.000 0.024
#> SRR1433476     6  0.5374     0.8370 0.000 0.008 0.008 0.256 0.108 0.620
#> SRR1101883     3  0.1663     0.7956 0.088 0.000 0.912 0.000 0.000 0.000
#> SRR1433729     6  0.5987     0.7950 0.000 0.008 0.008 0.296 0.164 0.524
#> SRR1341877     1  0.3678     0.5572 0.748 0.000 0.008 0.000 0.228 0.016
#> SRR1090556     1  0.3954     0.4759 0.688 0.000 0.008 0.000 0.292 0.012
#> SRR1357389     3  0.0146     0.8343 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1404227     3  0.5634     0.5958 0.164 0.004 0.636 0.004 0.172 0.020
#> SRR1376830     1  0.2558     0.7170 0.868 0.000 0.000 0.000 0.028 0.104
#> SRR1500661     1  0.1049     0.7341 0.960 0.000 0.000 0.000 0.032 0.008
#> SRR1080294     6  0.4490     0.4583 0.000 0.008 0.000 0.472 0.016 0.504
#> SRR1336314     4  0.0260     0.7475 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1102152     1  0.2799     0.7117 0.852 0.000 0.012 0.000 0.124 0.012
#> SRR1345244     3  0.5118     0.6998 0.000 0.004 0.640 0.000 0.148 0.208
#> SRR1478637     1  0.4959     0.5511 0.688 0.000 0.040 0.008 0.224 0.040
#> SRR1443776     3  0.5118     0.6998 0.000 0.004 0.640 0.000 0.148 0.208
#> SRR1120939     3  0.3923     0.7733 0.000 0.004 0.772 0.000 0.080 0.144
#> SRR1080117     3  0.0837     0.8349 0.000 0.004 0.972 0.000 0.004 0.020
#> SRR1102899     2  0.5576     0.1330 0.000 0.480 0.000 0.376 0.000 0.144
#> SRR1091865     1  0.4060     0.5913 0.752 0.000 0.012 0.000 0.188 0.048
#> SRR1361072     1  0.3774     0.3016 0.664 0.000 0.008 0.000 0.328 0.000
#> SRR1487890     1  0.2889     0.7088 0.852 0.000 0.020 0.000 0.012 0.116
#> SRR1349456     3  0.5258     0.6452 0.000 0.000 0.596 0.000 0.252 0.152
#> SRR1389384     2  0.5221     0.6169 0.020 0.700 0.000 0.044 0.180 0.056
#> SRR1316096     2  0.4175     0.1162 0.000 0.524 0.000 0.464 0.000 0.012
#> SRR1408512     1  0.3747     0.0899 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1447547     5  0.6325     0.3180 0.056 0.000 0.016 0.248 0.572 0.108
#> SRR1354053     4  0.0000     0.7545 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17331 rows and 136 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.633           0.862       0.937         0.4786 0.521   0.521
#> 3 3 0.619           0.816       0.896         0.3365 0.797   0.629
#> 4 4 0.829           0.835       0.930         0.1487 0.811   0.543
#> 5 5 0.722           0.713       0.854         0.0664 0.844   0.513
#> 6 6 0.775           0.716       0.862         0.0445 0.925   0.680

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR815140      1  0.0000     0.9166 1.000 0.000
#> SRR1349562     1  0.0000     0.9166 1.000 0.000
#> SRR1353376     2  0.5519     0.8439 0.128 0.872
#> SRR1499040     1  0.7219     0.7745 0.800 0.200
#> SRR1322312     1  0.0000     0.9166 1.000 0.000
#> SRR1324412     1  0.5946     0.8250 0.856 0.144
#> SRR1100991     1  0.9580     0.4955 0.620 0.380
#> SRR1349479     2  0.0000     0.9372 0.000 1.000
#> SRR1431248     2  0.6623     0.7982 0.172 0.828
#> SRR1405054     1  0.8813     0.6481 0.700 0.300
#> SRR1312266     1  0.0000     0.9166 1.000 0.000
#> SRR1409790     1  0.9954     0.2792 0.540 0.460
#> SRR1352507     2  0.5178     0.8405 0.116 0.884
#> SRR1383763     1  0.0000     0.9166 1.000 0.000
#> SRR1468314     2  0.0000     0.9372 0.000 1.000
#> SRR1473674     2  0.0000     0.9372 0.000 1.000
#> SRR1390499     1  0.0000     0.9166 1.000 0.000
#> SRR821043      2  0.0672     0.9334 0.008 0.992
#> SRR1455653     2  0.2043     0.9198 0.032 0.968
#> SRR1335236     2  0.0000     0.9372 0.000 1.000
#> SRR1095383     2  0.0000     0.9372 0.000 1.000
#> SRR1479489     1  0.7528     0.7595 0.784 0.216
#> SRR1310433     2  0.0000     0.9372 0.000 1.000
#> SRR1073435     2  0.5059     0.8588 0.112 0.888
#> SRR659649      2  0.0000     0.9372 0.000 1.000
#> SRR1395999     1  0.0000     0.9166 1.000 0.000
#> SRR1105248     2  0.7139     0.7705 0.196 0.804
#> SRR1338257     1  0.0000     0.9166 1.000 0.000
#> SRR1499395     2  0.0000     0.9372 0.000 1.000
#> SRR1350002     2  0.0000     0.9372 0.000 1.000
#> SRR1489757     2  0.5629     0.8130 0.132 0.868
#> SRR1414637     2  0.7219     0.7655 0.200 0.800
#> SRR1478113     2  0.7453     0.7506 0.212 0.788
#> SRR1322477     2  0.3733     0.8926 0.072 0.928
#> SRR1478789     2  0.0000     0.9372 0.000 1.000
#> SRR1414185     2  0.0000     0.9372 0.000 1.000
#> SRR1069141     2  0.0000     0.9372 0.000 1.000
#> SRR1376852     1  0.0000     0.9166 1.000 0.000
#> SRR1323491     1  0.0000     0.9166 1.000 0.000
#> SRR1338103     1  0.0000     0.9166 1.000 0.000
#> SRR1472012     1  0.8909     0.6349 0.692 0.308
#> SRR1340325     1  0.0000     0.9166 1.000 0.000
#> SRR1087321     2  0.0000     0.9372 0.000 1.000
#> SRR1488790     1  0.0000     0.9166 1.000 0.000
#> SRR1334866     2  0.0000     0.9372 0.000 1.000
#> SRR1089446     2  0.0000     0.9372 0.000 1.000
#> SRR1344445     2  0.1633     0.9215 0.024 0.976
#> SRR1412969     2  0.0000     0.9372 0.000 1.000
#> SRR1071668     2  0.0000     0.9372 0.000 1.000
#> SRR1075804     1  0.0000     0.9166 1.000 0.000
#> SRR1383283     2  0.0000     0.9372 0.000 1.000
#> SRR1350239     2  0.7219     0.7655 0.200 0.800
#> SRR1353878     1  0.0000     0.9166 1.000 0.000
#> SRR1375721     1  0.7219     0.7745 0.800 0.200
#> SRR1083983     1  0.9209     0.5824 0.664 0.336
#> SRR1090095     1  0.0000     0.9166 1.000 0.000
#> SRR1414792     1  0.0000     0.9166 1.000 0.000
#> SRR1075102     2  0.7219     0.7655 0.200 0.800
#> SRR1098737     1  0.0000     0.9166 1.000 0.000
#> SRR1349409     1  0.0000     0.9166 1.000 0.000
#> SRR1413008     2  0.7219     0.7655 0.200 0.800
#> SRR1407179     2  0.0000     0.9372 0.000 1.000
#> SRR1095913     2  0.0000     0.9372 0.000 1.000
#> SRR1403544     1  0.0376     0.9149 0.996 0.004
#> SRR1490546     1  0.0000     0.9166 1.000 0.000
#> SRR807971      2  0.0672     0.9325 0.008 0.992
#> SRR1436228     2  0.0000     0.9372 0.000 1.000
#> SRR1445218     2  0.0000     0.9372 0.000 1.000
#> SRR1485438     2  0.0000     0.9372 0.000 1.000
#> SRR1358143     1  0.0000     0.9166 1.000 0.000
#> SRR1328760     1  0.8016     0.7284 0.756 0.244
#> SRR1380806     1  0.6438     0.8082 0.836 0.164
#> SRR1379426     2  0.0000     0.9372 0.000 1.000
#> SRR1087007     2  0.0000     0.9372 0.000 1.000
#> SRR1086256     2  0.0000     0.9372 0.000 1.000
#> SRR1346734     2  0.3879     0.8893 0.076 0.924
#> SRR1414515     1  0.7056     0.7818 0.808 0.192
#> SRR1082151     2  0.0000     0.9372 0.000 1.000
#> SRR1349320     2  0.7219     0.7655 0.200 0.800
#> SRR1317554     2  0.0672     0.9334 0.008 0.992
#> SRR1076022     2  0.0000     0.9372 0.000 1.000
#> SRR1339573     2  0.0000     0.9372 0.000 1.000
#> SRR1455878     1  0.0000     0.9166 1.000 0.000
#> SRR1446203     2  0.0000     0.9372 0.000 1.000
#> SRR1387397     1  0.6887     0.7891 0.816 0.184
#> SRR1402590     1  0.0000     0.9166 1.000 0.000
#> SRR1317532     1  0.0376     0.9147 0.996 0.004
#> SRR1331488     1  0.4939     0.8365 0.892 0.108
#> SRR1499675     2  0.6148     0.8197 0.152 0.848
#> SRR1440467     2  0.0000     0.9372 0.000 1.000
#> SRR807995      2  0.0000     0.9372 0.000 1.000
#> SRR1476485     2  0.2236     0.9174 0.036 0.964
#> SRR1388214     1  0.5178     0.8369 0.884 0.116
#> SRR1456051     1  0.0000     0.9166 1.000 0.000
#> SRR1473275     2  0.8016     0.6335 0.244 0.756
#> SRR1444083     1  0.1843     0.9029 0.972 0.028
#> SRR1313807     2  0.0000     0.9372 0.000 1.000
#> SRR1470751     2  0.3114     0.9049 0.056 0.944
#> SRR1403434     2  0.0000     0.9372 0.000 1.000
#> SRR1390540     1  0.0000     0.9166 1.000 0.000
#> SRR1093861     2  0.0000     0.9372 0.000 1.000
#> SRR1325290     2  0.9933     0.0657 0.452 0.548
#> SRR1070689     1  0.0000     0.9166 1.000 0.000
#> SRR1384049     1  0.0000     0.9166 1.000 0.000
#> SRR1081184     1  0.0000     0.9166 1.000 0.000
#> SRR1324295     1  0.0000     0.9166 1.000 0.000
#> SRR1365313     2  0.0000     0.9372 0.000 1.000
#> SRR1321877     2  0.0000     0.9372 0.000 1.000
#> SRR815711      2  0.0000     0.9372 0.000 1.000
#> SRR1433476     2  0.0000     0.9372 0.000 1.000
#> SRR1101883     2  0.0000     0.9372 0.000 1.000
#> SRR1433729     2  0.0000     0.9372 0.000 1.000
#> SRR1341877     1  0.9686     0.3054 0.604 0.396
#> SRR1090556     2  0.6438     0.8083 0.164 0.836
#> SRR1357389     2  0.0000     0.9372 0.000 1.000
#> SRR1404227     2  0.0000     0.9372 0.000 1.000
#> SRR1376830     1  0.0000     0.9166 1.000 0.000
#> SRR1500661     1  0.0000     0.9166 1.000 0.000
#> SRR1080294     2  0.0000     0.9372 0.000 1.000
#> SRR1336314     2  0.7056     0.7754 0.192 0.808
#> SRR1102152     2  0.9909     0.0651 0.444 0.556
#> SRR1345244     2  0.0000     0.9372 0.000 1.000
#> SRR1478637     2  0.0000     0.9372 0.000 1.000
#> SRR1443776     2  0.0000     0.9372 0.000 1.000
#> SRR1120939     2  0.0000     0.9372 0.000 1.000
#> SRR1080117     2  0.0000     0.9372 0.000 1.000
#> SRR1102899     2  0.0000     0.9372 0.000 1.000
#> SRR1091865     2  0.9896     0.0812 0.440 0.560
#> SRR1361072     1  0.0000     0.9166 1.000 0.000
#> SRR1487890     1  0.0000     0.9166 1.000 0.000
#> SRR1349456     2  0.0000     0.9372 0.000 1.000
#> SRR1389384     2  0.0000     0.9372 0.000 1.000
#> SRR1316096     2  0.0000     0.9372 0.000 1.000
#> SRR1408512     1  0.2778     0.8888 0.952 0.048
#> SRR1447547     2  0.2948     0.9070 0.052 0.948
#> SRR1354053     2  0.0672     0.9334 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR815140      1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1349562     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1353376     2  0.3412    0.89842 0.124 0.876 0.000
#> SRR1499040     1  0.4974    0.73752 0.764 0.000 0.236
#> SRR1322312     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1324412     1  0.5200    0.78218 0.796 0.020 0.184
#> SRR1100991     1  0.6140    0.45539 0.596 0.000 0.404
#> SRR1349479     3  0.1411    0.87318 0.000 0.036 0.964
#> SRR1431248     2  0.5791    0.86143 0.148 0.792 0.060
#> SRR1405054     1  0.4002    0.80996 0.840 0.000 0.160
#> SRR1312266     2  0.4399    0.84351 0.188 0.812 0.000
#> SRR1409790     3  0.4062    0.72727 0.164 0.000 0.836
#> SRR1352507     3  0.4504    0.69192 0.196 0.000 0.804
#> SRR1383763     1  0.1860    0.86599 0.948 0.052 0.000
#> SRR1468314     3  0.4178    0.79665 0.000 0.172 0.828
#> SRR1473674     3  0.4399    0.81924 0.000 0.188 0.812
#> SRR1390499     1  0.1163    0.88090 0.972 0.028 0.000
#> SRR821043      2  0.0892    0.87834 0.020 0.980 0.000
#> SRR1455653     2  0.1289    0.88365 0.032 0.968 0.000
#> SRR1335236     3  0.3816    0.83544 0.000 0.148 0.852
#> SRR1095383     3  0.5905    0.63179 0.000 0.352 0.648
#> SRR1479489     1  0.4178    0.80107 0.828 0.000 0.172
#> SRR1310433     3  0.4605    0.80929 0.000 0.204 0.796
#> SRR1073435     3  0.9069   -0.08810 0.136 0.424 0.440
#> SRR659649      3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1395999     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1105248     2  0.3551    0.89704 0.132 0.868 0.000
#> SRR1338257     1  0.3816    0.77714 0.852 0.148 0.000
#> SRR1499395     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1350002     3  0.4399    0.81976 0.000 0.188 0.812
#> SRR1489757     3  0.0237    0.87766 0.004 0.000 0.996
#> SRR1414637     2  0.0592    0.87381 0.012 0.988 0.000
#> SRR1478113     2  0.3551    0.89704 0.132 0.868 0.000
#> SRR1322477     2  0.8091    0.39768 0.088 0.592 0.320
#> SRR1478789     3  0.3267    0.84763 0.000 0.116 0.884
#> SRR1414185     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1069141     3  0.4291    0.82313 0.000 0.180 0.820
#> SRR1376852     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1323491     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1338103     1  0.5291    0.56723 0.732 0.268 0.000
#> SRR1472012     1  0.2496    0.86877 0.928 0.004 0.068
#> SRR1340325     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1087321     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1488790     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1334866     3  0.4291    0.82429 0.000 0.180 0.820
#> SRR1089446     3  0.1163    0.86555 0.028 0.000 0.972
#> SRR1344445     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1412969     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1071668     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1075804     2  0.4555    0.83122 0.200 0.800 0.000
#> SRR1383283     3  0.1753    0.87016 0.000 0.048 0.952
#> SRR1350239     2  0.3551    0.89704 0.132 0.868 0.000
#> SRR1353878     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1375721     1  0.3879    0.81562 0.848 0.000 0.152
#> SRR1083983     1  0.4121    0.80620 0.832 0.000 0.168
#> SRR1090095     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1414792     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1075102     2  0.3551    0.89704 0.132 0.868 0.000
#> SRR1098737     2  0.4291    0.85448 0.180 0.820 0.000
#> SRR1349409     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1413008     2  0.3551    0.89704 0.132 0.868 0.000
#> SRR1407179     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1095913     3  0.2066    0.87118 0.000 0.060 0.940
#> SRR1403544     1  0.2959    0.84937 0.900 0.000 0.100
#> SRR1490546     1  0.0892    0.88447 0.980 0.020 0.000
#> SRR807971      3  0.0237    0.87785 0.004 0.000 0.996
#> SRR1436228     3  0.5913    0.80107 0.068 0.144 0.788
#> SRR1445218     2  0.4702    0.58555 0.000 0.788 0.212
#> SRR1485438     3  0.3879    0.83436 0.000 0.152 0.848
#> SRR1358143     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1328760     1  0.4178    0.80166 0.828 0.000 0.172
#> SRR1380806     1  0.3551    0.82753 0.868 0.000 0.132
#> SRR1379426     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1087007     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1086256     3  0.4931    0.78760 0.000 0.232 0.768
#> SRR1346734     2  0.2448    0.89632 0.076 0.924 0.000
#> SRR1414515     1  0.3551    0.82753 0.868 0.000 0.132
#> SRR1082151     3  0.6026    0.60177 0.000 0.376 0.624
#> SRR1349320     2  0.3551    0.89704 0.132 0.868 0.000
#> SRR1317554     2  0.1163    0.88208 0.028 0.972 0.000
#> SRR1076022     3  0.5926    0.63596 0.000 0.356 0.644
#> SRR1339573     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1455878     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1446203     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1387397     1  0.2878    0.85181 0.904 0.000 0.096
#> SRR1402590     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1317532     1  0.1643    0.86842 0.956 0.044 0.000
#> SRR1331488     2  0.3551    0.89704 0.132 0.868 0.000
#> SRR1499675     3  0.7451    0.64677 0.156 0.144 0.700
#> SRR1440467     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR807995      3  0.4750    0.80095 0.000 0.216 0.784
#> SRR1476485     2  0.2625    0.89763 0.084 0.916 0.000
#> SRR1388214     1  0.0424    0.89255 0.992 0.000 0.008
#> SRR1456051     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1473275     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1444083     1  0.4634    0.80426 0.824 0.012 0.164
#> SRR1313807     3  0.1753    0.87016 0.000 0.048 0.952
#> SRR1470751     2  0.0000    0.86513 0.000 1.000 0.000
#> SRR1403434     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1390540     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1093861     3  0.4002    0.83139 0.000 0.160 0.840
#> SRR1325290     1  0.6662    0.64939 0.736 0.072 0.192
#> SRR1070689     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1384049     1  0.2261    0.85376 0.932 0.068 0.000
#> SRR1081184     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1324295     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1365313     3  0.2959    0.85469 0.000 0.100 0.900
#> SRR1321877     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR815711      3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1433476     3  0.3619    0.82257 0.000 0.136 0.864
#> SRR1101883     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1433729     3  0.4702    0.79592 0.000 0.212 0.788
#> SRR1341877     1  0.5940    0.65078 0.760 0.204 0.036
#> SRR1090556     3  0.6516    0.08262 0.480 0.004 0.516
#> SRR1357389     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1404227     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1376830     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1500661     1  0.0000    0.89418 1.000 0.000 0.000
#> SRR1080294     3  0.3412    0.83138 0.000 0.124 0.876
#> SRR1336314     2  0.0237    0.86843 0.004 0.996 0.000
#> SRR1102152     3  0.6489   -0.00367 0.456 0.004 0.540
#> SRR1345244     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1478637     3  0.2878    0.85628 0.000 0.096 0.904
#> SRR1443776     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1120939     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1080117     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1102899     3  0.4346    0.82131 0.000 0.184 0.816
#> SRR1091865     1  0.8732    0.33646 0.552 0.132 0.316
#> SRR1361072     1  0.0592    0.89142 0.988 0.000 0.012
#> SRR1487890     1  0.0424    0.89258 0.992 0.000 0.008
#> SRR1349456     3  0.0000    0.87940 0.000 0.000 1.000
#> SRR1389384     3  0.4062    0.83008 0.000 0.164 0.836
#> SRR1316096     3  0.5178    0.76500 0.000 0.256 0.744
#> SRR1408512     1  0.5098    0.62779 0.752 0.248 0.000
#> SRR1447547     2  0.4397    0.89263 0.116 0.856 0.028
#> SRR1354053     2  0.0000    0.86513 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR815140      1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1349562     1  0.0188     0.8967 0.996 0.000 0.000 0.004
#> SRR1353376     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1499040     1  0.4981     0.2218 0.536 0.000 0.464 0.000
#> SRR1322312     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1324412     3  0.1824     0.9058 0.004 0.000 0.936 0.060
#> SRR1100991     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1349479     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1431248     2  0.7050     0.4217 0.180 0.568 0.000 0.252
#> SRR1405054     3  0.2408     0.8530 0.104 0.000 0.896 0.000
#> SRR1312266     4  0.0469     0.9343 0.012 0.000 0.000 0.988
#> SRR1409790     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1352507     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1383763     1  0.3219     0.7627 0.836 0.000 0.000 0.164
#> SRR1468314     2  0.2216     0.8276 0.000 0.908 0.092 0.000
#> SRR1473674     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1390499     1  0.0817     0.8856 0.976 0.000 0.000 0.024
#> SRR821043      4  0.1118     0.9196 0.000 0.036 0.000 0.964
#> SRR1455653     4  0.1389     0.9095 0.000 0.048 0.000 0.952
#> SRR1335236     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1095383     2  0.6315     0.1447 0.000 0.508 0.060 0.432
#> SRR1479489     1  0.4985     0.2146 0.532 0.000 0.468 0.000
#> SRR1310433     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1073435     2  0.7583     0.1462 0.128 0.472 0.016 0.384
#> SRR659649      3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1395999     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1105248     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1338257     4  0.3726     0.7040 0.212 0.000 0.000 0.788
#> SRR1499395     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1350002     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1489757     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1414637     2  0.0188     0.8930 0.004 0.996 0.000 0.000
#> SRR1478113     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1322477     2  0.1109     0.8785 0.004 0.968 0.000 0.028
#> SRR1478789     3  0.4994     0.0942 0.000 0.480 0.520 0.000
#> SRR1414185     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1069141     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1376852     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1323491     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1338103     1  0.0188     0.8968 0.996 0.000 0.000 0.004
#> SRR1472012     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1340325     1  0.0188     0.8968 0.996 0.000 0.004 0.000
#> SRR1087321     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1488790     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1334866     2  0.0779     0.8871 0.004 0.980 0.016 0.000
#> SRR1089446     3  0.1488     0.9257 0.032 0.012 0.956 0.000
#> SRR1344445     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1412969     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1071668     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1075804     4  0.4605     0.4711 0.336 0.000 0.000 0.664
#> SRR1383283     3  0.4535     0.5842 0.004 0.292 0.704 0.000
#> SRR1350239     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1353878     1  0.0188     0.8967 0.996 0.000 0.000 0.004
#> SRR1375721     1  0.0336     0.8948 0.992 0.000 0.008 0.000
#> SRR1083983     1  0.0592     0.8904 0.984 0.000 0.016 0.000
#> SRR1090095     1  0.0336     0.8950 0.992 0.000 0.000 0.008
#> SRR1414792     1  0.0188     0.8967 0.996 0.000 0.000 0.004
#> SRR1075102     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1098737     4  0.0707     0.9294 0.020 0.000 0.000 0.980
#> SRR1349409     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1413008     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1407179     3  0.0336     0.9502 0.008 0.000 0.992 0.000
#> SRR1095913     3  0.1302     0.9256 0.000 0.044 0.956 0.000
#> SRR1403544     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1490546     1  0.4643     0.4648 0.656 0.000 0.000 0.344
#> SRR807971      3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1436228     2  0.3569     0.7096 0.196 0.804 0.000 0.000
#> SRR1445218     2  0.0336     0.8911 0.000 0.992 0.000 0.008
#> SRR1485438     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1358143     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1328760     1  0.3942     0.6834 0.764 0.000 0.236 0.000
#> SRR1380806     1  0.0707     0.8878 0.980 0.000 0.020 0.000
#> SRR1379426     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1087007     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1086256     2  0.0336     0.8914 0.008 0.992 0.000 0.000
#> SRR1346734     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1414515     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1082151     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1349320     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1317554     4  0.1118     0.9195 0.000 0.036 0.000 0.964
#> SRR1076022     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1339573     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1455878     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1446203     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1387397     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1402590     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1317532     1  0.2868     0.7948 0.864 0.000 0.000 0.136
#> SRR1331488     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1499675     1  0.9222    -0.1235 0.364 0.204 0.092 0.340
#> SRR1440467     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR807995      2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1476485     4  0.0000     0.9405 0.000 0.000 0.000 1.000
#> SRR1388214     1  0.0188     0.8968 0.996 0.000 0.004 0.000
#> SRR1456051     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1473275     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1444083     1  0.6133     0.6101 0.672 0.000 0.204 0.124
#> SRR1313807     3  0.3356     0.7752 0.000 0.176 0.824 0.000
#> SRR1470751     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1403434     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1390540     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1093861     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1325290     1  0.4761     0.3904 0.628 0.372 0.000 0.000
#> SRR1070689     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1384049     1  0.4331     0.6047 0.712 0.000 0.000 0.288
#> SRR1081184     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1324295     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1365313     2  0.1004     0.8817 0.004 0.972 0.024 0.000
#> SRR1321877     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR815711      3  0.0188     0.9528 0.004 0.000 0.996 0.000
#> SRR1433476     3  0.5309     0.7018 0.000 0.164 0.744 0.092
#> SRR1101883     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1433729     2  0.3390     0.7785 0.000 0.852 0.132 0.016
#> SRR1341877     1  0.3172     0.7693 0.840 0.000 0.000 0.160
#> SRR1090556     1  0.3117     0.8156 0.880 0.028 0.092 0.000
#> SRR1357389     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1404227     3  0.1305     0.9298 0.004 0.036 0.960 0.000
#> SRR1376830     1  0.0188     0.8967 0.996 0.000 0.000 0.004
#> SRR1500661     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1080294     2  0.5125     0.3295 0.000 0.604 0.388 0.008
#> SRR1336314     4  0.0188     0.9389 0.000 0.004 0.000 0.996
#> SRR1102152     1  0.4866     0.3901 0.596 0.000 0.404 0.000
#> SRR1345244     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1478637     2  0.0707     0.8850 0.000 0.980 0.020 0.000
#> SRR1443776     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1120939     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1080117     3  0.0000     0.9556 0.000 0.000 1.000 0.000
#> SRR1102899     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1091865     2  0.4222     0.5702 0.272 0.728 0.000 0.000
#> SRR1361072     1  0.0469     0.8930 0.988 0.000 0.012 0.000
#> SRR1487890     1  0.0000     0.8980 1.000 0.000 0.000 0.000
#> SRR1349456     3  0.2081     0.8855 0.000 0.084 0.916 0.000
#> SRR1389384     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1316096     2  0.0000     0.8946 0.000 1.000 0.000 0.000
#> SRR1408512     1  0.2814     0.7996 0.868 0.000 0.000 0.132
#> SRR1447547     4  0.0188     0.9382 0.000 0.000 0.004 0.996
#> SRR1354053     4  0.3907     0.6675 0.000 0.232 0.000 0.768

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR815140      1  0.2690    0.77361 0.844 0.000 0.000 0.000 0.156
#> SRR1349562     1  0.0609    0.82115 0.980 0.000 0.000 0.000 0.020
#> SRR1353376     4  0.1197    0.89863 0.000 0.000 0.000 0.952 0.048
#> SRR1499040     3  0.4442    0.57638 0.284 0.000 0.688 0.000 0.028
#> SRR1322312     1  0.0880    0.82007 0.968 0.000 0.000 0.000 0.032
#> SRR1324412     3  0.3134    0.79490 0.012 0.000 0.864 0.096 0.028
#> SRR1100991     3  0.0880    0.87849 0.000 0.000 0.968 0.000 0.032
#> SRR1349479     3  0.0510    0.88357 0.000 0.000 0.984 0.000 0.016
#> SRR1431248     5  0.6191    0.53406 0.132 0.036 0.008 0.164 0.660
#> SRR1405054     3  0.5891    0.27163 0.120 0.000 0.552 0.000 0.328
#> SRR1312266     4  0.0865    0.90575 0.024 0.000 0.000 0.972 0.004
#> SRR1409790     3  0.0703    0.87924 0.000 0.000 0.976 0.000 0.024
#> SRR1352507     3  0.0671    0.88170 0.000 0.000 0.980 0.004 0.016
#> SRR1383763     1  0.3813    0.70307 0.800 0.000 0.008 0.164 0.028
#> SRR1468314     5  0.3285    0.69188 0.000 0.044 0.092 0.008 0.856
#> SRR1473674     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1390499     1  0.0955    0.81491 0.968 0.000 0.000 0.028 0.004
#> SRR821043      4  0.2997    0.79528 0.000 0.012 0.000 0.840 0.148
#> SRR1455653     4  0.1281    0.90320 0.000 0.012 0.000 0.956 0.032
#> SRR1335236     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1095383     5  0.8055    0.36256 0.000 0.144 0.212 0.208 0.436
#> SRR1479489     1  0.4825    0.29526 0.568 0.000 0.408 0.000 0.024
#> SRR1310433     5  0.4522    0.24323 0.000 0.440 0.008 0.000 0.552
#> SRR1073435     5  0.1413    0.70606 0.020 0.000 0.012 0.012 0.956
#> SRR659649      3  0.2172    0.84077 0.016 0.000 0.908 0.000 0.076
#> SRR1395999     1  0.3143    0.74042 0.796 0.000 0.000 0.000 0.204
#> SRR1105248     4  0.0000    0.91572 0.000 0.000 0.000 1.000 0.000
#> SRR1338257     4  0.4743    0.35207 0.332 0.000 0.004 0.640 0.024
#> SRR1499395     3  0.0290    0.88571 0.000 0.000 0.992 0.000 0.008
#> SRR1350002     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1489757     3  0.0510    0.88241 0.000 0.000 0.984 0.000 0.016
#> SRR1414637     2  0.2484    0.87540 0.028 0.900 0.000 0.004 0.068
#> SRR1478113     4  0.0000    0.91572 0.000 0.000 0.000 1.000 0.000
#> SRR1322477     5  0.6056    0.37401 0.132 0.348 0.000 0.000 0.520
#> SRR1478789     3  0.4273    0.19265 0.000 0.448 0.552 0.000 0.000
#> SRR1414185     3  0.0290    0.88571 0.000 0.000 0.992 0.000 0.008
#> SRR1069141     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1376852     1  0.2377    0.79242 0.872 0.000 0.000 0.000 0.128
#> SRR1323491     1  0.1908    0.81027 0.908 0.000 0.000 0.000 0.092
#> SRR1338103     1  0.4074    0.51726 0.636 0.000 0.000 0.000 0.364
#> SRR1472012     5  0.3143    0.61002 0.204 0.000 0.000 0.000 0.796
#> SRR1340325     1  0.0000    0.82108 1.000 0.000 0.000 0.000 0.000
#> SRR1087321     3  0.0324    0.88581 0.000 0.004 0.992 0.000 0.004
#> SRR1488790     1  0.3816    0.65323 0.696 0.000 0.000 0.000 0.304
#> SRR1334866     5  0.3803    0.69370 0.020 0.072 0.064 0.004 0.840
#> SRR1089446     5  0.3099    0.69635 0.028 0.000 0.124 0.000 0.848
#> SRR1344445     3  0.0609    0.88218 0.000 0.000 0.980 0.000 0.020
#> SRR1412969     3  0.0404    0.88511 0.000 0.000 0.988 0.000 0.012
#> SRR1071668     3  0.0609    0.88391 0.000 0.000 0.980 0.000 0.020
#> SRR1075804     1  0.5815    0.55116 0.592 0.000 0.000 0.272 0.136
#> SRR1383283     5  0.1831    0.70465 0.000 0.004 0.076 0.000 0.920
#> SRR1350239     4  0.0162    0.91473 0.000 0.000 0.004 0.996 0.000
#> SRR1353878     1  0.1267    0.81345 0.960 0.000 0.004 0.012 0.024
#> SRR1375721     5  0.4604    0.11924 0.428 0.000 0.012 0.000 0.560
#> SRR1083983     5  0.4549   -0.13182 0.464 0.000 0.008 0.000 0.528
#> SRR1090095     1  0.0912    0.82243 0.972 0.000 0.000 0.012 0.016
#> SRR1414792     1  0.0000    0.82108 1.000 0.000 0.000 0.000 0.000
#> SRR1075102     4  0.0000    0.91572 0.000 0.000 0.000 1.000 0.000
#> SRR1098737     4  0.1331    0.89282 0.040 0.000 0.000 0.952 0.008
#> SRR1349409     1  0.2074    0.80867 0.896 0.000 0.000 0.000 0.104
#> SRR1413008     4  0.0162    0.91473 0.000 0.000 0.004 0.996 0.000
#> SRR1407179     3  0.4452   -0.08802 0.004 0.000 0.500 0.000 0.496
#> SRR1095913     3  0.0771    0.87942 0.000 0.020 0.976 0.000 0.004
#> SRR1403544     1  0.1952    0.80483 0.912 0.000 0.004 0.000 0.084
#> SRR1490546     1  0.5549    0.60492 0.632 0.000 0.000 0.244 0.124
#> SRR807971      3  0.0510    0.88553 0.000 0.000 0.984 0.000 0.016
#> SRR1436228     5  0.2548    0.70396 0.072 0.028 0.004 0.000 0.896
#> SRR1445218     5  0.4574    0.30462 0.000 0.412 0.000 0.012 0.576
#> SRR1485438     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1358143     1  0.0510    0.82203 0.984 0.000 0.000 0.000 0.016
#> SRR1328760     1  0.5105    0.53344 0.660 0.000 0.264 0.000 0.076
#> SRR1380806     1  0.2293    0.76799 0.900 0.000 0.084 0.000 0.016
#> SRR1379426     3  0.0290    0.88445 0.000 0.000 0.992 0.000 0.008
#> SRR1087007     3  0.0404    0.88490 0.000 0.000 0.988 0.000 0.012
#> SRR1086256     5  0.2179    0.68085 0.000 0.100 0.004 0.000 0.896
#> SRR1346734     4  0.0290    0.91548 0.000 0.000 0.000 0.992 0.008
#> SRR1414515     1  0.4288    0.51828 0.612 0.000 0.004 0.000 0.384
#> SRR1082151     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1349320     4  0.0290    0.91592 0.000 0.000 0.000 0.992 0.008
#> SRR1317554     4  0.4367    0.39192 0.000 0.008 0.000 0.620 0.372
#> SRR1076022     5  0.3636    0.56075 0.000 0.272 0.000 0.000 0.728
#> SRR1339573     3  0.0510    0.88246 0.000 0.000 0.984 0.000 0.016
#> SRR1455878     1  0.3177    0.74752 0.792 0.000 0.000 0.000 0.208
#> SRR1446203     3  0.1740    0.85798 0.012 0.000 0.932 0.000 0.056
#> SRR1387397     5  0.2771    0.68201 0.128 0.000 0.012 0.000 0.860
#> SRR1402590     1  0.0703    0.82133 0.976 0.000 0.000 0.000 0.024
#> SRR1317532     5  0.4171    0.16669 0.396 0.000 0.000 0.000 0.604
#> SRR1331488     4  0.0000    0.91572 0.000 0.000 0.000 1.000 0.000
#> SRR1499675     5  0.1557    0.70302 0.052 0.000 0.000 0.008 0.940
#> SRR1440467     3  0.1121    0.86728 0.000 0.000 0.956 0.000 0.044
#> SRR807995      2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1476485     4  0.1478    0.88799 0.000 0.000 0.000 0.936 0.064
#> SRR1388214     5  0.3300    0.59443 0.204 0.000 0.004 0.000 0.792
#> SRR1456051     1  0.2127    0.80285 0.892 0.000 0.000 0.000 0.108
#> SRR1473275     3  0.0693    0.88442 0.008 0.000 0.980 0.000 0.012
#> SRR1444083     3  0.6913   -0.00814 0.392 0.000 0.432 0.148 0.028
#> SRR1313807     5  0.3635    0.60068 0.000 0.000 0.248 0.004 0.748
#> SRR1470751     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1403434     3  0.1197    0.86543 0.000 0.000 0.952 0.000 0.048
#> SRR1390540     5  0.4305   -0.15692 0.488 0.000 0.000 0.000 0.512
#> SRR1093861     2  0.0162    0.96273 0.000 0.996 0.000 0.000 0.004
#> SRR1325290     5  0.2329    0.67322 0.124 0.000 0.000 0.000 0.876
#> SRR1070689     1  0.2020    0.81074 0.900 0.000 0.000 0.000 0.100
#> SRR1384049     1  0.4717    0.53287 0.660 0.000 0.004 0.308 0.028
#> SRR1081184     1  0.0794    0.82105 0.972 0.000 0.000 0.000 0.028
#> SRR1324295     1  0.0000    0.82108 1.000 0.000 0.000 0.000 0.000
#> SRR1365313     5  0.3743    0.67989 0.004 0.096 0.076 0.000 0.824
#> SRR1321877     3  0.0510    0.88515 0.000 0.000 0.984 0.000 0.016
#> SRR815711      5  0.4294    0.14993 0.000 0.000 0.468 0.000 0.532
#> SRR1433476     5  0.3304    0.67128 0.000 0.000 0.168 0.016 0.816
#> SRR1101883     3  0.0290    0.88571 0.000 0.000 0.992 0.000 0.008
#> SRR1433729     5  0.6207    0.51088 0.000 0.124 0.264 0.020 0.592
#> SRR1341877     5  0.2280    0.67267 0.120 0.000 0.000 0.000 0.880
#> SRR1090556     5  0.1410    0.69891 0.060 0.000 0.000 0.000 0.940
#> SRR1357389     3  0.0162    0.88594 0.000 0.000 0.996 0.000 0.004
#> SRR1404227     5  0.4138    0.36912 0.000 0.000 0.384 0.000 0.616
#> SRR1376830     1  0.0290    0.82147 0.992 0.000 0.000 0.000 0.008
#> SRR1500661     1  0.4182    0.48877 0.600 0.000 0.000 0.000 0.400
#> SRR1080294     5  0.4677    0.60154 0.000 0.036 0.236 0.012 0.716
#> SRR1336314     4  0.0404    0.91330 0.000 0.012 0.000 0.988 0.000
#> SRR1102152     3  0.4993    0.67835 0.168 0.056 0.740 0.000 0.036
#> SRR1345244     3  0.0290    0.88571 0.000 0.000 0.992 0.000 0.008
#> SRR1478637     2  0.0671    0.95012 0.000 0.980 0.016 0.000 0.004
#> SRR1443776     3  0.0290    0.88598 0.000 0.000 0.992 0.000 0.008
#> SRR1120939     3  0.0290    0.88571 0.000 0.000 0.992 0.000 0.008
#> SRR1080117     3  0.0290    0.88445 0.000 0.000 0.992 0.000 0.008
#> SRR1102899     5  0.4632    0.24091 0.000 0.448 0.012 0.000 0.540
#> SRR1091865     2  0.0703    0.94205 0.024 0.976 0.000 0.000 0.000
#> SRR1361072     1  0.4603    0.63729 0.668 0.000 0.032 0.000 0.300
#> SRR1487890     1  0.0609    0.82185 0.980 0.000 0.000 0.000 0.020
#> SRR1349456     3  0.4273    0.09141 0.000 0.000 0.552 0.000 0.448
#> SRR1389384     2  0.0000    0.96546 0.000 1.000 0.000 0.000 0.000
#> SRR1316096     2  0.3274    0.64926 0.000 0.780 0.000 0.000 0.220
#> SRR1408512     5  0.3928    0.43661 0.296 0.000 0.000 0.004 0.700
#> SRR1447547     4  0.0162    0.91581 0.000 0.000 0.000 0.996 0.004
#> SRR1354053     4  0.2561    0.79466 0.000 0.144 0.000 0.856 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR815140      1  0.2163     0.7815 0.892 0.000 0.000 0.004 0.096 0.008
#> SRR1349562     1  0.0146     0.8165 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1353376     4  0.2994     0.7217 0.000 0.000 0.000 0.788 0.004 0.208
#> SRR1499040     3  0.3861     0.5314 0.316 0.004 0.672 0.000 0.008 0.000
#> SRR1322312     1  0.0146     0.8161 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1324412     3  0.1624     0.8798 0.012 0.000 0.936 0.044 0.008 0.000
#> SRR1100991     3  0.1851     0.8763 0.024 0.000 0.928 0.000 0.012 0.036
#> SRR1349479     3  0.1485     0.8946 0.000 0.000 0.944 0.004 0.024 0.028
#> SRR1431248     5  0.1053     0.6774 0.020 0.000 0.012 0.004 0.964 0.000
#> SRR1405054     5  0.3509     0.5988 0.016 0.000 0.240 0.000 0.744 0.000
#> SRR1312266     4  0.1049     0.8794 0.032 0.000 0.000 0.960 0.008 0.000
#> SRR1409790     3  0.0260     0.9066 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1352507     3  0.0820     0.9056 0.000 0.000 0.972 0.016 0.012 0.000
#> SRR1383763     1  0.2320     0.7282 0.864 0.000 0.004 0.132 0.000 0.000
#> SRR1468314     6  0.0508     0.7421 0.000 0.000 0.012 0.000 0.004 0.984
#> SRR1473674     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1390499     1  0.0146     0.8165 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR821043      4  0.2527     0.7784 0.000 0.000 0.000 0.832 0.000 0.168
#> SRR1455653     4  0.0363     0.8998 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1335236     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1095383     6  0.6549     0.4876 0.000 0.072 0.152 0.216 0.008 0.552
#> SRR1479489     1  0.4877     0.2620 0.560 0.000 0.388 0.000 0.012 0.040
#> SRR1310433     6  0.4153     0.4521 0.000 0.340 0.000 0.000 0.024 0.636
#> SRR1073435     6  0.1863     0.6897 0.000 0.000 0.000 0.000 0.104 0.896
#> SRR659649      5  0.3330     0.5287 0.000 0.000 0.284 0.000 0.716 0.000
#> SRR1395999     1  0.2179     0.7923 0.900 0.000 0.000 0.000 0.064 0.036
#> SRR1105248     4  0.0146     0.9010 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1338257     4  0.3742     0.4089 0.348 0.000 0.004 0.648 0.000 0.000
#> SRR1499395     3  0.0508     0.9074 0.000 0.004 0.984 0.000 0.012 0.000
#> SRR1350002     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489757     3  0.0713     0.9044 0.000 0.000 0.972 0.000 0.028 0.000
#> SRR1414637     2  0.1411     0.9086 0.004 0.936 0.000 0.000 0.000 0.060
#> SRR1478113     4  0.0000     0.9013 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1322477     5  0.5464     0.3087 0.072 0.328 0.000 0.012 0.576 0.012
#> SRR1478789     3  0.4090     0.4078 0.000 0.384 0.604 0.000 0.004 0.008
#> SRR1414185     3  0.0146     0.9069 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1069141     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1376852     1  0.2402     0.7501 0.856 0.000 0.000 0.000 0.140 0.004
#> SRR1323491     1  0.2094     0.7918 0.908 0.000 0.000 0.004 0.064 0.024
#> SRR1338103     1  0.5695     0.3236 0.544 0.000 0.000 0.004 0.192 0.260
#> SRR1472012     5  0.5988     0.1495 0.348 0.000 0.000 0.000 0.416 0.236
#> SRR1340325     1  0.0146     0.8151 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1087321     3  0.0993     0.9041 0.000 0.012 0.964 0.000 0.024 0.000
#> SRR1488790     5  0.2264     0.6732 0.096 0.000 0.012 0.004 0.888 0.000
#> SRR1334866     6  0.1285     0.7465 0.000 0.000 0.052 0.000 0.004 0.944
#> SRR1089446     6  0.1858     0.7378 0.000 0.000 0.092 0.000 0.004 0.904
#> SRR1344445     3  0.0777     0.9062 0.000 0.004 0.972 0.000 0.024 0.000
#> SRR1412969     3  0.1333     0.8822 0.000 0.000 0.944 0.000 0.008 0.048
#> SRR1071668     3  0.1267     0.8916 0.000 0.000 0.940 0.000 0.060 0.000
#> SRR1075804     1  0.5113     0.5896 0.684 0.000 0.000 0.108 0.032 0.176
#> SRR1383283     6  0.0291     0.7380 0.000 0.000 0.004 0.000 0.004 0.992
#> SRR1350239     4  0.0146     0.9010 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1353878     1  0.0508     0.8094 0.984 0.000 0.012 0.000 0.004 0.000
#> SRR1375721     1  0.4843     0.5146 0.664 0.000 0.000 0.000 0.192 0.144
#> SRR1083983     1  0.5470     0.3884 0.580 0.000 0.004 0.000 0.256 0.160
#> SRR1090095     1  0.0870     0.8159 0.972 0.000 0.000 0.004 0.012 0.012
#> SRR1414792     1  0.0146     0.8165 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1075102     4  0.0000     0.9013 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1098737     4  0.2869     0.7720 0.020 0.000 0.000 0.832 0.148 0.000
#> SRR1349409     1  0.1367     0.8076 0.944 0.000 0.000 0.000 0.012 0.044
#> SRR1413008     4  0.0146     0.9010 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1407179     6  0.3937     0.3565 0.000 0.000 0.424 0.000 0.004 0.572
#> SRR1095913     3  0.2258     0.8568 0.000 0.060 0.896 0.000 0.000 0.044
#> SRR1403544     1  0.3996     0.0278 0.512 0.000 0.004 0.000 0.484 0.000
#> SRR1490546     1  0.5573     0.3817 0.572 0.000 0.000 0.200 0.224 0.004
#> SRR807971      3  0.1007     0.8995 0.000 0.000 0.956 0.000 0.044 0.000
#> SRR1436228     6  0.1320     0.7266 0.000 0.016 0.000 0.000 0.036 0.948
#> SRR1445218     6  0.2527     0.6766 0.000 0.168 0.000 0.000 0.000 0.832
#> SRR1485438     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1358143     1  0.0146     0.8165 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1328760     5  0.3830     0.6390 0.044 0.000 0.212 0.000 0.744 0.000
#> SRR1380806     1  0.2257     0.7119 0.876 0.000 0.116 0.000 0.008 0.000
#> SRR1379426     3  0.1453     0.8851 0.000 0.000 0.944 0.008 0.008 0.040
#> SRR1087007     3  0.0717     0.9022 0.000 0.000 0.976 0.000 0.008 0.016
#> SRR1086256     6  0.0363     0.7383 0.000 0.000 0.000 0.000 0.012 0.988
#> SRR1346734     4  0.0146     0.9012 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1414515     5  0.2907     0.6457 0.152 0.000 0.020 0.000 0.828 0.000
#> SRR1082151     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1349320     4  0.0622     0.8975 0.000 0.000 0.000 0.980 0.012 0.008
#> SRR1317554     4  0.3647     0.4523 0.000 0.000 0.000 0.640 0.000 0.360
#> SRR1076022     6  0.4672     0.3853 0.000 0.348 0.000 0.000 0.056 0.596
#> SRR1339573     3  0.0436     0.9057 0.000 0.004 0.988 0.000 0.004 0.004
#> SRR1455878     1  0.4788     0.1871 0.548 0.000 0.056 0.000 0.396 0.000
#> SRR1446203     5  0.3797     0.2486 0.000 0.000 0.420 0.000 0.580 0.000
#> SRR1387397     6  0.0881     0.7408 0.008 0.000 0.012 0.000 0.008 0.972
#> SRR1402590     1  0.0146     0.8165 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1317532     5  0.1637     0.6808 0.056 0.000 0.004 0.004 0.932 0.004
#> SRR1331488     4  0.0000     0.9013 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1499675     6  0.1141     0.7208 0.000 0.000 0.000 0.000 0.052 0.948
#> SRR1440467     3  0.1462     0.8887 0.000 0.000 0.936 0.000 0.056 0.008
#> SRR807995      2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476485     4  0.0260     0.9008 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1388214     6  0.3827     0.4456 0.256 0.000 0.004 0.000 0.020 0.720
#> SRR1456051     1  0.0935     0.8130 0.964 0.000 0.000 0.000 0.032 0.004
#> SRR1473275     3  0.0790     0.9024 0.000 0.000 0.968 0.000 0.032 0.000
#> SRR1444083     3  0.5526     0.2803 0.356 0.000 0.524 0.112 0.008 0.000
#> SRR1313807     6  0.1895     0.7419 0.000 0.000 0.072 0.000 0.016 0.912
#> SRR1470751     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1403434     3  0.2006     0.8564 0.000 0.000 0.904 0.000 0.016 0.080
#> SRR1390540     5  0.5373     0.1408 0.384 0.000 0.000 0.004 0.512 0.100
#> SRR1093861     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1325290     6  0.5972    -0.0906 0.268 0.000 0.000 0.000 0.284 0.448
#> SRR1070689     1  0.1462     0.8036 0.936 0.000 0.000 0.000 0.008 0.056
#> SRR1384049     1  0.3547     0.5381 0.696 0.000 0.004 0.300 0.000 0.000
#> SRR1081184     1  0.0000     0.8158 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324295     1  0.0146     0.8165 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1365313     6  0.1477     0.7472 0.000 0.004 0.048 0.000 0.008 0.940
#> SRR1321877     3  0.1010     0.9022 0.000 0.004 0.960 0.000 0.036 0.000
#> SRR815711      6  0.3955     0.4421 0.000 0.000 0.384 0.000 0.008 0.608
#> SRR1433476     6  0.1196     0.7460 0.000 0.000 0.040 0.000 0.008 0.952
#> SRR1101883     3  0.0146     0.9069 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1433729     6  0.2738     0.6915 0.000 0.000 0.176 0.000 0.004 0.820
#> SRR1341877     5  0.4560     0.5376 0.088 0.000 0.000 0.004 0.696 0.212
#> SRR1090556     6  0.2355     0.6882 0.008 0.000 0.004 0.000 0.112 0.876
#> SRR1357389     3  0.0458     0.9072 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1404227     6  0.2996     0.6534 0.000 0.000 0.228 0.000 0.000 0.772
#> SRR1376830     1  0.1082     0.8103 0.956 0.000 0.000 0.004 0.040 0.000
#> SRR1500661     5  0.4178     0.1081 0.428 0.000 0.000 0.004 0.560 0.008
#> SRR1080294     6  0.2163     0.7356 0.000 0.000 0.092 0.000 0.016 0.892
#> SRR1336314     4  0.0547     0.8952 0.000 0.020 0.000 0.980 0.000 0.000
#> SRR1102152     3  0.4671     0.5540 0.268 0.028 0.676 0.000 0.012 0.016
#> SRR1345244     3  0.0603     0.9068 0.000 0.004 0.980 0.000 0.016 0.000
#> SRR1478637     2  0.0622     0.9479 0.000 0.980 0.012 0.000 0.008 0.000
#> SRR1443776     3  0.1349     0.8922 0.000 0.004 0.940 0.000 0.056 0.000
#> SRR1120939     3  0.0858     0.9050 0.000 0.004 0.968 0.000 0.028 0.000
#> SRR1080117     3  0.0436     0.9057 0.000 0.004 0.988 0.000 0.004 0.004
#> SRR1102899     6  0.4570     0.3726 0.000 0.376 0.008 0.000 0.028 0.588
#> SRR1091865     2  0.0146     0.9615 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1361072     5  0.2364     0.6858 0.072 0.000 0.032 0.004 0.892 0.000
#> SRR1487890     1  0.0146     0.8152 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1349456     6  0.4294     0.3248 0.000 0.000 0.428 0.000 0.020 0.552
#> SRR1389384     2  0.0000     0.9651 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1316096     2  0.3288     0.5472 0.000 0.724 0.000 0.000 0.000 0.276
#> SRR1408512     6  0.6048    -0.0627 0.352 0.000 0.000 0.012 0.176 0.460
#> SRR1447547     4  0.0146     0.9010 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1354053     4  0.2320     0.8085 0.000 0.132 0.000 0.864 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0