cola Report for recount2:GTEx_pituitary

Date: 2019-12-25 22:47:52 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 17851   124

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:kmeans 2 1.000 0.989 0.996 **
SD:skmeans 3 1.000 0.963 0.986 ** 2
SD:NMF 3 1.000 0.962 0.983 ** 2
CV:kmeans 2 1.000 0.975 0.990 **
CV:skmeans 3 1.000 0.989 0.995 ** 2
CV:pam 2 1.000 0.982 0.992 **
ATC:hclust 2 1.000 0.972 0.987 **
ATC:kmeans 2 1.000 0.990 0.996 **
ATC:skmeans 2 1.000 0.993 0.997 **
ATC:pam 2 1.000 0.993 0.997 **
ATC:mclust 2 1.000 0.991 0.996 **
ATC:NMF 2 1.000 0.971 0.988 **
CV:NMF 3 1.000 0.939 0.978 ** 2
MAD:skmeans 3 0.978 0.953 0.980 ** 2
CV:hclust 2 0.965 0.947 0.976 **
MAD:NMF 3 0.962 0.923 0.965 **
SD:hclust 2 0.935 0.927 0.968 *
MAD:pam 5 0.934 0.913 0.962 * 2,3
SD:pam 3 0.923 0.918 0.967 * 2
MAD:kmeans 2 0.904 0.973 0.987 *
SD:mclust 2 0.900 0.939 0.971 *
CV:mclust 2 0.871 0.924 0.967
MAD:hclust 2 0.735 0.885 0.949
MAD:mclust 5 0.701 0.686 0.809

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 1.000           0.980       0.992          0.361 0.639   0.639
#> CV:NMF      2 0.983           0.952       0.981          0.398 0.606   0.606
#> MAD:NMF     2 0.886           0.917       0.968          0.383 0.622   0.622
#> ATC:NMF     2 1.000           0.971       0.988          0.375 0.622   0.622
#> SD:skmeans  2 1.000           0.993       0.997          0.445 0.554   0.554
#> CV:skmeans  2 1.000           0.978       0.991          0.444 0.554   0.554
#> MAD:skmeans 2 1.000           0.965       0.985          0.452 0.548   0.548
#> ATC:skmeans 2 1.000           0.993       0.997          0.425 0.578   0.578
#> SD:mclust   2 0.900           0.939       0.971          0.433 0.559   0.559
#> CV:mclust   2 0.871           0.924       0.967          0.459 0.534   0.534
#> MAD:mclust  2 0.852           0.862       0.947          0.388 0.648   0.648
#> ATC:mclust  2 1.000           0.991       0.996          0.428 0.571   0.571
#> SD:kmeans   2 1.000           0.989       0.996          0.329 0.666   0.666
#> CV:kmeans   2 1.000           0.975       0.990          0.344 0.666   0.666
#> MAD:kmeans  2 0.904           0.973       0.987          0.339 0.675   0.675
#> ATC:kmeans  2 1.000           0.990       0.996          0.330 0.666   0.666
#> SD:pam      2 1.000           0.988       0.995          0.330 0.666   0.666
#> CV:pam      2 1.000           0.982       0.992          0.357 0.639   0.639
#> MAD:pam     2 0.966           0.966       0.984          0.365 0.639   0.639
#> ATC:pam     2 1.000           0.993       0.997          0.319 0.685   0.685
#> SD:hclust   2 0.935           0.927       0.968          0.308 0.695   0.695
#> CV:hclust   2 0.965           0.947       0.976          0.318 0.706   0.706
#> MAD:hclust  2 0.735           0.885       0.949          0.327 0.695   0.695
#> ATC:hclust  2 1.000           0.972       0.987          0.303 0.685   0.685
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 1.000           0.962       0.983          0.792 0.699   0.533
#> CV:NMF      3 1.000           0.939       0.978          0.651 0.671   0.486
#> MAD:NMF     3 0.962           0.923       0.965          0.690 0.666   0.489
#> ATC:NMF     3 0.831           0.898       0.941          0.617 0.720   0.565
#> SD:skmeans  3 1.000           0.963       0.986          0.508 0.745   0.551
#> CV:skmeans  3 1.000           0.989       0.995          0.511 0.743   0.549
#> MAD:skmeans 3 0.978           0.953       0.980          0.486 0.749   0.554
#> ATC:skmeans 3 0.823           0.942       0.964          0.548 0.756   0.577
#> SD:mclust   3 0.651           0.808       0.839          0.447 0.727   0.531
#> CV:mclust   3 0.669           0.740       0.803          0.325 0.770   0.584
#> MAD:mclust  3 0.560           0.723       0.769          0.611 0.627   0.448
#> ATC:mclust  3 0.543           0.692       0.852          0.294 0.808   0.678
#> SD:kmeans   3 0.623           0.883       0.879          0.833 0.671   0.515
#> CV:kmeans   3 0.628           0.851       0.872          0.774 0.686   0.528
#> MAD:kmeans  3 0.634           0.908       0.909          0.816 0.683   0.530
#> ATC:kmeans  3 0.607           0.795       0.795          0.608 0.839   0.762
#> SD:pam      3 0.923           0.918       0.967          0.920 0.687   0.534
#> CV:pam      3 0.882           0.934       0.970          0.814 0.675   0.507
#> MAD:pam     3 0.917           0.939       0.973          0.780 0.699   0.533
#> ATC:pam     3 0.668           0.813       0.811          0.775 0.681   0.534
#> SD:hclust   3 0.760           0.850       0.945          0.147 0.987   0.981
#> CV:hclust   3 0.869           0.899       0.958          0.117 0.987   0.981
#> MAD:hclust  3 0.752           0.807       0.926          0.104 0.987   0.981
#> ATC:hclust  3 0.825           0.881       0.949          0.257 0.987   0.981
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.773           0.822       0.875         0.1296 0.889   0.694
#> CV:NMF      4 0.752           0.724       0.865         0.1158 0.906   0.734
#> MAD:NMF     4 0.742           0.779       0.871         0.1361 0.854   0.615
#> ATC:NMF     4 0.621           0.713       0.858         0.1380 0.843   0.624
#> SD:skmeans  4 0.886           0.861       0.922         0.0977 0.911   0.737
#> CV:skmeans  4 0.813           0.799       0.899         0.1096 0.888   0.677
#> MAD:skmeans 4 0.879           0.871       0.927         0.1012 0.916   0.751
#> ATC:skmeans 4 0.721           0.757       0.777         0.0754 0.944   0.837
#> SD:mclust   4 0.508           0.695       0.760         0.1146 0.918   0.767
#> CV:mclust   4 0.666           0.636       0.799         0.1875 0.803   0.522
#> MAD:mclust  4 0.519           0.582       0.741         0.1340 0.833   0.568
#> ATC:mclust  4 0.589           0.690       0.824         0.1566 0.722   0.475
#> SD:kmeans   4 0.719           0.718       0.812         0.1809 0.892   0.716
#> CV:kmeans   4 0.689           0.806       0.853         0.1622 0.907   0.743
#> MAD:kmeans  4 0.701           0.652       0.776         0.1569 0.910   0.755
#> ATC:kmeans  4 0.663           0.747       0.878         0.2566 0.805   0.630
#> SD:pam      4 0.815           0.847       0.880         0.0625 0.980   0.944
#> CV:pam      4 0.774           0.813       0.858         0.0707 0.981   0.947
#> MAD:pam     4 0.828           0.767       0.817         0.0760 0.949   0.856
#> ATC:pam     4 0.561           0.718       0.837         0.2492 0.735   0.416
#> SD:hclust   4 0.764           0.800       0.908         0.1778 0.896   0.848
#> CV:hclust   4 0.827           0.879       0.921         0.0497 0.985   0.979
#> MAD:hclust  4 0.705           0.835       0.907         0.2762 0.805   0.718
#> ATC:hclust  4 0.819           0.879       0.946         0.0411 0.988   0.981
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.644           0.613       0.767         0.0626 0.914   0.708
#> CV:NMF      5 0.709           0.663       0.832         0.0749 0.900   0.661
#> MAD:NMF     5 0.686           0.662       0.815         0.0736 0.855   0.522
#> ATC:NMF     5 0.646           0.599       0.779         0.0785 0.934   0.787
#> SD:skmeans  5 0.846           0.837       0.906         0.0577 0.957   0.839
#> CV:skmeans  5 0.798           0.667       0.857         0.0539 0.939   0.774
#> MAD:skmeans 5 0.787           0.815       0.880         0.0621 0.946   0.798
#> ATC:skmeans 5 0.727           0.654       0.827         0.0971 0.800   0.452
#> SD:mclust   5 0.628           0.521       0.728         0.0802 0.880   0.619
#> CV:mclust   5 0.602           0.581       0.757         0.0614 0.868   0.598
#> MAD:mclust  5 0.701           0.686       0.809         0.0652 0.833   0.511
#> ATC:mclust  5 0.483           0.590       0.742         0.0611 0.941   0.853
#> SD:kmeans   5 0.714           0.699       0.800         0.0774 0.884   0.627
#> CV:kmeans   5 0.735           0.684       0.811         0.0866 0.911   0.695
#> MAD:kmeans  5 0.699           0.720       0.817         0.0850 0.864   0.578
#> ATC:kmeans  5 0.658           0.563       0.757         0.1208 0.926   0.783
#> SD:pam      5 0.864           0.877       0.942         0.1038 0.888   0.688
#> CV:pam      5 0.790           0.798       0.904         0.0824 0.860   0.611
#> MAD:pam     5 0.934           0.913       0.962         0.0728 0.919   0.746
#> ATC:pam     5 0.733           0.810       0.859         0.0999 0.859   0.546
#> SD:hclust   5 0.739           0.779       0.890         0.1479 0.871   0.787
#> CV:hclust   5 0.765           0.811       0.915         0.2788 0.840   0.764
#> MAD:hclust  5 0.556           0.792       0.879         0.1433 0.975   0.951
#> ATC:hclust  5 0.772           0.845       0.920         0.3281 0.829   0.741
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.735           0.738       0.845         0.0468 0.879   0.554
#> CV:NMF      6 0.810           0.773       0.859         0.0438 0.877   0.521
#> MAD:NMF     6 0.694           0.626       0.798         0.0404 0.915   0.633
#> ATC:NMF     6 0.648           0.650       0.796         0.0511 0.891   0.617
#> SD:skmeans  6 0.810           0.764       0.863         0.0479 0.943   0.756
#> CV:skmeans  6 0.766           0.674       0.812         0.0398 0.934   0.722
#> MAD:skmeans 6 0.777           0.760       0.865         0.0507 0.939   0.731
#> ATC:skmeans 6 0.864           0.845       0.904         0.0491 0.910   0.643
#> SD:mclust   6 0.712           0.562       0.743         0.0543 0.904   0.645
#> CV:mclust   6 0.784           0.696       0.802         0.0493 0.903   0.640
#> MAD:mclust  6 0.721           0.507       0.769         0.0488 0.961   0.851
#> ATC:mclust  6 0.781           0.823       0.886         0.1792 0.749   0.381
#> SD:kmeans   6 0.752           0.623       0.793         0.0532 0.971   0.875
#> CV:kmeans   6 0.732           0.569       0.738         0.0429 0.963   0.841
#> MAD:kmeans  6 0.737           0.646       0.786         0.0507 0.978   0.902
#> ATC:kmeans  6 0.680           0.470       0.699         0.0630 0.859   0.543
#> SD:pam      6 0.775           0.728       0.832         0.0653 0.877   0.576
#> CV:pam      6 0.754           0.653       0.829         0.0486 0.964   0.856
#> MAD:pam     6 0.835           0.713       0.875         0.0560 0.935   0.756
#> ATC:pam     6 0.794           0.608       0.791         0.0501 0.900   0.584
#> SD:hclust   6 0.507           0.686       0.807         0.1352 0.973   0.945
#> CV:hclust   6 0.725           0.742       0.875         0.0813 0.990   0.981
#> MAD:hclust  6 0.424           0.596       0.775         0.2250 0.896   0.786
#> ATC:hclust  6 0.772           0.825       0.910         0.0222 0.991   0.981

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.935           0.927       0.968          0.308 0.695   0.695
#> 3 3 0.760           0.850       0.945          0.147 0.987   0.981
#> 4 4 0.764           0.800       0.908          0.178 0.896   0.848
#> 5 5 0.739           0.779       0.890          0.148 0.871   0.787
#> 6 6 0.507           0.686       0.807          0.135 0.973   0.945

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.974 1.000 0.000
#> SRR1390119     2  0.0000      0.919 0.000 1.000
#> SRR1436127     1  0.0000      0.974 1.000 0.000
#> SRR1347278     1  0.0000      0.974 1.000 0.000
#> SRR1332904     2  0.8081      0.709 0.248 0.752
#> SRR1444179     1  0.0000      0.974 1.000 0.000
#> SRR1082685     1  0.0000      0.974 1.000 0.000
#> SRR1362287     1  0.0000      0.974 1.000 0.000
#> SRR1339007     1  0.0000      0.974 1.000 0.000
#> SRR1376557     2  0.0000      0.919 0.000 1.000
#> SRR1468700     2  0.0376      0.919 0.004 0.996
#> SRR1077455     1  0.0000      0.974 1.000 0.000
#> SRR1413978     1  0.0000      0.974 1.000 0.000
#> SRR1439896     1  0.0000      0.974 1.000 0.000
#> SRR1317963     2  0.8909      0.621 0.308 0.692
#> SRR1431865     1  0.0000      0.974 1.000 0.000
#> SRR1394253     1  0.0000      0.974 1.000 0.000
#> SRR1082664     1  0.0000      0.974 1.000 0.000
#> SRR1077968     1  0.0000      0.974 1.000 0.000
#> SRR1076393     1  0.0000      0.974 1.000 0.000
#> SRR1477476     2  0.0000      0.919 0.000 1.000
#> SRR1398057     1  0.0000      0.974 1.000 0.000
#> SRR1485042     1  0.0000      0.974 1.000 0.000
#> SRR1385453     1  0.4431      0.891 0.908 0.092
#> SRR1348074     1  0.2948      0.932 0.948 0.052
#> SRR813959      1  0.9580      0.348 0.620 0.380
#> SRR665442      1  0.3114      0.929 0.944 0.056
#> SRR1378068     1  0.0000      0.974 1.000 0.000
#> SRR1485237     1  0.2948      0.932 0.948 0.052
#> SRR1350792     1  0.0000      0.974 1.000 0.000
#> SRR1326797     1  0.0000      0.974 1.000 0.000
#> SRR808994      1  0.0000      0.974 1.000 0.000
#> SRR1474041     1  0.0000      0.974 1.000 0.000
#> SRR1405641     1  0.0000      0.974 1.000 0.000
#> SRR1362245     1  0.0000      0.974 1.000 0.000
#> SRR1500194     1  0.0000      0.974 1.000 0.000
#> SRR1414876     2  0.0000      0.919 0.000 1.000
#> SRR1478523     1  0.3274      0.924 0.940 0.060
#> SRR1325161     1  0.0000      0.974 1.000 0.000
#> SRR1318026     1  0.2778      0.936 0.952 0.048
#> SRR1343778     1  0.0000      0.974 1.000 0.000
#> SRR1441287     1  0.0000      0.974 1.000 0.000
#> SRR1430991     1  0.0000      0.974 1.000 0.000
#> SRR1499722     1  0.0000      0.974 1.000 0.000
#> SRR1351368     1  0.0000      0.974 1.000 0.000
#> SRR1441785     1  0.0000      0.974 1.000 0.000
#> SRR1096101     1  0.0000      0.974 1.000 0.000
#> SRR808375      1  0.0000      0.974 1.000 0.000
#> SRR1452842     1  0.0000      0.974 1.000 0.000
#> SRR1311709     1  0.0000      0.974 1.000 0.000
#> SRR1433352     1  0.0000      0.974 1.000 0.000
#> SRR1340241     2  0.0376      0.919 0.004 0.996
#> SRR1456754     1  0.0000      0.974 1.000 0.000
#> SRR1465172     1  0.0000      0.974 1.000 0.000
#> SRR1499284     1  0.0000      0.974 1.000 0.000
#> SRR1499607     2  0.8909      0.621 0.308 0.692
#> SRR812342      1  0.0000      0.974 1.000 0.000
#> SRR1405374     1  0.0000      0.974 1.000 0.000
#> SRR1403565     1  0.0000      0.974 1.000 0.000
#> SRR1332024     1  0.0000      0.974 1.000 0.000
#> SRR1471633     1  0.0000      0.974 1.000 0.000
#> SRR1325944     2  0.0000      0.919 0.000 1.000
#> SRR1429450     2  0.0000      0.919 0.000 1.000
#> SRR821573      1  0.0000      0.974 1.000 0.000
#> SRR1435372     1  0.0000      0.974 1.000 0.000
#> SRR1324184     2  0.0000      0.919 0.000 1.000
#> SRR816517      1  0.5519      0.846 0.872 0.128
#> SRR1324141     1  0.2948      0.932 0.948 0.052
#> SRR1101612     1  0.0000      0.974 1.000 0.000
#> SRR1356531     1  0.0000      0.974 1.000 0.000
#> SRR1089785     1  0.0000      0.974 1.000 0.000
#> SRR1077708     1  0.0000      0.974 1.000 0.000
#> SRR1343720     1  0.0000      0.974 1.000 0.000
#> SRR1477499     2  0.0000      0.919 0.000 1.000
#> SRR1347236     1  0.0000      0.974 1.000 0.000
#> SRR1326408     1  0.0000      0.974 1.000 0.000
#> SRR1336529     1  0.0000      0.974 1.000 0.000
#> SRR1440643     1  0.4431      0.891 0.908 0.092
#> SRR662354      1  0.0000      0.974 1.000 0.000
#> SRR1310817     1  0.0000      0.974 1.000 0.000
#> SRR1347389     2  0.0376      0.918 0.004 0.996
#> SRR1353097     1  0.0000      0.974 1.000 0.000
#> SRR1384737     1  0.2948      0.932 0.948 0.052
#> SRR1096339     1  0.0000      0.974 1.000 0.000
#> SRR1345329     1  0.2948      0.932 0.948 0.052
#> SRR1414771     1  0.0000      0.974 1.000 0.000
#> SRR1309119     1  0.0000      0.974 1.000 0.000
#> SRR1470438     1  0.0000      0.974 1.000 0.000
#> SRR1343221     1  0.0000      0.974 1.000 0.000
#> SRR1410847     1  0.0000      0.974 1.000 0.000
#> SRR807949      1  0.0000      0.974 1.000 0.000
#> SRR1442332     1  0.0000      0.974 1.000 0.000
#> SRR815920      1  0.0000      0.974 1.000 0.000
#> SRR1471524     1  0.0000      0.974 1.000 0.000
#> SRR1477221     1  0.0000      0.974 1.000 0.000
#> SRR1445046     2  0.8909      0.621 0.308 0.692
#> SRR1331962     2  0.0376      0.919 0.004 0.996
#> SRR1319946     1  0.9661      0.312 0.608 0.392
#> SRR1311599     1  0.0000      0.974 1.000 0.000
#> SRR1323977     1  0.9427      0.404 0.640 0.360
#> SRR1445132     2  0.0000      0.919 0.000 1.000
#> SRR1337321     1  0.0000      0.974 1.000 0.000
#> SRR1366390     2  0.0376      0.918 0.004 0.996
#> SRR1343012     1  0.2948      0.932 0.948 0.052
#> SRR1311958     2  0.6438      0.800 0.164 0.836
#> SRR1388234     1  0.9209      0.465 0.664 0.336
#> SRR1370384     1  0.0000      0.974 1.000 0.000
#> SRR1321650     1  0.0000      0.974 1.000 0.000
#> SRR1485117     2  0.0000      0.919 0.000 1.000
#> SRR1384713     1  0.0000      0.974 1.000 0.000
#> SRR816609      1  0.2948      0.932 0.948 0.052
#> SRR1486239     2  0.8861      0.628 0.304 0.696
#> SRR1309638     1  0.0000      0.974 1.000 0.000
#> SRR1356660     1  0.0000      0.974 1.000 0.000
#> SRR1392883     2  0.0000      0.919 0.000 1.000
#> SRR808130      1  0.0000      0.974 1.000 0.000
#> SRR816677      1  0.2778      0.936 0.952 0.048
#> SRR1455722     1  0.0000      0.974 1.000 0.000
#> SRR1336029     1  0.0000      0.974 1.000 0.000
#> SRR808452      1  0.0000      0.974 1.000 0.000
#> SRR1352169     1  0.0000      0.974 1.000 0.000
#> SRR1366707     1  0.0000      0.974 1.000 0.000
#> SRR1328143     1  0.0000      0.974 1.000 0.000
#> SRR1473567     2  0.0000      0.919 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1390119     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR1436127     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1347278     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1332904     2  0.7804     0.5351 0.120 0.664 0.216
#> SRR1444179     1  0.0592     0.9344 0.988 0.000 0.012
#> SRR1082685     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1362287     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1339007     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1376557     2  0.0747     0.8463 0.000 0.984 0.016
#> SRR1468700     2  0.1529     0.8358 0.000 0.960 0.040
#> SRR1077455     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1413978     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1317963     2  0.8587     0.4222 0.176 0.604 0.220
#> SRR1431865     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1082664     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1077968     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1076393     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1477476     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR1398057     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1485042     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1385453     1  0.4842     0.6848 0.776 0.000 0.224
#> SRR1348074     1  0.4002     0.7783 0.840 0.000 0.160
#> SRR813959      1  0.9501    -0.0639 0.488 0.288 0.224
#> SRR665442      3  0.4504     0.0000 0.196 0.000 0.804
#> SRR1378068     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1485237     1  0.4002     0.7783 0.840 0.000 0.160
#> SRR1350792     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1326797     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR808994      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1474041     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1405641     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1362245     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1500194     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1414876     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR1478523     1  0.4452     0.7338 0.808 0.000 0.192
#> SRR1325161     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1318026     1  0.3941     0.7829 0.844 0.000 0.156
#> SRR1343778     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1441287     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1430991     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1499722     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1351368     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1441785     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1096101     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR808375      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1452842     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1311709     1  0.0424     0.9379 0.992 0.000 0.008
#> SRR1433352     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1340241     2  0.1964     0.8264 0.000 0.944 0.056
#> SRR1456754     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1465172     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1499284     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1499607     2  0.8587     0.4222 0.176 0.604 0.220
#> SRR812342      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1403565     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1332024     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1471633     1  0.0592     0.9344 0.988 0.000 0.012
#> SRR1325944     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR1429450     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR821573      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1435372     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1324184     2  0.1031     0.8391 0.000 0.976 0.024
#> SRR816517      1  0.6211     0.6133 0.736 0.036 0.228
#> SRR1324141     1  0.4002     0.7783 0.840 0.000 0.160
#> SRR1101612     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1089785     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1077708     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1343720     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1477499     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR1347236     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1326408     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1336529     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1440643     1  0.4796     0.6911 0.780 0.000 0.220
#> SRR662354      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1310817     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1347389     2  0.0592     0.8472 0.000 0.988 0.012
#> SRR1353097     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1384737     1  0.4002     0.7783 0.840 0.000 0.160
#> SRR1096339     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1345329     1  0.4002     0.7783 0.840 0.000 0.160
#> SRR1414771     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1309119     1  0.0592     0.9344 0.988 0.000 0.012
#> SRR1470438     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1343221     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR807949      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1442332     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR815920      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1471524     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1477221     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1445046     2  0.8587     0.4222 0.176 0.604 0.220
#> SRR1331962     2  0.1529     0.8358 0.000 0.960 0.040
#> SRR1319946     1  0.9582    -0.1092 0.472 0.300 0.228
#> SRR1311599     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1323977     1  0.9292     0.0373 0.520 0.272 0.208
#> SRR1445132     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR1337321     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1366390     2  0.0592     0.8472 0.000 0.988 0.012
#> SRR1343012     1  0.4002     0.7783 0.840 0.000 0.160
#> SRR1311958     2  0.5798     0.6868 0.044 0.780 0.176
#> SRR1388234     1  0.9055     0.1383 0.552 0.252 0.196
#> SRR1370384     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1321650     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1485117     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR1384713     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR816609      1  0.4002     0.7783 0.840 0.000 0.160
#> SRR1486239     2  0.8542     0.4309 0.172 0.608 0.220
#> SRR1309638     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1356660     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1392883     2  0.0000     0.8499 0.000 1.000 0.000
#> SRR808130      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR816677      1  0.3941     0.7829 0.844 0.000 0.156
#> SRR1455722     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR808452      1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1352169     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1366707     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1328143     1  0.0000     0.9445 1.000 0.000 0.000
#> SRR1473567     2  0.0000     0.8499 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1390119     2  0.1118    0.80254 0.000 0.964 0.036 0.000
#> SRR1436127     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1347278     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1332904     3  0.4356    0.00796 0.000 0.292 0.708 0.000
#> SRR1444179     1  0.1118    0.91669 0.964 0.000 0.036 0.000
#> SRR1082685     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1339007     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.3873    0.82713 0.000 0.772 0.228 0.000
#> SRR1468700     2  0.4843    0.66232 0.000 0.604 0.396 0.000
#> SRR1077455     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1413978     1  0.0336    0.94254 0.992 0.000 0.008 0.000
#> SRR1439896     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1317963     3  0.3907    0.13640 0.000 0.232 0.768 0.000
#> SRR1431865     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1082664     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1077968     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1076393     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1477476     2  0.1118    0.80254 0.000 0.964 0.036 0.000
#> SRR1398057     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1485042     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1385453     3  0.4941    0.35571 0.436 0.000 0.564 0.000
#> SRR1348074     1  0.4500    0.45099 0.684 0.000 0.316 0.000
#> SRR813959      3  0.6351    0.45117 0.268 0.104 0.628 0.000
#> SRR665442      4  0.0000    0.00000 0.000 0.000 0.000 1.000
#> SRR1378068     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1485237     1  0.4500    0.45099 0.684 0.000 0.316 0.000
#> SRR1350792     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR808994      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1474041     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1405641     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1362245     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1500194     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.1302    0.84185 0.000 0.956 0.044 0.000
#> SRR1478523     3  0.4994    0.23134 0.480 0.000 0.520 0.000
#> SRR1325161     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1318026     1  0.4454    0.46967 0.692 0.000 0.308 0.000
#> SRR1343778     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1441287     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1430991     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1499722     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1351368     1  0.2011    0.86660 0.920 0.000 0.080 0.000
#> SRR1441785     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR808375      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1452842     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1311709     1  0.1474    0.90055 0.948 0.000 0.052 0.000
#> SRR1433352     1  0.0188    0.94573 0.996 0.000 0.004 0.000
#> SRR1340241     2  0.4008    0.80961 0.000 0.756 0.244 0.000
#> SRR1456754     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1465172     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1499284     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1499607     3  0.3837    0.14136 0.000 0.224 0.776 0.000
#> SRR812342      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1403565     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1332024     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1471633     1  0.1389    0.90475 0.952 0.000 0.048 0.000
#> SRR1325944     2  0.0921    0.83845 0.000 0.972 0.028 0.000
#> SRR1429450     2  0.0000    0.82632 0.000 1.000 0.000 0.000
#> SRR821573      1  0.0336    0.94252 0.992 0.000 0.008 0.000
#> SRR1435372     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.4426    0.82958 0.000 0.772 0.204 0.024
#> SRR816517      3  0.4843    0.41407 0.396 0.000 0.604 0.000
#> SRR1324141     1  0.4431    0.48019 0.696 0.000 0.304 0.000
#> SRR1101612     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1089785     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1077708     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1343720     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1477499     2  0.0336    0.83043 0.000 0.992 0.008 0.000
#> SRR1347236     1  0.0188    0.94573 0.996 0.000 0.004 0.000
#> SRR1326408     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1336529     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1440643     1  0.4994   -0.14591 0.520 0.000 0.480 0.000
#> SRR662354      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1310817     1  0.0469    0.93924 0.988 0.000 0.012 0.000
#> SRR1347389     2  0.3975    0.82692 0.000 0.760 0.240 0.000
#> SRR1353097     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1384737     1  0.4431    0.48019 0.696 0.000 0.304 0.000
#> SRR1096339     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1345329     1  0.4500    0.45099 0.684 0.000 0.316 0.000
#> SRR1414771     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1309119     1  0.1389    0.90475 0.952 0.000 0.048 0.000
#> SRR1470438     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1343221     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR807949      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1442332     1  0.0188    0.94573 0.996 0.000 0.004 0.000
#> SRR815920      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1471524     1  0.2011    0.86660 0.920 0.000 0.080 0.000
#> SRR1477221     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1445046     3  0.3907    0.13640 0.000 0.232 0.768 0.000
#> SRR1331962     2  0.4843    0.66232 0.000 0.604 0.396 0.000
#> SRR1319946     3  0.6042    0.42777 0.224 0.104 0.672 0.000
#> SRR1311599     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1323977     3  0.6627    0.46213 0.348 0.096 0.556 0.000
#> SRR1445132     2  0.1118    0.80254 0.000 0.964 0.036 0.000
#> SRR1337321     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1366390     2  0.3975    0.82692 0.000 0.760 0.240 0.000
#> SRR1343012     1  0.4431    0.48019 0.696 0.000 0.304 0.000
#> SRR1311958     3  0.4877   -0.29640 0.000 0.408 0.592 0.000
#> SRR1388234     3  0.6735    0.45250 0.388 0.096 0.516 0.000
#> SRR1370384     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1321650     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1485117     2  0.3172    0.84408 0.000 0.840 0.160 0.000
#> SRR1384713     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR816609      1  0.4500    0.45099 0.684 0.000 0.316 0.000
#> SRR1486239     3  0.3942    0.13085 0.000 0.236 0.764 0.000
#> SRR1309638     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1356660     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1392883     2  0.0817    0.83738 0.000 0.976 0.024 0.000
#> SRR808130      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR816677      1  0.4193    0.55306 0.732 0.000 0.268 0.000
#> SRR1455722     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0592    0.93588 0.984 0.000 0.016 0.000
#> SRR808452      1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1352169     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1366707     1  0.2011    0.86660 0.920 0.000 0.080 0.000
#> SRR1328143     1  0.0000    0.94880 1.000 0.000 0.000 0.000
#> SRR1473567     2  0.3486    0.84014 0.000 0.812 0.188 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     1  0.0290     0.9676 0.992 0.000 0.000 0.008 0.000
#> SRR1390119     3  0.0000     0.7741 0.000 0.000 1.000 0.000 0.000
#> SRR1436127     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1347278     1  0.0290     0.9682 0.992 0.000 0.000 0.008 0.000
#> SRR1332904     2  0.3990     0.5155 0.000 0.688 0.004 0.308 0.000
#> SRR1444179     1  0.1732     0.8806 0.920 0.000 0.000 0.080 0.000
#> SRR1082685     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1362287     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1339007     1  0.0404     0.9677 0.988 0.000 0.000 0.012 0.000
#> SRR1376557     2  0.4375    -0.0517 0.000 0.576 0.420 0.004 0.000
#> SRR1468700     2  0.2471     0.4746 0.000 0.864 0.136 0.000 0.000
#> SRR1077455     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR1413978     1  0.0510     0.9648 0.984 0.000 0.000 0.016 0.000
#> SRR1439896     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1317963     2  0.4088     0.4902 0.000 0.632 0.000 0.368 0.000
#> SRR1431865     1  0.0290     0.9693 0.992 0.000 0.000 0.008 0.000
#> SRR1394253     1  0.0290     0.9693 0.992 0.000 0.000 0.008 0.000
#> SRR1082664     1  0.0162     0.9688 0.996 0.000 0.000 0.004 0.000
#> SRR1077968     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR1076393     1  0.0510     0.9618 0.984 0.000 0.000 0.016 0.000
#> SRR1477476     3  0.0000     0.7741 0.000 0.000 1.000 0.000 0.000
#> SRR1398057     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1485042     1  0.0404     0.9677 0.988 0.000 0.000 0.012 0.000
#> SRR1385453     4  0.1908     0.2697 0.092 0.000 0.000 0.908 0.000
#> SRR1348074     4  0.4249     0.6505 0.432 0.000 0.000 0.568 0.000
#> SRR813959      4  0.5062    -0.0110 0.068 0.276 0.000 0.656 0.000
#> SRR665442      5  0.0000     0.0000 0.000 0.000 0.000 0.000 1.000
#> SRR1378068     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1485237     4  0.4249     0.6505 0.432 0.000 0.000 0.568 0.000
#> SRR1350792     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1326797     1  0.0162     0.9695 0.996 0.000 0.000 0.004 0.000
#> SRR808994      1  0.0510     0.9637 0.984 0.000 0.000 0.016 0.000
#> SRR1474041     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1405641     1  0.0510     0.9637 0.984 0.000 0.000 0.016 0.000
#> SRR1362245     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1500194     1  0.0290     0.9693 0.992 0.000 0.000 0.008 0.000
#> SRR1414876     3  0.3612     0.6954 0.000 0.268 0.732 0.000 0.000
#> SRR1478523     4  0.2471     0.3430 0.136 0.000 0.000 0.864 0.000
#> SRR1325161     1  0.0000     0.9692 1.000 0.000 0.000 0.000 0.000
#> SRR1318026     4  0.4262     0.6390 0.440 0.000 0.000 0.560 0.000
#> SRR1343778     1  0.0290     0.9676 0.992 0.000 0.000 0.008 0.000
#> SRR1441287     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1430991     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1499722     1  0.0162     0.9695 0.996 0.000 0.000 0.004 0.000
#> SRR1351368     1  0.2074     0.8462 0.896 0.000 0.000 0.104 0.000
#> SRR1441785     1  0.0290     0.9693 0.992 0.000 0.000 0.008 0.000
#> SRR1096101     1  0.0404     0.9677 0.988 0.000 0.000 0.012 0.000
#> SRR808375      1  0.0000     0.9692 1.000 0.000 0.000 0.000 0.000
#> SRR1452842     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR1311709     1  0.2648     0.7479 0.848 0.000 0.000 0.152 0.000
#> SRR1433352     1  0.0290     0.9682 0.992 0.000 0.000 0.008 0.000
#> SRR1340241     3  0.5458     0.1189 0.000 0.464 0.476 0.060 0.000
#> SRR1456754     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR1465172     1  0.0000     0.9692 1.000 0.000 0.000 0.000 0.000
#> SRR1499284     1  0.0000     0.9692 1.000 0.000 0.000 0.000 0.000
#> SRR1499607     2  0.4114     0.4845 0.000 0.624 0.000 0.376 0.000
#> SRR812342      1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1405374     1  0.0404     0.9677 0.988 0.000 0.000 0.012 0.000
#> SRR1403565     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR1332024     1  0.0510     0.9637 0.984 0.000 0.000 0.016 0.000
#> SRR1471633     1  0.2280     0.8137 0.880 0.000 0.000 0.120 0.000
#> SRR1325944     3  0.3177     0.7582 0.000 0.208 0.792 0.000 0.000
#> SRR1429450     3  0.1478     0.7958 0.000 0.064 0.936 0.000 0.000
#> SRR821573      1  0.0510     0.9629 0.984 0.000 0.000 0.016 0.000
#> SRR1435372     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1324184     2  0.4571     0.3433 0.000 0.736 0.216 0.024 0.024
#> SRR816517      4  0.1697     0.1806 0.060 0.008 0.000 0.932 0.000
#> SRR1324141     4  0.4294     0.5893 0.468 0.000 0.000 0.532 0.000
#> SRR1101612     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1356531     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1089785     1  0.0000     0.9692 1.000 0.000 0.000 0.000 0.000
#> SRR1077708     1  0.0162     0.9688 0.996 0.000 0.000 0.004 0.000
#> SRR1343720     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1477499     3  0.2690     0.7717 0.000 0.156 0.844 0.000 0.000
#> SRR1347236     1  0.0162     0.9695 0.996 0.000 0.000 0.004 0.000
#> SRR1326408     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR1336529     1  0.0510     0.9637 0.984 0.000 0.000 0.016 0.000
#> SRR1440643     4  0.3452     0.4966 0.244 0.000 0.000 0.756 0.000
#> SRR662354      1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1310817     1  0.1043     0.9351 0.960 0.000 0.000 0.040 0.000
#> SRR1347389     2  0.4337     0.3649 0.000 0.744 0.204 0.052 0.000
#> SRR1353097     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1384737     4  0.4294     0.5893 0.468 0.000 0.000 0.532 0.000
#> SRR1096339     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1345329     4  0.4249     0.6505 0.432 0.000 0.000 0.568 0.000
#> SRR1414771     1  0.0510     0.9637 0.984 0.000 0.000 0.016 0.000
#> SRR1309119     1  0.2280     0.8137 0.880 0.000 0.000 0.120 0.000
#> SRR1470438     1  0.0510     0.9637 0.984 0.000 0.000 0.016 0.000
#> SRR1343221     1  0.0404     0.9677 0.988 0.000 0.000 0.012 0.000
#> SRR1410847     1  0.0404     0.9677 0.988 0.000 0.000 0.012 0.000
#> SRR807949      1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1442332     1  0.0290     0.9682 0.992 0.000 0.000 0.008 0.000
#> SRR815920      1  0.0404     0.9663 0.988 0.000 0.000 0.012 0.000
#> SRR1471524     1  0.2074     0.8462 0.896 0.000 0.000 0.104 0.000
#> SRR1477221     1  0.0290     0.9697 0.992 0.000 0.000 0.008 0.000
#> SRR1445046     2  0.4088     0.4902 0.000 0.632 0.000 0.368 0.000
#> SRR1331962     2  0.2329     0.4844 0.000 0.876 0.124 0.000 0.000
#> SRR1319946     4  0.3684    -0.1895 0.000 0.280 0.000 0.720 0.000
#> SRR1311599     1  0.0290     0.9693 0.992 0.000 0.000 0.008 0.000
#> SRR1323977     4  0.6062     0.3074 0.168 0.268 0.000 0.564 0.000
#> SRR1445132     3  0.0000     0.7741 0.000 0.000 1.000 0.000 0.000
#> SRR1337321     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1366390     2  0.4337     0.3649 0.000 0.744 0.204 0.052 0.000
#> SRR1343012     4  0.4294     0.5893 0.468 0.000 0.000 0.532 0.000
#> SRR1311958     2  0.2852     0.5416 0.000 0.828 0.000 0.172 0.000
#> SRR1388234     4  0.6231     0.4057 0.204 0.252 0.000 0.544 0.000
#> SRR1370384     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR1321650     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1485117     2  0.4304    -0.2254 0.000 0.516 0.484 0.000 0.000
#> SRR1384713     1  0.0162     0.9696 0.996 0.000 0.000 0.004 0.000
#> SRR816609      4  0.4249     0.6505 0.432 0.000 0.000 0.568 0.000
#> SRR1486239     2  0.4060     0.4945 0.000 0.640 0.000 0.360 0.000
#> SRR1309638     1  0.0290     0.9668 0.992 0.000 0.000 0.008 0.000
#> SRR1356660     1  0.0290     0.9693 0.992 0.000 0.000 0.008 0.000
#> SRR1392883     3  0.2966     0.7708 0.000 0.184 0.816 0.000 0.000
#> SRR808130      1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR816677      1  0.4307    -0.5236 0.504 0.000 0.000 0.496 0.000
#> SRR1455722     1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1336029     1  0.0794     0.9534 0.972 0.000 0.000 0.028 0.000
#> SRR808452      1  0.0290     0.9689 0.992 0.000 0.000 0.008 0.000
#> SRR1352169     1  0.0290     0.9682 0.992 0.000 0.000 0.008 0.000
#> SRR1366707     1  0.2074     0.8462 0.896 0.000 0.000 0.104 0.000
#> SRR1328143     1  0.0162     0.9686 0.996 0.000 0.000 0.004 0.000
#> SRR1473567     2  0.4210    -0.0408 0.000 0.588 0.412 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     1  0.1788     0.8746 0.928 0.000 0.004 0.028 0.040 0.000
#> SRR1390119     3  0.3774     0.9584 0.000 0.408 0.592 0.000 0.000 0.000
#> SRR1436127     1  0.2454     0.8329 0.876 0.000 0.004 0.016 0.104 0.000
#> SRR1347278     1  0.1405     0.8811 0.948 0.000 0.004 0.024 0.024 0.000
#> SRR1332904     5  0.4244     0.8726 0.000 0.080 0.000 0.200 0.720 0.000
#> SRR1444179     1  0.2491     0.7930 0.836 0.000 0.000 0.164 0.000 0.000
#> SRR1082685     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1362287     1  0.1349     0.8871 0.940 0.000 0.004 0.056 0.000 0.000
#> SRR1339007     1  0.1501     0.8769 0.924 0.000 0.000 0.076 0.000 0.000
#> SRR1376557     2  0.4326     0.2660 0.000 0.656 0.044 0.000 0.300 0.000
#> SRR1468700     2  0.3737     0.1411 0.000 0.608 0.000 0.000 0.392 0.000
#> SRR1077455     1  0.1411     0.8849 0.936 0.000 0.004 0.060 0.000 0.000
#> SRR1413978     1  0.1444     0.8830 0.928 0.000 0.000 0.072 0.000 0.000
#> SRR1439896     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1317963     5  0.3534     0.9117 0.000 0.016 0.000 0.244 0.740 0.000
#> SRR1431865     1  0.1141     0.8854 0.948 0.000 0.000 0.052 0.000 0.000
#> SRR1394253     1  0.1141     0.8854 0.948 0.000 0.000 0.052 0.000 0.000
#> SRR1082664     1  0.1059     0.8873 0.964 0.000 0.004 0.016 0.016 0.000
#> SRR1077968     1  0.1411     0.8849 0.936 0.000 0.004 0.060 0.000 0.000
#> SRR1076393     1  0.2641     0.8389 0.876 0.000 0.004 0.048 0.072 0.000
#> SRR1477476     3  0.3774     0.9584 0.000 0.408 0.592 0.000 0.000 0.000
#> SRR1398057     1  0.1826     0.8682 0.924 0.000 0.004 0.020 0.052 0.000
#> SRR1485042     1  0.1444     0.8789 0.928 0.000 0.000 0.072 0.000 0.000
#> SRR1385453     4  0.2774     0.1165 0.040 0.000 0.012 0.872 0.076 0.000
#> SRR1348074     4  0.3699     0.6561 0.336 0.000 0.000 0.660 0.004 0.000
#> SRR813959      4  0.5165    -0.3180 0.068 0.000 0.008 0.528 0.396 0.000
#> SRR665442      6  0.0000     0.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1378068     1  0.2405     0.8373 0.880 0.000 0.004 0.016 0.100 0.000
#> SRR1485237     4  0.3699     0.6561 0.336 0.000 0.000 0.660 0.004 0.000
#> SRR1350792     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1326797     1  0.0767     0.8869 0.976 0.000 0.004 0.012 0.008 0.000
#> SRR808994      1  0.3702     0.7339 0.784 0.000 0.008 0.044 0.164 0.000
#> SRR1474041     1  0.1401     0.8791 0.948 0.000 0.004 0.020 0.028 0.000
#> SRR1405641     1  0.3702     0.7339 0.784 0.000 0.008 0.044 0.164 0.000
#> SRR1362245     1  0.3388     0.7587 0.804 0.000 0.004 0.036 0.156 0.000
#> SRR1500194     1  0.1141     0.8854 0.948 0.000 0.000 0.052 0.000 0.000
#> SRR1414876     2  0.4236    -0.3789 0.000 0.656 0.308 0.000 0.036 0.000
#> SRR1478523     4  0.3272     0.1876 0.080 0.000 0.008 0.836 0.076 0.000
#> SRR1325161     1  0.0862     0.8853 0.972 0.000 0.004 0.008 0.016 0.000
#> SRR1318026     4  0.3728     0.6537 0.344 0.000 0.000 0.652 0.004 0.000
#> SRR1343778     1  0.1788     0.8746 0.928 0.000 0.004 0.028 0.040 0.000
#> SRR1441287     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1430991     1  0.1562     0.8780 0.940 0.000 0.004 0.024 0.032 0.000
#> SRR1499722     1  0.0767     0.8869 0.976 0.000 0.004 0.012 0.008 0.000
#> SRR1351368     1  0.3852     0.7304 0.784 0.000 0.008 0.136 0.072 0.000
#> SRR1441785     1  0.1141     0.8854 0.948 0.000 0.000 0.052 0.000 0.000
#> SRR1096101     1  0.1501     0.8769 0.924 0.000 0.000 0.076 0.000 0.000
#> SRR808375      1  0.0862     0.8853 0.972 0.000 0.004 0.008 0.016 0.000
#> SRR1452842     1  0.1411     0.8849 0.936 0.000 0.004 0.060 0.000 0.000
#> SRR1311709     1  0.3163     0.6816 0.764 0.000 0.000 0.232 0.004 0.000
#> SRR1433352     1  0.1074     0.8854 0.960 0.000 0.000 0.028 0.012 0.000
#> SRR1340241     2  0.5556     0.1617 0.000 0.592 0.108 0.024 0.276 0.000
#> SRR1456754     1  0.1155     0.8897 0.956 0.000 0.004 0.036 0.004 0.000
#> SRR1465172     1  0.0862     0.8853 0.972 0.000 0.004 0.008 0.016 0.000
#> SRR1499284     1  0.0862     0.8853 0.972 0.000 0.004 0.008 0.016 0.000
#> SRR1499607     5  0.3373     0.9058 0.000 0.008 0.000 0.248 0.744 0.000
#> SRR812342      1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1405374     1  0.1714     0.8668 0.908 0.000 0.000 0.092 0.000 0.000
#> SRR1403565     1  0.1552     0.8906 0.940 0.000 0.004 0.036 0.020 0.000
#> SRR1332024     1  0.3702     0.7339 0.784 0.000 0.008 0.044 0.164 0.000
#> SRR1471633     1  0.2823     0.7335 0.796 0.000 0.000 0.204 0.000 0.000
#> SRR1325944     2  0.3955    -0.5774 0.000 0.608 0.384 0.000 0.008 0.000
#> SRR1429450     3  0.3860     0.8677 0.000 0.472 0.528 0.000 0.000 0.000
#> SRR821573      1  0.1296     0.8843 0.952 0.000 0.004 0.032 0.012 0.000
#> SRR1435372     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1324184     2  0.5644     0.1635 0.000 0.500 0.392 0.000 0.084 0.024
#> SRR816517      4  0.2617     0.0379 0.016 0.000 0.012 0.872 0.100 0.000
#> SRR1324141     4  0.3672     0.6427 0.368 0.000 0.000 0.632 0.000 0.000
#> SRR1101612     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1356531     1  0.1444     0.8806 0.928 0.000 0.000 0.072 0.000 0.000
#> SRR1089785     1  0.1218     0.8843 0.956 0.000 0.004 0.012 0.028 0.000
#> SRR1077708     1  0.1059     0.8873 0.964 0.000 0.004 0.016 0.016 0.000
#> SRR1343720     1  0.1168     0.8842 0.956 0.000 0.000 0.016 0.028 0.000
#> SRR1477499     2  0.4660    -0.6422 0.000 0.540 0.416 0.000 0.044 0.000
#> SRR1347236     1  0.0951     0.8866 0.968 0.000 0.004 0.020 0.008 0.000
#> SRR1326408     1  0.1411     0.8849 0.936 0.000 0.004 0.060 0.000 0.000
#> SRR1336529     1  0.3702     0.7339 0.784 0.000 0.008 0.044 0.164 0.000
#> SRR1440643     4  0.4433     0.4269 0.200 0.000 0.012 0.720 0.068 0.000
#> SRR662354      1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1310817     1  0.1769     0.8737 0.924 0.000 0.004 0.060 0.012 0.000
#> SRR1347389     2  0.5489     0.1726 0.000 0.496 0.396 0.008 0.100 0.000
#> SRR1353097     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1384737     4  0.3672     0.6427 0.368 0.000 0.000 0.632 0.000 0.000
#> SRR1096339     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1345329     4  0.3699     0.6561 0.336 0.000 0.000 0.660 0.004 0.000
#> SRR1414771     1  0.3702     0.7339 0.784 0.000 0.008 0.044 0.164 0.000
#> SRR1309119     1  0.2823     0.7335 0.796 0.000 0.000 0.204 0.000 0.000
#> SRR1470438     1  0.3702     0.7339 0.784 0.000 0.008 0.044 0.164 0.000
#> SRR1343221     1  0.1714     0.8668 0.908 0.000 0.000 0.092 0.000 0.000
#> SRR1410847     1  0.1501     0.8772 0.924 0.000 0.000 0.076 0.000 0.000
#> SRR807949      1  0.1401     0.8791 0.948 0.000 0.004 0.020 0.028 0.000
#> SRR1442332     1  0.1218     0.8845 0.956 0.000 0.004 0.028 0.012 0.000
#> SRR815920      1  0.2341     0.8596 0.900 0.000 0.012 0.032 0.056 0.000
#> SRR1471524     1  0.3852     0.7304 0.784 0.000 0.008 0.136 0.072 0.000
#> SRR1477221     1  0.1844     0.8888 0.924 0.000 0.004 0.048 0.024 0.000
#> SRR1445046     5  0.3534     0.9117 0.000 0.016 0.000 0.244 0.740 0.000
#> SRR1331962     2  0.3765     0.1078 0.000 0.596 0.000 0.000 0.404 0.000
#> SRR1319946     4  0.4018    -0.4743 0.000 0.000 0.008 0.580 0.412 0.000
#> SRR1311599     1  0.1141     0.8854 0.948 0.000 0.000 0.052 0.000 0.000
#> SRR1323977     4  0.5741     0.0949 0.152 0.000 0.004 0.480 0.364 0.000
#> SRR1445132     3  0.3774     0.9584 0.000 0.408 0.592 0.000 0.000 0.000
#> SRR1337321     1  0.3317     0.7635 0.808 0.000 0.004 0.032 0.156 0.000
#> SRR1366390     2  0.5489     0.1726 0.000 0.496 0.396 0.008 0.100 0.000
#> SRR1343012     4  0.3672     0.6427 0.368 0.000 0.000 0.632 0.000 0.000
#> SRR1311958     5  0.4952     0.6288 0.000 0.252 0.000 0.116 0.632 0.000
#> SRR1388234     4  0.5635     0.2202 0.152 0.000 0.004 0.528 0.316 0.000
#> SRR1370384     1  0.1411     0.8849 0.936 0.000 0.004 0.060 0.000 0.000
#> SRR1321650     1  0.3353     0.7587 0.804 0.000 0.004 0.032 0.160 0.000
#> SRR1485117     2  0.0508     0.2540 0.000 0.984 0.004 0.000 0.012 0.000
#> SRR1384713     1  0.1411     0.8849 0.936 0.000 0.004 0.060 0.000 0.000
#> SRR816609      4  0.3699     0.6561 0.336 0.000 0.000 0.660 0.004 0.000
#> SRR1486239     5  0.3670     0.9115 0.000 0.024 0.000 0.240 0.736 0.000
#> SRR1309638     1  0.2913     0.8053 0.848 0.000 0.004 0.032 0.116 0.000
#> SRR1356660     1  0.1141     0.8854 0.948 0.000 0.000 0.052 0.000 0.000
#> SRR1392883     2  0.3774    -0.6241 0.000 0.592 0.408 0.000 0.000 0.000
#> SRR808130      1  0.1401     0.8791 0.948 0.000 0.004 0.020 0.028 0.000
#> SRR816677      4  0.3915     0.5693 0.412 0.000 0.000 0.584 0.004 0.000
#> SRR1455722     1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1336029     1  0.1957     0.8566 0.888 0.000 0.000 0.112 0.000 0.000
#> SRR808452      1  0.1663     0.8690 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1352169     1  0.1405     0.8811 0.948 0.000 0.004 0.024 0.024 0.000
#> SRR1366707     1  0.3852     0.7304 0.784 0.000 0.008 0.136 0.072 0.000
#> SRR1328143     1  0.1401     0.8791 0.948 0.000 0.004 0.020 0.028 0.000
#> SRR1473567     2  0.2597     0.3342 0.000 0.824 0.000 0.000 0.176 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.989       0.996         0.3294 0.666   0.666
#> 3 3 0.623           0.883       0.879         0.8327 0.671   0.515
#> 4 4 0.719           0.718       0.812         0.1809 0.892   0.716
#> 5 5 0.714           0.699       0.800         0.0774 0.884   0.627
#> 6 6 0.752           0.623       0.793         0.0532 0.971   0.875

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1   0.000      1.000 1.000 0.000
#> SRR1390119     2   0.000      0.978 0.000 1.000
#> SRR1436127     1   0.000      1.000 1.000 0.000
#> SRR1347278     1   0.000      1.000 1.000 0.000
#> SRR1332904     2   0.000      0.978 0.000 1.000
#> SRR1444179     1   0.000      1.000 1.000 0.000
#> SRR1082685     1   0.000      1.000 1.000 0.000
#> SRR1362287     1   0.000      1.000 1.000 0.000
#> SRR1339007     1   0.000      1.000 1.000 0.000
#> SRR1376557     2   0.000      0.978 0.000 1.000
#> SRR1468700     2   0.000      0.978 0.000 1.000
#> SRR1077455     1   0.000      1.000 1.000 0.000
#> SRR1413978     1   0.000      1.000 1.000 0.000
#> SRR1439896     1   0.000      1.000 1.000 0.000
#> SRR1317963     2   0.000      0.978 0.000 1.000
#> SRR1431865     1   0.000      1.000 1.000 0.000
#> SRR1394253     1   0.000      1.000 1.000 0.000
#> SRR1082664     1   0.000      1.000 1.000 0.000
#> SRR1077968     1   0.000      1.000 1.000 0.000
#> SRR1076393     1   0.000      1.000 1.000 0.000
#> SRR1477476     2   0.000      0.978 0.000 1.000
#> SRR1398057     1   0.000      1.000 1.000 0.000
#> SRR1485042     1   0.000      1.000 1.000 0.000
#> SRR1385453     1   0.000      1.000 1.000 0.000
#> SRR1348074     1   0.000      1.000 1.000 0.000
#> SRR813959      1   0.000      1.000 1.000 0.000
#> SRR665442      1   0.000      1.000 1.000 0.000
#> SRR1378068     1   0.000      1.000 1.000 0.000
#> SRR1485237     1   0.000      1.000 1.000 0.000
#> SRR1350792     1   0.000      1.000 1.000 0.000
#> SRR1326797     1   0.000      1.000 1.000 0.000
#> SRR808994      1   0.000      1.000 1.000 0.000
#> SRR1474041     1   0.000      1.000 1.000 0.000
#> SRR1405641     1   0.000      1.000 1.000 0.000
#> SRR1362245     1   0.000      1.000 1.000 0.000
#> SRR1500194     1   0.000      1.000 1.000 0.000
#> SRR1414876     2   0.000      0.978 0.000 1.000
#> SRR1478523     1   0.000      1.000 1.000 0.000
#> SRR1325161     1   0.000      1.000 1.000 0.000
#> SRR1318026     1   0.000      1.000 1.000 0.000
#> SRR1343778     1   0.000      1.000 1.000 0.000
#> SRR1441287     1   0.000      1.000 1.000 0.000
#> SRR1430991     1   0.000      1.000 1.000 0.000
#> SRR1499722     1   0.000      1.000 1.000 0.000
#> SRR1351368     1   0.000      1.000 1.000 0.000
#> SRR1441785     1   0.000      1.000 1.000 0.000
#> SRR1096101     1   0.000      1.000 1.000 0.000
#> SRR808375      1   0.000      1.000 1.000 0.000
#> SRR1452842     1   0.000      1.000 1.000 0.000
#> SRR1311709     1   0.000      1.000 1.000 0.000
#> SRR1433352     1   0.000      1.000 1.000 0.000
#> SRR1340241     2   0.000      0.978 0.000 1.000
#> SRR1456754     1   0.000      1.000 1.000 0.000
#> SRR1465172     1   0.000      1.000 1.000 0.000
#> SRR1499284     1   0.000      1.000 1.000 0.000
#> SRR1499607     2   0.000      0.978 0.000 1.000
#> SRR812342      1   0.000      1.000 1.000 0.000
#> SRR1405374     1   0.000      1.000 1.000 0.000
#> SRR1403565     1   0.000      1.000 1.000 0.000
#> SRR1332024     1   0.000      1.000 1.000 0.000
#> SRR1471633     1   0.000      1.000 1.000 0.000
#> SRR1325944     2   0.000      0.978 0.000 1.000
#> SRR1429450     2   0.000      0.978 0.000 1.000
#> SRR821573      1   0.000      1.000 1.000 0.000
#> SRR1435372     1   0.000      1.000 1.000 0.000
#> SRR1324184     2   0.000      0.978 0.000 1.000
#> SRR816517      2   0.745      0.734 0.212 0.788
#> SRR1324141     1   0.000      1.000 1.000 0.000
#> SRR1101612     1   0.000      1.000 1.000 0.000
#> SRR1356531     1   0.000      1.000 1.000 0.000
#> SRR1089785     1   0.000      1.000 1.000 0.000
#> SRR1077708     1   0.000      1.000 1.000 0.000
#> SRR1343720     1   0.000      1.000 1.000 0.000
#> SRR1477499     2   0.000      0.978 0.000 1.000
#> SRR1347236     1   0.000      1.000 1.000 0.000
#> SRR1326408     1   0.000      1.000 1.000 0.000
#> SRR1336529     1   0.000      1.000 1.000 0.000
#> SRR1440643     1   0.000      1.000 1.000 0.000
#> SRR662354      1   0.000      1.000 1.000 0.000
#> SRR1310817     1   0.000      1.000 1.000 0.000
#> SRR1347389     2   0.000      0.978 0.000 1.000
#> SRR1353097     1   0.000      1.000 1.000 0.000
#> SRR1384737     1   0.000      1.000 1.000 0.000
#> SRR1096339     1   0.000      1.000 1.000 0.000
#> SRR1345329     1   0.000      1.000 1.000 0.000
#> SRR1414771     1   0.000      1.000 1.000 0.000
#> SRR1309119     1   0.000      1.000 1.000 0.000
#> SRR1470438     1   0.000      1.000 1.000 0.000
#> SRR1343221     1   0.000      1.000 1.000 0.000
#> SRR1410847     1   0.000      1.000 1.000 0.000
#> SRR807949      1   0.000      1.000 1.000 0.000
#> SRR1442332     1   0.000      1.000 1.000 0.000
#> SRR815920      1   0.000      1.000 1.000 0.000
#> SRR1471524     1   0.000      1.000 1.000 0.000
#> SRR1477221     1   0.000      1.000 1.000 0.000
#> SRR1445046     2   0.000      0.978 0.000 1.000
#> SRR1331962     2   0.000      0.978 0.000 1.000
#> SRR1319946     2   0.000      0.978 0.000 1.000
#> SRR1311599     1   0.000      1.000 1.000 0.000
#> SRR1323977     1   0.000      1.000 1.000 0.000
#> SRR1445132     2   0.000      0.978 0.000 1.000
#> SRR1337321     1   0.000      1.000 1.000 0.000
#> SRR1366390     2   0.000      0.978 0.000 1.000
#> SRR1343012     1   0.000      1.000 1.000 0.000
#> SRR1311958     2   0.000      0.978 0.000 1.000
#> SRR1388234     2   0.929      0.490 0.344 0.656
#> SRR1370384     1   0.000      1.000 1.000 0.000
#> SRR1321650     1   0.000      1.000 1.000 0.000
#> SRR1485117     2   0.000      0.978 0.000 1.000
#> SRR1384713     1   0.000      1.000 1.000 0.000
#> SRR816609      1   0.000      1.000 1.000 0.000
#> SRR1486239     2   0.000      0.978 0.000 1.000
#> SRR1309638     1   0.000      1.000 1.000 0.000
#> SRR1356660     1   0.000      1.000 1.000 0.000
#> SRR1392883     2   0.000      0.978 0.000 1.000
#> SRR808130      1   0.000      1.000 1.000 0.000
#> SRR816677      1   0.000      1.000 1.000 0.000
#> SRR1455722     1   0.000      1.000 1.000 0.000
#> SRR1336029     1   0.000      1.000 1.000 0.000
#> SRR808452      1   0.000      1.000 1.000 0.000
#> SRR1352169     1   0.000      1.000 1.000 0.000
#> SRR1366707     1   0.000      1.000 1.000 0.000
#> SRR1328143     1   0.000      1.000 1.000 0.000
#> SRR1473567     2   0.000      0.978 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1390119     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1436127     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1347278     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1332904     2  0.1031     0.9480 0.000 0.976 0.024
#> SRR1444179     1  0.0237     0.9116 0.996 0.000 0.004
#> SRR1082685     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1362287     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1339007     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1376557     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1468700     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1077455     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1413978     1  0.0424     0.9094 0.992 0.000 0.008
#> SRR1439896     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1317963     2  0.4931     0.8563 0.000 0.768 0.232
#> SRR1431865     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1082664     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1077968     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1076393     3  0.5098     0.9457 0.248 0.000 0.752
#> SRR1477476     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1398057     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1485042     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1385453     3  0.0747     0.6716 0.016 0.000 0.984
#> SRR1348074     1  0.5058     0.7210 0.756 0.000 0.244
#> SRR813959      3  0.0747     0.6716 0.016 0.000 0.984
#> SRR665442      1  0.3038     0.8598 0.896 0.000 0.104
#> SRR1378068     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1485237     1  0.5058     0.7210 0.756 0.000 0.244
#> SRR1350792     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1326797     1  0.1031     0.8894 0.976 0.000 0.024
#> SRR808994      3  0.5098     0.9457 0.248 0.000 0.752
#> SRR1474041     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1405641     3  0.5138     0.9474 0.252 0.000 0.748
#> SRR1362245     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1500194     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1414876     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1478523     3  0.3038     0.7927 0.104 0.000 0.896
#> SRR1325161     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1318026     1  0.5058     0.7210 0.756 0.000 0.244
#> SRR1343778     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1441287     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1430991     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1499722     3  0.5291     0.9399 0.268 0.000 0.732
#> SRR1351368     3  0.2796     0.7813 0.092 0.000 0.908
#> SRR1441785     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1096101     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR808375      3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1452842     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1311709     1  0.2448     0.8665 0.924 0.000 0.076
#> SRR1433352     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1340241     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1456754     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1465172     1  0.5621     0.2715 0.692 0.000 0.308
#> SRR1499284     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1499607     2  0.4931     0.8563 0.000 0.768 0.232
#> SRR812342      1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1403565     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1332024     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1471633     1  0.3412     0.8311 0.876 0.000 0.124
#> SRR1325944     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1429450     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR821573      3  0.5138     0.9459 0.252 0.000 0.748
#> SRR1435372     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1324184     2  0.0592     0.9484 0.000 0.988 0.012
#> SRR816517      3  0.5529     0.0615 0.000 0.296 0.704
#> SRR1324141     1  0.5098     0.7202 0.752 0.000 0.248
#> SRR1101612     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1089785     3  0.5178     0.9477 0.256 0.000 0.744
#> SRR1077708     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1343720     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1477499     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1347236     1  0.3686     0.7215 0.860 0.000 0.140
#> SRR1326408     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1336529     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1440643     3  0.0747     0.6716 0.016 0.000 0.984
#> SRR662354      1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1310817     3  0.5098     0.9435 0.248 0.000 0.752
#> SRR1347389     2  0.4062     0.8943 0.000 0.836 0.164
#> SRR1353097     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1384737     1  0.5058     0.7210 0.756 0.000 0.244
#> SRR1096339     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1345329     1  0.5058     0.7210 0.756 0.000 0.244
#> SRR1414771     3  0.5098     0.9457 0.248 0.000 0.752
#> SRR1309119     1  0.2066     0.8774 0.940 0.000 0.060
#> SRR1470438     3  0.5098     0.9457 0.248 0.000 0.752
#> SRR1343221     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR807949      3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1442332     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR815920      3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1471524     3  0.5058     0.9427 0.244 0.000 0.756
#> SRR1477221     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1445046     2  0.4931     0.8563 0.000 0.768 0.232
#> SRR1331962     2  0.1643     0.9428 0.000 0.956 0.044
#> SRR1319946     2  0.5016     0.8504 0.000 0.760 0.240
#> SRR1311599     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1323977     1  0.5098     0.7202 0.752 0.000 0.248
#> SRR1445132     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1337321     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1366390     2  0.1529     0.9430 0.000 0.960 0.040
#> SRR1343012     1  0.4399     0.7801 0.812 0.000 0.188
#> SRR1311958     2  0.4291     0.8862 0.000 0.820 0.180
#> SRR1388234     1  0.9664     0.1552 0.460 0.296 0.244
#> SRR1370384     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1321650     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1485117     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR1384713     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR816609      1  0.5058     0.7210 0.756 0.000 0.244
#> SRR1486239     2  0.1964     0.9390 0.000 0.944 0.056
#> SRR1309638     3  0.5178     0.9488 0.256 0.000 0.744
#> SRR1356660     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1392883     2  0.0000     0.9523 0.000 1.000 0.000
#> SRR808130      3  0.5216     0.9482 0.260 0.000 0.740
#> SRR816677      1  0.3551     0.8254 0.868 0.000 0.132
#> SRR1455722     1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1336029     1  0.0237     0.9116 0.996 0.000 0.004
#> SRR808452      1  0.0000     0.9138 1.000 0.000 0.000
#> SRR1352169     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1366707     3  0.5058     0.9427 0.244 0.000 0.756
#> SRR1328143     3  0.5216     0.9482 0.260 0.000 0.740
#> SRR1473567     2  0.0000     0.9523 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.2816     0.8523 0.036 0.064 0.900 0.000
#> SRR1390119     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR1436127     3  0.4775     0.8386 0.028 0.232 0.740 0.000
#> SRR1347278     3  0.4370     0.8507 0.044 0.156 0.800 0.000
#> SRR1332904     4  0.4697    -0.6285 0.000 0.356 0.000 0.644
#> SRR1444179     1  0.1610     0.8759 0.952 0.032 0.016 0.000
#> SRR1082685     1  0.0000     0.8908 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.2081     0.8669 0.916 0.084 0.000 0.000
#> SRR1339007     1  0.0336     0.8896 0.992 0.008 0.000 0.000
#> SRR1376557     2  0.4967     0.9684 0.000 0.548 0.000 0.452
#> SRR1468700     2  0.4967     0.9684 0.000 0.548 0.000 0.452
#> SRR1077455     1  0.2816     0.8260 0.900 0.036 0.064 0.000
#> SRR1413978     1  0.2542     0.8622 0.904 0.084 0.012 0.000
#> SRR1439896     1  0.0000     0.8908 1.000 0.000 0.000 0.000
#> SRR1317963     4  0.0000     0.2795 0.000 0.000 0.000 1.000
#> SRR1431865     1  0.2081     0.8669 0.916 0.084 0.000 0.000
#> SRR1394253     1  0.2149     0.8671 0.912 0.088 0.000 0.000
#> SRR1082664     3  0.1635     0.8397 0.044 0.008 0.948 0.000
#> SRR1077968     1  0.0592     0.8877 0.984 0.016 0.000 0.000
#> SRR1076393     3  0.3447     0.8531 0.020 0.128 0.852 0.000
#> SRR1477476     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR1398057     3  0.4671     0.8430 0.028 0.220 0.752 0.000
#> SRR1485042     1  0.1118     0.8850 0.964 0.036 0.000 0.000
#> SRR1385453     3  0.6770     0.5693 0.000 0.160 0.604 0.236
#> SRR1348074     4  0.6444     0.4591 0.388 0.032 0.024 0.556
#> SRR813959      4  0.6070     0.2126 0.000 0.048 0.404 0.548
#> SRR665442      1  0.9763    -0.2357 0.328 0.228 0.160 0.284
#> SRR1378068     3  0.5105     0.8233 0.028 0.276 0.696 0.000
#> SRR1485237     4  0.6380     0.4411 0.400 0.032 0.020 0.548
#> SRR1350792     1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR1326797     1  0.5639     0.4701 0.636 0.040 0.324 0.000
#> SRR808994      3  0.5322     0.8102 0.028 0.312 0.660 0.000
#> SRR1474041     3  0.1489     0.8407 0.044 0.004 0.952 0.000
#> SRR1405641     3  0.5277     0.8138 0.028 0.304 0.668 0.000
#> SRR1362245     3  0.5022     0.8258 0.028 0.264 0.708 0.000
#> SRR1500194     1  0.1302     0.8841 0.956 0.044 0.000 0.000
#> SRR1414876     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR1478523     3  0.4644     0.8147 0.004 0.164 0.788 0.044
#> SRR1325161     3  0.2965     0.8084 0.072 0.036 0.892 0.000
#> SRR1318026     4  0.6464     0.4475 0.396 0.032 0.024 0.548
#> SRR1343778     3  0.3144     0.8513 0.044 0.072 0.884 0.000
#> SRR1441287     1  0.0000     0.8908 1.000 0.000 0.000 0.000
#> SRR1430991     3  0.1635     0.8396 0.044 0.008 0.948 0.000
#> SRR1499722     3  0.4818     0.6273 0.216 0.036 0.748 0.000
#> SRR1351368     3  0.6358     0.7188 0.004 0.204 0.664 0.128
#> SRR1441785     1  0.2081     0.8669 0.916 0.084 0.000 0.000
#> SRR1096101     1  0.1118     0.8866 0.964 0.036 0.000 0.000
#> SRR808375      3  0.2408     0.8270 0.044 0.036 0.920 0.000
#> SRR1452842     1  0.2578     0.8380 0.912 0.036 0.052 0.000
#> SRR1311709     1  0.1362     0.8707 0.964 0.004 0.020 0.012
#> SRR1433352     3  0.1302     0.8416 0.044 0.000 0.956 0.000
#> SRR1340241     2  0.4941     0.9785 0.000 0.564 0.000 0.436
#> SRR1456754     1  0.1256     0.8767 0.964 0.028 0.008 0.000
#> SRR1465172     1  0.6011     0.1033 0.484 0.040 0.476 0.000
#> SRR1499284     1  0.5168     0.5811 0.712 0.040 0.248 0.000
#> SRR1499607     4  0.0000     0.2795 0.000 0.000 0.000 1.000
#> SRR812342      1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR1405374     1  0.1302     0.8841 0.956 0.044 0.000 0.000
#> SRR1403565     1  0.2830     0.8394 0.900 0.060 0.040 0.000
#> SRR1332024     3  0.5364     0.8064 0.028 0.320 0.652 0.000
#> SRR1471633     1  0.2310     0.8575 0.932 0.032 0.020 0.016
#> SRR1325944     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR1429450     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR821573      3  0.1833     0.8245 0.024 0.032 0.944 0.000
#> SRR1435372     1  0.0336     0.8899 0.992 0.008 0.000 0.000
#> SRR1324184     2  0.5172     0.9579 0.000 0.588 0.008 0.404
#> SRR816517      4  0.6650     0.3738 0.000 0.200 0.176 0.624
#> SRR1324141     4  0.7405     0.4990 0.332 0.040 0.080 0.548
#> SRR1101612     1  0.0000     0.8908 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR1089785     3  0.1635     0.8431 0.044 0.008 0.948 0.000
#> SRR1077708     3  0.3464     0.8376 0.032 0.108 0.860 0.000
#> SRR1343720     3  0.2111     0.8330 0.044 0.024 0.932 0.000
#> SRR1477499     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR1347236     1  0.5971     0.2480 0.532 0.040 0.428 0.000
#> SRR1326408     1  0.1209     0.8835 0.964 0.032 0.004 0.000
#> SRR1336529     3  0.5254     0.8155 0.028 0.300 0.672 0.000
#> SRR1440643     3  0.7067     0.4652 0.000 0.160 0.552 0.288
#> SRR662354      1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR1310817     3  0.1256     0.8356 0.028 0.008 0.964 0.000
#> SRR1347389     4  0.2814    -0.0239 0.000 0.132 0.000 0.868
#> SRR1353097     1  0.0000     0.8908 1.000 0.000 0.000 0.000
#> SRR1384737     4  0.6753     0.4626 0.380 0.040 0.032 0.548
#> SRR1096339     1  0.1118     0.8850 0.964 0.036 0.000 0.000
#> SRR1345329     4  0.6380     0.4411 0.400 0.032 0.020 0.548
#> SRR1414771     3  0.5322     0.8102 0.028 0.312 0.660 0.000
#> SRR1309119     1  0.1624     0.8734 0.952 0.028 0.020 0.000
#> SRR1470438     3  0.5322     0.8102 0.028 0.312 0.660 0.000
#> SRR1343221     1  0.0188     0.8905 0.996 0.004 0.000 0.000
#> SRR1410847     1  0.1211     0.8847 0.960 0.040 0.000 0.000
#> SRR807949      3  0.1767     0.8380 0.044 0.012 0.944 0.000
#> SRR1442332     3  0.1489     0.8407 0.044 0.004 0.952 0.000
#> SRR815920      3  0.4964     0.8300 0.028 0.256 0.716 0.000
#> SRR1471524     3  0.4323     0.8354 0.020 0.204 0.776 0.000
#> SRR1477221     3  0.5022     0.8258 0.028 0.264 0.708 0.000
#> SRR1445046     4  0.0000     0.2795 0.000 0.000 0.000 1.000
#> SRR1331962     4  0.4522    -0.5493 0.000 0.320 0.000 0.680
#> SRR1319946     4  0.0188     0.2836 0.000 0.000 0.004 0.996
#> SRR1311599     1  0.2149     0.8671 0.912 0.088 0.000 0.000
#> SRR1323977     4  0.7422     0.4993 0.332 0.044 0.076 0.548
#> SRR1445132     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR1337321     3  0.4406     0.8476 0.028 0.192 0.780 0.000
#> SRR1366390     4  0.4961    -0.8036 0.000 0.448 0.000 0.552
#> SRR1343012     4  0.8180     0.4328 0.344 0.040 0.148 0.468
#> SRR1311958     4  0.0921     0.2301 0.000 0.028 0.000 0.972
#> SRR1388234     4  0.5449     0.5494 0.288 0.004 0.032 0.676
#> SRR1370384     1  0.1452     0.8734 0.956 0.036 0.008 0.000
#> SRR1321650     3  0.4775     0.8341 0.028 0.232 0.740 0.000
#> SRR1485117     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR1384713     1  0.2578     0.8380 0.912 0.036 0.052 0.000
#> SRR816609      4  0.6464     0.4475 0.396 0.032 0.024 0.548
#> SRR1486239     4  0.3649    -0.2502 0.000 0.204 0.000 0.796
#> SRR1309638     3  0.4840     0.8315 0.028 0.240 0.732 0.000
#> SRR1356660     1  0.2081     0.8669 0.916 0.084 0.000 0.000
#> SRR1392883     2  0.4907     0.9869 0.000 0.580 0.000 0.420
#> SRR808130      3  0.1489     0.8407 0.044 0.004 0.952 0.000
#> SRR816677      1  0.4766     0.6931 0.800 0.040 0.020 0.140
#> SRR1455722     1  0.0000     0.8908 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.1510     0.8768 0.956 0.028 0.016 0.000
#> SRR808452      1  0.0000     0.8908 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.3612     0.8529 0.044 0.100 0.856 0.000
#> SRR1366707     3  0.4706     0.8283 0.020 0.248 0.732 0.000
#> SRR1328143     3  0.1489     0.8407 0.044 0.004 0.952 0.000
#> SRR1473567     2  0.4967     0.9684 0.000 0.548 0.000 0.452

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.4936    0.62250 0.012 0.000 0.412 0.012 0.564
#> SRR1390119     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.2833    0.64009 0.004 0.000 0.852 0.004 0.140
#> SRR1347278     3  0.5912   -0.03120 0.016 0.000 0.508 0.064 0.412
#> SRR1332904     2  0.6229    0.12768 0.000 0.464 0.000 0.392 0.144
#> SRR1444179     1  0.0404    0.92876 0.988 0.000 0.000 0.012 0.000
#> SRR1082685     1  0.0162    0.93087 0.996 0.000 0.000 0.000 0.004
#> SRR1362287     1  0.3753    0.86352 0.844 0.000 0.052 0.056 0.048
#> SRR1339007     1  0.0898    0.92716 0.972 0.000 0.000 0.008 0.020
#> SRR1376557     2  0.3309    0.83018 0.000 0.836 0.000 0.036 0.128
#> SRR1468700     2  0.4376    0.76956 0.000 0.764 0.000 0.092 0.144
#> SRR1077455     1  0.2616    0.86988 0.880 0.000 0.000 0.020 0.100
#> SRR1413978     1  0.4146    0.84752 0.820 0.000 0.056 0.072 0.052
#> SRR1439896     1  0.0162    0.93087 0.996 0.000 0.000 0.000 0.004
#> SRR1317963     4  0.4343    0.65708 0.000 0.096 0.000 0.768 0.136
#> SRR1431865     1  0.3753    0.86352 0.844 0.000 0.052 0.056 0.048
#> SRR1394253     1  0.3606    0.87205 0.852 0.000 0.040 0.056 0.052
#> SRR1082664     5  0.4701    0.69074 0.016 0.000 0.368 0.004 0.612
#> SRR1077968     1  0.1872    0.90559 0.928 0.000 0.000 0.020 0.052
#> SRR1076393     3  0.4644    0.12727 0.004 0.000 0.604 0.012 0.380
#> SRR1477476     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.5015    0.33814 0.004 0.000 0.668 0.056 0.272
#> SRR1485042     1  0.0771    0.92779 0.976 0.000 0.000 0.004 0.020
#> SRR1385453     4  0.6622   -0.00746 0.000 0.000 0.328 0.440 0.232
#> SRR1348074     4  0.2305    0.74986 0.092 0.000 0.000 0.896 0.012
#> SRR813959      4  0.3449    0.68117 0.000 0.000 0.024 0.812 0.164
#> SRR665442      3  0.7836    0.17830 0.068 0.000 0.376 0.260 0.296
#> SRR1378068     3  0.1502    0.67120 0.004 0.000 0.940 0.000 0.056
#> SRR1485237     4  0.2536    0.74320 0.128 0.000 0.000 0.868 0.004
#> SRR1350792     1  0.0451    0.93074 0.988 0.000 0.000 0.004 0.008
#> SRR1326797     5  0.5034    0.37836 0.308 0.000 0.028 0.016 0.648
#> SRR808994      3  0.0162    0.67984 0.004 0.000 0.996 0.000 0.000
#> SRR1474041     5  0.4893    0.69553 0.016 0.000 0.360 0.012 0.612
#> SRR1405641     3  0.1041    0.67925 0.004 0.000 0.964 0.000 0.032
#> SRR1362245     3  0.3826    0.61051 0.004 0.000 0.812 0.056 0.128
#> SRR1500194     1  0.1981    0.91002 0.924 0.000 0.000 0.028 0.048
#> SRR1414876     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.6430    0.20666 0.000 0.000 0.480 0.192 0.328
#> SRR1325161     5  0.5138    0.64361 0.048 0.000 0.260 0.016 0.676
#> SRR1318026     4  0.3759    0.73216 0.136 0.000 0.000 0.808 0.056
#> SRR1343778     5  0.4956    0.59530 0.016 0.000 0.428 0.008 0.548
#> SRR1441287     1  0.0000    0.93080 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.4791    0.69697 0.016 0.000 0.360 0.008 0.616
#> SRR1499722     5  0.5348    0.59051 0.108 0.000 0.200 0.008 0.684
#> SRR1351368     3  0.6236    0.36204 0.000 0.000 0.544 0.248 0.208
#> SRR1441785     1  0.3753    0.86352 0.844 0.000 0.052 0.056 0.048
#> SRR1096101     1  0.0955    0.92773 0.968 0.000 0.000 0.004 0.028
#> SRR808375      5  0.4520    0.67447 0.016 0.000 0.296 0.008 0.680
#> SRR1452842     1  0.2448    0.88045 0.892 0.000 0.000 0.020 0.088
#> SRR1311709     1  0.0771    0.92502 0.976 0.000 0.000 0.020 0.004
#> SRR1433352     5  0.4804    0.69380 0.016 0.000 0.364 0.008 0.612
#> SRR1340241     2  0.1341    0.88079 0.000 0.944 0.000 0.000 0.056
#> SRR1456754     1  0.1774    0.90695 0.932 0.000 0.000 0.016 0.052
#> SRR1465172     5  0.5368    0.43439 0.252 0.000 0.060 0.020 0.668
#> SRR1499284     5  0.4736    0.26540 0.404 0.000 0.000 0.020 0.576
#> SRR1499607     4  0.4300    0.65963 0.000 0.096 0.000 0.772 0.132
#> SRR812342      1  0.0693    0.92935 0.980 0.000 0.000 0.008 0.012
#> SRR1405374     1  0.1741    0.91539 0.936 0.000 0.000 0.024 0.040
#> SRR1403565     1  0.4431    0.83106 0.800 0.000 0.052 0.056 0.092
#> SRR1332024     3  0.0324    0.67835 0.004 0.000 0.992 0.000 0.004
#> SRR1471633     1  0.0609    0.92521 0.980 0.000 0.000 0.020 0.000
#> SRR1325944     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.5122    0.47753 0.008 0.000 0.140 0.136 0.716
#> SRR1435372     1  0.0807    0.92863 0.976 0.000 0.000 0.012 0.012
#> SRR1324184     2  0.2463    0.86047 0.000 0.888 0.004 0.008 0.100
#> SRR816517      4  0.3574    0.70827 0.000 0.004 0.088 0.836 0.072
#> SRR1324141     4  0.3872    0.73826 0.116 0.000 0.008 0.816 0.060
#> SRR1101612     1  0.0162    0.93087 0.996 0.000 0.000 0.000 0.004
#> SRR1356531     1  0.0451    0.93074 0.988 0.000 0.000 0.004 0.008
#> SRR1089785     5  0.4943    0.67801 0.016 0.000 0.376 0.012 0.596
#> SRR1077708     5  0.4657    0.59547 0.008 0.000 0.380 0.008 0.604
#> SRR1343720     5  0.4791    0.69239 0.020 0.000 0.336 0.008 0.636
#> SRR1477499     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     5  0.5253    0.42724 0.264 0.000 0.060 0.012 0.664
#> SRR1326408     1  0.0912    0.92727 0.972 0.000 0.000 0.012 0.016
#> SRR1336529     3  0.1041    0.67925 0.004 0.000 0.964 0.000 0.032
#> SRR1440643     4  0.6545    0.04574 0.000 0.000 0.324 0.460 0.216
#> SRR662354      1  0.0451    0.93074 0.988 0.000 0.000 0.004 0.008
#> SRR1310817     5  0.4692    0.65860 0.004 0.000 0.320 0.024 0.652
#> SRR1347389     4  0.5867    0.39791 0.000 0.268 0.000 0.588 0.144
#> SRR1353097     1  0.0451    0.93051 0.988 0.000 0.000 0.008 0.004
#> SRR1384737     4  0.3758    0.73801 0.112 0.000 0.008 0.824 0.056
#> SRR1096339     1  0.0609    0.92820 0.980 0.000 0.000 0.000 0.020
#> SRR1345329     4  0.2280    0.74643 0.120 0.000 0.000 0.880 0.000
#> SRR1414771     3  0.0162    0.67984 0.004 0.000 0.996 0.000 0.000
#> SRR1309119     1  0.0898    0.92665 0.972 0.000 0.000 0.008 0.020
#> SRR1470438     3  0.0162    0.67984 0.004 0.000 0.996 0.000 0.000
#> SRR1343221     1  0.0404    0.93116 0.988 0.000 0.000 0.000 0.012
#> SRR1410847     1  0.2193    0.90845 0.920 0.000 0.008 0.028 0.044
#> SRR807949      5  0.4852    0.69920 0.016 0.000 0.348 0.012 0.624
#> SRR1442332     5  0.4893    0.69553 0.016 0.000 0.360 0.012 0.612
#> SRR815920      3  0.2881    0.62659 0.004 0.000 0.860 0.012 0.124
#> SRR1471524     3  0.4017    0.49635 0.004 0.000 0.736 0.012 0.248
#> SRR1477221     3  0.3779    0.61357 0.004 0.000 0.816 0.056 0.124
#> SRR1445046     4  0.4428    0.65159 0.000 0.096 0.000 0.760 0.144
#> SRR1331962     4  0.6247   -0.10117 0.000 0.428 0.000 0.428 0.144
#> SRR1319946     4  0.2824    0.70343 0.000 0.096 0.000 0.872 0.032
#> SRR1311599     1  0.3823    0.86343 0.840 0.000 0.052 0.056 0.052
#> SRR1323977     4  0.3242    0.74489 0.116 0.000 0.000 0.844 0.040
#> SRR1445132     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.5098    0.48270 0.004 0.000 0.660 0.060 0.276
#> SRR1366390     2  0.5335    0.63282 0.000 0.668 0.000 0.200 0.132
#> SRR1343012     4  0.5796    0.65816 0.112 0.000 0.052 0.692 0.144
#> SRR1311958     4  0.4889    0.60767 0.000 0.136 0.000 0.720 0.144
#> SRR1388234     4  0.2673    0.74497 0.076 0.016 0.000 0.892 0.016
#> SRR1370384     1  0.2331    0.88669 0.900 0.000 0.000 0.020 0.080
#> SRR1321650     3  0.3124    0.62497 0.004 0.000 0.844 0.016 0.136
#> SRR1485117     2  0.0510    0.89342 0.000 0.984 0.000 0.000 0.016
#> SRR1384713     1  0.2390    0.88365 0.896 0.000 0.000 0.020 0.084
#> SRR816609      4  0.2377    0.74356 0.128 0.000 0.000 0.872 0.000
#> SRR1486239     4  0.5923    0.36507 0.000 0.280 0.000 0.576 0.144
#> SRR1309638     3  0.4365    0.52412 0.004 0.000 0.736 0.036 0.224
#> SRR1356660     1  0.3753    0.86352 0.844 0.000 0.052 0.056 0.048
#> SRR1392883     2  0.0000    0.89630 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.4893    0.69553 0.016 0.000 0.360 0.012 0.612
#> SRR816677      1  0.5815    0.43754 0.600 0.000 0.036 0.316 0.048
#> SRR1455722     1  0.0162    0.93087 0.996 0.000 0.000 0.000 0.004
#> SRR1336029     1  0.1106    0.92563 0.964 0.000 0.000 0.012 0.024
#> SRR808452      1  0.0324    0.93048 0.992 0.000 0.000 0.004 0.004
#> SRR1352169     3  0.5020   -0.21209 0.016 0.000 0.564 0.012 0.408
#> SRR1366707     3  0.2787    0.62653 0.004 0.000 0.856 0.004 0.136
#> SRR1328143     5  0.4893    0.69553 0.016 0.000 0.360 0.012 0.612
#> SRR1473567     2  0.3309    0.83018 0.000 0.836 0.000 0.036 0.128

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.2968    0.70841 0.000 0.000 0.168 0.000 0.816 0.016
#> SRR1390119     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.3368    0.51248 0.000 0.000 0.756 0.000 0.232 0.012
#> SRR1347278     5  0.6003   -0.11590 0.000 0.000 0.272 0.000 0.436 0.292
#> SRR1332904     4  0.5986    0.22821 0.000 0.304 0.008 0.488 0.000 0.200
#> SRR1444179     1  0.0260    0.82899 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1082685     1  0.0000    0.82964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.4166    0.57946 0.648 0.000 0.028 0.000 0.000 0.324
#> SRR1339007     1  0.2784    0.75205 0.848 0.000 0.000 0.008 0.012 0.132
#> SRR1376557     2  0.3613    0.77653 0.000 0.772 0.008 0.024 0.000 0.196
#> SRR1468700     2  0.5516    0.56703 0.000 0.596 0.008 0.196 0.000 0.200
#> SRR1077455     1  0.4437    0.61913 0.724 0.000 0.000 0.008 0.088 0.180
#> SRR1413978     1  0.4436    0.56317 0.632 0.000 0.028 0.008 0.000 0.332
#> SRR1439896     1  0.0000    0.82964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.3529    0.63734 0.000 0.028 0.008 0.788 0.000 0.176
#> SRR1431865     1  0.4150    0.58496 0.652 0.000 0.028 0.000 0.000 0.320
#> SRR1394253     1  0.4002    0.59521 0.660 0.000 0.020 0.000 0.000 0.320
#> SRR1082664     5  0.2699    0.76207 0.000 0.000 0.108 0.008 0.864 0.020
#> SRR1077968     1  0.3353    0.71317 0.808 0.000 0.000 0.008 0.028 0.156
#> SRR1076393     5  0.5651   -0.02865 0.000 0.000 0.392 0.016 0.492 0.100
#> SRR1477476     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398057     3  0.6012    0.14043 0.000 0.000 0.424 0.000 0.320 0.256
#> SRR1485042     1  0.1267    0.81975 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1385453     3  0.7527   -0.09414 0.000 0.000 0.324 0.312 0.180 0.184
#> SRR1348074     4  0.1716    0.69047 0.036 0.000 0.004 0.932 0.000 0.028
#> SRR813959      4  0.4411    0.57600 0.000 0.000 0.016 0.740 0.084 0.160
#> SRR665442      6  0.6625    0.00000 0.004 0.000 0.216 0.104 0.132 0.544
#> SRR1378068     3  0.2100    0.58050 0.000 0.000 0.884 0.000 0.112 0.004
#> SRR1485237     4  0.1500    0.68628 0.052 0.000 0.000 0.936 0.000 0.012
#> SRR1350792     1  0.0000    0.82964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.3423    0.60868 0.088 0.000 0.000 0.000 0.812 0.100
#> SRR808994      3  0.1501    0.57774 0.000 0.000 0.924 0.000 0.076 0.000
#> SRR1474041     5  0.2094    0.77324 0.000 0.000 0.080 0.000 0.900 0.020
#> SRR1405641     3  0.1610    0.58050 0.000 0.000 0.916 0.000 0.084 0.000
#> SRR1362245     3  0.5715    0.13613 0.000 0.000 0.536 0.008 0.156 0.300
#> SRR1500194     1  0.2482    0.77283 0.848 0.000 0.004 0.000 0.000 0.148
#> SRR1414876     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     3  0.7389    0.04082 0.000 0.000 0.404 0.188 0.236 0.172
#> SRR1325161     5  0.2791    0.67253 0.016 0.000 0.000 0.008 0.852 0.124
#> SRR1318026     4  0.4041    0.61791 0.060 0.000 0.012 0.764 0.000 0.164
#> SRR1343778     5  0.2912    0.70632 0.000 0.000 0.172 0.000 0.816 0.012
#> SRR1441287     1  0.0000    0.82964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.1387    0.78071 0.000 0.000 0.068 0.000 0.932 0.000
#> SRR1499722     5  0.2560    0.68378 0.036 0.000 0.000 0.000 0.872 0.092
#> SRR1351368     3  0.7095    0.08064 0.000 0.000 0.472 0.184 0.168 0.176
#> SRR1441785     1  0.4166    0.57946 0.648 0.000 0.028 0.000 0.000 0.324
#> SRR1096101     1  0.1267    0.81975 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR808375      5  0.1333    0.74847 0.000 0.000 0.008 0.000 0.944 0.048
#> SRR1452842     1  0.4389    0.62500 0.728 0.000 0.000 0.008 0.084 0.180
#> SRR1311709     1  0.0000    0.82964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1433352     5  0.1700    0.77613 0.000 0.000 0.080 0.000 0.916 0.004
#> SRR1340241     2  0.1584    0.86101 0.000 0.928 0.008 0.000 0.000 0.064
#> SRR1456754     1  0.3702    0.68896 0.784 0.000 0.000 0.008 0.044 0.164
#> SRR1465172     5  0.4115    0.57090 0.076 0.000 0.000 0.012 0.764 0.148
#> SRR1499284     5  0.5286    0.34408 0.168 0.000 0.000 0.012 0.640 0.180
#> SRR1499607     4  0.3161    0.65530 0.000 0.028 0.008 0.828 0.000 0.136
#> SRR812342      1  0.1194    0.81873 0.956 0.000 0.000 0.004 0.008 0.032
#> SRR1405374     1  0.1753    0.80836 0.912 0.000 0.004 0.000 0.000 0.084
#> SRR1403565     1  0.4467    0.55608 0.632 0.000 0.028 0.004 0.004 0.332
#> SRR1332024     3  0.1701    0.57017 0.000 0.000 0.920 0.000 0.072 0.008
#> SRR1471633     1  0.0603    0.82781 0.980 0.000 0.000 0.004 0.000 0.016
#> SRR1325944     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.2847    0.69331 0.000 0.000 0.036 0.048 0.876 0.040
#> SRR1435372     1  0.1049    0.81943 0.960 0.000 0.000 0.000 0.008 0.032
#> SRR1324184     2  0.3651    0.79088 0.000 0.792 0.032 0.016 0.000 0.160
#> SRR816517      4  0.4849    0.57288 0.000 0.008 0.092 0.712 0.016 0.172
#> SRR1324141     4  0.4088    0.62130 0.032 0.000 0.016 0.776 0.016 0.160
#> SRR1101612     1  0.0000    0.82964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0862    0.82470 0.972 0.000 0.000 0.004 0.008 0.016
#> SRR1089785     5  0.2402    0.75195 0.000 0.000 0.120 0.000 0.868 0.012
#> SRR1077708     5  0.3605    0.70569 0.000 0.000 0.060 0.008 0.804 0.128
#> SRR1343720     5  0.1845    0.77565 0.000 0.000 0.052 0.000 0.920 0.028
#> SRR1477499     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     5  0.3563    0.60548 0.088 0.000 0.000 0.004 0.808 0.100
#> SRR1326408     1  0.2501    0.77207 0.872 0.000 0.000 0.004 0.016 0.108
#> SRR1336529     3  0.1714    0.58150 0.000 0.000 0.908 0.000 0.092 0.000
#> SRR1440643     4  0.7410   -0.06294 0.000 0.000 0.288 0.372 0.156 0.184
#> SRR662354      1  0.0291    0.82868 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1310817     5  0.2318    0.76099 0.000 0.000 0.064 0.000 0.892 0.044
#> SRR1347389     4  0.5537    0.52137 0.000 0.152 0.024 0.624 0.000 0.200
#> SRR1353097     1  0.1049    0.81943 0.960 0.000 0.000 0.000 0.008 0.032
#> SRR1384737     4  0.4082    0.59082 0.024 0.000 0.020 0.748 0.004 0.204
#> SRR1096339     1  0.0937    0.82326 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1345329     4  0.1500    0.68628 0.052 0.000 0.000 0.936 0.000 0.012
#> SRR1414771     3  0.1444    0.57612 0.000 0.000 0.928 0.000 0.072 0.000
#> SRR1309119     1  0.1285    0.82026 0.944 0.000 0.000 0.004 0.000 0.052
#> SRR1470438     3  0.1444    0.57612 0.000 0.000 0.928 0.000 0.072 0.000
#> SRR1343221     1  0.0551    0.82728 0.984 0.000 0.000 0.004 0.008 0.004
#> SRR1410847     1  0.2402    0.77847 0.856 0.000 0.004 0.000 0.000 0.140
#> SRR807949      5  0.1285    0.78093 0.000 0.000 0.052 0.000 0.944 0.004
#> SRR1442332     5  0.1701    0.77785 0.000 0.000 0.072 0.000 0.920 0.008
#> SRR815920      3  0.2805    0.56616 0.000 0.000 0.828 0.000 0.160 0.012
#> SRR1471524     3  0.5411    0.31597 0.000 0.000 0.560 0.000 0.288 0.152
#> SRR1477221     3  0.5655    0.15977 0.000 0.000 0.536 0.004 0.164 0.296
#> SRR1445046     4  0.3719    0.62543 0.000 0.028 0.008 0.764 0.000 0.200
#> SRR1331962     4  0.5872    0.31878 0.000 0.268 0.008 0.524 0.000 0.200
#> SRR1319946     4  0.1755    0.68887 0.000 0.028 0.008 0.932 0.000 0.032
#> SRR1311599     1  0.4150    0.58496 0.652 0.000 0.028 0.000 0.000 0.320
#> SRR1323977     4  0.3774    0.64194 0.040 0.000 0.016 0.804 0.008 0.132
#> SRR1445132     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     3  0.6307   -0.00627 0.000 0.000 0.384 0.008 0.300 0.308
#> SRR1366390     2  0.5583    0.59600 0.000 0.620 0.024 0.180 0.000 0.176
#> SRR1343012     4  0.5128    0.52085 0.024 0.000 0.024 0.688 0.052 0.212
#> SRR1311958     4  0.4114    0.60886 0.000 0.052 0.008 0.740 0.000 0.200
#> SRR1388234     4  0.0964    0.69236 0.016 0.012 0.000 0.968 0.000 0.004
#> SRR1370384     1  0.4132    0.64767 0.748 0.000 0.000 0.008 0.064 0.180
#> SRR1321650     3  0.4565    0.42711 0.000 0.000 0.680 0.004 0.244 0.072
#> SRR1485117     2  0.1267    0.86660 0.000 0.940 0.000 0.000 0.000 0.060
#> SRR1384713     1  0.4389    0.62500 0.728 0.000 0.000 0.008 0.084 0.180
#> SRR816609      4  0.1500    0.68628 0.052 0.000 0.000 0.936 0.000 0.012
#> SRR1486239     4  0.5267    0.51308 0.000 0.160 0.008 0.632 0.000 0.200
#> SRR1309638     3  0.6312    0.09152 0.000 0.000 0.460 0.020 0.296 0.224
#> SRR1356660     1  0.4150    0.58496 0.652 0.000 0.028 0.000 0.000 0.320
#> SRR1392883     2  0.0000    0.88304 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.1588    0.77902 0.000 0.000 0.072 0.000 0.924 0.004
#> SRR816677      1  0.5879    0.11662 0.468 0.000 0.004 0.348 0.000 0.180
#> SRR1455722     1  0.0146    0.82917 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1336029     1  0.2051    0.80503 0.896 0.000 0.004 0.004 0.000 0.096
#> SRR808452      1  0.0000    0.82964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1352169     5  0.4234    0.50108 0.000 0.000 0.280 0.000 0.676 0.044
#> SRR1366707     3  0.3947    0.48149 0.000 0.000 0.732 0.004 0.228 0.036
#> SRR1328143     5  0.1701    0.77785 0.000 0.000 0.072 0.000 0.920 0.008
#> SRR1473567     2  0.3613    0.77653 0.000 0.772 0.008 0.024 0.000 0.196

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.997         0.4449 0.554   0.554
#> 3 3 1.000           0.963       0.986         0.5078 0.745   0.551
#> 4 4 0.886           0.861       0.922         0.0977 0.911   0.737
#> 5 5 0.846           0.837       0.906         0.0577 0.957   0.839
#> 6 6 0.810           0.764       0.863         0.0479 0.943   0.756

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1   0.000      1.000 1.000 0.000
#> SRR1390119     2   0.000      0.991 0.000 1.000
#> SRR1436127     1   0.000      1.000 1.000 0.000
#> SRR1347278     1   0.000      1.000 1.000 0.000
#> SRR1332904     2   0.000      0.991 0.000 1.000
#> SRR1444179     1   0.000      1.000 1.000 0.000
#> SRR1082685     1   0.000      1.000 1.000 0.000
#> SRR1362287     1   0.000      1.000 1.000 0.000
#> SRR1339007     1   0.000      1.000 1.000 0.000
#> SRR1376557     2   0.000      0.991 0.000 1.000
#> SRR1468700     2   0.000      0.991 0.000 1.000
#> SRR1077455     1   0.000      1.000 1.000 0.000
#> SRR1413978     1   0.000      1.000 1.000 0.000
#> SRR1439896     1   0.000      1.000 1.000 0.000
#> SRR1317963     2   0.000      0.991 0.000 1.000
#> SRR1431865     1   0.000      1.000 1.000 0.000
#> SRR1394253     1   0.000      1.000 1.000 0.000
#> SRR1082664     1   0.000      1.000 1.000 0.000
#> SRR1077968     1   0.000      1.000 1.000 0.000
#> SRR1076393     1   0.000      1.000 1.000 0.000
#> SRR1477476     2   0.000      0.991 0.000 1.000
#> SRR1398057     1   0.000      1.000 1.000 0.000
#> SRR1485042     1   0.000      1.000 1.000 0.000
#> SRR1385453     2   0.000      0.991 0.000 1.000
#> SRR1348074     2   0.000      0.991 0.000 1.000
#> SRR813959      2   0.000      0.991 0.000 1.000
#> SRR665442      2   0.000      0.991 0.000 1.000
#> SRR1378068     1   0.000      1.000 1.000 0.000
#> SRR1485237     2   0.000      0.991 0.000 1.000
#> SRR1350792     1   0.000      1.000 1.000 0.000
#> SRR1326797     1   0.000      1.000 1.000 0.000
#> SRR808994      1   0.000      1.000 1.000 0.000
#> SRR1474041     1   0.000      1.000 1.000 0.000
#> SRR1405641     1   0.000      1.000 1.000 0.000
#> SRR1362245     1   0.000      1.000 1.000 0.000
#> SRR1500194     1   0.000      1.000 1.000 0.000
#> SRR1414876     2   0.000      0.991 0.000 1.000
#> SRR1478523     2   0.932      0.466 0.348 0.652
#> SRR1325161     1   0.000      1.000 1.000 0.000
#> SRR1318026     2   0.000      0.991 0.000 1.000
#> SRR1343778     1   0.000      1.000 1.000 0.000
#> SRR1441287     1   0.000      1.000 1.000 0.000
#> SRR1430991     1   0.000      1.000 1.000 0.000
#> SRR1499722     1   0.000      1.000 1.000 0.000
#> SRR1351368     2   0.000      0.991 0.000 1.000
#> SRR1441785     1   0.000      1.000 1.000 0.000
#> SRR1096101     1   0.000      1.000 1.000 0.000
#> SRR808375      1   0.000      1.000 1.000 0.000
#> SRR1452842     1   0.000      1.000 1.000 0.000
#> SRR1311709     1   0.000      1.000 1.000 0.000
#> SRR1433352     1   0.000      1.000 1.000 0.000
#> SRR1340241     2   0.000      0.991 0.000 1.000
#> SRR1456754     1   0.000      1.000 1.000 0.000
#> SRR1465172     1   0.000      1.000 1.000 0.000
#> SRR1499284     1   0.000      1.000 1.000 0.000
#> SRR1499607     2   0.000      0.991 0.000 1.000
#> SRR812342      1   0.000      1.000 1.000 0.000
#> SRR1405374     1   0.000      1.000 1.000 0.000
#> SRR1403565     1   0.000      1.000 1.000 0.000
#> SRR1332024     1   0.000      1.000 1.000 0.000
#> SRR1471633     1   0.000      1.000 1.000 0.000
#> SRR1325944     2   0.000      0.991 0.000 1.000
#> SRR1429450     2   0.000      0.991 0.000 1.000
#> SRR821573      1   0.000      1.000 1.000 0.000
#> SRR1435372     1   0.000      1.000 1.000 0.000
#> SRR1324184     2   0.000      0.991 0.000 1.000
#> SRR816517      2   0.000      0.991 0.000 1.000
#> SRR1324141     2   0.000      0.991 0.000 1.000
#> SRR1101612     1   0.000      1.000 1.000 0.000
#> SRR1356531     1   0.000      1.000 1.000 0.000
#> SRR1089785     1   0.000      1.000 1.000 0.000
#> SRR1077708     1   0.000      1.000 1.000 0.000
#> SRR1343720     1   0.000      1.000 1.000 0.000
#> SRR1477499     2   0.000      0.991 0.000 1.000
#> SRR1347236     1   0.000      1.000 1.000 0.000
#> SRR1326408     1   0.000      1.000 1.000 0.000
#> SRR1336529     1   0.000      1.000 1.000 0.000
#> SRR1440643     2   0.000      0.991 0.000 1.000
#> SRR662354      1   0.000      1.000 1.000 0.000
#> SRR1310817     1   0.000      1.000 1.000 0.000
#> SRR1347389     2   0.000      0.991 0.000 1.000
#> SRR1353097     1   0.000      1.000 1.000 0.000
#> SRR1384737     2   0.000      0.991 0.000 1.000
#> SRR1096339     1   0.000      1.000 1.000 0.000
#> SRR1345329     2   0.000      0.991 0.000 1.000
#> SRR1414771     1   0.000      1.000 1.000 0.000
#> SRR1309119     1   0.000      1.000 1.000 0.000
#> SRR1470438     1   0.000      1.000 1.000 0.000
#> SRR1343221     1   0.000      1.000 1.000 0.000
#> SRR1410847     1   0.000      1.000 1.000 0.000
#> SRR807949      1   0.000      1.000 1.000 0.000
#> SRR1442332     1   0.000      1.000 1.000 0.000
#> SRR815920      1   0.000      1.000 1.000 0.000
#> SRR1471524     1   0.000      1.000 1.000 0.000
#> SRR1477221     1   0.000      1.000 1.000 0.000
#> SRR1445046     2   0.000      0.991 0.000 1.000
#> SRR1331962     2   0.000      0.991 0.000 1.000
#> SRR1319946     2   0.000      0.991 0.000 1.000
#> SRR1311599     1   0.000      1.000 1.000 0.000
#> SRR1323977     2   0.000      0.991 0.000 1.000
#> SRR1445132     2   0.000      0.991 0.000 1.000
#> SRR1337321     1   0.000      1.000 1.000 0.000
#> SRR1366390     2   0.000      0.991 0.000 1.000
#> SRR1343012     2   0.000      0.991 0.000 1.000
#> SRR1311958     2   0.000      0.991 0.000 1.000
#> SRR1388234     2   0.000      0.991 0.000 1.000
#> SRR1370384     1   0.000      1.000 1.000 0.000
#> SRR1321650     1   0.000      1.000 1.000 0.000
#> SRR1485117     2   0.000      0.991 0.000 1.000
#> SRR1384713     1   0.000      1.000 1.000 0.000
#> SRR816609      2   0.000      0.991 0.000 1.000
#> SRR1486239     2   0.000      0.991 0.000 1.000
#> SRR1309638     1   0.000      1.000 1.000 0.000
#> SRR1356660     1   0.000      1.000 1.000 0.000
#> SRR1392883     2   0.000      0.991 0.000 1.000
#> SRR808130      1   0.000      1.000 1.000 0.000
#> SRR816677      1   0.141      0.979 0.980 0.020
#> SRR1455722     1   0.000      1.000 1.000 0.000
#> SRR1336029     1   0.000      1.000 1.000 0.000
#> SRR808452      1   0.000      1.000 1.000 0.000
#> SRR1352169     1   0.000      1.000 1.000 0.000
#> SRR1366707     1   0.000      1.000 1.000 0.000
#> SRR1328143     1   0.000      1.000 1.000 0.000
#> SRR1473567     2   0.000      0.991 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1390119     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1347278     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1332904     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1444179     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1082685     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1362287     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1339007     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1376557     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1413978     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1439896     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1317963     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1431865     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1394253     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1082664     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1077968     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1076393     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1398057     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1485042     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1385453     3  0.6267      0.147 0.000 0.452 0.548
#> SRR1348074     2  0.0000      0.980 0.000 1.000 0.000
#> SRR813959      2  0.0000      0.980 0.000 1.000 0.000
#> SRR665442      2  0.0000      0.980 0.000 1.000 0.000
#> SRR1378068     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1485237     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1350792     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1326797     1  0.1289      0.962 0.968 0.000 0.032
#> SRR808994      3  0.0000      0.982 0.000 0.000 1.000
#> SRR1474041     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1405641     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1362245     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1500194     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1414876     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1478523     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1325161     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1318026     2  0.1643      0.938 0.044 0.956 0.000
#> SRR1343778     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1441287     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1430991     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1499722     3  0.0424      0.974 0.008 0.000 0.992
#> SRR1351368     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1441785     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1096101     1  0.0000      0.993 1.000 0.000 0.000
#> SRR808375      3  0.0000      0.982 0.000 0.000 1.000
#> SRR1452842     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1311709     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1433352     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1340241     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1456754     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1465172     3  0.5138      0.653 0.252 0.000 0.748
#> SRR1499284     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1499607     2  0.0000      0.980 0.000 1.000 0.000
#> SRR812342      1  0.0000      0.993 1.000 0.000 0.000
#> SRR1405374     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1403565     1  0.0747      0.978 0.984 0.000 0.016
#> SRR1332024     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1471633     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1325944     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.980 0.000 1.000 0.000
#> SRR821573      3  0.0000      0.982 0.000 0.000 1.000
#> SRR1435372     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1324184     2  0.0000      0.980 0.000 1.000 0.000
#> SRR816517      2  0.0000      0.980 0.000 1.000 0.000
#> SRR1324141     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1101612     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1089785     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1077708     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1343720     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1477499     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1347236     1  0.5216      0.644 0.740 0.000 0.260
#> SRR1326408     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1336529     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1440643     2  0.6280      0.135 0.000 0.540 0.460
#> SRR662354      1  0.0000      0.993 1.000 0.000 0.000
#> SRR1310817     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1347389     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1353097     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1384737     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1096339     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1345329     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1414771     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1309119     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1470438     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1343221     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1410847     1  0.0000      0.993 1.000 0.000 0.000
#> SRR807949      3  0.0000      0.982 0.000 0.000 1.000
#> SRR1442332     3  0.0000      0.982 0.000 0.000 1.000
#> SRR815920      3  0.0000      0.982 0.000 0.000 1.000
#> SRR1471524     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1477221     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1445046     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1331962     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1319946     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1311599     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1323977     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1445132     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1337321     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1366390     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1343012     2  0.4654      0.729 0.000 0.792 0.208
#> SRR1311958     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1388234     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1370384     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1321650     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1485117     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.993 1.000 0.000 0.000
#> SRR816609      2  0.0000      0.980 0.000 1.000 0.000
#> SRR1486239     2  0.0000      0.980 0.000 1.000 0.000
#> SRR1309638     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1356660     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.980 0.000 1.000 0.000
#> SRR808130      3  0.0000      0.982 0.000 0.000 1.000
#> SRR816677      1  0.0000      0.993 1.000 0.000 0.000
#> SRR1455722     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1336029     1  0.0000      0.993 1.000 0.000 0.000
#> SRR808452      1  0.0000      0.993 1.000 0.000 0.000
#> SRR1352169     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1366707     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1328143     3  0.0000      0.982 0.000 0.000 1.000
#> SRR1473567     2  0.0000      0.980 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     4  0.4277     0.5235 0.000 0.000 0.280 0.720
#> SRR1390119     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.4585     0.6685 0.000 0.000 0.668 0.332
#> SRR1347278     3  0.4989     0.4216 0.000 0.000 0.528 0.472
#> SRR1332904     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0707     0.9740 0.980 0.000 0.020 0.000
#> SRR1339007     1  0.0592     0.9724 0.984 0.000 0.000 0.016
#> SRR1376557     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1077455     1  0.3074     0.8363 0.848 0.000 0.000 0.152
#> SRR1413978     1  0.1557     0.9536 0.944 0.000 0.056 0.000
#> SRR1439896     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1317963     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1431865     1  0.0707     0.9740 0.980 0.000 0.020 0.000
#> SRR1394253     1  0.0707     0.9740 0.980 0.000 0.020 0.000
#> SRR1082664     4  0.0592     0.8708 0.000 0.000 0.016 0.984
#> SRR1077968     1  0.0817     0.9686 0.976 0.000 0.000 0.024
#> SRR1076393     3  0.4972     0.3048 0.000 0.000 0.544 0.456
#> SRR1477476     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.4072     0.7264 0.000 0.000 0.748 0.252
#> SRR1485042     1  0.0469     0.9764 0.988 0.000 0.012 0.000
#> SRR1385453     3  0.6924     0.4351 0.000 0.232 0.588 0.180
#> SRR1348074     2  0.1637     0.9362 0.000 0.940 0.060 0.000
#> SRR813959      2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR665442      2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1378068     3  0.2760     0.7840 0.000 0.000 0.872 0.128
#> SRR1485237     2  0.1890     0.9334 0.008 0.936 0.056 0.000
#> SRR1350792     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1326797     4  0.1940     0.8063 0.076 0.000 0.000 0.924
#> SRR808994      3  0.2647     0.7842 0.000 0.000 0.880 0.120
#> SRR1474041     4  0.0817     0.8732 0.000 0.000 0.024 0.976
#> SRR1405641     3  0.2704     0.7845 0.000 0.000 0.876 0.124
#> SRR1362245     3  0.4500     0.6702 0.000 0.000 0.684 0.316
#> SRR1500194     1  0.0469     0.9764 0.988 0.000 0.012 0.000
#> SRR1414876     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.4304     0.5925 0.000 0.000 0.716 0.284
#> SRR1325161     4  0.0469     0.8679 0.012 0.000 0.000 0.988
#> SRR1318026     2  0.3734     0.8587 0.044 0.848 0.108 0.000
#> SRR1343778     4  0.4585     0.4034 0.000 0.000 0.332 0.668
#> SRR1441287     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1430991     4  0.0817     0.8732 0.000 0.000 0.024 0.976
#> SRR1499722     4  0.0707     0.8638 0.020 0.000 0.000 0.980
#> SRR1351368     3  0.1637     0.7450 0.000 0.000 0.940 0.060
#> SRR1441785     1  0.0707     0.9740 0.980 0.000 0.020 0.000
#> SRR1096101     1  0.0336     0.9771 0.992 0.000 0.008 0.000
#> SRR808375      4  0.0000     0.8716 0.000 0.000 0.000 1.000
#> SRR1452842     1  0.2081     0.9181 0.916 0.000 0.000 0.084
#> SRR1311709     1  0.1022     0.9628 0.968 0.000 0.032 0.000
#> SRR1433352     4  0.0817     0.8732 0.000 0.000 0.024 0.976
#> SRR1340241     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.0817     0.9686 0.976 0.000 0.000 0.024
#> SRR1465172     4  0.1474     0.8351 0.052 0.000 0.000 0.948
#> SRR1499284     4  0.2814     0.7237 0.132 0.000 0.000 0.868
#> SRR1499607     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR812342      1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0469     0.9764 0.988 0.000 0.012 0.000
#> SRR1403565     1  0.2813     0.8974 0.896 0.000 0.024 0.080
#> SRR1332024     3  0.2704     0.7845 0.000 0.000 0.876 0.124
#> SRR1471633     1  0.1118     0.9601 0.964 0.000 0.036 0.000
#> SRR1325944     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR821573      4  0.1474     0.8413 0.000 0.000 0.052 0.948
#> SRR1435372     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR816517      2  0.0707     0.9584 0.000 0.980 0.020 0.000
#> SRR1324141     2  0.2530     0.8984 0.000 0.888 0.112 0.000
#> SRR1101612     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1089785     4  0.1302     0.8616 0.000 0.000 0.044 0.956
#> SRR1077708     4  0.3486     0.6354 0.000 0.000 0.188 0.812
#> SRR1343720     4  0.0000     0.8716 0.000 0.000 0.000 1.000
#> SRR1477499     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1347236     4  0.1557     0.8317 0.056 0.000 0.000 0.944
#> SRR1326408     1  0.0817     0.9686 0.976 0.000 0.000 0.024
#> SRR1336529     3  0.2704     0.7845 0.000 0.000 0.876 0.124
#> SRR1440643     3  0.6547     0.3757 0.000 0.340 0.568 0.092
#> SRR662354      1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1310817     4  0.1637     0.8568 0.000 0.000 0.060 0.940
#> SRR1347389     2  0.0188     0.9677 0.000 0.996 0.004 0.000
#> SRR1353097     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1384737     2  0.2589     0.8953 0.000 0.884 0.116 0.000
#> SRR1096339     1  0.0469     0.9764 0.988 0.000 0.012 0.000
#> SRR1345329     2  0.1557     0.9381 0.000 0.944 0.056 0.000
#> SRR1414771     3  0.2647     0.7842 0.000 0.000 0.880 0.120
#> SRR1309119     1  0.0188     0.9775 0.996 0.000 0.004 0.000
#> SRR1470438     3  0.2647     0.7842 0.000 0.000 0.880 0.120
#> SRR1343221     1  0.0817     0.9686 0.976 0.000 0.000 0.024
#> SRR1410847     1  0.0469     0.9764 0.988 0.000 0.012 0.000
#> SRR807949      4  0.0817     0.8732 0.000 0.000 0.024 0.976
#> SRR1442332     4  0.0817     0.8732 0.000 0.000 0.024 0.976
#> SRR815920      3  0.2814     0.7830 0.000 0.000 0.868 0.132
#> SRR1471524     3  0.2081     0.7598 0.000 0.000 0.916 0.084
#> SRR1477221     3  0.4522     0.6656 0.000 0.000 0.680 0.320
#> SRR1445046     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1331962     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1311599     1  0.0707     0.9740 0.980 0.000 0.020 0.000
#> SRR1323977     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1445132     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.4713     0.6139 0.000 0.000 0.640 0.360
#> SRR1366390     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1343012     2  0.7581     0.0333 0.000 0.424 0.380 0.196
#> SRR1311958     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1370384     1  0.0817     0.9686 0.976 0.000 0.000 0.024
#> SRR1321650     3  0.4697     0.6367 0.000 0.000 0.644 0.356
#> SRR1485117     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.1940     0.9262 0.924 0.000 0.000 0.076
#> SRR816609      2  0.1557     0.9381 0.000 0.944 0.056 0.000
#> SRR1486239     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR1309638     4  0.4907    -0.0917 0.000 0.000 0.420 0.580
#> SRR1356660     1  0.0707     0.9740 0.980 0.000 0.020 0.000
#> SRR1392883     2  0.0000     0.9698 0.000 1.000 0.000 0.000
#> SRR808130      4  0.0817     0.8732 0.000 0.000 0.024 0.976
#> SRR816677      1  0.1792     0.9414 0.932 0.000 0.068 0.000
#> SRR1455722     1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0469     0.9767 0.988 0.000 0.012 0.000
#> SRR808452      1  0.0000     0.9777 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.4998     0.3560 0.000 0.000 0.512 0.488
#> SRR1366707     3  0.2408     0.7715 0.000 0.000 0.896 0.104
#> SRR1328143     4  0.0817     0.8732 0.000 0.000 0.024 0.976
#> SRR1473567     2  0.0000     0.9698 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.4088      0.408 0.000 0.000 0.368 0.000 0.632
#> SRR1390119     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.3366      0.697 0.000 0.000 0.768 0.000 0.232
#> SRR1347278     3  0.5233      0.571 0.000 0.000 0.636 0.076 0.288
#> SRR1332904     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1444179     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.2793      0.872 0.876 0.000 0.036 0.088 0.000
#> SRR1339007     1  0.0898      0.910 0.972 0.000 0.000 0.008 0.020
#> SRR1376557     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1077455     1  0.3455      0.729 0.784 0.000 0.000 0.008 0.208
#> SRR1413978     1  0.4637      0.633 0.672 0.000 0.036 0.292 0.000
#> SRR1439896     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     2  0.2127      0.874 0.000 0.892 0.000 0.108 0.000
#> SRR1431865     1  0.2793      0.872 0.876 0.000 0.036 0.088 0.000
#> SRR1394253     1  0.2793      0.872 0.876 0.000 0.036 0.088 0.000
#> SRR1082664     5  0.1041      0.896 0.000 0.000 0.032 0.004 0.964
#> SRR1077968     1  0.1251      0.903 0.956 0.000 0.000 0.008 0.036
#> SRR1076393     3  0.4576      0.441 0.000 0.000 0.608 0.016 0.376
#> SRR1477476     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.4088      0.718 0.000 0.000 0.776 0.056 0.168
#> SRR1485042     1  0.1018      0.912 0.968 0.000 0.016 0.016 0.000
#> SRR1385453     3  0.7352      0.284 0.000 0.320 0.476 0.096 0.108
#> SRR1348074     4  0.2773      0.897 0.000 0.164 0.000 0.836 0.000
#> SRR813959      2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR665442      2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1378068     3  0.1043      0.776 0.000 0.000 0.960 0.000 0.040
#> SRR1485237     4  0.3141      0.898 0.016 0.152 0.000 0.832 0.000
#> SRR1350792     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.1251      0.876 0.036 0.000 0.000 0.008 0.956
#> SRR808994      3  0.0794      0.775 0.000 0.000 0.972 0.000 0.028
#> SRR1474041     5  0.1410      0.889 0.000 0.000 0.060 0.000 0.940
#> SRR1405641     3  0.0880      0.776 0.000 0.000 0.968 0.000 0.032
#> SRR1362245     3  0.4693      0.667 0.000 0.000 0.724 0.080 0.196
#> SRR1500194     1  0.2236      0.889 0.908 0.000 0.024 0.068 0.000
#> SRR1414876     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.4302      0.649 0.000 0.000 0.744 0.048 0.208
#> SRR1325161     5  0.0992      0.886 0.024 0.000 0.000 0.008 0.968
#> SRR1318026     4  0.2547      0.866 0.048 0.040 0.004 0.904 0.004
#> SRR1343778     5  0.4262      0.203 0.000 0.000 0.440 0.000 0.560
#> SRR1441287     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.1121      0.896 0.000 0.000 0.044 0.000 0.956
#> SRR1499722     5  0.0992      0.886 0.024 0.000 0.000 0.008 0.968
#> SRR1351368     3  0.2754      0.736 0.000 0.000 0.880 0.080 0.040
#> SRR1441785     1  0.2793      0.872 0.876 0.000 0.036 0.088 0.000
#> SRR1096101     1  0.1173      0.915 0.964 0.000 0.012 0.020 0.004
#> SRR808375      5  0.0162      0.897 0.000 0.000 0.004 0.000 0.996
#> SRR1452842     1  0.2249      0.861 0.896 0.000 0.000 0.008 0.096
#> SRR1311709     1  0.4101      0.380 0.628 0.000 0.000 0.372 0.000
#> SRR1433352     5  0.0963      0.898 0.000 0.000 0.036 0.000 0.964
#> SRR1340241     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     1  0.1484      0.897 0.944 0.000 0.000 0.008 0.048
#> SRR1465172     5  0.1168      0.880 0.032 0.000 0.000 0.008 0.960
#> SRR1499284     5  0.1484      0.865 0.048 0.000 0.000 0.008 0.944
#> SRR1499607     2  0.2127      0.874 0.000 0.892 0.000 0.108 0.000
#> SRR812342      1  0.0162      0.916 0.996 0.000 0.000 0.000 0.004
#> SRR1405374     1  0.1493      0.906 0.948 0.000 0.024 0.028 0.000
#> SRR1403565     1  0.4339      0.809 0.804 0.000 0.036 0.088 0.072
#> SRR1332024     3  0.0703      0.774 0.000 0.000 0.976 0.000 0.024
#> SRR1471633     1  0.4262      0.194 0.560 0.000 0.000 0.440 0.000
#> SRR1325944     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.1041      0.889 0.000 0.000 0.004 0.032 0.964
#> SRR1435372     1  0.0451      0.915 0.988 0.000 0.000 0.004 0.008
#> SRR1324184     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR816517      2  0.1365      0.936 0.000 0.952 0.004 0.040 0.004
#> SRR1324141     4  0.2170      0.900 0.000 0.088 0.004 0.904 0.004
#> SRR1101612     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.1792      0.872 0.000 0.000 0.084 0.000 0.916
#> SRR1077708     5  0.3053      0.737 0.000 0.000 0.164 0.008 0.828
#> SRR1343720     5  0.0579      0.896 0.000 0.000 0.008 0.008 0.984
#> SRR1477499     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     5  0.1168      0.880 0.032 0.000 0.000 0.008 0.960
#> SRR1326408     1  0.1082      0.907 0.964 0.000 0.000 0.008 0.028
#> SRR1336529     3  0.0880      0.776 0.000 0.000 0.968 0.000 0.032
#> SRR1440643     3  0.6969      0.260 0.000 0.348 0.488 0.104 0.060
#> SRR662354      1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.1300      0.892 0.000 0.000 0.016 0.028 0.956
#> SRR1347389     2  0.0162      0.979 0.000 0.996 0.000 0.004 0.000
#> SRR1353097     1  0.0162      0.916 0.996 0.000 0.000 0.000 0.004
#> SRR1384737     4  0.1864      0.895 0.000 0.068 0.004 0.924 0.004
#> SRR1096339     1  0.0807      0.914 0.976 0.000 0.012 0.012 0.000
#> SRR1345329     4  0.2813      0.895 0.000 0.168 0.000 0.832 0.000
#> SRR1414771     3  0.0794      0.775 0.000 0.000 0.972 0.000 0.028
#> SRR1309119     1  0.0703      0.914 0.976 0.000 0.000 0.024 0.000
#> SRR1470438     3  0.0794      0.775 0.000 0.000 0.972 0.000 0.028
#> SRR1343221     1  0.1251      0.903 0.956 0.000 0.000 0.008 0.036
#> SRR1410847     1  0.2362      0.885 0.900 0.000 0.024 0.076 0.000
#> SRR807949      5  0.1121      0.896 0.000 0.000 0.044 0.000 0.956
#> SRR1442332     5  0.1341      0.890 0.000 0.000 0.056 0.000 0.944
#> SRR815920      3  0.1043      0.776 0.000 0.000 0.960 0.000 0.040
#> SRR1471524     3  0.2304      0.755 0.000 0.000 0.908 0.044 0.048
#> SRR1477221     3  0.4701      0.663 0.000 0.000 0.720 0.076 0.204
#> SRR1445046     2  0.2127      0.874 0.000 0.892 0.000 0.108 0.000
#> SRR1331962     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1319946     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1311599     1  0.2793      0.872 0.876 0.000 0.036 0.088 0.000
#> SRR1323977     2  0.0703      0.963 0.000 0.976 0.000 0.024 0.000
#> SRR1445132     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.5181      0.589 0.000 0.000 0.652 0.080 0.268
#> SRR1366390     2  0.0162      0.979 0.000 0.996 0.000 0.004 0.000
#> SRR1343012     4  0.2199      0.889 0.000 0.060 0.016 0.916 0.008
#> SRR1311958     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1388234     2  0.1197      0.941 0.000 0.952 0.000 0.048 0.000
#> SRR1370384     1  0.1557      0.894 0.940 0.000 0.000 0.008 0.052
#> SRR1321650     3  0.4029      0.602 0.000 0.000 0.680 0.004 0.316
#> SRR1485117     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1384713     1  0.2077      0.871 0.908 0.000 0.000 0.008 0.084
#> SRR816609      4  0.2813      0.895 0.000 0.168 0.000 0.832 0.000
#> SRR1486239     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR1309638     3  0.4650      0.296 0.000 0.000 0.520 0.012 0.468
#> SRR1356660     1  0.2793      0.872 0.876 0.000 0.036 0.088 0.000
#> SRR1392883     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.1341      0.890 0.000 0.000 0.056 0.000 0.944
#> SRR816677      4  0.2616      0.750 0.100 0.000 0.020 0.880 0.000
#> SRR1455722     1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.0992      0.913 0.968 0.000 0.008 0.024 0.000
#> SRR808452      1  0.0000      0.917 1.000 0.000 0.000 0.000 0.000
#> SRR1352169     3  0.4045      0.531 0.000 0.000 0.644 0.000 0.356
#> SRR1366707     3  0.1697      0.773 0.000 0.000 0.932 0.008 0.060
#> SRR1328143     5  0.1341      0.890 0.000 0.000 0.056 0.000 0.944
#> SRR1473567     2  0.0000      0.981 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.4136     0.1635 0.000 0.000 0.428 0.000 0.560 0.012
#> SRR1390119     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.3551     0.6542 0.000 0.000 0.792 0.000 0.148 0.060
#> SRR1347278     6  0.4918     0.3022 0.000 0.000 0.308 0.000 0.088 0.604
#> SRR1332904     2  0.0146     0.9622 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1444179     1  0.1196     0.8375 0.952 0.000 0.000 0.008 0.000 0.040
#> SRR1082685     1  0.0458     0.8459 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1362287     6  0.3390     0.7180 0.296 0.000 0.000 0.000 0.000 0.704
#> SRR1339007     1  0.1867     0.8311 0.916 0.000 0.000 0.000 0.020 0.064
#> SRR1376557     2  0.0146     0.9622 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1468700     2  0.0146     0.9622 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1077455     1  0.3627     0.7216 0.792 0.000 0.000 0.000 0.128 0.080
#> SRR1413978     6  0.4500     0.6877 0.224 0.000 0.000 0.088 0.000 0.688
#> SRR1439896     1  0.0937     0.8373 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1317963     2  0.2823     0.7690 0.000 0.796 0.000 0.204 0.000 0.000
#> SRR1431865     6  0.3499     0.7085 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1394253     6  0.3499     0.7085 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1082664     5  0.1779     0.8711 0.000 0.000 0.064 0.000 0.920 0.016
#> SRR1077968     1  0.2608     0.8045 0.872 0.000 0.000 0.000 0.048 0.080
#> SRR1076393     3  0.5057     0.4130 0.000 0.000 0.560 0.000 0.352 0.088
#> SRR1477476     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398057     3  0.4726     0.1238 0.000 0.000 0.528 0.000 0.048 0.424
#> SRR1485042     1  0.1610     0.8134 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR1385453     3  0.7220     0.5080 0.000 0.124 0.544 0.064 0.096 0.172
#> SRR1348074     4  0.0937     0.9320 0.000 0.040 0.000 0.960 0.000 0.000
#> SRR813959      2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR665442      2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1378068     3  0.0146     0.7328 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1485237     4  0.1285     0.9270 0.004 0.052 0.000 0.944 0.000 0.000
#> SRR1350792     1  0.0632     0.8437 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1326797     5  0.1745     0.8571 0.012 0.000 0.000 0.000 0.920 0.068
#> SRR808994      3  0.0363     0.7317 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1474041     5  0.2058     0.8735 0.000 0.000 0.036 0.000 0.908 0.056
#> SRR1405641     3  0.0363     0.7307 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1362245     6  0.4584     0.1817 0.000 0.000 0.404 0.000 0.040 0.556
#> SRR1500194     6  0.3843     0.4218 0.452 0.000 0.000 0.000 0.000 0.548
#> SRR1414876     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     3  0.5734     0.6032 0.000 0.000 0.628 0.048 0.168 0.156
#> SRR1325161     5  0.1327     0.8658 0.000 0.000 0.000 0.000 0.936 0.064
#> SRR1318026     4  0.0363     0.9299 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1343778     3  0.4157     0.1807 0.000 0.000 0.544 0.000 0.444 0.012
#> SRR1441287     1  0.0547     0.8447 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1430991     5  0.1575     0.8841 0.000 0.000 0.032 0.000 0.936 0.032
#> SRR1499722     5  0.1643     0.8702 0.008 0.000 0.000 0.000 0.924 0.068
#> SRR1351368     3  0.4440     0.6608 0.000 0.000 0.748 0.060 0.036 0.156
#> SRR1441785     6  0.3464     0.7133 0.312 0.000 0.000 0.000 0.000 0.688
#> SRR1096101     1  0.2692     0.7734 0.840 0.000 0.000 0.000 0.012 0.148
#> SRR808375      5  0.0000     0.8859 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1452842     1  0.3175     0.7701 0.832 0.000 0.000 0.000 0.088 0.080
#> SRR1311709     1  0.3168     0.7060 0.792 0.000 0.000 0.192 0.000 0.016
#> SRR1433352     5  0.1633     0.8837 0.000 0.000 0.044 0.000 0.932 0.024
#> SRR1340241     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1456754     1  0.2786     0.7989 0.860 0.000 0.000 0.000 0.056 0.084
#> SRR1465172     5  0.1895     0.8517 0.016 0.000 0.000 0.000 0.912 0.072
#> SRR1499284     5  0.3458     0.7413 0.112 0.000 0.000 0.000 0.808 0.080
#> SRR1499607     2  0.2793     0.7739 0.000 0.800 0.000 0.200 0.000 0.000
#> SRR812342      1  0.0000     0.8464 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.3765     0.0717 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1403565     6  0.3468     0.7174 0.284 0.000 0.000 0.000 0.004 0.712
#> SRR1332024     3  0.0632     0.7261 0.000 0.000 0.976 0.000 0.000 0.024
#> SRR1471633     1  0.3404     0.6647 0.760 0.000 0.000 0.224 0.000 0.016
#> SRR1325944     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.0935     0.8844 0.000 0.000 0.004 0.000 0.964 0.032
#> SRR1435372     1  0.1719     0.8319 0.924 0.000 0.000 0.000 0.016 0.060
#> SRR1324184     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816517      2  0.3336     0.7860 0.000 0.812 0.000 0.056 0.000 0.132
#> SRR1324141     4  0.0713     0.9269 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR1101612     1  0.0458     0.8459 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1356531     1  0.0260     0.8462 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1089785     5  0.2376     0.8609 0.000 0.000 0.068 0.000 0.888 0.044
#> SRR1077708     5  0.3709     0.6785 0.000 0.000 0.204 0.000 0.756 0.040
#> SRR1343720     5  0.1320     0.8850 0.000 0.000 0.016 0.000 0.948 0.036
#> SRR1477499     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     5  0.1686     0.8591 0.012 0.000 0.000 0.000 0.924 0.064
#> SRR1326408     1  0.2728     0.8072 0.872 0.000 0.000 0.008 0.040 0.080
#> SRR1336529     3  0.0363     0.7307 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1440643     3  0.7510     0.4449 0.000 0.168 0.504 0.080 0.076 0.172
#> SRR662354      1  0.0937     0.8373 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1310817     5  0.1745     0.8770 0.000 0.000 0.020 0.000 0.924 0.056
#> SRR1347389     2  0.0363     0.9557 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR1353097     1  0.1010     0.8420 0.960 0.000 0.000 0.000 0.004 0.036
#> SRR1384737     4  0.0632     0.9282 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1096339     1  0.1501     0.8144 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1345329     4  0.1141     0.9279 0.000 0.052 0.000 0.948 0.000 0.000
#> SRR1414771     3  0.0458     0.7292 0.000 0.000 0.984 0.000 0.000 0.016
#> SRR1309119     1  0.1757     0.8148 0.916 0.000 0.000 0.008 0.000 0.076
#> SRR1470438     3  0.0458     0.7292 0.000 0.000 0.984 0.000 0.000 0.016
#> SRR1343221     1  0.2009     0.8329 0.908 0.000 0.000 0.000 0.024 0.068
#> SRR1410847     1  0.3857    -0.2454 0.532 0.000 0.000 0.000 0.000 0.468
#> SRR807949      5  0.1498     0.8848 0.000 0.000 0.032 0.000 0.940 0.028
#> SRR1442332     5  0.1921     0.8765 0.000 0.000 0.032 0.000 0.916 0.052
#> SRR815920      3  0.0717     0.7333 0.000 0.000 0.976 0.000 0.016 0.008
#> SRR1471524     3  0.4021     0.6803 0.000 0.000 0.780 0.032 0.044 0.144
#> SRR1477221     6  0.4493     0.2762 0.000 0.000 0.364 0.000 0.040 0.596
#> SRR1445046     2  0.2823     0.7690 0.000 0.796 0.000 0.204 0.000 0.000
#> SRR1331962     2  0.0146     0.9622 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1319946     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1311599     6  0.3499     0.7085 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1323977     2  0.0713     0.9453 0.000 0.972 0.000 0.028 0.000 0.000
#> SRR1445132     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     6  0.4567     0.3214 0.000 0.000 0.332 0.000 0.052 0.616
#> SRR1366390     2  0.0146     0.9610 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1343012     4  0.1007     0.9192 0.000 0.000 0.000 0.956 0.000 0.044
#> SRR1311958     2  0.0146     0.9622 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1388234     2  0.2135     0.8587 0.000 0.872 0.000 0.128 0.000 0.000
#> SRR1370384     1  0.2794     0.7957 0.860 0.000 0.000 0.000 0.060 0.080
#> SRR1321650     3  0.5246     0.4720 0.000 0.000 0.596 0.000 0.256 0.148
#> SRR1485117     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1384713     1  0.3073     0.7783 0.840 0.000 0.000 0.000 0.080 0.080
#> SRR816609      4  0.1204     0.9246 0.000 0.056 0.000 0.944 0.000 0.000
#> SRR1486239     2  0.0363     0.9581 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR1309638     3  0.5750     0.3252 0.012 0.000 0.512 0.000 0.344 0.132
#> SRR1356660     6  0.3499     0.7085 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1392883     2  0.0000     0.9630 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.1575     0.8841 0.000 0.000 0.032 0.000 0.936 0.032
#> SRR816677      4  0.2896     0.7887 0.016 0.000 0.000 0.824 0.000 0.160
#> SRR1455722     1  0.0458     0.8459 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1336029     1  0.3244     0.5296 0.732 0.000 0.000 0.000 0.000 0.268
#> SRR808452      1  0.0458     0.8459 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1352169     3  0.5042     0.3941 0.000 0.000 0.576 0.000 0.332 0.092
#> SRR1366707     3  0.2789     0.7150 0.000 0.000 0.864 0.004 0.044 0.088
#> SRR1328143     5  0.1575     0.8841 0.000 0.000 0.032 0.000 0.936 0.032
#> SRR1473567     2  0.0146     0.9622 0.000 0.996 0.000 0.004 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.988       0.995         0.3300 0.666   0.666
#> 3 3 0.923           0.918       0.967         0.9197 0.687   0.534
#> 4 4 0.815           0.847       0.880         0.0625 0.980   0.944
#> 5 5 0.864           0.877       0.942         0.1038 0.888   0.688
#> 6 6 0.775           0.728       0.832         0.0653 0.877   0.576

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      1.000 1.000 0.000
#> SRR1390119     2  0.0000      0.979 0.000 1.000
#> SRR1436127     1  0.0000      1.000 1.000 0.000
#> SRR1347278     1  0.0000      1.000 1.000 0.000
#> SRR1332904     2  0.0000      0.979 0.000 1.000
#> SRR1444179     1  0.0000      1.000 1.000 0.000
#> SRR1082685     1  0.0000      1.000 1.000 0.000
#> SRR1362287     1  0.0000      1.000 1.000 0.000
#> SRR1339007     1  0.0000      1.000 1.000 0.000
#> SRR1376557     2  0.0000      0.979 0.000 1.000
#> SRR1468700     2  0.0000      0.979 0.000 1.000
#> SRR1077455     1  0.0000      1.000 1.000 0.000
#> SRR1413978     1  0.0000      1.000 1.000 0.000
#> SRR1439896     1  0.0000      1.000 1.000 0.000
#> SRR1317963     2  0.0000      0.979 0.000 1.000
#> SRR1431865     1  0.0000      1.000 1.000 0.000
#> SRR1394253     1  0.0000      1.000 1.000 0.000
#> SRR1082664     1  0.0000      1.000 1.000 0.000
#> SRR1077968     1  0.0000      1.000 1.000 0.000
#> SRR1076393     1  0.0000      1.000 1.000 0.000
#> SRR1477476     2  0.0000      0.979 0.000 1.000
#> SRR1398057     1  0.0000      1.000 1.000 0.000
#> SRR1485042     1  0.0000      1.000 1.000 0.000
#> SRR1385453     1  0.0000      1.000 1.000 0.000
#> SRR1348074     1  0.0672      0.992 0.992 0.008
#> SRR813959      1  0.0000      1.000 1.000 0.000
#> SRR665442      1  0.0000      1.000 1.000 0.000
#> SRR1378068     1  0.0000      1.000 1.000 0.000
#> SRR1485237     1  0.0672      0.992 0.992 0.008
#> SRR1350792     1  0.0000      1.000 1.000 0.000
#> SRR1326797     1  0.0000      1.000 1.000 0.000
#> SRR808994      1  0.0000      1.000 1.000 0.000
#> SRR1474041     1  0.0000      1.000 1.000 0.000
#> SRR1405641     1  0.0000      1.000 1.000 0.000
#> SRR1362245     1  0.0000      1.000 1.000 0.000
#> SRR1500194     1  0.0000      1.000 1.000 0.000
#> SRR1414876     2  0.0000      0.979 0.000 1.000
#> SRR1478523     1  0.0000      1.000 1.000 0.000
#> SRR1325161     1  0.0000      1.000 1.000 0.000
#> SRR1318026     1  0.0000      1.000 1.000 0.000
#> SRR1343778     1  0.0000      1.000 1.000 0.000
#> SRR1441287     1  0.0000      1.000 1.000 0.000
#> SRR1430991     1  0.0000      1.000 1.000 0.000
#> SRR1499722     1  0.0000      1.000 1.000 0.000
#> SRR1351368     1  0.0000      1.000 1.000 0.000
#> SRR1441785     1  0.0000      1.000 1.000 0.000
#> SRR1096101     1  0.0000      1.000 1.000 0.000
#> SRR808375      1  0.0000      1.000 1.000 0.000
#> SRR1452842     1  0.0000      1.000 1.000 0.000
#> SRR1311709     1  0.0000      1.000 1.000 0.000
#> SRR1433352     1  0.0000      1.000 1.000 0.000
#> SRR1340241     2  0.0000      0.979 0.000 1.000
#> SRR1456754     1  0.0000      1.000 1.000 0.000
#> SRR1465172     1  0.0000      1.000 1.000 0.000
#> SRR1499284     1  0.0000      1.000 1.000 0.000
#> SRR1499607     2  0.0000      0.979 0.000 1.000
#> SRR812342      1  0.0000      1.000 1.000 0.000
#> SRR1405374     1  0.0000      1.000 1.000 0.000
#> SRR1403565     1  0.0000      1.000 1.000 0.000
#> SRR1332024     1  0.0000      1.000 1.000 0.000
#> SRR1471633     1  0.0000      1.000 1.000 0.000
#> SRR1325944     2  0.0000      0.979 0.000 1.000
#> SRR1429450     2  0.0000      0.979 0.000 1.000
#> SRR821573      1  0.0000      1.000 1.000 0.000
#> SRR1435372     1  0.0000      1.000 1.000 0.000
#> SRR1324184     2  0.0000      0.979 0.000 1.000
#> SRR816517      2  0.0000      0.979 0.000 1.000
#> SRR1324141     1  0.0000      1.000 1.000 0.000
#> SRR1101612     1  0.0000      1.000 1.000 0.000
#> SRR1356531     1  0.0000      1.000 1.000 0.000
#> SRR1089785     1  0.0000      1.000 1.000 0.000
#> SRR1077708     1  0.0000      1.000 1.000 0.000
#> SRR1343720     1  0.0000      1.000 1.000 0.000
#> SRR1477499     2  0.0000      0.979 0.000 1.000
#> SRR1347236     1  0.0000      1.000 1.000 0.000
#> SRR1326408     1  0.0000      1.000 1.000 0.000
#> SRR1336529     1  0.0000      1.000 1.000 0.000
#> SRR1440643     1  0.0000      1.000 1.000 0.000
#> SRR662354      1  0.0000      1.000 1.000 0.000
#> SRR1310817     1  0.0000      1.000 1.000 0.000
#> SRR1347389     2  0.0000      0.979 0.000 1.000
#> SRR1353097     1  0.0000      1.000 1.000 0.000
#> SRR1384737     1  0.0000      1.000 1.000 0.000
#> SRR1096339     1  0.0000      1.000 1.000 0.000
#> SRR1345329     1  0.0672      0.992 0.992 0.008
#> SRR1414771     1  0.0000      1.000 1.000 0.000
#> SRR1309119     1  0.0000      1.000 1.000 0.000
#> SRR1470438     1  0.0000      1.000 1.000 0.000
#> SRR1343221     1  0.0000      1.000 1.000 0.000
#> SRR1410847     1  0.0000      1.000 1.000 0.000
#> SRR807949      1  0.0000      1.000 1.000 0.000
#> SRR1442332     1  0.0000      1.000 1.000 0.000
#> SRR815920      1  0.0000      1.000 1.000 0.000
#> SRR1471524     1  0.0000      1.000 1.000 0.000
#> SRR1477221     1  0.0000      1.000 1.000 0.000
#> SRR1445046     2  0.0000      0.979 0.000 1.000
#> SRR1331962     2  0.0000      0.979 0.000 1.000
#> SRR1319946     2  0.5294      0.855 0.120 0.880
#> SRR1311599     1  0.0000      1.000 1.000 0.000
#> SRR1323977     1  0.0000      1.000 1.000 0.000
#> SRR1445132     2  0.0000      0.979 0.000 1.000
#> SRR1337321     1  0.0000      1.000 1.000 0.000
#> SRR1366390     2  0.0000      0.979 0.000 1.000
#> SRR1343012     1  0.0000      1.000 1.000 0.000
#> SRR1311958     2  0.0000      0.979 0.000 1.000
#> SRR1388234     2  0.9775      0.309 0.412 0.588
#> SRR1370384     1  0.0000      1.000 1.000 0.000
#> SRR1321650     1  0.0000      1.000 1.000 0.000
#> SRR1485117     2  0.0000      0.979 0.000 1.000
#> SRR1384713     1  0.0000      1.000 1.000 0.000
#> SRR816609      1  0.1184      0.984 0.984 0.016
#> SRR1486239     2  0.0000      0.979 0.000 1.000
#> SRR1309638     1  0.0000      1.000 1.000 0.000
#> SRR1356660     1  0.0000      1.000 1.000 0.000
#> SRR1392883     2  0.0000      0.979 0.000 1.000
#> SRR808130      1  0.0000      1.000 1.000 0.000
#> SRR816677      1  0.0000      1.000 1.000 0.000
#> SRR1455722     1  0.0000      1.000 1.000 0.000
#> SRR1336029     1  0.0000      1.000 1.000 0.000
#> SRR808452      1  0.0000      1.000 1.000 0.000
#> SRR1352169     1  0.0000      1.000 1.000 0.000
#> SRR1366707     1  0.0000      1.000 1.000 0.000
#> SRR1328143     1  0.0000      1.000 1.000 0.000
#> SRR1473567     2  0.0000      0.979 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1390119     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1436127     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1347278     1  0.5859     0.4856 0.656 0.000 0.344
#> SRR1332904     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1444179     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1082685     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1362287     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1339007     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1376557     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1468700     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1077455     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1413978     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1317963     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1431865     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1082664     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1077968     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1076393     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1477476     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1398057     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1485042     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1385453     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1348074     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR813959      3  0.5591     0.5564 0.304 0.000 0.696
#> SRR665442      1  0.2165     0.9130 0.936 0.000 0.064
#> SRR1378068     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1485237     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1350792     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1326797     1  0.4654     0.7449 0.792 0.000 0.208
#> SRR808994      3  0.0747     0.9354 0.016 0.000 0.984
#> SRR1474041     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1405641     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1362245     3  0.6154     0.3226 0.408 0.000 0.592
#> SRR1500194     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1414876     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1478523     3  0.1031     0.9292 0.024 0.000 0.976
#> SRR1325161     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1318026     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1343778     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1441287     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1430991     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1499722     1  0.5291     0.6463 0.732 0.000 0.268
#> SRR1351368     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1441785     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1096101     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR808375      3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1452842     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1311709     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1433352     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1340241     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1456754     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1465172     1  0.3267     0.8641 0.884 0.000 0.116
#> SRR1499284     1  0.2261     0.9092 0.932 0.000 0.068
#> SRR1499607     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR812342      1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1403565     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1332024     3  0.2537     0.8790 0.080 0.000 0.920
#> SRR1471633     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1325944     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1429450     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR821573      3  0.6192     0.2709 0.420 0.000 0.580
#> SRR1435372     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1324184     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR816517      3  0.2356     0.8844 0.000 0.072 0.928
#> SRR1324141     1  0.0892     0.9522 0.980 0.000 0.020
#> SRR1101612     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1089785     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1077708     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1343720     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1477499     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1347236     1  0.4504     0.7592 0.804 0.000 0.196
#> SRR1326408     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1336529     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1440643     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR662354      1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1310817     3  0.4555     0.7293 0.200 0.000 0.800
#> SRR1347389     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1353097     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1384737     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1096339     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1345329     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1414771     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1309119     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1470438     3  0.2261     0.8894 0.068 0.000 0.932
#> SRR1343221     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR807949      3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1442332     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR815920      3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1471524     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1477221     3  0.3686     0.8157 0.140 0.000 0.860
#> SRR1445046     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1331962     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1319946     2  0.4110     0.8036 0.152 0.844 0.004
#> SRR1311599     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1323977     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1445132     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1337321     1  0.6008     0.4264 0.628 0.000 0.372
#> SRR1366390     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1343012     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1311958     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1388234     2  0.6302     0.0802 0.480 0.520 0.000
#> SRR1370384     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1321650     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1485117     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1384713     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR816609      1  0.0237     0.9649 0.996 0.004 0.000
#> SRR1486239     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR1309638     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1356660     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1392883     2  0.0000     0.9696 0.000 1.000 0.000
#> SRR808130      3  0.0000     0.9465 0.000 0.000 1.000
#> SRR816677      1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1455722     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9682 1.000 0.000 0.000
#> SRR808452      1  0.0000     0.9682 1.000 0.000 0.000
#> SRR1352169     3  0.0892     0.9324 0.020 0.000 0.980
#> SRR1366707     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1328143     3  0.0000     0.9465 0.000 0.000 1.000
#> SRR1473567     2  0.0000     0.9696 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.0592      0.862 0.000 0.016 0.984 0.000
#> SRR1390119     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1436127     3  0.2647      0.866 0.000 0.120 0.880 0.000
#> SRR1347278     1  0.6868      0.370 0.584 0.152 0.264 0.000
#> SRR1332904     2  0.3569      0.890 0.000 0.804 0.000 0.196
#> SRR1444179     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1339007     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.4304      0.818 0.000 0.716 0.000 0.284
#> SRR1468700     2  0.4304      0.818 0.000 0.716 0.000 0.284
#> SRR1077455     1  0.0469      0.931 0.988 0.000 0.012 0.000
#> SRR1413978     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1439896     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1317963     2  0.3569      0.890 0.000 0.804 0.000 0.196
#> SRR1431865     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1082664     3  0.0592      0.862 0.000 0.016 0.984 0.000
#> SRR1077968     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1076393     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1477476     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1398057     3  0.3219      0.859 0.000 0.164 0.836 0.000
#> SRR1485042     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1385453     3  0.3610      0.852 0.000 0.200 0.800 0.000
#> SRR1348074     1  0.2149      0.875 0.912 0.088 0.000 0.000
#> SRR813959      3  0.7627      0.379 0.292 0.240 0.468 0.000
#> SRR665442      1  0.4174      0.799 0.816 0.044 0.140 0.000
#> SRR1378068     3  0.3569      0.854 0.000 0.196 0.804 0.000
#> SRR1485237     1  0.2149      0.875 0.912 0.088 0.000 0.000
#> SRR1350792     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.4624      0.564 0.660 0.000 0.340 0.000
#> SRR808994      3  0.3569      0.854 0.000 0.196 0.804 0.000
#> SRR1474041     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1405641     3  0.3569      0.854 0.000 0.196 0.804 0.000
#> SRR1362245     3  0.7093      0.547 0.272 0.172 0.556 0.000
#> SRR1500194     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1414876     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1478523     3  0.3751      0.853 0.004 0.196 0.800 0.000
#> SRR1325161     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1318026     1  0.0188      0.937 0.996 0.004 0.000 0.000
#> SRR1343778     3  0.3444      0.857 0.000 0.184 0.816 0.000
#> SRR1441287     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1430991     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1499722     1  0.5016      0.430 0.600 0.004 0.396 0.000
#> SRR1351368     3  0.3610      0.852 0.000 0.200 0.800 0.000
#> SRR1441785     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR808375      3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1452842     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1311709     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1433352     3  0.1792      0.867 0.000 0.068 0.932 0.000
#> SRR1340241     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1456754     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1465172     1  0.3975      0.722 0.760 0.000 0.240 0.000
#> SRR1499284     1  0.3649      0.762 0.796 0.000 0.204 0.000
#> SRR1499607     2  0.3569      0.890 0.000 0.804 0.000 0.196
#> SRR812342      1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1403565     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1332024     3  0.4136      0.847 0.016 0.196 0.788 0.000
#> SRR1471633     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1325944     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1429450     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR821573      3  0.4907      0.138 0.420 0.000 0.580 0.000
#> SRR1435372     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1324184     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR816517      3  0.5404      0.692 0.000 0.328 0.644 0.028
#> SRR1324141     1  0.3099      0.854 0.876 0.104 0.020 0.000
#> SRR1101612     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1089785     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1077708     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1343720     3  0.0921      0.864 0.000 0.028 0.972 0.000
#> SRR1477499     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1347236     1  0.3688      0.761 0.792 0.000 0.208 0.000
#> SRR1326408     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1336529     3  0.3528      0.856 0.000 0.192 0.808 0.000
#> SRR1440643     3  0.3569      0.854 0.000 0.196 0.804 0.000
#> SRR662354      1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1310817     3  0.3569      0.631 0.196 0.000 0.804 0.000
#> SRR1347389     2  0.4888      0.579 0.000 0.588 0.000 0.412
#> SRR1353097     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1384737     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1096339     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1345329     1  0.2149      0.875 0.912 0.088 0.000 0.000
#> SRR1414771     3  0.3569      0.854 0.000 0.196 0.804 0.000
#> SRR1309119     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1470438     3  0.3893      0.851 0.008 0.196 0.796 0.000
#> SRR1343221     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR807949      3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1442332     3  0.2408      0.866 0.000 0.104 0.896 0.000
#> SRR815920      3  0.3569      0.854 0.000 0.196 0.804 0.000
#> SRR1471524     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1477221     3  0.5339      0.790 0.100 0.156 0.744 0.000
#> SRR1445046     2  0.3569      0.890 0.000 0.804 0.000 0.196
#> SRR1331962     2  0.3569      0.890 0.000 0.804 0.000 0.196
#> SRR1319946     2  0.1545      0.718 0.008 0.952 0.000 0.040
#> SRR1311599     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1323977     1  0.3688      0.768 0.792 0.208 0.000 0.000
#> SRR1445132     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1337321     1  0.6323      0.117 0.500 0.060 0.440 0.000
#> SRR1366390     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR1343012     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1311958     2  0.3569      0.890 0.000 0.804 0.000 0.196
#> SRR1388234     2  0.1902      0.683 0.064 0.932 0.000 0.004
#> SRR1370384     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1321650     3  0.1389      0.866 0.000 0.048 0.952 0.000
#> SRR1485117     4  0.4888     -0.123 0.000 0.412 0.000 0.588
#> SRR1384713     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR816609      1  0.3356      0.784 0.824 0.176 0.000 0.000
#> SRR1486239     2  0.3569      0.890 0.000 0.804 0.000 0.196
#> SRR1309638     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1356660     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1392883     4  0.0000      0.950 0.000 0.000 0.000 1.000
#> SRR808130      3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR816677      1  0.0336      0.934 0.992 0.008 0.000 0.000
#> SRR1455722     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR808452      1  0.0000      0.939 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.3569      0.854 0.000 0.196 0.804 0.000
#> SRR1366707     3  0.1302      0.863 0.000 0.044 0.956 0.000
#> SRR1328143     3  0.0000      0.860 0.000 0.000 1.000 0.000
#> SRR1473567     2  0.4250      0.827 0.000 0.724 0.000 0.276

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.1544     0.8896 0.000 0.000 0.068 0.000 0.932
#> SRR1390119     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1347278     3  0.4879     0.7016 0.176 0.000 0.716 0.000 0.108
#> SRR1332904     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1444179     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.0404     0.9523 0.988 0.000 0.012 0.000 0.000
#> SRR1339007     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1376557     4  0.3109     0.7385 0.000 0.200 0.000 0.800 0.000
#> SRR1468700     4  0.3109     0.7385 0.000 0.200 0.000 0.800 0.000
#> SRR1077455     1  0.0510     0.9493 0.984 0.000 0.000 0.000 0.016
#> SRR1413978     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1431865     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1082664     5  0.1851     0.8697 0.000 0.000 0.088 0.000 0.912
#> SRR1077968     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1076393     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1477476     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.3242     0.7454 0.000 0.000 0.784 0.000 0.216
#> SRR1485042     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1385453     3  0.0404     0.8720 0.000 0.000 0.988 0.000 0.012
#> SRR1348074     1  0.3305     0.7439 0.776 0.000 0.000 0.224 0.000
#> SRR813959      3  0.5122     0.6932 0.000 0.000 0.688 0.200 0.112
#> SRR665442      1  0.3794     0.7750 0.800 0.000 0.000 0.048 0.152
#> SRR1378068     3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1485237     1  0.3109     0.7728 0.800 0.000 0.000 0.200 0.000
#> SRR1350792     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0404     0.9233 0.012 0.000 0.000 0.000 0.988
#> SRR808994      3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1474041     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1405641     3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1362245     3  0.2473     0.8367 0.072 0.000 0.896 0.000 0.032
#> SRR1500194     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1414876     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.1197     0.8535 0.048 0.000 0.952 0.000 0.000
#> SRR1325161     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1318026     1  0.0162     0.9586 0.996 0.000 0.000 0.004 0.000
#> SRR1343778     3  0.2723     0.8253 0.012 0.000 0.864 0.000 0.124
#> SRR1441287     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1499722     5  0.3177     0.6789 0.000 0.000 0.208 0.000 0.792
#> SRR1351368     3  0.0290     0.8728 0.000 0.000 0.992 0.000 0.008
#> SRR1441785     1  0.0404     0.9523 0.988 0.000 0.012 0.000 0.000
#> SRR1096101     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR808375      5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1452842     1  0.0162     0.9583 0.996 0.000 0.000 0.000 0.004
#> SRR1311709     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1433352     3  0.4453     0.7158 0.048 0.000 0.724 0.000 0.228
#> SRR1340241     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1465172     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1499284     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1499607     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR812342      1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1403565     1  0.0404     0.9523 0.988 0.000 0.012 0.000 0.000
#> SRR1332024     3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1471633     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1325944     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1435372     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1324184     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR816517      3  0.3837     0.6150 0.000 0.000 0.692 0.308 0.000
#> SRR1324141     1  0.3266     0.7694 0.796 0.000 0.000 0.200 0.004
#> SRR1101612     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1077708     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1343720     5  0.4297    -0.0748 0.000 0.000 0.472 0.000 0.528
#> SRR1477499     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     1  0.3430     0.7281 0.776 0.000 0.004 0.000 0.220
#> SRR1326408     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1440643     3  0.1725     0.8518 0.044 0.000 0.936 0.020 0.000
#> SRR662354      1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1347389     4  0.3586     0.6242 0.000 0.264 0.000 0.736 0.000
#> SRR1353097     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1384737     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1096339     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1345329     1  0.3305     0.7439 0.776 0.000 0.000 0.224 0.000
#> SRR1414771     3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1309119     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1470438     3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1343221     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR807949      5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1442332     3  0.3837     0.6440 0.000 0.000 0.692 0.000 0.308
#> SRR815920      3  0.0000     0.8735 0.000 0.000 1.000 0.000 0.000
#> SRR1471524     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1477221     3  0.4502     0.7162 0.180 0.000 0.744 0.000 0.076
#> SRR1445046     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1331962     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1319946     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1311599     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1323977     1  0.4832     0.6669 0.712 0.000 0.088 0.200 0.000
#> SRR1445132     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.3816     0.6487 0.000 0.000 0.696 0.000 0.304
#> SRR1366390     2  0.0510     0.9403 0.000 0.984 0.000 0.016 0.000
#> SRR1343012     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1311958     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1388234     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1370384     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1321650     3  0.2732     0.7930 0.000 0.000 0.840 0.000 0.160
#> SRR1485117     2  0.4219     0.1782 0.000 0.584 0.000 0.416 0.000
#> SRR1384713     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR816609      1  0.3913     0.5868 0.676 0.000 0.000 0.324 0.000
#> SRR1486239     4  0.0000     0.9158 0.000 0.000 0.000 1.000 0.000
#> SRR1309638     5  0.1197     0.9045 0.000 0.000 0.048 0.000 0.952
#> SRR1356660     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1392883     2  0.0000     0.9557 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR816677      1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1455722     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR808452      1  0.0000     0.9611 1.000 0.000 0.000 0.000 0.000
#> SRR1352169     3  0.1041     0.8687 0.004 0.000 0.964 0.000 0.032
#> SRR1366707     5  0.3796     0.5928 0.000 0.000 0.300 0.000 0.700
#> SRR1328143     5  0.0000     0.9349 0.000 0.000 0.000 0.000 1.000
#> SRR1473567     4  0.2813     0.7784 0.000 0.168 0.000 0.832 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.2996    0.71534 0.000 0.000 0.228 0.000 0.772 0.000
#> SRR1390119     2  0.0000    0.92978 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.0547    0.85870 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1347278     6  0.3307    0.55987 0.000 0.000 0.072 0.000 0.108 0.820
#> SRR1332904     4  0.0000    0.80965 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1082685     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1362287     6  0.2070    0.62937 0.092 0.000 0.012 0.000 0.000 0.896
#> SRR1339007     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1376557     4  0.0000    0.80965 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1468700     4  0.0000    0.80965 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1077455     1  0.4978    0.77545 0.532 0.000 0.000 0.000 0.072 0.396
#> SRR1413978     6  0.1957    0.61617 0.112 0.000 0.000 0.000 0.000 0.888
#> SRR1439896     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1317963     4  0.2491    0.82418 0.164 0.000 0.000 0.836 0.000 0.000
#> SRR1431865     6  0.1957    0.61617 0.112 0.000 0.000 0.000 0.000 0.888
#> SRR1394253     6  0.1957    0.61617 0.112 0.000 0.000 0.000 0.000 0.888
#> SRR1082664     5  0.1471    0.87514 0.000 0.000 0.064 0.000 0.932 0.004
#> SRR1077968     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1076393     5  0.1285    0.88990 0.000 0.000 0.052 0.000 0.944 0.004
#> SRR1477476     2  0.0000    0.92978 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398057     6  0.5095    0.19004 0.000 0.000 0.104 0.000 0.312 0.584
#> SRR1485042     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1385453     3  0.3931    0.77262 0.100 0.000 0.800 0.000 0.036 0.064
#> SRR1348074     1  0.0000    0.44739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR813959      5  0.5269    0.51023 0.284 0.000 0.040 0.000 0.620 0.056
#> SRR665442      1  0.5111    0.63223 0.624 0.000 0.000 0.000 0.152 0.224
#> SRR1378068     3  0.0146    0.85916 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1485237     1  0.0000    0.44739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1350792     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1326797     5  0.0363    0.89961 0.012 0.000 0.000 0.000 0.988 0.000
#> SRR808994      3  0.0146    0.85845 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1474041     5  0.1285    0.88187 0.000 0.000 0.004 0.000 0.944 0.052
#> SRR1405641     3  0.0146    0.85845 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1362245     6  0.4135    0.25754 0.000 0.000 0.300 0.000 0.032 0.668
#> SRR1500194     6  0.2003    0.60965 0.116 0.000 0.000 0.000 0.000 0.884
#> SRR1414876     2  0.2762    0.83986 0.000 0.804 0.000 0.196 0.000 0.000
#> SRR1478523     6  0.4242   -0.05893 0.016 0.000 0.448 0.000 0.000 0.536
#> SRR1325161     5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1318026     1  0.2491    0.60067 0.836 0.000 0.000 0.000 0.000 0.164
#> SRR1343778     3  0.6575    0.22757 0.136 0.000 0.476 0.000 0.316 0.072
#> SRR1441287     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1430991     5  0.1075    0.89286 0.000 0.000 0.048 0.000 0.952 0.000
#> SRR1499722     5  0.0146    0.90544 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1351368     3  0.6473    0.45786 0.184 0.000 0.528 0.000 0.224 0.064
#> SRR1441785     6  0.1745    0.63372 0.068 0.000 0.012 0.000 0.000 0.920
#> SRR1096101     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR808375      5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1452842     1  0.4863    0.78635 0.528 0.000 0.000 0.000 0.060 0.412
#> SRR1311709     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1433352     5  0.6421    0.32701 0.292 0.000 0.124 0.000 0.512 0.072
#> SRR1340241     2  0.2793    0.83662 0.000 0.800 0.000 0.200 0.000 0.000
#> SRR1456754     1  0.4410    0.81723 0.560 0.000 0.000 0.000 0.028 0.412
#> SRR1465172     5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499284     5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499607     4  0.2416    0.82482 0.156 0.000 0.000 0.844 0.000 0.000
#> SRR812342      1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1405374     6  0.2003    0.60955 0.116 0.000 0.000 0.000 0.000 0.884
#> SRR1403565     6  0.1895    0.62488 0.072 0.000 0.016 0.000 0.000 0.912
#> SRR1332024     3  0.2823    0.70025 0.000 0.000 0.796 0.000 0.000 0.204
#> SRR1471633     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1325944     2  0.0000    0.92978 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000    0.92978 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1435372     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1324184     2  0.0000    0.92978 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816517      4  0.6883    0.44213 0.368 0.000 0.092 0.396 0.000 0.144
#> SRR1324141     1  0.0935    0.41333 0.964 0.000 0.004 0.000 0.032 0.000
#> SRR1101612     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1356531     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1089785     5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1077708     5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1343720     5  0.2448    0.83940 0.000 0.000 0.064 0.000 0.884 0.052
#> SRR1477499     2  0.2491    0.86077 0.000 0.836 0.000 0.164 0.000 0.000
#> SRR1347236     1  0.5742    0.49323 0.532 0.000 0.004 0.000 0.272 0.192
#> SRR1326408     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1336529     3  0.0632    0.85685 0.000 0.000 0.976 0.000 0.000 0.024
#> SRR1440643     6  0.5726    0.14435 0.316 0.000 0.188 0.000 0.000 0.496
#> SRR662354      1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1310817     5  0.0790    0.89923 0.000 0.000 0.032 0.000 0.968 0.000
#> SRR1347389     4  0.5380    0.52658 0.412 0.112 0.000 0.476 0.000 0.000
#> SRR1353097     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1384737     6  0.3756    0.52548 0.352 0.000 0.004 0.000 0.000 0.644
#> SRR1096339     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1345329     1  0.0000    0.44739 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414771     3  0.1141    0.84565 0.000 0.000 0.948 0.000 0.000 0.052
#> SRR1309119     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1470438     3  0.1141    0.84565 0.000 0.000 0.948 0.000 0.000 0.052
#> SRR1343221     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1410847     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR807949      5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1442332     5  0.2962    0.82214 0.000 0.000 0.084 0.000 0.848 0.068
#> SRR815920      3  0.0458    0.85950 0.000 0.000 0.984 0.000 0.000 0.016
#> SRR1471524     5  0.1285    0.88990 0.000 0.000 0.052 0.000 0.944 0.004
#> SRR1477221     6  0.3020    0.58426 0.000 0.000 0.080 0.000 0.076 0.844
#> SRR1445046     4  0.0146    0.81108 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1331962     4  0.2491    0.82418 0.164 0.000 0.000 0.836 0.000 0.000
#> SRR1319946     4  0.2491    0.82418 0.164 0.000 0.000 0.836 0.000 0.000
#> SRR1311599     6  0.1957    0.61617 0.112 0.000 0.000 0.000 0.000 0.888
#> SRR1323977     1  0.0146    0.44237 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1445132     2  0.0000    0.92978 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     6  0.4707    0.13610 0.000 0.000 0.056 0.000 0.360 0.584
#> SRR1366390     2  0.3566    0.83403 0.096 0.800 0.000 0.104 0.000 0.000
#> SRR1343012     1  0.3562    0.56459 0.788 0.000 0.004 0.000 0.040 0.168
#> SRR1311958     4  0.2491    0.82418 0.164 0.000 0.000 0.836 0.000 0.000
#> SRR1388234     4  0.2697    0.81248 0.188 0.000 0.000 0.812 0.000 0.000
#> SRR1370384     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1321650     3  0.2826    0.80183 0.000 0.000 0.856 0.000 0.092 0.052
#> SRR1485117     4  0.3823    0.02915 0.000 0.436 0.000 0.564 0.000 0.000
#> SRR1384713     1  0.4814    0.79014 0.532 0.000 0.000 0.000 0.056 0.412
#> SRR816609      1  0.1196    0.38344 0.952 0.000 0.000 0.008 0.000 0.040
#> SRR1486239     4  0.0458    0.81383 0.016 0.000 0.000 0.984 0.000 0.000
#> SRR1309638     5  0.3572    0.68158 0.000 0.000 0.204 0.000 0.764 0.032
#> SRR1356660     6  0.1957    0.61617 0.112 0.000 0.000 0.000 0.000 0.888
#> SRR1392883     2  0.0000    0.92978 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.0000    0.90599 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR816677      6  0.1957    0.61617 0.112 0.000 0.000 0.000 0.000 0.888
#> SRR1455722     1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1336029     6  0.2003    0.60965 0.116 0.000 0.000 0.000 0.000 0.884
#> SRR808452      1  0.3782    0.84108 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1352169     6  0.4084    0.00737 0.000 0.000 0.400 0.000 0.012 0.588
#> SRR1366707     3  0.1285    0.83124 0.000 0.000 0.944 0.000 0.052 0.004
#> SRR1328143     5  0.1075    0.89286 0.000 0.000 0.048 0.000 0.952 0.000
#> SRR1473567     4  0.0000    0.80965 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.900           0.939       0.971         0.4326 0.559   0.559
#> 3 3 0.651           0.808       0.839         0.4468 0.727   0.531
#> 4 4 0.508           0.695       0.760         0.1146 0.918   0.767
#> 5 5 0.628           0.521       0.728         0.0802 0.880   0.619
#> 6 6 0.712           0.562       0.743         0.0543 0.904   0.645

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.982 1.000 0.000
#> SRR1390119     2  0.0000      0.940 0.000 1.000
#> SRR1436127     1  0.0000      0.982 1.000 0.000
#> SRR1347278     1  0.0000      0.982 1.000 0.000
#> SRR1332904     2  0.0000      0.940 0.000 1.000
#> SRR1444179     1  0.0000      0.982 1.000 0.000
#> SRR1082685     1  0.0000      0.982 1.000 0.000
#> SRR1362287     1  0.0000      0.982 1.000 0.000
#> SRR1339007     1  0.0000      0.982 1.000 0.000
#> SRR1376557     2  0.0000      0.940 0.000 1.000
#> SRR1468700     2  0.0000      0.940 0.000 1.000
#> SRR1077455     1  0.0000      0.982 1.000 0.000
#> SRR1413978     1  0.0000      0.982 1.000 0.000
#> SRR1439896     1  0.0000      0.982 1.000 0.000
#> SRR1317963     2  0.0000      0.940 0.000 1.000
#> SRR1431865     1  0.0000      0.982 1.000 0.000
#> SRR1394253     1  0.0000      0.982 1.000 0.000
#> SRR1082664     1  0.0000      0.982 1.000 0.000
#> SRR1077968     1  0.0000      0.982 1.000 0.000
#> SRR1076393     1  0.0000      0.982 1.000 0.000
#> SRR1477476     2  0.0000      0.940 0.000 1.000
#> SRR1398057     1  0.0000      0.982 1.000 0.000
#> SRR1485042     1  0.0000      0.982 1.000 0.000
#> SRR1385453     2  0.8081      0.735 0.248 0.752
#> SRR1348074     2  0.0938      0.936 0.012 0.988
#> SRR813959      2  0.4022      0.905 0.080 0.920
#> SRR665442      2  0.3431      0.914 0.064 0.936
#> SRR1378068     1  0.0000      0.982 1.000 0.000
#> SRR1485237     2  0.3879      0.907 0.076 0.924
#> SRR1350792     1  0.0000      0.982 1.000 0.000
#> SRR1326797     1  0.0000      0.982 1.000 0.000
#> SRR808994      1  0.0000      0.982 1.000 0.000
#> SRR1474041     1  0.0000      0.982 1.000 0.000
#> SRR1405641     1  0.0000      0.982 1.000 0.000
#> SRR1362245     1  0.0000      0.982 1.000 0.000
#> SRR1500194     1  0.0000      0.982 1.000 0.000
#> SRR1414876     2  0.0000      0.940 0.000 1.000
#> SRR1478523     1  0.9087      0.467 0.676 0.324
#> SRR1325161     1  0.0000      0.982 1.000 0.000
#> SRR1318026     2  0.7453      0.784 0.212 0.788
#> SRR1343778     1  0.0000      0.982 1.000 0.000
#> SRR1441287     1  0.0000      0.982 1.000 0.000
#> SRR1430991     1  0.0000      0.982 1.000 0.000
#> SRR1499722     1  0.0000      0.982 1.000 0.000
#> SRR1351368     2  0.8327      0.709 0.264 0.736
#> SRR1441785     1  0.0000      0.982 1.000 0.000
#> SRR1096101     1  0.0000      0.982 1.000 0.000
#> SRR808375      1  0.0000      0.982 1.000 0.000
#> SRR1452842     1  0.0000      0.982 1.000 0.000
#> SRR1311709     1  0.3733      0.906 0.928 0.072
#> SRR1433352     1  0.0000      0.982 1.000 0.000
#> SRR1340241     2  0.0000      0.940 0.000 1.000
#> SRR1456754     1  0.0000      0.982 1.000 0.000
#> SRR1465172     1  0.0000      0.982 1.000 0.000
#> SRR1499284     1  0.0000      0.982 1.000 0.000
#> SRR1499607     2  0.0000      0.940 0.000 1.000
#> SRR812342      1  0.0000      0.982 1.000 0.000
#> SRR1405374     1  0.0000      0.982 1.000 0.000
#> SRR1403565     1  0.0000      0.982 1.000 0.000
#> SRR1332024     1  0.0000      0.982 1.000 0.000
#> SRR1471633     1  0.8499      0.587 0.724 0.276
#> SRR1325944     2  0.0000      0.940 0.000 1.000
#> SRR1429450     2  0.0000      0.940 0.000 1.000
#> SRR821573      1  0.7815      0.672 0.768 0.232
#> SRR1435372     1  0.0000      0.982 1.000 0.000
#> SRR1324184     2  0.0000      0.940 0.000 1.000
#> SRR816517      2  0.5737      0.855 0.136 0.864
#> SRR1324141     2  0.7453      0.784 0.212 0.788
#> SRR1101612     1  0.0000      0.982 1.000 0.000
#> SRR1356531     1  0.0000      0.982 1.000 0.000
#> SRR1089785     1  0.0000      0.982 1.000 0.000
#> SRR1077708     1  0.0000      0.982 1.000 0.000
#> SRR1343720     1  0.0000      0.982 1.000 0.000
#> SRR1477499     2  0.0000      0.940 0.000 1.000
#> SRR1347236     1  0.0000      0.982 1.000 0.000
#> SRR1326408     1  0.0000      0.982 1.000 0.000
#> SRR1336529     1  0.0000      0.982 1.000 0.000
#> SRR1440643     2  0.8144      0.729 0.252 0.748
#> SRR662354      1  0.0000      0.982 1.000 0.000
#> SRR1310817     1  0.3114      0.924 0.944 0.056
#> SRR1347389     2  0.0000      0.940 0.000 1.000
#> SRR1353097     1  0.0000      0.982 1.000 0.000
#> SRR1384737     2  0.7453      0.784 0.212 0.788
#> SRR1096339     1  0.0000      0.982 1.000 0.000
#> SRR1345329     2  0.3879      0.907 0.076 0.924
#> SRR1414771     1  0.0000      0.982 1.000 0.000
#> SRR1309119     1  0.0938      0.971 0.988 0.012
#> SRR1470438     1  0.0000      0.982 1.000 0.000
#> SRR1343221     1  0.0000      0.982 1.000 0.000
#> SRR1410847     1  0.0000      0.982 1.000 0.000
#> SRR807949      1  0.0000      0.982 1.000 0.000
#> SRR1442332     1  0.0000      0.982 1.000 0.000
#> SRR815920      1  0.0000      0.982 1.000 0.000
#> SRR1471524     1  0.0000      0.982 1.000 0.000
#> SRR1477221     1  0.0000      0.982 1.000 0.000
#> SRR1445046     2  0.0000      0.940 0.000 1.000
#> SRR1331962     2  0.0000      0.940 0.000 1.000
#> SRR1319946     2  0.0000      0.940 0.000 1.000
#> SRR1311599     1  0.0000      0.982 1.000 0.000
#> SRR1323977     2  0.3733      0.910 0.072 0.928
#> SRR1445132     2  0.0000      0.940 0.000 1.000
#> SRR1337321     1  0.0000      0.982 1.000 0.000
#> SRR1366390     2  0.0000      0.940 0.000 1.000
#> SRR1343012     2  0.7883      0.753 0.236 0.764
#> SRR1311958     2  0.0000      0.940 0.000 1.000
#> SRR1388234     2  0.0376      0.939 0.004 0.996
#> SRR1370384     1  0.0000      0.982 1.000 0.000
#> SRR1321650     1  0.0000      0.982 1.000 0.000
#> SRR1485117     2  0.0000      0.940 0.000 1.000
#> SRR1384713     1  0.0000      0.982 1.000 0.000
#> SRR816609      2  0.4815      0.888 0.104 0.896
#> SRR1486239     2  0.0000      0.940 0.000 1.000
#> SRR1309638     1  0.0000      0.982 1.000 0.000
#> SRR1356660     1  0.0000      0.982 1.000 0.000
#> SRR1392883     2  0.0000      0.940 0.000 1.000
#> SRR808130      1  0.0000      0.982 1.000 0.000
#> SRR816677      1  0.9580      0.328 0.620 0.380
#> SRR1455722     1  0.0000      0.982 1.000 0.000
#> SRR1336029     1  0.0000      0.982 1.000 0.000
#> SRR808452      1  0.0000      0.982 1.000 0.000
#> SRR1352169     1  0.0000      0.982 1.000 0.000
#> SRR1366707     1  0.0000      0.982 1.000 0.000
#> SRR1328143     1  0.0000      0.982 1.000 0.000
#> SRR1473567     2  0.0000      0.940 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1390119     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1436127     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1347278     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1332904     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1444179     1  0.3619     0.6971 0.864 0.000 0.136
#> SRR1082685     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1362287     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1339007     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1376557     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1468700     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1077455     1  0.4702     0.7019 0.788 0.000 0.212
#> SRR1413978     1  0.4235     0.7551 0.824 0.000 0.176
#> SRR1439896     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1317963     2  0.0237     0.8981 0.004 0.996 0.000
#> SRR1431865     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1394253     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1082664     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1077968     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1076393     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1477476     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1398057     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1485042     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1385453     3  0.5733    -0.1493 0.000 0.324 0.676
#> SRR1348074     2  0.5956     0.8327 0.016 0.720 0.264
#> SRR813959      2  0.5397     0.8313 0.000 0.720 0.280
#> SRR665442      2  0.5363     0.8332 0.000 0.724 0.276
#> SRR1378068     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1485237     2  0.5956     0.8327 0.016 0.720 0.264
#> SRR1350792     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1326797     3  0.5178     0.9227 0.256 0.000 0.744
#> SRR808994      3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1474041     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1405641     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1362245     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1500194     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1414876     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1478523     3  0.2749     0.4989 0.012 0.064 0.924
#> SRR1325161     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1318026     2  0.5956     0.8327 0.016 0.720 0.264
#> SRR1343778     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1441287     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1430991     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1499722     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1351368     3  0.5529    -0.0608 0.000 0.296 0.704
#> SRR1441785     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1096101     1  0.4346     0.7445 0.816 0.000 0.184
#> SRR808375      3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1452842     1  0.6309    -0.2920 0.504 0.000 0.496
#> SRR1311709     1  0.8233     0.4389 0.616 0.120 0.264
#> SRR1433352     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1340241     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1456754     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1465172     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1499284     3  0.5178     0.9219 0.256 0.000 0.744
#> SRR1499607     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR812342      1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1405374     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1403565     1  0.6267    -0.0926 0.548 0.000 0.452
#> SRR1332024     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1471633     1  0.9431     0.2177 0.500 0.220 0.280
#> SRR1325944     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1429450     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR821573      3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1435372     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1324184     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR816517      2  0.5178     0.8412 0.000 0.744 0.256
#> SRR1324141     2  0.5397     0.8313 0.000 0.720 0.280
#> SRR1101612     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1356531     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1089785     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1077708     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1343720     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1477499     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1347236     3  0.5178     0.9227 0.256 0.000 0.744
#> SRR1326408     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1336529     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1440643     3  0.5733    -0.1493 0.000 0.324 0.676
#> SRR662354      1  0.2066     0.8103 0.940 0.000 0.060
#> SRR1310817     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1347389     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1353097     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1384737     2  0.5397     0.8313 0.000 0.720 0.280
#> SRR1096339     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1345329     2  0.5956     0.8327 0.016 0.720 0.264
#> SRR1414771     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1309119     1  0.5529     0.5954 0.704 0.000 0.296
#> SRR1470438     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1343221     1  0.4654     0.7086 0.792 0.000 0.208
#> SRR1410847     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR807949      3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1442332     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR815920      3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1471524     3  0.5098     0.9227 0.248 0.000 0.752
#> SRR1477221     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1445046     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1331962     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1319946     2  0.5480     0.8374 0.004 0.732 0.264
#> SRR1311599     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1323977     2  0.5848     0.8329 0.012 0.720 0.268
#> SRR1445132     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1337321     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1366390     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1343012     2  0.5733     0.7933 0.000 0.676 0.324
#> SRR1311958     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1388234     2  0.5848     0.8329 0.012 0.720 0.268
#> SRR1370384     1  0.0747     0.8224 0.984 0.000 0.016
#> SRR1321650     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1485117     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1384713     1  0.3816     0.7736 0.852 0.000 0.148
#> SRR816609      2  0.5956     0.8327 0.016 0.720 0.264
#> SRR1486239     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR1309638     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1356660     1  0.4178     0.7598 0.828 0.000 0.172
#> SRR1392883     2  0.0000     0.8995 0.000 1.000 0.000
#> SRR808130      3  0.5138     0.9282 0.252 0.000 0.748
#> SRR816677      2  0.9599     0.3833 0.200 0.412 0.388
#> SRR1455722     1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1336029     1  0.7984     0.5876 0.652 0.132 0.216
#> SRR808452      1  0.0000     0.8256 1.000 0.000 0.000
#> SRR1352169     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1366707     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1328143     3  0.5138     0.9282 0.252 0.000 0.748
#> SRR1473567     2  0.0000     0.8995 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.4401     0.7353 0.272 0.000 0.724 0.004
#> SRR1390119     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.4675     0.7463 0.244 0.000 0.736 0.020
#> SRR1347278     3  0.5300     0.7042 0.308 0.000 0.664 0.028
#> SRR1332904     2  0.2530     0.8822 0.000 0.888 0.000 0.112
#> SRR1444179     1  0.4008     0.5677 0.756 0.000 0.000 0.244
#> SRR1082685     1  0.2589     0.7242 0.884 0.000 0.000 0.116
#> SRR1362287     1  0.4150     0.7589 0.824 0.000 0.120 0.056
#> SRR1339007     1  0.0592     0.8026 0.984 0.000 0.000 0.016
#> SRR1376557     2  0.1389     0.9000 0.000 0.952 0.000 0.048
#> SRR1468700     2  0.2216     0.8930 0.000 0.908 0.000 0.092
#> SRR1077455     1  0.5560     0.6332 0.728 0.000 0.156 0.116
#> SRR1413978     1  0.5909     0.7020 0.736 0.024 0.144 0.096
#> SRR1439896     1  0.0336     0.8012 0.992 0.000 0.000 0.008
#> SRR1317963     2  0.4040     0.7158 0.000 0.752 0.000 0.248
#> SRR1431865     1  0.4344     0.7678 0.816 0.000 0.108 0.076
#> SRR1394253     1  0.4525     0.7756 0.804 0.000 0.116 0.080
#> SRR1082664     3  0.5131     0.7314 0.280 0.000 0.692 0.028
#> SRR1077968     1  0.0188     0.7996 0.996 0.000 0.004 0.000
#> SRR1076393     3  0.2408     0.6729 0.036 0.000 0.920 0.044
#> SRR1477476     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.4720     0.7403 0.264 0.000 0.720 0.016
#> SRR1485042     1  0.1211     0.8028 0.960 0.000 0.000 0.040
#> SRR1385453     3  0.4454     0.2855 0.000 0.000 0.692 0.308
#> SRR1348074     4  0.5927     0.8425 0.052 0.164 0.048 0.736
#> SRR813959      3  0.7702    -0.5304 0.000 0.224 0.416 0.360
#> SRR665442      4  0.8235     0.5228 0.012 0.304 0.292 0.392
#> SRR1378068     3  0.4188     0.7496 0.244 0.000 0.752 0.004
#> SRR1485237     4  0.5854     0.8415 0.044 0.172 0.048 0.736
#> SRR1350792     1  0.0000     0.8002 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.7811    -0.1741 0.380 0.000 0.368 0.252
#> SRR808994      3  0.4869     0.7093 0.132 0.000 0.780 0.088
#> SRR1474041     3  0.3695     0.7547 0.156 0.000 0.828 0.016
#> SRR1405641     3  0.4532     0.7313 0.156 0.000 0.792 0.052
#> SRR1362245     3  0.4849     0.7284 0.164 0.000 0.772 0.064
#> SRR1500194     1  0.1867     0.7821 0.928 0.000 0.000 0.072
#> SRR1414876     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.4262     0.4230 0.008 0.000 0.756 0.236
#> SRR1325161     3  0.6049     0.6984 0.184 0.000 0.684 0.132
#> SRR1318026     4  0.6216     0.8382 0.076 0.152 0.048 0.724
#> SRR1343778     3  0.5157     0.7283 0.284 0.000 0.688 0.028
#> SRR1441287     1  0.1389     0.7831 0.952 0.000 0.000 0.048
#> SRR1430991     3  0.3852     0.7575 0.192 0.000 0.800 0.008
#> SRR1499722     3  0.6764     0.5165 0.332 0.000 0.556 0.112
#> SRR1351368     3  0.4304     0.3327 0.000 0.000 0.716 0.284
#> SRR1441785     1  0.4318     0.7684 0.816 0.000 0.116 0.068
#> SRR1096101     1  0.4127     0.7507 0.824 0.000 0.124 0.052
#> SRR808375      3  0.3895     0.7576 0.184 0.000 0.804 0.012
#> SRR1452842     1  0.6083     0.5157 0.672 0.000 0.216 0.112
#> SRR1311709     1  0.5016     0.2225 0.600 0.000 0.004 0.396
#> SRR1433352     3  0.5108     0.6934 0.308 0.000 0.672 0.020
#> SRR1340241     2  0.0188     0.9183 0.000 0.996 0.000 0.004
#> SRR1456754     1  0.3032     0.7565 0.868 0.000 0.124 0.008
#> SRR1465172     3  0.7122     0.4339 0.340 0.000 0.516 0.144
#> SRR1499284     3  0.7269     0.2642 0.396 0.000 0.456 0.148
#> SRR1499607     2  0.3831     0.7645 0.004 0.792 0.000 0.204
#> SRR812342      1  0.2530     0.7273 0.888 0.000 0.000 0.112
#> SRR1405374     1  0.3919     0.7714 0.840 0.000 0.104 0.056
#> SRR1403565     1  0.5672     0.4652 0.668 0.000 0.276 0.056
#> SRR1332024     3  0.4514     0.7207 0.136 0.000 0.800 0.064
#> SRR1471633     1  0.5332     0.0289 0.512 0.004 0.004 0.480
#> SRR1325944     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR821573      3  0.7098     0.4851 0.132 0.008 0.572 0.288
#> SRR1435372     1  0.2216     0.7479 0.908 0.000 0.000 0.092
#> SRR1324184     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR816517      3  0.7910    -0.5510 0.000 0.316 0.364 0.320
#> SRR1324141     4  0.6160     0.8401 0.068 0.152 0.052 0.728
#> SRR1101612     1  0.0336     0.8012 0.992 0.000 0.000 0.008
#> SRR1356531     1  0.0336     0.8012 0.992 0.000 0.000 0.008
#> SRR1089785     3  0.4004     0.7563 0.164 0.000 0.812 0.024
#> SRR1077708     3  0.4576     0.7434 0.260 0.000 0.728 0.012
#> SRR1343720     3  0.4706     0.7317 0.248 0.000 0.732 0.020
#> SRR1477499     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR1347236     1  0.7681    -0.1623 0.404 0.000 0.380 0.216
#> SRR1326408     1  0.3074     0.7060 0.848 0.000 0.000 0.152
#> SRR1336529     3  0.4328     0.7496 0.244 0.000 0.748 0.008
#> SRR1440643     3  0.4454     0.2855 0.000 0.000 0.692 0.308
#> SRR662354      1  0.1389     0.7942 0.952 0.000 0.048 0.000
#> SRR1310817     3  0.4188     0.5737 0.040 0.000 0.812 0.148
#> SRR1347389     2  0.2814     0.8679 0.000 0.868 0.000 0.132
#> SRR1353097     1  0.1557     0.7794 0.944 0.000 0.000 0.056
#> SRR1384737     4  0.7800     0.8000 0.084 0.152 0.152 0.612
#> SRR1096339     1  0.1022     0.8030 0.968 0.000 0.000 0.032
#> SRR1345329     4  0.5854     0.8415 0.044 0.172 0.048 0.736
#> SRR1414771     3  0.4724     0.7165 0.136 0.000 0.788 0.076
#> SRR1309119     1  0.4964     0.2959 0.616 0.004 0.000 0.380
#> SRR1470438     3  0.4817     0.7073 0.128 0.000 0.784 0.088
#> SRR1343221     1  0.4070     0.7433 0.824 0.000 0.132 0.044
#> SRR1410847     1  0.3818     0.7651 0.844 0.000 0.108 0.048
#> SRR807949      3  0.4418     0.7550 0.184 0.000 0.784 0.032
#> SRR1442332     3  0.4214     0.7543 0.204 0.000 0.780 0.016
#> SRR815920      3  0.4328     0.7497 0.244 0.000 0.748 0.008
#> SRR1471524     3  0.3117     0.6327 0.028 0.000 0.880 0.092
#> SRR1477221     3  0.4630     0.7459 0.252 0.000 0.732 0.016
#> SRR1445046     2  0.3311     0.8247 0.000 0.828 0.000 0.172
#> SRR1331962     2  0.2216     0.8930 0.000 0.908 0.000 0.092
#> SRR1319946     4  0.5834     0.7221 0.008 0.288 0.044 0.660
#> SRR1311599     1  0.3934     0.7650 0.836 0.000 0.116 0.048
#> SRR1323977     4  0.5724     0.8015 0.016 0.228 0.048 0.708
#> SRR1445132     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.4136     0.7562 0.196 0.000 0.788 0.016
#> SRR1366390     2  0.0592     0.9172 0.000 0.984 0.000 0.016
#> SRR1343012     4  0.7598     0.7936 0.068 0.152 0.156 0.624
#> SRR1311958     2  0.2814     0.8679 0.000 0.868 0.000 0.132
#> SRR1388234     4  0.5644     0.7740 0.008 0.248 0.048 0.696
#> SRR1370384     1  0.1610     0.7939 0.952 0.000 0.032 0.016
#> SRR1321650     3  0.4194     0.7561 0.228 0.000 0.764 0.008
#> SRR1485117     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.2859     0.7622 0.880 0.000 0.112 0.008
#> SRR816609      4  0.6431     0.8360 0.084 0.160 0.048 0.708
#> SRR1486239     2  0.2814     0.8679 0.000 0.868 0.000 0.132
#> SRR1309638     3  0.4661     0.7436 0.256 0.000 0.728 0.016
#> SRR1356660     1  0.4344     0.7678 0.816 0.000 0.108 0.076
#> SRR1392883     2  0.0000     0.9188 0.000 1.000 0.000 0.000
#> SRR808130      3  0.3768     0.7579 0.184 0.000 0.808 0.008
#> SRR816677      4  0.7690     0.5237 0.280 0.092 0.060 0.568
#> SRR1455722     1  0.0336     0.8012 0.992 0.000 0.000 0.008
#> SRR1336029     1  0.6617     0.5894 0.628 0.004 0.124 0.244
#> SRR808452      1  0.0707     0.7981 0.980 0.000 0.000 0.020
#> SRR1352169     3  0.4365     0.7572 0.188 0.000 0.784 0.028
#> SRR1366707     3  0.3392     0.7040 0.072 0.000 0.872 0.056
#> SRR1328143     3  0.3810     0.7579 0.188 0.000 0.804 0.008
#> SRR1473567     2  0.1867     0.9021 0.000 0.928 0.000 0.072

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.4811     0.5167 0.020 0.000 0.452 0.000 0.528
#> SRR1390119     2  0.0000     0.8364 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.1186     0.6457 0.020 0.000 0.964 0.008 0.008
#> SRR1347278     3  0.6609     0.2661 0.172 0.000 0.600 0.048 0.180
#> SRR1332904     2  0.4674     0.5209 0.000 0.568 0.000 0.416 0.016
#> SRR1444179     1  0.2230     0.8120 0.884 0.000 0.000 0.116 0.000
#> SRR1082685     1  0.0000     0.8170 1.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.4275     0.7984 0.784 0.000 0.012 0.148 0.056
#> SRR1339007     1  0.0451     0.8187 0.988 0.000 0.000 0.008 0.004
#> SRR1376557     2  0.3264     0.7928 0.000 0.820 0.000 0.164 0.016
#> SRR1468700     2  0.4517     0.5700 0.000 0.600 0.000 0.388 0.012
#> SRR1077455     1  0.5471     0.5458 0.576 0.000 0.016 0.040 0.368
#> SRR1413978     1  0.5763     0.5492 0.560 0.000 0.016 0.364 0.060
#> SRR1439896     1  0.0162     0.8164 0.996 0.000 0.000 0.000 0.004
#> SRR1317963     4  0.4321    -0.1662 0.000 0.396 0.000 0.600 0.004
#> SRR1431865     1  0.4878     0.7632 0.720 0.000 0.012 0.208 0.060
#> SRR1394253     1  0.4298     0.7983 0.784 0.000 0.012 0.144 0.060
#> SRR1082664     5  0.5756     0.5250 0.036 0.000 0.424 0.028 0.512
#> SRR1077968     1  0.0609     0.8112 0.980 0.000 0.000 0.000 0.020
#> SRR1076393     3  0.4972    -0.3840 0.004 0.000 0.500 0.020 0.476
#> SRR1477476     2  0.0000     0.8364 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.3227     0.6066 0.040 0.000 0.868 0.020 0.072
#> SRR1485042     1  0.1965     0.8178 0.904 0.000 0.000 0.096 0.000
#> SRR1385453     3  0.6915     0.3182 0.000 0.040 0.488 0.132 0.340
#> SRR1348074     4  0.5302     0.3891 0.220 0.052 0.020 0.700 0.008
#> SRR813959      5  0.7442    -0.0492 0.000 0.256 0.040 0.280 0.424
#> SRR665442      4  0.8572     0.0775 0.008 0.276 0.132 0.304 0.280
#> SRR1378068     3  0.1299     0.6459 0.020 0.000 0.960 0.012 0.008
#> SRR1485237     4  0.5858     0.1464 0.384 0.040 0.020 0.548 0.008
#> SRR1350792     1  0.0510     0.8128 0.984 0.000 0.000 0.000 0.016
#> SRR1326797     5  0.5166     0.2779 0.172 0.000 0.040 0.060 0.728
#> SRR808994      3  0.2278     0.6033 0.000 0.000 0.908 0.032 0.060
#> SRR1474041     5  0.4954     0.5191 0.020 0.000 0.448 0.004 0.528
#> SRR1405641     3  0.0609     0.6360 0.000 0.000 0.980 0.020 0.000
#> SRR1362245     3  0.0609     0.6360 0.000 0.000 0.980 0.020 0.000
#> SRR1500194     1  0.2127     0.8153 0.892 0.000 0.000 0.108 0.000
#> SRR1414876     2  0.0162     0.8367 0.000 0.996 0.000 0.004 0.000
#> SRR1478523     3  0.6759     0.3233 0.000 0.040 0.500 0.112 0.348
#> SRR1325161     5  0.4160     0.3797 0.024 0.000 0.168 0.024 0.784
#> SRR1318026     4  0.5866     0.1342 0.388 0.040 0.020 0.544 0.008
#> SRR1343778     5  0.5684     0.5140 0.040 0.000 0.440 0.020 0.500
#> SRR1441287     1  0.0000     0.8170 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.4811     0.5167 0.020 0.000 0.452 0.000 0.528
#> SRR1499722     5  0.4014     0.3619 0.060 0.000 0.096 0.024 0.820
#> SRR1351368     3  0.6908     0.3114 0.000 0.040 0.480 0.128 0.352
#> SRR1441785     1  0.4752     0.7714 0.732 0.000 0.012 0.200 0.056
#> SRR1096101     1  0.4189     0.8006 0.788 0.000 0.008 0.144 0.060
#> SRR808375      5  0.5415     0.5170 0.020 0.000 0.448 0.024 0.508
#> SRR1452842     1  0.5973     0.3863 0.468 0.000 0.020 0.060 0.452
#> SRR1311709     1  0.3291     0.7625 0.840 0.040 0.000 0.120 0.000
#> SRR1433352     5  0.5284     0.5177 0.040 0.000 0.424 0.004 0.532
#> SRR1340241     2  0.1444     0.8280 0.000 0.948 0.000 0.040 0.012
#> SRR1456754     1  0.3359     0.7976 0.848 0.000 0.004 0.052 0.096
#> SRR1465172     5  0.3804     0.3404 0.100 0.000 0.040 0.028 0.832
#> SRR1499284     5  0.3644     0.3300 0.120 0.000 0.024 0.024 0.832
#> SRR1499607     4  0.4574    -0.1944 0.000 0.412 0.000 0.576 0.012
#> SRR812342      1  0.1732     0.7837 0.920 0.000 0.000 0.000 0.080
#> SRR1405374     1  0.4275     0.7984 0.784 0.000 0.012 0.148 0.056
#> SRR1403565     1  0.5502     0.7255 0.704 0.000 0.028 0.128 0.140
#> SRR1332024     3  0.0609     0.6360 0.000 0.000 0.980 0.020 0.000
#> SRR1471633     1  0.4752     0.6282 0.684 0.040 0.000 0.272 0.004
#> SRR1325944     2  0.0000     0.8364 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.8364 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.5978     0.4906 0.020 0.000 0.400 0.064 0.516
#> SRR1435372     1  0.0404     0.8142 0.988 0.000 0.000 0.000 0.012
#> SRR1324184     2  0.3160     0.7811 0.000 0.808 0.000 0.188 0.004
#> SRR816517      4  0.8525     0.0758 0.000 0.260 0.196 0.312 0.232
#> SRR1324141     4  0.6057     0.1341 0.388 0.040 0.020 0.536 0.016
#> SRR1101612     1  0.0162     0.8164 0.996 0.000 0.000 0.000 0.004
#> SRR1356531     1  0.0162     0.8164 0.996 0.000 0.000 0.000 0.004
#> SRR1089785     5  0.5470     0.4863 0.016 0.000 0.440 0.032 0.512
#> SRR1077708     5  0.5075     0.4928 0.020 0.000 0.460 0.008 0.512
#> SRR1343720     5  0.5250     0.4891 0.040 0.000 0.404 0.004 0.552
#> SRR1477499     2  0.0162     0.8367 0.000 0.996 0.000 0.004 0.000
#> SRR1347236     5  0.6087    -0.3143 0.388 0.000 0.024 0.068 0.520
#> SRR1326408     1  0.1965     0.8182 0.904 0.000 0.000 0.096 0.000
#> SRR1336529     3  0.1074     0.6467 0.016 0.000 0.968 0.012 0.004
#> SRR1440643     3  0.7195     0.2746 0.000 0.040 0.448 0.172 0.340
#> SRR662354      1  0.2464     0.7787 0.892 0.000 0.004 0.012 0.092
#> SRR1310817     5  0.5672     0.4855 0.008 0.000 0.412 0.060 0.520
#> SRR1347389     4  0.4718    -0.2756 0.000 0.444 0.000 0.540 0.016
#> SRR1353097     1  0.0162     0.8164 0.996 0.000 0.000 0.000 0.004
#> SRR1384737     4  0.6451     0.1098 0.392 0.040 0.024 0.512 0.032
#> SRR1096339     1  0.1965     0.8178 0.904 0.000 0.000 0.096 0.000
#> SRR1345329     4  0.6020     0.2148 0.352 0.056 0.020 0.564 0.008
#> SRR1414771     3  0.2209     0.6058 0.000 0.000 0.912 0.032 0.056
#> SRR1309119     1  0.3579     0.7150 0.756 0.004 0.000 0.240 0.000
#> SRR1470438     3  0.2278     0.6033 0.000 0.000 0.908 0.032 0.060
#> SRR1343221     1  0.4154     0.8039 0.796 0.000 0.008 0.124 0.072
#> SRR1410847     1  0.4109     0.8006 0.788 0.000 0.004 0.148 0.060
#> SRR807949      5  0.5246     0.5202 0.020 0.000 0.440 0.016 0.524
#> SRR1442332     5  0.5464     0.5206 0.020 0.000 0.424 0.028 0.528
#> SRR815920      3  0.3513     0.5280 0.000 0.000 0.800 0.020 0.180
#> SRR1471524     3  0.4873     0.3600 0.000 0.012 0.676 0.032 0.280
#> SRR1477221     3  0.2374     0.6316 0.016 0.000 0.912 0.020 0.052
#> SRR1445046     4  0.4383    -0.2213 0.000 0.424 0.000 0.572 0.004
#> SRR1331962     2  0.4622     0.4810 0.000 0.548 0.000 0.440 0.012
#> SRR1319946     4  0.4986     0.0730 0.004 0.268 0.020 0.684 0.024
#> SRR1311599     1  0.4403     0.7987 0.776 0.000 0.012 0.148 0.064
#> SRR1323977     4  0.7662     0.3466 0.344 0.200 0.020 0.408 0.028
#> SRR1445132     2  0.0000     0.8364 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.3937     0.5205 0.012 0.000 0.784 0.020 0.184
#> SRR1366390     2  0.3163     0.7877 0.000 0.824 0.000 0.164 0.012
#> SRR1343012     4  0.6773     0.1260 0.380 0.040 0.020 0.500 0.060
#> SRR1311958     4  0.4610    -0.2442 0.000 0.432 0.000 0.556 0.012
#> SRR1388234     4  0.4283     0.1462 0.004 0.220 0.020 0.748 0.008
#> SRR1370384     1  0.3612     0.6668 0.732 0.000 0.000 0.000 0.268
#> SRR1321650     3  0.1815     0.6441 0.020 0.000 0.940 0.024 0.016
#> SRR1485117     2  0.2179     0.8166 0.000 0.888 0.000 0.112 0.000
#> SRR1384713     1  0.3633     0.7393 0.812 0.004 0.004 0.020 0.160
#> SRR816609      4  0.5866     0.1362 0.388 0.040 0.020 0.544 0.008
#> SRR1486239     4  0.4617    -0.2540 0.000 0.436 0.000 0.552 0.012
#> SRR1309638     3  0.5226     0.1885 0.040 0.000 0.656 0.020 0.284
#> SRR1356660     1  0.4815     0.7658 0.724 0.000 0.012 0.208 0.056
#> SRR1392883     2  0.0000     0.8364 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.4807     0.5189 0.020 0.000 0.448 0.000 0.532
#> SRR816677      1  0.6211     0.0866 0.460 0.040 0.020 0.460 0.020
#> SRR1455722     1  0.0162     0.8164 0.996 0.000 0.000 0.000 0.004
#> SRR1336029     1  0.5101     0.6899 0.672 0.000 0.024 0.272 0.032
#> SRR808452      1  0.0162     0.8164 0.996 0.000 0.000 0.000 0.004
#> SRR1352169     3  0.5331     0.1550 0.008 0.000 0.600 0.048 0.344
#> SRR1366707     3  0.4382     0.3519 0.000 0.000 0.688 0.024 0.288
#> SRR1328143     5  0.4811     0.5167 0.020 0.000 0.452 0.000 0.528
#> SRR1473567     2  0.3890     0.7265 0.000 0.736 0.000 0.252 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1442087     5  0.0508    0.61768 0.004 0.000 0.012 0.000 0.984 NA
#> SRR1390119     2  0.3847    0.65456 0.000 0.544 0.000 0.000 0.000 NA
#> SRR1436127     5  0.4357   -0.41513 0.004 0.000 0.484 0.004 0.500 NA
#> SRR1347278     5  0.5907    0.00823 0.228 0.000 0.196 0.008 0.560 NA
#> SRR1332904     2  0.1141    0.64924 0.000 0.948 0.000 0.052 0.000 NA
#> SRR1444179     1  0.1958    0.84385 0.896 0.004 0.000 0.100 0.000 NA
#> SRR1082685     1  0.1007    0.84295 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1362287     1  0.4040    0.79870 0.756 0.000 0.000 0.112 0.000 NA
#> SRR1339007     1  0.0363    0.84689 0.988 0.000 0.000 0.000 0.000 NA
#> SRR1376557     2  0.0622    0.66836 0.000 0.980 0.000 0.012 0.000 NA
#> SRR1468700     2  0.0508    0.66377 0.000 0.984 0.000 0.012 0.000 NA
#> SRR1077455     1  0.6519    0.45960 0.484 0.000 0.356 0.024 0.088 NA
#> SRR1413978     1  0.5434    0.47319 0.512 0.000 0.000 0.360 0.000 NA
#> SRR1439896     1  0.1141    0.84111 0.948 0.000 0.000 0.000 0.000 NA
#> SRR1317963     2  0.3890    0.12340 0.000 0.596 0.000 0.400 0.000 NA
#> SRR1431865     1  0.4279    0.78369 0.732 0.000 0.000 0.140 0.000 NA
#> SRR1394253     1  0.3657    0.81719 0.792 0.000 0.000 0.108 0.000 NA
#> SRR1082664     5  0.0862    0.61976 0.016 0.000 0.008 0.000 0.972 NA
#> SRR1077968     1  0.1327    0.83836 0.936 0.000 0.000 0.000 0.000 NA
#> SRR1076393     5  0.1624    0.58694 0.000 0.000 0.044 0.008 0.936 NA
#> SRR1477476     2  0.3847    0.65456 0.000 0.544 0.000 0.000 0.000 NA
#> SRR1398057     5  0.4208   -0.33868 0.004 0.000 0.452 0.008 0.536 NA
#> SRR1485042     1  0.1806    0.84627 0.908 0.000 0.000 0.088 0.000 NA
#> SRR1385453     5  0.7492   -0.11057 0.000 0.004 0.208 0.132 0.368 NA
#> SRR1348074     4  0.1699    0.75430 0.040 0.012 0.000 0.936 0.008 NA
#> SRR813959      4  0.4069    0.64548 0.000 0.148 0.008 0.764 0.080 NA
#> SRR665442      4  0.3663    0.64759 0.000 0.156 0.012 0.792 0.040 NA
#> SRR1378068     3  0.4357    0.37154 0.004 0.000 0.496 0.004 0.488 NA
#> SRR1485237     4  0.1699    0.75430 0.040 0.012 0.000 0.936 0.008 NA
#> SRR1350792     1  0.1327    0.83829 0.936 0.000 0.000 0.000 0.000 NA
#> SRR1326797     5  0.5994    0.30684 0.092 0.000 0.364 0.024 0.508 NA
#> SRR808994      3  0.4736    0.49591 0.000 0.000 0.620 0.000 0.072 NA
#> SRR1474041     5  0.0405    0.62089 0.004 0.000 0.008 0.000 0.988 NA
#> SRR1405641     3  0.4002    0.53358 0.000 0.000 0.588 0.000 0.404 NA
#> SRR1362245     3  0.4010    0.53249 0.000 0.000 0.584 0.000 0.408 NA
#> SRR1500194     1  0.1949    0.84581 0.904 0.004 0.000 0.088 0.000 NA
#> SRR1414876     2  0.3823    0.65829 0.000 0.564 0.000 0.000 0.000 NA
#> SRR1478523     5  0.6913   -0.09714 0.000 0.000 0.244 0.060 0.404 NA
#> SRR1325161     5  0.4580    0.36353 0.004 0.000 0.368 0.028 0.596 NA
#> SRR1318026     4  0.1590    0.74733 0.048 0.008 0.000 0.936 0.008 NA
#> SRR1343778     5  0.1223    0.61669 0.016 0.000 0.012 0.008 0.960 NA
#> SRR1441287     1  0.1007    0.84295 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1430991     5  0.0551    0.62080 0.004 0.000 0.008 0.004 0.984 NA
#> SRR1499722     5  0.5354    0.35119 0.032 0.000 0.360 0.036 0.564 NA
#> SRR1351368     3  0.7353    0.22362 0.000 0.004 0.340 0.088 0.276 NA
#> SRR1441785     1  0.4318    0.78126 0.728 0.000 0.000 0.140 0.000 NA
#> SRR1096101     1  0.2829    0.84217 0.864 0.000 0.000 0.096 0.024 NA
#> SRR808375      5  0.1381    0.61351 0.004 0.000 0.020 0.020 0.952 NA
#> SRR1452842     3  0.7430   -0.25967 0.344 0.000 0.356 0.036 0.216 NA
#> SRR1311709     1  0.2325    0.84186 0.884 0.008 0.000 0.100 0.000 NA
#> SRR1433352     5  0.1180    0.61700 0.024 0.000 0.008 0.004 0.960 NA
#> SRR1340241     2  0.3923    0.66408 0.000 0.620 0.000 0.008 0.000 NA
#> SRR1456754     1  0.3261    0.82337 0.852 0.000 0.048 0.012 0.012 NA
#> SRR1465172     5  0.5949    0.32377 0.056 0.000 0.364 0.036 0.524 NA
#> SRR1499284     5  0.6086    0.31860 0.056 0.000 0.364 0.036 0.516 NA
#> SRR1499607     4  0.3862    0.10663 0.000 0.476 0.000 0.524 0.000 NA
#> SRR812342      1  0.3384    0.76551 0.812 0.000 0.120 0.000 0.000 NA
#> SRR1405374     1  0.3567    0.82078 0.800 0.000 0.000 0.100 0.000 NA
#> SRR1403565     1  0.4233    0.75505 0.752 0.000 0.000 0.100 0.140 NA
#> SRR1332024     3  0.4292    0.53723 0.000 0.000 0.588 0.000 0.388 NA
#> SRR1471633     1  0.3030    0.81218 0.816 0.008 0.000 0.168 0.000 NA
#> SRR1325944     2  0.3847    0.65456 0.000 0.544 0.000 0.000 0.000 NA
#> SRR1429450     2  0.3847    0.65456 0.000 0.544 0.000 0.000 0.000 NA
#> SRR821573      5  0.1321    0.61050 0.000 0.000 0.020 0.024 0.952 NA
#> SRR1435372     1  0.1267    0.83921 0.940 0.000 0.000 0.000 0.000 NA
#> SRR1324184     2  0.1196    0.67278 0.000 0.952 0.000 0.008 0.000 NA
#> SRR816517      4  0.4857    0.61687 0.000 0.152 0.096 0.716 0.036 NA
#> SRR1324141     4  0.1453    0.75361 0.040 0.008 0.000 0.944 0.008 NA
#> SRR1101612     1  0.1141    0.84296 0.948 0.000 0.000 0.000 0.000 NA
#> SRR1356531     1  0.1075    0.84191 0.952 0.000 0.000 0.000 0.000 NA
#> SRR1089785     5  0.0508    0.61662 0.004 0.000 0.012 0.000 0.984 NA
#> SRR1077708     5  0.0951    0.61268 0.004 0.000 0.020 0.008 0.968 NA
#> SRR1343720     5  0.1180    0.61551 0.024 0.000 0.004 0.008 0.960 NA
#> SRR1477499     2  0.3838    0.65585 0.000 0.552 0.000 0.000 0.000 NA
#> SRR1347236     5  0.6391    0.28292 0.104 0.000 0.364 0.028 0.480 NA
#> SRR1326408     1  0.1663    0.84666 0.912 0.000 0.000 0.088 0.000 NA
#> SRR1336529     3  0.3915    0.52472 0.000 0.000 0.584 0.004 0.412 NA
#> SRR1440643     4  0.7472    0.01398 0.000 0.004 0.144 0.380 0.184 NA
#> SRR662354      1  0.3770    0.73495 0.776 0.000 0.148 0.000 0.000 NA
#> SRR1310817     5  0.0767    0.61851 0.000 0.000 0.008 0.012 0.976 NA
#> SRR1347389     2  0.3288    0.39160 0.000 0.724 0.000 0.276 0.000 NA
#> SRR1353097     1  0.1267    0.83921 0.940 0.000 0.000 0.000 0.000 NA
#> SRR1384737     4  0.1649    0.75227 0.040 0.008 0.000 0.936 0.016 NA
#> SRR1096339     1  0.1806    0.84627 0.908 0.000 0.000 0.088 0.000 NA
#> SRR1345329     4  0.1881    0.75315 0.040 0.020 0.000 0.928 0.008 NA
#> SRR1414771     3  0.4736    0.49591 0.000 0.000 0.620 0.000 0.072 NA
#> SRR1309119     1  0.2655    0.82892 0.848 0.004 0.000 0.140 0.000 NA
#> SRR1470438     3  0.4736    0.49591 0.000 0.000 0.620 0.000 0.072 NA
#> SRR1343221     1  0.2806    0.83795 0.872 0.000 0.000 0.060 0.056 NA
#> SRR1410847     1  0.2728    0.84026 0.860 0.000 0.000 0.100 0.000 NA
#> SRR807949      5  0.0798    0.62036 0.004 0.000 0.012 0.004 0.976 NA
#> SRR1442332     5  0.0665    0.62010 0.008 0.000 0.008 0.000 0.980 NA
#> SRR815920      5  0.4320   -0.36773 0.000 0.000 0.468 0.008 0.516 NA
#> SRR1471524     5  0.4351    0.22736 0.000 0.000 0.256 0.008 0.692 NA
#> SRR1477221     3  0.4080    0.46144 0.000 0.000 0.536 0.008 0.456 NA
#> SRR1445046     2  0.3668    0.28292 0.000 0.668 0.000 0.328 0.000 NA
#> SRR1331962     2  0.1858    0.61654 0.000 0.904 0.000 0.092 0.000 NA
#> SRR1319946     4  0.2980    0.63646 0.000 0.192 0.000 0.800 0.008 NA
#> SRR1311599     1  0.3888    0.81244 0.780 0.000 0.000 0.108 0.004 NA
#> SRR1323977     4  0.3165    0.70592 0.040 0.116 0.000 0.836 0.008 NA
#> SRR1445132     2  0.3847    0.65456 0.000 0.544 0.000 0.000 0.000 NA
#> SRR1337321     5  0.4158   -0.24175 0.000 0.000 0.416 0.008 0.572 NA
#> SRR1366390     2  0.2506    0.65227 0.000 0.880 0.000 0.068 0.000 NA
#> SRR1343012     4  0.4233    0.58136 0.168 0.004 0.000 0.740 0.088 NA
#> SRR1311958     2  0.3619    0.30992 0.000 0.680 0.000 0.316 0.000 NA
#> SRR1388234     4  0.2669    0.67564 0.000 0.156 0.000 0.836 0.008 NA
#> SRR1370384     1  0.4743    0.57705 0.600 0.000 0.348 0.008 0.000 NA
#> SRR1321650     3  0.4220    0.44754 0.004 0.000 0.520 0.008 0.468 NA
#> SRR1485117     2  0.2805    0.67573 0.000 0.812 0.000 0.004 0.000 NA
#> SRR1384713     1  0.4754    0.67030 0.704 0.000 0.196 0.008 0.008 NA
#> SRR816609      4  0.1699    0.75430 0.040 0.012 0.000 0.936 0.008 NA
#> SRR1486239     2  0.3565    0.33434 0.000 0.692 0.000 0.304 0.000 NA
#> SRR1309638     5  0.3897    0.10158 0.008 0.000 0.300 0.008 0.684 NA
#> SRR1356660     1  0.4281    0.78423 0.732 0.000 0.000 0.136 0.000 NA
#> SRR1392883     2  0.3847    0.65456 0.000 0.544 0.000 0.000 0.000 NA
#> SRR808130      5  0.0405    0.62089 0.004 0.000 0.008 0.000 0.988 NA
#> SRR816677      4  0.4354   -0.24134 0.476 0.004 0.000 0.508 0.008 NA
#> SRR1455722     1  0.1267    0.83921 0.940 0.000 0.000 0.000 0.000 NA
#> SRR1336029     1  0.3671    0.79957 0.784 0.000 0.000 0.168 0.040 NA
#> SRR808452      1  0.1141    0.84111 0.948 0.000 0.000 0.000 0.000 NA
#> SRR1352169     5  0.3518    0.38912 0.000 0.000 0.184 0.008 0.784 NA
#> SRR1366707     5  0.4109    0.04709 0.000 0.000 0.328 0.008 0.652 NA
#> SRR1328143     5  0.0405    0.62089 0.004 0.000 0.008 0.000 0.988 NA
#> SRR1473567     2  0.0520    0.66824 0.000 0.984 0.000 0.008 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.980       0.992         0.3615 0.639   0.639
#> 3 3 1.000           0.962       0.983         0.7919 0.699   0.533
#> 4 4 0.773           0.822       0.875         0.1296 0.889   0.694
#> 5 5 0.644           0.613       0.767         0.0626 0.914   0.708
#> 6 6 0.735           0.738       0.845         0.0468 0.879   0.554

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.994 1.000 0.000
#> SRR1390119     2  0.0000      0.981 0.000 1.000
#> SRR1436127     1  0.0000      0.994 1.000 0.000
#> SRR1347278     1  0.0000      0.994 1.000 0.000
#> SRR1332904     2  0.0000      0.981 0.000 1.000
#> SRR1444179     1  0.0000      0.994 1.000 0.000
#> SRR1082685     1  0.0000      0.994 1.000 0.000
#> SRR1362287     1  0.0000      0.994 1.000 0.000
#> SRR1339007     1  0.0000      0.994 1.000 0.000
#> SRR1376557     2  0.0000      0.981 0.000 1.000
#> SRR1468700     2  0.0000      0.981 0.000 1.000
#> SRR1077455     1  0.0000      0.994 1.000 0.000
#> SRR1413978     1  0.0000      0.994 1.000 0.000
#> SRR1439896     1  0.0000      0.994 1.000 0.000
#> SRR1317963     2  0.0000      0.981 0.000 1.000
#> SRR1431865     1  0.0000      0.994 1.000 0.000
#> SRR1394253     1  0.0000      0.994 1.000 0.000
#> SRR1082664     1  0.0000      0.994 1.000 0.000
#> SRR1077968     1  0.0000      0.994 1.000 0.000
#> SRR1076393     1  0.0000      0.994 1.000 0.000
#> SRR1477476     2  0.0000      0.981 0.000 1.000
#> SRR1398057     1  0.0000      0.994 1.000 0.000
#> SRR1485042     1  0.0000      0.994 1.000 0.000
#> SRR1385453     1  0.0938      0.983 0.988 0.012
#> SRR1348074     1  0.9248      0.469 0.660 0.340
#> SRR813959      2  0.8327      0.649 0.264 0.736
#> SRR665442      2  0.0000      0.981 0.000 1.000
#> SRR1378068     1  0.0000      0.994 1.000 0.000
#> SRR1485237     1  0.4562      0.890 0.904 0.096
#> SRR1350792     1  0.0000      0.994 1.000 0.000
#> SRR1326797     1  0.0000      0.994 1.000 0.000
#> SRR808994      1  0.0000      0.994 1.000 0.000
#> SRR1474041     1  0.0000      0.994 1.000 0.000
#> SRR1405641     1  0.0000      0.994 1.000 0.000
#> SRR1362245     1  0.0000      0.994 1.000 0.000
#> SRR1500194     1  0.0000      0.994 1.000 0.000
#> SRR1414876     2  0.0000      0.981 0.000 1.000
#> SRR1478523     1  0.0000      0.994 1.000 0.000
#> SRR1325161     1  0.0000      0.994 1.000 0.000
#> SRR1318026     1  0.0000      0.994 1.000 0.000
#> SRR1343778     1  0.0000      0.994 1.000 0.000
#> SRR1441287     1  0.0000      0.994 1.000 0.000
#> SRR1430991     1  0.0000      0.994 1.000 0.000
#> SRR1499722     1  0.0000      0.994 1.000 0.000
#> SRR1351368     1  0.0000      0.994 1.000 0.000
#> SRR1441785     1  0.0000      0.994 1.000 0.000
#> SRR1096101     1  0.0000      0.994 1.000 0.000
#> SRR808375      1  0.0000      0.994 1.000 0.000
#> SRR1452842     1  0.0000      0.994 1.000 0.000
#> SRR1311709     1  0.0000      0.994 1.000 0.000
#> SRR1433352     1  0.0000      0.994 1.000 0.000
#> SRR1340241     2  0.0000      0.981 0.000 1.000
#> SRR1456754     1  0.0000      0.994 1.000 0.000
#> SRR1465172     1  0.0000      0.994 1.000 0.000
#> SRR1499284     1  0.0000      0.994 1.000 0.000
#> SRR1499607     2  0.0000      0.981 0.000 1.000
#> SRR812342      1  0.0000      0.994 1.000 0.000
#> SRR1405374     1  0.0000      0.994 1.000 0.000
#> SRR1403565     1  0.0000      0.994 1.000 0.000
#> SRR1332024     1  0.0000      0.994 1.000 0.000
#> SRR1471633     1  0.0000      0.994 1.000 0.000
#> SRR1325944     2  0.0000      0.981 0.000 1.000
#> SRR1429450     2  0.0000      0.981 0.000 1.000
#> SRR821573      1  0.0000      0.994 1.000 0.000
#> SRR1435372     1  0.0000      0.994 1.000 0.000
#> SRR1324184     2  0.0000      0.981 0.000 1.000
#> SRR816517      2  0.0000      0.981 0.000 1.000
#> SRR1324141     1  0.0000      0.994 1.000 0.000
#> SRR1101612     1  0.0000      0.994 1.000 0.000
#> SRR1356531     1  0.0000      0.994 1.000 0.000
#> SRR1089785     1  0.0000      0.994 1.000 0.000
#> SRR1077708     1  0.0000      0.994 1.000 0.000
#> SRR1343720     1  0.0000      0.994 1.000 0.000
#> SRR1477499     2  0.0000      0.981 0.000 1.000
#> SRR1347236     1  0.0000      0.994 1.000 0.000
#> SRR1326408     1  0.0000      0.994 1.000 0.000
#> SRR1336529     1  0.0000      0.994 1.000 0.000
#> SRR1440643     1  0.0000      0.994 1.000 0.000
#> SRR662354      1  0.0000      0.994 1.000 0.000
#> SRR1310817     1  0.0000      0.994 1.000 0.000
#> SRR1347389     2  0.0000      0.981 0.000 1.000
#> SRR1353097     1  0.0000      0.994 1.000 0.000
#> SRR1384737     1  0.0000      0.994 1.000 0.000
#> SRR1096339     1  0.0000      0.994 1.000 0.000
#> SRR1345329     1  0.3114      0.937 0.944 0.056
#> SRR1414771     1  0.0000      0.994 1.000 0.000
#> SRR1309119     1  0.0000      0.994 1.000 0.000
#> SRR1470438     1  0.0000      0.994 1.000 0.000
#> SRR1343221     1  0.0000      0.994 1.000 0.000
#> SRR1410847     1  0.0000      0.994 1.000 0.000
#> SRR807949      1  0.0000      0.994 1.000 0.000
#> SRR1442332     1  0.0000      0.994 1.000 0.000
#> SRR815920      1  0.0000      0.994 1.000 0.000
#> SRR1471524     1  0.0000      0.994 1.000 0.000
#> SRR1477221     1  0.0000      0.994 1.000 0.000
#> SRR1445046     2  0.0000      0.981 0.000 1.000
#> SRR1331962     2  0.0000      0.981 0.000 1.000
#> SRR1319946     2  0.0000      0.981 0.000 1.000
#> SRR1311599     1  0.0000      0.994 1.000 0.000
#> SRR1323977     2  0.8267      0.656 0.260 0.740
#> SRR1445132     2  0.0000      0.981 0.000 1.000
#> SRR1337321     1  0.0000      0.994 1.000 0.000
#> SRR1366390     2  0.0000      0.981 0.000 1.000
#> SRR1343012     1  0.0000      0.994 1.000 0.000
#> SRR1311958     2  0.0000      0.981 0.000 1.000
#> SRR1388234     2  0.0000      0.981 0.000 1.000
#> SRR1370384     1  0.0000      0.994 1.000 0.000
#> SRR1321650     1  0.0000      0.994 1.000 0.000
#> SRR1485117     2  0.0000      0.981 0.000 1.000
#> SRR1384713     1  0.0000      0.994 1.000 0.000
#> SRR816609      1  0.0000      0.994 1.000 0.000
#> SRR1486239     2  0.0000      0.981 0.000 1.000
#> SRR1309638     1  0.0000      0.994 1.000 0.000
#> SRR1356660     1  0.0000      0.994 1.000 0.000
#> SRR1392883     2  0.0000      0.981 0.000 1.000
#> SRR808130      1  0.0000      0.994 1.000 0.000
#> SRR816677      1  0.0000      0.994 1.000 0.000
#> SRR1455722     1  0.0000      0.994 1.000 0.000
#> SRR1336029     1  0.0000      0.994 1.000 0.000
#> SRR808452      1  0.0000      0.994 1.000 0.000
#> SRR1352169     1  0.0000      0.994 1.000 0.000
#> SRR1366707     1  0.0000      0.994 1.000 0.000
#> SRR1328143     1  0.0000      0.994 1.000 0.000
#> SRR1473567     2  0.0000      0.981 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0424      0.966 0.008 0.000 0.992
#> SRR1390119     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1347278     3  0.0892      0.961 0.020 0.000 0.980
#> SRR1332904     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1444179     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1082685     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1362287     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1339007     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1376557     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1413978     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1439896     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1317963     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1431865     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1394253     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1082664     3  0.0892      0.961 0.020 0.000 0.980
#> SRR1077968     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1076393     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1398057     3  0.0424      0.966 0.008 0.000 0.992
#> SRR1485042     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1385453     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1348074     1  0.0892      0.977 0.980 0.020 0.000
#> SRR813959      2  0.5591      0.551 0.000 0.696 0.304
#> SRR665442      2  0.0000      0.975 0.000 1.000 0.000
#> SRR1378068     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1485237     1  0.0237      0.993 0.996 0.004 0.000
#> SRR1350792     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1326797     1  0.0000      0.996 1.000 0.000 0.000
#> SRR808994      3  0.0000      0.965 0.000 0.000 1.000
#> SRR1474041     3  0.0424      0.966 0.008 0.000 0.992
#> SRR1405641     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1362245     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1500194     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1414876     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1478523     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1325161     3  0.4062      0.802 0.164 0.000 0.836
#> SRR1318026     1  0.0237      0.993 0.996 0.004 0.000
#> SRR1343778     3  0.0747      0.963 0.016 0.000 0.984
#> SRR1441287     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1430991     3  0.0592      0.965 0.012 0.000 0.988
#> SRR1499722     3  0.6154      0.353 0.408 0.000 0.592
#> SRR1351368     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1441785     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1096101     1  0.0000      0.996 1.000 0.000 0.000
#> SRR808375      3  0.1163      0.955 0.028 0.000 0.972
#> SRR1452842     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1311709     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1433352     3  0.1411      0.948 0.036 0.000 0.964
#> SRR1340241     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1456754     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1465172     1  0.0424      0.989 0.992 0.000 0.008
#> SRR1499284     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1499607     2  0.0000      0.975 0.000 1.000 0.000
#> SRR812342      1  0.0000      0.996 1.000 0.000 0.000
#> SRR1405374     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1403565     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1332024     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1471633     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1325944     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.975 0.000 1.000 0.000
#> SRR821573      3  0.5591      0.591 0.304 0.000 0.696
#> SRR1435372     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1324184     2  0.0000      0.975 0.000 1.000 0.000
#> SRR816517      3  0.1643      0.930 0.000 0.044 0.956
#> SRR1324141     1  0.2945      0.900 0.908 0.088 0.004
#> SRR1101612     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1089785     3  0.0424      0.966 0.008 0.000 0.992
#> SRR1077708     3  0.1031      0.958 0.024 0.000 0.976
#> SRR1343720     3  0.1643      0.940 0.044 0.000 0.956
#> SRR1477499     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1347236     1  0.1411      0.959 0.964 0.000 0.036
#> SRR1326408     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1336529     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1440643     3  0.0000      0.965 0.000 0.000 1.000
#> SRR662354      1  0.0000      0.996 1.000 0.000 0.000
#> SRR1310817     3  0.0892      0.961 0.020 0.000 0.980
#> SRR1347389     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1353097     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1384737     1  0.0237      0.993 0.996 0.004 0.000
#> SRR1096339     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1345329     1  0.0747      0.981 0.984 0.016 0.000
#> SRR1414771     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1309119     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1470438     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1343221     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1410847     1  0.0000      0.996 1.000 0.000 0.000
#> SRR807949      3  0.0424      0.966 0.008 0.000 0.992
#> SRR1442332     3  0.0592      0.965 0.012 0.000 0.988
#> SRR815920      3  0.0000      0.965 0.000 0.000 1.000
#> SRR1471524     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1477221     3  0.0424      0.966 0.008 0.000 0.992
#> SRR1445046     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1331962     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1319946     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1311599     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1323977     2  0.5706      0.522 0.320 0.680 0.000
#> SRR1445132     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1337321     3  0.0592      0.965 0.012 0.000 0.988
#> SRR1366390     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1343012     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1311958     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1388234     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1370384     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1321650     3  0.0237      0.966 0.004 0.000 0.996
#> SRR1485117     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.996 1.000 0.000 0.000
#> SRR816609      1  0.0000      0.996 1.000 0.000 0.000
#> SRR1486239     2  0.0000      0.975 0.000 1.000 0.000
#> SRR1309638     3  0.1163      0.955 0.028 0.000 0.972
#> SRR1356660     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.975 0.000 1.000 0.000
#> SRR808130      3  0.0424      0.966 0.008 0.000 0.992
#> SRR816677      1  0.0000      0.996 1.000 0.000 0.000
#> SRR1455722     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1336029     1  0.0000      0.996 1.000 0.000 0.000
#> SRR808452      1  0.0000      0.996 1.000 0.000 0.000
#> SRR1352169     3  0.0747      0.963 0.016 0.000 0.984
#> SRR1366707     3  0.0000      0.965 0.000 0.000 1.000
#> SRR1328143     3  0.0424      0.966 0.008 0.000 0.992
#> SRR1473567     2  0.0000      0.975 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.4888      0.521 0.000 0.000 0.588 0.412
#> SRR1390119     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.3528      0.845 0.000 0.000 0.808 0.192
#> SRR1347278     3  0.3219      0.854 0.000 0.000 0.836 0.164
#> SRR1332904     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.0336      0.911 0.992 0.000 0.000 0.008
#> SRR1082685     1  0.0336      0.910 0.992 0.000 0.000 0.008
#> SRR1362287     1  0.1706      0.902 0.948 0.000 0.016 0.036
#> SRR1339007     1  0.0779      0.910 0.980 0.000 0.004 0.016
#> SRR1376557     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1077455     4  0.4776      0.379 0.376 0.000 0.000 0.624
#> SRR1413978     1  0.4462      0.819 0.804 0.000 0.064 0.132
#> SRR1439896     1  0.0336      0.910 0.992 0.000 0.000 0.008
#> SRR1317963     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1431865     1  0.3557      0.859 0.856 0.000 0.036 0.108
#> SRR1394253     1  0.1182      0.907 0.968 0.000 0.016 0.016
#> SRR1082664     4  0.4134      0.614 0.000 0.000 0.260 0.740
#> SRR1077968     1  0.3649      0.750 0.796 0.000 0.000 0.204
#> SRR1076393     3  0.4661      0.656 0.000 0.000 0.652 0.348
#> SRR1477476     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.2921      0.857 0.000 0.000 0.860 0.140
#> SRR1485042     1  0.1824      0.899 0.936 0.000 0.004 0.060
#> SRR1385453     3  0.4843      0.505 0.000 0.000 0.604 0.396
#> SRR1348074     1  0.3611      0.866 0.860 0.060 0.000 0.080
#> SRR813959      2  0.4948      0.189 0.000 0.560 0.000 0.440
#> SRR665442      2  0.1557      0.916 0.056 0.944 0.000 0.000
#> SRR1378068     3  0.3266      0.853 0.000 0.000 0.832 0.168
#> SRR1485237     1  0.2565      0.883 0.912 0.056 0.000 0.032
#> SRR1350792     1  0.0817      0.907 0.976 0.000 0.000 0.024
#> SRR1326797     4  0.3400      0.698 0.180 0.000 0.000 0.820
#> SRR808994      3  0.0592      0.796 0.000 0.000 0.984 0.016
#> SRR1474041     4  0.3907      0.657 0.000 0.000 0.232 0.768
#> SRR1405641     3  0.2081      0.844 0.000 0.000 0.916 0.084
#> SRR1362245     3  0.1489      0.791 0.004 0.000 0.952 0.044
#> SRR1500194     1  0.1356      0.905 0.960 0.000 0.008 0.032
#> SRR1414876     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.1474      0.829 0.000 0.000 0.948 0.052
#> SRR1325161     4  0.3463      0.735 0.096 0.000 0.040 0.864
#> SRR1318026     1  0.3667      0.869 0.856 0.056 0.000 0.088
#> SRR1343778     3  0.3837      0.822 0.000 0.000 0.776 0.224
#> SRR1441287     1  0.0336      0.909 0.992 0.000 0.000 0.008
#> SRR1430991     4  0.3400      0.719 0.000 0.000 0.180 0.820
#> SRR1499722     4  0.3501      0.724 0.132 0.000 0.020 0.848
#> SRR1351368     3  0.1118      0.822 0.000 0.000 0.964 0.036
#> SRR1441785     1  0.3818      0.851 0.844 0.000 0.048 0.108
#> SRR1096101     1  0.1743      0.907 0.940 0.000 0.004 0.056
#> SRR808375      4  0.3161      0.741 0.012 0.000 0.124 0.864
#> SRR1452842     4  0.4992      0.056 0.476 0.000 0.000 0.524
#> SRR1311709     1  0.0469      0.909 0.988 0.000 0.000 0.012
#> SRR1433352     4  0.3400      0.719 0.000 0.000 0.180 0.820
#> SRR1340241     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.2921      0.834 0.860 0.000 0.000 0.140
#> SRR1465172     4  0.3402      0.709 0.164 0.000 0.004 0.832
#> SRR1499284     4  0.3688      0.673 0.208 0.000 0.000 0.792
#> SRR1499607     2  0.0707      0.964 0.000 0.980 0.000 0.020
#> SRR812342      1  0.0817      0.907 0.976 0.000 0.000 0.024
#> SRR1405374     1  0.1356      0.906 0.960 0.000 0.008 0.032
#> SRR1403565     1  0.1022      0.910 0.968 0.000 0.000 0.032
#> SRR1332024     3  0.1557      0.829 0.000 0.000 0.944 0.056
#> SRR1471633     1  0.0707      0.910 0.980 0.000 0.000 0.020
#> SRR1325944     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR821573      4  0.3404      0.743 0.032 0.000 0.104 0.864
#> SRR1435372     1  0.2281      0.871 0.904 0.000 0.000 0.096
#> SRR1324184     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR816517      3  0.3390      0.714 0.000 0.132 0.852 0.016
#> SRR1324141     4  0.6587      0.496 0.136 0.204 0.008 0.652
#> SRR1101612     1  0.0336      0.910 0.992 0.000 0.000 0.008
#> SRR1356531     1  0.0592      0.908 0.984 0.000 0.000 0.016
#> SRR1089785     4  0.4222      0.589 0.000 0.000 0.272 0.728
#> SRR1077708     3  0.4925      0.487 0.000 0.000 0.572 0.428
#> SRR1343720     4  0.3024      0.735 0.000 0.000 0.148 0.852
#> SRR1477499     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1347236     4  0.3498      0.712 0.160 0.000 0.008 0.832
#> SRR1326408     1  0.1792      0.892 0.932 0.000 0.000 0.068
#> SRR1336529     3  0.3074      0.856 0.000 0.000 0.848 0.152
#> SRR1440643     3  0.4431      0.712 0.000 0.000 0.696 0.304
#> SRR662354      1  0.1302      0.903 0.956 0.000 0.000 0.044
#> SRR1310817     4  0.3024      0.736 0.000 0.000 0.148 0.852
#> SRR1347389     2  0.1118      0.951 0.000 0.964 0.000 0.036
#> SRR1353097     1  0.1022      0.905 0.968 0.000 0.000 0.032
#> SRR1384737     1  0.4176      0.841 0.832 0.008 0.044 0.116
#> SRR1096339     1  0.0921      0.908 0.972 0.000 0.000 0.028
#> SRR1345329     1  0.3190      0.874 0.880 0.016 0.008 0.096
#> SRR1414771     3  0.0336      0.796 0.000 0.000 0.992 0.008
#> SRR1309119     1  0.2081      0.890 0.916 0.000 0.000 0.084
#> SRR1470438     3  0.0469      0.793 0.000 0.000 0.988 0.012
#> SRR1343221     1  0.2760      0.841 0.872 0.000 0.000 0.128
#> SRR1410847     1  0.0592      0.910 0.984 0.000 0.000 0.016
#> SRR807949      4  0.3266      0.726 0.000 0.000 0.168 0.832
#> SRR1442332     4  0.3873      0.662 0.000 0.000 0.228 0.772
#> SRR815920      3  0.3219      0.854 0.000 0.000 0.836 0.164
#> SRR1471524     3  0.3400      0.844 0.000 0.000 0.820 0.180
#> SRR1477221     3  0.3024      0.854 0.000 0.000 0.852 0.148
#> SRR1445046     2  0.0376      0.972 0.004 0.992 0.000 0.004
#> SRR1331962     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1311599     1  0.1297      0.908 0.964 0.000 0.016 0.020
#> SRR1323977     2  0.0188      0.974 0.004 0.996 0.000 0.000
#> SRR1445132     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.3052      0.848 0.004 0.000 0.860 0.136
#> SRR1366390     2  0.0188      0.976 0.000 0.996 0.000 0.004
#> SRR1343012     1  0.6439      0.414 0.528 0.044 0.012 0.416
#> SRR1311958     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1370384     1  0.4134      0.665 0.740 0.000 0.000 0.260
#> SRR1321650     3  0.3486      0.847 0.000 0.000 0.812 0.188
#> SRR1485117     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.4972      0.151 0.544 0.000 0.000 0.456
#> SRR816609      1  0.2179      0.885 0.924 0.064 0.000 0.012
#> SRR1486239     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR1309638     3  0.3108      0.849 0.016 0.000 0.872 0.112
#> SRR1356660     1  0.4127      0.836 0.824 0.000 0.052 0.124
#> SRR1392883     2  0.0000      0.978 0.000 1.000 0.000 0.000
#> SRR808130      4  0.3486      0.712 0.000 0.000 0.188 0.812
#> SRR816677      1  0.3143      0.871 0.876 0.000 0.024 0.100
#> SRR1455722     1  0.0817      0.907 0.976 0.000 0.000 0.024
#> SRR1336029     1  0.2976      0.868 0.872 0.000 0.008 0.120
#> SRR808452      1  0.1389      0.899 0.952 0.000 0.000 0.048
#> SRR1352169     3  0.3801      0.826 0.000 0.000 0.780 0.220
#> SRR1366707     3  0.3356      0.849 0.000 0.000 0.824 0.176
#> SRR1328143     4  0.4072      0.623 0.000 0.000 0.252 0.748
#> SRR1473567     2  0.0000      0.978 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.3242     0.4583 0.000 0.000 0.216 0.000 0.784
#> SRR1390119     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.5460     0.5127 0.004 0.000 0.524 0.052 0.420
#> SRR1347278     3  0.7431     0.5283 0.068 0.000 0.488 0.188 0.256
#> SRR1332904     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1444179     1  0.2798     0.5726 0.852 0.000 0.000 0.140 0.008
#> SRR1082685     1  0.2608     0.6617 0.888 0.000 0.004 0.088 0.020
#> SRR1362287     1  0.6210     0.5449 0.540 0.000 0.184 0.276 0.000
#> SRR1339007     1  0.2321     0.6410 0.916 0.000 0.016 0.044 0.024
#> SRR1376557     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1077455     1  0.4908     0.3621 0.608 0.000 0.000 0.036 0.356
#> SRR1413978     1  0.5905     0.4747 0.572 0.000 0.292 0.136 0.000
#> SRR1439896     1  0.4818     0.6334 0.708 0.000 0.080 0.212 0.000
#> SRR1317963     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1431865     1  0.6287     0.5345 0.528 0.000 0.196 0.276 0.000
#> SRR1394253     1  0.6127     0.5557 0.552 0.000 0.172 0.276 0.000
#> SRR1082664     5  0.3959     0.5842 0.028 0.000 0.140 0.024 0.808
#> SRR1077968     1  0.4254     0.5309 0.740 0.000 0.000 0.040 0.220
#> SRR1076393     5  0.5867    -0.1220 0.028 0.000 0.412 0.044 0.516
#> SRR1477476     2  0.0404     0.9251 0.000 0.988 0.000 0.012 0.000
#> SRR1398057     3  0.6055     0.6207 0.068 0.000 0.668 0.092 0.172
#> SRR1485042     1  0.2754     0.6424 0.880 0.000 0.080 0.040 0.000
#> SRR1385453     5  0.5600     0.1013 0.000 0.000 0.316 0.096 0.588
#> SRR1348074     4  0.4418     0.7490 0.332 0.016 0.000 0.652 0.000
#> SRR813959      2  0.3424     0.6150 0.000 0.760 0.000 0.000 0.240
#> SRR665442      2  0.2866     0.7966 0.024 0.872 0.004 0.100 0.000
#> SRR1378068     3  0.4585     0.5833 0.000 0.000 0.628 0.020 0.352
#> SRR1485237     1  0.3951     0.5527 0.812 0.016 0.000 0.128 0.044
#> SRR1350792     1  0.4210     0.6693 0.784 0.000 0.004 0.140 0.072
#> SRR1326797     5  0.3305     0.5617 0.224 0.000 0.000 0.000 0.776
#> SRR808994      3  0.2583     0.6560 0.000 0.000 0.864 0.004 0.132
#> SRR1474041     5  0.2046     0.6550 0.000 0.000 0.068 0.016 0.916
#> SRR1405641     3  0.3790     0.6494 0.000 0.000 0.724 0.004 0.272
#> SRR1362245     3  0.4634     0.5505 0.072 0.000 0.740 0.184 0.004
#> SRR1500194     1  0.5770     0.5839 0.604 0.000 0.140 0.256 0.000
#> SRR1414876     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.4573     0.6242 0.000 0.000 0.700 0.044 0.256
#> SRR1325161     5  0.2516     0.6372 0.140 0.000 0.000 0.000 0.860
#> SRR1318026     4  0.4066     0.7602 0.324 0.000 0.000 0.672 0.004
#> SRR1343778     5  0.4305    -0.3464 0.000 0.000 0.488 0.000 0.512
#> SRR1441287     1  0.2818     0.6632 0.860 0.000 0.008 0.128 0.004
#> SRR1430991     5  0.1106     0.6884 0.012 0.000 0.024 0.000 0.964
#> SRR1499722     5  0.2773     0.6207 0.164 0.000 0.000 0.000 0.836
#> SRR1351368     3  0.5190     0.6062 0.000 0.000 0.668 0.096 0.236
#> SRR1441785     1  0.6463     0.5015 0.496 0.000 0.228 0.276 0.000
#> SRR1096101     1  0.3584     0.6710 0.848 0.000 0.020 0.064 0.068
#> SRR808375      5  0.1638     0.6796 0.064 0.000 0.004 0.000 0.932
#> SRR1452842     1  0.4752     0.4236 0.648 0.000 0.000 0.036 0.316
#> SRR1311709     1  0.2351     0.6184 0.896 0.000 0.000 0.088 0.016
#> SRR1433352     5  0.1493     0.6894 0.024 0.000 0.028 0.000 0.948
#> SRR1340241     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     1  0.3810     0.5848 0.788 0.000 0.000 0.036 0.176
#> SRR1465172     5  0.3639     0.5885 0.184 0.000 0.000 0.024 0.792
#> SRR1499284     5  0.5009     0.0778 0.428 0.000 0.000 0.032 0.540
#> SRR1499607     2  0.2824     0.8294 0.024 0.880 0.008 0.088 0.000
#> SRR812342      1  0.2819     0.6706 0.884 0.000 0.004 0.052 0.060
#> SRR1405374     1  0.5811     0.5820 0.596 0.000 0.140 0.264 0.000
#> SRR1403565     1  0.6036     0.5638 0.564 0.000 0.160 0.276 0.000
#> SRR1332024     3  0.5871     0.5794 0.084 0.000 0.680 0.176 0.060
#> SRR1471633     1  0.3160     0.5295 0.808 0.000 0.000 0.188 0.004
#> SRR1325944     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.1798     0.6795 0.064 0.000 0.004 0.004 0.928
#> SRR1435372     1  0.3489     0.5977 0.820 0.000 0.000 0.036 0.144
#> SRR1324184     2  0.4256     0.1743 0.000 0.564 0.000 0.436 0.000
#> SRR816517      3  0.5006     0.6281 0.000 0.016 0.712 0.060 0.212
#> SRR1324141     4  0.4425     0.7677 0.296 0.000 0.000 0.680 0.024
#> SRR1101612     1  0.4863     0.6320 0.708 0.000 0.088 0.204 0.000
#> SRR1356531     1  0.1901     0.6625 0.932 0.000 0.024 0.040 0.004
#> SRR1089785     5  0.1638     0.6672 0.000 0.000 0.064 0.004 0.932
#> SRR1077708     5  0.5133    -0.0135 0.044 0.000 0.388 0.000 0.568
#> SRR1343720     5  0.1670     0.6851 0.052 0.000 0.012 0.000 0.936
#> SRR1477499     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     5  0.2813     0.6178 0.168 0.000 0.000 0.000 0.832
#> SRR1326408     1  0.3437     0.5830 0.832 0.000 0.000 0.048 0.120
#> SRR1336529     3  0.5543     0.6303 0.024 0.000 0.612 0.044 0.320
#> SRR1440643     5  0.6309     0.0654 0.000 0.000 0.240 0.228 0.532
#> SRR662354      1  0.4701     0.6380 0.708 0.000 0.028 0.248 0.016
#> SRR1310817     5  0.1041     0.6827 0.000 0.000 0.032 0.004 0.964
#> SRR1347389     4  0.4938     0.4654 0.048 0.312 0.000 0.640 0.000
#> SRR1353097     1  0.2850     0.6124 0.872 0.000 0.000 0.036 0.092
#> SRR1384737     4  0.4046     0.7699 0.296 0.000 0.008 0.696 0.000
#> SRR1096339     1  0.5274     0.6184 0.676 0.000 0.132 0.192 0.000
#> SRR1345329     1  0.4194     0.3971 0.708 0.004 0.012 0.276 0.000
#> SRR1414771     3  0.2672     0.6633 0.004 0.000 0.872 0.008 0.116
#> SRR1309119     1  0.3999     0.5091 0.656 0.000 0.000 0.344 0.000
#> SRR1470438     3  0.3374     0.6660 0.004 0.000 0.844 0.044 0.108
#> SRR1343221     1  0.3988     0.5760 0.768 0.000 0.000 0.036 0.196
#> SRR1410847     1  0.5541     0.6046 0.636 0.000 0.128 0.236 0.000
#> SRR807949      5  0.0955     0.6856 0.004 0.000 0.028 0.000 0.968
#> SRR1442332     5  0.1410     0.6704 0.000 0.000 0.060 0.000 0.940
#> SRR815920      3  0.4540     0.5960 0.000 0.000 0.640 0.020 0.340
#> SRR1471524     3  0.5077     0.4370 0.000 0.000 0.536 0.036 0.428
#> SRR1477221     3  0.6591     0.5374 0.076 0.000 0.600 0.232 0.092
#> SRR1445046     2  0.5030     0.5087 0.104 0.696 0.000 0.200 0.000
#> SRR1331962     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1319946     2  0.0162     0.9293 0.000 0.996 0.000 0.000 0.004
#> SRR1311599     1  0.6097     0.5582 0.556 0.000 0.168 0.276 0.000
#> SRR1323977     2  0.2653     0.8120 0.024 0.880 0.000 0.000 0.096
#> SRR1445132     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.6903     0.5727 0.056 0.000 0.556 0.244 0.144
#> SRR1366390     4  0.4114     0.3132 0.000 0.376 0.000 0.624 0.000
#> SRR1343012     4  0.4400     0.7617 0.308 0.000 0.000 0.672 0.020
#> SRR1311958     2  0.1043     0.9036 0.000 0.960 0.000 0.040 0.000
#> SRR1388234     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1370384     1  0.4240     0.5354 0.736 0.000 0.000 0.036 0.228
#> SRR1321650     3  0.6462     0.6095 0.068 0.000 0.608 0.088 0.236
#> SRR1485117     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1384713     1  0.4616     0.4634 0.676 0.000 0.000 0.036 0.288
#> SRR816609      1  0.4439     0.5371 0.788 0.120 0.000 0.068 0.024
#> SRR1486239     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR1309638     3  0.6308     0.5628 0.144 0.000 0.632 0.044 0.180
#> SRR1356660     1  0.6349     0.5145 0.524 0.000 0.232 0.244 0.000
#> SRR1392883     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.1121     0.6788 0.000 0.000 0.044 0.000 0.956
#> SRR816677      1  0.4203     0.5964 0.760 0.000 0.188 0.052 0.000
#> SRR1455722     1  0.3389     0.6737 0.836 0.000 0.000 0.116 0.048
#> SRR1336029     1  0.3884     0.4393 0.708 0.000 0.004 0.288 0.000
#> SRR808452      1  0.3702     0.6643 0.820 0.000 0.000 0.096 0.084
#> SRR1352169     5  0.6634    -0.4351 0.060 0.000 0.428 0.064 0.448
#> SRR1366707     3  0.4893     0.4999 0.000 0.000 0.568 0.028 0.404
#> SRR1328143     5  0.1478     0.6688 0.000 0.000 0.064 0.000 0.936
#> SRR1473567     2  0.0000     0.9322 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.1863      0.782 0.000 0.000 0.104 0.000 0.896 0.000
#> SRR1390119     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     5  0.4450      0.494 0.000 0.000 0.236 0.012 0.700 0.052
#> SRR1347278     6  0.4548      0.447 0.000 0.000 0.080 0.000 0.248 0.672
#> SRR1332904     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1444179     1  0.2660      0.804 0.868 0.000 0.000 0.084 0.000 0.048
#> SRR1082685     1  0.3372      0.789 0.804 0.000 0.000 0.016 0.016 0.164
#> SRR1362287     6  0.0622      0.767 0.012 0.000 0.008 0.000 0.000 0.980
#> SRR1339007     1  0.2100      0.818 0.916 0.000 0.024 0.008 0.048 0.004
#> SRR1376557     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077455     1  0.2643      0.800 0.856 0.000 0.000 0.008 0.128 0.008
#> SRR1413978     6  0.6435      0.219 0.212 0.000 0.368 0.024 0.000 0.396
#> SRR1439896     6  0.3349      0.592 0.244 0.000 0.000 0.008 0.000 0.748
#> SRR1317963     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1431865     6  0.0777      0.770 0.024 0.000 0.004 0.000 0.000 0.972
#> SRR1394253     6  0.0632      0.771 0.024 0.000 0.000 0.000 0.000 0.976
#> SRR1082664     3  0.5671      0.567 0.148 0.000 0.540 0.008 0.304 0.000
#> SRR1077968     1  0.2218      0.816 0.884 0.000 0.000 0.000 0.104 0.012
#> SRR1076393     3  0.4234      0.737 0.028 0.000 0.724 0.024 0.224 0.000
#> SRR1477476     2  0.1434      0.912 0.000 0.940 0.012 0.048 0.000 0.000
#> SRR1398057     6  0.5261     -0.148 0.000 0.000 0.444 0.000 0.096 0.460
#> SRR1485042     1  0.2255      0.813 0.892 0.000 0.016 0.004 0.000 0.088
#> SRR1385453     5  0.5500      0.354 0.000 0.000 0.224 0.188 0.584 0.004
#> SRR1348074     4  0.2473      0.847 0.136 0.000 0.000 0.856 0.000 0.008
#> SRR813959      2  0.3515      0.499 0.000 0.676 0.000 0.000 0.324 0.000
#> SRR665442      2  0.2536      0.829 0.000 0.864 0.000 0.020 0.000 0.116
#> SRR1378068     3  0.3921      0.676 0.000 0.000 0.676 0.004 0.308 0.012
#> SRR1485237     1  0.1242      0.819 0.960 0.012 0.000 0.008 0.012 0.008
#> SRR1350792     1  0.4682      0.443 0.556 0.000 0.000 0.000 0.048 0.396
#> SRR1326797     5  0.2146      0.763 0.116 0.000 0.000 0.000 0.880 0.004
#> SRR808994      3  0.0870      0.697 0.000 0.000 0.972 0.004 0.012 0.012
#> SRR1474041     5  0.1321      0.830 0.000 0.000 0.020 0.024 0.952 0.004
#> SRR1405641     3  0.2806      0.757 0.000 0.000 0.844 0.004 0.136 0.016
#> SRR1362245     3  0.4216      0.429 0.008 0.000 0.676 0.008 0.012 0.296
#> SRR1500194     6  0.1398      0.766 0.052 0.000 0.000 0.008 0.000 0.940
#> SRR1414876     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     3  0.4928      0.618 0.000 0.000 0.640 0.096 0.260 0.004
#> SRR1325161     5  0.1204      0.824 0.056 0.000 0.000 0.000 0.944 0.000
#> SRR1318026     4  0.1957      0.856 0.112 0.000 0.000 0.888 0.000 0.000
#> SRR1343778     3  0.4884      0.622 0.064 0.000 0.592 0.004 0.340 0.000
#> SRR1441287     1  0.3934      0.622 0.676 0.000 0.000 0.020 0.000 0.304
#> SRR1430991     5  0.0291      0.843 0.004 0.000 0.004 0.000 0.992 0.000
#> SRR1499722     5  0.1075      0.830 0.048 0.000 0.000 0.000 0.952 0.000
#> SRR1351368     3  0.3757      0.700 0.000 0.000 0.780 0.136 0.084 0.000
#> SRR1441785     6  0.0603      0.767 0.016 0.000 0.004 0.000 0.000 0.980
#> SRR1096101     1  0.4163      0.811 0.776 0.000 0.016 0.004 0.080 0.124
#> SRR808375      5  0.0713      0.838 0.028 0.000 0.000 0.000 0.972 0.000
#> SRR1452842     1  0.2261      0.810 0.884 0.000 0.000 0.008 0.104 0.004
#> SRR1311709     1  0.2412      0.816 0.880 0.000 0.000 0.028 0.000 0.092
#> SRR1433352     5  0.0993      0.843 0.012 0.000 0.024 0.000 0.964 0.000
#> SRR1340241     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1456754     1  0.2068      0.818 0.904 0.000 0.000 0.008 0.080 0.008
#> SRR1465172     5  0.2562      0.701 0.172 0.000 0.000 0.000 0.828 0.000
#> SRR1499284     1  0.3314      0.670 0.740 0.000 0.000 0.000 0.256 0.004
#> SRR1499607     2  0.3299      0.818 0.048 0.844 0.080 0.028 0.000 0.000
#> SRR812342      1  0.4038      0.754 0.728 0.000 0.000 0.000 0.056 0.216
#> SRR1405374     6  0.1285      0.767 0.052 0.000 0.000 0.004 0.000 0.944
#> SRR1403565     6  0.0798      0.769 0.012 0.000 0.004 0.004 0.004 0.976
#> SRR1332024     6  0.5031     -0.110 0.000 0.000 0.448 0.000 0.072 0.480
#> SRR1471633     1  0.2595      0.803 0.872 0.000 0.000 0.084 0.000 0.044
#> SRR1325944     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.1572      0.828 0.036 0.000 0.000 0.028 0.936 0.000
#> SRR1435372     1  0.2509      0.826 0.876 0.000 0.000 0.000 0.088 0.036
#> SRR1324184     4  0.3445      0.636 0.000 0.260 0.000 0.732 0.000 0.008
#> SRR816517      3  0.3291      0.697 0.000 0.000 0.828 0.104 0.064 0.004
#> SRR1324141     4  0.3430      0.805 0.208 0.000 0.004 0.772 0.016 0.000
#> SRR1101612     6  0.3265      0.590 0.248 0.000 0.000 0.004 0.000 0.748
#> SRR1356531     1  0.2353      0.830 0.896 0.000 0.004 0.004 0.024 0.072
#> SRR1089785     5  0.1285      0.827 0.004 0.000 0.052 0.000 0.944 0.000
#> SRR1077708     3  0.5629      0.584 0.088 0.000 0.552 0.004 0.336 0.020
#> SRR1343720     5  0.0858      0.839 0.028 0.000 0.004 0.000 0.968 0.000
#> SRR1477499     2  0.0146      0.950 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1347236     5  0.1714      0.792 0.092 0.000 0.000 0.000 0.908 0.000
#> SRR1326408     1  0.1462      0.818 0.936 0.000 0.000 0.008 0.056 0.000
#> SRR1336529     3  0.3823      0.750 0.000 0.000 0.764 0.004 0.184 0.048
#> SRR1440643     5  0.4818      0.514 0.000 0.000 0.076 0.284 0.636 0.004
#> SRR662354      6  0.3121      0.676 0.180 0.000 0.000 0.012 0.004 0.804
#> SRR1310817     5  0.0777      0.841 0.004 0.000 0.000 0.024 0.972 0.000
#> SRR1347389     4  0.1686      0.845 0.064 0.012 0.000 0.924 0.000 0.000
#> SRR1353097     1  0.2389      0.832 0.888 0.000 0.000 0.000 0.052 0.060
#> SRR1384737     4  0.3284      0.816 0.168 0.000 0.032 0.800 0.000 0.000
#> SRR1096339     6  0.3136      0.624 0.228 0.000 0.000 0.004 0.000 0.768
#> SRR1345329     1  0.2507      0.781 0.892 0.012 0.016 0.072 0.000 0.008
#> SRR1414771     3  0.1777      0.719 0.000 0.000 0.928 0.004 0.044 0.024
#> SRR1309119     1  0.5907      0.219 0.444 0.000 0.000 0.340 0.000 0.216
#> SRR1470438     3  0.1296      0.696 0.000 0.000 0.952 0.004 0.012 0.032
#> SRR1343221     1  0.3078      0.820 0.836 0.000 0.000 0.000 0.108 0.056
#> SRR1410847     6  0.1588      0.761 0.072 0.000 0.000 0.004 0.000 0.924
#> SRR807949      5  0.0260      0.843 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1442332     5  0.0692      0.840 0.000 0.000 0.020 0.004 0.976 0.000
#> SRR815920      3  0.4048      0.690 0.000 0.000 0.684 0.012 0.292 0.012
#> SRR1471524     5  0.5145     -0.222 0.000 0.000 0.424 0.072 0.500 0.004
#> SRR1477221     6  0.3088      0.657 0.000 0.000 0.120 0.000 0.048 0.832
#> SRR1445046     2  0.2801      0.827 0.068 0.860 0.000 0.072 0.000 0.000
#> SRR1331962     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1319946     2  0.0363      0.944 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1311599     6  0.0547      0.771 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR1323977     2  0.1700      0.879 0.004 0.916 0.000 0.000 0.080 0.000
#> SRR1445132     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     6  0.4468      0.560 0.000 0.000 0.088 0.008 0.184 0.720
#> SRR1366390     4  0.1196      0.809 0.000 0.040 0.008 0.952 0.000 0.000
#> SRR1343012     1  0.3960      0.565 0.736 0.000 0.040 0.220 0.004 0.000
#> SRR1311958     2  0.1141      0.919 0.000 0.948 0.000 0.052 0.000 0.000
#> SRR1388234     2  0.0632      0.932 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1370384     1  0.2122      0.820 0.900 0.000 0.000 0.008 0.084 0.008
#> SRR1321650     3  0.5620      0.637 0.000 0.000 0.564 0.004 0.220 0.212
#> SRR1485117     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1384713     1  0.2070      0.810 0.892 0.000 0.000 0.008 0.100 0.000
#> SRR816609      1  0.2212      0.760 0.880 0.112 0.000 0.008 0.000 0.000
#> SRR1486239     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1309638     3  0.4324      0.486 0.264 0.000 0.696 0.016 0.008 0.016
#> SRR1356660     6  0.1995      0.761 0.052 0.000 0.036 0.000 0.000 0.912
#> SRR1392883     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.0603      0.843 0.004 0.000 0.016 0.000 0.980 0.000
#> SRR816677      1  0.3755      0.713 0.780 0.000 0.172 0.016 0.000 0.032
#> SRR1455722     1  0.3997      0.664 0.688 0.000 0.000 0.004 0.020 0.288
#> SRR1336029     1  0.3120      0.778 0.840 0.000 0.008 0.112 0.000 0.040
#> SRR808452      1  0.4545      0.713 0.688 0.000 0.000 0.008 0.064 0.240
#> SRR1352169     5  0.3985      0.637 0.004 0.000 0.088 0.000 0.768 0.140
#> SRR1366707     3  0.4527      0.634 0.000 0.000 0.624 0.040 0.332 0.004
#> SRR1328143     5  0.0632      0.839 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1473567     2  0.0000      0.952 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.965           0.947       0.976         0.3179 0.706   0.706
#> 3 3 0.869           0.899       0.958         0.1170 0.987   0.981
#> 4 4 0.827           0.879       0.921         0.0497 0.985   0.979
#> 5 5 0.765           0.811       0.915         0.2788 0.840   0.764
#> 6 6 0.725           0.742       0.875         0.0813 0.990   0.981

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.973 1.000 0.000
#> SRR1390119     2  0.0000      0.988 0.000 1.000
#> SRR1436127     1  0.0000      0.973 1.000 0.000
#> SRR1347278     1  0.0000      0.973 1.000 0.000
#> SRR1332904     2  0.1184      0.981 0.016 0.984
#> SRR1444179     1  0.0000      0.973 1.000 0.000
#> SRR1082685     1  0.0000      0.973 1.000 0.000
#> SRR1362287     1  0.0000      0.973 1.000 0.000
#> SRR1339007     1  0.0000      0.973 1.000 0.000
#> SRR1376557     2  0.0000      0.988 0.000 1.000
#> SRR1468700     2  0.0000      0.988 0.000 1.000
#> SRR1077455     1  0.0000      0.973 1.000 0.000
#> SRR1413978     1  0.0000      0.973 1.000 0.000
#> SRR1439896     1  0.0000      0.973 1.000 0.000
#> SRR1317963     1  0.9635      0.409 0.612 0.388
#> SRR1431865     1  0.0000      0.973 1.000 0.000
#> SRR1394253     1  0.0000      0.973 1.000 0.000
#> SRR1082664     1  0.0000      0.973 1.000 0.000
#> SRR1077968     1  0.0000      0.973 1.000 0.000
#> SRR1076393     1  0.0000      0.973 1.000 0.000
#> SRR1477476     2  0.0000      0.988 0.000 1.000
#> SRR1398057     1  0.0000      0.973 1.000 0.000
#> SRR1485042     1  0.0000      0.973 1.000 0.000
#> SRR1385453     1  0.1414      0.958 0.980 0.020
#> SRR1348074     1  0.2778      0.934 0.952 0.048
#> SRR813959      1  0.9393      0.484 0.644 0.356
#> SRR665442      1  0.6438      0.807 0.836 0.164
#> SRR1378068     1  0.0000      0.973 1.000 0.000
#> SRR1485237     1  0.6148      0.822 0.848 0.152
#> SRR1350792     1  0.0000      0.973 1.000 0.000
#> SRR1326797     1  0.0000      0.973 1.000 0.000
#> SRR808994      1  0.0000      0.973 1.000 0.000
#> SRR1474041     1  0.0000      0.973 1.000 0.000
#> SRR1405641     1  0.0000      0.973 1.000 0.000
#> SRR1362245     1  0.0000      0.973 1.000 0.000
#> SRR1500194     1  0.0000      0.973 1.000 0.000
#> SRR1414876     2  0.0376      0.987 0.004 0.996
#> SRR1478523     1  0.1414      0.958 0.980 0.020
#> SRR1325161     1  0.0000      0.973 1.000 0.000
#> SRR1318026     1  0.1414      0.958 0.980 0.020
#> SRR1343778     1  0.0000      0.973 1.000 0.000
#> SRR1441287     1  0.0000      0.973 1.000 0.000
#> SRR1430991     1  0.0000      0.973 1.000 0.000
#> SRR1499722     1  0.0000      0.973 1.000 0.000
#> SRR1351368     1  0.0000      0.973 1.000 0.000
#> SRR1441785     1  0.0000      0.973 1.000 0.000
#> SRR1096101     1  0.0000      0.973 1.000 0.000
#> SRR808375      1  0.0000      0.973 1.000 0.000
#> SRR1452842     1  0.0000      0.973 1.000 0.000
#> SRR1311709     1  0.0376      0.970 0.996 0.004
#> SRR1433352     1  0.0000      0.973 1.000 0.000
#> SRR1340241     2  0.3584      0.931 0.068 0.932
#> SRR1456754     1  0.0000      0.973 1.000 0.000
#> SRR1465172     1  0.0000      0.973 1.000 0.000
#> SRR1499284     1  0.0000      0.973 1.000 0.000
#> SRR1499607     1  0.9732      0.367 0.596 0.404
#> SRR812342      1  0.0000      0.973 1.000 0.000
#> SRR1405374     1  0.0000      0.973 1.000 0.000
#> SRR1403565     1  0.0000      0.973 1.000 0.000
#> SRR1332024     1  0.0000      0.973 1.000 0.000
#> SRR1471633     1  0.0000      0.973 1.000 0.000
#> SRR1325944     2  0.0000      0.988 0.000 1.000
#> SRR1429450     2  0.0000      0.988 0.000 1.000
#> SRR821573      1  0.0000      0.973 1.000 0.000
#> SRR1435372     1  0.0000      0.973 1.000 0.000
#> SRR1324184     2  0.0376      0.987 0.004 0.996
#> SRR816517      1  0.6247      0.818 0.844 0.156
#> SRR1324141     1  0.1414      0.958 0.980 0.020
#> SRR1101612     1  0.0000      0.973 1.000 0.000
#> SRR1356531     1  0.0000      0.973 1.000 0.000
#> SRR1089785     1  0.0000      0.973 1.000 0.000
#> SRR1077708     1  0.0000      0.973 1.000 0.000
#> SRR1343720     1  0.0000      0.973 1.000 0.000
#> SRR1477499     2  0.0000      0.988 0.000 1.000
#> SRR1347236     1  0.0000      0.973 1.000 0.000
#> SRR1326408     1  0.0000      0.973 1.000 0.000
#> SRR1336529     1  0.0000      0.973 1.000 0.000
#> SRR1440643     1  0.0376      0.970 0.996 0.004
#> SRR662354      1  0.0000      0.973 1.000 0.000
#> SRR1310817     1  0.0000      0.973 1.000 0.000
#> SRR1347389     2  0.1633      0.975 0.024 0.976
#> SRR1353097     1  0.0000      0.973 1.000 0.000
#> SRR1384737     1  0.1414      0.958 0.980 0.020
#> SRR1096339     1  0.0000      0.973 1.000 0.000
#> SRR1345329     1  0.2778      0.934 0.952 0.048
#> SRR1414771     1  0.0000      0.973 1.000 0.000
#> SRR1309119     1  0.0000      0.973 1.000 0.000
#> SRR1470438     1  0.0000      0.973 1.000 0.000
#> SRR1343221     1  0.0000      0.973 1.000 0.000
#> SRR1410847     1  0.0000      0.973 1.000 0.000
#> SRR807949      1  0.0000      0.973 1.000 0.000
#> SRR1442332     1  0.0000      0.973 1.000 0.000
#> SRR815920      1  0.0000      0.973 1.000 0.000
#> SRR1471524     1  0.0000      0.973 1.000 0.000
#> SRR1477221     1  0.0000      0.973 1.000 0.000
#> SRR1445046     2  0.0000      0.988 0.000 1.000
#> SRR1331962     2  0.0000      0.988 0.000 1.000
#> SRR1319946     2  0.3879      0.922 0.076 0.924
#> SRR1311599     1  0.0000      0.973 1.000 0.000
#> SRR1323977     1  0.9323      0.502 0.652 0.348
#> SRR1445132     2  0.0000      0.988 0.000 1.000
#> SRR1337321     1  0.0000      0.973 1.000 0.000
#> SRR1366390     2  0.1633      0.975 0.024 0.976
#> SRR1343012     1  0.1414      0.958 0.980 0.020
#> SRR1311958     2  0.0000      0.988 0.000 1.000
#> SRR1388234     1  0.8955      0.575 0.688 0.312
#> SRR1370384     1  0.0000      0.973 1.000 0.000
#> SRR1321650     1  0.0000      0.973 1.000 0.000
#> SRR1485117     2  0.0000      0.988 0.000 1.000
#> SRR1384713     1  0.0000      0.973 1.000 0.000
#> SRR816609      1  0.6801      0.788 0.820 0.180
#> SRR1486239     2  0.1184      0.981 0.016 0.984
#> SRR1309638     1  0.0000      0.973 1.000 0.000
#> SRR1356660     1  0.0000      0.973 1.000 0.000
#> SRR1392883     2  0.0000      0.988 0.000 1.000
#> SRR808130      1  0.0000      0.973 1.000 0.000
#> SRR816677      1  0.0938      0.965 0.988 0.012
#> SRR1455722     1  0.0000      0.973 1.000 0.000
#> SRR1336029     1  0.0000      0.973 1.000 0.000
#> SRR808452      1  0.0000      0.973 1.000 0.000
#> SRR1352169     1  0.0000      0.973 1.000 0.000
#> SRR1366707     1  0.0000      0.973 1.000 0.000
#> SRR1328143     1  0.0000      0.973 1.000 0.000
#> SRR1473567     2  0.0000      0.988 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1390119     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1436127     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1347278     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1332904     2  0.1765      0.947 0.004 0.956 0.040
#> SRR1444179     1  0.0424      0.946 0.992 0.000 0.008
#> SRR1082685     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1362287     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1339007     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1376557     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1413978     1  0.1031      0.937 0.976 0.000 0.024
#> SRR1439896     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1317963     1  0.8955      0.166 0.516 0.344 0.140
#> SRR1431865     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1394253     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1082664     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1077968     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1076393     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1477476     2  0.0237      0.969 0.000 0.996 0.004
#> SRR1398057     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1485042     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1385453     1  0.3610      0.869 0.888 0.016 0.096
#> SRR1348074     1  0.4483      0.827 0.848 0.024 0.128
#> SRR813959      1  0.8863      0.245 0.544 0.312 0.144
#> SRR665442      3  0.2066      0.000 0.060 0.000 0.940
#> SRR1378068     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1485237     1  0.6856      0.673 0.740 0.132 0.128
#> SRR1350792     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1326797     1  0.0000      0.951 1.000 0.000 0.000
#> SRR808994      1  0.0000      0.951 1.000 0.000 0.000
#> SRR1474041     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1405641     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1362245     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1500194     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1414876     2  0.0237      0.967 0.004 0.996 0.000
#> SRR1478523     1  0.3610      0.869 0.888 0.016 0.096
#> SRR1325161     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1318026     1  0.3116      0.872 0.892 0.000 0.108
#> SRR1343778     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1441287     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1430991     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1499722     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1351368     1  0.0592      0.944 0.988 0.000 0.012
#> SRR1441785     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1096101     1  0.0000      0.951 1.000 0.000 0.000
#> SRR808375      1  0.0000      0.951 1.000 0.000 0.000
#> SRR1452842     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1311709     1  0.2261      0.906 0.932 0.000 0.068
#> SRR1433352     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1340241     2  0.3482      0.870 0.000 0.872 0.128
#> SRR1456754     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1465172     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1499284     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1499607     1  0.9091      0.126 0.504 0.344 0.152
#> SRR812342      1  0.0000      0.951 1.000 0.000 0.000
#> SRR1405374     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1403565     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1332024     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1471633     1  0.1529      0.927 0.960 0.000 0.040
#> SRR1325944     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.971 0.000 1.000 0.000
#> SRR821573      1  0.1860      0.917 0.948 0.000 0.052
#> SRR1435372     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1324184     2  0.2537      0.922 0.000 0.920 0.080
#> SRR816517      1  0.6737      0.682 0.744 0.100 0.156
#> SRR1324141     1  0.3116      0.872 0.892 0.000 0.108
#> SRR1101612     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1089785     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1077708     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1343720     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1477499     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1347236     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1326408     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1336529     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1440643     1  0.2301      0.909 0.936 0.004 0.060
#> SRR662354      1  0.0000      0.951 1.000 0.000 0.000
#> SRR1310817     1  0.1860      0.917 0.948 0.000 0.052
#> SRR1347389     2  0.2448      0.929 0.000 0.924 0.076
#> SRR1353097     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1384737     1  0.3116      0.872 0.892 0.000 0.108
#> SRR1096339     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1345329     1  0.4483      0.827 0.848 0.024 0.128
#> SRR1414771     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1309119     1  0.1529      0.927 0.960 0.000 0.040
#> SRR1470438     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1343221     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1410847     1  0.0000      0.951 1.000 0.000 0.000
#> SRR807949      1  0.0000      0.951 1.000 0.000 0.000
#> SRR1442332     1  0.0000      0.951 1.000 0.000 0.000
#> SRR815920      1  0.0000      0.951 1.000 0.000 0.000
#> SRR1471524     1  0.2165      0.909 0.936 0.000 0.064
#> SRR1477221     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1445046     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1331962     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1319946     2  0.3695      0.868 0.012 0.880 0.108
#> SRR1311599     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1323977     1  0.8821      0.268 0.552 0.304 0.144
#> SRR1445132     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1337321     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1366390     2  0.2448      0.929 0.000 0.924 0.076
#> SRR1343012     1  0.3116      0.872 0.892 0.000 0.108
#> SRR1311958     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1388234     1  0.8770      0.331 0.572 0.272 0.156
#> SRR1370384     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1321650     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1485117     2  0.0000      0.971 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.951 1.000 0.000 0.000
#> SRR816609      1  0.7397      0.616 0.704 0.148 0.148
#> SRR1486239     2  0.1765      0.947 0.004 0.956 0.040
#> SRR1309638     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1356660     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.971 0.000 1.000 0.000
#> SRR808130      1  0.0000      0.951 1.000 0.000 0.000
#> SRR816677      1  0.2878      0.884 0.904 0.000 0.096
#> SRR1455722     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1336029     1  0.0000      0.951 1.000 0.000 0.000
#> SRR808452      1  0.0000      0.951 1.000 0.000 0.000
#> SRR1352169     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1366707     1  0.0592      0.944 0.988 0.000 0.012
#> SRR1328143     1  0.0000      0.951 1.000 0.000 0.000
#> SRR1473567     2  0.0000      0.971 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1390119     3  0.4103      0.876 0.000 0.256 0.744 0.000
#> SRR1436127     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1347278     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1332904     2  0.3545      0.769 0.000 0.828 0.164 0.008
#> SRR1444179     1  0.0336      0.948 0.992 0.000 0.008 0.000
#> SRR1082685     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1339007     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.1302      0.846 0.000 0.956 0.044 0.000
#> SRR1468700     2  0.0000      0.873 0.000 1.000 0.000 0.000
#> SRR1077455     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1413978     1  0.0817      0.940 0.976 0.000 0.024 0.000
#> SRR1439896     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1317963     1  0.7878      0.225 0.500 0.200 0.284 0.016
#> SRR1431865     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1082664     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1077968     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1076393     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1477476     3  0.4072      0.874 0.000 0.252 0.748 0.000
#> SRR1398057     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1485042     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1385453     1  0.2704      0.867 0.876 0.000 0.124 0.000
#> SRR1348074     1  0.3963      0.828 0.836 0.016 0.132 0.016
#> SRR813959      1  0.7529      0.308 0.532 0.144 0.308 0.016
#> SRR665442      4  0.0000      0.000 0.000 0.000 0.000 1.000
#> SRR1378068     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1485237     1  0.5615      0.685 0.724 0.044 0.212 0.020
#> SRR1350792     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR808994      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1474041     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1405641     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1362245     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1500194     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.3444      0.680 0.000 0.816 0.184 0.000
#> SRR1478523     1  0.2704      0.867 0.876 0.000 0.124 0.000
#> SRR1325161     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1318026     1  0.2859      0.870 0.880 0.000 0.112 0.008
#> SRR1343778     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1441287     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1430991     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1499722     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1351368     1  0.0469      0.946 0.988 0.000 0.012 0.000
#> SRR1441785     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR808375      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1452842     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1311709     1  0.2255      0.902 0.920 0.000 0.068 0.012
#> SRR1433352     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1340241     3  0.3545      0.551 0.000 0.164 0.828 0.008
#> SRR1456754     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1465172     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1499284     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1499607     1  0.7665      0.188 0.488 0.180 0.324 0.008
#> SRR812342      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1403565     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1332024     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1471633     1  0.1305      0.930 0.960 0.000 0.036 0.004
#> SRR1325944     3  0.4624      0.881 0.000 0.340 0.660 0.000
#> SRR1429450     3  0.4605      0.881 0.000 0.336 0.664 0.000
#> SRR821573      1  0.1474      0.922 0.948 0.000 0.052 0.000
#> SRR1435372     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.2830      0.818 0.000 0.900 0.060 0.040
#> SRR816517      1  0.4710      0.698 0.732 0.008 0.252 0.008
#> SRR1324141     1  0.2859      0.870 0.880 0.000 0.112 0.008
#> SRR1101612     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1089785     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1077708     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1343720     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1477499     3  0.4624      0.881 0.000 0.340 0.660 0.000
#> SRR1347236     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1326408     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1336529     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1440643     1  0.1716      0.914 0.936 0.000 0.064 0.000
#> SRR662354      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1310817     1  0.1474      0.922 0.948 0.000 0.052 0.000
#> SRR1347389     2  0.2704      0.810 0.000 0.876 0.124 0.000
#> SRR1353097     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1384737     1  0.2859      0.870 0.880 0.000 0.112 0.008
#> SRR1096339     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1345329     1  0.3963      0.828 0.836 0.016 0.132 0.016
#> SRR1414771     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1309119     1  0.1305      0.930 0.960 0.000 0.036 0.004
#> SRR1470438     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1343221     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR807949      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1442332     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR815920      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1471524     1  0.1716      0.914 0.936 0.000 0.064 0.000
#> SRR1477221     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1445046     2  0.0000      0.873 0.000 1.000 0.000 0.000
#> SRR1331962     2  0.0000      0.873 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.4831      0.621 0.000 0.704 0.280 0.016
#> SRR1311599     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1323977     1  0.7474      0.328 0.540 0.140 0.304 0.016
#> SRR1445132     3  0.4193      0.880 0.000 0.268 0.732 0.000
#> SRR1337321     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1366390     2  0.2704      0.810 0.000 0.876 0.124 0.000
#> SRR1343012     1  0.2859      0.870 0.880 0.000 0.112 0.008
#> SRR1311958     2  0.0000      0.873 0.000 1.000 0.000 0.000
#> SRR1388234     1  0.7462      0.375 0.556 0.136 0.288 0.020
#> SRR1370384     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1321650     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1485117     2  0.0000      0.873 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR816609      1  0.6083      0.632 0.688 0.060 0.232 0.020
#> SRR1486239     2  0.3545      0.769 0.000 0.828 0.164 0.008
#> SRR1309638     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1356660     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1392883     3  0.4624      0.881 0.000 0.340 0.660 0.000
#> SRR808130      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR816677      1  0.2741      0.880 0.892 0.000 0.096 0.012
#> SRR1455722     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR808452      1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1352169     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1366707     1  0.0469      0.946 0.988 0.000 0.012 0.000
#> SRR1328143     1  0.0000      0.953 1.000 0.000 0.000 0.000
#> SRR1473567     2  0.0000      0.873 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4   p5
#> SRR1442087     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1390119     3  0.0451     0.8343 0.000 0.004 0.988 0.008 0.00
#> SRR1436127     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1347278     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1332904     2  0.4170     0.7613 0.000 0.780 0.080 0.140 0.00
#> SRR1444179     1  0.1851     0.8614 0.912 0.000 0.000 0.088 0.00
#> SRR1082685     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1362287     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1339007     1  0.0290     0.9395 0.992 0.000 0.000 0.008 0.00
#> SRR1376557     2  0.1768     0.8318 0.000 0.924 0.072 0.004 0.00
#> SRR1468700     2  0.0162     0.8570 0.000 0.996 0.000 0.004 0.00
#> SRR1077455     1  0.0162     0.9400 0.996 0.000 0.000 0.004 0.00
#> SRR1413978     1  0.1121     0.9181 0.956 0.000 0.000 0.044 0.00
#> SRR1439896     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1317963     4  0.3398     0.0867 0.004 0.144 0.024 0.828 0.00
#> SRR1431865     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1394253     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1082664     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1077968     1  0.0290     0.9395 0.992 0.000 0.000 0.008 0.00
#> SRR1076393     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1477476     3  0.0290     0.8312 0.000 0.000 0.992 0.008 0.00
#> SRR1398057     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1485042     1  0.0510     0.9378 0.984 0.000 0.000 0.016 0.00
#> SRR1385453     4  0.4201     0.6690 0.408 0.000 0.000 0.592 0.00
#> SRR1348074     4  0.3990     0.7095 0.308 0.004 0.000 0.688 0.00
#> SRR813959      1  0.6930    -0.3484 0.460 0.084 0.068 0.388 0.00
#> SRR665442      5  0.0000     0.0000 0.000 0.000 0.000 0.000 1.00
#> SRR1378068     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1485237     4  0.3578     0.6020 0.204 0.008 0.004 0.784 0.00
#> SRR1350792     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1326797     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR808994      1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1474041     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1405641     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1362245     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1500194     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1414876     2  0.4404     0.5987 0.000 0.684 0.292 0.024 0.00
#> SRR1478523     4  0.4201     0.6690 0.408 0.000 0.000 0.592 0.00
#> SRR1325161     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1318026     4  0.4101     0.7121 0.372 0.000 0.000 0.628 0.00
#> SRR1343778     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1441287     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1430991     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1499722     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1351368     1  0.0703     0.9223 0.976 0.000 0.000 0.024 0.00
#> SRR1441785     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1096101     1  0.0510     0.9375 0.984 0.000 0.000 0.016 0.00
#> SRR808375      1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1452842     1  0.0162     0.9400 0.996 0.000 0.000 0.004 0.00
#> SRR1311709     1  0.4150     0.0149 0.612 0.000 0.000 0.388 0.00
#> SRR1433352     1  0.0162     0.9400 0.996 0.000 0.000 0.004 0.00
#> SRR1340241     3  0.5296     0.4350 0.000 0.084 0.636 0.280 0.00
#> SRR1456754     1  0.0162     0.9400 0.996 0.000 0.000 0.004 0.00
#> SRR1465172     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1499284     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1499607     4  0.3060     0.0500 0.000 0.128 0.024 0.848 0.00
#> SRR812342      1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1405374     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1403565     1  0.0404     0.9387 0.988 0.000 0.000 0.012 0.00
#> SRR1332024     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1471633     1  0.3508     0.5358 0.748 0.000 0.000 0.252 0.00
#> SRR1325944     3  0.2179     0.8661 0.000 0.112 0.888 0.000 0.00
#> SRR1429450     3  0.2179     0.8645 0.000 0.112 0.888 0.000 0.00
#> SRR821573      1  0.2329     0.7867 0.876 0.000 0.000 0.124 0.00
#> SRR1435372     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1324184     2  0.3473     0.7929 0.000 0.840 0.008 0.112 0.04
#> SRR816517      4  0.3861     0.6171 0.264 0.000 0.008 0.728 0.00
#> SRR1324141     4  0.4101     0.7121 0.372 0.000 0.000 0.628 0.00
#> SRR1101612     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1356531     1  0.0510     0.9378 0.984 0.000 0.000 0.016 0.00
#> SRR1089785     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1077708     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1343720     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1477499     3  0.2230     0.8636 0.000 0.116 0.884 0.000 0.00
#> SRR1347236     1  0.0162     0.9400 0.996 0.000 0.000 0.004 0.00
#> SRR1326408     1  0.0290     0.9395 0.992 0.000 0.000 0.008 0.00
#> SRR1336529     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1440643     1  0.2852     0.7045 0.828 0.000 0.000 0.172 0.00
#> SRR662354      1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1310817     1  0.2329     0.7867 0.876 0.000 0.000 0.124 0.00
#> SRR1347389     2  0.3318     0.7881 0.000 0.800 0.008 0.192 0.00
#> SRR1353097     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1384737     4  0.4101     0.7121 0.372 0.000 0.000 0.628 0.00
#> SRR1096339     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1345329     4  0.3990     0.7095 0.308 0.004 0.000 0.688 0.00
#> SRR1414771     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1309119     1  0.3480     0.5459 0.752 0.000 0.000 0.248 0.00
#> SRR1470438     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1343221     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1410847     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR807949      1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1442332     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR815920      1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1471524     1  0.2813     0.7052 0.832 0.000 0.000 0.168 0.00
#> SRR1477221     1  0.0404     0.9387 0.988 0.000 0.000 0.012 0.00
#> SRR1445046     2  0.0162     0.8570 0.000 0.996 0.000 0.004 0.00
#> SRR1331962     2  0.0162     0.8570 0.000 0.996 0.000 0.004 0.00
#> SRR1319946     2  0.5163     0.6025 0.000 0.636 0.068 0.296 0.00
#> SRR1311599     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1323977     1  0.6839    -0.3348 0.468 0.080 0.064 0.388 0.00
#> SRR1445132     3  0.0955     0.8461 0.000 0.028 0.968 0.004 0.00
#> SRR1337321     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1366390     2  0.3318     0.7881 0.000 0.800 0.008 0.192 0.00
#> SRR1343012     4  0.4101     0.7121 0.372 0.000 0.000 0.628 0.00
#> SRR1311958     2  0.0162     0.8570 0.000 0.996 0.000 0.004 0.00
#> SRR1388234     4  0.3009     0.2216 0.028 0.080 0.016 0.876 0.00
#> SRR1370384     1  0.0510     0.9375 0.984 0.000 0.000 0.016 0.00
#> SRR1321650     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1485117     2  0.0000     0.8566 0.000 1.000 0.000 0.000 0.00
#> SRR1384713     1  0.0162     0.9400 0.996 0.000 0.000 0.004 0.00
#> SRR816609      4  0.3081     0.5357 0.156 0.012 0.000 0.832 0.00
#> SRR1486239     2  0.4170     0.7613 0.000 0.780 0.080 0.140 0.00
#> SRR1309638     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1356660     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1392883     3  0.2179     0.8661 0.000 0.112 0.888 0.000 0.00
#> SRR808130      1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR816677      1  0.4227    -0.1337 0.580 0.000 0.000 0.420 0.00
#> SRR1455722     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1336029     1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR808452      1  0.0703     0.9348 0.976 0.000 0.000 0.024 0.00
#> SRR1352169     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1366707     1  0.0703     0.9223 0.976 0.000 0.000 0.024 0.00
#> SRR1328143     1  0.0000     0.9402 1.000 0.000 0.000 0.000 0.00
#> SRR1473567     2  0.0000     0.8566 0.000 1.000 0.000 0.000 0.00

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4   p5    p6
#> SRR1442087     1  0.0935     0.9065 0.964 0.000 0.032 0.004 0.00 0.000
#> SRR1390119     6  0.0146     0.8414 0.000 0.004 0.000 0.000 0.00 0.996
#> SRR1436127     1  0.1082     0.9031 0.956 0.000 0.040 0.004 0.00 0.000
#> SRR1347278     1  0.0790     0.9081 0.968 0.000 0.032 0.000 0.00 0.000
#> SRR1332904     2  0.4621     0.7073 0.000 0.728 0.052 0.176 0.00 0.044
#> SRR1444179     1  0.1910     0.8512 0.892 0.000 0.000 0.108 0.00 0.000
#> SRR1082685     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1362287     1  0.0865     0.9100 0.964 0.000 0.000 0.036 0.00 0.000
#> SRR1339007     1  0.0547     0.9132 0.980 0.000 0.000 0.020 0.00 0.000
#> SRR1376557     2  0.1444     0.8074 0.000 0.928 0.000 0.000 0.00 0.072
#> SRR1468700     2  0.0000     0.8402 0.000 1.000 0.000 0.000 0.00 0.000
#> SRR1077455     1  0.0547     0.9141 0.980 0.000 0.000 0.020 0.00 0.000
#> SRR1413978     1  0.1471     0.8939 0.932 0.000 0.004 0.064 0.00 0.000
#> SRR1439896     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1317963     4  0.3239     0.2263 0.000 0.100 0.044 0.840 0.00 0.016
#> SRR1431865     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1394253     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1082664     1  0.0458     0.9125 0.984 0.000 0.016 0.000 0.00 0.000
#> SRR1077968     1  0.0632     0.9137 0.976 0.000 0.000 0.024 0.00 0.000
#> SRR1076393     1  0.0603     0.9115 0.980 0.000 0.016 0.004 0.00 0.000
#> SRR1477476     6  0.0000     0.8383 0.000 0.000 0.000 0.000 0.00 1.000
#> SRR1398057     1  0.0937     0.9053 0.960 0.000 0.040 0.000 0.00 0.000
#> SRR1485042     1  0.0713     0.9120 0.972 0.000 0.000 0.028 0.00 0.000
#> SRR1385453     3  0.5945    -0.2192 0.220 0.000 0.420 0.360 0.00 0.000
#> SRR1348074     4  0.3394     0.6256 0.236 0.000 0.012 0.752 0.00 0.000
#> SRR813959      1  0.6883    -0.2467 0.448 0.040 0.132 0.348 0.00 0.032
#> SRR665442      5  0.0000     0.0000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1378068     1  0.1152     0.9011 0.952 0.000 0.044 0.004 0.00 0.000
#> SRR1485237     4  0.3625     0.5565 0.184 0.004 0.028 0.780 0.00 0.004
#> SRR1350792     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1326797     1  0.0547     0.9115 0.980 0.000 0.020 0.000 0.00 0.000
#> SRR808994      1  0.1644     0.8791 0.920 0.000 0.076 0.004 0.00 0.000
#> SRR1474041     1  0.0935     0.9065 0.964 0.000 0.032 0.004 0.00 0.000
#> SRR1405641     1  0.1757     0.8763 0.916 0.000 0.076 0.008 0.00 0.000
#> SRR1362245     1  0.0363     0.9127 0.988 0.000 0.012 0.000 0.00 0.000
#> SRR1500194     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1414876     2  0.4531     0.6128 0.000 0.680 0.036 0.020 0.00 0.264
#> SRR1478523     3  0.5959    -0.2223 0.224 0.000 0.416 0.360 0.00 0.000
#> SRR1325161     1  0.0363     0.9127 0.988 0.000 0.012 0.000 0.00 0.000
#> SRR1318026     4  0.4705     0.6123 0.260 0.000 0.088 0.652 0.00 0.000
#> SRR1343778     1  0.0935     0.9065 0.964 0.000 0.032 0.004 0.00 0.000
#> SRR1441287     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1430991     1  0.0935     0.9065 0.964 0.000 0.032 0.004 0.00 0.000
#> SRR1499722     1  0.0547     0.9115 0.980 0.000 0.020 0.000 0.00 0.000
#> SRR1351368     1  0.2001     0.8721 0.912 0.000 0.048 0.040 0.00 0.000
#> SRR1441785     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1096101     1  0.0790     0.9111 0.968 0.000 0.000 0.032 0.00 0.000
#> SRR808375      1  0.0363     0.9127 0.988 0.000 0.012 0.000 0.00 0.000
#> SRR1452842     1  0.0458     0.9135 0.984 0.000 0.000 0.016 0.00 0.000
#> SRR1311709     1  0.3797     0.1233 0.580 0.000 0.000 0.420 0.00 0.000
#> SRR1433352     1  0.1049     0.9082 0.960 0.000 0.032 0.008 0.00 0.000
#> SRR1340241     6  0.5796     0.4320 0.000 0.064 0.148 0.156 0.00 0.632
#> SRR1456754     1  0.0603     0.9140 0.980 0.000 0.004 0.016 0.00 0.000
#> SRR1465172     1  0.0405     0.9138 0.988 0.000 0.008 0.004 0.00 0.000
#> SRR1499284     1  0.0260     0.9133 0.992 0.000 0.008 0.000 0.00 0.000
#> SRR1499607     4  0.4839     0.1440 0.000 0.112 0.164 0.704 0.00 0.020
#> SRR812342      1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1405374     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1403565     1  0.0508     0.9147 0.984 0.000 0.004 0.012 0.00 0.000
#> SRR1332024     1  0.1644     0.8791 0.920 0.000 0.076 0.004 0.00 0.000
#> SRR1471633     1  0.3710     0.5050 0.696 0.000 0.012 0.292 0.00 0.000
#> SRR1325944     6  0.2053     0.8704 0.000 0.108 0.004 0.000 0.00 0.888
#> SRR1429450     6  0.2053     0.8690 0.000 0.108 0.004 0.000 0.00 0.888
#> SRR821573      1  0.3698     0.6932 0.788 0.000 0.116 0.096 0.00 0.000
#> SRR1435372     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1324184     3  0.4649    -0.2165 0.000 0.468 0.492 0.000 0.04 0.000
#> SRR816517      3  0.5339    -0.0892 0.080 0.000 0.464 0.448 0.00 0.008
#> SRR1324141     4  0.4705     0.6123 0.260 0.000 0.088 0.652 0.00 0.000
#> SRR1101612     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1356531     1  0.0713     0.9120 0.972 0.000 0.000 0.028 0.00 0.000
#> SRR1089785     1  0.0603     0.9116 0.980 0.000 0.016 0.004 0.00 0.000
#> SRR1077708     1  0.0622     0.9133 0.980 0.000 0.012 0.008 0.00 0.000
#> SRR1343720     1  0.0458     0.9125 0.984 0.000 0.016 0.000 0.00 0.000
#> SRR1477499     6  0.2100     0.8681 0.000 0.112 0.004 0.000 0.00 0.884
#> SRR1347236     1  0.0692     0.9128 0.976 0.000 0.020 0.004 0.00 0.000
#> SRR1326408     1  0.0632     0.9135 0.976 0.000 0.000 0.024 0.00 0.000
#> SRR1336529     1  0.1644     0.8791 0.920 0.000 0.076 0.004 0.00 0.000
#> SRR1440643     1  0.4500     0.5385 0.708 0.000 0.148 0.144 0.00 0.000
#> SRR662354      1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1310817     1  0.3698     0.6932 0.788 0.000 0.116 0.096 0.00 0.000
#> SRR1347389     3  0.4361    -0.1419 0.000 0.424 0.552 0.024 0.00 0.000
#> SRR1353097     1  0.1007     0.9069 0.956 0.000 0.000 0.044 0.00 0.000
#> SRR1384737     4  0.4705     0.6123 0.260 0.000 0.088 0.652 0.00 0.000
#> SRR1096339     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1345329     4  0.3394     0.6256 0.236 0.000 0.012 0.752 0.00 0.000
#> SRR1414771     1  0.1757     0.8763 0.916 0.000 0.076 0.008 0.00 0.000
#> SRR1309119     1  0.3690     0.5146 0.700 0.000 0.012 0.288 0.00 0.000
#> SRR1470438     1  0.1644     0.8791 0.920 0.000 0.076 0.004 0.00 0.000
#> SRR1343221     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1410847     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR807949      1  0.0935     0.9065 0.964 0.000 0.032 0.004 0.00 0.000
#> SRR1442332     1  0.0790     0.9081 0.968 0.000 0.032 0.000 0.00 0.000
#> SRR815920      1  0.1152     0.9011 0.952 0.000 0.044 0.004 0.00 0.000
#> SRR1471524     1  0.4374     0.5691 0.712 0.000 0.192 0.096 0.00 0.000
#> SRR1477221     1  0.0508     0.9147 0.984 0.000 0.004 0.012 0.00 0.000
#> SRR1445046     2  0.0000     0.8402 0.000 1.000 0.000 0.000 0.00 0.000
#> SRR1331962     2  0.0000     0.8402 0.000 1.000 0.000 0.000 0.00 0.000
#> SRR1319946     2  0.5424     0.5322 0.000 0.592 0.072 0.304 0.00 0.032
#> SRR1311599     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1323977     1  0.6778    -0.2479 0.448 0.036 0.132 0.356 0.00 0.028
#> SRR1445132     6  0.0713     0.8532 0.000 0.028 0.000 0.000 0.00 0.972
#> SRR1337321     1  0.0363     0.9127 0.988 0.000 0.012 0.000 0.00 0.000
#> SRR1366390     3  0.4361    -0.1419 0.000 0.424 0.552 0.024 0.00 0.000
#> SRR1343012     4  0.4705     0.6123 0.260 0.000 0.088 0.652 0.00 0.000
#> SRR1311958     2  0.0000     0.8402 0.000 1.000 0.000 0.000 0.00 0.000
#> SRR1388234     4  0.2337     0.3083 0.008 0.036 0.036 0.908 0.00 0.012
#> SRR1370384     1  0.0790     0.9110 0.968 0.000 0.000 0.032 0.00 0.000
#> SRR1321650     1  0.0363     0.9127 0.988 0.000 0.012 0.000 0.00 0.000
#> SRR1485117     2  0.0146     0.8392 0.000 0.996 0.004 0.000 0.00 0.000
#> SRR1384713     1  0.0520     0.9142 0.984 0.000 0.008 0.008 0.00 0.000
#> SRR816609      4  0.2882     0.5157 0.120 0.004 0.028 0.848 0.00 0.000
#> SRR1486239     2  0.4621     0.7073 0.000 0.728 0.052 0.176 0.00 0.044
#> SRR1309638     1  0.0622     0.9133 0.980 0.000 0.012 0.008 0.00 0.000
#> SRR1356660     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1392883     6  0.2053     0.8704 0.000 0.108 0.004 0.000 0.00 0.888
#> SRR808130      1  0.0935     0.9065 0.964 0.000 0.032 0.004 0.00 0.000
#> SRR816677      1  0.3854    -0.0723 0.536 0.000 0.000 0.464 0.00 0.000
#> SRR1455722     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1336029     1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR808452      1  0.0937     0.9087 0.960 0.000 0.000 0.040 0.00 0.000
#> SRR1352169     1  0.0790     0.9081 0.968 0.000 0.032 0.000 0.00 0.000
#> SRR1366707     1  0.2001     0.8721 0.912 0.000 0.048 0.040 0.00 0.000
#> SRR1328143     1  0.0935     0.9065 0.964 0.000 0.032 0.004 0.00 0.000
#> SRR1473567     2  0.0146     0.8392 0.000 0.996 0.004 0.000 0.00 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.975       0.990         0.3444 0.666   0.666
#> 3 3 0.628           0.851       0.872         0.7742 0.686   0.528
#> 4 4 0.689           0.806       0.853         0.1622 0.907   0.743
#> 5 5 0.735           0.684       0.811         0.0866 0.911   0.695
#> 6 6 0.732           0.569       0.738         0.0429 0.963   0.841

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.988 1.000 0.000
#> SRR1390119     2  0.0000      0.997 0.000 1.000
#> SRR1436127     1  0.0000      0.988 1.000 0.000
#> SRR1347278     1  0.0000      0.988 1.000 0.000
#> SRR1332904     2  0.0000      0.997 0.000 1.000
#> SRR1444179     1  0.0000      0.988 1.000 0.000
#> SRR1082685     1  0.0000      0.988 1.000 0.000
#> SRR1362287     1  0.0000      0.988 1.000 0.000
#> SRR1339007     1  0.0000      0.988 1.000 0.000
#> SRR1376557     2  0.0000      0.997 0.000 1.000
#> SRR1468700     2  0.0000      0.997 0.000 1.000
#> SRR1077455     1  0.0000      0.988 1.000 0.000
#> SRR1413978     1  0.0000      0.988 1.000 0.000
#> SRR1439896     1  0.0000      0.988 1.000 0.000
#> SRR1317963     2  0.0000      0.997 0.000 1.000
#> SRR1431865     1  0.0000      0.988 1.000 0.000
#> SRR1394253     1  0.0000      0.988 1.000 0.000
#> SRR1082664     1  0.0000      0.988 1.000 0.000
#> SRR1077968     1  0.0000      0.988 1.000 0.000
#> SRR1076393     1  0.0000      0.988 1.000 0.000
#> SRR1477476     2  0.0000      0.997 0.000 1.000
#> SRR1398057     1  0.0000      0.988 1.000 0.000
#> SRR1485042     1  0.0000      0.988 1.000 0.000
#> SRR1385453     1  0.0000      0.988 1.000 0.000
#> SRR1348074     1  0.1843      0.961 0.972 0.028
#> SRR813959      1  0.0938      0.977 0.988 0.012
#> SRR665442      1  0.9833      0.276 0.576 0.424
#> SRR1378068     1  0.0000      0.988 1.000 0.000
#> SRR1485237     1  0.0000      0.988 1.000 0.000
#> SRR1350792     1  0.0000      0.988 1.000 0.000
#> SRR1326797     1  0.0000      0.988 1.000 0.000
#> SRR808994      1  0.0000      0.988 1.000 0.000
#> SRR1474041     1  0.0000      0.988 1.000 0.000
#> SRR1405641     1  0.0000      0.988 1.000 0.000
#> SRR1362245     1  0.0000      0.988 1.000 0.000
#> SRR1500194     1  0.0000      0.988 1.000 0.000
#> SRR1414876     2  0.0000      0.997 0.000 1.000
#> SRR1478523     1  0.0000      0.988 1.000 0.000
#> SRR1325161     1  0.0000      0.988 1.000 0.000
#> SRR1318026     1  0.0000      0.988 1.000 0.000
#> SRR1343778     1  0.0000      0.988 1.000 0.000
#> SRR1441287     1  0.0000      0.988 1.000 0.000
#> SRR1430991     1  0.0000      0.988 1.000 0.000
#> SRR1499722     1  0.0000      0.988 1.000 0.000
#> SRR1351368     1  0.0000      0.988 1.000 0.000
#> SRR1441785     1  0.0000      0.988 1.000 0.000
#> SRR1096101     1  0.0000      0.988 1.000 0.000
#> SRR808375      1  0.0000      0.988 1.000 0.000
#> SRR1452842     1  0.0000      0.988 1.000 0.000
#> SRR1311709     1  0.0000      0.988 1.000 0.000
#> SRR1433352     1  0.0000      0.988 1.000 0.000
#> SRR1340241     2  0.0000      0.997 0.000 1.000
#> SRR1456754     1  0.0000      0.988 1.000 0.000
#> SRR1465172     1  0.0000      0.988 1.000 0.000
#> SRR1499284     1  0.0000      0.988 1.000 0.000
#> SRR1499607     2  0.0000      0.997 0.000 1.000
#> SRR812342      1  0.0000      0.988 1.000 0.000
#> SRR1405374     1  0.0000      0.988 1.000 0.000
#> SRR1403565     1  0.0000      0.988 1.000 0.000
#> SRR1332024     1  0.0000      0.988 1.000 0.000
#> SRR1471633     1  0.0000      0.988 1.000 0.000
#> SRR1325944     2  0.0000      0.997 0.000 1.000
#> SRR1429450     2  0.0000      0.997 0.000 1.000
#> SRR821573      1  0.0000      0.988 1.000 0.000
#> SRR1435372     1  0.0000      0.988 1.000 0.000
#> SRR1324184     2  0.0000      0.997 0.000 1.000
#> SRR816517      2  0.3584      0.925 0.068 0.932
#> SRR1324141     1  0.0000      0.988 1.000 0.000
#> SRR1101612     1  0.0000      0.988 1.000 0.000
#> SRR1356531     1  0.0000      0.988 1.000 0.000
#> SRR1089785     1  0.0000      0.988 1.000 0.000
#> SRR1077708     1  0.0000      0.988 1.000 0.000
#> SRR1343720     1  0.0000      0.988 1.000 0.000
#> SRR1477499     2  0.0000      0.997 0.000 1.000
#> SRR1347236     1  0.0000      0.988 1.000 0.000
#> SRR1326408     1  0.0000      0.988 1.000 0.000
#> SRR1336529     1  0.0000      0.988 1.000 0.000
#> SRR1440643     1  0.0000      0.988 1.000 0.000
#> SRR662354      1  0.0000      0.988 1.000 0.000
#> SRR1310817     1  0.0000      0.988 1.000 0.000
#> SRR1347389     2  0.0000      0.997 0.000 1.000
#> SRR1353097     1  0.0000      0.988 1.000 0.000
#> SRR1384737     1  0.0000      0.988 1.000 0.000
#> SRR1096339     1  0.0000      0.988 1.000 0.000
#> SRR1345329     1  0.0000      0.988 1.000 0.000
#> SRR1414771     1  0.0000      0.988 1.000 0.000
#> SRR1309119     1  0.0000      0.988 1.000 0.000
#> SRR1470438     1  0.0000      0.988 1.000 0.000
#> SRR1343221     1  0.0000      0.988 1.000 0.000
#> SRR1410847     1  0.0000      0.988 1.000 0.000
#> SRR807949      1  0.0000      0.988 1.000 0.000
#> SRR1442332     1  0.0000      0.988 1.000 0.000
#> SRR815920      1  0.0000      0.988 1.000 0.000
#> SRR1471524     1  0.0000      0.988 1.000 0.000
#> SRR1477221     1  0.0000      0.988 1.000 0.000
#> SRR1445046     2  0.0000      0.997 0.000 1.000
#> SRR1331962     2  0.0000      0.997 0.000 1.000
#> SRR1319946     2  0.0000      0.997 0.000 1.000
#> SRR1311599     1  0.0000      0.988 1.000 0.000
#> SRR1323977     1  0.9710      0.343 0.600 0.400
#> SRR1445132     2  0.0000      0.997 0.000 1.000
#> SRR1337321     1  0.0000      0.988 1.000 0.000
#> SRR1366390     2  0.0000      0.997 0.000 1.000
#> SRR1343012     1  0.0000      0.988 1.000 0.000
#> SRR1311958     2  0.0000      0.997 0.000 1.000
#> SRR1388234     2  0.0000      0.997 0.000 1.000
#> SRR1370384     1  0.0000      0.988 1.000 0.000
#> SRR1321650     1  0.0000      0.988 1.000 0.000
#> SRR1485117     2  0.0000      0.997 0.000 1.000
#> SRR1384713     1  0.0000      0.988 1.000 0.000
#> SRR816609      1  0.8386      0.636 0.732 0.268
#> SRR1486239     2  0.0000      0.997 0.000 1.000
#> SRR1309638     1  0.0000      0.988 1.000 0.000
#> SRR1356660     1  0.0000      0.988 1.000 0.000
#> SRR1392883     2  0.0000      0.997 0.000 1.000
#> SRR808130      1  0.0000      0.988 1.000 0.000
#> SRR816677      1  0.0000      0.988 1.000 0.000
#> SRR1455722     1  0.0000      0.988 1.000 0.000
#> SRR1336029     1  0.0000      0.988 1.000 0.000
#> SRR808452      1  0.0000      0.988 1.000 0.000
#> SRR1352169     1  0.0000      0.988 1.000 0.000
#> SRR1366707     1  0.0000      0.988 1.000 0.000
#> SRR1328143     1  0.0000      0.988 1.000 0.000
#> SRR1473567     2  0.0000      0.997 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1390119     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1347278     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1332904     2  0.0237      0.944 0.004 0.996 0.000
#> SRR1444179     1  0.4504      0.810 0.804 0.000 0.196
#> SRR1082685     1  0.4346      0.803 0.816 0.000 0.184
#> SRR1362287     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1339007     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1376557     2  0.0237      0.944 0.004 0.996 0.000
#> SRR1468700     2  0.0747      0.942 0.016 0.984 0.000
#> SRR1077455     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1413978     1  0.5465      0.858 0.712 0.000 0.288
#> SRR1439896     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1317963     2  0.4931      0.817 0.232 0.768 0.000
#> SRR1431865     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1394253     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1082664     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1077968     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1076393     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1398057     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1485042     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1385453     3  0.5529      0.601 0.296 0.000 0.704
#> SRR1348074     1  0.0424      0.679 0.992 0.000 0.008
#> SRR813959      3  0.5431      0.620 0.284 0.000 0.716
#> SRR665442      1  0.5497      0.127 0.708 0.292 0.000
#> SRR1378068     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1485237     1  0.0424      0.679 0.992 0.000 0.008
#> SRR1350792     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1326797     3  0.5138      0.454 0.252 0.000 0.748
#> SRR808994      3  0.0000      0.941 0.000 0.000 1.000
#> SRR1474041     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1405641     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1362245     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1500194     1  0.5591      0.865 0.696 0.000 0.304
#> SRR1414876     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1478523     3  0.4887      0.695 0.228 0.000 0.772
#> SRR1325161     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1318026     1  0.0892      0.693 0.980 0.000 0.020
#> SRR1343778     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1441287     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1430991     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1499722     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1351368     3  0.3412      0.817 0.124 0.000 0.876
#> SRR1441785     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1096101     1  0.5621      0.866 0.692 0.000 0.308
#> SRR808375      3  0.0000      0.941 0.000 0.000 1.000
#> SRR1452842     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1311709     1  0.3116      0.760 0.892 0.000 0.108
#> SRR1433352     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1340241     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1456754     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1465172     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1499284     3  0.3482      0.757 0.128 0.000 0.872
#> SRR1499607     2  0.5465      0.774 0.288 0.712 0.000
#> SRR812342      1  0.5621      0.866 0.692 0.000 0.308
#> SRR1405374     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1403565     1  0.6008      0.776 0.628 0.000 0.372
#> SRR1332024     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1471633     1  0.1163      0.702 0.972 0.000 0.028
#> SRR1325944     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.944 0.000 1.000 0.000
#> SRR821573      3  0.3941      0.781 0.156 0.000 0.844
#> SRR1435372     1  0.5591      0.865 0.696 0.000 0.304
#> SRR1324184     2  0.1031      0.941 0.024 0.976 0.000
#> SRR816517      2  0.9972      0.243 0.300 0.364 0.336
#> SRR1324141     1  0.1031      0.698 0.976 0.000 0.024
#> SRR1101612     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1356531     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1089785     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1077708     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1343720     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1477499     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1347236     3  0.3482      0.757 0.128 0.000 0.872
#> SRR1326408     1  0.5560      0.863 0.700 0.000 0.300
#> SRR1336529     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1440643     3  0.5178      0.661 0.256 0.000 0.744
#> SRR662354      1  0.5621      0.866 0.692 0.000 0.308
#> SRR1310817     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1347389     2  0.3482      0.890 0.128 0.872 0.000
#> SRR1353097     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1384737     1  0.1031      0.698 0.976 0.000 0.024
#> SRR1096339     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1345329     1  0.0424      0.679 0.992 0.000 0.008
#> SRR1414771     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1309119     1  0.1163      0.702 0.972 0.000 0.028
#> SRR1470438     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1343221     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1410847     1  0.5621      0.866 0.692 0.000 0.308
#> SRR807949      3  0.0000      0.941 0.000 0.000 1.000
#> SRR1442332     3  0.0000      0.941 0.000 0.000 1.000
#> SRR815920      3  0.0000      0.941 0.000 0.000 1.000
#> SRR1471524     3  0.2165      0.880 0.064 0.000 0.936
#> SRR1477221     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1445046     2  0.1529      0.935 0.040 0.960 0.000
#> SRR1331962     2  0.0747      0.942 0.016 0.984 0.000
#> SRR1319946     2  0.1529      0.935 0.040 0.960 0.000
#> SRR1311599     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1323977     1  0.6082      0.146 0.692 0.296 0.012
#> SRR1445132     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1337321     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1366390     2  0.2959      0.906 0.100 0.900 0.000
#> SRR1343012     1  0.1163      0.697 0.972 0.000 0.028
#> SRR1311958     2  0.0747      0.942 0.016 0.984 0.000
#> SRR1388234     2  0.5431      0.776 0.284 0.716 0.000
#> SRR1370384     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1321650     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1485117     2  0.0000      0.944 0.000 1.000 0.000
#> SRR1384713     1  0.5621      0.866 0.692 0.000 0.308
#> SRR816609      1  0.0424      0.679 0.992 0.000 0.008
#> SRR1486239     2  0.0747      0.942 0.016 0.984 0.000
#> SRR1309638     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1356660     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1392883     2  0.0000      0.944 0.000 1.000 0.000
#> SRR808130      3  0.0000      0.941 0.000 0.000 1.000
#> SRR816677      1  0.2796      0.751 0.908 0.000 0.092
#> SRR1455722     1  0.5621      0.866 0.692 0.000 0.308
#> SRR1336029     1  0.5621      0.866 0.692 0.000 0.308
#> SRR808452      1  0.5560      0.863 0.700 0.000 0.300
#> SRR1352169     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1366707     3  0.0747      0.926 0.016 0.000 0.984
#> SRR1328143     3  0.0000      0.941 0.000 0.000 1.000
#> SRR1473567     2  0.0237      0.944 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.2773     0.8710 0.004 0.000 0.880 0.116
#> SRR1390119     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.3725     0.8542 0.008 0.000 0.812 0.180
#> SRR1347278     3  0.2048     0.8759 0.008 0.000 0.928 0.064
#> SRR1332904     2  0.1004     0.9206 0.004 0.972 0.000 0.024
#> SRR1444179     1  0.1022     0.9164 0.968 0.000 0.032 0.000
#> SRR1082685     1  0.1209     0.9158 0.964 0.000 0.032 0.004
#> SRR1362287     1  0.1938     0.9335 0.936 0.000 0.052 0.012
#> SRR1339007     1  0.3745     0.8823 0.852 0.000 0.060 0.088
#> SRR1376557     2  0.1635     0.9167 0.008 0.948 0.000 0.044
#> SRR1468700     2  0.3217     0.8783 0.012 0.860 0.000 0.128
#> SRR1077455     1  0.5280     0.7675 0.748 0.000 0.156 0.096
#> SRR1413978     1  0.1975     0.9338 0.936 0.000 0.048 0.016
#> SRR1439896     1  0.1661     0.9354 0.944 0.000 0.052 0.004
#> SRR1317963     4  0.5110     0.2927 0.012 0.352 0.000 0.636
#> SRR1431865     1  0.1938     0.9335 0.936 0.000 0.052 0.012
#> SRR1394253     1  0.1938     0.9335 0.936 0.000 0.052 0.012
#> SRR1082664     3  0.2197     0.8416 0.004 0.000 0.916 0.080
#> SRR1077968     1  0.3667     0.8887 0.856 0.000 0.056 0.088
#> SRR1076393     3  0.2593     0.8685 0.004 0.000 0.892 0.104
#> SRR1477476     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.3351     0.8625 0.008 0.000 0.844 0.148
#> SRR1485042     1  0.1661     0.9358 0.944 0.000 0.052 0.004
#> SRR1385453     4  0.5442     0.3723 0.028 0.000 0.336 0.636
#> SRR1348074     4  0.4746     0.6101 0.368 0.000 0.000 0.632
#> SRR813959      4  0.5673     0.2915 0.024 0.000 0.448 0.528
#> SRR665442      4  0.6134     0.6079 0.236 0.104 0.000 0.660
#> SRR1378068     3  0.3933     0.8458 0.008 0.000 0.792 0.200
#> SRR1485237     4  0.4964     0.5908 0.380 0.000 0.004 0.616
#> SRR1350792     1  0.1661     0.9354 0.944 0.000 0.052 0.004
#> SRR1326797     3  0.5018     0.6741 0.144 0.000 0.768 0.088
#> SRR808994      3  0.3972     0.8445 0.008 0.000 0.788 0.204
#> SRR1474041     3  0.0188     0.8694 0.004 0.000 0.996 0.000
#> SRR1405641     3  0.3791     0.8443 0.004 0.000 0.796 0.200
#> SRR1362245     3  0.3545     0.8626 0.008 0.000 0.828 0.164
#> SRR1500194     1  0.1807     0.9345 0.940 0.000 0.052 0.008
#> SRR1414876     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.4387     0.7867 0.024 0.000 0.776 0.200
#> SRR1325161     3  0.2197     0.8416 0.004 0.000 0.916 0.080
#> SRR1318026     4  0.5581     0.4374 0.448 0.000 0.020 0.532
#> SRR1343778     3  0.3539     0.8572 0.004 0.000 0.820 0.176
#> SRR1441287     1  0.1557     0.9351 0.944 0.000 0.056 0.000
#> SRR1430991     3  0.0376     0.8702 0.004 0.000 0.992 0.004
#> SRR1499722     3  0.2266     0.8393 0.004 0.000 0.912 0.084
#> SRR1351368     3  0.3547     0.8411 0.016 0.000 0.840 0.144
#> SRR1441785     1  0.1938     0.9335 0.936 0.000 0.052 0.012
#> SRR1096101     1  0.3168     0.9068 0.884 0.000 0.056 0.060
#> SRR808375      3  0.2197     0.8416 0.004 0.000 0.916 0.080
#> SRR1452842     1  0.5031     0.7916 0.768 0.000 0.140 0.092
#> SRR1311709     1  0.1406     0.9052 0.960 0.000 0.024 0.016
#> SRR1433352     3  0.1743     0.8753 0.004 0.000 0.940 0.056
#> SRR1340241     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.4817     0.8091 0.784 0.000 0.128 0.088
#> SRR1465172     3  0.2334     0.8371 0.004 0.000 0.908 0.088
#> SRR1499284     3  0.4920     0.6869 0.136 0.000 0.776 0.088
#> SRR1499607     4  0.5403     0.3382 0.024 0.348 0.000 0.628
#> SRR812342      1  0.1474     0.9355 0.948 0.000 0.052 0.000
#> SRR1405374     1  0.1807     0.9345 0.940 0.000 0.052 0.008
#> SRR1403565     1  0.5248     0.7585 0.748 0.000 0.164 0.088
#> SRR1332024     3  0.4049     0.8419 0.008 0.000 0.780 0.212
#> SRR1471633     1  0.1510     0.8903 0.956 0.000 0.016 0.028
#> SRR1325944     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR821573      3  0.3862     0.7653 0.024 0.000 0.824 0.152
#> SRR1435372     1  0.2021     0.9331 0.932 0.000 0.056 0.012
#> SRR1324184     2  0.4050     0.8516 0.024 0.808 0.000 0.168
#> SRR816517      4  0.5994     0.5142 0.028 0.068 0.184 0.720
#> SRR1324141     4  0.6680     0.5917 0.260 0.000 0.136 0.604
#> SRR1101612     1  0.1474     0.9355 0.948 0.000 0.052 0.000
#> SRR1356531     1  0.1661     0.9358 0.944 0.000 0.052 0.004
#> SRR1089785     3  0.0188     0.8694 0.004 0.000 0.996 0.000
#> SRR1077708     3  0.3725     0.8444 0.008 0.000 0.812 0.180
#> SRR1343720     3  0.2197     0.8416 0.004 0.000 0.916 0.080
#> SRR1477499     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR1347236     3  0.4419     0.7386 0.104 0.000 0.812 0.084
#> SRR1326408     1  0.3533     0.8927 0.864 0.000 0.056 0.080
#> SRR1336529     3  0.3933     0.8458 0.008 0.000 0.792 0.200
#> SRR1440643     3  0.5602     0.3009 0.024 0.000 0.568 0.408
#> SRR662354      1  0.1661     0.9354 0.944 0.000 0.052 0.004
#> SRR1310817     3  0.1716     0.8494 0.000 0.000 0.936 0.064
#> SRR1347389     4  0.5004     0.1978 0.004 0.392 0.000 0.604
#> SRR1353097     1  0.1557     0.9351 0.944 0.000 0.056 0.000
#> SRR1384737     4  0.5517     0.4672 0.412 0.000 0.020 0.568
#> SRR1096339     1  0.1474     0.9355 0.948 0.000 0.052 0.000
#> SRR1345329     4  0.4746     0.6101 0.368 0.000 0.000 0.632
#> SRR1414771     3  0.3831     0.8430 0.004 0.000 0.792 0.204
#> SRR1309119     1  0.1297     0.8923 0.964 0.000 0.016 0.020
#> SRR1470438     3  0.3972     0.8445 0.008 0.000 0.788 0.204
#> SRR1343221     1  0.3833     0.8759 0.848 0.000 0.080 0.072
#> SRR1410847     1  0.1474     0.9355 0.948 0.000 0.052 0.000
#> SRR807949      3  0.0524     0.8704 0.004 0.000 0.988 0.008
#> SRR1442332     3  0.0895     0.8710 0.004 0.000 0.976 0.020
#> SRR815920      3  0.3933     0.8458 0.008 0.000 0.792 0.200
#> SRR1471524     3  0.2799     0.8530 0.008 0.000 0.884 0.108
#> SRR1477221     3  0.3450     0.8614 0.008 0.000 0.836 0.156
#> SRR1445046     2  0.4576     0.7164 0.012 0.728 0.000 0.260
#> SRR1331962     2  0.3217     0.8783 0.012 0.860 0.000 0.128
#> SRR1319946     2  0.4372     0.7098 0.004 0.728 0.000 0.268
#> SRR1311599     1  0.1938     0.9335 0.936 0.000 0.052 0.012
#> SRR1323977     4  0.7343     0.6177 0.156 0.104 0.088 0.652
#> SRR1445132     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.1970     0.8577 0.008 0.000 0.932 0.060
#> SRR1366390     4  0.5158    -0.0556 0.004 0.472 0.000 0.524
#> SRR1343012     4  0.6834     0.5912 0.224 0.000 0.176 0.600
#> SRR1311958     2  0.3377     0.8690 0.012 0.848 0.000 0.140
#> SRR1388234     4  0.5478     0.3411 0.028 0.344 0.000 0.628
#> SRR1370384     1  0.3948     0.8756 0.840 0.000 0.064 0.096
#> SRR1321650     3  0.3351     0.8651 0.008 0.000 0.844 0.148
#> SRR1485117     2  0.1151     0.9194 0.008 0.968 0.000 0.024
#> SRR1384713     1  0.5477     0.7345 0.728 0.000 0.180 0.092
#> SRR816609      4  0.4730     0.6116 0.364 0.000 0.000 0.636
#> SRR1486239     2  0.3217     0.8783 0.012 0.860 0.000 0.128
#> SRR1309638     3  0.4011     0.8424 0.008 0.000 0.784 0.208
#> SRR1356660     1  0.1938     0.9335 0.936 0.000 0.052 0.012
#> SRR1392883     2  0.0000     0.9220 0.000 1.000 0.000 0.000
#> SRR808130      3  0.0188     0.8694 0.004 0.000 0.996 0.000
#> SRR816677      1  0.3606     0.7517 0.844 0.000 0.024 0.132
#> SRR1455722     1  0.1557     0.9351 0.944 0.000 0.056 0.000
#> SRR1336029     1  0.1557     0.9351 0.944 0.000 0.056 0.000
#> SRR808452      1  0.1557     0.9351 0.944 0.000 0.056 0.000
#> SRR1352169     3  0.1970     0.8746 0.008 0.000 0.932 0.060
#> SRR1366707     3  0.2868     0.8599 0.000 0.000 0.864 0.136
#> SRR1328143     3  0.1661     0.8754 0.004 0.000 0.944 0.052
#> SRR1473567     2  0.1767     0.9158 0.012 0.944 0.000 0.044

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     3  0.4542    0.58483 0.008 0.000 0.536 0.000 0.456
#> SRR1390119     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.4108    0.79362 0.008 0.000 0.684 0.000 0.308
#> SRR1347278     5  0.4565    0.07114 0.008 0.000 0.352 0.008 0.632
#> SRR1332904     2  0.2046    0.84464 0.000 0.916 0.016 0.068 0.000
#> SRR1444179     1  0.0451    0.92535 0.988 0.000 0.008 0.004 0.000
#> SRR1082685     1  0.0609    0.92423 0.980 0.000 0.020 0.000 0.000
#> SRR1362287     1  0.1087    0.92394 0.968 0.000 0.016 0.008 0.008
#> SRR1339007     1  0.3795    0.78066 0.780 0.000 0.000 0.028 0.192
#> SRR1376557     2  0.3692    0.83024 0.000 0.812 0.136 0.052 0.000
#> SRR1468700     2  0.4968    0.78779 0.000 0.712 0.136 0.152 0.000
#> SRR1077455     5  0.5335   -0.00694 0.408 0.000 0.012 0.032 0.548
#> SRR1413978     1  0.1588    0.92015 0.948 0.000 0.016 0.028 0.008
#> SRR1439896     1  0.0404    0.92676 0.988 0.000 0.012 0.000 0.000
#> SRR1317963     4  0.4094    0.66139 0.000 0.084 0.128 0.788 0.000
#> SRR1431865     1  0.0960    0.92396 0.972 0.000 0.016 0.008 0.004
#> SRR1394253     1  0.1200    0.92331 0.964 0.000 0.016 0.012 0.008
#> SRR1082664     5  0.1369    0.58533 0.008 0.000 0.028 0.008 0.956
#> SRR1077968     1  0.4470    0.75032 0.744 0.000 0.012 0.036 0.208
#> SRR1076393     5  0.3855    0.40614 0.008 0.000 0.240 0.004 0.748
#> SRR1477476     2  0.0162    0.84660 0.000 0.996 0.004 0.000 0.000
#> SRR1398057     3  0.4688    0.49718 0.008 0.000 0.532 0.004 0.456
#> SRR1485042     1  0.0579    0.92820 0.984 0.000 0.000 0.008 0.008
#> SRR1385453     4  0.5331    0.49393 0.000 0.000 0.372 0.568 0.060
#> SRR1348074     4  0.1894    0.79520 0.072 0.000 0.008 0.920 0.000
#> SRR813959      4  0.5166    0.63028 0.000 0.000 0.108 0.680 0.212
#> SRR665442      4  0.2616    0.77832 0.008 0.016 0.068 0.900 0.008
#> SRR1378068     3  0.4025    0.80182 0.008 0.000 0.700 0.000 0.292
#> SRR1485237     4  0.3166    0.77845 0.112 0.000 0.020 0.856 0.012
#> SRR1350792     1  0.0404    0.92676 0.988 0.000 0.012 0.000 0.000
#> SRR1326797     5  0.1877    0.55365 0.064 0.000 0.000 0.012 0.924
#> SRR808994      3  0.4134    0.80010 0.008 0.000 0.704 0.004 0.284
#> SRR1474041     5  0.3611    0.45686 0.008 0.000 0.208 0.004 0.780
#> SRR1405641     3  0.4003    0.80147 0.008 0.000 0.704 0.000 0.288
#> SRR1362245     5  0.4771   -0.15537 0.008 0.000 0.432 0.008 0.552
#> SRR1500194     1  0.0404    0.92707 0.988 0.000 0.012 0.000 0.000
#> SRR1414876     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.5581    0.52371 0.000 0.000 0.636 0.140 0.224
#> SRR1325161     5  0.0740    0.58519 0.008 0.000 0.008 0.004 0.980
#> SRR1318026     4  0.4532    0.74365 0.152 0.000 0.052 0.772 0.024
#> SRR1343778     3  0.4252    0.75284 0.008 0.000 0.652 0.000 0.340
#> SRR1441287     1  0.0162    0.92843 0.996 0.000 0.000 0.000 0.004
#> SRR1430991     5  0.3643    0.45080 0.008 0.000 0.212 0.004 0.776
#> SRR1499722     5  0.0740    0.58611 0.008 0.000 0.008 0.004 0.980
#> SRR1351368     3  0.4309    0.68911 0.000 0.000 0.676 0.016 0.308
#> SRR1441785     1  0.0960    0.92396 0.972 0.000 0.016 0.008 0.004
#> SRR1096101     1  0.2570    0.87429 0.888 0.000 0.000 0.028 0.084
#> SRR808375      5  0.1243    0.58455 0.008 0.000 0.028 0.004 0.960
#> SRR1452842     5  0.5088   -0.08583 0.436 0.000 0.000 0.036 0.528
#> SRR1311709     1  0.0898    0.92161 0.972 0.000 0.020 0.008 0.000
#> SRR1433352     5  0.4403    0.08800 0.008 0.000 0.340 0.004 0.648
#> SRR1340241     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     1  0.4445    0.64176 0.676 0.000 0.000 0.024 0.300
#> SRR1465172     5  0.0798    0.57882 0.008 0.000 0.000 0.016 0.976
#> SRR1499284     5  0.2110    0.54298 0.072 0.000 0.000 0.016 0.912
#> SRR1499607     4  0.2017    0.75782 0.000 0.080 0.008 0.912 0.000
#> SRR812342      1  0.0162    0.92843 0.996 0.000 0.000 0.000 0.004
#> SRR1405374     1  0.0404    0.92707 0.988 0.000 0.012 0.000 0.000
#> SRR1403565     1  0.4410    0.60687 0.700 0.000 0.016 0.008 0.276
#> SRR1332024     3  0.4088    0.79405 0.008 0.000 0.712 0.004 0.276
#> SRR1471633     1  0.1216    0.91495 0.960 0.000 0.020 0.020 0.000
#> SRR1325944     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.4197    0.41107 0.000 0.000 0.076 0.148 0.776
#> SRR1435372     1  0.2124    0.89876 0.924 0.000 0.020 0.012 0.044
#> SRR1324184     2  0.5999    0.72752 0.000 0.616 0.188 0.188 0.008
#> SRR816517      4  0.3786    0.75042 0.000 0.004 0.204 0.776 0.016
#> SRR1324141     4  0.4522    0.76339 0.040 0.000 0.056 0.788 0.116
#> SRR1101612     1  0.0000    0.92802 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0451    0.92827 0.988 0.000 0.000 0.004 0.008
#> SRR1089785     5  0.3578    0.45994 0.008 0.000 0.204 0.004 0.784
#> SRR1077708     5  0.3634    0.45353 0.008 0.000 0.184 0.012 0.796
#> SRR1343720     5  0.0981    0.58553 0.008 0.000 0.012 0.008 0.972
#> SRR1477499     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     5  0.1996    0.57039 0.048 0.000 0.012 0.012 0.928
#> SRR1326408     1  0.3944    0.76736 0.768 0.000 0.000 0.032 0.200
#> SRR1336529     3  0.4025    0.80182 0.008 0.000 0.700 0.000 0.292
#> SRR1440643     3  0.6465    0.26646 0.000 0.000 0.484 0.308 0.208
#> SRR662354      1  0.0162    0.92858 0.996 0.000 0.000 0.004 0.000
#> SRR1310817     5  0.3035    0.54778 0.008 0.000 0.136 0.008 0.848
#> SRR1347389     4  0.4738    0.61194 0.000 0.140 0.112 0.744 0.004
#> SRR1353097     1  0.0162    0.92843 0.996 0.000 0.000 0.000 0.004
#> SRR1384737     4  0.4587    0.75731 0.104 0.000 0.056 0.788 0.052
#> SRR1096339     1  0.0000    0.92802 1.000 0.000 0.000 0.000 0.000
#> SRR1345329     4  0.1894    0.79577 0.072 0.000 0.008 0.920 0.000
#> SRR1414771     3  0.4111    0.79850 0.008 0.000 0.708 0.004 0.280
#> SRR1309119     1  0.0579    0.92283 0.984 0.000 0.008 0.008 0.000
#> SRR1470438     3  0.4134    0.80010 0.008 0.000 0.704 0.004 0.284
#> SRR1343221     1  0.2806    0.83562 0.844 0.000 0.000 0.004 0.152
#> SRR1410847     1  0.0451    0.92814 0.988 0.000 0.000 0.004 0.008
#> SRR807949      5  0.3675    0.44463 0.008 0.000 0.216 0.004 0.772
#> SRR1442332     5  0.4178    0.26065 0.008 0.000 0.292 0.004 0.696
#> SRR815920      3  0.4025    0.80182 0.008 0.000 0.700 0.000 0.292
#> SRR1471524     3  0.4613    0.61341 0.000 0.000 0.620 0.020 0.360
#> SRR1477221     3  0.4792    0.47924 0.008 0.000 0.536 0.008 0.448
#> SRR1445046     2  0.6069    0.55355 0.000 0.524 0.136 0.340 0.000
#> SRR1331962     2  0.4968    0.78779 0.000 0.712 0.136 0.152 0.000
#> SRR1319946     2  0.5717    0.59689 0.000 0.572 0.104 0.324 0.000
#> SRR1311599     1  0.1087    0.92394 0.968 0.000 0.016 0.008 0.008
#> SRR1323977     4  0.3773    0.79534 0.024 0.016 0.056 0.852 0.052
#> SRR1445132     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     5  0.3293    0.52275 0.008 0.000 0.160 0.008 0.824
#> SRR1366390     4  0.5436    0.47908 0.000 0.216 0.116 0.664 0.004
#> SRR1343012     4  0.5032    0.69292 0.016 0.000 0.056 0.704 0.224
#> SRR1311958     2  0.5775    0.67552 0.000 0.600 0.136 0.264 0.000
#> SRR1388234     4  0.1956    0.76056 0.000 0.076 0.008 0.916 0.000
#> SRR1370384     1  0.4592    0.73188 0.728 0.000 0.012 0.036 0.224
#> SRR1321650     5  0.4664   -0.20398 0.008 0.000 0.436 0.004 0.552
#> SRR1485117     2  0.2864    0.83652 0.000 0.852 0.136 0.012 0.000
#> SRR1384713     5  0.4966    0.03126 0.404 0.000 0.000 0.032 0.564
#> SRR816609      4  0.1956    0.79482 0.076 0.000 0.008 0.916 0.000
#> SRR1486239     2  0.5043    0.78286 0.000 0.704 0.136 0.160 0.000
#> SRR1309638     5  0.4495    0.35874 0.008 0.000 0.236 0.032 0.724
#> SRR1356660     1  0.0960    0.92396 0.972 0.000 0.016 0.008 0.004
#> SRR1392883     2  0.0000    0.84835 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.3611    0.45686 0.008 0.000 0.208 0.004 0.780
#> SRR816677      1  0.3764    0.69060 0.772 0.000 0.008 0.212 0.008
#> SRR1455722     1  0.0162    0.92843 0.996 0.000 0.000 0.000 0.004
#> SRR1336029     1  0.0290    0.92851 0.992 0.000 0.000 0.000 0.008
#> SRR808452      1  0.0000    0.92802 1.000 0.000 0.000 0.000 0.000
#> SRR1352169     5  0.4425   -0.14945 0.008 0.000 0.392 0.000 0.600
#> SRR1366707     3  0.4389    0.72565 0.004 0.000 0.624 0.004 0.368
#> SRR1328143     5  0.4220    0.23640 0.008 0.000 0.300 0.004 0.688
#> SRR1473567     2  0.3759    0.82919 0.000 0.808 0.136 0.056 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.3684    -0.0471 0.000 0.000 0.332 0.000 0.664 0.004
#> SRR1390119     2  0.3865     0.7797 0.000 0.720 0.032 0.000 0.000 0.248
#> SRR1436127     3  0.3890     0.6751 0.000 0.000 0.596 0.000 0.400 0.004
#> SRR1347278     5  0.3867     0.3836 0.000 0.000 0.200 0.000 0.748 0.052
#> SRR1332904     2  0.4286     0.7761 0.000 0.752 0.028 0.052 0.000 0.168
#> SRR1444179     1  0.0653     0.8275 0.980 0.000 0.004 0.004 0.000 0.012
#> SRR1082685     1  0.1442     0.8160 0.944 0.000 0.012 0.004 0.000 0.040
#> SRR1362287     1  0.2201     0.7940 0.900 0.000 0.052 0.000 0.000 0.048
#> SRR1339007     1  0.4504    -0.1819 0.536 0.000 0.000 0.000 0.032 0.432
#> SRR1376557     2  0.1074     0.7524 0.000 0.960 0.012 0.028 0.000 0.000
#> SRR1468700     2  0.2135     0.7058 0.000 0.872 0.000 0.128 0.000 0.000
#> SRR1077455     6  0.6249     0.9313 0.244 0.000 0.008 0.004 0.284 0.460
#> SRR1413978     1  0.2776     0.7751 0.860 0.000 0.052 0.000 0.000 0.088
#> SRR1439896     1  0.1194     0.8197 0.956 0.000 0.008 0.004 0.000 0.032
#> SRR1317963     4  0.3519     0.5938 0.000 0.232 0.008 0.752 0.000 0.008
#> SRR1431865     1  0.2070     0.7983 0.908 0.000 0.044 0.000 0.000 0.048
#> SRR1394253     1  0.2201     0.7940 0.900 0.000 0.052 0.000 0.000 0.048
#> SRR1082664     5  0.2996     0.4612 0.000 0.000 0.000 0.000 0.772 0.228
#> SRR1077968     1  0.4825    -0.2451 0.500 0.000 0.008 0.004 0.028 0.460
#> SRR1076393     5  0.3645     0.4863 0.000 0.000 0.152 0.000 0.784 0.064
#> SRR1477476     2  0.4151     0.7664 0.000 0.692 0.044 0.000 0.000 0.264
#> SRR1398057     5  0.4460    -0.3334 0.000 0.000 0.452 0.000 0.520 0.028
#> SRR1485042     1  0.0865     0.8224 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1385453     4  0.6897     0.4108 0.000 0.000 0.348 0.416 0.108 0.128
#> SRR1348074     4  0.1363     0.7758 0.028 0.004 0.012 0.952 0.000 0.004
#> SRR813959      4  0.5969     0.5326 0.000 0.000 0.076 0.568 0.280 0.076
#> SRR665442      4  0.3963     0.7399 0.000 0.012 0.076 0.780 0.000 0.132
#> SRR1378068     3  0.3547     0.7665 0.000 0.000 0.668 0.000 0.332 0.000
#> SRR1485237     4  0.2862     0.7573 0.052 0.000 0.020 0.872 0.000 0.056
#> SRR1350792     1  0.1367     0.8145 0.944 0.000 0.012 0.000 0.000 0.044
#> SRR1326797     5  0.3952     0.3548 0.052 0.000 0.000 0.000 0.736 0.212
#> SRR808994      3  0.3482     0.7637 0.000 0.000 0.684 0.000 0.316 0.000
#> SRR1474041     5  0.1049     0.5617 0.000 0.000 0.032 0.000 0.960 0.008
#> SRR1405641     3  0.3547     0.7665 0.000 0.000 0.668 0.000 0.332 0.000
#> SRR1362245     5  0.5102    -0.1481 0.000 0.000 0.428 0.000 0.492 0.080
#> SRR1500194     1  0.0862     0.8273 0.972 0.000 0.008 0.004 0.000 0.016
#> SRR1414876     2  0.3841     0.7806 0.000 0.724 0.032 0.000 0.000 0.244
#> SRR1478523     3  0.6480     0.3394 0.000 0.000 0.512 0.092 0.288 0.108
#> SRR1325161     5  0.3175     0.4261 0.000 0.000 0.000 0.000 0.744 0.256
#> SRR1318026     4  0.4472     0.7604 0.044 0.000 0.096 0.760 0.000 0.100
#> SRR1343778     3  0.3950     0.6224 0.000 0.000 0.564 0.000 0.432 0.004
#> SRR1441287     1  0.0146     0.8280 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1430991     5  0.0790     0.5597 0.000 0.000 0.032 0.000 0.968 0.000
#> SRR1499722     5  0.2994     0.4738 0.004 0.000 0.000 0.000 0.788 0.208
#> SRR1351368     3  0.5527     0.3397 0.000 0.000 0.512 0.016 0.384 0.088
#> SRR1441785     1  0.2201     0.7940 0.900 0.000 0.052 0.000 0.000 0.048
#> SRR1096101     1  0.3426     0.6385 0.784 0.000 0.012 0.000 0.012 0.192
#> SRR808375      5  0.2416     0.5227 0.000 0.000 0.000 0.000 0.844 0.156
#> SRR1452842     6  0.6131     0.9216 0.288 0.000 0.000 0.004 0.276 0.432
#> SRR1311709     1  0.1750     0.8116 0.932 0.000 0.016 0.012 0.000 0.040
#> SRR1433352     5  0.2389     0.4633 0.000 0.000 0.128 0.000 0.864 0.008
#> SRR1340241     2  0.3911     0.7767 0.000 0.712 0.032 0.000 0.000 0.256
#> SRR1456754     1  0.5108    -0.3949 0.484 0.000 0.000 0.000 0.080 0.436
#> SRR1465172     5  0.3695     0.1792 0.000 0.000 0.000 0.000 0.624 0.376
#> SRR1499284     5  0.4712    -0.1093 0.052 0.000 0.000 0.000 0.564 0.384
#> SRR1499607     4  0.1340     0.7602 0.000 0.040 0.004 0.948 0.000 0.008
#> SRR812342      1  0.0146     0.8280 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1405374     1  0.0964     0.8269 0.968 0.000 0.012 0.004 0.000 0.016
#> SRR1403565     1  0.5192     0.3896 0.672 0.000 0.052 0.000 0.208 0.068
#> SRR1332024     3  0.3508     0.7442 0.000 0.000 0.704 0.000 0.292 0.004
#> SRR1471633     1  0.2045     0.8011 0.916 0.000 0.016 0.016 0.000 0.052
#> SRR1325944     2  0.3841     0.7806 0.000 0.724 0.032 0.000 0.000 0.244
#> SRR1429450     2  0.3884     0.7808 0.000 0.724 0.036 0.000 0.000 0.240
#> SRR821573      5  0.5514     0.3271 0.000 0.000 0.112 0.060 0.660 0.168
#> SRR1435372     1  0.2658     0.7618 0.864 0.000 0.016 0.008 0.000 0.112
#> SRR1324184     2  0.5293     0.5740 0.000 0.680 0.056 0.168 0.000 0.096
#> SRR816517      4  0.5660     0.7036 0.000 0.000 0.188 0.628 0.040 0.144
#> SRR1324141     4  0.4376     0.7604 0.008 0.000 0.096 0.760 0.012 0.124
#> SRR1101612     1  0.0291     0.8281 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR1356531     1  0.0632     0.8269 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1089785     5  0.0935     0.5613 0.000 0.000 0.032 0.000 0.964 0.004
#> SRR1077708     5  0.5461     0.1892 0.000 0.000 0.136 0.000 0.520 0.344
#> SRR1343720     5  0.3023     0.4567 0.000 0.000 0.000 0.000 0.768 0.232
#> SRR1477499     2  0.3925     0.7808 0.000 0.724 0.040 0.000 0.000 0.236
#> SRR1347236     5  0.3802     0.3823 0.044 0.000 0.000 0.000 0.748 0.208
#> SRR1326408     1  0.4402    -0.0794 0.564 0.000 0.000 0.004 0.020 0.412
#> SRR1336529     3  0.3547     0.7665 0.000 0.000 0.668 0.000 0.332 0.000
#> SRR1440643     3  0.7218     0.0992 0.000 0.000 0.396 0.200 0.292 0.112
#> SRR662354      1  0.0405     0.8293 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR1310817     5  0.2134     0.5735 0.000 0.000 0.052 0.000 0.904 0.044
#> SRR1347389     4  0.5354     0.5390 0.000 0.236 0.072 0.644 0.000 0.048
#> SRR1353097     1  0.0547     0.8268 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1384737     4  0.4357     0.7610 0.016 0.000 0.096 0.760 0.004 0.124
#> SRR1096339     1  0.0291     0.8281 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR1345329     4  0.1180     0.7748 0.024 0.004 0.004 0.960 0.000 0.008
#> SRR1414771     3  0.3428     0.7606 0.000 0.000 0.696 0.000 0.304 0.000
#> SRR1309119     1  0.0665     0.8274 0.980 0.000 0.004 0.008 0.000 0.008
#> SRR1470438     3  0.3464     0.7627 0.000 0.000 0.688 0.000 0.312 0.000
#> SRR1343221     1  0.2402     0.7265 0.868 0.000 0.000 0.000 0.012 0.120
#> SRR1410847     1  0.0603     0.8279 0.980 0.000 0.004 0.000 0.000 0.016
#> SRR807949      5  0.0790     0.5597 0.000 0.000 0.032 0.000 0.968 0.000
#> SRR1442332     5  0.1970     0.5020 0.000 0.000 0.092 0.000 0.900 0.008
#> SRR815920      3  0.3684     0.7652 0.000 0.000 0.664 0.000 0.332 0.004
#> SRR1471524     5  0.5288    -0.2043 0.000 0.000 0.404 0.004 0.504 0.088
#> SRR1477221     5  0.4901    -0.2880 0.000 0.000 0.456 0.000 0.484 0.060
#> SRR1445046     2  0.4126     0.3744 0.000 0.624 0.008 0.360 0.000 0.008
#> SRR1331962     2  0.2135     0.7058 0.000 0.872 0.000 0.128 0.000 0.000
#> SRR1319946     2  0.4720     0.5158 0.000 0.640 0.012 0.300 0.000 0.048
#> SRR1311599     1  0.2201     0.7940 0.900 0.000 0.052 0.000 0.000 0.048
#> SRR1323977     4  0.3487     0.7777 0.000 0.000 0.060 0.824 0.016 0.100
#> SRR1445132     2  0.3841     0.7806 0.000 0.724 0.032 0.000 0.000 0.244
#> SRR1337321     5  0.2712     0.5713 0.000 0.000 0.048 0.000 0.864 0.088
#> SRR1366390     4  0.5990     0.4468 0.000 0.276 0.088 0.568 0.000 0.068
#> SRR1343012     4  0.5540     0.6874 0.008 0.000 0.096 0.664 0.048 0.184
#> SRR1311958     2  0.3628     0.5442 0.000 0.720 0.004 0.268 0.000 0.008
#> SRR1388234     4  0.1453     0.7584 0.000 0.040 0.008 0.944 0.000 0.008
#> SRR1370384     1  0.4951    -0.3124 0.480 0.000 0.008 0.004 0.036 0.472
#> SRR1321650     5  0.4300    -0.2115 0.000 0.000 0.432 0.000 0.548 0.020
#> SRR1485117     2  0.0665     0.7570 0.000 0.980 0.008 0.008 0.000 0.004
#> SRR1384713     6  0.6109     0.9225 0.248 0.000 0.000 0.004 0.316 0.432
#> SRR816609      4  0.1261     0.7733 0.028 0.004 0.008 0.956 0.000 0.004
#> SRR1486239     2  0.2632     0.6903 0.000 0.832 0.004 0.164 0.000 0.000
#> SRR1309638     5  0.5677     0.0344 0.000 0.000 0.156 0.000 0.440 0.404
#> SRR1356660     1  0.2201     0.7940 0.900 0.000 0.052 0.000 0.000 0.048
#> SRR1392883     2  0.3841     0.7806 0.000 0.724 0.032 0.000 0.000 0.244
#> SRR808130      5  0.0790     0.5597 0.000 0.000 0.032 0.000 0.968 0.000
#> SRR816677      1  0.4259     0.3963 0.648 0.000 0.008 0.324 0.000 0.020
#> SRR1455722     1  0.0146     0.8280 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1336029     1  0.0520     0.8286 0.984 0.000 0.008 0.000 0.000 0.008
#> SRR808452      1  0.0405     0.8279 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR1352169     5  0.3073     0.3326 0.000 0.000 0.204 0.000 0.788 0.008
#> SRR1366707     5  0.4592    -0.4513 0.000 0.000 0.468 0.000 0.496 0.036
#> SRR1328143     5  0.1970     0.5035 0.000 0.000 0.092 0.000 0.900 0.008
#> SRR1473567     2  0.1074     0.7524 0.000 0.960 0.012 0.028 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.991         0.4440 0.554   0.554
#> 3 3 1.000           0.989       0.995         0.5106 0.743   0.549
#> 4 4 0.813           0.799       0.899         0.1096 0.888   0.677
#> 5 5 0.798           0.667       0.857         0.0539 0.939   0.774
#> 6 6 0.766           0.674       0.812         0.0398 0.934   0.722

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.996 1.000 0.000
#> SRR1390119     2  0.0000      0.980 0.000 1.000
#> SRR1436127     1  0.0000      0.996 1.000 0.000
#> SRR1347278     1  0.0000      0.996 1.000 0.000
#> SRR1332904     2  0.0000      0.980 0.000 1.000
#> SRR1444179     1  0.0000      0.996 1.000 0.000
#> SRR1082685     1  0.0000      0.996 1.000 0.000
#> SRR1362287     1  0.0000      0.996 1.000 0.000
#> SRR1339007     1  0.0000      0.996 1.000 0.000
#> SRR1376557     2  0.0000      0.980 0.000 1.000
#> SRR1468700     2  0.0000      0.980 0.000 1.000
#> SRR1077455     1  0.0000      0.996 1.000 0.000
#> SRR1413978     1  0.0000      0.996 1.000 0.000
#> SRR1439896     1  0.0000      0.996 1.000 0.000
#> SRR1317963     2  0.0000      0.980 0.000 1.000
#> SRR1431865     1  0.0000      0.996 1.000 0.000
#> SRR1394253     1  0.0000      0.996 1.000 0.000
#> SRR1082664     1  0.0000      0.996 1.000 0.000
#> SRR1077968     1  0.0000      0.996 1.000 0.000
#> SRR1076393     1  0.0000      0.996 1.000 0.000
#> SRR1477476     2  0.0000      0.980 0.000 1.000
#> SRR1398057     1  0.0000      0.996 1.000 0.000
#> SRR1485042     1  0.0000      0.996 1.000 0.000
#> SRR1385453     2  0.0000      0.980 0.000 1.000
#> SRR1348074     2  0.0000      0.980 0.000 1.000
#> SRR813959      2  0.0000      0.980 0.000 1.000
#> SRR665442      2  0.0000      0.980 0.000 1.000
#> SRR1378068     1  0.0000      0.996 1.000 0.000
#> SRR1485237     2  0.0000      0.980 0.000 1.000
#> SRR1350792     1  0.0000      0.996 1.000 0.000
#> SRR1326797     1  0.0000      0.996 1.000 0.000
#> SRR808994      1  0.0000      0.996 1.000 0.000
#> SRR1474041     1  0.0000      0.996 1.000 0.000
#> SRR1405641     1  0.0000      0.996 1.000 0.000
#> SRR1362245     1  0.0000      0.996 1.000 0.000
#> SRR1500194     1  0.0000      0.996 1.000 0.000
#> SRR1414876     2  0.0000      0.980 0.000 1.000
#> SRR1478523     2  0.7219      0.753 0.200 0.800
#> SRR1325161     1  0.0000      0.996 1.000 0.000
#> SRR1318026     2  0.0000      0.980 0.000 1.000
#> SRR1343778     1  0.0000      0.996 1.000 0.000
#> SRR1441287     1  0.0000      0.996 1.000 0.000
#> SRR1430991     1  0.0000      0.996 1.000 0.000
#> SRR1499722     1  0.0000      0.996 1.000 0.000
#> SRR1351368     1  0.0000      0.996 1.000 0.000
#> SRR1441785     1  0.0000      0.996 1.000 0.000
#> SRR1096101     1  0.0000      0.996 1.000 0.000
#> SRR808375      1  0.0000      0.996 1.000 0.000
#> SRR1452842     1  0.0000      0.996 1.000 0.000
#> SRR1311709     1  0.0938      0.984 0.988 0.012
#> SRR1433352     1  0.0000      0.996 1.000 0.000
#> SRR1340241     2  0.0000      0.980 0.000 1.000
#> SRR1456754     1  0.0000      0.996 1.000 0.000
#> SRR1465172     1  0.0000      0.996 1.000 0.000
#> SRR1499284     1  0.0000      0.996 1.000 0.000
#> SRR1499607     2  0.0000      0.980 0.000 1.000
#> SRR812342      1  0.0000      0.996 1.000 0.000
#> SRR1405374     1  0.0000      0.996 1.000 0.000
#> SRR1403565     1  0.0000      0.996 1.000 0.000
#> SRR1332024     1  0.0000      0.996 1.000 0.000
#> SRR1471633     1  0.8608      0.590 0.716 0.284
#> SRR1325944     2  0.0000      0.980 0.000 1.000
#> SRR1429450     2  0.0000      0.980 0.000 1.000
#> SRR821573      1  0.2043      0.963 0.968 0.032
#> SRR1435372     1  0.0000      0.996 1.000 0.000
#> SRR1324184     2  0.0000      0.980 0.000 1.000
#> SRR816517      2  0.0000      0.980 0.000 1.000
#> SRR1324141     2  0.0000      0.980 0.000 1.000
#> SRR1101612     1  0.0000      0.996 1.000 0.000
#> SRR1356531     1  0.0000      0.996 1.000 0.000
#> SRR1089785     1  0.0000      0.996 1.000 0.000
#> SRR1077708     1  0.0000      0.996 1.000 0.000
#> SRR1343720     1  0.0000      0.996 1.000 0.000
#> SRR1477499     2  0.0000      0.980 0.000 1.000
#> SRR1347236     1  0.0000      0.996 1.000 0.000
#> SRR1326408     1  0.0000      0.996 1.000 0.000
#> SRR1336529     1  0.0000      0.996 1.000 0.000
#> SRR1440643     2  0.7056      0.764 0.192 0.808
#> SRR662354      1  0.0000      0.996 1.000 0.000
#> SRR1310817     1  0.0000      0.996 1.000 0.000
#> SRR1347389     2  0.0000      0.980 0.000 1.000
#> SRR1353097     1  0.0000      0.996 1.000 0.000
#> SRR1384737     2  0.0000      0.980 0.000 1.000
#> SRR1096339     1  0.0000      0.996 1.000 0.000
#> SRR1345329     2  0.0000      0.980 0.000 1.000
#> SRR1414771     1  0.0000      0.996 1.000 0.000
#> SRR1309119     1  0.1184      0.980 0.984 0.016
#> SRR1470438     1  0.0000      0.996 1.000 0.000
#> SRR1343221     1  0.0000      0.996 1.000 0.000
#> SRR1410847     1  0.0000      0.996 1.000 0.000
#> SRR807949      1  0.0000      0.996 1.000 0.000
#> SRR1442332     1  0.0000      0.996 1.000 0.000
#> SRR815920      1  0.0000      0.996 1.000 0.000
#> SRR1471524     1  0.0000      0.996 1.000 0.000
#> SRR1477221     1  0.0000      0.996 1.000 0.000
#> SRR1445046     2  0.0000      0.980 0.000 1.000
#> SRR1331962     2  0.0000      0.980 0.000 1.000
#> SRR1319946     2  0.0000      0.980 0.000 1.000
#> SRR1311599     1  0.0000      0.996 1.000 0.000
#> SRR1323977     2  0.0000      0.980 0.000 1.000
#> SRR1445132     2  0.0000      0.980 0.000 1.000
#> SRR1337321     1  0.0000      0.996 1.000 0.000
#> SRR1366390     2  0.0000      0.980 0.000 1.000
#> SRR1343012     2  0.0000      0.980 0.000 1.000
#> SRR1311958     2  0.0000      0.980 0.000 1.000
#> SRR1388234     2  0.0000      0.980 0.000 1.000
#> SRR1370384     1  0.0000      0.996 1.000 0.000
#> SRR1321650     1  0.0000      0.996 1.000 0.000
#> SRR1485117     2  0.0000      0.980 0.000 1.000
#> SRR1384713     1  0.0000      0.996 1.000 0.000
#> SRR816609      2  0.0000      0.980 0.000 1.000
#> SRR1486239     2  0.0000      0.980 0.000 1.000
#> SRR1309638     1  0.0000      0.996 1.000 0.000
#> SRR1356660     1  0.0000      0.996 1.000 0.000
#> SRR1392883     2  0.0000      0.980 0.000 1.000
#> SRR808130      1  0.0000      0.996 1.000 0.000
#> SRR816677      2  0.9775      0.315 0.412 0.588
#> SRR1455722     1  0.0000      0.996 1.000 0.000
#> SRR1336029     1  0.0000      0.996 1.000 0.000
#> SRR808452      1  0.0000      0.996 1.000 0.000
#> SRR1352169     1  0.0000      0.996 1.000 0.000
#> SRR1366707     1  0.0000      0.996 1.000 0.000
#> SRR1328143     1  0.0000      0.996 1.000 0.000
#> SRR1473567     2  0.0000      0.980 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3   0.000      0.996 0.000 0.000 1.000
#> SRR1390119     2   0.000      0.991 0.000 1.000 0.000
#> SRR1436127     3   0.000      0.996 0.000 0.000 1.000
#> SRR1347278     3   0.000      0.996 0.000 0.000 1.000
#> SRR1332904     2   0.000      0.991 0.000 1.000 0.000
#> SRR1444179     1   0.000      0.997 1.000 0.000 0.000
#> SRR1082685     1   0.000      0.997 1.000 0.000 0.000
#> SRR1362287     1   0.000      0.997 1.000 0.000 0.000
#> SRR1339007     1   0.000      0.997 1.000 0.000 0.000
#> SRR1376557     2   0.000      0.991 0.000 1.000 0.000
#> SRR1468700     2   0.000      0.991 0.000 1.000 0.000
#> SRR1077455     1   0.000      0.997 1.000 0.000 0.000
#> SRR1413978     1   0.000      0.997 1.000 0.000 0.000
#> SRR1439896     1   0.000      0.997 1.000 0.000 0.000
#> SRR1317963     2   0.000      0.991 0.000 1.000 0.000
#> SRR1431865     1   0.000      0.997 1.000 0.000 0.000
#> SRR1394253     1   0.000      0.997 1.000 0.000 0.000
#> SRR1082664     3   0.000      0.996 0.000 0.000 1.000
#> SRR1077968     1   0.000      0.997 1.000 0.000 0.000
#> SRR1076393     3   0.000      0.996 0.000 0.000 1.000
#> SRR1477476     2   0.000      0.991 0.000 1.000 0.000
#> SRR1398057     3   0.000      0.996 0.000 0.000 1.000
#> SRR1485042     1   0.000      0.997 1.000 0.000 0.000
#> SRR1385453     2   0.280      0.897 0.000 0.908 0.092
#> SRR1348074     2   0.000      0.991 0.000 1.000 0.000
#> SRR813959      2   0.000      0.991 0.000 1.000 0.000
#> SRR665442      2   0.000      0.991 0.000 1.000 0.000
#> SRR1378068     3   0.000      0.996 0.000 0.000 1.000
#> SRR1485237     2   0.000      0.991 0.000 1.000 0.000
#> SRR1350792     1   0.000      0.997 1.000 0.000 0.000
#> SRR1326797     3   0.000      0.996 0.000 0.000 1.000
#> SRR808994      3   0.000      0.996 0.000 0.000 1.000
#> SRR1474041     3   0.000      0.996 0.000 0.000 1.000
#> SRR1405641     3   0.000      0.996 0.000 0.000 1.000
#> SRR1362245     3   0.000      0.996 0.000 0.000 1.000
#> SRR1500194     1   0.000      0.997 1.000 0.000 0.000
#> SRR1414876     2   0.000      0.991 0.000 1.000 0.000
#> SRR1478523     3   0.000      0.996 0.000 0.000 1.000
#> SRR1325161     3   0.000      0.996 0.000 0.000 1.000
#> SRR1318026     2   0.455      0.751 0.200 0.800 0.000
#> SRR1343778     3   0.000      0.996 0.000 0.000 1.000
#> SRR1441287     1   0.000      0.997 1.000 0.000 0.000
#> SRR1430991     3   0.000      0.996 0.000 0.000 1.000
#> SRR1499722     3   0.000      0.996 0.000 0.000 1.000
#> SRR1351368     3   0.000      0.996 0.000 0.000 1.000
#> SRR1441785     1   0.000      0.997 1.000 0.000 0.000
#> SRR1096101     1   0.000      0.997 1.000 0.000 0.000
#> SRR808375      3   0.000      0.996 0.000 0.000 1.000
#> SRR1452842     1   0.000      0.997 1.000 0.000 0.000
#> SRR1311709     1   0.000      0.997 1.000 0.000 0.000
#> SRR1433352     3   0.000      0.996 0.000 0.000 1.000
#> SRR1340241     2   0.000      0.991 0.000 1.000 0.000
#> SRR1456754     1   0.000      0.997 1.000 0.000 0.000
#> SRR1465172     3   0.000      0.996 0.000 0.000 1.000
#> SRR1499284     3   0.000      0.996 0.000 0.000 1.000
#> SRR1499607     2   0.000      0.991 0.000 1.000 0.000
#> SRR812342      1   0.000      0.997 1.000 0.000 0.000
#> SRR1405374     1   0.000      0.997 1.000 0.000 0.000
#> SRR1403565     1   0.319      0.874 0.888 0.000 0.112
#> SRR1332024     3   0.000      0.996 0.000 0.000 1.000
#> SRR1471633     1   0.000      0.997 1.000 0.000 0.000
#> SRR1325944     2   0.000      0.991 0.000 1.000 0.000
#> SRR1429450     2   0.000      0.991 0.000 1.000 0.000
#> SRR821573      3   0.000      0.996 0.000 0.000 1.000
#> SRR1435372     1   0.000      0.997 1.000 0.000 0.000
#> SRR1324184     2   0.000      0.991 0.000 1.000 0.000
#> SRR816517      2   0.000      0.991 0.000 1.000 0.000
#> SRR1324141     2   0.000      0.991 0.000 1.000 0.000
#> SRR1101612     1   0.000      0.997 1.000 0.000 0.000
#> SRR1356531     1   0.000      0.997 1.000 0.000 0.000
#> SRR1089785     3   0.000      0.996 0.000 0.000 1.000
#> SRR1077708     3   0.000      0.996 0.000 0.000 1.000
#> SRR1343720     3   0.000      0.996 0.000 0.000 1.000
#> SRR1477499     2   0.000      0.991 0.000 1.000 0.000
#> SRR1347236     3   0.000      0.996 0.000 0.000 1.000
#> SRR1326408     1   0.000      0.997 1.000 0.000 0.000
#> SRR1336529     3   0.000      0.996 0.000 0.000 1.000
#> SRR1440643     3   0.424      0.784 0.000 0.176 0.824
#> SRR662354      1   0.000      0.997 1.000 0.000 0.000
#> SRR1310817     3   0.000      0.996 0.000 0.000 1.000
#> SRR1347389     2   0.000      0.991 0.000 1.000 0.000
#> SRR1353097     1   0.000      0.997 1.000 0.000 0.000
#> SRR1384737     2   0.000      0.991 0.000 1.000 0.000
#> SRR1096339     1   0.000      0.997 1.000 0.000 0.000
#> SRR1345329     2   0.000      0.991 0.000 1.000 0.000
#> SRR1414771     3   0.000      0.996 0.000 0.000 1.000
#> SRR1309119     1   0.000      0.997 1.000 0.000 0.000
#> SRR1470438     3   0.000      0.996 0.000 0.000 1.000
#> SRR1343221     1   0.000      0.997 1.000 0.000 0.000
#> SRR1410847     1   0.000      0.997 1.000 0.000 0.000
#> SRR807949      3   0.000      0.996 0.000 0.000 1.000
#> SRR1442332     3   0.000      0.996 0.000 0.000 1.000
#> SRR815920      3   0.000      0.996 0.000 0.000 1.000
#> SRR1471524     3   0.000      0.996 0.000 0.000 1.000
#> SRR1477221     3   0.000      0.996 0.000 0.000 1.000
#> SRR1445046     2   0.000      0.991 0.000 1.000 0.000
#> SRR1331962     2   0.000      0.991 0.000 1.000 0.000
#> SRR1319946     2   0.000      0.991 0.000 1.000 0.000
#> SRR1311599     1   0.000      0.997 1.000 0.000 0.000
#> SRR1323977     2   0.000      0.991 0.000 1.000 0.000
#> SRR1445132     2   0.000      0.991 0.000 1.000 0.000
#> SRR1337321     3   0.000      0.996 0.000 0.000 1.000
#> SRR1366390     2   0.000      0.991 0.000 1.000 0.000
#> SRR1343012     2   0.153      0.953 0.000 0.960 0.040
#> SRR1311958     2   0.000      0.991 0.000 1.000 0.000
#> SRR1388234     2   0.000      0.991 0.000 1.000 0.000
#> SRR1370384     1   0.000      0.997 1.000 0.000 0.000
#> SRR1321650     3   0.000      0.996 0.000 0.000 1.000
#> SRR1485117     2   0.000      0.991 0.000 1.000 0.000
#> SRR1384713     1   0.000      0.997 1.000 0.000 0.000
#> SRR816609      2   0.000      0.991 0.000 1.000 0.000
#> SRR1486239     2   0.000      0.991 0.000 1.000 0.000
#> SRR1309638     3   0.000      0.996 0.000 0.000 1.000
#> SRR1356660     1   0.000      0.997 1.000 0.000 0.000
#> SRR1392883     2   0.000      0.991 0.000 1.000 0.000
#> SRR808130      3   0.000      0.996 0.000 0.000 1.000
#> SRR816677      1   0.000      0.997 1.000 0.000 0.000
#> SRR1455722     1   0.000      0.997 1.000 0.000 0.000
#> SRR1336029     1   0.000      0.997 1.000 0.000 0.000
#> SRR808452      1   0.000      0.997 1.000 0.000 0.000
#> SRR1352169     3   0.000      0.996 0.000 0.000 1.000
#> SRR1366707     3   0.000      0.996 0.000 0.000 1.000
#> SRR1328143     3   0.000      0.996 0.000 0.000 1.000
#> SRR1473567     2   0.000      0.991 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.3074     0.8455 0.000 0.000 0.848 0.152
#> SRR1390119     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1347278     3  0.3528     0.8328 0.000 0.000 0.808 0.192
#> SRR1332904     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1339007     1  0.4996    -0.0363 0.516 0.000 0.000 0.484
#> SRR1376557     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1077455     4  0.3024     0.6874 0.148 0.000 0.000 0.852
#> SRR1413978     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1317963     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1431865     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1082664     4  0.1118     0.7008 0.000 0.000 0.036 0.964
#> SRR1077968     4  0.5000     0.0353 0.496 0.000 0.000 0.504
#> SRR1076393     4  0.4941    -0.1820 0.000 0.000 0.436 0.564
#> SRR1477476     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.3311     0.8393 0.000 0.000 0.828 0.172
#> SRR1485042     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1385453     2  0.4250     0.7106 0.000 0.724 0.276 0.000
#> SRR1348074     2  0.0469     0.9698 0.000 0.988 0.000 0.012
#> SRR813959      2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR665442      2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1378068     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1485237     2  0.0469     0.9698 0.000 0.988 0.000 0.012
#> SRR1350792     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1326797     4  0.0524     0.7163 0.004 0.000 0.008 0.988
#> SRR808994      3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1474041     3  0.4998     0.5294 0.000 0.000 0.512 0.488
#> SRR1405641     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1362245     3  0.4304     0.7527 0.000 0.000 0.716 0.284
#> SRR1500194     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.0000     0.7468 0.000 0.000 1.000 0.000
#> SRR1325161     4  0.0469     0.7146 0.000 0.000 0.012 0.988
#> SRR1318026     2  0.6083     0.7093 0.124 0.716 0.144 0.016
#> SRR1343778     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1441287     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1430991     3  0.4996     0.5369 0.000 0.000 0.516 0.484
#> SRR1499722     4  0.0469     0.7146 0.000 0.000 0.012 0.988
#> SRR1351368     3  0.0336     0.7466 0.000 0.000 0.992 0.008
#> SRR1441785     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.3569     0.7064 0.804 0.000 0.000 0.196
#> SRR808375      4  0.0592     0.7120 0.000 0.000 0.016 0.984
#> SRR1452842     4  0.3219     0.6798 0.164 0.000 0.000 0.836
#> SRR1311709     1  0.0469     0.9383 0.988 0.000 0.000 0.012
#> SRR1433352     3  0.4522     0.7412 0.000 0.000 0.680 0.320
#> SRR1340241     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1456754     4  0.4761     0.3807 0.372 0.000 0.000 0.628
#> SRR1465172     4  0.0469     0.7146 0.000 0.000 0.012 0.988
#> SRR1499284     4  0.0524     0.7163 0.004 0.000 0.008 0.988
#> SRR1499607     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR812342      1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1403565     1  0.4382     0.5168 0.704 0.000 0.000 0.296
#> SRR1332024     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1471633     1  0.0469     0.9383 0.988 0.000 0.000 0.012
#> SRR1325944     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR821573      4  0.3219     0.6640 0.000 0.000 0.164 0.836
#> SRR1435372     1  0.1211     0.9113 0.960 0.000 0.000 0.040
#> SRR1324184     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR816517      2  0.0592     0.9664 0.000 0.984 0.016 0.000
#> SRR1324141     2  0.3763     0.8422 0.000 0.832 0.144 0.024
#> SRR1101612     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1089785     3  0.4998     0.5294 0.000 0.000 0.512 0.488
#> SRR1077708     4  0.3074     0.5983 0.000 0.000 0.152 0.848
#> SRR1343720     4  0.0469     0.7146 0.000 0.000 0.012 0.988
#> SRR1477499     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1347236     4  0.0524     0.7163 0.004 0.000 0.008 0.988
#> SRR1326408     4  0.4981     0.1337 0.464 0.000 0.000 0.536
#> SRR1336529     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1440643     3  0.2408     0.6559 0.000 0.104 0.896 0.000
#> SRR662354      1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1310817     4  0.4888     0.2200 0.000 0.000 0.412 0.588
#> SRR1347389     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1353097     1  0.0188     0.9441 0.996 0.000 0.000 0.004
#> SRR1384737     2  0.3547     0.8494 0.000 0.840 0.144 0.016
#> SRR1096339     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1345329     2  0.0469     0.9698 0.000 0.988 0.000 0.012
#> SRR1414771     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1309119     1  0.0188     0.9441 0.996 0.000 0.000 0.004
#> SRR1470438     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1343221     1  0.4961     0.1092 0.552 0.000 0.000 0.448
#> SRR1410847     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR807949      3  0.4996     0.5369 0.000 0.000 0.516 0.484
#> SRR1442332     3  0.4804     0.6814 0.000 0.000 0.616 0.384
#> SRR815920      3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1471524     3  0.0188     0.7468 0.000 0.000 0.996 0.004
#> SRR1477221     3  0.3356     0.8378 0.000 0.000 0.824 0.176
#> SRR1445046     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1331962     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1311599     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1323977     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1445132     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1337321     4  0.4843    -0.1643 0.000 0.000 0.396 0.604
#> SRR1366390     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1343012     4  0.4614     0.6291 0.000 0.064 0.144 0.792
#> SRR1311958     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1370384     4  0.4977     0.1583 0.460 0.000 0.000 0.540
#> SRR1321650     3  0.4134     0.7800 0.000 0.000 0.740 0.260
#> SRR1485117     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1384713     4  0.3074     0.6856 0.152 0.000 0.000 0.848
#> SRR816609      2  0.0469     0.9698 0.000 0.988 0.000 0.012
#> SRR1486239     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR1309638     4  0.3649     0.5316 0.000 0.000 0.204 0.796
#> SRR1356660     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1392883     2  0.0000     0.9763 0.000 1.000 0.000 0.000
#> SRR808130      3  0.4996     0.5369 0.000 0.000 0.516 0.484
#> SRR816677      1  0.0469     0.9383 0.988 0.000 0.000 0.012
#> SRR1455722     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR808452      1  0.0000     0.9470 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.2973     0.8467 0.000 0.000 0.856 0.144
#> SRR1366707     3  0.1557     0.7872 0.000 0.000 0.944 0.056
#> SRR1328143     3  0.4804     0.6814 0.000 0.000 0.616 0.384
#> SRR1473567     2  0.0000     0.9763 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     3  0.1124     0.7817 0.000 0.000 0.960 0.004 0.036
#> SRR1390119     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1436127     3  0.0703     0.7843 0.000 0.000 0.976 0.000 0.024
#> SRR1347278     3  0.3519     0.6445 0.000 0.000 0.776 0.008 0.216
#> SRR1332904     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1444179     1  0.0566     0.8884 0.984 0.000 0.000 0.012 0.004
#> SRR1082685     1  0.0162     0.8940 0.996 0.000 0.000 0.000 0.004
#> SRR1362287     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1339007     1  0.5694     0.0622 0.464 0.000 0.000 0.080 0.456
#> SRR1376557     2  0.0162     0.9205 0.000 0.996 0.000 0.004 0.000
#> SRR1468700     2  0.0404     0.9187 0.000 0.988 0.000 0.012 0.000
#> SRR1077455     5  0.2754     0.6141 0.040 0.000 0.000 0.080 0.880
#> SRR1413978     1  0.2377     0.8121 0.872 0.000 0.000 0.128 0.000
#> SRR1439896     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     2  0.1544     0.8693 0.000 0.932 0.000 0.068 0.000
#> SRR1431865     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1082664     5  0.2771     0.6106 0.000 0.000 0.128 0.012 0.860
#> SRR1077968     5  0.5684    -0.0226 0.432 0.000 0.000 0.080 0.488
#> SRR1076393     3  0.4659     0.0198 0.000 0.000 0.500 0.012 0.488
#> SRR1477476     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1398057     3  0.2230     0.7376 0.000 0.000 0.884 0.000 0.116
#> SRR1485042     1  0.0992     0.8806 0.968 0.000 0.000 0.024 0.008
#> SRR1385453     2  0.6381    -0.1323 0.000 0.464 0.172 0.364 0.000
#> SRR1348074     4  0.4403     0.3561 0.000 0.436 0.000 0.560 0.004
#> SRR813959      2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR665442      2  0.0290     0.9199 0.000 0.992 0.000 0.008 0.000
#> SRR1378068     3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1485237     2  0.4443    -0.2244 0.000 0.524 0.000 0.472 0.004
#> SRR1350792     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0451     0.6557 0.000 0.000 0.004 0.008 0.988
#> SRR808994      3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1474041     5  0.4803     0.0384 0.000 0.000 0.444 0.020 0.536
#> SRR1405641     3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1362245     3  0.3684     0.5554 0.000 0.000 0.720 0.000 0.280
#> SRR1500194     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1414876     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1478523     3  0.3398     0.6490 0.000 0.004 0.780 0.216 0.000
#> SRR1325161     5  0.0579     0.6558 0.000 0.000 0.008 0.008 0.984
#> SRR1318026     4  0.1478     0.7572 0.000 0.064 0.000 0.936 0.000
#> SRR1343778     3  0.0510     0.7855 0.000 0.000 0.984 0.000 0.016
#> SRR1441287     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.4807     0.0316 0.000 0.000 0.448 0.020 0.532
#> SRR1499722     5  0.0807     0.6543 0.000 0.000 0.012 0.012 0.976
#> SRR1351368     3  0.4252     0.5109 0.000 0.000 0.652 0.340 0.008
#> SRR1441785     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1096101     1  0.5368     0.3980 0.596 0.000 0.000 0.072 0.332
#> SRR808375      5  0.2144     0.6270 0.000 0.000 0.068 0.020 0.912
#> SRR1452842     5  0.3239     0.5974 0.068 0.000 0.000 0.080 0.852
#> SRR1311709     1  0.3969     0.5567 0.692 0.000 0.000 0.304 0.004
#> SRR1433352     3  0.4183     0.4716 0.000 0.000 0.668 0.008 0.324
#> SRR1340241     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1456754     5  0.5393     0.3192 0.312 0.000 0.000 0.080 0.608
#> SRR1465172     5  0.0671     0.6547 0.000 0.000 0.004 0.016 0.980
#> SRR1499284     5  0.1041     0.6511 0.000 0.000 0.004 0.032 0.964
#> SRR1499607     2  0.1341     0.8824 0.000 0.944 0.000 0.056 0.000
#> SRR812342      1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1403565     1  0.4503     0.4533 0.664 0.000 0.024 0.000 0.312
#> SRR1332024     3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1471633     1  0.3928     0.5740 0.700 0.000 0.000 0.296 0.004
#> SRR1325944     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1429450     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR821573      5  0.4416     0.3875 0.000 0.000 0.012 0.356 0.632
#> SRR1435372     1  0.3182     0.7865 0.844 0.000 0.000 0.032 0.124
#> SRR1324184     2  0.0290     0.9199 0.000 0.992 0.000 0.008 0.000
#> SRR816517      2  0.2127     0.8068 0.000 0.892 0.000 0.108 0.000
#> SRR1324141     4  0.1410     0.7572 0.000 0.060 0.000 0.940 0.000
#> SRR1101612     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0807     0.8856 0.976 0.000 0.000 0.012 0.012
#> SRR1089785     5  0.4818    -0.0064 0.000 0.000 0.460 0.020 0.520
#> SRR1077708     5  0.3890     0.4912 0.000 0.000 0.252 0.012 0.736
#> SRR1343720     5  0.1082     0.6520 0.000 0.000 0.028 0.008 0.964
#> SRR1477499     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1347236     5  0.0579     0.6556 0.000 0.000 0.008 0.008 0.984
#> SRR1326408     5  0.6515     0.1334 0.208 0.000 0.000 0.328 0.464
#> SRR1336529     3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1440643     3  0.6574     0.2201 0.000 0.124 0.476 0.380 0.020
#> SRR662354      1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.6225     0.2660 0.000 0.000 0.200 0.256 0.544
#> SRR1347389     2  0.1732     0.8614 0.000 0.920 0.000 0.080 0.000
#> SRR1353097     1  0.1568     0.8662 0.944 0.000 0.000 0.020 0.036
#> SRR1384737     4  0.1341     0.7546 0.000 0.056 0.000 0.944 0.000
#> SRR1096339     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1345329     4  0.4420     0.3294 0.000 0.448 0.000 0.548 0.004
#> SRR1414771     3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1309119     1  0.0955     0.8799 0.968 0.000 0.000 0.028 0.004
#> SRR1470438     3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1343221     1  0.4401     0.4934 0.656 0.000 0.000 0.016 0.328
#> SRR1410847     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR807949      5  0.4811     0.0157 0.000 0.000 0.452 0.020 0.528
#> SRR1442332     3  0.4736     0.3006 0.000 0.000 0.576 0.020 0.404
#> SRR815920      3  0.0000     0.7870 0.000 0.000 1.000 0.000 0.000
#> SRR1471524     3  0.4575     0.5240 0.000 0.000 0.648 0.328 0.024
#> SRR1477221     3  0.2329     0.7314 0.000 0.000 0.876 0.000 0.124
#> SRR1445046     2  0.1043     0.8977 0.000 0.960 0.000 0.040 0.000
#> SRR1331962     2  0.0404     0.9187 0.000 0.988 0.000 0.012 0.000
#> SRR1319946     2  0.0162     0.9205 0.000 0.996 0.000 0.004 0.000
#> SRR1311599     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1323977     2  0.0404     0.9184 0.000 0.988 0.000 0.012 0.000
#> SRR1445132     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR1337321     5  0.4760     0.1335 0.000 0.000 0.416 0.020 0.564
#> SRR1366390     2  0.0703     0.9079 0.000 0.976 0.000 0.024 0.000
#> SRR1343012     4  0.0609     0.6790 0.000 0.000 0.000 0.980 0.020
#> SRR1311958     2  0.0404     0.9187 0.000 0.988 0.000 0.012 0.000
#> SRR1388234     2  0.0404     0.9187 0.000 0.988 0.000 0.012 0.000
#> SRR1370384     5  0.5616     0.1338 0.384 0.000 0.000 0.080 0.536
#> SRR1321650     3  0.3305     0.6357 0.000 0.000 0.776 0.000 0.224
#> SRR1485117     2  0.0162     0.9205 0.000 0.996 0.000 0.004 0.000
#> SRR1384713     5  0.2423     0.6216 0.024 0.000 0.000 0.080 0.896
#> SRR816609      2  0.4171     0.0939 0.000 0.604 0.000 0.396 0.000
#> SRR1486239     2  0.0404     0.9187 0.000 0.988 0.000 0.012 0.000
#> SRR1309638     5  0.5255     0.4008 0.000 0.000 0.304 0.072 0.624
#> SRR1356660     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1392883     2  0.0162     0.9203 0.000 0.996 0.000 0.004 0.000
#> SRR808130      5  0.4803     0.0384 0.000 0.000 0.444 0.020 0.536
#> SRR816677      1  0.4560     0.1544 0.508 0.000 0.000 0.484 0.008
#> SRR1455722     1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.0162     0.8943 0.996 0.000 0.000 0.004 0.000
#> SRR808452      1  0.0000     0.8958 1.000 0.000 0.000 0.000 0.000
#> SRR1352169     3  0.1478     0.7707 0.000 0.000 0.936 0.000 0.064
#> SRR1366707     3  0.2358     0.7405 0.000 0.000 0.888 0.104 0.008
#> SRR1328143     3  0.4787     0.2211 0.000 0.000 0.548 0.020 0.432
#> SRR1473567     2  0.0290     0.9199 0.000 0.992 0.000 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     3  0.2482     0.6961 0.000 0.000 0.848 0.000 0.148 0.004
#> SRR1390119     2  0.0806     0.9273 0.000 0.972 0.000 0.000 0.008 0.020
#> SRR1436127     3  0.2558     0.6945 0.000 0.000 0.840 0.000 0.156 0.004
#> SRR1347278     3  0.5563     0.2346 0.036 0.000 0.512 0.004 0.400 0.048
#> SRR1332904     2  0.0405     0.9285 0.000 0.988 0.000 0.000 0.008 0.004
#> SRR1444179     1  0.2608     0.8221 0.872 0.000 0.000 0.048 0.000 0.080
#> SRR1082685     1  0.3032     0.7982 0.840 0.000 0.000 0.056 0.000 0.104
#> SRR1362287     1  0.1536     0.8243 0.940 0.000 0.000 0.004 0.016 0.040
#> SRR1339007     6  0.3081     0.6734 0.220 0.000 0.000 0.000 0.004 0.776
#> SRR1376557     2  0.0291     0.9261 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1468700     2  0.0717     0.9203 0.000 0.976 0.000 0.016 0.000 0.008
#> SRR1077455     6  0.2768     0.6619 0.012 0.000 0.000 0.000 0.156 0.832
#> SRR1413978     1  0.4672     0.6613 0.720 0.000 0.000 0.128 0.016 0.136
#> SRR1439896     1  0.1753     0.8322 0.912 0.000 0.000 0.004 0.000 0.084
#> SRR1317963     2  0.2165     0.8358 0.000 0.884 0.000 0.108 0.000 0.008
#> SRR1431865     1  0.1464     0.8259 0.944 0.000 0.000 0.004 0.016 0.036
#> SRR1394253     1  0.1536     0.8252 0.940 0.000 0.000 0.004 0.016 0.040
#> SRR1082664     5  0.5283     0.5286 0.000 0.000 0.148 0.000 0.588 0.264
#> SRR1077968     6  0.2595     0.7147 0.160 0.000 0.000 0.000 0.004 0.836
#> SRR1076393     5  0.5478     0.1703 0.000 0.000 0.424 0.000 0.452 0.124
#> SRR1477476     2  0.0909     0.9257 0.000 0.968 0.000 0.000 0.012 0.020
#> SRR1398057     3  0.3287     0.6282 0.000 0.000 0.768 0.000 0.220 0.012
#> SRR1485042     1  0.3141     0.7527 0.788 0.000 0.000 0.000 0.012 0.200
#> SRR1385453     2  0.8399    -0.2027 0.000 0.352 0.188 0.216 0.172 0.072
#> SRR1348074     4  0.3658     0.6718 0.000 0.216 0.000 0.752 0.000 0.032
#> SRR813959      2  0.0909     0.9258 0.000 0.968 0.000 0.000 0.012 0.020
#> SRR665442      2  0.0146     0.9271 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1378068     3  0.0260     0.7531 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1485237     4  0.4859     0.5233 0.000 0.344 0.000 0.584 0.000 0.072
#> SRR1350792     1  0.2006     0.8267 0.892 0.000 0.000 0.004 0.000 0.104
#> SRR1326797     5  0.3464     0.5272 0.000 0.000 0.000 0.000 0.688 0.312
#> SRR808994      3  0.0000     0.7532 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1474041     5  0.2948     0.6447 0.000 0.000 0.188 0.000 0.804 0.008
#> SRR1405641     3  0.0260     0.7512 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1362245     3  0.4849     0.4959 0.012 0.000 0.644 0.000 0.280 0.064
#> SRR1500194     1  0.0508     0.8366 0.984 0.000 0.000 0.004 0.000 0.012
#> SRR1414876     2  0.0717     0.9278 0.000 0.976 0.000 0.000 0.008 0.016
#> SRR1478523     3  0.5073     0.5785 0.000 0.000 0.712 0.084 0.128 0.076
#> SRR1325161     5  0.3330     0.5586 0.000 0.000 0.000 0.000 0.716 0.284
#> SRR1318026     4  0.1674     0.6681 0.000 0.004 0.000 0.924 0.068 0.004
#> SRR1343778     3  0.1082     0.7469 0.000 0.000 0.956 0.000 0.040 0.004
#> SRR1441287     1  0.1444     0.8358 0.928 0.000 0.000 0.000 0.000 0.072
#> SRR1430991     5  0.3110     0.6497 0.000 0.000 0.196 0.000 0.792 0.012
#> SRR1499722     5  0.3337     0.5811 0.000 0.000 0.004 0.000 0.736 0.260
#> SRR1351368     3  0.6350     0.4035 0.000 0.000 0.532 0.176 0.240 0.052
#> SRR1441785     1  0.1464     0.8259 0.944 0.000 0.000 0.004 0.016 0.036
#> SRR1096101     6  0.4187     0.3921 0.356 0.000 0.000 0.004 0.016 0.624
#> SRR808375      5  0.3301     0.6313 0.000 0.000 0.024 0.000 0.788 0.188
#> SRR1452842     6  0.3307     0.6807 0.044 0.000 0.000 0.000 0.148 0.808
#> SRR1311709     1  0.5219     0.3881 0.552 0.000 0.000 0.340 0.000 0.108
#> SRR1433352     3  0.4218     0.1524 0.000 0.000 0.556 0.000 0.428 0.016
#> SRR1340241     2  0.0806     0.9273 0.000 0.972 0.000 0.000 0.008 0.020
#> SRR1456754     6  0.3307     0.7194 0.148 0.000 0.000 0.000 0.044 0.808
#> SRR1465172     5  0.3838     0.2401 0.000 0.000 0.000 0.000 0.552 0.448
#> SRR1499284     6  0.3659     0.2964 0.000 0.000 0.000 0.000 0.364 0.636
#> SRR1499607     2  0.2070     0.8453 0.000 0.892 0.000 0.100 0.000 0.008
#> SRR812342      1  0.1556     0.8338 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1405374     1  0.0508     0.8364 0.984 0.000 0.000 0.004 0.000 0.012
#> SRR1403565     1  0.4948     0.3866 0.612 0.000 0.000 0.004 0.304 0.080
#> SRR1332024     3  0.0146     0.7527 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1471633     1  0.5279     0.3855 0.548 0.000 0.000 0.336 0.000 0.116
#> SRR1325944     2  0.0806     0.9273 0.000 0.972 0.000 0.000 0.008 0.020
#> SRR1429450     2  0.0806     0.9273 0.000 0.972 0.000 0.000 0.008 0.020
#> SRR821573      5  0.4039     0.4543 0.000 0.000 0.000 0.208 0.732 0.060
#> SRR1435372     1  0.4808     0.1703 0.480 0.000 0.000 0.052 0.000 0.468
#> SRR1324184     2  0.0146     0.9271 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR816517      2  0.3791     0.7593 0.000 0.816 0.000 0.064 0.056 0.064
#> SRR1324141     4  0.2162     0.6656 0.000 0.004 0.000 0.896 0.088 0.012
#> SRR1101612     1  0.1007     0.8391 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1356531     1  0.3175     0.6930 0.744 0.000 0.000 0.000 0.000 0.256
#> SRR1089785     5  0.3230     0.6443 0.000 0.000 0.212 0.000 0.776 0.012
#> SRR1077708     6  0.5966    -0.0992 0.000 0.000 0.232 0.000 0.340 0.428
#> SRR1343720     5  0.4389     0.4214 0.000 0.000 0.032 0.000 0.596 0.372
#> SRR1477499     2  0.0806     0.9273 0.000 0.972 0.000 0.000 0.008 0.020
#> SRR1347236     5  0.3601     0.5367 0.000 0.000 0.004 0.000 0.684 0.312
#> SRR1326408     6  0.3962     0.6952 0.128 0.000 0.000 0.096 0.004 0.772
#> SRR1336529     3  0.0000     0.7532 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1440643     5  0.8138    -0.1766 0.000 0.076 0.288 0.212 0.340 0.084
#> SRR662354      1  0.1141     0.8395 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1310817     5  0.2345     0.6376 0.000 0.000 0.028 0.028 0.904 0.040
#> SRR1347389     2  0.2631     0.7827 0.000 0.840 0.000 0.152 0.000 0.008
#> SRR1353097     1  0.3023     0.7122 0.768 0.000 0.000 0.000 0.000 0.232
#> SRR1384737     4  0.2162     0.6656 0.000 0.004 0.000 0.896 0.088 0.012
#> SRR1096339     1  0.0937     0.8398 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1345329     4  0.3766     0.6675 0.000 0.232 0.000 0.736 0.000 0.032
#> SRR1414771     3  0.0508     0.7486 0.000 0.000 0.984 0.000 0.012 0.004
#> SRR1309119     1  0.2190     0.8265 0.900 0.000 0.000 0.040 0.000 0.060
#> SRR1470438     3  0.0000     0.7532 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1343221     1  0.4141     0.1616 0.556 0.000 0.000 0.000 0.012 0.432
#> SRR1410847     1  0.1410     0.8414 0.944 0.000 0.000 0.004 0.008 0.044
#> SRR807949      5  0.3012     0.6488 0.000 0.000 0.196 0.000 0.796 0.008
#> SRR1442332     5  0.3652     0.5406 0.000 0.000 0.264 0.000 0.720 0.016
#> SRR815920      3  0.0146     0.7533 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1471524     3  0.6452     0.3499 0.000 0.000 0.492 0.172 0.288 0.048
#> SRR1477221     3  0.5056     0.4996 0.028 0.000 0.636 0.004 0.288 0.044
#> SRR1445046     2  0.1757     0.8715 0.000 0.916 0.000 0.076 0.000 0.008
#> SRR1331962     2  0.0717     0.9203 0.000 0.976 0.000 0.016 0.000 0.008
#> SRR1319946     2  0.0508     0.9289 0.000 0.984 0.000 0.000 0.004 0.012
#> SRR1311599     1  0.1464     0.8259 0.944 0.000 0.000 0.004 0.016 0.036
#> SRR1323977     2  0.0862     0.9270 0.000 0.972 0.000 0.008 0.004 0.016
#> SRR1445132     2  0.0806     0.9273 0.000 0.972 0.000 0.000 0.008 0.020
#> SRR1337321     5  0.4650     0.6139 0.016 0.000 0.172 0.000 0.716 0.096
#> SRR1366390     2  0.1167     0.9217 0.000 0.960 0.000 0.012 0.008 0.020
#> SRR1343012     4  0.2333     0.6534 0.000 0.000 0.000 0.884 0.092 0.024
#> SRR1311958     2  0.0717     0.9203 0.000 0.976 0.000 0.016 0.000 0.008
#> SRR1388234     2  0.1196     0.9046 0.000 0.952 0.000 0.040 0.000 0.008
#> SRR1370384     6  0.2734     0.7183 0.148 0.000 0.000 0.004 0.008 0.840
#> SRR1321650     3  0.3405     0.5657 0.000 0.000 0.724 0.000 0.272 0.004
#> SRR1485117     2  0.0146     0.9271 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1384713     6  0.2980     0.6333 0.008 0.000 0.000 0.000 0.192 0.800
#> SRR816609      4  0.4263     0.2113 0.000 0.480 0.000 0.504 0.000 0.016
#> SRR1486239     2  0.0717     0.9203 0.000 0.976 0.000 0.016 0.000 0.008
#> SRR1309638     6  0.4851     0.4091 0.000 0.000 0.272 0.000 0.096 0.632
#> SRR1356660     1  0.1464     0.8259 0.944 0.000 0.000 0.004 0.016 0.036
#> SRR1392883     2  0.0717     0.9278 0.000 0.976 0.000 0.000 0.008 0.016
#> SRR808130      5  0.2838     0.6509 0.000 0.000 0.188 0.000 0.808 0.004
#> SRR816677      4  0.4887     0.3634 0.280 0.000 0.000 0.624 0.000 0.096
#> SRR1455722     1  0.1556     0.8338 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1336029     1  0.1010     0.8401 0.960 0.000 0.000 0.004 0.000 0.036
#> SRR808452      1  0.1387     0.8366 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1352169     3  0.3445     0.6141 0.000 0.000 0.744 0.000 0.244 0.012
#> SRR1366707     3  0.4448     0.5876 0.000 0.000 0.724 0.040 0.204 0.032
#> SRR1328143     5  0.3629     0.5400 0.000 0.000 0.276 0.000 0.712 0.012
#> SRR1473567     2  0.0405     0.9250 0.000 0.988 0.000 0.008 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.982       0.992         0.3566 0.639   0.639
#> 3 3 0.882           0.934       0.970         0.8136 0.675   0.507
#> 4 4 0.774           0.813       0.858         0.0707 0.981   0.947
#> 5 5 0.790           0.798       0.904         0.0824 0.860   0.611
#> 6 6 0.754           0.653       0.829         0.0486 0.964   0.856

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.998 1.000 0.000
#> SRR1390119     2  0.0000      0.972 0.000 1.000
#> SRR1436127     1  0.0000      0.998 1.000 0.000
#> SRR1347278     1  0.0000      0.998 1.000 0.000
#> SRR1332904     2  0.0000      0.972 0.000 1.000
#> SRR1444179     1  0.0000      0.998 1.000 0.000
#> SRR1082685     1  0.0000      0.998 1.000 0.000
#> SRR1362287     1  0.0000      0.998 1.000 0.000
#> SRR1339007     1  0.0000      0.998 1.000 0.000
#> SRR1376557     2  0.0000      0.972 0.000 1.000
#> SRR1468700     2  0.0000      0.972 0.000 1.000
#> SRR1077455     1  0.0000      0.998 1.000 0.000
#> SRR1413978     1  0.0000      0.998 1.000 0.000
#> SRR1439896     1  0.0000      0.998 1.000 0.000
#> SRR1317963     2  0.0000      0.972 0.000 1.000
#> SRR1431865     1  0.0000      0.998 1.000 0.000
#> SRR1394253     1  0.0000      0.998 1.000 0.000
#> SRR1082664     1  0.0000      0.998 1.000 0.000
#> SRR1077968     1  0.0000      0.998 1.000 0.000
#> SRR1076393     1  0.0000      0.998 1.000 0.000
#> SRR1477476     2  0.0000      0.972 0.000 1.000
#> SRR1398057     1  0.0000      0.998 1.000 0.000
#> SRR1485042     1  0.0000      0.998 1.000 0.000
#> SRR1385453     1  0.0000      0.998 1.000 0.000
#> SRR1348074     2  0.9686      0.375 0.396 0.604
#> SRR813959      1  0.0000      0.998 1.000 0.000
#> SRR665442      1  0.0000      0.998 1.000 0.000
#> SRR1378068     1  0.0000      0.998 1.000 0.000
#> SRR1485237     2  0.1184      0.960 0.016 0.984
#> SRR1350792     1  0.0000      0.998 1.000 0.000
#> SRR1326797     1  0.0000      0.998 1.000 0.000
#> SRR808994      1  0.0000      0.998 1.000 0.000
#> SRR1474041     1  0.0000      0.998 1.000 0.000
#> SRR1405641     1  0.0000      0.998 1.000 0.000
#> SRR1362245     1  0.0000      0.998 1.000 0.000
#> SRR1500194     1  0.0000      0.998 1.000 0.000
#> SRR1414876     2  0.0000      0.972 0.000 1.000
#> SRR1478523     1  0.0000      0.998 1.000 0.000
#> SRR1325161     1  0.0000      0.998 1.000 0.000
#> SRR1318026     1  0.0000      0.998 1.000 0.000
#> SRR1343778     1  0.0000      0.998 1.000 0.000
#> SRR1441287     1  0.0000      0.998 1.000 0.000
#> SRR1430991     1  0.0000      0.998 1.000 0.000
#> SRR1499722     1  0.0000      0.998 1.000 0.000
#> SRR1351368     1  0.0000      0.998 1.000 0.000
#> SRR1441785     1  0.0000      0.998 1.000 0.000
#> SRR1096101     1  0.0000      0.998 1.000 0.000
#> SRR808375      1  0.0000      0.998 1.000 0.000
#> SRR1452842     1  0.0000      0.998 1.000 0.000
#> SRR1311709     1  0.0000      0.998 1.000 0.000
#> SRR1433352     1  0.0000      0.998 1.000 0.000
#> SRR1340241     2  0.0000      0.972 0.000 1.000
#> SRR1456754     1  0.0000      0.998 1.000 0.000
#> SRR1465172     1  0.0000      0.998 1.000 0.000
#> SRR1499284     1  0.0000      0.998 1.000 0.000
#> SRR1499607     2  0.0000      0.972 0.000 1.000
#> SRR812342      1  0.0000      0.998 1.000 0.000
#> SRR1405374     1  0.0000      0.998 1.000 0.000
#> SRR1403565     1  0.0000      0.998 1.000 0.000
#> SRR1332024     1  0.0000      0.998 1.000 0.000
#> SRR1471633     1  0.0000      0.998 1.000 0.000
#> SRR1325944     2  0.0000      0.972 0.000 1.000
#> SRR1429450     2  0.0000      0.972 0.000 1.000
#> SRR821573      1  0.0000      0.998 1.000 0.000
#> SRR1435372     1  0.0000      0.998 1.000 0.000
#> SRR1324184     2  0.0000      0.972 0.000 1.000
#> SRR816517      1  0.0000      0.998 1.000 0.000
#> SRR1324141     1  0.0000      0.998 1.000 0.000
#> SRR1101612     1  0.0000      0.998 1.000 0.000
#> SRR1356531     1  0.0000      0.998 1.000 0.000
#> SRR1089785     1  0.0000      0.998 1.000 0.000
#> SRR1077708     1  0.0000      0.998 1.000 0.000
#> SRR1343720     1  0.0000      0.998 1.000 0.000
#> SRR1477499     2  0.0000      0.972 0.000 1.000
#> SRR1347236     1  0.0000      0.998 1.000 0.000
#> SRR1326408     1  0.0000      0.998 1.000 0.000
#> SRR1336529     1  0.0000      0.998 1.000 0.000
#> SRR1440643     1  0.0000      0.998 1.000 0.000
#> SRR662354      1  0.0000      0.998 1.000 0.000
#> SRR1310817     1  0.0000      0.998 1.000 0.000
#> SRR1347389     2  0.6973      0.777 0.188 0.812
#> SRR1353097     1  0.0000      0.998 1.000 0.000
#> SRR1384737     1  0.0000      0.998 1.000 0.000
#> SRR1096339     1  0.0000      0.998 1.000 0.000
#> SRR1345329     2  0.5946      0.834 0.144 0.856
#> SRR1414771     1  0.0000      0.998 1.000 0.000
#> SRR1309119     1  0.0000      0.998 1.000 0.000
#> SRR1470438     1  0.0000      0.998 1.000 0.000
#> SRR1343221     1  0.0000      0.998 1.000 0.000
#> SRR1410847     1  0.0000      0.998 1.000 0.000
#> SRR807949      1  0.0000      0.998 1.000 0.000
#> SRR1442332     1  0.0000      0.998 1.000 0.000
#> SRR815920      1  0.0000      0.998 1.000 0.000
#> SRR1471524     1  0.0000      0.998 1.000 0.000
#> SRR1477221     1  0.0000      0.998 1.000 0.000
#> SRR1445046     2  0.0000      0.972 0.000 1.000
#> SRR1331962     2  0.0000      0.972 0.000 1.000
#> SRR1319946     2  0.0000      0.972 0.000 1.000
#> SRR1311599     1  0.0000      0.998 1.000 0.000
#> SRR1323977     1  0.6973      0.762 0.812 0.188
#> SRR1445132     2  0.0000      0.972 0.000 1.000
#> SRR1337321     1  0.0000      0.998 1.000 0.000
#> SRR1366390     2  0.2603      0.937 0.044 0.956
#> SRR1343012     1  0.0000      0.998 1.000 0.000
#> SRR1311958     2  0.0000      0.972 0.000 1.000
#> SRR1388234     2  0.0000      0.972 0.000 1.000
#> SRR1370384     1  0.0000      0.998 1.000 0.000
#> SRR1321650     1  0.0000      0.998 1.000 0.000
#> SRR1485117     2  0.0000      0.972 0.000 1.000
#> SRR1384713     1  0.0000      0.998 1.000 0.000
#> SRR816609      2  0.0376      0.969 0.004 0.996
#> SRR1486239     2  0.0000      0.972 0.000 1.000
#> SRR1309638     1  0.0000      0.998 1.000 0.000
#> SRR1356660     1  0.0000      0.998 1.000 0.000
#> SRR1392883     2  0.0000      0.972 0.000 1.000
#> SRR808130      1  0.0000      0.998 1.000 0.000
#> SRR816677      1  0.0000      0.998 1.000 0.000
#> SRR1455722     1  0.0000      0.998 1.000 0.000
#> SRR1336029     1  0.0000      0.998 1.000 0.000
#> SRR808452      1  0.0000      0.998 1.000 0.000
#> SRR1352169     1  0.0000      0.998 1.000 0.000
#> SRR1366707     1  0.0000      0.998 1.000 0.000
#> SRR1328143     1  0.0000      0.998 1.000 0.000
#> SRR1473567     2  0.0000      0.972 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1390119     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1347278     1  0.5706      0.582 0.680 0.000 0.320
#> SRR1332904     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1444179     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1082685     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1362287     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1339007     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1376557     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1077455     1  0.4605      0.767 0.796 0.000 0.204
#> SRR1413978     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1439896     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1317963     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1431865     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1394253     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1082664     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1077968     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1076393     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1398057     3  0.0424      0.970 0.008 0.000 0.992
#> SRR1485042     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1385453     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1348074     1  0.0000      0.945 1.000 0.000 0.000
#> SRR813959      3  0.0000      0.976 0.000 0.000 1.000
#> SRR665442      1  0.0000      0.945 1.000 0.000 0.000
#> SRR1378068     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1485237     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1350792     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1326797     1  0.4750      0.753 0.784 0.000 0.216
#> SRR808994      3  0.0000      0.976 0.000 0.000 1.000
#> SRR1474041     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1405641     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1362245     3  0.2625      0.895 0.084 0.000 0.916
#> SRR1500194     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1414876     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1478523     3  0.0892      0.960 0.020 0.000 0.980
#> SRR1325161     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1318026     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1343778     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1441287     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1430991     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1499722     1  0.6225      0.317 0.568 0.000 0.432
#> SRR1351368     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1441785     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1096101     1  0.0000      0.945 1.000 0.000 0.000
#> SRR808375      3  0.0000      0.976 0.000 0.000 1.000
#> SRR1452842     1  0.4291      0.794 0.820 0.000 0.180
#> SRR1311709     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1433352     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1340241     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1456754     1  0.0424      0.940 0.992 0.000 0.008
#> SRR1465172     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1499284     1  0.4750      0.753 0.784 0.000 0.216
#> SRR1499607     2  0.0000      0.991 0.000 1.000 0.000
#> SRR812342      1  0.0000      0.945 1.000 0.000 0.000
#> SRR1405374     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1403565     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1332024     3  0.4750      0.722 0.216 0.000 0.784
#> SRR1471633     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1325944     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.991 0.000 1.000 0.000
#> SRR821573      3  0.1753      0.932 0.048 0.000 0.952
#> SRR1435372     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1324184     2  0.0000      0.991 0.000 1.000 0.000
#> SRR816517      3  0.0000      0.976 0.000 0.000 1.000
#> SRR1324141     1  0.4750      0.753 0.784 0.000 0.216
#> SRR1101612     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1089785     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1077708     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1343720     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1477499     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1347236     3  0.4931      0.678 0.232 0.000 0.768
#> SRR1326408     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1336529     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1440643     3  0.0424      0.970 0.008 0.000 0.992
#> SRR662354      1  0.0000      0.945 1.000 0.000 0.000
#> SRR1310817     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1347389     2  0.4504      0.763 0.196 0.804 0.000
#> SRR1353097     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1384737     1  0.0237      0.942 0.996 0.000 0.004
#> SRR1096339     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1345329     1  0.3116      0.846 0.892 0.108 0.000
#> SRR1414771     3  0.0424      0.970 0.008 0.000 0.992
#> SRR1309119     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1470438     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1343221     1  0.4555      0.742 0.800 0.000 0.200
#> SRR1410847     1  0.0000      0.945 1.000 0.000 0.000
#> SRR807949      3  0.0000      0.976 0.000 0.000 1.000
#> SRR1442332     3  0.0000      0.976 0.000 0.000 1.000
#> SRR815920      3  0.0000      0.976 0.000 0.000 1.000
#> SRR1471524     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1477221     3  0.4002      0.803 0.160 0.000 0.840
#> SRR1445046     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1331962     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1319946     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1311599     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1323977     1  0.2796      0.872 0.908 0.092 0.000
#> SRR1445132     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1337321     3  0.2878      0.882 0.096 0.000 0.904
#> SRR1366390     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1343012     1  0.4654      0.763 0.792 0.000 0.208
#> SRR1311958     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1388234     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1370384     1  0.0592      0.937 0.988 0.000 0.012
#> SRR1321650     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1485117     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1384713     1  0.4750      0.753 0.784 0.000 0.216
#> SRR816609      2  0.0592      0.980 0.012 0.988 0.000
#> SRR1486239     2  0.0000      0.991 0.000 1.000 0.000
#> SRR1309638     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1356660     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.991 0.000 1.000 0.000
#> SRR808130      3  0.0000      0.976 0.000 0.000 1.000
#> SRR816677      1  0.0000      0.945 1.000 0.000 0.000
#> SRR1455722     1  0.0000      0.945 1.000 0.000 0.000
#> SRR1336029     1  0.0000      0.945 1.000 0.000 0.000
#> SRR808452      1  0.0000      0.945 1.000 0.000 0.000
#> SRR1352169     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1366707     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1328143     3  0.0000      0.976 0.000 0.000 1.000
#> SRR1473567     2  0.0000      0.991 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.2081      0.840 0.000 0.000 0.916 0.084
#> SRR1390119     4  0.4697      0.980 0.000 0.356 0.000 0.644
#> SRR1436127     3  0.0592      0.826 0.000 0.000 0.984 0.016
#> SRR1347278     1  0.6955      0.404 0.560 0.000 0.296 0.144
#> SRR1332904     2  0.2281      0.852 0.000 0.904 0.000 0.096
#> SRR1444179     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1339007     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.2149      0.861 0.000 0.912 0.000 0.088
#> SRR1468700     2  0.2149      0.861 0.000 0.912 0.000 0.088
#> SRR1077455     1  0.6770      0.510 0.604 0.000 0.160 0.236
#> SRR1413978     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1439896     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1317963     2  0.0336      0.880 0.000 0.992 0.000 0.008
#> SRR1431865     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1082664     3  0.4454      0.810 0.000 0.000 0.692 0.308
#> SRR1077968     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1076393     3  0.4477      0.809 0.000 0.000 0.688 0.312
#> SRR1477476     4  0.4697      0.980 0.000 0.356 0.000 0.644
#> SRR1398057     3  0.2376      0.837 0.016 0.000 0.916 0.068
#> SRR1485042     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1385453     3  0.2882      0.748 0.000 0.084 0.892 0.024
#> SRR1348074     1  0.2048      0.846 0.928 0.064 0.000 0.008
#> SRR813959      3  0.6300      0.766 0.000 0.084 0.608 0.308
#> SRR665442      1  0.2216      0.832 0.908 0.092 0.000 0.000
#> SRR1378068     3  0.0817      0.813 0.000 0.000 0.976 0.024
#> SRR1485237     1  0.2480      0.830 0.904 0.088 0.000 0.008
#> SRR1350792     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.7212      0.364 0.516 0.000 0.160 0.324
#> SRR808994      3  0.0817      0.813 0.000 0.000 0.976 0.024
#> SRR1474041     3  0.4543      0.803 0.000 0.000 0.676 0.324
#> SRR1405641     3  0.0817      0.813 0.000 0.000 0.976 0.024
#> SRR1362245     3  0.5394      0.800 0.060 0.000 0.712 0.228
#> SRR1500194     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.3688      0.639 0.000 0.792 0.000 0.208
#> SRR1478523     3  0.1284      0.813 0.012 0.000 0.964 0.024
#> SRR1325161     3  0.4543      0.803 0.000 0.000 0.676 0.324
#> SRR1318026     1  0.0336      0.886 0.992 0.000 0.000 0.008
#> SRR1343778     3  0.1389      0.835 0.000 0.000 0.952 0.048
#> SRR1441287     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1430991     3  0.3444      0.836 0.000 0.000 0.816 0.184
#> SRR1499722     1  0.7748      0.102 0.428 0.000 0.248 0.324
#> SRR1351368     3  0.1211      0.825 0.000 0.000 0.960 0.040
#> SRR1441785     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR808375      3  0.4543      0.803 0.000 0.000 0.676 0.324
#> SRR1452842     1  0.6420      0.565 0.640 0.000 0.132 0.228
#> SRR1311709     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1433352     3  0.1940      0.839 0.000 0.000 0.924 0.076
#> SRR1340241     4  0.4730      0.968 0.000 0.364 0.000 0.636
#> SRR1456754     1  0.3626      0.754 0.812 0.000 0.004 0.184
#> SRR1465172     3  0.4543      0.803 0.000 0.000 0.676 0.324
#> SRR1499284     1  0.7212      0.364 0.516 0.000 0.160 0.324
#> SRR1499607     2  0.0336      0.880 0.000 0.992 0.000 0.008
#> SRR812342      1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1403565     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1332024     3  0.3659      0.677 0.136 0.000 0.840 0.024
#> SRR1471633     1  0.0336      0.886 0.992 0.000 0.000 0.008
#> SRR1325944     4  0.4697      0.980 0.000 0.356 0.000 0.644
#> SRR1429450     4  0.4697      0.980 0.000 0.356 0.000 0.644
#> SRR821573      3  0.5793      0.766 0.048 0.000 0.628 0.324
#> SRR1435372     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.0000      0.883 0.000 1.000 0.000 0.000
#> SRR816517      3  0.3149      0.737 0.000 0.088 0.880 0.032
#> SRR1324141     1  0.7256      0.411 0.540 0.004 0.156 0.300
#> SRR1101612     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1089785     3  0.4454      0.811 0.000 0.000 0.692 0.308
#> SRR1077708     3  0.4500      0.806 0.000 0.000 0.684 0.316
#> SRR1343720     3  0.2281      0.841 0.000 0.000 0.904 0.096
#> SRR1477499     4  0.4925      0.859 0.000 0.428 0.000 0.572
#> SRR1347236     3  0.7324      0.530 0.240 0.000 0.532 0.228
#> SRR1326408     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1336529     3  0.0817      0.813 0.000 0.000 0.976 0.024
#> SRR1440643     3  0.2021      0.813 0.040 0.000 0.936 0.024
#> SRR662354      1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1310817     3  0.4543      0.803 0.000 0.000 0.676 0.324
#> SRR1347389     2  0.2611      0.695 0.096 0.896 0.000 0.008
#> SRR1353097     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1384737     1  0.0524      0.885 0.988 0.000 0.004 0.008
#> SRR1096339     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1345329     1  0.3351      0.761 0.844 0.148 0.000 0.008
#> SRR1414771     3  0.0817      0.813 0.000 0.000 0.976 0.024
#> SRR1309119     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1470438     3  0.1004      0.811 0.004 0.000 0.972 0.024
#> SRR1343221     1  0.3528      0.691 0.808 0.000 0.192 0.000
#> SRR1410847     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR807949      3  0.4382      0.815 0.000 0.000 0.704 0.296
#> SRR1442332     3  0.4103      0.825 0.000 0.000 0.744 0.256
#> SRR815920      3  0.0817      0.813 0.000 0.000 0.976 0.024
#> SRR1471524     3  0.2973      0.837 0.000 0.000 0.856 0.144
#> SRR1477221     3  0.3528      0.680 0.192 0.000 0.808 0.000
#> SRR1445046     2  0.0336      0.880 0.000 0.992 0.000 0.008
#> SRR1331962     2  0.2081      0.864 0.000 0.916 0.000 0.084
#> SRR1319946     2  0.0336      0.883 0.000 0.992 0.000 0.008
#> SRR1311599     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1323977     1  0.3351      0.779 0.844 0.148 0.000 0.008
#> SRR1445132     4  0.4697      0.980 0.000 0.356 0.000 0.644
#> SRR1337321     3  0.5558      0.779 0.036 0.000 0.640 0.324
#> SRR1366390     2  0.0817      0.875 0.000 0.976 0.000 0.024
#> SRR1343012     1  0.7013      0.436 0.556 0.000 0.152 0.292
#> SRR1311958     2  0.0000      0.883 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0336      0.880 0.000 0.992 0.000 0.008
#> SRR1370384     1  0.3768      0.751 0.808 0.000 0.008 0.184
#> SRR1321650     3  0.2647      0.839 0.000 0.000 0.880 0.120
#> SRR1485117     2  0.2149      0.861 0.000 0.912 0.000 0.088
#> SRR1384713     1  0.7198      0.371 0.520 0.000 0.160 0.320
#> SRR816609      2  0.1722      0.809 0.048 0.944 0.000 0.008
#> SRR1486239     2  0.2081      0.864 0.000 0.916 0.000 0.084
#> SRR1309638     3  0.4500      0.806 0.000 0.000 0.684 0.316
#> SRR1356660     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1392883     4  0.4697      0.980 0.000 0.356 0.000 0.644
#> SRR808130      3  0.4477      0.809 0.000 0.000 0.688 0.312
#> SRR816677      1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1455722     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR808452      1  0.0000      0.890 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.2053      0.838 0.004 0.000 0.924 0.072
#> SRR1366707     3  0.1474      0.821 0.000 0.000 0.948 0.052
#> SRR1328143     3  0.3266      0.838 0.000 0.000 0.832 0.168
#> SRR1473567     2  0.2081      0.864 0.000 0.916 0.000 0.084

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     3  0.3707     0.6824 0.000 0.000 0.716 0.000 0.284
#> SRR1390119     2  0.0000     0.9731 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.2280     0.8062 0.000 0.000 0.880 0.000 0.120
#> SRR1347278     5  0.6554     0.1628 0.392 0.000 0.200 0.000 0.408
#> SRR1332904     4  0.1952     0.9032 0.000 0.084 0.004 0.912 0.000
#> SRR1444179     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1339007     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1376557     4  0.1410     0.9147 0.000 0.060 0.000 0.940 0.000
#> SRR1468700     4  0.1410     0.9147 0.000 0.060 0.000 0.940 0.000
#> SRR1077455     5  0.3895     0.5057 0.320 0.000 0.000 0.000 0.680
#> SRR1413978     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.0162     0.9205 0.000 0.000 0.004 0.996 0.000
#> SRR1431865     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1082664     5  0.1043     0.7690 0.000 0.000 0.040 0.000 0.960
#> SRR1077968     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1076393     5  0.2891     0.6200 0.000 0.000 0.176 0.000 0.824
#> SRR1477476     2  0.0000     0.9731 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.3391     0.7654 0.012 0.000 0.800 0.000 0.188
#> SRR1485042     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1385453     3  0.0162     0.7879 0.000 0.000 0.996 0.000 0.004
#> SRR1348074     1  0.2423     0.8706 0.896 0.000 0.024 0.080 0.000
#> SRR813959      5  0.3803     0.6707 0.000 0.000 0.140 0.056 0.804
#> SRR665442      1  0.2940     0.8535 0.876 0.000 0.048 0.072 0.004
#> SRR1378068     3  0.1270     0.8191 0.000 0.000 0.948 0.000 0.052
#> SRR1485237     1  0.2659     0.8648 0.888 0.000 0.052 0.060 0.000
#> SRR1350792     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR808994      3  0.1270     0.8191 0.000 0.000 0.948 0.000 0.052
#> SRR1474041     5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR1405641     3  0.1270     0.8191 0.000 0.000 0.948 0.000 0.052
#> SRR1362245     3  0.5289     0.1678 0.048 0.000 0.500 0.000 0.452
#> SRR1500194     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1414876     4  0.3913     0.6175 0.000 0.324 0.000 0.676 0.000
#> SRR1478523     3  0.3555     0.7439 0.124 0.000 0.824 0.000 0.052
#> SRR1325161     5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR1318026     1  0.0162     0.9555 0.996 0.000 0.004 0.000 0.000
#> SRR1343778     3  0.2773     0.7836 0.000 0.000 0.836 0.000 0.164
#> SRR1441287     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.4150     0.0951 0.000 0.000 0.388 0.000 0.612
#> SRR1499722     5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR1351368     3  0.3143     0.7612 0.000 0.000 0.796 0.000 0.204
#> SRR1441785     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1096101     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR808375      5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR1452842     5  0.4060     0.4600 0.360 0.000 0.000 0.000 0.640
#> SRR1311709     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1433352     3  0.4960     0.6728 0.080 0.000 0.688 0.000 0.232
#> SRR1340241     2  0.0510     0.9592 0.000 0.984 0.000 0.016 0.000
#> SRR1456754     1  0.4287     0.0723 0.540 0.000 0.000 0.000 0.460
#> SRR1465172     5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR1499284     5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR1499607     4  0.0404     0.9201 0.000 0.000 0.012 0.988 0.000
#> SRR812342      1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1403565     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1332024     3  0.1270     0.7827 0.052 0.000 0.948 0.000 0.000
#> SRR1471633     1  0.0162     0.9555 0.996 0.000 0.004 0.000 0.000
#> SRR1325944     2  0.0000     0.9731 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9731 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.0000     0.7797 0.000 0.000 0.000 0.000 1.000
#> SRR1435372     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1324184     4  0.1197     0.9083 0.000 0.000 0.048 0.952 0.000
#> SRR816517      3  0.1410     0.7607 0.000 0.000 0.940 0.060 0.000
#> SRR1324141     5  0.3647     0.6053 0.228 0.000 0.004 0.004 0.764
#> SRR1101612     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.1544     0.7514 0.000 0.000 0.068 0.000 0.932
#> SRR1077708     5  0.1410     0.7617 0.000 0.000 0.060 0.000 0.940
#> SRR1343720     3  0.4273     0.3543 0.000 0.000 0.552 0.000 0.448
#> SRR1477499     2  0.2732     0.8032 0.000 0.840 0.000 0.160 0.000
#> SRR1347236     5  0.5435     0.5137 0.188 0.000 0.152 0.000 0.660
#> SRR1326408     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.1270     0.8191 0.000 0.000 0.948 0.000 0.052
#> SRR1440643     3  0.4035     0.7112 0.156 0.000 0.784 0.000 0.060
#> SRR662354      1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.0162     0.7793 0.000 0.000 0.004 0.000 0.996
#> SRR1347389     4  0.2790     0.8431 0.068 0.000 0.052 0.880 0.000
#> SRR1353097     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1384737     1  0.0324     0.9526 0.992 0.000 0.004 0.000 0.004
#> SRR1096339     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1345329     1  0.3284     0.7906 0.828 0.000 0.024 0.148 0.000
#> SRR1414771     3  0.1270     0.8191 0.000 0.000 0.948 0.000 0.052
#> SRR1309119     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1470438     3  0.1357     0.8179 0.004 0.000 0.948 0.000 0.048
#> SRR1343221     1  0.1341     0.9051 0.944 0.000 0.056 0.000 0.000
#> SRR1410847     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR807949      5  0.1732     0.7400 0.000 0.000 0.080 0.000 0.920
#> SRR1442332     5  0.3452     0.5442 0.000 0.000 0.244 0.000 0.756
#> SRR815920      3  0.1270     0.8191 0.000 0.000 0.948 0.000 0.052
#> SRR1471524     5  0.4283    -0.1229 0.000 0.000 0.456 0.000 0.544
#> SRR1477221     3  0.4756     0.5474 0.288 0.000 0.668 0.000 0.044
#> SRR1445046     4  0.0000     0.9204 0.000 0.000 0.000 1.000 0.000
#> SRR1331962     4  0.1197     0.9176 0.000 0.048 0.000 0.952 0.000
#> SRR1319946     4  0.1981     0.9109 0.000 0.028 0.048 0.924 0.000
#> SRR1311599     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1323977     1  0.3516     0.8113 0.836 0.000 0.052 0.108 0.004
#> SRR1445132     2  0.0000     0.9731 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     5  0.0510     0.7774 0.000 0.000 0.016 0.000 0.984
#> SRR1366390     4  0.2221     0.8966 0.000 0.036 0.052 0.912 0.000
#> SRR1343012     5  0.3395     0.6014 0.236 0.000 0.000 0.000 0.764
#> SRR1311958     4  0.0290     0.9204 0.000 0.000 0.008 0.992 0.000
#> SRR1388234     4  0.1197     0.9081 0.000 0.000 0.048 0.952 0.000
#> SRR1370384     1  0.4291     0.0569 0.536 0.000 0.000 0.000 0.464
#> SRR1321650     3  0.3949     0.5705 0.000 0.000 0.668 0.000 0.332
#> SRR1485117     4  0.1544     0.9117 0.000 0.068 0.000 0.932 0.000
#> SRR1384713     5  0.1121     0.7637 0.044 0.000 0.000 0.000 0.956
#> SRR816609      4  0.3146     0.8108 0.092 0.000 0.052 0.856 0.000
#> SRR1486239     4  0.1478     0.9147 0.000 0.064 0.000 0.936 0.000
#> SRR1309638     5  0.1851     0.7451 0.000 0.000 0.088 0.000 0.912
#> SRR1356660     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1392883     2  0.0000     0.9731 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.1197     0.7639 0.000 0.000 0.048 0.000 0.952
#> SRR816677      1  0.0162     0.9551 0.996 0.000 0.000 0.000 0.004
#> SRR1455722     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR808452      1  0.0000     0.9580 1.000 0.000 0.000 0.000 0.000
#> SRR1352169     3  0.3766     0.6980 0.004 0.000 0.728 0.000 0.268
#> SRR1366707     3  0.3039     0.7432 0.000 0.000 0.808 0.000 0.192
#> SRR1328143     5  0.4278    -0.1293 0.000 0.000 0.452 0.000 0.548
#> SRR1473567     4  0.1341     0.9159 0.000 0.056 0.000 0.944 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     3  0.3847     0.2225 0.000 0.000 0.644 0.008 0.348 0.000
#> SRR1390119     6  0.0000     0.9805 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1436127     3  0.3611     0.5476 0.000 0.000 0.796 0.108 0.096 0.000
#> SRR1347278     4  0.6662     0.5728 0.128 0.000 0.108 0.512 0.252 0.000
#> SRR1332904     2  0.1858     0.8518 0.000 0.912 0.000 0.076 0.000 0.012
#> SRR1444179     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082685     1  0.0146     0.9009 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1362287     1  0.1556     0.8504 0.920 0.000 0.000 0.080 0.000 0.000
#> SRR1339007     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1376557     2  0.0146     0.8546 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1468700     2  0.0146     0.8546 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1077455     5  0.3699     0.3157 0.336 0.000 0.000 0.004 0.660 0.000
#> SRR1413978     1  0.0146     0.9009 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1439896     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317963     2  0.1444     0.8543 0.000 0.928 0.000 0.072 0.000 0.000
#> SRR1431865     1  0.0458     0.8944 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1394253     1  0.0865     0.8829 0.964 0.000 0.000 0.036 0.000 0.000
#> SRR1082664     5  0.3268     0.5284 0.000 0.000 0.044 0.144 0.812 0.000
#> SRR1077968     1  0.0146     0.9009 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1076393     5  0.2805     0.5036 0.000 0.000 0.184 0.004 0.812 0.000
#> SRR1477476     6  0.0000     0.9805 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1398057     4  0.6147     0.4893 0.020 0.000 0.260 0.508 0.212 0.000
#> SRR1485042     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1385453     3  0.2092     0.6154 0.000 0.000 0.876 0.124 0.000 0.000
#> SRR1348074     1  0.3819     0.6062 0.672 0.012 0.000 0.316 0.000 0.000
#> SRR813959      5  0.3426     0.4218 0.000 0.004 0.000 0.276 0.720 0.000
#> SRR665442      1  0.4009     0.5385 0.632 0.008 0.000 0.356 0.004 0.000
#> SRR1378068     3  0.0000     0.6481 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1485237     1  0.3843     0.4193 0.548 0.000 0.000 0.452 0.000 0.000
#> SRR1350792     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0713     0.6506 0.000 0.000 0.000 0.028 0.972 0.000
#> SRR808994      3  0.0632     0.6464 0.000 0.000 0.976 0.024 0.000 0.000
#> SRR1474041     5  0.3101     0.3440 0.000 0.000 0.000 0.244 0.756 0.000
#> SRR1405641     3  0.0632     0.6464 0.000 0.000 0.976 0.024 0.000 0.000
#> SRR1362245     4  0.6138     0.5637 0.044 0.000 0.120 0.512 0.324 0.000
#> SRR1500194     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1414876     2  0.3482     0.5909 0.000 0.684 0.000 0.000 0.000 0.316
#> SRR1478523     3  0.3678     0.5241 0.084 0.000 0.788 0.128 0.000 0.000
#> SRR1325161     5  0.0000     0.6568 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1318026     1  0.1267     0.8701 0.940 0.000 0.000 0.060 0.000 0.000
#> SRR1343778     3  0.4293     0.3810 0.000 0.000 0.716 0.084 0.200 0.000
#> SRR1441287     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.3742     0.2380 0.000 0.000 0.348 0.004 0.648 0.000
#> SRR1499722     5  0.0146     0.6563 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1351368     3  0.4406     0.4195 0.000 0.000 0.696 0.224 0.080 0.000
#> SRR1441785     1  0.1863     0.8271 0.896 0.000 0.000 0.104 0.000 0.000
#> SRR1096101     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR808375      5  0.0000     0.6568 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1452842     5  0.4551     0.2620 0.344 0.000 0.000 0.048 0.608 0.000
#> SRR1311709     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1433352     3  0.5818    -0.0350 0.000 0.000 0.496 0.256 0.248 0.000
#> SRR1340241     6  0.0000     0.9805 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1456754     5  0.5585     0.0518 0.416 0.000 0.000 0.140 0.444 0.000
#> SRR1465172     5  0.0000     0.6568 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499284     5  0.0000     0.6568 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499607     2  0.3126     0.7819 0.000 0.752 0.000 0.248 0.000 0.000
#> SRR812342      1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.1556     0.8474 0.920 0.000 0.000 0.080 0.000 0.000
#> SRR1403565     1  0.3804     0.2741 0.576 0.000 0.000 0.424 0.000 0.000
#> SRR1332024     3  0.3672     0.2595 0.000 0.000 0.632 0.368 0.000 0.000
#> SRR1471633     1  0.1075     0.8773 0.952 0.000 0.000 0.048 0.000 0.000
#> SRR1325944     6  0.0000     0.9805 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1429450     6  0.0000     0.9805 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR821573      5  0.0260     0.6564 0.000 0.000 0.000 0.008 0.992 0.000
#> SRR1435372     1  0.0146     0.9009 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1324184     2  0.2664     0.8163 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR816517      3  0.3996     0.2888 0.000 0.004 0.512 0.484 0.000 0.000
#> SRR1324141     5  0.5322     0.3174 0.216 0.000 0.000 0.188 0.596 0.000
#> SRR1101612     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.1204     0.6379 0.000 0.000 0.056 0.000 0.944 0.000
#> SRR1077708     5  0.2843     0.5779 0.000 0.000 0.036 0.116 0.848 0.000
#> SRR1343720     5  0.5127     0.0149 0.000 0.000 0.364 0.092 0.544 0.000
#> SRR1477499     6  0.2178     0.8498 0.000 0.132 0.000 0.000 0.000 0.868
#> SRR1347236     5  0.5058     0.3716 0.188 0.000 0.124 0.016 0.672 0.000
#> SRR1326408     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.0632     0.6464 0.000 0.000 0.976 0.024 0.000 0.000
#> SRR1440643     4  0.4640     0.0753 0.032 0.000 0.436 0.528 0.004 0.000
#> SRR662354      1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.0260     0.6567 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1347389     2  0.3737     0.6930 0.000 0.608 0.000 0.392 0.000 0.000
#> SRR1353097     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384737     1  0.2933     0.7448 0.796 0.000 0.000 0.200 0.004 0.000
#> SRR1096339     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345329     1  0.5083     0.5073 0.604 0.116 0.000 0.280 0.000 0.000
#> SRR1414771     3  0.3221     0.3944 0.000 0.000 0.736 0.264 0.000 0.000
#> SRR1309119     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1470438     3  0.3221     0.3944 0.000 0.000 0.736 0.264 0.000 0.000
#> SRR1343221     1  0.3893     0.6839 0.768 0.000 0.092 0.140 0.000 0.000
#> SRR1410847     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR807949      5  0.1219     0.6393 0.000 0.000 0.048 0.004 0.948 0.000
#> SRR1442332     4  0.4644     0.3213 0.000 0.000 0.040 0.504 0.456 0.000
#> SRR815920      3  0.0146     0.6476 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1471524     5  0.3966     0.0575 0.000 0.000 0.444 0.004 0.552 0.000
#> SRR1477221     4  0.6434     0.3675 0.200 0.000 0.240 0.512 0.048 0.000
#> SRR1445046     2  0.0000     0.8551 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1331962     2  0.0146     0.8546 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1319946     2  0.3101     0.8066 0.000 0.756 0.000 0.244 0.000 0.000
#> SRR1311599     1  0.2562     0.7504 0.828 0.000 0.000 0.172 0.000 0.000
#> SRR1323977     1  0.4100     0.4967 0.600 0.008 0.000 0.388 0.004 0.000
#> SRR1445132     6  0.0000     0.9805 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1337321     5  0.3847    -0.2034 0.000 0.000 0.000 0.456 0.544 0.000
#> SRR1366390     2  0.3838     0.6706 0.000 0.552 0.000 0.448 0.000 0.000
#> SRR1343012     5  0.4503     0.4185 0.100 0.000 0.000 0.204 0.696 0.000
#> SRR1311958     2  0.0713     0.8563 0.000 0.972 0.000 0.028 0.000 0.000
#> SRR1388234     2  0.3101     0.8079 0.000 0.756 0.000 0.244 0.000 0.000
#> SRR1370384     1  0.3971     0.0966 0.548 0.000 0.000 0.004 0.448 0.000
#> SRR1321650     4  0.6111     0.3831 0.000 0.000 0.304 0.372 0.324 0.000
#> SRR1485117     2  0.0260     0.8540 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1384713     5  0.0937     0.6451 0.040 0.000 0.000 0.000 0.960 0.000
#> SRR816609      2  0.3934     0.7227 0.008 0.616 0.000 0.376 0.000 0.000
#> SRR1486239     2  0.1524     0.8530 0.000 0.932 0.000 0.060 0.000 0.008
#> SRR1309638     5  0.3102     0.5391 0.000 0.000 0.028 0.156 0.816 0.000
#> SRR1356660     1  0.0146     0.9005 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1392883     6  0.0000     0.9805 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR808130      5  0.1010     0.6476 0.000 0.000 0.036 0.004 0.960 0.000
#> SRR816677      1  0.0508     0.8958 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1455722     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR808452      1  0.0000     0.9022 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1352169     3  0.5900    -0.0422 0.004 0.000 0.496 0.288 0.212 0.000
#> SRR1366707     3  0.1341     0.6410 0.000 0.000 0.948 0.024 0.028 0.000
#> SRR1328143     5  0.4228     0.1331 0.000 0.000 0.392 0.020 0.588 0.000
#> SRR1473567     2  0.0146     0.8546 0.000 0.996 0.000 0.000 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.871           0.924       0.967         0.4592 0.534   0.534
#> 3 3 0.669           0.740       0.803         0.3254 0.770   0.584
#> 4 4 0.666           0.636       0.799         0.1875 0.803   0.522
#> 5 5 0.602           0.581       0.757         0.0614 0.868   0.598
#> 6 6 0.784           0.696       0.802         0.0493 0.903   0.640

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000    0.97848 1.000 0.000
#> SRR1390119     2  0.0000    0.94036 0.000 1.000
#> SRR1436127     1  0.0000    0.97848 1.000 0.000
#> SRR1347278     1  0.0000    0.97848 1.000 0.000
#> SRR1332904     2  0.0000    0.94036 0.000 1.000
#> SRR1444179     1  0.0000    0.97848 1.000 0.000
#> SRR1082685     1  0.3733    0.90460 0.928 0.072
#> SRR1362287     1  0.0000    0.97848 1.000 0.000
#> SRR1339007     1  0.0000    0.97848 1.000 0.000
#> SRR1376557     2  0.0000    0.94036 0.000 1.000
#> SRR1468700     2  0.0000    0.94036 0.000 1.000
#> SRR1077455     1  0.0000    0.97848 1.000 0.000
#> SRR1413978     1  0.1633    0.95652 0.976 0.024
#> SRR1439896     1  0.0000    0.97848 1.000 0.000
#> SRR1317963     2  0.0000    0.94036 0.000 1.000
#> SRR1431865     1  0.0000    0.97848 1.000 0.000
#> SRR1394253     1  0.0000    0.97848 1.000 0.000
#> SRR1082664     1  0.0000    0.97848 1.000 0.000
#> SRR1077968     1  0.0000    0.97848 1.000 0.000
#> SRR1076393     1  0.0000    0.97848 1.000 0.000
#> SRR1477476     2  0.0000    0.94036 0.000 1.000
#> SRR1398057     1  0.0000    0.97848 1.000 0.000
#> SRR1485042     1  0.0000    0.97848 1.000 0.000
#> SRR1385453     2  0.0938    0.93550 0.012 0.988
#> SRR1348074     2  0.0938    0.93550 0.012 0.988
#> SRR813959      2  0.0000    0.94036 0.000 1.000
#> SRR665442      2  0.0000    0.94036 0.000 1.000
#> SRR1378068     1  0.0000    0.97848 1.000 0.000
#> SRR1485237     2  0.0672    0.93736 0.008 0.992
#> SRR1350792     1  0.0000    0.97848 1.000 0.000
#> SRR1326797     1  0.2778    0.93199 0.952 0.048
#> SRR808994      1  0.0000    0.97848 1.000 0.000
#> SRR1474041     1  0.0000    0.97848 1.000 0.000
#> SRR1405641     1  0.0000    0.97848 1.000 0.000
#> SRR1362245     1  0.0000    0.97848 1.000 0.000
#> SRR1500194     1  0.0000    0.97848 1.000 0.000
#> SRR1414876     2  0.0000    0.94036 0.000 1.000
#> SRR1478523     2  0.7950    0.72125 0.240 0.760
#> SRR1325161     1  0.0000    0.97848 1.000 0.000
#> SRR1318026     2  0.1184    0.93295 0.016 0.984
#> SRR1343778     1  0.0000    0.97848 1.000 0.000
#> SRR1441287     1  0.0000    0.97848 1.000 0.000
#> SRR1430991     1  0.0000    0.97848 1.000 0.000
#> SRR1499722     1  0.0000    0.97848 1.000 0.000
#> SRR1351368     2  0.7950    0.72125 0.240 0.760
#> SRR1441785     1  0.0000    0.97848 1.000 0.000
#> SRR1096101     1  0.0000    0.97848 1.000 0.000
#> SRR808375      1  0.0000    0.97848 1.000 0.000
#> SRR1452842     1  0.0000    0.97848 1.000 0.000
#> SRR1311709     1  0.9977    0.00181 0.528 0.472
#> SRR1433352     1  0.0000    0.97848 1.000 0.000
#> SRR1340241     2  0.0000    0.94036 0.000 1.000
#> SRR1456754     1  0.0000    0.97848 1.000 0.000
#> SRR1465172     1  0.0000    0.97848 1.000 0.000
#> SRR1499284     1  0.0000    0.97848 1.000 0.000
#> SRR1499607     2  0.0000    0.94036 0.000 1.000
#> SRR812342      1  0.0000    0.97848 1.000 0.000
#> SRR1405374     1  0.0000    0.97848 1.000 0.000
#> SRR1403565     1  0.0000    0.97848 1.000 0.000
#> SRR1332024     1  0.0000    0.97848 1.000 0.000
#> SRR1471633     2  0.8555    0.65941 0.280 0.720
#> SRR1325944     2  0.0000    0.94036 0.000 1.000
#> SRR1429450     2  0.0000    0.94036 0.000 1.000
#> SRR821573      1  0.9775    0.23793 0.588 0.412
#> SRR1435372     1  0.0000    0.97848 1.000 0.000
#> SRR1324184     2  0.0000    0.94036 0.000 1.000
#> SRR816517      2  0.0376    0.93913 0.004 0.996
#> SRR1324141     2  0.7950    0.72125 0.240 0.760
#> SRR1101612     1  0.0000    0.97848 1.000 0.000
#> SRR1356531     1  0.0000    0.97848 1.000 0.000
#> SRR1089785     1  0.0000    0.97848 1.000 0.000
#> SRR1077708     1  0.0000    0.97848 1.000 0.000
#> SRR1343720     1  0.0000    0.97848 1.000 0.000
#> SRR1477499     2  0.0000    0.94036 0.000 1.000
#> SRR1347236     1  0.0000    0.97848 1.000 0.000
#> SRR1326408     1  0.4690    0.87252 0.900 0.100
#> SRR1336529     1  0.0000    0.97848 1.000 0.000
#> SRR1440643     2  0.6887    0.78646 0.184 0.816
#> SRR662354      1  0.0000    0.97848 1.000 0.000
#> SRR1310817     1  0.0000    0.97848 1.000 0.000
#> SRR1347389     2  0.0376    0.93913 0.004 0.996
#> SRR1353097     1  0.0000    0.97848 1.000 0.000
#> SRR1384737     2  0.0938    0.93550 0.012 0.988
#> SRR1096339     1  0.0000    0.97848 1.000 0.000
#> SRR1345329     2  0.0938    0.93550 0.012 0.988
#> SRR1414771     1  0.0672    0.97155 0.992 0.008
#> SRR1309119     2  0.9580    0.45449 0.380 0.620
#> SRR1470438     1  0.0672    0.97149 0.992 0.008
#> SRR1343221     1  0.0000    0.97848 1.000 0.000
#> SRR1410847     1  0.0000    0.97848 1.000 0.000
#> SRR807949      1  0.0000    0.97848 1.000 0.000
#> SRR1442332     1  0.0000    0.97848 1.000 0.000
#> SRR815920      1  0.0000    0.97848 1.000 0.000
#> SRR1471524     2  0.9522    0.47287 0.372 0.628
#> SRR1477221     1  0.0000    0.97848 1.000 0.000
#> SRR1445046     2  0.0000    0.94036 0.000 1.000
#> SRR1331962     2  0.0000    0.94036 0.000 1.000
#> SRR1319946     2  0.0000    0.94036 0.000 1.000
#> SRR1311599     1  0.0000    0.97848 1.000 0.000
#> SRR1323977     2  0.0000    0.94036 0.000 1.000
#> SRR1445132     2  0.0000    0.94036 0.000 1.000
#> SRR1337321     1  0.0000    0.97848 1.000 0.000
#> SRR1366390     2  0.0376    0.93913 0.004 0.996
#> SRR1343012     2  0.7950    0.72125 0.240 0.760
#> SRR1311958     2  0.0000    0.94036 0.000 1.000
#> SRR1388234     2  0.0000    0.94036 0.000 1.000
#> SRR1370384     1  0.0000    0.97848 1.000 0.000
#> SRR1321650     1  0.0000    0.97848 1.000 0.000
#> SRR1485117     2  0.0000    0.94036 0.000 1.000
#> SRR1384713     1  0.0000    0.97848 1.000 0.000
#> SRR816609      2  0.0000    0.94036 0.000 1.000
#> SRR1486239     2  0.0000    0.94036 0.000 1.000
#> SRR1309638     1  0.0000    0.97848 1.000 0.000
#> SRR1356660     1  0.0000    0.97848 1.000 0.000
#> SRR1392883     2  0.0000    0.94036 0.000 1.000
#> SRR808130      1  0.0000    0.97848 1.000 0.000
#> SRR816677      2  0.7950    0.72125 0.240 0.760
#> SRR1455722     1  0.0000    0.97848 1.000 0.000
#> SRR1336029     1  0.0000    0.97848 1.000 0.000
#> SRR808452      1  0.0000    0.97848 1.000 0.000
#> SRR1352169     1  0.6973    0.75021 0.812 0.188
#> SRR1366707     1  0.7453    0.71114 0.788 0.212
#> SRR1328143     1  0.0000    0.97848 1.000 0.000
#> SRR1473567     2  0.0000    0.94036 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1390119     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1347278     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1332904     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1444179     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1082685     1  0.4555      0.515 0.800 0.000 0.200
#> SRR1362287     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1339007     3  0.6309     -0.681 0.496 0.000 0.504
#> SRR1376557     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1077455     3  0.3038      0.748 0.104 0.000 0.896
#> SRR1413978     1  0.6460      0.811 0.556 0.004 0.440
#> SRR1439896     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1317963     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1431865     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1394253     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1082664     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1077968     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1076393     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1398057     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1485042     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1385453     2  0.6460      0.758 0.440 0.556 0.004
#> SRR1348074     2  0.6244      0.761 0.440 0.560 0.000
#> SRR813959      2  0.6244      0.761 0.440 0.560 0.000
#> SRR665442      2  0.6244      0.761 0.440 0.560 0.000
#> SRR1378068     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1485237     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1350792     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1326797     3  0.0475      0.885 0.004 0.004 0.992
#> SRR808994      3  0.0000      0.892 0.000 0.000 1.000
#> SRR1474041     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1405641     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1362245     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1500194     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1414876     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1478523     2  0.6625      0.756 0.440 0.552 0.008
#> SRR1325161     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1318026     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1343778     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1441287     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1430991     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1499722     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1351368     2  0.7029      0.747 0.440 0.540 0.020
#> SRR1441785     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1096101     3  0.5560      0.143 0.300 0.000 0.700
#> SRR808375      3  0.0000      0.892 0.000 0.000 1.000
#> SRR1452842     3  0.2711      0.775 0.088 0.000 0.912
#> SRR1311709     1  0.5016     -0.334 0.760 0.240 0.000
#> SRR1433352     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1340241     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1456754     3  0.4399      0.563 0.188 0.000 0.812
#> SRR1465172     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1499284     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1499607     2  0.0000      0.822 0.000 1.000 0.000
#> SRR812342      1  0.6244      0.817 0.560 0.000 0.440
#> SRR1405374     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1403565     3  0.3551      0.695 0.132 0.000 0.868
#> SRR1332024     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1471633     1  0.6225     -0.641 0.568 0.432 0.000
#> SRR1325944     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.822 0.000 1.000 0.000
#> SRR821573      2  0.8538      0.220 0.100 0.520 0.380
#> SRR1435372     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1324184     2  0.0000      0.822 0.000 1.000 0.000
#> SRR816517      2  0.6244      0.761 0.440 0.560 0.000
#> SRR1324141     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1101612     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1356531     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1089785     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1077708     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1343720     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1477499     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1347236     3  0.0237      0.888 0.004 0.000 0.996
#> SRR1326408     1  0.8691      0.636 0.452 0.104 0.444
#> SRR1336529     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1440643     2  0.6771      0.753 0.440 0.548 0.012
#> SRR662354      1  0.6244      0.817 0.560 0.000 0.440
#> SRR1310817     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1347389     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1353097     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1384737     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1096339     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1345329     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1414771     3  0.0237      0.887 0.000 0.004 0.996
#> SRR1309119     1  0.5835     -0.511 0.660 0.340 0.000
#> SRR1470438     3  0.0592      0.878 0.000 0.012 0.988
#> SRR1343221     3  0.4291      0.584 0.180 0.000 0.820
#> SRR1410847     1  0.6244      0.817 0.560 0.000 0.440
#> SRR807949      3  0.0000      0.892 0.000 0.000 1.000
#> SRR1442332     3  0.0000      0.892 0.000 0.000 1.000
#> SRR815920      3  0.0000      0.892 0.000 0.000 1.000
#> SRR1471524     3  0.8108      0.056 0.072 0.392 0.536
#> SRR1477221     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1445046     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1331962     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1319946     2  0.3192      0.808 0.112 0.888 0.000
#> SRR1311599     3  0.6295     -0.611 0.472 0.000 0.528
#> SRR1323977     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1445132     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1337321     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1366390     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1343012     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1311958     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1388234     2  0.6244      0.761 0.440 0.560 0.000
#> SRR1370384     3  0.6008     -0.236 0.372 0.000 0.628
#> SRR1321650     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1485117     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1384713     3  0.1964      0.824 0.056 0.000 0.944
#> SRR816609      2  0.6244      0.761 0.440 0.560 0.000
#> SRR1486239     2  0.0000      0.822 0.000 1.000 0.000
#> SRR1309638     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1356660     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1392883     2  0.0000      0.822 0.000 1.000 0.000
#> SRR808130      3  0.0000      0.892 0.000 0.000 1.000
#> SRR816677      2  0.6244      0.761 0.440 0.560 0.000
#> SRR1455722     1  0.6244      0.817 0.560 0.000 0.440
#> SRR1336029     1  0.6244      0.817 0.560 0.000 0.440
#> SRR808452      1  0.6244      0.817 0.560 0.000 0.440
#> SRR1352169     3  0.4605      0.538 0.000 0.204 0.796
#> SRR1366707     3  0.2066      0.805 0.000 0.060 0.940
#> SRR1328143     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1473567     2  0.0000      0.822 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.1151     0.8440 0.024 0.000 0.968 0.008
#> SRR1390119     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.1929     0.8411 0.024 0.000 0.940 0.036
#> SRR1347278     3  0.5213     0.3694 0.328 0.000 0.652 0.020
#> SRR1332904     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.1022     0.7630 0.968 0.000 0.000 0.032
#> SRR1082685     1  0.1474     0.7503 0.948 0.000 0.000 0.052
#> SRR1362287     1  0.1302     0.8028 0.956 0.000 0.044 0.000
#> SRR1339007     1  0.6474     0.6151 0.624 0.000 0.120 0.256
#> SRR1376557     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1077455     1  0.7726     0.3669 0.404 0.000 0.228 0.368
#> SRR1413978     1  0.2993     0.7815 0.904 0.016 0.040 0.040
#> SRR1439896     1  0.1118     0.8029 0.964 0.000 0.036 0.000
#> SRR1317963     2  0.1209     0.8009 0.032 0.964 0.000 0.004
#> SRR1431865     1  0.1489     0.8028 0.952 0.000 0.044 0.004
#> SRR1394253     1  0.1302     0.8028 0.956 0.000 0.044 0.000
#> SRR1082664     3  0.3910     0.8030 0.024 0.000 0.820 0.156
#> SRR1077968     1  0.5410     0.6954 0.728 0.000 0.080 0.192
#> SRR1076393     3  0.3325     0.8262 0.024 0.000 0.864 0.112
#> SRR1477476     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.1520     0.8450 0.024 0.000 0.956 0.020
#> SRR1485042     1  0.1022     0.8024 0.968 0.000 0.032 0.000
#> SRR1385453     4  0.5700     0.3328 0.000 0.412 0.028 0.560
#> SRR1348074     2  0.5833    -0.2398 0.032 0.528 0.000 0.440
#> SRR813959      2  0.5668    -0.2546 0.000 0.532 0.024 0.444
#> SRR665442      2  0.5143    -0.2261 0.004 0.540 0.000 0.456
#> SRR1378068     3  0.1733     0.8425 0.024 0.000 0.948 0.028
#> SRR1485237     4  0.5862     0.2917 0.032 0.484 0.000 0.484
#> SRR1350792     1  0.1022     0.8024 0.968 0.000 0.032 0.000
#> SRR1326797     1  0.7823     0.2993 0.372 0.000 0.256 0.372
#> SRR808994      3  0.2670     0.8264 0.024 0.000 0.904 0.072
#> SRR1474041     3  0.3015     0.8324 0.024 0.000 0.884 0.092
#> SRR1405641     3  0.2742     0.8245 0.024 0.000 0.900 0.076
#> SRR1362245     3  0.3015     0.8370 0.024 0.000 0.884 0.092
#> SRR1500194     1  0.0524     0.7905 0.988 0.000 0.008 0.004
#> SRR1414876     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.7044     0.0543 0.000 0.120 0.452 0.428
#> SRR1325161     3  0.4535     0.7448 0.016 0.000 0.744 0.240
#> SRR1318026     4  0.5917     0.3697 0.036 0.444 0.000 0.520
#> SRR1343778     3  0.0817     0.8445 0.024 0.000 0.976 0.000
#> SRR1441287     1  0.0921     0.8010 0.972 0.000 0.028 0.000
#> SRR1430991     3  0.3080     0.8309 0.024 0.000 0.880 0.096
#> SRR1499722     4  0.7919    -0.3516 0.324 0.000 0.324 0.352
#> SRR1351368     3  0.5367     0.5410 0.000 0.032 0.664 0.304
#> SRR1441785     1  0.1302     0.8028 0.956 0.000 0.044 0.000
#> SRR1096101     1  0.4636     0.7261 0.792 0.000 0.140 0.068
#> SRR808375      3  0.4348     0.7778 0.024 0.000 0.780 0.196
#> SRR1452842     1  0.7743     0.3589 0.400 0.000 0.232 0.368
#> SRR1311709     1  0.5111     0.5467 0.740 0.056 0.000 0.204
#> SRR1433352     3  0.4348     0.6826 0.196 0.000 0.780 0.024
#> SRR1340241     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.7384     0.4789 0.476 0.000 0.172 0.352
#> SRR1465172     3  0.6919     0.4610 0.116 0.000 0.516 0.368
#> SRR1499284     4  0.7853    -0.2971 0.268 0.000 0.364 0.368
#> SRR1499607     2  0.0336     0.8274 0.000 0.992 0.000 0.008
#> SRR812342      1  0.0469     0.7930 0.988 0.000 0.012 0.000
#> SRR1405374     1  0.1489     0.8028 0.952 0.000 0.044 0.004
#> SRR1403565     1  0.7382     0.4600 0.520 0.000 0.260 0.220
#> SRR1332024     3  0.2111     0.8378 0.024 0.000 0.932 0.044
#> SRR1471633     1  0.7145     0.1548 0.556 0.252 0.000 0.192
#> SRR1325944     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR821573      3  0.7007     0.3103 0.000 0.144 0.548 0.308
#> SRR1435372     1  0.1297     0.7911 0.964 0.000 0.020 0.016
#> SRR1324184     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR816517      4  0.5696     0.2669 0.000 0.480 0.024 0.496
#> SRR1324141     4  0.4898     0.4079 0.000 0.416 0.000 0.584
#> SRR1101612     1  0.1022     0.8024 0.968 0.000 0.032 0.000
#> SRR1356531     1  0.1022     0.8024 0.968 0.000 0.032 0.000
#> SRR1089785     3  0.1520     0.8444 0.024 0.000 0.956 0.020
#> SRR1077708     3  0.3895     0.7888 0.012 0.000 0.804 0.184
#> SRR1343720     3  0.4735     0.7779 0.068 0.000 0.784 0.148
#> SRR1477499     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1347236     1  0.7869     0.2716 0.368 0.000 0.276 0.356
#> SRR1326408     1  0.5897     0.6893 0.728 0.044 0.044 0.184
#> SRR1336529     3  0.2521     0.8326 0.024 0.000 0.912 0.064
#> SRR1440643     4  0.6969     0.3133 0.000 0.224 0.192 0.584
#> SRR662354      1  0.1004     0.7995 0.972 0.000 0.024 0.004
#> SRR1310817     3  0.1118     0.8391 0.000 0.000 0.964 0.036
#> SRR1347389     2  0.0921     0.8092 0.000 0.972 0.000 0.028
#> SRR1353097     1  0.1706     0.8011 0.948 0.000 0.036 0.016
#> SRR1384737     4  0.4989     0.3342 0.000 0.472 0.000 0.528
#> SRR1096339     1  0.1022     0.8024 0.968 0.000 0.032 0.000
#> SRR1345329     2  0.5821    -0.2171 0.032 0.536 0.000 0.432
#> SRR1414771     3  0.3552     0.7662 0.000 0.024 0.848 0.128
#> SRR1309119     1  0.6508     0.3561 0.640 0.192 0.000 0.168
#> SRR1470438     3  0.3494     0.8053 0.016 0.028 0.876 0.080
#> SRR1343221     1  0.6497     0.6124 0.640 0.000 0.200 0.160
#> SRR1410847     1  0.1635     0.8026 0.948 0.000 0.044 0.008
#> SRR807949      3  0.3325     0.8246 0.024 0.000 0.864 0.112
#> SRR1442332     3  0.1406     0.8429 0.024 0.000 0.960 0.016
#> SRR815920      3  0.2670     0.8264 0.024 0.000 0.904 0.072
#> SRR1471524     3  0.4567     0.6426 0.000 0.016 0.740 0.244
#> SRR1477221     3  0.1629     0.8452 0.024 0.000 0.952 0.024
#> SRR1445046     2  0.0188     0.8309 0.004 0.996 0.000 0.000
#> SRR1331962     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.4004     0.5726 0.024 0.812 0.000 0.164
#> SRR1311599     1  0.2125     0.7914 0.920 0.000 0.076 0.004
#> SRR1323977     4  0.4967     0.3693 0.000 0.452 0.000 0.548
#> SRR1445132     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.3143     0.8303 0.024 0.000 0.876 0.100
#> SRR1366390     2  0.1118     0.8031 0.000 0.964 0.000 0.036
#> SRR1343012     4  0.5050     0.4120 0.000 0.408 0.004 0.588
#> SRR1311958     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.5792    -0.1808 0.032 0.552 0.000 0.416
#> SRR1370384     1  0.6587     0.5786 0.576 0.000 0.100 0.324
#> SRR1321650     3  0.1940     0.8392 0.000 0.000 0.924 0.076
#> SRR1485117     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.7799     0.3211 0.384 0.000 0.248 0.368
#> SRR816609      2  0.5821    -0.2171 0.032 0.536 0.000 0.432
#> SRR1486239     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR1309638     3  0.4501     0.7671 0.024 0.000 0.764 0.212
#> SRR1356660     1  0.1302     0.8028 0.956 0.000 0.044 0.000
#> SRR1392883     2  0.0000     0.8338 0.000 1.000 0.000 0.000
#> SRR808130      3  0.3015     0.8323 0.024 0.000 0.884 0.092
#> SRR816677      1  0.7502    -0.1269 0.456 0.188 0.000 0.356
#> SRR1455722     1  0.1022     0.8024 0.968 0.000 0.032 0.000
#> SRR1336029     1  0.1489     0.8028 0.952 0.000 0.044 0.004
#> SRR808452      1  0.0000     0.7843 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.5248     0.7172 0.024 0.112 0.784 0.080
#> SRR1366707     3  0.3672     0.7416 0.000 0.012 0.824 0.164
#> SRR1328143     3  0.1629     0.8446 0.024 0.000 0.952 0.024
#> SRR1473567     2  0.0000     0.8338 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.3461     0.4966 0.004 0.000 0.224 0.000 0.772
#> SRR1390119     2  0.1403     0.8905 0.000 0.952 0.024 0.024 0.000
#> SRR1436127     5  0.4430     0.2541 0.004 0.000 0.456 0.000 0.540
#> SRR1347278     5  0.6909     0.3239 0.296 0.000 0.216 0.016 0.472
#> SRR1332904     2  0.2233     0.8748 0.000 0.904 0.016 0.080 0.000
#> SRR1444179     1  0.1478     0.7989 0.936 0.000 0.000 0.064 0.000
#> SRR1082685     1  0.1851     0.7851 0.912 0.000 0.000 0.088 0.000
#> SRR1362287     1  0.2609     0.8231 0.896 0.000 0.028 0.008 0.068
#> SRR1339007     1  0.5983     0.6055 0.656 0.000 0.036 0.116 0.192
#> SRR1376557     2  0.0693     0.8936 0.000 0.980 0.012 0.008 0.000
#> SRR1468700     2  0.0451     0.8928 0.000 0.988 0.004 0.008 0.000
#> SRR1077455     5  0.6811     0.3679 0.220 0.000 0.052 0.156 0.572
#> SRR1413978     1  0.2389     0.7813 0.880 0.000 0.000 0.116 0.004
#> SRR1439896     1  0.1117     0.8403 0.964 0.000 0.000 0.016 0.020
#> SRR1317963     2  0.4585     0.1595 0.004 0.592 0.008 0.396 0.000
#> SRR1431865     1  0.1195     0.8415 0.960 0.000 0.000 0.012 0.028
#> SRR1394253     1  0.1764     0.8309 0.928 0.000 0.000 0.008 0.064
#> SRR1082664     5  0.1012     0.5549 0.012 0.000 0.020 0.000 0.968
#> SRR1077968     1  0.5466     0.5567 0.648 0.000 0.024 0.052 0.276
#> SRR1076393     5  0.2338     0.5423 0.004 0.000 0.112 0.000 0.884
#> SRR1477476     2  0.1043     0.8891 0.000 0.960 0.040 0.000 0.000
#> SRR1398057     5  0.4359     0.3196 0.004 0.000 0.412 0.000 0.584
#> SRR1485042     1  0.1168     0.8416 0.960 0.000 0.000 0.008 0.032
#> SRR1385453     3  0.6512    -0.4201 0.000 0.180 0.484 0.332 0.004
#> SRR1348074     4  0.4335     0.8361 0.072 0.168 0.000 0.760 0.000
#> SRR813959      4  0.6615     0.6409 0.000 0.236 0.268 0.492 0.004
#> SRR665442      4  0.5977     0.7885 0.040 0.252 0.076 0.632 0.000
#> SRR1378068     5  0.4420     0.2750 0.004 0.000 0.448 0.000 0.548
#> SRR1485237     4  0.4010     0.8404 0.056 0.160 0.000 0.784 0.000
#> SRR1350792     1  0.1082     0.8419 0.964 0.000 0.000 0.008 0.028
#> SRR1326797     5  0.6438     0.4229 0.148 0.000 0.068 0.148 0.636
#> SRR808994      3  0.4437    -0.1264 0.004 0.000 0.532 0.000 0.464
#> SRR1474041     5  0.1764     0.5604 0.008 0.000 0.064 0.000 0.928
#> SRR1405641     5  0.4452     0.1452 0.004 0.000 0.496 0.000 0.500
#> SRR1362245     5  0.3491     0.4399 0.004 0.000 0.228 0.000 0.768
#> SRR1500194     1  0.0404     0.8309 0.988 0.000 0.000 0.012 0.000
#> SRR1414876     2  0.1211     0.8921 0.000 0.960 0.016 0.024 0.000
#> SRR1478523     3  0.6528     0.2277 0.120 0.020 0.644 0.176 0.040
#> SRR1325161     5  0.3401     0.5084 0.008 0.000 0.072 0.068 0.852
#> SRR1318026     4  0.4252     0.8297 0.072 0.144 0.004 0.780 0.000
#> SRR1343778     5  0.5531     0.4134 0.120 0.000 0.248 0.000 0.632
#> SRR1441287     1  0.0290     0.8360 0.992 0.000 0.000 0.000 0.008
#> SRR1430991     5  0.2970     0.5328 0.004 0.000 0.168 0.000 0.828
#> SRR1499722     5  0.5441     0.4694 0.128 0.000 0.052 0.096 0.724
#> SRR1351368     3  0.5821     0.3885 0.020 0.000 0.636 0.096 0.248
#> SRR1441785     1  0.3718     0.7769 0.824 0.000 0.120 0.008 0.048
#> SRR1096101     1  0.3402     0.7235 0.804 0.000 0.004 0.008 0.184
#> SRR808375      5  0.2077     0.5549 0.008 0.000 0.084 0.000 0.908
#> SRR1452842     5  0.6846     0.3698 0.216 0.000 0.056 0.156 0.572
#> SRR1311709     1  0.3509     0.6790 0.792 0.000 0.008 0.196 0.004
#> SRR1433352     5  0.5541     0.4940 0.128 0.000 0.236 0.000 0.636
#> SRR1340241     2  0.1043     0.8891 0.000 0.960 0.040 0.000 0.000
#> SRR1456754     5  0.7179     0.0382 0.380 0.000 0.052 0.136 0.432
#> SRR1465172     5  0.5114     0.4815 0.080 0.000 0.056 0.112 0.752
#> SRR1499284     5  0.5890     0.4520 0.108 0.000 0.056 0.152 0.684
#> SRR1499607     2  0.3398     0.6513 0.000 0.780 0.004 0.216 0.000
#> SRR812342      1  0.0693     0.8384 0.980 0.000 0.000 0.008 0.012
#> SRR1405374     1  0.1364     0.8411 0.952 0.000 0.000 0.012 0.036
#> SRR1403565     1  0.5193     0.3358 0.588 0.000 0.016 0.024 0.372
#> SRR1332024     5  0.4434     0.2498 0.004 0.000 0.460 0.000 0.536
#> SRR1471633     1  0.5156     0.3973 0.620 0.048 0.004 0.328 0.000
#> SRR1325944     2  0.0963     0.8900 0.000 0.964 0.036 0.000 0.000
#> SRR1429450     2  0.1310     0.8913 0.000 0.956 0.020 0.024 0.000
#> SRR821573      3  0.7198     0.3063 0.000 0.024 0.436 0.272 0.268
#> SRR1435372     1  0.2723     0.7716 0.864 0.000 0.000 0.012 0.124
#> SRR1324184     2  0.0898     0.8914 0.000 0.972 0.008 0.020 0.000
#> SRR816517      3  0.6660    -0.4337 0.000 0.216 0.468 0.312 0.004
#> SRR1324141     4  0.4280     0.8073 0.000 0.140 0.088 0.772 0.000
#> SRR1101612     1  0.0992     0.8408 0.968 0.000 0.000 0.008 0.024
#> SRR1356531     1  0.1670     0.8356 0.936 0.000 0.000 0.012 0.052
#> SRR1089785     5  0.3274     0.4929 0.000 0.000 0.220 0.000 0.780
#> SRR1077708     5  0.1956     0.5237 0.008 0.000 0.076 0.000 0.916
#> SRR1343720     5  0.2529     0.5600 0.056 0.000 0.040 0.004 0.900
#> SRR1477499     2  0.0963     0.8900 0.000 0.964 0.036 0.000 0.000
#> SRR1347236     5  0.5544     0.4578 0.148 0.000 0.052 0.088 0.712
#> SRR1326408     1  0.5837     0.6322 0.664 0.000 0.024 0.140 0.172
#> SRR1336529     5  0.4440     0.2271 0.004 0.000 0.468 0.000 0.528
#> SRR1440643     3  0.5091     0.1267 0.000 0.004 0.624 0.328 0.044
#> SRR662354      1  0.0451     0.8345 0.988 0.000 0.000 0.004 0.008
#> SRR1310817     5  0.4276     0.1917 0.000 0.000 0.380 0.004 0.616
#> SRR1347389     2  0.3087     0.7643 0.004 0.836 0.008 0.152 0.000
#> SRR1353097     1  0.2707     0.8061 0.876 0.000 0.000 0.024 0.100
#> SRR1384737     4  0.5454     0.8329 0.044 0.164 0.080 0.712 0.000
#> SRR1096339     1  0.1082     0.8414 0.964 0.000 0.000 0.008 0.028
#> SRR1345329     4  0.4820     0.8247 0.088 0.180 0.004 0.728 0.000
#> SRR1414771     3  0.4402     0.1619 0.000 0.000 0.636 0.012 0.352
#> SRR1309119     1  0.4938     0.4616 0.648 0.040 0.004 0.308 0.000
#> SRR1470438     3  0.4331     0.0767 0.000 0.004 0.596 0.000 0.400
#> SRR1343221     1  0.4774     0.4662 0.644 0.000 0.016 0.012 0.328
#> SRR1410847     1  0.1502     0.8355 0.940 0.000 0.000 0.004 0.056
#> SRR807949      5  0.3053     0.5377 0.008 0.000 0.164 0.000 0.828
#> SRR1442332     5  0.3246     0.5280 0.008 0.000 0.184 0.000 0.808
#> SRR815920      3  0.4449    -0.1860 0.004 0.000 0.512 0.000 0.484
#> SRR1471524     3  0.4797     0.3380 0.000 0.000 0.660 0.044 0.296
#> SRR1477221     5  0.4359     0.3187 0.004 0.000 0.412 0.000 0.584
#> SRR1445046     2  0.2017     0.8610 0.000 0.912 0.008 0.080 0.000
#> SRR1331962     2  0.1408     0.8905 0.000 0.948 0.008 0.044 0.000
#> SRR1319946     2  0.4280     0.4450 0.004 0.676 0.008 0.312 0.000
#> SRR1311599     1  0.4436     0.7194 0.768 0.000 0.068 0.008 0.156
#> SRR1323977     4  0.4933     0.7864 0.000 0.228 0.080 0.692 0.000
#> SRR1445132     2  0.1205     0.8898 0.000 0.956 0.040 0.004 0.000
#> SRR1337321     5  0.3921     0.4947 0.128 0.000 0.072 0.000 0.800
#> SRR1366390     2  0.3141     0.7847 0.000 0.852 0.040 0.108 0.000
#> SRR1343012     4  0.6204     0.6488 0.000 0.124 0.096 0.668 0.112
#> SRR1311958     2  0.1764     0.8714 0.000 0.928 0.008 0.064 0.000
#> SRR1388234     4  0.4491     0.6458 0.004 0.336 0.012 0.648 0.000
#> SRR1370384     1  0.7153     0.1678 0.448 0.000 0.044 0.152 0.356
#> SRR1321650     5  0.4114     0.1602 0.000 0.000 0.376 0.000 0.624
#> SRR1485117     2  0.0865     0.8945 0.000 0.972 0.004 0.024 0.000
#> SRR1384713     5  0.6853     0.3662 0.212 0.000 0.056 0.160 0.572
#> SRR816609      4  0.4360     0.8408 0.064 0.184 0.000 0.752 0.000
#> SRR1486239     2  0.1697     0.8749 0.000 0.932 0.008 0.060 0.000
#> SRR1309638     5  0.3052     0.5349 0.092 0.000 0.032 0.008 0.868
#> SRR1356660     1  0.3669     0.7799 0.828 0.000 0.116 0.008 0.048
#> SRR1392883     2  0.1310     0.8913 0.000 0.956 0.020 0.024 0.000
#> SRR808130      5  0.3132     0.5324 0.008 0.000 0.172 0.000 0.820
#> SRR816677      1  0.4594     0.3985 0.620 0.012 0.004 0.364 0.000
#> SRR1455722     1  0.1205     0.8399 0.956 0.000 0.000 0.004 0.040
#> SRR1336029     1  0.0671     0.8385 0.980 0.000 0.000 0.004 0.016
#> SRR808452      1  0.0162     0.8297 0.996 0.000 0.000 0.004 0.000
#> SRR1352169     5  0.7337     0.1124 0.124 0.000 0.308 0.084 0.484
#> SRR1366707     3  0.4890     0.0549 0.000 0.000 0.524 0.024 0.452
#> SRR1328143     5  0.3109     0.5083 0.000 0.000 0.200 0.000 0.800
#> SRR1473567     2  0.0955     0.8941 0.000 0.968 0.004 0.028 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.3695     0.4193 0.000 0.000 0.376 0.000 0.624 0.000
#> SRR1390119     6  0.0146     0.8893 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR1436127     3  0.1863     0.8163 0.000 0.000 0.896 0.000 0.104 0.000
#> SRR1347278     1  0.5260    -0.0163 0.464 0.000 0.440 0.000 0.096 0.000
#> SRR1332904     6  0.4294    -0.7073 0.000 0.428 0.000 0.020 0.000 0.552
#> SRR1444179     1  0.0520     0.8886 0.984 0.008 0.000 0.008 0.000 0.000
#> SRR1082685     1  0.0603     0.8898 0.980 0.004 0.000 0.016 0.000 0.000
#> SRR1362287     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1339007     1  0.4553     0.6192 0.620 0.328 0.000 0.000 0.052 0.000
#> SRR1376557     2  0.4093     0.8677 0.000 0.516 0.000 0.008 0.000 0.476
#> SRR1468700     2  0.4250     0.8947 0.000 0.528 0.000 0.016 0.000 0.456
#> SRR1077455     5  0.4528     0.5286 0.012 0.380 0.000 0.020 0.588 0.000
#> SRR1413978     1  0.2165     0.8362 0.884 0.008 0.000 0.108 0.000 0.000
#> SRR1439896     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1317963     2  0.4788     0.8448 0.000 0.548 0.000 0.056 0.000 0.396
#> SRR1431865     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1394253     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1082664     5  0.0458     0.6654 0.000 0.000 0.016 0.000 0.984 0.000
#> SRR1077968     1  0.4132     0.7199 0.736 0.212 0.000 0.016 0.036 0.000
#> SRR1076393     5  0.1663     0.6643 0.000 0.000 0.088 0.000 0.912 0.000
#> SRR1477476     6  0.1155     0.8553 0.000 0.036 0.004 0.004 0.000 0.956
#> SRR1398057     3  0.2003     0.8110 0.000 0.000 0.884 0.000 0.116 0.000
#> SRR1485042     1  0.0458     0.8883 0.984 0.016 0.000 0.000 0.000 0.000
#> SRR1385453     4  0.3739     0.7868 0.000 0.036 0.144 0.796 0.000 0.024
#> SRR1348074     4  0.1713     0.8367 0.000 0.044 0.000 0.928 0.000 0.028
#> SRR813959      4  0.4121     0.8121 0.000 0.068 0.060 0.792 0.000 0.080
#> SRR665442      4  0.3268     0.8109 0.000 0.100 0.000 0.824 0.000 0.076
#> SRR1378068     3  0.1863     0.8163 0.000 0.000 0.896 0.000 0.104 0.000
#> SRR1485237     4  0.1572     0.8381 0.000 0.036 0.000 0.936 0.000 0.028
#> SRR1350792     1  0.0146     0.8898 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.4453     0.5463 0.000 0.332 0.000 0.044 0.624 0.000
#> SRR808994      3  0.1714     0.8182 0.000 0.000 0.908 0.000 0.092 0.000
#> SRR1474041     5  0.1910     0.6591 0.000 0.000 0.108 0.000 0.892 0.000
#> SRR1405641     3  0.1714     0.8182 0.000 0.000 0.908 0.000 0.092 0.000
#> SRR1362245     3  0.3789     0.4372 0.000 0.000 0.584 0.000 0.416 0.000
#> SRR1500194     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1414876     6  0.0260     0.8880 0.000 0.000 0.000 0.008 0.000 0.992
#> SRR1478523     3  0.4234     0.2763 0.000 0.044 0.676 0.280 0.000 0.000
#> SRR1325161     5  0.1501     0.6554 0.000 0.076 0.000 0.000 0.924 0.000
#> SRR1318026     4  0.1176     0.8351 0.000 0.020 0.000 0.956 0.000 0.024
#> SRR1343778     5  0.3851     0.2445 0.000 0.000 0.460 0.000 0.540 0.000
#> SRR1441287     1  0.0363     0.8893 0.988 0.012 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.2941     0.6178 0.000 0.000 0.220 0.000 0.780 0.000
#> SRR1499722     5  0.2805     0.6175 0.000 0.184 0.000 0.004 0.812 0.000
#> SRR1351368     3  0.4866    -0.2341 0.000 0.008 0.508 0.040 0.444 0.000
#> SRR1441785     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1096101     1  0.1320     0.8776 0.948 0.036 0.000 0.000 0.016 0.000
#> SRR808375      5  0.1967     0.6709 0.000 0.012 0.084 0.000 0.904 0.000
#> SRR1452842     5  0.4752     0.5233 0.024 0.376 0.000 0.020 0.580 0.000
#> SRR1311709     1  0.1444     0.8582 0.928 0.000 0.000 0.072 0.000 0.000
#> SRR1433352     5  0.3819     0.4424 0.004 0.000 0.372 0.000 0.624 0.000
#> SRR1340241     6  0.0777     0.8696 0.000 0.024 0.000 0.004 0.000 0.972
#> SRR1456754     1  0.6049     0.3794 0.468 0.340 0.000 0.012 0.180 0.000
#> SRR1465172     5  0.3421     0.5875 0.000 0.256 0.000 0.008 0.736 0.000
#> SRR1499284     5  0.4018     0.5557 0.000 0.324 0.000 0.020 0.656 0.000
#> SRR1499607     4  0.5337     0.2032 0.000 0.116 0.000 0.524 0.000 0.360
#> SRR812342      1  0.0790     0.8851 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.0508     0.8899 0.984 0.004 0.000 0.012 0.000 0.000
#> SRR1403565     1  0.2001     0.8596 0.912 0.040 0.000 0.000 0.048 0.000
#> SRR1332024     3  0.1863     0.8155 0.000 0.000 0.896 0.000 0.104 0.000
#> SRR1471633     1  0.3878     0.5591 0.644 0.004 0.000 0.348 0.000 0.004
#> SRR1325944     6  0.0260     0.8877 0.000 0.008 0.000 0.000 0.000 0.992
#> SRR1429450     6  0.0000     0.8890 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR821573      5  0.6428     0.4268 0.000 0.064 0.132 0.304 0.500 0.000
#> SRR1435372     1  0.0000     0.8898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324184     2  0.4224     0.8881 0.000 0.552 0.000 0.016 0.000 0.432
#> SRR816517      4  0.4128     0.8065 0.000 0.048 0.100 0.788 0.000 0.064
#> SRR1324141     4  0.1625     0.8122 0.000 0.060 0.000 0.928 0.000 0.012
#> SRR1101612     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1356531     1  0.1007     0.8821 0.956 0.044 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.3023     0.6111 0.000 0.000 0.232 0.000 0.768 0.000
#> SRR1077708     5  0.0622     0.6639 0.000 0.008 0.012 0.000 0.980 0.000
#> SRR1343720     5  0.1204     0.6696 0.000 0.000 0.056 0.000 0.944 0.000
#> SRR1477499     6  0.0260     0.8877 0.000 0.008 0.000 0.000 0.000 0.992
#> SRR1347236     5  0.3514     0.5930 0.000 0.228 0.000 0.020 0.752 0.000
#> SRR1326408     1  0.5456     0.6116 0.620 0.264 0.000 0.064 0.052 0.000
#> SRR1336529     3  0.1765     0.8184 0.000 0.000 0.904 0.000 0.096 0.000
#> SRR1440643     4  0.4493     0.4720 0.000 0.040 0.364 0.596 0.000 0.000
#> SRR662354      1  0.0000     0.8898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.2762     0.6351 0.000 0.000 0.196 0.000 0.804 0.000
#> SRR1347389     2  0.5347     0.6634 0.000 0.560 0.000 0.136 0.000 0.304
#> SRR1353097     1  0.1610     0.8659 0.916 0.084 0.000 0.000 0.000 0.000
#> SRR1384737     4  0.1341     0.8361 0.000 0.028 0.000 0.948 0.000 0.024
#> SRR1096339     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1345329     4  0.1780     0.8366 0.000 0.048 0.000 0.924 0.000 0.028
#> SRR1414771     3  0.2013     0.7993 0.000 0.008 0.908 0.008 0.076 0.000
#> SRR1309119     1  0.3864     0.5652 0.648 0.004 0.000 0.344 0.000 0.004
#> SRR1470438     3  0.1700     0.8110 0.000 0.000 0.916 0.004 0.080 0.000
#> SRR1343221     1  0.2066     0.8454 0.904 0.024 0.000 0.000 0.072 0.000
#> SRR1410847     1  0.0260     0.8894 0.992 0.008 0.000 0.000 0.000 0.000
#> SRR807949      5  0.2941     0.6178 0.000 0.000 0.220 0.000 0.780 0.000
#> SRR1442332     5  0.3330     0.5614 0.000 0.000 0.284 0.000 0.716 0.000
#> SRR815920      3  0.1714     0.8182 0.000 0.000 0.908 0.000 0.092 0.000
#> SRR1471524     3  0.4613    -0.2222 0.000 0.008 0.528 0.024 0.440 0.000
#> SRR1477221     3  0.2048     0.8088 0.000 0.000 0.880 0.000 0.120 0.000
#> SRR1445046     2  0.4234     0.8925 0.000 0.544 0.000 0.016 0.000 0.440
#> SRR1331962     2  0.4250     0.8947 0.000 0.528 0.000 0.016 0.000 0.456
#> SRR1319946     2  0.4967     0.8277 0.000 0.512 0.000 0.068 0.000 0.420
#> SRR1311599     1  0.0508     0.8901 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1323977     4  0.3405     0.8139 0.000 0.112 0.000 0.812 0.000 0.076
#> SRR1445132     6  0.0000     0.8890 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1337321     5  0.2219     0.6305 0.000 0.000 0.136 0.000 0.864 0.000
#> SRR1366390     2  0.5498     0.6202 0.000 0.504 0.004 0.116 0.000 0.376
#> SRR1343012     4  0.4488     0.5269 0.000 0.060 0.000 0.704 0.224 0.012
#> SRR1311958     2  0.4234     0.8925 0.000 0.544 0.000 0.016 0.000 0.440
#> SRR1388234     4  0.4273     0.6594 0.000 0.080 0.000 0.716 0.000 0.204
#> SRR1370384     1  0.5846     0.4650 0.520 0.332 0.000 0.020 0.128 0.000
#> SRR1321650     5  0.3997    -0.3223 0.000 0.004 0.488 0.000 0.508 0.000
#> SRR1485117     2  0.4253     0.8916 0.000 0.524 0.000 0.016 0.000 0.460
#> SRR1384713     5  0.4591     0.5295 0.016 0.372 0.000 0.020 0.592 0.000
#> SRR816609      4  0.2384     0.8348 0.000 0.084 0.000 0.884 0.000 0.032
#> SRR1486239     2  0.4250     0.8947 0.000 0.528 0.000 0.016 0.000 0.456
#> SRR1309638     5  0.0914     0.6629 0.000 0.016 0.016 0.000 0.968 0.000
#> SRR1356660     1  0.0363     0.8904 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1392883     6  0.0260     0.8880 0.000 0.000 0.000 0.008 0.000 0.992
#> SRR808130      5  0.2969     0.6144 0.000 0.000 0.224 0.000 0.776 0.000
#> SRR816677      1  0.3607     0.5519 0.652 0.000 0.000 0.348 0.000 0.000
#> SRR1455722     1  0.0363     0.8893 0.988 0.012 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.0146     0.8900 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR808452      1  0.0260     0.8894 0.992 0.008 0.000 0.000 0.000 0.000
#> SRR1352169     5  0.5290     0.0235 0.000 0.000 0.428 0.100 0.472 0.000
#> SRR1366707     5  0.4427     0.3552 0.000 0.008 0.412 0.016 0.564 0.000
#> SRR1328143     5  0.3330     0.5491 0.000 0.000 0.284 0.000 0.716 0.000
#> SRR1473567     2  0.4250     0.8947 0.000 0.528 0.000 0.016 0.000 0.456

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.983           0.952       0.981         0.3977 0.606   0.606
#> 3 3 1.000           0.939       0.978         0.6508 0.671   0.486
#> 4 4 0.752           0.724       0.865         0.1158 0.906   0.734
#> 5 5 0.709           0.663       0.832         0.0749 0.900   0.661
#> 6 6 0.810           0.773       0.859         0.0438 0.877   0.521

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1   0.000      0.983 1.000 0.000
#> SRR1390119     2   0.000      0.970 0.000 1.000
#> SRR1436127     1   0.000      0.983 1.000 0.000
#> SRR1347278     1   0.000      0.983 1.000 0.000
#> SRR1332904     2   0.000      0.970 0.000 1.000
#> SRR1444179     1   0.000      0.983 1.000 0.000
#> SRR1082685     1   0.000      0.983 1.000 0.000
#> SRR1362287     1   0.000      0.983 1.000 0.000
#> SRR1339007     1   0.000      0.983 1.000 0.000
#> SRR1376557     2   0.000      0.970 0.000 1.000
#> SRR1468700     2   0.000      0.970 0.000 1.000
#> SRR1077455     1   0.000      0.983 1.000 0.000
#> SRR1413978     1   0.000      0.983 1.000 0.000
#> SRR1439896     1   0.000      0.983 1.000 0.000
#> SRR1317963     2   0.000      0.970 0.000 1.000
#> SRR1431865     1   0.000      0.983 1.000 0.000
#> SRR1394253     1   0.000      0.983 1.000 0.000
#> SRR1082664     1   0.000      0.983 1.000 0.000
#> SRR1077968     1   0.000      0.983 1.000 0.000
#> SRR1076393     1   0.000      0.983 1.000 0.000
#> SRR1477476     2   0.000      0.970 0.000 1.000
#> SRR1398057     1   0.000      0.983 1.000 0.000
#> SRR1485042     1   0.000      0.983 1.000 0.000
#> SRR1385453     2   0.714      0.758 0.196 0.804
#> SRR1348074     2   0.625      0.815 0.156 0.844
#> SRR813959      2   0.000      0.970 0.000 1.000
#> SRR665442      2   0.000      0.970 0.000 1.000
#> SRR1378068     1   0.000      0.983 1.000 0.000
#> SRR1485237     1   0.975      0.301 0.592 0.408
#> SRR1350792     1   0.000      0.983 1.000 0.000
#> SRR1326797     1   0.000      0.983 1.000 0.000
#> SRR808994      1   0.000      0.983 1.000 0.000
#> SRR1474041     1   0.000      0.983 1.000 0.000
#> SRR1405641     1   0.000      0.983 1.000 0.000
#> SRR1362245     1   0.000      0.983 1.000 0.000
#> SRR1500194     1   0.000      0.983 1.000 0.000
#> SRR1414876     2   0.000      0.970 0.000 1.000
#> SRR1478523     1   0.000      0.983 1.000 0.000
#> SRR1325161     1   0.000      0.983 1.000 0.000
#> SRR1318026     1   0.000      0.983 1.000 0.000
#> SRR1343778     1   0.000      0.983 1.000 0.000
#> SRR1441287     1   0.000      0.983 1.000 0.000
#> SRR1430991     1   0.000      0.983 1.000 0.000
#> SRR1499722     1   0.000      0.983 1.000 0.000
#> SRR1351368     1   0.000      0.983 1.000 0.000
#> SRR1441785     1   0.000      0.983 1.000 0.000
#> SRR1096101     1   0.000      0.983 1.000 0.000
#> SRR808375      1   0.000      0.983 1.000 0.000
#> SRR1452842     1   0.000      0.983 1.000 0.000
#> SRR1311709     1   0.000      0.983 1.000 0.000
#> SRR1433352     1   0.000      0.983 1.000 0.000
#> SRR1340241     2   0.000      0.970 0.000 1.000
#> SRR1456754     1   0.000      0.983 1.000 0.000
#> SRR1465172     1   0.000      0.983 1.000 0.000
#> SRR1499284     1   0.000      0.983 1.000 0.000
#> SRR1499607     2   0.000      0.970 0.000 1.000
#> SRR812342      1   0.000      0.983 1.000 0.000
#> SRR1405374     1   0.000      0.983 1.000 0.000
#> SRR1403565     1   0.000      0.983 1.000 0.000
#> SRR1332024     1   0.000      0.983 1.000 0.000
#> SRR1471633     1   0.000      0.983 1.000 0.000
#> SRR1325944     2   0.000      0.970 0.000 1.000
#> SRR1429450     2   0.000      0.970 0.000 1.000
#> SRR821573      1   0.644      0.793 0.836 0.164
#> SRR1435372     1   0.000      0.983 1.000 0.000
#> SRR1324184     2   0.000      0.970 0.000 1.000
#> SRR816517      2   0.000      0.970 0.000 1.000
#> SRR1324141     1   0.891      0.547 0.692 0.308
#> SRR1101612     1   0.000      0.983 1.000 0.000
#> SRR1356531     1   0.000      0.983 1.000 0.000
#> SRR1089785     1   0.000      0.983 1.000 0.000
#> SRR1077708     1   0.000      0.983 1.000 0.000
#> SRR1343720     1   0.000      0.983 1.000 0.000
#> SRR1477499     2   0.000      0.970 0.000 1.000
#> SRR1347236     1   0.000      0.983 1.000 0.000
#> SRR1326408     1   0.000      0.983 1.000 0.000
#> SRR1336529     1   0.000      0.983 1.000 0.000
#> SRR1440643     1   0.000      0.983 1.000 0.000
#> SRR662354      1   0.000      0.983 1.000 0.000
#> SRR1310817     1   0.000      0.983 1.000 0.000
#> SRR1347389     2   0.000      0.970 0.000 1.000
#> SRR1353097     1   0.000      0.983 1.000 0.000
#> SRR1384737     1   0.456      0.881 0.904 0.096
#> SRR1096339     1   0.000      0.983 1.000 0.000
#> SRR1345329     2   0.991      0.191 0.444 0.556
#> SRR1414771     1   0.000      0.983 1.000 0.000
#> SRR1309119     1   0.000      0.983 1.000 0.000
#> SRR1470438     1   0.000      0.983 1.000 0.000
#> SRR1343221     1   0.000      0.983 1.000 0.000
#> SRR1410847     1   0.000      0.983 1.000 0.000
#> SRR807949      1   0.000      0.983 1.000 0.000
#> SRR1442332     1   0.000      0.983 1.000 0.000
#> SRR815920      1   0.000      0.983 1.000 0.000
#> SRR1471524     1   0.000      0.983 1.000 0.000
#> SRR1477221     1   0.000      0.983 1.000 0.000
#> SRR1445046     2   0.000      0.970 0.000 1.000
#> SRR1331962     2   0.000      0.970 0.000 1.000
#> SRR1319946     2   0.000      0.970 0.000 1.000
#> SRR1311599     1   0.000      0.983 1.000 0.000
#> SRR1323977     2   0.000      0.970 0.000 1.000
#> SRR1445132     2   0.000      0.970 0.000 1.000
#> SRR1337321     1   0.000      0.983 1.000 0.000
#> SRR1366390     2   0.000      0.970 0.000 1.000
#> SRR1343012     1   0.994      0.148 0.544 0.456
#> SRR1311958     2   0.000      0.970 0.000 1.000
#> SRR1388234     2   0.000      0.970 0.000 1.000
#> SRR1370384     1   0.000      0.983 1.000 0.000
#> SRR1321650     1   0.000      0.983 1.000 0.000
#> SRR1485117     2   0.000      0.970 0.000 1.000
#> SRR1384713     1   0.000      0.983 1.000 0.000
#> SRR816609      2   0.552      0.845 0.128 0.872
#> SRR1486239     2   0.000      0.970 0.000 1.000
#> SRR1309638     1   0.000      0.983 1.000 0.000
#> SRR1356660     1   0.000      0.983 1.000 0.000
#> SRR1392883     2   0.000      0.970 0.000 1.000
#> SRR808130      1   0.000      0.983 1.000 0.000
#> SRR816677      1   0.000      0.983 1.000 0.000
#> SRR1455722     1   0.000      0.983 1.000 0.000
#> SRR1336029     1   0.000      0.983 1.000 0.000
#> SRR808452      1   0.000      0.983 1.000 0.000
#> SRR1352169     1   0.000      0.983 1.000 0.000
#> SRR1366707     1   0.000      0.983 1.000 0.000
#> SRR1328143     1   0.000      0.983 1.000 0.000
#> SRR1473567     2   0.000      0.970 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1390119     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1436127     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1347278     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1332904     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1444179     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1082685     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1362287     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1339007     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1376557     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1468700     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1077455     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1413978     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1317963     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1431865     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1082664     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1077968     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1076393     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1477476     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1398057     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1485042     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1385453     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1348074     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR813959      2  0.6140     0.3086 0.000 0.596 0.404
#> SRR665442      2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1378068     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1485237     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1350792     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1326797     1  0.1643     0.9315 0.956 0.000 0.044
#> SRR808994      3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1474041     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1405641     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1362245     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1500194     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1414876     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1478523     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1325161     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1318026     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1343778     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1441287     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1430991     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1499722     3  0.0892     0.9603 0.020 0.000 0.980
#> SRR1351368     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1441785     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1096101     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR808375      3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1452842     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1311709     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1433352     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1340241     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1456754     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1465172     3  0.5098     0.6579 0.248 0.000 0.752
#> SRR1499284     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1499607     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR812342      1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1403565     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1332024     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1471633     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1325944     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1429450     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR821573      3  0.0592     0.9696 0.000 0.012 0.988
#> SRR1435372     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1324184     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR816517      3  0.6274     0.1378 0.000 0.456 0.544
#> SRR1324141     1  0.6308     0.0229 0.508 0.492 0.000
#> SRR1101612     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1089785     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1077708     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1343720     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1477499     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1347236     1  0.5810     0.4949 0.664 0.000 0.336
#> SRR1326408     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1336529     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1440643     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR662354      1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1310817     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1347389     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1353097     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1384737     1  0.2711     0.8878 0.912 0.088 0.000
#> SRR1096339     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1345329     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1414771     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1309119     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1470438     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1343221     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR807949      3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1442332     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR815920      3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1471524     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1477221     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1445046     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1331962     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1319946     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1311599     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1323977     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1445132     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1337321     3  0.0592     0.9690 0.012 0.000 0.988
#> SRR1366390     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1343012     2  0.6235     0.1933 0.436 0.564 0.000
#> SRR1311958     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1388234     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1370384     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1321650     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1485117     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1384713     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR816609      1  0.4555     0.7393 0.800 0.200 0.000
#> SRR1486239     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1309638     3  0.1289     0.9480 0.032 0.000 0.968
#> SRR1356660     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1392883     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR808130      3  0.0000     0.9802 0.000 0.000 1.000
#> SRR816677      1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1455722     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9754 1.000 0.000 0.000
#> SRR808452      1  0.0000     0.9754 1.000 0.000 0.000
#> SRR1352169     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1366707     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1328143     3  0.0000     0.9802 0.000 0.000 1.000
#> SRR1473567     2  0.0000     0.9686 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.0469    0.83150 0.000 0.000 0.988 0.012
#> SRR1390119     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.0188    0.83127 0.000 0.000 0.996 0.004
#> SRR1347278     3  0.0937    0.83095 0.012 0.000 0.976 0.012
#> SRR1332904     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.1716    0.84787 0.936 0.000 0.000 0.064
#> SRR1082685     1  0.0188    0.86497 0.996 0.000 0.000 0.004
#> SRR1362287     1  0.0188    0.86432 0.996 0.000 0.000 0.004
#> SRR1339007     1  0.4103    0.64109 0.744 0.000 0.000 0.256
#> SRR1376557     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1077455     4  0.4888    0.36581 0.412 0.000 0.000 0.588
#> SRR1413978     1  0.3528    0.66034 0.808 0.000 0.000 0.192
#> SRR1439896     1  0.0188    0.86432 0.996 0.000 0.000 0.004
#> SRR1317963     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1431865     1  0.0000    0.86539 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000    0.86539 1.000 0.000 0.000 0.000
#> SRR1082664     3  0.4776    0.53529 0.000 0.000 0.624 0.376
#> SRR1077968     1  0.4972    0.12560 0.544 0.000 0.000 0.456
#> SRR1076393     3  0.2814    0.78644 0.000 0.000 0.868 0.132
#> SRR1477476     2  0.0336    0.92766 0.000 0.992 0.000 0.008
#> SRR1398057     3  0.0524    0.83079 0.004 0.000 0.988 0.008
#> SRR1485042     1  0.0469    0.86524 0.988 0.000 0.000 0.012
#> SRR1385453     3  0.4718    0.55986 0.000 0.012 0.708 0.280
#> SRR1348074     4  0.7370   -0.02141 0.412 0.160 0.000 0.428
#> SRR813959      2  0.2125    0.85758 0.000 0.920 0.004 0.076
#> SRR665442      2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1378068     3  0.0000    0.83085 0.000 0.000 1.000 0.000
#> SRR1485237     1  0.5478    0.57890 0.696 0.056 0.000 0.248
#> SRR1350792     1  0.1118    0.85860 0.964 0.000 0.000 0.036
#> SRR1326797     4  0.5326    0.42484 0.380 0.000 0.016 0.604
#> SRR808994      3  0.0000    0.83085 0.000 0.000 1.000 0.000
#> SRR1474041     3  0.4509    0.65738 0.004 0.000 0.708 0.288
#> SRR1405641     3  0.0000    0.83085 0.000 0.000 1.000 0.000
#> SRR1362245     3  0.0817    0.82431 0.024 0.000 0.976 0.000
#> SRR1500194     1  0.0000    0.86539 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.1022    0.81949 0.000 0.000 0.968 0.032
#> SRR1325161     4  0.5517    0.00258 0.020 0.000 0.412 0.568
#> SRR1318026     4  0.4072    0.35208 0.252 0.000 0.000 0.748
#> SRR1343778     3  0.0188    0.83127 0.000 0.000 0.996 0.004
#> SRR1441287     1  0.0469    0.86558 0.988 0.000 0.000 0.012
#> SRR1430991     3  0.4661    0.57948 0.000 0.000 0.652 0.348
#> SRR1499722     4  0.7142    0.31905 0.152 0.000 0.324 0.524
#> SRR1351368     3  0.1792    0.79651 0.000 0.000 0.932 0.068
#> SRR1441785     1  0.0000    0.86539 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.3444    0.73723 0.816 0.000 0.000 0.184
#> SRR808375      3  0.4941    0.41089 0.000 0.000 0.564 0.436
#> SRR1452842     4  0.4855    0.38441 0.400 0.000 0.000 0.600
#> SRR1311709     1  0.2760    0.79286 0.872 0.000 0.000 0.128
#> SRR1433352     3  0.2888    0.79186 0.004 0.000 0.872 0.124
#> SRR1340241     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.4585    0.47290 0.668 0.000 0.000 0.332
#> SRR1465172     4  0.6661    0.43836 0.132 0.000 0.264 0.604
#> SRR1499284     4  0.4830    0.40364 0.392 0.000 0.000 0.608
#> SRR1499607     2  0.4193    0.71254 0.000 0.732 0.000 0.268
#> SRR812342      1  0.0469    0.86507 0.988 0.000 0.000 0.012
#> SRR1405374     1  0.0188    0.86497 0.996 0.000 0.000 0.004
#> SRR1403565     1  0.0188    0.86564 0.996 0.000 0.000 0.004
#> SRR1332024     3  0.0921    0.82134 0.028 0.000 0.972 0.000
#> SRR1471633     1  0.1389    0.85597 0.952 0.000 0.000 0.048
#> SRR1325944     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR821573      4  0.3450    0.42395 0.000 0.008 0.156 0.836
#> SRR1435372     1  0.4008    0.65532 0.756 0.000 0.000 0.244
#> SRR1324184     2  0.3444    0.79584 0.000 0.816 0.000 0.184
#> SRR816517      3  0.5990    0.53727 0.000 0.144 0.692 0.164
#> SRR1324141     4  0.0895    0.53497 0.004 0.020 0.000 0.976
#> SRR1101612     1  0.0000    0.86539 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.2149    0.82567 0.912 0.000 0.000 0.088
#> SRR1089785     3  0.4277    0.66528 0.000 0.000 0.720 0.280
#> SRR1077708     3  0.4576    0.68371 0.012 0.000 0.728 0.260
#> SRR1343720     3  0.5161    0.47275 0.008 0.000 0.592 0.400
#> SRR1477499     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1347236     4  0.7037    0.44713 0.168 0.000 0.268 0.564
#> SRR1326408     1  0.4790    0.37896 0.620 0.000 0.000 0.380
#> SRR1336529     3  0.0188    0.83127 0.000 0.000 0.996 0.004
#> SRR1440643     3  0.3610    0.67294 0.000 0.000 0.800 0.200
#> SRR662354      1  0.0188    0.86564 0.996 0.000 0.000 0.004
#> SRR1310817     3  0.4888    0.47008 0.000 0.000 0.588 0.412
#> SRR1347389     2  0.4830    0.56119 0.000 0.608 0.000 0.392
#> SRR1353097     1  0.3528    0.72927 0.808 0.000 0.000 0.192
#> SRR1384737     4  0.6706    0.13030 0.124 0.288 0.000 0.588
#> SRR1096339     1  0.0000    0.86539 1.000 0.000 0.000 0.000
#> SRR1345329     1  0.5690    0.58329 0.700 0.084 0.000 0.216
#> SRR1414771     3  0.0000    0.83085 0.000 0.000 1.000 0.000
#> SRR1309119     1  0.2081    0.80261 0.916 0.000 0.000 0.084
#> SRR1470438     3  0.0188    0.83099 0.000 0.000 0.996 0.004
#> SRR1343221     1  0.1716    0.85099 0.936 0.000 0.000 0.064
#> SRR1410847     1  0.0188    0.86497 0.996 0.000 0.000 0.004
#> SRR807949      3  0.4585    0.60231 0.000 0.000 0.668 0.332
#> SRR1442332     3  0.3172    0.76888 0.000 0.000 0.840 0.160
#> SRR815920      3  0.0000    0.83085 0.000 0.000 1.000 0.000
#> SRR1471524     3  0.0707    0.83008 0.000 0.000 0.980 0.020
#> SRR1477221     3  0.2048    0.79557 0.064 0.000 0.928 0.008
#> SRR1445046     2  0.1716    0.89207 0.000 0.936 0.000 0.064
#> SRR1331962     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1311599     1  0.0000    0.86539 1.000 0.000 0.000 0.000
#> SRR1323977     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1445132     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.2111    0.82190 0.024 0.000 0.932 0.044
#> SRR1366390     2  0.4817    0.56701 0.000 0.612 0.000 0.388
#> SRR1343012     4  0.1807    0.53211 0.008 0.052 0.000 0.940
#> SRR1311958     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1370384     1  0.4916    0.19421 0.576 0.000 0.000 0.424
#> SRR1321650     3  0.1042    0.82556 0.020 0.000 0.972 0.008
#> SRR1485117     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1384713     4  0.4866    0.37884 0.404 0.000 0.000 0.596
#> SRR816609      2  0.6052    0.14587 0.396 0.556 0.000 0.048
#> SRR1486239     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR1309638     3  0.6547    0.28843 0.124 0.000 0.616 0.260
#> SRR1356660     1  0.0188    0.86497 0.996 0.000 0.000 0.004
#> SRR1392883     2  0.0000    0.93233 0.000 1.000 0.000 0.000
#> SRR808130      3  0.4477    0.62838 0.000 0.000 0.688 0.312
#> SRR816677      1  0.2760    0.79629 0.872 0.000 0.000 0.128
#> SRR1455722     1  0.0336    0.86521 0.992 0.000 0.000 0.008
#> SRR1336029     1  0.1474    0.84061 0.948 0.000 0.000 0.052
#> SRR808452      1  0.0592    0.86532 0.984 0.000 0.000 0.016
#> SRR1352169     3  0.0672    0.83116 0.000 0.008 0.984 0.008
#> SRR1366707     3  0.0188    0.83135 0.000 0.000 0.996 0.004
#> SRR1328143     3  0.2773    0.79681 0.004 0.000 0.880 0.116
#> SRR1473567     2  0.0000    0.93233 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     3  0.2505     0.7827 0.000 0.000 0.888 0.092 0.020
#> SRR1390119     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.1522     0.7939 0.000 0.000 0.944 0.044 0.012
#> SRR1347278     3  0.3792     0.7126 0.180 0.000 0.792 0.020 0.008
#> SRR1332904     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1444179     1  0.6275     0.3842 0.520 0.000 0.000 0.300 0.180
#> SRR1082685     1  0.3814     0.7645 0.808 0.000 0.000 0.124 0.068
#> SRR1362287     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1339007     5  0.3909     0.5071 0.216 0.000 0.000 0.024 0.760
#> SRR1376557     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1468700     2  0.0162     0.9338 0.000 0.996 0.000 0.000 0.004
#> SRR1077455     5  0.1041     0.5821 0.032 0.000 0.000 0.004 0.964
#> SRR1413978     1  0.5742     0.2858 0.508 0.000 0.000 0.404 0.088
#> SRR1439896     1  0.0000     0.8600 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     2  0.0404     0.9276 0.000 0.988 0.000 0.012 0.000
#> SRR1431865     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1394253     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1082664     3  0.4996     0.3748 0.000 0.000 0.548 0.032 0.420
#> SRR1077968     5  0.3012     0.5652 0.104 0.000 0.000 0.036 0.860
#> SRR1076393     3  0.2439     0.7750 0.000 0.000 0.876 0.004 0.120
#> SRR1477476     2  0.1341     0.8905 0.000 0.944 0.000 0.056 0.000
#> SRR1398057     3  0.2304     0.7653 0.100 0.000 0.892 0.008 0.000
#> SRR1485042     1  0.2624     0.8050 0.872 0.000 0.000 0.012 0.116
#> SRR1385453     4  0.4440    -0.1194 0.000 0.004 0.468 0.528 0.000
#> SRR1348074     4  0.3880     0.6380 0.028 0.004 0.000 0.784 0.184
#> SRR813959      2  0.2833     0.7566 0.000 0.852 0.004 0.140 0.004
#> SRR665442      2  0.0451     0.9304 0.000 0.988 0.000 0.008 0.004
#> SRR1378068     3  0.0000     0.7918 0.000 0.000 1.000 0.000 0.000
#> SRR1485237     5  0.5708     0.4333 0.152 0.060 0.000 0.088 0.700
#> SRR1350792     1  0.2280     0.7970 0.880 0.000 0.000 0.000 0.120
#> SRR1326797     5  0.4126     0.5512 0.028 0.000 0.032 0.140 0.800
#> SRR808994      3  0.0162     0.7912 0.000 0.000 0.996 0.004 0.000
#> SRR1474041     3  0.5703     0.5934 0.000 0.000 0.616 0.140 0.244
#> SRR1405641     3  0.0162     0.7912 0.000 0.000 0.996 0.004 0.000
#> SRR1362245     3  0.2179     0.7567 0.100 0.000 0.896 0.004 0.000
#> SRR1500194     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1414876     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.1544     0.7652 0.000 0.000 0.932 0.068 0.000
#> SRR1325161     5  0.5224     0.4575 0.000 0.000 0.176 0.140 0.684
#> SRR1318026     4  0.2930     0.6544 0.004 0.000 0.000 0.832 0.164
#> SRR1343778     3  0.0162     0.7924 0.000 0.000 0.996 0.000 0.004
#> SRR1441287     1  0.1469     0.8467 0.948 0.000 0.000 0.016 0.036
#> SRR1430991     3  0.5906     0.5296 0.000 0.000 0.576 0.140 0.284
#> SRR1499722     5  0.5888     0.2443 0.000 0.000 0.280 0.140 0.580
#> SRR1351368     3  0.3274     0.6450 0.000 0.000 0.780 0.220 0.000
#> SRR1441785     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1096101     5  0.4627     0.1391 0.444 0.000 0.000 0.012 0.544
#> SRR808375      5  0.6215    -0.1702 0.000 0.000 0.412 0.140 0.448
#> SRR1452842     5  0.0955     0.5807 0.028 0.000 0.000 0.004 0.968
#> SRR1311709     1  0.5365     0.2718 0.528 0.000 0.000 0.056 0.416
#> SRR1433352     3  0.4766     0.7040 0.000 0.000 0.732 0.132 0.136
#> SRR1340241     2  0.0510     0.9257 0.000 0.984 0.000 0.016 0.000
#> SRR1456754     5  0.2890     0.5643 0.160 0.000 0.000 0.004 0.836
#> SRR1465172     5  0.3477     0.5445 0.000 0.000 0.040 0.136 0.824
#> SRR1499284     5  0.3080     0.5614 0.020 0.000 0.004 0.124 0.852
#> SRR1499607     4  0.4567     0.0895 0.004 0.448 0.000 0.544 0.004
#> SRR812342      1  0.0404     0.8580 0.988 0.000 0.000 0.000 0.012
#> SRR1405374     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1403565     1  0.0324     0.8584 0.992 0.000 0.000 0.004 0.004
#> SRR1332024     3  0.2763     0.7161 0.148 0.000 0.848 0.004 0.000
#> SRR1471633     1  0.5979     0.5289 0.588 0.000 0.000 0.192 0.220
#> SRR1325944     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR821573      4  0.4648    -0.1690 0.000 0.000 0.012 0.524 0.464
#> SRR1435372     5  0.3934     0.4995 0.244 0.000 0.000 0.016 0.740
#> SRR1324184     2  0.4367     0.2565 0.000 0.580 0.000 0.416 0.004
#> SRR816517      3  0.3452     0.5904 0.000 0.000 0.756 0.244 0.000
#> SRR1324141     4  0.3333     0.6418 0.004 0.000 0.000 0.788 0.208
#> SRR1101612     1  0.0000     0.8600 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.3814     0.6292 0.720 0.000 0.000 0.004 0.276
#> SRR1089785     3  0.5190     0.6739 0.000 0.000 0.688 0.140 0.172
#> SRR1077708     3  0.5175     0.2180 0.000 0.000 0.496 0.040 0.464
#> SRR1343720     5  0.6219    -0.2111 0.000 0.000 0.424 0.140 0.436
#> SRR1477499     2  0.0162     0.9334 0.000 0.996 0.000 0.004 0.000
#> SRR1347236     5  0.5581     0.3804 0.000 0.000 0.224 0.140 0.636
#> SRR1326408     5  0.3595     0.5549 0.140 0.000 0.000 0.044 0.816
#> SRR1336529     3  0.0162     0.7921 0.000 0.000 0.996 0.004 0.000
#> SRR1440643     3  0.4304     0.3586 0.000 0.000 0.516 0.484 0.000
#> SRR662354      1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1310817     3  0.6178     0.4896 0.000 0.000 0.536 0.168 0.296
#> SRR1347389     4  0.2890     0.6187 0.000 0.160 0.000 0.836 0.004
#> SRR1353097     5  0.4774     0.1228 0.424 0.000 0.000 0.020 0.556
#> SRR1384737     4  0.2763     0.6550 0.004 0.000 0.000 0.848 0.148
#> SRR1096339     1  0.0000     0.8600 1.000 0.000 0.000 0.000 0.000
#> SRR1345329     4  0.6817     0.1124 0.236 0.004 0.000 0.400 0.360
#> SRR1414771     3  0.0162     0.7912 0.000 0.000 0.996 0.004 0.000
#> SRR1309119     1  0.2818     0.7925 0.856 0.000 0.000 0.132 0.012
#> SRR1470438     3  0.0324     0.7910 0.004 0.000 0.992 0.004 0.000
#> SRR1343221     1  0.3804     0.7477 0.796 0.000 0.000 0.044 0.160
#> SRR1410847     1  0.0290     0.8593 0.992 0.000 0.000 0.000 0.008
#> SRR807949      3  0.5770     0.5742 0.000 0.000 0.604 0.140 0.256
#> SRR1442332     3  0.4630     0.7185 0.000 0.000 0.744 0.140 0.116
#> SRR815920      3  0.0162     0.7912 0.000 0.000 0.996 0.004 0.000
#> SRR1471524     3  0.2843     0.7718 0.000 0.000 0.848 0.144 0.008
#> SRR1477221     3  0.3969     0.5471 0.304 0.000 0.692 0.004 0.000
#> SRR1445046     2  0.3160     0.7242 0.000 0.808 0.000 0.188 0.004
#> SRR1331962     2  0.0324     0.9323 0.000 0.992 0.000 0.004 0.004
#> SRR1319946     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1311599     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1323977     2  0.0290     0.9307 0.000 0.992 0.000 0.000 0.008
#> SRR1445132     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.4406     0.7518 0.020 0.000 0.784 0.136 0.060
#> SRR1366390     4  0.2930     0.6166 0.000 0.164 0.004 0.832 0.000
#> SRR1343012     4  0.3491     0.6293 0.004 0.000 0.000 0.768 0.228
#> SRR1311958     2  0.0324     0.9323 0.000 0.992 0.000 0.004 0.004
#> SRR1388234     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1370384     5  0.2798     0.5728 0.140 0.000 0.000 0.008 0.852
#> SRR1321650     3  0.1988     0.7857 0.048 0.000 0.928 0.008 0.016
#> SRR1485117     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1384713     5  0.1701     0.5825 0.048 0.000 0.000 0.016 0.936
#> SRR816609      2  0.7242     0.0655 0.112 0.492 0.000 0.084 0.312
#> SRR1486239     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR1309638     5  0.4152     0.4169 0.012 0.000 0.296 0.000 0.692
#> SRR1356660     1  0.0162     0.8598 0.996 0.000 0.000 0.004 0.000
#> SRR1392883     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000
#> SRR808130      3  0.5581     0.6186 0.000 0.000 0.636 0.140 0.224
#> SRR816677      1  0.5473     0.2862 0.520 0.000 0.000 0.064 0.416
#> SRR1455722     1  0.0880     0.8541 0.968 0.000 0.000 0.000 0.032
#> SRR1336029     1  0.4385     0.7159 0.752 0.000 0.000 0.180 0.068
#> SRR808452      1  0.1195     0.8512 0.960 0.000 0.000 0.012 0.028
#> SRR1352169     3  0.2860     0.7907 0.036 0.008 0.896 0.044 0.016
#> SRR1366707     3  0.0290     0.7931 0.000 0.000 0.992 0.000 0.008
#> SRR1328143     3  0.4334     0.7362 0.000 0.000 0.768 0.140 0.092
#> SRR1473567     2  0.0000     0.9350 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.3868     0.2027 0.000 0.000 0.492 0.000 0.508 0.000
#> SRR1390119     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.3371     0.5159 0.000 0.000 0.708 0.000 0.292 0.000
#> SRR1347278     1  0.5918    -0.0635 0.456 0.000 0.232 0.000 0.312 0.000
#> SRR1332904     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1444179     1  0.5442     0.2807 0.532 0.000 0.000 0.116 0.004 0.348
#> SRR1082685     1  0.4089     0.5598 0.696 0.000 0.000 0.040 0.000 0.264
#> SRR1362287     1  0.0000     0.8517 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1339007     6  0.1036     0.8267 0.024 0.000 0.000 0.004 0.008 0.964
#> SRR1376557     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077455     6  0.1858     0.8122 0.004 0.000 0.000 0.000 0.092 0.904
#> SRR1413978     1  0.5948     0.0959 0.464 0.000 0.016 0.120 0.004 0.396
#> SRR1439896     1  0.0000     0.8517 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317963     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1431865     1  0.0000     0.8517 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000     0.8517 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082664     3  0.5454     0.3346 0.000 0.000 0.552 0.000 0.292 0.156
#> SRR1077968     6  0.0870     0.8255 0.012 0.000 0.000 0.004 0.012 0.972
#> SRR1076393     3  0.1501     0.8065 0.000 0.000 0.924 0.000 0.076 0.000
#> SRR1477476     2  0.0972     0.9509 0.000 0.964 0.008 0.028 0.000 0.000
#> SRR1398057     3  0.4011     0.5464 0.304 0.000 0.672 0.000 0.024 0.000
#> SRR1485042     1  0.3867     0.0342 0.512 0.000 0.000 0.000 0.000 0.488
#> SRR1385453     4  0.3707     0.7408 0.000 0.000 0.136 0.784 0.080 0.000
#> SRR1348074     4  0.2482     0.7920 0.004 0.000 0.000 0.848 0.000 0.148
#> SRR813959      2  0.1663     0.8851 0.000 0.912 0.000 0.000 0.088 0.000
#> SRR665442      2  0.3188     0.8629 0.016 0.860 0.000 0.072 0.036 0.016
#> SRR1378068     3  0.0547     0.8312 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR1485237     6  0.3070     0.7881 0.016 0.072 0.000 0.000 0.056 0.856
#> SRR1350792     1  0.3520     0.7374 0.804 0.000 0.000 0.000 0.100 0.096
#> SRR1326797     5  0.2553     0.7634 0.008 0.000 0.000 0.000 0.848 0.144
#> SRR808994      3  0.0260     0.8315 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1474041     5  0.2378     0.8834 0.000 0.000 0.152 0.000 0.848 0.000
#> SRR1405641     3  0.0146     0.8315 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1362245     3  0.1588     0.8028 0.072 0.000 0.924 0.000 0.004 0.000
#> SRR1500194     1  0.0146     0.8500 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1414876     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     3  0.1367     0.8173 0.000 0.000 0.944 0.044 0.012 0.000
#> SRR1325161     5  0.2857     0.8479 0.000 0.000 0.072 0.000 0.856 0.072
#> SRR1318026     4  0.0458     0.8524 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1343778     3  0.0547     0.8308 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR1441287     1  0.1152     0.8394 0.952 0.000 0.000 0.000 0.004 0.044
#> SRR1430991     5  0.2527     0.8792 0.000 0.000 0.168 0.000 0.832 0.000
#> SRR1499722     5  0.2633     0.8741 0.000 0.000 0.104 0.000 0.864 0.032
#> SRR1351368     3  0.1897     0.7869 0.000 0.000 0.908 0.084 0.004 0.004
#> SRR1441785     1  0.0146     0.8499 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1096101     1  0.3993     0.1411 0.520 0.000 0.000 0.000 0.004 0.476
#> SRR808375      5  0.2748     0.8828 0.000 0.000 0.128 0.000 0.848 0.024
#> SRR1452842     6  0.0922     0.8200 0.004 0.000 0.000 0.004 0.024 0.968
#> SRR1311709     6  0.2706     0.7759 0.160 0.000 0.000 0.000 0.008 0.832
#> SRR1433352     5  0.3390     0.7138 0.000 0.000 0.296 0.000 0.704 0.000
#> SRR1340241     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1456754     6  0.1151     0.8275 0.032 0.000 0.000 0.000 0.012 0.956
#> SRR1465172     5  0.2667     0.7873 0.000 0.000 0.020 0.000 0.852 0.128
#> SRR1499284     6  0.3817     0.2393 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1499607     2  0.4113     0.7224 0.000 0.768 0.020 0.164 0.004 0.044
#> SRR812342      1  0.0858     0.8470 0.968 0.000 0.000 0.000 0.004 0.028
#> SRR1405374     1  0.0000     0.8517 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1403565     1  0.0508     0.8468 0.984 0.000 0.000 0.000 0.012 0.004
#> SRR1332024     3  0.1814     0.7793 0.100 0.000 0.900 0.000 0.000 0.000
#> SRR1471633     6  0.5528     0.5722 0.252 0.000 0.000 0.036 0.096 0.616
#> SRR1325944     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.3740     0.6406 0.000 0.000 0.000 0.228 0.740 0.032
#> SRR1435372     6  0.2842     0.8039 0.044 0.000 0.000 0.000 0.104 0.852
#> SRR1324184     4  0.3372     0.7630 0.000 0.124 0.000 0.824 0.036 0.016
#> SRR816517      3  0.1957     0.7568 0.000 0.000 0.888 0.112 0.000 0.000
#> SRR1324141     4  0.2553     0.8029 0.000 0.000 0.000 0.848 0.008 0.144
#> SRR1101612     1  0.0508     0.8505 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR1356531     6  0.2941     0.7223 0.220 0.000 0.000 0.000 0.000 0.780
#> SRR1089785     5  0.2597     0.8723 0.000 0.000 0.176 0.000 0.824 0.000
#> SRR1077708     3  0.4854     0.5624 0.000 0.000 0.636 0.000 0.264 0.100
#> SRR1343720     5  0.2950     0.8837 0.000 0.000 0.148 0.000 0.828 0.024
#> SRR1477499     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     5  0.2870     0.8683 0.004 0.000 0.100 0.000 0.856 0.040
#> SRR1326408     6  0.1321     0.8262 0.024 0.000 0.000 0.004 0.020 0.952
#> SRR1336529     3  0.0363     0.8319 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1440643     4  0.3740     0.7068 0.000 0.000 0.120 0.784 0.096 0.000
#> SRR662354      1  0.1448     0.8266 0.948 0.000 0.000 0.012 0.024 0.016
#> SRR1310817     5  0.2750     0.8830 0.000 0.000 0.136 0.020 0.844 0.000
#> SRR1347389     4  0.0405     0.8517 0.000 0.008 0.000 0.988 0.004 0.000
#> SRR1353097     6  0.3133     0.7254 0.212 0.000 0.000 0.000 0.008 0.780
#> SRR1384737     4  0.0951     0.8521 0.000 0.000 0.008 0.968 0.004 0.020
#> SRR1096339     1  0.0260     0.8514 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1345329     6  0.2113     0.8111 0.032 0.000 0.000 0.048 0.008 0.912
#> SRR1414771     3  0.0000     0.8309 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1309119     1  0.1686     0.8285 0.924 0.000 0.000 0.064 0.000 0.012
#> SRR1470438     3  0.0363     0.8322 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1343221     1  0.2060     0.8140 0.900 0.000 0.000 0.000 0.016 0.084
#> SRR1410847     1  0.0405     0.8512 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR807949      5  0.2416     0.8826 0.000 0.000 0.156 0.000 0.844 0.000
#> SRR1442332     5  0.2527     0.8761 0.000 0.000 0.168 0.000 0.832 0.000
#> SRR815920      3  0.0363     0.8319 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1471524     3  0.5421     0.1638 0.000 0.000 0.528 0.132 0.340 0.000
#> SRR1477221     1  0.3686     0.5941 0.748 0.000 0.220 0.000 0.032 0.000
#> SRR1445046     2  0.1003     0.9550 0.000 0.964 0.000 0.020 0.016 0.000
#> SRR1331962     2  0.0520     0.9672 0.000 0.984 0.000 0.008 0.008 0.000
#> SRR1319946     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1311599     1  0.0000     0.8517 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1323977     2  0.0777     0.9549 0.000 0.972 0.000 0.000 0.024 0.004
#> SRR1445132     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     5  0.3130     0.8606 0.048 0.000 0.124 0.000 0.828 0.000
#> SRR1366390     4  0.0405     0.8517 0.000 0.008 0.000 0.988 0.004 0.000
#> SRR1343012     4  0.4004     0.4700 0.000 0.000 0.000 0.620 0.012 0.368
#> SRR1311958     2  0.0914     0.9583 0.000 0.968 0.000 0.016 0.016 0.000
#> SRR1388234     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1370384     6  0.2263     0.8098 0.016 0.000 0.000 0.000 0.100 0.884
#> SRR1321650     3  0.2540     0.7798 0.020 0.000 0.872 0.000 0.104 0.004
#> SRR1485117     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1384713     6  0.1297     0.8195 0.012 0.000 0.000 0.000 0.040 0.948
#> SRR816609      6  0.3287     0.6495 0.012 0.220 0.000 0.000 0.000 0.768
#> SRR1486239     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1309638     6  0.4863     0.4833 0.000 0.000 0.284 0.000 0.092 0.624
#> SRR1356660     1  0.0146     0.8518 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1392883     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.2416     0.8826 0.000 0.000 0.156 0.000 0.844 0.000
#> SRR816677      6  0.2094     0.8160 0.080 0.000 0.000 0.000 0.020 0.900
#> SRR1455722     1  0.1010     0.8438 0.960 0.000 0.000 0.000 0.004 0.036
#> SRR1336029     1  0.3024     0.7691 0.844 0.000 0.000 0.032 0.008 0.116
#> SRR808452      1  0.0858     0.8464 0.968 0.000 0.000 0.000 0.004 0.028
#> SRR1352169     3  0.5182    -0.1267 0.024 0.040 0.484 0.000 0.452 0.000
#> SRR1366707     3  0.0547     0.8315 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR1328143     5  0.2454     0.8705 0.000 0.000 0.160 0.000 0.840 0.000
#> SRR1473567     2  0.0000     0.9747 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.735           0.885       0.949          0.327 0.695   0.695
#> 3 3 0.752           0.807       0.926          0.104 0.987   0.981
#> 4 4 0.705           0.835       0.907          0.276 0.805   0.718
#> 5 5 0.556           0.792       0.879          0.143 0.975   0.951
#> 6 6 0.424           0.596       0.775          0.225 0.896   0.786

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.947 1.000 0.000
#> SRR1390119     2  0.0000      0.917 0.000 1.000
#> SRR1436127     1  0.0000      0.947 1.000 0.000
#> SRR1347278     1  0.0000      0.947 1.000 0.000
#> SRR1332904     2  0.1414      0.907 0.020 0.980
#> SRR1444179     1  0.0376      0.945 0.996 0.004
#> SRR1082685     1  0.0000      0.947 1.000 0.000
#> SRR1362287     1  0.0000      0.947 1.000 0.000
#> SRR1339007     1  0.0000      0.947 1.000 0.000
#> SRR1376557     2  0.0000      0.917 0.000 1.000
#> SRR1468700     2  0.0376      0.916 0.004 0.996
#> SRR1077455     1  0.0000      0.947 1.000 0.000
#> SRR1413978     1  0.0000      0.947 1.000 0.000
#> SRR1439896     1  0.0000      0.947 1.000 0.000
#> SRR1317963     2  0.9286      0.494 0.344 0.656
#> SRR1431865     1  0.0000      0.947 1.000 0.000
#> SRR1394253     1  0.0000      0.947 1.000 0.000
#> SRR1082664     1  0.0000      0.947 1.000 0.000
#> SRR1077968     1  0.0000      0.947 1.000 0.000
#> SRR1076393     1  0.0000      0.947 1.000 0.000
#> SRR1477476     2  0.0000      0.917 0.000 1.000
#> SRR1398057     1  0.0000      0.947 1.000 0.000
#> SRR1485042     1  0.0000      0.947 1.000 0.000
#> SRR1385453     1  0.9129      0.540 0.672 0.328
#> SRR1348074     1  0.8081      0.690 0.752 0.248
#> SRR813959      1  0.7815      0.715 0.768 0.232
#> SRR665442      1  0.5178      0.840 0.884 0.116
#> SRR1378068     1  0.0000      0.947 1.000 0.000
#> SRR1485237     1  0.8016      0.696 0.756 0.244
#> SRR1350792     1  0.0000      0.947 1.000 0.000
#> SRR1326797     1  0.0000      0.947 1.000 0.000
#> SRR808994      1  0.0000      0.947 1.000 0.000
#> SRR1474041     1  0.0000      0.947 1.000 0.000
#> SRR1405641     1  0.0000      0.947 1.000 0.000
#> SRR1362245     1  0.0000      0.947 1.000 0.000
#> SRR1500194     1  0.0000      0.947 1.000 0.000
#> SRR1414876     2  0.0000      0.917 0.000 1.000
#> SRR1478523     1  0.8861      0.588 0.696 0.304
#> SRR1325161     1  0.0000      0.947 1.000 0.000
#> SRR1318026     1  0.8081      0.690 0.752 0.248
#> SRR1343778     1  0.0000      0.947 1.000 0.000
#> SRR1441287     1  0.0000      0.947 1.000 0.000
#> SRR1430991     1  0.0000      0.947 1.000 0.000
#> SRR1499722     1  0.0000      0.947 1.000 0.000
#> SRR1351368     1  0.5178      0.850 0.884 0.116
#> SRR1441785     1  0.0000      0.947 1.000 0.000
#> SRR1096101     1  0.0000      0.947 1.000 0.000
#> SRR808375      1  0.0000      0.947 1.000 0.000
#> SRR1452842     1  0.0000      0.947 1.000 0.000
#> SRR1311709     1  0.0376      0.945 0.996 0.004
#> SRR1433352     1  0.0000      0.947 1.000 0.000
#> SRR1340241     2  0.0000      0.917 0.000 1.000
#> SRR1456754     1  0.0000      0.947 1.000 0.000
#> SRR1465172     1  0.0000      0.947 1.000 0.000
#> SRR1499284     1  0.0000      0.947 1.000 0.000
#> SRR1499607     2  0.9170      0.519 0.332 0.668
#> SRR812342      1  0.0000      0.947 1.000 0.000
#> SRR1405374     1  0.0000      0.947 1.000 0.000
#> SRR1403565     1  0.0000      0.947 1.000 0.000
#> SRR1332024     1  0.0000      0.947 1.000 0.000
#> SRR1471633     1  0.0376      0.945 0.996 0.004
#> SRR1325944     2  0.0000      0.917 0.000 1.000
#> SRR1429450     2  0.0000      0.917 0.000 1.000
#> SRR821573      1  0.3274      0.901 0.940 0.060
#> SRR1435372     1  0.0000      0.947 1.000 0.000
#> SRR1324184     2  0.7376      0.729 0.208 0.792
#> SRR816517      1  0.9460      0.457 0.636 0.364
#> SRR1324141     1  0.8081      0.690 0.752 0.248
#> SRR1101612     1  0.0000      0.947 1.000 0.000
#> SRR1356531     1  0.0000      0.947 1.000 0.000
#> SRR1089785     1  0.0000      0.947 1.000 0.000
#> SRR1077708     1  0.0000      0.947 1.000 0.000
#> SRR1343720     1  0.0000      0.947 1.000 0.000
#> SRR1477499     2  0.0000      0.917 0.000 1.000
#> SRR1347236     1  0.0000      0.947 1.000 0.000
#> SRR1326408     1  0.0000      0.947 1.000 0.000
#> SRR1336529     1  0.0000      0.947 1.000 0.000
#> SRR1440643     1  0.6887      0.777 0.816 0.184
#> SRR662354      1  0.0000      0.947 1.000 0.000
#> SRR1310817     1  0.2603      0.915 0.956 0.044
#> SRR1347389     2  0.0000      0.917 0.000 1.000
#> SRR1353097     1  0.0000      0.947 1.000 0.000
#> SRR1384737     1  0.8081      0.690 0.752 0.248
#> SRR1096339     1  0.0000      0.947 1.000 0.000
#> SRR1345329     1  0.8081      0.690 0.752 0.248
#> SRR1414771     1  0.0000      0.947 1.000 0.000
#> SRR1309119     1  0.0376      0.945 0.996 0.004
#> SRR1470438     1  0.0000      0.947 1.000 0.000
#> SRR1343221     1  0.0000      0.947 1.000 0.000
#> SRR1410847     1  0.0000      0.947 1.000 0.000
#> SRR807949      1  0.0000      0.947 1.000 0.000
#> SRR1442332     1  0.0000      0.947 1.000 0.000
#> SRR815920      1  0.0000      0.947 1.000 0.000
#> SRR1471524     1  0.1184      0.937 0.984 0.016
#> SRR1477221     1  0.0000      0.947 1.000 0.000
#> SRR1445046     2  0.9286      0.494 0.344 0.656
#> SRR1331962     2  0.0376      0.916 0.004 0.996
#> SRR1319946     1  0.9608      0.404 0.616 0.384
#> SRR1311599     1  0.0000      0.947 1.000 0.000
#> SRR1323977     1  0.6623      0.791 0.828 0.172
#> SRR1445132     2  0.0000      0.917 0.000 1.000
#> SRR1337321     1  0.0000      0.947 1.000 0.000
#> SRR1366390     2  0.0000      0.917 0.000 1.000
#> SRR1343012     1  0.8081      0.690 0.752 0.248
#> SRR1311958     2  0.2043      0.899 0.032 0.968
#> SRR1388234     1  0.8081      0.690 0.752 0.248
#> SRR1370384     1  0.0000      0.947 1.000 0.000
#> SRR1321650     1  0.0000      0.947 1.000 0.000
#> SRR1485117     2  0.0000      0.917 0.000 1.000
#> SRR1384713     1  0.0000      0.947 1.000 0.000
#> SRR816609      1  0.8081      0.690 0.752 0.248
#> SRR1486239     2  0.9286      0.494 0.344 0.656
#> SRR1309638     1  0.0000      0.947 1.000 0.000
#> SRR1356660     1  0.0000      0.947 1.000 0.000
#> SRR1392883     2  0.0000      0.917 0.000 1.000
#> SRR808130      1  0.0000      0.947 1.000 0.000
#> SRR816677      1  0.5737      0.828 0.864 0.136
#> SRR1455722     1  0.0000      0.947 1.000 0.000
#> SRR1336029     1  0.0000      0.947 1.000 0.000
#> SRR808452      1  0.0000      0.947 1.000 0.000
#> SRR1352169     1  0.0000      0.947 1.000 0.000
#> SRR1366707     1  0.1184      0.937 0.984 0.016
#> SRR1328143     1  0.0000      0.947 1.000 0.000
#> SRR1473567     2  0.0000      0.917 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     1  0.0424     0.9172 0.992 0.000 0.008
#> SRR1390119     2  0.0592     0.8099 0.000 0.988 0.012
#> SRR1436127     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1347278     1  0.0592     0.9151 0.988 0.000 0.012
#> SRR1332904     2  0.3995     0.7384 0.016 0.868 0.116
#> SRR1444179     1  0.1289     0.8998 0.968 0.000 0.032
#> SRR1082685     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1362287     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1339007     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1376557     2  0.1289     0.8017 0.000 0.968 0.032
#> SRR1468700     2  0.1031     0.8057 0.000 0.976 0.024
#> SRR1077455     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1413978     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1317963     2  0.9657     0.0460 0.300 0.460 0.240
#> SRR1431865     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1082664     1  0.0424     0.9174 0.992 0.000 0.008
#> SRR1077968     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1076393     1  0.0747     0.9126 0.984 0.000 0.016
#> SRR1477476     2  0.0592     0.8099 0.000 0.988 0.012
#> SRR1398057     1  0.0424     0.9172 0.992 0.000 0.008
#> SRR1485042     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1385453     1  0.8287     0.3777 0.616 0.128 0.256
#> SRR1348074     1  0.7412     0.5578 0.700 0.124 0.176
#> SRR813959      1  0.7102     0.5924 0.724 0.132 0.144
#> SRR665442      3  0.5254     0.0000 0.264 0.000 0.736
#> SRR1378068     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1485237     1  0.7412     0.5588 0.700 0.124 0.176
#> SRR1350792     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1326797     1  0.0424     0.9170 0.992 0.000 0.008
#> SRR808994      1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1474041     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1405641     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1362245     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1500194     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1414876     2  0.0000     0.8120 0.000 1.000 0.000
#> SRR1478523     1  0.7918     0.4289 0.640 0.104 0.256
#> SRR1325161     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1318026     1  0.7412     0.5578 0.700 0.124 0.176
#> SRR1343778     1  0.0424     0.9172 0.992 0.000 0.008
#> SRR1441287     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1430991     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1499722     1  0.0424     0.9170 0.992 0.000 0.008
#> SRR1351368     1  0.4689     0.7717 0.852 0.096 0.052
#> SRR1441785     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1096101     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR808375      1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1452842     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1311709     1  0.0892     0.9088 0.980 0.000 0.020
#> SRR1433352     1  0.0592     0.9153 0.988 0.000 0.012
#> SRR1340241     2  0.2878     0.7644 0.000 0.904 0.096
#> SRR1456754     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1465172     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1499284     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1499607     2  0.9565     0.0609 0.296 0.476 0.228
#> SRR812342      1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1403565     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1332024     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1471633     1  0.1289     0.8998 0.968 0.000 0.032
#> SRR1325944     2  0.0592     0.8099 0.000 0.988 0.012
#> SRR1429450     2  0.0592     0.8099 0.000 0.988 0.012
#> SRR821573      1  0.3325     0.8365 0.904 0.020 0.076
#> SRR1435372     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1324184     2  0.5397     0.5412 0.000 0.720 0.280
#> SRR816517      1  0.8750     0.2807 0.580 0.164 0.256
#> SRR1324141     1  0.7462     0.5519 0.696 0.124 0.180
#> SRR1101612     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1089785     1  0.0424     0.9174 0.992 0.000 0.008
#> SRR1077708     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1343720     1  0.0424     0.9174 0.992 0.000 0.008
#> SRR1477499     2  0.0000     0.8120 0.000 1.000 0.000
#> SRR1347236     1  0.0237     0.9189 0.996 0.000 0.004
#> SRR1326408     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1336529     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1440643     1  0.6393     0.6635 0.768 0.112 0.120
#> SRR662354      1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1310817     1  0.2280     0.8717 0.940 0.008 0.052
#> SRR1347389     2  0.0592     0.8115 0.000 0.988 0.012
#> SRR1353097     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1384737     1  0.7462     0.5519 0.696 0.124 0.180
#> SRR1096339     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1345329     1  0.7412     0.5578 0.700 0.124 0.176
#> SRR1414771     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1309119     1  0.1289     0.8998 0.968 0.000 0.032
#> SRR1470438     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1343221     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR807949      1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1442332     1  0.0592     0.9153 0.988 0.000 0.012
#> SRR815920      1  0.0424     0.9172 0.992 0.000 0.008
#> SRR1471524     1  0.1453     0.8995 0.968 0.008 0.024
#> SRR1477221     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1445046     2  0.9657     0.0460 0.300 0.460 0.240
#> SRR1331962     2  0.1031     0.8057 0.000 0.976 0.024
#> SRR1319946     1  0.8907     0.2349 0.568 0.184 0.248
#> SRR1311599     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1323977     1  0.6037     0.6902 0.788 0.112 0.100
#> SRR1445132     2  0.0592     0.8099 0.000 0.988 0.012
#> SRR1337321     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1366390     2  0.0592     0.8115 0.000 0.988 0.012
#> SRR1343012     1  0.7462     0.5519 0.696 0.124 0.180
#> SRR1311958     2  0.2527     0.7755 0.020 0.936 0.044
#> SRR1388234     1  0.7462     0.5519 0.696 0.124 0.180
#> SRR1370384     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1321650     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1485117     2  0.0237     0.8118 0.000 0.996 0.004
#> SRR1384713     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR816609      1  0.7462     0.5519 0.696 0.124 0.180
#> SRR1486239     2  0.9657     0.0460 0.300 0.460 0.240
#> SRR1309638     1  0.0237     0.9186 0.996 0.000 0.004
#> SRR1356660     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1392883     2  0.0592     0.8099 0.000 0.988 0.012
#> SRR808130      1  0.0000     0.9207 1.000 0.000 0.000
#> SRR816677      1  0.5058     0.7338 0.820 0.032 0.148
#> SRR1455722     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR808452      1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1352169     1  0.0592     0.9151 0.988 0.000 0.012
#> SRR1366707     1  0.1453     0.8995 0.968 0.008 0.024
#> SRR1328143     1  0.0000     0.9207 1.000 0.000 0.000
#> SRR1473567     2  0.0237     0.8118 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     1  0.0469    0.96100 0.988 0.000 0.000 0.012
#> SRR1390119     2  0.0336    0.79923 0.000 0.992 0.000 0.008
#> SRR1436127     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1347278     1  0.1557    0.91772 0.944 0.000 0.000 0.056
#> SRR1332904     2  0.4776    0.70977 0.000 0.624 0.000 0.376
#> SRR1444179     1  0.2408    0.84598 0.896 0.000 0.000 0.104
#> SRR1082685     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1362287     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1339007     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.3873    0.83485 0.000 0.772 0.000 0.228
#> SRR1468700     2  0.4250    0.81673 0.000 0.724 0.000 0.276
#> SRR1077455     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1413978     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1439896     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1317963     4  0.3219    0.07047 0.000 0.164 0.000 0.836
#> SRR1431865     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1082664     1  0.0469    0.96106 0.988 0.000 0.000 0.012
#> SRR1077968     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1076393     1  0.0921    0.94922 0.972 0.000 0.000 0.028
#> SRR1477476     2  0.0336    0.79923 0.000 0.992 0.000 0.008
#> SRR1398057     1  0.0469    0.96100 0.988 0.000 0.000 0.012
#> SRR1485042     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1385453     4  0.3649    0.60823 0.204 0.000 0.000 0.796
#> SRR1348074     4  0.4624    0.72932 0.340 0.000 0.000 0.660
#> SRR813959      4  0.5143    0.52800 0.456 0.004 0.000 0.540
#> SRR665442      3  0.0000    0.00000 0.000 0.000 1.000 0.000
#> SRR1378068     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1485237     4  0.4624    0.72887 0.340 0.000 0.000 0.660
#> SRR1350792     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.1557    0.91260 0.944 0.000 0.000 0.056
#> SRR808994      1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1474041     1  0.0469    0.96113 0.988 0.000 0.000 0.012
#> SRR1405641     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1362245     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1500194     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.1637    0.82472 0.000 0.940 0.000 0.060
#> SRR1478523     4  0.3873    0.62444 0.228 0.000 0.000 0.772
#> SRR1325161     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1318026     4  0.4624    0.72932 0.340 0.000 0.000 0.660
#> SRR1343778     1  0.0469    0.96100 0.988 0.000 0.000 0.012
#> SRR1441287     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1430991     1  0.0469    0.96113 0.988 0.000 0.000 0.012
#> SRR1499722     1  0.1557    0.91260 0.944 0.000 0.000 0.056
#> SRR1351368     1  0.3528    0.68049 0.808 0.000 0.000 0.192
#> SRR1441785     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR808375      1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1452842     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1311709     1  0.2281    0.85568 0.904 0.000 0.000 0.096
#> SRR1433352     1  0.1022    0.94602 0.968 0.000 0.000 0.032
#> SRR1340241     2  0.4250    0.78731 0.000 0.724 0.000 0.276
#> SRR1456754     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1465172     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1499284     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1499607     4  0.3726   -0.00656 0.000 0.212 0.000 0.788
#> SRR812342      1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1405374     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1403565     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1332024     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1471633     1  0.2408    0.84598 0.896 0.000 0.000 0.104
#> SRR1325944     2  0.0000    0.80322 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0336    0.79923 0.000 0.992 0.000 0.008
#> SRR821573      1  0.3975    0.56237 0.760 0.000 0.000 0.240
#> SRR1435372     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1324184     2  0.6524    0.59604 0.000 0.616 0.264 0.120
#> SRR816517      4  0.4423    0.56570 0.176 0.036 0.000 0.788
#> SRR1324141     4  0.4605    0.72901 0.336 0.000 0.000 0.664
#> SRR1101612     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1356531     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1089785     1  0.0707    0.95687 0.980 0.000 0.000 0.020
#> SRR1077708     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1343720     1  0.0707    0.95687 0.980 0.000 0.000 0.020
#> SRR1477499     2  0.2647    0.83807 0.000 0.880 0.000 0.120
#> SRR1347236     1  0.0707    0.95256 0.980 0.000 0.000 0.020
#> SRR1326408     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1336529     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1440643     4  0.5000    0.42082 0.496 0.000 0.000 0.504
#> SRR662354      1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1310817     1  0.3266    0.72516 0.832 0.000 0.000 0.168
#> SRR1347389     2  0.3907    0.83391 0.000 0.768 0.000 0.232
#> SRR1353097     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1384737     4  0.4605    0.72901 0.336 0.000 0.000 0.664
#> SRR1096339     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1345329     4  0.4624    0.72932 0.340 0.000 0.000 0.660
#> SRR1414771     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1309119     1  0.2408    0.84598 0.896 0.000 0.000 0.104
#> SRR1470438     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1343221     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1410847     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR807949      1  0.0469    0.96113 0.988 0.000 0.000 0.012
#> SRR1442332     1  0.1022    0.94602 0.968 0.000 0.000 0.032
#> SRR815920      1  0.0592    0.95895 0.984 0.000 0.000 0.016
#> SRR1471524     1  0.1557    0.91426 0.944 0.000 0.000 0.056
#> SRR1477221     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1445046     4  0.3219    0.07047 0.000 0.164 0.000 0.836
#> SRR1331962     2  0.4250    0.81673 0.000 0.724 0.000 0.276
#> SRR1319946     4  0.3450    0.52411 0.156 0.008 0.000 0.836
#> SRR1311599     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1323977     1  0.4989   -0.35688 0.528 0.000 0.000 0.472
#> SRR1445132     2  0.0336    0.79923 0.000 0.992 0.000 0.008
#> SRR1337321     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1366390     2  0.3907    0.83391 0.000 0.768 0.000 0.232
#> SRR1343012     4  0.4624    0.72767 0.340 0.000 0.000 0.660
#> SRR1311958     2  0.4697    0.73791 0.000 0.644 0.000 0.356
#> SRR1388234     4  0.4605    0.72967 0.336 0.000 0.000 0.664
#> SRR1370384     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1321650     1  0.0188    0.96347 0.996 0.000 0.000 0.004
#> SRR1485117     2  0.3610    0.84212 0.000 0.800 0.000 0.200
#> SRR1384713     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR816609      4  0.4605    0.72967 0.336 0.000 0.000 0.664
#> SRR1486239     4  0.3219    0.07047 0.000 0.164 0.000 0.836
#> SRR1309638     1  0.0469    0.95996 0.988 0.000 0.000 0.012
#> SRR1356660     1  0.0000    0.96462 1.000 0.000 0.000 0.000
#> SRR1392883     2  0.0000    0.80322 0.000 1.000 0.000 0.000
#> SRR808130      1  0.0469    0.96113 0.988 0.000 0.000 0.012
#> SRR816677      4  0.4994    0.50603 0.480 0.000 0.000 0.520
#> SRR1455722     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1336029     1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR808452      1  0.0188    0.96377 0.996 0.000 0.000 0.004
#> SRR1352169     1  0.1474    0.92270 0.948 0.000 0.000 0.052
#> SRR1366707     1  0.1637    0.91394 0.940 0.000 0.000 0.060
#> SRR1328143     1  0.0469    0.96113 0.988 0.000 0.000 0.012
#> SRR1473567     2  0.3764    0.83951 0.000 0.784 0.000 0.216

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     1  0.2077    0.91097 0.920 0.040 0.000 0.040 0.000
#> SRR1390119     3  0.0404    0.85108 0.000 0.012 0.988 0.000 0.000
#> SRR1436127     1  0.2067    0.90964 0.920 0.048 0.000 0.032 0.000
#> SRR1347278     1  0.2616    0.88910 0.888 0.036 0.000 0.076 0.000
#> SRR1332904     2  0.5673    0.59368 0.000 0.628 0.216 0.156 0.000
#> SRR1444179     1  0.3039    0.80600 0.836 0.012 0.000 0.152 0.000
#> SRR1082685     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1362287     1  0.0955    0.92265 0.968 0.028 0.000 0.004 0.000
#> SRR1339007     1  0.1267    0.91749 0.960 0.012 0.004 0.024 0.000
#> SRR1376557     2  0.4735    0.64665 0.000 0.680 0.272 0.048 0.000
#> SRR1468700     2  0.2139    0.80345 0.000 0.916 0.052 0.032 0.000
#> SRR1077455     1  0.1267    0.91749 0.960 0.012 0.004 0.024 0.000
#> SRR1413978     1  0.0451    0.92311 0.988 0.008 0.000 0.004 0.000
#> SRR1439896     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1317963     4  0.4201    0.00421 0.000 0.408 0.000 0.592 0.000
#> SRR1431865     1  0.0451    0.92311 0.988 0.008 0.000 0.004 0.000
#> SRR1394253     1  0.0451    0.92311 0.988 0.008 0.000 0.004 0.000
#> SRR1082664     1  0.1836    0.91534 0.932 0.032 0.000 0.036 0.000
#> SRR1077968     1  0.1267    0.91749 0.960 0.012 0.004 0.024 0.000
#> SRR1076393     1  0.2940    0.88882 0.876 0.048 0.004 0.072 0.000
#> SRR1477476     3  0.0404    0.85108 0.000 0.012 0.988 0.000 0.000
#> SRR1398057     1  0.1907    0.91511 0.928 0.044 0.000 0.028 0.000
#> SRR1485042     1  0.0771    0.92186 0.976 0.000 0.004 0.020 0.000
#> SRR1385453     4  0.1913    0.51837 0.044 0.016 0.008 0.932 0.000
#> SRR1348074     4  0.3630    0.69622 0.204 0.016 0.000 0.780 0.000
#> SRR813959      4  0.5533    0.52378 0.320 0.068 0.008 0.604 0.000
#> SRR665442      5  0.0000    0.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1378068     1  0.2067    0.91031 0.920 0.048 0.000 0.032 0.000
#> SRR1485237     4  0.3530    0.69599 0.204 0.012 0.000 0.784 0.000
#> SRR1350792     1  0.1356    0.91649 0.956 0.012 0.004 0.028 0.000
#> SRR1326797     1  0.2673    0.88541 0.892 0.028 0.008 0.072 0.000
#> SRR808994      1  0.2376    0.90337 0.904 0.052 0.000 0.044 0.000
#> SRR1474041     1  0.2078    0.91196 0.924 0.036 0.004 0.036 0.000
#> SRR1405641     1  0.2450    0.90235 0.900 0.052 0.000 0.048 0.000
#> SRR1362245     1  0.1818    0.91378 0.932 0.044 0.000 0.024 0.000
#> SRR1500194     1  0.0451    0.92311 0.988 0.008 0.000 0.004 0.000
#> SRR1414876     3  0.3496    0.70818 0.000 0.200 0.788 0.012 0.000
#> SRR1478523     4  0.2390    0.52283 0.060 0.024 0.008 0.908 0.000
#> SRR1325161     1  0.0451    0.92269 0.988 0.008 0.000 0.004 0.000
#> SRR1318026     4  0.3530    0.69618 0.204 0.012 0.000 0.784 0.000
#> SRR1343778     1  0.2077    0.91097 0.920 0.040 0.000 0.040 0.000
#> SRR1441287     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1430991     1  0.2078    0.91196 0.924 0.036 0.004 0.036 0.000
#> SRR1499722     1  0.2673    0.88541 0.892 0.028 0.008 0.072 0.000
#> SRR1351368     1  0.4451    0.65998 0.724 0.036 0.004 0.236 0.000
#> SRR1441785     1  0.0451    0.92311 0.988 0.008 0.000 0.004 0.000
#> SRR1096101     1  0.1329    0.91672 0.956 0.008 0.004 0.032 0.000
#> SRR808375      1  0.0451    0.92269 0.988 0.008 0.000 0.004 0.000
#> SRR1452842     1  0.1267    0.91749 0.960 0.012 0.004 0.024 0.000
#> SRR1311709     1  0.3031    0.82997 0.852 0.016 0.004 0.128 0.000
#> SRR1433352     1  0.2673    0.89945 0.892 0.044 0.004 0.060 0.000
#> SRR1340241     2  0.5708    0.53666 0.000 0.588 0.300 0.112 0.000
#> SRR1456754     1  0.1267    0.91749 0.960 0.012 0.004 0.024 0.000
#> SRR1465172     1  0.0451    0.92269 0.988 0.008 0.000 0.004 0.000
#> SRR1499284     1  0.0451    0.92269 0.988 0.008 0.000 0.004 0.000
#> SRR1499607     4  0.5246   -0.06305 0.000 0.384 0.052 0.564 0.000
#> SRR812342      1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1405374     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1403565     1  0.0880    0.92145 0.968 0.032 0.000 0.000 0.000
#> SRR1332024     1  0.2450    0.90235 0.900 0.052 0.000 0.048 0.000
#> SRR1471633     1  0.3039    0.80600 0.836 0.012 0.000 0.152 0.000
#> SRR1325944     3  0.1608    0.85588 0.000 0.072 0.928 0.000 0.000
#> SRR1429450     3  0.0963    0.85836 0.000 0.036 0.964 0.000 0.000
#> SRR821573      1  0.5419    0.34078 0.600 0.048 0.012 0.340 0.000
#> SRR1435372     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1324184     2  0.5600    0.42595 0.000 0.628 0.104 0.004 0.264
#> SRR816517      4  0.2777    0.49523 0.040 0.028 0.036 0.896 0.000
#> SRR1324141     4  0.3474    0.69396 0.192 0.008 0.004 0.796 0.000
#> SRR1101612     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1356531     1  0.1356    0.91649 0.956 0.012 0.004 0.028 0.000
#> SRR1089785     1  0.2308    0.90826 0.912 0.036 0.004 0.048 0.000
#> SRR1077708     1  0.1579    0.91526 0.944 0.032 0.000 0.024 0.000
#> SRR1343720     1  0.2308    0.90826 0.912 0.036 0.004 0.048 0.000
#> SRR1477499     3  0.4588    0.22787 0.000 0.380 0.604 0.016 0.000
#> SRR1347236     1  0.2122    0.91485 0.924 0.032 0.008 0.036 0.000
#> SRR1326408     1  0.1173    0.92020 0.964 0.012 0.004 0.020 0.000
#> SRR1336529     1  0.2300    0.90435 0.908 0.052 0.000 0.040 0.000
#> SRR1440643     4  0.4961    0.48529 0.360 0.024 0.008 0.608 0.000
#> SRR662354      1  0.1356    0.91649 0.956 0.012 0.004 0.028 0.000
#> SRR1310817     1  0.4861    0.59410 0.696 0.048 0.008 0.248 0.000
#> SRR1347389     2  0.2873    0.79693 0.000 0.856 0.128 0.016 0.000
#> SRR1353097     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1384737     4  0.3474    0.69396 0.192 0.008 0.004 0.796 0.000
#> SRR1096339     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1345329     4  0.3630    0.69622 0.204 0.016 0.000 0.780 0.000
#> SRR1414771     1  0.2450    0.90235 0.900 0.052 0.000 0.048 0.000
#> SRR1309119     1  0.3039    0.80600 0.836 0.012 0.000 0.152 0.000
#> SRR1470438     1  0.2376    0.90337 0.904 0.052 0.000 0.044 0.000
#> SRR1343221     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1410847     1  0.0671    0.92332 0.980 0.016 0.000 0.004 0.000
#> SRR807949      1  0.2078    0.91196 0.924 0.036 0.004 0.036 0.000
#> SRR1442332     1  0.2605    0.90216 0.896 0.044 0.004 0.056 0.000
#> SRR815920      1  0.2153    0.90983 0.916 0.040 0.000 0.044 0.000
#> SRR1471524     1  0.3516    0.84595 0.836 0.052 0.004 0.108 0.000
#> SRR1477221     1  0.1041    0.92065 0.964 0.032 0.000 0.004 0.000
#> SRR1445046     4  0.4182    0.02163 0.000 0.400 0.000 0.600 0.000
#> SRR1331962     2  0.2139    0.80345 0.000 0.916 0.052 0.032 0.000
#> SRR1319946     4  0.3265    0.49589 0.040 0.096 0.008 0.856 0.000
#> SRR1311599     1  0.0451    0.92311 0.988 0.008 0.000 0.004 0.000
#> SRR1323977     4  0.5302    0.45681 0.392 0.032 0.012 0.564 0.000
#> SRR1445132     3  0.0404    0.85108 0.000 0.012 0.988 0.000 0.000
#> SRR1337321     1  0.1741    0.91449 0.936 0.040 0.000 0.024 0.000
#> SRR1366390     2  0.2873    0.79693 0.000 0.856 0.128 0.016 0.000
#> SRR1343012     4  0.3509    0.69384 0.196 0.008 0.004 0.792 0.000
#> SRR1311958     2  0.2280    0.72805 0.000 0.880 0.000 0.120 0.000
#> SRR1388234     4  0.3496    0.69683 0.200 0.012 0.000 0.788 0.000
#> SRR1370384     1  0.1267    0.91749 0.960 0.012 0.004 0.024 0.000
#> SRR1321650     1  0.2300    0.90435 0.908 0.052 0.000 0.040 0.000
#> SRR1485117     2  0.2969    0.79547 0.000 0.852 0.128 0.020 0.000
#> SRR1384713     1  0.1173    0.92020 0.964 0.012 0.004 0.020 0.000
#> SRR816609      4  0.3496    0.69683 0.200 0.012 0.000 0.788 0.000
#> SRR1486239     4  0.4201    0.00421 0.000 0.408 0.000 0.592 0.000
#> SRR1309638     1  0.2234    0.90882 0.916 0.036 0.004 0.044 0.000
#> SRR1356660     1  0.0451    0.92311 0.988 0.008 0.000 0.004 0.000
#> SRR1392883     3  0.1608    0.85588 0.000 0.072 0.928 0.000 0.000
#> SRR808130      1  0.2078    0.91196 0.924 0.036 0.004 0.036 0.000
#> SRR816677      4  0.4196    0.54947 0.356 0.004 0.000 0.640 0.000
#> SRR1455722     1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1336029     1  0.1329    0.91672 0.956 0.008 0.004 0.032 0.000
#> SRR808452      1  0.1442    0.91506 0.952 0.012 0.004 0.032 0.000
#> SRR1352169     1  0.2632    0.89103 0.888 0.040 0.000 0.072 0.000
#> SRR1366707     1  0.3567    0.84379 0.832 0.052 0.004 0.112 0.000
#> SRR1328143     1  0.2078    0.91196 0.924 0.036 0.004 0.036 0.000
#> SRR1473567     2  0.2824    0.80160 0.000 0.864 0.116 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     1  0.4218    0.22945 0.556 0.000 0.428 0.016 0.000 0.000
#> SRR1390119     6  0.0260    0.84522 0.000 0.008 0.000 0.000 0.000 0.992
#> SRR1436127     3  0.3428    0.71963 0.304 0.000 0.696 0.000 0.000 0.000
#> SRR1347278     1  0.4926    0.23116 0.540 0.000 0.392 0.068 0.000 0.000
#> SRR1332904     2  0.5096    0.56312 0.000 0.652 0.008 0.136 0.000 0.204
#> SRR1444179     1  0.2278    0.66255 0.868 0.000 0.004 0.128 0.000 0.000
#> SRR1082685     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1362287     1  0.2823    0.66699 0.796 0.000 0.204 0.000 0.000 0.000
#> SRR1339007     1  0.0146    0.73956 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1376557     2  0.3991    0.62370 0.000 0.724 0.008 0.028 0.000 0.240
#> SRR1468700     2  0.0964    0.77064 0.000 0.968 0.004 0.012 0.000 0.016
#> SRR1077455     1  0.0146    0.73956 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1413978     1  0.2631    0.68386 0.820 0.000 0.180 0.000 0.000 0.000
#> SRR1439896     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1317963     4  0.4025    0.06373 0.000 0.416 0.008 0.576 0.000 0.000
#> SRR1431865     1  0.2597    0.68373 0.824 0.000 0.176 0.000 0.000 0.000
#> SRR1394253     1  0.2597    0.68373 0.824 0.000 0.176 0.000 0.000 0.000
#> SRR1082664     1  0.3707    0.53339 0.680 0.000 0.312 0.008 0.000 0.000
#> SRR1077968     1  0.0146    0.73956 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1076393     1  0.4616    0.32136 0.576 0.000 0.384 0.036 0.000 0.004
#> SRR1477476     6  0.0260    0.84522 0.000 0.008 0.000 0.000 0.000 0.992
#> SRR1398057     1  0.4136    0.21343 0.560 0.000 0.428 0.012 0.000 0.000
#> SRR1485042     1  0.1327    0.73625 0.936 0.000 0.064 0.000 0.000 0.000
#> SRR1385453     4  0.1973    0.50500 0.012 0.004 0.064 0.916 0.000 0.004
#> SRR1348074     4  0.3370    0.68295 0.212 0.012 0.004 0.772 0.000 0.000
#> SRR813959      4  0.5421    0.48476 0.276 0.040 0.060 0.620 0.000 0.004
#> SRR665442      5  0.0000    0.00000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1378068     3  0.3989    0.09472 0.468 0.000 0.528 0.004 0.000 0.000
#> SRR1485237     4  0.3273    0.68305 0.212 0.008 0.004 0.776 0.000 0.000
#> SRR1350792     1  0.0000    0.73884 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326797     1  0.3749    0.68083 0.796 0.004 0.128 0.068 0.000 0.004
#> SRR808994      3  0.2738    0.87776 0.176 0.000 0.820 0.004 0.000 0.000
#> SRR1474041     1  0.3888    0.52987 0.672 0.000 0.312 0.016 0.000 0.000
#> SRR1405641     3  0.2848    0.87763 0.176 0.000 0.816 0.008 0.000 0.000
#> SRR1362245     3  0.3221    0.80972 0.264 0.000 0.736 0.000 0.000 0.000
#> SRR1500194     1  0.2597    0.68373 0.824 0.000 0.176 0.000 0.000 0.000
#> SRR1414876     6  0.2912    0.70376 0.000 0.216 0.000 0.000 0.000 0.784
#> SRR1478523     4  0.2407    0.49933 0.012 0.004 0.096 0.884 0.000 0.004
#> SRR1325161     1  0.1663    0.72739 0.912 0.000 0.088 0.000 0.000 0.000
#> SRR1318026     4  0.3273    0.68297 0.212 0.008 0.004 0.776 0.000 0.000
#> SRR1343778     1  0.4218    0.22945 0.556 0.000 0.428 0.016 0.000 0.000
#> SRR1441287     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1430991     1  0.3905    0.52352 0.668 0.000 0.316 0.016 0.000 0.000
#> SRR1499722     1  0.3749    0.68083 0.796 0.004 0.128 0.068 0.000 0.004
#> SRR1351368     1  0.5882    0.24177 0.532 0.004 0.252 0.208 0.000 0.004
#> SRR1441785     1  0.2597    0.68373 0.824 0.000 0.176 0.000 0.000 0.000
#> SRR1096101     1  0.0622    0.73871 0.980 0.000 0.012 0.008 0.000 0.000
#> SRR808375      1  0.1663    0.72739 0.912 0.000 0.088 0.000 0.000 0.000
#> SRR1452842     1  0.0146    0.73956 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1311709     1  0.2053    0.65489 0.888 0.004 0.000 0.108 0.000 0.000
#> SRR1433352     1  0.4676    0.43386 0.616 0.004 0.336 0.040 0.000 0.004
#> SRR1340241     2  0.4924    0.52917 0.000 0.636 0.004 0.092 0.000 0.268
#> SRR1456754     1  0.0458    0.74025 0.984 0.000 0.016 0.000 0.000 0.000
#> SRR1465172     1  0.1663    0.72739 0.912 0.000 0.088 0.000 0.000 0.000
#> SRR1499284     1  0.1663    0.72739 0.912 0.000 0.088 0.000 0.000 0.000
#> SRR1499607     4  0.4868    0.00116 0.000 0.400 0.008 0.548 0.000 0.044
#> SRR812342      1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1405374     1  0.0508    0.73523 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1403565     1  0.3499    0.51067 0.680 0.000 0.320 0.000 0.000 0.000
#> SRR1332024     3  0.2848    0.87763 0.176 0.000 0.816 0.008 0.000 0.000
#> SRR1471633     1  0.2320    0.65879 0.864 0.000 0.004 0.132 0.000 0.000
#> SRR1325944     6  0.1387    0.84999 0.000 0.068 0.000 0.000 0.000 0.932
#> SRR1429450     6  0.0790    0.85210 0.000 0.032 0.000 0.000 0.000 0.968
#> SRR821573      1  0.6259    0.14170 0.460 0.008 0.200 0.324 0.000 0.008
#> SRR1435372     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1324184     2  0.6202    0.26444 0.000 0.572 0.124 0.000 0.228 0.076
#> SRR816517      4  0.2727    0.48827 0.012 0.016 0.052 0.888 0.000 0.032
#> SRR1324141     4  0.3401    0.68078 0.204 0.004 0.016 0.776 0.000 0.000
#> SRR1101612     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1356531     1  0.0000    0.73884 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1089785     1  0.4078    0.50978 0.656 0.000 0.320 0.024 0.000 0.000
#> SRR1077708     1  0.3464    0.53896 0.688 0.000 0.312 0.000 0.000 0.000
#> SRR1343720     1  0.4078    0.50978 0.656 0.000 0.320 0.024 0.000 0.000
#> SRR1477499     6  0.3804    0.18709 0.000 0.424 0.000 0.000 0.000 0.576
#> SRR1347236     1  0.3192    0.69932 0.828 0.004 0.136 0.028 0.000 0.004
#> SRR1326408     1  0.0632    0.73971 0.976 0.000 0.024 0.000 0.000 0.000
#> SRR1336529     3  0.2730    0.87253 0.192 0.000 0.808 0.000 0.000 0.000
#> SRR1440643     4  0.5186    0.39982 0.308 0.004 0.088 0.596 0.000 0.004
#> SRR662354      1  0.0000    0.73884 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310817     1  0.6146    0.19097 0.492 0.004 0.252 0.244 0.000 0.008
#> SRR1347389     2  0.3017    0.72853 0.000 0.844 0.084 0.000 0.000 0.072
#> SRR1353097     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1384737     4  0.3401    0.68078 0.204 0.004 0.016 0.776 0.000 0.000
#> SRR1096339     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1345329     4  0.3370    0.68295 0.212 0.012 0.004 0.772 0.000 0.000
#> SRR1414771     3  0.2848    0.87763 0.176 0.000 0.816 0.008 0.000 0.000
#> SRR1309119     1  0.2320    0.65879 0.864 0.000 0.004 0.132 0.000 0.000
#> SRR1470438     3  0.2738    0.87776 0.176 0.000 0.820 0.004 0.000 0.000
#> SRR1343221     1  0.0508    0.73523 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1410847     1  0.2597    0.68853 0.824 0.000 0.176 0.000 0.000 0.000
#> SRR807949      1  0.3888    0.52987 0.672 0.000 0.312 0.016 0.000 0.000
#> SRR1442332     1  0.4640    0.42736 0.612 0.004 0.344 0.036 0.000 0.004
#> SRR815920      1  0.4300    0.19816 0.548 0.000 0.432 0.020 0.000 0.000
#> SRR1471524     1  0.5258    0.29009 0.552 0.004 0.360 0.080 0.000 0.004
#> SRR1477221     1  0.3717    0.37780 0.616 0.000 0.384 0.000 0.000 0.000
#> SRR1445046     4  0.3993    0.09725 0.000 0.400 0.008 0.592 0.000 0.000
#> SRR1331962     2  0.0964    0.77064 0.000 0.968 0.004 0.012 0.000 0.016
#> SRR1319946     4  0.2800    0.49471 0.020 0.076 0.024 0.876 0.000 0.004
#> SRR1311599     1  0.2597    0.68373 0.824 0.000 0.176 0.000 0.000 0.000
#> SRR1323977     4  0.5251    0.36371 0.336 0.008 0.076 0.576 0.000 0.004
#> SRR1445132     6  0.0260    0.84522 0.000 0.008 0.000 0.000 0.000 0.992
#> SRR1337321     3  0.3266    0.79750 0.272 0.000 0.728 0.000 0.000 0.000
#> SRR1366390     2  0.3017    0.72853 0.000 0.844 0.084 0.000 0.000 0.072
#> SRR1343012     4  0.3430    0.67962 0.208 0.004 0.016 0.772 0.000 0.000
#> SRR1311958     2  0.2053    0.70354 0.000 0.888 0.004 0.108 0.000 0.000
#> SRR1388234     4  0.3243    0.68372 0.208 0.008 0.004 0.780 0.000 0.000
#> SRR1370384     1  0.0146    0.73956 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1321650     3  0.2854    0.86691 0.208 0.000 0.792 0.000 0.000 0.000
#> SRR1485117     2  0.2163    0.76733 0.000 0.892 0.016 0.000 0.000 0.092
#> SRR1384713     1  0.0632    0.73971 0.976 0.000 0.024 0.000 0.000 0.000
#> SRR816609      4  0.3243    0.68372 0.208 0.008 0.004 0.780 0.000 0.000
#> SRR1486239     4  0.4025    0.06373 0.000 0.416 0.008 0.576 0.000 0.000
#> SRR1309638     1  0.4097   -0.17164 0.500 0.000 0.492 0.008 0.000 0.000
#> SRR1356660     1  0.2597    0.68373 0.824 0.000 0.176 0.000 0.000 0.000
#> SRR1392883     6  0.1387    0.84999 0.000 0.068 0.000 0.000 0.000 0.932
#> SRR808130      1  0.3888    0.52987 0.672 0.000 0.312 0.016 0.000 0.000
#> SRR816677      4  0.4632    0.54385 0.328 0.004 0.048 0.620 0.000 0.000
#> SRR1455722     1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1336029     1  0.0717    0.73773 0.976 0.000 0.016 0.008 0.000 0.000
#> SRR808452      1  0.0260    0.73652 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1352169     1  0.4886    0.23169 0.540 0.000 0.396 0.064 0.000 0.000
#> SRR1366707     1  0.5223    0.28808 0.552 0.004 0.364 0.076 0.000 0.004
#> SRR1328143     1  0.3888    0.52987 0.672 0.000 0.312 0.016 0.000 0.000
#> SRR1473567     2  0.1700    0.77398 0.000 0.916 0.004 0.000 0.000 0.080

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.904           0.973       0.987         0.3389 0.675   0.675
#> 3 3 0.634           0.908       0.909         0.8156 0.683   0.530
#> 4 4 0.701           0.652       0.776         0.1569 0.910   0.755
#> 5 5 0.699           0.720       0.817         0.0850 0.864   0.578
#> 6 6 0.737           0.646       0.786         0.0507 0.978   0.902

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1   0.000      0.983 1.000 0.000
#> SRR1390119     2   0.000      1.000 0.000 1.000
#> SRR1436127     1   0.000      0.983 1.000 0.000
#> SRR1347278     1   0.000      0.983 1.000 0.000
#> SRR1332904     2   0.000      1.000 0.000 1.000
#> SRR1444179     1   0.000      0.983 1.000 0.000
#> SRR1082685     1   0.000      0.983 1.000 0.000
#> SRR1362287     1   0.000      0.983 1.000 0.000
#> SRR1339007     1   0.000      0.983 1.000 0.000
#> SRR1376557     2   0.000      1.000 0.000 1.000
#> SRR1468700     2   0.000      1.000 0.000 1.000
#> SRR1077455     1   0.000      0.983 1.000 0.000
#> SRR1413978     1   0.000      0.983 1.000 0.000
#> SRR1439896     1   0.000      0.983 1.000 0.000
#> SRR1317963     2   0.000      1.000 0.000 1.000
#> SRR1431865     1   0.000      0.983 1.000 0.000
#> SRR1394253     1   0.000      0.983 1.000 0.000
#> SRR1082664     1   0.000      0.983 1.000 0.000
#> SRR1077968     1   0.000      0.983 1.000 0.000
#> SRR1076393     1   0.000      0.983 1.000 0.000
#> SRR1477476     2   0.000      1.000 0.000 1.000
#> SRR1398057     1   0.000      0.983 1.000 0.000
#> SRR1485042     1   0.000      0.983 1.000 0.000
#> SRR1385453     1   0.605      0.840 0.852 0.148
#> SRR1348074     1   0.738      0.761 0.792 0.208
#> SRR813959      1   0.000      0.983 1.000 0.000
#> SRR665442      1   0.000      0.983 1.000 0.000
#> SRR1378068     1   0.000      0.983 1.000 0.000
#> SRR1485237     1   0.000      0.983 1.000 0.000
#> SRR1350792     1   0.000      0.983 1.000 0.000
#> SRR1326797     1   0.000      0.983 1.000 0.000
#> SRR808994      1   0.000      0.983 1.000 0.000
#> SRR1474041     1   0.000      0.983 1.000 0.000
#> SRR1405641     1   0.000      0.983 1.000 0.000
#> SRR1362245     1   0.000      0.983 1.000 0.000
#> SRR1500194     1   0.000      0.983 1.000 0.000
#> SRR1414876     2   0.000      1.000 0.000 1.000
#> SRR1478523     1   0.000      0.983 1.000 0.000
#> SRR1325161     1   0.000      0.983 1.000 0.000
#> SRR1318026     1   0.595      0.845 0.856 0.144
#> SRR1343778     1   0.000      0.983 1.000 0.000
#> SRR1441287     1   0.000      0.983 1.000 0.000
#> SRR1430991     1   0.000      0.983 1.000 0.000
#> SRR1499722     1   0.000      0.983 1.000 0.000
#> SRR1351368     1   0.605      0.840 0.852 0.148
#> SRR1441785     1   0.000      0.983 1.000 0.000
#> SRR1096101     1   0.000      0.983 1.000 0.000
#> SRR808375      1   0.000      0.983 1.000 0.000
#> SRR1452842     1   0.000      0.983 1.000 0.000
#> SRR1311709     1   0.000      0.983 1.000 0.000
#> SRR1433352     1   0.000      0.983 1.000 0.000
#> SRR1340241     2   0.000      1.000 0.000 1.000
#> SRR1456754     1   0.000      0.983 1.000 0.000
#> SRR1465172     1   0.000      0.983 1.000 0.000
#> SRR1499284     1   0.000      0.983 1.000 0.000
#> SRR1499607     2   0.000      1.000 0.000 1.000
#> SRR812342      1   0.000      0.983 1.000 0.000
#> SRR1405374     1   0.000      0.983 1.000 0.000
#> SRR1403565     1   0.000      0.983 1.000 0.000
#> SRR1332024     1   0.000      0.983 1.000 0.000
#> SRR1471633     1   0.000      0.983 1.000 0.000
#> SRR1325944     2   0.000      1.000 0.000 1.000
#> SRR1429450     2   0.000      1.000 0.000 1.000
#> SRR821573      1   0.000      0.983 1.000 0.000
#> SRR1435372     1   0.000      0.983 1.000 0.000
#> SRR1324184     2   0.000      1.000 0.000 1.000
#> SRR816517      2   0.000      1.000 0.000 1.000
#> SRR1324141     1   0.595      0.845 0.856 0.144
#> SRR1101612     1   0.000      0.983 1.000 0.000
#> SRR1356531     1   0.000      0.983 1.000 0.000
#> SRR1089785     1   0.000      0.983 1.000 0.000
#> SRR1077708     1   0.000      0.983 1.000 0.000
#> SRR1343720     1   0.000      0.983 1.000 0.000
#> SRR1477499     2   0.000      1.000 0.000 1.000
#> SRR1347236     1   0.000      0.983 1.000 0.000
#> SRR1326408     1   0.000      0.983 1.000 0.000
#> SRR1336529     1   0.000      0.983 1.000 0.000
#> SRR1440643     1   0.595      0.845 0.856 0.144
#> SRR662354      1   0.000      0.983 1.000 0.000
#> SRR1310817     1   0.000      0.983 1.000 0.000
#> SRR1347389     2   0.000      1.000 0.000 1.000
#> SRR1353097     1   0.000      0.983 1.000 0.000
#> SRR1384737     1   0.595      0.845 0.856 0.144
#> SRR1096339     1   0.000      0.983 1.000 0.000
#> SRR1345329     1   0.595      0.845 0.856 0.144
#> SRR1414771     1   0.000      0.983 1.000 0.000
#> SRR1309119     1   0.000      0.983 1.000 0.000
#> SRR1470438     1   0.000      0.983 1.000 0.000
#> SRR1343221     1   0.000      0.983 1.000 0.000
#> SRR1410847     1   0.000      0.983 1.000 0.000
#> SRR807949      1   0.000      0.983 1.000 0.000
#> SRR1442332     1   0.000      0.983 1.000 0.000
#> SRR815920      1   0.000      0.983 1.000 0.000
#> SRR1471524     1   0.000      0.983 1.000 0.000
#> SRR1477221     1   0.000      0.983 1.000 0.000
#> SRR1445046     2   0.000      1.000 0.000 1.000
#> SRR1331962     2   0.000      1.000 0.000 1.000
#> SRR1319946     2   0.000      1.000 0.000 1.000
#> SRR1311599     1   0.000      0.983 1.000 0.000
#> SRR1323977     1   0.595      0.845 0.856 0.144
#> SRR1445132     2   0.000      1.000 0.000 1.000
#> SRR1337321     1   0.000      0.983 1.000 0.000
#> SRR1366390     2   0.000      1.000 0.000 1.000
#> SRR1343012     1   0.000      0.983 1.000 0.000
#> SRR1311958     2   0.000      1.000 0.000 1.000
#> SRR1388234     1   0.814      0.692 0.748 0.252
#> SRR1370384     1   0.000      0.983 1.000 0.000
#> SRR1321650     1   0.000      0.983 1.000 0.000
#> SRR1485117     2   0.000      1.000 0.000 1.000
#> SRR1384713     1   0.000      0.983 1.000 0.000
#> SRR816609      1   0.000      0.983 1.000 0.000
#> SRR1486239     2   0.000      1.000 0.000 1.000
#> SRR1309638     1   0.000      0.983 1.000 0.000
#> SRR1356660     1   0.000      0.983 1.000 0.000
#> SRR1392883     2   0.000      1.000 0.000 1.000
#> SRR808130      1   0.000      0.983 1.000 0.000
#> SRR816677      1   0.000      0.983 1.000 0.000
#> SRR1455722     1   0.000      0.983 1.000 0.000
#> SRR1336029     1   0.000      0.983 1.000 0.000
#> SRR808452      1   0.000      0.983 1.000 0.000
#> SRR1352169     1   0.000      0.983 1.000 0.000
#> SRR1366707     1   0.000      0.983 1.000 0.000
#> SRR1328143     1   0.000      0.983 1.000 0.000
#> SRR1473567     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1390119     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1436127     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1347278     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1332904     2  0.0237      0.947 0.004 0.996 0.000
#> SRR1444179     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1082685     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1362287     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1339007     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1376557     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1077455     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1413978     1  0.3816      0.920 0.852 0.000 0.148
#> SRR1439896     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1317963     2  0.4172      0.884 0.156 0.840 0.004
#> SRR1431865     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1394253     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1082664     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1077968     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1076393     3  0.0237      0.956 0.004 0.000 0.996
#> SRR1477476     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1398057     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1485042     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1385453     3  0.4062      0.788 0.164 0.000 0.836
#> SRR1348074     1  0.2187      0.808 0.948 0.028 0.024
#> SRR813959      3  0.3412      0.839 0.124 0.000 0.876
#> SRR665442      1  0.5859      0.697 0.656 0.000 0.344
#> SRR1378068     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1485237     1  0.1031      0.827 0.976 0.000 0.024
#> SRR1350792     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1326797     1  0.5098      0.865 0.752 0.000 0.248
#> SRR808994      3  0.0000      0.959 0.000 0.000 1.000
#> SRR1474041     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1405641     3  0.0000      0.959 0.000 0.000 1.000
#> SRR1362245     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1500194     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1414876     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1478523     3  0.4062      0.788 0.164 0.000 0.836
#> SRR1325161     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1318026     1  0.1031      0.827 0.976 0.000 0.024
#> SRR1343778     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1441287     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1430991     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1499722     3  0.3752      0.789 0.144 0.000 0.856
#> SRR1351368     3  0.3752      0.801 0.144 0.000 0.856
#> SRR1441785     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1096101     1  0.4235      0.935 0.824 0.000 0.176
#> SRR808375      3  0.0592      0.959 0.012 0.000 0.988
#> SRR1452842     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1311709     1  0.2261      0.870 0.932 0.000 0.068
#> SRR1433352     3  0.1031      0.949 0.024 0.000 0.976
#> SRR1340241     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1456754     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1465172     3  0.5363      0.509 0.276 0.000 0.724
#> SRR1499284     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1499607     2  0.4172      0.884 0.156 0.840 0.004
#> SRR812342      1  0.4235      0.935 0.824 0.000 0.176
#> SRR1405374     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1403565     1  0.4974      0.877 0.764 0.000 0.236
#> SRR1332024     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1471633     1  0.0892      0.830 0.980 0.000 0.020
#> SRR1325944     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.947 0.000 1.000 0.000
#> SRR821573      3  0.1031      0.950 0.024 0.000 0.976
#> SRR1435372     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1324184     2  0.0892      0.940 0.020 0.980 0.000
#> SRR816517      2  0.9252      0.232 0.156 0.448 0.396
#> SRR1324141     1  0.3590      0.789 0.896 0.028 0.076
#> SRR1101612     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1356531     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1089785     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1077708     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1343720     3  0.1031      0.949 0.024 0.000 0.976
#> SRR1477499     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1347236     1  0.5733      0.758 0.676 0.000 0.324
#> SRR1326408     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1336529     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1440643     3  0.4062      0.788 0.164 0.000 0.836
#> SRR662354      1  0.4235      0.935 0.824 0.000 0.176
#> SRR1310817     3  0.0592      0.958 0.012 0.000 0.988
#> SRR1347389     2  0.1031      0.941 0.024 0.976 0.000
#> SRR1353097     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1384737     1  0.2187      0.808 0.948 0.028 0.024
#> SRR1096339     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1345329     1  0.1031      0.827 0.976 0.000 0.024
#> SRR1414771     3  0.0000      0.959 0.000 0.000 1.000
#> SRR1309119     1  0.2356      0.874 0.928 0.000 0.072
#> SRR1470438     3  0.0000      0.959 0.000 0.000 1.000
#> SRR1343221     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1410847     1  0.4235      0.935 0.824 0.000 0.176
#> SRR807949      3  0.0592      0.959 0.012 0.000 0.988
#> SRR1442332     3  0.0592      0.959 0.012 0.000 0.988
#> SRR815920      3  0.0237      0.960 0.004 0.000 0.996
#> SRR1471524     3  0.0237      0.956 0.004 0.000 0.996
#> SRR1477221     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1445046     2  0.3879      0.888 0.152 0.848 0.000
#> SRR1331962     2  0.1031      0.941 0.024 0.976 0.000
#> SRR1319946     2  0.4172      0.884 0.156 0.840 0.004
#> SRR1311599     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1323977     1  0.3590      0.789 0.896 0.028 0.076
#> SRR1445132     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1337321     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1366390     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1343012     1  0.3551      0.789 0.868 0.000 0.132
#> SRR1311958     2  0.3879      0.888 0.152 0.848 0.000
#> SRR1388234     1  0.3722      0.751 0.888 0.088 0.024
#> SRR1370384     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1321650     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1485117     2  0.0000      0.947 0.000 1.000 0.000
#> SRR1384713     1  0.4235      0.935 0.824 0.000 0.176
#> SRR816609      1  0.1031      0.827 0.976 0.000 0.024
#> SRR1486239     2  0.3816      0.890 0.148 0.852 0.000
#> SRR1309638     3  0.0237      0.960 0.004 0.000 0.996
#> SRR1356660     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1392883     2  0.0000      0.947 0.000 1.000 0.000
#> SRR808130      3  0.0592      0.959 0.012 0.000 0.988
#> SRR816677      1  0.1289      0.835 0.968 0.000 0.032
#> SRR1455722     1  0.4235      0.935 0.824 0.000 0.176
#> SRR1336029     1  0.4235      0.935 0.824 0.000 0.176
#> SRR808452      1  0.4235      0.935 0.824 0.000 0.176
#> SRR1352169     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1366707     3  0.0237      0.956 0.004 0.000 0.996
#> SRR1328143     3  0.0592      0.959 0.012 0.000 0.988
#> SRR1473567     2  0.0000      0.947 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.5222      0.762 0.032 0.000 0.688 0.280
#> SRR1390119     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR1436127     3  0.2565      0.755 0.032 0.000 0.912 0.056
#> SRR1347278     3  0.4990      0.762 0.060 0.000 0.756 0.184
#> SRR1332904     2  0.4955      0.677 0.000 0.648 0.008 0.344
#> SRR1444179     1  0.1389      0.825 0.952 0.000 0.000 0.048
#> SRR1082685     1  0.0000      0.846 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.2443      0.807 0.916 0.000 0.060 0.024
#> SRR1339007     1  0.0817      0.841 0.976 0.000 0.000 0.024
#> SRR1376557     2  0.1042      0.814 0.000 0.972 0.008 0.020
#> SRR1468700     2  0.2611      0.793 0.000 0.896 0.008 0.096
#> SRR1077455     1  0.3074      0.720 0.848 0.000 0.000 0.152
#> SRR1413978     1  0.3247      0.783 0.880 0.000 0.060 0.060
#> SRR1439896     1  0.0000      0.846 1.000 0.000 0.000 0.000
#> SRR1317963     2  0.5281      0.577 0.000 0.528 0.008 0.464
#> SRR1431865     1  0.2546      0.806 0.912 0.000 0.060 0.028
#> SRR1394253     1  0.2483      0.813 0.916 0.000 0.052 0.032
#> SRR1082664     3  0.6214      0.731 0.064 0.000 0.576 0.360
#> SRR1077968     1  0.1389      0.831 0.952 0.000 0.000 0.048
#> SRR1076393     3  0.4599      0.763 0.028 0.000 0.760 0.212
#> SRR1477476     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR1398057     3  0.2224      0.745 0.032 0.000 0.928 0.040
#> SRR1485042     1  0.0707      0.841 0.980 0.000 0.000 0.020
#> SRR1385453     3  0.5112      0.579 0.004 0.000 0.560 0.436
#> SRR1348074     4  0.4994      0.334 0.480 0.000 0.000 0.520
#> SRR813959      4  0.5080     -0.519 0.004 0.000 0.420 0.576
#> SRR665442      3  0.7023      0.206 0.272 0.000 0.564 0.164
#> SRR1378068     3  0.2313      0.747 0.032 0.000 0.924 0.044
#> SRR1485237     1  0.5000     -0.357 0.504 0.000 0.000 0.496
#> SRR1350792     1  0.0469      0.844 0.988 0.000 0.000 0.012
#> SRR1326797     1  0.7342     -0.103 0.432 0.000 0.156 0.412
#> SRR808994      3  0.1610      0.729 0.032 0.000 0.952 0.016
#> SRR1474041     3  0.6228      0.730 0.064 0.000 0.572 0.364
#> SRR1405641     3  0.1356      0.734 0.032 0.000 0.960 0.008
#> SRR1362245     3  0.1936      0.739 0.032 0.000 0.940 0.028
#> SRR1500194     1  0.0707      0.841 0.980 0.000 0.000 0.020
#> SRR1414876     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR1478523     3  0.5217      0.664 0.012 0.000 0.608 0.380
#> SRR1325161     3  0.6655      0.653 0.084 0.000 0.476 0.440
#> SRR1318026     1  0.5000     -0.365 0.500 0.000 0.000 0.500
#> SRR1343778     3  0.5358      0.759 0.048 0.000 0.700 0.252
#> SRR1441287     1  0.0000      0.846 1.000 0.000 0.000 0.000
#> SRR1430991     3  0.6276      0.722 0.064 0.000 0.556 0.380
#> SRR1499722     4  0.7698     -0.410 0.236 0.000 0.324 0.440
#> SRR1351368     3  0.4897      0.614 0.008 0.000 0.660 0.332
#> SRR1441785     1  0.2546      0.806 0.912 0.000 0.060 0.028
#> SRR1096101     1  0.0817      0.844 0.976 0.000 0.000 0.024
#> SRR808375      3  0.6380      0.680 0.064 0.000 0.500 0.436
#> SRR1452842     1  0.2868      0.743 0.864 0.000 0.000 0.136
#> SRR1311709     1  0.1637      0.798 0.940 0.000 0.000 0.060
#> SRR1433352     3  0.6453      0.721 0.080 0.000 0.560 0.360
#> SRR1340241     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR1456754     1  0.1867      0.807 0.928 0.000 0.000 0.072
#> SRR1465172     4  0.7710     -0.264 0.296 0.000 0.256 0.448
#> SRR1499284     1  0.5172      0.224 0.588 0.000 0.008 0.404
#> SRR1499607     2  0.5277      0.582 0.000 0.532 0.008 0.460
#> SRR812342      1  0.0817      0.841 0.976 0.000 0.000 0.024
#> SRR1405374     1  0.0592      0.842 0.984 0.000 0.000 0.016
#> SRR1403565     1  0.3828      0.746 0.848 0.000 0.084 0.068
#> SRR1332024     3  0.1610      0.729 0.032 0.000 0.952 0.016
#> SRR1471633     1  0.2011      0.788 0.920 0.000 0.000 0.080
#> SRR1325944     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR1429450     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR821573      3  0.5987      0.686 0.040 0.000 0.520 0.440
#> SRR1435372     1  0.0921      0.841 0.972 0.000 0.000 0.028
#> SRR1324184     2  0.1388      0.806 0.000 0.960 0.012 0.028
#> SRR816517      4  0.7001     -0.165 0.000 0.244 0.180 0.576
#> SRR1324141     4  0.5159      0.459 0.364 0.000 0.012 0.624
#> SRR1101612     1  0.0000      0.846 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0469      0.844 0.988 0.000 0.000 0.012
#> SRR1089785     3  0.6171      0.734 0.064 0.000 0.588 0.348
#> SRR1077708     3  0.4995      0.730 0.032 0.000 0.720 0.248
#> SRR1343720     3  0.6600      0.693 0.084 0.000 0.520 0.396
#> SRR1477499     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR1347236     1  0.7426     -0.130 0.416 0.000 0.168 0.416
#> SRR1326408     1  0.1118      0.838 0.964 0.000 0.000 0.036
#> SRR1336529     3  0.1356      0.734 0.032 0.000 0.960 0.008
#> SRR1440643     4  0.5016     -0.282 0.004 0.000 0.396 0.600
#> SRR662354      1  0.0592      0.844 0.984 0.000 0.000 0.016
#> SRR1310817     3  0.5969      0.717 0.044 0.000 0.564 0.392
#> SRR1347389     2  0.4722      0.702 0.000 0.692 0.008 0.300
#> SRR1353097     1  0.0469      0.845 0.988 0.000 0.000 0.012
#> SRR1384737     4  0.5294      0.323 0.484 0.000 0.008 0.508
#> SRR1096339     1  0.0592      0.842 0.984 0.000 0.000 0.016
#> SRR1345329     4  0.4998      0.322 0.488 0.000 0.000 0.512
#> SRR1414771     3  0.1610      0.729 0.032 0.000 0.952 0.016
#> SRR1309119     1  0.1389      0.818 0.952 0.000 0.000 0.048
#> SRR1470438     3  0.1610      0.729 0.032 0.000 0.952 0.016
#> SRR1343221     1  0.0707      0.843 0.980 0.000 0.000 0.020
#> SRR1410847     1  0.0707      0.841 0.980 0.000 0.000 0.020
#> SRR807949      3  0.6296      0.717 0.064 0.000 0.548 0.388
#> SRR1442332     3  0.6228      0.730 0.064 0.000 0.572 0.364
#> SRR815920      3  0.2797      0.752 0.032 0.000 0.900 0.068
#> SRR1471524     3  0.4323      0.760 0.028 0.000 0.788 0.184
#> SRR1477221     3  0.1936      0.739 0.032 0.000 0.940 0.028
#> SRR1445046     2  0.5277      0.582 0.000 0.532 0.008 0.460
#> SRR1331962     2  0.4990      0.672 0.000 0.640 0.008 0.352
#> SRR1319946     2  0.4996      0.558 0.000 0.516 0.000 0.484
#> SRR1311599     1  0.2644      0.806 0.908 0.000 0.060 0.032
#> SRR1323977     4  0.5174      0.456 0.368 0.000 0.012 0.620
#> SRR1445132     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR1337321     3  0.2797      0.753 0.032 0.000 0.900 0.068
#> SRR1366390     2  0.0188      0.816 0.000 0.996 0.004 0.000
#> SRR1343012     4  0.6163      0.444 0.364 0.000 0.060 0.576
#> SRR1311958     2  0.5277      0.582 0.000 0.532 0.008 0.460
#> SRR1388234     4  0.6055      0.376 0.436 0.044 0.000 0.520
#> SRR1370384     1  0.2149      0.798 0.912 0.000 0.000 0.088
#> SRR1321650     3  0.1936      0.744 0.032 0.000 0.940 0.028
#> SRR1485117     2  0.0000      0.817 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.2647      0.763 0.880 0.000 0.000 0.120
#> SRR816609      4  0.5000      0.298 0.500 0.000 0.000 0.500
#> SRR1486239     2  0.5277      0.582 0.000 0.532 0.008 0.460
#> SRR1309638     3  0.3523      0.721 0.032 0.000 0.856 0.112
#> SRR1356660     1  0.2546      0.806 0.912 0.000 0.060 0.028
#> SRR1392883     2  0.0592      0.817 0.000 0.984 0.016 0.000
#> SRR808130      3  0.6228      0.730 0.064 0.000 0.572 0.364
#> SRR816677      1  0.4040      0.485 0.752 0.000 0.000 0.248
#> SRR1455722     1  0.0188      0.845 0.996 0.000 0.000 0.004
#> SRR1336029     1  0.1256      0.837 0.964 0.000 0.008 0.028
#> SRR808452      1  0.0000      0.846 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.5608      0.759 0.060 0.000 0.684 0.256
#> SRR1366707     3  0.3598      0.758 0.028 0.000 0.848 0.124
#> SRR1328143     3  0.6228      0.730 0.064 0.000 0.572 0.364
#> SRR1473567     2  0.1042      0.814 0.000 0.972 0.008 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.4870     0.4753 0.004 0.000 0.448 0.016 0.532
#> SRR1390119     2  0.0000     0.9390 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.2352     0.7230 0.004 0.000 0.896 0.008 0.092
#> SRR1347278     3  0.5651     0.2359 0.012 0.000 0.596 0.068 0.324
#> SRR1332904     4  0.5718     0.4476 0.000 0.320 0.004 0.584 0.092
#> SRR1444179     1  0.0609     0.9050 0.980 0.000 0.000 0.020 0.000
#> SRR1082685     1  0.0992     0.9086 0.968 0.000 0.000 0.008 0.024
#> SRR1362287     1  0.3907     0.8359 0.832 0.000 0.068 0.068 0.032
#> SRR1339007     1  0.1522     0.9039 0.944 0.000 0.000 0.012 0.044
#> SRR1376557     2  0.3161     0.8741 0.000 0.860 0.004 0.044 0.092
#> SRR1468700     2  0.5240     0.5551 0.000 0.660 0.000 0.244 0.096
#> SRR1077455     1  0.3877     0.7628 0.764 0.000 0.000 0.024 0.212
#> SRR1413978     1  0.4411     0.8135 0.796 0.000 0.068 0.104 0.032
#> SRR1439896     1  0.0865     0.9089 0.972 0.000 0.000 0.004 0.024
#> SRR1317963     4  0.4250     0.7304 0.000 0.128 0.004 0.784 0.084
#> SRR1431865     1  0.3844     0.8386 0.836 0.000 0.068 0.064 0.032
#> SRR1394253     1  0.3806     0.8444 0.840 0.000 0.056 0.064 0.040
#> SRR1082664     5  0.5020     0.6519 0.016 0.000 0.344 0.020 0.620
#> SRR1077968     1  0.2270     0.8848 0.904 0.000 0.000 0.020 0.076
#> SRR1076393     3  0.4422     0.4090 0.004 0.000 0.680 0.016 0.300
#> SRR1477476     2  0.0000     0.9390 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.3546     0.6733 0.004 0.000 0.832 0.048 0.116
#> SRR1485042     1  0.0671     0.9066 0.980 0.000 0.000 0.004 0.016
#> SRR1385453     3  0.6817    -0.1276 0.000 0.000 0.348 0.308 0.344
#> SRR1348074     4  0.2230     0.7810 0.116 0.000 0.000 0.884 0.000
#> SRR813959      5  0.6589     0.2567 0.000 0.000 0.224 0.328 0.448
#> SRR665442      3  0.7040     0.3539 0.084 0.000 0.536 0.104 0.276
#> SRR1378068     3  0.1571     0.7257 0.004 0.000 0.936 0.000 0.060
#> SRR1485237     4  0.2773     0.7603 0.164 0.000 0.000 0.836 0.000
#> SRR1350792     1  0.1041     0.9082 0.964 0.000 0.000 0.004 0.032
#> SRR1326797     5  0.4567     0.4899 0.216 0.000 0.028 0.020 0.736
#> SRR808994      3  0.0451     0.7445 0.004 0.000 0.988 0.000 0.008
#> SRR1474041     5  0.4703     0.6598 0.016 0.000 0.336 0.008 0.640
#> SRR1405641     3  0.0771     0.7442 0.004 0.000 0.976 0.000 0.020
#> SRR1362245     3  0.2885     0.7068 0.004 0.000 0.880 0.064 0.052
#> SRR1500194     1  0.1915     0.8905 0.928 0.000 0.000 0.040 0.032
#> SRR1414876     2  0.0000     0.9390 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     5  0.6500     0.1219 0.000 0.000 0.404 0.188 0.408
#> SRR1325161     5  0.4319     0.6304 0.028 0.000 0.176 0.024 0.772
#> SRR1318026     4  0.3326     0.7654 0.152 0.000 0.000 0.824 0.024
#> SRR1343778     5  0.4889     0.4030 0.004 0.000 0.476 0.016 0.504
#> SRR1441287     1  0.0324     0.9081 0.992 0.000 0.000 0.004 0.004
#> SRR1430991     5  0.4384     0.6713 0.016 0.000 0.324 0.000 0.660
#> SRR1499722     5  0.4424     0.5731 0.128 0.000 0.080 0.012 0.780
#> SRR1351368     3  0.5680     0.4528 0.000 0.000 0.628 0.160 0.212
#> SRR1441785     1  0.3907     0.8359 0.832 0.000 0.068 0.068 0.032
#> SRR1096101     1  0.0898     0.9074 0.972 0.000 0.000 0.008 0.020
#> SRR808375      5  0.4142     0.6561 0.016 0.000 0.220 0.012 0.752
#> SRR1452842     1  0.3961     0.7590 0.760 0.000 0.000 0.028 0.212
#> SRR1311709     1  0.1485     0.9024 0.948 0.000 0.000 0.032 0.020
#> SRR1433352     5  0.5036     0.6745 0.040 0.000 0.304 0.008 0.648
#> SRR1340241     2  0.0771     0.9349 0.000 0.976 0.004 0.000 0.020
#> SRR1456754     1  0.2900     0.8605 0.864 0.000 0.000 0.028 0.108
#> SRR1465172     5  0.4572     0.5463 0.156 0.000 0.052 0.024 0.768
#> SRR1499284     5  0.4540     0.3720 0.320 0.000 0.000 0.024 0.656
#> SRR1499607     4  0.4305     0.7290 0.000 0.128 0.004 0.780 0.088
#> SRR812342      1  0.1408     0.9045 0.948 0.000 0.000 0.008 0.044
#> SRR1405374     1  0.1741     0.8942 0.936 0.000 0.000 0.040 0.024
#> SRR1403565     1  0.4389     0.8172 0.804 0.000 0.076 0.072 0.048
#> SRR1332024     3  0.1074     0.7364 0.004 0.000 0.968 0.012 0.016
#> SRR1471633     1  0.1043     0.8968 0.960 0.000 0.000 0.040 0.000
#> SRR1325944     2  0.0000     0.9390 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9390 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.4582     0.6220 0.016 0.000 0.144 0.072 0.768
#> SRR1435372     1  0.1484     0.9040 0.944 0.000 0.000 0.008 0.048
#> SRR1324184     2  0.2482     0.9072 0.000 0.892 0.000 0.024 0.084
#> SRR816517      4  0.4867     0.7131 0.000 0.036 0.116 0.764 0.084
#> SRR1324141     4  0.3839     0.7662 0.108 0.000 0.004 0.816 0.072
#> SRR1101612     1  0.0865     0.9089 0.972 0.000 0.000 0.004 0.024
#> SRR1356531     1  0.0955     0.9087 0.968 0.000 0.000 0.004 0.028
#> SRR1089785     5  0.4602     0.6539 0.016 0.000 0.340 0.004 0.640
#> SRR1077708     5  0.4922     0.3264 0.004 0.000 0.424 0.020 0.552
#> SRR1343720     5  0.4705     0.6782 0.040 0.000 0.264 0.004 0.692
#> SRR1477499     2  0.0290     0.9382 0.000 0.992 0.000 0.000 0.008
#> SRR1347236     5  0.4361     0.5084 0.204 0.000 0.032 0.012 0.752
#> SRR1326408     1  0.1522     0.9059 0.944 0.000 0.000 0.012 0.044
#> SRR1336529     3  0.0771     0.7442 0.004 0.000 0.976 0.000 0.020
#> SRR1440643     4  0.6638    -0.0377 0.000 0.000 0.276 0.452 0.272
#> SRR662354      1  0.1168     0.9077 0.960 0.000 0.000 0.008 0.032
#> SRR1310817     5  0.4653     0.6493 0.008 0.000 0.288 0.024 0.680
#> SRR1347389     4  0.5778     0.3075 0.000 0.376 0.000 0.528 0.096
#> SRR1353097     1  0.1281     0.9077 0.956 0.000 0.000 0.012 0.032
#> SRR1384737     4  0.3781     0.7658 0.108 0.000 0.016 0.828 0.048
#> SRR1096339     1  0.0671     0.9066 0.980 0.000 0.000 0.004 0.016
#> SRR1345329     4  0.2471     0.7759 0.136 0.000 0.000 0.864 0.000
#> SRR1414771     3  0.0162     0.7437 0.004 0.000 0.996 0.000 0.000
#> SRR1309119     1  0.1195     0.8999 0.960 0.000 0.000 0.028 0.012
#> SRR1470438     3  0.0162     0.7437 0.004 0.000 0.996 0.000 0.000
#> SRR1343221     1  0.1364     0.9081 0.952 0.000 0.000 0.012 0.036
#> SRR1410847     1  0.1216     0.9023 0.960 0.000 0.000 0.020 0.020
#> SRR807949      5  0.4227     0.6766 0.016 0.000 0.292 0.000 0.692
#> SRR1442332     5  0.4686     0.6628 0.016 0.000 0.332 0.008 0.644
#> SRR815920      3  0.2352     0.7013 0.004 0.000 0.896 0.008 0.092
#> SRR1471524     3  0.4089     0.5252 0.004 0.000 0.736 0.016 0.244
#> SRR1477221     3  0.2949     0.7045 0.004 0.000 0.876 0.068 0.052
#> SRR1445046     4  0.4359     0.7271 0.000 0.128 0.004 0.776 0.092
#> SRR1331962     4  0.5461     0.5170 0.000 0.284 0.000 0.620 0.096
#> SRR1319946     4  0.2964     0.7498 0.000 0.120 0.000 0.856 0.024
#> SRR1311599     1  0.3937     0.8383 0.832 0.000 0.064 0.064 0.040
#> SRR1323977     4  0.3814     0.7681 0.116 0.000 0.004 0.816 0.064
#> SRR1445132     2  0.0000     0.9390 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.3574     0.6934 0.004 0.000 0.836 0.072 0.088
#> SRR1366390     2  0.1894     0.9151 0.000 0.920 0.000 0.008 0.072
#> SRR1343012     4  0.4454     0.7393 0.092 0.000 0.016 0.784 0.108
#> SRR1311958     4  0.4255     0.7265 0.000 0.128 0.000 0.776 0.096
#> SRR1388234     4  0.2358     0.7828 0.104 0.008 0.000 0.888 0.000
#> SRR1370384     1  0.3284     0.8290 0.828 0.000 0.000 0.024 0.148
#> SRR1321650     3  0.2196     0.7297 0.004 0.000 0.916 0.024 0.056
#> SRR1485117     2  0.1484     0.9245 0.000 0.944 0.000 0.008 0.048
#> SRR1384713     1  0.3779     0.7771 0.776 0.000 0.000 0.024 0.200
#> SRR816609      4  0.2690     0.7662 0.156 0.000 0.000 0.844 0.000
#> SRR1486239     4  0.4359     0.7271 0.000 0.128 0.004 0.776 0.092
#> SRR1309638     3  0.3510     0.6815 0.008 0.000 0.832 0.032 0.128
#> SRR1356660     1  0.3844     0.8386 0.836 0.000 0.068 0.064 0.032
#> SRR1392883     2  0.0000     0.9390 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.4418     0.6659 0.016 0.000 0.332 0.000 0.652
#> SRR816677      1  0.5037     0.3787 0.612 0.000 0.012 0.352 0.024
#> SRR1455722     1  0.0992     0.9089 0.968 0.000 0.000 0.008 0.024
#> SRR1336029     1  0.1648     0.8974 0.940 0.000 0.000 0.040 0.020
#> SRR808452      1  0.1106     0.9079 0.964 0.000 0.000 0.012 0.024
#> SRR1352169     3  0.5049    -0.2193 0.016 0.000 0.548 0.012 0.424
#> SRR1366707     3  0.3500     0.6073 0.004 0.000 0.808 0.016 0.172
#> SRR1328143     5  0.4570     0.6645 0.016 0.000 0.332 0.004 0.648
#> SRR1473567     2  0.3130     0.8708 0.000 0.856 0.000 0.048 0.096

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.4315     0.5794 0.000 0.000 0.244 0.012 0.704 0.040
#> SRR1390119     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.3202     0.5810 0.000 0.000 0.800 0.000 0.176 0.024
#> SRR1347278     3  0.6046     0.2417 0.000 0.000 0.416 0.000 0.280 0.304
#> SRR1332904     4  0.2692     0.6215 0.000 0.148 0.000 0.840 0.000 0.012
#> SRR1444179     1  0.1204     0.8247 0.944 0.000 0.000 0.000 0.000 0.056
#> SRR1082685     1  0.0146     0.8305 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1362287     1  0.4696     0.6155 0.588 0.000 0.056 0.000 0.000 0.356
#> SRR1339007     1  0.1501     0.8078 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1376557     2  0.3705     0.7649 0.000 0.740 0.004 0.236 0.000 0.020
#> SRR1468700     4  0.4624    -0.1787 0.000 0.452 0.008 0.516 0.000 0.024
#> SRR1077455     1  0.4351     0.6410 0.720 0.000 0.000 0.000 0.172 0.108
#> SRR1413978     1  0.5028     0.5680 0.536 0.000 0.056 0.008 0.000 0.400
#> SRR1439896     1  0.0458     0.8307 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1317963     4  0.0692     0.7125 0.000 0.020 0.000 0.976 0.000 0.004
#> SRR1431865     1  0.4696     0.6155 0.588 0.000 0.056 0.000 0.000 0.356
#> SRR1394253     1  0.4696     0.6155 0.588 0.000 0.056 0.000 0.000 0.356
#> SRR1082664     5  0.3141     0.7457 0.000 0.000 0.112 0.004 0.836 0.048
#> SRR1077968     1  0.2537     0.7743 0.872 0.000 0.000 0.000 0.032 0.096
#> SRR1076393     3  0.6114    -0.1075 0.000 0.000 0.440 0.008 0.340 0.212
#> SRR1477476     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398057     3  0.4989     0.4994 0.000 0.000 0.640 0.000 0.140 0.220
#> SRR1485042     1  0.1753     0.8201 0.912 0.000 0.004 0.000 0.000 0.084
#> SRR1385453     6  0.7466     0.5250 0.000 0.000 0.288 0.132 0.248 0.332
#> SRR1348074     4  0.3134     0.7179 0.024 0.000 0.000 0.808 0.000 0.168
#> SRR813959      5  0.6564    -0.2985 0.000 0.000 0.052 0.172 0.464 0.312
#> SRR665442      6  0.6689    -0.2991 0.028 0.000 0.348 0.012 0.188 0.424
#> SRR1378068     3  0.1753     0.6083 0.000 0.000 0.912 0.000 0.084 0.004
#> SRR1485237     4  0.4044     0.6868 0.076 0.000 0.000 0.744 0.000 0.180
#> SRR1350792     1  0.0000     0.8306 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.2724     0.6615 0.084 0.000 0.000 0.000 0.864 0.052
#> SRR808994      3  0.1196     0.6159 0.000 0.000 0.952 0.000 0.040 0.008
#> SRR1474041     5  0.2839     0.7549 0.000 0.000 0.100 0.008 0.860 0.032
#> SRR1405641     3  0.1531     0.6188 0.000 0.000 0.928 0.000 0.068 0.004
#> SRR1362245     3  0.4735     0.4528 0.000 0.000 0.628 0.000 0.076 0.296
#> SRR1500194     1  0.3104     0.7762 0.800 0.000 0.016 0.000 0.000 0.184
#> SRR1414876     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     6  0.7183     0.4761 0.000 0.000 0.316 0.080 0.276 0.328
#> SRR1325161     5  0.2362     0.7065 0.012 0.000 0.016 0.000 0.892 0.080
#> SRR1318026     4  0.4203     0.6815 0.056 0.000 0.000 0.720 0.004 0.220
#> SRR1343778     5  0.4540     0.4654 0.000 0.000 0.308 0.008 0.644 0.040
#> SRR1441287     1  0.0260     0.8308 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1430991     5  0.1970     0.7649 0.000 0.000 0.092 0.000 0.900 0.008
#> SRR1499722     5  0.2325     0.7023 0.048 0.000 0.008 0.000 0.900 0.044
#> SRR1351368     3  0.6452    -0.3460 0.000 0.000 0.460 0.048 0.152 0.340
#> SRR1441785     1  0.4696     0.6155 0.588 0.000 0.056 0.000 0.000 0.356
#> SRR1096101     1  0.2278     0.8088 0.868 0.000 0.004 0.000 0.000 0.128
#> SRR808375      5  0.1088     0.7404 0.000 0.000 0.016 0.000 0.960 0.024
#> SRR1452842     1  0.4218     0.6623 0.736 0.000 0.000 0.000 0.156 0.108
#> SRR1311709     1  0.1007     0.8249 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1433352     5  0.2635     0.7604 0.004 0.000 0.100 0.004 0.872 0.020
#> SRR1340241     2  0.0790     0.9213 0.000 0.968 0.000 0.032 0.000 0.000
#> SRR1456754     1  0.3352     0.7423 0.816 0.000 0.000 0.000 0.072 0.112
#> SRR1465172     5  0.2956     0.6542 0.064 0.000 0.000 0.000 0.848 0.088
#> SRR1499284     5  0.4691     0.4050 0.220 0.000 0.000 0.000 0.672 0.108
#> SRR1499607     4  0.0806     0.7134 0.000 0.020 0.000 0.972 0.000 0.008
#> SRR812342      1  0.0363     0.8293 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1405374     1  0.2631     0.7964 0.840 0.000 0.008 0.000 0.000 0.152
#> SRR1403565     1  0.5412     0.5391 0.524 0.000 0.052 0.000 0.032 0.392
#> SRR1332024     3  0.1720     0.6150 0.000 0.000 0.928 0.000 0.032 0.040
#> SRR1471633     1  0.1267     0.8194 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1325944     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.2398     0.7047 0.000 0.000 0.028 0.004 0.888 0.080
#> SRR1435372     1  0.0858     0.8244 0.968 0.000 0.000 0.000 0.004 0.028
#> SRR1324184     2  0.3940     0.8511 0.000 0.800 0.020 0.080 0.004 0.096
#> SRR816517      4  0.6470     0.1092 0.000 0.000 0.148 0.464 0.052 0.336
#> SRR1324141     4  0.5073     0.5722 0.048 0.000 0.004 0.596 0.016 0.336
#> SRR1101612     1  0.0000     0.8306 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0260     0.8299 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1089785     5  0.2781     0.7483 0.000 0.000 0.108 0.008 0.860 0.024
#> SRR1077708     5  0.4250     0.6361 0.000 0.000 0.144 0.004 0.744 0.108
#> SRR1343720     5  0.2307     0.7599 0.004 0.000 0.068 0.000 0.896 0.032
#> SRR1477499     2  0.0458     0.9249 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1347236     5  0.2420     0.6795 0.076 0.000 0.000 0.000 0.884 0.040
#> SRR1326408     1  0.1918     0.8026 0.904 0.000 0.000 0.000 0.008 0.088
#> SRR1336529     3  0.1387     0.6188 0.000 0.000 0.932 0.000 0.068 0.000
#> SRR1440643     6  0.7596     0.4571 0.000 0.000 0.216 0.236 0.200 0.348
#> SRR662354      1  0.0547     0.8317 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1310817     5  0.3837     0.6402 0.000 0.000 0.068 0.008 0.784 0.140
#> SRR1347389     4  0.3702     0.5258 0.000 0.208 0.008 0.760 0.000 0.024
#> SRR1353097     1  0.0458     0.8285 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1384737     4  0.4644     0.5550 0.024 0.000 0.004 0.584 0.008 0.380
#> SRR1096339     1  0.1411     0.8243 0.936 0.000 0.004 0.000 0.000 0.060
#> SRR1345329     4  0.3245     0.7161 0.028 0.000 0.000 0.800 0.000 0.172
#> SRR1414771     3  0.1320     0.6193 0.000 0.000 0.948 0.000 0.036 0.016
#> SRR1309119     1  0.1957     0.8146 0.888 0.000 0.000 0.000 0.000 0.112
#> SRR1470438     3  0.1320     0.6186 0.000 0.000 0.948 0.000 0.036 0.016
#> SRR1343221     1  0.0603     0.8309 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1410847     1  0.2744     0.7968 0.840 0.000 0.016 0.000 0.000 0.144
#> SRR807949      5  0.1956     0.7649 0.000 0.000 0.080 0.008 0.908 0.004
#> SRR1442332     5  0.2839     0.7541 0.000 0.000 0.100 0.008 0.860 0.032
#> SRR815920      3  0.2790     0.5555 0.000 0.000 0.840 0.000 0.140 0.020
#> SRR1471524     3  0.5822     0.0232 0.000 0.000 0.540 0.008 0.236 0.216
#> SRR1477221     3  0.4798     0.4476 0.000 0.000 0.620 0.000 0.080 0.300
#> SRR1445046     4  0.1092     0.7057 0.000 0.020 0.000 0.960 0.000 0.020
#> SRR1331962     4  0.2781     0.6440 0.000 0.108 0.008 0.860 0.000 0.024
#> SRR1319946     4  0.3025     0.7068 0.000 0.008 0.004 0.820 0.004 0.164
#> SRR1311599     1  0.4696     0.6155 0.588 0.000 0.056 0.000 0.000 0.356
#> SRR1323977     4  0.5134     0.5793 0.052 0.000 0.008 0.596 0.012 0.332
#> SRR1445132     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     3  0.5409     0.3918 0.000 0.000 0.540 0.000 0.136 0.324
#> SRR1366390     2  0.2826     0.8722 0.000 0.856 0.008 0.112 0.000 0.024
#> SRR1343012     4  0.5584     0.4409 0.028 0.000 0.012 0.508 0.044 0.408
#> SRR1311958     4  0.1350     0.7038 0.000 0.020 0.008 0.952 0.000 0.020
#> SRR1388234     4  0.3088     0.7175 0.020 0.000 0.000 0.808 0.000 0.172
#> SRR1370384     1  0.3361     0.7391 0.816 0.000 0.000 0.000 0.076 0.108
#> SRR1321650     3  0.4012     0.5701 0.000 0.000 0.748 0.000 0.176 0.076
#> SRR1485117     2  0.2265     0.8951 0.000 0.900 0.008 0.068 0.000 0.024
#> SRR1384713     1  0.4183     0.6673 0.740 0.000 0.000 0.000 0.152 0.108
#> SRR816609      4  0.3835     0.6982 0.056 0.000 0.000 0.756 0.000 0.188
#> SRR1486239     4  0.1092     0.7057 0.000 0.020 0.000 0.960 0.000 0.020
#> SRR1309638     3  0.5051     0.4997 0.000 0.000 0.652 0.004 0.188 0.156
#> SRR1356660     1  0.4696     0.6155 0.588 0.000 0.056 0.000 0.000 0.356
#> SRR1392883     2  0.0000     0.9275 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.2051     0.7633 0.000 0.000 0.096 0.004 0.896 0.004
#> SRR816677      1  0.6492     0.2177 0.444 0.000 0.028 0.252 0.000 0.276
#> SRR1455722     1  0.0000     0.8306 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.3240     0.7574 0.752 0.000 0.000 0.004 0.000 0.244
#> SRR808452      1  0.0146     0.8305 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1352169     5  0.4782     0.3036 0.000 0.000 0.380 0.004 0.568 0.048
#> SRR1366707     3  0.4841     0.3106 0.000 0.000 0.680 0.004 0.156 0.160
#> SRR1328143     5  0.2686     0.7563 0.000 0.000 0.100 0.008 0.868 0.024
#> SRR1473567     2  0.3892     0.7578 0.000 0.732 0.008 0.236 0.000 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.985         0.4520 0.548   0.548
#> 3 3 0.978           0.953       0.980         0.4856 0.749   0.554
#> 4 4 0.879           0.871       0.927         0.1012 0.916   0.751
#> 5 5 0.787           0.815       0.880         0.0621 0.946   0.798
#> 6 6 0.777           0.760       0.865         0.0507 0.939   0.731

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.988 1.000 0.000
#> SRR1390119     2  0.0000      0.978 0.000 1.000
#> SRR1436127     1  0.0000      0.988 1.000 0.000
#> SRR1347278     1  0.0000      0.988 1.000 0.000
#> SRR1332904     2  0.0000      0.978 0.000 1.000
#> SRR1444179     1  0.0000      0.988 1.000 0.000
#> SRR1082685     1  0.0000      0.988 1.000 0.000
#> SRR1362287     1  0.0000      0.988 1.000 0.000
#> SRR1339007     1  0.0000      0.988 1.000 0.000
#> SRR1376557     2  0.0000      0.978 0.000 1.000
#> SRR1468700     2  0.0000      0.978 0.000 1.000
#> SRR1077455     1  0.0000      0.988 1.000 0.000
#> SRR1413978     1  0.0376      0.985 0.996 0.004
#> SRR1439896     1  0.0000      0.988 1.000 0.000
#> SRR1317963     2  0.0000      0.978 0.000 1.000
#> SRR1431865     1  0.0000      0.988 1.000 0.000
#> SRR1394253     1  0.0000      0.988 1.000 0.000
#> SRR1082664     1  0.0000      0.988 1.000 0.000
#> SRR1077968     1  0.0000      0.988 1.000 0.000
#> SRR1076393     1  0.5408      0.859 0.876 0.124
#> SRR1477476     2  0.0000      0.978 0.000 1.000
#> SRR1398057     1  0.0000      0.988 1.000 0.000
#> SRR1485042     1  0.0000      0.988 1.000 0.000
#> SRR1385453     2  0.0000      0.978 0.000 1.000
#> SRR1348074     2  0.0000      0.978 0.000 1.000
#> SRR813959      2  0.0000      0.978 0.000 1.000
#> SRR665442      2  0.9635      0.384 0.388 0.612
#> SRR1378068     1  0.0000      0.988 1.000 0.000
#> SRR1485237     2  0.0000      0.978 0.000 1.000
#> SRR1350792     1  0.0000      0.988 1.000 0.000
#> SRR1326797     1  0.0000      0.988 1.000 0.000
#> SRR808994      1  0.0672      0.982 0.992 0.008
#> SRR1474041     1  0.0000      0.988 1.000 0.000
#> SRR1405641     1  0.0000      0.988 1.000 0.000
#> SRR1362245     1  0.0000      0.988 1.000 0.000
#> SRR1500194     1  0.0000      0.988 1.000 0.000
#> SRR1414876     2  0.0000      0.978 0.000 1.000
#> SRR1478523     2  0.3733      0.906 0.072 0.928
#> SRR1325161     1  0.0000      0.988 1.000 0.000
#> SRR1318026     2  0.0000      0.978 0.000 1.000
#> SRR1343778     1  0.0000      0.988 1.000 0.000
#> SRR1441287     1  0.0000      0.988 1.000 0.000
#> SRR1430991     1  0.0000      0.988 1.000 0.000
#> SRR1499722     1  0.0000      0.988 1.000 0.000
#> SRR1351368     2  0.0000      0.978 0.000 1.000
#> SRR1441785     1  0.0000      0.988 1.000 0.000
#> SRR1096101     1  0.0000      0.988 1.000 0.000
#> SRR808375      1  0.0000      0.988 1.000 0.000
#> SRR1452842     1  0.0000      0.988 1.000 0.000
#> SRR1311709     1  0.0000      0.988 1.000 0.000
#> SRR1433352     1  0.0000      0.988 1.000 0.000
#> SRR1340241     2  0.0000      0.978 0.000 1.000
#> SRR1456754     1  0.0000      0.988 1.000 0.000
#> SRR1465172     1  0.0000      0.988 1.000 0.000
#> SRR1499284     1  0.0000      0.988 1.000 0.000
#> SRR1499607     2  0.0000      0.978 0.000 1.000
#> SRR812342      1  0.0000      0.988 1.000 0.000
#> SRR1405374     1  0.0000      0.988 1.000 0.000
#> SRR1403565     1  0.0000      0.988 1.000 0.000
#> SRR1332024     1  0.0000      0.988 1.000 0.000
#> SRR1471633     1  0.2423      0.951 0.960 0.040
#> SRR1325944     2  0.0000      0.978 0.000 1.000
#> SRR1429450     2  0.0000      0.978 0.000 1.000
#> SRR821573      1  0.7139      0.762 0.804 0.196
#> SRR1435372     1  0.0000      0.988 1.000 0.000
#> SRR1324184     2  0.0000      0.978 0.000 1.000
#> SRR816517      2  0.0000      0.978 0.000 1.000
#> SRR1324141     2  0.0000      0.978 0.000 1.000
#> SRR1101612     1  0.0000      0.988 1.000 0.000
#> SRR1356531     1  0.0000      0.988 1.000 0.000
#> SRR1089785     1  0.0000      0.988 1.000 0.000
#> SRR1077708     1  0.0000      0.988 1.000 0.000
#> SRR1343720     1  0.0000      0.988 1.000 0.000
#> SRR1477499     2  0.0000      0.978 0.000 1.000
#> SRR1347236     1  0.0000      0.988 1.000 0.000
#> SRR1326408     1  0.0000      0.988 1.000 0.000
#> SRR1336529     1  0.0000      0.988 1.000 0.000
#> SRR1440643     2  0.0000      0.978 0.000 1.000
#> SRR662354      1  0.0000      0.988 1.000 0.000
#> SRR1310817     1  0.5842      0.839 0.860 0.140
#> SRR1347389     2  0.0000      0.978 0.000 1.000
#> SRR1353097     1  0.0000      0.988 1.000 0.000
#> SRR1384737     2  0.0000      0.978 0.000 1.000
#> SRR1096339     1  0.0000      0.988 1.000 0.000
#> SRR1345329     2  0.0000      0.978 0.000 1.000
#> SRR1414771     1  0.0938      0.978 0.988 0.012
#> SRR1309119     1  0.0672      0.982 0.992 0.008
#> SRR1470438     1  0.0672      0.982 0.992 0.008
#> SRR1343221     1  0.0000      0.988 1.000 0.000
#> SRR1410847     1  0.0000      0.988 1.000 0.000
#> SRR807949      1  0.0000      0.988 1.000 0.000
#> SRR1442332     1  0.0000      0.988 1.000 0.000
#> SRR815920      1  0.0000      0.988 1.000 0.000
#> SRR1471524     1  0.7219      0.756 0.800 0.200
#> SRR1477221     1  0.0000      0.988 1.000 0.000
#> SRR1445046     2  0.0000      0.978 0.000 1.000
#> SRR1331962     2  0.0000      0.978 0.000 1.000
#> SRR1319946     2  0.0000      0.978 0.000 1.000
#> SRR1311599     1  0.0000      0.988 1.000 0.000
#> SRR1323977     2  0.0000      0.978 0.000 1.000
#> SRR1445132     2  0.0000      0.978 0.000 1.000
#> SRR1337321     1  0.0000      0.988 1.000 0.000
#> SRR1366390     2  0.0000      0.978 0.000 1.000
#> SRR1343012     2  0.0000      0.978 0.000 1.000
#> SRR1311958     2  0.0000      0.978 0.000 1.000
#> SRR1388234     2  0.0000      0.978 0.000 1.000
#> SRR1370384     1  0.0000      0.988 1.000 0.000
#> SRR1321650     1  0.0000      0.988 1.000 0.000
#> SRR1485117     2  0.0000      0.978 0.000 1.000
#> SRR1384713     1  0.0000      0.988 1.000 0.000
#> SRR816609      2  0.0000      0.978 0.000 1.000
#> SRR1486239     2  0.0000      0.978 0.000 1.000
#> SRR1309638     1  0.0000      0.988 1.000 0.000
#> SRR1356660     1  0.0000      0.988 1.000 0.000
#> SRR1392883     2  0.0000      0.978 0.000 1.000
#> SRR808130      1  0.0000      0.988 1.000 0.000
#> SRR816677      2  0.9896      0.235 0.440 0.560
#> SRR1455722     1  0.0000      0.988 1.000 0.000
#> SRR1336029     1  0.0000      0.988 1.000 0.000
#> SRR808452      1  0.0000      0.988 1.000 0.000
#> SRR1352169     1  0.0000      0.988 1.000 0.000
#> SRR1366707     1  0.7056      0.768 0.808 0.192
#> SRR1328143     1  0.0000      0.988 1.000 0.000
#> SRR1473567     2  0.0000      0.978 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1390119     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1347278     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1332904     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1444179     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1082685     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1362287     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1339007     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1376557     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1413978     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1439896     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1317963     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1431865     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1394253     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1082664     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1077968     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1076393     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1398057     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1485042     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1385453     2  0.1643      0.938 0.000 0.956 0.044
#> SRR1348074     2  0.0000      0.977 0.000 1.000 0.000
#> SRR813959      2  0.4555      0.746 0.000 0.800 0.200
#> SRR665442      2  0.8250      0.544 0.140 0.628 0.232
#> SRR1378068     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1485237     2  0.3267      0.860 0.116 0.884 0.000
#> SRR1350792     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1326797     1  0.5988      0.434 0.632 0.000 0.368
#> SRR808994      3  0.0000      0.983 0.000 0.000 1.000
#> SRR1474041     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1405641     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1362245     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1500194     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1414876     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1478523     3  0.4504      0.745 0.000 0.196 0.804
#> SRR1325161     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1318026     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1343778     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1441287     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1430991     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1499722     3  0.2066      0.922 0.060 0.000 0.940
#> SRR1351368     3  0.6062      0.366 0.000 0.384 0.616
#> SRR1441785     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1096101     1  0.0000      0.978 1.000 0.000 0.000
#> SRR808375      3  0.0000      0.983 0.000 0.000 1.000
#> SRR1452842     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1311709     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1433352     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1340241     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1456754     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1465172     3  0.0592      0.972 0.012 0.000 0.988
#> SRR1499284     1  0.0237      0.974 0.996 0.000 0.004
#> SRR1499607     2  0.0000      0.977 0.000 1.000 0.000
#> SRR812342      1  0.0000      0.978 1.000 0.000 0.000
#> SRR1405374     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1403565     1  0.4178      0.784 0.828 0.000 0.172
#> SRR1332024     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1471633     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1325944     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.977 0.000 1.000 0.000
#> SRR821573      3  0.0000      0.983 0.000 0.000 1.000
#> SRR1435372     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1324184     2  0.0000      0.977 0.000 1.000 0.000
#> SRR816517      2  0.0000      0.977 0.000 1.000 0.000
#> SRR1324141     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1101612     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1089785     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1077708     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1343720     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1477499     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1347236     1  0.6008      0.424 0.628 0.000 0.372
#> SRR1326408     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1336529     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1440643     2  0.0000      0.977 0.000 1.000 0.000
#> SRR662354      1  0.0000      0.978 1.000 0.000 0.000
#> SRR1310817     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1347389     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1353097     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1384737     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1096339     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1345329     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1414771     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1309119     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1470438     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1343221     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1410847     1  0.0000      0.978 1.000 0.000 0.000
#> SRR807949      3  0.0000      0.983 0.000 0.000 1.000
#> SRR1442332     3  0.0000      0.983 0.000 0.000 1.000
#> SRR815920      3  0.0000      0.983 0.000 0.000 1.000
#> SRR1471524     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1477221     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1445046     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1331962     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1319946     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1311599     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1323977     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1445132     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1337321     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1366390     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1343012     2  0.4062      0.799 0.000 0.836 0.164
#> SRR1311958     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1388234     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1370384     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1321650     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1485117     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.978 1.000 0.000 0.000
#> SRR816609      2  0.0000      0.977 0.000 1.000 0.000
#> SRR1486239     2  0.0000      0.977 0.000 1.000 0.000
#> SRR1309638     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1356660     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.977 0.000 1.000 0.000
#> SRR808130      3  0.0000      0.983 0.000 0.000 1.000
#> SRR816677      1  0.0000      0.978 1.000 0.000 0.000
#> SRR1455722     1  0.0000      0.978 1.000 0.000 0.000
#> SRR1336029     1  0.0000      0.978 1.000 0.000 0.000
#> SRR808452      1  0.0000      0.978 1.000 0.000 0.000
#> SRR1352169     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1366707     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1328143     3  0.0000      0.983 0.000 0.000 1.000
#> SRR1473567     2  0.0000      0.977 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.4977      0.178 0.000 0.000 0.540 0.460
#> SRR1390119     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.2469      0.809 0.000 0.000 0.892 0.108
#> SRR1347278     3  0.4564      0.474 0.000 0.000 0.672 0.328
#> SRR1332904     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.1867      0.924 0.928 0.000 0.072 0.000
#> SRR1339007     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1077455     1  0.4331      0.654 0.712 0.000 0.000 0.288
#> SRR1413978     1  0.1792      0.927 0.932 0.000 0.068 0.000
#> SRR1439896     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1317963     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR1431865     1  0.1792      0.927 0.932 0.000 0.068 0.000
#> SRR1394253     1  0.1792      0.927 0.932 0.000 0.068 0.000
#> SRR1082664     4  0.2216      0.885 0.000 0.000 0.092 0.908
#> SRR1077968     1  0.1302      0.936 0.956 0.000 0.000 0.044
#> SRR1076393     3  0.4164      0.647 0.000 0.000 0.736 0.264
#> SRR1477476     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.1022      0.816 0.000 0.000 0.968 0.032
#> SRR1485042     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1385453     2  0.5849      0.621 0.000 0.704 0.164 0.132
#> SRR1348074     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR813959      2  0.4415      0.758 0.000 0.804 0.056 0.140
#> SRR665442      3  0.8363      0.260 0.020 0.300 0.408 0.272
#> SRR1378068     3  0.1716      0.818 0.000 0.000 0.936 0.064
#> SRR1485237     2  0.2197      0.887 0.080 0.916 0.000 0.004
#> SRR1350792     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1326797     4  0.0469      0.890 0.012 0.000 0.000 0.988
#> SRR808994      3  0.0469      0.814 0.000 0.000 0.988 0.012
#> SRR1474041     4  0.2281      0.896 0.000 0.000 0.096 0.904
#> SRR1405641     3  0.1557      0.819 0.000 0.000 0.944 0.056
#> SRR1362245     3  0.0817      0.814 0.000 0.000 0.976 0.024
#> SRR1500194     1  0.0336      0.954 0.992 0.000 0.008 0.000
#> SRR1414876     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.4990      0.417 0.000 0.008 0.640 0.352
#> SRR1325161     4  0.0188      0.898 0.000 0.000 0.004 0.996
#> SRR1318026     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR1343778     3  0.4790      0.427 0.000 0.000 0.620 0.380
#> SRR1441287     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1430991     4  0.2216      0.898 0.000 0.000 0.092 0.908
#> SRR1499722     4  0.0376      0.896 0.004 0.000 0.004 0.992
#> SRR1351368     3  0.4579      0.649 0.000 0.200 0.768 0.032
#> SRR1441785     1  0.1792      0.927 0.932 0.000 0.068 0.000
#> SRR1096101     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR808375      4  0.0188      0.898 0.000 0.000 0.004 0.996
#> SRR1452842     1  0.4040      0.719 0.752 0.000 0.000 0.248
#> SRR1311709     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1433352     4  0.2469      0.887 0.000 0.000 0.108 0.892
#> SRR1340241     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.2011      0.912 0.920 0.000 0.000 0.080
#> SRR1465172     4  0.0376      0.896 0.004 0.000 0.004 0.992
#> SRR1499284     4  0.1557      0.840 0.056 0.000 0.000 0.944
#> SRR1499607     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR812342      1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0188      0.955 0.996 0.000 0.004 0.000
#> SRR1403565     1  0.4054      0.782 0.796 0.000 0.188 0.016
#> SRR1332024     3  0.0000      0.811 0.000 0.000 1.000 0.000
#> SRR1471633     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1325944     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR821573      4  0.0188      0.898 0.000 0.000 0.004 0.996
#> SRR1435372     1  0.0469      0.952 0.988 0.000 0.000 0.012
#> SRR1324184     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR816517      2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1324141     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR1101612     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1089785     4  0.3024      0.847 0.000 0.000 0.148 0.852
#> SRR1077708     4  0.4776      0.265 0.000 0.000 0.376 0.624
#> SRR1343720     4  0.1389      0.900 0.000 0.000 0.048 0.952
#> SRR1477499     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1347236     4  0.0469      0.890 0.012 0.000 0.000 0.988
#> SRR1326408     1  0.0817      0.947 0.976 0.000 0.000 0.024
#> SRR1336529     3  0.1557      0.819 0.000 0.000 0.944 0.056
#> SRR1440643     2  0.2281      0.880 0.000 0.904 0.096 0.000
#> SRR662354      1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1310817     4  0.2011      0.902 0.000 0.000 0.080 0.920
#> SRR1347389     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1353097     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1384737     2  0.0376      0.967 0.000 0.992 0.004 0.004
#> SRR1096339     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1345329     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR1414771     3  0.0000      0.811 0.000 0.000 1.000 0.000
#> SRR1309119     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1470438     3  0.0000      0.811 0.000 0.000 1.000 0.000
#> SRR1343221     1  0.1867      0.918 0.928 0.000 0.000 0.072
#> SRR1410847     1  0.0469      0.953 0.988 0.000 0.012 0.000
#> SRR807949      4  0.2081      0.901 0.000 0.000 0.084 0.916
#> SRR1442332     4  0.2281      0.896 0.000 0.000 0.096 0.904
#> SRR815920      3  0.1867      0.816 0.000 0.000 0.928 0.072
#> SRR1471524     3  0.2149      0.812 0.000 0.000 0.912 0.088
#> SRR1477221     3  0.0707      0.814 0.000 0.000 0.980 0.020
#> SRR1445046     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR1331962     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1311599     1  0.1792      0.927 0.932 0.000 0.068 0.000
#> SRR1323977     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1445132     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.2011      0.800 0.000 0.000 0.920 0.080
#> SRR1366390     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1343012     2  0.4936      0.498 0.000 0.672 0.316 0.012
#> SRR1311958     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR1370384     1  0.2216      0.902 0.908 0.000 0.000 0.092
#> SRR1321650     3  0.2589      0.804 0.000 0.000 0.884 0.116
#> SRR1485117     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.3649      0.781 0.796 0.000 0.000 0.204
#> SRR816609      2  0.0188      0.970 0.000 0.996 0.000 0.004
#> SRR1486239     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR1309638     3  0.3356      0.772 0.000 0.000 0.824 0.176
#> SRR1356660     1  0.1792      0.927 0.932 0.000 0.068 0.000
#> SRR1392883     2  0.0000      0.971 0.000 1.000 0.000 0.000
#> SRR808130      4  0.2281      0.896 0.000 0.000 0.096 0.904
#> SRR816677      1  0.1661      0.934 0.944 0.000 0.052 0.004
#> SRR1455722     1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0188      0.955 0.996 0.000 0.004 0.000
#> SRR808452      1  0.0000      0.956 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.4804      0.401 0.000 0.000 0.616 0.384
#> SRR1366707     3  0.2469      0.803 0.000 0.000 0.892 0.108
#> SRR1328143     4  0.2281      0.896 0.000 0.000 0.096 0.904
#> SRR1473567     2  0.0000      0.971 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     3  0.4210      0.305 0.000 0.000 0.588 0.000 0.412
#> SRR1390119     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.1965      0.821 0.000 0.000 0.904 0.000 0.096
#> SRR1347278     3  0.6076      0.549 0.000 0.000 0.572 0.196 0.232
#> SRR1332904     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1444179     1  0.0162      0.894 0.996 0.000 0.000 0.004 0.000
#> SRR1082685     1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.3790      0.801 0.744 0.000 0.004 0.248 0.004
#> SRR1339007     1  0.0693      0.891 0.980 0.000 0.000 0.012 0.008
#> SRR1376557     2  0.0162      0.886 0.000 0.996 0.000 0.004 0.000
#> SRR1468700     2  0.1908      0.797 0.000 0.908 0.000 0.092 0.000
#> SRR1077455     1  0.3934      0.671 0.740 0.000 0.000 0.016 0.244
#> SRR1413978     1  0.4142      0.748 0.684 0.000 0.004 0.308 0.004
#> SRR1439896     1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.4201      0.722 0.000 0.408 0.000 0.592 0.000
#> SRR1431865     1  0.3790      0.801 0.744 0.000 0.004 0.248 0.004
#> SRR1394253     1  0.3790      0.801 0.744 0.000 0.004 0.248 0.004
#> SRR1082664     5  0.2179      0.888 0.000 0.000 0.112 0.000 0.888
#> SRR1077968     1  0.1300      0.883 0.956 0.000 0.000 0.016 0.028
#> SRR1076393     3  0.4080      0.649 0.000 0.000 0.728 0.020 0.252
#> SRR1477476     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.2570      0.816 0.000 0.000 0.888 0.084 0.028
#> SRR1485042     1  0.1502      0.888 0.940 0.000 0.000 0.056 0.004
#> SRR1385453     2  0.5383      0.517 0.000 0.704 0.192 0.036 0.068
#> SRR1348074     4  0.3730      0.830 0.000 0.288 0.000 0.712 0.000
#> SRR813959      2  0.2439      0.747 0.000 0.876 0.000 0.004 0.120
#> SRR665442      2  0.6124      0.510 0.036 0.684 0.040 0.060 0.180
#> SRR1378068     3  0.0162      0.840 0.000 0.000 0.996 0.000 0.004
#> SRR1485237     4  0.4959      0.681 0.160 0.128 0.000 0.712 0.000
#> SRR1350792     1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0566      0.928 0.004 0.000 0.000 0.012 0.984
#> SRR808994      3  0.0162      0.840 0.000 0.000 0.996 0.000 0.004
#> SRR1474041     5  0.1197      0.938 0.000 0.000 0.048 0.000 0.952
#> SRR1405641     3  0.0162      0.840 0.000 0.000 0.996 0.000 0.004
#> SRR1362245     3  0.3690      0.756 0.000 0.000 0.780 0.200 0.020
#> SRR1500194     1  0.3647      0.813 0.764 0.000 0.004 0.228 0.004
#> SRR1414876     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.5015      0.589 0.000 0.032 0.676 0.020 0.272
#> SRR1325161     5  0.0451      0.932 0.000 0.000 0.004 0.008 0.988
#> SRR1318026     4  0.3684      0.830 0.000 0.280 0.000 0.720 0.000
#> SRR1343778     3  0.3990      0.550 0.000 0.000 0.688 0.004 0.308
#> SRR1441287     1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.1197      0.938 0.000 0.000 0.048 0.000 0.952
#> SRR1499722     5  0.0451      0.932 0.000 0.000 0.004 0.008 0.988
#> SRR1351368     3  0.3645      0.702 0.000 0.168 0.804 0.024 0.004
#> SRR1441785     1  0.3790      0.801 0.744 0.000 0.004 0.248 0.004
#> SRR1096101     1  0.2011      0.881 0.908 0.000 0.000 0.088 0.004
#> SRR808375      5  0.0162      0.934 0.000 0.000 0.004 0.000 0.996
#> SRR1452842     1  0.3183      0.786 0.828 0.000 0.000 0.016 0.156
#> SRR1311709     1  0.2773      0.780 0.836 0.000 0.000 0.164 0.000
#> SRR1433352     5  0.1410      0.932 0.000 0.000 0.060 0.000 0.940
#> SRR1340241     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     1  0.1493      0.885 0.948 0.000 0.000 0.024 0.028
#> SRR1465172     5  0.0671      0.926 0.004 0.000 0.000 0.016 0.980
#> SRR1499284     5  0.1469      0.896 0.036 0.000 0.000 0.016 0.948
#> SRR1499607     4  0.4302      0.564 0.000 0.480 0.000 0.520 0.000
#> SRR812342      1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.2674      0.861 0.856 0.000 0.000 0.140 0.004
#> SRR1403565     1  0.4592      0.780 0.716 0.000 0.016 0.244 0.024
#> SRR1332024     3  0.0162      0.840 0.000 0.000 0.996 0.004 0.000
#> SRR1471633     1  0.2966      0.756 0.816 0.000 0.000 0.184 0.000
#> SRR1325944     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.0162      0.934 0.000 0.000 0.004 0.000 0.996
#> SRR1435372     1  0.0693      0.891 0.980 0.000 0.000 0.012 0.008
#> SRR1324184     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR816517      2  0.0609      0.873 0.000 0.980 0.000 0.020 0.000
#> SRR1324141     4  0.3612      0.827 0.000 0.268 0.000 0.732 0.000
#> SRR1101612     1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.2280      0.879 0.000 0.000 0.120 0.000 0.880
#> SRR1077708     5  0.4101      0.462 0.000 0.000 0.332 0.004 0.664
#> SRR1343720     5  0.1341      0.934 0.000 0.000 0.056 0.000 0.944
#> SRR1477499     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     5  0.0451      0.930 0.004 0.000 0.000 0.008 0.988
#> SRR1326408     1  0.1648      0.879 0.940 0.000 0.000 0.040 0.020
#> SRR1336529     3  0.0162      0.840 0.000 0.000 0.996 0.000 0.004
#> SRR1440643     2  0.3096      0.755 0.000 0.868 0.084 0.040 0.008
#> SRR662354      1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.1168      0.939 0.000 0.000 0.032 0.008 0.960
#> SRR1347389     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1353097     1  0.0290      0.894 0.992 0.000 0.000 0.008 0.000
#> SRR1384737     4  0.3424      0.813 0.000 0.240 0.000 0.760 0.000
#> SRR1096339     1  0.1124      0.891 0.960 0.000 0.000 0.036 0.004
#> SRR1345329     4  0.3730      0.830 0.000 0.288 0.000 0.712 0.000
#> SRR1414771     3  0.0000      0.840 0.000 0.000 1.000 0.000 0.000
#> SRR1309119     1  0.1124      0.891 0.960 0.000 0.000 0.036 0.004
#> SRR1470438     3  0.0000      0.840 0.000 0.000 1.000 0.000 0.000
#> SRR1343221     1  0.1399      0.888 0.952 0.000 0.000 0.020 0.028
#> SRR1410847     1  0.3205      0.839 0.816 0.000 0.004 0.176 0.004
#> SRR807949      5  0.0880      0.939 0.000 0.000 0.032 0.000 0.968
#> SRR1442332     5  0.1197      0.938 0.000 0.000 0.048 0.000 0.952
#> SRR815920      3  0.0290      0.840 0.000 0.000 0.992 0.000 0.008
#> SRR1471524     3  0.1485      0.833 0.000 0.000 0.948 0.020 0.032
#> SRR1477221     3  0.3779      0.754 0.000 0.000 0.776 0.200 0.024
#> SRR1445046     4  0.4182      0.733 0.000 0.400 0.000 0.600 0.000
#> SRR1331962     2  0.3366      0.531 0.000 0.768 0.000 0.232 0.000
#> SRR1319946     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1311599     1  0.3790      0.801 0.744 0.000 0.004 0.248 0.004
#> SRR1323977     2  0.1965      0.793 0.000 0.904 0.000 0.096 0.000
#> SRR1445132     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.4613      0.730 0.000 0.000 0.728 0.200 0.072
#> SRR1366390     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1343012     4  0.4367      0.772 0.000 0.192 0.060 0.748 0.000
#> SRR1311958     2  0.3508      0.477 0.000 0.748 0.000 0.252 0.000
#> SRR1388234     4  0.4235      0.690 0.000 0.424 0.000 0.576 0.000
#> SRR1370384     1  0.1626      0.876 0.940 0.000 0.000 0.016 0.044
#> SRR1321650     3  0.2136      0.822 0.000 0.000 0.904 0.008 0.088
#> SRR1485117     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR1384713     1  0.3011      0.803 0.844 0.000 0.000 0.016 0.140
#> SRR816609      4  0.3730      0.830 0.000 0.288 0.000 0.712 0.000
#> SRR1486239     2  0.3452      0.499 0.000 0.756 0.000 0.244 0.000
#> SRR1309638     3  0.2624      0.808 0.000 0.000 0.872 0.012 0.116
#> SRR1356660     1  0.3790      0.801 0.744 0.000 0.004 0.248 0.004
#> SRR1392883     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.1197      0.938 0.000 0.000 0.048 0.000 0.952
#> SRR816677      4  0.2787      0.545 0.136 0.000 0.004 0.856 0.004
#> SRR1455722     1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.2286      0.873 0.888 0.000 0.000 0.108 0.004
#> SRR808452      1  0.0000      0.895 1.000 0.000 0.000 0.000 0.000
#> SRR1352169     3  0.3949      0.530 0.000 0.000 0.668 0.000 0.332
#> SRR1366707     3  0.1740      0.827 0.000 0.000 0.932 0.012 0.056
#> SRR1328143     5  0.1197      0.938 0.000 0.000 0.048 0.000 0.952
#> SRR1473567     2  0.1851      0.802 0.000 0.912 0.000 0.088 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     3  0.4184     0.3393 0.000 0.000 0.576 0.000 0.408 0.016
#> SRR1390119     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.1950     0.7936 0.000 0.000 0.912 0.000 0.064 0.024
#> SRR1347278     6  0.5127     0.1975 0.000 0.000 0.364 0.000 0.092 0.544
#> SRR1332904     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1444179     1  0.2121     0.8810 0.892 0.000 0.000 0.012 0.000 0.096
#> SRR1082685     1  0.1714     0.8849 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR1362287     6  0.2346     0.7427 0.124 0.000 0.008 0.000 0.000 0.868
#> SRR1339007     1  0.0508     0.8783 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR1376557     2  0.0146     0.8799 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1468700     2  0.2048     0.8005 0.000 0.880 0.000 0.120 0.000 0.000
#> SRR1077455     1  0.2118     0.7798 0.888 0.000 0.000 0.000 0.104 0.008
#> SRR1413978     6  0.2581     0.7401 0.128 0.000 0.000 0.016 0.000 0.856
#> SRR1439896     1  0.1910     0.8788 0.892 0.000 0.000 0.000 0.000 0.108
#> SRR1317963     4  0.2730     0.8057 0.000 0.192 0.000 0.808 0.000 0.000
#> SRR1431865     6  0.2219     0.7426 0.136 0.000 0.000 0.000 0.000 0.864
#> SRR1394253     6  0.2260     0.7413 0.140 0.000 0.000 0.000 0.000 0.860
#> SRR1082664     5  0.3101     0.8138 0.012 0.000 0.136 0.000 0.832 0.020
#> SRR1077968     1  0.0458     0.8685 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1076393     3  0.5143     0.6574 0.000 0.000 0.672 0.036 0.208 0.084
#> SRR1477476     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398057     3  0.3409     0.6528 0.000 0.000 0.780 0.000 0.028 0.192
#> SRR1485042     1  0.3126     0.7243 0.752 0.000 0.000 0.000 0.000 0.248
#> SRR1385453     2  0.7233     0.3810 0.000 0.532 0.196 0.056 0.120 0.096
#> SRR1348074     4  0.1007     0.8911 0.000 0.044 0.000 0.956 0.000 0.000
#> SRR813959      2  0.2834     0.7919 0.000 0.852 0.008 0.000 0.120 0.020
#> SRR665442      2  0.4237     0.7285 0.068 0.780 0.008 0.000 0.120 0.024
#> SRR1378068     3  0.0260     0.8108 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1485237     4  0.1176     0.8788 0.024 0.020 0.000 0.956 0.000 0.000
#> SRR1350792     1  0.1765     0.8848 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1326797     5  0.1643     0.8720 0.068 0.000 0.000 0.000 0.924 0.008
#> SRR808994      3  0.0551     0.8092 0.000 0.000 0.984 0.004 0.004 0.008
#> SRR1474041     5  0.1480     0.8957 0.000 0.000 0.040 0.000 0.940 0.020
#> SRR1405641     3  0.0291     0.8105 0.000 0.000 0.992 0.004 0.004 0.000
#> SRR1362245     6  0.4263     0.0383 0.000 0.000 0.480 0.000 0.016 0.504
#> SRR1500194     6  0.3198     0.6154 0.260 0.000 0.000 0.000 0.000 0.740
#> SRR1414876     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     3  0.6290     0.4688 0.000 0.024 0.556 0.040 0.284 0.096
#> SRR1325161     5  0.1196     0.8892 0.040 0.000 0.000 0.000 0.952 0.008
#> SRR1318026     4  0.0790     0.8889 0.000 0.032 0.000 0.968 0.000 0.000
#> SRR1343778     3  0.3936     0.5869 0.000 0.000 0.688 0.000 0.288 0.024
#> SRR1441287     1  0.1765     0.8840 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1430991     5  0.1196     0.8983 0.000 0.000 0.040 0.000 0.952 0.008
#> SRR1499722     5  0.1196     0.8886 0.040 0.000 0.000 0.000 0.952 0.008
#> SRR1351368     3  0.5425     0.6450 0.000 0.144 0.696 0.044 0.020 0.096
#> SRR1441785     6  0.2178     0.7431 0.132 0.000 0.000 0.000 0.000 0.868
#> SRR1096101     1  0.3371     0.5550 0.708 0.000 0.000 0.000 0.000 0.292
#> SRR808375      5  0.0146     0.8990 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1452842     1  0.1643     0.8230 0.924 0.000 0.000 0.000 0.068 0.008
#> SRR1311709     1  0.3183     0.8255 0.828 0.000 0.000 0.112 0.000 0.060
#> SRR1433352     5  0.1888     0.8890 0.004 0.000 0.068 0.000 0.916 0.012
#> SRR1340241     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1456754     1  0.1575     0.8564 0.936 0.000 0.000 0.000 0.032 0.032
#> SRR1465172     5  0.1584     0.8770 0.064 0.000 0.000 0.000 0.928 0.008
#> SRR1499284     5  0.3323     0.6835 0.240 0.000 0.000 0.000 0.752 0.008
#> SRR1499607     4  0.3023     0.7574 0.000 0.232 0.000 0.768 0.000 0.000
#> SRR812342      1  0.1327     0.8880 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1405374     6  0.3634     0.4495 0.356 0.000 0.000 0.000 0.000 0.644
#> SRR1403565     6  0.1863     0.7364 0.104 0.000 0.000 0.000 0.000 0.896
#> SRR1332024     3  0.0653     0.8081 0.000 0.000 0.980 0.004 0.004 0.012
#> SRR1471633     1  0.3468     0.8072 0.804 0.000 0.000 0.128 0.000 0.068
#> SRR1325944     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.0696     0.8953 0.008 0.000 0.004 0.004 0.980 0.004
#> SRR1435372     1  0.0520     0.8754 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR1324184     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816517      2  0.2781     0.8005 0.000 0.868 0.008 0.040 0.000 0.084
#> SRR1324141     4  0.0405     0.8741 0.000 0.004 0.000 0.988 0.000 0.008
#> SRR1101612     1  0.1765     0.8842 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1356531     1  0.1387     0.8879 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1089785     5  0.2212     0.8506 0.000 0.000 0.112 0.000 0.880 0.008
#> SRR1077708     5  0.4593     0.1676 0.012 0.000 0.412 0.000 0.556 0.020
#> SRR1343720     5  0.1942     0.8850 0.012 0.000 0.064 0.000 0.916 0.008
#> SRR1477499     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     5  0.1333     0.8849 0.048 0.000 0.000 0.000 0.944 0.008
#> SRR1326408     1  0.0717     0.8659 0.976 0.000 0.000 0.008 0.016 0.000
#> SRR1336529     3  0.0260     0.8108 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1440643     2  0.5203     0.6879 0.000 0.736 0.056 0.068 0.044 0.096
#> SRR662354      1  0.1863     0.8816 0.896 0.000 0.000 0.000 0.000 0.104
#> SRR1310817     5  0.1483     0.8894 0.000 0.000 0.012 0.008 0.944 0.036
#> SRR1347389     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1353097     1  0.0632     0.8828 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1384737     4  0.0603     0.8730 0.000 0.004 0.000 0.980 0.000 0.016
#> SRR1096339     1  0.2854     0.7779 0.792 0.000 0.000 0.000 0.000 0.208
#> SRR1345329     4  0.1007     0.8911 0.000 0.044 0.000 0.956 0.000 0.000
#> SRR1414771     3  0.0653     0.8084 0.000 0.000 0.980 0.004 0.004 0.012
#> SRR1309119     1  0.3602     0.7545 0.760 0.000 0.000 0.032 0.000 0.208
#> SRR1470438     3  0.0653     0.8084 0.000 0.000 0.980 0.004 0.004 0.012
#> SRR1343221     1  0.1701     0.8745 0.920 0.000 0.000 0.000 0.008 0.072
#> SRR1410847     6  0.3756     0.3274 0.400 0.000 0.000 0.000 0.000 0.600
#> SRR807949      5  0.0777     0.9001 0.000 0.000 0.024 0.000 0.972 0.004
#> SRR1442332     5  0.1480     0.8957 0.000 0.000 0.040 0.000 0.940 0.020
#> SRR815920      3  0.0692     0.8113 0.000 0.000 0.976 0.000 0.020 0.004
#> SRR1471524     3  0.4121     0.7532 0.000 0.000 0.788 0.040 0.084 0.088
#> SRR1477221     6  0.4242     0.1349 0.000 0.000 0.448 0.000 0.016 0.536
#> SRR1445046     4  0.2631     0.8164 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1331962     2  0.3547     0.4890 0.000 0.668 0.000 0.332 0.000 0.000
#> SRR1319946     2  0.0951     0.8704 0.000 0.968 0.000 0.020 0.004 0.008
#> SRR1311599     6  0.2260     0.7413 0.140 0.000 0.000 0.000 0.000 0.860
#> SRR1323977     2  0.2845     0.7540 0.000 0.820 0.000 0.172 0.004 0.004
#> SRR1445132     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     6  0.4445     0.2330 0.000 0.000 0.396 0.000 0.032 0.572
#> SRR1366390     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1343012     4  0.1706     0.8509 0.004 0.004 0.024 0.936 0.000 0.032
#> SRR1311958     2  0.3756     0.3228 0.000 0.600 0.000 0.400 0.000 0.000
#> SRR1388234     4  0.2883     0.7766 0.000 0.212 0.000 0.788 0.000 0.000
#> SRR1370384     1  0.1049     0.8534 0.960 0.000 0.000 0.000 0.032 0.008
#> SRR1321650     3  0.2390     0.7780 0.000 0.000 0.888 0.000 0.056 0.056
#> SRR1485117     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1384713     1  0.1584     0.8276 0.928 0.000 0.000 0.000 0.064 0.008
#> SRR816609      4  0.1007     0.8911 0.000 0.044 0.000 0.956 0.000 0.000
#> SRR1486239     2  0.3717     0.3646 0.000 0.616 0.000 0.384 0.000 0.000
#> SRR1309638     3  0.3379     0.7730 0.008 0.000 0.832 0.004 0.100 0.056
#> SRR1356660     6  0.2260     0.7413 0.140 0.000 0.000 0.000 0.000 0.860
#> SRR1392883     2  0.0000     0.8815 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.1297     0.8975 0.000 0.000 0.040 0.000 0.948 0.012
#> SRR816677      4  0.3686     0.6390 0.032 0.000 0.000 0.748 0.000 0.220
#> SRR1455722     1  0.1814     0.8826 0.900 0.000 0.000 0.000 0.000 0.100
#> SRR1336029     6  0.4242     0.1354 0.448 0.000 0.000 0.016 0.000 0.536
#> SRR808452      1  0.1663     0.8862 0.912 0.000 0.000 0.000 0.000 0.088
#> SRR1352169     3  0.4419     0.3412 0.000 0.000 0.584 0.000 0.384 0.032
#> SRR1366707     3  0.3821     0.7629 0.000 0.000 0.804 0.024 0.100 0.072
#> SRR1328143     5  0.1480     0.8957 0.000 0.000 0.040 0.000 0.940 0.020
#> SRR1473567     2  0.2003     0.8031 0.000 0.884 0.000 0.116 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.966           0.966       0.984         0.3653 0.639   0.639
#> 3 3 0.917           0.939       0.973         0.7798 0.699   0.533
#> 4 4 0.828           0.767       0.817         0.0760 0.949   0.856
#> 5 5 0.934           0.913       0.962         0.0728 0.919   0.746
#> 6 6 0.835           0.713       0.875         0.0560 0.935   0.756

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.987 1.000 0.000
#> SRR1390119     2  0.0000      0.974 0.000 1.000
#> SRR1436127     1  0.0000      0.987 1.000 0.000
#> SRR1347278     1  0.0000      0.987 1.000 0.000
#> SRR1332904     2  0.0000      0.974 0.000 1.000
#> SRR1444179     1  0.0000      0.987 1.000 0.000
#> SRR1082685     1  0.0000      0.987 1.000 0.000
#> SRR1362287     1  0.0000      0.987 1.000 0.000
#> SRR1339007     1  0.0000      0.987 1.000 0.000
#> SRR1376557     2  0.0000      0.974 0.000 1.000
#> SRR1468700     2  0.0000      0.974 0.000 1.000
#> SRR1077455     1  0.0000      0.987 1.000 0.000
#> SRR1413978     1  0.0000      0.987 1.000 0.000
#> SRR1439896     1  0.0000      0.987 1.000 0.000
#> SRR1317963     2  0.4298      0.904 0.088 0.912
#> SRR1431865     1  0.0000      0.987 1.000 0.000
#> SRR1394253     1  0.0000      0.987 1.000 0.000
#> SRR1082664     1  0.0000      0.987 1.000 0.000
#> SRR1077968     1  0.0000      0.987 1.000 0.000
#> SRR1076393     1  0.0376      0.984 0.996 0.004
#> SRR1477476     2  0.0000      0.974 0.000 1.000
#> SRR1398057     1  0.0000      0.987 1.000 0.000
#> SRR1485042     1  0.0000      0.987 1.000 0.000
#> SRR1385453     1  0.6343      0.813 0.840 0.160
#> SRR1348074     2  0.8386      0.651 0.268 0.732
#> SRR813959      1  0.0376      0.984 0.996 0.004
#> SRR665442      1  0.0000      0.987 1.000 0.000
#> SRR1378068     1  0.0376      0.984 0.996 0.004
#> SRR1485237     1  0.8713      0.583 0.708 0.292
#> SRR1350792     1  0.0000      0.987 1.000 0.000
#> SRR1326797     1  0.0000      0.987 1.000 0.000
#> SRR808994      1  0.0376      0.984 0.996 0.004
#> SRR1474041     1  0.0000      0.987 1.000 0.000
#> SRR1405641     1  0.0000      0.987 1.000 0.000
#> SRR1362245     1  0.0000      0.987 1.000 0.000
#> SRR1500194     1  0.0000      0.987 1.000 0.000
#> SRR1414876     2  0.0000      0.974 0.000 1.000
#> SRR1478523     1  0.0376      0.984 0.996 0.004
#> SRR1325161     1  0.0000      0.987 1.000 0.000
#> SRR1318026     1  0.8661      0.591 0.712 0.288
#> SRR1343778     1  0.0376      0.984 0.996 0.004
#> SRR1441287     1  0.0000      0.987 1.000 0.000
#> SRR1430991     1  0.0000      0.987 1.000 0.000
#> SRR1499722     1  0.0000      0.987 1.000 0.000
#> SRR1351368     1  0.6531      0.802 0.832 0.168
#> SRR1441785     1  0.0000      0.987 1.000 0.000
#> SRR1096101     1  0.0000      0.987 1.000 0.000
#> SRR808375      1  0.0000      0.987 1.000 0.000
#> SRR1452842     1  0.0000      0.987 1.000 0.000
#> SRR1311709     1  0.0000      0.987 1.000 0.000
#> SRR1433352     1  0.0000      0.987 1.000 0.000
#> SRR1340241     2  0.0000      0.974 0.000 1.000
#> SRR1456754     1  0.0000      0.987 1.000 0.000
#> SRR1465172     1  0.0000      0.987 1.000 0.000
#> SRR1499284     1  0.0000      0.987 1.000 0.000
#> SRR1499607     2  0.0000      0.974 0.000 1.000
#> SRR812342      1  0.0000      0.987 1.000 0.000
#> SRR1405374     1  0.0000      0.987 1.000 0.000
#> SRR1403565     1  0.0000      0.987 1.000 0.000
#> SRR1332024     1  0.0000      0.987 1.000 0.000
#> SRR1471633     1  0.0000      0.987 1.000 0.000
#> SRR1325944     2  0.0000      0.974 0.000 1.000
#> SRR1429450     2  0.0000      0.974 0.000 1.000
#> SRR821573      1  0.0376      0.984 0.996 0.004
#> SRR1435372     1  0.0000      0.987 1.000 0.000
#> SRR1324184     2  0.0000      0.974 0.000 1.000
#> SRR816517      2  0.0000      0.974 0.000 1.000
#> SRR1324141     1  0.4815      0.881 0.896 0.104
#> SRR1101612     1  0.0000      0.987 1.000 0.000
#> SRR1356531     1  0.0000      0.987 1.000 0.000
#> SRR1089785     1  0.0376      0.984 0.996 0.004
#> SRR1077708     1  0.0000      0.987 1.000 0.000
#> SRR1343720     1  0.0000      0.987 1.000 0.000
#> SRR1477499     2  0.0000      0.974 0.000 1.000
#> SRR1347236     1  0.0000      0.987 1.000 0.000
#> SRR1326408     1  0.0000      0.987 1.000 0.000
#> SRR1336529     1  0.0000      0.987 1.000 0.000
#> SRR1440643     1  0.0376      0.984 0.996 0.004
#> SRR662354      1  0.0000      0.987 1.000 0.000
#> SRR1310817     1  0.0376      0.984 0.996 0.004
#> SRR1347389     2  0.0000      0.974 0.000 1.000
#> SRR1353097     1  0.0000      0.987 1.000 0.000
#> SRR1384737     1  0.5737      0.842 0.864 0.136
#> SRR1096339     1  0.0000      0.987 1.000 0.000
#> SRR1345329     2  0.5294      0.871 0.120 0.880
#> SRR1414771     1  0.0000      0.987 1.000 0.000
#> SRR1309119     1  0.0000      0.987 1.000 0.000
#> SRR1470438     1  0.0376      0.984 0.996 0.004
#> SRR1343221     1  0.0000      0.987 1.000 0.000
#> SRR1410847     1  0.0000      0.987 1.000 0.000
#> SRR807949      1  0.0000      0.987 1.000 0.000
#> SRR1442332     1  0.0000      0.987 1.000 0.000
#> SRR815920      1  0.0000      0.987 1.000 0.000
#> SRR1471524     1  0.0376      0.984 0.996 0.004
#> SRR1477221     1  0.0000      0.987 1.000 0.000
#> SRR1445046     2  0.0000      0.974 0.000 1.000
#> SRR1331962     2  0.0000      0.974 0.000 1.000
#> SRR1319946     2  0.0376      0.971 0.004 0.996
#> SRR1311599     1  0.0000      0.987 1.000 0.000
#> SRR1323977     1  0.0376      0.984 0.996 0.004
#> SRR1445132     2  0.0000      0.974 0.000 1.000
#> SRR1337321     1  0.0000      0.987 1.000 0.000
#> SRR1366390     2  0.0000      0.974 0.000 1.000
#> SRR1343012     1  0.0376      0.984 0.996 0.004
#> SRR1311958     2  0.0000      0.974 0.000 1.000
#> SRR1388234     2  0.4298      0.904 0.088 0.912
#> SRR1370384     1  0.0000      0.987 1.000 0.000
#> SRR1321650     1  0.0000      0.987 1.000 0.000
#> SRR1485117     2  0.0000      0.974 0.000 1.000
#> SRR1384713     1  0.0000      0.987 1.000 0.000
#> SRR816609      2  0.6048      0.838 0.148 0.852
#> SRR1486239     2  0.0000      0.974 0.000 1.000
#> SRR1309638     1  0.0000      0.987 1.000 0.000
#> SRR1356660     1  0.0000      0.987 1.000 0.000
#> SRR1392883     2  0.0000      0.974 0.000 1.000
#> SRR808130      1  0.0000      0.987 1.000 0.000
#> SRR816677      1  0.0672      0.980 0.992 0.008
#> SRR1455722     1  0.0000      0.987 1.000 0.000
#> SRR1336029     1  0.0000      0.987 1.000 0.000
#> SRR808452      1  0.0000      0.987 1.000 0.000
#> SRR1352169     1  0.0000      0.987 1.000 0.000
#> SRR1366707     1  0.0376      0.984 0.996 0.004
#> SRR1328143     1  0.0000      0.987 1.000 0.000
#> SRR1473567     2  0.0000      0.974 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1390119     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1347278     3  0.4291      0.790 0.180 0.000 0.820
#> SRR1332904     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1444179     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1082685     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1362287     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1339007     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1376557     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1413978     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1439896     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1317963     2  0.2165      0.926 0.064 0.936 0.000
#> SRR1431865     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1394253     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1082664     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1077968     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1076393     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1398057     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1485042     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1385453     3  0.0237      0.960 0.000 0.004 0.996
#> SRR1348074     2  0.5138      0.684 0.252 0.748 0.000
#> SRR813959      3  0.0424      0.958 0.008 0.000 0.992
#> SRR665442      1  0.0892      0.956 0.980 0.000 0.020
#> SRR1378068     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1485237     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1350792     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1326797     1  0.6204      0.234 0.576 0.000 0.424
#> SRR808994      3  0.0237      0.960 0.004 0.000 0.996
#> SRR1474041     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1405641     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1362245     3  0.3412      0.850 0.124 0.000 0.876
#> SRR1500194     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1414876     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1478523     3  0.0892      0.950 0.020 0.000 0.980
#> SRR1325161     3  0.0747      0.952 0.016 0.000 0.984
#> SRR1318026     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1343778     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1441287     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1430991     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1499722     3  0.4750      0.742 0.216 0.000 0.784
#> SRR1351368     3  0.0424      0.957 0.000 0.008 0.992
#> SRR1441785     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1096101     1  0.0000      0.973 1.000 0.000 0.000
#> SRR808375      3  0.0000      0.962 0.000 0.000 1.000
#> SRR1452842     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1311709     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1433352     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1340241     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1456754     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1465172     1  0.3619      0.839 0.864 0.000 0.136
#> SRR1499284     1  0.1163      0.950 0.972 0.000 0.028
#> SRR1499607     2  0.0000      0.974 0.000 1.000 0.000
#> SRR812342      1  0.0000      0.973 1.000 0.000 0.000
#> SRR1405374     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1403565     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1332024     3  0.1163      0.943 0.028 0.000 0.972
#> SRR1471633     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1325944     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.974 0.000 1.000 0.000
#> SRR821573      3  0.4887      0.707 0.228 0.000 0.772
#> SRR1435372     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1324184     2  0.0000      0.974 0.000 1.000 0.000
#> SRR816517      3  0.5706      0.547 0.000 0.320 0.680
#> SRR1324141     1  0.2031      0.936 0.952 0.032 0.016
#> SRR1101612     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1089785     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1077708     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1343720     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1477499     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1347236     1  0.4452      0.767 0.808 0.000 0.192
#> SRR1326408     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1336529     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1440643     3  0.0000      0.962 0.000 0.000 1.000
#> SRR662354      1  0.0000      0.973 1.000 0.000 0.000
#> SRR1310817     1  0.5810      0.516 0.664 0.000 0.336
#> SRR1347389     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1353097     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1384737     1  0.2959      0.872 0.900 0.100 0.000
#> SRR1096339     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1345329     2  0.3038      0.891 0.104 0.896 0.000
#> SRR1414771     3  0.0424      0.958 0.008 0.000 0.992
#> SRR1309119     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1470438     3  0.0892      0.950 0.020 0.000 0.980
#> SRR1343221     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1410847     1  0.0000      0.973 1.000 0.000 0.000
#> SRR807949      3  0.0000      0.962 0.000 0.000 1.000
#> SRR1442332     3  0.0000      0.962 0.000 0.000 1.000
#> SRR815920      3  0.0000      0.962 0.000 0.000 1.000
#> SRR1471524     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1477221     3  0.0747      0.953 0.016 0.000 0.984
#> SRR1445046     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1331962     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1319946     2  0.0661      0.967 0.008 0.988 0.004
#> SRR1311599     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1323977     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1445132     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1337321     3  0.4750      0.742 0.216 0.000 0.784
#> SRR1366390     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1343012     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1311958     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1388234     2  0.2356      0.919 0.072 0.928 0.000
#> SRR1370384     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1321650     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1485117     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.973 1.000 0.000 0.000
#> SRR816609      2  0.3551      0.860 0.132 0.868 0.000
#> SRR1486239     2  0.0000      0.974 0.000 1.000 0.000
#> SRR1309638     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1356660     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.974 0.000 1.000 0.000
#> SRR808130      3  0.0000      0.962 0.000 0.000 1.000
#> SRR816677      1  0.0000      0.973 1.000 0.000 0.000
#> SRR1455722     1  0.0000      0.973 1.000 0.000 0.000
#> SRR1336029     1  0.0000      0.973 1.000 0.000 0.000
#> SRR808452      1  0.0000      0.973 1.000 0.000 0.000
#> SRR1352169     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1366707     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1328143     3  0.0000      0.962 0.000 0.000 1.000
#> SRR1473567     2  0.0000      0.974 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.4713      0.707 0.000 0.000 0.640 0.360
#> SRR1390119     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.0000      0.776 0.000 0.000 1.000 0.000
#> SRR1347278     3  0.4134      0.566 0.260 0.000 0.740 0.000
#> SRR1332904     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1444179     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0707      0.957 0.980 0.000 0.020 0.000
#> SRR1339007     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1376557     4  0.4998      0.436 0.000 0.488 0.000 0.512
#> SRR1468700     4  0.4994      0.458 0.000 0.480 0.000 0.520
#> SRR1077455     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1413978     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1439896     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1317963     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1431865     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1082664     3  0.4679      0.726 0.000 0.000 0.648 0.352
#> SRR1077968     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1076393     3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1477476     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.0000      0.776 0.000 0.000 1.000 0.000
#> SRR1485042     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1385453     3  0.1637      0.766 0.000 0.000 0.940 0.060
#> SRR1348074     4  0.7235      0.307 0.180 0.288 0.000 0.532
#> SRR813959      3  0.3142      0.770 0.008 0.000 0.860 0.132
#> SRR665442      1  0.1356      0.939 0.960 0.000 0.032 0.008
#> SRR1378068     3  0.0000      0.776 0.000 0.000 1.000 0.000
#> SRR1485237     1  0.1302      0.938 0.956 0.000 0.000 0.044
#> SRR1350792     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1326797     4  0.7307     -0.182 0.404 0.000 0.152 0.444
#> SRR808994      3  0.0921      0.766 0.000 0.000 0.972 0.028
#> SRR1474041     3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1405641     3  0.0000      0.776 0.000 0.000 1.000 0.000
#> SRR1362245     3  0.2704      0.700 0.124 0.000 0.876 0.000
#> SRR1500194     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.3463      0.730 0.096 0.000 0.864 0.040
#> SRR1325161     3  0.5257      0.687 0.008 0.000 0.548 0.444
#> SRR1318026     1  0.1302      0.938 0.956 0.000 0.000 0.044
#> SRR1343778     3  0.1042      0.775 0.020 0.000 0.972 0.008
#> SRR1441287     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1430991     3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1499722     3  0.6613      0.602 0.200 0.000 0.628 0.172
#> SRR1351368     3  0.2469      0.769 0.000 0.000 0.892 0.108
#> SRR1441785     1  0.0707      0.957 0.980 0.000 0.020 0.000
#> SRR1096101     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR808375      3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1452842     1  0.0672      0.961 0.984 0.000 0.008 0.008
#> SRR1311709     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1433352     3  0.2466      0.750 0.096 0.000 0.900 0.004
#> SRR1340241     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1465172     4  0.7218     -0.150 0.416 0.000 0.140 0.444
#> SRR1499284     1  0.6064      0.249 0.512 0.000 0.044 0.444
#> SRR1499607     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR812342      1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1403565     1  0.0707      0.957 0.980 0.000 0.020 0.000
#> SRR1332024     3  0.1302      0.761 0.044 0.000 0.956 0.000
#> SRR1471633     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1325944     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR821573      3  0.6607      0.619 0.080 0.000 0.476 0.444
#> SRR1435372     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR816517      3  0.6890      0.313 0.000 0.268 0.580 0.152
#> SRR1324141     1  0.2125      0.907 0.920 0.000 0.004 0.076
#> SRR1101612     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1089785     3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1077708     3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1343720     3  0.2704      0.775 0.000 0.000 0.876 0.124
#> SRR1477499     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1347236     1  0.4095      0.717 0.792 0.000 0.192 0.016
#> SRR1326408     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1336529     3  0.0000      0.776 0.000 0.000 1.000 0.000
#> SRR1440643     3  0.3128      0.740 0.076 0.000 0.884 0.040
#> SRR662354      1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1310817     4  0.7711     -0.390 0.248 0.000 0.308 0.444
#> SRR1347389     2  0.2868      0.707 0.000 0.864 0.000 0.136
#> SRR1353097     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1384737     1  0.3401      0.805 0.840 0.008 0.000 0.152
#> SRR1096339     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1345329     4  0.5800      0.503 0.032 0.420 0.000 0.548
#> SRR1414771     3  0.0592      0.773 0.016 0.000 0.984 0.000
#> SRR1309119     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1470438     3  0.1388      0.763 0.012 0.000 0.960 0.028
#> SRR1343221     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR807949      3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1442332     3  0.2281      0.775 0.000 0.000 0.904 0.096
#> SRR815920      3  0.0000      0.776 0.000 0.000 1.000 0.000
#> SRR1471524     3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1477221     3  0.1022      0.768 0.032 0.000 0.968 0.000
#> SRR1445046     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1331962     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1319946     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1311599     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1323977     1  0.1302      0.938 0.956 0.000 0.000 0.044
#> SRR1445132     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.5486      0.611 0.200 0.000 0.720 0.080
#> SRR1366390     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1343012     1  0.1489      0.936 0.952 0.000 0.004 0.044
#> SRR1311958     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1388234     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1370384     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1321650     3  0.0188      0.777 0.000 0.000 0.996 0.004
#> SRR1485117     2  0.4999     -0.463 0.000 0.508 0.000 0.492
#> SRR1384713     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR816609      4  0.6243      0.465 0.060 0.392 0.000 0.548
#> SRR1486239     4  0.4955      0.538 0.000 0.444 0.000 0.556
#> SRR1309638     3  0.4661      0.707 0.000 0.000 0.652 0.348
#> SRR1356660     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1392883     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR808130      3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR816677      1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1455722     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR808452      1  0.0000      0.972 1.000 0.000 0.000 0.000
#> SRR1352169     3  0.2222      0.778 0.016 0.000 0.924 0.060
#> SRR1366707     3  0.4746      0.704 0.000 0.000 0.632 0.368
#> SRR1328143     3  0.4955      0.692 0.000 0.000 0.556 0.444
#> SRR1473567     4  0.4955      0.538 0.000 0.444 0.000 0.556

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.3707     0.6219 0.000 0.000 0.284 0.000 0.716
#> SRR1390119     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1347278     3  0.1792     0.8575 0.084 0.000 0.916 0.000 0.000
#> SRR1332904     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1444179     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.0609     0.9684 0.980 0.000 0.020 0.000 0.000
#> SRR1339007     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1376557     4  0.0290     0.9602 0.000 0.008 0.000 0.992 0.000
#> SRR1468700     4  0.0290     0.9602 0.000 0.008 0.000 0.992 0.000
#> SRR1077455     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1413978     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1431865     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1082664     5  0.4307    -0.0939 0.000 0.000 0.500 0.000 0.500
#> SRR1077968     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1076393     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1477476     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1485042     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1385453     3  0.0898     0.9062 0.000 0.000 0.972 0.008 0.020
#> SRR1348074     4  0.2929     0.6981 0.180 0.000 0.000 0.820 0.000
#> SRR813959      3  0.2074     0.8687 0.000 0.000 0.896 0.000 0.104
#> SRR665442      1  0.2732     0.8158 0.840 0.000 0.000 0.000 0.160
#> SRR1378068     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1485237     1  0.0290     0.9794 0.992 0.000 0.000 0.008 0.000
#> SRR1350792     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR808994      3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1474041     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1405641     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1362245     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1500194     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1414876     2  0.1341     0.9198 0.000 0.944 0.000 0.056 0.000
#> SRR1478523     3  0.2074     0.8387 0.104 0.000 0.896 0.000 0.000
#> SRR1325161     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1318026     1  0.0290     0.9794 0.992 0.000 0.000 0.008 0.000
#> SRR1343778     3  0.0609     0.9043 0.020 0.000 0.980 0.000 0.000
#> SRR1441287     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1499722     3  0.4300     0.1827 0.000 0.000 0.524 0.000 0.476
#> SRR1351368     3  0.2017     0.8624 0.000 0.000 0.912 0.008 0.080
#> SRR1441785     1  0.0609     0.9684 0.980 0.000 0.020 0.000 0.000
#> SRR1096101     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR808375      5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1452842     1  0.0880     0.9586 0.968 0.000 0.000 0.000 0.032
#> SRR1311709     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1433352     3  0.2669     0.8340 0.104 0.000 0.876 0.000 0.020
#> SRR1340241     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1465172     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1499284     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1499607     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR812342      1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1403565     1  0.0609     0.9684 0.980 0.000 0.020 0.000 0.000
#> SRR1332024     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1471633     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1325944     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1435372     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1324184     2  0.1341     0.9198 0.000 0.944 0.000 0.056 0.000
#> SRR816517      3  0.5642     0.5461 0.000 0.180 0.636 0.184 0.000
#> SRR1324141     1  0.2067     0.9184 0.920 0.000 0.000 0.048 0.032
#> SRR1101612     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1077708     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1343720     3  0.3586     0.6825 0.000 0.000 0.736 0.000 0.264
#> SRR1477499     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     1  0.3210     0.7442 0.788 0.000 0.000 0.000 0.212
#> SRR1326408     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1440643     3  0.1792     0.8575 0.084 0.000 0.916 0.000 0.000
#> SRR662354      1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1347389     2  0.4242     0.2952 0.000 0.572 0.000 0.428 0.000
#> SRR1353097     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1384737     1  0.2471     0.8468 0.864 0.000 0.000 0.136 0.000
#> SRR1096339     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1345329     4  0.0880     0.9318 0.032 0.000 0.000 0.968 0.000
#> SRR1414771     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1309119     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1470438     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1343221     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR807949      5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1442332     3  0.2074     0.8687 0.000 0.000 0.896 0.000 0.104
#> SRR815920      3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1471524     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1477221     3  0.0000     0.9123 0.000 0.000 1.000 0.000 0.000
#> SRR1445046     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1331962     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1319946     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1311599     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1323977     1  0.0290     0.9794 0.992 0.000 0.000 0.008 0.000
#> SRR1445132     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.1908     0.8769 0.000 0.000 0.908 0.000 0.092
#> SRR1366390     2  0.1341     0.9198 0.000 0.944 0.000 0.056 0.000
#> SRR1343012     1  0.0290     0.9794 0.992 0.000 0.000 0.008 0.000
#> SRR1311958     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1388234     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1370384     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1321650     3  0.1341     0.8888 0.000 0.000 0.944 0.000 0.056
#> SRR1485117     4  0.1043     0.9327 0.000 0.040 0.000 0.960 0.000
#> SRR1384713     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR816609      4  0.1410     0.8933 0.060 0.000 0.000 0.940 0.000
#> SRR1486239     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000
#> SRR1309638     5  0.2074     0.8506 0.000 0.000 0.104 0.000 0.896
#> SRR1356660     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1392883     2  0.0000     0.9451 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR816677      1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1455722     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR808452      1  0.0000     0.9845 1.000 0.000 0.000 0.000 0.000
#> SRR1352169     3  0.2046     0.8862 0.016 0.000 0.916 0.000 0.068
#> SRR1366707     5  0.1792     0.8673 0.000 0.000 0.084 0.000 0.916
#> SRR1328143     5  0.0000     0.9398 0.000 0.000 0.000 0.000 1.000
#> SRR1473567     4  0.0000     0.9655 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     3  0.4933     0.2021 0.000 0.000 0.504 0.000 0.432 0.064
#> SRR1390119     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.3531     0.6657 0.000 0.000 0.672 0.000 0.000 0.328
#> SRR1347278     6  0.0000     0.6043 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1332904     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.3765     0.3948 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1339007     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1376557     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1468700     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1077455     1  0.0363     0.8447 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1413978     1  0.3899     0.3888 0.592 0.000 0.004 0.000 0.000 0.404
#> SRR1439896     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1431865     1  0.3765     0.3948 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1394253     1  0.3765     0.3948 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1082664     5  0.5341     0.3726 0.000 0.000 0.132 0.000 0.556 0.312
#> SRR1077968     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1076393     5  0.1444     0.8162 0.000 0.000 0.072 0.000 0.928 0.000
#> SRR1477476     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398057     6  0.0000     0.6043 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1485042     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1385453     3  0.3221     0.6266 0.000 0.000 0.736 0.000 0.000 0.264
#> SRR1348074     4  0.3523     0.6861 0.180 0.000 0.040 0.780 0.000 0.000
#> SRR813959      5  0.3975     0.3736 0.000 0.000 0.004 0.000 0.544 0.452
#> SRR665442      1  0.3602     0.6554 0.784 0.000 0.000 0.000 0.160 0.056
#> SRR1378068     3  0.1863     0.7508 0.000 0.000 0.896 0.000 0.000 0.104
#> SRR1485237     1  0.0865     0.8293 0.964 0.000 0.036 0.000 0.000 0.000
#> SRR1350792     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR808994      3  0.1007     0.7343 0.000 0.000 0.956 0.000 0.000 0.044
#> SRR1474041     5  0.1387     0.8120 0.000 0.000 0.000 0.000 0.932 0.068
#> SRR1405641     3  0.1863     0.7508 0.000 0.000 0.896 0.000 0.000 0.104
#> SRR1362245     6  0.0000     0.6043 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1500194     1  0.3747     0.4074 0.604 0.000 0.000 0.000 0.000 0.396
#> SRR1414876     2  0.1204     0.9107 0.000 0.944 0.000 0.056 0.000 0.000
#> SRR1478523     6  0.2260     0.4699 0.000 0.000 0.140 0.000 0.000 0.860
#> SRR1325161     5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1318026     1  0.1007     0.8240 0.956 0.000 0.044 0.000 0.000 0.000
#> SRR1343778     3  0.4596     0.4769 0.004 0.000 0.508 0.000 0.028 0.460
#> SRR1441287     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.0363     0.8501 0.000 0.000 0.012 0.000 0.988 0.000
#> SRR1499722     5  0.3076     0.6515 0.000 0.000 0.000 0.000 0.760 0.240
#> SRR1351368     3  0.4263     0.5156 0.000 0.000 0.600 0.000 0.024 0.376
#> SRR1441785     1  0.3789     0.3717 0.584 0.000 0.000 0.000 0.000 0.416
#> SRR1096101     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR808375      5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1452842     1  0.1007     0.8219 0.956 0.000 0.000 0.000 0.044 0.000
#> SRR1311709     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1433352     6  0.6740     0.0412 0.332 0.000 0.144 0.000 0.080 0.444
#> SRR1340241     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1456754     1  0.0260     0.8470 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1465172     5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499284     5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499607     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR812342      1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405374     1  0.3747     0.4074 0.604 0.000 0.000 0.000 0.000 0.396
#> SRR1403565     6  0.3864    -0.1660 0.480 0.000 0.000 0.000 0.000 0.520
#> SRR1332024     6  0.3810    -0.0297 0.000 0.000 0.428 0.000 0.000 0.572
#> SRR1471633     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1325944     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.0146     0.8526 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1435372     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324184     2  0.1204     0.9107 0.000 0.944 0.000 0.056 0.000 0.000
#> SRR816517      4  0.6684     0.2522 0.000 0.164 0.068 0.464 0.000 0.304
#> SRR1324141     1  0.3323     0.7125 0.836 0.000 0.104 0.028 0.032 0.000
#> SRR1101612     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1077708     5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1343720     5  0.5465     0.2959 0.000 0.000 0.132 0.000 0.508 0.360
#> SRR1477499     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     1  0.2969     0.6028 0.776 0.000 0.000 0.000 0.224 0.000
#> SRR1326408     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.1863     0.7508 0.000 0.000 0.896 0.000 0.000 0.104
#> SRR1440643     6  0.4455     0.3389 0.232 0.000 0.080 0.000 0.000 0.688
#> SRR662354      1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.0260     0.8517 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1347389     2  0.4499     0.2123 0.000 0.540 0.032 0.428 0.000 0.000
#> SRR1353097     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384737     6  0.6628    -0.0328 0.400 0.000 0.104 0.092 0.000 0.404
#> SRR1096339     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345329     4  0.1498     0.8969 0.032 0.000 0.028 0.940 0.000 0.000
#> SRR1414771     3  0.3050     0.6947 0.000 0.000 0.764 0.000 0.000 0.236
#> SRR1309119     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1470438     3  0.3126     0.6852 0.000 0.000 0.752 0.000 0.000 0.248
#> SRR1343221     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR807949      5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1442332     5  0.4325     0.3475 0.000 0.000 0.020 0.000 0.524 0.456
#> SRR815920      3  0.3446     0.6761 0.000 0.000 0.692 0.000 0.000 0.308
#> SRR1471524     5  0.0363     0.8501 0.000 0.000 0.012 0.000 0.988 0.000
#> SRR1477221     6  0.0000     0.6043 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1445046     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1331962     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1319946     4  0.0937     0.9137 0.000 0.000 0.040 0.960 0.000 0.000
#> SRR1311599     1  0.3765     0.3948 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1323977     1  0.0937     0.8265 0.960 0.000 0.040 0.000 0.000 0.000
#> SRR1445132     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     6  0.0146     0.6025 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1366390     2  0.1204     0.9107 0.000 0.944 0.000 0.056 0.000 0.000
#> SRR1343012     1  0.2218     0.7626 0.884 0.000 0.104 0.000 0.012 0.000
#> SRR1311958     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1388234     4  0.0713     0.9205 0.000 0.000 0.028 0.972 0.000 0.000
#> SRR1370384     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1321650     3  0.3794     0.6866 0.000 0.000 0.744 0.000 0.040 0.216
#> SRR1485117     4  0.0790     0.9101 0.000 0.032 0.000 0.968 0.000 0.000
#> SRR1384713     1  0.0363     0.8447 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR816609      4  0.1411     0.8747 0.060 0.000 0.004 0.936 0.000 0.000
#> SRR1486239     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1309638     5  0.3695     0.2623 0.000 0.000 0.376 0.000 0.624 0.000
#> SRR1356660     1  0.3765     0.3948 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1392883     2  0.0000     0.9365 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.0000     0.8539 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR816677      1  0.3765     0.3948 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1455722     1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.3765     0.3948 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR808452      1  0.0000     0.8513 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1352169     6  0.0632     0.5897 0.000 0.000 0.024 0.000 0.000 0.976
#> SRR1366707     3  0.1007     0.7130 0.000 0.000 0.956 0.000 0.044 0.000
#> SRR1328143     5  0.0363     0.8501 0.000 0.000 0.012 0.000 0.988 0.000
#> SRR1473567     4  0.0000     0.9320 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.852           0.862       0.947         0.3876 0.648   0.648
#> 3 3 0.560           0.723       0.769         0.6115 0.627   0.448
#> 4 4 0.519           0.582       0.741         0.1340 0.833   0.568
#> 5 5 0.701           0.686       0.809         0.0652 0.833   0.511
#> 6 6 0.721           0.507       0.769         0.0488 0.961   0.851

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000     0.9343 1.000 0.000
#> SRR1390119     2  0.0000     0.9656 0.000 1.000
#> SRR1436127     1  0.0000     0.9343 1.000 0.000
#> SRR1347278     1  0.0000     0.9343 1.000 0.000
#> SRR1332904     2  0.0000     0.9656 0.000 1.000
#> SRR1444179     1  0.0000     0.9343 1.000 0.000
#> SRR1082685     1  0.0000     0.9343 1.000 0.000
#> SRR1362287     1  0.0000     0.9343 1.000 0.000
#> SRR1339007     1  0.0000     0.9343 1.000 0.000
#> SRR1376557     2  0.0000     0.9656 0.000 1.000
#> SRR1468700     2  0.0000     0.9656 0.000 1.000
#> SRR1077455     1  0.0000     0.9343 1.000 0.000
#> SRR1413978     1  0.0000     0.9343 1.000 0.000
#> SRR1439896     1  0.0000     0.9343 1.000 0.000
#> SRR1317963     2  0.0000     0.9656 0.000 1.000
#> SRR1431865     1  0.0000     0.9343 1.000 0.000
#> SRR1394253     1  0.0000     0.9343 1.000 0.000
#> SRR1082664     1  0.0000     0.9343 1.000 0.000
#> SRR1077968     1  0.0000     0.9343 1.000 0.000
#> SRR1076393     1  0.1633     0.9174 0.976 0.024
#> SRR1477476     2  0.0000     0.9656 0.000 1.000
#> SRR1398057     1  0.0000     0.9343 1.000 0.000
#> SRR1485042     1  0.0000     0.9343 1.000 0.000
#> SRR1385453     1  0.9970     0.1859 0.532 0.468
#> SRR1348074     2  0.6048     0.8085 0.148 0.852
#> SRR813959      1  0.9522     0.4340 0.628 0.372
#> SRR665442      1  0.8555     0.6095 0.720 0.280
#> SRR1378068     1  0.0000     0.9343 1.000 0.000
#> SRR1485237     1  0.9963     0.1983 0.536 0.464
#> SRR1350792     1  0.0000     0.9343 1.000 0.000
#> SRR1326797     1  0.0000     0.9343 1.000 0.000
#> SRR808994      1  0.0000     0.9343 1.000 0.000
#> SRR1474041     1  0.0000     0.9343 1.000 0.000
#> SRR1405641     1  0.0000     0.9343 1.000 0.000
#> SRR1362245     1  0.0000     0.9343 1.000 0.000
#> SRR1500194     1  0.0000     0.9343 1.000 0.000
#> SRR1414876     2  0.0000     0.9656 0.000 1.000
#> SRR1478523     1  0.6148     0.7873 0.848 0.152
#> SRR1325161     1  0.0000     0.9343 1.000 0.000
#> SRR1318026     1  1.0000     0.0747 0.500 0.500
#> SRR1343778     1  0.0000     0.9343 1.000 0.000
#> SRR1441287     1  0.0000     0.9343 1.000 0.000
#> SRR1430991     1  0.0000     0.9343 1.000 0.000
#> SRR1499722     1  0.0000     0.9343 1.000 0.000
#> SRR1351368     1  0.9944     0.2222 0.544 0.456
#> SRR1441785     1  0.0000     0.9343 1.000 0.000
#> SRR1096101     1  0.0000     0.9343 1.000 0.000
#> SRR808375      1  0.0000     0.9343 1.000 0.000
#> SRR1452842     1  0.0000     0.9343 1.000 0.000
#> SRR1311709     1  0.3584     0.8799 0.932 0.068
#> SRR1433352     1  0.0000     0.9343 1.000 0.000
#> SRR1340241     2  0.0000     0.9656 0.000 1.000
#> SRR1456754     1  0.0000     0.9343 1.000 0.000
#> SRR1465172     1  0.0000     0.9343 1.000 0.000
#> SRR1499284     1  0.0000     0.9343 1.000 0.000
#> SRR1499607     2  0.0000     0.9656 0.000 1.000
#> SRR812342      1  0.0000     0.9343 1.000 0.000
#> SRR1405374     1  0.0000     0.9343 1.000 0.000
#> SRR1403565     1  0.0000     0.9343 1.000 0.000
#> SRR1332024     1  0.0000     0.9343 1.000 0.000
#> SRR1471633     1  0.4161     0.8646 0.916 0.084
#> SRR1325944     2  0.0000     0.9656 0.000 1.000
#> SRR1429450     2  0.0000     0.9656 0.000 1.000
#> SRR821573      1  0.1843     0.9143 0.972 0.028
#> SRR1435372     1  0.0000     0.9343 1.000 0.000
#> SRR1324184     2  0.0000     0.9656 0.000 1.000
#> SRR816517      2  0.0672     0.9592 0.008 0.992
#> SRR1324141     1  0.9983     0.1601 0.524 0.476
#> SRR1101612     1  0.0000     0.9343 1.000 0.000
#> SRR1356531     1  0.0000     0.9343 1.000 0.000
#> SRR1089785     1  0.0000     0.9343 1.000 0.000
#> SRR1077708     1  0.0000     0.9343 1.000 0.000
#> SRR1343720     1  0.0000     0.9343 1.000 0.000
#> SRR1477499     2  0.0000     0.9656 0.000 1.000
#> SRR1347236     1  0.0000     0.9343 1.000 0.000
#> SRR1326408     1  0.0000     0.9343 1.000 0.000
#> SRR1336529     1  0.0000     0.9343 1.000 0.000
#> SRR1440643     1  0.9909     0.2569 0.556 0.444
#> SRR662354      1  0.0000     0.9343 1.000 0.000
#> SRR1310817     1  0.2603     0.9014 0.956 0.044
#> SRR1347389     2  0.0000     0.9656 0.000 1.000
#> SRR1353097     1  0.0000     0.9343 1.000 0.000
#> SRR1384737     1  0.9988     0.1468 0.520 0.480
#> SRR1096339     1  0.0000     0.9343 1.000 0.000
#> SRR1345329     2  0.9833     0.1775 0.424 0.576
#> SRR1414771     1  0.0000     0.9343 1.000 0.000
#> SRR1309119     1  0.2236     0.9081 0.964 0.036
#> SRR1470438     1  0.0000     0.9343 1.000 0.000
#> SRR1343221     1  0.0000     0.9343 1.000 0.000
#> SRR1410847     1  0.0000     0.9343 1.000 0.000
#> SRR807949      1  0.0000     0.9343 1.000 0.000
#> SRR1442332     1  0.0000     0.9343 1.000 0.000
#> SRR815920      1  0.0000     0.9343 1.000 0.000
#> SRR1471524     1  0.1414     0.9205 0.980 0.020
#> SRR1477221     1  0.0000     0.9343 1.000 0.000
#> SRR1445046     2  0.0000     0.9656 0.000 1.000
#> SRR1331962     2  0.0000     0.9656 0.000 1.000
#> SRR1319946     2  0.4562     0.8727 0.096 0.904
#> SRR1311599     1  0.0000     0.9343 1.000 0.000
#> SRR1323977     1  0.9977     0.1733 0.528 0.472
#> SRR1445132     2  0.0000     0.9656 0.000 1.000
#> SRR1337321     1  0.0000     0.9343 1.000 0.000
#> SRR1366390     2  0.0000     0.9656 0.000 1.000
#> SRR1343012     1  0.9833     0.3102 0.576 0.424
#> SRR1311958     2  0.0000     0.9656 0.000 1.000
#> SRR1388234     2  0.6048     0.8085 0.148 0.852
#> SRR1370384     1  0.0000     0.9343 1.000 0.000
#> SRR1321650     1  0.0000     0.9343 1.000 0.000
#> SRR1485117     2  0.0000     0.9656 0.000 1.000
#> SRR1384713     1  0.0000     0.9343 1.000 0.000
#> SRR816609      1  0.9983     0.1602 0.524 0.476
#> SRR1486239     2  0.0000     0.9656 0.000 1.000
#> SRR1309638     1  0.0000     0.9343 1.000 0.000
#> SRR1356660     1  0.0000     0.9343 1.000 0.000
#> SRR1392883     2  0.0000     0.9656 0.000 1.000
#> SRR808130      1  0.0000     0.9343 1.000 0.000
#> SRR816677      1  0.1633     0.9173 0.976 0.024
#> SRR1455722     1  0.0000     0.9343 1.000 0.000
#> SRR1336029     1  0.0000     0.9343 1.000 0.000
#> SRR808452      1  0.0000     0.9343 1.000 0.000
#> SRR1352169     1  0.0000     0.9343 1.000 0.000
#> SRR1366707     1  0.1184     0.9232 0.984 0.016
#> SRR1328143     1  0.0000     0.9343 1.000 0.000
#> SRR1473567     2  0.0000     0.9656 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1390119     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1436127     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1347278     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1332904     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1444179     1  0.3816    0.67948 0.852 0.000 0.148
#> SRR1082685     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1362287     1  0.3879    0.76976 0.848 0.000 0.152
#> SRR1339007     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1376557     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1468700     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1077455     1  0.4504    0.70921 0.804 0.000 0.196
#> SRR1413978     1  0.5677    0.72745 0.792 0.048 0.160
#> SRR1439896     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1317963     2  0.1525    0.85547 0.032 0.964 0.004
#> SRR1431865     1  0.3816    0.77369 0.852 0.000 0.148
#> SRR1394253     1  0.3816    0.77369 0.852 0.000 0.148
#> SRR1082664     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1077968     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1076393     3  0.4399    0.74882 0.188 0.000 0.812
#> SRR1477476     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1398057     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1485042     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1385453     3  0.6140   -0.34769 0.000 0.404 0.596
#> SRR1348074     2  0.8107    0.72514 0.096 0.604 0.300
#> SRR813959      3  0.6079   -0.31593 0.000 0.388 0.612
#> SRR665442      3  0.6543   -0.15872 0.016 0.344 0.640
#> SRR1378068     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1485237     2  0.8132    0.72314 0.096 0.600 0.304
#> SRR1350792     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1326797     3  0.6260    0.46058 0.448 0.000 0.552
#> SRR808994      3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1474041     3  0.5058    0.79453 0.244 0.000 0.756
#> SRR1405641     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1362245     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1500194     1  0.0237    0.83540 0.996 0.000 0.004
#> SRR1414876     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1478523     3  0.3784    0.37902 0.004 0.132 0.864
#> SRR1325161     3  0.5058    0.79453 0.244 0.000 0.756
#> SRR1318026     2  0.8132    0.72314 0.096 0.600 0.304
#> SRR1343778     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1441287     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1430991     3  0.5058    0.79453 0.244 0.000 0.756
#> SRR1499722     3  0.5968    0.71531 0.364 0.000 0.636
#> SRR1351368     3  0.6111   -0.32989 0.000 0.396 0.604
#> SRR1441785     1  0.4291    0.73569 0.820 0.000 0.180
#> SRR1096101     1  0.4178    0.74511 0.828 0.000 0.172
#> SRR808375      3  0.5058    0.79453 0.244 0.000 0.756
#> SRR1452842     1  0.4654    0.68743 0.792 0.000 0.208
#> SRR1311709     1  0.8372    0.43321 0.580 0.108 0.312
#> SRR1433352     3  0.5591    0.79807 0.304 0.000 0.696
#> SRR1340241     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1456754     1  0.3816    0.77369 0.852 0.000 0.148
#> SRR1465172     3  0.5497    0.76466 0.292 0.000 0.708
#> SRR1499284     3  0.6280    0.48638 0.460 0.000 0.540
#> SRR1499607     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR812342      1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1405374     1  0.3816    0.77369 0.852 0.000 0.148
#> SRR1403565     1  0.5465    0.50195 0.712 0.000 0.288
#> SRR1332024     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1471633     2  0.9963    0.31016 0.312 0.376 0.312
#> SRR1325944     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1429450     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR821573      3  0.7047    0.68849 0.204 0.084 0.712
#> SRR1435372     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1324184     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR816517      2  0.5465    0.76937 0.000 0.712 0.288
#> SRR1324141     2  0.8071    0.68208 0.076 0.564 0.360
#> SRR1101612     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1356531     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1089785     3  0.5058    0.79453 0.244 0.000 0.756
#> SRR1077708     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1343720     3  0.5591    0.79807 0.304 0.000 0.696
#> SRR1477499     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1347236     3  0.6260    0.47602 0.448 0.000 0.552
#> SRR1326408     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1336529     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1440643     3  0.6460   -0.43844 0.004 0.440 0.556
#> SRR662354      1  0.0237    0.83557 0.996 0.000 0.004
#> SRR1310817     3  0.4840    0.71799 0.168 0.016 0.816
#> SRR1347389     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1353097     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1384737     2  0.7945    0.64856 0.064 0.548 0.388
#> SRR1096339     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1345329     2  0.8107    0.72514 0.096 0.604 0.300
#> SRR1414771     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1309119     1  0.7637    0.48342 0.640 0.076 0.284
#> SRR1470438     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1343221     1  0.4504    0.70926 0.804 0.000 0.196
#> SRR1410847     1  0.3752    0.77626 0.856 0.000 0.144
#> SRR807949      3  0.5016    0.79186 0.240 0.000 0.760
#> SRR1442332     3  0.5291    0.80158 0.268 0.000 0.732
#> SRR815920      3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1471524     3  0.3340    0.67603 0.120 0.000 0.880
#> SRR1477221     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1445046     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1331962     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1319946     2  0.7260    0.74261 0.048 0.636 0.316
#> SRR1311599     1  0.3816    0.77369 0.852 0.000 0.148
#> SRR1323977     2  0.7997    0.72416 0.084 0.600 0.316
#> SRR1445132     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1337321     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1366390     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1343012     2  0.7807    0.59483 0.052 0.516 0.432
#> SRR1311958     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1388234     2  0.8132    0.72314 0.096 0.600 0.304
#> SRR1370384     1  0.0237    0.83557 0.996 0.000 0.004
#> SRR1321650     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1485117     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1384713     1  0.2878    0.80326 0.904 0.000 0.096
#> SRR816609      2  0.8132    0.72314 0.096 0.600 0.304
#> SRR1486239     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR1309638     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1356660     1  0.3816    0.77369 0.852 0.000 0.148
#> SRR1392883     2  0.0000    0.86918 0.000 1.000 0.000
#> SRR808130      3  0.5058    0.79453 0.244 0.000 0.756
#> SRR816677      1  0.9919   -0.00102 0.372 0.272 0.356
#> SRR1455722     1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1336029     1  0.7380    0.63065 0.684 0.088 0.228
#> SRR808452      1  0.0000    0.83605 1.000 0.000 0.000
#> SRR1352169     3  0.5529    0.80642 0.296 0.000 0.704
#> SRR1366707     3  0.4931    0.78678 0.232 0.000 0.768
#> SRR1328143     3  0.5058    0.79453 0.244 0.000 0.756
#> SRR1473567     2  0.0000    0.86918 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.1743      0.709 0.056 0.000 0.940 0.004
#> SRR1390119     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.0592      0.713 0.000 0.000 0.984 0.016
#> SRR1347278     3  0.1798      0.705 0.040 0.000 0.944 0.016
#> SRR1332904     2  0.2593      0.922 0.004 0.892 0.000 0.104
#> SRR1444179     1  0.0188      0.598 0.996 0.000 0.004 0.000
#> SRR1082685     1  0.0817      0.618 0.976 0.000 0.024 0.000
#> SRR1362287     1  0.4955      0.564 0.556 0.000 0.444 0.000
#> SRR1339007     1  0.4382      0.657 0.704 0.000 0.296 0.000
#> SRR1376557     2  0.1474      0.940 0.000 0.948 0.000 0.052
#> SRR1468700     2  0.2081      0.932 0.000 0.916 0.000 0.084
#> SRR1077455     1  0.7488      0.149 0.436 0.000 0.384 0.180
#> SRR1413978     1  0.4933      0.573 0.568 0.000 0.432 0.000
#> SRR1439896     1  0.4454      0.649 0.692 0.000 0.308 0.000
#> SRR1317963     2  0.6420      0.612 0.132 0.640 0.000 0.228
#> SRR1431865     1  0.4955      0.564 0.556 0.000 0.444 0.000
#> SRR1394253     1  0.4817      0.616 0.612 0.000 0.388 0.000
#> SRR1082664     3  0.3716      0.674 0.052 0.000 0.852 0.096
#> SRR1077968     1  0.4776      0.627 0.712 0.000 0.272 0.016
#> SRR1076393     4  0.6207      0.281 0.052 0.000 0.452 0.496
#> SRR1477476     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.0672      0.713 0.008 0.000 0.984 0.008
#> SRR1485042     1  0.3801      0.679 0.780 0.000 0.220 0.000
#> SRR1385453     4  0.5427      0.596 0.004 0.044 0.248 0.704
#> SRR1348074     4  0.7398      0.344 0.440 0.060 0.044 0.456
#> SRR813959      4  0.4428      0.569 0.004 0.000 0.276 0.720
#> SRR665442      4  0.5510      0.618 0.048 0.032 0.164 0.756
#> SRR1378068     3  0.0592      0.713 0.000 0.000 0.984 0.016
#> SRR1485237     1  0.7242     -0.244 0.528 0.056 0.044 0.372
#> SRR1350792     1  0.5026      0.638 0.672 0.000 0.312 0.016
#> SRR1326797     3  0.7550      0.219 0.332 0.000 0.464 0.204
#> SRR808994      3  0.1474      0.698 0.000 0.000 0.948 0.052
#> SRR1474041     3  0.6055      0.235 0.052 0.000 0.576 0.372
#> SRR1405641     3  0.1389      0.700 0.000 0.000 0.952 0.048
#> SRR1362245     3  0.1302      0.701 0.000 0.000 0.956 0.044
#> SRR1500194     1  0.3311      0.681 0.828 0.000 0.172 0.000
#> SRR1414876     2  0.0188      0.940 0.004 0.996 0.000 0.000
#> SRR1478523     4  0.6324      0.236 0.036 0.012 0.440 0.512
#> SRR1325161     3  0.6150      0.463 0.060 0.000 0.580 0.360
#> SRR1318026     1  0.7399     -0.376 0.452 0.060 0.044 0.444
#> SRR1343778     3  0.1978      0.707 0.068 0.000 0.928 0.004
#> SRR1441287     1  0.2081      0.655 0.916 0.000 0.084 0.000
#> SRR1430991     3  0.5144      0.580 0.052 0.000 0.732 0.216
#> SRR1499722     3  0.6201      0.593 0.124 0.000 0.664 0.212
#> SRR1351368     4  0.6334      0.582 0.016 0.060 0.284 0.640
#> SRR1441785     1  0.4941      0.571 0.564 0.000 0.436 0.000
#> SRR1096101     3  0.5512     -0.381 0.492 0.000 0.492 0.016
#> SRR808375      3  0.5519      0.543 0.052 0.000 0.684 0.264
#> SRR1452842     3  0.7210     -0.031 0.360 0.000 0.492 0.148
#> SRR1311709     1  0.1610      0.575 0.952 0.000 0.016 0.032
#> SRR1433352     3  0.3840      0.684 0.052 0.000 0.844 0.104
#> SRR1340241     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.5459      0.503 0.552 0.000 0.432 0.016
#> SRR1465172     3  0.7092      0.463 0.148 0.000 0.532 0.320
#> SRR1499284     3  0.7493      0.413 0.200 0.000 0.480 0.320
#> SRR1499607     2  0.3751      0.834 0.004 0.800 0.000 0.196
#> SRR812342      1  0.1297      0.612 0.964 0.000 0.020 0.016
#> SRR1405374     1  0.4925      0.572 0.572 0.000 0.428 0.000
#> SRR1403565     3  0.4697      0.106 0.356 0.000 0.644 0.000
#> SRR1332024     3  0.1389      0.700 0.000 0.000 0.952 0.048
#> SRR1471633     1  0.2450      0.533 0.912 0.000 0.016 0.072
#> SRR1325944     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR821573      4  0.7059      0.536 0.184 0.000 0.248 0.568
#> SRR1435372     1  0.1389      0.636 0.952 0.000 0.048 0.000
#> SRR1324184     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> SRR816517      4  0.6083      0.610 0.004 0.144 0.156 0.696
#> SRR1324141     4  0.7273      0.477 0.360 0.060 0.044 0.536
#> SRR1101612     1  0.4431      0.652 0.696 0.000 0.304 0.000
#> SRR1356531     1  0.4406      0.654 0.700 0.000 0.300 0.000
#> SRR1089785     3  0.6130      0.147 0.052 0.000 0.548 0.400
#> SRR1077708     3  0.2385      0.708 0.052 0.000 0.920 0.028
#> SRR1343720     3  0.4713      0.626 0.052 0.000 0.776 0.172
#> SRR1477499     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1347236     3  0.7402      0.379 0.264 0.000 0.516 0.220
#> SRR1326408     1  0.0469      0.608 0.988 0.000 0.012 0.000
#> SRR1336529     3  0.0707      0.711 0.000 0.000 0.980 0.020
#> SRR1440643     4  0.5405      0.592 0.004 0.040 0.256 0.700
#> SRR662354      1  0.4699      0.638 0.676 0.000 0.320 0.004
#> SRR1310817     4  0.5955      0.445 0.056 0.000 0.328 0.616
#> SRR1347389     2  0.2081      0.932 0.000 0.916 0.000 0.084
#> SRR1353097     1  0.0921      0.621 0.972 0.000 0.028 0.000
#> SRR1384737     4  0.7403      0.493 0.260 0.056 0.084 0.600
#> SRR1096339     1  0.4500      0.643 0.684 0.000 0.316 0.000
#> SRR1345329     1  0.7248     -0.197 0.536 0.096 0.020 0.348
#> SRR1414771     3  0.1474      0.698 0.000 0.000 0.948 0.052
#> SRR1309119     1  0.1256      0.576 0.964 0.000 0.008 0.028
#> SRR1470438     3  0.1474      0.698 0.000 0.000 0.948 0.052
#> SRR1343221     3  0.5506     -0.332 0.472 0.000 0.512 0.016
#> SRR1410847     1  0.4804      0.589 0.616 0.000 0.384 0.000
#> SRR807949      3  0.5742      0.452 0.052 0.000 0.648 0.300
#> SRR1442332     3  0.4959      0.600 0.052 0.000 0.752 0.196
#> SRR815920      3  0.0376      0.714 0.004 0.000 0.992 0.004
#> SRR1471524     4  0.6204      0.293 0.052 0.000 0.448 0.500
#> SRR1477221     3  0.0336      0.714 0.000 0.000 0.992 0.008
#> SRR1445046     2  0.3205      0.908 0.024 0.872 0.000 0.104
#> SRR1331962     2  0.2149      0.932 0.000 0.912 0.000 0.088
#> SRR1319946     4  0.7299      0.485 0.348 0.064 0.044 0.544
#> SRR1311599     1  0.4933      0.582 0.568 0.000 0.432 0.000
#> SRR1323977     4  0.7262      0.482 0.356 0.060 0.044 0.540
#> SRR1445132     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.0524      0.715 0.008 0.000 0.988 0.004
#> SRR1366390     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1343012     4  0.6295      0.617 0.116 0.056 0.100 0.728
#> SRR1311958     2  0.2676      0.924 0.012 0.896 0.000 0.092
#> SRR1388234     4  0.7249      0.482 0.352 0.060 0.044 0.544
#> SRR1370384     1  0.6136      0.497 0.632 0.000 0.288 0.080
#> SRR1321650     3  0.1305      0.701 0.004 0.000 0.960 0.036
#> SRR1485117     2  0.1211      0.941 0.000 0.960 0.000 0.040
#> SRR1384713     1  0.6779      0.392 0.560 0.000 0.324 0.116
#> SRR816609      1  0.6901     -0.172 0.564 0.040 0.044 0.352
#> SRR1486239     2  0.2530      0.924 0.004 0.896 0.000 0.100
#> SRR1309638     3  0.0804      0.716 0.012 0.000 0.980 0.008
#> SRR1356660     1  0.4941      0.571 0.564 0.000 0.436 0.000
#> SRR1392883     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR808130      3  0.5343      0.552 0.052 0.000 0.708 0.240
#> SRR816677      1  0.3652      0.553 0.856 0.000 0.092 0.052
#> SRR1455722     1  0.3528      0.683 0.808 0.000 0.192 0.000
#> SRR1336029     1  0.4936      0.615 0.652 0.000 0.340 0.008
#> SRR808452      1  0.2408      0.667 0.896 0.000 0.104 0.000
#> SRR1352169     3  0.1305      0.715 0.036 0.000 0.960 0.004
#> SRR1366707     3  0.6207     -0.187 0.052 0.000 0.496 0.452
#> SRR1328143     3  0.5279      0.562 0.052 0.000 0.716 0.232
#> SRR1473567     2  0.1716      0.938 0.000 0.936 0.000 0.064

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.2286     0.6885 0.004 0.000 0.108 0.000 0.888
#> SRR1390119     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.3676     0.8622 0.004 0.000 0.760 0.004 0.232
#> SRR1347278     5  0.7586    -0.0653 0.340 0.000 0.256 0.044 0.360
#> SRR1332904     4  0.4378     0.5214 0.000 0.248 0.000 0.716 0.036
#> SRR1444179     1  0.0290     0.8755 0.992 0.000 0.000 0.008 0.000
#> SRR1082685     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.3333     0.8475 0.856 0.000 0.028 0.096 0.020
#> SRR1339007     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1376557     2  0.3741     0.6587 0.000 0.732 0.000 0.264 0.004
#> SRR1468700     4  0.3816     0.4566 0.000 0.304 0.000 0.696 0.000
#> SRR1077455     1  0.6654     0.5575 0.616 0.000 0.180 0.088 0.116
#> SRR1413978     1  0.2956     0.8523 0.872 0.000 0.012 0.096 0.020
#> SRR1439896     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.4098     0.5721 0.000 0.156 0.000 0.780 0.064
#> SRR1431865     1  0.3059     0.8513 0.868 0.000 0.016 0.096 0.020
#> SRR1394253     1  0.3333     0.8475 0.856 0.000 0.028 0.096 0.020
#> SRR1082664     5  0.1329     0.7192 0.004 0.000 0.032 0.008 0.956
#> SRR1077968     1  0.0880     0.8691 0.968 0.000 0.000 0.000 0.032
#> SRR1076393     5  0.2624     0.6709 0.000 0.000 0.116 0.012 0.872
#> SRR1477476     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     3  0.4141     0.8257 0.024 0.000 0.728 0.000 0.248
#> SRR1485042     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1385453     5  0.4880     0.4988 0.004 0.004 0.188 0.076 0.728
#> SRR1348074     4  0.3960     0.5513 0.140 0.004 0.000 0.800 0.056
#> SRR813959      5  0.2934     0.6797 0.004 0.004 0.036 0.076 0.880
#> SRR665442      3  0.6311    -0.2487 0.004 0.004 0.464 0.116 0.412
#> SRR1378068     3  0.3522     0.8731 0.004 0.000 0.780 0.004 0.212
#> SRR1485237     1  0.5100     0.5191 0.652 0.004 0.000 0.288 0.056
#> SRR1350792     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.6390     0.5435 0.076 0.000 0.208 0.088 0.628
#> SRR808994      3  0.3177     0.8747 0.000 0.000 0.792 0.000 0.208
#> SRR1474041     5  0.1341     0.7104 0.000 0.000 0.056 0.000 0.944
#> SRR1405641     3  0.3210     0.8745 0.000 0.000 0.788 0.000 0.212
#> SRR1362245     3  0.3177     0.8747 0.000 0.000 0.792 0.000 0.208
#> SRR1500194     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1414876     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     5  0.5162     0.4291 0.028 0.000 0.256 0.036 0.680
#> SRR1325161     5  0.4302     0.6086 0.000 0.000 0.208 0.048 0.744
#> SRR1318026     4  0.5547     0.0377 0.456 0.004 0.000 0.484 0.056
#> SRR1343778     5  0.3770     0.6786 0.044 0.000 0.092 0.028 0.836
#> SRR1441287     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.0609     0.7178 0.000 0.000 0.020 0.000 0.980
#> SRR1499722     5  0.4991     0.6043 0.024 0.000 0.212 0.048 0.716
#> SRR1351368     5  0.5456     0.2246 0.000 0.004 0.316 0.072 0.608
#> SRR1441785     1  0.3496     0.8439 0.848 0.000 0.036 0.096 0.020
#> SRR1096101     1  0.2775     0.8563 0.888 0.000 0.008 0.068 0.036
#> SRR808375      5  0.2708     0.6979 0.000 0.000 0.072 0.044 0.884
#> SRR1452842     1  0.7504     0.3619 0.504 0.000 0.200 0.088 0.208
#> SRR1311709     1  0.1197     0.8558 0.952 0.000 0.000 0.048 0.000
#> SRR1433352     5  0.2140     0.7120 0.024 0.000 0.012 0.040 0.924
#> SRR1340241     2  0.0162     0.8848 0.000 0.996 0.000 0.004 0.000
#> SRR1456754     1  0.3002     0.8498 0.876 0.000 0.008 0.068 0.048
#> SRR1465172     5  0.5514     0.5890 0.024 0.000 0.204 0.088 0.684
#> SRR1499284     5  0.5595     0.5888 0.028 0.000 0.204 0.088 0.680
#> SRR1499607     4  0.4385     0.5647 0.000 0.180 0.000 0.752 0.068
#> SRR812342      1  0.0693     0.8755 0.980 0.000 0.000 0.012 0.008
#> SRR1405374     1  0.2845     0.8531 0.876 0.000 0.008 0.096 0.020
#> SRR1403565     1  0.3521     0.8289 0.844 0.000 0.008 0.068 0.080
#> SRR1332024     3  0.3177     0.8747 0.000 0.000 0.792 0.000 0.208
#> SRR1471633     1  0.1410     0.8493 0.940 0.000 0.000 0.060 0.000
#> SRR1325944     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.3764     0.6782 0.000 0.000 0.156 0.044 0.800
#> SRR1435372     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1324184     2  0.3949     0.5515 0.000 0.668 0.000 0.332 0.000
#> SRR816517      5  0.7714     0.1755 0.000 0.188 0.080 0.304 0.428
#> SRR1324141     4  0.5588     0.1126 0.436 0.004 0.000 0.500 0.060
#> SRR1101612     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.2179     0.6688 0.000 0.000 0.112 0.000 0.888
#> SRR1077708     5  0.2358     0.6900 0.008 0.000 0.104 0.000 0.888
#> SRR1343720     5  0.2011     0.7132 0.020 0.000 0.008 0.044 0.928
#> SRR1477499     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     5  0.7015     0.4778 0.136 0.000 0.204 0.088 0.572
#> SRR1326408     1  0.0162     0.8772 0.996 0.000 0.000 0.000 0.004
#> SRR1336529     3  0.3366     0.8742 0.000 0.000 0.784 0.004 0.212
#> SRR1440643     5  0.4968     0.4898 0.004 0.004 0.192 0.080 0.720
#> SRR662354      1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.1557     0.7174 0.000 0.000 0.008 0.052 0.940
#> SRR1347389     4  0.3752     0.4787 0.000 0.292 0.000 0.708 0.000
#> SRR1353097     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1384737     4  0.6289     0.0819 0.400 0.004 0.000 0.464 0.132
#> SRR1096339     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1345329     1  0.6105     0.0128 0.492 0.016 0.000 0.412 0.080
#> SRR1414771     3  0.3177     0.8747 0.000 0.000 0.792 0.000 0.208
#> SRR1309119     1  0.0609     0.8695 0.980 0.000 0.000 0.020 0.000
#> SRR1470438     3  0.3177     0.8747 0.000 0.000 0.792 0.000 0.208
#> SRR1343221     1  0.3320     0.8425 0.860 0.000 0.012 0.068 0.060
#> SRR1410847     1  0.2492     0.8598 0.900 0.000 0.008 0.072 0.020
#> SRR807949      5  0.1800     0.7153 0.000 0.000 0.020 0.048 0.932
#> SRR1442332     5  0.1041     0.7186 0.000 0.000 0.032 0.004 0.964
#> SRR815920      3  0.4402     0.6471 0.004 0.000 0.620 0.004 0.372
#> SRR1471524     5  0.4536     0.3321 0.004 0.000 0.324 0.016 0.656
#> SRR1477221     3  0.3305     0.8693 0.000 0.000 0.776 0.000 0.224
#> SRR1445046     4  0.3452     0.5450 0.000 0.244 0.000 0.756 0.000
#> SRR1331962     4  0.3480     0.5430 0.000 0.248 0.000 0.752 0.000
#> SRR1319946     4  0.2827     0.5742 0.044 0.020 0.000 0.892 0.044
#> SRR1311599     1  0.3496     0.8439 0.848 0.000 0.036 0.096 0.020
#> SRR1323977     4  0.5882     0.2613 0.376 0.004 0.000 0.528 0.092
#> SRR1445132     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.4353     0.7417 0.008 0.000 0.660 0.004 0.328
#> SRR1366390     2  0.0162     0.8861 0.000 0.996 0.000 0.004 0.000
#> SRR1343012     1  0.6417     0.3687 0.528 0.004 0.000 0.196 0.272
#> SRR1311958     4  0.3607     0.5459 0.000 0.244 0.000 0.752 0.004
#> SRR1388234     4  0.3018     0.5716 0.068 0.004 0.000 0.872 0.056
#> SRR1370384     1  0.3643     0.7850 0.848 0.000 0.072 0.044 0.036
#> SRR1321650     3  0.3336     0.8686 0.000 0.000 0.772 0.000 0.228
#> SRR1485117     2  0.3452     0.6813 0.000 0.756 0.000 0.244 0.000
#> SRR1384713     1  0.3731     0.7855 0.844 0.000 0.068 0.040 0.048
#> SRR816609      1  0.5403     0.4503 0.628 0.004 0.000 0.292 0.076
#> SRR1486239     4  0.3480     0.5430 0.000 0.248 0.000 0.752 0.000
#> SRR1309638     3  0.4597     0.5529 0.012 0.000 0.564 0.000 0.424
#> SRR1356660     1  0.3416     0.8457 0.852 0.000 0.032 0.096 0.020
#> SRR1392883     2  0.0000     0.8879 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.0794     0.7166 0.000 0.000 0.028 0.000 0.972
#> SRR816677      1  0.2544     0.8501 0.900 0.000 0.008 0.028 0.064
#> SRR1455722     1  0.0000     0.8776 1.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.3002     0.8498 0.872 0.000 0.004 0.076 0.048
#> SRR808452      1  0.0162     0.8773 0.996 0.000 0.000 0.000 0.004
#> SRR1352169     5  0.4902     0.4322 0.032 0.000 0.268 0.016 0.684
#> SRR1366707     5  0.4086     0.3963 0.000 0.000 0.284 0.012 0.704
#> SRR1328143     5  0.0703     0.7170 0.000 0.000 0.024 0.000 0.976
#> SRR1473567     2  0.3983     0.5361 0.000 0.660 0.000 0.340 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.1511     0.5899 0.004 0.000 0.044 0.012 0.940 0.000
#> SRR1390119     2  0.0865     0.9781 0.000 0.964 0.000 0.036 0.000 0.000
#> SRR1436127     3  0.3161     0.7132 0.000 0.000 0.776 0.008 0.216 0.000
#> SRR1347278     5  0.8050    -0.2604 0.200 0.000 0.300 0.028 0.308 0.164
#> SRR1332904     4  0.2821     0.5482 0.000 0.152 0.000 0.832 0.000 0.016
#> SRR1444179     1  0.0363     0.7879 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1082685     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1362287     1  0.3810     0.5361 0.572 0.000 0.000 0.000 0.000 0.428
#> SRR1339007     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1376557     4  0.3765     0.1561 0.000 0.404 0.000 0.596 0.000 0.000
#> SRR1468700     4  0.2260     0.5606 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1077455     1  0.5538     0.3406 0.564 0.004 0.000 0.008 0.112 0.312
#> SRR1413978     1  0.3966     0.5195 0.552 0.000 0.004 0.000 0.000 0.444
#> SRR1439896     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317963     4  0.2019     0.5823 0.000 0.088 0.000 0.900 0.012 0.000
#> SRR1431865     1  0.3950     0.5291 0.564 0.000 0.004 0.000 0.000 0.432
#> SRR1394253     1  0.4032     0.5370 0.572 0.000 0.000 0.000 0.008 0.420
#> SRR1082664     5  0.0363     0.6130 0.012 0.000 0.000 0.000 0.988 0.000
#> SRR1077968     1  0.0405     0.7901 0.988 0.000 0.000 0.008 0.004 0.000
#> SRR1076393     5  0.2572     0.4851 0.000 0.000 0.136 0.012 0.852 0.000
#> SRR1477476     2  0.0865     0.9781 0.000 0.964 0.000 0.036 0.000 0.000
#> SRR1398057     3  0.3992     0.6703 0.016 0.000 0.708 0.012 0.264 0.000
#> SRR1485042     1  0.0146     0.7917 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1385453     5  0.6563    -0.4320 0.000 0.000 0.292 0.060 0.484 0.164
#> SRR1348074     4  0.6108     0.2383 0.200 0.000 0.000 0.528 0.024 0.248
#> SRR813959      5  0.4431    -0.1271 0.000 0.000 0.004 0.060 0.688 0.248
#> SRR665442      6  0.6888     0.0000 0.000 0.004 0.112 0.104 0.356 0.424
#> SRR1378068     3  0.2969     0.7118 0.000 0.000 0.776 0.000 0.224 0.000
#> SRR1485237     1  0.6500    -0.0976 0.412 0.000 0.000 0.316 0.024 0.248
#> SRR1350792     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.4867     0.0607 0.052 0.004 0.000 0.008 0.624 0.312
#> SRR808994      3  0.2411     0.6089 0.000 0.032 0.900 0.024 0.044 0.000
#> SRR1474041     5  0.0260     0.6145 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1405641     3  0.4006     0.7123 0.000 0.032 0.748 0.016 0.204 0.000
#> SRR1362245     3  0.3985     0.7093 0.000 0.032 0.764 0.024 0.180 0.000
#> SRR1500194     1  0.1765     0.7591 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1414876     2  0.1267     0.9638 0.000 0.940 0.000 0.060 0.000 0.000
#> SRR1478523     3  0.6137    -0.4310 0.000 0.000 0.436 0.052 0.420 0.092
#> SRR1325161     5  0.3713     0.1863 0.000 0.004 0.000 0.008 0.704 0.284
#> SRR1318026     4  0.6534     0.1610 0.336 0.000 0.000 0.388 0.024 0.252
#> SRR1343778     5  0.1887     0.5856 0.016 0.000 0.048 0.012 0.924 0.000
#> SRR1441287     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.0000     0.6146 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499722     5  0.3827     0.2302 0.020 0.004 0.000 0.000 0.720 0.256
#> SRR1351368     3  0.5487    -0.3095 0.000 0.000 0.540 0.052 0.368 0.040
#> SRR1441785     1  0.3950     0.5291 0.564 0.000 0.004 0.000 0.000 0.432
#> SRR1096101     1  0.2325     0.7620 0.892 0.000 0.000 0.000 0.048 0.060
#> SRR808375      5  0.0665     0.6097 0.000 0.004 0.000 0.008 0.980 0.008
#> SRR1452842     1  0.5804     0.2493 0.516 0.004 0.000 0.008 0.136 0.336
#> SRR1311709     1  0.0547     0.7847 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR1433352     5  0.0717     0.6077 0.016 0.000 0.000 0.000 0.976 0.008
#> SRR1340241     2  0.1267     0.9638 0.000 0.940 0.000 0.060 0.000 0.000
#> SRR1456754     1  0.2328     0.7603 0.892 0.000 0.000 0.000 0.052 0.056
#> SRR1465172     5  0.4315     0.1197 0.016 0.004 0.000 0.008 0.648 0.324
#> SRR1499284     5  0.4395     0.1123 0.020 0.004 0.000 0.008 0.644 0.324
#> SRR1499607     4  0.2568     0.5776 0.000 0.096 0.000 0.876 0.012 0.016
#> SRR812342      1  0.0458     0.7860 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1405374     1  0.3672     0.5913 0.632 0.000 0.000 0.000 0.000 0.368
#> SRR1403565     1  0.4846     0.6128 0.708 0.000 0.008 0.008 0.140 0.136
#> SRR1332024     3  0.3851     0.7026 0.000 0.032 0.780 0.024 0.164 0.000
#> SRR1471633     1  0.0547     0.7847 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR1325944     2  0.0865     0.9781 0.000 0.964 0.000 0.036 0.000 0.000
#> SRR1429450     2  0.0865     0.9781 0.000 0.964 0.000 0.036 0.000 0.000
#> SRR821573      5  0.1410     0.5862 0.000 0.004 0.008 0.000 0.944 0.044
#> SRR1435372     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324184     4  0.3727     0.1890 0.000 0.388 0.000 0.612 0.000 0.000
#> SRR816517      3  0.8405    -0.4975 0.000 0.048 0.284 0.212 0.220 0.236
#> SRR1324141     4  0.6530     0.1663 0.332 0.000 0.000 0.392 0.024 0.252
#> SRR1101612     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.0458     0.6125 0.000 0.000 0.016 0.000 0.984 0.000
#> SRR1077708     5  0.1983     0.5781 0.012 0.000 0.060 0.012 0.916 0.000
#> SRR1343720     5  0.0717     0.6077 0.016 0.000 0.000 0.000 0.976 0.008
#> SRR1477499     2  0.0865     0.9781 0.000 0.964 0.000 0.036 0.000 0.000
#> SRR1347236     5  0.5213    -0.0331 0.076 0.004 0.000 0.008 0.588 0.324
#> SRR1326408     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.2854     0.7148 0.000 0.000 0.792 0.000 0.208 0.000
#> SRR1440643     5  0.6973    -0.5108 0.000 0.000 0.304 0.064 0.388 0.244
#> SRR662354      1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.0405     0.6134 0.000 0.000 0.000 0.008 0.988 0.004
#> SRR1347389     4  0.2527     0.5376 0.000 0.168 0.000 0.832 0.000 0.000
#> SRR1353097     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384737     4  0.6975     0.1175 0.324 0.000 0.000 0.340 0.056 0.280
#> SRR1096339     1  0.0260     0.7916 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1345329     1  0.6764    -0.2286 0.364 0.004 0.000 0.356 0.032 0.244
#> SRR1414771     3  0.2411     0.6089 0.000 0.032 0.900 0.024 0.044 0.000
#> SRR1309119     1  0.0603     0.7866 0.980 0.000 0.000 0.016 0.000 0.004
#> SRR1470438     3  0.2122     0.5891 0.000 0.032 0.916 0.024 0.028 0.000
#> SRR1343221     1  0.2488     0.7483 0.880 0.000 0.000 0.000 0.076 0.044
#> SRR1410847     1  0.1714     0.7716 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR807949      5  0.0551     0.6121 0.000 0.004 0.000 0.008 0.984 0.004
#> SRR1442332     5  0.0000     0.6146 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR815920      3  0.3586     0.6743 0.000 0.000 0.720 0.012 0.268 0.000
#> SRR1471524     5  0.3921     0.2313 0.000 0.000 0.308 0.012 0.676 0.004
#> SRR1477221     3  0.3141     0.7142 0.000 0.000 0.788 0.012 0.200 0.000
#> SRR1445046     4  0.1814     0.5825 0.000 0.100 0.000 0.900 0.000 0.000
#> SRR1331962     4  0.1910     0.5801 0.000 0.108 0.000 0.892 0.000 0.000
#> SRR1319946     4  0.3989     0.3237 0.008 0.000 0.000 0.716 0.024 0.252
#> SRR1311599     1  0.3810     0.5361 0.572 0.000 0.000 0.000 0.000 0.428
#> SRR1323977     4  0.6522     0.1707 0.324 0.000 0.000 0.400 0.024 0.252
#> SRR1445132     2  0.0865     0.9781 0.000 0.964 0.000 0.036 0.000 0.000
#> SRR1337321     3  0.3956     0.6265 0.000 0.000 0.684 0.024 0.292 0.000
#> SRR1366390     2  0.2378     0.8536 0.000 0.848 0.000 0.152 0.000 0.000
#> SRR1343012     1  0.7711    -0.3923 0.288 0.000 0.000 0.220 0.244 0.248
#> SRR1311958     4  0.1863     0.5819 0.000 0.104 0.000 0.896 0.000 0.000
#> SRR1388234     4  0.5984     0.2497 0.176 0.000 0.000 0.548 0.024 0.252
#> SRR1370384     1  0.3651     0.5767 0.736 0.004 0.000 0.008 0.004 0.248
#> SRR1321650     3  0.4405     0.7037 0.000 0.032 0.704 0.024 0.240 0.000
#> SRR1485117     4  0.3823     0.0919 0.000 0.436 0.000 0.564 0.000 0.000
#> SRR1384713     1  0.4457     0.5471 0.700 0.004 0.000 0.008 0.048 0.240
#> SRR816609      1  0.6620    -0.1191 0.404 0.000 0.000 0.316 0.032 0.248
#> SRR1486239     4  0.1863     0.5819 0.000 0.104 0.000 0.896 0.000 0.000
#> SRR1309638     5  0.4297    -0.1698 0.004 0.000 0.452 0.012 0.532 0.000
#> SRR1356660     1  0.3950     0.5291 0.564 0.000 0.004 0.000 0.000 0.432
#> SRR1392883     2  0.0865     0.9781 0.000 0.964 0.000 0.036 0.000 0.000
#> SRR808130      5  0.0000     0.6146 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR816677      1  0.3988     0.7209 0.788 0.000 0.000 0.068 0.024 0.120
#> SRR1455722     1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336029     1  0.3634     0.7295 0.820 0.000 0.000 0.028 0.060 0.092
#> SRR808452      1  0.0000     0.7920 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1352169     5  0.4173     0.2740 0.012 0.000 0.268 0.024 0.696 0.000
#> SRR1366707     5  0.3518     0.3075 0.000 0.000 0.256 0.012 0.732 0.000
#> SRR1328143     5  0.0000     0.6146 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1473567     4  0.3706     0.2102 0.000 0.380 0.000 0.620 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.886           0.917       0.968         0.3830 0.622   0.622
#> 3 3 0.962           0.923       0.965         0.6900 0.666   0.489
#> 4 4 0.742           0.779       0.871         0.1361 0.854   0.615
#> 5 5 0.686           0.662       0.815         0.0736 0.855   0.522
#> 6 6 0.694           0.626       0.798         0.0404 0.915   0.633

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000     0.9715 1.000 0.000
#> SRR1390119     2  0.0000     0.9454 0.000 1.000
#> SRR1436127     1  0.0000     0.9715 1.000 0.000
#> SRR1347278     1  0.0000     0.9715 1.000 0.000
#> SRR1332904     2  0.0000     0.9454 0.000 1.000
#> SRR1444179     1  0.0000     0.9715 1.000 0.000
#> SRR1082685     1  0.0000     0.9715 1.000 0.000
#> SRR1362287     1  0.0000     0.9715 1.000 0.000
#> SRR1339007     1  0.0000     0.9715 1.000 0.000
#> SRR1376557     2  0.0000     0.9454 0.000 1.000
#> SRR1468700     2  0.0000     0.9454 0.000 1.000
#> SRR1077455     1  0.0000     0.9715 1.000 0.000
#> SRR1413978     1  0.0000     0.9715 1.000 0.000
#> SRR1439896     1  0.0000     0.9715 1.000 0.000
#> SRR1317963     2  0.0000     0.9454 0.000 1.000
#> SRR1431865     1  0.0000     0.9715 1.000 0.000
#> SRR1394253     1  0.0000     0.9715 1.000 0.000
#> SRR1082664     1  0.0000     0.9715 1.000 0.000
#> SRR1077968     1  0.0000     0.9715 1.000 0.000
#> SRR1076393     1  0.1184     0.9583 0.984 0.016
#> SRR1477476     2  0.0000     0.9454 0.000 1.000
#> SRR1398057     1  0.0000     0.9715 1.000 0.000
#> SRR1485042     1  0.0000     0.9715 1.000 0.000
#> SRR1385453     2  0.8763     0.5712 0.296 0.704
#> SRR1348074     2  0.8713     0.5891 0.292 0.708
#> SRR813959      2  0.9977     0.1056 0.472 0.528
#> SRR665442      2  0.0000     0.9454 0.000 1.000
#> SRR1378068     1  0.0000     0.9715 1.000 0.000
#> SRR1485237     1  0.0000     0.9715 1.000 0.000
#> SRR1350792     1  0.0000     0.9715 1.000 0.000
#> SRR1326797     1  0.0000     0.9715 1.000 0.000
#> SRR808994      1  0.0672     0.9652 0.992 0.008
#> SRR1474041     1  0.0000     0.9715 1.000 0.000
#> SRR1405641     1  0.0672     0.9652 0.992 0.008
#> SRR1362245     1  0.0000     0.9715 1.000 0.000
#> SRR1500194     1  0.0000     0.9715 1.000 0.000
#> SRR1414876     2  0.0000     0.9454 0.000 1.000
#> SRR1478523     1  0.6973     0.7641 0.812 0.188
#> SRR1325161     1  0.0000     0.9715 1.000 0.000
#> SRR1318026     1  0.5178     0.8571 0.884 0.116
#> SRR1343778     1  0.0000     0.9715 1.000 0.000
#> SRR1441287     1  0.0000     0.9715 1.000 0.000
#> SRR1430991     1  0.0000     0.9715 1.000 0.000
#> SRR1499722     1  0.0000     0.9715 1.000 0.000
#> SRR1351368     2  0.9996     0.0409 0.488 0.512
#> SRR1441785     1  0.0000     0.9715 1.000 0.000
#> SRR1096101     1  0.0000     0.9715 1.000 0.000
#> SRR808375      1  0.0000     0.9715 1.000 0.000
#> SRR1452842     1  0.0000     0.9715 1.000 0.000
#> SRR1311709     1  0.0000     0.9715 1.000 0.000
#> SRR1433352     1  0.0000     0.9715 1.000 0.000
#> SRR1340241     2  0.0000     0.9454 0.000 1.000
#> SRR1456754     1  0.0000     0.9715 1.000 0.000
#> SRR1465172     1  0.0000     0.9715 1.000 0.000
#> SRR1499284     1  0.0000     0.9715 1.000 0.000
#> SRR1499607     2  0.0000     0.9454 0.000 1.000
#> SRR812342      1  0.0000     0.9715 1.000 0.000
#> SRR1405374     1  0.0000     0.9715 1.000 0.000
#> SRR1403565     1  0.0000     0.9715 1.000 0.000
#> SRR1332024     1  0.0000     0.9715 1.000 0.000
#> SRR1471633     1  0.0000     0.9715 1.000 0.000
#> SRR1325944     2  0.0000     0.9454 0.000 1.000
#> SRR1429450     2  0.0000     0.9454 0.000 1.000
#> SRR821573      1  0.0376     0.9684 0.996 0.004
#> SRR1435372     1  0.0000     0.9715 1.000 0.000
#> SRR1324184     2  0.0000     0.9454 0.000 1.000
#> SRR816517      2  0.0000     0.9454 0.000 1.000
#> SRR1324141     1  0.7674     0.7096 0.776 0.224
#> SRR1101612     1  0.0000     0.9715 1.000 0.000
#> SRR1356531     1  0.0000     0.9715 1.000 0.000
#> SRR1089785     1  0.0000     0.9715 1.000 0.000
#> SRR1077708     1  0.0000     0.9715 1.000 0.000
#> SRR1343720     1  0.0000     0.9715 1.000 0.000
#> SRR1477499     2  0.0000     0.9454 0.000 1.000
#> SRR1347236     1  0.0000     0.9715 1.000 0.000
#> SRR1326408     1  0.0000     0.9715 1.000 0.000
#> SRR1336529     1  0.0000     0.9715 1.000 0.000
#> SRR1440643     1  0.9833     0.2490 0.576 0.424
#> SRR662354      1  0.0000     0.9715 1.000 0.000
#> SRR1310817     1  0.0000     0.9715 1.000 0.000
#> SRR1347389     2  0.0000     0.9454 0.000 1.000
#> SRR1353097     1  0.0000     0.9715 1.000 0.000
#> SRR1384737     1  0.8144     0.6620 0.748 0.252
#> SRR1096339     1  0.0000     0.9715 1.000 0.000
#> SRR1345329     1  0.1184     0.9579 0.984 0.016
#> SRR1414771     1  0.4939     0.8652 0.892 0.108
#> SRR1309119     1  0.0000     0.9715 1.000 0.000
#> SRR1470438     1  0.0376     0.9684 0.996 0.004
#> SRR1343221     1  0.0000     0.9715 1.000 0.000
#> SRR1410847     1  0.0000     0.9715 1.000 0.000
#> SRR807949      1  0.0000     0.9715 1.000 0.000
#> SRR1442332     1  0.0000     0.9715 1.000 0.000
#> SRR815920      1  0.0000     0.9715 1.000 0.000
#> SRR1471524     1  0.7219     0.7468 0.800 0.200
#> SRR1477221     1  0.0000     0.9715 1.000 0.000
#> SRR1445046     2  0.0000     0.9454 0.000 1.000
#> SRR1331962     2  0.0000     0.9454 0.000 1.000
#> SRR1319946     2  0.0000     0.9454 0.000 1.000
#> SRR1311599     1  0.0000     0.9715 1.000 0.000
#> SRR1323977     1  1.0000    -0.0340 0.500 0.500
#> SRR1445132     2  0.0000     0.9454 0.000 1.000
#> SRR1337321     1  0.0000     0.9715 1.000 0.000
#> SRR1366390     2  0.0000     0.9454 0.000 1.000
#> SRR1343012     1  0.6801     0.7751 0.820 0.180
#> SRR1311958     2  0.0000     0.9454 0.000 1.000
#> SRR1388234     2  0.0000     0.9454 0.000 1.000
#> SRR1370384     1  0.0000     0.9715 1.000 0.000
#> SRR1321650     1  0.0000     0.9715 1.000 0.000
#> SRR1485117     2  0.0000     0.9454 0.000 1.000
#> SRR1384713     1  0.0000     0.9715 1.000 0.000
#> SRR816609      1  0.0000     0.9715 1.000 0.000
#> SRR1486239     2  0.0000     0.9454 0.000 1.000
#> SRR1309638     1  0.0000     0.9715 1.000 0.000
#> SRR1356660     1  0.0000     0.9715 1.000 0.000
#> SRR1392883     2  0.0000     0.9454 0.000 1.000
#> SRR808130      1  0.0000     0.9715 1.000 0.000
#> SRR816677      1  0.0000     0.9715 1.000 0.000
#> SRR1455722     1  0.0000     0.9715 1.000 0.000
#> SRR1336029     1  0.0000     0.9715 1.000 0.000
#> SRR808452      1  0.0000     0.9715 1.000 0.000
#> SRR1352169     1  0.0000     0.9715 1.000 0.000
#> SRR1366707     1  0.7219     0.7468 0.800 0.200
#> SRR1328143     1  0.0000     0.9715 1.000 0.000
#> SRR1473567     2  0.0000     0.9454 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.1031     0.9528 0.024 0.000 0.976
#> SRR1390119     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1436127     3  0.0237     0.9496 0.004 0.000 0.996
#> SRR1347278     3  0.1753     0.9448 0.048 0.000 0.952
#> SRR1332904     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1444179     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1082685     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1362287     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1339007     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1376557     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1468700     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1077455     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1413978     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1439896     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1317963     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1431865     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1394253     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1082664     3  0.1643     0.9469 0.044 0.000 0.956
#> SRR1077968     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1076393     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1477476     2  0.0892     0.9566 0.000 0.980 0.020
#> SRR1398057     3  0.1411     0.9504 0.036 0.000 0.964
#> SRR1485042     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1385453     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1348074     1  0.2878     0.8808 0.904 0.096 0.000
#> SRR813959      3  0.2903     0.9228 0.028 0.048 0.924
#> SRR665442      2  0.1964     0.9173 0.056 0.944 0.000
#> SRR1378068     3  0.0237     0.9496 0.004 0.000 0.996
#> SRR1485237     1  0.1163     0.9462 0.972 0.028 0.000
#> SRR1350792     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1326797     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR808994      3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1474041     3  0.1289     0.9515 0.032 0.000 0.968
#> SRR1405641     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1362245     3  0.0592     0.9515 0.012 0.000 0.988
#> SRR1500194     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1414876     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1478523     3  0.0237     0.9499 0.004 0.000 0.996
#> SRR1325161     3  0.2796     0.9044 0.092 0.000 0.908
#> SRR1318026     1  0.2066     0.9180 0.940 0.060 0.000
#> SRR1343778     3  0.1529     0.9489 0.040 0.000 0.960
#> SRR1441287     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1430991     3  0.1529     0.9489 0.040 0.000 0.960
#> SRR1499722     3  0.6062     0.4233 0.384 0.000 0.616
#> SRR1351368     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1441785     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1096101     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR808375      3  0.1860     0.9415 0.052 0.000 0.948
#> SRR1452842     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1311709     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1433352     3  0.2165     0.9316 0.064 0.000 0.936
#> SRR1340241     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1456754     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1465172     1  0.4452     0.7467 0.808 0.000 0.192
#> SRR1499284     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1499607     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR812342      1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1405374     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1403565     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1332024     3  0.0237     0.9496 0.004 0.000 0.996
#> SRR1471633     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1325944     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1429450     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR821573      3  0.5760     0.5514 0.328 0.000 0.672
#> SRR1435372     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1324184     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR816517      3  0.5706     0.4927 0.000 0.320 0.680
#> SRR1324141     1  0.5529     0.5845 0.704 0.296 0.000
#> SRR1101612     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1356531     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1089785     3  0.1031     0.9528 0.024 0.000 0.976
#> SRR1077708     3  0.1753     0.9448 0.048 0.000 0.952
#> SRR1343720     3  0.2261     0.9281 0.068 0.000 0.932
#> SRR1477499     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1347236     1  0.3038     0.8623 0.896 0.000 0.104
#> SRR1326408     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1336529     3  0.0237     0.9496 0.004 0.000 0.996
#> SRR1440643     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR662354      1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1310817     3  0.1529     0.9481 0.040 0.000 0.960
#> SRR1347389     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1353097     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1384737     1  0.6274     0.1651 0.544 0.456 0.000
#> SRR1096339     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1345329     1  0.1753     0.9273 0.952 0.048 0.000
#> SRR1414771     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1309119     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR1470438     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1343221     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1410847     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR807949      3  0.0892     0.9528 0.020 0.000 0.980
#> SRR1442332     3  0.1529     0.9489 0.040 0.000 0.960
#> SRR815920      3  0.0237     0.9496 0.004 0.000 0.996
#> SRR1471524     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1477221     3  0.1031     0.9528 0.024 0.000 0.976
#> SRR1445046     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1331962     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1319946     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1311599     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1323977     2  0.6291     0.0686 0.468 0.532 0.000
#> SRR1445132     2  0.0424     0.9651 0.000 0.992 0.008
#> SRR1337321     3  0.1289     0.9516 0.032 0.000 0.968
#> SRR1366390     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR1343012     1  0.5016     0.6846 0.760 0.240 0.000
#> SRR1311958     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1388234     2  0.4291     0.7618 0.180 0.820 0.000
#> SRR1370384     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1321650     3  0.0892     0.9528 0.020 0.000 0.980
#> SRR1485117     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1384713     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR816609      1  0.0424     0.9631 0.992 0.008 0.000
#> SRR1486239     2  0.0000     0.9676 0.000 1.000 0.000
#> SRR1309638     3  0.1529     0.9493 0.040 0.000 0.960
#> SRR1356660     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1392883     2  0.0237     0.9673 0.000 0.996 0.004
#> SRR808130      3  0.1031     0.9528 0.024 0.000 0.976
#> SRR816677      1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1455722     1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1336029     1  0.0237     0.9661 0.996 0.004 0.000
#> SRR808452      1  0.0000     0.9678 1.000 0.000 0.000
#> SRR1352169     3  0.1411     0.9504 0.036 0.000 0.964
#> SRR1366707     3  0.0000     0.9482 0.000 0.000 1.000
#> SRR1328143     3  0.0892     0.9528 0.020 0.000 0.980
#> SRR1473567     2  0.0000     0.9676 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.4977     0.5158 0.000 0.000 0.540 0.460
#> SRR1390119     2  0.0469     0.9278 0.000 0.988 0.012 0.000
#> SRR1436127     3  0.4103     0.8460 0.000 0.000 0.744 0.256
#> SRR1347278     3  0.4920     0.8332 0.052 0.000 0.756 0.192
#> SRR1332904     2  0.0188     0.9293 0.000 0.996 0.004 0.000
#> SRR1444179     1  0.1109     0.8969 0.968 0.004 0.000 0.028
#> SRR1082685     1  0.1022     0.8962 0.968 0.000 0.000 0.032
#> SRR1362287     1  0.2814     0.8602 0.868 0.000 0.132 0.000
#> SRR1339007     1  0.0927     0.9001 0.976 0.000 0.008 0.016
#> SRR1376557     2  0.0188     0.9293 0.000 0.996 0.004 0.000
#> SRR1468700     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1077455     4  0.4382     0.5241 0.296 0.000 0.000 0.704
#> SRR1413978     1  0.3172     0.8414 0.840 0.000 0.160 0.000
#> SRR1439896     1  0.0657     0.9001 0.984 0.000 0.012 0.004
#> SRR1317963     2  0.0592     0.9199 0.016 0.984 0.000 0.000
#> SRR1431865     1  0.2921     0.8549 0.860 0.000 0.140 0.000
#> SRR1394253     1  0.2704     0.8646 0.876 0.000 0.124 0.000
#> SRR1082664     4  0.1389     0.7341 0.000 0.000 0.048 0.952
#> SRR1077968     1  0.3837     0.7187 0.776 0.000 0.000 0.224
#> SRR1076393     4  0.4830    -0.0594 0.000 0.000 0.392 0.608
#> SRR1477476     2  0.0817     0.9217 0.000 0.976 0.024 0.000
#> SRR1398057     3  0.3763     0.8605 0.024 0.000 0.832 0.144
#> SRR1485042     1  0.1635     0.8961 0.948 0.000 0.044 0.008
#> SRR1385453     4  0.5995     0.3989 0.000 0.096 0.232 0.672
#> SRR1348074     1  0.4164     0.6662 0.736 0.264 0.000 0.000
#> SRR813959      4  0.4353     0.5633 0.000 0.232 0.012 0.756
#> SRR665442      2  0.5165    -0.0375 0.484 0.512 0.004 0.000
#> SRR1378068     3  0.4188     0.8533 0.004 0.000 0.752 0.244
#> SRR1485237     1  0.3107     0.8567 0.884 0.080 0.000 0.036
#> SRR1350792     1  0.1211     0.8937 0.960 0.000 0.000 0.040
#> SRR1326797     4  0.2868     0.6898 0.136 0.000 0.000 0.864
#> SRR808994      3  0.2654     0.8457 0.004 0.000 0.888 0.108
#> SRR1474041     4  0.2589     0.6859 0.000 0.000 0.116 0.884
#> SRR1405641     3  0.3448     0.8629 0.004 0.000 0.828 0.168
#> SRR1362245     3  0.0895     0.7606 0.020 0.000 0.976 0.004
#> SRR1500194     1  0.2408     0.8744 0.896 0.000 0.104 0.000
#> SRR1414876     2  0.0336     0.9287 0.000 0.992 0.008 0.000
#> SRR1478523     3  0.2921     0.8558 0.000 0.000 0.860 0.140
#> SRR1325161     4  0.0592     0.7424 0.016 0.000 0.000 0.984
#> SRR1318026     1  0.5367     0.5557 0.664 0.304 0.000 0.032
#> SRR1343778     3  0.4500     0.7912 0.000 0.000 0.684 0.316
#> SRR1441287     1  0.0779     0.8997 0.980 0.000 0.004 0.016
#> SRR1430991     4  0.1474     0.7336 0.000 0.000 0.052 0.948
#> SRR1499722     4  0.1211     0.7370 0.040 0.000 0.000 0.960
#> SRR1351368     3  0.3790     0.8547 0.000 0.016 0.820 0.164
#> SRR1441785     1  0.3123     0.8443 0.844 0.000 0.156 0.000
#> SRR1096101     1  0.2466     0.8963 0.916 0.000 0.056 0.028
#> SRR808375      4  0.0469     0.7425 0.000 0.000 0.012 0.988
#> SRR1452842     4  0.4804     0.3363 0.384 0.000 0.000 0.616
#> SRR1311709     1  0.1004     0.8976 0.972 0.004 0.000 0.024
#> SRR1433352     4  0.2011     0.7195 0.000 0.000 0.080 0.920
#> SRR1340241     2  0.0592     0.9263 0.000 0.984 0.016 0.000
#> SRR1456754     1  0.1867     0.8805 0.928 0.000 0.000 0.072
#> SRR1465172     4  0.2345     0.7110 0.100 0.000 0.000 0.900
#> SRR1499284     4  0.3569     0.6429 0.196 0.000 0.000 0.804
#> SRR1499607     2  0.0707     0.9235 0.000 0.980 0.020 0.000
#> SRR812342      1  0.1118     0.8949 0.964 0.000 0.000 0.036
#> SRR1405374     1  0.2281     0.8778 0.904 0.000 0.096 0.000
#> SRR1403565     1  0.2589     0.8686 0.884 0.000 0.116 0.000
#> SRR1332024     3  0.2089     0.7605 0.048 0.000 0.932 0.020
#> SRR1471633     1  0.1042     0.8978 0.972 0.008 0.000 0.020
#> SRR1325944     2  0.0336     0.9287 0.000 0.992 0.008 0.000
#> SRR1429450     2  0.0336     0.9287 0.000 0.992 0.008 0.000
#> SRR821573      4  0.0817     0.7413 0.024 0.000 0.000 0.976
#> SRR1435372     1  0.2530     0.8505 0.888 0.000 0.000 0.112
#> SRR1324184     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR816517      2  0.5964     0.2052 0.000 0.536 0.424 0.040
#> SRR1324141     4  0.6395     0.0559 0.064 0.460 0.000 0.476
#> SRR1101612     1  0.0188     0.8999 0.996 0.000 0.004 0.000
#> SRR1356531     1  0.0707     0.8984 0.980 0.000 0.000 0.020
#> SRR1089785     4  0.2408     0.6993 0.000 0.000 0.104 0.896
#> SRR1077708     3  0.4746     0.7137 0.000 0.000 0.632 0.368
#> SRR1343720     4  0.1022     0.7414 0.000 0.000 0.032 0.968
#> SRR1477499     2  0.0469     0.9278 0.000 0.988 0.012 0.000
#> SRR1347236     4  0.2704     0.6977 0.124 0.000 0.000 0.876
#> SRR1326408     1  0.2530     0.8502 0.888 0.000 0.000 0.112
#> SRR1336529     3  0.3791     0.8638 0.004 0.000 0.796 0.200
#> SRR1440643     4  0.7830    -0.2481 0.000 0.260 0.356 0.384
#> SRR662354      1  0.1004     0.8990 0.972 0.000 0.004 0.024
#> SRR1310817     4  0.0707     0.7419 0.000 0.000 0.020 0.980
#> SRR1347389     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1353097     1  0.1940     0.8771 0.924 0.000 0.000 0.076
#> SRR1384737     1  0.4855     0.4939 0.644 0.352 0.004 0.000
#> SRR1096339     1  0.1940     0.8851 0.924 0.000 0.076 0.000
#> SRR1345329     1  0.1022     0.8968 0.968 0.032 0.000 0.000
#> SRR1414771     3  0.2048     0.8236 0.008 0.000 0.928 0.064
#> SRR1309119     1  0.1339     0.8998 0.964 0.004 0.024 0.008
#> SRR1470438     3  0.2198     0.8285 0.008 0.000 0.920 0.072
#> SRR1343221     1  0.2921     0.8288 0.860 0.000 0.000 0.140
#> SRR1410847     1  0.2266     0.8840 0.912 0.000 0.084 0.004
#> SRR807949      4  0.1211     0.7371 0.000 0.000 0.040 0.960
#> SRR1442332     4  0.2469     0.6935 0.000 0.000 0.108 0.892
#> SRR815920      3  0.4008     0.8523 0.000 0.000 0.756 0.244
#> SRR1471524     3  0.4103     0.8467 0.000 0.000 0.744 0.256
#> SRR1477221     3  0.3697     0.8005 0.048 0.000 0.852 0.100
#> SRR1445046     2  0.1557     0.8781 0.056 0.944 0.000 0.000
#> SRR1331962     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1311599     1  0.2704     0.8646 0.876 0.000 0.124 0.000
#> SRR1323977     2  0.2335     0.8619 0.020 0.920 0.000 0.060
#> SRR1445132     2  0.0469     0.9278 0.000 0.988 0.012 0.000
#> SRR1337321     3  0.2867     0.8195 0.012 0.000 0.884 0.104
#> SRR1366390     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1343012     2  0.7511     0.1727 0.336 0.468 0.000 0.196
#> SRR1311958     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0707     0.9166 0.020 0.980 0.000 0.000
#> SRR1370384     1  0.4040     0.6868 0.752 0.000 0.000 0.248
#> SRR1321650     3  0.4502     0.8564 0.016 0.000 0.748 0.236
#> SRR1485117     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1384713     4  0.4972     0.1217 0.456 0.000 0.000 0.544
#> SRR816609      1  0.2546     0.8743 0.912 0.060 0.000 0.028
#> SRR1486239     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR1309638     3  0.3638     0.8485 0.032 0.000 0.848 0.120
#> SRR1356660     1  0.3074     0.8472 0.848 0.000 0.152 0.000
#> SRR1392883     2  0.0000     0.9297 0.000 1.000 0.000 0.000
#> SRR808130      4  0.1716     0.7274 0.000 0.000 0.064 0.936
#> SRR816677      1  0.2589     0.8696 0.884 0.000 0.116 0.000
#> SRR1455722     1  0.0921     0.8970 0.972 0.000 0.000 0.028
#> SRR1336029     1  0.0592     0.8993 0.984 0.000 0.016 0.000
#> SRR808452      1  0.1867     0.8789 0.928 0.000 0.000 0.072
#> SRR1352169     3  0.4222     0.8358 0.000 0.000 0.728 0.272
#> SRR1366707     3  0.4164     0.8409 0.000 0.000 0.736 0.264
#> SRR1328143     4  0.2704     0.6757 0.000 0.000 0.124 0.876
#> SRR1473567     2  0.0000     0.9297 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.4264     0.1857 0.004 0.000 0.376 0.000 0.620
#> SRR1390119     2  0.0671     0.9477 0.000 0.980 0.016 0.004 0.000
#> SRR1436127     3  0.4674     0.4769 0.000 0.000 0.568 0.016 0.416
#> SRR1347278     4  0.6222     0.0383 0.000 0.000 0.236 0.548 0.216
#> SRR1332904     2  0.0609     0.9476 0.000 0.980 0.020 0.000 0.000
#> SRR1444179     1  0.2674     0.7373 0.856 0.000 0.004 0.140 0.000
#> SRR1082685     1  0.4616     0.6237 0.676 0.000 0.000 0.288 0.036
#> SRR1362287     4  0.1992     0.7172 0.044 0.000 0.032 0.924 0.000
#> SRR1339007     1  0.2125     0.7503 0.920 0.000 0.004 0.052 0.024
#> SRR1376557     2  0.0162     0.9495 0.000 0.996 0.004 0.000 0.000
#> SRR1468700     2  0.0740     0.9480 0.004 0.980 0.008 0.008 0.000
#> SRR1077455     1  0.4165     0.5719 0.672 0.000 0.000 0.008 0.320
#> SRR1413978     1  0.6372    -0.0725 0.456 0.000 0.168 0.376 0.000
#> SRR1439896     4  0.3661     0.5302 0.276 0.000 0.000 0.724 0.000
#> SRR1317963     2  0.1041     0.9412 0.032 0.964 0.004 0.000 0.000
#> SRR1431865     4  0.2124     0.7189 0.056 0.000 0.028 0.916 0.000
#> SRR1394253     4  0.1894     0.7211 0.072 0.000 0.008 0.920 0.000
#> SRR1082664     5  0.5579    -0.1662 0.072 0.000 0.420 0.000 0.508
#> SRR1077968     1  0.3586     0.7054 0.792 0.000 0.000 0.020 0.188
#> SRR1076393     3  0.4062     0.7072 0.040 0.000 0.764 0.000 0.196
#> SRR1477476     2  0.1205     0.9380 0.000 0.956 0.040 0.004 0.000
#> SRR1398057     3  0.5880     0.5355 0.000 0.000 0.568 0.304 0.128
#> SRR1485042     1  0.3612     0.6437 0.732 0.000 0.000 0.268 0.000
#> SRR1385453     5  0.3399     0.6434 0.000 0.012 0.172 0.004 0.812
#> SRR1348074     1  0.5734     0.4933 0.648 0.248 0.028 0.076 0.000
#> SRR813959      5  0.3586     0.5326 0.000 0.264 0.000 0.000 0.736
#> SRR665442      4  0.5236     0.1912 0.048 0.408 0.000 0.544 0.000
#> SRR1378068     3  0.3752     0.6747 0.000 0.000 0.708 0.000 0.292
#> SRR1485237     1  0.1869     0.7486 0.936 0.016 0.000 0.036 0.012
#> SRR1350792     4  0.5473    -0.0624 0.416 0.000 0.000 0.520 0.064
#> SRR1326797     5  0.1908     0.7305 0.092 0.000 0.000 0.000 0.908
#> SRR808994      3  0.1267     0.7214 0.004 0.000 0.960 0.024 0.012
#> SRR1474041     5  0.0794     0.7937 0.000 0.000 0.028 0.000 0.972
#> SRR1405641     3  0.2513     0.7446 0.000 0.000 0.876 0.008 0.116
#> SRR1362245     3  0.3861     0.5269 0.008 0.000 0.728 0.264 0.000
#> SRR1500194     4  0.1908     0.7170 0.092 0.000 0.000 0.908 0.000
#> SRR1414876     2  0.0000     0.9493 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     3  0.3937     0.6552 0.000 0.004 0.736 0.008 0.252
#> SRR1325161     5  0.1043     0.7789 0.040 0.000 0.000 0.000 0.960
#> SRR1318026     1  0.5608     0.5135 0.668 0.228 0.028 0.076 0.000
#> SRR1343778     3  0.4356     0.6174 0.012 0.000 0.648 0.000 0.340
#> SRR1441287     1  0.4599     0.4650 0.600 0.000 0.000 0.384 0.016
#> SRR1430991     5  0.0703     0.7946 0.000 0.000 0.024 0.000 0.976
#> SRR1499722     5  0.0963     0.7786 0.036 0.000 0.000 0.000 0.964
#> SRR1351368     3  0.3702     0.7159 0.040 0.012 0.848 0.016 0.084
#> SRR1441785     4  0.1997     0.7157 0.040 0.000 0.036 0.924 0.000
#> SRR1096101     1  0.5473     0.3693 0.520 0.000 0.000 0.416 0.064
#> SRR808375      5  0.0162     0.7931 0.004 0.000 0.000 0.000 0.996
#> SRR1452842     1  0.3421     0.6834 0.788 0.000 0.000 0.008 0.204
#> SRR1311709     1  0.2848     0.7326 0.840 0.000 0.000 0.156 0.004
#> SRR1433352     5  0.0703     0.7955 0.000 0.000 0.024 0.000 0.976
#> SRR1340241     2  0.0771     0.9465 0.000 0.976 0.020 0.004 0.000
#> SRR1456754     1  0.2983     0.7416 0.864 0.000 0.000 0.040 0.096
#> SRR1465172     5  0.1908     0.7370 0.092 0.000 0.000 0.000 0.908
#> SRR1499284     5  0.4375     0.0849 0.420 0.000 0.000 0.004 0.576
#> SRR1499607     2  0.4693     0.8060 0.132 0.768 0.076 0.024 0.000
#> SRR812342      1  0.5080     0.5820 0.628 0.000 0.000 0.316 0.056
#> SRR1405374     4  0.1908     0.7171 0.092 0.000 0.000 0.908 0.000
#> SRR1403565     4  0.2189     0.7209 0.084 0.000 0.012 0.904 0.000
#> SRR1332024     4  0.5236    -0.1808 0.000 0.000 0.464 0.492 0.044
#> SRR1471633     1  0.2629     0.7382 0.860 0.000 0.004 0.136 0.000
#> SRR1325944     2  0.0000     0.9493 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0451     0.9492 0.000 0.988 0.008 0.004 0.000
#> SRR821573      5  0.0609     0.7885 0.020 0.000 0.000 0.000 0.980
#> SRR1435372     1  0.4444     0.7272 0.760 0.000 0.000 0.136 0.104
#> SRR1324184     2  0.1830     0.9312 0.004 0.932 0.012 0.052 0.000
#> SRR816517      3  0.4316     0.5835 0.000 0.208 0.748 0.004 0.040
#> SRR1324141     1  0.5631     0.5747 0.724 0.148 0.028 0.072 0.028
#> SRR1101612     4  0.3395     0.5914 0.236 0.000 0.000 0.764 0.000
#> SRR1356531     1  0.3284     0.7383 0.828 0.000 0.000 0.148 0.024
#> SRR1089785     5  0.1197     0.7872 0.000 0.000 0.048 0.000 0.952
#> SRR1077708     5  0.4443    -0.2394 0.004 0.000 0.472 0.000 0.524
#> SRR1343720     5  0.0451     0.7933 0.004 0.000 0.008 0.000 0.988
#> SRR1477499     2  0.0771     0.9465 0.000 0.976 0.020 0.004 0.000
#> SRR1347236     5  0.1410     0.7605 0.060 0.000 0.000 0.000 0.940
#> SRR1326408     1  0.1764     0.7440 0.928 0.000 0.000 0.008 0.064
#> SRR1336529     3  0.3171     0.7386 0.000 0.000 0.816 0.008 0.176
#> SRR1440643     5  0.5603     0.4838 0.000 0.096 0.192 0.028 0.684
#> SRR662354      4  0.3882     0.5893 0.224 0.000 0.000 0.756 0.020
#> SRR1310817     5  0.0992     0.7915 0.008 0.000 0.024 0.000 0.968
#> SRR1347389     2  0.3536     0.8818 0.052 0.852 0.024 0.072 0.000
#> SRR1353097     1  0.3779     0.7372 0.804 0.000 0.000 0.144 0.052
#> SRR1384737     1  0.4237     0.6396 0.812 0.040 0.064 0.084 0.000
#> SRR1096339     4  0.3508     0.5641 0.252 0.000 0.000 0.748 0.000
#> SRR1345329     1  0.2971     0.7246 0.880 0.016 0.032 0.072 0.000
#> SRR1414771     3  0.1836     0.7303 0.000 0.000 0.932 0.036 0.032
#> SRR1309119     4  0.4907    -0.1958 0.488 0.000 0.024 0.488 0.000
#> SRR1470438     3  0.1525     0.7210 0.004 0.000 0.948 0.036 0.012
#> SRR1343221     1  0.4849     0.7101 0.724 0.000 0.000 0.140 0.136
#> SRR1410847     4  0.2813     0.6670 0.168 0.000 0.000 0.832 0.000
#> SRR807949      5  0.0609     0.7950 0.000 0.000 0.020 0.000 0.980
#> SRR1442332     5  0.1571     0.7757 0.004 0.000 0.060 0.000 0.936
#> SRR815920      3  0.3707     0.6819 0.000 0.000 0.716 0.000 0.284
#> SRR1471524     3  0.4182     0.5250 0.000 0.000 0.600 0.000 0.400
#> SRR1477221     4  0.4891     0.2499 0.000 0.000 0.316 0.640 0.044
#> SRR1445046     2  0.4928     0.7729 0.152 0.748 0.028 0.072 0.000
#> SRR1331962     2  0.1173     0.9438 0.012 0.964 0.004 0.020 0.000
#> SRR1319946     2  0.0880     0.9366 0.000 0.968 0.000 0.000 0.032
#> SRR1311599     4  0.1732     0.7201 0.080 0.000 0.000 0.920 0.000
#> SRR1323977     2  0.2831     0.8985 0.016 0.892 0.004 0.024 0.064
#> SRR1445132     2  0.0451     0.9492 0.000 0.988 0.008 0.004 0.000
#> SRR1337321     4  0.4730     0.3740 0.000 0.000 0.260 0.688 0.052
#> SRR1366390     2  0.2395     0.9170 0.008 0.904 0.016 0.072 0.000
#> SRR1343012     1  0.3160     0.6669 0.872 0.024 0.032 0.072 0.000
#> SRR1311958     2  0.2347     0.9218 0.016 0.912 0.016 0.056 0.000
#> SRR1388234     2  0.2439     0.8677 0.120 0.876 0.000 0.004 0.000
#> SRR1370384     1  0.3151     0.7250 0.836 0.000 0.000 0.020 0.144
#> SRR1321650     3  0.5215     0.6761 0.000 0.000 0.656 0.088 0.256
#> SRR1485117     2  0.0162     0.9493 0.004 0.996 0.000 0.000 0.000
#> SRR1384713     1  0.3132     0.7058 0.820 0.000 0.000 0.008 0.172
#> SRR816609      1  0.1891     0.7483 0.936 0.016 0.000 0.032 0.016
#> SRR1486239     2  0.0000     0.9493 0.000 1.000 0.000 0.000 0.000
#> SRR1309638     3  0.4450     0.6038 0.236 0.000 0.728 0.016 0.020
#> SRR1356660     4  0.2473     0.7175 0.072 0.000 0.032 0.896 0.000
#> SRR1392883     2  0.0000     0.9493 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.0880     0.7923 0.000 0.000 0.032 0.000 0.968
#> SRR816677      1  0.3734     0.7039 0.812 0.000 0.060 0.128 0.000
#> SRR1455722     1  0.4824     0.4827 0.596 0.000 0.000 0.376 0.028
#> SRR1336029     1  0.4028     0.6975 0.776 0.000 0.048 0.176 0.000
#> SRR808452      1  0.5422     0.5941 0.616 0.000 0.000 0.296 0.088
#> SRR1352169     5  0.5235     0.2317 0.000 0.000 0.312 0.068 0.620
#> SRR1366707     3  0.4066     0.6440 0.004 0.000 0.672 0.000 0.324
#> SRR1328143     5  0.1270     0.7806 0.000 0.000 0.052 0.000 0.948
#> SRR1473567     2  0.0324     0.9491 0.004 0.992 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.3805     0.4638 0.004 0.000 0.328 0.004 0.664 0.000
#> SRR1390119     2  0.0146     0.8171 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR1436127     5  0.5006     0.3592 0.000 0.000 0.304 0.008 0.612 0.076
#> SRR1347278     6  0.4336     0.5038 0.000 0.000 0.064 0.020 0.172 0.744
#> SRR1332904     2  0.0000     0.8175 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1444179     1  0.2934     0.7220 0.844 0.000 0.000 0.112 0.000 0.044
#> SRR1082685     1  0.2222     0.7550 0.896 0.000 0.000 0.012 0.008 0.084
#> SRR1362287     6  0.1515     0.7209 0.028 0.000 0.008 0.020 0.000 0.944
#> SRR1339007     1  0.3104     0.7244 0.824 0.000 0.004 0.152 0.004 0.016
#> SRR1376557     2  0.0000     0.8175 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1468700     2  0.1075     0.7992 0.000 0.952 0.000 0.048 0.000 0.000
#> SRR1077455     1  0.3893     0.6903 0.768 0.000 0.000 0.092 0.140 0.000
#> SRR1413978     3  0.7095     0.1135 0.076 0.000 0.376 0.252 0.000 0.296
#> SRR1439896     6  0.4177     0.1803 0.468 0.000 0.000 0.012 0.000 0.520
#> SRR1317963     2  0.0547     0.8127 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1431865     6  0.2685     0.7337 0.080 0.000 0.004 0.044 0.000 0.872
#> SRR1394253     6  0.1333     0.7359 0.048 0.000 0.000 0.008 0.000 0.944
#> SRR1082664     3  0.6195     0.5207 0.108 0.000 0.536 0.064 0.292 0.000
#> SRR1077968     1  0.3274     0.7296 0.824 0.000 0.000 0.080 0.096 0.000
#> SRR1076393     3  0.4575     0.7094 0.004 0.000 0.724 0.080 0.180 0.012
#> SRR1477476     2  0.2748     0.6874 0.000 0.848 0.128 0.024 0.000 0.000
#> SRR1398057     6  0.5080    -0.0125 0.000 0.000 0.392 0.016 0.048 0.544
#> SRR1485042     1  0.3167     0.7621 0.832 0.000 0.000 0.096 0.000 0.072
#> SRR1385453     5  0.4283     0.3464 0.000 0.000 0.384 0.024 0.592 0.000
#> SRR1348074     4  0.4449     0.6523 0.216 0.088 0.000 0.696 0.000 0.000
#> SRR813959      5  0.3620     0.4161 0.000 0.352 0.000 0.000 0.648 0.000
#> SRR665442      2  0.6172     0.3233 0.080 0.592 0.004 0.108 0.000 0.216
#> SRR1378068     3  0.3419     0.7157 0.000 0.000 0.792 0.004 0.176 0.028
#> SRR1485237     1  0.1863     0.7504 0.896 0.000 0.000 0.104 0.000 0.000
#> SRR1350792     1  0.3418     0.6579 0.784 0.000 0.000 0.008 0.016 0.192
#> SRR1326797     5  0.2494     0.7485 0.120 0.000 0.000 0.016 0.864 0.000
#> SRR808994      3  0.1864     0.7120 0.000 0.000 0.924 0.040 0.004 0.032
#> SRR1474041     5  0.0964     0.8252 0.000 0.000 0.012 0.004 0.968 0.016
#> SRR1405641     3  0.2294     0.7401 0.000 0.000 0.892 0.000 0.072 0.036
#> SRR1362245     3  0.5720     0.2819 0.000 0.000 0.492 0.152 0.004 0.352
#> SRR1500194     6  0.2738     0.7117 0.176 0.000 0.000 0.004 0.000 0.820
#> SRR1414876     2  0.0000     0.8175 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     3  0.4371     0.5242 0.004 0.012 0.668 0.020 0.296 0.000
#> SRR1325161     5  0.1268     0.8211 0.036 0.000 0.004 0.008 0.952 0.000
#> SRR1318026     4  0.4533     0.6564 0.208 0.088 0.004 0.700 0.000 0.000
#> SRR1343778     3  0.3892     0.6981 0.020 0.000 0.752 0.020 0.208 0.000
#> SRR1441287     1  0.2790     0.7145 0.840 0.000 0.000 0.020 0.000 0.140
#> SRR1430991     5  0.0551     0.8296 0.004 0.000 0.008 0.004 0.984 0.000
#> SRR1499722     5  0.1657     0.8078 0.056 0.000 0.000 0.016 0.928 0.000
#> SRR1351368     3  0.3218     0.7180 0.000 0.000 0.840 0.080 0.072 0.008
#> SRR1441785     6  0.1075     0.7368 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1096101     1  0.4628     0.6123 0.712 0.000 0.000 0.064 0.024 0.200
#> SRR808375      5  0.0653     0.8281 0.012 0.000 0.004 0.004 0.980 0.000
#> SRR1452842     1  0.3642     0.7100 0.800 0.000 0.000 0.116 0.080 0.004
#> SRR1311709     1  0.1984     0.7592 0.912 0.000 0.000 0.032 0.000 0.056
#> SRR1433352     5  0.2320     0.7980 0.024 0.000 0.080 0.004 0.892 0.000
#> SRR1340241     2  0.0508     0.8134 0.000 0.984 0.004 0.012 0.000 0.000
#> SRR1456754     1  0.3272     0.7289 0.824 0.000 0.000 0.124 0.048 0.004
#> SRR1465172     5  0.2692     0.7228 0.148 0.000 0.000 0.012 0.840 0.000
#> SRR1499284     1  0.4420     0.4763 0.620 0.000 0.000 0.040 0.340 0.000
#> SRR1499607     2  0.6349     0.0808 0.008 0.488 0.304 0.180 0.000 0.020
#> SRR812342      1  0.2834     0.7411 0.852 0.000 0.000 0.008 0.020 0.120
#> SRR1405374     6  0.2902     0.7024 0.196 0.000 0.000 0.004 0.000 0.800
#> SRR1403565     6  0.2056     0.7368 0.080 0.000 0.000 0.004 0.012 0.904
#> SRR1332024     6  0.4242     0.1824 0.000 0.000 0.368 0.008 0.012 0.612
#> SRR1471633     1  0.2462     0.7396 0.876 0.000 0.000 0.096 0.000 0.028
#> SRR1325944     2  0.0000     0.8175 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0146     0.8173 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR821573      5  0.0717     0.8269 0.016 0.000 0.000 0.008 0.976 0.000
#> SRR1435372     1  0.2038     0.7718 0.920 0.000 0.000 0.028 0.032 0.020
#> SRR1324184     2  0.3989    -0.0610 0.000 0.528 0.000 0.468 0.000 0.004
#> SRR816517      3  0.3020     0.7029 0.000 0.032 0.864 0.040 0.064 0.000
#> SRR1324141     4  0.4335     0.6505 0.124 0.052 0.000 0.768 0.056 0.000
#> SRR1101612     1  0.4080    -0.0102 0.536 0.000 0.000 0.008 0.000 0.456
#> SRR1356531     1  0.1926     0.7655 0.912 0.000 0.000 0.068 0.000 0.020
#> SRR1089785     5  0.1442     0.8248 0.012 0.000 0.040 0.004 0.944 0.000
#> SRR1077708     3  0.6704     0.5639 0.048 0.000 0.528 0.068 0.292 0.064
#> SRR1343720     5  0.2182     0.8069 0.068 0.000 0.020 0.008 0.904 0.000
#> SRR1477499     2  0.0622     0.8120 0.000 0.980 0.008 0.012 0.000 0.000
#> SRR1347236     5  0.1327     0.8100 0.064 0.000 0.000 0.000 0.936 0.000
#> SRR1326408     1  0.3153     0.7297 0.832 0.000 0.000 0.128 0.032 0.008
#> SRR1336529     3  0.3353     0.7423 0.000 0.000 0.836 0.016 0.080 0.068
#> SRR1440643     5  0.4674     0.5902 0.000 0.004 0.180 0.120 0.696 0.000
#> SRR662354      6  0.3769     0.4735 0.356 0.000 0.000 0.004 0.000 0.640
#> SRR1310817     5  0.0820     0.8273 0.000 0.000 0.012 0.016 0.972 0.000
#> SRR1347389     4  0.4031     0.4931 0.008 0.332 0.008 0.652 0.000 0.000
#> SRR1353097     1  0.1635     0.7722 0.940 0.000 0.000 0.020 0.020 0.020
#> SRR1384737     4  0.3939     0.5161 0.080 0.000 0.116 0.788 0.000 0.016
#> SRR1096339     6  0.3966     0.2694 0.444 0.000 0.000 0.004 0.000 0.552
#> SRR1345329     1  0.4499     0.3707 0.604 0.024 0.004 0.364 0.000 0.004
#> SRR1414771     3  0.2043     0.7194 0.000 0.000 0.912 0.012 0.012 0.064
#> SRR1309119     1  0.5583     0.2370 0.500 0.000 0.000 0.348 0.000 0.152
#> SRR1470438     3  0.2393     0.7079 0.000 0.000 0.892 0.040 0.004 0.064
#> SRR1343221     1  0.2174     0.7698 0.912 0.000 0.000 0.016 0.036 0.036
#> SRR1410847     6  0.3103     0.6916 0.208 0.000 0.000 0.008 0.000 0.784
#> SRR807949      5  0.0405     0.8292 0.004 0.000 0.008 0.000 0.988 0.000
#> SRR1442332     5  0.1471     0.8043 0.000 0.000 0.064 0.004 0.932 0.000
#> SRR815920      3  0.3010     0.7265 0.000 0.000 0.828 0.004 0.148 0.020
#> SRR1471524     3  0.4396     0.2076 0.000 0.000 0.520 0.024 0.456 0.000
#> SRR1477221     6  0.2784     0.6259 0.000 0.000 0.092 0.020 0.020 0.868
#> SRR1445046     4  0.4379     0.4013 0.028 0.396 0.000 0.576 0.000 0.000
#> SRR1331962     2  0.1444     0.7816 0.000 0.928 0.000 0.072 0.000 0.000
#> SRR1319946     2  0.2300     0.6806 0.000 0.856 0.000 0.000 0.144 0.000
#> SRR1311599     6  0.1204     0.7388 0.056 0.000 0.000 0.000 0.000 0.944
#> SRR1323977     2  0.6355     0.0461 0.056 0.448 0.000 0.116 0.380 0.000
#> SRR1445132     2  0.0260     0.8163 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1337321     6  0.5093     0.5036 0.000 0.000 0.060 0.088 0.148 0.704
#> SRR1366390     4  0.4305     0.4024 0.004 0.380 0.012 0.600 0.004 0.000
#> SRR1343012     4  0.5533     0.5121 0.196 0.020 0.092 0.668 0.008 0.016
#> SRR1311958     2  0.3989    -0.0962 0.004 0.528 0.000 0.468 0.000 0.000
#> SRR1388234     2  0.3161     0.5200 0.216 0.776 0.000 0.008 0.000 0.000
#> SRR1370384     1  0.2923     0.7386 0.848 0.000 0.000 0.100 0.052 0.000
#> SRR1321650     3  0.5708     0.5368 0.000 0.000 0.552 0.016 0.132 0.300
#> SRR1485117     2  0.0937     0.8034 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1384713     1  0.3716     0.7048 0.792 0.000 0.000 0.128 0.076 0.004
#> SRR816609      1  0.3106     0.7260 0.832 0.012 0.000 0.140 0.004 0.012
#> SRR1486239     2  0.0000     0.8175 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1309638     3  0.5724     0.4715 0.096 0.000 0.608 0.252 0.004 0.040
#> SRR1356660     6  0.4317     0.7048 0.132 0.000 0.024 0.084 0.000 0.760
#> SRR1392883     2  0.0000     0.8175 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.0405     0.8292 0.004 0.000 0.008 0.000 0.988 0.000
#> SRR816677      1  0.5549     0.5612 0.624 0.000 0.080 0.244 0.000 0.052
#> SRR1455722     1  0.2362     0.7221 0.860 0.000 0.000 0.004 0.000 0.136
#> SRR1336029     1  0.4644     0.2556 0.564 0.000 0.012 0.400 0.000 0.024
#> SRR808452      1  0.3021     0.7549 0.860 0.000 0.000 0.020 0.044 0.076
#> SRR1352169     5  0.5363     0.4270 0.000 0.000 0.148 0.008 0.612 0.232
#> SRR1366707     3  0.3271     0.6689 0.000 0.000 0.760 0.008 0.232 0.000
#> SRR1328143     5  0.1010     0.8208 0.000 0.000 0.036 0.004 0.960 0.000
#> SRR1473567     2  0.0937     0.8029 0.000 0.960 0.000 0.040 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.972       0.987         0.3028 0.685   0.685
#> 3 3 0.825           0.881       0.949         0.2568 0.987   0.981
#> 4 4 0.819           0.879       0.946         0.0411 0.988   0.981
#> 5 5 0.772           0.845       0.920         0.3281 0.829   0.741
#> 6 6 0.772           0.825       0.910         0.0222 0.991   0.981

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.997 1.000 0.000
#> SRR1390119     2  0.0000      0.938 0.000 1.000
#> SRR1436127     1  0.0000      0.997 1.000 0.000
#> SRR1347278     1  0.0000      0.997 1.000 0.000
#> SRR1332904     2  0.0000      0.938 0.000 1.000
#> SRR1444179     1  0.0000      0.997 1.000 0.000
#> SRR1082685     1  0.0000      0.997 1.000 0.000
#> SRR1362287     1  0.0000      0.997 1.000 0.000
#> SRR1339007     1  0.0000      0.997 1.000 0.000
#> SRR1376557     2  0.0000      0.938 0.000 1.000
#> SRR1468700     2  0.0000      0.938 0.000 1.000
#> SRR1077455     1  0.0000      0.997 1.000 0.000
#> SRR1413978     1  0.0000      0.997 1.000 0.000
#> SRR1439896     1  0.0000      0.997 1.000 0.000
#> SRR1317963     2  0.9491      0.490 0.368 0.632
#> SRR1431865     1  0.0000      0.997 1.000 0.000
#> SRR1394253     1  0.0000      0.997 1.000 0.000
#> SRR1082664     1  0.0000      0.997 1.000 0.000
#> SRR1077968     1  0.0000      0.997 1.000 0.000
#> SRR1076393     1  0.0000      0.997 1.000 0.000
#> SRR1477476     2  0.0000      0.938 0.000 1.000
#> SRR1398057     1  0.0000      0.997 1.000 0.000
#> SRR1485042     1  0.0000      0.997 1.000 0.000
#> SRR1385453     1  0.0000      0.997 1.000 0.000
#> SRR1348074     1  0.0672      0.990 0.992 0.008
#> SRR813959      1  0.1184      0.982 0.984 0.016
#> SRR665442      1  0.5519      0.844 0.872 0.128
#> SRR1378068     1  0.0000      0.997 1.000 0.000
#> SRR1485237     1  0.0672      0.990 0.992 0.008
#> SRR1350792     1  0.0000      0.997 1.000 0.000
#> SRR1326797     1  0.0000      0.997 1.000 0.000
#> SRR808994      1  0.0000      0.997 1.000 0.000
#> SRR1474041     1  0.0000      0.997 1.000 0.000
#> SRR1405641     1  0.0000      0.997 1.000 0.000
#> SRR1362245     1  0.0000      0.997 1.000 0.000
#> SRR1500194     1  0.0000      0.997 1.000 0.000
#> SRR1414876     2  0.0000      0.938 0.000 1.000
#> SRR1478523     1  0.0000      0.997 1.000 0.000
#> SRR1325161     1  0.0000      0.997 1.000 0.000
#> SRR1318026     1  0.0000      0.997 1.000 0.000
#> SRR1343778     1  0.0000      0.997 1.000 0.000
#> SRR1441287     1  0.0000      0.997 1.000 0.000
#> SRR1430991     1  0.0000      0.997 1.000 0.000
#> SRR1499722     1  0.0000      0.997 1.000 0.000
#> SRR1351368     1  0.0000      0.997 1.000 0.000
#> SRR1441785     1  0.0000      0.997 1.000 0.000
#> SRR1096101     1  0.0000      0.997 1.000 0.000
#> SRR808375      1  0.0000      0.997 1.000 0.000
#> SRR1452842     1  0.0000      0.997 1.000 0.000
#> SRR1311709     1  0.0000      0.997 1.000 0.000
#> SRR1433352     1  0.0000      0.997 1.000 0.000
#> SRR1340241     2  0.0000      0.938 0.000 1.000
#> SRR1456754     1  0.0000      0.997 1.000 0.000
#> SRR1465172     1  0.0000      0.997 1.000 0.000
#> SRR1499284     1  0.0000      0.997 1.000 0.000
#> SRR1499607     2  0.9491      0.490 0.368 0.632
#> SRR812342      1  0.0000      0.997 1.000 0.000
#> SRR1405374     1  0.0000      0.997 1.000 0.000
#> SRR1403565     1  0.0000      0.997 1.000 0.000
#> SRR1332024     1  0.0000      0.997 1.000 0.000
#> SRR1471633     1  0.0000      0.997 1.000 0.000
#> SRR1325944     2  0.0000      0.938 0.000 1.000
#> SRR1429450     2  0.0000      0.938 0.000 1.000
#> SRR821573      1  0.0000      0.997 1.000 0.000
#> SRR1435372     1  0.0000      0.997 1.000 0.000
#> SRR1324184     2  0.0000      0.938 0.000 1.000
#> SRR816517      1  0.1184      0.983 0.984 0.016
#> SRR1324141     1  0.0000      0.997 1.000 0.000
#> SRR1101612     1  0.0000      0.997 1.000 0.000
#> SRR1356531     1  0.0000      0.997 1.000 0.000
#> SRR1089785     1  0.0000      0.997 1.000 0.000
#> SRR1077708     1  0.0000      0.997 1.000 0.000
#> SRR1343720     1  0.0000      0.997 1.000 0.000
#> SRR1477499     2  0.0000      0.938 0.000 1.000
#> SRR1347236     1  0.0000      0.997 1.000 0.000
#> SRR1326408     1  0.0000      0.997 1.000 0.000
#> SRR1336529     1  0.0000      0.997 1.000 0.000
#> SRR1440643     1  0.0000      0.997 1.000 0.000
#> SRR662354      1  0.0000      0.997 1.000 0.000
#> SRR1310817     1  0.0000      0.997 1.000 0.000
#> SRR1347389     2  0.0000      0.938 0.000 1.000
#> SRR1353097     1  0.0000      0.997 1.000 0.000
#> SRR1384737     1  0.0000      0.997 1.000 0.000
#> SRR1096339     1  0.0000      0.997 1.000 0.000
#> SRR1345329     1  0.0672      0.990 0.992 0.008
#> SRR1414771     1  0.0000      0.997 1.000 0.000
#> SRR1309119     1  0.0000      0.997 1.000 0.000
#> SRR1470438     1  0.0000      0.997 1.000 0.000
#> SRR1343221     1  0.0000      0.997 1.000 0.000
#> SRR1410847     1  0.0000      0.997 1.000 0.000
#> SRR807949      1  0.0000      0.997 1.000 0.000
#> SRR1442332     1  0.0000      0.997 1.000 0.000
#> SRR815920      1  0.0000      0.997 1.000 0.000
#> SRR1471524     1  0.0000      0.997 1.000 0.000
#> SRR1477221     1  0.0000      0.997 1.000 0.000
#> SRR1445046     2  0.7602      0.747 0.220 0.780
#> SRR1331962     2  0.0000      0.938 0.000 1.000
#> SRR1319946     2  0.7815      0.731 0.232 0.768
#> SRR1311599     1  0.0000      0.997 1.000 0.000
#> SRR1323977     1  0.1184      0.982 0.984 0.016
#> SRR1445132     2  0.0000      0.938 0.000 1.000
#> SRR1337321     1  0.0000      0.997 1.000 0.000
#> SRR1366390     2  0.0000      0.938 0.000 1.000
#> SRR1343012     1  0.0000      0.997 1.000 0.000
#> SRR1311958     2  0.7602      0.747 0.220 0.780
#> SRR1388234     1  0.1184      0.982 0.984 0.016
#> SRR1370384     1  0.0000      0.997 1.000 0.000
#> SRR1321650     1  0.0000      0.997 1.000 0.000
#> SRR1485117     2  0.0000      0.938 0.000 1.000
#> SRR1384713     1  0.0000      0.997 1.000 0.000
#> SRR816609      1  0.1633      0.974 0.976 0.024
#> SRR1486239     2  0.0000      0.938 0.000 1.000
#> SRR1309638     1  0.0000      0.997 1.000 0.000
#> SRR1356660     1  0.0000      0.997 1.000 0.000
#> SRR1392883     2  0.0000      0.938 0.000 1.000
#> SRR808130      1  0.0000      0.997 1.000 0.000
#> SRR816677      1  0.0000      0.997 1.000 0.000
#> SRR1455722     1  0.0000      0.997 1.000 0.000
#> SRR1336029     1  0.0000      0.997 1.000 0.000
#> SRR808452      1  0.0000      0.997 1.000 0.000
#> SRR1352169     1  0.0000      0.997 1.000 0.000
#> SRR1366707     1  0.0000      0.997 1.000 0.000
#> SRR1328143     1  0.0000      0.997 1.000 0.000
#> SRR1473567     2  0.0000      0.938 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1390119     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1436127     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1347278     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1332904     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1444179     1  0.0892      0.936 0.980 0.000 0.020
#> SRR1082685     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1362287     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1339007     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1376557     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1413978     1  0.3267      0.856 0.884 0.000 0.116
#> SRR1439896     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1317963     2  0.7104      0.354 0.032 0.608 0.360
#> SRR1431865     1  0.0237      0.946 0.996 0.000 0.004
#> SRR1394253     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1082664     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1077968     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1076393     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1477476     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1398057     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1485042     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1385453     1  0.5178      0.704 0.744 0.000 0.256
#> SRR1348074     1  0.5733      0.601 0.676 0.000 0.324
#> SRR813959      1  0.5785      0.587 0.668 0.000 0.332
#> SRR665442      3  0.0000      0.000 0.000 0.000 1.000
#> SRR1378068     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1485237     1  0.5733      0.601 0.676 0.000 0.324
#> SRR1350792     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1326797     1  0.0000      0.949 1.000 0.000 0.000
#> SRR808994      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1474041     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1405641     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1362245     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1500194     1  0.0592      0.942 0.988 0.000 0.012
#> SRR1414876     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1478523     1  0.5098      0.715 0.752 0.000 0.248
#> SRR1325161     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1318026     1  0.5216      0.699 0.740 0.000 0.260
#> SRR1343778     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1441287     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1430991     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1499722     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1351368     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1441785     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1096101     1  0.0000      0.949 1.000 0.000 0.000
#> SRR808375      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1452842     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1311709     1  0.2261      0.900 0.932 0.000 0.068
#> SRR1433352     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1340241     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1456754     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1465172     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1499284     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1499607     2  0.7104      0.354 0.032 0.608 0.360
#> SRR812342      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1405374     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1403565     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1332024     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1471633     1  0.2261      0.900 0.932 0.000 0.068
#> SRR1325944     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.918 0.000 1.000 0.000
#> SRR821573      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1435372     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1324184     2  0.0000      0.918 0.000 1.000 0.000
#> SRR816517      1  0.5722      0.647 0.704 0.004 0.292
#> SRR1324141     1  0.5216      0.699 0.740 0.000 0.260
#> SRR1101612     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1089785     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1077708     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1343720     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1477499     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1347236     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1326408     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1336529     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1440643     1  0.5098      0.715 0.752 0.000 0.248
#> SRR662354      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1310817     1  0.3482      0.845 0.872 0.000 0.128
#> SRR1347389     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1353097     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1384737     1  0.4555      0.773 0.800 0.000 0.200
#> SRR1096339     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1345329     1  0.5733      0.601 0.676 0.000 0.324
#> SRR1414771     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1309119     1  0.2261      0.900 0.932 0.000 0.068
#> SRR1470438     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1343221     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1410847     1  0.0000      0.949 1.000 0.000 0.000
#> SRR807949      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1442332     1  0.0000      0.949 1.000 0.000 0.000
#> SRR815920      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1471524     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1477221     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1445046     2  0.5058      0.657 0.000 0.756 0.244
#> SRR1331962     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1319946     2  0.5178      0.639 0.000 0.744 0.256
#> SRR1311599     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1323977     1  0.5785      0.587 0.668 0.000 0.332
#> SRR1445132     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1337321     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1366390     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1343012     1  0.4291      0.795 0.820 0.000 0.180
#> SRR1311958     2  0.5058      0.657 0.000 0.756 0.244
#> SRR1388234     1  0.5785      0.587 0.668 0.000 0.332
#> SRR1370384     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1321650     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1485117     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.949 1.000 0.000 0.000
#> SRR816609      1  0.5948      0.532 0.640 0.000 0.360
#> SRR1486239     2  0.0000      0.918 0.000 1.000 0.000
#> SRR1309638     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1356660     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.918 0.000 1.000 0.000
#> SRR808130      1  0.0000      0.949 1.000 0.000 0.000
#> SRR816677      1  0.1163      0.931 0.972 0.000 0.028
#> SRR1455722     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1336029     1  0.0424      0.944 0.992 0.000 0.008
#> SRR808452      1  0.0000      0.949 1.000 0.000 0.000
#> SRR1352169     1  0.0237      0.946 0.996 0.000 0.004
#> SRR1366707     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1328143     1  0.0000      0.949 1.000 0.000 0.000
#> SRR1473567     2  0.0000      0.918 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1390119     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR1436127     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1347278     1  0.0336      0.940 0.992 0.000 0.008 0.000
#> SRR1332904     2  0.4877      0.307 0.000 0.592 0.000 0.408
#> SRR1444179     1  0.1022      0.924 0.968 0.000 0.032 0.000
#> SRR1082685     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1362287     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1339007     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0817      0.933 0.000 0.976 0.000 0.024
#> SRR1077455     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1413978     1  0.2647      0.853 0.880 0.000 0.120 0.000
#> SRR1439896     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1317963     3  0.5039      0.757 0.004 0.000 0.592 0.404
#> SRR1431865     1  0.0188      0.943 0.996 0.000 0.004 0.000
#> SRR1394253     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1082664     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1077968     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1076393     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1477476     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR1398057     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1485042     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1385453     1  0.4304      0.677 0.716 0.000 0.284 0.000
#> SRR1348074     1  0.4679      0.572 0.648 0.000 0.352 0.000
#> SRR813959      1  0.4713      0.558 0.640 0.000 0.360 0.000
#> SRR665442      4  0.4877      0.000 0.000 0.000 0.408 0.592
#> SRR1378068     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1485237     1  0.4679      0.572 0.648 0.000 0.352 0.000
#> SRR1350792     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR808994      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1474041     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1405641     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1362245     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1500194     1  0.0469      0.938 0.988 0.000 0.012 0.000
#> SRR1414876     2  0.0336      0.940 0.000 0.992 0.000 0.008
#> SRR1478523     1  0.4250      0.687 0.724 0.000 0.276 0.000
#> SRR1325161     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1318026     1  0.4304      0.676 0.716 0.000 0.284 0.000
#> SRR1343778     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1441287     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1430991     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1499722     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1351368     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1441785     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR808375      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1452842     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1311709     1  0.2216      0.879 0.908 0.000 0.092 0.000
#> SRR1433352     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1340241     2  0.0817      0.928 0.000 0.976 0.000 0.024
#> SRR1456754     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1465172     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1499284     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1499607     3  0.5039      0.757 0.004 0.000 0.592 0.404
#> SRR812342      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1403565     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1332024     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1471633     1  0.2216      0.879 0.908 0.000 0.092 0.000
#> SRR1325944     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR821573      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1435372     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR816517      1  0.4543      0.619 0.676 0.000 0.324 0.000
#> SRR1324141     1  0.4304      0.676 0.716 0.000 0.284 0.000
#> SRR1101612     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1089785     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1077708     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1343720     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1477499     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR1347236     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1326408     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1336529     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1440643     1  0.4250      0.687 0.724 0.000 0.276 0.000
#> SRR662354      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1310817     1  0.2760      0.846 0.872 0.000 0.128 0.000
#> SRR1347389     2  0.0592      0.936 0.000 0.984 0.000 0.016
#> SRR1353097     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1384737     1  0.3837      0.750 0.776 0.000 0.224 0.000
#> SRR1096339     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1345329     1  0.4679      0.572 0.648 0.000 0.352 0.000
#> SRR1414771     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1309119     1  0.2216      0.879 0.908 0.000 0.092 0.000
#> SRR1470438     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1343221     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1410847     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR807949      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1442332     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR815920      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1471524     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1477221     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1445046     3  0.7246      0.826 0.000 0.144 0.448 0.408
#> SRR1331962     2  0.0817      0.933 0.000 0.976 0.000 0.024
#> SRR1319946     3  0.7143      0.831 0.000 0.132 0.460 0.408
#> SRR1311599     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1323977     1  0.4713      0.558 0.640 0.000 0.360 0.000
#> SRR1445132     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR1337321     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1366390     2  0.0592      0.936 0.000 0.984 0.000 0.016
#> SRR1343012     1  0.3649      0.773 0.796 0.000 0.204 0.000
#> SRR1311958     3  0.7246      0.826 0.000 0.144 0.448 0.408
#> SRR1388234     1  0.4713      0.558 0.640 0.000 0.360 0.000
#> SRR1370384     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1321650     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1485117     2  0.0188      0.942 0.000 0.996 0.000 0.004
#> SRR1384713     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR816609      1  0.4817      0.503 0.612 0.000 0.388 0.000
#> SRR1486239     2  0.4877      0.307 0.000 0.592 0.000 0.408
#> SRR1309638     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1356660     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1392883     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> SRR808130      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR816677      1  0.0921      0.927 0.972 0.000 0.028 0.000
#> SRR1455722     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1336029     1  0.0336      0.940 0.992 0.000 0.008 0.000
#> SRR808452      1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1352169     1  0.0188      0.943 0.996 0.000 0.004 0.000
#> SRR1366707     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1328143     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> SRR1473567     2  0.0188      0.942 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1442087     1  0.0510     0.9398 0.984 0.000 0.000 0.016  0
#> SRR1390119     2  0.2020     0.8844 0.000 0.900 0.100 0.000  0
#> SRR1436127     1  0.1671     0.9189 0.924 0.000 0.000 0.076  0
#> SRR1347278     1  0.1851     0.9142 0.912 0.000 0.000 0.088  0
#> SRR1332904     3  0.4287     0.1278 0.000 0.460 0.540 0.000  0
#> SRR1444179     1  0.1792     0.8968 0.916 0.000 0.000 0.084  0
#> SRR1082685     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1362287     1  0.1121     0.9334 0.956 0.000 0.000 0.044  0
#> SRR1339007     1  0.0880     0.9355 0.968 0.000 0.000 0.032  0
#> SRR1376557     2  0.0290     0.9341 0.000 0.992 0.008 0.000  0
#> SRR1468700     2  0.2561     0.8321 0.000 0.856 0.144 0.000  0
#> SRR1077455     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1413978     1  0.3534     0.6891 0.744 0.000 0.000 0.256  0
#> SRR1439896     1  0.0963     0.9336 0.964 0.000 0.000 0.036  0
#> SRR1317963     3  0.3730     0.5063 0.000 0.000 0.712 0.288  0
#> SRR1431865     1  0.1410     0.9304 0.940 0.000 0.000 0.060  0
#> SRR1394253     1  0.1121     0.9321 0.956 0.000 0.000 0.044  0
#> SRR1082664     1  0.0404     0.9402 0.988 0.000 0.000 0.012  0
#> SRR1077968     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1076393     1  0.1671     0.9203 0.924 0.000 0.000 0.076  0
#> SRR1477476     2  0.2020     0.8844 0.000 0.900 0.100 0.000  0
#> SRR1398057     1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1485042     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1385453     4  0.1043     0.6991 0.040 0.000 0.000 0.960  0
#> SRR1348074     4  0.2446     0.7610 0.056 0.000 0.044 0.900  0
#> SRR813959      4  0.2592     0.7594 0.056 0.000 0.052 0.892  0
#> SRR665442      5  0.0000     0.0000 0.000 0.000 0.000 0.000  1
#> SRR1378068     1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1485237     4  0.2446     0.7610 0.056 0.000 0.044 0.900  0
#> SRR1350792     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1326797     1  0.0510     0.9405 0.984 0.000 0.000 0.016  0
#> SRR808994      1  0.1908     0.9107 0.908 0.000 0.000 0.092  0
#> SRR1474041     1  0.0290     0.9404 0.992 0.000 0.000 0.008  0
#> SRR1405641     1  0.1908     0.9107 0.908 0.000 0.000 0.092  0
#> SRR1362245     1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1500194     1  0.1270     0.9246 0.948 0.000 0.000 0.052  0
#> SRR1414876     2  0.2127     0.8663 0.000 0.892 0.108 0.000  0
#> SRR1478523     4  0.1341     0.7011 0.056 0.000 0.000 0.944  0
#> SRR1325161     1  0.0000     0.9406 1.000 0.000 0.000 0.000  0
#> SRR1318026     4  0.3238     0.7257 0.136 0.000 0.028 0.836  0
#> SRR1343778     1  0.0510     0.9398 0.984 0.000 0.000 0.016  0
#> SRR1441287     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1430991     1  0.0290     0.9404 0.992 0.000 0.000 0.008  0
#> SRR1499722     1  0.0404     0.9402 0.988 0.000 0.000 0.012  0
#> SRR1351368     1  0.1671     0.9203 0.924 0.000 0.000 0.076  0
#> SRR1441785     1  0.1121     0.9321 0.956 0.000 0.000 0.044  0
#> SRR1096101     1  0.0963     0.9336 0.964 0.000 0.000 0.036  0
#> SRR808375      1  0.0000     0.9406 1.000 0.000 0.000 0.000  0
#> SRR1452842     1  0.0404     0.9413 0.988 0.000 0.000 0.012  0
#> SRR1311709     1  0.3452     0.6581 0.756 0.000 0.000 0.244  0
#> SRR1433352     1  0.0880     0.9357 0.968 0.000 0.000 0.032  0
#> SRR1340241     2  0.2773     0.8531 0.000 0.836 0.164 0.000  0
#> SRR1456754     1  0.0290     0.9405 0.992 0.000 0.000 0.008  0
#> SRR1465172     1  0.0000     0.9406 1.000 0.000 0.000 0.000  0
#> SRR1499284     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1499607     3  0.3730     0.5063 0.000 0.000 0.712 0.288  0
#> SRR812342      1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1405374     1  0.1121     0.9321 0.956 0.000 0.000 0.044  0
#> SRR1403565     1  0.0290     0.9405 0.992 0.000 0.000 0.008  0
#> SRR1332024     1  0.1908     0.9107 0.908 0.000 0.000 0.092  0
#> SRR1471633     1  0.3452     0.6581 0.756 0.000 0.000 0.244  0
#> SRR1325944     2  0.0000     0.9341 0.000 1.000 0.000 0.000  0
#> SRR1429450     2  0.0000     0.9341 0.000 1.000 0.000 0.000  0
#> SRR821573      1  0.0510     0.9407 0.984 0.000 0.000 0.016  0
#> SRR1435372     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1324184     2  0.0290     0.9336 0.000 0.992 0.008 0.000  0
#> SRR816517      4  0.1018     0.6676 0.016 0.000 0.016 0.968  0
#> SRR1324141     4  0.4374     0.5600 0.272 0.000 0.028 0.700  0
#> SRR1101612     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1356531     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1089785     1  0.0510     0.9407 0.984 0.000 0.000 0.016  0
#> SRR1077708     1  0.0404     0.9402 0.988 0.000 0.000 0.012  0
#> SRR1343720     1  0.0290     0.9404 0.992 0.000 0.000 0.008  0
#> SRR1477499     2  0.0000     0.9341 0.000 1.000 0.000 0.000  0
#> SRR1347236     1  0.0880     0.9357 0.968 0.000 0.000 0.032  0
#> SRR1326408     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1336529     1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1440643     4  0.2439     0.7339 0.120 0.000 0.004 0.876  0
#> SRR662354      1  0.0963     0.9336 0.964 0.000 0.000 0.036  0
#> SRR1310817     1  0.4294     0.0203 0.532 0.000 0.000 0.468  0
#> SRR1347389     2  0.0794     0.9277 0.000 0.972 0.028 0.000  0
#> SRR1353097     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1384737     4  0.3774     0.4935 0.296 0.000 0.000 0.704  0
#> SRR1096339     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1345329     4  0.2446     0.7610 0.056 0.000 0.044 0.900  0
#> SRR1414771     1  0.1908     0.9107 0.908 0.000 0.000 0.092  0
#> SRR1309119     1  0.3452     0.6581 0.756 0.000 0.000 0.244  0
#> SRR1470438     1  0.1908     0.9107 0.908 0.000 0.000 0.092  0
#> SRR1343221     1  0.1121     0.9321 0.956 0.000 0.000 0.044  0
#> SRR1410847     1  0.1270     0.9371 0.948 0.000 0.000 0.052  0
#> SRR807949      1  0.0290     0.9404 0.992 0.000 0.000 0.008  0
#> SRR1442332     1  0.0880     0.9357 0.968 0.000 0.000 0.032  0
#> SRR815920      1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1471524     1  0.1732     0.9199 0.920 0.000 0.000 0.080  0
#> SRR1477221     1  0.1792     0.9143 0.916 0.000 0.000 0.084  0
#> SRR1445046     3  0.2020     0.5875 0.000 0.000 0.900 0.100  0
#> SRR1331962     2  0.2690     0.8232 0.000 0.844 0.156 0.000  0
#> SRR1319946     3  0.2179     0.5866 0.000 0.000 0.888 0.112  0
#> SRR1311599     1  0.1121     0.9321 0.956 0.000 0.000 0.044  0
#> SRR1323977     4  0.2592     0.7594 0.056 0.000 0.052 0.892  0
#> SRR1445132     2  0.2020     0.8844 0.000 0.900 0.100 0.000  0
#> SRR1337321     1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1366390     2  0.0794     0.9277 0.000 0.972 0.028 0.000  0
#> SRR1343012     4  0.4045     0.4128 0.356 0.000 0.000 0.644  0
#> SRR1311958     3  0.2020     0.5875 0.000 0.000 0.900 0.100  0
#> SRR1388234     4  0.2592     0.7594 0.056 0.000 0.052 0.892  0
#> SRR1370384     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1321650     1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1485117     2  0.0162     0.9343 0.000 0.996 0.004 0.000  0
#> SRR1384713     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR816609      4  0.3033     0.7336 0.052 0.000 0.084 0.864  0
#> SRR1486239     3  0.4287     0.1278 0.000 0.460 0.540 0.000  0
#> SRR1309638     1  0.1851     0.9120 0.912 0.000 0.000 0.088  0
#> SRR1356660     1  0.1121     0.9321 0.956 0.000 0.000 0.044  0
#> SRR1392883     2  0.0000     0.9341 0.000 1.000 0.000 0.000  0
#> SRR808130      1  0.0000     0.9406 1.000 0.000 0.000 0.000  0
#> SRR816677      1  0.2179     0.8945 0.888 0.000 0.000 0.112  0
#> SRR1455722     1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1336029     1  0.1908     0.9163 0.908 0.000 0.000 0.092  0
#> SRR808452      1  0.0609     0.9388 0.980 0.000 0.000 0.020  0
#> SRR1352169     1  0.1544     0.9287 0.932 0.000 0.000 0.068  0
#> SRR1366707     1  0.1732     0.9199 0.920 0.000 0.000 0.080  0
#> SRR1328143     1  0.0290     0.9404 0.992 0.000 0.000 0.008  0
#> SRR1473567     2  0.0404     0.9332 0.000 0.988 0.012 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1442087     1  0.0458    0.93838 0.984 0.000 0.000 0.016 0.000  0
#> SRR1390119     3  0.0458    0.74386 0.000 0.016 0.984 0.000 0.000  0
#> SRR1436127     1  0.1501    0.91811 0.924 0.000 0.000 0.076 0.000  0
#> SRR1347278     1  0.1765    0.90844 0.904 0.000 0.000 0.096 0.000  0
#> SRR1332904     5  0.4399    0.03624 0.000 0.460 0.024 0.000 0.516  0
#> SRR1444179     1  0.1714    0.88986 0.908 0.000 0.000 0.092 0.000  0
#> SRR1082685     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1362287     1  0.1007    0.93221 0.956 0.000 0.000 0.044 0.000  0
#> SRR1339007     1  0.0790    0.93383 0.968 0.000 0.000 0.032 0.000  0
#> SRR1376557     2  0.3634    0.56333 0.000 0.696 0.296 0.000 0.008  0
#> SRR1468700     2  0.3014    0.81401 0.000 0.832 0.036 0.000 0.132  0
#> SRR1077455     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1413978     1  0.3175    0.69336 0.744 0.000 0.000 0.256 0.000  0
#> SRR1439896     1  0.0865    0.93207 0.964 0.000 0.000 0.036 0.000  0
#> SRR1317963     5  0.2527    0.53487 0.000 0.000 0.000 0.168 0.832  0
#> SRR1431865     1  0.1267    0.92952 0.940 0.000 0.000 0.060 0.000  0
#> SRR1394253     1  0.1007    0.93086 0.956 0.000 0.000 0.044 0.000  0
#> SRR1082664     1  0.0363    0.93881 0.988 0.000 0.000 0.012 0.000  0
#> SRR1077968     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1076393     1  0.1588    0.91889 0.924 0.000 0.004 0.072 0.000  0
#> SRR1477476     3  0.0458    0.74386 0.000 0.016 0.984 0.000 0.000  0
#> SRR1398057     1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1485042     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1385453     4  0.1232    0.68858 0.024 0.000 0.016 0.956 0.004  0
#> SRR1348074     4  0.2451    0.77512 0.056 0.000 0.000 0.884 0.060  0
#> SRR813959      4  0.2680    0.77264 0.056 0.000 0.000 0.868 0.076  0
#> SRR665442      6  0.0000    0.00000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1378068     1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1485237     4  0.2451    0.77512 0.056 0.000 0.000 0.884 0.060  0
#> SRR1350792     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1326797     1  0.0632    0.93799 0.976 0.000 0.000 0.024 0.000  0
#> SRR808994      1  0.1806    0.90948 0.908 0.000 0.004 0.088 0.000  0
#> SRR1474041     1  0.0260    0.93875 0.992 0.000 0.000 0.008 0.000  0
#> SRR1405641     1  0.1806    0.90948 0.908 0.000 0.004 0.088 0.000  0
#> SRR1362245     1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1500194     1  0.1204    0.92151 0.944 0.000 0.000 0.056 0.000  0
#> SRR1414876     2  0.2937    0.83124 0.000 0.848 0.056 0.000 0.096  0
#> SRR1478523     4  0.1536    0.69316 0.040 0.000 0.016 0.940 0.004  0
#> SRR1325161     1  0.0000    0.93904 1.000 0.000 0.000 0.000 0.000  0
#> SRR1318026     4  0.2740    0.73936 0.120 0.000 0.000 0.852 0.028  0
#> SRR1343778     1  0.0458    0.93838 0.984 0.000 0.000 0.016 0.000  0
#> SRR1441287     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1430991     1  0.0260    0.93875 0.992 0.000 0.000 0.008 0.000  0
#> SRR1499722     1  0.0363    0.93856 0.988 0.000 0.000 0.012 0.000  0
#> SRR1351368     1  0.1588    0.91889 0.924 0.000 0.004 0.072 0.000  0
#> SRR1441785     1  0.1007    0.93086 0.956 0.000 0.000 0.044 0.000  0
#> SRR1096101     1  0.0865    0.93207 0.964 0.000 0.000 0.036 0.000  0
#> SRR808375      1  0.0000    0.93904 1.000 0.000 0.000 0.000 0.000  0
#> SRR1452842     1  0.0363    0.93981 0.988 0.000 0.000 0.012 0.000  0
#> SRR1311709     1  0.3198    0.63685 0.740 0.000 0.000 0.260 0.000  0
#> SRR1433352     1  0.0865    0.93313 0.964 0.000 0.000 0.036 0.000  0
#> SRR1340241     3  0.1921    0.69986 0.000 0.032 0.916 0.000 0.052  0
#> SRR1456754     1  0.0260    0.93895 0.992 0.000 0.000 0.008 0.000  0
#> SRR1465172     1  0.0000    0.93904 1.000 0.000 0.000 0.000 0.000  0
#> SRR1499284     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1499607     5  0.2527    0.53487 0.000 0.000 0.000 0.168 0.832  0
#> SRR812342      1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1405374     1  0.1007    0.93086 0.956 0.000 0.000 0.044 0.000  0
#> SRR1403565     1  0.0260    0.93895 0.992 0.000 0.000 0.008 0.000  0
#> SRR1332024     1  0.1806    0.90948 0.908 0.000 0.004 0.088 0.000  0
#> SRR1471633     1  0.3198    0.63685 0.740 0.000 0.000 0.260 0.000  0
#> SRR1325944     3  0.3309    0.72891 0.000 0.280 0.720 0.000 0.000  0
#> SRR1429450     3  0.3309    0.72891 0.000 0.280 0.720 0.000 0.000  0
#> SRR821573      1  0.0713    0.93626 0.972 0.000 0.000 0.028 0.000  0
#> SRR1435372     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1324184     2  0.0790    0.82305 0.000 0.968 0.032 0.000 0.000  0
#> SRR816517      4  0.1773    0.67147 0.016 0.000 0.016 0.932 0.036  0
#> SRR1324141     4  0.3841    0.56654 0.256 0.000 0.000 0.716 0.028  0
#> SRR1101612     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1356531     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1089785     1  0.0632    0.93767 0.976 0.000 0.000 0.024 0.000  0
#> SRR1077708     1  0.0363    0.93881 0.988 0.000 0.000 0.012 0.000  0
#> SRR1343720     1  0.0260    0.93875 0.992 0.000 0.000 0.008 0.000  0
#> SRR1477499     3  0.3309    0.72891 0.000 0.280 0.720 0.000 0.000  0
#> SRR1347236     1  0.0865    0.93313 0.964 0.000 0.000 0.036 0.000  0
#> SRR1326408     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1336529     1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1440643     4  0.2006    0.74623 0.104 0.000 0.000 0.892 0.004  0
#> SRR662354      1  0.0865    0.93207 0.964 0.000 0.000 0.036 0.000  0
#> SRR1310817     1  0.3864   -0.00288 0.520 0.000 0.000 0.480 0.000  0
#> SRR1347389     2  0.1168    0.82411 0.000 0.956 0.028 0.000 0.016  0
#> SRR1353097     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1384737     4  0.3309    0.49613 0.280 0.000 0.000 0.720 0.000  0
#> SRR1096339     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1345329     4  0.2451    0.77512 0.056 0.000 0.000 0.884 0.060  0
#> SRR1414771     1  0.1806    0.90948 0.908 0.000 0.004 0.088 0.000  0
#> SRR1309119     1  0.3198    0.63685 0.740 0.000 0.000 0.260 0.000  0
#> SRR1470438     1  0.1806    0.90948 0.908 0.000 0.004 0.088 0.000  0
#> SRR1343221     1  0.1007    0.93086 0.956 0.000 0.000 0.044 0.000  0
#> SRR1410847     1  0.1141    0.93591 0.948 0.000 0.000 0.052 0.000  0
#> SRR807949      1  0.0260    0.93875 0.992 0.000 0.000 0.008 0.000  0
#> SRR1442332     1  0.0937    0.93148 0.960 0.000 0.000 0.040 0.000  0
#> SRR815920      1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1471524     1  0.1806    0.91479 0.908 0.000 0.004 0.088 0.000  0
#> SRR1477221     1  0.1610    0.91364 0.916 0.000 0.000 0.084 0.000  0
#> SRR1445046     5  0.0692    0.62894 0.000 0.020 0.000 0.004 0.976  0
#> SRR1331962     2  0.2790    0.80596 0.000 0.844 0.024 0.000 0.132  0
#> SRR1319946     5  0.0405    0.62684 0.000 0.008 0.000 0.004 0.988  0
#> SRR1311599     1  0.1007    0.93086 0.956 0.000 0.000 0.044 0.000  0
#> SRR1323977     4  0.2625    0.77320 0.056 0.000 0.000 0.872 0.072  0
#> SRR1445132     3  0.0865    0.75180 0.000 0.036 0.964 0.000 0.000  0
#> SRR1337321     1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1366390     2  0.1168    0.82411 0.000 0.956 0.028 0.000 0.016  0
#> SRR1343012     4  0.3578    0.41270 0.340 0.000 0.000 0.660 0.000  0
#> SRR1311958     5  0.0692    0.62894 0.000 0.020 0.000 0.004 0.976  0
#> SRR1388234     4  0.2625    0.77320 0.056 0.000 0.000 0.872 0.072  0
#> SRR1370384     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1321650     1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1485117     2  0.2823    0.75463 0.000 0.796 0.204 0.000 0.000  0
#> SRR1384713     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR816609      4  0.3062    0.74844 0.052 0.000 0.000 0.836 0.112  0
#> SRR1486239     5  0.4399    0.03624 0.000 0.460 0.024 0.000 0.516  0
#> SRR1309638     1  0.1663    0.91142 0.912 0.000 0.000 0.088 0.000  0
#> SRR1356660     1  0.1007    0.93086 0.956 0.000 0.000 0.044 0.000  0
#> SRR1392883     3  0.3309    0.72891 0.000 0.280 0.720 0.000 0.000  0
#> SRR808130      1  0.0000    0.93904 1.000 0.000 0.000 0.000 0.000  0
#> SRR816677      1  0.2234    0.88128 0.872 0.000 0.000 0.124 0.004  0
#> SRR1455722     1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1336029     1  0.1714    0.91616 0.908 0.000 0.000 0.092 0.000  0
#> SRR808452      1  0.0547    0.93738 0.980 0.000 0.000 0.020 0.000  0
#> SRR1352169     1  0.1556    0.92146 0.920 0.000 0.000 0.080 0.000  0
#> SRR1366707     1  0.1806    0.91479 0.908 0.000 0.004 0.088 0.000  0
#> SRR1328143     1  0.0260    0.93875 0.992 0.000 0.000 0.008 0.000  0
#> SRR1473567     2  0.2631    0.80241 0.000 0.840 0.152 0.000 0.008  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.990       0.996          0.330 0.666   0.666
#> 3 3 0.607           0.795       0.795          0.608 0.839   0.762
#> 4 4 0.663           0.747       0.878          0.257 0.805   0.630
#> 5 5 0.658           0.563       0.757          0.121 0.926   0.783
#> 6 6 0.680           0.470       0.699          0.063 0.859   0.543

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      1.000 1.000 0.000
#> SRR1390119     2  0.0000      0.982 0.000 1.000
#> SRR1436127     1  0.0000      1.000 1.000 0.000
#> SRR1347278     1  0.0000      1.000 1.000 0.000
#> SRR1332904     2  0.0000      0.982 0.000 1.000
#> SRR1444179     1  0.0000      1.000 1.000 0.000
#> SRR1082685     1  0.0000      1.000 1.000 0.000
#> SRR1362287     1  0.0000      1.000 1.000 0.000
#> SRR1339007     1  0.0000      1.000 1.000 0.000
#> SRR1376557     2  0.0000      0.982 0.000 1.000
#> SRR1468700     2  0.0000      0.982 0.000 1.000
#> SRR1077455     1  0.0000      1.000 1.000 0.000
#> SRR1413978     1  0.0000      1.000 1.000 0.000
#> SRR1439896     1  0.0000      1.000 1.000 0.000
#> SRR1317963     2  0.0000      0.982 0.000 1.000
#> SRR1431865     1  0.0000      1.000 1.000 0.000
#> SRR1394253     1  0.0000      1.000 1.000 0.000
#> SRR1082664     1  0.0000      1.000 1.000 0.000
#> SRR1077968     1  0.0000      1.000 1.000 0.000
#> SRR1076393     1  0.0000      1.000 1.000 0.000
#> SRR1477476     2  0.0000      0.982 0.000 1.000
#> SRR1398057     1  0.0000      1.000 1.000 0.000
#> SRR1485042     1  0.0000      1.000 1.000 0.000
#> SRR1385453     1  0.0000      1.000 1.000 0.000
#> SRR1348074     1  0.0000      1.000 1.000 0.000
#> SRR813959      1  0.0000      1.000 1.000 0.000
#> SRR665442      2  0.0938      0.971 0.012 0.988
#> SRR1378068     1  0.0000      1.000 1.000 0.000
#> SRR1485237     1  0.0000      1.000 1.000 0.000
#> SRR1350792     1  0.0000      1.000 1.000 0.000
#> SRR1326797     1  0.0000      1.000 1.000 0.000
#> SRR808994      1  0.0000      1.000 1.000 0.000
#> SRR1474041     1  0.0000      1.000 1.000 0.000
#> SRR1405641     1  0.0000      1.000 1.000 0.000
#> SRR1362245     1  0.0000      1.000 1.000 0.000
#> SRR1500194     1  0.0000      1.000 1.000 0.000
#> SRR1414876     2  0.0000      0.982 0.000 1.000
#> SRR1478523     1  0.0000      1.000 1.000 0.000
#> SRR1325161     1  0.0000      1.000 1.000 0.000
#> SRR1318026     1  0.0000      1.000 1.000 0.000
#> SRR1343778     1  0.0000      1.000 1.000 0.000
#> SRR1441287     1  0.0000      1.000 1.000 0.000
#> SRR1430991     1  0.0000      1.000 1.000 0.000
#> SRR1499722     1  0.0000      1.000 1.000 0.000
#> SRR1351368     1  0.0000      1.000 1.000 0.000
#> SRR1441785     1  0.0000      1.000 1.000 0.000
#> SRR1096101     1  0.0000      1.000 1.000 0.000
#> SRR808375      1  0.0000      1.000 1.000 0.000
#> SRR1452842     1  0.0000      1.000 1.000 0.000
#> SRR1311709     1  0.0000      1.000 1.000 0.000
#> SRR1433352     1  0.0000      1.000 1.000 0.000
#> SRR1340241     2  0.0000      0.982 0.000 1.000
#> SRR1456754     1  0.0000      1.000 1.000 0.000
#> SRR1465172     1  0.0000      1.000 1.000 0.000
#> SRR1499284     1  0.0000      1.000 1.000 0.000
#> SRR1499607     2  0.0000      0.982 0.000 1.000
#> SRR812342      1  0.0000      1.000 1.000 0.000
#> SRR1405374     1  0.0000      1.000 1.000 0.000
#> SRR1403565     1  0.0000      1.000 1.000 0.000
#> SRR1332024     1  0.0000      1.000 1.000 0.000
#> SRR1471633     1  0.0000      1.000 1.000 0.000
#> SRR1325944     2  0.0000      0.982 0.000 1.000
#> SRR1429450     2  0.0000      0.982 0.000 1.000
#> SRR821573      1  0.0000      1.000 1.000 0.000
#> SRR1435372     1  0.0000      1.000 1.000 0.000
#> SRR1324184     2  0.0000      0.982 0.000 1.000
#> SRR816517      1  0.0000      1.000 1.000 0.000
#> SRR1324141     1  0.0000      1.000 1.000 0.000
#> SRR1101612     1  0.0000      1.000 1.000 0.000
#> SRR1356531     1  0.0000      1.000 1.000 0.000
#> SRR1089785     1  0.0000      1.000 1.000 0.000
#> SRR1077708     1  0.0000      1.000 1.000 0.000
#> SRR1343720     1  0.0000      1.000 1.000 0.000
#> SRR1477499     2  0.0000      0.982 0.000 1.000
#> SRR1347236     1  0.0000      1.000 1.000 0.000
#> SRR1326408     1  0.0000      1.000 1.000 0.000
#> SRR1336529     1  0.0000      1.000 1.000 0.000
#> SRR1440643     1  0.0000      1.000 1.000 0.000
#> SRR662354      1  0.0000      1.000 1.000 0.000
#> SRR1310817     1  0.0000      1.000 1.000 0.000
#> SRR1347389     2  0.0000      0.982 0.000 1.000
#> SRR1353097     1  0.0000      1.000 1.000 0.000
#> SRR1384737     1  0.0000      1.000 1.000 0.000
#> SRR1096339     1  0.0000      1.000 1.000 0.000
#> SRR1345329     1  0.0000      1.000 1.000 0.000
#> SRR1414771     1  0.0000      1.000 1.000 0.000
#> SRR1309119     1  0.0000      1.000 1.000 0.000
#> SRR1470438     1  0.0000      1.000 1.000 0.000
#> SRR1343221     1  0.0000      1.000 1.000 0.000
#> SRR1410847     1  0.0000      1.000 1.000 0.000
#> SRR807949      1  0.0000      1.000 1.000 0.000
#> SRR1442332     1  0.0000      1.000 1.000 0.000
#> SRR815920      1  0.0000      1.000 1.000 0.000
#> SRR1471524     1  0.0000      1.000 1.000 0.000
#> SRR1477221     1  0.0000      1.000 1.000 0.000
#> SRR1445046     2  0.0000      0.982 0.000 1.000
#> SRR1331962     2  0.0000      0.982 0.000 1.000
#> SRR1319946     2  0.0000      0.982 0.000 1.000
#> SRR1311599     1  0.0000      1.000 1.000 0.000
#> SRR1323977     1  0.0000      1.000 1.000 0.000
#> SRR1445132     2  0.0000      0.982 0.000 1.000
#> SRR1337321     1  0.0000      1.000 1.000 0.000
#> SRR1366390     2  0.0000      0.982 0.000 1.000
#> SRR1343012     1  0.0000      1.000 1.000 0.000
#> SRR1311958     2  0.0000      0.982 0.000 1.000
#> SRR1388234     2  0.9896      0.215 0.440 0.560
#> SRR1370384     1  0.0000      1.000 1.000 0.000
#> SRR1321650     1  0.0000      1.000 1.000 0.000
#> SRR1485117     2  0.0000      0.982 0.000 1.000
#> SRR1384713     1  0.0000      1.000 1.000 0.000
#> SRR816609      1  0.0000      1.000 1.000 0.000
#> SRR1486239     2  0.0000      0.982 0.000 1.000
#> SRR1309638     1  0.0000      1.000 1.000 0.000
#> SRR1356660     1  0.0000      1.000 1.000 0.000
#> SRR1392883     2  0.0000      0.982 0.000 1.000
#> SRR808130      1  0.0000      1.000 1.000 0.000
#> SRR816677      1  0.0000      1.000 1.000 0.000
#> SRR1455722     1  0.0000      1.000 1.000 0.000
#> SRR1336029     1  0.0000      1.000 1.000 0.000
#> SRR808452      1  0.0000      1.000 1.000 0.000
#> SRR1352169     1  0.0000      1.000 1.000 0.000
#> SRR1366707     1  0.0000      1.000 1.000 0.000
#> SRR1328143     1  0.0000      1.000 1.000 0.000
#> SRR1473567     2  0.0000      0.982 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     1  0.5678      0.772 0.684 0.000 0.316
#> SRR1390119     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1436127     1  0.5785      0.765 0.668 0.000 0.332
#> SRR1347278     1  0.5621      0.777 0.692 0.000 0.308
#> SRR1332904     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1444179     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1082685     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1362287     1  0.5733      0.768 0.676 0.000 0.324
#> SRR1339007     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1376557     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1468700     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1413978     1  0.5254      0.787 0.736 0.000 0.264
#> SRR1439896     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1317963     3  0.5859      0.436 0.000 0.344 0.656
#> SRR1431865     1  0.5465      0.783 0.712 0.000 0.288
#> SRR1394253     1  0.3116      0.804 0.892 0.000 0.108
#> SRR1082664     1  0.5497      0.782 0.708 0.000 0.292
#> SRR1077968     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1076393     1  0.5859      0.759 0.656 0.000 0.344
#> SRR1477476     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1398057     1  0.5706      0.770 0.680 0.000 0.320
#> SRR1485042     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1385453     3  0.5733      0.803 0.324 0.000 0.676
#> SRR1348074     3  0.5785      0.804 0.332 0.000 0.668
#> SRR813959      3  0.5733      0.803 0.324 0.000 0.676
#> SRR665442      3  0.5733      0.459 0.000 0.324 0.676
#> SRR1378068     1  0.5760      0.766 0.672 0.000 0.328
#> SRR1485237     3  0.5785      0.804 0.332 0.000 0.668
#> SRR1350792     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1326797     1  0.0000      0.801 1.000 0.000 0.000
#> SRR808994      1  0.5859      0.759 0.656 0.000 0.344
#> SRR1474041     1  0.2537      0.805 0.920 0.000 0.080
#> SRR1405641     1  0.5859      0.759 0.656 0.000 0.344
#> SRR1362245     1  0.5835      0.761 0.660 0.000 0.340
#> SRR1500194     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1414876     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1478523     1  0.1411      0.793 0.964 0.000 0.036
#> SRR1325161     1  0.3267      0.804 0.884 0.000 0.116
#> SRR1318026     3  0.5785      0.804 0.332 0.000 0.668
#> SRR1343778     1  0.5497      0.782 0.708 0.000 0.292
#> SRR1441287     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1430991     1  0.0237      0.802 0.996 0.000 0.004
#> SRR1499722     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1351368     1  0.5859      0.759 0.656 0.000 0.344
#> SRR1441785     1  0.5560      0.779 0.700 0.000 0.300
#> SRR1096101     1  0.0000      0.801 1.000 0.000 0.000
#> SRR808375      1  0.3340      0.804 0.880 0.000 0.120
#> SRR1452842     1  0.3116      0.804 0.892 0.000 0.108
#> SRR1311709     1  0.6280     -0.429 0.540 0.000 0.460
#> SRR1433352     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1340241     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1456754     1  0.5465      0.783 0.712 0.000 0.288
#> SRR1465172     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1499284     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1499607     3  0.5785      0.453 0.000 0.332 0.668
#> SRR812342      1  0.0000      0.801 1.000 0.000 0.000
#> SRR1405374     1  0.5465      0.783 0.712 0.000 0.288
#> SRR1403565     1  0.5465      0.783 0.712 0.000 0.288
#> SRR1332024     1  0.5810      0.763 0.664 0.000 0.336
#> SRR1471633     1  0.2165      0.732 0.936 0.000 0.064
#> SRR1325944     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1429450     2  0.0000      1.000 0.000 1.000 0.000
#> SRR821573      1  0.0000      0.801 1.000 0.000 0.000
#> SRR1435372     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1324184     2  0.0000      1.000 0.000 1.000 0.000
#> SRR816517      3  0.1411      0.544 0.036 0.000 0.964
#> SRR1324141     3  0.5785      0.804 0.332 0.000 0.668
#> SRR1101612     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1089785     1  0.0237      0.801 0.996 0.000 0.004
#> SRR1077708     1  0.5706      0.770 0.680 0.000 0.320
#> SRR1343720     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1477499     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1347236     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1326408     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1336529     1  0.5810      0.763 0.664 0.000 0.336
#> SRR1440643     3  0.5733      0.803 0.324 0.000 0.676
#> SRR662354      1  0.0000      0.801 1.000 0.000 0.000
#> SRR1310817     1  0.0892      0.794 0.980 0.000 0.020
#> SRR1347389     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1353097     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1384737     3  0.3941      0.586 0.156 0.000 0.844
#> SRR1096339     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1345329     3  0.5785      0.804 0.332 0.000 0.668
#> SRR1414771     1  0.5859      0.759 0.656 0.000 0.344
#> SRR1309119     1  0.2165      0.732 0.936 0.000 0.064
#> SRR1470438     1  0.5859      0.759 0.656 0.000 0.344
#> SRR1343221     1  0.5465      0.783 0.712 0.000 0.288
#> SRR1410847     1  0.0000      0.801 1.000 0.000 0.000
#> SRR807949      1  0.0237      0.801 0.996 0.000 0.004
#> SRR1442332     1  0.0000      0.801 1.000 0.000 0.000
#> SRR815920      1  0.5785      0.765 0.668 0.000 0.332
#> SRR1471524     1  0.5859      0.759 0.656 0.000 0.344
#> SRR1477221     1  0.5760      0.766 0.672 0.000 0.328
#> SRR1445046     3  0.5948      0.408 0.000 0.360 0.640
#> SRR1331962     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1319946     3  0.5882      0.430 0.000 0.348 0.652
#> SRR1311599     1  0.5497      0.782 0.708 0.000 0.292
#> SRR1323977     3  0.5785      0.804 0.332 0.000 0.668
#> SRR1445132     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1337321     1  0.5835      0.761 0.660 0.000 0.340
#> SRR1366390     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1343012     1  0.5138      0.783 0.748 0.000 0.252
#> SRR1311958     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1388234     3  0.6369      0.797 0.316 0.016 0.668
#> SRR1370384     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1321650     1  0.5760      0.766 0.672 0.000 0.328
#> SRR1485117     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.801 1.000 0.000 0.000
#> SRR816609      3  0.5785      0.804 0.332 0.000 0.668
#> SRR1486239     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1309638     1  0.5733      0.768 0.676 0.000 0.324
#> SRR1356660     1  0.5497      0.782 0.708 0.000 0.292
#> SRR1392883     2  0.0000      1.000 0.000 1.000 0.000
#> SRR808130      1  0.4702      0.796 0.788 0.000 0.212
#> SRR816677      1  0.0747      0.793 0.984 0.000 0.016
#> SRR1455722     1  0.0000      0.801 1.000 0.000 0.000
#> SRR1336029     1  0.5591      0.779 0.696 0.000 0.304
#> SRR808452      1  0.0000      0.801 1.000 0.000 0.000
#> SRR1352169     1  0.5497      0.782 0.708 0.000 0.292
#> SRR1366707     1  0.5859      0.759 0.656 0.000 0.344
#> SRR1328143     1  0.3340      0.804 0.880 0.000 0.120
#> SRR1473567     2  0.0000      1.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     1  0.5366     0.0276 0.548 0.000 0.440 0.012
#> SRR1390119     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR1436127     3  0.3172     0.8341 0.160 0.000 0.840 0.000
#> SRR1347278     3  0.5313     0.4602 0.376 0.000 0.608 0.016
#> SRR1332904     2  0.2342     0.9399 0.000 0.912 0.080 0.008
#> SRR1444179     1  0.2714     0.7330 0.884 0.000 0.112 0.004
#> SRR1082685     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1362287     3  0.4453     0.7416 0.244 0.000 0.744 0.012
#> SRR1339007     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.0000     0.9779 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0469     0.9758 0.000 0.988 0.012 0.000
#> SRR1077455     1  0.0188     0.8208 0.996 0.000 0.000 0.004
#> SRR1413978     3  0.5396     0.1879 0.464 0.000 0.524 0.012
#> SRR1439896     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1317963     4  0.2670     0.9230 0.000 0.024 0.072 0.904
#> SRR1431865     1  0.5402    -0.0741 0.516 0.000 0.472 0.012
#> SRR1394253     1  0.0804     0.8155 0.980 0.000 0.008 0.012
#> SRR1082664     1  0.5093     0.3319 0.640 0.000 0.348 0.012
#> SRR1077968     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1076393     3  0.2593     0.8407 0.104 0.000 0.892 0.004
#> SRR1477476     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR1398057     1  0.5392    -0.0583 0.528 0.000 0.460 0.012
#> SRR1485042     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1385453     4  0.1767     0.9368 0.012 0.000 0.044 0.944
#> SRR1348074     4  0.1042     0.9500 0.020 0.000 0.008 0.972
#> SRR813959      4  0.0804     0.9492 0.012 0.000 0.008 0.980
#> SRR665442      4  0.2861     0.9149 0.000 0.016 0.096 0.888
#> SRR1378068     3  0.3764     0.7826 0.216 0.000 0.784 0.000
#> SRR1485237     4  0.1004     0.9479 0.024 0.000 0.004 0.972
#> SRR1350792     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.0188     0.8208 0.996 0.000 0.000 0.004
#> SRR808994      3  0.2593     0.8407 0.104 0.000 0.892 0.004
#> SRR1474041     1  0.4290     0.6335 0.772 0.000 0.212 0.016
#> SRR1405641     3  0.2593     0.8407 0.104 0.000 0.892 0.004
#> SRR1362245     3  0.2921     0.8431 0.140 0.000 0.860 0.000
#> SRR1500194     1  0.2469     0.7395 0.892 0.000 0.108 0.000
#> SRR1414876     2  0.0000     0.9779 0.000 1.000 0.000 0.000
#> SRR1478523     1  0.6242     0.3967 0.612 0.000 0.308 0.080
#> SRR1325161     1  0.1406     0.8073 0.960 0.000 0.024 0.016
#> SRR1318026     4  0.2002     0.9364 0.020 0.000 0.044 0.936
#> SRR1343778     1  0.4999     0.3788 0.660 0.000 0.328 0.012
#> SRR1441287     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1430991     1  0.0657     0.8176 0.984 0.000 0.012 0.004
#> SRR1499722     1  0.0524     0.8191 0.988 0.000 0.008 0.004
#> SRR1351368     3  0.2983     0.7950 0.068 0.000 0.892 0.040
#> SRR1441785     1  0.5256     0.1967 0.596 0.000 0.392 0.012
#> SRR1096101     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR808375      1  0.1406     0.8073 0.960 0.000 0.024 0.016
#> SRR1452842     1  0.1406     0.8073 0.960 0.000 0.024 0.016
#> SRR1311709     1  0.7181     0.1597 0.512 0.000 0.152 0.336
#> SRR1433352     1  0.0188     0.8208 0.996 0.000 0.000 0.004
#> SRR1340241     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR1456754     1  0.5038     0.3599 0.652 0.000 0.336 0.012
#> SRR1465172     1  0.0672     0.8184 0.984 0.000 0.008 0.008
#> SRR1499284     1  0.0524     0.8191 0.988 0.000 0.008 0.004
#> SRR1499607     4  0.2670     0.9230 0.000 0.024 0.072 0.904
#> SRR812342      1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1405374     1  0.5057     0.3409 0.648 0.000 0.340 0.012
#> SRR1403565     1  0.5204     0.2534 0.612 0.000 0.376 0.012
#> SRR1332024     3  0.3105     0.8432 0.140 0.000 0.856 0.004
#> SRR1471633     1  0.4535     0.6548 0.804 0.000 0.112 0.084
#> SRR1325944     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR1429450     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR821573      1  0.1902     0.7789 0.932 0.000 0.064 0.004
#> SRR1435372     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.0524     0.9760 0.000 0.988 0.008 0.004
#> SRR816517      4  0.0817     0.9443 0.000 0.000 0.024 0.976
#> SRR1324141     4  0.3099     0.8820 0.020 0.000 0.104 0.876
#> SRR1101612     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1089785     1  0.0524     0.8191 0.988 0.000 0.008 0.004
#> SRR1077708     1  0.5337     0.0883 0.564 0.000 0.424 0.012
#> SRR1343720     1  0.0376     0.8202 0.992 0.000 0.004 0.004
#> SRR1477499     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR1347236     1  0.0188     0.8208 0.996 0.000 0.000 0.004
#> SRR1326408     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1336529     3  0.3157     0.8426 0.144 0.000 0.852 0.004
#> SRR1440643     4  0.1767     0.9368 0.012 0.000 0.044 0.944
#> SRR662354      1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1310817     1  0.4434     0.6079 0.756 0.000 0.228 0.016
#> SRR1347389     2  0.2342     0.9413 0.000 0.912 0.080 0.008
#> SRR1353097     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1384737     3  0.5143     0.1468 0.004 0.000 0.540 0.456
#> SRR1096339     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1345329     4  0.1042     0.9500 0.020 0.000 0.008 0.972
#> SRR1414771     3  0.2593     0.8407 0.104 0.000 0.892 0.004
#> SRR1309119     1  0.4535     0.6548 0.804 0.000 0.112 0.084
#> SRR1470438     3  0.2593     0.8407 0.104 0.000 0.892 0.004
#> SRR1343221     1  0.5110     0.3221 0.636 0.000 0.352 0.012
#> SRR1410847     1  0.0469     0.8179 0.988 0.000 0.000 0.012
#> SRR807949      1  0.0657     0.8176 0.984 0.000 0.012 0.004
#> SRR1442332     1  0.0188     0.8208 0.996 0.000 0.000 0.004
#> SRR815920      3  0.3306     0.8374 0.156 0.000 0.840 0.004
#> SRR1471524     3  0.2593     0.8407 0.104 0.000 0.892 0.004
#> SRR1477221     3  0.3377     0.8420 0.140 0.000 0.848 0.012
#> SRR1445046     4  0.3107     0.9094 0.000 0.036 0.080 0.884
#> SRR1331962     2  0.2197     0.9422 0.000 0.916 0.080 0.004
#> SRR1319946     4  0.2670     0.9230 0.000 0.024 0.072 0.904
#> SRR1311599     1  0.5159     0.2870 0.624 0.000 0.364 0.012
#> SRR1323977     4  0.1042     0.9500 0.020 0.000 0.008 0.972
#> SRR1445132     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR1337321     3  0.3377     0.8420 0.140 0.000 0.848 0.012
#> SRR1366390     2  0.0524     0.9760 0.000 0.988 0.008 0.004
#> SRR1343012     3  0.6532     0.3652 0.368 0.000 0.548 0.084
#> SRR1311958     2  0.2342     0.9399 0.000 0.912 0.080 0.008
#> SRR1388234     4  0.2413     0.9357 0.020 0.000 0.064 0.916
#> SRR1370384     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1321650     3  0.3837     0.7744 0.224 0.000 0.776 0.000
#> SRR1485117     2  0.0000     0.9779 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR816609      4  0.1042     0.9500 0.020 0.000 0.008 0.972
#> SRR1486239     2  0.2342     0.9399 0.000 0.912 0.080 0.008
#> SRR1309638     3  0.4072     0.7386 0.252 0.000 0.748 0.000
#> SRR1356660     1  0.5244     0.2096 0.600 0.000 0.388 0.012
#> SRR1392883     2  0.0188     0.9780 0.000 0.996 0.004 0.000
#> SRR808130      1  0.2142     0.7853 0.928 0.000 0.056 0.016
#> SRR816677      1  0.5291     0.5818 0.740 0.000 0.180 0.080
#> SRR1455722     1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1336029     3  0.5372     0.2519 0.444 0.000 0.544 0.012
#> SRR808452      1  0.0000     0.8213 1.000 0.000 0.000 0.000
#> SRR1352169     1  0.5508    -0.0838 0.508 0.000 0.476 0.016
#> SRR1366707     3  0.2593     0.8407 0.104 0.000 0.892 0.004
#> SRR1328143     1  0.1798     0.7974 0.944 0.000 0.040 0.016
#> SRR1473567     2  0.0336     0.9766 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     1  0.6225   -0.02264 0.544 0.000 0.200 0.000 0.256
#> SRR1390119     2  0.0290    0.92068 0.000 0.992 0.008 0.000 0.000
#> SRR1436127     3  0.3075    0.81434 0.048 0.000 0.860 0.000 0.092
#> SRR1347278     3  0.6660   -0.06923 0.228 0.000 0.388 0.000 0.384
#> SRR1332904     2  0.3884    0.77656 0.000 0.708 0.000 0.004 0.288
#> SRR1444179     1  0.5671    0.20154 0.536 0.000 0.016 0.048 0.400
#> SRR1082685     1  0.4268    0.51553 0.708 0.000 0.000 0.024 0.268
#> SRR1362287     3  0.5409    0.50776 0.084 0.000 0.612 0.000 0.304
#> SRR1339007     1  0.3970    0.53367 0.752 0.000 0.000 0.024 0.224
#> SRR1376557     2  0.0000    0.92112 0.000 1.000 0.000 0.000 0.000
#> SRR1468700     2  0.2127    0.88568 0.000 0.892 0.000 0.000 0.108
#> SRR1077455     1  0.1732    0.55428 0.920 0.000 0.000 0.000 0.080
#> SRR1413978     5  0.6253    0.37589 0.204 0.000 0.228 0.004 0.564
#> SRR1439896     1  0.4292    0.51179 0.704 0.000 0.000 0.024 0.272
#> SRR1317963     4  0.4157    0.72363 0.000 0.020 0.000 0.716 0.264
#> SRR1431865     5  0.6557    0.24148 0.340 0.000 0.212 0.000 0.448
#> SRR1394253     1  0.4242    0.28976 0.572 0.000 0.000 0.000 0.428
#> SRR1082664     1  0.5496    0.17020 0.652 0.000 0.152 0.000 0.196
#> SRR1077968     1  0.3940    0.53531 0.756 0.000 0.000 0.024 0.220
#> SRR1076393     3  0.0960    0.84732 0.016 0.000 0.972 0.004 0.008
#> SRR1477476     2  0.0290    0.92068 0.000 0.992 0.008 0.000 0.000
#> SRR1398057     1  0.6405   -0.06823 0.512 0.000 0.252 0.000 0.236
#> SRR1485042     1  0.4193    0.52195 0.720 0.000 0.000 0.024 0.256
#> SRR1385453     4  0.3203    0.76730 0.008 0.000 0.020 0.848 0.124
#> SRR1348074     4  0.0162    0.82341 0.000 0.000 0.004 0.996 0.000
#> SRR813959      4  0.0290    0.82283 0.008 0.000 0.000 0.992 0.000
#> SRR665442      4  0.4735    0.70306 0.000 0.020 0.012 0.668 0.300
#> SRR1378068     3  0.1671    0.84085 0.076 0.000 0.924 0.000 0.000
#> SRR1485237     4  0.1430    0.80929 0.000 0.000 0.004 0.944 0.052
#> SRR1350792     1  0.3970    0.53367 0.752 0.000 0.000 0.024 0.224
#> SRR1326797     1  0.1908    0.53921 0.908 0.000 0.000 0.000 0.092
#> SRR808994      3  0.0771    0.85021 0.020 0.000 0.976 0.004 0.000
#> SRR1474041     1  0.5236    0.28254 0.684 0.000 0.152 0.000 0.164
#> SRR1405641     3  0.0771    0.85021 0.020 0.000 0.976 0.004 0.000
#> SRR1362245     3  0.2304    0.84568 0.044 0.000 0.908 0.000 0.048
#> SRR1500194     1  0.5253    0.26399 0.564 0.000 0.016 0.024 0.396
#> SRR1414876     2  0.0510    0.92078 0.000 0.984 0.000 0.000 0.016
#> SRR1478523     1  0.8010   -0.27134 0.352 0.000 0.084 0.272 0.292
#> SRR1325161     1  0.2612    0.47053 0.868 0.000 0.008 0.000 0.124
#> SRR1318026     4  0.2921    0.76624 0.000 0.000 0.020 0.856 0.124
#> SRR1343778     1  0.5452    0.17867 0.656 0.000 0.144 0.000 0.200
#> SRR1441287     1  0.4292    0.51179 0.704 0.000 0.000 0.024 0.272
#> SRR1430991     1  0.1082    0.52957 0.964 0.000 0.008 0.000 0.028
#> SRR1499722     1  0.0771    0.53457 0.976 0.000 0.004 0.000 0.020
#> SRR1351368     3  0.3403    0.78152 0.008 0.000 0.820 0.012 0.160
#> SRR1441785     5  0.6605    0.23708 0.348 0.000 0.220 0.000 0.432
#> SRR1096101     1  0.4268    0.51528 0.708 0.000 0.000 0.024 0.268
#> SRR808375      1  0.2798    0.45492 0.852 0.000 0.008 0.000 0.140
#> SRR1452842     1  0.3835    0.37045 0.732 0.000 0.008 0.000 0.260
#> SRR1311709     5  0.7162    0.29455 0.288 0.000 0.016 0.300 0.396
#> SRR1433352     1  0.1410    0.54739 0.940 0.000 0.000 0.000 0.060
#> SRR1340241     2  0.0290    0.92068 0.000 0.992 0.008 0.000 0.000
#> SRR1456754     1  0.6082    0.00106 0.540 0.000 0.148 0.000 0.312
#> SRR1465172     1  0.0865    0.53338 0.972 0.000 0.004 0.000 0.024
#> SRR1499284     1  0.0880    0.54761 0.968 0.000 0.000 0.000 0.032
#> SRR1499607     4  0.4132    0.72570 0.000 0.020 0.000 0.720 0.260
#> SRR812342      1  0.3877    0.53621 0.764 0.000 0.000 0.024 0.212
#> SRR1405374     5  0.6347    0.14192 0.376 0.000 0.164 0.000 0.460
#> SRR1403565     1  0.6544   -0.16739 0.440 0.000 0.204 0.000 0.356
#> SRR1332024     3  0.1043    0.85094 0.040 0.000 0.960 0.000 0.000
#> SRR1471633     5  0.7152    0.29335 0.304 0.000 0.016 0.280 0.400
#> SRR1325944     2  0.0000    0.92112 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000    0.92112 0.000 1.000 0.000 0.000 0.000
#> SRR821573      1  0.3759    0.37506 0.764 0.000 0.016 0.000 0.220
#> SRR1435372     1  0.4268    0.51553 0.708 0.000 0.000 0.024 0.268
#> SRR1324184     2  0.0898    0.91923 0.000 0.972 0.008 0.000 0.020
#> SRR816517      4  0.0703    0.81926 0.000 0.000 0.024 0.976 0.000
#> SRR1324141     4  0.3319    0.73032 0.000 0.000 0.020 0.820 0.160
#> SRR1101612     1  0.4000    0.53144 0.748 0.000 0.000 0.024 0.228
#> SRR1356531     1  0.3940    0.53531 0.756 0.000 0.000 0.024 0.220
#> SRR1089785     1  0.2536    0.47508 0.868 0.000 0.004 0.000 0.128
#> SRR1077708     1  0.5849    0.09748 0.608 0.000 0.196 0.000 0.196
#> SRR1343720     1  0.0609    0.53603 0.980 0.000 0.000 0.000 0.020
#> SRR1477499     2  0.0000    0.92112 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     1  0.1908    0.54548 0.908 0.000 0.000 0.000 0.092
#> SRR1326408     1  0.4268    0.51553 0.708 0.000 0.000 0.024 0.268
#> SRR1336529     3  0.1043    0.85094 0.040 0.000 0.960 0.000 0.000
#> SRR1440643     4  0.3203    0.76730 0.008 0.000 0.020 0.848 0.124
#> SRR662354      1  0.4268    0.51553 0.708 0.000 0.000 0.024 0.268
#> SRR1310817     1  0.6322    0.03258 0.552 0.000 0.104 0.024 0.320
#> SRR1347389     2  0.3980    0.77931 0.000 0.708 0.008 0.000 0.284
#> SRR1353097     1  0.4219    0.51931 0.716 0.000 0.000 0.024 0.260
#> SRR1384737     4  0.6346    0.12882 0.000 0.000 0.160 0.436 0.404
#> SRR1096339     1  0.4219    0.51931 0.716 0.000 0.000 0.024 0.260
#> SRR1345329     4  0.0162    0.82341 0.000 0.000 0.004 0.996 0.000
#> SRR1414771     3  0.0833    0.84662 0.016 0.000 0.976 0.004 0.004
#> SRR1309119     5  0.7159    0.28787 0.308 0.000 0.016 0.280 0.396
#> SRR1470438     3  0.0833    0.84662 0.016 0.000 0.976 0.004 0.004
#> SRR1343221     1  0.6175   -0.03489 0.528 0.000 0.160 0.000 0.312
#> SRR1410847     1  0.4165    0.51184 0.672 0.000 0.000 0.008 0.320
#> SRR807949      1  0.2411    0.48161 0.884 0.000 0.008 0.000 0.108
#> SRR1442332     1  0.2488    0.53275 0.872 0.000 0.004 0.000 0.124
#> SRR815920      3  0.1768    0.84073 0.072 0.000 0.924 0.000 0.004
#> SRR1471524     3  0.3031    0.80600 0.016 0.000 0.852 0.004 0.128
#> SRR1477221     3  0.4640    0.67113 0.048 0.000 0.696 0.000 0.256
#> SRR1445046     4  0.4297    0.70708 0.000 0.020 0.000 0.692 0.288
#> SRR1331962     2  0.3730    0.77942 0.000 0.712 0.000 0.000 0.288
#> SRR1319946     4  0.4181    0.72207 0.000 0.020 0.000 0.712 0.268
#> SRR1311599     1  0.6445   -0.14490 0.456 0.000 0.184 0.000 0.360
#> SRR1323977     4  0.0000    0.82313 0.000 0.000 0.000 1.000 0.000
#> SRR1445132     2  0.0290    0.92068 0.000 0.992 0.008 0.000 0.000
#> SRR1337321     3  0.4573    0.67378 0.044 0.000 0.700 0.000 0.256
#> SRR1366390     2  0.1168    0.91657 0.000 0.960 0.008 0.000 0.032
#> SRR1343012     5  0.7380    0.23996 0.068 0.000 0.188 0.244 0.500
#> SRR1311958     2  0.3884    0.77656 0.000 0.708 0.000 0.004 0.288
#> SRR1388234     4  0.2813    0.78415 0.000 0.000 0.000 0.832 0.168
#> SRR1370384     1  0.3381    0.53878 0.808 0.000 0.000 0.016 0.176
#> SRR1321650     3  0.1732    0.83886 0.080 0.000 0.920 0.000 0.000
#> SRR1485117     2  0.0609    0.92029 0.000 0.980 0.000 0.000 0.020
#> SRR1384713     1  0.2513    0.55243 0.876 0.000 0.000 0.008 0.116
#> SRR816609      4  0.0162    0.82341 0.000 0.000 0.004 0.996 0.000
#> SRR1486239     2  0.3884    0.77656 0.000 0.708 0.000 0.004 0.288
#> SRR1309638     3  0.3575    0.78412 0.120 0.000 0.824 0.000 0.056
#> SRR1356660     5  0.6605    0.23708 0.348 0.000 0.220 0.000 0.432
#> SRR1392883     2  0.0000    0.92112 0.000 1.000 0.000 0.000 0.000
#> SRR808130      1  0.3011    0.44682 0.844 0.000 0.016 0.000 0.140
#> SRR816677      5  0.7152    0.29335 0.304 0.000 0.016 0.280 0.400
#> SRR1455722     1  0.4268    0.51528 0.708 0.000 0.000 0.024 0.268
#> SRR1336029     5  0.6352    0.31945 0.148 0.000 0.288 0.012 0.552
#> SRR808452      1  0.4243    0.51829 0.712 0.000 0.000 0.024 0.264
#> SRR1352169     1  0.5993    0.09488 0.584 0.000 0.184 0.000 0.232
#> SRR1366707     3  0.0960    0.84732 0.016 0.000 0.972 0.004 0.008
#> SRR1328143     1  0.3011    0.44682 0.844 0.000 0.016 0.000 0.140
#> SRR1473567     2  0.0609    0.92029 0.000 0.980 0.000 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.6200    0.17376 0.144 0.000 0.084 0.000 0.588 0.184
#> SRR1390119     2  0.0146    0.85306 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1436127     3  0.2961    0.72675 0.020 0.000 0.840 0.000 0.132 0.008
#> SRR1347278     5  0.7201   -0.51468 0.088 0.000 0.252 0.000 0.360 0.300
#> SRR1332904     2  0.3998    0.61010 0.000 0.504 0.000 0.004 0.000 0.492
#> SRR1444179     1  0.3298    0.53888 0.856 0.000 0.012 0.024 0.056 0.052
#> SRR1082685     1  0.0291    0.63025 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1362287     3  0.7321   -0.26477 0.104 0.000 0.348 0.000 0.264 0.284
#> SRR1339007     1  0.1082    0.61503 0.956 0.000 0.000 0.000 0.040 0.004
#> SRR1376557     2  0.1082    0.85416 0.000 0.956 0.000 0.000 0.004 0.040
#> SRR1468700     2  0.3298    0.78687 0.000 0.756 0.000 0.000 0.008 0.236
#> SRR1077455     1  0.3741    0.15500 0.672 0.000 0.000 0.000 0.320 0.008
#> SRR1413978     1  0.7349   -0.64423 0.312 0.000 0.104 0.000 0.276 0.308
#> SRR1439896     1  0.0146    0.63002 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1317963     4  0.4477    0.60477 0.000 0.004 0.000 0.588 0.028 0.380
#> SRR1431865     1  0.7417   -0.53998 0.348 0.000 0.100 0.004 0.268 0.280
#> SRR1394253     1  0.6001   -0.20223 0.436 0.000 0.000 0.000 0.296 0.268
#> SRR1082664     5  0.4573    0.57065 0.208 0.000 0.056 0.000 0.712 0.024
#> SRR1077968     1  0.1265    0.61071 0.948 0.000 0.000 0.000 0.044 0.008
#> SRR1076393     3  0.1180    0.76763 0.012 0.000 0.960 0.000 0.012 0.016
#> SRR1477476     2  0.0146    0.85306 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1398057     5  0.5459    0.48816 0.180 0.000 0.084 0.000 0.664 0.072
#> SRR1485042     1  0.0260    0.63022 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1385453     4  0.3147    0.69244 0.000 0.000 0.012 0.844 0.044 0.100
#> SRR1348074     4  0.0436    0.76030 0.004 0.000 0.000 0.988 0.004 0.004
#> SRR813959      4  0.0865    0.75853 0.000 0.000 0.000 0.964 0.036 0.000
#> SRR665442      4  0.5182    0.57509 0.000 0.000 0.000 0.532 0.096 0.372
#> SRR1378068     3  0.2622    0.74188 0.024 0.000 0.868 0.000 0.104 0.004
#> SRR1485237     4  0.1116    0.75329 0.004 0.000 0.000 0.960 0.008 0.028
#> SRR1350792     1  0.0972    0.61986 0.964 0.000 0.000 0.000 0.028 0.008
#> SRR1326797     1  0.3860   -0.29926 0.528 0.000 0.000 0.000 0.472 0.000
#> SRR808994      3  0.0508    0.76790 0.012 0.000 0.984 0.000 0.000 0.004
#> SRR1474041     5  0.4806    0.55454 0.236 0.000 0.072 0.000 0.676 0.016
#> SRR1405641     3  0.0508    0.76874 0.012 0.000 0.984 0.000 0.004 0.000
#> SRR1362245     3  0.3732    0.69685 0.020 0.000 0.808 0.000 0.068 0.104
#> SRR1500194     1  0.2247    0.57294 0.904 0.000 0.012 0.000 0.060 0.024
#> SRR1414876     2  0.1531    0.85224 0.000 0.928 0.000 0.000 0.004 0.068
#> SRR1478523     5  0.6984   -0.02494 0.068 0.000 0.032 0.304 0.484 0.112
#> SRR1325161     5  0.3802    0.57246 0.312 0.000 0.000 0.000 0.676 0.012
#> SRR1318026     4  0.3054    0.69105 0.004 0.000 0.012 0.852 0.028 0.104
#> SRR1343778     5  0.4730    0.56874 0.212 0.000 0.060 0.000 0.700 0.028
#> SRR1441287     1  0.0000    0.63060 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.3881    0.48959 0.396 0.000 0.000 0.000 0.600 0.004
#> SRR1499722     5  0.3923    0.46103 0.416 0.000 0.000 0.000 0.580 0.004
#> SRR1351368     3  0.5408    0.44471 0.004 0.000 0.624 0.012 0.124 0.236
#> SRR1441785     1  0.7386   -0.48685 0.352 0.000 0.096 0.004 0.260 0.288
#> SRR1096101     1  0.0000    0.63060 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR808375      5  0.3584    0.57451 0.308 0.000 0.000 0.000 0.688 0.004
#> SRR1452842     5  0.5768    0.40070 0.316 0.000 0.000 0.000 0.488 0.196
#> SRR1311709     1  0.6297    0.06404 0.500 0.000 0.008 0.344 0.048 0.100
#> SRR1433352     1  0.3860   -0.31843 0.528 0.000 0.000 0.000 0.472 0.000
#> SRR1340241     2  0.0291    0.85346 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1456754     5  0.7064   -0.17496 0.256 0.000 0.076 0.000 0.396 0.272
#> SRR1465172     5  0.3915    0.46817 0.412 0.000 0.000 0.000 0.584 0.004
#> SRR1499284     1  0.3955   -0.03702 0.608 0.000 0.000 0.000 0.384 0.008
#> SRR1499607     4  0.4450    0.63028 0.000 0.004 0.000 0.632 0.036 0.328
#> SRR812342      1  0.1333    0.60816 0.944 0.000 0.000 0.000 0.048 0.008
#> SRR1405374     1  0.7217   -0.45094 0.376 0.000 0.076 0.004 0.256 0.288
#> SRR1403565     5  0.7303   -0.35994 0.292 0.000 0.096 0.000 0.320 0.292
#> SRR1332024     3  0.0806    0.77085 0.020 0.000 0.972 0.000 0.008 0.000
#> SRR1471633     1  0.6125    0.16799 0.572 0.000 0.012 0.272 0.048 0.096
#> SRR1325944     2  0.0000    0.85327 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000    0.85327 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.5625    0.35298 0.376 0.000 0.008 0.004 0.508 0.104
#> SRR1435372     1  0.0146    0.63042 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1324184     2  0.2341    0.84577 0.000 0.900 0.012 0.000 0.032 0.056
#> SRR816517      4  0.1364    0.75685 0.000 0.000 0.004 0.944 0.048 0.004
#> SRR1324141     4  0.4034    0.64188 0.024 0.000 0.012 0.800 0.056 0.108
#> SRR1101612     1  0.0993    0.62226 0.964 0.000 0.000 0.000 0.024 0.012
#> SRR1356531     1  0.1049    0.61788 0.960 0.000 0.000 0.000 0.032 0.008
#> SRR1089785     5  0.3684    0.52712 0.372 0.000 0.000 0.000 0.628 0.000
#> SRR1077708     5  0.4937    0.54917 0.188 0.000 0.084 0.000 0.696 0.032
#> SRR1343720     5  0.3789    0.46253 0.416 0.000 0.000 0.000 0.584 0.000
#> SRR1477499     2  0.0000    0.85327 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     1  0.3804   -0.22281 0.576 0.000 0.000 0.000 0.424 0.000
#> SRR1326408     1  0.0146    0.63042 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1336529     3  0.0806    0.77085 0.020 0.000 0.972 0.000 0.008 0.000
#> SRR1440643     4  0.3127    0.68997 0.000 0.000 0.012 0.844 0.040 0.104
#> SRR662354      1  0.0405    0.62987 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1310817     5  0.6097    0.40654 0.228 0.000 0.040 0.012 0.592 0.128
#> SRR1347389     2  0.4844    0.61945 0.000 0.500 0.012 0.000 0.032 0.456
#> SRR1353097     1  0.0508    0.62831 0.984 0.000 0.000 0.000 0.012 0.004
#> SRR1384737     4  0.7010   -0.35764 0.028 0.000 0.052 0.428 0.136 0.356
#> SRR1096339     1  0.0520    0.62872 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR1345329     4  0.0291    0.76054 0.004 0.000 0.000 0.992 0.000 0.004
#> SRR1414771     3  0.0508    0.76790 0.012 0.000 0.984 0.000 0.000 0.004
#> SRR1309119     1  0.6108    0.17504 0.576 0.000 0.012 0.268 0.048 0.096
#> SRR1470438     3  0.0508    0.76790 0.012 0.000 0.984 0.000 0.000 0.004
#> SRR1343221     5  0.7286   -0.27430 0.276 0.000 0.080 0.004 0.352 0.288
#> SRR1410847     1  0.1745    0.57406 0.920 0.000 0.000 0.000 0.068 0.012
#> SRR807949      5  0.3634    0.53885 0.356 0.000 0.000 0.000 0.644 0.000
#> SRR1442332     5  0.3993    0.38728 0.476 0.000 0.000 0.000 0.520 0.004
#> SRR815920      3  0.2443    0.74859 0.020 0.000 0.880 0.000 0.096 0.004
#> SRR1471524     3  0.4720    0.58213 0.012 0.000 0.720 0.004 0.124 0.140
#> SRR1477221     3  0.6457   -0.00946 0.020 0.000 0.416 0.000 0.280 0.284
#> SRR1445046     4  0.3998    0.51732 0.000 0.004 0.000 0.504 0.000 0.492
#> SRR1331962     2  0.4226    0.61377 0.000 0.504 0.000 0.004 0.008 0.484
#> SRR1319946     4  0.4242    0.59370 0.000 0.004 0.000 0.572 0.012 0.412
#> SRR1311599     5  0.7393   -0.30283 0.304 0.000 0.092 0.004 0.320 0.280
#> SRR1323977     4  0.0653    0.76074 0.004 0.000 0.000 0.980 0.012 0.004
#> SRR1445132     2  0.0146    0.85306 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1337321     3  0.6510    0.00740 0.020 0.000 0.440 0.004 0.252 0.284
#> SRR1366390     2  0.3210    0.82896 0.000 0.832 0.012 0.000 0.032 0.124
#> SRR1343012     6  0.8030    0.28582 0.064 0.000 0.100 0.304 0.172 0.360
#> SRR1311958     2  0.4097    0.60566 0.000 0.500 0.000 0.008 0.000 0.492
#> SRR1388234     4  0.3010    0.72092 0.004 0.000 0.000 0.836 0.028 0.132
#> SRR1370384     1  0.2257    0.53671 0.876 0.000 0.000 0.000 0.116 0.008
#> SRR1321650     3  0.2588    0.74535 0.024 0.000 0.876 0.000 0.092 0.008
#> SRR1485117     2  0.1643    0.85177 0.000 0.924 0.000 0.000 0.008 0.068
#> SRR1384713     1  0.3323    0.34322 0.752 0.000 0.000 0.000 0.240 0.008
#> SRR816609      4  0.0291    0.76000 0.004 0.000 0.000 0.992 0.004 0.000
#> SRR1486239     2  0.4097    0.60566 0.000 0.500 0.000 0.008 0.000 0.492
#> SRR1309638     3  0.4738    0.61859 0.032 0.000 0.712 0.000 0.188 0.068
#> SRR1356660     1  0.7386   -0.48685 0.352 0.000 0.096 0.004 0.260 0.288
#> SRR1392883     2  0.0000    0.85327 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.3351    0.58356 0.288 0.000 0.000 0.000 0.712 0.000
#> SRR816677      1  0.6358    0.09297 0.520 0.000 0.012 0.312 0.044 0.112
#> SRR1455722     1  0.0000    0.63060 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336029     6  0.7569    0.31925 0.272 0.000 0.124 0.004 0.280 0.320
#> SRR808452      1  0.0146    0.63042 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1352169     5  0.4995    0.51873 0.236 0.000 0.088 0.000 0.660 0.016
#> SRR1366707     3  0.0622    0.76928 0.012 0.000 0.980 0.000 0.008 0.000
#> SRR1328143     5  0.3390    0.58114 0.296 0.000 0.000 0.000 0.704 0.000
#> SRR1473567     2  0.1643    0.85177 0.000 0.924 0.000 0.000 0.008 0.068

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.997         0.4249 0.578   0.578
#> 3 3 0.823           0.942       0.964         0.5484 0.756   0.577
#> 4 4 0.721           0.757       0.777         0.0754 0.944   0.837
#> 5 5 0.727           0.654       0.827         0.0971 0.800   0.452
#> 6 6 0.864           0.845       0.904         0.0491 0.910   0.643

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette   p1   p2
#> SRR1442087     1   0.000      0.996 1.00 0.00
#> SRR1390119     2   0.000      1.000 0.00 1.00
#> SRR1436127     1   0.000      0.996 1.00 0.00
#> SRR1347278     1   0.000      0.996 1.00 0.00
#> SRR1332904     2   0.000      1.000 0.00 1.00
#> SRR1444179     1   0.000      0.996 1.00 0.00
#> SRR1082685     1   0.000      0.996 1.00 0.00
#> SRR1362287     1   0.000      0.996 1.00 0.00
#> SRR1339007     1   0.000      0.996 1.00 0.00
#> SRR1376557     2   0.000      1.000 0.00 1.00
#> SRR1468700     2   0.000      1.000 0.00 1.00
#> SRR1077455     1   0.000      0.996 1.00 0.00
#> SRR1413978     1   0.000      0.996 1.00 0.00
#> SRR1439896     1   0.000      0.996 1.00 0.00
#> SRR1317963     2   0.000      1.000 0.00 1.00
#> SRR1431865     1   0.000      0.996 1.00 0.00
#> SRR1394253     1   0.000      0.996 1.00 0.00
#> SRR1082664     1   0.000      0.996 1.00 0.00
#> SRR1077968     1   0.000      0.996 1.00 0.00
#> SRR1076393     1   0.000      0.996 1.00 0.00
#> SRR1477476     2   0.000      1.000 0.00 1.00
#> SRR1398057     1   0.000      0.996 1.00 0.00
#> SRR1485042     1   0.000      0.996 1.00 0.00
#> SRR1385453     2   0.000      1.000 0.00 1.00
#> SRR1348074     2   0.000      1.000 0.00 1.00
#> SRR813959      2   0.000      1.000 0.00 1.00
#> SRR665442      2   0.000      1.000 0.00 1.00
#> SRR1378068     1   0.000      0.996 1.00 0.00
#> SRR1485237     2   0.000      1.000 0.00 1.00
#> SRR1350792     1   0.000      0.996 1.00 0.00
#> SRR1326797     1   0.000      0.996 1.00 0.00
#> SRR808994      1   0.000      0.996 1.00 0.00
#> SRR1474041     1   0.000      0.996 1.00 0.00
#> SRR1405641     1   0.000      0.996 1.00 0.00
#> SRR1362245     1   0.000      0.996 1.00 0.00
#> SRR1500194     1   0.000      0.996 1.00 0.00
#> SRR1414876     2   0.000      1.000 0.00 1.00
#> SRR1478523     1   0.000      0.996 1.00 0.00
#> SRR1325161     1   0.000      0.996 1.00 0.00
#> SRR1318026     2   0.000      1.000 0.00 1.00
#> SRR1343778     1   0.000      0.996 1.00 0.00
#> SRR1441287     1   0.000      0.996 1.00 0.00
#> SRR1430991     1   0.000      0.996 1.00 0.00
#> SRR1499722     1   0.000      0.996 1.00 0.00
#> SRR1351368     1   0.000      0.996 1.00 0.00
#> SRR1441785     1   0.000      0.996 1.00 0.00
#> SRR1096101     1   0.000      0.996 1.00 0.00
#> SRR808375      1   0.000      0.996 1.00 0.00
#> SRR1452842     1   0.000      0.996 1.00 0.00
#> SRR1311709     1   0.000      0.996 1.00 0.00
#> SRR1433352     1   0.000      0.996 1.00 0.00
#> SRR1340241     2   0.000      1.000 0.00 1.00
#> SRR1456754     1   0.000      0.996 1.00 0.00
#> SRR1465172     1   0.000      0.996 1.00 0.00
#> SRR1499284     1   0.000      0.996 1.00 0.00
#> SRR1499607     2   0.000      1.000 0.00 1.00
#> SRR812342      1   0.000      0.996 1.00 0.00
#> SRR1405374     1   0.000      0.996 1.00 0.00
#> SRR1403565     1   0.000      0.996 1.00 0.00
#> SRR1332024     1   0.000      0.996 1.00 0.00
#> SRR1471633     1   0.000      0.996 1.00 0.00
#> SRR1325944     2   0.000      1.000 0.00 1.00
#> SRR1429450     2   0.000      1.000 0.00 1.00
#> SRR821573      1   0.000      0.996 1.00 0.00
#> SRR1435372     1   0.000      0.996 1.00 0.00
#> SRR1324184     2   0.000      1.000 0.00 1.00
#> SRR816517      2   0.000      1.000 0.00 1.00
#> SRR1324141     2   0.000      1.000 0.00 1.00
#> SRR1101612     1   0.000      0.996 1.00 0.00
#> SRR1356531     1   0.000      0.996 1.00 0.00
#> SRR1089785     1   0.000      0.996 1.00 0.00
#> SRR1077708     1   0.000      0.996 1.00 0.00
#> SRR1343720     1   0.000      0.996 1.00 0.00
#> SRR1477499     2   0.000      1.000 0.00 1.00
#> SRR1347236     1   0.000      0.996 1.00 0.00
#> SRR1326408     1   0.000      0.996 1.00 0.00
#> SRR1336529     1   0.000      0.996 1.00 0.00
#> SRR1440643     2   0.000      1.000 0.00 1.00
#> SRR662354      1   0.000      0.996 1.00 0.00
#> SRR1310817     1   0.000      0.996 1.00 0.00
#> SRR1347389     2   0.000      1.000 0.00 1.00
#> SRR1353097     1   0.000      0.996 1.00 0.00
#> SRR1384737     1   0.925      0.485 0.66 0.34
#> SRR1096339     1   0.000      0.996 1.00 0.00
#> SRR1345329     2   0.000      1.000 0.00 1.00
#> SRR1414771     1   0.000      0.996 1.00 0.00
#> SRR1309119     1   0.000      0.996 1.00 0.00
#> SRR1470438     1   0.000      0.996 1.00 0.00
#> SRR1343221     1   0.000      0.996 1.00 0.00
#> SRR1410847     1   0.000      0.996 1.00 0.00
#> SRR807949      1   0.000      0.996 1.00 0.00
#> SRR1442332     1   0.000      0.996 1.00 0.00
#> SRR815920      1   0.000      0.996 1.00 0.00
#> SRR1471524     1   0.000      0.996 1.00 0.00
#> SRR1477221     1   0.000      0.996 1.00 0.00
#> SRR1445046     2   0.000      1.000 0.00 1.00
#> SRR1331962     2   0.000      1.000 0.00 1.00
#> SRR1319946     2   0.000      1.000 0.00 1.00
#> SRR1311599     1   0.000      0.996 1.00 0.00
#> SRR1323977     2   0.000      1.000 0.00 1.00
#> SRR1445132     2   0.000      1.000 0.00 1.00
#> SRR1337321     1   0.000      0.996 1.00 0.00
#> SRR1366390     2   0.000      1.000 0.00 1.00
#> SRR1343012     1   0.000      0.996 1.00 0.00
#> SRR1311958     2   0.000      1.000 0.00 1.00
#> SRR1388234     2   0.000      1.000 0.00 1.00
#> SRR1370384     1   0.000      0.996 1.00 0.00
#> SRR1321650     1   0.000      0.996 1.00 0.00
#> SRR1485117     2   0.000      1.000 0.00 1.00
#> SRR1384713     1   0.000      0.996 1.00 0.00
#> SRR816609      2   0.000      1.000 0.00 1.00
#> SRR1486239     2   0.000      1.000 0.00 1.00
#> SRR1309638     1   0.000      0.996 1.00 0.00
#> SRR1356660     1   0.000      0.996 1.00 0.00
#> SRR1392883     2   0.000      1.000 0.00 1.00
#> SRR808130      1   0.000      0.996 1.00 0.00
#> SRR816677      1   0.000      0.996 1.00 0.00
#> SRR1455722     1   0.000      0.996 1.00 0.00
#> SRR1336029     1   0.000      0.996 1.00 0.00
#> SRR808452      1   0.000      0.996 1.00 0.00
#> SRR1352169     1   0.000      0.996 1.00 0.00
#> SRR1366707     1   0.000      0.996 1.00 0.00
#> SRR1328143     1   0.000      0.996 1.00 0.00
#> SRR1473567     2   0.000      1.000 0.00 1.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.4346      0.860 0.184 0.000 0.816
#> SRR1390119     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1347278     3  0.2066      0.896 0.060 0.000 0.940
#> SRR1332904     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1444179     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1082685     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1362287     3  0.0424      0.907 0.008 0.000 0.992
#> SRR1339007     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1376557     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1468700     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1077455     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1413978     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1439896     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1317963     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1431865     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1394253     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1082664     3  0.4346      0.860 0.184 0.000 0.816
#> SRR1077968     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1076393     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1477476     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1398057     3  0.4346      0.860 0.184 0.000 0.816
#> SRR1485042     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1385453     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1348074     2  0.0000      1.000 0.000 1.000 0.000
#> SRR813959      2  0.0000      1.000 0.000 1.000 0.000
#> SRR665442      2  0.0000      1.000 0.000 1.000 0.000
#> SRR1378068     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1485237     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1350792     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1326797     1  0.0000      0.970 1.000 0.000 0.000
#> SRR808994      3  0.0000      0.908 0.000 0.000 1.000
#> SRR1474041     1  0.4974      0.725 0.764 0.000 0.236
#> SRR1405641     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1362245     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1500194     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1414876     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1478523     1  0.5835      0.523 0.660 0.000 0.340
#> SRR1325161     1  0.3192      0.866 0.888 0.000 0.112
#> SRR1318026     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1343778     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1441287     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1430991     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1499722     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1351368     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1441785     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1096101     1  0.0000      0.970 1.000 0.000 0.000
#> SRR808375      1  0.3267      0.863 0.884 0.000 0.116
#> SRR1452842     1  0.2959      0.879 0.900 0.000 0.100
#> SRR1311709     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1433352     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1340241     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1456754     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1465172     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1499284     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1499607     2  0.0000      1.000 0.000 1.000 0.000
#> SRR812342      1  0.0000      0.970 1.000 0.000 0.000
#> SRR1405374     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1403565     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1332024     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1471633     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1325944     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1429450     2  0.0000      1.000 0.000 1.000 0.000
#> SRR821573      1  0.0000      0.970 1.000 0.000 0.000
#> SRR1435372     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1324184     2  0.0000      1.000 0.000 1.000 0.000
#> SRR816517      2  0.0000      1.000 0.000 1.000 0.000
#> SRR1324141     2  0.0237      0.996 0.004 0.996 0.000
#> SRR1101612     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1356531     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1089785     1  0.0892      0.956 0.980 0.000 0.020
#> SRR1077708     3  0.4346      0.860 0.184 0.000 0.816
#> SRR1343720     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1477499     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1347236     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1326408     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1336529     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1440643     2  0.0000      1.000 0.000 1.000 0.000
#> SRR662354      1  0.0000      0.970 1.000 0.000 0.000
#> SRR1310817     1  0.3482      0.850 0.872 0.000 0.128
#> SRR1347389     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1353097     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1384737     3  0.0592      0.902 0.000 0.012 0.988
#> SRR1096339     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1345329     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1414771     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1309119     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1470438     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1343221     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1410847     1  0.0000      0.970 1.000 0.000 0.000
#> SRR807949      1  0.0892      0.956 0.980 0.000 0.020
#> SRR1442332     1  0.0000      0.970 1.000 0.000 0.000
#> SRR815920      3  0.0000      0.908 0.000 0.000 1.000
#> SRR1471524     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1477221     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1445046     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1331962     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1319946     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1311599     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1323977     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1445132     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1337321     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1366390     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1343012     3  0.0424      0.907 0.008 0.000 0.992
#> SRR1311958     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1388234     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1370384     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1321650     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1485117     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1384713     1  0.0000      0.970 1.000 0.000 0.000
#> SRR816609      2  0.0000      1.000 0.000 1.000 0.000
#> SRR1486239     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1309638     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1356660     3  0.4452      0.856 0.192 0.000 0.808
#> SRR1392883     2  0.0000      1.000 0.000 1.000 0.000
#> SRR808130      1  0.3551      0.845 0.868 0.000 0.132
#> SRR816677      1  0.0000      0.970 1.000 0.000 0.000
#> SRR1455722     1  0.0000      0.970 1.000 0.000 0.000
#> SRR1336029     3  0.4399      0.858 0.188 0.000 0.812
#> SRR808452      1  0.0000      0.970 1.000 0.000 0.000
#> SRR1352169     3  0.4346      0.860 0.184 0.000 0.816
#> SRR1366707     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1328143     1  0.3482      0.850 0.872 0.000 0.128
#> SRR1473567     2  0.0000      1.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.5592      0.635 0.300 0.000 0.656 0.044
#> SRR1390119     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1436127     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1347278     3  0.4327      0.607 0.016 0.000 0.768 0.216
#> SRR1332904     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.3266      0.652 0.832 0.000 0.000 0.168
#> SRR1082685     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1362287     3  0.0524      0.761 0.004 0.000 0.988 0.008
#> SRR1339007     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1376557     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1077455     1  0.3528      0.815 0.808 0.000 0.000 0.192
#> SRR1413978     3  0.5024      0.611 0.360 0.000 0.632 0.008
#> SRR1439896     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1317963     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1431865     3  0.4990      0.621 0.352 0.000 0.640 0.008
#> SRR1394253     1  0.0336      0.832 0.992 0.000 0.000 0.008
#> SRR1082664     3  0.6483      0.537 0.324 0.000 0.584 0.092
#> SRR1077968     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1076393     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1477476     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1398057     3  0.5592      0.634 0.300 0.000 0.656 0.044
#> SRR1485042     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1385453     4  0.4961      0.441 0.000 0.448 0.000 0.552
#> SRR1348074     4  0.5000      0.352 0.000 0.496 0.000 0.504
#> SRR813959      2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR665442      2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1378068     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1485237     4  0.5168      0.362 0.004 0.492 0.000 0.504
#> SRR1350792     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1326797     1  0.4304      0.796 0.716 0.000 0.000 0.284
#> SRR808994      3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1474041     1  0.7155      0.616 0.540 0.000 0.168 0.292
#> SRR1405641     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1362245     3  0.0188      0.762 0.000 0.000 0.996 0.004
#> SRR1500194     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1414876     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1478523     1  0.5511      0.556 0.500 0.000 0.016 0.484
#> SRR1325161     1  0.5113      0.779 0.684 0.000 0.024 0.292
#> SRR1318026     4  0.4382      0.651 0.000 0.296 0.000 0.704
#> SRR1343778     3  0.6023      0.555 0.344 0.000 0.600 0.056
#> SRR1441287     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1430991     1  0.4673      0.790 0.700 0.000 0.008 0.292
#> SRR1499722     1  0.4356      0.794 0.708 0.000 0.000 0.292
#> SRR1351368     3  0.0336      0.758 0.000 0.000 0.992 0.008
#> SRR1441785     3  0.4990      0.621 0.352 0.000 0.640 0.008
#> SRR1096101     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR808375      1  0.5207      0.776 0.680 0.000 0.028 0.292
#> SRR1452842     1  0.4720      0.798 0.720 0.000 0.016 0.264
#> SRR1311709     4  0.4477      0.573 0.312 0.000 0.000 0.688
#> SRR1433352     1  0.4304      0.796 0.716 0.000 0.000 0.284
#> SRR1340241     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1456754     3  0.5677      0.604 0.332 0.000 0.628 0.040
#> SRR1465172     1  0.4356      0.794 0.708 0.000 0.000 0.292
#> SRR1499284     1  0.3975      0.807 0.760 0.000 0.000 0.240
#> SRR1499607     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR812342      1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1405374     3  0.5070      0.593 0.372 0.000 0.620 0.008
#> SRR1403565     3  0.5075      0.625 0.344 0.000 0.644 0.012
#> SRR1332024     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1471633     4  0.4679      0.535 0.352 0.000 0.000 0.648
#> SRR1325944     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR821573      1  0.4356      0.794 0.708 0.000 0.000 0.292
#> SRR1435372     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1324184     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR816517      2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1324141     4  0.4382      0.651 0.000 0.296 0.000 0.704
#> SRR1101612     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1089785     1  0.5113      0.780 0.684 0.000 0.024 0.292
#> SRR1077708     3  0.5827      0.606 0.316 0.000 0.632 0.052
#> SRR1343720     1  0.4356      0.794 0.708 0.000 0.000 0.292
#> SRR1477499     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1347236     1  0.4008      0.807 0.756 0.000 0.000 0.244
#> SRR1326408     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1336529     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1440643     4  0.4382      0.651 0.000 0.296 0.000 0.704
#> SRR662354      1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1310817     1  0.6158      0.724 0.628 0.000 0.080 0.292
#> SRR1347389     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1353097     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1384737     3  0.4981      0.283 0.000 0.000 0.536 0.464
#> SRR1096339     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1345329     2  0.4999     -0.408 0.000 0.508 0.000 0.492
#> SRR1414771     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1309119     4  0.4679      0.535 0.352 0.000 0.000 0.648
#> SRR1470438     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1343221     3  0.5639      0.616 0.324 0.000 0.636 0.040
#> SRR1410847     1  0.0188      0.833 0.996 0.000 0.000 0.004
#> SRR807949      1  0.5207      0.777 0.680 0.000 0.028 0.292
#> SRR1442332     1  0.4673      0.790 0.700 0.000 0.008 0.292
#> SRR815920      3  0.0336      0.760 0.000 0.000 0.992 0.008
#> SRR1471524     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1477221     3  0.0188      0.762 0.000 0.000 0.996 0.004
#> SRR1445046     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1331962     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1319946     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1311599     3  0.4990      0.621 0.352 0.000 0.640 0.008
#> SRR1323977     2  0.4996     -0.385 0.000 0.516 0.000 0.484
#> SRR1445132     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1337321     3  0.0188      0.762 0.000 0.000 0.996 0.004
#> SRR1366390     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1343012     3  0.4420      0.617 0.012 0.000 0.748 0.240
#> SRR1311958     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1388234     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1370384     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1321650     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1485117     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1384713     1  0.0336      0.833 0.992 0.000 0.000 0.008
#> SRR816609      2  0.1389      0.889 0.000 0.952 0.000 0.048
#> SRR1486239     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR1309638     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1356660     3  0.4990      0.621 0.352 0.000 0.640 0.008
#> SRR1392883     2  0.0000      0.952 0.000 1.000 0.000 0.000
#> SRR808130      1  0.5383      0.770 0.672 0.000 0.036 0.292
#> SRR816677      1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1455722     1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1336029     3  0.4917      0.637 0.336 0.000 0.656 0.008
#> SRR808452      1  0.0000      0.834 1.000 0.000 0.000 0.000
#> SRR1352169     1  0.7369      0.520 0.512 0.000 0.196 0.292
#> SRR1366707     3  0.0000      0.762 0.000 0.000 1.000 0.000
#> SRR1328143     1  0.5466      0.766 0.668 0.000 0.040 0.292
#> SRR1473567     2  0.0000      0.952 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.5419     0.4237 0.012 0.000 0.284 0.064 0.640
#> SRR1390119     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.1671     0.8379 0.000 0.000 0.924 0.000 0.076
#> SRR1347278     5  0.6576    -0.0634 0.004 0.000 0.340 0.188 0.468
#> SRR1332904     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1444179     1  0.1894     0.7177 0.920 0.000 0.000 0.072 0.008
#> SRR1082685     1  0.0404     0.7670 0.988 0.000 0.000 0.000 0.012
#> SRR1362287     3  0.6018     0.5539 0.000 0.000 0.568 0.272 0.160
#> SRR1339007     1  0.0510     0.7682 0.984 0.000 0.000 0.000 0.016
#> SRR1376557     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1077455     1  0.3966     0.3056 0.664 0.000 0.000 0.000 0.336
#> SRR1413978     1  0.8417     0.1659 0.344 0.000 0.184 0.272 0.200
#> SRR1439896     1  0.0000     0.7615 1.000 0.000 0.000 0.000 0.000
#> SRR1317963     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1431865     1  0.8512     0.1251 0.308 0.000 0.188 0.272 0.232
#> SRR1394253     1  0.6467     0.3376 0.496 0.000 0.000 0.272 0.232
#> SRR1082664     5  0.4165     0.6067 0.032 0.000 0.208 0.004 0.756
#> SRR1077968     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1076393     3  0.0000     0.8588 0.000 0.000 1.000 0.000 0.000
#> SRR1477476     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     5  0.5426     0.3790 0.024 0.000 0.344 0.032 0.600
#> SRR1485042     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1385453     4  0.3966     0.6784 0.000 0.336 0.000 0.664 0.000
#> SRR1348074     2  0.4306    -0.2602 0.000 0.508 0.000 0.492 0.000
#> SRR813959      2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR665442      2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1378068     3  0.1410     0.8444 0.000 0.000 0.940 0.000 0.060
#> SRR1485237     2  0.4562    -0.2816 0.008 0.500 0.000 0.492 0.000
#> SRR1350792     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1326797     5  0.3039     0.6851 0.192 0.000 0.000 0.000 0.808
#> SRR808994      3  0.0000     0.8588 0.000 0.000 1.000 0.000 0.000
#> SRR1474041     5  0.2006     0.7541 0.072 0.000 0.012 0.000 0.916
#> SRR1405641     3  0.0000     0.8588 0.000 0.000 1.000 0.000 0.000
#> SRR1362245     3  0.3687     0.7297 0.000 0.000 0.792 0.180 0.028
#> SRR1500194     1  0.0404     0.7573 0.988 0.000 0.000 0.000 0.012
#> SRR1414876     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     5  0.5415     0.5394 0.076 0.000 0.020 0.224 0.680
#> SRR1325161     5  0.1608     0.7579 0.072 0.000 0.000 0.000 0.928
#> SRR1318026     4  0.3636     0.7670 0.000 0.272 0.000 0.728 0.000
#> SRR1343778     5  0.4969     0.5292 0.032 0.000 0.264 0.020 0.684
#> SRR1441287     1  0.0510     0.7682 0.984 0.000 0.000 0.000 0.016
#> SRR1430991     5  0.1851     0.7588 0.088 0.000 0.000 0.000 0.912
#> SRR1499722     5  0.2074     0.7523 0.104 0.000 0.000 0.000 0.896
#> SRR1351368     3  0.0162     0.8584 0.000 0.000 0.996 0.000 0.004
#> SRR1441785     1  0.8512     0.1251 0.308 0.000 0.188 0.272 0.232
#> SRR1096101     1  0.1197     0.7515 0.952 0.000 0.000 0.000 0.048
#> SRR808375      5  0.1608     0.7579 0.072 0.000 0.000 0.000 0.928
#> SRR1452842     5  0.6555     0.2792 0.268 0.000 0.000 0.256 0.476
#> SRR1311709     1  0.4437     0.1208 0.532 0.000 0.000 0.464 0.004
#> SRR1433352     5  0.2966     0.7008 0.184 0.000 0.000 0.000 0.816
#> SRR1340241     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     5  0.8285     0.1297 0.176 0.000 0.176 0.272 0.376
#> SRR1465172     5  0.1851     0.7588 0.088 0.000 0.000 0.000 0.912
#> SRR1499284     5  0.4182     0.4023 0.400 0.000 0.000 0.000 0.600
#> SRR1499607     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR812342      1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1405374     1  0.8172     0.2013 0.376 0.000 0.120 0.272 0.232
#> SRR1403565     5  0.8546    -0.0870 0.268 0.000 0.188 0.272 0.272
#> SRR1332024     3  0.0000     0.8588 0.000 0.000 1.000 0.000 0.000
#> SRR1471633     1  0.3519     0.5693 0.776 0.000 0.000 0.216 0.008
#> SRR1325944     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.2424     0.7345 0.132 0.000 0.000 0.000 0.868
#> SRR1435372     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1324184     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR816517      2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1324141     4  0.4015     0.7650 0.004 0.264 0.000 0.724 0.008
#> SRR1101612     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1356531     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1089785     5  0.1851     0.7588 0.088 0.000 0.000 0.000 0.912
#> SRR1077708     5  0.4715     0.5063 0.032 0.000 0.292 0.004 0.672
#> SRR1343720     5  0.2074     0.7523 0.104 0.000 0.000 0.000 0.896
#> SRR1477499     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     5  0.3796     0.5747 0.300 0.000 0.000 0.000 0.700
#> SRR1326408     1  0.0510     0.7682 0.984 0.000 0.000 0.000 0.016
#> SRR1336529     3  0.0290     0.8561 0.000 0.000 0.992 0.000 0.008
#> SRR1440643     4  0.3636     0.7670 0.000 0.272 0.000 0.728 0.000
#> SRR662354      1  0.0000     0.7615 1.000 0.000 0.000 0.000 0.000
#> SRR1310817     5  0.1484     0.7490 0.048 0.000 0.008 0.000 0.944
#> SRR1347389     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1353097     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1384737     4  0.4451    -0.0560 0.000 0.000 0.248 0.712 0.040
#> SRR1096339     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1345329     2  0.4306    -0.2602 0.000 0.508 0.000 0.492 0.000
#> SRR1414771     3  0.0000     0.8588 0.000 0.000 1.000 0.000 0.000
#> SRR1309119     1  0.3519     0.5693 0.776 0.000 0.000 0.216 0.008
#> SRR1470438     3  0.0000     0.8588 0.000 0.000 1.000 0.000 0.000
#> SRR1343221     5  0.8266     0.1340 0.172 0.000 0.176 0.272 0.380
#> SRR1410847     1  0.3086     0.6356 0.816 0.000 0.000 0.004 0.180
#> SRR807949      5  0.1851     0.7588 0.088 0.000 0.000 0.000 0.912
#> SRR1442332     5  0.1851     0.7588 0.088 0.000 0.000 0.000 0.912
#> SRR815920      3  0.2280     0.7978 0.000 0.000 0.880 0.000 0.120
#> SRR1471524     3  0.0162     0.8578 0.000 0.000 0.996 0.000 0.004
#> SRR1477221     3  0.5783     0.6019 0.000 0.000 0.612 0.228 0.160
#> SRR1445046     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1331962     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1319946     2  0.0794     0.8752 0.000 0.972 0.000 0.028 0.000
#> SRR1311599     1  0.8530     0.0994 0.296 0.000 0.188 0.272 0.244
#> SRR1323977     2  0.4306    -0.2602 0.000 0.508 0.000 0.492 0.000
#> SRR1445132     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.5831     0.5723 0.000 0.000 0.592 0.268 0.140
#> SRR1366390     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1343012     3  0.5920     0.5132 0.024 0.000 0.592 0.312 0.072
#> SRR1311958     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1388234     2  0.0794     0.8752 0.000 0.972 0.000 0.028 0.000
#> SRR1370384     1  0.1043     0.7564 0.960 0.000 0.000 0.000 0.040
#> SRR1321650     3  0.1270     0.8470 0.000 0.000 0.948 0.000 0.052
#> SRR1485117     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1384713     1  0.2929     0.6046 0.820 0.000 0.000 0.000 0.180
#> SRR816609      2  0.3636     0.4644 0.000 0.728 0.000 0.272 0.000
#> SRR1486239     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR1309638     3  0.3366     0.7778 0.000 0.000 0.828 0.032 0.140
#> SRR1356660     1  0.8512     0.1251 0.308 0.000 0.188 0.272 0.232
#> SRR1392883     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.1544     0.7567 0.068 0.000 0.000 0.000 0.932
#> SRR816677      1  0.0404     0.7670 0.988 0.000 0.000 0.000 0.012
#> SRR1455722     1  0.0609     0.7685 0.980 0.000 0.000 0.000 0.020
#> SRR1336029     1  0.8505     0.1091 0.312 0.000 0.188 0.272 0.228
#> SRR808452      1  0.0510     0.7682 0.984 0.000 0.000 0.000 0.016
#> SRR1352169     5  0.1502     0.7521 0.056 0.000 0.004 0.000 0.940
#> SRR1366707     3  0.0290     0.8561 0.000 0.000 0.992 0.000 0.008
#> SRR1328143     5  0.1608     0.7579 0.072 0.000 0.000 0.000 0.928
#> SRR1473567     2  0.0000     0.9024 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.5188      0.562 0.000 0.000 0.160 0.004 0.632 0.204
#> SRR1390119     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.2537      0.840 0.000 0.000 0.872 0.000 0.096 0.032
#> SRR1347278     6  0.4707      0.644 0.000 0.000 0.096 0.000 0.244 0.660
#> SRR1332904     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1444179     1  0.2395      0.841 0.892 0.000 0.000 0.076 0.012 0.020
#> SRR1082685     1  0.0260      0.921 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1362287     6  0.2350      0.832 0.000 0.000 0.076 0.000 0.036 0.888
#> SRR1339007     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1376557     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077455     1  0.3563      0.464 0.664 0.000 0.000 0.000 0.336 0.000
#> SRR1413978     6  0.2600      0.861 0.084 0.000 0.004 0.000 0.036 0.876
#> SRR1439896     1  0.0508      0.914 0.984 0.000 0.000 0.000 0.012 0.004
#> SRR1317963     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1431865     6  0.2468      0.879 0.060 0.000 0.004 0.000 0.048 0.888
#> SRR1394253     6  0.2608      0.865 0.080 0.000 0.000 0.000 0.048 0.872
#> SRR1082664     5  0.3141      0.791 0.000 0.000 0.124 0.004 0.832 0.040
#> SRR1077968     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1076393     3  0.0146      0.897 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1477476     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398057     5  0.5180      0.541 0.000 0.000 0.220 0.000 0.616 0.164
#> SRR1485042     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1385453     4  0.2554      0.754 0.000 0.088 0.000 0.880 0.012 0.020
#> SRR1348074     4  0.3136      0.805 0.000 0.228 0.000 0.768 0.000 0.004
#> SRR813959      2  0.0603      0.968 0.000 0.980 0.000 0.016 0.000 0.004
#> SRR665442      2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1378068     3  0.1812      0.860 0.000 0.000 0.912 0.000 0.080 0.008
#> SRR1485237     4  0.3136      0.805 0.000 0.228 0.000 0.768 0.000 0.004
#> SRR1350792     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1326797     5  0.1863      0.835 0.104 0.000 0.000 0.000 0.896 0.000
#> SRR808994      3  0.0260      0.902 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1474041     5  0.0717      0.881 0.008 0.000 0.000 0.000 0.976 0.016
#> SRR1405641     3  0.0260      0.902 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1362245     6  0.3982      0.138 0.000 0.000 0.460 0.000 0.004 0.536
#> SRR1500194     1  0.0622      0.906 0.980 0.000 0.000 0.000 0.008 0.012
#> SRR1414876     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     5  0.3895      0.711 0.016 0.000 0.016 0.164 0.784 0.020
#> SRR1325161     5  0.0717      0.881 0.008 0.000 0.000 0.000 0.976 0.016
#> SRR1318026     4  0.1477      0.727 0.000 0.004 0.000 0.940 0.008 0.048
#> SRR1343778     5  0.3876      0.741 0.000 0.000 0.156 0.004 0.772 0.068
#> SRR1441287     1  0.0458      0.925 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1430991     5  0.0632      0.881 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1499722     5  0.0937      0.875 0.040 0.000 0.000 0.000 0.960 0.000
#> SRR1351368     3  0.0632      0.893 0.000 0.000 0.976 0.000 0.000 0.024
#> SRR1441785     6  0.2468      0.879 0.060 0.000 0.004 0.000 0.048 0.888
#> SRR1096101     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR808375      5  0.0717      0.881 0.008 0.000 0.000 0.000 0.976 0.016
#> SRR1452842     6  0.3794      0.721 0.040 0.000 0.000 0.000 0.216 0.744
#> SRR1311709     1  0.5031      0.218 0.528 0.000 0.000 0.412 0.012 0.048
#> SRR1433352     5  0.1814      0.841 0.100 0.000 0.000 0.000 0.900 0.000
#> SRR1340241     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1456754     6  0.2614      0.876 0.052 0.000 0.004 0.004 0.056 0.884
#> SRR1465172     5  0.0790      0.879 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR1499284     5  0.3765      0.362 0.404 0.000 0.000 0.000 0.596 0.000
#> SRR1499607     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR812342      1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1405374     6  0.2384      0.877 0.064 0.000 0.000 0.000 0.048 0.888
#> SRR1403565     6  0.2610      0.879 0.060 0.000 0.004 0.004 0.048 0.884
#> SRR1332024     3  0.0260      0.902 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1471633     1  0.3817      0.732 0.784 0.000 0.000 0.152 0.012 0.052
#> SRR1325944     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.1075      0.870 0.048 0.000 0.000 0.000 0.952 0.000
#> SRR1435372     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1324184     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816517      2  0.0291      0.981 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1324141     4  0.2110      0.714 0.000 0.004 0.000 0.900 0.012 0.084
#> SRR1101612     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1356531     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1089785     5  0.0632      0.881 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1077708     5  0.3916      0.706 0.000 0.000 0.196 0.004 0.752 0.048
#> SRR1343720     5  0.1007      0.873 0.044 0.000 0.000 0.000 0.956 0.000
#> SRR1477499     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     5  0.2941      0.723 0.220 0.000 0.000 0.000 0.780 0.000
#> SRR1326408     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1336529     3  0.0260      0.902 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1440643     4  0.1269      0.737 0.000 0.012 0.000 0.956 0.012 0.020
#> SRR662354      1  0.0717      0.915 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1310817     5  0.1232      0.874 0.000 0.000 0.016 0.004 0.956 0.024
#> SRR1347389     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1353097     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1384737     6  0.5440      0.167 0.000 0.000 0.088 0.380 0.012 0.520
#> SRR1096339     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1345329     4  0.3265      0.791 0.000 0.248 0.000 0.748 0.000 0.004
#> SRR1414771     3  0.0260      0.902 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1309119     1  0.3817      0.732 0.784 0.000 0.000 0.152 0.012 0.052
#> SRR1470438     3  0.0260      0.902 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1343221     6  0.2471      0.878 0.056 0.000 0.004 0.000 0.052 0.888
#> SRR1410847     1  0.4012      0.680 0.752 0.000 0.000 0.000 0.084 0.164
#> SRR807949      5  0.0632      0.881 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1442332     5  0.0862      0.880 0.008 0.000 0.000 0.004 0.972 0.016
#> SRR815920      3  0.2212      0.831 0.000 0.000 0.880 0.000 0.112 0.008
#> SRR1471524     3  0.0508      0.899 0.000 0.000 0.984 0.000 0.004 0.012
#> SRR1477221     6  0.3210      0.768 0.000 0.000 0.152 0.000 0.036 0.812
#> SRR1445046     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1331962     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1319946     2  0.2053      0.849 0.000 0.888 0.000 0.108 0.000 0.004
#> SRR1311599     6  0.2468      0.879 0.060 0.000 0.004 0.000 0.048 0.888
#> SRR1323977     4  0.3240      0.794 0.000 0.244 0.000 0.752 0.000 0.004
#> SRR1445132     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     6  0.2361      0.825 0.000 0.000 0.088 0.000 0.028 0.884
#> SRR1366390     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1343012     3  0.6195      0.322 0.004 0.000 0.448 0.248 0.004 0.296
#> SRR1311958     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1388234     2  0.2100      0.843 0.000 0.884 0.000 0.112 0.000 0.004
#> SRR1370384     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1321650     3  0.2740      0.803 0.000 0.000 0.852 0.000 0.028 0.120
#> SRR1485117     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1384713     1  0.2048      0.834 0.880 0.000 0.000 0.000 0.120 0.000
#> SRR816609      4  0.4056      0.498 0.000 0.416 0.000 0.576 0.004 0.004
#> SRR1486239     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1309638     3  0.4272      0.519 0.000 0.000 0.668 0.000 0.044 0.288
#> SRR1356660     6  0.2468      0.879 0.060 0.000 0.004 0.000 0.048 0.888
#> SRR1392883     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.0717      0.881 0.008 0.000 0.000 0.000 0.976 0.016
#> SRR816677      1  0.0622      0.920 0.980 0.000 0.000 0.000 0.012 0.008
#> SRR1455722     1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1336029     6  0.2407      0.879 0.056 0.000 0.004 0.000 0.048 0.892
#> SRR808452      1  0.0547      0.927 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1352169     5  0.0777      0.876 0.004 0.000 0.000 0.000 0.972 0.024
#> SRR1366707     3  0.0146      0.897 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1328143     5  0.0862      0.880 0.008 0.000 0.000 0.004 0.972 0.016
#> SRR1473567     2  0.0000      0.988 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.997         0.3193 0.685   0.685
#> 3 3 0.668           0.813       0.811         0.7746 0.681   0.534
#> 4 4 0.561           0.718       0.837         0.2492 0.735   0.416
#> 5 5 0.733           0.810       0.859         0.0999 0.859   0.546
#> 6 6 0.794           0.608       0.791         0.0501 0.900   0.584

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1   0.000      0.996 1.000 0.000
#> SRR1390119     2   0.000      1.000 0.000 1.000
#> SRR1436127     1   0.000      0.996 1.000 0.000
#> SRR1347278     1   0.000      0.996 1.000 0.000
#> SRR1332904     2   0.000      1.000 0.000 1.000
#> SRR1444179     1   0.000      0.996 1.000 0.000
#> SRR1082685     1   0.000      0.996 1.000 0.000
#> SRR1362287     1   0.000      0.996 1.000 0.000
#> SRR1339007     1   0.000      0.996 1.000 0.000
#> SRR1376557     2   0.000      1.000 0.000 1.000
#> SRR1468700     2   0.000      1.000 0.000 1.000
#> SRR1077455     1   0.000      0.996 1.000 0.000
#> SRR1413978     1   0.000      0.996 1.000 0.000
#> SRR1439896     1   0.000      0.996 1.000 0.000
#> SRR1317963     2   0.000      1.000 0.000 1.000
#> SRR1431865     1   0.000      0.996 1.000 0.000
#> SRR1394253     1   0.000      0.996 1.000 0.000
#> SRR1082664     1   0.000      0.996 1.000 0.000
#> SRR1077968     1   0.000      0.996 1.000 0.000
#> SRR1076393     1   0.000      0.996 1.000 0.000
#> SRR1477476     2   0.000      1.000 0.000 1.000
#> SRR1398057     1   0.000      0.996 1.000 0.000
#> SRR1485042     1   0.000      0.996 1.000 0.000
#> SRR1385453     1   0.000      0.996 1.000 0.000
#> SRR1348074     1   0.000      0.996 1.000 0.000
#> SRR813959      1   0.000      0.996 1.000 0.000
#> SRR665442      1   0.625      0.819 0.844 0.156
#> SRR1378068     1   0.000      0.996 1.000 0.000
#> SRR1485237     1   0.000      0.996 1.000 0.000
#> SRR1350792     1   0.000      0.996 1.000 0.000
#> SRR1326797     1   0.000      0.996 1.000 0.000
#> SRR808994      1   0.000      0.996 1.000 0.000
#> SRR1474041     1   0.000      0.996 1.000 0.000
#> SRR1405641     1   0.000      0.996 1.000 0.000
#> SRR1362245     1   0.000      0.996 1.000 0.000
#> SRR1500194     1   0.000      0.996 1.000 0.000
#> SRR1414876     2   0.000      1.000 0.000 1.000
#> SRR1478523     1   0.000      0.996 1.000 0.000
#> SRR1325161     1   0.000      0.996 1.000 0.000
#> SRR1318026     1   0.000      0.996 1.000 0.000
#> SRR1343778     1   0.000      0.996 1.000 0.000
#> SRR1441287     1   0.000      0.996 1.000 0.000
#> SRR1430991     1   0.000      0.996 1.000 0.000
#> SRR1499722     1   0.000      0.996 1.000 0.000
#> SRR1351368     1   0.000      0.996 1.000 0.000
#> SRR1441785     1   0.000      0.996 1.000 0.000
#> SRR1096101     1   0.000      0.996 1.000 0.000
#> SRR808375      1   0.000      0.996 1.000 0.000
#> SRR1452842     1   0.000      0.996 1.000 0.000
#> SRR1311709     1   0.000      0.996 1.000 0.000
#> SRR1433352     1   0.000      0.996 1.000 0.000
#> SRR1340241     2   0.000      1.000 0.000 1.000
#> SRR1456754     1   0.000      0.996 1.000 0.000
#> SRR1465172     1   0.000      0.996 1.000 0.000
#> SRR1499284     1   0.000      0.996 1.000 0.000
#> SRR1499607     2   0.000      1.000 0.000 1.000
#> SRR812342      1   0.000      0.996 1.000 0.000
#> SRR1405374     1   0.000      0.996 1.000 0.000
#> SRR1403565     1   0.000      0.996 1.000 0.000
#> SRR1332024     1   0.000      0.996 1.000 0.000
#> SRR1471633     1   0.000      0.996 1.000 0.000
#> SRR1325944     2   0.000      1.000 0.000 1.000
#> SRR1429450     2   0.000      1.000 0.000 1.000
#> SRR821573      1   0.000      0.996 1.000 0.000
#> SRR1435372     1   0.000      0.996 1.000 0.000
#> SRR1324184     2   0.000      1.000 0.000 1.000
#> SRR816517      1   0.443      0.899 0.908 0.092
#> SRR1324141     1   0.000      0.996 1.000 0.000
#> SRR1101612     1   0.000      0.996 1.000 0.000
#> SRR1356531     1   0.000      0.996 1.000 0.000
#> SRR1089785     1   0.000      0.996 1.000 0.000
#> SRR1077708     1   0.000      0.996 1.000 0.000
#> SRR1343720     1   0.000      0.996 1.000 0.000
#> SRR1477499     2   0.000      1.000 0.000 1.000
#> SRR1347236     1   0.000      0.996 1.000 0.000
#> SRR1326408     1   0.000      0.996 1.000 0.000
#> SRR1336529     1   0.000      0.996 1.000 0.000
#> SRR1440643     1   0.000      0.996 1.000 0.000
#> SRR662354      1   0.000      0.996 1.000 0.000
#> SRR1310817     1   0.000      0.996 1.000 0.000
#> SRR1347389     2   0.000      1.000 0.000 1.000
#> SRR1353097     1   0.000      0.996 1.000 0.000
#> SRR1384737     1   0.000      0.996 1.000 0.000
#> SRR1096339     1   0.000      0.996 1.000 0.000
#> SRR1345329     1   0.000      0.996 1.000 0.000
#> SRR1414771     1   0.000      0.996 1.000 0.000
#> SRR1309119     1   0.000      0.996 1.000 0.000
#> SRR1470438     1   0.000      0.996 1.000 0.000
#> SRR1343221     1   0.000      0.996 1.000 0.000
#> SRR1410847     1   0.000      0.996 1.000 0.000
#> SRR807949      1   0.000      0.996 1.000 0.000
#> SRR1442332     1   0.000      0.996 1.000 0.000
#> SRR815920      1   0.000      0.996 1.000 0.000
#> SRR1471524     1   0.000      0.996 1.000 0.000
#> SRR1477221     1   0.000      0.996 1.000 0.000
#> SRR1445046     2   0.000      1.000 0.000 1.000
#> SRR1331962     2   0.000      1.000 0.000 1.000
#> SRR1319946     2   0.000      1.000 0.000 1.000
#> SRR1311599     1   0.000      0.996 1.000 0.000
#> SRR1323977     1   0.000      0.996 1.000 0.000
#> SRR1445132     2   0.000      1.000 0.000 1.000
#> SRR1337321     1   0.000      0.996 1.000 0.000
#> SRR1366390     2   0.000      1.000 0.000 1.000
#> SRR1343012     1   0.000      0.996 1.000 0.000
#> SRR1311958     2   0.000      1.000 0.000 1.000
#> SRR1388234     1   0.625      0.819 0.844 0.156
#> SRR1370384     1   0.000      0.996 1.000 0.000
#> SRR1321650     1   0.000      0.996 1.000 0.000
#> SRR1485117     2   0.000      1.000 0.000 1.000
#> SRR1384713     1   0.000      0.996 1.000 0.000
#> SRR816609      1   0.000      0.996 1.000 0.000
#> SRR1486239     2   0.000      1.000 0.000 1.000
#> SRR1309638     1   0.000      0.996 1.000 0.000
#> SRR1356660     1   0.000      0.996 1.000 0.000
#> SRR1392883     2   0.000      1.000 0.000 1.000
#> SRR808130      1   0.000      0.996 1.000 0.000
#> SRR816677      1   0.000      0.996 1.000 0.000
#> SRR1455722     1   0.000      0.996 1.000 0.000
#> SRR1336029     1   0.000      0.996 1.000 0.000
#> SRR808452      1   0.000      0.996 1.000 0.000
#> SRR1352169     1   0.000      0.996 1.000 0.000
#> SRR1366707     1   0.000      0.996 1.000 0.000
#> SRR1328143     1   0.000      0.996 1.000 0.000
#> SRR1473567     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1390119     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1436127     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1347278     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1332904     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1444179     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1082685     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1362287     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1339007     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1376557     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1468700     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1077455     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1413978     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1439896     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1317963     2  0.6215      0.676 0.428 0.572 0.000
#> SRR1431865     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1394253     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1082664     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1077968     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1076393     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1477476     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1398057     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1485042     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1385453     1  0.0237      0.475 0.996 0.000 0.004
#> SRR1348074     1  0.0000      0.478 1.000 0.000 0.000
#> SRR813959      1  0.0000      0.478 1.000 0.000 0.000
#> SRR665442      3  0.6215      0.302 0.428 0.000 0.572
#> SRR1378068     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1485237     1  0.0000      0.478 1.000 0.000 0.000
#> SRR1350792     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1326797     1  0.6215      0.843 0.572 0.000 0.428
#> SRR808994      3  0.0000      0.911 0.000 0.000 1.000
#> SRR1474041     3  0.2066      0.819 0.060 0.000 0.940
#> SRR1405641     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1362245     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1500194     3  0.4555      0.474 0.200 0.000 0.800
#> SRR1414876     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1478523     3  0.1163      0.875 0.028 0.000 0.972
#> SRR1325161     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1318026     1  0.0000      0.478 1.000 0.000 0.000
#> SRR1343778     1  0.6225      0.836 0.568 0.000 0.432
#> SRR1441287     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1430991     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1499722     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1351368     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1441785     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1096101     1  0.6215      0.843 0.572 0.000 0.428
#> SRR808375      1  0.6215      0.843 0.572 0.000 0.428
#> SRR1452842     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1311709     1  0.5859      0.762 0.656 0.000 0.344
#> SRR1433352     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1340241     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1456754     3  0.5968     -0.289 0.364 0.000 0.636
#> SRR1465172     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1499284     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1499607     2  0.6215      0.676 0.428 0.572 0.000
#> SRR812342      1  0.6215      0.843 0.572 0.000 0.428
#> SRR1405374     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1403565     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1332024     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1471633     1  0.6045      0.799 0.620 0.000 0.380
#> SRR1325944     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.956 0.000 1.000 0.000
#> SRR821573      1  0.6215      0.843 0.572 0.000 0.428
#> SRR1435372     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1324184     2  0.0000      0.956 0.000 1.000 0.000
#> SRR816517      3  0.6215      0.302 0.428 0.000 0.572
#> SRR1324141     1  0.0000      0.478 1.000 0.000 0.000
#> SRR1101612     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1356531     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1089785     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1077708     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1343720     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1477499     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1347236     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1326408     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1336529     3  0.0892      0.884 0.020 0.000 0.980
#> SRR1440643     1  0.0000      0.478 1.000 0.000 0.000
#> SRR662354      1  0.6215      0.843 0.572 0.000 0.428
#> SRR1310817     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1347389     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1353097     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1384737     3  0.6126      0.352 0.400 0.000 0.600
#> SRR1096339     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1345329     1  0.0000      0.478 1.000 0.000 0.000
#> SRR1414771     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1309119     1  0.6045      0.799 0.620 0.000 0.380
#> SRR1470438     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1343221     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1410847     1  0.6215      0.843 0.572 0.000 0.428
#> SRR807949      1  0.6215      0.843 0.572 0.000 0.428
#> SRR1442332     1  0.6215      0.843 0.572 0.000 0.428
#> SRR815920      3  0.0000      0.911 0.000 0.000 1.000
#> SRR1471524     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1477221     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1445046     2  0.1753      0.930 0.048 0.952 0.000
#> SRR1331962     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1319946     2  0.6215      0.676 0.428 0.572 0.000
#> SRR1311599     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1323977     1  0.0000      0.478 1.000 0.000 0.000
#> SRR1445132     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1337321     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1366390     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1343012     3  0.4887      0.375 0.228 0.000 0.772
#> SRR1311958     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1388234     1  0.0592      0.461 0.988 0.012 0.000
#> SRR1370384     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1321650     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1485117     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1384713     1  0.6215      0.843 0.572 0.000 0.428
#> SRR816609      1  0.0000      0.478 1.000 0.000 0.000
#> SRR1486239     2  0.0000      0.956 0.000 1.000 0.000
#> SRR1309638     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1356660     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1392883     2  0.0000      0.956 0.000 1.000 0.000
#> SRR808130      1  0.6215      0.843 0.572 0.000 0.428
#> SRR816677      1  0.6111      0.803 0.604 0.000 0.396
#> SRR1455722     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1336029     3  0.0000      0.911 0.000 0.000 1.000
#> SRR808452      1  0.6215      0.843 0.572 0.000 0.428
#> SRR1352169     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1366707     3  0.0000      0.911 0.000 0.000 1.000
#> SRR1328143     1  0.6215      0.843 0.572 0.000 0.428
#> SRR1473567     2  0.0000      0.956 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     1  0.4522    0.53307 0.680 0.000 0.320 0.000
#> SRR1390119     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR1436127     1  0.3528    0.70758 0.808 0.000 0.192 0.000
#> SRR1347278     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1332904     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1444179     1  0.5256    0.52337 0.692 0.000 0.272 0.036
#> SRR1082685     3  0.5614    0.49935 0.336 0.000 0.628 0.036
#> SRR1362287     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1339007     3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1376557     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1077455     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR1413978     1  0.1211    0.79410 0.960 0.000 0.040 0.000
#> SRR1439896     1  0.5407    0.49291 0.668 0.000 0.296 0.036
#> SRR1317963     4  0.3688    0.61975 0.000 0.208 0.000 0.792
#> SRR1431865     1  0.0817    0.79914 0.976 0.000 0.024 0.000
#> SRR1394253     1  0.2530    0.78709 0.888 0.000 0.112 0.000
#> SRR1082664     3  0.0707    0.78265 0.020 0.000 0.980 0.000
#> SRR1077968     3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1076393     1  0.0921    0.79812 0.972 0.000 0.028 0.000
#> SRR1477476     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR1398057     3  0.4972    0.12861 0.456 0.000 0.544 0.000
#> SRR1485042     3  0.4149    0.74132 0.152 0.000 0.812 0.036
#> SRR1385453     4  0.3311    0.81204 0.000 0.000 0.172 0.828
#> SRR1348074     4  0.3311    0.81204 0.000 0.000 0.172 0.828
#> SRR813959      4  0.3311    0.81204 0.000 0.000 0.172 0.828
#> SRR665442      4  0.5000    0.00876 0.496 0.000 0.000 0.504
#> SRR1378068     3  0.4543    0.46762 0.324 0.000 0.676 0.000
#> SRR1485237     4  0.3311    0.81204 0.000 0.000 0.172 0.828
#> SRR1350792     3  0.4050    0.74558 0.144 0.000 0.820 0.036
#> SRR1326797     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR808994      1  0.2081    0.77587 0.916 0.000 0.084 0.000
#> SRR1474041     3  0.4103    0.56123 0.256 0.000 0.744 0.000
#> SRR1405641     1  0.1389    0.79189 0.952 0.000 0.048 0.000
#> SRR1362245     1  0.2814    0.74399 0.868 0.000 0.132 0.000
#> SRR1500194     1  0.4365    0.64320 0.784 0.000 0.188 0.028
#> SRR1414876     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1478523     1  0.1545    0.79282 0.952 0.000 0.040 0.008
#> SRR1325161     3  0.1022    0.76959 0.032 0.000 0.968 0.000
#> SRR1318026     4  0.3444    0.80492 0.000 0.000 0.184 0.816
#> SRR1343778     3  0.4500    0.72082 0.192 0.000 0.776 0.032
#> SRR1441287     1  0.5938   -0.04384 0.488 0.000 0.476 0.036
#> SRR1430991     3  0.0336    0.77917 0.008 0.000 0.992 0.000
#> SRR1499722     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR1351368     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1441785     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1096101     1  0.5256    0.52337 0.692 0.000 0.272 0.036
#> SRR808375      3  0.0336    0.77917 0.008 0.000 0.992 0.000
#> SRR1452842     3  0.3975    0.57117 0.240 0.000 0.760 0.000
#> SRR1311709     4  0.6708    0.57083 0.132 0.000 0.272 0.596
#> SRR1433352     3  0.3205    0.76552 0.104 0.000 0.872 0.024
#> SRR1340241     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR1456754     3  0.3123    0.67517 0.156 0.000 0.844 0.000
#> SRR1465172     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR1499284     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR1499607     4  0.3688    0.61975 0.000 0.208 0.000 0.792
#> SRR812342      3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1405374     1  0.1022    0.79731 0.968 0.000 0.032 0.000
#> SRR1403565     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1332024     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1471633     4  0.7251    0.50438 0.192 0.000 0.272 0.536
#> SRR1325944     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR1429450     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR821573      3  0.2814    0.76200 0.132 0.000 0.868 0.000
#> SRR1435372     3  0.4549    0.71194 0.188 0.000 0.776 0.036
#> SRR1324184     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR816517      4  0.4746    0.35543 0.368 0.000 0.000 0.632
#> SRR1324141     4  0.3726    0.78312 0.000 0.000 0.212 0.788
#> SRR1101612     3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1356531     3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1089785     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR1077708     3  0.1211    0.76543 0.040 0.000 0.960 0.000
#> SRR1343720     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR1477499     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR1347236     3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1326408     3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1336529     3  0.4134    0.55204 0.260 0.000 0.740 0.000
#> SRR1440643     4  0.3726    0.78312 0.000 0.000 0.212 0.788
#> SRR662354      3  0.5577    0.51170 0.328 0.000 0.636 0.036
#> SRR1310817     3  0.4605    0.52525 0.336 0.000 0.664 0.000
#> SRR1347389     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1353097     3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1384737     1  0.3311    0.66892 0.828 0.000 0.000 0.172
#> SRR1096339     1  0.5538    0.45168 0.644 0.000 0.320 0.036
#> SRR1345329     4  0.3311    0.81204 0.000 0.000 0.172 0.828
#> SRR1414771     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1309119     4  0.6728    0.57368 0.136 0.000 0.268 0.596
#> SRR1470438     1  0.0000    0.80196 1.000 0.000 0.000 0.000
#> SRR1343221     1  0.3172    0.76111 0.840 0.000 0.160 0.000
#> SRR1410847     1  0.5496    0.45084 0.652 0.000 0.312 0.036
#> SRR807949      3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR1442332     3  0.3606    0.75920 0.140 0.000 0.840 0.020
#> SRR815920      3  0.4888    0.33620 0.412 0.000 0.588 0.000
#> SRR1471524     1  0.2589    0.75609 0.884 0.000 0.116 0.000
#> SRR1477221     1  0.2814    0.74399 0.868 0.000 0.132 0.000
#> SRR1445046     2  0.2530    0.82672 0.000 0.888 0.000 0.112
#> SRR1331962     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1319946     4  0.3688    0.61975 0.000 0.208 0.000 0.792
#> SRR1311599     1  0.2868    0.74295 0.864 0.000 0.136 0.000
#> SRR1323977     4  0.3311    0.81204 0.000 0.000 0.172 0.828
#> SRR1445132     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR1337321     1  0.2814    0.74399 0.868 0.000 0.132 0.000
#> SRR1366390     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1343012     1  0.2546    0.76007 0.900 0.000 0.092 0.008
#> SRR1311958     2  0.1211    0.89690 0.000 0.960 0.000 0.040
#> SRR1388234     4  0.3311    0.65959 0.000 0.172 0.000 0.828
#> SRR1370384     3  0.1118    0.77316 0.000 0.000 0.964 0.036
#> SRR1321650     1  0.4406    0.55745 0.700 0.000 0.300 0.000
#> SRR1485117     2  0.0000    0.92081 0.000 1.000 0.000 0.000
#> SRR1384713     3  0.0000    0.78056 0.000 0.000 1.000 0.000
#> SRR816609      4  0.3311    0.81204 0.000 0.000 0.172 0.828
#> SRR1486239     2  0.0817    0.90764 0.000 0.976 0.000 0.024
#> SRR1309638     3  0.4222    0.53702 0.272 0.000 0.728 0.000
#> SRR1356660     1  0.0188    0.80189 0.996 0.000 0.004 0.000
#> SRR1392883     2  0.3311    0.90346 0.000 0.828 0.000 0.172
#> SRR808130      3  0.0921    0.77161 0.028 0.000 0.972 0.000
#> SRR816677      1  0.5716    0.51428 0.668 0.000 0.272 0.060
#> SRR1455722     1  0.5308    0.51449 0.684 0.000 0.280 0.036
#> SRR1336029     1  0.1022    0.79731 0.968 0.000 0.032 0.000
#> SRR808452      3  0.3895    0.75139 0.132 0.000 0.832 0.036
#> SRR1352169     3  0.4331    0.51967 0.288 0.000 0.712 0.000
#> SRR1366707     3  0.4941    0.22326 0.436 0.000 0.564 0.000
#> SRR1328143     3  0.1211    0.76543 0.040 0.000 0.960 0.000
#> SRR1473567     2  0.0000    0.92081 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     3  0.3949     0.5672 0.000 0.000 0.668 0.000 0.332
#> SRR1390119     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.3039     0.7843 0.000 0.000 0.808 0.000 0.192
#> SRR1347278     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1332904     2  0.6618     0.7933 0.052 0.620 0.120 0.200 0.008
#> SRR1444179     1  0.1270     0.8707 0.948 0.000 0.052 0.000 0.000
#> SRR1082685     1  0.1270     0.8707 0.948 0.000 0.052 0.000 0.000
#> SRR1362287     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1339007     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1376557     2  0.3109     0.8388 0.000 0.800 0.000 0.200 0.000
#> SRR1468700     2  0.5040     0.8293 0.008 0.716 0.072 0.200 0.004
#> SRR1077455     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1413978     3  0.2377     0.8876 0.128 0.000 0.872 0.000 0.000
#> SRR1439896     1  0.1469     0.8801 0.948 0.000 0.036 0.000 0.016
#> SRR1317963     4  0.3616     0.5333 0.052 0.000 0.116 0.828 0.004
#> SRR1431865     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1394253     3  0.2859     0.8807 0.056 0.000 0.876 0.000 0.068
#> SRR1082664     5  0.0693     0.9250 0.012 0.000 0.008 0.000 0.980
#> SRR1077968     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1076393     3  0.2685     0.8920 0.092 0.000 0.880 0.000 0.028
#> SRR1477476     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR1398057     5  0.4201     0.2308 0.000 0.000 0.408 0.000 0.592
#> SRR1485042     1  0.1444     0.8858 0.948 0.000 0.012 0.000 0.040
#> SRR1385453     4  0.3109     0.8063 0.200 0.000 0.000 0.800 0.000
#> SRR1348074     4  0.3109     0.8063 0.200 0.000 0.000 0.800 0.000
#> SRR813959      4  0.3109     0.8063 0.200 0.000 0.000 0.800 0.000
#> SRR665442      4  0.4287     0.0807 0.000 0.000 0.460 0.540 0.000
#> SRR1378068     5  0.3242     0.6959 0.000 0.000 0.216 0.000 0.784
#> SRR1485237     4  0.3109     0.8063 0.200 0.000 0.000 0.800 0.000
#> SRR1350792     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1326797     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR808994      3  0.2770     0.8755 0.044 0.000 0.880 0.000 0.076
#> SRR1474041     5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1405641     3  0.2770     0.8881 0.076 0.000 0.880 0.000 0.044
#> SRR1362245     3  0.2280     0.8467 0.000 0.000 0.880 0.000 0.120
#> SRR1500194     3  0.3949     0.5727 0.332 0.000 0.668 0.000 0.000
#> SRR1414876     2  0.5040     0.8293 0.008 0.716 0.072 0.200 0.004
#> SRR1478523     3  0.2818     0.8837 0.128 0.000 0.860 0.008 0.004
#> SRR1325161     5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1318026     4  0.3242     0.7930 0.216 0.000 0.000 0.784 0.000
#> SRR1343778     1  0.3280     0.7692 0.812 0.000 0.012 0.000 0.176
#> SRR1441287     1  0.1408     0.8859 0.948 0.000 0.008 0.000 0.044
#> SRR1430991     5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1499722     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1351368     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1441785     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1096101     1  0.1270     0.8707 0.948 0.000 0.052 0.000 0.000
#> SRR808375      5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1452842     5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1311709     1  0.2516     0.7659 0.860 0.000 0.000 0.140 0.000
#> SRR1433352     1  0.3612     0.6671 0.732 0.000 0.000 0.000 0.268
#> SRR1340241     2  0.2054     0.8248 0.008 0.916 0.072 0.000 0.004
#> SRR1456754     5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1465172     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1499284     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1499607     4  0.3359     0.5531 0.052 0.000 0.096 0.848 0.004
#> SRR812342      1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1405374     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1403565     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1332024     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1471633     1  0.1270     0.8707 0.948 0.000 0.052 0.000 0.000
#> SRR1325944     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.2605     0.7619 0.148 0.000 0.000 0.000 0.852
#> SRR1435372     1  0.1357     0.8736 0.948 0.000 0.048 0.000 0.004
#> SRR1324184     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR816517      4  0.3949     0.4253 0.000 0.000 0.332 0.668 0.000
#> SRR1324141     4  0.3661     0.7253 0.276 0.000 0.000 0.724 0.000
#> SRR1101612     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1356531     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1089785     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1077708     5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1343720     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1477499     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR1347236     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1326408     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1336529     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1440643     4  0.3661     0.7253 0.276 0.000 0.000 0.724 0.000
#> SRR662354      1  0.1469     0.8802 0.948 0.000 0.036 0.000 0.016
#> SRR1310817     1  0.5272     0.3407 0.552 0.000 0.052 0.000 0.396
#> SRR1347389     2  0.6618     0.7933 0.052 0.620 0.120 0.200 0.008
#> SRR1353097     1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1384737     3  0.2516     0.7878 0.000 0.000 0.860 0.140 0.000
#> SRR1096339     1  0.1485     0.8846 0.948 0.000 0.020 0.000 0.032
#> SRR1345329     4  0.3109     0.8063 0.200 0.000 0.000 0.800 0.000
#> SRR1414771     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1309119     1  0.2930     0.7380 0.832 0.000 0.004 0.164 0.000
#> SRR1470438     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1343221     3  0.2727     0.8547 0.016 0.000 0.868 0.000 0.116
#> SRR1410847     1  0.1270     0.8707 0.948 0.000 0.052 0.000 0.000
#> SRR807949      5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR1442332     1  0.4183     0.5829 0.668 0.000 0.008 0.000 0.324
#> SRR815920      5  0.4503     0.4901 0.024 0.000 0.312 0.000 0.664
#> SRR1471524     3  0.2522     0.8563 0.012 0.000 0.880 0.000 0.108
#> SRR1477221     3  0.2280     0.8467 0.000 0.000 0.880 0.000 0.120
#> SRR1445046     2  0.7216     0.6629 0.052 0.492 0.120 0.328 0.008
#> SRR1331962     2  0.6618     0.7933 0.052 0.620 0.120 0.200 0.008
#> SRR1319946     4  0.3787     0.5240 0.052 0.000 0.120 0.820 0.008
#> SRR1311599     3  0.2329     0.8448 0.000 0.000 0.876 0.000 0.124
#> SRR1323977     4  0.3109     0.8063 0.200 0.000 0.000 0.800 0.000
#> SRR1445132     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR1337321     3  0.2280     0.8467 0.000 0.000 0.880 0.000 0.120
#> SRR1366390     2  0.5244     0.8272 0.016 0.708 0.072 0.200 0.004
#> SRR1343012     1  0.4219     0.1826 0.584 0.000 0.416 0.000 0.000
#> SRR1311958     2  0.7007     0.7387 0.052 0.552 0.120 0.268 0.008
#> SRR1388234     4  0.0000     0.6501 0.000 0.000 0.000 1.000 0.000
#> SRR1370384     1  0.3039     0.7164 0.808 0.000 0.000 0.000 0.192
#> SRR1321650     3  0.3876     0.5996 0.000 0.000 0.684 0.000 0.316
#> SRR1485117     2  0.3109     0.8388 0.000 0.800 0.000 0.200 0.000
#> SRR1384713     5  0.0290     0.9316 0.008 0.000 0.000 0.000 0.992
#> SRR816609      4  0.3109     0.8063 0.200 0.000 0.000 0.800 0.000
#> SRR1486239     2  0.6950     0.7503 0.052 0.564 0.120 0.256 0.008
#> SRR1309638     5  0.0404     0.9302 0.000 0.000 0.012 0.000 0.988
#> SRR1356660     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR1392883     2  0.0000     0.8225 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR816677      1  0.2144     0.8524 0.912 0.000 0.068 0.020 0.000
#> SRR1455722     1  0.1408     0.8762 0.948 0.000 0.044 0.000 0.008
#> SRR1336029     3  0.2280     0.8946 0.120 0.000 0.880 0.000 0.000
#> SRR808452      1  0.1270     0.8853 0.948 0.000 0.000 0.000 0.052
#> SRR1352169     5  0.1597     0.8932 0.012 0.000 0.048 0.000 0.940
#> SRR1366707     5  0.3003     0.7486 0.000 0.000 0.188 0.000 0.812
#> SRR1328143     5  0.0290     0.9321 0.000 0.000 0.008 0.000 0.992
#> SRR1473567     2  0.3109     0.8388 0.000 0.800 0.000 0.200 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.6130     -0.330 0.000 0.000 0.332 0.000 0.344 0.324
#> SRR1390119     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR1436127     3  0.2793      0.617 0.000 0.000 0.800 0.000 0.200 0.000
#> SRR1347278     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1332904     2  0.0000      0.716 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1444179     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1082685     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1362287     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1339007     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1376557     2  0.3993      0.630 0.000 0.592 0.000 0.008 0.000 0.400
#> SRR1468700     2  0.3151      0.699 0.000 0.748 0.000 0.000 0.000 0.252
#> SRR1077455     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1413978     6  0.3961      0.515 0.004 0.000 0.440 0.000 0.000 0.556
#> SRR1439896     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1317963     2  0.3620      0.285 0.000 0.648 0.000 0.352 0.000 0.000
#> SRR1431865     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1394253     6  0.4268      0.505 0.004 0.000 0.428 0.000 0.012 0.556
#> SRR1082664     5  0.0363      0.887 0.012 0.000 0.000 0.000 0.988 0.000
#> SRR1077968     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1076393     3  0.0000      0.605 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1477476     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR1398057     5  0.3975      0.275 0.000 0.000 0.008 0.000 0.600 0.392
#> SRR1485042     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1385453     4  0.2883      0.901 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR1348074     4  0.2883      0.901 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR813959      4  0.2883      0.901 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR665442      6  0.6013     -0.155 0.000 0.148 0.016 0.400 0.000 0.436
#> SRR1378068     3  0.3828      0.229 0.000 0.000 0.560 0.000 0.440 0.000
#> SRR1485237     4  0.2883      0.901 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR1350792     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326797     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR808994      3  0.0000      0.605 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1474041     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1405641     3  0.0000      0.605 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1362245     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1500194     3  0.5895     -0.262 0.208 0.000 0.436 0.000 0.000 0.356
#> SRR1414876     2  0.3428      0.684 0.000 0.696 0.000 0.000 0.000 0.304
#> SRR1478523     6  0.4284      0.507 0.000 0.000 0.440 0.012 0.004 0.544
#> SRR1325161     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1318026     4  0.2996      0.890 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1343778     3  0.5002      0.251 0.364 0.000 0.556 0.000 0.080 0.000
#> SRR1441287     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1430991     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499722     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1351368     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1441785     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1096101     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR808375      5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1452842     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1311709     1  0.1663      0.822 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR1433352     1  0.3175      0.617 0.744 0.000 0.000 0.000 0.256 0.000
#> SRR1340241     2  0.5911      0.469 0.000 0.432 0.000 0.212 0.000 0.356
#> SRR1456754     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1465172     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499284     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1499607     2  0.3684      0.249 0.000 0.628 0.000 0.372 0.000 0.000
#> SRR812342      1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405374     6  0.3961      0.515 0.004 0.000 0.440 0.000 0.000 0.556
#> SRR1403565     6  0.3961      0.514 0.004 0.000 0.440 0.000 0.000 0.556
#> SRR1332024     3  0.0000      0.605 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1471633     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1325944     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR1429450     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR821573      5  0.2793      0.629 0.200 0.000 0.000 0.000 0.800 0.000
#> SRR1435372     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324184     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR816517      4  0.3684      0.438 0.000 0.000 0.004 0.664 0.000 0.332
#> SRR1324141     4  0.3309      0.840 0.280 0.000 0.000 0.720 0.000 0.000
#> SRR1101612     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1356531     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1089785     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1077708     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1343720     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1477499     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR1347236     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326408     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.3828      0.229 0.000 0.000 0.560 0.000 0.440 0.000
#> SRR1440643     4  0.3309      0.840 0.280 0.000 0.000 0.720 0.000 0.000
#> SRR662354      1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310817     1  0.3747      0.375 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1347389     2  0.0000      0.716 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1353097     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384737     6  0.4968      0.451 0.000 0.000 0.368 0.076 0.000 0.556
#> SRR1096339     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345329     4  0.2883      0.901 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR1414771     3  0.0000      0.605 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1309119     1  0.1910      0.797 0.892 0.000 0.000 0.108 0.000 0.000
#> SRR1470438     3  0.0000      0.605 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1343221     6  0.4656      0.474 0.004 0.000 0.404 0.000 0.036 0.556
#> SRR1410847     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR807949      5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1442332     1  0.3266      0.591 0.728 0.000 0.000 0.000 0.272 0.000
#> SRR815920      3  0.4078      0.424 0.020 0.000 0.640 0.000 0.340 0.000
#> SRR1471524     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1477221     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1445046     2  0.1663      0.667 0.000 0.912 0.000 0.088 0.000 0.000
#> SRR1331962     2  0.0000      0.716 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1319946     2  0.3592      0.298 0.000 0.656 0.000 0.344 0.000 0.000
#> SRR1311599     6  0.3961      0.514 0.000 0.000 0.440 0.000 0.004 0.556
#> SRR1323977     4  0.2883      0.901 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR1445132     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR1337321     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1366390     2  0.3653      0.682 0.000 0.692 0.000 0.008 0.000 0.300
#> SRR1343012     1  0.4210      0.405 0.636 0.000 0.028 0.000 0.000 0.336
#> SRR1311958     2  0.1267      0.689 0.000 0.940 0.000 0.060 0.000 0.000
#> SRR1388234     4  0.2883      0.519 0.000 0.212 0.000 0.788 0.000 0.000
#> SRR1370384     1  0.2793      0.654 0.800 0.000 0.000 0.000 0.200 0.000
#> SRR1321650     3  0.3515      0.473 0.000 0.000 0.676 0.000 0.324 0.000
#> SRR1485117     2  0.4057      0.603 0.000 0.556 0.000 0.008 0.000 0.436
#> SRR1384713     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR816609      4  0.2883      0.901 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR1486239     2  0.1075      0.697 0.000 0.952 0.000 0.048 0.000 0.000
#> SRR1309638     5  0.3737      0.202 0.000 0.000 0.392 0.000 0.608 0.000
#> SRR1356660     6  0.3833      0.516 0.000 0.000 0.444 0.000 0.000 0.556
#> SRR1392883     6  0.5896     -0.439 0.000 0.344 0.000 0.212 0.000 0.444
#> SRR808130      5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR816677      1  0.1982      0.821 0.912 0.000 0.068 0.016 0.000 0.004
#> SRR1455722     1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336029     6  0.3961      0.515 0.004 0.000 0.440 0.000 0.000 0.556
#> SRR808452      1  0.0000      0.914 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1352169     5  0.1957      0.759 0.000 0.000 0.112 0.000 0.888 0.000
#> SRR1366707     3  0.2219      0.622 0.000 0.000 0.864 0.000 0.136 0.000
#> SRR1328143     5  0.0000      0.900 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1473567     2  0.3578      0.669 0.000 0.660 0.000 0.000 0.000 0.340

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.996         0.4275 0.571   0.571
#> 3 3 0.543           0.692       0.852         0.2938 0.808   0.678
#> 4 4 0.589           0.690       0.824         0.1566 0.722   0.475
#> 5 5 0.483           0.590       0.742         0.0611 0.941   0.853
#> 6 6 0.781           0.823       0.886         0.1792 0.749   0.381

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1  0.0000      0.998 1.000 0.000
#> SRR1390119     2  0.0000      0.990 0.000 1.000
#> SRR1436127     1  0.0000      0.998 1.000 0.000
#> SRR1347278     1  0.0000      0.998 1.000 0.000
#> SRR1332904     2  0.0000      0.990 0.000 1.000
#> SRR1444179     1  0.0000      0.998 1.000 0.000
#> SRR1082685     1  0.0000      0.998 1.000 0.000
#> SRR1362287     1  0.0000      0.998 1.000 0.000
#> SRR1339007     1  0.0000      0.998 1.000 0.000
#> SRR1376557     2  0.0000      0.990 0.000 1.000
#> SRR1468700     2  0.0000      0.990 0.000 1.000
#> SRR1077455     1  0.0000      0.998 1.000 0.000
#> SRR1413978     1  0.0000      0.998 1.000 0.000
#> SRR1439896     1  0.0000      0.998 1.000 0.000
#> SRR1317963     2  0.0000      0.990 0.000 1.000
#> SRR1431865     1  0.0000      0.998 1.000 0.000
#> SRR1394253     1  0.0000      0.998 1.000 0.000
#> SRR1082664     1  0.0000      0.998 1.000 0.000
#> SRR1077968     1  0.0000      0.998 1.000 0.000
#> SRR1076393     1  0.0000      0.998 1.000 0.000
#> SRR1477476     2  0.0000      0.990 0.000 1.000
#> SRR1398057     1  0.0000      0.998 1.000 0.000
#> SRR1485042     1  0.0000      0.998 1.000 0.000
#> SRR1385453     2  0.0000      0.990 0.000 1.000
#> SRR1348074     2  0.0000      0.990 0.000 1.000
#> SRR813959      2  0.0000      0.990 0.000 1.000
#> SRR665442      2  0.0000      0.990 0.000 1.000
#> SRR1378068     1  0.0000      0.998 1.000 0.000
#> SRR1485237     2  0.0000      0.990 0.000 1.000
#> SRR1350792     1  0.0000      0.998 1.000 0.000
#> SRR1326797     1  0.0376      0.995 0.996 0.004
#> SRR808994      1  0.0000      0.998 1.000 0.000
#> SRR1474041     1  0.0000      0.998 1.000 0.000
#> SRR1405641     1  0.0000      0.998 1.000 0.000
#> SRR1362245     1  0.0000      0.998 1.000 0.000
#> SRR1500194     1  0.0000      0.998 1.000 0.000
#> SRR1414876     2  0.0000      0.990 0.000 1.000
#> SRR1478523     2  0.9209      0.495 0.336 0.664
#> SRR1325161     1  0.0000      0.998 1.000 0.000
#> SRR1318026     2  0.0000      0.990 0.000 1.000
#> SRR1343778     1  0.0000      0.998 1.000 0.000
#> SRR1441287     1  0.0000      0.998 1.000 0.000
#> SRR1430991     1  0.0000      0.998 1.000 0.000
#> SRR1499722     1  0.0000      0.998 1.000 0.000
#> SRR1351368     1  0.0672      0.991 0.992 0.008
#> SRR1441785     1  0.0000      0.998 1.000 0.000
#> SRR1096101     1  0.0000      0.998 1.000 0.000
#> SRR808375      1  0.0000      0.998 1.000 0.000
#> SRR1452842     1  0.0000      0.998 1.000 0.000
#> SRR1311709     1  0.0672      0.991 0.992 0.008
#> SRR1433352     1  0.0000      0.998 1.000 0.000
#> SRR1340241     2  0.0000      0.990 0.000 1.000
#> SRR1456754     1  0.0000      0.998 1.000 0.000
#> SRR1465172     1  0.0000      0.998 1.000 0.000
#> SRR1499284     1  0.0000      0.998 1.000 0.000
#> SRR1499607     2  0.0000      0.990 0.000 1.000
#> SRR812342      1  0.0000      0.998 1.000 0.000
#> SRR1405374     1  0.0000      0.998 1.000 0.000
#> SRR1403565     1  0.0000      0.998 1.000 0.000
#> SRR1332024     1  0.0000      0.998 1.000 0.000
#> SRR1471633     1  0.0000      0.998 1.000 0.000
#> SRR1325944     2  0.0000      0.990 0.000 1.000
#> SRR1429450     2  0.0000      0.990 0.000 1.000
#> SRR821573      1  0.0000      0.998 1.000 0.000
#> SRR1435372     1  0.0000      0.998 1.000 0.000
#> SRR1324184     2  0.0000      0.990 0.000 1.000
#> SRR816517      2  0.0000      0.990 0.000 1.000
#> SRR1324141     2  0.1843      0.963 0.028 0.972
#> SRR1101612     1  0.0000      0.998 1.000 0.000
#> SRR1356531     1  0.0000      0.998 1.000 0.000
#> SRR1089785     1  0.0000      0.998 1.000 0.000
#> SRR1077708     1  0.0000      0.998 1.000 0.000
#> SRR1343720     1  0.0000      0.998 1.000 0.000
#> SRR1477499     2  0.0000      0.990 0.000 1.000
#> SRR1347236     1  0.0000      0.998 1.000 0.000
#> SRR1326408     1  0.0000      0.998 1.000 0.000
#> SRR1336529     1  0.0000      0.998 1.000 0.000
#> SRR1440643     2  0.0000      0.990 0.000 1.000
#> SRR662354      1  0.0000      0.998 1.000 0.000
#> SRR1310817     1  0.0000      0.998 1.000 0.000
#> SRR1347389     2  0.0000      0.990 0.000 1.000
#> SRR1353097     1  0.0000      0.998 1.000 0.000
#> SRR1384737     1  0.4161      0.908 0.916 0.084
#> SRR1096339     1  0.0000      0.998 1.000 0.000
#> SRR1345329     2  0.0000      0.990 0.000 1.000
#> SRR1414771     1  0.0000      0.998 1.000 0.000
#> SRR1309119     1  0.0000      0.998 1.000 0.000
#> SRR1470438     1  0.0000      0.998 1.000 0.000
#> SRR1343221     1  0.0000      0.998 1.000 0.000
#> SRR1410847     1  0.0000      0.998 1.000 0.000
#> SRR807949      1  0.0000      0.998 1.000 0.000
#> SRR1442332     1  0.0000      0.998 1.000 0.000
#> SRR815920      1  0.0000      0.998 1.000 0.000
#> SRR1471524     1  0.0000      0.998 1.000 0.000
#> SRR1477221     1  0.0000      0.998 1.000 0.000
#> SRR1445046     2  0.0000      0.990 0.000 1.000
#> SRR1331962     2  0.0000      0.990 0.000 1.000
#> SRR1319946     2  0.0000      0.990 0.000 1.000
#> SRR1311599     1  0.0000      0.998 1.000 0.000
#> SRR1323977     2  0.0000      0.990 0.000 1.000
#> SRR1445132     2  0.0000      0.990 0.000 1.000
#> SRR1337321     1  0.0000      0.998 1.000 0.000
#> SRR1366390     2  0.0000      0.990 0.000 1.000
#> SRR1343012     1  0.0000      0.998 1.000 0.000
#> SRR1311958     2  0.0000      0.990 0.000 1.000
#> SRR1388234     2  0.0000      0.990 0.000 1.000
#> SRR1370384     1  0.0000      0.998 1.000 0.000
#> SRR1321650     1  0.0000      0.998 1.000 0.000
#> SRR1485117     2  0.0000      0.990 0.000 1.000
#> SRR1384713     1  0.0000      0.998 1.000 0.000
#> SRR816609      2  0.0000      0.990 0.000 1.000
#> SRR1486239     2  0.0000      0.990 0.000 1.000
#> SRR1309638     1  0.0000      0.998 1.000 0.000
#> SRR1356660     1  0.0000      0.998 1.000 0.000
#> SRR1392883     2  0.0000      0.990 0.000 1.000
#> SRR808130      1  0.0000      0.998 1.000 0.000
#> SRR816677      1  0.0938      0.987 0.988 0.012
#> SRR1455722     1  0.0000      0.998 1.000 0.000
#> SRR1336029     1  0.0000      0.998 1.000 0.000
#> SRR808452      1  0.0000      0.998 1.000 0.000
#> SRR1352169     1  0.0938      0.987 0.988 0.012
#> SRR1366707     1  0.0000      0.998 1.000 0.000
#> SRR1328143     1  0.0000      0.998 1.000 0.000
#> SRR1473567     2  0.0000      0.990 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1390119     2  0.0424     0.9145 0.008 0.992 0.000
#> SRR1436127     3  0.2878     0.7968 0.096 0.000 0.904
#> SRR1347278     3  0.1411     0.8380 0.036 0.000 0.964
#> SRR1332904     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1444179     3  0.6168    -0.1138 0.412 0.000 0.588
#> SRR1082685     3  0.5591     0.2942 0.304 0.000 0.696
#> SRR1362287     3  0.0237     0.8450 0.004 0.000 0.996
#> SRR1339007     1  0.5948     0.6353 0.640 0.000 0.360
#> SRR1376557     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1468700     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1077455     3  0.1964     0.8003 0.056 0.000 0.944
#> SRR1413978     3  0.1411     0.8380 0.036 0.000 0.964
#> SRR1439896     3  0.5785     0.1381 0.332 0.000 0.668
#> SRR1317963     2  0.3482     0.8236 0.128 0.872 0.000
#> SRR1431865     3  0.0747     0.8430 0.016 0.000 0.984
#> SRR1394253     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1082664     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1077968     3  0.6095    -0.1193 0.392 0.000 0.608
#> SRR1076393     3  0.3116     0.7912 0.108 0.000 0.892
#> SRR1477476     2  0.0424     0.9145 0.008 0.992 0.000
#> SRR1398057     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1485042     1  0.6280     0.4918 0.540 0.000 0.460
#> SRR1385453     2  0.9380     0.2042 0.256 0.512 0.232
#> SRR1348074     1  0.8985     0.4663 0.564 0.220 0.216
#> SRR813959      2  0.9175     0.2739 0.244 0.540 0.216
#> SRR665442      2  0.0424     0.9145 0.008 0.992 0.000
#> SRR1378068     3  0.2448     0.8046 0.076 0.000 0.924
#> SRR1485237     1  0.8925     0.5360 0.564 0.180 0.256
#> SRR1350792     1  0.5968     0.6319 0.636 0.000 0.364
#> SRR1326797     3  0.1289     0.8392 0.032 0.000 0.968
#> SRR808994      3  0.3116     0.7912 0.108 0.000 0.892
#> SRR1474041     3  0.1163     0.8388 0.028 0.000 0.972
#> SRR1405641     3  0.3116     0.7912 0.108 0.000 0.892
#> SRR1362245     3  0.3116     0.7912 0.108 0.000 0.892
#> SRR1500194     3  0.6140    -0.0769 0.404 0.000 0.596
#> SRR1414876     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1478523     3  0.7226     0.3353 0.228 0.080 0.692
#> SRR1325161     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1318026     1  0.8600     0.5802 0.580 0.136 0.284
#> SRR1343778     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1441287     1  0.5948     0.6353 0.640 0.000 0.360
#> SRR1430991     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1499722     3  0.0424     0.8417 0.008 0.000 0.992
#> SRR1351368     3  0.3192     0.7878 0.112 0.000 0.888
#> SRR1441785     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1096101     3  0.5465     0.3191 0.288 0.000 0.712
#> SRR808375      3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1452842     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1311709     1  0.6881     0.4749 0.592 0.020 0.388
#> SRR1433352     3  0.0424     0.8417 0.008 0.000 0.992
#> SRR1340241     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1456754     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1465172     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1499284     3  0.1163     0.8254 0.028 0.000 0.972
#> SRR1499607     2  0.3267     0.8330 0.116 0.884 0.000
#> SRR812342      1  0.5948     0.6353 0.640 0.000 0.360
#> SRR1405374     3  0.0424     0.8417 0.008 0.000 0.992
#> SRR1403565     3  0.0237     0.8450 0.004 0.000 0.996
#> SRR1332024     3  0.2878     0.7968 0.096 0.000 0.904
#> SRR1471633     1  0.6286     0.3590 0.536 0.000 0.464
#> SRR1325944     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1429450     2  0.0424     0.9145 0.008 0.992 0.000
#> SRR821573      3  0.2066     0.8213 0.060 0.000 0.940
#> SRR1435372     1  0.5948     0.6353 0.640 0.000 0.360
#> SRR1324184     2  0.0424     0.9145 0.008 0.992 0.000
#> SRR816517      2  0.7572     0.5127 0.128 0.688 0.184
#> SRR1324141     1  0.8462     0.5787 0.588 0.124 0.288
#> SRR1101612     1  0.6274     0.4998 0.544 0.000 0.456
#> SRR1356531     1  0.6295     0.4650 0.528 0.000 0.472
#> SRR1089785     3  0.1031     0.8416 0.024 0.000 0.976
#> SRR1077708     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1343720     3  0.0424     0.8417 0.008 0.000 0.992
#> SRR1477499     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1347236     3  0.2537     0.7721 0.080 0.000 0.920
#> SRR1326408     3  0.6235    -0.2708 0.436 0.000 0.564
#> SRR1336529     3  0.2878     0.7970 0.096 0.000 0.904
#> SRR1440643     2  0.9681     0.0188 0.256 0.460 0.284
#> SRR662354      1  0.5948     0.6353 0.640 0.000 0.360
#> SRR1310817     3  0.1411     0.8380 0.036 0.000 0.964
#> SRR1347389     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1353097     1  0.6280     0.4931 0.540 0.000 0.460
#> SRR1384737     3  0.5202     0.5485 0.220 0.008 0.772
#> SRR1096339     3  0.6309    -0.4113 0.496 0.000 0.504
#> SRR1345329     1  0.8965     0.5112 0.564 0.196 0.240
#> SRR1414771     3  0.3192     0.7878 0.112 0.000 0.888
#> SRR1309119     3  0.6307    -0.2945 0.488 0.000 0.512
#> SRR1470438     3  0.3116     0.7912 0.108 0.000 0.892
#> SRR1343221     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1410847     3  0.0424     0.8417 0.008 0.000 0.992
#> SRR807949      3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1442332     3  0.0424     0.8417 0.008 0.000 0.992
#> SRR815920      3  0.1031     0.8402 0.024 0.000 0.976
#> SRR1471524     3  0.2878     0.8019 0.096 0.000 0.904
#> SRR1477221     3  0.2448     0.8068 0.076 0.000 0.924
#> SRR1445046     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1331962     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1319946     2  0.0237     0.9141 0.004 0.996 0.000
#> SRR1311599     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1323977     1  0.8985     0.4663 0.564 0.220 0.216
#> SRR1445132     2  0.0424     0.9145 0.008 0.992 0.000
#> SRR1337321     3  0.3116     0.7912 0.108 0.000 0.892
#> SRR1366390     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1343012     3  0.1643     0.8347 0.044 0.000 0.956
#> SRR1311958     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1388234     1  0.8534     0.2236 0.564 0.320 0.116
#> SRR1370384     1  0.5948     0.6353 0.640 0.000 0.360
#> SRR1321650     3  0.2537     0.8012 0.080 0.000 0.920
#> SRR1485117     2  0.0424     0.9145 0.008 0.992 0.000
#> SRR1384713     3  0.5621     0.2268 0.308 0.000 0.692
#> SRR816609      1  0.8862     0.5565 0.564 0.164 0.272
#> SRR1486239     2  0.0000     0.9158 0.000 1.000 0.000
#> SRR1309638     3  0.1860     0.8221 0.052 0.000 0.948
#> SRR1356660     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1392883     2  0.0424     0.9145 0.008 0.992 0.000
#> SRR808130      3  0.0000     0.8451 0.000 0.000 1.000
#> SRR816677      3  0.4805     0.6264 0.176 0.012 0.812
#> SRR1455722     1  0.5968     0.6319 0.636 0.000 0.364
#> SRR1336029     3  0.1289     0.8388 0.032 0.000 0.968
#> SRR808452      3  0.5327     0.3351 0.272 0.000 0.728
#> SRR1352169     3  0.1620     0.8372 0.024 0.012 0.964
#> SRR1366707     3  0.3116     0.7912 0.108 0.000 0.892
#> SRR1328143     3  0.0000     0.8451 0.000 0.000 1.000
#> SRR1473567     2  0.0424     0.9145 0.008 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     1  0.5320     0.3342 0.572 0.000 0.416 0.012
#> SRR1390119     2  0.0336     0.9710 0.000 0.992 0.008 0.000
#> SRR1436127     3  0.3444     0.8877 0.184 0.000 0.816 0.000
#> SRR1347278     1  0.4907     0.3394 0.580 0.000 0.420 0.000
#> SRR1332904     2  0.1557     0.9459 0.000 0.944 0.000 0.056
#> SRR1444179     1  0.2300     0.7171 0.920 0.000 0.064 0.016
#> SRR1082685     1  0.0779     0.7102 0.980 0.000 0.004 0.016
#> SRR1362287     1  0.4907     0.3376 0.580 0.000 0.420 0.000
#> SRR1339007     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1376557     2  0.0000     0.9724 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0336     0.9703 0.000 0.992 0.000 0.008
#> SRR1077455     1  0.0672     0.7136 0.984 0.000 0.008 0.008
#> SRR1413978     1  0.4790     0.4249 0.620 0.000 0.380 0.000
#> SRR1439896     1  0.0336     0.7100 0.992 0.000 0.000 0.008
#> SRR1317963     4  0.5256     0.3641 0.000 0.392 0.012 0.596
#> SRR1431865     1  0.4898     0.3489 0.584 0.000 0.416 0.000
#> SRR1394253     1  0.3219     0.7011 0.836 0.000 0.164 0.000
#> SRR1082664     1  0.4914     0.5468 0.676 0.000 0.312 0.012
#> SRR1077968     1  0.0927     0.7106 0.976 0.000 0.008 0.016
#> SRR1076393     3  0.3448     0.8910 0.168 0.000 0.828 0.004
#> SRR1477476     2  0.0336     0.9710 0.000 0.992 0.008 0.000
#> SRR1398057     1  0.5310     0.3395 0.576 0.000 0.412 0.012
#> SRR1485042     1  0.1109     0.7040 0.968 0.000 0.004 0.028
#> SRR1385453     4  0.3017     0.7994 0.028 0.024 0.044 0.904
#> SRR1348074     4  0.1724     0.8124 0.032 0.020 0.000 0.948
#> SRR813959      4  0.2021     0.8085 0.024 0.040 0.000 0.936
#> SRR665442      2  0.3266     0.8560 0.000 0.832 0.168 0.000
#> SRR1378068     3  0.3688     0.8645 0.208 0.000 0.792 0.000
#> SRR1485237     4  0.1833     0.8134 0.032 0.024 0.000 0.944
#> SRR1350792     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1326797     1  0.3271     0.7087 0.856 0.000 0.132 0.012
#> SRR808994      3  0.3448     0.8910 0.168 0.000 0.828 0.004
#> SRR1474041     1  0.4990     0.4860 0.640 0.000 0.352 0.008
#> SRR1405641     3  0.3448     0.8910 0.168 0.000 0.828 0.004
#> SRR1362245     3  0.3448     0.8910 0.168 0.000 0.828 0.004
#> SRR1500194     1  0.2021     0.7168 0.932 0.000 0.056 0.012
#> SRR1414876     2  0.0000     0.9724 0.000 1.000 0.000 0.000
#> SRR1478523     4  0.7580    -0.0107 0.272 0.008 0.196 0.524
#> SRR1325161     1  0.4163     0.6830 0.792 0.000 0.188 0.020
#> SRR1318026     4  0.1661     0.8062 0.052 0.004 0.000 0.944
#> SRR1343778     1  0.4576     0.6174 0.728 0.000 0.260 0.012
#> SRR1441287     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1430991     1  0.3900     0.6967 0.816 0.000 0.164 0.020
#> SRR1499722     1  0.3806     0.7005 0.824 0.000 0.156 0.020
#> SRR1351368     3  0.3448     0.8910 0.168 0.000 0.828 0.004
#> SRR1441785     1  0.4888     0.3564 0.588 0.000 0.412 0.000
#> SRR1096101     1  0.0895     0.7079 0.976 0.000 0.004 0.020
#> SRR808375      1  0.4163     0.6849 0.792 0.000 0.188 0.020
#> SRR1452842     1  0.3356     0.6958 0.824 0.000 0.176 0.000
#> SRR1311709     4  0.4164     0.5098 0.264 0.000 0.000 0.736
#> SRR1433352     1  0.0672     0.7143 0.984 0.000 0.008 0.008
#> SRR1340241     2  0.0000     0.9724 0.000 1.000 0.000 0.000
#> SRR1456754     1  0.4855     0.3859 0.600 0.000 0.400 0.000
#> SRR1465172     1  0.3806     0.7005 0.824 0.000 0.156 0.020
#> SRR1499284     1  0.1452     0.7175 0.956 0.000 0.036 0.008
#> SRR1499607     4  0.5268     0.3565 0.000 0.396 0.012 0.592
#> SRR812342      1  0.1356     0.7038 0.960 0.000 0.008 0.032
#> SRR1405374     1  0.4543     0.5316 0.676 0.000 0.324 0.000
#> SRR1403565     1  0.4888     0.3599 0.588 0.000 0.412 0.000
#> SRR1332024     3  0.3311     0.8902 0.172 0.000 0.828 0.000
#> SRR1471633     1  0.4585     0.4052 0.668 0.000 0.000 0.332
#> SRR1325944     2  0.0000     0.9724 0.000 1.000 0.000 0.000
#> SRR1429450     2  0.0188     0.9721 0.000 0.996 0.004 0.000
#> SRR821573      1  0.4532     0.6870 0.792 0.000 0.156 0.052
#> SRR1435372     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1324184     2  0.0592     0.9677 0.000 0.984 0.016 0.000
#> SRR816517      4  0.5429     0.6731 0.004 0.196 0.068 0.732
#> SRR1324141     4  0.2831     0.7523 0.120 0.004 0.000 0.876
#> SRR1101612     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1356531     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1089785     1  0.3946     0.6953 0.812 0.000 0.168 0.020
#> SRR1077708     1  0.5300     0.3511 0.580 0.000 0.408 0.012
#> SRR1343720     1  0.3790     0.6978 0.820 0.000 0.164 0.016
#> SRR1477499     2  0.0000     0.9724 0.000 1.000 0.000 0.000
#> SRR1347236     1  0.0336     0.7100 0.992 0.000 0.000 0.008
#> SRR1326408     1  0.0592     0.7074 0.984 0.000 0.000 0.016
#> SRR1336529     3  0.3444     0.8882 0.184 0.000 0.816 0.000
#> SRR1440643     4  0.2660     0.8003 0.048 0.012 0.024 0.916
#> SRR662354      1  0.1209     0.6989 0.964 0.000 0.004 0.032
#> SRR1310817     1  0.3908     0.6714 0.784 0.000 0.212 0.004
#> SRR1347389     2  0.1474     0.9482 0.000 0.948 0.000 0.052
#> SRR1353097     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1384737     3  0.7836     0.2531 0.348 0.000 0.388 0.264
#> SRR1096339     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1345329     4  0.1833     0.8134 0.032 0.024 0.000 0.944
#> SRR1414771     3  0.3448     0.8910 0.168 0.000 0.828 0.004
#> SRR1309119     1  0.4164     0.4973 0.736 0.000 0.000 0.264
#> SRR1470438     3  0.3448     0.8910 0.168 0.000 0.828 0.004
#> SRR1343221     1  0.5310     0.3462 0.576 0.000 0.412 0.012
#> SRR1410847     1  0.1743     0.7186 0.940 0.000 0.056 0.004
#> SRR807949      1  0.4121     0.6877 0.796 0.000 0.184 0.020
#> SRR1442332     1  0.3249     0.7081 0.852 0.000 0.140 0.008
#> SRR815920      3  0.5602     0.0757 0.472 0.000 0.508 0.020
#> SRR1471524     3  0.3710     0.8779 0.192 0.000 0.804 0.004
#> SRR1477221     3  0.3688     0.8627 0.208 0.000 0.792 0.000
#> SRR1445046     2  0.2124     0.9306 0.000 0.924 0.008 0.068
#> SRR1331962     2  0.1557     0.9459 0.000 0.944 0.000 0.056
#> SRR1319946     4  0.5399     0.1468 0.000 0.468 0.012 0.520
#> SRR1311599     1  0.4888     0.3564 0.588 0.000 0.412 0.000
#> SRR1323977     4  0.1833     0.8134 0.032 0.024 0.000 0.944
#> SRR1445132     2  0.0188     0.9721 0.000 0.996 0.004 0.000
#> SRR1337321     3  0.3311     0.8902 0.172 0.000 0.828 0.000
#> SRR1366390     2  0.0000     0.9724 0.000 1.000 0.000 0.000
#> SRR1343012     1  0.5924     0.2856 0.556 0.000 0.404 0.040
#> SRR1311958     2  0.1557     0.9459 0.000 0.944 0.000 0.056
#> SRR1388234     4  0.1890     0.7903 0.008 0.056 0.000 0.936
#> SRR1370384     1  0.1209     0.7021 0.964 0.000 0.004 0.032
#> SRR1321650     3  0.3400     0.8878 0.180 0.000 0.820 0.000
#> SRR1485117     2  0.0188     0.9721 0.000 0.996 0.004 0.000
#> SRR1384713     1  0.0804     0.7119 0.980 0.000 0.008 0.012
#> SRR816609      4  0.1833     0.8134 0.032 0.024 0.000 0.944
#> SRR1486239     2  0.1557     0.9459 0.000 0.944 0.000 0.056
#> SRR1309638     3  0.4994     0.0520 0.480 0.000 0.520 0.000
#> SRR1356660     1  0.4888     0.3564 0.588 0.000 0.412 0.000
#> SRR1392883     2  0.0188     0.9721 0.000 0.996 0.004 0.000
#> SRR808130      1  0.5452     0.2864 0.556 0.000 0.428 0.016
#> SRR816677      1  0.6536     0.5081 0.660 0.008 0.144 0.188
#> SRR1455722     1  0.1022     0.6999 0.968 0.000 0.000 0.032
#> SRR1336029     1  0.4898     0.3489 0.584 0.000 0.416 0.000
#> SRR808452      1  0.0779     0.7092 0.980 0.000 0.004 0.016
#> SRR1352169     1  0.5334     0.3686 0.588 0.008 0.400 0.004
#> SRR1366707     3  0.3710     0.8779 0.192 0.000 0.804 0.004
#> SRR1328143     1  0.4121     0.6877 0.796 0.000 0.184 0.020
#> SRR1473567     2  0.0188     0.9721 0.000 0.996 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1442087     1  0.1648     0.6038 0.940 0.000 0.020 0.000 NA
#> SRR1390119     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1436127     3  0.4283     0.6151 0.456 0.000 0.544 0.000 NA
#> SRR1347278     1  0.0671     0.6270 0.980 0.000 0.016 0.000 NA
#> SRR1332904     2  0.2188     0.9001 0.000 0.924 0.028 0.024 NA
#> SRR1444179     1  0.3944     0.5955 0.720 0.000 0.004 0.004 NA
#> SRR1082685     1  0.5353     0.5535 0.604 0.000 0.004 0.060 NA
#> SRR1362287     1  0.6919     0.1917 0.552 0.000 0.048 0.228 NA
#> SRR1339007     1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1376557     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1468700     2  0.1341     0.9059 0.000 0.944 0.000 0.056 NA
#> SRR1077455     1  0.2690     0.6277 0.844 0.000 0.000 0.000 NA
#> SRR1413978     1  0.4050     0.5488 0.784 0.000 0.008 0.172 NA
#> SRR1439896     1  0.4182     0.5515 0.600 0.000 0.000 0.000 NA
#> SRR1317963     4  0.5712     0.0702 0.000 0.452 0.028 0.488 NA
#> SRR1431865     1  0.6113     0.2941 0.596 0.000 0.008 0.228 NA
#> SRR1394253     1  0.2470     0.6096 0.884 0.000 0.000 0.104 NA
#> SRR1082664     1  0.1043     0.6188 0.960 0.000 0.000 0.000 NA
#> SRR1077968     1  0.4210     0.5438 0.588 0.000 0.000 0.000 NA
#> SRR1076393     3  0.3305     0.8200 0.224 0.000 0.776 0.000 NA
#> SRR1477476     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1398057     1  0.1399     0.6114 0.952 0.000 0.020 0.000 NA
#> SRR1485042     1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1385453     4  0.5241     0.7196 0.220 0.016 0.000 0.692 NA
#> SRR1348074     4  0.4199     0.6634 0.056 0.180 0.000 0.764 NA
#> SRR813959      4  0.5156     0.7248 0.220 0.020 0.000 0.700 NA
#> SRR665442      2  0.4961     0.7345 0.000 0.724 0.140 0.004 NA
#> SRR1378068     3  0.4227     0.6819 0.420 0.000 0.580 0.000 NA
#> SRR1485237     4  0.4099     0.7323 0.200 0.032 0.000 0.764 NA
#> SRR1350792     1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1326797     1  0.1430     0.6338 0.944 0.000 0.000 0.004 NA
#> SRR808994      3  0.2813     0.7905 0.168 0.000 0.832 0.000 NA
#> SRR1474041     1  0.1168     0.6160 0.960 0.000 0.032 0.000 NA
#> SRR1405641     3  0.3305     0.8200 0.224 0.000 0.776 0.000 NA
#> SRR1362245     3  0.2813     0.7874 0.168 0.000 0.832 0.000 NA
#> SRR1500194     1  0.3838     0.5945 0.716 0.000 0.004 0.000 NA
#> SRR1414876     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1478523     1  0.6142    -0.1413 0.520 0.008 0.012 0.388 NA
#> SRR1325161     1  0.0404     0.6271 0.988 0.000 0.000 0.000 NA
#> SRR1318026     4  0.4134     0.7138 0.224 0.000 0.000 0.744 NA
#> SRR1343778     1  0.0880     0.6229 0.968 0.000 0.000 0.000 NA
#> SRR1441287     1  0.4268     0.5285 0.556 0.000 0.000 0.000 NA
#> SRR1430991     1  0.0880     0.6220 0.968 0.000 0.000 0.000 NA
#> SRR1499722     1  0.0880     0.6220 0.968 0.000 0.000 0.000 NA
#> SRR1351368     3  0.2891     0.7979 0.176 0.000 0.824 0.000 NA
#> SRR1441785     1  0.6688     0.0884 0.496 0.000 0.008 0.228 NA
#> SRR1096101     1  0.4268     0.5285 0.556 0.000 0.000 0.000 NA
#> SRR808375      1  0.1043     0.6188 0.960 0.000 0.000 0.000 NA
#> SRR1452842     1  0.1471     0.6255 0.952 0.000 0.004 0.020 NA
#> SRR1311709     4  0.6102     0.3434 0.272 0.000 0.004 0.572 NA
#> SRR1433352     1  0.2280     0.6317 0.880 0.000 0.000 0.000 NA
#> SRR1340241     2  0.0162     0.9247 0.000 0.996 0.004 0.000 NA
#> SRR1456754     1  0.6024     0.3043 0.608 0.000 0.008 0.224 NA
#> SRR1465172     1  0.0794     0.6233 0.972 0.000 0.000 0.000 NA
#> SRR1499284     1  0.0609     0.6321 0.980 0.000 0.000 0.000 NA
#> SRR1499607     4  0.6218     0.1029 0.000 0.448 0.028 0.456 NA
#> SRR812342      1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1405374     1  0.6185     0.2797 0.588 0.000 0.008 0.220 NA
#> SRR1403565     1  0.6688     0.0884 0.496 0.000 0.008 0.228 NA
#> SRR1332024     3  0.3612     0.8074 0.268 0.000 0.732 0.000 NA
#> SRR1471633     1  0.6278     0.4510 0.552 0.000 0.004 0.264 NA
#> SRR1325944     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1429450     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR821573      1  0.2629     0.6009 0.880 0.000 0.004 0.104 NA
#> SRR1435372     1  0.4268     0.5285 0.556 0.000 0.000 0.000 NA
#> SRR1324184     2  0.1121     0.9128 0.000 0.956 0.044 0.000 NA
#> SRR816517      4  0.6187     0.4294 0.000 0.320 0.068 0.572 NA
#> SRR1324141     4  0.5215     0.4499 0.372 0.000 0.000 0.576 NA
#> SRR1101612     1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1356531     1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1089785     1  0.1117     0.6200 0.964 0.000 0.016 0.000 NA
#> SRR1077708     1  0.0510     0.6263 0.984 0.000 0.000 0.000 NA
#> SRR1343720     1  0.0609     0.6252 0.980 0.000 0.000 0.000 NA
#> SRR1477499     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1347236     1  0.3210     0.6075 0.788 0.000 0.000 0.000 NA
#> SRR1326408     1  0.4256     0.5332 0.564 0.000 0.000 0.000 NA
#> SRR1336529     3  0.4294     0.5932 0.468 0.000 0.532 0.000 NA
#> SRR1440643     4  0.5032     0.7105 0.228 0.004 0.000 0.692 NA
#> SRR662354      1  0.4268     0.5285 0.556 0.000 0.000 0.000 NA
#> SRR1310817     1  0.0740     0.6298 0.980 0.000 0.008 0.004 NA
#> SRR1347389     2  0.2529     0.8941 0.000 0.908 0.032 0.036 NA
#> SRR1353097     1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1384737     1  0.5057     0.0312 0.556 0.000 0.004 0.412 NA
#> SRR1096339     1  0.4262     0.5305 0.560 0.000 0.000 0.000 NA
#> SRR1345329     4  0.4199     0.6634 0.056 0.180 0.000 0.764 NA
#> SRR1414771     3  0.2561     0.7514 0.144 0.000 0.856 0.000 NA
#> SRR1309119     1  0.6278     0.4510 0.552 0.000 0.004 0.264 NA
#> SRR1470438     3  0.2773     0.7854 0.164 0.000 0.836 0.000 NA
#> SRR1343221     1  0.4389     0.5186 0.756 0.000 0.004 0.184 NA
#> SRR1410847     1  0.2561     0.6339 0.856 0.000 0.000 0.000 NA
#> SRR807949      1  0.1205     0.6164 0.956 0.000 0.004 0.000 NA
#> SRR1442332     1  0.0671     0.6312 0.980 0.000 0.004 0.000 NA
#> SRR815920      1  0.4269     0.0060 0.684 0.000 0.300 0.000 NA
#> SRR1471524     1  0.4249    -0.3717 0.568 0.000 0.432 0.000 NA
#> SRR1477221     3  0.4273     0.6372 0.448 0.000 0.552 0.000 NA
#> SRR1445046     2  0.4281     0.7193 0.000 0.756 0.028 0.204 NA
#> SRR1331962     2  0.2673     0.8827 0.000 0.892 0.028 0.072 NA
#> SRR1319946     2  0.5762    -0.0150 0.000 0.496 0.024 0.440 NA
#> SRR1311599     1  0.6586     0.1397 0.520 0.000 0.008 0.228 NA
#> SRR1323977     4  0.4562     0.7182 0.128 0.108 0.000 0.760 NA
#> SRR1445132     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1337321     3  0.3366     0.8179 0.232 0.000 0.768 0.000 NA
#> SRR1366390     2  0.0451     0.9234 0.000 0.988 0.008 0.004 NA
#> SRR1343012     1  0.2533     0.6042 0.888 0.000 0.008 0.096 NA
#> SRR1311958     2  0.2784     0.8805 0.000 0.888 0.028 0.072 NA
#> SRR1388234     4  0.4181     0.5627 0.000 0.240 0.016 0.736 NA
#> SRR1370384     1  0.4256     0.5313 0.564 0.000 0.000 0.000 NA
#> SRR1321650     3  0.3913     0.7751 0.324 0.000 0.676 0.000 NA
#> SRR1485117     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR1384713     1  0.3837     0.5821 0.692 0.000 0.000 0.000 NA
#> SRR816609      4  0.4775     0.7265 0.216 0.016 0.000 0.724 NA
#> SRR1486239     2  0.2673     0.8827 0.000 0.892 0.028 0.072 NA
#> SRR1309638     3  0.4300     0.5714 0.476 0.000 0.524 0.000 NA
#> SRR1356660     1  0.6688     0.0884 0.496 0.000 0.008 0.228 NA
#> SRR1392883     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA
#> SRR808130      1  0.1211     0.6139 0.960 0.000 0.024 0.000 NA
#> SRR816677      1  0.3203     0.5501 0.820 0.000 0.000 0.168 NA
#> SRR1455722     1  0.4268     0.5285 0.556 0.000 0.000 0.000 NA
#> SRR1336029     1  0.5037     0.4706 0.724 0.000 0.016 0.180 NA
#> SRR808452      1  0.3730     0.5825 0.712 0.000 0.000 0.000 NA
#> SRR1352169     1  0.1200     0.6230 0.964 0.000 0.016 0.012 NA
#> SRR1366707     1  0.4304    -0.5049 0.516 0.000 0.484 0.000 NA
#> SRR1328143     1  0.1043     0.6188 0.960 0.000 0.000 0.000 NA
#> SRR1473567     2  0.0000     0.9254 0.000 1.000 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.2213     0.8406 0.068 0.000 0.004 0.020 0.904 0.004
#> SRR1390119     2  0.0146     0.9511 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1436127     3  0.2471     0.8703 0.044 0.000 0.896 0.020 0.040 0.000
#> SRR1347278     5  0.3133     0.8303 0.108 0.000 0.012 0.024 0.848 0.008
#> SRR1332904     2  0.1950     0.9353 0.000 0.912 0.000 0.000 0.064 0.024
#> SRR1444179     1  0.3086     0.8140 0.852 0.000 0.000 0.080 0.056 0.012
#> SRR1082685     1  0.1769     0.8720 0.924 0.000 0.004 0.060 0.012 0.000
#> SRR1362287     6  0.4442     0.8222 0.076 0.000 0.028 0.000 0.148 0.748
#> SRR1339007     1  0.0000     0.9264 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1376557     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077455     1  0.3975    -0.0141 0.544 0.000 0.004 0.000 0.452 0.000
#> SRR1413978     6  0.5285     0.7377 0.188 0.000 0.004 0.000 0.188 0.620
#> SRR1439896     1  0.0603     0.9172 0.980 0.000 0.000 0.016 0.004 0.000
#> SRR1317963     2  0.3730     0.8704 0.000 0.816 0.000 0.088 0.060 0.036
#> SRR1431865     6  0.4357     0.8265 0.108 0.000 0.004 0.000 0.156 0.732
#> SRR1394253     6  0.5915     0.3583 0.212 0.000 0.000 0.000 0.360 0.428
#> SRR1082664     5  0.1926     0.8433 0.068 0.000 0.000 0.020 0.912 0.000
#> SRR1077968     1  0.0146     0.9268 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1076393     3  0.0363     0.8966 0.012 0.000 0.988 0.000 0.000 0.000
#> SRR1477476     2  0.0146     0.9511 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1398057     5  0.2688     0.8380 0.068 0.000 0.024 0.020 0.884 0.004
#> SRR1485042     1  0.0000     0.9264 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1385453     4  0.2119     0.8691 0.000 0.036 0.000 0.912 0.044 0.008
#> SRR1348074     4  0.0935     0.8723 0.000 0.032 0.000 0.964 0.004 0.000
#> SRR813959      4  0.2152     0.8695 0.000 0.036 0.000 0.912 0.040 0.012
#> SRR665442      2  0.2051     0.9292 0.000 0.896 0.004 0.004 0.000 0.096
#> SRR1378068     3  0.3780     0.7804 0.068 0.000 0.812 0.020 0.096 0.004
#> SRR1485237     4  0.1293     0.8783 0.020 0.016 0.000 0.956 0.004 0.004
#> SRR1350792     1  0.0146     0.9268 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1326797     5  0.2631     0.8028 0.152 0.000 0.000 0.008 0.840 0.000
#> SRR808994      3  0.0405     0.8944 0.008 0.000 0.988 0.004 0.000 0.000
#> SRR1474041     5  0.2294     0.8402 0.072 0.000 0.036 0.000 0.892 0.000
#> SRR1405641     3  0.0862     0.8951 0.008 0.000 0.972 0.016 0.004 0.000
#> SRR1362245     3  0.0405     0.8944 0.008 0.000 0.988 0.004 0.000 0.000
#> SRR1500194     1  0.2865     0.8302 0.868 0.000 0.000 0.064 0.056 0.012
#> SRR1414876     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     5  0.5534     0.0932 0.044 0.016 0.012 0.444 0.480 0.004
#> SRR1325161     5  0.2492     0.8439 0.080 0.000 0.008 0.004 0.888 0.020
#> SRR1318026     4  0.1116     0.8755 0.028 0.004 0.000 0.960 0.008 0.000
#> SRR1343778     5  0.2069     0.8424 0.068 0.000 0.000 0.020 0.908 0.004
#> SRR1441287     1  0.0146     0.9247 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1430991     5  0.1444     0.8452 0.072 0.000 0.000 0.000 0.928 0.000
#> SRR1499722     5  0.1444     0.8452 0.072 0.000 0.000 0.000 0.928 0.000
#> SRR1351368     3  0.0405     0.8944 0.008 0.000 0.988 0.004 0.000 0.000
#> SRR1441785     6  0.2618     0.8257 0.076 0.000 0.000 0.000 0.052 0.872
#> SRR1096101     1  0.0291     0.9247 0.992 0.000 0.000 0.004 0.004 0.000
#> SRR808375      5  0.1444     0.8452 0.072 0.000 0.000 0.000 0.928 0.000
#> SRR1452842     6  0.5211     0.3300 0.096 0.000 0.000 0.000 0.388 0.516
#> SRR1311709     4  0.2455     0.8032 0.112 0.000 0.000 0.872 0.004 0.012
#> SRR1433352     5  0.3563     0.5608 0.336 0.000 0.000 0.000 0.664 0.000
#> SRR1340241     2  0.0405     0.9512 0.000 0.988 0.000 0.000 0.008 0.004
#> SRR1456754     6  0.3268     0.8372 0.100 0.000 0.000 0.000 0.076 0.824
#> SRR1465172     5  0.1588     0.8458 0.072 0.000 0.004 0.000 0.924 0.000
#> SRR1499284     5  0.3733     0.6217 0.288 0.000 0.004 0.000 0.700 0.008
#> SRR1499607     2  0.3325     0.8834 0.000 0.840 0.000 0.092 0.036 0.032
#> SRR812342      1  0.0146     0.9268 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1405374     6  0.4190     0.8306 0.112 0.000 0.000 0.000 0.148 0.740
#> SRR1403565     6  0.2696     0.8243 0.076 0.000 0.004 0.000 0.048 0.872
#> SRR1332024     3  0.0972     0.8973 0.028 0.000 0.964 0.000 0.008 0.000
#> SRR1471633     4  0.3219     0.7329 0.192 0.000 0.000 0.792 0.004 0.012
#> SRR1325944     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.5108     0.5444 0.112 0.000 0.004 0.264 0.620 0.000
#> SRR1435372     1  0.0000     0.9264 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324184     2  0.0363     0.9492 0.000 0.988 0.000 0.000 0.000 0.012
#> SRR816517      2  0.3934     0.6731 0.000 0.708 0.000 0.260 0.000 0.032
#> SRR1324141     4  0.1418     0.8749 0.032 0.000 0.000 0.944 0.024 0.000
#> SRR1101612     1  0.0146     0.9268 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1356531     1  0.0146     0.9268 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1089785     5  0.2009     0.8457 0.084 0.000 0.008 0.004 0.904 0.000
#> SRR1077708     5  0.3053     0.8368 0.072 0.000 0.020 0.020 0.868 0.020
#> SRR1343720     5  0.1908     0.8415 0.096 0.000 0.004 0.000 0.900 0.000
#> SRR1477499     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1347236     1  0.2092     0.8003 0.876 0.000 0.000 0.000 0.124 0.000
#> SRR1326408     1  0.0000     0.9264 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336529     3  0.2188     0.8842 0.032 0.000 0.912 0.020 0.036 0.000
#> SRR1440643     4  0.2051     0.8720 0.012 0.020 0.000 0.920 0.044 0.004
#> SRR662354      1  0.0458     0.9174 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1310817     5  0.2714     0.8163 0.136 0.000 0.004 0.012 0.848 0.000
#> SRR1347389     2  0.2322     0.9314 0.000 0.896 0.000 0.004 0.064 0.036
#> SRR1353097     1  0.0000     0.9264 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1384737     4  0.4551     0.5185 0.064 0.000 0.000 0.672 0.260 0.004
#> SRR1096339     1  0.0000     0.9264 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345329     4  0.1080     0.8710 0.000 0.032 0.000 0.960 0.004 0.004
#> SRR1414771     3  0.0405     0.8944 0.008 0.000 0.988 0.004 0.000 0.000
#> SRR1309119     4  0.3420     0.7171 0.204 0.000 0.000 0.776 0.008 0.012
#> SRR1470438     3  0.0405     0.8944 0.008 0.000 0.988 0.004 0.000 0.000
#> SRR1343221     5  0.4991    -0.3410 0.068 0.000 0.000 0.000 0.476 0.456
#> SRR1410847     1  0.3595     0.5158 0.704 0.000 0.000 0.008 0.288 0.000
#> SRR807949      5  0.1387     0.8437 0.068 0.000 0.000 0.000 0.932 0.000
#> SRR1442332     5  0.2933     0.7515 0.200 0.000 0.004 0.000 0.796 0.000
#> SRR815920      5  0.4246     0.7117 0.064 0.000 0.144 0.028 0.764 0.000
#> SRR1471524     3  0.3492     0.7672 0.016 0.000 0.796 0.020 0.168 0.000
#> SRR1477221     3  0.4051     0.6976 0.068 0.000 0.764 0.004 0.160 0.004
#> SRR1445046     2  0.2106     0.9329 0.000 0.904 0.000 0.000 0.064 0.032
#> SRR1331962     2  0.1950     0.9353 0.000 0.912 0.000 0.000 0.064 0.024
#> SRR1319946     2  0.3092     0.9091 0.000 0.860 0.000 0.040 0.064 0.036
#> SRR1311599     6  0.2680     0.8284 0.076 0.000 0.000 0.000 0.056 0.868
#> SRR1323977     4  0.1406     0.8773 0.016 0.020 0.000 0.952 0.004 0.008
#> SRR1445132     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     3  0.0692     0.8982 0.020 0.000 0.976 0.000 0.004 0.000
#> SRR1366390     2  0.0964     0.9490 0.000 0.968 0.000 0.004 0.012 0.016
#> SRR1343012     5  0.5606     0.4528 0.132 0.000 0.004 0.312 0.548 0.004
#> SRR1311958     2  0.2106     0.9329 0.000 0.904 0.000 0.000 0.064 0.032
#> SRR1388234     4  0.1633     0.8575 0.000 0.044 0.000 0.932 0.000 0.024
#> SRR1370384     1  0.0260     0.9245 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1321650     3  0.1492     0.8922 0.024 0.000 0.940 0.000 0.036 0.000
#> SRR1485117     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1384713     1  0.1152     0.8914 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR816609      4  0.1293     0.8783 0.020 0.016 0.000 0.956 0.004 0.004
#> SRR1486239     2  0.1950     0.9353 0.000 0.912 0.000 0.000 0.064 0.024
#> SRR1309638     3  0.4633     0.6804 0.068 0.000 0.740 0.012 0.160 0.020
#> SRR1356660     6  0.2941     0.8315 0.076 0.000 0.004 0.000 0.064 0.856
#> SRR1392883     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.2164     0.8407 0.068 0.000 0.032 0.000 0.900 0.000
#> SRR816677      4  0.4264     0.6741 0.124 0.004 0.000 0.744 0.128 0.000
#> SRR1455722     1  0.0000     0.9264 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1336029     6  0.4560     0.8254 0.104 0.000 0.004 0.008 0.156 0.728
#> SRR808452      1  0.0146     0.9268 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1352169     5  0.3053     0.8379 0.072 0.004 0.024 0.036 0.864 0.000
#> SRR1366707     3  0.2449     0.8669 0.012 0.000 0.888 0.020 0.080 0.000
#> SRR1328143     5  0.1387     0.8437 0.068 0.000 0.000 0.000 0.932 0.000
#> SRR1473567     2  0.0000     0.9521 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17851 rows and 124 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.971       0.988         0.3746 0.622   0.622
#> 3 3 0.831           0.898       0.941         0.6167 0.720   0.565
#> 4 4 0.621           0.713       0.858         0.1380 0.843   0.624
#> 5 5 0.646           0.599       0.779         0.0785 0.934   0.787
#> 6 6 0.648           0.650       0.796         0.0511 0.891   0.617

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1442087     1   0.000      0.994 1.000 0.000
#> SRR1390119     2   0.000      0.968 0.000 1.000
#> SRR1436127     1   0.000      0.994 1.000 0.000
#> SRR1347278     1   0.000      0.994 1.000 0.000
#> SRR1332904     2   0.000      0.968 0.000 1.000
#> SRR1444179     1   0.000      0.994 1.000 0.000
#> SRR1082685     1   0.000      0.994 1.000 0.000
#> SRR1362287     1   0.000      0.994 1.000 0.000
#> SRR1339007     1   0.000      0.994 1.000 0.000
#> SRR1376557     2   0.000      0.968 0.000 1.000
#> SRR1468700     2   0.000      0.968 0.000 1.000
#> SRR1077455     1   0.000      0.994 1.000 0.000
#> SRR1413978     1   0.000      0.994 1.000 0.000
#> SRR1439896     1   0.000      0.994 1.000 0.000
#> SRR1317963     2   0.000      0.968 0.000 1.000
#> SRR1431865     1   0.000      0.994 1.000 0.000
#> SRR1394253     1   0.000      0.994 1.000 0.000
#> SRR1082664     1   0.000      0.994 1.000 0.000
#> SRR1077968     1   0.000      0.994 1.000 0.000
#> SRR1076393     1   0.000      0.994 1.000 0.000
#> SRR1477476     2   0.000      0.968 0.000 1.000
#> SRR1398057     1   0.000      0.994 1.000 0.000
#> SRR1485042     1   0.000      0.994 1.000 0.000
#> SRR1385453     1   0.000      0.994 1.000 0.000
#> SRR1348074     2   0.714      0.759 0.196 0.804
#> SRR813959      2   0.343      0.912 0.064 0.936
#> SRR665442      2   0.000      0.968 0.000 1.000
#> SRR1378068     1   0.000      0.994 1.000 0.000
#> SRR1485237     1   0.722      0.738 0.800 0.200
#> SRR1350792     1   0.000      0.994 1.000 0.000
#> SRR1326797     1   0.000      0.994 1.000 0.000
#> SRR808994      1   0.000      0.994 1.000 0.000
#> SRR1474041     1   0.000      0.994 1.000 0.000
#> SRR1405641     1   0.000      0.994 1.000 0.000
#> SRR1362245     1   0.000      0.994 1.000 0.000
#> SRR1500194     1   0.000      0.994 1.000 0.000
#> SRR1414876     2   0.000      0.968 0.000 1.000
#> SRR1478523     1   0.000      0.994 1.000 0.000
#> SRR1325161     1   0.000      0.994 1.000 0.000
#> SRR1318026     1   0.000      0.994 1.000 0.000
#> SRR1343778     1   0.000      0.994 1.000 0.000
#> SRR1441287     1   0.000      0.994 1.000 0.000
#> SRR1430991     1   0.000      0.994 1.000 0.000
#> SRR1499722     1   0.000      0.994 1.000 0.000
#> SRR1351368     1   0.000      0.994 1.000 0.000
#> SRR1441785     1   0.000      0.994 1.000 0.000
#> SRR1096101     1   0.000      0.994 1.000 0.000
#> SRR808375      1   0.000      0.994 1.000 0.000
#> SRR1452842     1   0.000      0.994 1.000 0.000
#> SRR1311709     1   0.000      0.994 1.000 0.000
#> SRR1433352     1   0.000      0.994 1.000 0.000
#> SRR1340241     2   0.000      0.968 0.000 1.000
#> SRR1456754     1   0.000      0.994 1.000 0.000
#> SRR1465172     1   0.000      0.994 1.000 0.000
#> SRR1499284     1   0.000      0.994 1.000 0.000
#> SRR1499607     2   0.000      0.968 0.000 1.000
#> SRR812342      1   0.000      0.994 1.000 0.000
#> SRR1405374     1   0.000      0.994 1.000 0.000
#> SRR1403565     1   0.000      0.994 1.000 0.000
#> SRR1332024     1   0.000      0.994 1.000 0.000
#> SRR1471633     1   0.000      0.994 1.000 0.000
#> SRR1325944     2   0.000      0.968 0.000 1.000
#> SRR1429450     2   0.000      0.968 0.000 1.000
#> SRR821573      1   0.000      0.994 1.000 0.000
#> SRR1435372     1   0.000      0.994 1.000 0.000
#> SRR1324184     2   0.000      0.968 0.000 1.000
#> SRR816517      2   0.000      0.968 0.000 1.000
#> SRR1324141     1   0.000      0.994 1.000 0.000
#> SRR1101612     1   0.000      0.994 1.000 0.000
#> SRR1356531     1   0.000      0.994 1.000 0.000
#> SRR1089785     1   0.000      0.994 1.000 0.000
#> SRR1077708     1   0.000      0.994 1.000 0.000
#> SRR1343720     1   0.000      0.994 1.000 0.000
#> SRR1477499     2   0.000      0.968 0.000 1.000
#> SRR1347236     1   0.000      0.994 1.000 0.000
#> SRR1326408     1   0.000      0.994 1.000 0.000
#> SRR1336529     1   0.000      0.994 1.000 0.000
#> SRR1440643     1   0.000      0.994 1.000 0.000
#> SRR662354      1   0.000      0.994 1.000 0.000
#> SRR1310817     1   0.000      0.994 1.000 0.000
#> SRR1347389     2   0.000      0.968 0.000 1.000
#> SRR1353097     1   0.000      0.994 1.000 0.000
#> SRR1384737     1   0.000      0.994 1.000 0.000
#> SRR1096339     1   0.000      0.994 1.000 0.000
#> SRR1345329     2   0.788      0.699 0.236 0.764
#> SRR1414771     1   0.000      0.994 1.000 0.000
#> SRR1309119     1   0.000      0.994 1.000 0.000
#> SRR1470438     1   0.000      0.994 1.000 0.000
#> SRR1343221     1   0.000      0.994 1.000 0.000
#> SRR1410847     1   0.000      0.994 1.000 0.000
#> SRR807949      1   0.000      0.994 1.000 0.000
#> SRR1442332     1   0.000      0.994 1.000 0.000
#> SRR815920      1   0.000      0.994 1.000 0.000
#> SRR1471524     1   0.000      0.994 1.000 0.000
#> SRR1477221     1   0.000      0.994 1.000 0.000
#> SRR1445046     2   0.000      0.968 0.000 1.000
#> SRR1331962     2   0.000      0.968 0.000 1.000
#> SRR1319946     2   0.000      0.968 0.000 1.000
#> SRR1311599     1   0.000      0.994 1.000 0.000
#> SRR1323977     2   0.996      0.158 0.464 0.536
#> SRR1445132     2   0.000      0.968 0.000 1.000
#> SRR1337321     1   0.000      0.994 1.000 0.000
#> SRR1366390     2   0.000      0.968 0.000 1.000
#> SRR1343012     1   0.000      0.994 1.000 0.000
#> SRR1311958     2   0.000      0.968 0.000 1.000
#> SRR1388234     2   0.000      0.968 0.000 1.000
#> SRR1370384     1   0.000      0.994 1.000 0.000
#> SRR1321650     1   0.000      0.994 1.000 0.000
#> SRR1485117     2   0.000      0.968 0.000 1.000
#> SRR1384713     1   0.000      0.994 1.000 0.000
#> SRR816609      1   0.895      0.525 0.688 0.312
#> SRR1486239     2   0.000      0.968 0.000 1.000
#> SRR1309638     1   0.000      0.994 1.000 0.000
#> SRR1356660     1   0.000      0.994 1.000 0.000
#> SRR1392883     2   0.000      0.968 0.000 1.000
#> SRR808130      1   0.000      0.994 1.000 0.000
#> SRR816677      1   0.000      0.994 1.000 0.000
#> SRR1455722     1   0.000      0.994 1.000 0.000
#> SRR1336029     1   0.000      0.994 1.000 0.000
#> SRR808452      1   0.000      0.994 1.000 0.000
#> SRR1352169     1   0.000      0.994 1.000 0.000
#> SRR1366707     1   0.000      0.994 1.000 0.000
#> SRR1328143     1   0.000      0.994 1.000 0.000
#> SRR1473567     2   0.000      0.968 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1442087     3  0.3816      0.904 0.148 0.000 0.852
#> SRR1390119     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1436127     3  0.2625      0.930 0.084 0.000 0.916
#> SRR1347278     3  0.5733      0.664 0.324 0.000 0.676
#> SRR1332904     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1444179     1  0.0424      0.939 0.992 0.000 0.008
#> SRR1082685     1  0.0424      0.939 0.992 0.000 0.008
#> SRR1362287     1  0.1289      0.932 0.968 0.000 0.032
#> SRR1339007     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1376557     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1468700     2  0.0424      0.975 0.000 0.992 0.008
#> SRR1077455     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1413978     1  0.0592      0.943 0.988 0.000 0.012
#> SRR1439896     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1317963     2  0.0237      0.976 0.000 0.996 0.004
#> SRR1431865     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1394253     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1082664     3  0.3267      0.922 0.116 0.000 0.884
#> SRR1077968     1  0.0237      0.944 0.996 0.000 0.004
#> SRR1076393     3  0.2261      0.928 0.068 0.000 0.932
#> SRR1477476     2  0.0424      0.972 0.000 0.992 0.008
#> SRR1398057     3  0.3192      0.924 0.112 0.000 0.888
#> SRR1485042     1  0.0237      0.944 0.996 0.000 0.004
#> SRR1385453     3  0.2918      0.891 0.044 0.032 0.924
#> SRR1348074     2  0.7112      0.204 0.424 0.552 0.024
#> SRR813959      2  0.0000      0.976 0.000 1.000 0.000
#> SRR665442      2  0.0424      0.975 0.000 0.992 0.008
#> SRR1378068     3  0.2625      0.930 0.084 0.000 0.916
#> SRR1485237     1  0.4228      0.788 0.844 0.148 0.008
#> SRR1350792     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1326797     1  0.0892      0.940 0.980 0.000 0.020
#> SRR808994      3  0.1964      0.920 0.056 0.000 0.944
#> SRR1474041     1  0.3686      0.813 0.860 0.000 0.140
#> SRR1405641     3  0.1964      0.920 0.056 0.000 0.944
#> SRR1362245     3  0.2625      0.930 0.084 0.000 0.916
#> SRR1500194     1  0.0424      0.939 0.992 0.000 0.008
#> SRR1414876     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1478523     3  0.2261      0.928 0.068 0.000 0.932
#> SRR1325161     1  0.1163      0.935 0.972 0.000 0.028
#> SRR1318026     1  0.1774      0.917 0.960 0.024 0.016
#> SRR1343778     3  0.4062      0.891 0.164 0.000 0.836
#> SRR1441287     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1430991     1  0.1643      0.922 0.956 0.000 0.044
#> SRR1499722     1  0.0892      0.940 0.980 0.000 0.020
#> SRR1351368     3  0.2066      0.923 0.060 0.000 0.940
#> SRR1441785     1  0.0237      0.944 0.996 0.000 0.004
#> SRR1096101     1  0.0424      0.944 0.992 0.000 0.008
#> SRR808375      1  0.1163      0.935 0.972 0.000 0.028
#> SRR1452842     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1311709     1  0.0592      0.937 0.988 0.000 0.012
#> SRR1433352     1  0.0892      0.940 0.980 0.000 0.020
#> SRR1340241     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1456754     1  0.0747      0.941 0.984 0.000 0.016
#> SRR1465172     1  0.0892      0.940 0.980 0.000 0.020
#> SRR1499284     1  0.0892      0.940 0.980 0.000 0.020
#> SRR1499607     2  0.0000      0.976 0.000 1.000 0.000
#> SRR812342      1  0.0424      0.944 0.992 0.000 0.008
#> SRR1405374     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1403565     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1332024     3  0.2261      0.928 0.068 0.000 0.932
#> SRR1471633     1  0.0592      0.937 0.988 0.000 0.012
#> SRR1325944     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1429450     2  0.0000      0.976 0.000 1.000 0.000
#> SRR821573      1  0.0747      0.941 0.984 0.000 0.016
#> SRR1435372     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1324184     2  0.0592      0.974 0.000 0.988 0.012
#> SRR816517      3  0.1860      0.836 0.000 0.052 0.948
#> SRR1324141     1  0.1015      0.933 0.980 0.012 0.008
#> SRR1101612     1  0.0237      0.944 0.996 0.000 0.004
#> SRR1356531     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1089785     3  0.3816      0.903 0.148 0.000 0.852
#> SRR1077708     3  0.4605      0.851 0.204 0.000 0.796
#> SRR1343720     1  0.1031      0.937 0.976 0.000 0.024
#> SRR1477499     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1347236     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1326408     1  0.0237      0.944 0.996 0.000 0.004
#> SRR1336529     3  0.2356      0.929 0.072 0.000 0.928
#> SRR1440643     3  0.2860      0.929 0.084 0.004 0.912
#> SRR662354      1  0.0000      0.943 1.000 0.000 0.000
#> SRR1310817     1  0.1753      0.922 0.952 0.000 0.048
#> SRR1347389     2  0.1031      0.967 0.000 0.976 0.024
#> SRR1353097     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1384737     1  0.6543      0.384 0.640 0.016 0.344
#> SRR1096339     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1345329     1  0.7021      0.186 0.544 0.436 0.020
#> SRR1414771     3  0.0892      0.886 0.020 0.000 0.980
#> SRR1309119     1  0.0592      0.937 0.988 0.000 0.012
#> SRR1470438     3  0.1289      0.899 0.032 0.000 0.968
#> SRR1343221     1  0.0747      0.941 0.984 0.000 0.016
#> SRR1410847     1  0.0424      0.944 0.992 0.000 0.008
#> SRR807949      1  0.5254      0.608 0.736 0.000 0.264
#> SRR1442332     1  0.1860      0.914 0.948 0.000 0.052
#> SRR815920      3  0.2261      0.928 0.068 0.000 0.932
#> SRR1471524     3  0.2356      0.929 0.072 0.000 0.928
#> SRR1477221     3  0.2959      0.927 0.100 0.000 0.900
#> SRR1445046     2  0.0592      0.974 0.000 0.988 0.012
#> SRR1331962     2  0.0424      0.975 0.000 0.992 0.008
#> SRR1319946     2  0.0592      0.974 0.000 0.988 0.012
#> SRR1311599     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1323977     1  0.6421      0.270 0.572 0.424 0.004
#> SRR1445132     2  0.0000      0.976 0.000 1.000 0.000
#> SRR1337321     3  0.3482      0.917 0.128 0.000 0.872
#> SRR1366390     2  0.0747      0.972 0.000 0.984 0.016
#> SRR1343012     1  0.1163      0.935 0.972 0.000 0.028
#> SRR1311958     2  0.0592      0.974 0.000 0.988 0.012
#> SRR1388234     2  0.0424      0.975 0.000 0.992 0.008
#> SRR1370384     1  0.0424      0.944 0.992 0.000 0.008
#> SRR1321650     3  0.3482      0.917 0.128 0.000 0.872
#> SRR1485117     2  0.0237      0.976 0.000 0.996 0.004
#> SRR1384713     1  0.0424      0.944 0.992 0.000 0.008
#> SRR816609      1  0.6008      0.426 0.628 0.372 0.000
#> SRR1486239     2  0.0424      0.975 0.000 0.992 0.008
#> SRR1309638     3  0.3551      0.915 0.132 0.000 0.868
#> SRR1356660     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1392883     2  0.0000      0.976 0.000 1.000 0.000
#> SRR808130      1  0.6026      0.296 0.624 0.000 0.376
#> SRR816677      1  0.0424      0.944 0.992 0.000 0.008
#> SRR1455722     1  0.0000      0.943 1.000 0.000 0.000
#> SRR1336029     1  0.0424      0.939 0.992 0.000 0.008
#> SRR808452      1  0.0000      0.943 1.000 0.000 0.000
#> SRR1352169     3  0.4750      0.836 0.216 0.000 0.784
#> SRR1366707     3  0.2165      0.925 0.064 0.000 0.936
#> SRR1328143     3  0.6180      0.430 0.416 0.000 0.584
#> SRR1473567     2  0.0000      0.976 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1442087     3  0.4456     0.6633 0.280 0.000 0.716 0.004
#> SRR1390119     2  0.0188     0.9110 0.000 0.996 0.000 0.004
#> SRR1436127     3  0.2546     0.8173 0.092 0.000 0.900 0.008
#> SRR1347278     3  0.5905     0.4155 0.396 0.000 0.564 0.040
#> SRR1332904     2  0.0000     0.9115 0.000 1.000 0.000 0.000
#> SRR1444179     4  0.4500     0.6337 0.316 0.000 0.000 0.684
#> SRR1082685     1  0.2589     0.8152 0.884 0.000 0.000 0.116
#> SRR1362287     1  0.7186     0.0548 0.476 0.000 0.384 0.140
#> SRR1339007     1  0.2814     0.8005 0.868 0.000 0.000 0.132
#> SRR1376557     2  0.0000     0.9115 0.000 1.000 0.000 0.000
#> SRR1468700     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1077455     1  0.0188     0.8265 0.996 0.000 0.000 0.004
#> SRR1413978     4  0.5911     0.5266 0.372 0.000 0.044 0.584
#> SRR1439896     4  0.4985     0.3416 0.468 0.000 0.000 0.532
#> SRR1317963     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1431865     4  0.5427     0.4589 0.416 0.000 0.016 0.568
#> SRR1394253     1  0.2530     0.8186 0.888 0.000 0.000 0.112
#> SRR1082664     3  0.3444     0.7674 0.184 0.000 0.816 0.000
#> SRR1077968     1  0.1211     0.8314 0.960 0.000 0.000 0.040
#> SRR1076393     3  0.1109     0.8113 0.028 0.000 0.968 0.004
#> SRR1477476     2  0.1022     0.8966 0.000 0.968 0.000 0.032
#> SRR1398057     3  0.3266     0.7765 0.168 0.000 0.832 0.000
#> SRR1485042     1  0.2345     0.8230 0.900 0.000 0.000 0.100
#> SRR1385453     2  0.9201     0.2320 0.104 0.420 0.280 0.196
#> SRR1348074     4  0.2222     0.5651 0.016 0.060 0.000 0.924
#> SRR813959      2  0.1209     0.8823 0.032 0.964 0.000 0.004
#> SRR665442      4  0.5000    -0.1931 0.000 0.500 0.000 0.500
#> SRR1378068     3  0.2011     0.8192 0.080 0.000 0.920 0.000
#> SRR1485237     1  0.5159     0.6192 0.756 0.156 0.000 0.088
#> SRR1350792     1  0.2345     0.8230 0.900 0.000 0.000 0.100
#> SRR1326797     1  0.0376     0.8228 0.992 0.000 0.004 0.004
#> SRR808994      3  0.0707     0.8063 0.020 0.000 0.980 0.000
#> SRR1474041     1  0.2714     0.7209 0.884 0.000 0.112 0.004
#> SRR1405641     3  0.0921     0.8107 0.028 0.000 0.972 0.000
#> SRR1362245     3  0.1940     0.8196 0.076 0.000 0.924 0.000
#> SRR1500194     4  0.4713     0.5793 0.360 0.000 0.000 0.640
#> SRR1414876     2  0.0000     0.9115 0.000 1.000 0.000 0.000
#> SRR1478523     3  0.5578     0.4902 0.348 0.004 0.624 0.024
#> SRR1325161     1  0.0376     0.8228 0.992 0.000 0.004 0.004
#> SRR1318026     4  0.4072     0.5503 0.252 0.000 0.000 0.748
#> SRR1343778     3  0.4382     0.6260 0.296 0.000 0.704 0.000
#> SRR1441287     1  0.3907     0.6611 0.768 0.000 0.000 0.232
#> SRR1430991     1  0.0895     0.8133 0.976 0.000 0.020 0.004
#> SRR1499722     1  0.0376     0.8228 0.992 0.000 0.004 0.004
#> SRR1351368     3  0.1059     0.8003 0.016 0.000 0.972 0.012
#> SRR1441785     1  0.5571     0.1271 0.580 0.000 0.024 0.396
#> SRR1096101     1  0.2281     0.8247 0.904 0.000 0.000 0.096
#> SRR808375      1  0.0376     0.8228 0.992 0.000 0.004 0.004
#> SRR1452842     1  0.0336     0.8275 0.992 0.000 0.000 0.008
#> SRR1311709     4  0.2530     0.6585 0.112 0.000 0.000 0.888
#> SRR1433352     1  0.0376     0.8228 0.992 0.000 0.004 0.004
#> SRR1340241     2  0.0188     0.9110 0.000 0.996 0.000 0.004
#> SRR1456754     1  0.2216     0.8270 0.908 0.000 0.000 0.092
#> SRR1465172     1  0.0376     0.8228 0.992 0.000 0.004 0.004
#> SRR1499284     1  0.0188     0.8245 0.996 0.000 0.004 0.000
#> SRR1499607     2  0.0188     0.9109 0.000 0.996 0.000 0.004
#> SRR812342      1  0.2216     0.8260 0.908 0.000 0.000 0.092
#> SRR1405374     1  0.4769     0.4841 0.684 0.000 0.008 0.308
#> SRR1403565     1  0.3257     0.7816 0.844 0.000 0.004 0.152
#> SRR1332024     3  0.1635     0.8175 0.044 0.000 0.948 0.008
#> SRR1471633     4  0.3610     0.6835 0.200 0.000 0.000 0.800
#> SRR1325944     2  0.0188     0.9110 0.000 0.996 0.000 0.004
#> SRR1429450     2  0.0188     0.9110 0.000 0.996 0.000 0.004
#> SRR821573      1  0.0336     0.8246 0.992 0.000 0.000 0.008
#> SRR1435372     1  0.2345     0.8230 0.900 0.000 0.000 0.100
#> SRR1324184     2  0.0817     0.9011 0.000 0.976 0.000 0.024
#> SRR816517      3  0.5808     0.0945 0.000 0.424 0.544 0.032
#> SRR1324141     1  0.5112     0.0246 0.560 0.004 0.000 0.436
#> SRR1101612     1  0.2530     0.8191 0.888 0.000 0.000 0.112
#> SRR1356531     1  0.2530     0.8168 0.888 0.000 0.000 0.112
#> SRR1089785     1  0.4155     0.5188 0.756 0.000 0.240 0.004
#> SRR1077708     3  0.4888     0.4156 0.412 0.000 0.588 0.000
#> SRR1343720     1  0.0376     0.8228 0.992 0.000 0.004 0.004
#> SRR1477499     2  0.0336     0.9098 0.000 0.992 0.000 0.008
#> SRR1347236     1  0.0188     0.8239 0.996 0.000 0.000 0.004
#> SRR1326408     1  0.1637     0.8323 0.940 0.000 0.000 0.060
#> SRR1336529     3  0.1389     0.8184 0.048 0.000 0.952 0.000
#> SRR1440643     3  0.4228     0.6360 0.008 0.000 0.760 0.232
#> SRR662354      1  0.3610     0.7142 0.800 0.000 0.000 0.200
#> SRR1310817     1  0.3836     0.6316 0.816 0.000 0.016 0.168
#> SRR1347389     2  0.5147     0.3859 0.000 0.536 0.004 0.460
#> SRR1353097     1  0.2408     0.8219 0.896 0.000 0.000 0.104
#> SRR1384737     4  0.5075     0.0878 0.012 0.000 0.344 0.644
#> SRR1096339     1  0.3074     0.7846 0.848 0.000 0.000 0.152
#> SRR1345329     4  0.4565     0.6805 0.140 0.064 0.000 0.796
#> SRR1414771     3  0.0188     0.7860 0.000 0.000 0.996 0.004
#> SRR1309119     4  0.2868     0.6745 0.136 0.000 0.000 0.864
#> SRR1470438     3  0.0000     0.7878 0.000 0.000 1.000 0.000
#> SRR1343221     1  0.2469     0.8226 0.892 0.000 0.000 0.108
#> SRR1410847     1  0.2216     0.8260 0.908 0.000 0.000 0.092
#> SRR807949      1  0.2773     0.7147 0.880 0.000 0.116 0.004
#> SRR1442332     1  0.1004     0.8106 0.972 0.000 0.024 0.004
#> SRR815920      3  0.1722     0.8180 0.048 0.000 0.944 0.008
#> SRR1471524     3  0.2489     0.8135 0.068 0.000 0.912 0.020
#> SRR1477221     3  0.2918     0.8057 0.116 0.000 0.876 0.008
#> SRR1445046     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1331962     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1319946     2  0.0000     0.9115 0.000 1.000 0.000 0.000
#> SRR1311599     1  0.2918     0.8136 0.876 0.000 0.008 0.116
#> SRR1323977     2  0.6402     0.3558 0.108 0.624 0.000 0.268
#> SRR1445132     2  0.0188     0.9110 0.000 0.996 0.000 0.004
#> SRR1337321     3  0.4095     0.7488 0.192 0.000 0.792 0.016
#> SRR1366390     2  0.4889     0.5439 0.000 0.636 0.004 0.360
#> SRR1343012     1  0.7753    -0.1362 0.432 0.000 0.312 0.256
#> SRR1311958     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1388234     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1370384     1  0.1637     0.8322 0.940 0.000 0.000 0.060
#> SRR1321650     3  0.3726     0.7296 0.212 0.000 0.788 0.000
#> SRR1485117     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1384713     1  0.0469     0.8283 0.988 0.000 0.000 0.012
#> SRR816609      2  0.6232     0.1908 0.332 0.596 0.000 0.072
#> SRR1486239     2  0.0188     0.9114 0.000 0.996 0.000 0.004
#> SRR1309638     3  0.3208     0.7884 0.148 0.000 0.848 0.004
#> SRR1356660     4  0.5696     0.2467 0.484 0.000 0.024 0.492
#> SRR1392883     2  0.0000     0.9115 0.000 1.000 0.000 0.000
#> SRR808130      1  0.1743     0.7819 0.940 0.000 0.056 0.004
#> SRR816677      1  0.2345     0.8248 0.900 0.000 0.000 0.100
#> SRR1455722     1  0.2760     0.8071 0.872 0.000 0.000 0.128
#> SRR1336029     4  0.4647     0.6485 0.288 0.000 0.008 0.704
#> SRR808452      1  0.1637     0.8324 0.940 0.000 0.000 0.060
#> SRR1352169     1  0.2530     0.7402 0.896 0.000 0.100 0.004
#> SRR1366707     3  0.1151     0.8081 0.024 0.000 0.968 0.008
#> SRR1328143     1  0.3105     0.6803 0.856 0.000 0.140 0.004
#> SRR1473567     2  0.0188     0.9114 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1442087     5  0.4703     0.2791 0.008 0.000 0.336 0.016 0.640
#> SRR1390119     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1436127     3  0.2482     0.7511 0.000 0.000 0.892 0.024 0.084
#> SRR1347278     3  0.6783     0.2487 0.124 0.000 0.520 0.040 0.316
#> SRR1332904     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1444179     1  0.5068     0.2917 0.640 0.000 0.000 0.300 0.060
#> SRR1082685     5  0.4537     0.5349 0.396 0.000 0.000 0.012 0.592
#> SRR1362287     1  0.5922     0.1706 0.476 0.000 0.420 0.000 0.104
#> SRR1339007     5  0.5024     0.6287 0.264 0.000 0.008 0.052 0.676
#> SRR1376557     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1077455     5  0.1638     0.7086 0.064 0.000 0.000 0.004 0.932
#> SRR1413978     1  0.5624     0.4651 0.680 0.000 0.176 0.020 0.124
#> SRR1439896     1  0.5351     0.4933 0.692 0.000 0.008 0.136 0.164
#> SRR1317963     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1431865     1  0.4706     0.3240 0.692 0.000 0.052 0.000 0.256
#> SRR1394253     5  0.4291     0.4513 0.464 0.000 0.000 0.000 0.536
#> SRR1082664     3  0.3910     0.5849 0.008 0.000 0.720 0.000 0.272
#> SRR1077968     5  0.3039     0.6893 0.192 0.000 0.000 0.000 0.808
#> SRR1076393     3  0.1018     0.7693 0.000 0.000 0.968 0.016 0.016
#> SRR1477476     2  0.1478     0.8947 0.000 0.936 0.000 0.064 0.000
#> SRR1398057     3  0.2409     0.7609 0.032 0.000 0.900 0.000 0.068
#> SRR1485042     5  0.3966     0.6065 0.336 0.000 0.000 0.000 0.664
#> SRR1385453     4  0.5744     0.5163 0.008 0.052 0.048 0.684 0.208
#> SRR1348074     4  0.4883     0.2288 0.464 0.016 0.000 0.516 0.004
#> SRR813959      2  0.0451     0.9366 0.000 0.988 0.000 0.004 0.008
#> SRR665442      1  0.7046    -0.2074 0.412 0.348 0.016 0.224 0.000
#> SRR1378068     3  0.1469     0.7761 0.016 0.000 0.948 0.000 0.036
#> SRR1485237     5  0.5753     0.4845 0.116 0.216 0.000 0.016 0.652
#> SRR1350792     5  0.3752     0.6395 0.292 0.000 0.000 0.000 0.708
#> SRR1326797     5  0.0451     0.7000 0.008 0.000 0.000 0.004 0.988
#> SRR808994      3  0.0912     0.7751 0.012 0.000 0.972 0.000 0.016
#> SRR1474041     5  0.0880     0.6854 0.000 0.000 0.000 0.032 0.968
#> SRR1405641     3  0.1087     0.7738 0.008 0.000 0.968 0.008 0.016
#> SRR1362245     3  0.1960     0.7657 0.048 0.000 0.928 0.004 0.020
#> SRR1500194     1  0.2124     0.4684 0.916 0.000 0.000 0.028 0.056
#> SRR1414876     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1478523     4  0.6973     0.2732 0.028 0.000 0.260 0.504 0.208
#> SRR1325161     5  0.1012     0.7004 0.020 0.000 0.000 0.012 0.968
#> SRR1318026     4  0.4954     0.4549 0.308 0.016 0.000 0.652 0.024
#> SRR1343778     3  0.4752     0.3662 0.020 0.000 0.568 0.000 0.412
#> SRR1441287     5  0.5663     0.4208 0.384 0.000 0.000 0.084 0.532
#> SRR1430991     5  0.0566     0.6925 0.004 0.000 0.000 0.012 0.984
#> SRR1499722     5  0.0324     0.6977 0.004 0.000 0.000 0.004 0.992
#> SRR1351368     3  0.2621     0.7042 0.004 0.000 0.876 0.112 0.008
#> SRR1441785     1  0.5751     0.0180 0.552 0.000 0.100 0.000 0.348
#> SRR1096101     5  0.3757     0.6843 0.208 0.000 0.000 0.020 0.772
#> SRR808375      5  0.0566     0.6933 0.004 0.000 0.000 0.012 0.984
#> SRR1452842     5  0.1877     0.7062 0.064 0.000 0.000 0.012 0.924
#> SRR1311709     1  0.4213     0.1740 0.680 0.000 0.000 0.308 0.012
#> SRR1433352     5  0.0798     0.6946 0.008 0.000 0.000 0.016 0.976
#> SRR1340241     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1456754     5  0.4499     0.5228 0.408 0.000 0.004 0.004 0.584
#> SRR1465172     5  0.0566     0.6990 0.012 0.000 0.000 0.004 0.984
#> SRR1499284     5  0.1331     0.7047 0.040 0.000 0.000 0.008 0.952
#> SRR1499607     2  0.0404     0.9382 0.000 0.988 0.000 0.012 0.000
#> SRR812342      5  0.3789     0.6766 0.212 0.000 0.000 0.020 0.768
#> SRR1405374     1  0.5157    -0.2817 0.520 0.000 0.040 0.000 0.440
#> SRR1403565     5  0.5547     0.5946 0.292 0.000 0.024 0.052 0.632
#> SRR1332024     3  0.1267     0.7728 0.024 0.000 0.960 0.004 0.012
#> SRR1471633     1  0.3527     0.3576 0.792 0.000 0.000 0.192 0.016
#> SRR1325944     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR821573      5  0.1908     0.6258 0.000 0.000 0.000 0.092 0.908
#> SRR1435372     5  0.3534     0.6622 0.256 0.000 0.000 0.000 0.744
#> SRR1324184     2  0.2017     0.8623 0.008 0.912 0.000 0.080 0.000
#> SRR816517      3  0.6922    -0.1116 0.000 0.316 0.384 0.296 0.004
#> SRR1324141     4  0.6190     0.2739 0.116 0.008 0.000 0.520 0.356
#> SRR1101612     5  0.4700     0.4193 0.472 0.000 0.008 0.004 0.516
#> SRR1356531     5  0.4310     0.5484 0.392 0.000 0.004 0.000 0.604
#> SRR1089785     5  0.1211     0.6749 0.000 0.000 0.024 0.016 0.960
#> SRR1077708     3  0.4748     0.5268 0.040 0.000 0.660 0.000 0.300
#> SRR1343720     5  0.0162     0.6968 0.000 0.000 0.000 0.004 0.996
#> SRR1477499     2  0.1043     0.9175 0.000 0.960 0.000 0.040 0.000
#> SRR1347236     5  0.0566     0.7007 0.012 0.000 0.000 0.004 0.984
#> SRR1326408     5  0.3521     0.6724 0.232 0.000 0.000 0.004 0.764
#> SRR1336529     3  0.0912     0.7749 0.012 0.000 0.972 0.000 0.016
#> SRR1440643     4  0.4442     0.3524 0.000 0.000 0.284 0.688 0.028
#> SRR662354      5  0.5589     0.5813 0.220 0.000 0.004 0.128 0.648
#> SRR1310817     5  0.3086     0.5220 0.004 0.000 0.000 0.180 0.816
#> SRR1347389     4  0.5699     0.5179 0.220 0.156 0.000 0.624 0.000
#> SRR1353097     5  0.4249     0.5007 0.432 0.000 0.000 0.000 0.568
#> SRR1384737     4  0.5220     0.3880 0.440 0.000 0.044 0.516 0.000
#> SRR1096339     5  0.4659     0.3733 0.492 0.000 0.012 0.000 0.496
#> SRR1345329     1  0.2464     0.4082 0.892 0.004 0.000 0.092 0.012
#> SRR1414771     3  0.0000     0.7613 0.000 0.000 1.000 0.000 0.000
#> SRR1309119     1  0.4540     0.1737 0.656 0.000 0.000 0.320 0.024
#> SRR1470438     3  0.0000     0.7613 0.000 0.000 1.000 0.000 0.000
#> SRR1343221     5  0.5106     0.4395 0.400 0.000 0.032 0.004 0.564
#> SRR1410847     5  0.3966     0.6089 0.336 0.000 0.000 0.000 0.664
#> SRR807949      5  0.0955     0.6862 0.004 0.000 0.000 0.028 0.968
#> SRR1442332     5  0.1202     0.6871 0.004 0.000 0.004 0.032 0.960
#> SRR815920      3  0.1106     0.7718 0.000 0.000 0.964 0.012 0.024
#> SRR1471524     3  0.6309     0.1618 0.000 0.000 0.472 0.368 0.160
#> SRR1477221     3  0.1830     0.7699 0.040 0.000 0.932 0.000 0.028
#> SRR1445046     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1331962     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1319946     2  0.0162     0.9428 0.000 0.996 0.000 0.004 0.000
#> SRR1311599     5  0.5114     0.3653 0.472 0.000 0.036 0.000 0.492
#> SRR1323977     2  0.7176     0.2641 0.124 0.564 0.000 0.188 0.124
#> SRR1445132     2  0.0162     0.9427 0.000 0.996 0.000 0.004 0.000
#> SRR1337321     3  0.6617     0.1660 0.200 0.000 0.468 0.004 0.328
#> SRR1366390     4  0.4728     0.5111 0.060 0.240 0.000 0.700 0.000
#> SRR1343012     5  0.8341    -0.0888 0.176 0.000 0.284 0.184 0.356
#> SRR1311958     2  0.0162     0.9426 0.000 0.996 0.000 0.004 0.000
#> SRR1388234     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1370384     5  0.3656     0.6835 0.196 0.000 0.000 0.020 0.784
#> SRR1321650     3  0.3323     0.7245 0.036 0.000 0.844 0.004 0.116
#> SRR1485117     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1384713     5  0.2677     0.7034 0.112 0.000 0.000 0.016 0.872
#> SRR816609      2  0.6274     0.0961 0.316 0.528 0.000 0.004 0.152
#> SRR1486239     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR1309638     3  0.2728     0.7559 0.040 0.000 0.888 0.004 0.068
#> SRR1356660     1  0.5849     0.2733 0.604 0.000 0.128 0.004 0.264
#> SRR1392883     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000
#> SRR808130      5  0.0324     0.6977 0.004 0.000 0.000 0.004 0.992
#> SRR816677      5  0.4430     0.4586 0.456 0.000 0.004 0.000 0.540
#> SRR1455722     5  0.4278     0.4714 0.452 0.000 0.000 0.000 0.548
#> SRR1336029     1  0.4851     0.4386 0.712 0.000 0.000 0.196 0.092
#> SRR808452      5  0.4276     0.5647 0.380 0.000 0.000 0.004 0.616
#> SRR1352169     5  0.2700     0.6968 0.088 0.000 0.024 0.004 0.884
#> SRR1366707     3  0.1960     0.7512 0.004 0.000 0.928 0.048 0.020
#> SRR1328143     5  0.1026     0.6841 0.004 0.000 0.004 0.024 0.968
#> SRR1473567     2  0.0000     0.9449 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1442087     5  0.4363    0.58690 0.032 0.000 0.176 0.048 0.744 0.000
#> SRR1390119     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1436127     3  0.3395    0.70708 0.004 0.000 0.812 0.048 0.136 0.000
#> SRR1347278     3  0.6684    0.15516 0.356 0.000 0.460 0.056 0.112 0.016
#> SRR1332904     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1444179     6  0.5383    0.37035 0.204 0.000 0.004 0.004 0.168 0.620
#> SRR1082685     1  0.4154    0.57952 0.676 0.000 0.000 0.012 0.296 0.016
#> SRR1362287     1  0.4154    0.55705 0.712 0.000 0.244 0.000 0.036 0.008
#> SRR1339007     5  0.5402    0.56648 0.180 0.000 0.024 0.000 0.644 0.152
#> SRR1376557     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1468700     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077455     5  0.2473    0.72831 0.136 0.000 0.000 0.000 0.856 0.008
#> SRR1413978     1  0.4562    0.63010 0.744 0.000 0.148 0.000 0.060 0.048
#> SRR1439896     1  0.6014    0.36999 0.472 0.000 0.008 0.000 0.196 0.324
#> SRR1317963     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1431865     1  0.3341    0.70887 0.836 0.000 0.060 0.000 0.088 0.016
#> SRR1394253     1  0.3262    0.71461 0.788 0.000 0.008 0.000 0.196 0.008
#> SRR1082664     3  0.4325    0.64806 0.060 0.000 0.728 0.012 0.200 0.000
#> SRR1077968     5  0.3043    0.67611 0.200 0.000 0.000 0.000 0.792 0.008
#> SRR1076393     3  0.1478    0.79243 0.020 0.000 0.944 0.032 0.000 0.004
#> SRR1477476     2  0.0937    0.94284 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1398057     3  0.2625    0.79371 0.072 0.000 0.872 0.000 0.056 0.000
#> SRR1485042     5  0.4250    0.11909 0.456 0.000 0.000 0.000 0.528 0.016
#> SRR1385453     4  0.2753    0.53321 0.004 0.000 0.028 0.876 0.080 0.012
#> SRR1348074     6  0.5458    0.10588 0.144 0.000 0.000 0.320 0.000 0.536
#> SRR813959      2  0.0146    0.96806 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR665442      6  0.2784    0.43103 0.012 0.132 0.008 0.000 0.000 0.848
#> SRR1378068     3  0.1092    0.80832 0.020 0.000 0.960 0.000 0.020 0.000
#> SRR1485237     5  0.5782    0.38920 0.120 0.288 0.000 0.000 0.564 0.028
#> SRR1350792     5  0.4168    0.31136 0.400 0.000 0.000 0.000 0.584 0.016
#> SRR1326797     5  0.1442    0.75592 0.040 0.000 0.000 0.012 0.944 0.004
#> SRR808994      3  0.1075    0.80292 0.048 0.000 0.952 0.000 0.000 0.000
#> SRR1474041     5  0.2358    0.72368 0.012 0.000 0.012 0.076 0.896 0.004
#> SRR1405641     3  0.0551    0.79888 0.000 0.000 0.984 0.004 0.008 0.004
#> SRR1362245     3  0.3178    0.73872 0.160 0.000 0.816 0.004 0.004 0.016
#> SRR1500194     1  0.4166    0.57808 0.728 0.000 0.000 0.000 0.076 0.196
#> SRR1414876     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478523     4  0.5515    0.46007 0.036 0.000 0.088 0.680 0.172 0.024
#> SRR1325161     5  0.1138    0.75407 0.024 0.000 0.004 0.000 0.960 0.012
#> SRR1318026     4  0.5169    0.31013 0.120 0.000 0.000 0.588 0.000 0.292
#> SRR1343778     3  0.4914    0.39679 0.036 0.000 0.576 0.012 0.372 0.004
#> SRR1441287     1  0.5393    0.33763 0.508 0.000 0.000 0.000 0.372 0.120
#> SRR1430991     5  0.0862    0.74853 0.000 0.000 0.008 0.016 0.972 0.004
#> SRR1499722     5  0.1909    0.74891 0.052 0.000 0.000 0.024 0.920 0.004
#> SRR1351368     3  0.5323    0.51938 0.116 0.000 0.648 0.216 0.008 0.012
#> SRR1441785     1  0.3537    0.71227 0.824 0.000 0.060 0.004 0.100 0.012
#> SRR1096101     5  0.3932    0.61237 0.248 0.000 0.004 0.000 0.720 0.028
#> SRR808375      5  0.1313    0.74927 0.016 0.000 0.000 0.028 0.952 0.004
#> SRR1452842     5  0.2214    0.73659 0.096 0.000 0.000 0.000 0.888 0.016
#> SRR1311709     6  0.2526    0.55529 0.052 0.000 0.004 0.028 0.020 0.896
#> SRR1433352     5  0.1275    0.75140 0.016 0.000 0.016 0.000 0.956 0.012
#> SRR1340241     2  0.0260    0.96664 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1456754     1  0.3955    0.68471 0.724 0.000 0.032 0.000 0.240 0.004
#> SRR1465172     5  0.0458    0.75527 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1499284     5  0.1967    0.74358 0.084 0.000 0.000 0.000 0.904 0.012
#> SRR1499607     2  0.0508    0.96193 0.004 0.984 0.000 0.012 0.000 0.000
#> SRR812342      5  0.3635    0.67309 0.180 0.000 0.008 0.000 0.780 0.032
#> SRR1405374     1  0.3492    0.71998 0.824 0.000 0.048 0.004 0.112 0.012
#> SRR1403565     5  0.5398    0.22743 0.384 0.000 0.032 0.000 0.532 0.052
#> SRR1332024     3  0.1075    0.80447 0.048 0.000 0.952 0.000 0.000 0.000
#> SRR1471633     1  0.4467   -0.14163 0.496 0.000 0.000 0.004 0.020 0.480
#> SRR1325944     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429450     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR821573      5  0.2834    0.69885 0.020 0.000 0.000 0.120 0.852 0.008
#> SRR1435372     5  0.4084    0.31152 0.400 0.000 0.000 0.000 0.588 0.012
#> SRR1324184     2  0.2333    0.85986 0.000 0.884 0.000 0.092 0.000 0.024
#> SRR816517      4  0.6682    0.32407 0.012 0.164 0.288 0.500 0.012 0.024
#> SRR1324141     4  0.6250    0.27163 0.060 0.000 0.000 0.564 0.196 0.180
#> SRR1101612     1  0.3384    0.72971 0.800 0.000 0.024 0.000 0.168 0.008
#> SRR1356531     5  0.4459    0.10218 0.460 0.000 0.004 0.000 0.516 0.020
#> SRR1089785     5  0.2462    0.73119 0.024 0.000 0.008 0.064 0.896 0.008
#> SRR1077708     3  0.4633    0.48197 0.036 0.000 0.628 0.000 0.324 0.012
#> SRR1343720     5  0.1793    0.74874 0.032 0.000 0.000 0.036 0.928 0.004
#> SRR1477499     2  0.0632    0.95559 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR1347236     5  0.1668    0.75444 0.060 0.000 0.000 0.008 0.928 0.004
#> SRR1326408     5  0.3888    0.49773 0.312 0.000 0.000 0.000 0.672 0.016
#> SRR1336529     3  0.0717    0.80490 0.016 0.000 0.976 0.000 0.008 0.000
#> SRR1440643     4  0.2697    0.54312 0.004 0.000 0.064 0.884 0.032 0.016
#> SRR662354      5  0.5147    0.54267 0.100 0.000 0.012 0.000 0.632 0.256
#> SRR1310817     5  0.2643    0.69258 0.004 0.000 0.016 0.108 0.868 0.004
#> SRR1347389     4  0.5032    0.36735 0.096 0.008 0.000 0.636 0.000 0.260
#> SRR1353097     1  0.3476    0.65271 0.732 0.000 0.000 0.004 0.260 0.004
#> SRR1384737     4  0.5434    0.33606 0.300 0.000 0.004 0.564 0.000 0.132
#> SRR1096339     1  0.3313    0.73101 0.808 0.000 0.024 0.000 0.160 0.008
#> SRR1345329     1  0.3990    0.38175 0.728 0.004 0.000 0.016 0.012 0.240
#> SRR1414771     3  0.1155    0.79806 0.036 0.000 0.956 0.004 0.000 0.004
#> SRR1309119     6  0.4227    0.57506 0.136 0.000 0.000 0.020 0.080 0.764
#> SRR1470438     3  0.1075    0.80159 0.048 0.000 0.952 0.000 0.000 0.000
#> SRR1343221     1  0.4011    0.72042 0.788 0.000 0.044 0.004 0.136 0.028
#> SRR1410847     5  0.3975    0.32089 0.392 0.000 0.000 0.000 0.600 0.008
#> SRR807949      5  0.1901    0.73628 0.008 0.000 0.012 0.052 0.924 0.004
#> SRR1442332     5  0.1931    0.73941 0.004 0.000 0.032 0.020 0.928 0.016
#> SRR815920      3  0.1452    0.80415 0.020 0.000 0.948 0.020 0.012 0.000
#> SRR1471524     4  0.5956    0.25526 0.008 0.000 0.308 0.492 0.192 0.000
#> SRR1477221     3  0.2070    0.79150 0.100 0.000 0.892 0.000 0.008 0.000
#> SRR1445046     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1331962     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1319946     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1311599     1  0.3355    0.72966 0.816 0.000 0.048 0.000 0.132 0.004
#> SRR1323977     2  0.5850    0.22446 0.020 0.564 0.000 0.000 0.172 0.244
#> SRR1445132     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1337321     1  0.5921    0.35261 0.580 0.000 0.288 0.020 0.084 0.028
#> SRR1366390     4  0.3792    0.48391 0.044 0.020 0.000 0.792 0.000 0.144
#> SRR1343012     1  0.8843   -0.00951 0.264 0.000 0.216 0.176 0.212 0.132
#> SRR1311958     2  0.0146    0.96858 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1388234     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1370384     5  0.3203    0.69567 0.160 0.000 0.004 0.000 0.812 0.024
#> SRR1321650     3  0.3062    0.76102 0.052 0.000 0.836 0.000 0.112 0.000
#> SRR1485117     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1384713     5  0.2723    0.72200 0.128 0.000 0.004 0.000 0.852 0.016
#> SRR816609      1  0.4546    0.58042 0.748 0.152 0.000 0.008 0.068 0.024
#> SRR1486239     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1309638     3  0.3039    0.77455 0.060 0.000 0.848 0.000 0.088 0.004
#> SRR1356660     1  0.3293    0.69426 0.844 0.000 0.064 0.004 0.076 0.012
#> SRR1392883     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR808130      5  0.2458    0.73375 0.028 0.000 0.008 0.052 0.900 0.012
#> SRR816677      1  0.3761    0.72220 0.764 0.000 0.032 0.000 0.196 0.008
#> SRR1455722     1  0.3470    0.66621 0.740 0.000 0.000 0.000 0.248 0.012
#> SRR1336029     1  0.5390    0.23222 0.512 0.000 0.008 0.004 0.076 0.400
#> SRR808452      1  0.4079    0.42080 0.608 0.000 0.000 0.004 0.380 0.008
#> SRR1352169     5  0.5641    0.40604 0.260 0.004 0.132 0.004 0.592 0.008
#> SRR1366707     3  0.2308    0.75912 0.004 0.000 0.904 0.056 0.028 0.008
#> SRR1328143     5  0.1605    0.73864 0.000 0.000 0.016 0.044 0.936 0.004
#> SRR1473567     2  0.0000    0.97118 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0