cola Report for recount2:GTEx_prostate

Date: 2019-12-25 22:48:07 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 17780   119

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:kmeans 2 1.000 0.985 0.991 **
SD:skmeans 2 1.000 0.956 0.983 **
ATC:kmeans 2 1.000 0.984 0.993 **
SD:pam 2 0.989 0.958 0.969 **
MAD:kmeans 2 0.984 0.960 0.982 **
ATC:NMF 2 0.948 0.941 0.976 *
MAD:skmeans 3 0.945 0.937 0.971 * 2
ATC:pam 5 0.942 0.906 0.961 * 4
ATC:skmeans 3 0.905 0.913 0.963 * 2
MAD:NMF 2 0.897 0.944 0.975
CV:skmeans 2 0.895 0.936 0.973
CV:mclust 2 0.891 0.935 0.971
ATC:mclust 4 0.863 0.893 0.945
SD:NMF 2 0.848 0.906 0.962
CV:NMF 2 0.787 0.891 0.955
MAD:mclust 2 0.752 0.926 0.949
SD:mclust 2 0.706 0.921 0.925
CV:kmeans 2 0.659 0.831 0.913
MAD:pam 2 0.593 0.852 0.922
ATC:hclust 2 0.550 0.771 0.900
CV:hclust 5 0.496 0.677 0.790
MAD:hclust 4 0.492 0.631 0.780
SD:hclust 3 0.400 0.673 0.807
CV:pam 3 0.393 0.694 0.829

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.848           0.906       0.962          0.469 0.530   0.530
#> CV:NMF      2 0.787           0.891       0.955          0.490 0.515   0.515
#> MAD:NMF     2 0.897           0.944       0.975          0.482 0.511   0.511
#> ATC:NMF     2 0.948           0.941       0.976          0.405 0.596   0.596
#> SD:skmeans  2 1.000           0.956       0.983          0.497 0.504   0.504
#> CV:skmeans  2 0.895           0.936       0.973          0.504 0.497   0.497
#> MAD:skmeans 2 0.982           0.967       0.985          0.503 0.499   0.499
#> ATC:skmeans 2 1.000           0.989       0.995          0.493 0.509   0.509
#> SD:mclust   2 0.706           0.921       0.925          0.436 0.550   0.550
#> CV:mclust   2 0.891           0.935       0.971          0.441 0.550   0.550
#> MAD:mclust  2 0.752           0.926       0.949          0.438 0.550   0.550
#> ATC:mclust  2 0.295           0.600       0.814          0.432 0.496   0.496
#> SD:kmeans   2 1.000           0.985       0.991          0.434 0.562   0.562
#> CV:kmeans   2 0.659           0.831       0.913          0.468 0.526   0.526
#> MAD:kmeans  2 0.984           0.960       0.982          0.449 0.556   0.556
#> ATC:kmeans  2 1.000           0.984       0.993          0.444 0.556   0.556
#> SD:pam      2 0.989           0.958       0.969          0.428 0.574   0.574
#> CV:pam      2 0.453           0.814       0.900          0.303 0.765   0.765
#> MAD:pam     2 0.593           0.852       0.922          0.438 0.562   0.562
#> ATC:pam     2 0.746           0.816       0.926          0.414 0.550   0.550
#> SD:hclust   2 0.505           0.755       0.889          0.388 0.596   0.596
#> CV:hclust   2 0.232           0.546       0.775          0.381 0.611   0.611
#> MAD:hclust  2 0.417           0.783       0.888          0.420 0.581   0.581
#> ATC:hclust  2 0.550           0.771       0.900          0.462 0.539   0.539
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.799           0.832       0.929          0.395 0.718   0.512
#> CV:NMF      3 0.835           0.889       0.952          0.323 0.710   0.497
#> MAD:NMF     3 0.721           0.790       0.904          0.363 0.734   0.525
#> ATC:NMF     3 0.716           0.857       0.922          0.592 0.677   0.489
#> SD:skmeans  3 0.838           0.895       0.950          0.324 0.769   0.571
#> CV:skmeans  3 0.741           0.854       0.929          0.319 0.738   0.521
#> MAD:skmeans 3 0.945           0.937       0.971          0.309 0.765   0.563
#> ATC:skmeans 3 0.905           0.913       0.963          0.340 0.754   0.549
#> SD:mclust   3 0.768           0.871       0.942          0.354 0.827   0.696
#> CV:mclust   3 0.877           0.904       0.964          0.253 0.856   0.746
#> MAD:mclust  3 0.713           0.808       0.913          0.389 0.856   0.740
#> ATC:mclust  3 0.747           0.856       0.923          0.471 0.770   0.574
#> SD:kmeans   3 0.762           0.805       0.901          0.472 0.729   0.539
#> CV:kmeans   3 0.691           0.805       0.912          0.351 0.700   0.494
#> MAD:kmeans  3 0.753           0.876       0.929          0.441 0.729   0.536
#> ATC:kmeans  3 0.682           0.722       0.880          0.466 0.700   0.501
#> SD:pam      3 0.577           0.809       0.885          0.416 0.805   0.665
#> CV:pam      3 0.393           0.694       0.829          0.857 0.663   0.568
#> MAD:pam     3 0.436           0.392       0.705          0.400 0.716   0.551
#> ATC:pam     3 0.886           0.924       0.965          0.550 0.641   0.433
#> SD:hclust   3 0.400           0.673       0.807          0.485 0.722   0.566
#> CV:hclust   3 0.425           0.490       0.759          0.474 0.695   0.548
#> MAD:hclust  3 0.414           0.572       0.664          0.433 0.919   0.867
#> ATC:hclust  3 0.563           0.662       0.775          0.256 0.800   0.646
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.846           0.850       0.932         0.1163 0.866   0.640
#> CV:NMF      4 0.849           0.857       0.938         0.1280 0.830   0.568
#> MAD:NMF     4 0.853           0.873       0.941         0.1173 0.868   0.643
#> ATC:NMF     4 0.823           0.853       0.929         0.1072 0.852   0.620
#> SD:skmeans  4 0.738           0.720       0.868         0.1105 0.877   0.663
#> CV:skmeans  4 0.692           0.612       0.819         0.1083 0.927   0.791
#> MAD:skmeans 4 0.712           0.585       0.755         0.1190 0.889   0.695
#> ATC:skmeans 4 0.886           0.900       0.950         0.0945 0.900   0.714
#> SD:mclust   4 0.783           0.797       0.906         0.1663 0.780   0.535
#> CV:mclust   4 0.599           0.776       0.811         0.1881 0.970   0.934
#> MAD:mclust  4 0.774           0.857       0.925         0.1355 0.787   0.544
#> ATC:mclust  4 0.863           0.893       0.945         0.0949 0.922   0.786
#> SD:kmeans   4 0.659           0.723       0.820         0.1233 0.898   0.722
#> CV:kmeans   4 0.533           0.565       0.755         0.1193 0.848   0.619
#> MAD:kmeans  4 0.677           0.771       0.821         0.1144 0.921   0.778
#> ATC:kmeans  4 0.637           0.682       0.829         0.1186 0.800   0.505
#> SD:pam      4 0.560           0.677       0.799         0.1230 0.896   0.753
#> CV:pam      4 0.519           0.735       0.822         0.2577 0.809   0.596
#> MAD:pam     4 0.462           0.524       0.727         0.1589 0.694   0.393
#> ATC:pam     4 0.912           0.925       0.966         0.1132 0.876   0.677
#> SD:hclust   4 0.486           0.541       0.733         0.1790 0.849   0.642
#> CV:hclust   4 0.474           0.671       0.808         0.1098 0.835   0.646
#> MAD:hclust  4 0.492           0.631       0.780         0.1620 0.713   0.498
#> ATC:hclust  4 0.613           0.672       0.841         0.0865 0.899   0.761
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.704           0.569       0.760         0.0689 0.880   0.612
#> CV:NMF      5 0.735           0.773       0.868         0.0701 0.847   0.524
#> MAD:NMF     5 0.732           0.705       0.818         0.0614 0.889   0.632
#> ATC:NMF     5 0.691           0.651       0.812         0.0788 0.929   0.769
#> SD:skmeans  5 0.761           0.745       0.841         0.0721 0.907   0.672
#> CV:skmeans  5 0.700           0.639       0.782         0.0716 0.858   0.554
#> MAD:skmeans 5 0.783           0.775       0.884         0.0681 0.868   0.571
#> ATC:skmeans 5 0.876           0.855       0.924         0.0529 0.916   0.716
#> SD:mclust   5 0.687           0.766       0.840         0.0706 0.906   0.714
#> CV:mclust   5 0.503           0.527       0.775         0.0528 0.879   0.734
#> MAD:mclust  5 0.637           0.625       0.801         0.0706 0.930   0.785
#> ATC:mclust  5 0.744           0.760       0.850         0.0668 0.893   0.672
#> SD:kmeans   5 0.667           0.536       0.697         0.0738 0.924   0.761
#> CV:kmeans   5 0.643           0.607       0.730         0.0760 0.881   0.641
#> MAD:kmeans  5 0.670           0.603       0.733         0.0735 0.911   0.706
#> ATC:kmeans  5 0.652           0.587       0.749         0.0655 0.902   0.659
#> SD:pam      5 0.848           0.827       0.916         0.1350 0.831   0.542
#> CV:pam      5 0.562           0.658       0.766         0.0990 0.799   0.431
#> MAD:pam     5 0.722           0.761       0.883         0.0886 0.865   0.579
#> ATC:pam     5 0.942           0.906       0.961         0.0958 0.913   0.707
#> SD:hclust   5 0.557           0.567       0.754         0.0739 0.900   0.690
#> CV:hclust   5 0.496           0.677       0.790         0.1091 0.925   0.785
#> MAD:hclust  5 0.630           0.555       0.751         0.0690 0.955   0.848
#> ATC:hclust  5 0.579           0.616       0.779         0.1422 0.863   0.642
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.792           0.738       0.872         0.0515 0.857   0.477
#> CV:NMF      6 0.834           0.804       0.904         0.0603 0.887   0.550
#> MAD:NMF     6 0.777           0.698       0.857         0.0544 0.860   0.481
#> ATC:NMF     6 0.662           0.574       0.743         0.0576 0.823   0.419
#> SD:skmeans  6 0.826           0.726       0.870         0.0488 0.926   0.675
#> CV:skmeans  6 0.768           0.667       0.825         0.0500 0.919   0.646
#> MAD:skmeans 6 0.814           0.707       0.862         0.0424 0.934   0.707
#> ATC:skmeans 6 0.882           0.820       0.902         0.0366 0.969   0.873
#> SD:mclust   6 0.800           0.742       0.846         0.0570 0.954   0.830
#> CV:mclust   6 0.585           0.489       0.722         0.0826 0.760   0.433
#> MAD:mclust  6 0.773           0.715       0.823         0.0700 0.877   0.589
#> ATC:mclust  6 0.788           0.785       0.873         0.0601 0.917   0.692
#> SD:kmeans   6 0.704           0.677       0.784         0.0492 0.852   0.506
#> CV:kmeans   6 0.696           0.608       0.755         0.0569 0.891   0.602
#> MAD:kmeans  6 0.692           0.639       0.753         0.0482 0.887   0.569
#> ATC:kmeans  6 0.697           0.617       0.776         0.0480 0.958   0.813
#> SD:pam      6 0.754           0.669       0.808         0.0625 0.838   0.430
#> CV:pam      6 0.574           0.417       0.662         0.0429 0.907   0.618
#> MAD:pam     6 0.707           0.663       0.802         0.0590 0.843   0.435
#> ATC:pam     6 0.826           0.645       0.810         0.0330 0.942   0.752
#> SD:hclust   6 0.645           0.592       0.750         0.0513 0.941   0.781
#> CV:hclust   6 0.509           0.689       0.793         0.0631 0.974   0.912
#> MAD:hclust  6 0.659           0.569       0.749         0.0382 0.955   0.829
#> ATC:hclust  6 0.670           0.542       0.718         0.0542 0.963   0.872

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.505           0.755       0.889         0.3885 0.596   0.596
#> 3 3 0.400           0.673       0.807         0.4854 0.722   0.566
#> 4 4 0.486           0.541       0.733         0.1790 0.849   0.642
#> 5 5 0.557           0.567       0.754         0.0739 0.900   0.690
#> 6 6 0.645           0.592       0.750         0.0513 0.941   0.781

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.885 1.000 0.000
#> SRR1335605     2  0.9393      0.591 0.356 0.644
#> SRR1432014     1  0.9209      0.470 0.664 0.336
#> SRR1499215     1  0.8267      0.622 0.740 0.260
#> SRR1460409     1  0.0000      0.885 1.000 0.000
#> SRR1086441     1  0.0000      0.885 1.000 0.000
#> SRR1097344     2  0.9661      0.527 0.392 0.608
#> SRR1081789     2  0.5842      0.756 0.140 0.860
#> SRR1453005     2  0.0376      0.784 0.004 0.996
#> SRR1366985     1  0.0000      0.885 1.000 0.000
#> SRR815280      1  0.0000      0.885 1.000 0.000
#> SRR1348531     1  0.0672      0.883 0.992 0.008
#> SRR815845      1  0.9896      0.114 0.560 0.440
#> SRR1471178     1  0.0000      0.885 1.000 0.000
#> SRR1080696     1  0.1843      0.875 0.972 0.028
#> SRR1078684     1  0.8144      0.638 0.748 0.252
#> SRR1317751     1  0.0000      0.885 1.000 0.000
#> SRR1435667     1  0.9209      0.470 0.664 0.336
#> SRR1097905     1  0.1633      0.878 0.976 0.024
#> SRR1456548     1  0.1184      0.881 0.984 0.016
#> SRR1075126     1  0.0376      0.884 0.996 0.004
#> SRR813108      2  0.1633      0.782 0.024 0.976
#> SRR1479062     1  0.3584      0.848 0.932 0.068
#> SRR1408703     1  0.2043      0.873 0.968 0.032
#> SRR1332360     1  0.0000      0.885 1.000 0.000
#> SRR1098686     1  0.0672      0.883 0.992 0.008
#> SRR1434228     1  0.0000      0.885 1.000 0.000
#> SRR1467149     1  0.0938      0.883 0.988 0.012
#> SRR1399113     2  0.0000      0.783 0.000 1.000
#> SRR1476507     2  0.9552      0.560 0.376 0.624
#> SRR1092468     1  0.2948      0.859 0.948 0.052
#> SRR1441804     1  0.0672      0.883 0.992 0.008
#> SRR1326100     2  0.1843      0.782 0.028 0.972
#> SRR1398815     1  0.0000      0.885 1.000 0.000
#> SRR1436021     2  0.9775      0.470 0.412 0.588
#> SRR1480083     2  0.0000      0.783 0.000 1.000
#> SRR1472863     1  0.0938      0.882 0.988 0.012
#> SRR815542      1  0.0000      0.885 1.000 0.000
#> SRR1400100     1  0.9635      0.313 0.612 0.388
#> SRR1312002     1  0.2236      0.870 0.964 0.036
#> SRR1470253     1  0.0938      0.882 0.988 0.012
#> SRR1414332     1  0.0000      0.885 1.000 0.000
#> SRR1069209     1  0.0000      0.885 1.000 0.000
#> SRR661052      1  0.0938      0.882 0.988 0.012
#> SRR1308860     1  0.0000      0.885 1.000 0.000
#> SRR1421159     2  0.9427      0.592 0.360 0.640
#> SRR1340943     1  0.9580      0.307 0.620 0.380
#> SRR1078855     1  0.0000      0.885 1.000 0.000
#> SRR1459465     2  0.0000      0.783 0.000 1.000
#> SRR816818      2  0.0000      0.783 0.000 1.000
#> SRR1478679     1  0.8267      0.622 0.740 0.260
#> SRR1350979     1  0.8499      0.591 0.724 0.276
#> SRR1458198     1  0.0000      0.885 1.000 0.000
#> SRR1386910     2  0.9393      0.591 0.356 0.644
#> SRR1465375     2  0.9552      0.560 0.376 0.624
#> SRR1323699     1  0.8267      0.622 0.740 0.260
#> SRR1431139     1  0.8144      0.638 0.748 0.252
#> SRR1373964     1  0.9286      0.451 0.656 0.344
#> SRR1455413     1  0.1843      0.875 0.972 0.028
#> SRR1437163     1  0.0938      0.882 0.988 0.012
#> SRR1347343     1  0.9209      0.470 0.664 0.336
#> SRR1465480     2  0.0000      0.783 0.000 1.000
#> SRR1489631     1  0.1184      0.881 0.984 0.016
#> SRR1086514     2  0.9286      0.617 0.344 0.656
#> SRR1430928     1  0.0000      0.885 1.000 0.000
#> SRR1310939     1  0.5842      0.779 0.860 0.140
#> SRR1344294     2  0.0000      0.783 0.000 1.000
#> SRR1099402     1  0.0000      0.885 1.000 0.000
#> SRR1468118     1  0.0000      0.885 1.000 0.000
#> SRR1486348     1  0.0000      0.885 1.000 0.000
#> SRR1488770     2  0.0000      0.783 0.000 1.000
#> SRR1083732     1  0.0000      0.885 1.000 0.000
#> SRR1456611     2  0.0000      0.783 0.000 1.000
#> SRR1080318     1  0.0000      0.885 1.000 0.000
#> SRR1500089     1  0.0000      0.885 1.000 0.000
#> SRR1441178     1  0.0000      0.885 1.000 0.000
#> SRR1381396     1  0.0000      0.885 1.000 0.000
#> SRR1096081     1  0.0000      0.885 1.000 0.000
#> SRR1349809     2  0.9209      0.623 0.336 0.664
#> SRR1324314     1  0.4815      0.812 0.896 0.104
#> SRR1092444     1  0.0000      0.885 1.000 0.000
#> SRR1382553     1  0.7883      0.660 0.764 0.236
#> SRR1075530     2  0.8861      0.667 0.304 0.696
#> SRR1442612     1  0.9209      0.470 0.664 0.336
#> SRR1360056     1  0.1414      0.879 0.980 0.020
#> SRR1078164     1  0.0000      0.885 1.000 0.000
#> SRR1434545     1  0.9580      0.307 0.620 0.380
#> SRR1398251     1  0.0000      0.885 1.000 0.000
#> SRR1375866     1  0.0000      0.885 1.000 0.000
#> SRR1091645     2  0.9661      0.527 0.392 0.608
#> SRR1416636     1  0.1843      0.875 0.972 0.028
#> SRR1105441     1  0.9209      0.469 0.664 0.336
#> SRR1082496     2  0.0000      0.783 0.000 1.000
#> SRR1315353     2  0.1843      0.782 0.028 0.972
#> SRR1093697     2  0.0000      0.783 0.000 1.000
#> SRR1077429     1  0.1633      0.877 0.976 0.024
#> SRR1076120     1  0.0000      0.885 1.000 0.000
#> SRR1074410     1  0.0000      0.885 1.000 0.000
#> SRR1340345     2  0.8861      0.667 0.304 0.696
#> SRR1069514     1  0.9635      0.326 0.612 0.388
#> SRR1092636     1  0.1633      0.877 0.976 0.024
#> SRR1365013     2  0.5842      0.756 0.140 0.860
#> SRR1073069     1  0.0000      0.885 1.000 0.000
#> SRR1443137     1  0.0000      0.885 1.000 0.000
#> SRR1437143     2  0.0000      0.783 0.000 1.000
#> SRR1091990     1  0.0000      0.885 1.000 0.000
#> SRR820234      2  0.0376      0.784 0.004 0.996
#> SRR1338079     1  0.0938      0.882 0.988 0.012
#> SRR1390094     1  0.9754      0.246 0.592 0.408
#> SRR1340721     2  0.9209      0.623 0.336 0.664
#> SRR1335964     1  0.7453      0.692 0.788 0.212
#> SRR1086869     1  0.0000      0.885 1.000 0.000
#> SRR1453434     1  0.4022      0.837 0.920 0.080
#> SRR1402261     1  0.9580      0.307 0.620 0.380
#> SRR657809      2  0.8955      0.659 0.312 0.688
#> SRR1093075     1  0.0000      0.885 1.000 0.000
#> SRR1433329     1  0.0000      0.885 1.000 0.000
#> SRR1353418     1  0.0000      0.885 1.000 0.000
#> SRR1092913     2  0.8861      0.667 0.304 0.696

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.831 1.000 0.000 0.000
#> SRR1335605     3  0.7158      0.437 0.032 0.372 0.596
#> SRR1432014     3  0.6375      0.629 0.244 0.036 0.720
#> SRR1499215     3  0.6931      0.513 0.328 0.032 0.640
#> SRR1460409     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1086441     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1097344     3  0.4121      0.466 0.000 0.168 0.832
#> SRR1081789     2  0.6661      0.275 0.012 0.588 0.400
#> SRR1453005     2  0.2625      0.866 0.000 0.916 0.084
#> SRR1366985     1  0.0424      0.830 0.992 0.000 0.008
#> SRR815280      1  0.0237      0.830 0.996 0.000 0.004
#> SRR1348531     1  0.5098      0.700 0.752 0.000 0.248
#> SRR815845      3  0.8405      0.591 0.264 0.132 0.604
#> SRR1471178     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1080696     1  0.5058      0.701 0.756 0.000 0.244
#> SRR1078684     3  0.7462      0.466 0.352 0.048 0.600
#> SRR1317751     1  0.4931      0.714 0.768 0.000 0.232
#> SRR1435667     3  0.6375      0.629 0.244 0.036 0.720
#> SRR1097905     1  0.5431      0.628 0.716 0.000 0.284
#> SRR1456548     1  0.5058      0.689 0.756 0.000 0.244
#> SRR1075126     1  0.5397      0.623 0.720 0.000 0.280
#> SRR813108      2  0.3116      0.851 0.000 0.892 0.108
#> SRR1479062     1  0.5659      0.683 0.740 0.012 0.248
#> SRR1408703     1  0.5098      0.694 0.752 0.000 0.248
#> SRR1332360     1  0.0424      0.830 0.992 0.000 0.008
#> SRR1098686     1  0.1643      0.817 0.956 0.000 0.044
#> SRR1434228     1  0.0424      0.830 0.992 0.000 0.008
#> SRR1467149     1  0.5785      0.585 0.668 0.000 0.332
#> SRR1399113     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1476507     3  0.5938      0.494 0.020 0.248 0.732
#> SRR1092468     1  0.6126      0.523 0.644 0.004 0.352
#> SRR1441804     1  0.5098      0.700 0.752 0.000 0.248
#> SRR1326100     2  0.4121      0.795 0.000 0.832 0.168
#> SRR1398815     1  0.0424      0.830 0.992 0.000 0.008
#> SRR1436021     3  0.6276      0.526 0.040 0.224 0.736
#> SRR1480083     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1472863     1  0.4931      0.698 0.768 0.000 0.232
#> SRR815542      1  0.0000      0.831 1.000 0.000 0.000
#> SRR1400100     3  0.8089      0.547 0.308 0.092 0.600
#> SRR1312002     1  0.4235      0.768 0.824 0.000 0.176
#> SRR1470253     1  0.3816      0.782 0.852 0.000 0.148
#> SRR1414332     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1069209     1  0.0424      0.830 0.992 0.000 0.008
#> SRR661052      1  0.4931      0.698 0.768 0.000 0.232
#> SRR1308860     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1421159     3  0.5797      0.441 0.008 0.280 0.712
#> SRR1340943     3  0.4796      0.583 0.220 0.000 0.780
#> SRR1078855     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1459465     2  0.0000      0.901 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.901 0.000 1.000 0.000
#> SRR1478679     3  0.6931      0.513 0.328 0.032 0.640
#> SRR1350979     3  0.6264      0.407 0.380 0.004 0.616
#> SRR1458198     1  0.6008      0.500 0.628 0.000 0.372
#> SRR1386910     3  0.7158      0.437 0.032 0.372 0.596
#> SRR1465375     3  0.5938      0.494 0.020 0.248 0.732
#> SRR1323699     3  0.6931      0.513 0.328 0.032 0.640
#> SRR1431139     3  0.7462      0.466 0.352 0.048 0.600
#> SRR1373964     3  0.6443      0.634 0.240 0.040 0.720
#> SRR1455413     1  0.5016      0.708 0.760 0.000 0.240
#> SRR1437163     1  0.4931      0.698 0.768 0.000 0.232
#> SRR1347343     3  0.6375      0.629 0.244 0.036 0.720
#> SRR1465480     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1489631     1  0.5058      0.689 0.756 0.000 0.244
#> SRR1086514     3  0.5560      0.403 0.000 0.300 0.700
#> SRR1430928     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1310939     1  0.6664      0.143 0.528 0.008 0.464
#> SRR1344294     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1468118     1  0.4654      0.737 0.792 0.000 0.208
#> SRR1486348     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1083732     1  0.0237      0.831 0.996 0.000 0.004
#> SRR1456611     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1080318     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1500089     1  0.6008      0.500 0.628 0.000 0.372
#> SRR1441178     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1381396     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1096081     1  0.4931      0.714 0.768 0.000 0.232
#> SRR1349809     3  0.7263      0.389 0.032 0.400 0.568
#> SRR1324314     1  0.6095      0.328 0.608 0.000 0.392
#> SRR1092444     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1382553     3  0.7123      0.438 0.364 0.032 0.604
#> SRR1075530     3  0.6026      0.335 0.000 0.376 0.624
#> SRR1442612     3  0.6375      0.629 0.244 0.036 0.720
#> SRR1360056     1  0.3551      0.789 0.868 0.000 0.132
#> SRR1078164     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1434545     3  0.4796      0.583 0.220 0.000 0.780
#> SRR1398251     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1375866     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1091645     3  0.4121      0.466 0.000 0.168 0.832
#> SRR1416636     1  0.5058      0.701 0.756 0.000 0.244
#> SRR1105441     3  0.7599      0.618 0.260 0.084 0.656
#> SRR1082496     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1315353     2  0.4062      0.797 0.000 0.836 0.164
#> SRR1093697     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1077429     1  0.4931      0.710 0.768 0.000 0.232
#> SRR1076120     1  0.6008      0.500 0.628 0.000 0.372
#> SRR1074410     1  0.0237      0.830 0.996 0.000 0.004
#> SRR1340345     3  0.6026      0.335 0.000 0.376 0.624
#> SRR1069514     3  0.7339      0.656 0.224 0.088 0.688
#> SRR1092636     1  0.4931      0.710 0.768 0.000 0.232
#> SRR1365013     2  0.6661      0.275 0.012 0.588 0.400
#> SRR1073069     1  0.0424      0.830 0.992 0.000 0.008
#> SRR1443137     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1437143     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1091990     1  0.0000      0.831 1.000 0.000 0.000
#> SRR820234      2  0.2537      0.867 0.000 0.920 0.080
#> SRR1338079     1  0.4931      0.698 0.768 0.000 0.232
#> SRR1390094     3  0.7133      0.662 0.192 0.096 0.712
#> SRR1340721     3  0.7263      0.389 0.032 0.400 0.568
#> SRR1335964     3  0.6280      0.125 0.460 0.000 0.540
#> SRR1086869     1  0.4931      0.714 0.768 0.000 0.232
#> SRR1453434     1  0.6154      0.339 0.592 0.000 0.408
#> SRR1402261     3  0.4796      0.583 0.220 0.000 0.780
#> SRR657809      3  0.6548      0.365 0.012 0.372 0.616
#> SRR1093075     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1433329     1  0.0000      0.831 1.000 0.000 0.000
#> SRR1353418     1  0.3482      0.784 0.872 0.000 0.128
#> SRR1092913     3  0.5948      0.350 0.000 0.360 0.640

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.1118     0.7835 0.964 0.000 0.036 0.000
#> SRR1335605     4  0.6863     0.4610 0.000 0.348 0.116 0.536
#> SRR1432014     4  0.6066     0.3120 0.012 0.024 0.432 0.532
#> SRR1499215     4  0.7080     0.1308 0.064 0.024 0.448 0.464
#> SRR1460409     1  0.0592     0.7784 0.984 0.000 0.016 0.000
#> SRR1086441     1  0.1022     0.7843 0.968 0.000 0.032 0.000
#> SRR1097344     4  0.5200     0.3868 0.000 0.072 0.184 0.744
#> SRR1081789     2  0.6376     0.1276 0.000 0.504 0.064 0.432
#> SRR1453005     2  0.3708     0.7975 0.000 0.832 0.020 0.148
#> SRR1366985     1  0.1256     0.7750 0.964 0.000 0.028 0.008
#> SRR815280      1  0.0469     0.7759 0.988 0.000 0.012 0.000
#> SRR1348531     1  0.6936     0.3668 0.588 0.000 0.224 0.188
#> SRR815845      3  0.6963    -0.2628 0.000 0.112 0.464 0.424
#> SRR1471178     1  0.1022     0.7843 0.968 0.000 0.032 0.000
#> SRR1080696     3  0.5772     0.6703 0.260 0.000 0.672 0.068
#> SRR1078684     3  0.7292    -0.1172 0.068 0.032 0.468 0.432
#> SRR1317751     3  0.4420     0.5977 0.240 0.000 0.748 0.012
#> SRR1435667     4  0.6066     0.3120 0.012 0.024 0.432 0.532
#> SRR1097905     1  0.6442     0.4802 0.632 0.000 0.124 0.244
#> SRR1456548     1  0.5998     0.5611 0.684 0.000 0.116 0.200
#> SRR1075126     1  0.6428     0.4631 0.624 0.000 0.112 0.264
#> SRR813108      2  0.4100     0.7848 0.000 0.816 0.036 0.148
#> SRR1479062     3  0.6140     0.6606 0.252 0.000 0.652 0.096
#> SRR1408703     3  0.5716     0.6673 0.252 0.000 0.680 0.068
#> SRR1332360     1  0.1256     0.7750 0.964 0.000 0.028 0.008
#> SRR1098686     1  0.2589     0.7554 0.912 0.000 0.044 0.044
#> SRR1434228     1  0.1256     0.7750 0.964 0.000 0.028 0.008
#> SRR1467149     1  0.7556     0.1361 0.488 0.000 0.248 0.264
#> SRR1399113     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.4199     0.5198 0.000 0.164 0.032 0.804
#> SRR1092468     1  0.7483     0.1660 0.496 0.000 0.216 0.288
#> SRR1441804     1  0.6936     0.3668 0.588 0.000 0.224 0.188
#> SRR1326100     2  0.4959     0.7217 0.000 0.752 0.052 0.196
#> SRR1398815     1  0.1635     0.7806 0.948 0.000 0.044 0.008
#> SRR1436021     4  0.4514     0.5504 0.000 0.136 0.064 0.800
#> SRR1480083     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.5820     0.5783 0.700 0.000 0.108 0.192
#> SRR815542      1  0.0336     0.7843 0.992 0.000 0.008 0.000
#> SRR1400100     3  0.6507    -0.1760 0.000 0.076 0.520 0.404
#> SRR1312002     3  0.6176     0.4432 0.424 0.000 0.524 0.052
#> SRR1470253     3  0.5771     0.3974 0.460 0.000 0.512 0.028
#> SRR1414332     1  0.1118     0.7835 0.964 0.000 0.036 0.000
#> SRR1069209     1  0.1545     0.7731 0.952 0.000 0.040 0.008
#> SRR661052      1  0.5820     0.5783 0.700 0.000 0.108 0.192
#> SRR1308860     1  0.1118     0.7837 0.964 0.000 0.036 0.000
#> SRR1421159     4  0.4500     0.4916 0.000 0.192 0.032 0.776
#> SRR1340943     4  0.5728     0.3279 0.188 0.000 0.104 0.708
#> SRR1078855     1  0.0000     0.7826 1.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1478679     4  0.7080     0.1308 0.064 0.024 0.448 0.464
#> SRR1350979     3  0.6187    -0.0133 0.052 0.000 0.516 0.432
#> SRR1458198     1  0.7511     0.1115 0.468 0.000 0.196 0.336
#> SRR1386910     4  0.6863     0.4610 0.000 0.348 0.116 0.536
#> SRR1465375     4  0.4104     0.5211 0.000 0.164 0.028 0.808
#> SRR1323699     4  0.7080     0.1308 0.064 0.024 0.448 0.464
#> SRR1431139     3  0.7347    -0.1166 0.072 0.032 0.464 0.432
#> SRR1373964     4  0.6147     0.3190 0.012 0.028 0.428 0.532
#> SRR1455413     3  0.6396     0.5888 0.360 0.000 0.564 0.076
#> SRR1437163     1  0.5820     0.5783 0.700 0.000 0.108 0.192
#> SRR1347343     4  0.6066     0.3120 0.012 0.024 0.432 0.532
#> SRR1465480     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.5998     0.5611 0.684 0.000 0.116 0.200
#> SRR1086514     4  0.4692     0.4683 0.000 0.212 0.032 0.756
#> SRR1430928     1  0.1022     0.7843 0.968 0.000 0.032 0.000
#> SRR1310939     3  0.7102     0.3994 0.164 0.000 0.548 0.288
#> SRR1344294     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0188     0.7842 0.996 0.000 0.004 0.000
#> SRR1468118     3  0.5062     0.6329 0.284 0.000 0.692 0.024
#> SRR1486348     1  0.1118     0.7835 0.964 0.000 0.036 0.000
#> SRR1488770     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.1576     0.7779 0.948 0.000 0.048 0.004
#> SRR1456611     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0592     0.7827 0.984 0.000 0.016 0.000
#> SRR1500089     1  0.7511     0.1115 0.468 0.000 0.196 0.336
#> SRR1441178     1  0.0469     0.7759 0.988 0.000 0.012 0.000
#> SRR1381396     1  0.1209     0.7856 0.964 0.000 0.032 0.004
#> SRR1096081     3  0.4420     0.5977 0.240 0.000 0.748 0.012
#> SRR1349809     4  0.6804     0.4201 0.000 0.376 0.104 0.520
#> SRR1324314     1  0.7392     0.0554 0.472 0.000 0.172 0.356
#> SRR1092444     1  0.0592     0.7827 0.984 0.000 0.016 0.000
#> SRR1382553     4  0.7565     0.0474 0.104 0.024 0.436 0.436
#> SRR1075530     4  0.6350     0.3777 0.000 0.296 0.092 0.612
#> SRR1442612     4  0.6066     0.3120 0.012 0.024 0.432 0.532
#> SRR1360056     3  0.5465     0.5207 0.392 0.000 0.588 0.020
#> SRR1078164     1  0.0469     0.7759 0.988 0.000 0.012 0.000
#> SRR1434545     4  0.5728     0.3279 0.188 0.000 0.104 0.708
#> SRR1398251     1  0.0000     0.7826 1.000 0.000 0.000 0.000
#> SRR1375866     1  0.0592     0.7827 0.984 0.000 0.016 0.000
#> SRR1091645     4  0.5200     0.3868 0.000 0.072 0.184 0.744
#> SRR1416636     3  0.5772     0.6703 0.260 0.000 0.672 0.068
#> SRR1105441     4  0.7122     0.2755 0.024 0.068 0.424 0.484
#> SRR1082496     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1315353     2  0.4904     0.7198 0.000 0.744 0.040 0.216
#> SRR1093697     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.5810     0.6720 0.276 0.000 0.660 0.064
#> SRR1076120     1  0.7511     0.1115 0.468 0.000 0.196 0.336
#> SRR1074410     1  0.1209     0.7856 0.964 0.000 0.032 0.004
#> SRR1340345     4  0.6350     0.3777 0.000 0.296 0.092 0.612
#> SRR1069514     4  0.6641     0.3665 0.012 0.060 0.384 0.544
#> SRR1092636     3  0.5810     0.6720 0.276 0.000 0.660 0.064
#> SRR1365013     2  0.6376     0.1276 0.000 0.504 0.064 0.432
#> SRR1073069     1  0.1256     0.7750 0.964 0.000 0.028 0.008
#> SRR1443137     1  0.0000     0.7826 1.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000     0.8702 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000     0.7826 1.000 0.000 0.000 0.000
#> SRR820234      2  0.3554     0.8032 0.000 0.844 0.020 0.136
#> SRR1338079     1  0.5820     0.5783 0.700 0.000 0.108 0.192
#> SRR1390094     4  0.7205     0.4428 0.060 0.068 0.256 0.616
#> SRR1340721     4  0.6804     0.4201 0.000 0.376 0.104 0.520
#> SRR1335964     3  0.6677     0.2422 0.100 0.000 0.552 0.348
#> SRR1086869     3  0.4420     0.5977 0.240 0.000 0.748 0.012
#> SRR1453434     1  0.6400     0.3018 0.524 0.000 0.068 0.408
#> SRR1402261     4  0.5728     0.3279 0.188 0.000 0.104 0.708
#> SRR657809      4  0.5321     0.4370 0.000 0.296 0.032 0.672
#> SRR1093075     1  0.0000     0.7826 1.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000     0.7826 1.000 0.000 0.000 0.000
#> SRR1353418     3  0.5269     0.5660 0.364 0.000 0.620 0.016
#> SRR1092913     4  0.6182     0.3829 0.000 0.276 0.088 0.636

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0963     0.7968 0.964 0.000 0.036 0.000 0.000
#> SRR1335605     3  0.6128     0.2057 0.000 0.320 0.572 0.080 0.028
#> SRR1432014     3  0.0727     0.5737 0.012 0.000 0.980 0.004 0.004
#> SRR1499215     3  0.2554     0.5284 0.036 0.000 0.892 0.000 0.072
#> SRR1460409     1  0.0671     0.7920 0.980 0.000 0.016 0.000 0.004
#> SRR1086441     1  0.0880     0.7973 0.968 0.000 0.032 0.000 0.000
#> SRR1097344     4  0.1990     0.5835 0.000 0.004 0.008 0.920 0.068
#> SRR1081789     3  0.6219    -0.1669 0.000 0.424 0.436 0.140 0.000
#> SRR1453005     2  0.4490     0.6942 0.000 0.724 0.052 0.224 0.000
#> SRR1366985     1  0.1124     0.7892 0.960 0.000 0.036 0.000 0.004
#> SRR815280      1  0.0404     0.7894 0.988 0.000 0.012 0.000 0.000
#> SRR1348531     1  0.6899     0.3130 0.508 0.000 0.260 0.024 0.208
#> SRR815845      3  0.5261     0.4237 0.000 0.100 0.728 0.032 0.140
#> SRR1471178     1  0.0880     0.7973 0.968 0.000 0.032 0.000 0.000
#> SRR1080696     5  0.5884     0.6737 0.100 0.000 0.420 0.000 0.480
#> SRR1078684     3  0.3452     0.4963 0.036 0.008 0.848 0.004 0.104
#> SRR1317751     5  0.2763     0.5961 0.000 0.000 0.148 0.004 0.848
#> SRR1435667     3  0.0727     0.5737 0.012 0.000 0.980 0.004 0.004
#> SRR1097905     1  0.5627     0.5344 0.624 0.000 0.296 0.024 0.056
#> SRR1456548     1  0.5410     0.5913 0.668 0.000 0.252 0.028 0.052
#> SRR1075126     1  0.5804     0.5093 0.604 0.000 0.304 0.020 0.072
#> SRR813108      2  0.4723     0.6965 0.000 0.736 0.132 0.132 0.000
#> SRR1479062     5  0.6740     0.6411 0.132 0.000 0.412 0.024 0.432
#> SRR1408703     5  0.5847     0.6701 0.096 0.000 0.424 0.000 0.480
#> SRR1332360     1  0.1124     0.7892 0.960 0.000 0.036 0.000 0.004
#> SRR1098686     1  0.2270     0.7710 0.904 0.000 0.076 0.000 0.020
#> SRR1434228     1  0.1124     0.7892 0.960 0.000 0.036 0.000 0.004
#> SRR1467149     1  0.7427     0.0387 0.392 0.000 0.332 0.036 0.240
#> SRR1399113     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.5007     0.6605 0.000 0.060 0.260 0.676 0.004
#> SRR1092468     1  0.7201     0.1149 0.408 0.000 0.380 0.036 0.176
#> SRR1441804     1  0.6899     0.3130 0.508 0.000 0.260 0.024 0.208
#> SRR1326100     2  0.5322     0.6029 0.000 0.672 0.188 0.140 0.000
#> SRR1398815     1  0.1270     0.7939 0.948 0.000 0.052 0.000 0.000
#> SRR1436021     4  0.5875     0.5528 0.000 0.088 0.396 0.512 0.004
#> SRR1480083     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.4878     0.6189 0.700 0.000 0.248 0.024 0.028
#> SRR815542      1  0.0451     0.7968 0.988 0.000 0.004 0.000 0.008
#> SRR1400100     3  0.4581     0.4209 0.000 0.076 0.764 0.012 0.148
#> SRR1312002     3  0.6820    -0.4051 0.344 0.000 0.344 0.000 0.312
#> SRR1470253     1  0.6787    -0.4470 0.380 0.000 0.288 0.000 0.332
#> SRR1414332     1  0.0963     0.7968 0.964 0.000 0.036 0.000 0.000
#> SRR1069209     1  0.1408     0.7873 0.948 0.000 0.044 0.000 0.008
#> SRR661052      1  0.4878     0.6189 0.700 0.000 0.248 0.024 0.028
#> SRR1308860     1  0.1168     0.7964 0.960 0.000 0.032 0.000 0.008
#> SRR1421159     4  0.5944     0.6324 0.000 0.116 0.312 0.568 0.004
#> SRR1340943     4  0.6785     0.5427 0.112 0.000 0.144 0.612 0.132
#> SRR1078855     1  0.0000     0.7949 1.000 0.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.2554     0.5284 0.036 0.000 0.892 0.000 0.072
#> SRR1350979     3  0.3755     0.4088 0.032 0.000 0.816 0.012 0.140
#> SRR1458198     1  0.8462    -0.1039 0.328 0.000 0.176 0.232 0.264
#> SRR1386910     3  0.6128     0.2057 0.000 0.320 0.572 0.080 0.028
#> SRR1465375     4  0.5030     0.6590 0.000 0.060 0.264 0.672 0.004
#> SRR1323699     3  0.2554     0.5284 0.036 0.000 0.892 0.000 0.072
#> SRR1431139     3  0.3529     0.4958 0.040 0.008 0.844 0.004 0.104
#> SRR1373964     3  0.0727     0.5746 0.012 0.004 0.980 0.004 0.000
#> SRR1455413     3  0.6863    -0.4856 0.260 0.000 0.404 0.004 0.332
#> SRR1437163     1  0.4878     0.6189 0.700 0.000 0.248 0.024 0.028
#> SRR1347343     3  0.0727     0.5737 0.012 0.000 0.980 0.004 0.004
#> SRR1465480     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.5410     0.5913 0.668 0.000 0.252 0.028 0.052
#> SRR1086514     4  0.6053     0.6404 0.000 0.136 0.292 0.568 0.004
#> SRR1430928     1  0.0880     0.7973 0.968 0.000 0.032 0.000 0.000
#> SRR1310939     3  0.5896     0.0208 0.116 0.000 0.640 0.020 0.224
#> SRR1344294     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0162     0.7964 0.996 0.000 0.004 0.000 0.000
#> SRR1468118     5  0.3875     0.6334 0.048 0.000 0.160 0.000 0.792
#> SRR1486348     1  0.0963     0.7968 0.964 0.000 0.036 0.000 0.000
#> SRR1488770     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.1661     0.7902 0.940 0.000 0.036 0.000 0.024
#> SRR1456611     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.0671     0.7954 0.980 0.000 0.016 0.000 0.004
#> SRR1500089     1  0.8462    -0.1039 0.328 0.000 0.176 0.232 0.264
#> SRR1441178     1  0.0404     0.7894 0.988 0.000 0.012 0.000 0.000
#> SRR1381396     1  0.0963     0.7983 0.964 0.000 0.036 0.000 0.000
#> SRR1096081     5  0.2763     0.5961 0.000 0.000 0.148 0.004 0.848
#> SRR1349809     3  0.6218     0.1676 0.000 0.348 0.544 0.080 0.028
#> SRR1324314     3  0.5325    -0.1515 0.460 0.000 0.500 0.012 0.028
#> SRR1092444     1  0.0671     0.7954 0.980 0.000 0.016 0.000 0.004
#> SRR1382553     3  0.3242     0.4909 0.076 0.000 0.852 0.000 0.072
#> SRR1075530     4  0.5733     0.5718 0.000 0.220 0.160 0.620 0.000
#> SRR1442612     3  0.0727     0.5737 0.012 0.000 0.980 0.004 0.004
#> SRR1360056     5  0.6597     0.5716 0.244 0.000 0.296 0.000 0.460
#> SRR1078164     1  0.0404     0.7894 0.988 0.000 0.012 0.000 0.000
#> SRR1434545     4  0.6785     0.5427 0.112 0.000 0.144 0.612 0.132
#> SRR1398251     1  0.0000     0.7949 1.000 0.000 0.000 0.000 0.000
#> SRR1375866     1  0.0510     0.7953 0.984 0.000 0.016 0.000 0.000
#> SRR1091645     4  0.1990     0.5835 0.000 0.004 0.008 0.920 0.068
#> SRR1416636     5  0.5884     0.6737 0.100 0.000 0.420 0.000 0.480
#> SRR1105441     3  0.2992     0.5518 0.000 0.044 0.876 0.008 0.072
#> SRR1082496     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     2  0.5504     0.5776 0.000 0.644 0.132 0.224 0.000
#> SRR1093697     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.6055     0.6780 0.120 0.000 0.408 0.000 0.472
#> SRR1076120     1  0.8462    -0.1039 0.328 0.000 0.176 0.232 0.264
#> SRR1074410     1  0.0963     0.7983 0.964 0.000 0.036 0.000 0.000
#> SRR1340345     4  0.5733     0.5718 0.000 0.220 0.160 0.620 0.000
#> SRR1069514     3  0.1978     0.5692 0.012 0.032 0.932 0.024 0.000
#> SRR1092636     5  0.6055     0.6780 0.120 0.000 0.408 0.000 0.472
#> SRR1365013     3  0.6219    -0.1669 0.000 0.424 0.436 0.140 0.000
#> SRR1073069     1  0.1124     0.7892 0.960 0.000 0.036 0.000 0.004
#> SRR1443137     1  0.0000     0.7949 1.000 0.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000     0.8886 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0000     0.7949 1.000 0.000 0.000 0.000 0.000
#> SRR820234      2  0.4333     0.7096 0.000 0.740 0.048 0.212 0.000
#> SRR1338079     1  0.4878     0.6189 0.700 0.000 0.248 0.024 0.028
#> SRR1390094     3  0.5180     0.4203 0.044 0.000 0.724 0.180 0.052
#> SRR1340721     3  0.6218     0.1676 0.000 0.348 0.544 0.080 0.028
#> SRR1335964     3  0.4704     0.2268 0.064 0.000 0.736 0.008 0.192
#> SRR1086869     5  0.2763     0.5961 0.000 0.000 0.148 0.004 0.848
#> SRR1453434     1  0.7844     0.1184 0.432 0.000 0.132 0.300 0.136
#> SRR1402261     4  0.6785     0.5427 0.112 0.000 0.144 0.612 0.132
#> SRR657809      4  0.6619     0.4604 0.000 0.220 0.360 0.420 0.000
#> SRR1093075     1  0.0000     0.7949 1.000 0.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000     0.7949 1.000 0.000 0.000 0.000 0.000
#> SRR1353418     5  0.6109     0.6683 0.172 0.000 0.272 0.000 0.556
#> SRR1092913     4  0.5384     0.5915 0.000 0.196 0.140 0.664 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1553     0.8249 0.944 0.000 0.004 0.008 0.032 0.012
#> SRR1335605     3  0.6919     0.1996 0.004 0.264 0.500 0.168 0.028 0.036
#> SRR1432014     3  0.0520     0.6112 0.008 0.000 0.984 0.000 0.008 0.000
#> SRR1499215     3  0.2722     0.5679 0.016 0.000 0.876 0.008 0.088 0.012
#> SRR1460409     1  0.0893     0.8202 0.972 0.000 0.004 0.004 0.004 0.016
#> SRR1086441     1  0.1476     0.8258 0.948 0.000 0.004 0.008 0.028 0.012
#> SRR1097344     4  0.3171     0.4726 0.000 0.000 0.000 0.784 0.012 0.204
#> SRR1081789     3  0.6566    -0.1876 0.000 0.364 0.388 0.224 0.012 0.012
#> SRR1453005     2  0.4819     0.6239 0.000 0.668 0.032 0.264 0.004 0.032
#> SRR1366985     1  0.1340     0.8153 0.948 0.000 0.040 0.000 0.008 0.004
#> SRR815280      1  0.0748     0.8178 0.976 0.000 0.004 0.004 0.000 0.016
#> SRR1348531     1  0.6892     0.1951 0.460 0.000 0.180 0.004 0.284 0.072
#> SRR815845      3  0.5634     0.4402 0.000 0.060 0.660 0.120 0.156 0.004
#> SRR1471178     1  0.1476     0.8258 0.948 0.000 0.004 0.008 0.028 0.012
#> SRR1080696     5  0.4813     0.5620 0.036 0.000 0.368 0.004 0.584 0.008
#> SRR1078684     3  0.3825     0.5274 0.016 0.000 0.812 0.028 0.116 0.028
#> SRR1317751     5  0.3217     0.3796 0.000 0.000 0.044 0.036 0.852 0.068
#> SRR1435667     3  0.0520     0.6112 0.008 0.000 0.984 0.000 0.008 0.000
#> SRR1097905     1  0.6686     0.4224 0.548 0.000 0.228 0.016 0.128 0.080
#> SRR1456548     1  0.5943     0.5580 0.636 0.000 0.200 0.020 0.084 0.060
#> SRR1075126     1  0.7090     0.3376 0.516 0.000 0.168 0.016 0.120 0.180
#> SRR813108      2  0.5085     0.6457 0.000 0.700 0.128 0.144 0.012 0.016
#> SRR1479062     5  0.5965     0.5594 0.064 0.000 0.352 0.028 0.532 0.024
#> SRR1408703     5  0.4914     0.5591 0.036 0.000 0.372 0.004 0.576 0.012
#> SRR1332360     1  0.1340     0.8153 0.948 0.000 0.040 0.000 0.008 0.004
#> SRR1098686     1  0.3528     0.7582 0.836 0.000 0.032 0.008 0.088 0.036
#> SRR1434228     1  0.1340     0.8153 0.948 0.000 0.040 0.000 0.008 0.004
#> SRR1467149     5  0.7590    -0.0564 0.316 0.000 0.200 0.004 0.328 0.152
#> SRR1399113     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.5472     0.6990 0.000 0.036 0.192 0.656 0.004 0.112
#> SRR1092468     1  0.8190    -0.2209 0.288 0.000 0.272 0.032 0.232 0.176
#> SRR1441804     1  0.6892     0.1951 0.460 0.000 0.180 0.004 0.284 0.072
#> SRR1326100     2  0.5703     0.5347 0.000 0.624 0.168 0.180 0.012 0.016
#> SRR1398815     1  0.2272     0.8207 0.912 0.000 0.016 0.008 0.040 0.024
#> SRR1436021     4  0.6137     0.5900 0.000 0.060 0.352 0.516 0.012 0.060
#> SRR1480083     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.5510     0.5935 0.668 0.000 0.200 0.016 0.064 0.052
#> SRR815542      1  0.1049     0.8278 0.960 0.000 0.000 0.000 0.032 0.008
#> SRR1400100     3  0.4851     0.4478 0.000 0.040 0.716 0.084 0.160 0.000
#> SRR1312002     5  0.6286     0.4412 0.284 0.000 0.312 0.000 0.396 0.008
#> SRR1470253     5  0.6492     0.4195 0.304 0.000 0.252 0.000 0.420 0.024
#> SRR1414332     1  0.1553     0.8249 0.944 0.000 0.004 0.008 0.032 0.012
#> SRR1069209     1  0.1367     0.8143 0.944 0.000 0.044 0.000 0.012 0.000
#> SRR661052      1  0.5510     0.5935 0.668 0.000 0.200 0.016 0.064 0.052
#> SRR1308860     1  0.1929     0.8187 0.924 0.000 0.004 0.008 0.048 0.016
#> SRR1421159     4  0.6223     0.6827 0.000 0.092 0.256 0.576 0.012 0.064
#> SRR1340943     6  0.2872     0.4404 0.000 0.000 0.012 0.152 0.004 0.832
#> SRR1078855     1  0.0146     0.8267 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1459465     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.2722     0.5679 0.016 0.000 0.876 0.008 0.088 0.012
#> SRR1350979     3  0.4081     0.4195 0.016 0.000 0.768 0.020 0.176 0.020
#> SRR1458198     6  0.6394     0.5208 0.184 0.000 0.012 0.016 0.308 0.480
#> SRR1386910     3  0.6919     0.1996 0.004 0.264 0.500 0.168 0.028 0.036
#> SRR1465375     4  0.5418     0.7032 0.000 0.036 0.196 0.660 0.004 0.104
#> SRR1323699     3  0.2722     0.5679 0.016 0.000 0.876 0.008 0.088 0.012
#> SRR1431139     3  0.3910     0.5267 0.020 0.000 0.808 0.028 0.116 0.028
#> SRR1373964     3  0.0551     0.6119 0.008 0.000 0.984 0.004 0.004 0.000
#> SRR1455413     5  0.6692     0.4602 0.228 0.000 0.344 0.008 0.396 0.024
#> SRR1437163     1  0.5510     0.5935 0.668 0.000 0.200 0.016 0.064 0.052
#> SRR1347343     3  0.0520     0.6112 0.008 0.000 0.984 0.000 0.008 0.000
#> SRR1465480     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.5943     0.5580 0.636 0.000 0.200 0.020 0.084 0.060
#> SRR1086514     4  0.6322     0.6900 0.000 0.112 0.236 0.576 0.012 0.064
#> SRR1430928     1  0.1476     0.8258 0.948 0.000 0.004 0.008 0.028 0.012
#> SRR1310939     3  0.6827    -0.1490 0.040 0.000 0.500 0.040 0.296 0.124
#> SRR1344294     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.0520     0.8292 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR1468118     5  0.3067     0.4194 0.016 0.000 0.052 0.032 0.872 0.028
#> SRR1486348     1  0.1553     0.8249 0.944 0.000 0.004 0.008 0.032 0.012
#> SRR1488770     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.2465     0.8009 0.892 0.000 0.004 0.008 0.072 0.024
#> SRR1456611     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.1109     0.8231 0.964 0.000 0.004 0.004 0.012 0.016
#> SRR1500089     6  0.6394     0.5208 0.184 0.000 0.012 0.016 0.308 0.480
#> SRR1441178     1  0.0837     0.8154 0.972 0.000 0.004 0.004 0.000 0.020
#> SRR1381396     1  0.1533     0.8284 0.948 0.000 0.012 0.008 0.016 0.016
#> SRR1096081     5  0.3217     0.3796 0.000 0.000 0.044 0.036 0.852 0.068
#> SRR1349809     3  0.7063     0.1536 0.004 0.292 0.468 0.168 0.028 0.040
#> SRR1324314     3  0.6028    -0.1191 0.424 0.000 0.460 0.016 0.068 0.032
#> SRR1092444     1  0.1015     0.8254 0.968 0.000 0.004 0.004 0.012 0.012
#> SRR1382553     3  0.3442     0.5330 0.056 0.000 0.836 0.008 0.088 0.012
#> SRR1075530     4  0.4213     0.6773 0.000 0.160 0.092 0.744 0.000 0.004
#> SRR1442612     3  0.0520     0.6112 0.008 0.000 0.984 0.000 0.008 0.000
#> SRR1360056     5  0.5569     0.5795 0.180 0.000 0.248 0.000 0.568 0.004
#> SRR1078164     1  0.0837     0.8154 0.972 0.000 0.004 0.004 0.000 0.020
#> SRR1434545     6  0.2872     0.4404 0.000 0.000 0.012 0.152 0.004 0.832
#> SRR1398251     1  0.0146     0.8267 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1375866     1  0.0893     0.8228 0.972 0.000 0.004 0.004 0.004 0.016
#> SRR1091645     4  0.3171     0.4726 0.000 0.000 0.000 0.784 0.012 0.204
#> SRR1416636     5  0.4813     0.5620 0.036 0.000 0.368 0.004 0.584 0.008
#> SRR1105441     3  0.3097     0.5916 0.000 0.012 0.852 0.064 0.072 0.000
#> SRR1082496     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     2  0.5812     0.4939 0.000 0.584 0.100 0.276 0.004 0.036
#> SRR1093697     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.5217     0.5841 0.056 0.000 0.348 0.004 0.576 0.016
#> SRR1076120     6  0.6394     0.5208 0.184 0.000 0.012 0.016 0.308 0.480
#> SRR1074410     1  0.1533     0.8284 0.948 0.000 0.012 0.008 0.016 0.016
#> SRR1340345     4  0.4213     0.6773 0.000 0.160 0.092 0.744 0.000 0.004
#> SRR1069514     3  0.1879     0.6056 0.008 0.028 0.932 0.016 0.016 0.000
#> SRR1092636     5  0.5217     0.5841 0.056 0.000 0.348 0.004 0.576 0.016
#> SRR1365013     3  0.6566    -0.1876 0.000 0.364 0.388 0.224 0.012 0.012
#> SRR1073069     1  0.1340     0.8153 0.948 0.000 0.040 0.000 0.008 0.004
#> SRR1443137     1  0.0146     0.8267 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1437143     2  0.0000     0.8752 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.0146     0.8267 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR820234      2  0.4224     0.6624 0.000 0.712 0.032 0.244 0.004 0.008
#> SRR1338079     1  0.5510     0.5935 0.668 0.000 0.200 0.016 0.064 0.052
#> SRR1390094     3  0.5535     0.4363 0.016 0.000 0.668 0.096 0.036 0.184
#> SRR1340721     3  0.7063     0.1536 0.004 0.292 0.468 0.168 0.028 0.040
#> SRR1335964     3  0.5070     0.2134 0.024 0.000 0.668 0.016 0.248 0.044
#> SRR1086869     5  0.3217     0.3796 0.000 0.000 0.044 0.036 0.852 0.068
#> SRR1453434     6  0.5339     0.5247 0.260 0.000 0.004 0.020 0.088 0.628
#> SRR1402261     6  0.2872     0.4404 0.000 0.000 0.012 0.152 0.004 0.832
#> SRR657809      4  0.5701     0.5230 0.000 0.160 0.288 0.544 0.000 0.008
#> SRR1093075     1  0.0146     0.8267 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1433329     1  0.0146     0.8267 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1353418     5  0.4725     0.5957 0.108 0.000 0.204 0.000 0.684 0.004
#> SRR1092913     4  0.4350     0.6840 0.000 0.136 0.072 0.760 0.000 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.985       0.991         0.4340 0.562   0.562
#> 3 3 0.762           0.805       0.901         0.4720 0.729   0.539
#> 4 4 0.659           0.723       0.820         0.1233 0.898   0.722
#> 5 5 0.667           0.536       0.697         0.0738 0.924   0.761
#> 6 6 0.704           0.677       0.784         0.0492 0.852   0.506

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.998 1.000 0.000
#> SRR1335605     1  0.0000      0.998 1.000 0.000
#> SRR1432014     1  0.0000      0.998 1.000 0.000
#> SRR1499215     1  0.0000      0.998 1.000 0.000
#> SRR1460409     1  0.0000      0.998 1.000 0.000
#> SRR1086441     1  0.0000      0.998 1.000 0.000
#> SRR1097344     2  0.0000      0.978 0.000 1.000
#> SRR1081789     2  0.0376      0.978 0.004 0.996
#> SRR1453005     2  0.0000      0.978 0.000 1.000
#> SRR1366985     1  0.0000      0.998 1.000 0.000
#> SRR815280      1  0.0000      0.998 1.000 0.000
#> SRR1348531     1  0.0000      0.998 1.000 0.000
#> SRR815845      2  0.1414      0.977 0.020 0.980
#> SRR1471178     1  0.0000      0.998 1.000 0.000
#> SRR1080696     1  0.0000      0.998 1.000 0.000
#> SRR1078684     1  0.0000      0.998 1.000 0.000
#> SRR1317751     1  0.0000      0.998 1.000 0.000
#> SRR1435667     2  0.1414      0.977 0.020 0.980
#> SRR1097905     1  0.0000      0.998 1.000 0.000
#> SRR1456548     1  0.0000      0.998 1.000 0.000
#> SRR1075126     1  0.0000      0.998 1.000 0.000
#> SRR813108      2  0.0000      0.978 0.000 1.000
#> SRR1479062     1  0.0000      0.998 1.000 0.000
#> SRR1408703     1  0.0000      0.998 1.000 0.000
#> SRR1332360     1  0.0000      0.998 1.000 0.000
#> SRR1098686     1  0.0000      0.998 1.000 0.000
#> SRR1434228     1  0.0000      0.998 1.000 0.000
#> SRR1467149     1  0.0000      0.998 1.000 0.000
#> SRR1399113     2  0.0000      0.978 0.000 1.000
#> SRR1476507     2  0.1414      0.977 0.020 0.980
#> SRR1092468     1  0.0000      0.998 1.000 0.000
#> SRR1441804     1  0.0000      0.998 1.000 0.000
#> SRR1326100     2  0.0000      0.978 0.000 1.000
#> SRR1398815     1  0.0000      0.998 1.000 0.000
#> SRR1436021     2  0.1414      0.977 0.020 0.980
#> SRR1480083     2  0.0000      0.978 0.000 1.000
#> SRR1472863     1  0.0000      0.998 1.000 0.000
#> SRR815542      1  0.0000      0.998 1.000 0.000
#> SRR1400100     2  0.1414      0.977 0.020 0.980
#> SRR1312002     1  0.0000      0.998 1.000 0.000
#> SRR1470253     1  0.0000      0.998 1.000 0.000
#> SRR1414332     1  0.0000      0.998 1.000 0.000
#> SRR1069209     1  0.0000      0.998 1.000 0.000
#> SRR661052      1  0.0000      0.998 1.000 0.000
#> SRR1308860     1  0.0000      0.998 1.000 0.000
#> SRR1421159     2  0.1414      0.977 0.020 0.980
#> SRR1340943     1  0.0000      0.998 1.000 0.000
#> SRR1078855     1  0.0000      0.998 1.000 0.000
#> SRR1459465     2  0.0000      0.978 0.000 1.000
#> SRR816818      2  0.0000      0.978 0.000 1.000
#> SRR1478679     2  0.8608      0.626 0.284 0.716
#> SRR1350979     1  0.0000      0.998 1.000 0.000
#> SRR1458198     1  0.0000      0.998 1.000 0.000
#> SRR1386910     2  0.1414      0.977 0.020 0.980
#> SRR1465375     2  0.1414      0.977 0.020 0.980
#> SRR1323699     1  0.0000      0.998 1.000 0.000
#> SRR1431139     1  0.0000      0.998 1.000 0.000
#> SRR1373964     1  0.3274      0.934 0.940 0.060
#> SRR1455413     1  0.0000      0.998 1.000 0.000
#> SRR1437163     1  0.0000      0.998 1.000 0.000
#> SRR1347343     1  0.0000      0.998 1.000 0.000
#> SRR1465480     2  0.0000      0.978 0.000 1.000
#> SRR1489631     1  0.0000      0.998 1.000 0.000
#> SRR1086514     2  0.0000      0.978 0.000 1.000
#> SRR1430928     1  0.0000      0.998 1.000 0.000
#> SRR1310939     1  0.0000      0.998 1.000 0.000
#> SRR1344294     2  0.0000      0.978 0.000 1.000
#> SRR1099402     1  0.0000      0.998 1.000 0.000
#> SRR1468118     1  0.0000      0.998 1.000 0.000
#> SRR1486348     1  0.0000      0.998 1.000 0.000
#> SRR1488770     2  0.0000      0.978 0.000 1.000
#> SRR1083732     1  0.0000      0.998 1.000 0.000
#> SRR1456611     2  0.0000      0.978 0.000 1.000
#> SRR1080318     1  0.0000      0.998 1.000 0.000
#> SRR1500089     1  0.0000      0.998 1.000 0.000
#> SRR1441178     1  0.0000      0.998 1.000 0.000
#> SRR1381396     1  0.0000      0.998 1.000 0.000
#> SRR1096081     1  0.0000      0.998 1.000 0.000
#> SRR1349809     2  0.1414      0.977 0.020 0.980
#> SRR1324314     1  0.0000      0.998 1.000 0.000
#> SRR1092444     1  0.0000      0.998 1.000 0.000
#> SRR1382553     1  0.0000      0.998 1.000 0.000
#> SRR1075530     2  0.1414      0.977 0.020 0.980
#> SRR1442612     1  0.5629      0.844 0.868 0.132
#> SRR1360056     1  0.0000      0.998 1.000 0.000
#> SRR1078164     1  0.0000      0.998 1.000 0.000
#> SRR1434545     1  0.0000      0.998 1.000 0.000
#> SRR1398251     1  0.0000      0.998 1.000 0.000
#> SRR1375866     1  0.0000      0.998 1.000 0.000
#> SRR1091645     2  0.1414      0.977 0.020 0.980
#> SRR1416636     1  0.0000      0.998 1.000 0.000
#> SRR1105441     2  0.1414      0.977 0.020 0.980
#> SRR1082496     2  0.0000      0.978 0.000 1.000
#> SRR1315353     2  0.0000      0.978 0.000 1.000
#> SRR1093697     2  0.0000      0.978 0.000 1.000
#> SRR1077429     1  0.0000      0.998 1.000 0.000
#> SRR1076120     1  0.0000      0.998 1.000 0.000
#> SRR1074410     1  0.0000      0.998 1.000 0.000
#> SRR1340345     2  0.1414      0.977 0.020 0.980
#> SRR1069514     2  0.1414      0.977 0.020 0.980
#> SRR1092636     1  0.0000      0.998 1.000 0.000
#> SRR1365013     2  0.1414      0.977 0.020 0.980
#> SRR1073069     1  0.0000      0.998 1.000 0.000
#> SRR1443137     1  0.0000      0.998 1.000 0.000
#> SRR1437143     2  0.0000      0.978 0.000 1.000
#> SRR1091990     1  0.0000      0.998 1.000 0.000
#> SRR820234      2  0.0000      0.978 0.000 1.000
#> SRR1338079     1  0.0000      0.998 1.000 0.000
#> SRR1390094     1  0.0000      0.998 1.000 0.000
#> SRR1340721     2  0.7219      0.767 0.200 0.800
#> SRR1335964     1  0.0000      0.998 1.000 0.000
#> SRR1086869     1  0.0000      0.998 1.000 0.000
#> SRR1453434     1  0.0000      0.998 1.000 0.000
#> SRR1402261     1  0.0000      0.998 1.000 0.000
#> SRR657809      2  0.1414      0.977 0.020 0.980
#> SRR1093075     1  0.0000      0.998 1.000 0.000
#> SRR1433329     1  0.0000      0.998 1.000 0.000
#> SRR1353418     1  0.0000      0.998 1.000 0.000
#> SRR1092913     2  0.1414      0.977 0.020 0.980

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.942 1.000 0.000 0.000
#> SRR1335605     3  0.1015      0.864 0.012 0.008 0.980
#> SRR1432014     3  0.1015      0.864 0.012 0.008 0.980
#> SRR1499215     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1460409     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1086441     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1097344     2  0.5882      0.725 0.000 0.652 0.348
#> SRR1081789     2  0.5733      0.729 0.000 0.676 0.324
#> SRR1453005     2  0.1031      0.783 0.000 0.976 0.024
#> SRR1366985     3  0.6286      0.252 0.464 0.000 0.536
#> SRR815280      1  0.0000      0.942 1.000 0.000 0.000
#> SRR1348531     1  0.0000      0.942 1.000 0.000 0.000
#> SRR815845      3  0.0892      0.853 0.000 0.020 0.980
#> SRR1471178     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1080696     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1078684     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1317751     3  0.1289      0.857 0.032 0.000 0.968
#> SRR1435667     3  0.0892      0.853 0.000 0.020 0.980
#> SRR1097905     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1456548     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1075126     1  0.0000      0.942 1.000 0.000 0.000
#> SRR813108      2  0.1031      0.783 0.000 0.976 0.024
#> SRR1479062     3  0.0747      0.867 0.016 0.000 0.984
#> SRR1408703     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1332360     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1098686     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1434228     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1467149     1  0.6045      0.366 0.620 0.000 0.380
#> SRR1399113     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1476507     2  0.6168      0.647 0.000 0.588 0.412
#> SRR1092468     1  0.6079      0.347 0.612 0.000 0.388
#> SRR1441804     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1326100     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1398815     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1436021     2  0.6095      0.658 0.000 0.608 0.392
#> SRR1480083     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1472863     1  0.0000      0.942 1.000 0.000 0.000
#> SRR815542      1  0.0000      0.942 1.000 0.000 0.000
#> SRR1400100     3  0.0892      0.853 0.000 0.020 0.980
#> SRR1312002     3  0.5948      0.479 0.360 0.000 0.640
#> SRR1470253     3  0.6062      0.434 0.384 0.000 0.616
#> SRR1414332     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1069209     1  0.0000      0.942 1.000 0.000 0.000
#> SRR661052      1  0.0000      0.942 1.000 0.000 0.000
#> SRR1308860     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1421159     2  0.6079      0.664 0.000 0.612 0.388
#> SRR1340943     1  0.6095      0.362 0.608 0.000 0.392
#> SRR1078855     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1459465     2  0.0000      0.783 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.783 0.000 1.000 0.000
#> SRR1478679     3  0.0892      0.853 0.000 0.020 0.980
#> SRR1350979     3  0.0747      0.867 0.016 0.000 0.984
#> SRR1458198     1  0.0237      0.938 0.996 0.000 0.004
#> SRR1386910     2  0.5810      0.722 0.000 0.664 0.336
#> SRR1465375     2  0.5882      0.725 0.000 0.652 0.348
#> SRR1323699     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1431139     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1373964     3  0.1015      0.864 0.012 0.008 0.980
#> SRR1455413     1  0.2959      0.839 0.900 0.000 0.100
#> SRR1437163     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1347343     3  0.1015      0.864 0.012 0.008 0.980
#> SRR1465480     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1489631     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1086514     2  0.5760      0.727 0.000 0.672 0.328
#> SRR1430928     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1310939     3  0.0747      0.867 0.016 0.000 0.984
#> SRR1344294     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1468118     3  0.0747      0.867 0.016 0.000 0.984
#> SRR1486348     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1083732     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1456611     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1080318     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1500089     1  0.0592      0.933 0.988 0.000 0.012
#> SRR1441178     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1381396     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1096081     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1349809     2  0.4974      0.753 0.000 0.764 0.236
#> SRR1324314     3  0.6260      0.293 0.448 0.000 0.552
#> SRR1092444     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1382553     3  0.6280      0.262 0.460 0.000 0.540
#> SRR1075530     2  0.5926      0.718 0.000 0.644 0.356
#> SRR1442612     3  0.0892      0.853 0.000 0.020 0.980
#> SRR1360056     3  0.5882      0.500 0.348 0.000 0.652
#> SRR1078164     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1434545     1  0.6783      0.326 0.588 0.016 0.396
#> SRR1398251     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1375866     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1091645     2  0.6168      0.647 0.000 0.588 0.412
#> SRR1416636     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1105441     3  0.0892      0.853 0.000 0.020 0.980
#> SRR1082496     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1315353     2  0.6095      0.651 0.000 0.608 0.392
#> SRR1093697     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1077429     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1076120     1  0.5785      0.469 0.668 0.000 0.332
#> SRR1074410     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1340345     2  0.5882      0.725 0.000 0.652 0.348
#> SRR1069514     3  0.0892      0.853 0.000 0.020 0.980
#> SRR1092636     3  0.0892      0.867 0.020 0.000 0.980
#> SRR1365013     2  0.5810      0.722 0.000 0.664 0.336
#> SRR1073069     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1443137     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1437143     2  0.0000      0.783 0.000 1.000 0.000
#> SRR1091990     1  0.0000      0.942 1.000 0.000 0.000
#> SRR820234      2  0.0000      0.783 0.000 1.000 0.000
#> SRR1338079     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1390094     3  0.0747      0.867 0.016 0.000 0.984
#> SRR1340721     2  0.7140      0.483 0.328 0.632 0.040
#> SRR1335964     3  0.0747      0.867 0.016 0.000 0.984
#> SRR1086869     3  0.0747      0.867 0.016 0.000 0.984
#> SRR1453434     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1402261     1  0.6095      0.362 0.608 0.000 0.392
#> SRR657809      2  0.5760      0.727 0.000 0.672 0.328
#> SRR1093075     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1433329     1  0.0000      0.942 1.000 0.000 0.000
#> SRR1353418     3  0.5882      0.500 0.348 0.000 0.652
#> SRR1092913     2  0.5882      0.725 0.000 0.652 0.348

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0336     0.9024 0.992 0.000 0.000 0.008
#> SRR1335605     3  0.2345     0.6804 0.000 0.000 0.900 0.100
#> SRR1432014     3  0.0000     0.7205 0.000 0.000 1.000 0.000
#> SRR1499215     3  0.1474     0.7140 0.000 0.000 0.948 0.052
#> SRR1460409     1  0.1302     0.9006 0.956 0.000 0.000 0.044
#> SRR1086441     1  0.0188     0.9028 0.996 0.000 0.000 0.004
#> SRR1097344     4  0.6442     0.7090 0.000 0.244 0.124 0.632
#> SRR1081789     4  0.7683     0.6568 0.000 0.244 0.304 0.452
#> SRR1453005     2  0.4973     0.2655 0.000 0.644 0.008 0.348
#> SRR1366985     1  0.7103     0.0468 0.468 0.000 0.404 0.128
#> SRR815280      1  0.2760     0.8665 0.872 0.000 0.000 0.128
#> SRR1348531     1  0.1211     0.8994 0.960 0.000 0.000 0.040
#> SRR815845      3  0.1474     0.7114 0.000 0.000 0.948 0.052
#> SRR1471178     1  0.0188     0.9028 0.996 0.000 0.000 0.004
#> SRR1080696     3  0.4072     0.6968 0.000 0.000 0.748 0.252
#> SRR1078684     3  0.2281     0.6795 0.000 0.000 0.904 0.096
#> SRR1317751     3  0.4304     0.6845 0.000 0.000 0.716 0.284
#> SRR1435667     3  0.1118     0.7136 0.000 0.000 0.964 0.036
#> SRR1097905     1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1456548     1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1075126     1  0.1389     0.8990 0.952 0.000 0.000 0.048
#> SRR813108      2  0.5063     0.6313 0.000 0.768 0.124 0.108
#> SRR1479062     3  0.4040     0.6970 0.000 0.000 0.752 0.248
#> SRR1408703     3  0.4164     0.6933 0.000 0.000 0.736 0.264
#> SRR1332360     1  0.2814     0.8647 0.868 0.000 0.000 0.132
#> SRR1098686     1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1434228     1  0.3196     0.8585 0.856 0.000 0.008 0.136
#> SRR1467149     4  0.6871    -0.0920 0.416 0.000 0.104 0.480
#> SRR1399113     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.6433     0.7233 0.000 0.188 0.164 0.648
#> SRR1092468     3  0.7489     0.0771 0.296 0.000 0.492 0.212
#> SRR1441804     1  0.1211     0.8994 0.960 0.000 0.000 0.040
#> SRR1326100     2  0.0524     0.8919 0.000 0.988 0.008 0.004
#> SRR1398815     1  0.0336     0.9024 0.992 0.000 0.000 0.008
#> SRR1436021     4  0.7007     0.7001 0.000 0.144 0.308 0.548
#> SRR1480083     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0188     0.9028 0.996 0.000 0.000 0.004
#> SRR815542      1  0.1211     0.8991 0.960 0.000 0.000 0.040
#> SRR1400100     3  0.2469     0.6772 0.000 0.000 0.892 0.108
#> SRR1312002     3  0.6889     0.5122 0.232 0.000 0.592 0.176
#> SRR1470253     3  0.6844     0.5457 0.152 0.000 0.588 0.260
#> SRR1414332     1  0.0336     0.9024 0.992 0.000 0.000 0.008
#> SRR1069209     1  0.2868     0.8632 0.864 0.000 0.000 0.136
#> SRR661052      1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1308860     1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1421159     4  0.6708     0.6257 0.000 0.096 0.376 0.528
#> SRR1340943     4  0.5007     0.5644 0.172 0.000 0.068 0.760
#> SRR1078855     1  0.2814     0.8653 0.868 0.000 0.000 0.132
#> SRR1459465     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.2647     0.6553 0.000 0.000 0.880 0.120
#> SRR1350979     3  0.1940     0.7245 0.000 0.000 0.924 0.076
#> SRR1458198     1  0.5646     0.5866 0.656 0.000 0.048 0.296
#> SRR1386910     4  0.7457     0.7028 0.000 0.276 0.220 0.504
#> SRR1465375     4  0.7394     0.7266 0.008 0.248 0.188 0.556
#> SRR1323699     3  0.1389     0.7147 0.000 0.000 0.952 0.048
#> SRR1431139     3  0.2281     0.6837 0.000 0.000 0.904 0.096
#> SRR1373964     3  0.1637     0.7029 0.000 0.000 0.940 0.060
#> SRR1455413     1  0.6851     0.4535 0.584 0.000 0.148 0.268
#> SRR1437163     1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1347343     3  0.1118     0.7136 0.000 0.000 0.964 0.036
#> SRR1465480     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1086514     4  0.7401     0.6885 0.000 0.300 0.196 0.504
#> SRR1430928     1  0.0188     0.9028 0.996 0.000 0.000 0.004
#> SRR1310939     3  0.4356     0.6496 0.000 0.000 0.708 0.292
#> SRR1344294     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0707     0.9029 0.980 0.000 0.000 0.020
#> SRR1468118     3  0.4331     0.6820 0.000 0.000 0.712 0.288
#> SRR1486348     1  0.0188     0.9028 0.996 0.000 0.000 0.004
#> SRR1488770     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000     0.9028 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.1211     0.9025 0.960 0.000 0.000 0.040
#> SRR1500089     1  0.5966     0.5431 0.624 0.000 0.060 0.316
#> SRR1441178     1  0.2760     0.8665 0.872 0.000 0.000 0.128
#> SRR1381396     1  0.0336     0.9024 0.992 0.000 0.000 0.008
#> SRR1096081     3  0.4304     0.6845 0.000 0.000 0.716 0.284
#> SRR1349809     2  0.7454    -0.3127 0.004 0.516 0.180 0.300
#> SRR1324314     3  0.5492     0.4604 0.328 0.000 0.640 0.032
#> SRR1092444     1  0.2412     0.8777 0.908 0.000 0.008 0.084
#> SRR1382553     3  0.6939     0.3364 0.332 0.000 0.540 0.128
#> SRR1075530     4  0.6907     0.7320 0.000 0.240 0.172 0.588
#> SRR1442612     3  0.1118     0.7136 0.000 0.000 0.964 0.036
#> SRR1360056     3  0.5152     0.6499 0.020 0.000 0.664 0.316
#> SRR1078164     1  0.2760     0.8665 0.872 0.000 0.000 0.128
#> SRR1434545     4  0.5345     0.5753 0.156 0.012 0.072 0.760
#> SRR1398251     1  0.3196     0.8585 0.856 0.000 0.008 0.136
#> SRR1375866     1  0.0817     0.9002 0.976 0.000 0.000 0.024
#> SRR1091645     4  0.5553     0.6628 0.000 0.176 0.100 0.724
#> SRR1416636     3  0.4193     0.6917 0.000 0.000 0.732 0.268
#> SRR1105441     3  0.2469     0.6772 0.000 0.000 0.892 0.108
#> SRR1082496     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.7009    -0.5247 0.000 0.116 0.444 0.440
#> SRR1093697     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.4250     0.6884 0.000 0.000 0.724 0.276
#> SRR1076120     1  0.6747     0.3752 0.528 0.000 0.100 0.372
#> SRR1074410     1  0.0336     0.9024 0.992 0.000 0.000 0.008
#> SRR1340345     4  0.6859     0.7233 0.000 0.256 0.156 0.588
#> SRR1069514     3  0.2345     0.6757 0.000 0.000 0.900 0.100
#> SRR1092636     3  0.3726     0.7073 0.000 0.000 0.788 0.212
#> SRR1365013     4  0.7433     0.6957 0.000 0.208 0.288 0.504
#> SRR1073069     1  0.3196     0.8585 0.856 0.000 0.008 0.136
#> SRR1443137     1  0.2814     0.8653 0.868 0.000 0.000 0.132
#> SRR1437143     2  0.0000     0.9039 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.2760     0.8665 0.872 0.000 0.000 0.128
#> SRR820234      2  0.0188     0.9009 0.000 0.996 0.000 0.004
#> SRR1338079     1  0.1022     0.8986 0.968 0.000 0.000 0.032
#> SRR1390094     3  0.4543     0.2823 0.000 0.000 0.676 0.324
#> SRR1340721     4  0.8579     0.6669 0.084 0.252 0.156 0.508
#> SRR1335964     3  0.3356     0.7107 0.000 0.000 0.824 0.176
#> SRR1086869     3  0.4331     0.6820 0.000 0.000 0.712 0.288
#> SRR1453434     1  0.1557     0.8991 0.944 0.000 0.000 0.056
#> SRR1402261     4  0.5007     0.5644 0.172 0.000 0.068 0.760
#> SRR657809      4  0.7388     0.6849 0.000 0.304 0.192 0.504
#> SRR1093075     1  0.2814     0.8653 0.868 0.000 0.000 0.132
#> SRR1433329     1  0.2868     0.8632 0.864 0.000 0.000 0.136
#> SRR1353418     3  0.5496     0.6371 0.036 0.000 0.652 0.312
#> SRR1092913     4  0.6859     0.7233 0.000 0.256 0.156 0.588

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0671    0.74761 0.980 0.000 0.000 0.016 0.004
#> SRR1335605     3  0.3898    0.53894 0.004 0.000 0.812 0.108 0.076
#> SRR1432014     3  0.1430    0.57791 0.000 0.000 0.944 0.004 0.052
#> SRR1499215     3  0.1124    0.58836 0.004 0.000 0.960 0.000 0.036
#> SRR1460409     1  0.2376    0.73056 0.904 0.000 0.000 0.044 0.052
#> SRR1086441     1  0.0162    0.74895 0.996 0.000 0.000 0.000 0.004
#> SRR1097344     4  0.4345    0.78021 0.000 0.072 0.060 0.808 0.060
#> SRR1081789     3  0.6553    0.08697 0.004 0.064 0.548 0.328 0.056
#> SRR1453005     2  0.5000    0.01249 0.000 0.500 0.008 0.476 0.016
#> SRR1366985     1  0.6367    0.34747 0.516 0.000 0.128 0.012 0.344
#> SRR815280      1  0.4475    0.61034 0.692 0.000 0.000 0.032 0.276
#> SRR1348531     1  0.2735    0.71425 0.880 0.000 0.000 0.036 0.084
#> SRR815845      3  0.1907    0.59883 0.000 0.000 0.928 0.044 0.028
#> SRR1471178     1  0.0000    0.74888 1.000 0.000 0.000 0.000 0.000
#> SRR1080696     3  0.5779    0.13644 0.000 0.000 0.508 0.092 0.400
#> SRR1078684     3  0.1116    0.59855 0.004 0.000 0.964 0.028 0.004
#> SRR1317751     3  0.5933    0.01890 0.000 0.000 0.452 0.104 0.444
#> SRR1435667     3  0.0510    0.59353 0.000 0.000 0.984 0.000 0.016
#> SRR1097905     1  0.3595    0.66717 0.816 0.000 0.000 0.044 0.140
#> SRR1456548     1  0.3366    0.67829 0.828 0.000 0.000 0.032 0.140
#> SRR1075126     1  0.2793    0.71069 0.876 0.000 0.000 0.036 0.088
#> SRR813108      2  0.6397    0.31495 0.000 0.540 0.312 0.132 0.016
#> SRR1479062     3  0.5752    0.16263 0.000 0.000 0.524 0.092 0.384
#> SRR1408703     3  0.5821    0.13200 0.000 0.000 0.504 0.096 0.400
#> SRR1332360     1  0.4356    0.57387 0.648 0.000 0.000 0.012 0.340
#> SRR1098686     1  0.2740    0.71251 0.876 0.000 0.000 0.028 0.096
#> SRR1434228     1  0.4507    0.56978 0.644 0.000 0.004 0.012 0.340
#> SRR1467149     5  0.6582    0.39499 0.280 0.000 0.004 0.220 0.496
#> SRR1399113     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.4468    0.78524 0.000 0.060 0.076 0.800 0.064
#> SRR1092468     3  0.7795   -0.05326 0.312 0.000 0.428 0.112 0.148
#> SRR1441804     1  0.2735    0.71425 0.880 0.000 0.000 0.036 0.084
#> SRR1326100     2  0.3608    0.72259 0.000 0.836 0.044 0.108 0.012
#> SRR1398815     1  0.1403    0.74309 0.952 0.000 0.000 0.024 0.024
#> SRR1436021     3  0.5673   -0.06184 0.000 0.020 0.512 0.428 0.040
#> SRR1480083     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.1638    0.72914 0.932 0.000 0.000 0.004 0.064
#> SRR815542      1  0.2676    0.71752 0.884 0.000 0.000 0.036 0.080
#> SRR1400100     3  0.2561    0.58662 0.000 0.000 0.884 0.096 0.020
#> SRR1312002     5  0.5952    0.31714 0.136 0.000 0.304 0.000 0.560
#> SRR1470253     5  0.5841    0.37729 0.084 0.000 0.236 0.032 0.648
#> SRR1414332     1  0.0798    0.74706 0.976 0.000 0.000 0.016 0.008
#> SRR1069209     1  0.4356    0.57387 0.648 0.000 0.000 0.012 0.340
#> SRR661052      1  0.3134    0.69450 0.848 0.000 0.000 0.032 0.120
#> SRR1308860     1  0.2628    0.71616 0.884 0.000 0.000 0.028 0.088
#> SRR1421159     3  0.5078    0.06814 0.000 0.008 0.564 0.404 0.024
#> SRR1340943     4  0.4452    0.60137 0.072 0.000 0.004 0.760 0.164
#> SRR1078855     1  0.4418    0.57908 0.652 0.000 0.000 0.016 0.332
#> SRR1459465     2  0.0162    0.86051 0.000 0.996 0.000 0.004 0.000
#> SRR816818      2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.2899    0.57431 0.004 0.000 0.872 0.096 0.028
#> SRR1350979     3  0.2522    0.54002 0.000 0.000 0.880 0.012 0.108
#> SRR1458198     1  0.6376   -0.09622 0.500 0.000 0.000 0.192 0.308
#> SRR1386910     3  0.6797   -0.12059 0.000 0.068 0.472 0.388 0.072
#> SRR1465375     4  0.5723    0.72900 0.004 0.076 0.168 0.700 0.052
#> SRR1323699     3  0.1202    0.59073 0.004 0.000 0.960 0.004 0.032
#> SRR1431139     3  0.1564    0.59791 0.004 0.000 0.948 0.024 0.024
#> SRR1373964     3  0.0510    0.59849 0.000 0.000 0.984 0.016 0.000
#> SRR1455413     5  0.6820    0.34844 0.416 0.000 0.068 0.072 0.444
#> SRR1437163     1  0.3506    0.67484 0.824 0.000 0.000 0.044 0.132
#> SRR1347343     3  0.0609    0.59248 0.000 0.000 0.980 0.000 0.020
#> SRR1465480     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.3366    0.67829 0.828 0.000 0.000 0.032 0.140
#> SRR1086514     4  0.5390    0.69734 0.000 0.108 0.180 0.696 0.016
#> SRR1430928     1  0.0000    0.74888 1.000 0.000 0.000 0.000 0.000
#> SRR1310939     3  0.5201    0.46635 0.000 0.000 0.684 0.188 0.128
#> SRR1344294     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0162    0.74895 0.996 0.000 0.000 0.000 0.004
#> SRR1468118     3  0.6162    0.01772 0.000 0.000 0.436 0.132 0.432
#> SRR1486348     1  0.0609    0.74687 0.980 0.000 0.000 0.000 0.020
#> SRR1488770     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0290    0.74923 0.992 0.000 0.000 0.000 0.008
#> SRR1456611     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.3146    0.71977 0.856 0.000 0.000 0.052 0.092
#> SRR1500089     5  0.6396    0.40859 0.376 0.000 0.000 0.172 0.452
#> SRR1441178     1  0.4890    0.57201 0.628 0.000 0.000 0.040 0.332
#> SRR1381396     1  0.1579    0.74200 0.944 0.000 0.000 0.024 0.032
#> SRR1096081     3  0.5929    0.05066 0.000 0.000 0.464 0.104 0.432
#> SRR1349809     2  0.8257   -0.17363 0.016 0.376 0.260 0.276 0.072
#> SRR1324314     3  0.5218    0.15970 0.296 0.000 0.632 0.000 0.072
#> SRR1092444     1  0.3692    0.68133 0.812 0.000 0.000 0.052 0.136
#> SRR1382553     3  0.6621   -0.00504 0.180 0.000 0.480 0.008 0.332
#> SRR1075530     4  0.3520    0.78014 0.000 0.076 0.080 0.840 0.004
#> SRR1442612     3  0.0510    0.59353 0.000 0.000 0.984 0.000 0.016
#> SRR1360056     5  0.5037    0.26982 0.008 0.000 0.320 0.036 0.636
#> SRR1078164     1  0.4921    0.56649 0.620 0.000 0.000 0.040 0.340
#> SRR1434545     4  0.4494    0.63468 0.048 0.000 0.020 0.768 0.164
#> SRR1398251     1  0.4639    0.55914 0.636 0.000 0.008 0.012 0.344
#> SRR1375866     1  0.1741    0.74097 0.936 0.000 0.000 0.024 0.040
#> SRR1091645     4  0.4146    0.77239 0.000 0.064 0.048 0.820 0.068
#> SRR1416636     3  0.5821    0.13200 0.000 0.000 0.504 0.096 0.400
#> SRR1105441     3  0.2505    0.58829 0.000 0.000 0.888 0.092 0.020
#> SRR1082496     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     3  0.4553    0.26792 0.000 0.004 0.652 0.328 0.016
#> SRR1093697     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     3  0.5803    0.09893 0.000 0.000 0.488 0.092 0.420
#> SRR1076120     5  0.6812    0.45201 0.324 0.000 0.012 0.200 0.464
#> SRR1074410     1  0.1661    0.74106 0.940 0.000 0.000 0.024 0.036
#> SRR1340345     4  0.3303    0.78228 0.000 0.076 0.076 0.848 0.000
#> SRR1069514     3  0.2707    0.57198 0.000 0.000 0.876 0.100 0.024
#> SRR1092636     3  0.5394    0.16718 0.000 0.000 0.540 0.060 0.400
#> SRR1365013     3  0.6308    0.04532 0.004 0.028 0.532 0.364 0.072
#> SRR1073069     1  0.4356    0.57387 0.648 0.000 0.000 0.012 0.340
#> SRR1443137     1  0.4491    0.57945 0.652 0.000 0.000 0.020 0.328
#> SRR1437143     2  0.0000    0.86230 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.4397    0.61186 0.696 0.000 0.000 0.028 0.276
#> SRR820234      2  0.1430    0.82501 0.000 0.944 0.000 0.052 0.004
#> SRR1338079     1  0.2951    0.70324 0.860 0.000 0.000 0.028 0.112
#> SRR1390094     3  0.4372    0.50601 0.004 0.000 0.776 0.100 0.120
#> SRR1340721     4  0.8657    0.35779 0.268 0.052 0.204 0.400 0.076
#> SRR1335964     3  0.4595    0.46427 0.000 0.000 0.740 0.088 0.172
#> SRR1086869     3  0.6162    0.01772 0.000 0.000 0.436 0.132 0.432
#> SRR1453434     1  0.4065    0.67581 0.772 0.000 0.000 0.048 0.180
#> SRR1402261     4  0.4452    0.60137 0.072 0.000 0.004 0.760 0.164
#> SRR657809      4  0.5590    0.70557 0.004 0.084 0.172 0.704 0.036
#> SRR1093075     1  0.4418    0.57908 0.652 0.000 0.000 0.016 0.332
#> SRR1433329     1  0.4508    0.57569 0.648 0.000 0.000 0.020 0.332
#> SRR1353418     5  0.5037    0.26982 0.008 0.000 0.320 0.036 0.636
#> SRR1092913     4  0.4148    0.78484 0.000 0.080 0.072 0.816 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.2865     0.7140 0.840 0.000 0.000 0.008 0.012 0.140
#> SRR1335605     3  0.3802     0.6450 0.024 0.000 0.824 0.040 0.024 0.088
#> SRR1432014     3  0.4005     0.6892 0.000 0.000 0.748 0.004 0.192 0.056
#> SRR1499215     3  0.3997     0.7116 0.000 0.000 0.760 0.000 0.132 0.108
#> SRR1460409     1  0.3452     0.7470 0.824 0.000 0.000 0.036 0.024 0.116
#> SRR1086441     1  0.2003     0.7483 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR1097344     4  0.2620     0.7600 0.000 0.008 0.068 0.888 0.024 0.012
#> SRR1081789     3  0.3899     0.5481 0.000 0.008 0.792 0.112 0.004 0.084
#> SRR1453005     4  0.6808     0.2616 0.000 0.352 0.120 0.436 0.004 0.088
#> SRR1366985     6  0.4648     0.7042 0.192 0.000 0.076 0.000 0.020 0.712
#> SRR815280      6  0.4440     0.7473 0.376 0.000 0.000 0.012 0.016 0.596
#> SRR1348531     1  0.2271     0.7569 0.908 0.000 0.000 0.024 0.036 0.032
#> SRR815845      3  0.2868     0.7214 0.000 0.000 0.852 0.032 0.112 0.004
#> SRR1471178     1  0.1957     0.7502 0.888 0.000 0.000 0.000 0.000 0.112
#> SRR1080696     5  0.1918     0.7552 0.000 0.000 0.088 0.008 0.904 0.000
#> SRR1078684     3  0.3031     0.7325 0.004 0.000 0.844 0.000 0.108 0.044
#> SRR1317751     5  0.1785     0.7666 0.000 0.000 0.048 0.008 0.928 0.016
#> SRR1435667     3  0.3566     0.7168 0.000 0.000 0.788 0.000 0.156 0.056
#> SRR1097905     1  0.1493     0.7555 0.936 0.000 0.004 0.004 0.000 0.056
#> SRR1456548     1  0.1364     0.7615 0.944 0.000 0.004 0.004 0.000 0.048
#> SRR1075126     1  0.2453     0.7366 0.896 0.000 0.000 0.044 0.016 0.044
#> SRR813108      3  0.5691     0.1851 0.000 0.376 0.524 0.044 0.004 0.052
#> SRR1479062     5  0.3299     0.7003 0.000 0.000 0.140 0.028 0.820 0.012
#> SRR1408703     5  0.1918     0.7552 0.000 0.000 0.088 0.008 0.904 0.000
#> SRR1332360     6  0.3482     0.8438 0.316 0.000 0.000 0.000 0.000 0.684
#> SRR1098686     1  0.0146     0.7769 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1434228     6  0.3809     0.8379 0.304 0.000 0.004 0.000 0.008 0.684
#> SRR1467149     5  0.7034     0.3117 0.332 0.000 0.008 0.156 0.424 0.080
#> SRR1399113     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.2468     0.7613 0.000 0.008 0.096 0.880 0.016 0.000
#> SRR1092468     1  0.6933     0.0771 0.472 0.000 0.336 0.044 0.064 0.084
#> SRR1441804     1  0.2042     0.7621 0.920 0.000 0.000 0.024 0.024 0.032
#> SRR1326100     2  0.5334     0.4660 0.000 0.636 0.260 0.036 0.004 0.064
#> SRR1398815     1  0.3771     0.6898 0.780 0.000 0.000 0.024 0.024 0.172
#> SRR1436021     3  0.3948     0.4718 0.000 0.000 0.748 0.188 0.000 0.064
#> SRR1480083     2  0.0146     0.9535 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1472863     1  0.2196     0.7671 0.884 0.000 0.004 0.004 0.000 0.108
#> SRR815542      1  0.1458     0.7697 0.948 0.000 0.000 0.016 0.016 0.020
#> SRR1400100     3  0.2645     0.7016 0.000 0.000 0.884 0.044 0.056 0.016
#> SRR1312002     6  0.6066    -0.0442 0.060 0.000 0.076 0.000 0.396 0.468
#> SRR1470253     5  0.3858     0.6402 0.000 0.000 0.012 0.020 0.740 0.228
#> SRR1414332     1  0.3095     0.7052 0.828 0.000 0.000 0.012 0.016 0.144
#> SRR1069209     6  0.3636     0.8432 0.320 0.000 0.000 0.000 0.004 0.676
#> SRR661052      1  0.1542     0.7736 0.936 0.000 0.004 0.008 0.000 0.052
#> SRR1308860     1  0.0260     0.7765 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1421159     3  0.2983     0.5751 0.000 0.000 0.832 0.136 0.000 0.032
#> SRR1340943     4  0.4210     0.6291 0.064 0.000 0.008 0.796 0.060 0.072
#> SRR1078855     6  0.3636     0.8432 0.320 0.000 0.000 0.000 0.004 0.676
#> SRR1459465     2  0.1007     0.9366 0.000 0.968 0.004 0.008 0.004 0.016
#> SRR816818      2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.2393     0.7233 0.004 0.000 0.892 0.000 0.040 0.064
#> SRR1350979     3  0.4353     0.6350 0.000 0.000 0.696 0.004 0.244 0.056
#> SRR1458198     1  0.6897     0.1407 0.492 0.000 0.004 0.172 0.240 0.092
#> SRR1386910     3  0.4830     0.4293 0.008 0.008 0.704 0.176 0.000 0.104
#> SRR1465375     4  0.4743     0.6846 0.000 0.008 0.248 0.668 0.000 0.076
#> SRR1323699     3  0.3992     0.7122 0.000 0.000 0.760 0.000 0.136 0.104
#> SRR1431139     3  0.3322     0.7329 0.012 0.000 0.832 0.000 0.104 0.052
#> SRR1373964     3  0.3295     0.7295 0.000 0.000 0.816 0.000 0.128 0.056
#> SRR1455413     5  0.5841     0.1535 0.444 0.000 0.012 0.044 0.456 0.044
#> SRR1437163     1  0.1429     0.7582 0.940 0.000 0.004 0.004 0.000 0.052
#> SRR1347343     3  0.3736     0.7122 0.000 0.000 0.776 0.000 0.156 0.068
#> SRR1465480     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.1226     0.7645 0.952 0.000 0.004 0.004 0.000 0.040
#> SRR1086514     4  0.5228     0.5465 0.000 0.012 0.360 0.556 0.000 0.072
#> SRR1430928     1  0.2048     0.7449 0.880 0.000 0.000 0.000 0.000 0.120
#> SRR1310939     3  0.7319     0.3796 0.032 0.000 0.468 0.144 0.268 0.088
#> SRR1344294     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.2562     0.6994 0.828 0.000 0.000 0.000 0.000 0.172
#> SRR1468118     5  0.1801     0.7653 0.000 0.000 0.056 0.016 0.924 0.004
#> SRR1486348     1  0.2006     0.7582 0.892 0.000 0.000 0.004 0.000 0.104
#> SRR1488770     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1663     0.7654 0.912 0.000 0.000 0.000 0.000 0.088
#> SRR1456611     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.3631     0.7326 0.820 0.000 0.000 0.040 0.040 0.100
#> SRR1500089     5  0.6933     0.3512 0.308 0.000 0.004 0.144 0.452 0.092
#> SRR1441178     6  0.4499     0.7817 0.284 0.000 0.000 0.024 0.024 0.668
#> SRR1381396     1  0.3945     0.6842 0.764 0.000 0.000 0.028 0.024 0.184
#> SRR1096081     5  0.1887     0.7664 0.000 0.000 0.048 0.012 0.924 0.016
#> SRR1349809     3  0.7273     0.0346 0.024 0.264 0.472 0.132 0.000 0.108
#> SRR1324314     3  0.7190     0.1769 0.352 0.000 0.364 0.000 0.128 0.156
#> SRR1092444     1  0.4624     0.6725 0.748 0.000 0.000 0.048 0.104 0.100
#> SRR1382553     6  0.4810     0.3799 0.056 0.000 0.260 0.000 0.020 0.664
#> SRR1075530     4  0.4625     0.7205 0.000 0.012 0.224 0.700 0.004 0.060
#> SRR1442612     3  0.3566     0.7168 0.000 0.000 0.788 0.000 0.156 0.056
#> SRR1360056     5  0.2730     0.6993 0.000 0.000 0.012 0.000 0.836 0.152
#> SRR1078164     6  0.4712     0.7705 0.284 0.000 0.000 0.032 0.028 0.656
#> SRR1434545     4  0.4193     0.6370 0.056 0.000 0.012 0.800 0.060 0.072
#> SRR1398251     6  0.3772     0.8324 0.296 0.000 0.004 0.000 0.008 0.692
#> SRR1375866     1  0.4184     0.6688 0.744 0.000 0.000 0.032 0.028 0.196
#> SRR1091645     4  0.2706     0.7584 0.000 0.008 0.068 0.880 0.040 0.004
#> SRR1416636     5  0.1918     0.7552 0.000 0.000 0.088 0.008 0.904 0.000
#> SRR1105441     3  0.2134     0.7053 0.000 0.000 0.904 0.044 0.052 0.000
#> SRR1082496     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     3  0.3621     0.5855 0.000 0.000 0.804 0.124 0.008 0.064
#> SRR1093697     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.1531     0.7641 0.000 0.000 0.068 0.000 0.928 0.004
#> SRR1076120     5  0.7086     0.3192 0.304 0.000 0.004 0.172 0.428 0.092
#> SRR1074410     1  0.4017     0.6827 0.760 0.000 0.000 0.032 0.024 0.184
#> SRR1340345     4  0.4404     0.7366 0.000 0.012 0.192 0.732 0.004 0.060
#> SRR1069514     3  0.1777     0.7185 0.000 0.000 0.928 0.004 0.024 0.044
#> SRR1092636     5  0.1858     0.7527 0.000 0.000 0.092 0.000 0.904 0.004
#> SRR1365013     3  0.4520     0.4578 0.004 0.004 0.724 0.164 0.000 0.104
#> SRR1073069     6  0.3482     0.8438 0.316 0.000 0.000 0.000 0.000 0.684
#> SRR1443137     6  0.3499     0.8433 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1437143     2  0.0000     0.9555 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     6  0.4286     0.7944 0.352 0.000 0.000 0.012 0.012 0.624
#> SRR820234      2  0.2339     0.8864 0.000 0.908 0.036 0.024 0.004 0.028
#> SRR1338079     1  0.1615     0.7745 0.928 0.000 0.004 0.004 0.000 0.064
#> SRR1390094     3  0.4715     0.6872 0.016 0.000 0.760 0.108 0.052 0.064
#> SRR1340721     1  0.6482     0.2355 0.552 0.004 0.236 0.100 0.000 0.108
#> SRR1335964     3  0.4623     0.3179 0.000 0.000 0.540 0.016 0.428 0.016
#> SRR1086869     5  0.1801     0.7653 0.000 0.000 0.056 0.016 0.924 0.004
#> SRR1453434     1  0.5198     0.4432 0.656 0.000 0.000 0.092 0.028 0.224
#> SRR1402261     4  0.4210     0.6291 0.064 0.000 0.008 0.796 0.060 0.072
#> SRR657809      4  0.5259     0.6322 0.000 0.012 0.300 0.596 0.000 0.092
#> SRR1093075     6  0.3636     0.8432 0.320 0.000 0.000 0.000 0.004 0.676
#> SRR1433329     6  0.3499     0.8433 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1353418     5  0.2768     0.6991 0.000 0.000 0.012 0.000 0.832 0.156
#> SRR1092913     4  0.3190     0.7613 0.000 0.012 0.116 0.840 0.004 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.956       0.983         0.4975 0.504   0.504
#> 3 3 0.838           0.895       0.950         0.3235 0.769   0.571
#> 4 4 0.738           0.720       0.868         0.1105 0.877   0.663
#> 5 5 0.761           0.745       0.841         0.0721 0.907   0.672
#> 6 6 0.826           0.726       0.870         0.0488 0.926   0.675

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.980 1.000 0.000
#> SRR1335605     2  0.0000      0.985 0.000 1.000
#> SRR1432014     2  0.0000      0.985 0.000 1.000
#> SRR1499215     2  0.0672      0.978 0.008 0.992
#> SRR1460409     1  0.0000      0.980 1.000 0.000
#> SRR1086441     1  0.0000      0.980 1.000 0.000
#> SRR1097344     2  0.0000      0.985 0.000 1.000
#> SRR1081789     2  0.0000      0.985 0.000 1.000
#> SRR1453005     2  0.0000      0.985 0.000 1.000
#> SRR1366985     1  0.0000      0.980 1.000 0.000
#> SRR815280      1  0.0000      0.980 1.000 0.000
#> SRR1348531     1  0.0000      0.980 1.000 0.000
#> SRR815845      2  0.0000      0.985 0.000 1.000
#> SRR1471178     1  0.0000      0.980 1.000 0.000
#> SRR1080696     1  0.9732      0.329 0.596 0.404
#> SRR1078684     2  0.0000      0.985 0.000 1.000
#> SRR1317751     1  0.0672      0.973 0.992 0.008
#> SRR1435667     2  0.0000      0.985 0.000 1.000
#> SRR1097905     1  0.0000      0.980 1.000 0.000
#> SRR1456548     1  0.0000      0.980 1.000 0.000
#> SRR1075126     1  0.0000      0.980 1.000 0.000
#> SRR813108      2  0.0000      0.985 0.000 1.000
#> SRR1479062     2  0.0000      0.985 0.000 1.000
#> SRR1408703     1  0.9710      0.339 0.600 0.400
#> SRR1332360     1  0.0000      0.980 1.000 0.000
#> SRR1098686     1  0.0000      0.980 1.000 0.000
#> SRR1434228     1  0.0000      0.980 1.000 0.000
#> SRR1467149     1  0.0000      0.980 1.000 0.000
#> SRR1399113     2  0.0000      0.985 0.000 1.000
#> SRR1476507     2  0.0000      0.985 0.000 1.000
#> SRR1092468     1  0.0000      0.980 1.000 0.000
#> SRR1441804     1  0.0000      0.980 1.000 0.000
#> SRR1326100     2  0.0000      0.985 0.000 1.000
#> SRR1398815     1  0.0000      0.980 1.000 0.000
#> SRR1436021     2  0.0000      0.985 0.000 1.000
#> SRR1480083     2  0.0000      0.985 0.000 1.000
#> SRR1472863     1  0.0000      0.980 1.000 0.000
#> SRR815542      1  0.0000      0.980 1.000 0.000
#> SRR1400100     2  0.0000      0.985 0.000 1.000
#> SRR1312002     1  0.0000      0.980 1.000 0.000
#> SRR1470253     1  0.0000      0.980 1.000 0.000
#> SRR1414332     1  0.0000      0.980 1.000 0.000
#> SRR1069209     1  0.0000      0.980 1.000 0.000
#> SRR661052      1  0.0000      0.980 1.000 0.000
#> SRR1308860     1  0.0000      0.980 1.000 0.000
#> SRR1421159     2  0.0000      0.985 0.000 1.000
#> SRR1340943     1  0.0376      0.976 0.996 0.004
#> SRR1078855     1  0.0000      0.980 1.000 0.000
#> SRR1459465     2  0.0000      0.985 0.000 1.000
#> SRR816818      2  0.0000      0.985 0.000 1.000
#> SRR1478679     2  0.0000      0.985 0.000 1.000
#> SRR1350979     2  0.0000      0.985 0.000 1.000
#> SRR1458198     1  0.0000      0.980 1.000 0.000
#> SRR1386910     2  0.0000      0.985 0.000 1.000
#> SRR1465375     2  0.0000      0.985 0.000 1.000
#> SRR1323699     2  0.7219      0.748 0.200 0.800
#> SRR1431139     1  0.9795      0.291 0.584 0.416
#> SRR1373964     2  0.0000      0.985 0.000 1.000
#> SRR1455413     1  0.0000      0.980 1.000 0.000
#> SRR1437163     1  0.0000      0.980 1.000 0.000
#> SRR1347343     2  0.0000      0.985 0.000 1.000
#> SRR1465480     2  0.0000      0.985 0.000 1.000
#> SRR1489631     1  0.0000      0.980 1.000 0.000
#> SRR1086514     2  0.0000      0.985 0.000 1.000
#> SRR1430928     1  0.0000      0.980 1.000 0.000
#> SRR1310939     2  0.7056      0.759 0.192 0.808
#> SRR1344294     2  0.0000      0.985 0.000 1.000
#> SRR1099402     1  0.0000      0.980 1.000 0.000
#> SRR1468118     1  0.0672      0.973 0.992 0.008
#> SRR1486348     1  0.0000      0.980 1.000 0.000
#> SRR1488770     2  0.0000      0.985 0.000 1.000
#> SRR1083732     1  0.0000      0.980 1.000 0.000
#> SRR1456611     2  0.0000      0.985 0.000 1.000
#> SRR1080318     1  0.0000      0.980 1.000 0.000
#> SRR1500089     1  0.0000      0.980 1.000 0.000
#> SRR1441178     1  0.0000      0.980 1.000 0.000
#> SRR1381396     1  0.0000      0.980 1.000 0.000
#> SRR1096081     1  0.0672      0.973 0.992 0.008
#> SRR1349809     2  0.0000      0.985 0.000 1.000
#> SRR1324314     1  0.0000      0.980 1.000 0.000
#> SRR1092444     1  0.0000      0.980 1.000 0.000
#> SRR1382553     1  0.0000      0.980 1.000 0.000
#> SRR1075530     2  0.0000      0.985 0.000 1.000
#> SRR1442612     2  0.0000      0.985 0.000 1.000
#> SRR1360056     1  0.0000      0.980 1.000 0.000
#> SRR1078164     1  0.0000      0.980 1.000 0.000
#> SRR1434545     2  0.9129      0.503 0.328 0.672
#> SRR1398251     1  0.0000      0.980 1.000 0.000
#> SRR1375866     1  0.0000      0.980 1.000 0.000
#> SRR1091645     2  0.0000      0.985 0.000 1.000
#> SRR1416636     1  0.2778      0.934 0.952 0.048
#> SRR1105441     2  0.0000      0.985 0.000 1.000
#> SRR1082496     2  0.0000      0.985 0.000 1.000
#> SRR1315353     2  0.0000      0.985 0.000 1.000
#> SRR1093697     2  0.0000      0.985 0.000 1.000
#> SRR1077429     1  0.0000      0.980 1.000 0.000
#> SRR1076120     1  0.0000      0.980 1.000 0.000
#> SRR1074410     1  0.0000      0.980 1.000 0.000
#> SRR1340345     2  0.0000      0.985 0.000 1.000
#> SRR1069514     2  0.0000      0.985 0.000 1.000
#> SRR1092636     1  0.0000      0.980 1.000 0.000
#> SRR1365013     2  0.0000      0.985 0.000 1.000
#> SRR1073069     1  0.0000      0.980 1.000 0.000
#> SRR1443137     1  0.0000      0.980 1.000 0.000
#> SRR1437143     2  0.0000      0.985 0.000 1.000
#> SRR1091990     1  0.0000      0.980 1.000 0.000
#> SRR820234      2  0.0000      0.985 0.000 1.000
#> SRR1338079     1  0.0000      0.980 1.000 0.000
#> SRR1390094     2  0.0000      0.985 0.000 1.000
#> SRR1340721     2  0.0672      0.978 0.008 0.992
#> SRR1335964     2  0.1184      0.970 0.016 0.984
#> SRR1086869     1  0.0672      0.973 0.992 0.008
#> SRR1453434     1  0.0000      0.980 1.000 0.000
#> SRR1402261     1  0.0000      0.980 1.000 0.000
#> SRR657809      2  0.0000      0.985 0.000 1.000
#> SRR1093075     1  0.0000      0.980 1.000 0.000
#> SRR1433329     1  0.0000      0.980 1.000 0.000
#> SRR1353418     1  0.0000      0.980 1.000 0.000
#> SRR1092913     2  0.0000      0.985 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.966 1.000 0.000 0.000
#> SRR1335605     2  0.1411      0.929 0.000 0.964 0.036
#> SRR1432014     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1499215     3  0.5663      0.803 0.096 0.096 0.808
#> SRR1460409     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1086441     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1097344     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1081789     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1453005     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1366985     3  0.5785      0.584 0.332 0.000 0.668
#> SRR815280      1  0.0000      0.966 1.000 0.000 0.000
#> SRR1348531     1  0.0000      0.966 1.000 0.000 0.000
#> SRR815845      3  0.5706      0.586 0.000 0.320 0.680
#> SRR1471178     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1080696     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1078684     3  0.4555      0.756 0.000 0.200 0.800
#> SRR1317751     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1435667     3  0.4452      0.764 0.000 0.192 0.808
#> SRR1097905     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1456548     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1075126     1  0.0000      0.966 1.000 0.000 0.000
#> SRR813108      2  0.0000      0.961 0.000 1.000 0.000
#> SRR1479062     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1408703     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1332360     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1098686     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1434228     1  0.2165      0.907 0.936 0.000 0.064
#> SRR1467149     1  0.4452      0.788 0.808 0.000 0.192
#> SRR1399113     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1476507     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1092468     1  0.0747      0.954 0.984 0.000 0.016
#> SRR1441804     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1326100     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1398815     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1436021     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1480083     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1472863     1  0.0000      0.966 1.000 0.000 0.000
#> SRR815542      1  0.0000      0.966 1.000 0.000 0.000
#> SRR1400100     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1312002     3  0.4555      0.761 0.200 0.000 0.800
#> SRR1470253     3  0.1163      0.876 0.028 0.000 0.972
#> SRR1414332     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1069209     1  0.0000      0.966 1.000 0.000 0.000
#> SRR661052      1  0.0000      0.966 1.000 0.000 0.000
#> SRR1308860     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1421159     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1340943     1  0.5167      0.773 0.792 0.016 0.192
#> SRR1078855     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1459465     2  0.0000      0.961 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.961 0.000 1.000 0.000
#> SRR1478679     3  0.5926      0.523 0.000 0.356 0.644
#> SRR1350979     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1458198     1  0.4452      0.788 0.808 0.000 0.192
#> SRR1386910     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1465375     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1323699     3  0.4399      0.773 0.188 0.000 0.812
#> SRR1431139     3  0.0592      0.882 0.012 0.000 0.988
#> SRR1373964     3  0.4452      0.764 0.000 0.192 0.808
#> SRR1455413     1  0.4452      0.788 0.808 0.000 0.192
#> SRR1437163     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1347343     3  0.3551      0.817 0.000 0.132 0.868
#> SRR1465480     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1489631     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1086514     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1430928     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1310939     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1344294     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1468118     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1486348     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1083732     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1456611     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1080318     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1500089     1  0.4452      0.788 0.808 0.000 0.192
#> SRR1441178     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1381396     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1096081     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1349809     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1324314     3  0.5905      0.546 0.352 0.000 0.648
#> SRR1092444     1  0.0237      0.963 0.996 0.000 0.004
#> SRR1382553     3  0.5785      0.584 0.332 0.000 0.668
#> SRR1075530     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1442612     3  0.3551      0.817 0.000 0.132 0.868
#> SRR1360056     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1078164     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1434545     2  0.4452      0.749 0.000 0.808 0.192
#> SRR1398251     1  0.2796      0.877 0.908 0.000 0.092
#> SRR1375866     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1091645     2  0.4452      0.749 0.000 0.808 0.192
#> SRR1416636     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1105441     2  0.6154      0.191 0.000 0.592 0.408
#> SRR1082496     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1315353     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1093697     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1077429     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1076120     1  0.4452      0.788 0.808 0.000 0.192
#> SRR1074410     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1340345     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1069514     2  0.0237      0.958 0.000 0.996 0.004
#> SRR1092636     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1365013     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1073069     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1443137     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1437143     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1091990     1  0.0000      0.966 1.000 0.000 0.000
#> SRR820234      2  0.0000      0.961 0.000 1.000 0.000
#> SRR1338079     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1390094     2  0.6140      0.374 0.000 0.596 0.404
#> SRR1340721     2  0.1753      0.909 0.048 0.952 0.000
#> SRR1335964     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1086869     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1453434     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1402261     1  0.5167      0.773 0.792 0.016 0.192
#> SRR657809      2  0.0000      0.961 0.000 1.000 0.000
#> SRR1093075     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1433329     1  0.0000      0.966 1.000 0.000 0.000
#> SRR1353418     3  0.0000      0.886 0.000 0.000 1.000
#> SRR1092913     2  0.0000      0.961 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1335605     2  0.1389    0.91602 0.000 0.952 0.048 0.000
#> SRR1432014     3  0.0336    0.63030 0.000 0.000 0.992 0.008
#> SRR1499215     3  0.1474    0.61877 0.000 0.000 0.948 0.052
#> SRR1460409     1  0.2408    0.89870 0.896 0.000 0.000 0.104
#> SRR1086441     1  0.2149    0.90457 0.912 0.000 0.000 0.088
#> SRR1097344     2  0.4134    0.67943 0.000 0.740 0.000 0.260
#> SRR1081789     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1453005     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1366985     3  0.5218    0.47610 0.200 0.000 0.736 0.064
#> SRR815280      1  0.0672    0.91781 0.984 0.000 0.008 0.008
#> SRR1348531     1  0.2530    0.89453 0.888 0.000 0.000 0.112
#> SRR815845      3  0.4967    0.15149 0.000 0.452 0.548 0.000
#> SRR1471178     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.4941   -0.10117 0.000 0.000 0.564 0.436
#> SRR1078684     3  0.1716    0.61846 0.000 0.064 0.936 0.000
#> SRR1317751     4  0.4817    0.45889 0.000 0.000 0.388 0.612
#> SRR1435667     3  0.0592    0.63352 0.000 0.016 0.984 0.000
#> SRR1097905     1  0.2530    0.89453 0.888 0.000 0.000 0.112
#> SRR1456548     1  0.2530    0.89453 0.888 0.000 0.000 0.112
#> SRR1075126     1  0.1022    0.91883 0.968 0.000 0.000 0.032
#> SRR813108      2  0.1792    0.89222 0.000 0.932 0.068 0.000
#> SRR1479062     4  0.4790    0.46789 0.000 0.000 0.380 0.620
#> SRR1408703     4  0.4998    0.25123 0.000 0.000 0.488 0.512
#> SRR1332360     1  0.2300    0.88977 0.920 0.000 0.016 0.064
#> SRR1098686     1  0.2345    0.90062 0.900 0.000 0.000 0.100
#> SRR1434228     1  0.4663    0.74955 0.788 0.000 0.148 0.064
#> SRR1467149     4  0.1716    0.58770 0.064 0.000 0.000 0.936
#> SRR1399113     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1476507     2  0.4500    0.58694 0.000 0.684 0.000 0.316
#> SRR1092468     4  0.5600    0.17031 0.376 0.000 0.028 0.596
#> SRR1441804     1  0.2530    0.89453 0.888 0.000 0.000 0.112
#> SRR1326100     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1436021     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1480083     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR815542      1  0.2469    0.89676 0.892 0.000 0.000 0.108
#> SRR1400100     2  0.0188    0.94664 0.000 0.996 0.004 0.000
#> SRR1312002     3  0.7200    0.26497 0.220 0.000 0.552 0.228
#> SRR1470253     4  0.7697    0.08363 0.240 0.000 0.316 0.444
#> SRR1414332     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.2300    0.88977 0.920 0.000 0.016 0.064
#> SRR661052      1  0.2281    0.90201 0.904 0.000 0.000 0.096
#> SRR1308860     1  0.2408    0.89870 0.896 0.000 0.000 0.104
#> SRR1421159     2  0.1716    0.89633 0.000 0.936 0.064 0.000
#> SRR1340943     4  0.4419    0.53797 0.084 0.104 0.000 0.812
#> SRR1078855     1  0.2300    0.88977 0.920 0.000 0.016 0.064
#> SRR1459465     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.3356    0.53699 0.000 0.176 0.824 0.000
#> SRR1350979     3  0.0592    0.62618 0.000 0.000 0.984 0.016
#> SRR1458198     4  0.3219    0.52792 0.164 0.000 0.000 0.836
#> SRR1386910     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1465375     2  0.1557    0.91440 0.000 0.944 0.000 0.056
#> SRR1323699     3  0.0469    0.63207 0.000 0.000 0.988 0.012
#> SRR1431139     3  0.1452    0.62272 0.008 0.000 0.956 0.036
#> SRR1373964     3  0.0921    0.63251 0.000 0.028 0.972 0.000
#> SRR1455413     4  0.2921    0.55858 0.140 0.000 0.000 0.860
#> SRR1437163     1  0.2408    0.89870 0.896 0.000 0.000 0.104
#> SRR1347343     3  0.0000    0.63227 0.000 0.000 1.000 0.000
#> SRR1465480     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.2530    0.89453 0.888 0.000 0.000 0.112
#> SRR1086514     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1430928     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1310939     4  0.3266    0.55520 0.000 0.000 0.168 0.832
#> SRR1344294     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0188    0.92037 0.996 0.000 0.000 0.004
#> SRR1468118     4  0.4564    0.50974 0.000 0.000 0.328 0.672
#> SRR1486348     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.2469    0.89714 0.892 0.000 0.000 0.108
#> SRR1500089     4  0.1716    0.58770 0.064 0.000 0.000 0.936
#> SRR1441178     1  0.2142    0.89436 0.928 0.000 0.016 0.056
#> SRR1381396     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1096081     4  0.4830    0.45344 0.000 0.000 0.392 0.608
#> SRR1349809     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1324314     3  0.6919    0.21927 0.368 0.000 0.516 0.116
#> SRR1092444     1  0.2973    0.86910 0.856 0.000 0.000 0.144
#> SRR1382553     3  0.5062    0.49031 0.184 0.000 0.752 0.064
#> SRR1075530     2  0.1716    0.90882 0.000 0.936 0.000 0.064
#> SRR1442612     3  0.0592    0.63352 0.000 0.016 0.984 0.000
#> SRR1360056     3  0.4985   -0.00947 0.000 0.000 0.532 0.468
#> SRR1078164     1  0.1938    0.89829 0.936 0.000 0.012 0.052
#> SRR1434545     4  0.3982    0.45943 0.004 0.220 0.000 0.776
#> SRR1398251     1  0.4711    0.74426 0.784 0.000 0.152 0.064
#> SRR1375866     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1091645     4  0.4624    0.35245 0.000 0.340 0.000 0.660
#> SRR1416636     4  0.4996    0.26173 0.000 0.000 0.484 0.516
#> SRR1105441     2  0.4967    0.09540 0.000 0.548 0.452 0.000
#> SRR1082496     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1315353     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1093697     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1077429     4  0.4830    0.45344 0.000 0.000 0.392 0.608
#> SRR1076120     4  0.1637    0.58773 0.060 0.000 0.000 0.940
#> SRR1074410     1  0.0000    0.92122 1.000 0.000 0.000 0.000
#> SRR1340345     2  0.1940    0.89901 0.000 0.924 0.000 0.076
#> SRR1069514     3  0.4992    0.01523 0.000 0.476 0.524 0.000
#> SRR1092636     3  0.4948   -0.11312 0.000 0.000 0.560 0.440
#> SRR1365013     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1073069     1  0.2623    0.88207 0.908 0.000 0.028 0.064
#> SRR1443137     1  0.2300    0.88977 0.920 0.000 0.016 0.064
#> SRR1437143     2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.1118    0.91008 0.964 0.000 0.000 0.036
#> SRR820234      2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.2345    0.90044 0.900 0.000 0.000 0.100
#> SRR1390094     3  0.7300    0.16549 0.000 0.180 0.516 0.304
#> SRR1340721     2  0.0817    0.92959 0.024 0.976 0.000 0.000
#> SRR1335964     4  0.4790    0.46023 0.000 0.000 0.380 0.620
#> SRR1086869     4  0.4564    0.50974 0.000 0.000 0.328 0.672
#> SRR1453434     1  0.3751    0.82073 0.800 0.000 0.004 0.196
#> SRR1402261     4  0.4419    0.53797 0.084 0.104 0.000 0.812
#> SRR657809      2  0.0000    0.94912 0.000 1.000 0.000 0.000
#> SRR1093075     1  0.2300    0.88977 0.920 0.000 0.016 0.064
#> SRR1433329     1  0.2300    0.88977 0.920 0.000 0.016 0.064
#> SRR1353418     3  0.4977    0.00421 0.000 0.000 0.540 0.460
#> SRR1092913     2  0.2469    0.87007 0.000 0.892 0.000 0.108

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1335605     2  0.2450      0.825 0.000 0.900 0.048 0.000 0.052
#> SRR1432014     3  0.0290      0.803 0.000 0.000 0.992 0.000 0.008
#> SRR1499215     3  0.3266      0.679 0.000 0.004 0.796 0.200 0.000
#> SRR1460409     1  0.0771      0.930 0.976 0.000 0.000 0.020 0.004
#> SRR1086441     1  0.0162      0.940 0.996 0.000 0.000 0.004 0.000
#> SRR1097344     2  0.6581      0.345 0.000 0.520 0.008 0.220 0.252
#> SRR1081789     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1453005     2  0.0162      0.895 0.000 0.996 0.004 0.000 0.000
#> SRR1366985     4  0.4275      0.506 0.020 0.000 0.284 0.696 0.000
#> SRR815280      1  0.3366      0.608 0.768 0.000 0.000 0.232 0.000
#> SRR1348531     1  0.0404      0.937 0.988 0.000 0.000 0.012 0.000
#> SRR815845      3  0.4823      0.506 0.000 0.316 0.644 0.000 0.040
#> SRR1471178     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1080696     5  0.4278      0.298 0.000 0.000 0.452 0.000 0.548
#> SRR1078684     3  0.1121      0.813 0.000 0.044 0.956 0.000 0.000
#> SRR1317751     5  0.3438      0.626 0.000 0.000 0.172 0.020 0.808
#> SRR1435667     3  0.0880      0.815 0.000 0.032 0.968 0.000 0.000
#> SRR1097905     1  0.0290      0.936 0.992 0.000 0.000 0.008 0.000
#> SRR1456548     1  0.0162      0.938 0.996 0.000 0.000 0.004 0.000
#> SRR1075126     1  0.3012      0.812 0.852 0.000 0.000 0.124 0.024
#> SRR813108      2  0.3857      0.471 0.000 0.688 0.312 0.000 0.000
#> SRR1479062     5  0.3274      0.605 0.000 0.000 0.220 0.000 0.780
#> SRR1408703     5  0.4126      0.433 0.000 0.000 0.380 0.000 0.620
#> SRR1332360     4  0.3774      0.785 0.296 0.000 0.000 0.704 0.000
#> SRR1098686     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000
#> SRR1434228     4  0.3906      0.786 0.292 0.000 0.004 0.704 0.000
#> SRR1467149     5  0.3659      0.640 0.012 0.000 0.000 0.220 0.768
#> SRR1399113     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     2  0.6868      0.164 0.000 0.444 0.008 0.244 0.304
#> SRR1092468     5  0.7247      0.424 0.228 0.000 0.032 0.292 0.448
#> SRR1441804     1  0.0290      0.936 0.992 0.000 0.000 0.008 0.000
#> SRR1326100     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1398815     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1436021     2  0.1557      0.869 0.000 0.940 0.008 0.052 0.000
#> SRR1480083     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR815542      1  0.0566      0.934 0.984 0.000 0.000 0.012 0.004
#> SRR1400100     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1312002     4  0.5204      0.634 0.080 0.000 0.008 0.684 0.228
#> SRR1470253     4  0.4418      0.481 0.000 0.000 0.016 0.652 0.332
#> SRR1414332     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1069209     4  0.3774      0.785 0.296 0.000 0.000 0.704 0.000
#> SRR661052      1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000
#> SRR1308860     1  0.0162      0.938 0.996 0.000 0.000 0.004 0.000
#> SRR1421159     2  0.4866      0.370 0.000 0.620 0.344 0.036 0.000
#> SRR1340943     5  0.4892      0.598 0.032 0.000 0.008 0.304 0.656
#> SRR1078855     4  0.3752      0.786 0.292 0.000 0.000 0.708 0.000
#> SRR1459465     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.2843      0.752 0.000 0.144 0.848 0.008 0.000
#> SRR1350979     3  0.0290      0.803 0.000 0.000 0.992 0.000 0.008
#> SRR1458198     5  0.4276      0.628 0.032 0.000 0.000 0.244 0.724
#> SRR1386910     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1465375     2  0.3601      0.786 0.000 0.824 0.008 0.136 0.032
#> SRR1323699     3  0.2583      0.746 0.000 0.004 0.864 0.132 0.000
#> SRR1431139     3  0.1949      0.774 0.012 0.000 0.932 0.016 0.040
#> SRR1373964     3  0.0880      0.815 0.000 0.032 0.968 0.000 0.000
#> SRR1455413     5  0.3194      0.602 0.148 0.000 0.000 0.020 0.832
#> SRR1437163     1  0.0162      0.938 0.996 0.000 0.000 0.004 0.000
#> SRR1347343     3  0.0451      0.808 0.000 0.004 0.988 0.008 0.000
#> SRR1465480     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.0162      0.938 0.996 0.000 0.000 0.004 0.000
#> SRR1086514     2  0.0451      0.892 0.000 0.988 0.004 0.008 0.000
#> SRR1430928     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1310939     5  0.5738      0.576 0.000 0.000 0.132 0.264 0.604
#> SRR1344294     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.2377      0.803 0.872 0.000 0.000 0.128 0.000
#> SRR1468118     5  0.2813      0.634 0.000 0.000 0.168 0.000 0.832
#> SRR1486348     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1488770     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1456611     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.0404      0.936 0.988 0.000 0.000 0.012 0.000
#> SRR1500089     5  0.3280      0.646 0.012 0.000 0.000 0.176 0.812
#> SRR1441178     4  0.4150      0.645 0.388 0.000 0.000 0.612 0.000
#> SRR1381396     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1096081     5  0.3476      0.625 0.000 0.000 0.176 0.020 0.804
#> SRR1349809     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1324314     4  0.5926      0.709 0.164 0.000 0.140 0.664 0.032
#> SRR1092444     1  0.1981      0.866 0.920 0.000 0.000 0.016 0.064
#> SRR1382553     4  0.3949      0.472 0.004 0.000 0.300 0.696 0.000
#> SRR1075530     2  0.4118      0.741 0.000 0.772 0.008 0.188 0.032
#> SRR1442612     3  0.0290      0.808 0.000 0.008 0.992 0.000 0.000
#> SRR1360056     4  0.4836      0.450 0.000 0.000 0.036 0.628 0.336
#> SRR1078164     4  0.4192      0.613 0.404 0.000 0.000 0.596 0.000
#> SRR1434545     5  0.5084      0.589 0.008 0.028 0.008 0.304 0.652
#> SRR1398251     4  0.3906      0.786 0.292 0.000 0.004 0.704 0.000
#> SRR1375866     1  0.0404      0.937 0.988 0.000 0.000 0.012 0.000
#> SRR1091645     5  0.5613      0.562 0.000 0.096 0.012 0.244 0.648
#> SRR1416636     5  0.4045      0.468 0.000 0.000 0.356 0.000 0.644
#> SRR1105441     3  0.3999      0.510 0.000 0.344 0.656 0.000 0.000
#> SRR1082496     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     2  0.1851      0.823 0.000 0.912 0.088 0.000 0.000
#> SRR1093697     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.3109      0.619 0.000 0.000 0.200 0.000 0.800
#> SRR1076120     5  0.3835      0.633 0.012 0.000 0.000 0.244 0.744
#> SRR1074410     1  0.0290      0.939 0.992 0.000 0.000 0.008 0.000
#> SRR1340345     2  0.4412      0.726 0.000 0.756 0.008 0.188 0.048
#> SRR1069514     3  0.2732      0.740 0.000 0.160 0.840 0.000 0.000
#> SRR1092636     5  0.4268      0.317 0.000 0.000 0.444 0.000 0.556
#> SRR1365013     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1073069     4  0.3774      0.785 0.296 0.000 0.000 0.704 0.000
#> SRR1443137     4  0.3774      0.785 0.296 0.000 0.000 0.704 0.000
#> SRR1437143     2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.3242      0.645 0.784 0.000 0.000 0.216 0.000
#> SRR820234      2  0.0000      0.896 0.000 1.000 0.000 0.000 0.000
#> SRR1338079     1  0.0000      0.939 1.000 0.000 0.000 0.000 0.000
#> SRR1390094     3  0.5564      0.437 0.000 0.008 0.656 0.112 0.224
#> SRR1340721     2  0.2074      0.803 0.104 0.896 0.000 0.000 0.000
#> SRR1335964     5  0.4781      0.371 0.000 0.000 0.428 0.020 0.552
#> SRR1086869     5  0.2813      0.634 0.000 0.000 0.168 0.000 0.832
#> SRR1453434     1  0.6284      0.138 0.508 0.000 0.000 0.320 0.172
#> SRR1402261     5  0.4892      0.598 0.032 0.000 0.008 0.304 0.656
#> SRR657809      2  0.0566      0.890 0.000 0.984 0.004 0.012 0.000
#> SRR1093075     4  0.3752      0.786 0.292 0.000 0.000 0.708 0.000
#> SRR1433329     4  0.3774      0.785 0.296 0.000 0.000 0.704 0.000
#> SRR1353418     4  0.5037      0.433 0.000 0.000 0.048 0.616 0.336
#> SRR1092913     2  0.5191      0.658 0.000 0.700 0.008 0.192 0.100

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1387     0.9033 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1335605     2  0.3562     0.6783 0.004 0.784 0.036 0.000 0.176 0.000
#> SRR1432014     3  0.0790     0.8491 0.000 0.000 0.968 0.000 0.032 0.000
#> SRR1499215     3  0.2260     0.7784 0.000 0.000 0.860 0.000 0.000 0.140
#> SRR1460409     1  0.3558     0.8515 0.828 0.000 0.004 0.056 0.020 0.092
#> SRR1086441     1  0.1267     0.9051 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1097344     4  0.3767     0.5329 0.000 0.276 0.012 0.708 0.000 0.004
#> SRR1081789     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1453005     2  0.0260     0.9255 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1366985     6  0.0865     0.8611 0.000 0.000 0.036 0.000 0.000 0.964
#> SRR815280      1  0.3982     0.2730 0.536 0.000 0.000 0.004 0.000 0.460
#> SRR1348531     1  0.3424     0.8469 0.852 0.000 0.016 0.036 0.052 0.044
#> SRR815845      3  0.4952     0.6057 0.000 0.180 0.652 0.000 0.168 0.000
#> SRR1471178     1  0.1387     0.9033 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1080696     5  0.1204     0.8039 0.000 0.000 0.056 0.000 0.944 0.000
#> SRR1078684     3  0.0937     0.8511 0.000 0.040 0.960 0.000 0.000 0.000
#> SRR1317751     5  0.0632     0.8082 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1435667     3  0.0909     0.8538 0.000 0.020 0.968 0.000 0.012 0.000
#> SRR1097905     1  0.0000     0.8940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1456548     1  0.0000     0.8940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075126     1  0.6313     0.2181 0.452 0.000 0.008 0.168 0.016 0.356
#> SRR813108      2  0.3867    -0.1195 0.000 0.512 0.488 0.000 0.000 0.000
#> SRR1479062     5  0.2001     0.7775 0.000 0.000 0.040 0.048 0.912 0.000
#> SRR1408703     5  0.1075     0.8071 0.000 0.000 0.048 0.000 0.952 0.000
#> SRR1332360     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1098686     1  0.0790     0.9039 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1434228     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1467149     4  0.4860     0.1715 0.032 0.000 0.016 0.552 0.400 0.000
#> SRR1399113     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.3219     0.5919 0.000 0.192 0.012 0.792 0.000 0.004
#> SRR1092468     4  0.6356     0.2909 0.176 0.000 0.044 0.540 0.236 0.004
#> SRR1441804     1  0.2864     0.8660 0.884 0.000 0.016 0.040 0.024 0.036
#> SRR1326100     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398815     1  0.1007     0.9048 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1436021     2  0.3933     0.5959 0.000 0.740 0.040 0.216 0.000 0.004
#> SRR1480083     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.0790     0.8999 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR815542      1  0.2798     0.8674 0.876 0.000 0.000 0.056 0.020 0.048
#> SRR1400100     2  0.0146     0.9281 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1312002     6  0.2196     0.7873 0.004 0.000 0.004 0.000 0.108 0.884
#> SRR1470253     6  0.3999    -0.1033 0.000 0.000 0.000 0.004 0.496 0.500
#> SRR1414332     1  0.1387     0.9033 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1069209     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR661052      1  0.0363     0.8982 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1308860     1  0.0363     0.8990 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1421159     3  0.4740     0.5028 0.000 0.300 0.632 0.064 0.000 0.004
#> SRR1340943     4  0.0146     0.5731 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1078855     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1459465     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.1265     0.8479 0.000 0.044 0.948 0.000 0.000 0.008
#> SRR1350979     3  0.0865     0.8481 0.000 0.000 0.964 0.000 0.036 0.000
#> SRR1458198     4  0.5114     0.2512 0.036 0.000 0.016 0.592 0.344 0.012
#> SRR1386910     2  0.0653     0.9197 0.004 0.980 0.012 0.000 0.000 0.004
#> SRR1465375     4  0.4293     0.2203 0.000 0.448 0.012 0.536 0.000 0.004
#> SRR1323699     3  0.2003     0.7987 0.000 0.000 0.884 0.000 0.000 0.116
#> SRR1431139     3  0.1819     0.8245 0.008 0.000 0.932 0.032 0.024 0.004
#> SRR1373964     3  0.0713     0.8536 0.000 0.028 0.972 0.000 0.000 0.000
#> SRR1455413     5  0.4381     0.5468 0.100 0.000 0.016 0.136 0.748 0.000
#> SRR1437163     1  0.0363     0.8982 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1347343     3  0.0909     0.8499 0.000 0.000 0.968 0.000 0.020 0.012
#> SRR1465480     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.0000     0.8940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1086514     2  0.1442     0.8862 0.000 0.944 0.012 0.040 0.000 0.004
#> SRR1430928     1  0.1387     0.9033 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1310939     4  0.4544     0.3339 0.000 0.000 0.076 0.668 0.256 0.000
#> SRR1344294     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.3765     0.4179 0.596 0.000 0.000 0.000 0.000 0.404
#> SRR1468118     5  0.0632     0.8082 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1486348     1  0.0865     0.9012 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1488770     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1327     0.9043 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1456611     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.2605     0.8788 0.896 0.000 0.016 0.020 0.020 0.048
#> SRR1500089     5  0.5053    -0.0121 0.032 0.000 0.016 0.456 0.492 0.004
#> SRR1441178     6  0.1858     0.8115 0.092 0.000 0.000 0.004 0.000 0.904
#> SRR1381396     1  0.1411     0.9046 0.936 0.000 0.000 0.004 0.000 0.060
#> SRR1096081     5  0.0632     0.8082 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1349809     2  0.0291     0.9260 0.004 0.992 0.004 0.000 0.000 0.000
#> SRR1324314     6  0.1857     0.8414 0.004 0.000 0.044 0.000 0.028 0.924
#> SRR1092444     1  0.4812     0.7483 0.752 0.000 0.016 0.068 0.112 0.052
#> SRR1382553     6  0.1267     0.8421 0.000 0.000 0.060 0.000 0.000 0.940
#> SRR1075530     4  0.4284     0.3567 0.000 0.392 0.016 0.588 0.000 0.004
#> SRR1442612     3  0.0790     0.8491 0.000 0.000 0.968 0.000 0.032 0.000
#> SRR1360056     5  0.3971     0.1823 0.000 0.000 0.004 0.000 0.548 0.448
#> SRR1078164     6  0.2053     0.7941 0.108 0.000 0.000 0.004 0.000 0.888
#> SRR1434545     4  0.0146     0.5731 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1398251     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1375866     1  0.1700     0.8985 0.916 0.000 0.000 0.004 0.000 0.080
#> SRR1091645     4  0.3865     0.5620 0.000 0.088 0.012 0.800 0.096 0.004
#> SRR1416636     5  0.1075     0.8071 0.000 0.000 0.048 0.000 0.952 0.000
#> SRR1105441     3  0.3265     0.6581 0.000 0.248 0.748 0.000 0.000 0.004
#> SRR1082496     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     2  0.1075     0.8867 0.000 0.952 0.048 0.000 0.000 0.000
#> SRR1093697     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.0713     0.8065 0.000 0.000 0.028 0.000 0.972 0.000
#> SRR1076120     4  0.4755     0.2442 0.024 0.000 0.016 0.600 0.356 0.004
#> SRR1074410     1  0.1411     0.9048 0.936 0.000 0.000 0.004 0.000 0.060
#> SRR1340345     4  0.4255     0.3805 0.000 0.380 0.016 0.600 0.000 0.004
#> SRR1069514     3  0.1141     0.8454 0.000 0.052 0.948 0.000 0.000 0.000
#> SRR1092636     5  0.1141     0.8060 0.000 0.000 0.052 0.000 0.948 0.000
#> SRR1365013     2  0.0146     0.9279 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR1073069     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1443137     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1437143     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     6  0.3866    -0.1696 0.484 0.000 0.000 0.000 0.000 0.516
#> SRR820234      2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1338079     1  0.0363     0.8982 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1390094     3  0.4308     0.2159 0.000 0.008 0.532 0.452 0.008 0.000
#> SRR1340721     2  0.2871     0.6807 0.192 0.804 0.004 0.000 0.000 0.000
#> SRR1335964     5  0.3954     0.5409 0.000 0.000 0.296 0.016 0.684 0.004
#> SRR1086869     5  0.0632     0.8082 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1453434     4  0.6763    -0.0124 0.268 0.000 0.008 0.388 0.024 0.312
#> SRR1402261     4  0.0146     0.5731 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR657809      2  0.1625     0.8720 0.000 0.928 0.012 0.060 0.000 0.000
#> SRR1093075     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1433329     6  0.0146     0.8847 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1353418     5  0.4018     0.2750 0.000 0.000 0.008 0.000 0.580 0.412
#> SRR1092913     4  0.4119     0.4522 0.000 0.336 0.016 0.644 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.989           0.958       0.969         0.4275 0.574   0.574
#> 3 3 0.577           0.809       0.885         0.4161 0.805   0.665
#> 4 4 0.560           0.677       0.799         0.1230 0.896   0.753
#> 5 5 0.848           0.827       0.916         0.1350 0.831   0.542
#> 6 6 0.754           0.669       0.808         0.0625 0.838   0.430

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.973 1.000 0.000
#> SRR1335605     1  0.1843      0.962 0.972 0.028
#> SRR1432014     1  0.3733      0.947 0.928 0.072
#> SRR1499215     1  0.3733      0.947 0.928 0.072
#> SRR1460409     1  0.0000      0.973 1.000 0.000
#> SRR1086441     1  0.0000      0.973 1.000 0.000
#> SRR1097344     2  0.3733      0.956 0.072 0.928
#> SRR1081789     2  0.1843      0.966 0.028 0.972
#> SRR1453005     2  0.1843      0.966 0.028 0.972
#> SRR1366985     1  0.2603      0.960 0.956 0.044
#> SRR815280      1  0.0000      0.973 1.000 0.000
#> SRR1348531     1  0.0000      0.973 1.000 0.000
#> SRR815845      2  0.0000      0.963 0.000 1.000
#> SRR1471178     1  0.0000      0.973 1.000 0.000
#> SRR1080696     1  0.3274      0.954 0.940 0.060
#> SRR1078684     1  0.3274      0.954 0.940 0.060
#> SRR1317751     1  0.3274      0.954 0.940 0.060
#> SRR1435667     2  0.1843      0.966 0.028 0.972
#> SRR1097905     1  0.0000      0.973 1.000 0.000
#> SRR1456548     1  0.0000      0.973 1.000 0.000
#> SRR1075126     1  0.0000      0.973 1.000 0.000
#> SRR813108      2  0.1633      0.966 0.024 0.976
#> SRR1479062     1  0.6801      0.825 0.820 0.180
#> SRR1408703     1  0.3274      0.954 0.940 0.060
#> SRR1332360     1  0.0376      0.972 0.996 0.004
#> SRR1098686     1  0.0000      0.973 1.000 0.000
#> SRR1434228     1  0.2603      0.960 0.956 0.044
#> SRR1467149     1  0.0000      0.973 1.000 0.000
#> SRR1399113     2  0.0938      0.964 0.012 0.988
#> SRR1476507     2  0.3733      0.956 0.072 0.928
#> SRR1092468     1  0.0000      0.973 1.000 0.000
#> SRR1441804     1  0.0000      0.973 1.000 0.000
#> SRR1326100     2  0.0000      0.963 0.000 1.000
#> SRR1398815     1  0.0000      0.973 1.000 0.000
#> SRR1436021     2  0.1843      0.966 0.028 0.972
#> SRR1480083     2  0.0000      0.963 0.000 1.000
#> SRR1472863     1  0.0000      0.973 1.000 0.000
#> SRR815542      1  0.0000      0.973 1.000 0.000
#> SRR1400100     2  0.1843      0.966 0.028 0.972
#> SRR1312002     1  0.2603      0.960 0.956 0.044
#> SRR1470253     1  0.0938      0.970 0.988 0.012
#> SRR1414332     1  0.0000      0.973 1.000 0.000
#> SRR1069209     1  0.2603      0.960 0.956 0.044
#> SRR661052      1  0.0000      0.973 1.000 0.000
#> SRR1308860     1  0.0000      0.973 1.000 0.000
#> SRR1421159     2  0.1843      0.966 0.028 0.972
#> SRR1340943     1  0.0000      0.973 1.000 0.000
#> SRR1078855     1  0.0000      0.973 1.000 0.000
#> SRR1459465     2  0.1843      0.961 0.028 0.972
#> SRR816818      2  0.2603      0.955 0.044 0.956
#> SRR1478679     1  0.3733      0.947 0.928 0.072
#> SRR1350979     1  0.3733      0.947 0.928 0.072
#> SRR1458198     1  0.0000      0.973 1.000 0.000
#> SRR1386910     2  0.2603      0.955 0.044 0.956
#> SRR1465375     2  0.4022      0.950 0.080 0.920
#> SRR1323699     1  0.3733      0.947 0.928 0.072
#> SRR1431139     1  0.3274      0.954 0.940 0.060
#> SRR1373964     1  0.3879      0.944 0.924 0.076
#> SRR1455413     1  0.0000      0.973 1.000 0.000
#> SRR1437163     1  0.0000      0.973 1.000 0.000
#> SRR1347343     1  0.3733      0.947 0.928 0.072
#> SRR1465480     2  0.2603      0.955 0.044 0.956
#> SRR1489631     1  0.0000      0.973 1.000 0.000
#> SRR1086514     2  0.1843      0.966 0.028 0.972
#> SRR1430928     1  0.0000      0.973 1.000 0.000
#> SRR1310939     1  0.3114      0.956 0.944 0.056
#> SRR1344294     2  0.0000      0.963 0.000 1.000
#> SRR1099402     1  0.0000      0.973 1.000 0.000
#> SRR1468118     1  0.1184      0.967 0.984 0.016
#> SRR1486348     1  0.0000      0.973 1.000 0.000
#> SRR1488770     2  0.0000      0.963 0.000 1.000
#> SRR1083732     1  0.0000      0.973 1.000 0.000
#> SRR1456611     2  0.0000      0.963 0.000 1.000
#> SRR1080318     1  0.0000      0.973 1.000 0.000
#> SRR1500089     1  0.0000      0.973 1.000 0.000
#> SRR1441178     1  0.0000      0.973 1.000 0.000
#> SRR1381396     1  0.0000      0.973 1.000 0.000
#> SRR1096081     1  0.3274      0.954 0.940 0.060
#> SRR1349809     1  0.2778      0.949 0.952 0.048
#> SRR1324314     1  0.2603      0.960 0.956 0.044
#> SRR1092444     1  0.0000      0.973 1.000 0.000
#> SRR1382553     1  0.2603      0.960 0.956 0.044
#> SRR1075530     2  0.3733      0.956 0.072 0.928
#> SRR1442612     2  0.7528      0.735 0.216 0.784
#> SRR1360056     1  0.0000      0.973 1.000 0.000
#> SRR1078164     1  0.0000      0.973 1.000 0.000
#> SRR1434545     1  0.8207      0.632 0.744 0.256
#> SRR1398251     1  0.0000      0.973 1.000 0.000
#> SRR1375866     1  0.0000      0.973 1.000 0.000
#> SRR1091645     2  0.3733      0.956 0.072 0.928
#> SRR1416636     1  0.3584      0.950 0.932 0.068
#> SRR1105441     2  0.1843      0.966 0.028 0.972
#> SRR1082496     2  0.0938      0.964 0.012 0.988
#> SRR1315353     2  0.1843      0.966 0.028 0.972
#> SRR1093697     2  0.0000      0.963 0.000 1.000
#> SRR1077429     1  0.3274      0.954 0.940 0.060
#> SRR1076120     1  0.0000      0.973 1.000 0.000
#> SRR1074410     1  0.0000      0.973 1.000 0.000
#> SRR1340345     2  0.3733      0.956 0.072 0.928
#> SRR1069514     2  0.1843      0.966 0.028 0.972
#> SRR1092636     1  0.3274      0.954 0.940 0.060
#> SRR1365013     2  0.3733      0.956 0.072 0.928
#> SRR1073069     1  0.2603      0.960 0.956 0.044
#> SRR1443137     1  0.0000      0.973 1.000 0.000
#> SRR1437143     2  0.0000      0.963 0.000 1.000
#> SRR1091990     1  0.0000      0.973 1.000 0.000
#> SRR820234      2  0.0000      0.963 0.000 1.000
#> SRR1338079     1  0.0000      0.973 1.000 0.000
#> SRR1390094     1  0.3431      0.952 0.936 0.064
#> SRR1340721     1  0.1843      0.955 0.972 0.028
#> SRR1335964     1  0.3584      0.950 0.932 0.068
#> SRR1086869     1  0.3274      0.954 0.940 0.060
#> SRR1453434     1  0.0000      0.973 1.000 0.000
#> SRR1402261     1  0.0000      0.973 1.000 0.000
#> SRR657809      2  0.4022      0.950 0.080 0.920
#> SRR1093075     1  0.0000      0.973 1.000 0.000
#> SRR1433329     1  0.2603      0.960 0.956 0.044
#> SRR1353418     1  0.2603      0.960 0.956 0.044
#> SRR1092913     2  0.4022      0.950 0.080 0.920

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.882 1.000 0.000 0.000
#> SRR1335605     1  0.5016      0.723 0.760 0.000 0.240
#> SRR1432014     3  0.0000      0.848 0.000 0.000 1.000
#> SRR1499215     1  0.6267      0.395 0.548 0.000 0.452
#> SRR1460409     1  0.1964      0.876 0.944 0.000 0.056
#> SRR1086441     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1097344     2  0.4289      0.835 0.040 0.868 0.092
#> SRR1081789     2  0.5967      0.804 0.032 0.752 0.216
#> SRR1453005     2  0.2625      0.835 0.000 0.916 0.084
#> SRR1366985     1  0.5733      0.605 0.676 0.000 0.324
#> SRR815280      1  0.1289      0.875 0.968 0.000 0.032
#> SRR1348531     1  0.2356      0.870 0.928 0.000 0.072
#> SRR815845      3  0.4931      0.583 0.000 0.232 0.768
#> SRR1471178     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1080696     3  0.0000      0.848 0.000 0.000 1.000
#> SRR1078684     1  0.6154      0.475 0.592 0.000 0.408
#> SRR1317751     3  0.3816      0.802 0.148 0.000 0.852
#> SRR1435667     3  0.1753      0.809 0.000 0.048 0.952
#> SRR1097905     1  0.1163      0.882 0.972 0.000 0.028
#> SRR1456548     1  0.2261      0.872 0.932 0.000 0.068
#> SRR1075126     1  0.1031      0.883 0.976 0.000 0.024
#> SRR813108      2  0.2537      0.835 0.000 0.920 0.080
#> SRR1479062     3  0.0747      0.850 0.016 0.000 0.984
#> SRR1408703     3  0.1163      0.846 0.028 0.000 0.972
#> SRR1332360     1  0.1411      0.875 0.964 0.000 0.036
#> SRR1098686     1  0.0592      0.882 0.988 0.000 0.012
#> SRR1434228     1  0.2356      0.858 0.928 0.000 0.072
#> SRR1467149     1  0.4235      0.793 0.824 0.000 0.176
#> SRR1399113     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1476507     2  0.6096      0.811 0.040 0.752 0.208
#> SRR1092468     1  0.3941      0.813 0.844 0.000 0.156
#> SRR1441804     1  0.0592      0.883 0.988 0.000 0.012
#> SRR1326100     2  0.1860      0.835 0.000 0.948 0.052
#> SRR1398815     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1436021     2  0.5731      0.804 0.020 0.752 0.228
#> SRR1480083     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1472863     1  0.0000      0.882 1.000 0.000 0.000
#> SRR815542      1  0.1860      0.878 0.948 0.000 0.052
#> SRR1400100     2  0.5138      0.794 0.000 0.748 0.252
#> SRR1312002     1  0.5363      0.686 0.724 0.000 0.276
#> SRR1470253     1  0.5733      0.625 0.676 0.000 0.324
#> SRR1414332     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1069209     1  0.2356      0.858 0.928 0.000 0.072
#> SRR661052      1  0.1964      0.876 0.944 0.000 0.056
#> SRR1308860     1  0.0592      0.882 0.988 0.000 0.012
#> SRR1421159     2  0.5731      0.804 0.020 0.752 0.228
#> SRR1340943     1  0.5111      0.783 0.808 0.024 0.168
#> SRR1078855     1  0.1289      0.875 0.968 0.000 0.032
#> SRR1459465     2  0.0000      0.830 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.830 0.000 1.000 0.000
#> SRR1478679     1  0.7112      0.424 0.552 0.024 0.424
#> SRR1350979     3  0.1289      0.844 0.032 0.000 0.968
#> SRR1458198     1  0.2537      0.867 0.920 0.000 0.080
#> SRR1386910     2  0.6731      0.796 0.088 0.740 0.172
#> SRR1465375     2  0.7155      0.751 0.128 0.720 0.152
#> SRR1323699     3  0.4974      0.634 0.236 0.000 0.764
#> SRR1431139     1  0.5216      0.706 0.740 0.000 0.260
#> SRR1373964     3  0.0237      0.847 0.004 0.000 0.996
#> SRR1455413     1  0.4235      0.793 0.824 0.000 0.176
#> SRR1437163     1  0.2165      0.873 0.936 0.000 0.064
#> SRR1347343     3  0.0237      0.847 0.004 0.000 0.996
#> SRR1465480     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1489631     1  0.2165      0.873 0.936 0.000 0.064
#> SRR1086514     2  0.4887      0.809 0.000 0.772 0.228
#> SRR1430928     1  0.0237      0.882 0.996 0.000 0.004
#> SRR1310939     3  0.2448      0.837 0.076 0.000 0.924
#> SRR1344294     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1468118     3  0.4796      0.750 0.220 0.000 0.780
#> SRR1486348     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1083732     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1456611     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1080318     1  0.1964      0.876 0.944 0.000 0.056
#> SRR1500089     1  0.3038      0.856 0.896 0.000 0.104
#> SRR1441178     1  0.1289      0.875 0.968 0.000 0.032
#> SRR1381396     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1096081     3  0.0000      0.848 0.000 0.000 1.000
#> SRR1349809     1  0.5897      0.761 0.792 0.076 0.132
#> SRR1324314     1  0.3482      0.839 0.872 0.000 0.128
#> SRR1092444     1  0.1964      0.876 0.944 0.000 0.056
#> SRR1382553     1  0.5706      0.615 0.680 0.000 0.320
#> SRR1075530     2  0.6348      0.809 0.060 0.752 0.188
#> SRR1442612     3  0.0237      0.847 0.000 0.004 0.996
#> SRR1360056     3  0.5529      0.634 0.296 0.000 0.704
#> SRR1078164     1  0.1289      0.875 0.968 0.000 0.032
#> SRR1434545     1  0.7044      0.682 0.724 0.108 0.168
#> SRR1398251     1  0.1289      0.875 0.968 0.000 0.032
#> SRR1375866     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1091645     2  0.6096      0.811 0.040 0.752 0.208
#> SRR1416636     3  0.0237      0.849 0.004 0.000 0.996
#> SRR1105441     2  0.5098      0.797 0.000 0.752 0.248
#> SRR1082496     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1315353     2  0.5098      0.797 0.000 0.752 0.248
#> SRR1093697     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1077429     3  0.4452      0.787 0.192 0.000 0.808
#> SRR1076120     1  0.4504      0.775 0.804 0.000 0.196
#> SRR1074410     1  0.0000      0.882 1.000 0.000 0.000
#> SRR1340345     2  0.6348      0.809 0.060 0.752 0.188
#> SRR1069514     2  0.6832      0.607 0.020 0.604 0.376
#> SRR1092636     3  0.4504      0.784 0.196 0.000 0.804
#> SRR1365013     2  0.7011      0.779 0.092 0.720 0.188
#> SRR1073069     1  0.2356      0.858 0.928 0.000 0.072
#> SRR1443137     1  0.1289      0.875 0.968 0.000 0.032
#> SRR1437143     2  0.0000      0.830 0.000 1.000 0.000
#> SRR1091990     1  0.1289      0.875 0.968 0.000 0.032
#> SRR820234      2  0.0747      0.832 0.000 0.984 0.016
#> SRR1338079     1  0.0237      0.882 0.996 0.000 0.004
#> SRR1390094     1  0.6168      0.457 0.588 0.000 0.412
#> SRR1340721     1  0.3267      0.833 0.884 0.000 0.116
#> SRR1335964     3  0.4291      0.793 0.180 0.000 0.820
#> SRR1086869     3  0.4291      0.793 0.180 0.000 0.820
#> SRR1453434     1  0.0424      0.883 0.992 0.000 0.008
#> SRR1402261     1  0.4235      0.793 0.824 0.000 0.176
#> SRR657809      2  0.6587      0.792 0.092 0.752 0.156
#> SRR1093075     1  0.1289      0.875 0.968 0.000 0.032
#> SRR1433329     1  0.2356      0.858 0.928 0.000 0.072
#> SRR1353418     3  0.3116      0.799 0.108 0.000 0.892
#> SRR1092913     2  0.6463      0.802 0.080 0.756 0.164

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.2921      0.784 0.860 0.000 0.000 0.140
#> SRR1335605     4  0.5861     -0.637 0.480 0.000 0.032 0.488
#> SRR1432014     3  0.1022      0.834 0.000 0.000 0.968 0.032
#> SRR1499215     1  0.6613      0.283 0.628 0.000 0.172 0.200
#> SRR1460409     1  0.5432      0.790 0.652 0.000 0.032 0.316
#> SRR1086441     1  0.4331      0.804 0.712 0.000 0.000 0.288
#> SRR1097344     4  0.5267      0.608 0.000 0.184 0.076 0.740
#> SRR1081789     4  0.6049      0.627 0.000 0.184 0.132 0.684
#> SRR1453005     4  0.6308      0.594 0.000 0.232 0.120 0.648
#> SRR1366985     1  0.3494      0.559 0.824 0.000 0.172 0.004
#> SRR815280      1  0.0592      0.736 0.984 0.000 0.000 0.016
#> SRR1348531     1  0.5473      0.787 0.644 0.000 0.032 0.324
#> SRR815845      3  0.3681      0.719 0.000 0.008 0.816 0.176
#> SRR1471178     1  0.4356      0.803 0.708 0.000 0.000 0.292
#> SRR1080696     3  0.1022      0.834 0.000 0.000 0.968 0.032
#> SRR1078684     4  0.7860     -0.297 0.340 0.000 0.276 0.384
#> SRR1317751     3  0.3913      0.774 0.148 0.000 0.824 0.028
#> SRR1435667     3  0.1022      0.834 0.000 0.000 0.968 0.032
#> SRR1097905     1  0.4382      0.803 0.704 0.000 0.000 0.296
#> SRR1456548     1  0.5453      0.788 0.648 0.000 0.032 0.320
#> SRR1075126     1  0.4382      0.803 0.704 0.000 0.000 0.296
#> SRR813108      4  0.7042      0.404 0.000 0.352 0.132 0.516
#> SRR1479062     3  0.0921      0.839 0.000 0.000 0.972 0.028
#> SRR1408703     3  0.1637      0.837 0.000 0.000 0.940 0.060
#> SRR1332360     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1098686     1  0.4356      0.803 0.708 0.000 0.000 0.292
#> SRR1434228     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1467149     1  0.5473      0.787 0.644 0.000 0.032 0.324
#> SRR1399113     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.6049      0.635 0.000 0.184 0.132 0.684
#> SRR1092468     1  0.5473      0.787 0.644 0.000 0.032 0.324
#> SRR1441804     1  0.4560      0.803 0.700 0.000 0.004 0.296
#> SRR1326100     4  0.6042      0.613 0.000 0.224 0.104 0.672
#> SRR1398815     1  0.3801      0.800 0.780 0.000 0.000 0.220
#> SRR1436021     4  0.5689      0.645 0.000 0.184 0.104 0.712
#> SRR1480083     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.4331      0.804 0.712 0.000 0.000 0.288
#> SRR815542      1  0.5152      0.794 0.664 0.000 0.020 0.316
#> SRR1400100     4  0.5744      0.643 0.000 0.184 0.108 0.708
#> SRR1312002     1  0.4194      0.573 0.800 0.000 0.172 0.028
#> SRR1470253     1  0.4872      0.417 0.728 0.000 0.244 0.028
#> SRR1414332     1  0.3764      0.800 0.784 0.000 0.000 0.216
#> SRR1069209     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR661052      1  0.5453      0.788 0.648 0.000 0.032 0.320
#> SRR1308860     1  0.4356      0.803 0.708 0.000 0.000 0.292
#> SRR1421159     4  0.5689      0.645 0.000 0.184 0.104 0.712
#> SRR1340943     1  0.5862      0.622 0.484 0.000 0.032 0.484
#> SRR1078855     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1459465     2  0.0707      0.975 0.000 0.980 0.000 0.020
#> SRR816818      2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1478679     1  0.7674      0.208 0.460 0.000 0.260 0.280
#> SRR1350979     3  0.0000      0.841 0.000 0.000 1.000 0.000
#> SRR1458198     1  0.5473      0.787 0.644 0.000 0.032 0.324
#> SRR1386910     4  0.4562      0.603 0.000 0.208 0.028 0.764
#> SRR1465375     4  0.4375      0.576 0.000 0.180 0.032 0.788
#> SRR1323699     1  0.7599     -0.300 0.424 0.000 0.376 0.200
#> SRR1431139     1  0.6585      0.669 0.584 0.000 0.104 0.312
#> SRR1373964     3  0.1118      0.833 0.000 0.000 0.964 0.036
#> SRR1455413     1  0.5473      0.787 0.644 0.000 0.032 0.324
#> SRR1437163     1  0.5780      0.636 0.496 0.000 0.028 0.476
#> SRR1347343     3  0.2036      0.829 0.032 0.000 0.936 0.032
#> SRR1465480     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.5453      0.788 0.648 0.000 0.032 0.320
#> SRR1086514     4  0.5728      0.642 0.000 0.188 0.104 0.708
#> SRR1430928     1  0.4356      0.803 0.708 0.000 0.000 0.292
#> SRR1310939     3  0.2596      0.828 0.024 0.000 0.908 0.068
#> SRR1344294     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.4164      0.806 0.736 0.000 0.000 0.264
#> SRR1468118     3  0.5628      0.660 0.144 0.000 0.724 0.132
#> SRR1486348     1  0.4331      0.804 0.712 0.000 0.000 0.288
#> SRR1488770     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.3801      0.800 0.780 0.000 0.000 0.220
#> SRR1456611     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.4932      0.790 0.728 0.000 0.032 0.240
#> SRR1500089     1  0.5754      0.784 0.636 0.000 0.048 0.316
#> SRR1441178     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1381396     1  0.4304      0.805 0.716 0.000 0.000 0.284
#> SRR1096081     3  0.2546      0.826 0.060 0.000 0.912 0.028
#> SRR1349809     4  0.6148     -0.611 0.468 0.048 0.000 0.484
#> SRR1324314     1  0.2011      0.755 0.920 0.000 0.000 0.080
#> SRR1092444     1  0.4900      0.793 0.732 0.000 0.032 0.236
#> SRR1382553     1  0.4289      0.583 0.796 0.000 0.172 0.032
#> SRR1075530     4  0.5689      0.645 0.000 0.184 0.104 0.712
#> SRR1442612     3  0.1022      0.834 0.000 0.000 0.968 0.032
#> SRR1360056     3  0.5558      0.610 0.364 0.000 0.608 0.028
#> SRR1078164     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1434545     4  0.6764     -0.502 0.424 0.036 0.032 0.508
#> SRR1398251     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1375866     1  0.2868      0.783 0.864 0.000 0.000 0.136
#> SRR1091645     4  0.7299      0.464 0.000 0.184 0.296 0.520
#> SRR1416636     3  0.0592      0.842 0.000 0.000 0.984 0.016
#> SRR1105441     4  0.5744      0.643 0.000 0.184 0.108 0.708
#> SRR1082496     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1315353     4  0.6142      0.624 0.000 0.184 0.140 0.676
#> SRR1093697     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.4307      0.760 0.144 0.000 0.808 0.048
#> SRR1076120     1  0.7327      0.671 0.504 0.000 0.176 0.320
#> SRR1074410     1  0.3726      0.798 0.788 0.000 0.000 0.212
#> SRR1340345     4  0.4012      0.609 0.000 0.184 0.016 0.800
#> SRR1069514     4  0.7210      0.509 0.000 0.184 0.276 0.540
#> SRR1092636     3  0.4050      0.770 0.144 0.000 0.820 0.036
#> SRR1365013     4  0.5650      0.645 0.000 0.180 0.104 0.716
#> SRR1073069     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1443137     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR820234      4  0.6449      0.225 0.000 0.452 0.068 0.480
#> SRR1338079     1  0.4356      0.803 0.708 0.000 0.000 0.292
#> SRR1390094     4  0.7909     -0.473 0.324 0.000 0.312 0.364
#> SRR1340721     1  0.4972      0.667 0.544 0.000 0.000 0.456
#> SRR1335964     3  0.3958      0.773 0.144 0.000 0.824 0.032
#> SRR1086869     3  0.3863      0.775 0.144 0.000 0.828 0.028
#> SRR1453434     1  0.4331      0.804 0.712 0.000 0.000 0.288
#> SRR1402261     1  0.5862      0.622 0.484 0.000 0.032 0.484
#> SRR657809      4  0.3444      0.597 0.000 0.184 0.000 0.816
#> SRR1093075     1  0.2011      0.756 0.920 0.000 0.000 0.080
#> SRR1433329     1  0.0000      0.728 1.000 0.000 0.000 0.000
#> SRR1353418     3  0.2469      0.784 0.108 0.000 0.892 0.000
#> SRR1092913     4  0.4418      0.578 0.000 0.184 0.032 0.784

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      3  0.3895     0.4717 0.320 0.000 0.680 0.000 0.000
#> SRR1335605     1  0.1405     0.8644 0.956 0.000 0.008 0.020 0.016
#> SRR1432014     5  0.0671     0.9381 0.000 0.000 0.004 0.016 0.980
#> SRR1499215     3  0.1430     0.7923 0.000 0.000 0.944 0.004 0.052
#> SRR1460409     1  0.0671     0.8715 0.980 0.000 0.004 0.000 0.016
#> SRR1086441     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR1097344     4  0.0510     0.9345 0.000 0.000 0.000 0.984 0.016
#> SRR1081789     4  0.0451     0.9397 0.000 0.000 0.008 0.988 0.004
#> SRR1453005     4  0.0162     0.9394 0.000 0.004 0.000 0.996 0.000
#> SRR1366985     3  0.1270     0.7943 0.000 0.000 0.948 0.000 0.052
#> SRR815280      3  0.2648     0.7416 0.152 0.000 0.848 0.000 0.000
#> SRR1348531     1  0.0609     0.8695 0.980 0.000 0.000 0.000 0.020
#> SRR815845      5  0.1608     0.9154 0.000 0.000 0.000 0.072 0.928
#> SRR1471178     1  0.1410     0.8689 0.940 0.000 0.060 0.000 0.000
#> SRR1080696     5  0.0510     0.9395 0.000 0.000 0.000 0.016 0.984
#> SRR1078684     1  0.5018     0.6268 0.692 0.000 0.040 0.020 0.248
#> SRR1317751     5  0.1270     0.9489 0.052 0.000 0.000 0.000 0.948
#> SRR1435667     5  0.0671     0.9381 0.000 0.000 0.004 0.016 0.980
#> SRR1097905     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR1456548     1  0.0324     0.8726 0.992 0.000 0.004 0.000 0.004
#> SRR1075126     1  0.1410     0.8695 0.940 0.000 0.060 0.000 0.000
#> SRR813108      4  0.0865     0.9310 0.000 0.024 0.000 0.972 0.004
#> SRR1479062     5  0.1341     0.9479 0.056 0.000 0.000 0.000 0.944
#> SRR1408703     5  0.1774     0.9483 0.052 0.000 0.000 0.016 0.932
#> SRR1332360     3  0.0290     0.8257 0.008 0.000 0.992 0.000 0.000
#> SRR1098686     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR1434228     3  0.0290     0.8257 0.008 0.000 0.992 0.000 0.000
#> SRR1467149     1  0.0609     0.8695 0.980 0.000 0.000 0.000 0.020
#> SRR1399113     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0404     0.9365 0.000 0.000 0.000 0.988 0.012
#> SRR1092468     1  0.0579     0.8703 0.984 0.000 0.008 0.000 0.008
#> SRR1441804     1  0.1408     0.8731 0.948 0.000 0.044 0.000 0.008
#> SRR1326100     4  0.0451     0.9387 0.000 0.008 0.000 0.988 0.004
#> SRR1398815     1  0.4210     0.3283 0.588 0.000 0.412 0.000 0.000
#> SRR1436021     4  0.0451     0.9397 0.000 0.000 0.008 0.988 0.004
#> SRR1480083     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR815542      1  0.1012     0.8746 0.968 0.000 0.020 0.000 0.012
#> SRR1400100     4  0.0960     0.9333 0.016 0.000 0.008 0.972 0.004
#> SRR1312002     3  0.1478     0.7966 0.064 0.000 0.936 0.000 0.000
#> SRR1470253     3  0.1845     0.7892 0.056 0.000 0.928 0.000 0.016
#> SRR1414332     1  0.3837     0.5716 0.692 0.000 0.308 0.000 0.000
#> SRR1069209     3  0.0510     0.8249 0.016 0.000 0.984 0.000 0.000
#> SRR661052      1  0.2462     0.8075 0.880 0.000 0.112 0.000 0.008
#> SRR1308860     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR1421159     4  0.0451     0.9397 0.000 0.000 0.008 0.988 0.004
#> SRR1340943     1  0.1216     0.8654 0.960 0.000 0.000 0.020 0.020
#> SRR1078855     3  0.0290     0.8257 0.008 0.000 0.992 0.000 0.000
#> SRR1459465     2  0.1197     0.9484 0.000 0.952 0.000 0.048 0.000
#> SRR816818      2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     1  0.5905     0.3806 0.600 0.000 0.308 0.036 0.056
#> SRR1350979     5  0.0613     0.9420 0.004 0.000 0.008 0.004 0.984
#> SRR1458198     1  0.0609     0.8695 0.980 0.000 0.000 0.000 0.020
#> SRR1386910     4  0.3961     0.6372 0.248 0.016 0.000 0.736 0.000
#> SRR1465375     4  0.3817     0.6409 0.252 0.000 0.004 0.740 0.004
#> SRR1323699     3  0.1430     0.7923 0.000 0.000 0.944 0.004 0.052
#> SRR1431139     1  0.1200     0.8664 0.964 0.000 0.012 0.016 0.008
#> SRR1373964     5  0.1018     0.9339 0.000 0.000 0.016 0.016 0.968
#> SRR1455413     1  0.0898     0.8677 0.972 0.000 0.008 0.000 0.020
#> SRR1437163     1  0.0613     0.8737 0.984 0.000 0.008 0.004 0.004
#> SRR1347343     5  0.0912     0.9355 0.000 0.000 0.016 0.012 0.972
#> SRR1465480     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.0290     0.8713 0.992 0.000 0.000 0.000 0.008
#> SRR1086514     4  0.0162     0.9396 0.000 0.000 0.000 0.996 0.004
#> SRR1430928     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR1310939     5  0.1956     0.9306 0.076 0.000 0.008 0.000 0.916
#> SRR1344294     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.2605     0.8117 0.852 0.000 0.148 0.000 0.000
#> SRR1468118     5  0.1410     0.9447 0.060 0.000 0.000 0.000 0.940
#> SRR1486348     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR1488770     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.3480     0.6605 0.752 0.000 0.248 0.000 0.000
#> SRR1456611     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.4811     0.0532 0.528 0.000 0.452 0.000 0.020
#> SRR1500089     1  0.2852     0.7523 0.828 0.000 0.000 0.000 0.172
#> SRR1441178     3  0.0510     0.8245 0.016 0.000 0.984 0.000 0.000
#> SRR1381396     1  0.2516     0.8175 0.860 0.000 0.140 0.000 0.000
#> SRR1096081     5  0.1270     0.9489 0.052 0.000 0.000 0.000 0.948
#> SRR1349809     1  0.2409     0.8497 0.908 0.056 0.008 0.028 0.000
#> SRR1324314     3  0.3752     0.5460 0.292 0.000 0.708 0.000 0.000
#> SRR1092444     1  0.4508     0.4055 0.648 0.000 0.332 0.000 0.020
#> SRR1382553     3  0.4629     0.6152 0.244 0.000 0.704 0.000 0.052
#> SRR1075530     4  0.0000     0.9391 0.000 0.000 0.000 1.000 0.000
#> SRR1442612     5  0.0671     0.9381 0.000 0.000 0.004 0.016 0.980
#> SRR1360056     3  0.5281     0.1693 0.052 0.000 0.548 0.000 0.400
#> SRR1078164     3  0.0771     0.8238 0.020 0.000 0.976 0.000 0.004
#> SRR1434545     1  0.3689     0.6332 0.740 0.000 0.000 0.256 0.004
#> SRR1398251     3  0.0451     0.8245 0.008 0.000 0.988 0.000 0.004
#> SRR1375866     3  0.3906     0.5230 0.292 0.000 0.704 0.000 0.004
#> SRR1091645     4  0.0880     0.9276 0.000 0.000 0.000 0.968 0.032
#> SRR1416636     5  0.0703     0.9490 0.024 0.000 0.000 0.000 0.976
#> SRR1105441     4  0.0451     0.9397 0.000 0.000 0.008 0.988 0.004
#> SRR1082496     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     4  0.0451     0.9397 0.000 0.000 0.008 0.988 0.004
#> SRR1093697     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.1341     0.9479 0.056 0.000 0.000 0.000 0.944
#> SRR1076120     1  0.1043     0.8627 0.960 0.000 0.000 0.000 0.040
#> SRR1074410     3  0.4306    -0.0629 0.492 0.000 0.508 0.000 0.000
#> SRR1340345     4  0.0404     0.9363 0.012 0.000 0.000 0.988 0.000
#> SRR1069514     4  0.1628     0.9044 0.000 0.000 0.008 0.936 0.056
#> SRR1092636     5  0.1341     0.9479 0.056 0.000 0.000 0.000 0.944
#> SRR1365013     4  0.1329     0.9195 0.032 0.000 0.008 0.956 0.004
#> SRR1073069     3  0.0290     0.8257 0.008 0.000 0.992 0.000 0.000
#> SRR1443137     3  0.0290     0.8257 0.008 0.000 0.992 0.000 0.000
#> SRR1437143     2  0.0000     0.9951 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     3  0.0703     0.8224 0.024 0.000 0.976 0.000 0.000
#> SRR820234      4  0.3300     0.7263 0.000 0.204 0.000 0.792 0.004
#> SRR1338079     1  0.1341     0.8695 0.944 0.000 0.056 0.000 0.000
#> SRR1390094     1  0.2886     0.8034 0.864 0.000 0.016 0.004 0.116
#> SRR1340721     1  0.1697     0.8695 0.932 0.000 0.060 0.008 0.000
#> SRR1335964     5  0.1628     0.9465 0.056 0.000 0.008 0.000 0.936
#> SRR1086869     5  0.1270     0.9489 0.052 0.000 0.000 0.000 0.948
#> SRR1453434     1  0.1768     0.8658 0.924 0.000 0.072 0.000 0.004
#> SRR1402261     1  0.0798     0.8694 0.976 0.000 0.000 0.016 0.008
#> SRR657809      4  0.0404     0.9363 0.012 0.000 0.000 0.988 0.000
#> SRR1093075     3  0.4287     0.1015 0.460 0.000 0.540 0.000 0.000
#> SRR1433329     3  0.0290     0.8257 0.008 0.000 0.992 0.000 0.000
#> SRR1353418     5  0.2377     0.8293 0.000 0.000 0.128 0.000 0.872
#> SRR1092913     4  0.0566     0.9350 0.012 0.000 0.000 0.984 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.2218     0.7314 0.884 0.000 0.000 0.000 0.012 0.104
#> SRR1335605     5  0.3073     0.7151 0.204 0.000 0.000 0.008 0.788 0.000
#> SRR1432014     3  0.0000     0.6491 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1499215     3  0.3864     0.2304 0.000 0.000 0.520 0.000 0.000 0.480
#> SRR1460409     5  0.3862     0.3997 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1086441     1  0.0000     0.8123 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1097344     4  0.0260     0.9311 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1081789     4  0.0692     0.9327 0.000 0.000 0.020 0.976 0.004 0.000
#> SRR1453005     4  0.0260     0.9311 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1366985     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815280      1  0.2793     0.6123 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR1348531     5  0.2912     0.7099 0.216 0.000 0.000 0.000 0.784 0.000
#> SRR815845      4  0.4179     0.1865 0.000 0.000 0.472 0.516 0.012 0.000
#> SRR1471178     1  0.0000     0.8123 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1080696     3  0.0260     0.6466 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1078684     3  0.5554     0.1061 0.392 0.000 0.492 0.008 0.108 0.000
#> SRR1317751     5  0.3851     0.3454 0.000 0.000 0.460 0.000 0.540 0.000
#> SRR1435667     3  0.0260     0.6493 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR1097905     1  0.1910     0.7609 0.892 0.000 0.000 0.000 0.108 0.000
#> SRR1456548     5  0.3076     0.6975 0.240 0.000 0.000 0.000 0.760 0.000
#> SRR1075126     1  0.4586     0.5475 0.660 0.000 0.000 0.000 0.076 0.264
#> SRR813108      4  0.0951     0.9309 0.000 0.008 0.020 0.968 0.004 0.000
#> SRR1479062     5  0.3012     0.6162 0.000 0.000 0.196 0.008 0.796 0.000
#> SRR1408703     5  0.3864     0.3125 0.000 0.000 0.480 0.000 0.520 0.000
#> SRR1332360     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1098686     1  0.0000     0.8123 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1434228     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1467149     5  0.2260     0.7220 0.140 0.000 0.000 0.000 0.860 0.000
#> SRR1399113     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.0508     0.9309 0.000 0.000 0.004 0.984 0.012 0.000
#> SRR1092468     5  0.3023     0.6996 0.232 0.000 0.000 0.000 0.768 0.000
#> SRR1441804     5  0.3817     0.3475 0.432 0.000 0.000 0.000 0.568 0.000
#> SRR1326100     4  0.0748     0.9328 0.000 0.004 0.016 0.976 0.004 0.000
#> SRR1398815     1  0.3693     0.6238 0.788 0.000 0.000 0.000 0.120 0.092
#> SRR1436021     4  0.0692     0.9327 0.000 0.000 0.020 0.976 0.004 0.000
#> SRR1480083     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.0000     0.8123 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR815542      1  0.3151     0.4731 0.748 0.000 0.000 0.000 0.252 0.000
#> SRR1400100     4  0.1334     0.9178 0.000 0.000 0.020 0.948 0.032 0.000
#> SRR1312002     6  0.0260     0.7639 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1470253     6  0.2260     0.6975 0.000 0.000 0.000 0.000 0.140 0.860
#> SRR1414332     1  0.0603     0.8079 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1069209     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR661052      5  0.3547     0.5913 0.332 0.000 0.000 0.000 0.668 0.000
#> SRR1308860     1  0.0000     0.8123 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1421159     4  0.0692     0.9327 0.000 0.000 0.020 0.976 0.004 0.000
#> SRR1340943     5  0.3103     0.7131 0.208 0.000 0.000 0.008 0.784 0.000
#> SRR1078855     6  0.3789     0.1497 0.416 0.000 0.000 0.000 0.000 0.584
#> SRR1459465     2  0.0363     0.9848 0.000 0.988 0.000 0.012 0.000 0.000
#> SRR816818      2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.4462     0.2812 0.008 0.000 0.540 0.016 0.000 0.436
#> SRR1350979     3  0.2996     0.4603 0.000 0.000 0.772 0.000 0.228 0.000
#> SRR1458198     5  0.2941     0.7074 0.220 0.000 0.000 0.000 0.780 0.000
#> SRR1386910     4  0.2862     0.8394 0.000 0.048 0.008 0.864 0.080 0.000
#> SRR1465375     4  0.1918     0.8597 0.008 0.000 0.000 0.904 0.088 0.000
#> SRR1323699     3  0.3864     0.2304 0.000 0.000 0.520 0.000 0.000 0.480
#> SRR1431139     5  0.3708     0.6982 0.220 0.000 0.020 0.008 0.752 0.000
#> SRR1373964     3  0.0260     0.6493 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR1455413     5  0.2260     0.7220 0.140 0.000 0.000 0.000 0.860 0.000
#> SRR1437163     1  0.3634     0.2501 0.644 0.000 0.000 0.000 0.356 0.000
#> SRR1347343     3  0.0363     0.6444 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1465480     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     5  0.2883     0.7117 0.212 0.000 0.000 0.000 0.788 0.000
#> SRR1086514     4  0.0692     0.9327 0.000 0.000 0.020 0.976 0.004 0.000
#> SRR1430928     1  0.0000     0.8123 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310939     5  0.3468     0.5905 0.004 0.000 0.284 0.000 0.712 0.000
#> SRR1344294     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.3020     0.7618 0.844 0.000 0.000 0.000 0.076 0.080
#> SRR1468118     5  0.3851     0.3454 0.000 0.000 0.460 0.000 0.540 0.000
#> SRR1486348     1  0.0000     0.8123 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.0260     0.8108 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1456611     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     5  0.1866     0.6416 0.008 0.000 0.000 0.000 0.908 0.084
#> SRR1500089     5  0.3081     0.7145 0.220 0.000 0.004 0.000 0.776 0.000
#> SRR1441178     6  0.2302     0.7148 0.008 0.000 0.000 0.000 0.120 0.872
#> SRR1381396     1  0.2902     0.7331 0.800 0.000 0.000 0.000 0.196 0.004
#> SRR1096081     5  0.3854     0.3426 0.000 0.000 0.464 0.000 0.536 0.000
#> SRR1349809     1  0.6997     0.3259 0.484 0.272 0.016 0.152 0.076 0.000
#> SRR1324314     6  0.1765     0.6858 0.096 0.000 0.000 0.000 0.000 0.904
#> SRR1092444     5  0.1838     0.6520 0.016 0.000 0.000 0.000 0.916 0.068
#> SRR1382553     3  0.4097     0.2068 0.008 0.000 0.504 0.000 0.000 0.488
#> SRR1075530     4  0.0260     0.9311 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1442612     3  0.0000     0.6491 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1360056     5  0.5902     0.0904 0.000 0.000 0.204 0.000 0.404 0.392
#> SRR1078164     6  0.4371     0.5624 0.052 0.000 0.000 0.000 0.284 0.664
#> SRR1434545     5  0.5595     0.4994 0.192 0.000 0.000 0.268 0.540 0.000
#> SRR1398251     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1375866     6  0.5377     0.4448 0.124 0.000 0.000 0.000 0.348 0.528
#> SRR1091645     4  0.0520     0.9288 0.000 0.000 0.008 0.984 0.008 0.000
#> SRR1416636     3  0.3804    -0.1577 0.000 0.000 0.576 0.000 0.424 0.000
#> SRR1105441     4  0.0692     0.9327 0.000 0.000 0.020 0.976 0.004 0.000
#> SRR1082496     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     4  0.0692     0.9327 0.000 0.000 0.020 0.976 0.004 0.000
#> SRR1093697     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.2823     0.6150 0.000 0.000 0.204 0.000 0.796 0.000
#> SRR1076120     5  0.2883     0.7117 0.212 0.000 0.000 0.000 0.788 0.000
#> SRR1074410     6  0.5910     0.2553 0.308 0.000 0.000 0.000 0.232 0.460
#> SRR1340345     4  0.0260     0.9311 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1069514     3  0.3982     0.0217 0.000 0.000 0.536 0.460 0.004 0.000
#> SRR1092636     5  0.2823     0.6150 0.000 0.000 0.204 0.000 0.796 0.000
#> SRR1365013     4  0.1926     0.8857 0.000 0.000 0.020 0.912 0.068 0.000
#> SRR1073069     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1443137     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1437143     2  0.0000     0.9985 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     6  0.3620     0.4327 0.352 0.000 0.000 0.000 0.000 0.648
#> SRR820234      4  0.3514     0.7232 0.000 0.208 0.020 0.768 0.004 0.000
#> SRR1338079     1  0.1556     0.7815 0.920 0.000 0.000 0.000 0.080 0.000
#> SRR1390094     5  0.5001     0.5755 0.308 0.000 0.096 0.000 0.596 0.000
#> SRR1340721     1  0.1757     0.7797 0.916 0.000 0.000 0.008 0.076 0.000
#> SRR1335964     5  0.3012     0.6162 0.000 0.000 0.196 0.008 0.796 0.000
#> SRR1086869     5  0.3851     0.3454 0.000 0.000 0.460 0.000 0.540 0.000
#> SRR1453434     1  0.4495     0.5352 0.660 0.000 0.000 0.000 0.064 0.276
#> SRR1402261     5  0.3103     0.7131 0.208 0.000 0.000 0.008 0.784 0.000
#> SRR657809      4  0.0260     0.9311 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1093075     1  0.3864     0.0870 0.520 0.000 0.000 0.000 0.000 0.480
#> SRR1433329     6  0.0000     0.7682 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1353418     6  0.3982     0.1359 0.000 0.000 0.460 0.000 0.004 0.536
#> SRR1092913     4  0.0260     0.9311 0.000 0.000 0.000 0.992 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.706           0.921       0.925         0.4363 0.550   0.550
#> 3 3 0.768           0.871       0.942         0.3536 0.827   0.696
#> 4 4 0.783           0.797       0.906         0.1663 0.780   0.535
#> 5 5 0.687           0.766       0.840         0.0706 0.906   0.714
#> 6 6 0.800           0.742       0.846         0.0570 0.954   0.830

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.3274    0.96805 0.940 0.060
#> SRR1335605     2  0.2423    0.94488 0.040 0.960
#> SRR1432014     2  0.2236    0.94606 0.036 0.964
#> SRR1499215     2  0.2423    0.94488 0.040 0.960
#> SRR1460409     1  0.3274    0.96805 0.940 0.060
#> SRR1086441     1  0.3274    0.96805 0.940 0.060
#> SRR1097344     2  0.0376    0.94194 0.004 0.996
#> SRR1081789     2  0.0376    0.94194 0.004 0.996
#> SRR1453005     2  0.2423    0.91861 0.040 0.960
#> SRR1366985     2  0.3431    0.92965 0.064 0.936
#> SRR815280      1  0.5294    0.94859 0.880 0.120
#> SRR1348531     1  0.5629    0.93803 0.868 0.132
#> SRR815845      2  0.2236    0.94606 0.036 0.964
#> SRR1471178     1  0.3274    0.96805 0.940 0.060
#> SRR1080696     2  0.2236    0.94606 0.036 0.964
#> SRR1078684     2  0.2423    0.94488 0.040 0.960
#> SRR1317751     2  0.2236    0.94606 0.036 0.964
#> SRR1435667     2  0.2236    0.94606 0.036 0.964
#> SRR1097905     1  0.3879    0.96514 0.924 0.076
#> SRR1456548     1  0.3274    0.96805 0.940 0.060
#> SRR1075126     1  0.3274    0.96805 0.940 0.060
#> SRR813108      2  0.3274    0.90560 0.060 0.940
#> SRR1479062     2  0.2423    0.94488 0.040 0.960
#> SRR1408703     2  0.2236    0.94606 0.036 0.964
#> SRR1332360     1  0.5294    0.94859 0.880 0.120
#> SRR1098686     1  0.3274    0.96805 0.940 0.060
#> SRR1434228     2  0.9963    0.04686 0.464 0.536
#> SRR1467149     2  0.4815    0.89989 0.104 0.896
#> SRR1399113     2  0.3274    0.90560 0.060 0.940
#> SRR1476507     2  0.0376    0.94194 0.004 0.996
#> SRR1092468     2  0.4815    0.89989 0.104 0.896
#> SRR1441804     1  0.3733    0.96409 0.928 0.072
#> SRR1326100     2  0.3274    0.90560 0.060 0.940
#> SRR1398815     1  0.3274    0.96805 0.940 0.060
#> SRR1436021     2  0.0376    0.94194 0.004 0.996
#> SRR1480083     2  0.3274    0.90560 0.060 0.940
#> SRR1472863     1  0.5294    0.94859 0.880 0.120
#> SRR815542      1  0.3274    0.96805 0.940 0.060
#> SRR1400100     2  0.2236    0.94606 0.036 0.964
#> SRR1312002     2  0.3431    0.92965 0.064 0.936
#> SRR1470253     2  0.2423    0.94488 0.040 0.960
#> SRR1414332     1  0.3274    0.96805 0.940 0.060
#> SRR1069209     1  0.5294    0.94859 0.880 0.120
#> SRR661052      1  0.3274    0.96805 0.940 0.060
#> SRR1308860     1  0.3431    0.96771 0.936 0.064
#> SRR1421159     2  0.0376    0.94194 0.004 0.996
#> SRR1340943     2  0.0672    0.94177 0.008 0.992
#> SRR1078855     1  0.5178    0.95071 0.884 0.116
#> SRR1459465     2  0.3274    0.90560 0.060 0.940
#> SRR816818      2  0.3274    0.90560 0.060 0.940
#> SRR1478679     2  0.2423    0.94488 0.040 0.960
#> SRR1350979     2  0.2236    0.94606 0.036 0.964
#> SRR1458198     2  0.4815    0.89989 0.104 0.896
#> SRR1386910     2  0.0376    0.94194 0.004 0.996
#> SRR1465375     2  0.0376    0.94194 0.004 0.996
#> SRR1323699     2  0.2423    0.94488 0.040 0.960
#> SRR1431139     2  0.2423    0.94488 0.040 0.960
#> SRR1373964     2  0.2236    0.94606 0.036 0.964
#> SRR1455413     2  0.2603    0.94306 0.044 0.956
#> SRR1437163     1  0.4562    0.95877 0.904 0.096
#> SRR1347343     2  0.2236    0.94606 0.036 0.964
#> SRR1465480     2  0.3274    0.90560 0.060 0.940
#> SRR1489631     1  0.3274    0.96805 0.940 0.060
#> SRR1086514     2  0.0000    0.94071 0.000 1.000
#> SRR1430928     1  0.3431    0.96771 0.936 0.064
#> SRR1310939     2  0.2423    0.94488 0.040 0.960
#> SRR1344294     2  0.3274    0.90560 0.060 0.940
#> SRR1099402     1  0.3274    0.96805 0.940 0.060
#> SRR1468118     2  0.2236    0.94606 0.036 0.964
#> SRR1486348     1  0.3274    0.96805 0.940 0.060
#> SRR1488770     2  0.3274    0.90560 0.060 0.940
#> SRR1083732     1  0.3274    0.96805 0.940 0.060
#> SRR1456611     2  0.3274    0.90560 0.060 0.940
#> SRR1080318     1  0.3274    0.96805 0.940 0.060
#> SRR1500089     2  0.4815    0.89989 0.104 0.896
#> SRR1441178     1  0.5294    0.94859 0.880 0.120
#> SRR1381396     1  0.3274    0.96805 0.940 0.060
#> SRR1096081     2  0.2236    0.94606 0.036 0.964
#> SRR1349809     2  0.0376    0.94194 0.004 0.996
#> SRR1324314     2  0.3733    0.92345 0.072 0.928
#> SRR1092444     1  0.4431    0.95248 0.908 0.092
#> SRR1382553     2  0.3274    0.93272 0.060 0.940
#> SRR1075530     2  0.0376    0.94194 0.004 0.996
#> SRR1442612     2  0.2236    0.94606 0.036 0.964
#> SRR1360056     2  0.2236    0.94606 0.036 0.964
#> SRR1078164     1  0.5629    0.93803 0.868 0.132
#> SRR1434545     2  0.0376    0.94194 0.004 0.996
#> SRR1398251     2  0.9977    0.00812 0.472 0.528
#> SRR1375866     1  0.5294    0.94859 0.880 0.120
#> SRR1091645     2  0.0376    0.94194 0.004 0.996
#> SRR1416636     2  0.2236    0.94606 0.036 0.964
#> SRR1105441     2  0.2236    0.94606 0.036 0.964
#> SRR1082496     2  0.3274    0.90560 0.060 0.940
#> SRR1315353     2  0.0000    0.94071 0.000 1.000
#> SRR1093697     2  0.3274    0.90560 0.060 0.940
#> SRR1077429     2  0.2236    0.94606 0.036 0.964
#> SRR1076120     2  0.2603    0.94306 0.044 0.956
#> SRR1074410     1  0.3274    0.96805 0.940 0.060
#> SRR1340345     2  0.0376    0.94194 0.004 0.996
#> SRR1069514     2  0.2236    0.94606 0.036 0.964
#> SRR1092636     2  0.2423    0.94488 0.040 0.960
#> SRR1365013     2  0.0376    0.94194 0.004 0.996
#> SRR1073069     1  0.8207    0.75885 0.744 0.256
#> SRR1443137     1  0.5294    0.94859 0.880 0.120
#> SRR1437143     2  0.3274    0.90560 0.060 0.940
#> SRR1091990     1  0.5178    0.95071 0.884 0.116
#> SRR820234      2  0.3274    0.90560 0.060 0.940
#> SRR1338079     1  0.3274    0.96805 0.940 0.060
#> SRR1390094     2  0.2423    0.94488 0.040 0.960
#> SRR1340721     2  0.9460    0.39635 0.364 0.636
#> SRR1335964     2  0.2423    0.94488 0.040 0.960
#> SRR1086869     2  0.2236    0.94606 0.036 0.964
#> SRR1453434     1  0.3274    0.96805 0.940 0.060
#> SRR1402261     2  0.3733    0.92590 0.072 0.928
#> SRR657809      2  0.0376    0.94194 0.004 0.996
#> SRR1093075     1  0.5294    0.94859 0.880 0.120
#> SRR1433329     1  0.5294    0.94859 0.880 0.120
#> SRR1353418     2  0.2236    0.94606 0.036 0.964
#> SRR1092913     2  0.0376    0.94194 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1335605     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1432014     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1499215     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1460409     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1097344     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1081789     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1453005     3  0.5397     0.6923 0.000 0.280 0.720
#> SRR1366985     3  0.1964     0.8627 0.056 0.000 0.944
#> SRR815280      1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1348531     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR815845      3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1471178     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1080696     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1078684     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1317751     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1435667     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1097905     1  0.6291     0.0636 0.532 0.000 0.468
#> SRR1456548     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1075126     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR813108      2  0.6168     0.2046 0.000 0.588 0.412
#> SRR1479062     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1408703     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1332360     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1098686     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1434228     1  0.4931     0.6646 0.768 0.000 0.232
#> SRR1467149     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1399113     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1476507     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1092468     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1441804     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1326100     2  0.3551     0.7852 0.000 0.868 0.132
#> SRR1398815     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1436021     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1480083     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1472863     1  0.5650     0.4768 0.688 0.000 0.312
#> SRR815542      1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1400100     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1312002     3  0.1753     0.8707 0.048 0.000 0.952
#> SRR1470253     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1414332     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1069209     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR661052      1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1308860     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1421159     3  0.4121     0.8287 0.000 0.168 0.832
#> SRR1340943     3  0.4291     0.8212 0.000 0.180 0.820
#> SRR1078855     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1478679     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1350979     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1458198     3  0.1411     0.8902 0.036 0.000 0.964
#> SRR1386910     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1465375     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1323699     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1431139     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1373964     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1455413     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1437163     3  0.6140     0.3765 0.404 0.000 0.596
#> SRR1347343     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1465480     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1489631     1  0.0747     0.9375 0.984 0.000 0.016
#> SRR1086514     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1430928     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1310939     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1344294     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1468118     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1486348     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1500089     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1441178     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1096081     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1349809     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1324314     3  0.4555     0.6652 0.200 0.000 0.800
#> SRR1092444     1  0.4399     0.7022 0.812 0.000 0.188
#> SRR1382553     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1075530     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1442612     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1360056     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1078164     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1434545     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1398251     1  0.2959     0.8325 0.900 0.000 0.100
#> SRR1375866     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1091645     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1416636     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1105441     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1082496     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1315353     3  0.3267     0.8581 0.000 0.116 0.884
#> SRR1093697     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1077429     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1076120     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1074410     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1340345     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1069514     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1092636     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1365013     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1073069     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1443137     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1437143     2  0.0000     0.9083 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR820234      2  0.6168     0.2046 0.000 0.588 0.412
#> SRR1338079     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1390094     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1340721     3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1335964     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1086869     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1453434     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1402261     3  0.4291     0.8212 0.000 0.180 0.820
#> SRR657809      3  0.4399     0.8157 0.000 0.188 0.812
#> SRR1093075     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1433329     1  0.0000     0.9550 1.000 0.000 0.000
#> SRR1353418     3  0.0000     0.9107 0.000 0.000 1.000
#> SRR1092913     3  0.4399     0.8157 0.000 0.188 0.812

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1335605     3  0.1118     0.9064 0.000 0.000 0.964 0.036
#> SRR1432014     3  0.0188     0.9083 0.000 0.000 0.996 0.004
#> SRR1499215     3  0.0817     0.9094 0.000 0.000 0.976 0.024
#> SRR1460409     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.1022     0.8075 0.000 0.000 0.032 0.968
#> SRR1081789     3  0.7687    -0.0467 0.000 0.348 0.428 0.224
#> SRR1453005     4  0.5036     0.5142 0.000 0.280 0.024 0.696
#> SRR1366985     1  0.4605     0.5980 0.664 0.000 0.336 0.000
#> SRR815280      1  0.0469     0.8859 0.988 0.000 0.000 0.012
#> SRR1348531     1  0.2011     0.8617 0.920 0.000 0.080 0.000
#> SRR815845      3  0.2081     0.8674 0.000 0.000 0.916 0.084
#> SRR1471178     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0707     0.9027 0.000 0.000 0.980 0.020
#> SRR1078684     3  0.1118     0.9064 0.000 0.000 0.964 0.036
#> SRR1317751     3  0.0707     0.8981 0.000 0.000 0.980 0.020
#> SRR1435667     3  0.1118     0.9064 0.000 0.000 0.964 0.036
#> SRR1097905     1  0.1118     0.8809 0.964 0.000 0.036 0.000
#> SRR1456548     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1075126     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR813108      2  0.3486     0.6520 0.000 0.812 0.188 0.000
#> SRR1479062     3  0.0592     0.9101 0.000 0.000 0.984 0.016
#> SRR1408703     3  0.0188     0.9083 0.000 0.000 0.996 0.004
#> SRR1332360     1  0.1767     0.8755 0.944 0.000 0.044 0.012
#> SRR1098686     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1434228     1  0.3625     0.7904 0.828 0.000 0.160 0.012
#> SRR1467149     1  0.4978     0.5251 0.612 0.000 0.384 0.004
#> SRR1399113     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.1022     0.8075 0.000 0.000 0.032 0.968
#> SRR1092468     3  0.2494     0.8679 0.048 0.000 0.916 0.036
#> SRR1441804     1  0.2011     0.8617 0.920 0.000 0.080 0.000
#> SRR1326100     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1436021     4  0.4948     0.2488 0.000 0.000 0.440 0.560
#> SRR1480083     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0817     0.8816 0.976 0.000 0.024 0.000
#> SRR815542      1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1400100     3  0.3172     0.7797 0.000 0.000 0.840 0.160
#> SRR1312002     3  0.1389     0.8740 0.048 0.000 0.952 0.000
#> SRR1470253     1  0.4843     0.5131 0.604 0.000 0.396 0.000
#> SRR1414332     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.0657     0.8860 0.984 0.000 0.004 0.012
#> SRR661052      1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1308860     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1421159     3  0.4730     0.4041 0.000 0.000 0.636 0.364
#> SRR1340943     4  0.4522     0.5749 0.000 0.000 0.320 0.680
#> SRR1078855     1  0.0188     0.8874 0.996 0.000 0.000 0.004
#> SRR1459465     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0188     0.9023 0.000 0.996 0.000 0.004
#> SRR1478679     3  0.1118     0.9064 0.000 0.000 0.964 0.036
#> SRR1350979     3  0.0188     0.9083 0.000 0.000 0.996 0.004
#> SRR1458198     1  0.4817     0.5282 0.612 0.000 0.388 0.000
#> SRR1386910     2  0.7186    -0.1689 0.000 0.444 0.136 0.420
#> SRR1465375     4  0.1940     0.8011 0.000 0.000 0.076 0.924
#> SRR1323699     3  0.0817     0.9094 0.000 0.000 0.976 0.024
#> SRR1431139     3  0.1118     0.9064 0.000 0.000 0.964 0.036
#> SRR1373964     3  0.1118     0.9064 0.000 0.000 0.964 0.036
#> SRR1455413     1  0.4817     0.5282 0.612 0.000 0.388 0.000
#> SRR1437163     1  0.0921     0.8793 0.972 0.000 0.028 0.000
#> SRR1347343     3  0.0469     0.9099 0.000 0.000 0.988 0.012
#> SRR1465480     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1086514     4  0.4105     0.6989 0.000 0.156 0.032 0.812
#> SRR1430928     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.0817     0.9097 0.000 0.000 0.976 0.024
#> SRR1344294     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.0817     0.9005 0.000 0.000 0.976 0.024
#> SRR1486348     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.1716     0.8700 0.936 0.000 0.064 0.000
#> SRR1500089     1  0.4817     0.5282 0.612 0.000 0.388 0.000
#> SRR1441178     1  0.2255     0.8653 0.920 0.000 0.068 0.012
#> SRR1381396     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1096081     3  0.0707     0.8981 0.000 0.000 0.980 0.020
#> SRR1349809     2  0.6745     0.3025 0.000 0.612 0.176 0.212
#> SRR1324314     3  0.3024     0.7502 0.148 0.000 0.852 0.000
#> SRR1092444     1  0.3172     0.8019 0.840 0.000 0.160 0.000
#> SRR1382553     3  0.1411     0.9015 0.020 0.000 0.960 0.020
#> SRR1075530     4  0.1022     0.8075 0.000 0.000 0.032 0.968
#> SRR1442612     3  0.0707     0.9101 0.000 0.000 0.980 0.020
#> SRR1360056     3  0.0000     0.9073 0.000 0.000 1.000 0.000
#> SRR1078164     1  0.2610     0.8540 0.900 0.000 0.088 0.012
#> SRR1434545     4  0.3444     0.7335 0.000 0.000 0.184 0.816
#> SRR1398251     1  0.4844     0.6377 0.688 0.000 0.300 0.012
#> SRR1375866     1  0.0469     0.8859 0.988 0.000 0.000 0.012
#> SRR1091645     4  0.1716     0.8011 0.000 0.000 0.064 0.936
#> SRR1416636     3  0.0817     0.9005 0.000 0.000 0.976 0.024
#> SRR1105441     3  0.3219     0.7743 0.000 0.000 0.836 0.164
#> SRR1082496     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.3907     0.6721 0.000 0.000 0.768 0.232
#> SRR1093697     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.0188     0.9062 0.000 0.000 0.996 0.004
#> SRR1076120     1  0.4817     0.5282 0.612 0.000 0.388 0.000
#> SRR1074410     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1340345     4  0.1022     0.8075 0.000 0.000 0.032 0.968
#> SRR1069514     3  0.2281     0.8573 0.000 0.000 0.904 0.096
#> SRR1092636     3  0.0000     0.9073 0.000 0.000 1.000 0.000
#> SRR1365013     3  0.6831     0.1517 0.000 0.112 0.536 0.352
#> SRR1073069     1  0.2542     0.8564 0.904 0.000 0.084 0.012
#> SRR1443137     1  0.2255     0.8653 0.920 0.000 0.068 0.012
#> SRR1437143     2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0469     0.8859 0.988 0.000 0.000 0.012
#> SRR820234      2  0.0000     0.9056 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1390094     3  0.1118     0.9064 0.000 0.000 0.964 0.036
#> SRR1340721     1  0.9608    -0.1269 0.312 0.300 0.268 0.120
#> SRR1335964     3  0.0336     0.9092 0.000 0.000 0.992 0.008
#> SRR1086869     3  0.0817     0.9005 0.000 0.000 0.976 0.024
#> SRR1453434     1  0.0336     0.8874 0.992 0.000 0.008 0.000
#> SRR1402261     4  0.4643     0.5269 0.000 0.000 0.344 0.656
#> SRR657809      4  0.3215     0.7589 0.000 0.092 0.032 0.876
#> SRR1093075     1  0.0188     0.8874 0.996 0.000 0.000 0.004
#> SRR1433329     1  0.2255     0.8653 0.920 0.000 0.068 0.012
#> SRR1353418     3  0.0000     0.9073 0.000 0.000 1.000 0.000
#> SRR1092913     4  0.1022     0.8075 0.000 0.000 0.032 0.968

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1335605     3  0.4946     0.8527 0.000 0.000 0.664 0.060 0.276
#> SRR1432014     3  0.4603     0.8312 0.000 0.000 0.668 0.032 0.300
#> SRR1499215     3  0.4583     0.8327 0.000 0.000 0.672 0.032 0.296
#> SRR1460409     1  0.0404     0.8675 0.988 0.000 0.012 0.000 0.000
#> SRR1086441     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1097344     4  0.0510     0.8463 0.000 0.000 0.000 0.984 0.016
#> SRR1081789     3  0.5211     0.6630 0.000 0.004 0.664 0.256 0.076
#> SRR1453005     4  0.2392     0.7655 0.000 0.104 0.004 0.888 0.004
#> SRR1366985     1  0.4517     0.6758 0.708 0.000 0.016 0.016 0.260
#> SRR815280      1  0.2929     0.8287 0.820 0.000 0.180 0.000 0.000
#> SRR1348531     1  0.4043     0.7272 0.756 0.000 0.012 0.012 0.220
#> SRR815845      3  0.5088     0.8464 0.000 0.000 0.668 0.080 0.252
#> SRR1471178     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1080696     5  0.0162     0.8440 0.000 0.000 0.000 0.004 0.996
#> SRR1078684     3  0.4946     0.8527 0.000 0.000 0.664 0.060 0.276
#> SRR1317751     5  0.0510     0.8336 0.000 0.000 0.000 0.016 0.984
#> SRR1435667     3  0.4885     0.8522 0.000 0.000 0.668 0.056 0.276
#> SRR1097905     1  0.0566     0.8674 0.984 0.000 0.012 0.000 0.004
#> SRR1456548     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1075126     1  0.0162     0.8681 0.996 0.000 0.004 0.000 0.000
#> SRR813108      2  0.5128     0.3241 0.000 0.580 0.380 0.036 0.004
#> SRR1479062     5  0.2504     0.7676 0.000 0.000 0.064 0.040 0.896
#> SRR1408703     5  0.0703     0.8406 0.000 0.000 0.000 0.024 0.976
#> SRR1332360     1  0.3730     0.7776 0.712 0.000 0.288 0.000 0.000
#> SRR1098686     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1434228     1  0.4639     0.7766 0.708 0.000 0.236 0.000 0.056
#> SRR1467149     1  0.5847     0.4304 0.560 0.000 0.036 0.040 0.364
#> SRR1399113     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0510     0.8463 0.000 0.000 0.000 0.984 0.016
#> SRR1092468     1  0.4844     0.6497 0.692 0.000 0.008 0.044 0.256
#> SRR1441804     1  0.3512     0.7852 0.816 0.000 0.012 0.012 0.160
#> SRR1326100     2  0.0451     0.9230 0.000 0.988 0.004 0.008 0.000
#> SRR1398815     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1436021     4  0.5650    -0.2735 0.000 0.000 0.456 0.468 0.076
#> SRR1480083     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.2756     0.8231 0.880 0.000 0.012 0.012 0.096
#> SRR815542      1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1400100     3  0.5372     0.7759 0.000 0.000 0.668 0.180 0.152
#> SRR1312002     5  0.6854     0.0802 0.224 0.000 0.268 0.016 0.492
#> SRR1470253     1  0.4528     0.6323 0.680 0.000 0.012 0.012 0.296
#> SRR1414332     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1069209     1  0.3305     0.8122 0.776 0.000 0.224 0.000 0.000
#> SRR661052      1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1308860     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1421159     3  0.5313     0.4404 0.000 0.000 0.556 0.388 0.056
#> SRR1340943     4  0.4109     0.6392 0.004 0.000 0.036 0.768 0.192
#> SRR1078855     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR1459465     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0162     0.9279 0.000 0.996 0.000 0.004 0.000
#> SRR1478679     3  0.4924     0.8528 0.000 0.000 0.668 0.060 0.272
#> SRR1350979     5  0.4942    -0.2860 0.000 0.000 0.432 0.028 0.540
#> SRR1458198     1  0.5296     0.6571 0.680 0.000 0.048 0.028 0.244
#> SRR1386910     4  0.7626    -0.0819 0.000 0.192 0.352 0.392 0.064
#> SRR1465375     4  0.1043     0.8342 0.000 0.000 0.000 0.960 0.040
#> SRR1323699     3  0.4526     0.8248 0.000 0.000 0.672 0.028 0.300
#> SRR1431139     3  0.4677     0.8337 0.000 0.000 0.664 0.036 0.300
#> SRR1373964     3  0.4844     0.8504 0.000 0.000 0.668 0.052 0.280
#> SRR1455413     1  0.4752     0.6699 0.700 0.000 0.028 0.016 0.256
#> SRR1437163     1  0.0404     0.8652 0.988 0.000 0.000 0.012 0.000
#> SRR1347343     3  0.4708     0.8406 0.000 0.000 0.668 0.040 0.292
#> SRR1465480     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1086514     4  0.1087     0.8429 0.000 0.008 0.008 0.968 0.016
#> SRR1430928     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1310939     5  0.1041     0.8337 0.000 0.000 0.004 0.032 0.964
#> SRR1344294     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1468118     5  0.0703     0.8347 0.000 0.000 0.000 0.024 0.976
#> SRR1486348     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.1877     0.8497 0.924 0.000 0.012 0.000 0.064
#> SRR1500089     5  0.2758     0.7994 0.032 0.000 0.048 0.024 0.896
#> SRR1441178     1  0.3480     0.7998 0.752 0.000 0.248 0.000 0.000
#> SRR1381396     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1096081     5  0.0510     0.8336 0.000 0.000 0.000 0.016 0.984
#> SRR1349809     2  0.5692     0.3947 0.000 0.640 0.024 0.264 0.072
#> SRR1324314     1  0.5758     0.5591 0.636 0.000 0.128 0.008 0.228
#> SRR1092444     1  0.4074     0.7247 0.752 0.000 0.012 0.012 0.224
#> SRR1382553     3  0.5136     0.7986 0.032 0.000 0.676 0.028 0.264
#> SRR1075530     4  0.0510     0.8463 0.000 0.000 0.000 0.984 0.016
#> SRR1442612     3  0.4756     0.8444 0.000 0.000 0.668 0.044 0.288
#> SRR1360056     5  0.1921     0.8094 0.044 0.000 0.012 0.012 0.932
#> SRR1078164     1  0.4541     0.7819 0.752 0.000 0.112 0.000 0.136
#> SRR1434545     4  0.2582     0.7936 0.004 0.000 0.024 0.892 0.080
#> SRR1398251     1  0.4380     0.7781 0.708 0.000 0.260 0.000 0.032
#> SRR1375866     1  0.2852     0.8320 0.828 0.000 0.172 0.000 0.000
#> SRR1091645     4  0.0703     0.8440 0.000 0.000 0.000 0.976 0.024
#> SRR1416636     5  0.0000     0.8430 0.000 0.000 0.000 0.000 1.000
#> SRR1105441     3  0.5379     0.7860 0.000 0.000 0.668 0.168 0.164
#> SRR1082496     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     3  0.5441     0.5753 0.000 0.000 0.596 0.324 0.080
#> SRR1093697     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.0693     0.8440 0.000 0.000 0.008 0.012 0.980
#> SRR1076120     5  0.2581     0.8081 0.020 0.000 0.048 0.028 0.904
#> SRR1074410     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1340345     4  0.0510     0.8463 0.000 0.000 0.000 0.984 0.016
#> SRR1069514     3  0.5283     0.8183 0.000 0.000 0.672 0.124 0.204
#> SRR1092636     5  0.4547    -0.0847 0.000 0.000 0.400 0.012 0.588
#> SRR1365013     3  0.5511     0.5400 0.000 0.000 0.576 0.344 0.080
#> SRR1073069     1  0.3884     0.7752 0.708 0.000 0.288 0.000 0.004
#> SRR1443137     1  0.3534     0.7957 0.744 0.000 0.256 0.000 0.000
#> SRR1437143     2  0.0000     0.9303 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.3003     0.8265 0.812 0.000 0.188 0.000 0.000
#> SRR820234      2  0.1251     0.8954 0.000 0.956 0.008 0.036 0.000
#> SRR1338079     1  0.0000     0.8682 1.000 0.000 0.000 0.000 0.000
#> SRR1390094     3  0.4983     0.8490 0.000 0.000 0.664 0.064 0.272
#> SRR1340721     1  0.7739     0.3688 0.488 0.208 0.000 0.176 0.128
#> SRR1335964     5  0.0794     0.8384 0.000 0.000 0.000 0.028 0.972
#> SRR1086869     5  0.0794     0.8314 0.000 0.000 0.000 0.028 0.972
#> SRR1453434     1  0.0404     0.8675 0.988 0.000 0.012 0.000 0.000
#> SRR1402261     4  0.4210     0.6171 0.004 0.000 0.036 0.756 0.204
#> SRR657809      4  0.0833     0.8450 0.000 0.004 0.004 0.976 0.016
#> SRR1093075     1  0.0703     0.8668 0.976 0.000 0.024 0.000 0.000
#> SRR1433329     1  0.3707     0.7800 0.716 0.000 0.284 0.000 0.000
#> SRR1353418     5  0.0807     0.8429 0.000 0.000 0.012 0.012 0.976
#> SRR1092913     4  0.0510     0.8463 0.000 0.000 0.000 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1335605     3  0.0260    0.84579 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR1432014     3  0.1141    0.81417 0.000 0.000 0.948 0.000 0.052 0.000
#> SRR1499215     3  0.0260    0.84616 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1460409     1  0.0146    0.88841 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1086441     1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1097344     4  0.3606    0.83414 0.000 0.000 0.016 0.728 0.000 0.256
#> SRR1081789     6  0.4704    0.43186 0.000 0.000 0.468 0.044 0.000 0.488
#> SRR1453005     6  0.5813    0.45896 0.000 0.192 0.028 0.188 0.000 0.592
#> SRR1366985     1  0.6237    0.08064 0.400 0.000 0.360 0.004 0.004 0.232
#> SRR815280      1  0.1701    0.87364 0.920 0.000 0.000 0.000 0.008 0.072
#> SRR1348531     1  0.1167    0.88293 0.960 0.000 0.008 0.020 0.012 0.000
#> SRR815845      3  0.0146    0.84794 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1471178     1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1080696     5  0.2219    0.78114 0.000 0.000 0.136 0.000 0.864 0.000
#> SRR1078684     3  0.0146    0.84794 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1317751     5  0.0777    0.83879 0.000 0.000 0.024 0.004 0.972 0.000
#> SRR1435667     3  0.0000    0.84826 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097905     1  0.0547    0.88454 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR1456548     1  0.0363    0.88667 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1075126     1  0.0146    0.88793 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR813108      6  0.5227   -0.00858 0.000 0.452 0.092 0.000 0.000 0.456
#> SRR1479062     5  0.3023    0.71641 0.000 0.000 0.212 0.004 0.784 0.000
#> SRR1408703     5  0.1124    0.83834 0.000 0.000 0.036 0.008 0.956 0.000
#> SRR1332360     1  0.3266    0.75244 0.728 0.000 0.000 0.000 0.000 0.272
#> SRR1098686     1  0.0146    0.88793 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1434228     1  0.3586    0.74589 0.720 0.000 0.012 0.000 0.000 0.268
#> SRR1467149     5  0.5998    0.50145 0.172 0.000 0.020 0.280 0.528 0.000
#> SRR1399113     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.3606    0.83414 0.000 0.000 0.016 0.728 0.000 0.256
#> SRR1092468     1  0.5137    0.60743 0.664 0.000 0.024 0.212 0.100 0.000
#> SRR1441804     1  0.1434    0.87199 0.940 0.000 0.000 0.048 0.012 0.000
#> SRR1326100     2  0.3789    0.25912 0.000 0.584 0.000 0.000 0.000 0.416
#> SRR1398815     1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1436021     6  0.5156    0.68346 0.000 0.000 0.232 0.152 0.000 0.616
#> SRR1480083     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.0806    0.88505 0.972 0.000 0.020 0.000 0.000 0.008
#> SRR815542      1  0.0146    0.88793 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1400100     3  0.4234   -0.31760 0.000 0.000 0.544 0.016 0.000 0.440
#> SRR1312002     3  0.6096    0.28283 0.252 0.000 0.504 0.004 0.008 0.232
#> SRR1470253     1  0.4940    0.72449 0.708 0.000 0.048 0.004 0.056 0.184
#> SRR1414332     1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1069209     1  0.2883    0.79893 0.788 0.000 0.000 0.000 0.000 0.212
#> SRR661052      1  0.0000    0.88798 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1308860     1  0.0146    0.88793 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1421159     6  0.4791    0.69190 0.000 0.000 0.244 0.104 0.000 0.652
#> SRR1340943     4  0.1230    0.65737 0.008 0.000 0.028 0.956 0.008 0.000
#> SRR1078855     1  0.1007    0.88345 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1459465     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.0146    0.84794 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1350979     3  0.3464    0.49644 0.000 0.000 0.688 0.000 0.312 0.000
#> SRR1458198     1  0.4245    0.62762 0.684 0.000 0.020 0.280 0.016 0.000
#> SRR1386910     6  0.5589    0.68966 0.000 0.044 0.212 0.112 0.000 0.632
#> SRR1465375     4  0.5030    0.50164 0.000 0.000 0.096 0.588 0.000 0.316
#> SRR1323699     3  0.0260    0.84616 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1431139     3  0.1262    0.82332 0.020 0.000 0.956 0.016 0.008 0.000
#> SRR1373964     3  0.0000    0.84826 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1455413     1  0.4547    0.63846 0.692 0.000 0.020 0.244 0.044 0.000
#> SRR1437163     1  0.0405    0.88764 0.988 0.000 0.008 0.004 0.000 0.000
#> SRR1347343     3  0.0146    0.84739 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1465480     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.0363    0.88667 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1086514     6  0.3816    0.38719 0.000 0.000 0.032 0.240 0.000 0.728
#> SRR1430928     1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1310939     5  0.3275    0.79330 0.008 0.000 0.032 0.140 0.820 0.000
#> SRR1344294     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000    0.88798 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1468118     5  0.0632    0.83949 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1486348     1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1488770     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.0000    0.88798 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.1462    0.86877 0.936 0.000 0.000 0.056 0.008 0.000
#> SRR1500089     5  0.4962    0.64620 0.060 0.000 0.020 0.280 0.640 0.000
#> SRR1441178     1  0.2178    0.84748 0.868 0.000 0.000 0.000 0.000 0.132
#> SRR1381396     1  0.0260    0.88839 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1096081     5  0.0777    0.83879 0.000 0.000 0.024 0.004 0.972 0.000
#> SRR1349809     2  0.6102    0.20376 0.000 0.568 0.212 0.044 0.000 0.176
#> SRR1324314     1  0.5829    0.15691 0.476 0.000 0.372 0.004 0.004 0.144
#> SRR1092444     1  0.3134    0.78872 0.824 0.000 0.016 0.148 0.012 0.000
#> SRR1382553     3  0.2686    0.73905 0.024 0.000 0.868 0.000 0.008 0.100
#> SRR1075530     4  0.3905    0.77472 0.000 0.000 0.016 0.668 0.000 0.316
#> SRR1442612     3  0.0000    0.84826 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1360056     5  0.4345    0.68665 0.000 0.000 0.176 0.004 0.728 0.092
#> SRR1078164     1  0.2609    0.85134 0.868 0.000 0.008 0.004 0.008 0.112
#> SRR1434545     4  0.2959    0.76844 0.008 0.000 0.024 0.844 0.000 0.124
#> SRR1398251     1  0.3674    0.74234 0.716 0.000 0.016 0.000 0.000 0.268
#> SRR1375866     1  0.1327    0.87824 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1091645     4  0.3766    0.83034 0.000 0.000 0.024 0.720 0.000 0.256
#> SRR1416636     5  0.0713    0.83958 0.000 0.000 0.028 0.000 0.972 0.000
#> SRR1105441     3  0.0806    0.82860 0.000 0.000 0.972 0.020 0.000 0.008
#> SRR1082496     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     6  0.4738    0.66881 0.000 0.000 0.336 0.064 0.000 0.600
#> SRR1093697     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.0891    0.83940 0.000 0.000 0.024 0.008 0.968 0.000
#> SRR1076120     5  0.4245    0.68924 0.016 0.000 0.020 0.280 0.684 0.000
#> SRR1074410     1  0.0260    0.88839 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1340345     4  0.3606    0.83414 0.000 0.000 0.016 0.728 0.000 0.256
#> SRR1069514     3  0.0146    0.84794 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1092636     3  0.3975    0.32060 0.000 0.000 0.600 0.008 0.392 0.000
#> SRR1365013     6  0.4929    0.68823 0.000 0.000 0.300 0.092 0.000 0.608
#> SRR1073069     1  0.3512    0.74565 0.720 0.000 0.008 0.000 0.000 0.272
#> SRR1443137     1  0.2178    0.84748 0.868 0.000 0.000 0.000 0.000 0.132
#> SRR1437143     2  0.0000    0.88063 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.2092    0.85139 0.876 0.000 0.000 0.000 0.000 0.124
#> SRR820234      2  0.4396    0.07582 0.000 0.520 0.024 0.000 0.000 0.456
#> SRR1338079     1  0.0458    0.88853 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1390094     3  0.1749    0.79459 0.016 0.000 0.932 0.004 0.004 0.044
#> SRR1340721     1  0.7378    0.04583 0.456 0.196 0.112 0.016 0.000 0.220
#> SRR1335964     5  0.3014    0.79778 0.000 0.000 0.036 0.132 0.832 0.000
#> SRR1086869     5  0.0777    0.83879 0.000 0.000 0.024 0.004 0.972 0.000
#> SRR1453434     1  0.0692    0.88640 0.976 0.000 0.000 0.020 0.004 0.000
#> SRR1402261     4  0.1679    0.63589 0.028 0.000 0.028 0.936 0.008 0.000
#> SRR657809      6  0.4707    0.50424 0.000 0.000 0.092 0.252 0.000 0.656
#> SRR1093075     1  0.0922    0.88647 0.968 0.000 0.000 0.004 0.004 0.024
#> SRR1433329     1  0.3076    0.77922 0.760 0.000 0.000 0.000 0.000 0.240
#> SRR1353418     5  0.4704    0.66879 0.000 0.000 0.160 0.004 0.696 0.140
#> SRR1092913     4  0.3606    0.83414 0.000 0.000 0.016 0.728 0.000 0.256

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.848           0.906       0.962         0.4689 0.530   0.530
#> 3 3 0.799           0.832       0.929         0.3950 0.718   0.512
#> 4 4 0.846           0.850       0.932         0.1163 0.866   0.640
#> 5 5 0.704           0.569       0.760         0.0689 0.880   0.612
#> 6 6 0.792           0.738       0.872         0.0515 0.857   0.477

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1   0.000      0.964 1.000 0.000
#> SRR1335605     2   0.973      0.348 0.404 0.596
#> SRR1432014     2   0.839      0.651 0.268 0.732
#> SRR1499215     1   0.118      0.949 0.984 0.016
#> SRR1460409     1   0.000      0.964 1.000 0.000
#> SRR1086441     1   0.000      0.964 1.000 0.000
#> SRR1097344     2   0.000      0.950 0.000 1.000
#> SRR1081789     2   0.000      0.950 0.000 1.000
#> SRR1453005     2   0.000      0.950 0.000 1.000
#> SRR1366985     1   0.000      0.964 1.000 0.000
#> SRR815280      1   0.000      0.964 1.000 0.000
#> SRR1348531     1   0.000      0.964 1.000 0.000
#> SRR815845      2   0.000      0.950 0.000 1.000
#> SRR1471178     1   0.000      0.964 1.000 0.000
#> SRR1080696     1   0.000      0.964 1.000 0.000
#> SRR1078684     2   0.949      0.444 0.368 0.632
#> SRR1317751     1   0.000      0.964 1.000 0.000
#> SRR1435667     2   0.000      0.950 0.000 1.000
#> SRR1097905     1   0.000      0.964 1.000 0.000
#> SRR1456548     1   0.000      0.964 1.000 0.000
#> SRR1075126     1   0.000      0.964 1.000 0.000
#> SRR813108      2   0.000      0.950 0.000 1.000
#> SRR1479062     1   0.949      0.398 0.632 0.368
#> SRR1408703     1   0.000      0.964 1.000 0.000
#> SRR1332360     1   0.000      0.964 1.000 0.000
#> SRR1098686     1   0.000      0.964 1.000 0.000
#> SRR1434228     1   0.000      0.964 1.000 0.000
#> SRR1467149     1   0.000      0.964 1.000 0.000
#> SRR1399113     2   0.000      0.950 0.000 1.000
#> SRR1476507     2   0.000      0.950 0.000 1.000
#> SRR1092468     1   0.000      0.964 1.000 0.000
#> SRR1441804     1   0.000      0.964 1.000 0.000
#> SRR1326100     2   0.000      0.950 0.000 1.000
#> SRR1398815     1   0.000      0.964 1.000 0.000
#> SRR1436021     2   0.000      0.950 0.000 1.000
#> SRR1480083     2   0.000      0.950 0.000 1.000
#> SRR1472863     1   0.000      0.964 1.000 0.000
#> SRR815542      1   0.000      0.964 1.000 0.000
#> SRR1400100     2   0.000      0.950 0.000 1.000
#> SRR1312002     1   0.000      0.964 1.000 0.000
#> SRR1470253     1   0.000      0.964 1.000 0.000
#> SRR1414332     1   0.000      0.964 1.000 0.000
#> SRR1069209     1   0.000      0.964 1.000 0.000
#> SRR661052      1   0.000      0.964 1.000 0.000
#> SRR1308860     1   0.000      0.964 1.000 0.000
#> SRR1421159     2   0.000      0.950 0.000 1.000
#> SRR1340943     1   0.000      0.964 1.000 0.000
#> SRR1078855     1   0.000      0.964 1.000 0.000
#> SRR1459465     2   0.000      0.950 0.000 1.000
#> SRR816818      2   0.000      0.950 0.000 1.000
#> SRR1478679     2   0.563      0.835 0.132 0.868
#> SRR1350979     1   0.975      0.287 0.592 0.408
#> SRR1458198     1   0.000      0.964 1.000 0.000
#> SRR1386910     2   0.000      0.950 0.000 1.000
#> SRR1465375     2   0.000      0.950 0.000 1.000
#> SRR1323699     1   0.706      0.739 0.808 0.192
#> SRR1431139     1   0.000      0.964 1.000 0.000
#> SRR1373964     2   0.653      0.796 0.168 0.832
#> SRR1455413     1   0.000      0.964 1.000 0.000
#> SRR1437163     1   0.000      0.964 1.000 0.000
#> SRR1347343     2   0.861      0.623 0.284 0.716
#> SRR1465480     2   0.000      0.950 0.000 1.000
#> SRR1489631     1   0.000      0.964 1.000 0.000
#> SRR1086514     2   0.000      0.950 0.000 1.000
#> SRR1430928     1   0.000      0.964 1.000 0.000
#> SRR1310939     1   0.993      0.143 0.548 0.452
#> SRR1344294     2   0.000      0.950 0.000 1.000
#> SRR1099402     1   0.000      0.964 1.000 0.000
#> SRR1468118     1   0.000      0.964 1.000 0.000
#> SRR1486348     1   0.000      0.964 1.000 0.000
#> SRR1488770     2   0.000      0.950 0.000 1.000
#> SRR1083732     1   0.000      0.964 1.000 0.000
#> SRR1456611     2   0.000      0.950 0.000 1.000
#> SRR1080318     1   0.000      0.964 1.000 0.000
#> SRR1500089     1   0.000      0.964 1.000 0.000
#> SRR1441178     1   0.000      0.964 1.000 0.000
#> SRR1381396     1   0.000      0.964 1.000 0.000
#> SRR1096081     1   0.000      0.964 1.000 0.000
#> SRR1349809     2   0.000      0.950 0.000 1.000
#> SRR1324314     1   0.000      0.964 1.000 0.000
#> SRR1092444     1   0.000      0.964 1.000 0.000
#> SRR1382553     1   0.000      0.964 1.000 0.000
#> SRR1075530     2   0.000      0.950 0.000 1.000
#> SRR1442612     2   0.662      0.791 0.172 0.828
#> SRR1360056     1   0.000      0.964 1.000 0.000
#> SRR1078164     1   0.000      0.964 1.000 0.000
#> SRR1434545     1   0.833      0.625 0.736 0.264
#> SRR1398251     1   0.000      0.964 1.000 0.000
#> SRR1375866     1   0.000      0.964 1.000 0.000
#> SRR1091645     2   0.000      0.950 0.000 1.000
#> SRR1416636     1   0.000      0.964 1.000 0.000
#> SRR1105441     2   0.000      0.950 0.000 1.000
#> SRR1082496     2   0.000      0.950 0.000 1.000
#> SRR1315353     2   0.000      0.950 0.000 1.000
#> SRR1093697     2   0.000      0.950 0.000 1.000
#> SRR1077429     1   0.000      0.964 1.000 0.000
#> SRR1076120     1   0.000      0.964 1.000 0.000
#> SRR1074410     1   0.000      0.964 1.000 0.000
#> SRR1340345     2   0.000      0.950 0.000 1.000
#> SRR1069514     2   0.000      0.950 0.000 1.000
#> SRR1092636     1   0.000      0.964 1.000 0.000
#> SRR1365013     2   0.000      0.950 0.000 1.000
#> SRR1073069     1   0.000      0.964 1.000 0.000
#> SRR1443137     1   0.000      0.964 1.000 0.000
#> SRR1437143     2   0.000      0.950 0.000 1.000
#> SRR1091990     1   0.000      0.964 1.000 0.000
#> SRR820234      2   0.000      0.950 0.000 1.000
#> SRR1338079     1   0.000      0.964 1.000 0.000
#> SRR1390094     1   0.988      0.199 0.564 0.436
#> SRR1340721     2   0.722      0.755 0.200 0.800
#> SRR1335964     1   0.917      0.484 0.668 0.332
#> SRR1086869     1   0.000      0.964 1.000 0.000
#> SRR1453434     1   0.000      0.964 1.000 0.000
#> SRR1402261     1   0.000      0.964 1.000 0.000
#> SRR657809      2   0.000      0.950 0.000 1.000
#> SRR1093075     1   0.000      0.964 1.000 0.000
#> SRR1433329     1   0.000      0.964 1.000 0.000
#> SRR1353418     1   0.000      0.964 1.000 0.000
#> SRR1092913     2   0.000      0.950 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1335605     2  0.5036     0.8022 0.048 0.832 0.120
#> SRR1432014     3  0.0892     0.8547 0.000 0.020 0.980
#> SRR1499215     1  0.7388     0.3452 0.600 0.044 0.356
#> SRR1460409     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1097344     3  0.3192     0.7852 0.000 0.112 0.888
#> SRR1081789     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1453005     2  0.0892     0.9195 0.000 0.980 0.020
#> SRR1366985     1  0.0892     0.9389 0.980 0.000 0.020
#> SRR815280      1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1348531     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR815845      3  0.1289     0.8506 0.000 0.032 0.968
#> SRR1471178     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1080696     3  0.0424     0.8592 0.008 0.000 0.992
#> SRR1078684     3  0.9649     0.0326 0.208 0.388 0.404
#> SRR1317751     3  0.0424     0.8592 0.008 0.000 0.992
#> SRR1435667     3  0.1411     0.8489 0.000 0.036 0.964
#> SRR1097905     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1456548     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1075126     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR813108      2  0.3412     0.8256 0.000 0.876 0.124
#> SRR1479062     3  0.0000     0.8572 0.000 0.000 1.000
#> SRR1408703     3  0.0424     0.8592 0.008 0.000 0.992
#> SRR1332360     1  0.0237     0.9517 0.996 0.000 0.004
#> SRR1098686     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1434228     1  0.0237     0.9517 0.996 0.000 0.004
#> SRR1467149     3  0.5591     0.5663 0.304 0.000 0.696
#> SRR1399113     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1476507     3  0.2796     0.8035 0.000 0.092 0.908
#> SRR1092468     1  0.1643     0.9162 0.956 0.000 0.044
#> SRR1441804     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1326100     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1398815     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1436021     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1480083     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1472863     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR815542      1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1400100     3  0.3267     0.7914 0.000 0.116 0.884
#> SRR1312002     1  0.6274     0.1331 0.544 0.000 0.456
#> SRR1470253     1  0.5363     0.6009 0.724 0.000 0.276
#> SRR1414332     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1069209     1  0.0237     0.9517 0.996 0.000 0.004
#> SRR661052      1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1308860     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1421159     2  0.5706     0.5359 0.000 0.680 0.320
#> SRR1340943     3  0.5138     0.6490 0.252 0.000 0.748
#> SRR1078855     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1478679     2  0.1620     0.9101 0.024 0.964 0.012
#> SRR1350979     3  0.0424     0.8592 0.008 0.000 0.992
#> SRR1458198     3  0.6274     0.2044 0.456 0.000 0.544
#> SRR1386910     2  0.4002     0.7884 0.000 0.840 0.160
#> SRR1465375     2  0.0424     0.9256 0.000 0.992 0.008
#> SRR1323699     3  0.7250     0.3061 0.396 0.032 0.572
#> SRR1431139     1  0.6373     0.2788 0.588 0.004 0.408
#> SRR1373964     3  0.6769     0.3276 0.016 0.392 0.592
#> SRR1455413     1  0.6192     0.2041 0.580 0.000 0.420
#> SRR1437163     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1347343     3  0.1411     0.8489 0.000 0.036 0.964
#> SRR1465480     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1489631     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1086514     2  0.0747     0.9212 0.000 0.984 0.016
#> SRR1430928     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1310939     3  0.0000     0.8572 0.000 0.000 1.000
#> SRR1344294     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1468118     3  0.0000     0.8572 0.000 0.000 1.000
#> SRR1486348     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1500089     3  0.0592     0.8567 0.012 0.000 0.988
#> SRR1441178     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1096081     3  0.0424     0.8592 0.008 0.000 0.992
#> SRR1349809     2  0.1163     0.9105 0.028 0.972 0.000
#> SRR1324314     1  0.0592     0.9459 0.988 0.000 0.012
#> SRR1092444     1  0.0237     0.9510 0.996 0.000 0.004
#> SRR1382553     1  0.0592     0.9459 0.988 0.000 0.012
#> SRR1075530     3  0.5497     0.5336 0.000 0.292 0.708
#> SRR1442612     3  0.0892     0.8547 0.000 0.020 0.980
#> SRR1360056     3  0.1411     0.8507 0.036 0.000 0.964
#> SRR1078164     1  0.0237     0.9517 0.996 0.000 0.004
#> SRR1434545     3  0.3116     0.7958 0.108 0.000 0.892
#> SRR1398251     1  0.0892     0.9395 0.980 0.000 0.020
#> SRR1375866     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1091645     3  0.0237     0.8565 0.000 0.004 0.996
#> SRR1416636     3  0.0424     0.8592 0.008 0.000 0.992
#> SRR1105441     3  0.1753     0.8433 0.000 0.048 0.952
#> SRR1082496     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1315353     3  0.6154     0.2906 0.000 0.408 0.592
#> SRR1093697     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1077429     3  0.0424     0.8592 0.008 0.000 0.992
#> SRR1076120     3  0.0592     0.8567 0.012 0.000 0.988
#> SRR1074410     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1340345     2  0.6180     0.2989 0.000 0.584 0.416
#> SRR1069514     2  0.2878     0.8555 0.000 0.904 0.096
#> SRR1092636     3  0.1411     0.8507 0.036 0.000 0.964
#> SRR1365013     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1073069     1  0.0237     0.9517 0.996 0.000 0.004
#> SRR1443137     1  0.0237     0.9517 0.996 0.000 0.004
#> SRR1437143     2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR820234      2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1338079     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1390094     3  0.4834     0.7016 0.204 0.004 0.792
#> SRR1340721     2  0.4974     0.6656 0.236 0.764 0.000
#> SRR1335964     3  0.0000     0.8572 0.000 0.000 1.000
#> SRR1086869     3  0.0000     0.8572 0.000 0.000 1.000
#> SRR1453434     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1402261     3  0.5882     0.4877 0.348 0.000 0.652
#> SRR657809      2  0.0000     0.9292 0.000 1.000 0.000
#> SRR1093075     1  0.0000     0.9536 1.000 0.000 0.000
#> SRR1433329     1  0.0237     0.9517 0.996 0.000 0.004
#> SRR1353418     3  0.1411     0.8507 0.036 0.000 0.964
#> SRR1092913     2  0.4605     0.7443 0.000 0.796 0.204

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1335605     2  0.4315    0.74925 0.008 0.800 0.172 0.020
#> SRR1432014     3  0.0000    0.90065 0.000 0.000 1.000 0.000
#> SRR1499215     3  0.0921    0.89446 0.028 0.000 0.972 0.000
#> SRR1460409     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.0707    0.90608 0.000 0.000 0.020 0.980
#> SRR1081789     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1453005     2  0.2466    0.84005 0.000 0.900 0.004 0.096
#> SRR1366985     3  0.3311    0.76018 0.172 0.000 0.828 0.000
#> SRR815280      1  0.0469    0.95472 0.988 0.000 0.012 0.000
#> SRR1348531     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR815845      3  0.0927    0.89883 0.000 0.008 0.976 0.016
#> SRR1471178     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0707    0.89873 0.000 0.000 0.980 0.020
#> SRR1078684     3  0.6050    0.62481 0.112 0.212 0.676 0.000
#> SRR1317751     3  0.1211    0.89093 0.000 0.000 0.960 0.040
#> SRR1435667     3  0.0707    0.89603 0.000 0.020 0.980 0.000
#> SRR1097905     1  0.0817    0.94766 0.976 0.000 0.000 0.024
#> SRR1456548     1  0.0469    0.95548 0.988 0.000 0.000 0.012
#> SRR1075126     1  0.0188    0.95848 0.996 0.000 0.000 0.004
#> SRR813108      2  0.2530    0.82237 0.000 0.888 0.112 0.000
#> SRR1479062     3  0.2469    0.84189 0.000 0.000 0.892 0.108
#> SRR1408703     3  0.0817    0.89786 0.000 0.000 0.976 0.024
#> SRR1332360     1  0.0592    0.95277 0.984 0.000 0.016 0.000
#> SRR1098686     1  0.0336    0.95739 0.992 0.000 0.000 0.008
#> SRR1434228     1  0.3569    0.74963 0.804 0.000 0.196 0.000
#> SRR1467149     4  0.0000    0.90390 0.000 0.000 0.000 1.000
#> SRR1399113     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.0592    0.90695 0.000 0.000 0.016 0.984
#> SRR1092468     4  0.4250    0.60670 0.276 0.000 0.000 0.724
#> SRR1441804     1  0.0336    0.95739 0.992 0.000 0.000 0.008
#> SRR1326100     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0336    0.95739 0.992 0.000 0.000 0.008
#> SRR1436021     2  0.0817    0.88737 0.000 0.976 0.000 0.024
#> SRR1480083     2  0.0188    0.89324 0.000 0.996 0.004 0.000
#> SRR1472863     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR815542      1  0.0469    0.95548 0.988 0.000 0.000 0.012
#> SRR1400100     3  0.0927    0.89883 0.000 0.008 0.976 0.016
#> SRR1312002     3  0.1022    0.89314 0.032 0.000 0.968 0.000
#> SRR1470253     3  0.1118    0.89226 0.036 0.000 0.964 0.000
#> SRR1414332     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.0817    0.94740 0.976 0.000 0.024 0.000
#> SRR661052      1  0.0336    0.95739 0.992 0.000 0.000 0.008
#> SRR1308860     1  0.0707    0.95072 0.980 0.000 0.000 0.020
#> SRR1421159     2  0.5143    0.22139 0.000 0.540 0.004 0.456
#> SRR1340943     4  0.0188    0.90583 0.000 0.000 0.004 0.996
#> SRR1078855     1  0.0469    0.95472 0.988 0.000 0.012 0.000
#> SRR1459465     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1478679     2  0.3718    0.76249 0.012 0.820 0.168 0.000
#> SRR1350979     3  0.0000    0.90065 0.000 0.000 1.000 0.000
#> SRR1458198     4  0.0469    0.90689 0.000 0.000 0.012 0.988
#> SRR1386910     2  0.2089    0.86941 0.000 0.932 0.020 0.048
#> SRR1465375     2  0.4468    0.70370 0.016 0.752 0.000 0.232
#> SRR1323699     3  0.1118    0.89111 0.036 0.000 0.964 0.000
#> SRR1431139     3  0.4976    0.50845 0.340 0.004 0.652 0.004
#> SRR1373964     3  0.0895    0.89583 0.004 0.020 0.976 0.000
#> SRR1455413     4  0.5060    0.29550 0.412 0.000 0.004 0.584
#> SRR1437163     1  0.0707    0.95072 0.980 0.000 0.000 0.020
#> SRR1347343     3  0.0779    0.89748 0.016 0.004 0.980 0.000
#> SRR1465480     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0707    0.95072 0.980 0.000 0.000 0.020
#> SRR1086514     2  0.4522    0.57581 0.000 0.680 0.000 0.320
#> SRR1430928     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1310939     4  0.1118    0.89527 0.000 0.000 0.036 0.964
#> SRR1344294     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1468118     4  0.4817    0.35475 0.000 0.000 0.388 0.612
#> SRR1486348     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0592    0.95311 0.984 0.000 0.000 0.016
#> SRR1500089     4  0.0707    0.90608 0.000 0.000 0.020 0.980
#> SRR1441178     1  0.0469    0.95472 0.988 0.000 0.012 0.000
#> SRR1381396     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1096081     3  0.1022    0.89478 0.000 0.000 0.968 0.032
#> SRR1349809     2  0.1174    0.88254 0.012 0.968 0.000 0.020
#> SRR1324314     1  0.4679    0.43579 0.648 0.000 0.352 0.000
#> SRR1092444     1  0.0921    0.94516 0.972 0.000 0.000 0.028
#> SRR1382553     1  0.5776    0.00534 0.504 0.028 0.468 0.000
#> SRR1075530     4  0.0592    0.90695 0.000 0.000 0.016 0.984
#> SRR1442612     3  0.0188    0.90053 0.000 0.004 0.996 0.000
#> SRR1360056     3  0.0376    0.90105 0.004 0.000 0.992 0.004
#> SRR1078164     1  0.0592    0.95277 0.984 0.000 0.016 0.000
#> SRR1434545     4  0.0188    0.90583 0.000 0.000 0.004 0.996
#> SRR1398251     3  0.2281    0.84490 0.096 0.000 0.904 0.000
#> SRR1375866     1  0.0000    0.95911 1.000 0.000 0.000 0.000
#> SRR1091645     4  0.0817    0.90395 0.000 0.000 0.024 0.976
#> SRR1416636     3  0.0707    0.89873 0.000 0.000 0.980 0.020
#> SRR1105441     3  0.1059    0.89825 0.000 0.016 0.972 0.012
#> SRR1082496     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.5097    0.26758 0.000 0.428 0.568 0.004
#> SRR1093697     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.1302    0.88864 0.000 0.000 0.956 0.044
#> SRR1076120     4  0.0707    0.90608 0.000 0.000 0.020 0.980
#> SRR1074410     1  0.0188    0.95838 0.996 0.000 0.000 0.004
#> SRR1340345     4  0.0188    0.90583 0.000 0.000 0.004 0.996
#> SRR1069514     2  0.4907    0.25027 0.000 0.580 0.420 0.000
#> SRR1092636     3  0.0469    0.90034 0.000 0.000 0.988 0.012
#> SRR1365013     2  0.1284    0.88145 0.012 0.964 0.000 0.024
#> SRR1073069     1  0.1557    0.91926 0.944 0.000 0.056 0.000
#> SRR1443137     1  0.0592    0.95277 0.984 0.000 0.016 0.000
#> SRR1437143     2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0188    0.95801 0.996 0.000 0.004 0.000
#> SRR820234      2  0.0000    0.89433 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.0336    0.95739 0.992 0.000 0.000 0.008
#> SRR1390094     3  0.3219    0.76652 0.164 0.000 0.836 0.000
#> SRR1340721     2  0.4630    0.60412 0.252 0.732 0.000 0.016
#> SRR1335964     3  0.4761    0.44689 0.000 0.000 0.628 0.372
#> SRR1086869     3  0.3486    0.74633 0.000 0.000 0.812 0.188
#> SRR1453434     1  0.0188    0.95832 0.996 0.000 0.000 0.004
#> SRR1402261     4  0.0524    0.90095 0.008 0.000 0.004 0.988
#> SRR657809      2  0.3172    0.78886 0.000 0.840 0.000 0.160
#> SRR1093075     1  0.0592    0.95277 0.984 0.000 0.016 0.000
#> SRR1433329     1  0.2281    0.87757 0.904 0.000 0.096 0.000
#> SRR1353418     3  0.0376    0.90105 0.004 0.000 0.992 0.004
#> SRR1092913     4  0.0000    0.90390 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.2813     0.7762 0.832 0.168 0.000 0.000 0.000
#> SRR1335605     2  0.1908     0.3876 0.000 0.908 0.000 0.000 0.092
#> SRR1432014     3  0.4305     0.0460 0.000 0.000 0.512 0.000 0.488
#> SRR1499215     3  0.5051     0.4020 0.072 0.000 0.664 0.000 0.264
#> SRR1460409     1  0.0703     0.7871 0.976 0.024 0.000 0.000 0.000
#> SRR1086441     1  0.1732     0.7898 0.920 0.080 0.000 0.000 0.000
#> SRR1097344     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR1081789     3  0.4288    -0.3818 0.004 0.384 0.612 0.000 0.000
#> SRR1453005     3  0.4278    -0.1170 0.000 0.000 0.548 0.452 0.000
#> SRR1366985     1  0.3814     0.4156 0.720 0.000 0.276 0.000 0.004
#> SRR815280      1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1348531     1  0.4223     0.7417 0.724 0.248 0.000 0.000 0.028
#> SRR815845      5  0.0162     0.8495 0.000 0.000 0.004 0.000 0.996
#> SRR1471178     1  0.1478     0.7905 0.936 0.064 0.000 0.000 0.000
#> SRR1080696     5  0.0609     0.8422 0.000 0.000 0.020 0.000 0.980
#> SRR1078684     3  0.3888     0.4477 0.076 0.000 0.804 0.000 0.120
#> SRR1317751     5  0.0000     0.8485 0.000 0.000 0.000 0.000 1.000
#> SRR1435667     3  0.4304     0.0541 0.000 0.000 0.516 0.000 0.484
#> SRR1097905     1  0.4307     0.5810 0.504 0.496 0.000 0.000 0.000
#> SRR1456548     1  0.4305     0.5904 0.512 0.488 0.000 0.000 0.000
#> SRR1075126     1  0.0162     0.7842 0.996 0.004 0.000 0.000 0.000
#> SRR813108      3  0.0404     0.3582 0.000 0.012 0.988 0.000 0.000
#> SRR1479062     5  0.6674     0.0774 0.000 0.000 0.248 0.324 0.428
#> SRR1408703     5  0.0162     0.8495 0.000 0.000 0.004 0.000 0.996
#> SRR1332360     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1098686     1  0.4182     0.6622 0.600 0.400 0.000 0.000 0.000
#> SRR1434228     1  0.0162     0.7811 0.996 0.000 0.004 0.000 0.000
#> SRR1467149     4  0.4918     0.6356 0.000 0.192 0.000 0.708 0.100
#> SRR1399113     2  0.4305     0.5531 0.000 0.512 0.488 0.000 0.000
#> SRR1476507     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR1092468     4  0.6381     0.1927 0.276 0.212 0.000 0.512 0.000
#> SRR1441804     1  0.3969     0.7217 0.692 0.304 0.000 0.000 0.004
#> SRR1326100     2  0.4306     0.5483 0.000 0.508 0.492 0.000 0.000
#> SRR1398815     1  0.4297     0.6048 0.528 0.472 0.000 0.000 0.000
#> SRR1436021     3  0.6335    -0.1857 0.000 0.168 0.480 0.352 0.000
#> SRR1480083     3  0.4375    -0.4703 0.000 0.420 0.576 0.004 0.000
#> SRR1472863     1  0.4306     0.5859 0.508 0.492 0.000 0.000 0.000
#> SRR815542      1  0.1478     0.7903 0.936 0.064 0.000 0.000 0.000
#> SRR1400100     5  0.0703     0.8379 0.000 0.024 0.000 0.000 0.976
#> SRR1312002     3  0.6095     0.2678 0.416 0.000 0.460 0.000 0.124
#> SRR1470253     5  0.0162     0.8495 0.000 0.000 0.004 0.000 0.996
#> SRR1414332     1  0.1851     0.7892 0.912 0.088 0.000 0.000 0.000
#> SRR1069209     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR661052      1  0.4305     0.5904 0.512 0.488 0.000 0.000 0.000
#> SRR1308860     1  0.4297     0.6047 0.528 0.472 0.000 0.000 0.000
#> SRR1421159     4  0.4066     0.4921 0.000 0.000 0.324 0.672 0.004
#> SRR1340943     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR1078855     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1459465     2  0.4659     0.5380 0.000 0.496 0.492 0.012 0.000
#> SRR816818      2  0.4305     0.5531 0.000 0.512 0.488 0.000 0.000
#> SRR1478679     3  0.1608     0.3861 0.072 0.000 0.928 0.000 0.000
#> SRR1350979     3  0.4449     0.0526 0.004 0.000 0.512 0.000 0.484
#> SRR1458198     4  0.0486     0.8618 0.004 0.004 0.000 0.988 0.004
#> SRR1386910     2  0.2278     0.4287 0.000 0.908 0.032 0.000 0.060
#> SRR1465375     4  0.6413     0.4922 0.040 0.240 0.120 0.600 0.000
#> SRR1323699     3  0.5382     0.4298 0.252 0.000 0.644 0.000 0.104
#> SRR1431139     5  0.6527     0.2932 0.228 0.232 0.008 0.000 0.532
#> SRR1373964     3  0.3789     0.4481 0.016 0.000 0.760 0.000 0.224
#> SRR1455413     2  0.8099    -0.1973 0.240 0.348 0.000 0.100 0.312
#> SRR1437163     1  0.4305     0.5904 0.512 0.488 0.000 0.000 0.000
#> SRR1347343     3  0.4957     0.1208 0.028 0.000 0.528 0.000 0.444
#> SRR1465480     2  0.4305     0.5531 0.000 0.512 0.488 0.000 0.000
#> SRR1489631     1  0.4305     0.5904 0.512 0.488 0.000 0.000 0.000
#> SRR1086514     4  0.4196     0.4326 0.000 0.004 0.356 0.640 0.000
#> SRR1430928     1  0.1544     0.7903 0.932 0.068 0.000 0.000 0.000
#> SRR1310939     4  0.0290     0.8614 0.000 0.000 0.008 0.992 0.000
#> SRR1344294     3  0.4305    -0.5705 0.000 0.488 0.512 0.000 0.000
#> SRR1099402     1  0.0162     0.7841 0.996 0.004 0.000 0.000 0.000
#> SRR1468118     5  0.0290     0.8452 0.000 0.000 0.000 0.008 0.992
#> SRR1486348     1  0.2929     0.7741 0.820 0.180 0.000 0.000 0.000
#> SRR1488770     2  0.4305     0.5531 0.000 0.512 0.488 0.000 0.000
#> SRR1083732     1  0.2648     0.7794 0.848 0.152 0.000 0.000 0.000
#> SRR1456611     2  0.4305     0.5531 0.000 0.512 0.488 0.000 0.000
#> SRR1080318     1  0.3586     0.7398 0.736 0.264 0.000 0.000 0.000
#> SRR1500089     4  0.0486     0.8618 0.004 0.004 0.000 0.988 0.004
#> SRR1441178     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1381396     1  0.3480     0.7476 0.752 0.248 0.000 0.000 0.000
#> SRR1096081     5  0.0162     0.8495 0.000 0.000 0.004 0.000 0.996
#> SRR1349809     2  0.0510     0.4431 0.000 0.984 0.016 0.000 0.000
#> SRR1324314     1  0.3585     0.6117 0.772 0.004 0.004 0.000 0.220
#> SRR1092444     5  0.6654     0.1702 0.284 0.232 0.000 0.004 0.480
#> SRR1382553     1  0.4219     0.0659 0.584 0.000 0.416 0.000 0.000
#> SRR1075530     4  0.1341     0.8290 0.000 0.000 0.000 0.944 0.056
#> SRR1442612     3  0.4305     0.0460 0.000 0.000 0.512 0.000 0.488
#> SRR1360056     5  0.3496     0.6116 0.012 0.000 0.200 0.000 0.788
#> SRR1078164     1  0.0162     0.7842 0.996 0.004 0.000 0.000 0.000
#> SRR1434545     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR1398251     1  0.3282     0.5774 0.804 0.000 0.188 0.000 0.008
#> SRR1375866     1  0.4074     0.6863 0.636 0.364 0.000 0.000 0.000
#> SRR1091645     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR1416636     5  0.0290     0.8480 0.000 0.000 0.008 0.000 0.992
#> SRR1105441     5  0.1012     0.8395 0.000 0.012 0.020 0.000 0.968
#> SRR1082496     2  0.4305     0.5531 0.000 0.512 0.488 0.000 0.000
#> SRR1315353     3  0.0566     0.3783 0.000 0.004 0.984 0.000 0.012
#> SRR1093697     2  0.4306     0.5483 0.000 0.508 0.492 0.000 0.000
#> SRR1077429     5  0.0000     0.8485 0.000 0.000 0.000 0.000 1.000
#> SRR1076120     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR1074410     1  0.4101     0.6809 0.628 0.372 0.000 0.000 0.000
#> SRR1340345     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR1069514     3  0.1270     0.4133 0.000 0.000 0.948 0.000 0.052
#> SRR1092636     5  0.0162     0.8495 0.000 0.000 0.004 0.000 0.996
#> SRR1365013     2  0.0609     0.4446 0.000 0.980 0.020 0.000 0.000
#> SRR1073069     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1443137     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1437143     2  0.4305     0.5531 0.000 0.512 0.488 0.000 0.000
#> SRR1091990     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR820234      3  0.3182     0.1793 0.000 0.124 0.844 0.032 0.000
#> SRR1338079     1  0.4305     0.5904 0.512 0.488 0.000 0.000 0.000
#> SRR1390094     3  0.4964     0.1975 0.460 0.000 0.516 0.020 0.004
#> SRR1340721     2  0.1270     0.3963 0.052 0.948 0.000 0.000 0.000
#> SRR1335964     5  0.3132     0.6836 0.000 0.000 0.008 0.172 0.820
#> SRR1086869     5  0.0404     0.8425 0.000 0.000 0.000 0.012 0.988
#> SRR1453434     1  0.0162     0.7815 0.996 0.000 0.000 0.004 0.000
#> SRR1402261     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000
#> SRR657809      2  0.5230    -0.1323 0.000 0.504 0.044 0.452 0.000
#> SRR1093075     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000     0.7831 1.000 0.000 0.000 0.000 0.000
#> SRR1353418     5  0.0963     0.8302 0.000 0.000 0.036 0.000 0.964
#> SRR1092913     4  0.0000     0.8662 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      6  0.3866     0.1556 0.484 0.000 0.000 0.000 0.000 0.516
#> SRR1335605     1  0.4346     0.6348 0.760 0.112 0.024 0.000 0.104 0.000
#> SRR1432014     3  0.1285     0.8705 0.000 0.000 0.944 0.000 0.052 0.004
#> SRR1499215     3  0.3993     0.6946 0.000 0.004 0.700 0.000 0.024 0.272
#> SRR1460409     6  0.2358     0.7470 0.108 0.000 0.016 0.000 0.000 0.876
#> SRR1086441     6  0.3515     0.5349 0.324 0.000 0.000 0.000 0.000 0.676
#> SRR1097344     4  0.0363     0.8953 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR1081789     2  0.1265     0.9337 0.008 0.948 0.044 0.000 0.000 0.000
#> SRR1453005     4  0.3457     0.7640 0.012 0.116 0.052 0.820 0.000 0.000
#> SRR1366985     6  0.1471     0.7536 0.000 0.000 0.064 0.000 0.004 0.932
#> SRR815280      6  0.0790     0.7862 0.032 0.000 0.000 0.000 0.000 0.968
#> SRR1348531     5  0.5997    -0.1634 0.344 0.000 0.000 0.000 0.416 0.240
#> SRR815845      5  0.0363     0.8776 0.000 0.000 0.012 0.000 0.988 0.000
#> SRR1471178     6  0.3076     0.6446 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1080696     5  0.2048     0.7739 0.000 0.000 0.120 0.000 0.880 0.000
#> SRR1078684     3  0.2629     0.8443 0.048 0.036 0.888 0.000 0.000 0.028
#> SRR1317751     5  0.0000     0.8822 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1435667     3  0.1141     0.8702 0.000 0.000 0.948 0.000 0.052 0.000
#> SRR1097905     1  0.0632     0.7993 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1456548     1  0.1714     0.7848 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR1075126     6  0.0291     0.7911 0.000 0.000 0.004 0.004 0.000 0.992
#> SRR813108      3  0.2053     0.8291 0.004 0.108 0.888 0.000 0.000 0.000
#> SRR1479062     5  0.6193     0.1383 0.008 0.032 0.064 0.400 0.480 0.016
#> SRR1408703     5  0.0146     0.8814 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1332360     6  0.0551     0.7914 0.004 0.000 0.008 0.000 0.004 0.984
#> SRR1098686     1  0.3221     0.5926 0.736 0.000 0.000 0.000 0.000 0.264
#> SRR1434228     6  0.0291     0.7906 0.000 0.000 0.004 0.000 0.004 0.992
#> SRR1467149     4  0.4874     0.3794 0.308 0.000 0.000 0.608 0.084 0.000
#> SRR1399113     2  0.0363     0.9561 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.0000     0.8988 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1092468     1  0.3490     0.5917 0.724 0.000 0.000 0.268 0.000 0.008
#> SRR1441804     1  0.3330     0.5528 0.716 0.000 0.000 0.000 0.000 0.284
#> SRR1326100     2  0.4114     0.7070 0.072 0.732 0.196 0.000 0.000 0.000
#> SRR1398815     1  0.3136     0.6963 0.796 0.000 0.016 0.000 0.000 0.188
#> SRR1436021     4  0.4957     0.4473 0.304 0.052 0.020 0.624 0.000 0.000
#> SRR1480083     2  0.1124     0.9408 0.008 0.956 0.036 0.000 0.000 0.000
#> SRR1472863     1  0.1075     0.8001 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR815542      6  0.2854     0.6738 0.208 0.000 0.000 0.000 0.000 0.792
#> SRR1400100     5  0.0713     0.8689 0.000 0.028 0.000 0.000 0.972 0.000
#> SRR1312002     6  0.4169     0.1744 0.008 0.004 0.364 0.000 0.004 0.620
#> SRR1470253     5  0.0603     0.8745 0.000 0.000 0.016 0.000 0.980 0.004
#> SRR1414332     6  0.3464     0.5553 0.312 0.000 0.000 0.000 0.000 0.688
#> SRR1069209     6  0.0291     0.7906 0.000 0.000 0.004 0.000 0.004 0.992
#> SRR661052      1  0.1398     0.7992 0.940 0.000 0.008 0.000 0.000 0.052
#> SRR1308860     1  0.2730     0.6989 0.808 0.000 0.000 0.000 0.000 0.192
#> SRR1421159     3  0.4088     0.7148 0.012 0.044 0.744 0.200 0.000 0.000
#> SRR1340943     4  0.0000     0.8988 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1078855     6  0.0146     0.7911 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1459465     2  0.0692     0.9508 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR816818      2  0.0909     0.9469 0.012 0.968 0.020 0.000 0.000 0.000
#> SRR1478679     3  0.3043     0.7809 0.000 0.008 0.792 0.000 0.000 0.200
#> SRR1350979     3  0.1152     0.8715 0.000 0.004 0.952 0.000 0.044 0.000
#> SRR1458198     4  0.0000     0.8988 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1386910     1  0.4698     0.3450 0.648 0.296 0.028 0.000 0.028 0.000
#> SRR1465375     1  0.4923     0.3170 0.560 0.072 0.000 0.368 0.000 0.000
#> SRR1323699     3  0.3437     0.7484 0.000 0.008 0.752 0.000 0.004 0.236
#> SRR1431139     1  0.2432     0.7649 0.888 0.000 0.080 0.000 0.024 0.008
#> SRR1373964     3  0.1644     0.8690 0.000 0.004 0.932 0.000 0.012 0.052
#> SRR1455413     1  0.4050     0.7523 0.804 0.000 0.016 0.100 0.052 0.028
#> SRR1437163     1  0.0865     0.8009 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1347343     3  0.1408     0.8727 0.000 0.000 0.944 0.000 0.020 0.036
#> SRR1465480     2  0.0363     0.9561 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.0865     0.8009 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1086514     4  0.1010     0.8797 0.004 0.036 0.000 0.960 0.000 0.000
#> SRR1430928     6  0.3737     0.4089 0.392 0.000 0.000 0.000 0.000 0.608
#> SRR1310939     4  0.1296     0.8707 0.004 0.000 0.012 0.952 0.000 0.032
#> SRR1344294     2  0.0291     0.9546 0.004 0.992 0.004 0.000 0.000 0.000
#> SRR1099402     6  0.0291     0.7915 0.004 0.000 0.004 0.000 0.000 0.992
#> SRR1468118     5  0.0000     0.8822 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1486348     6  0.3866     0.1518 0.484 0.000 0.000 0.000 0.000 0.516
#> SRR1488770     2  0.0914     0.9556 0.016 0.968 0.016 0.000 0.000 0.000
#> SRR1083732     6  0.3838     0.2691 0.448 0.000 0.000 0.000 0.000 0.552
#> SRR1456611     2  0.1003     0.9453 0.016 0.964 0.020 0.000 0.000 0.000
#> SRR1080318     6  0.4605     0.3155 0.416 0.000 0.016 0.000 0.016 0.552
#> SRR1500089     4  0.0291     0.8975 0.004 0.000 0.000 0.992 0.004 0.000
#> SRR1441178     6  0.0964     0.7880 0.012 0.000 0.016 0.000 0.004 0.968
#> SRR1381396     6  0.4110     0.4293 0.376 0.000 0.016 0.000 0.000 0.608
#> SRR1096081     5  0.0000     0.8822 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1349809     1  0.2201     0.7568 0.896 0.076 0.028 0.000 0.000 0.000
#> SRR1324314     6  0.3758     0.5751 0.040 0.000 0.192 0.000 0.004 0.764
#> SRR1092444     5  0.3147     0.7061 0.160 0.000 0.016 0.000 0.816 0.008
#> SRR1382553     6  0.1148     0.7739 0.004 0.016 0.020 0.000 0.000 0.960
#> SRR1075530     4  0.0972     0.8842 0.000 0.008 0.000 0.964 0.028 0.000
#> SRR1442612     3  0.1265     0.8730 0.000 0.000 0.948 0.000 0.044 0.008
#> SRR1360056     5  0.2558     0.7424 0.000 0.000 0.004 0.000 0.840 0.156
#> SRR1078164     6  0.2108     0.7722 0.056 0.000 0.016 0.000 0.016 0.912
#> SRR1434545     4  0.0000     0.8988 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1398251     6  0.1267     0.7593 0.000 0.000 0.060 0.000 0.000 0.940
#> SRR1375866     6  0.4492     0.5913 0.260 0.000 0.016 0.000 0.040 0.684
#> SRR1091645     4  0.0260     0.8968 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1416636     5  0.0000     0.8822 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1105441     3  0.4592     0.6319 0.080 0.000 0.664 0.000 0.256 0.000
#> SRR1082496     2  0.0622     0.9561 0.008 0.980 0.012 0.000 0.000 0.000
#> SRR1315353     3  0.1757     0.8514 0.008 0.076 0.916 0.000 0.000 0.000
#> SRR1093697     2  0.0260     0.9564 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.0000     0.8822 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1076120     4  0.0000     0.8988 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1074410     1  0.4392    -0.1041 0.504 0.000 0.016 0.000 0.004 0.476
#> SRR1340345     4  0.0000     0.8988 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1069514     3  0.1075     0.8616 0.000 0.048 0.952 0.000 0.000 0.000
#> SRR1092636     5  0.0520     0.8779 0.008 0.000 0.008 0.000 0.984 0.000
#> SRR1365013     1  0.1261     0.7819 0.952 0.024 0.024 0.000 0.000 0.000
#> SRR1073069     6  0.0405     0.7907 0.000 0.000 0.008 0.000 0.004 0.988
#> SRR1443137     6  0.0146     0.7911 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1437143     2  0.0458     0.9553 0.016 0.984 0.000 0.000 0.000 0.000
#> SRR1091990     6  0.0865     0.7852 0.036 0.000 0.000 0.000 0.000 0.964
#> SRR820234      2  0.2013     0.9035 0.008 0.908 0.076 0.008 0.000 0.000
#> SRR1338079     1  0.1610     0.7885 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR1390094     3  0.1168     0.8717 0.000 0.016 0.956 0.000 0.000 0.028
#> SRR1340721     1  0.2818     0.7674 0.872 0.076 0.028 0.000 0.000 0.024
#> SRR1335964     3  0.4498     0.7661 0.104 0.000 0.756 0.100 0.040 0.000
#> SRR1086869     5  0.0146     0.8811 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1453434     6  0.0405     0.7897 0.000 0.000 0.004 0.008 0.000 0.988
#> SRR1402261     4  0.0000     0.8988 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR657809      4  0.5486     0.0688 0.440 0.096 0.008 0.456 0.000 0.000
#> SRR1093075     6  0.0146     0.7911 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1433329     6  0.0146     0.7911 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1353418     5  0.0291     0.8807 0.000 0.000 0.004 0.000 0.992 0.004
#> SRR1092913     4  0.0363     0.8954 0.012 0.000 0.000 0.988 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.232           0.546       0.775         0.3812 0.611   0.611
#> 3 3 0.425           0.490       0.759         0.4740 0.695   0.548
#> 4 4 0.474           0.671       0.808         0.1098 0.835   0.646
#> 5 5 0.496           0.677       0.790         0.1091 0.925   0.785
#> 6 6 0.509           0.689       0.793         0.0631 0.974   0.912

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000    0.72226 1.000 0.000
#> SRR1335605     1  0.9983   -0.09489 0.524 0.476
#> SRR1432014     2  0.7674    0.59344 0.224 0.776
#> SRR1499215     1  0.1843    0.71339 0.972 0.028
#> SRR1460409     1  0.0000    0.72226 1.000 0.000
#> SRR1086441     1  0.0000    0.72226 1.000 0.000
#> SRR1097344     2  0.9815   -0.01264 0.420 0.580
#> SRR1081789     1  0.9866   -0.00702 0.568 0.432
#> SRR1453005     2  0.9983    0.59243 0.476 0.524
#> SRR1366985     1  0.1843    0.71609 0.972 0.028
#> SRR815280      1  0.0000    0.72226 1.000 0.000
#> SRR1348531     1  0.6712    0.63981 0.824 0.176
#> SRR815845      2  0.9580    0.12179 0.380 0.620
#> SRR1471178     1  0.0000    0.72226 1.000 0.000
#> SRR1080696     1  0.9323    0.45648 0.652 0.348
#> SRR1078684     1  0.9248    0.43274 0.660 0.340
#> SRR1317751     1  0.9933    0.29525 0.548 0.452
#> SRR1435667     2  0.7674    0.59344 0.224 0.776
#> SRR1097905     1  0.4022    0.70082 0.920 0.080
#> SRR1456548     1  0.1843    0.72182 0.972 0.028
#> SRR1075126     1  0.1843    0.72160 0.972 0.028
#> SRR813108      2  0.7219    0.59375 0.200 0.800
#> SRR1479062     1  0.1633    0.71583 0.976 0.024
#> SRR1408703     1  0.9129    0.48393 0.672 0.328
#> SRR1332360     1  0.0000    0.72226 1.000 0.000
#> SRR1098686     1  0.1843    0.72182 0.972 0.028
#> SRR1434228     1  0.0000    0.72226 1.000 0.000
#> SRR1467149     1  0.6973    0.62963 0.812 0.188
#> SRR1399113     2  0.9996    0.59272 0.488 0.512
#> SRR1476507     1  0.9635    0.35613 0.612 0.388
#> SRR1092468     1  0.9754    0.38087 0.592 0.408
#> SRR1441804     1  0.2778    0.71795 0.952 0.048
#> SRR1326100     2  0.9850    0.40308 0.428 0.572
#> SRR1398815     1  0.0000    0.72226 1.000 0.000
#> SRR1436021     1  0.9552    0.32729 0.624 0.376
#> SRR1480083     2  0.9996    0.59272 0.488 0.512
#> SRR1472863     1  0.1843    0.72182 0.972 0.028
#> SRR815542      1  0.0376    0.72273 0.996 0.004
#> SRR1400100     1  0.8555    0.52853 0.720 0.280
#> SRR1312002     1  0.2043    0.71525 0.968 0.032
#> SRR1470253     1  0.1633    0.71583 0.976 0.024
#> SRR1414332     1  0.0000    0.72226 1.000 0.000
#> SRR1069209     1  0.0000    0.72226 1.000 0.000
#> SRR661052      1  0.1843    0.72182 0.972 0.028
#> SRR1308860     1  0.0376    0.72273 0.996 0.004
#> SRR1421159     2  0.8207    0.55688 0.256 0.744
#> SRR1340943     1  0.9850    0.33795 0.572 0.428
#> SRR1078855     1  0.0000    0.72226 1.000 0.000
#> SRR1459465     2  0.9996    0.59272 0.488 0.512
#> SRR816818      2  0.9996    0.59272 0.488 0.512
#> SRR1478679     1  0.4431    0.68273 0.908 0.092
#> SRR1350979     2  0.7602    0.59334 0.220 0.780
#> SRR1458198     1  0.9522    0.43501 0.628 0.372
#> SRR1386910     1  0.9983   -0.09489 0.524 0.476
#> SRR1465375     1  0.9608    0.32357 0.616 0.384
#> SRR1323699     1  0.4298    0.68458 0.912 0.088
#> SRR1431139     1  0.9248    0.43274 0.660 0.340
#> SRR1373964     2  0.7602    0.59334 0.220 0.780
#> SRR1455413     1  0.3274    0.71319 0.940 0.060
#> SRR1437163     1  0.1843    0.72182 0.972 0.028
#> SRR1347343     2  0.9881    0.28107 0.436 0.564
#> SRR1465480     2  0.9996    0.59272 0.488 0.512
#> SRR1489631     1  0.3114    0.71486 0.944 0.056
#> SRR1086514     1  0.9850    0.27215 0.572 0.428
#> SRR1430928     1  0.0000    0.72226 1.000 0.000
#> SRR1310939     1  0.9754    0.38087 0.592 0.408
#> SRR1344294     2  0.9996    0.59272 0.488 0.512
#> SRR1099402     1  0.0000    0.72226 1.000 0.000
#> SRR1468118     1  0.9933    0.29525 0.548 0.452
#> SRR1486348     1  0.0000    0.72226 1.000 0.000
#> SRR1488770     2  0.9996    0.59272 0.488 0.512
#> SRR1083732     1  0.0000    0.72226 1.000 0.000
#> SRR1456611     2  0.9996    0.59272 0.488 0.512
#> SRR1080318     1  0.0000    0.72226 1.000 0.000
#> SRR1500089     1  0.9754    0.38087 0.592 0.408
#> SRR1441178     1  0.0000    0.72226 1.000 0.000
#> SRR1381396     1  0.0000    0.72226 1.000 0.000
#> SRR1096081     1  0.9754    0.36365 0.592 0.408
#> SRR1349809     1  0.9896   -0.02077 0.560 0.440
#> SRR1324314     1  0.4431    0.68681 0.908 0.092
#> SRR1092444     1  0.0000    0.72226 1.000 0.000
#> SRR1382553     1  0.2236    0.69577 0.964 0.036
#> SRR1075530     2  0.9170    0.45765 0.332 0.668
#> SRR1442612     2  0.7674    0.59344 0.224 0.776
#> SRR1360056     1  0.2043    0.71525 0.968 0.032
#> SRR1078164     1  0.0000    0.72226 1.000 0.000
#> SRR1434545     1  0.9866    0.33158 0.568 0.432
#> SRR1398251     1  0.0000    0.72226 1.000 0.000
#> SRR1375866     1  0.0000    0.72226 1.000 0.000
#> SRR1091645     2  0.9815   -0.01264 0.420 0.580
#> SRR1416636     1  0.9087    0.48893 0.676 0.324
#> SRR1105441     1  0.9248    0.43274 0.660 0.340
#> SRR1082496     2  0.9996    0.59272 0.488 0.512
#> SRR1315353     2  0.9988    0.58254 0.480 0.520
#> SRR1093697     2  0.9996    0.59272 0.488 0.512
#> SRR1077429     1  0.8443    0.54387 0.728 0.272
#> SRR1076120     1  0.9522    0.43501 0.628 0.372
#> SRR1074410     1  0.0000    0.72226 1.000 0.000
#> SRR1340345     2  0.9170    0.45765 0.332 0.668
#> SRR1069514     2  0.7219    0.59375 0.200 0.800
#> SRR1092636     1  0.9129    0.48393 0.672 0.328
#> SRR1365013     1  0.9970   -0.11401 0.532 0.468
#> SRR1073069     1  0.0000    0.72226 1.000 0.000
#> SRR1443137     1  0.0000    0.72226 1.000 0.000
#> SRR1437143     2  0.9996    0.59272 0.488 0.512
#> SRR1091990     1  0.0000    0.72226 1.000 0.000
#> SRR820234      2  0.9996    0.59272 0.488 0.512
#> SRR1338079     1  0.1843    0.72182 0.972 0.028
#> SRR1390094     1  0.9427    0.38846 0.640 0.360
#> SRR1340721     1  0.9580    0.14190 0.620 0.380
#> SRR1335964     2  0.8207    0.55688 0.256 0.744
#> SRR1086869     1  0.9996    0.22298 0.512 0.488
#> SRR1453434     1  0.8555    0.53459 0.720 0.280
#> SRR1402261     1  0.9850    0.34030 0.572 0.428
#> SRR657809      2  0.9732    0.49763 0.404 0.596
#> SRR1093075     1  0.0000    0.72226 1.000 0.000
#> SRR1433329     1  0.0000    0.72226 1.000 0.000
#> SRR1353418     1  0.7602    0.59638 0.780 0.220
#> SRR1092913     1  0.9970    0.21079 0.532 0.468

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0747     0.8148 0.984 0.016 0.000
#> SRR1335605     2  0.7749     0.1796 0.312 0.616 0.072
#> SRR1432014     2  0.4353     0.3681 0.008 0.836 0.156
#> SRR1499215     1  0.3272     0.7701 0.892 0.104 0.004
#> SRR1460409     1  0.0592     0.8143 0.988 0.012 0.000
#> SRR1086441     1  0.0747     0.8148 0.984 0.016 0.000
#> SRR1097344     3  0.5948     0.5171 0.000 0.360 0.640
#> SRR1081789     2  0.6589     0.2817 0.280 0.688 0.032
#> SRR1453005     2  0.5016     0.4847 0.000 0.760 0.240
#> SRR1366985     1  0.3500     0.7595 0.880 0.116 0.004
#> SRR815280      1  0.1031     0.8154 0.976 0.024 0.000
#> SRR1348531     1  0.6148     0.6014 0.776 0.148 0.076
#> SRR815845      3  0.7736     0.4918 0.052 0.400 0.548
#> SRR1471178     1  0.0747     0.8148 0.984 0.016 0.000
#> SRR1080696     3  0.9447     0.5694 0.348 0.188 0.464
#> SRR1078684     2  0.9515    -0.1704 0.388 0.424 0.188
#> SRR1317751     3  0.7418     0.6484 0.080 0.248 0.672
#> SRR1435667     2  0.4353     0.3681 0.008 0.836 0.156
#> SRR1097905     1  0.3043     0.7766 0.908 0.084 0.008
#> SRR1456548     1  0.1711     0.8076 0.960 0.032 0.008
#> SRR1075126     1  0.2680     0.7988 0.924 0.068 0.008
#> SRR813108      2  0.3941     0.3799 0.000 0.844 0.156
#> SRR1479062     1  0.2527     0.7943 0.936 0.044 0.020
#> SRR1408703     3  0.9496     0.5528 0.372 0.188 0.440
#> SRR1332360     1  0.1163     0.8147 0.972 0.028 0.000
#> SRR1098686     1  0.1765     0.8110 0.956 0.040 0.004
#> SRR1434228     1  0.1411     0.8134 0.964 0.036 0.000
#> SRR1467149     1  0.6324     0.5789 0.764 0.160 0.076
#> SRR1399113     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1476507     2  0.8814    -0.0146 0.404 0.480 0.116
#> SRR1092468     1  0.9823    -0.2958 0.392 0.364 0.244
#> SRR1441804     1  0.2414     0.7966 0.940 0.040 0.020
#> SRR1326100     2  0.6486     0.3559 0.144 0.760 0.096
#> SRR1398815     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1436021     2  0.7920     0.1116 0.360 0.572 0.068
#> SRR1480083     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1472863     1  0.1529     0.8122 0.960 0.040 0.000
#> SRR815542      1  0.0747     0.8153 0.984 0.016 0.000
#> SRR1400100     1  0.9514    -0.2010 0.444 0.364 0.192
#> SRR1312002     1  0.3213     0.7837 0.912 0.028 0.060
#> SRR1470253     1  0.2527     0.7943 0.936 0.044 0.020
#> SRR1414332     1  0.0747     0.8148 0.984 0.016 0.000
#> SRR1069209     1  0.1411     0.8147 0.964 0.036 0.000
#> SRR661052      1  0.1529     0.8122 0.960 0.040 0.000
#> SRR1308860     1  0.0747     0.8153 0.984 0.016 0.000
#> SRR1421159     2  0.5678     0.3178 0.032 0.776 0.192
#> SRR1340943     1  0.9651    -0.2500 0.400 0.392 0.208
#> SRR1078855     1  0.1529     0.8124 0.960 0.040 0.000
#> SRR1459465     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR816818      2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1478679     1  0.5053     0.6939 0.812 0.164 0.024
#> SRR1350979     2  0.4291     0.3717 0.008 0.840 0.152
#> SRR1458198     1  0.9450    -0.0499 0.492 0.296 0.212
#> SRR1386910     2  0.7749     0.1796 0.312 0.616 0.072
#> SRR1465375     2  0.8109     0.0999 0.352 0.568 0.080
#> SRR1323699     1  0.4748     0.7166 0.832 0.144 0.024
#> SRR1431139     2  0.9515    -0.1704 0.388 0.424 0.188
#> SRR1373964     2  0.4453     0.3705 0.012 0.836 0.152
#> SRR1455413     1  0.3148     0.7786 0.916 0.048 0.036
#> SRR1437163     1  0.1529     0.8122 0.960 0.040 0.000
#> SRR1347343     2  0.8808     0.0777 0.332 0.536 0.132
#> SRR1465480     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1489631     1  0.3028     0.7820 0.920 0.048 0.032
#> SRR1086514     2  0.8857     0.0113 0.344 0.524 0.132
#> SRR1430928     1  0.0592     0.8139 0.988 0.012 0.000
#> SRR1310939     1  0.9823    -0.2958 0.392 0.364 0.244
#> SRR1344294     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1099402     1  0.1289     0.8144 0.968 0.032 0.000
#> SRR1468118     3  0.7340     0.6469 0.076 0.248 0.676
#> SRR1486348     1  0.0747     0.8148 0.984 0.016 0.000
#> SRR1488770     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1083732     1  0.0237     0.8119 0.996 0.004 0.000
#> SRR1456611     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1080318     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1500089     1  0.9823    -0.2958 0.392 0.364 0.244
#> SRR1441178     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1096081     3  0.8550     0.6397 0.176 0.216 0.608
#> SRR1349809     2  0.6668     0.2745 0.264 0.696 0.040
#> SRR1324314     1  0.4799     0.7266 0.836 0.132 0.032
#> SRR1092444     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1382553     1  0.4934     0.6944 0.820 0.156 0.024
#> SRR1075530     2  0.6541     0.2054 0.056 0.732 0.212
#> SRR1442612     2  0.4353     0.3681 0.008 0.836 0.156
#> SRR1360056     1  0.3213     0.7837 0.912 0.028 0.060
#> SRR1078164     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1434545     1  0.9673    -0.2565 0.400 0.388 0.212
#> SRR1398251     1  0.1411     0.8134 0.964 0.036 0.000
#> SRR1375866     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1091645     3  0.5948     0.5171 0.000 0.360 0.640
#> SRR1416636     3  0.9502     0.5479 0.376 0.188 0.436
#> SRR1105441     2  0.9515    -0.1704 0.388 0.424 0.188
#> SRR1082496     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1315353     2  0.5595     0.4831 0.016 0.756 0.228
#> SRR1093697     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1077429     1  0.9496    -0.4402 0.440 0.188 0.372
#> SRR1076120     1  0.9450    -0.0499 0.492 0.296 0.212
#> SRR1074410     1  0.0000     0.8105 1.000 0.000 0.000
#> SRR1340345     2  0.6541     0.2054 0.056 0.732 0.212
#> SRR1069514     2  0.3941     0.3799 0.000 0.844 0.156
#> SRR1092636     3  0.9496     0.5528 0.372 0.188 0.440
#> SRR1365013     2  0.6354     0.3183 0.204 0.744 0.052
#> SRR1073069     1  0.1163     0.8147 0.972 0.028 0.000
#> SRR1443137     1  0.1411     0.8134 0.964 0.036 0.000
#> SRR1437143     2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1091990     1  0.0747     0.8148 0.984 0.016 0.000
#> SRR820234      2  0.5254     0.4853 0.000 0.736 0.264
#> SRR1338079     1  0.1529     0.8122 0.960 0.040 0.000
#> SRR1390094     2  0.8264     0.0113 0.436 0.488 0.076
#> SRR1340721     2  0.6608     0.2182 0.356 0.628 0.016
#> SRR1335964     2  0.5678     0.3178 0.032 0.776 0.192
#> SRR1086869     3  0.5443     0.5823 0.004 0.260 0.736
#> SRR1453434     1  0.8536     0.2123 0.576 0.300 0.124
#> SRR1402261     1  0.9672    -0.2483 0.404 0.384 0.212
#> SRR657809      2  0.4253     0.4257 0.080 0.872 0.048
#> SRR1093075     1  0.1289     0.8144 0.968 0.032 0.000
#> SRR1433329     1  0.1411     0.8134 0.964 0.036 0.000
#> SRR1353418     1  0.8918    -0.0553 0.552 0.160 0.288
#> SRR1092913     2  0.9588    -0.1241 0.324 0.460 0.216

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR1335605     4  0.7050      0.530 0.232 0.148 0.012 0.608
#> SRR1432014     4  0.4052      0.446 0.012 0.124 0.028 0.836
#> SRR1499215     1  0.2542      0.843 0.904 0.012 0.000 0.084
#> SRR1460409     1  0.0376      0.898 0.992 0.000 0.004 0.004
#> SRR1086441     1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR1097344     3  0.5306      0.322 0.000 0.020 0.632 0.348
#> SRR1081789     4  0.7200      0.528 0.228 0.220 0.000 0.552
#> SRR1453005     2  0.4482      0.661 0.008 0.728 0.000 0.264
#> SRR1366985     1  0.2796      0.831 0.892 0.016 0.000 0.092
#> SRR815280      1  0.0469      0.898 0.988 0.000 0.000 0.012
#> SRR1348531     1  0.5326      0.599 0.736 0.004 0.060 0.200
#> SRR815845      3  0.6120      0.316 0.036 0.008 0.564 0.392
#> SRR1471178     1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR1080696     3  0.6334      0.551 0.316 0.004 0.608 0.072
#> SRR1078684     4  0.8666      0.171 0.356 0.044 0.212 0.388
#> SRR1317751     3  0.2198      0.594 0.072 0.000 0.920 0.008
#> SRR1435667     4  0.4052      0.446 0.012 0.124 0.028 0.836
#> SRR1097905     1  0.2777      0.831 0.888 0.004 0.004 0.104
#> SRR1456548     1  0.1822      0.882 0.944 0.004 0.008 0.044
#> SRR1075126     1  0.2197      0.858 0.916 0.004 0.000 0.080
#> SRR813108      4  0.4111      0.445 0.012 0.144 0.020 0.824
#> SRR1479062     1  0.2658      0.857 0.904 0.004 0.012 0.080
#> SRR1408703     3  0.6820      0.519 0.340 0.004 0.556 0.100
#> SRR1332360     1  0.0817      0.897 0.976 0.000 0.000 0.024
#> SRR1098686     1  0.1211      0.886 0.960 0.000 0.000 0.040
#> SRR1434228     1  0.0817      0.896 0.976 0.000 0.000 0.024
#> SRR1467149     1  0.5471      0.562 0.720 0.004 0.060 0.216
#> SRR1399113     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> SRR1476507     4  0.6656      0.531 0.348 0.068 0.012 0.572
#> SRR1092468     4  0.6351      0.478 0.332 0.000 0.080 0.588
#> SRR1441804     1  0.2521      0.870 0.916 0.004 0.020 0.060
#> SRR1326100     4  0.6167      0.484 0.096 0.256 0.000 0.648
#> SRR1398815     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1436021     4  0.7016      0.554 0.308 0.128 0.004 0.560
#> SRR1480083     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> SRR1472863     1  0.1118      0.888 0.964 0.000 0.000 0.036
#> SRR815542      1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR1400100     1  0.8616     -0.308 0.412 0.040 0.224 0.324
#> SRR1312002     1  0.2670      0.849 0.904 0.000 0.072 0.024
#> SRR1470253     1  0.2658      0.857 0.904 0.004 0.012 0.080
#> SRR1414332     1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR1069209     1  0.0927      0.897 0.976 0.008 0.000 0.016
#> SRR661052      1  0.1118      0.888 0.964 0.000 0.000 0.036
#> SRR1308860     1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR1421159     4  0.3204      0.455 0.016 0.064 0.028 0.892
#> SRR1340943     4  0.7299      0.490 0.348 0.044 0.064 0.544
#> SRR1078855     1  0.1004      0.895 0.972 0.004 0.000 0.024
#> SRR1459465     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> SRR816818      2  0.1109      0.934 0.004 0.968 0.000 0.028
#> SRR1478679     1  0.3790      0.741 0.820 0.016 0.000 0.164
#> SRR1350979     4  0.3952      0.448 0.012 0.124 0.024 0.840
#> SRR1458198     4  0.6552      0.367 0.440 0.000 0.076 0.484
#> SRR1386910     4  0.7050      0.530 0.232 0.148 0.012 0.608
#> SRR1465375     4  0.6937      0.558 0.300 0.124 0.004 0.572
#> SRR1323699     1  0.3428      0.774 0.844 0.012 0.000 0.144
#> SRR1431139     4  0.8666      0.171 0.356 0.044 0.212 0.388
#> SRR1373964     4  0.4015      0.451 0.016 0.120 0.024 0.840
#> SRR1455413     1  0.3100      0.845 0.888 0.004 0.028 0.080
#> SRR1437163     1  0.1118      0.888 0.964 0.000 0.000 0.036
#> SRR1347343     4  0.6640      0.409 0.340 0.056 0.020 0.584
#> SRR1465480     2  0.0188      0.934 0.004 0.996 0.000 0.000
#> SRR1489631     1  0.3030      0.849 0.892 0.004 0.028 0.076
#> SRR1086514     4  0.7501      0.547 0.288 0.108 0.036 0.568
#> SRR1430928     1  0.0000      0.897 1.000 0.000 0.000 0.000
#> SRR1310939     4  0.6351      0.478 0.332 0.000 0.080 0.588
#> SRR1344294     2  0.1109      0.934 0.004 0.968 0.000 0.028
#> SRR1099402     1  0.0707      0.897 0.980 0.000 0.000 0.020
#> SRR1468118     3  0.2124      0.592 0.068 0.000 0.924 0.008
#> SRR1486348     1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR1488770     2  0.1109      0.934 0.004 0.968 0.000 0.028
#> SRR1083732     1  0.0376      0.896 0.992 0.004 0.004 0.000
#> SRR1456611     2  0.0376      0.935 0.004 0.992 0.000 0.004
#> SRR1080318     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1500089     4  0.6351      0.478 0.332 0.000 0.080 0.588
#> SRR1441178     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1381396     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1096081     3  0.4149      0.602 0.168 0.000 0.804 0.028
#> SRR1349809     4  0.6819      0.546 0.208 0.188 0.000 0.604
#> SRR1324314     1  0.3490      0.771 0.836 0.004 0.004 0.156
#> SRR1092444     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1382553     1  0.3763      0.760 0.832 0.144 0.000 0.024
#> SRR1075530     4  0.6088      0.392 0.004 0.196 0.112 0.688
#> SRR1442612     4  0.4052      0.446 0.012 0.124 0.028 0.836
#> SRR1360056     1  0.2670      0.849 0.904 0.000 0.072 0.024
#> SRR1078164     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1434545     4  0.7286      0.488 0.344 0.044 0.064 0.548
#> SRR1398251     1  0.0921      0.896 0.972 0.000 0.000 0.028
#> SRR1375866     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1091645     3  0.5306      0.322 0.000 0.020 0.632 0.348
#> SRR1416636     3  0.6453      0.532 0.344 0.004 0.580 0.072
#> SRR1105441     4  0.8666      0.171 0.356 0.044 0.212 0.388
#> SRR1082496     2  0.1109      0.934 0.004 0.968 0.000 0.028
#> SRR1315353     2  0.5137      0.577 0.024 0.680 0.000 0.296
#> SRR1093697     2  0.1109      0.934 0.004 0.968 0.000 0.028
#> SRR1077429     3  0.7024      0.435 0.404 0.004 0.488 0.104
#> SRR1076120     4  0.6552      0.367 0.440 0.000 0.076 0.484
#> SRR1074410     1  0.0859      0.893 0.980 0.004 0.008 0.008
#> SRR1340345     4  0.6088      0.392 0.004 0.196 0.112 0.688
#> SRR1069514     4  0.4111      0.445 0.012 0.144 0.020 0.824
#> SRR1092636     3  0.6820      0.519 0.340 0.004 0.556 0.100
#> SRR1365013     4  0.6623      0.529 0.148 0.232 0.000 0.620
#> SRR1073069     1  0.0817      0.897 0.976 0.000 0.000 0.024
#> SRR1443137     1  0.0921      0.896 0.972 0.000 0.000 0.028
#> SRR1437143     2  0.0376      0.935 0.004 0.992 0.000 0.004
#> SRR1091990     1  0.0188      0.898 0.996 0.000 0.000 0.004
#> SRR820234      2  0.0188      0.934 0.004 0.996 0.000 0.000
#> SRR1338079     1  0.1118      0.888 0.964 0.000 0.000 0.036
#> SRR1390094     4  0.6457      0.508 0.384 0.064 0.004 0.548
#> SRR1340721     4  0.7388      0.499 0.304 0.192 0.000 0.504
#> SRR1335964     4  0.3204      0.455 0.016 0.064 0.028 0.892
#> SRR1086869     3  0.0469      0.514 0.000 0.000 0.988 0.012
#> SRR1453434     1  0.6818     -0.181 0.520 0.036 0.036 0.408
#> SRR1402261     4  0.7225      0.486 0.348 0.040 0.064 0.548
#> SRR657809      4  0.5746      0.305 0.040 0.348 0.000 0.612
#> SRR1093075     1  0.0707      0.897 0.980 0.000 0.000 0.020
#> SRR1433329     1  0.0921      0.896 0.972 0.000 0.000 0.028
#> SRR1353418     1  0.6152     -0.170 0.520 0.004 0.436 0.040
#> SRR1092913     4  0.7392      0.528 0.268 0.056 0.080 0.596

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0771    0.88221 0.976 0.000 0.004 0.020 0.000
#> SRR1335605     4  0.8161    0.39576 0.152 0.116 0.296 0.424 0.012
#> SRR1432014     3  0.0740    0.70068 0.008 0.008 0.980 0.000 0.004
#> SRR1499215     1  0.3392    0.82216 0.848 0.004 0.064 0.084 0.000
#> SRR1460409     1  0.0932    0.88247 0.972 0.000 0.004 0.020 0.004
#> SRR1086441     1  0.0771    0.88221 0.976 0.000 0.004 0.020 0.000
#> SRR1097344     4  0.5234   -0.11451 0.000 0.000 0.044 0.496 0.460
#> SRR1081789     4  0.8160    0.41268 0.148 0.188 0.260 0.404 0.000
#> SRR1453005     2  0.4575    0.64493 0.000 0.712 0.236 0.052 0.000
#> SRR1366985     1  0.3400    0.81640 0.848 0.004 0.076 0.072 0.000
#> SRR815280      1  0.1082    0.88293 0.964 0.000 0.008 0.028 0.000
#> SRR1348531     1  0.5195    0.49106 0.644 0.000 0.008 0.296 0.052
#> SRR815845      5  0.5685    0.13606 0.016 0.000 0.408 0.048 0.528
#> SRR1471178     1  0.0771    0.88221 0.976 0.000 0.004 0.020 0.000
#> SRR1080696     5  0.5951    0.66381 0.228 0.000 0.080 0.044 0.648
#> SRR1078684     3  0.8973   -0.00335 0.256 0.020 0.296 0.188 0.240
#> SRR1317751     5  0.2491    0.57243 0.036 0.000 0.000 0.068 0.896
#> SRR1435667     3  0.0740    0.70068 0.008 0.008 0.980 0.000 0.004
#> SRR1097905     1  0.3124    0.80890 0.844 0.000 0.016 0.136 0.004
#> SRR1456548     1  0.2339    0.85340 0.892 0.000 0.004 0.100 0.004
#> SRR1075126     1  0.3127    0.82101 0.848 0.000 0.020 0.128 0.004
#> SRR813108      3  0.1243    0.68992 0.008 0.028 0.960 0.004 0.000
#> SRR1479062     1  0.3443    0.81928 0.840 0.000 0.028 0.120 0.012
#> SRR1408703     5  0.6503    0.65323 0.252 0.000 0.084 0.068 0.596
#> SRR1332360     1  0.1701    0.87353 0.936 0.000 0.016 0.048 0.000
#> SRR1098686     1  0.1671    0.86490 0.924 0.000 0.000 0.076 0.000
#> SRR1434228     1  0.1728    0.87351 0.940 0.000 0.020 0.036 0.004
#> SRR1467149     1  0.5318    0.42847 0.616 0.000 0.008 0.324 0.052
#> SRR1399113     2  0.0000    0.93279 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.6279    0.57479 0.188 0.020 0.168 0.620 0.004
#> SRR1092468     4  0.4814    0.59489 0.188 0.000 0.060 0.736 0.016
#> SRR1441804     1  0.2805    0.84390 0.872 0.000 0.008 0.108 0.012
#> SRR1326100     4  0.7317    0.26352 0.032 0.220 0.352 0.396 0.000
#> SRR1398815     1  0.1492    0.87087 0.948 0.000 0.008 0.040 0.004
#> SRR1436021     4  0.7141    0.55717 0.148 0.084 0.192 0.572 0.004
#> SRR1480083     2  0.0000    0.93279 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.1608    0.86578 0.928 0.000 0.000 0.072 0.000
#> SRR815542      1  0.0703    0.88177 0.976 0.000 0.000 0.024 0.000
#> SRR1400100     1  0.8965   -0.39090 0.308 0.020 0.224 0.196 0.252
#> SRR1312002     1  0.3520    0.81141 0.852 0.000 0.020 0.064 0.064
#> SRR1470253     1  0.3443    0.81928 0.840 0.000 0.028 0.120 0.012
#> SRR1414332     1  0.0771    0.88221 0.976 0.000 0.004 0.020 0.000
#> SRR1069209     1  0.1787    0.87870 0.936 0.000 0.016 0.044 0.004
#> SRR661052      1  0.1608    0.86578 0.928 0.000 0.000 0.072 0.000
#> SRR1308860     1  0.0703    0.88177 0.976 0.000 0.000 0.024 0.000
#> SRR1421159     3  0.2414    0.65254 0.012 0.000 0.900 0.080 0.008
#> SRR1340943     4  0.4450    0.60170 0.188 0.012 0.044 0.756 0.000
#> SRR1078855     1  0.2032    0.87437 0.924 0.000 0.020 0.052 0.004
#> SRR1459465     2  0.0000    0.93279 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.1043    0.92141 0.000 0.960 0.040 0.000 0.000
#> SRR1478679     1  0.4326    0.73577 0.776 0.004 0.140 0.080 0.000
#> SRR1350979     3  0.0740    0.70003 0.008 0.008 0.980 0.004 0.000
#> SRR1458198     4  0.4516    0.53965 0.276 0.000 0.016 0.696 0.012
#> SRR1386910     4  0.8161    0.39576 0.152 0.116 0.296 0.424 0.012
#> SRR1465375     4  0.6902    0.56624 0.140 0.080 0.196 0.584 0.000
#> SRR1323699     1  0.4102    0.76290 0.796 0.004 0.120 0.080 0.000
#> SRR1431139     3  0.8973   -0.00335 0.256 0.020 0.296 0.188 0.240
#> SRR1373964     3  0.0854    0.69939 0.012 0.008 0.976 0.004 0.000
#> SRR1455413     1  0.3639    0.79351 0.808 0.000 0.008 0.164 0.020
#> SRR1437163     1  0.1608    0.86578 0.928 0.000 0.000 0.072 0.000
#> SRR1347343     3  0.5295    0.28296 0.304 0.004 0.628 0.064 0.000
#> SRR1465480     2  0.0000    0.93279 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.3599    0.79819 0.812 0.000 0.008 0.160 0.020
#> SRR1086514     4  0.6623    0.58932 0.128 0.076 0.148 0.640 0.008
#> SRR1430928     1  0.0609    0.88174 0.980 0.000 0.000 0.020 0.000
#> SRR1310939     4  0.4814    0.59489 0.188 0.000 0.060 0.736 0.016
#> SRR1344294     2  0.0794    0.93122 0.000 0.972 0.028 0.000 0.000
#> SRR1099402     1  0.1525    0.88002 0.948 0.000 0.012 0.036 0.004
#> SRR1468118     5  0.2650    0.56854 0.036 0.000 0.004 0.068 0.892
#> SRR1486348     1  0.0771    0.88221 0.976 0.000 0.004 0.020 0.000
#> SRR1488770     2  0.0794    0.93122 0.000 0.972 0.028 0.000 0.000
#> SRR1083732     1  0.1026    0.88065 0.968 0.000 0.004 0.024 0.004
#> SRR1456611     2  0.0162    0.93373 0.000 0.996 0.004 0.000 0.000
#> SRR1080318     1  0.1492    0.86522 0.948 0.000 0.008 0.040 0.004
#> SRR1500089     4  0.4814    0.59489 0.188 0.000 0.060 0.736 0.016
#> SRR1441178     1  0.1492    0.86522 0.948 0.000 0.008 0.040 0.004
#> SRR1381396     1  0.1492    0.87087 0.948 0.000 0.008 0.040 0.004
#> SRR1096081     5  0.3278    0.62020 0.092 0.000 0.020 0.028 0.860
#> SRR1349809     4  0.7857    0.43329 0.124 0.156 0.276 0.444 0.000
#> SRR1324314     1  0.4320    0.74894 0.780 0.000 0.096 0.120 0.004
#> SRR1092444     1  0.1492    0.86522 0.948 0.000 0.008 0.040 0.004
#> SRR1382553     1  0.4756    0.72256 0.768 0.140 0.024 0.064 0.004
#> SRR1075530     4  0.7293    0.29401 0.000 0.168 0.296 0.480 0.056
#> SRR1442612     3  0.0740    0.70068 0.008 0.008 0.980 0.000 0.004
#> SRR1360056     1  0.3520    0.81141 0.852 0.000 0.020 0.064 0.064
#> SRR1078164     1  0.1492    0.86522 0.948 0.000 0.008 0.040 0.004
#> SRR1434545     4  0.4303    0.60042 0.188 0.012 0.036 0.764 0.000
#> SRR1398251     1  0.1808    0.87316 0.936 0.000 0.020 0.040 0.004
#> SRR1375866     1  0.1492    0.86522 0.948 0.000 0.008 0.040 0.004
#> SRR1091645     4  0.5234   -0.11451 0.000 0.000 0.044 0.496 0.460
#> SRR1416636     5  0.6118    0.65898 0.256 0.000 0.080 0.044 0.620
#> SRR1105441     3  0.8973   -0.00335 0.256 0.020 0.296 0.188 0.240
#> SRR1082496     2  0.0794    0.93122 0.000 0.972 0.028 0.000 0.000
#> SRR1315353     2  0.5319    0.54562 0.012 0.652 0.276 0.060 0.000
#> SRR1093697     2  0.0794    0.93122 0.000 0.972 0.028 0.000 0.000
#> SRR1077429     5  0.6814    0.58911 0.312 0.000 0.084 0.072 0.532
#> SRR1076120     4  0.4516    0.53965 0.276 0.000 0.016 0.696 0.012
#> SRR1074410     1  0.1492    0.87087 0.948 0.000 0.008 0.040 0.004
#> SRR1340345     4  0.7293    0.29401 0.000 0.168 0.296 0.480 0.056
#> SRR1069514     3  0.1243    0.68992 0.008 0.028 0.960 0.004 0.000
#> SRR1092636     5  0.6503    0.65323 0.252 0.000 0.084 0.068 0.596
#> SRR1365013     4  0.7584    0.38165 0.064 0.196 0.308 0.432 0.000
#> SRR1073069     1  0.1701    0.87353 0.936 0.000 0.016 0.048 0.000
#> SRR1443137     1  0.1808    0.87316 0.936 0.000 0.020 0.040 0.004
#> SRR1437143     2  0.0162    0.93373 0.000 0.996 0.004 0.000 0.000
#> SRR1091990     1  0.0771    0.88221 0.976 0.000 0.004 0.020 0.000
#> SRR820234      2  0.0000    0.93279 0.000 1.000 0.000 0.000 0.000
#> SRR1338079     1  0.1608    0.86578 0.928 0.000 0.000 0.072 0.000
#> SRR1390094     4  0.6924    0.51332 0.224 0.020 0.232 0.520 0.004
#> SRR1340721     4  0.8306    0.40331 0.224 0.160 0.236 0.380 0.000
#> SRR1335964     3  0.2414    0.65254 0.012 0.000 0.900 0.080 0.008
#> SRR1086869     5  0.2338    0.49191 0.000 0.000 0.004 0.112 0.884
#> SRR1453434     4  0.5201    0.46397 0.364 0.008 0.028 0.596 0.004
#> SRR1402261     4  0.4338    0.60023 0.192 0.012 0.036 0.760 0.000
#> SRR657809      4  0.7054    0.20055 0.008 0.316 0.324 0.352 0.000
#> SRR1093075     1  0.1787    0.87547 0.936 0.000 0.016 0.044 0.004
#> SRR1433329     1  0.1808    0.87316 0.936 0.000 0.020 0.040 0.004
#> SRR1353418     5  0.6439    0.47823 0.408 0.000 0.040 0.072 0.480
#> SRR1092913     4  0.6292    0.59564 0.140 0.024 0.120 0.676 0.040

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.0790      0.872 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR1335605     4  0.8129      0.496 0.112 0.068 0.188 0.488 0.040 0.104
#> SRR1432014     3  0.0405      0.878 0.000 0.000 0.988 0.004 0.008 0.000
#> SRR1499215     1  0.4348      0.794 0.800 0.004 0.052 0.072 0.024 0.048
#> SRR1460409     1  0.0935      0.873 0.964 0.000 0.000 0.032 0.004 0.000
#> SRR1086441     1  0.0790      0.872 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR1097344     6  0.4663      1.000 0.000 0.000 0.000 0.192 0.124 0.684
#> SRR1081789     4  0.7959      0.502 0.120 0.120 0.144 0.468 0.000 0.148
#> SRR1453005     2  0.5912      0.537 0.000 0.628 0.108 0.100 0.000 0.164
#> SRR1366985     1  0.4049      0.800 0.816 0.004 0.068 0.060 0.016 0.036
#> SRR815280      1  0.1124      0.873 0.956 0.000 0.000 0.036 0.000 0.008
#> SRR1348531     1  0.5872      0.257 0.516 0.000 0.000 0.340 0.120 0.024
#> SRR815845      5  0.5270      0.173 0.004 0.000 0.360 0.008 0.556 0.072
#> SRR1471178     1  0.0790      0.872 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR1080696     5  0.2794      0.534 0.088 0.000 0.036 0.004 0.868 0.004
#> SRR1078684     5  0.8218      0.298 0.148 0.016 0.224 0.216 0.372 0.024
#> SRR1317751     5  0.3330      0.136 0.000 0.000 0.000 0.000 0.716 0.284
#> SRR1435667     3  0.0405      0.878 0.000 0.000 0.988 0.004 0.008 0.000
#> SRR1097905     1  0.3532      0.786 0.808 0.000 0.004 0.148 0.016 0.024
#> SRR1456548     1  0.2566      0.840 0.868 0.000 0.000 0.112 0.012 0.008
#> SRR1075126     1  0.3658      0.790 0.800 0.000 0.000 0.144 0.020 0.036
#> SRR813108      3  0.1049      0.858 0.000 0.000 0.960 0.008 0.000 0.032
#> SRR1479062     1  0.4385      0.773 0.772 0.000 0.004 0.100 0.088 0.036
#> SRR1408703     5  0.3603      0.555 0.108 0.000 0.040 0.020 0.824 0.008
#> SRR1332360     1  0.2074      0.860 0.920 0.000 0.004 0.028 0.012 0.036
#> SRR1098686     1  0.2165      0.842 0.884 0.000 0.000 0.108 0.008 0.000
#> SRR1434228     1  0.1965      0.861 0.924 0.000 0.004 0.024 0.008 0.040
#> SRR1467149     1  0.5927      0.178 0.488 0.000 0.000 0.368 0.120 0.024
#> SRR1399113     2  0.0146      0.915 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1476507     4  0.4553      0.585 0.088 0.008 0.120 0.760 0.004 0.020
#> SRR1092468     4  0.4210      0.513 0.088 0.000 0.008 0.788 0.028 0.088
#> SRR1441804     1  0.3375      0.806 0.816 0.000 0.000 0.136 0.040 0.008
#> SRR1326100     4  0.7572      0.415 0.012 0.160 0.236 0.448 0.008 0.136
#> SRR1398815     1  0.1962      0.860 0.924 0.000 0.000 0.028 0.028 0.020
#> SRR1436021     4  0.6058      0.590 0.080 0.044 0.136 0.672 0.008 0.060
#> SRR1480083     2  0.0146      0.915 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1472863     1  0.1958      0.846 0.896 0.000 0.000 0.100 0.004 0.000
#> SRR815542      1  0.1010      0.871 0.960 0.000 0.000 0.036 0.004 0.000
#> SRR1400100     5  0.8182      0.293 0.184 0.016 0.152 0.224 0.396 0.028
#> SRR1312002     1  0.4159      0.757 0.776 0.000 0.008 0.024 0.148 0.044
#> SRR1470253     1  0.4385      0.773 0.772 0.000 0.004 0.100 0.088 0.036
#> SRR1414332     1  0.0790      0.872 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR1069209     1  0.1899      0.869 0.928 0.000 0.004 0.032 0.008 0.028
#> SRR661052      1  0.1958      0.846 0.896 0.000 0.000 0.100 0.004 0.000
#> SRR1308860     1  0.1010      0.871 0.960 0.000 0.000 0.036 0.004 0.000
#> SRR1421159     3  0.2617      0.804 0.004 0.000 0.876 0.080 0.000 0.040
#> SRR1340943     4  0.3070      0.543 0.084 0.004 0.004 0.852 0.000 0.056
#> SRR1078855     1  0.2190      0.863 0.908 0.000 0.000 0.044 0.008 0.040
#> SRR1459465     2  0.0146      0.915 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR816818      2  0.1148      0.904 0.000 0.960 0.020 0.004 0.000 0.016
#> SRR1478679     1  0.5108      0.722 0.736 0.004 0.116 0.080 0.020 0.044
#> SRR1350979     3  0.0291      0.877 0.000 0.000 0.992 0.004 0.004 0.000
#> SRR1458198     4  0.4485      0.485 0.168 0.000 0.000 0.740 0.036 0.056
#> SRR1386910     4  0.8129      0.496 0.112 0.068 0.188 0.488 0.040 0.104
#> SRR1465375     4  0.5518      0.592 0.068 0.036 0.128 0.704 0.000 0.064
#> SRR1323699     1  0.5005      0.741 0.752 0.004 0.096 0.072 0.028 0.048
#> SRR1431139     5  0.8218      0.298 0.148 0.016 0.224 0.216 0.372 0.024
#> SRR1373964     3  0.0436      0.877 0.004 0.000 0.988 0.004 0.004 0.000
#> SRR1455413     1  0.4345      0.730 0.732 0.000 0.000 0.188 0.068 0.012
#> SRR1437163     1  0.1806      0.853 0.908 0.000 0.000 0.088 0.004 0.000
#> SRR1347343     3  0.5465      0.253 0.288 0.004 0.616 0.056 0.008 0.028
#> SRR1465480     2  0.0146      0.915 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1489631     1  0.4283      0.741 0.740 0.000 0.000 0.180 0.068 0.012
#> SRR1086514     4  0.4852      0.593 0.060 0.032 0.068 0.768 0.004 0.068
#> SRR1430928     1  0.0935      0.872 0.964 0.000 0.000 0.032 0.004 0.000
#> SRR1310939     4  0.4210      0.513 0.088 0.000 0.008 0.788 0.028 0.088
#> SRR1344294     2  0.0862      0.914 0.000 0.972 0.008 0.004 0.000 0.016
#> SRR1099402     1  0.1562      0.871 0.940 0.000 0.004 0.032 0.000 0.024
#> SRR1468118     5  0.3409      0.110 0.000 0.000 0.000 0.000 0.700 0.300
#> SRR1486348     1  0.0790      0.872 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR1488770     2  0.0862      0.914 0.000 0.972 0.008 0.004 0.000 0.016
#> SRR1083732     1  0.1390      0.872 0.948 0.000 0.000 0.032 0.016 0.004
#> SRR1456611     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.1875      0.853 0.928 0.000 0.000 0.020 0.032 0.020
#> SRR1500089     4  0.4210      0.513 0.088 0.000 0.008 0.788 0.028 0.088
#> SRR1441178     1  0.1875      0.853 0.928 0.000 0.000 0.020 0.032 0.020
#> SRR1381396     1  0.1962      0.860 0.924 0.000 0.000 0.028 0.028 0.020
#> SRR1096081     5  0.2100      0.334 0.004 0.000 0.000 0.000 0.884 0.112
#> SRR1349809     4  0.7594      0.523 0.096 0.084 0.148 0.520 0.004 0.148
#> SRR1324314     1  0.5003      0.727 0.740 0.000 0.072 0.120 0.032 0.036
#> SRR1092444     1  0.1875      0.853 0.928 0.000 0.000 0.020 0.032 0.020
#> SRR1382553     1  0.5136      0.717 0.732 0.116 0.004 0.048 0.016 0.084
#> SRR1075530     4  0.6892      0.252 0.000 0.084 0.128 0.484 0.012 0.292
#> SRR1442612     3  0.0405      0.878 0.000 0.000 0.988 0.004 0.008 0.000
#> SRR1360056     1  0.4159      0.757 0.776 0.000 0.008 0.024 0.148 0.044
#> SRR1078164     1  0.1875      0.853 0.928 0.000 0.000 0.020 0.032 0.020
#> SRR1434545     4  0.2866      0.540 0.084 0.004 0.000 0.860 0.000 0.052
#> SRR1398251     1  0.2113      0.859 0.916 0.000 0.004 0.028 0.008 0.044
#> SRR1375866     1  0.1875      0.853 0.928 0.000 0.000 0.020 0.032 0.020
#> SRR1091645     6  0.4663      1.000 0.000 0.000 0.000 0.192 0.124 0.684
#> SRR1416636     5  0.3036      0.549 0.108 0.000 0.036 0.004 0.848 0.004
#> SRR1105441     5  0.8218      0.298 0.148 0.016 0.224 0.216 0.372 0.024
#> SRR1082496     2  0.0862      0.914 0.000 0.972 0.008 0.004 0.000 0.016
#> SRR1315353     2  0.6544      0.449 0.000 0.568 0.148 0.116 0.004 0.164
#> SRR1093697     2  0.0862      0.914 0.000 0.972 0.008 0.004 0.000 0.016
#> SRR1077429     5  0.4555      0.536 0.152 0.000 0.040 0.024 0.756 0.028
#> SRR1076120     4  0.4485      0.485 0.168 0.000 0.000 0.740 0.036 0.056
#> SRR1074410     1  0.1962      0.860 0.924 0.000 0.000 0.028 0.028 0.020
#> SRR1340345     4  0.6892      0.252 0.000 0.084 0.128 0.484 0.012 0.292
#> SRR1069514     3  0.1049      0.858 0.000 0.000 0.960 0.008 0.000 0.032
#> SRR1092636     5  0.3603      0.555 0.108 0.000 0.040 0.020 0.824 0.008
#> SRR1365013     4  0.7355      0.487 0.024 0.124 0.188 0.516 0.008 0.140
#> SRR1073069     1  0.2074      0.860 0.920 0.000 0.004 0.028 0.012 0.036
#> SRR1443137     1  0.2034      0.860 0.920 0.000 0.004 0.024 0.008 0.044
#> SRR1437143     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.0790      0.872 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR820234      2  0.0146      0.915 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1338079     1  0.1806      0.853 0.908 0.000 0.000 0.088 0.004 0.000
#> SRR1390094     4  0.5452      0.553 0.132 0.008 0.192 0.652 0.004 0.012
#> SRR1340721     4  0.7968      0.482 0.188 0.096 0.128 0.456 0.000 0.132
#> SRR1335964     3  0.2547      0.803 0.004 0.000 0.880 0.080 0.000 0.036
#> SRR1086869     5  0.3828     -0.193 0.000 0.000 0.000 0.000 0.560 0.440
#> SRR1453434     4  0.4443      0.432 0.276 0.000 0.000 0.664 0.000 0.060
#> SRR1402261     4  0.2918      0.542 0.088 0.004 0.000 0.856 0.000 0.052
#> SRR657809      4  0.7568      0.308 0.000 0.232 0.176 0.388 0.004 0.200
#> SRR1093075     1  0.2050      0.864 0.920 0.000 0.004 0.032 0.008 0.036
#> SRR1433329     1  0.2034      0.860 0.920 0.000 0.004 0.024 0.008 0.044
#> SRR1353418     5  0.4429      0.446 0.240 0.000 0.004 0.012 0.704 0.040
#> SRR1092913     4  0.3760      0.545 0.044 0.008 0.032 0.832 0.008 0.076

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.659           0.831       0.913         0.4677 0.526   0.526
#> 3 3 0.691           0.805       0.912         0.3512 0.700   0.494
#> 4 4 0.533           0.565       0.755         0.1193 0.848   0.619
#> 5 5 0.643           0.607       0.730         0.0760 0.881   0.641
#> 6 6 0.696           0.608       0.755         0.0569 0.891   0.602

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0376      0.917 0.996 0.004
#> SRR1335605     1  0.9170      0.467 0.668 0.332
#> SRR1432014     2  0.8661      0.605 0.288 0.712
#> SRR1499215     1  0.0000      0.916 1.000 0.000
#> SRR1460409     1  0.0376      0.917 0.996 0.004
#> SRR1086441     1  0.0376      0.917 0.996 0.004
#> SRR1097344     2  0.0938      0.886 0.012 0.988
#> SRR1081789     2  0.2948      0.899 0.052 0.948
#> SRR1453005     2  0.2948      0.899 0.052 0.948
#> SRR1366985     1  0.0376      0.917 0.996 0.004
#> SRR815280      1  0.0376      0.917 0.996 0.004
#> SRR1348531     1  0.2948      0.889 0.948 0.052
#> SRR815845      2  0.4022      0.862 0.080 0.920
#> SRR1471178     1  0.0376      0.917 0.996 0.004
#> SRR1080696     1  0.9775      0.359 0.588 0.412
#> SRR1078684     2  0.9635      0.475 0.388 0.612
#> SRR1317751     1  0.8386      0.662 0.732 0.268
#> SRR1435667     2  0.4161      0.863 0.084 0.916
#> SRR1097905     1  0.0376      0.917 0.996 0.004
#> SRR1456548     1  0.0376      0.917 0.996 0.004
#> SRR1075126     1  0.0376      0.917 0.996 0.004
#> SRR813108      2  0.1843      0.893 0.028 0.972
#> SRR1479062     1  0.9248      0.480 0.660 0.340
#> SRR1408703     1  0.9552      0.453 0.624 0.376
#> SRR1332360     1  0.0000      0.916 1.000 0.000
#> SRR1098686     1  0.0376      0.917 0.996 0.004
#> SRR1434228     1  0.0376      0.917 0.996 0.004
#> SRR1467149     1  0.2948      0.889 0.948 0.052
#> SRR1399113     2  0.2948      0.899 0.052 0.948
#> SRR1476507     2  0.1184      0.887 0.016 0.984
#> SRR1092468     1  0.2778      0.901 0.952 0.048
#> SRR1441804     1  0.2236      0.899 0.964 0.036
#> SRR1326100     2  0.2948      0.899 0.052 0.948
#> SRR1398815     1  0.0376      0.917 0.996 0.004
#> SRR1436021     2  0.3431      0.896 0.064 0.936
#> SRR1480083     2  0.2948      0.899 0.052 0.948
#> SRR1472863     1  0.0376      0.917 0.996 0.004
#> SRR815542      1  0.0376      0.917 0.996 0.004
#> SRR1400100     2  0.2778      0.879 0.048 0.952
#> SRR1312002     1  0.0000      0.916 1.000 0.000
#> SRR1470253     1  0.1184      0.910 0.984 0.016
#> SRR1414332     1  0.0376      0.917 0.996 0.004
#> SRR1069209     1  0.0376      0.917 0.996 0.004
#> SRR661052      1  0.0000      0.916 1.000 0.000
#> SRR1308860     1  0.0376      0.917 0.996 0.004
#> SRR1421159     2  0.1184      0.887 0.016 0.984
#> SRR1340943     1  0.5294      0.825 0.880 0.120
#> SRR1078855     1  0.0376      0.917 0.996 0.004
#> SRR1459465     2  0.2948      0.899 0.052 0.948
#> SRR816818      2  0.2948      0.899 0.052 0.948
#> SRR1478679     2  0.9944      0.318 0.456 0.544
#> SRR1350979     2  0.9087      0.533 0.324 0.676
#> SRR1458198     1  0.2948      0.893 0.948 0.052
#> SRR1386910     2  0.1414      0.884 0.020 0.980
#> SRR1465375     2  0.7299      0.769 0.204 0.796
#> SRR1323699     1  0.5737      0.793 0.864 0.136
#> SRR1431139     1  0.0938      0.914 0.988 0.012
#> SRR1373964     2  0.9044      0.619 0.320 0.680
#> SRR1455413     1  0.2603      0.894 0.956 0.044
#> SRR1437163     1  0.0376      0.917 0.996 0.004
#> SRR1347343     2  0.9491      0.524 0.368 0.632
#> SRR1465480     2  0.2948      0.899 0.052 0.948
#> SRR1489631     1  0.0000      0.916 1.000 0.000
#> SRR1086514     2  0.0938      0.886 0.012 0.988
#> SRR1430928     1  0.0376      0.917 0.996 0.004
#> SRR1310939     1  0.9732      0.359 0.596 0.404
#> SRR1344294     2  0.2948      0.899 0.052 0.948
#> SRR1099402     1  0.0376      0.917 0.996 0.004
#> SRR1468118     1  0.8386      0.662 0.732 0.268
#> SRR1486348     1  0.0376      0.917 0.996 0.004
#> SRR1488770     2  0.2948      0.899 0.052 0.948
#> SRR1083732     1  0.0376      0.917 0.996 0.004
#> SRR1456611     2  0.2948      0.899 0.052 0.948
#> SRR1080318     1  0.0000      0.916 1.000 0.000
#> SRR1500089     1  0.3114      0.891 0.944 0.056
#> SRR1441178     1  0.0000      0.916 1.000 0.000
#> SRR1381396     1  0.0000      0.916 1.000 0.000
#> SRR1096081     1  0.8386      0.662 0.732 0.268
#> SRR1349809     2  0.6148      0.829 0.152 0.848
#> SRR1324314     1  0.0000      0.916 1.000 0.000
#> SRR1092444     1  0.2948      0.889 0.948 0.052
#> SRR1382553     1  0.1633      0.906 0.976 0.024
#> SRR1075530     2  0.0938      0.886 0.012 0.988
#> SRR1442612     2  0.8386      0.647 0.268 0.732
#> SRR1360056     1  0.2948      0.889 0.948 0.052
#> SRR1078164     1  0.0376      0.915 0.996 0.004
#> SRR1434545     2  0.6623      0.817 0.172 0.828
#> SRR1398251     1  0.0000      0.916 1.000 0.000
#> SRR1375866     1  0.0376      0.915 0.996 0.004
#> SRR1091645     2  0.1184      0.884 0.016 0.984
#> SRR1416636     1  0.9552      0.453 0.624 0.376
#> SRR1105441     2  0.2948      0.880 0.052 0.948
#> SRR1082496     2  0.2948      0.899 0.052 0.948
#> SRR1315353     2  0.2948      0.899 0.052 0.948
#> SRR1093697     2  0.2948      0.899 0.052 0.948
#> SRR1077429     1  0.6531      0.794 0.832 0.168
#> SRR1076120     1  0.3114      0.891 0.944 0.056
#> SRR1074410     1  0.0000      0.916 1.000 0.000
#> SRR1340345     2  0.0938      0.886 0.012 0.988
#> SRR1069514     2  0.4690      0.871 0.100 0.900
#> SRR1092636     1  0.3584      0.883 0.932 0.068
#> SRR1365013     2  0.3431      0.896 0.064 0.936
#> SRR1073069     1  0.0000      0.916 1.000 0.000
#> SRR1443137     1  0.0376      0.917 0.996 0.004
#> SRR1437143     2  0.2948      0.899 0.052 0.948
#> SRR1091990     1  0.0376      0.917 0.996 0.004
#> SRR820234      2  0.2948      0.899 0.052 0.948
#> SRR1338079     1  0.0376      0.917 0.996 0.004
#> SRR1390094     2  0.9460      0.533 0.364 0.636
#> SRR1340721     1  0.9044      0.451 0.680 0.320
#> SRR1335964     1  0.9775      0.359 0.588 0.412
#> SRR1086869     1  0.9661      0.413 0.608 0.392
#> SRR1453434     1  0.0376      0.917 0.996 0.004
#> SRR1402261     1  0.2423      0.896 0.960 0.040
#> SRR657809      2  0.2948      0.899 0.052 0.948
#> SRR1093075     1  0.0376      0.917 0.996 0.004
#> SRR1433329     1  0.0376      0.917 0.996 0.004
#> SRR1353418     1  0.2948      0.889 0.948 0.052
#> SRR1092913     2  0.0938      0.886 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1335605     3  0.4551     0.7711 0.132 0.024 0.844
#> SRR1432014     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1499215     3  0.6267     0.2663 0.452 0.000 0.548
#> SRR1460409     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1097344     2  0.6095     0.5288 0.000 0.608 0.392
#> SRR1081789     2  0.1860     0.8228 0.000 0.948 0.052
#> SRR1453005     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1366985     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR815280      1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1348531     1  0.0592     0.9486 0.988 0.000 0.012
#> SRR815845      3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1471178     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1080696     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1078684     3  0.5662     0.7581 0.092 0.100 0.808
#> SRR1317751     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1435667     3  0.2165     0.8162 0.000 0.064 0.936
#> SRR1097905     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1456548     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1075126     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR813108      2  0.5465     0.6280 0.000 0.712 0.288
#> SRR1479062     3  0.3966     0.7916 0.100 0.024 0.876
#> SRR1408703     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1332360     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1098686     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1434228     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1467149     1  0.4887     0.7043 0.772 0.000 0.228
#> SRR1399113     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1476507     2  0.6126     0.4681 0.000 0.600 0.400
#> SRR1092468     3  0.4235     0.7384 0.176 0.000 0.824
#> SRR1441804     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1326100     2  0.2261     0.8165 0.000 0.932 0.068
#> SRR1398815     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1436021     2  0.5968     0.5263 0.000 0.636 0.364
#> SRR1480083     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1472863     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR815542      1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1400100     3  0.0747     0.8324 0.000 0.016 0.984
#> SRR1312002     1  0.3192     0.8496 0.888 0.000 0.112
#> SRR1470253     1  0.5968     0.3826 0.636 0.000 0.364
#> SRR1414332     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1069209     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR661052      1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1308860     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1421159     3  0.3116     0.7915 0.000 0.108 0.892
#> SRR1340943     1  0.3356     0.8842 0.908 0.056 0.036
#> SRR1078855     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1459465     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1478679     3  0.4931     0.6766 0.232 0.000 0.768
#> SRR1350979     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1458198     1  0.2165     0.9021 0.936 0.000 0.064
#> SRR1386910     3  0.3619     0.7447 0.000 0.136 0.864
#> SRR1465375     1  0.6295     0.0552 0.528 0.472 0.000
#> SRR1323699     3  0.4750     0.6936 0.216 0.000 0.784
#> SRR1431139     3  0.4629     0.7273 0.188 0.004 0.808
#> SRR1373964     3  0.2878     0.8001 0.000 0.096 0.904
#> SRR1455413     1  0.0424     0.9508 0.992 0.000 0.008
#> SRR1437163     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1347343     3  0.2711     0.8039 0.000 0.088 0.912
#> SRR1465480     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1489631     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1086514     2  0.5254     0.6775 0.000 0.736 0.264
#> SRR1430928     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1310939     3  0.2846     0.8190 0.056 0.020 0.924
#> SRR1344294     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1468118     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1486348     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1488770     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1500089     3  0.4931     0.6736 0.232 0.000 0.768
#> SRR1441178     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1381396     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1096081     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1349809     2  0.3941     0.7179 0.156 0.844 0.000
#> SRR1324314     3  0.5760     0.5546 0.328 0.000 0.672
#> SRR1092444     1  0.0424     0.9508 0.992 0.000 0.008
#> SRR1382553     1  0.6902     0.6858 0.732 0.168 0.100
#> SRR1075530     3  0.6309    -0.2370 0.000 0.496 0.504
#> SRR1442612     3  0.1031     0.8303 0.000 0.024 0.976
#> SRR1360056     3  0.5948     0.3971 0.360 0.000 0.640
#> SRR1078164     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1434545     2  0.8803     0.4311 0.320 0.544 0.136
#> SRR1398251     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1375866     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1091645     3  0.3192     0.7489 0.000 0.112 0.888
#> SRR1416636     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1105441     3  0.2796     0.8026 0.000 0.092 0.908
#> SRR1082496     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1315353     2  0.4399     0.7422 0.000 0.812 0.188
#> SRR1093697     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1077429     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1076120     1  0.3619     0.8203 0.864 0.000 0.136
#> SRR1074410     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1340345     3  0.6309    -0.2370 0.000 0.496 0.504
#> SRR1069514     3  0.2878     0.8001 0.000 0.096 0.904
#> SRR1092636     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1365013     2  0.7262     0.5362 0.044 0.624 0.332
#> SRR1073069     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1443137     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1437143     2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR820234      2  0.0000     0.8377 0.000 1.000 0.000
#> SRR1338079     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1390094     1  0.6918     0.6674 0.736 0.128 0.136
#> SRR1340721     1  0.3551     0.8248 0.868 0.132 0.000
#> SRR1335964     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1086869     3  0.0237     0.8342 0.000 0.004 0.996
#> SRR1453434     1  0.0000     0.9553 1.000 0.000 0.000
#> SRR1402261     1  0.2063     0.9158 0.948 0.008 0.044
#> SRR657809      2  0.5178     0.6793 0.000 0.744 0.256
#> SRR1093075     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1433329     1  0.0237     0.9543 0.996 0.000 0.004
#> SRR1353418     3  0.1163     0.8232 0.028 0.000 0.972
#> SRR1092913     2  0.5882     0.5814 0.000 0.652 0.348

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1335605     4  0.6625    -0.0890 0.076 0.004 0.380 0.540
#> SRR1432014     3  0.4877     0.4520 0.000 0.000 0.592 0.408
#> SRR1499215     3  0.7566     0.1990 0.212 0.000 0.468 0.320
#> SRR1460409     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.6822     0.3968 0.000 0.192 0.204 0.604
#> SRR1081789     2  0.5028     0.3115 0.000 0.596 0.004 0.400
#> SRR1453005     2  0.3726     0.6554 0.000 0.788 0.000 0.212
#> SRR1366985     1  0.4114     0.8062 0.828 0.000 0.112 0.060
#> SRR815280      1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1348531     1  0.2480     0.8587 0.904 0.000 0.088 0.008
#> SRR815845      3  0.3975     0.5851 0.000 0.000 0.760 0.240
#> SRR1471178     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.3726     0.5978 0.000 0.000 0.788 0.212
#> SRR1078684     4  0.7260    -0.0672 0.084 0.028 0.344 0.544
#> SRR1317751     3  0.3172     0.5805 0.000 0.000 0.840 0.160
#> SRR1435667     4  0.5778    -0.2653 0.000 0.028 0.472 0.500
#> SRR1097905     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1456548     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1075126     1  0.0336     0.8823 0.992 0.000 0.000 0.008
#> SRR813108      4  0.7008     0.3149 0.000 0.276 0.160 0.564
#> SRR1479062     3  0.5151     0.0407 0.004 0.000 0.532 0.464
#> SRR1408703     3  0.3837     0.5972 0.000 0.000 0.776 0.224
#> SRR1332360     1  0.5032     0.7885 0.764 0.000 0.156 0.080
#> SRR1098686     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1434228     1  0.3674     0.8252 0.852 0.000 0.104 0.044
#> SRR1467149     1  0.7261     0.3064 0.536 0.000 0.268 0.196
#> SRR1399113     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.5464     0.4500 0.000 0.212 0.072 0.716
#> SRR1092468     4  0.4773     0.4274 0.120 0.000 0.092 0.788
#> SRR1441804     1  0.0188     0.8842 0.996 0.000 0.004 0.000
#> SRR1326100     2  0.5407     0.0574 0.000 0.504 0.012 0.484
#> SRR1398815     1  0.3156     0.8482 0.884 0.000 0.048 0.068
#> SRR1436021     4  0.4747     0.4839 0.016 0.180 0.024 0.780
#> SRR1480083     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR815542      1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1400100     3  0.4889     0.4803 0.000 0.004 0.636 0.360
#> SRR1312002     1  0.6201     0.4005 0.564 0.000 0.376 0.060
#> SRR1470253     3  0.7065    -0.1048 0.404 0.000 0.472 0.124
#> SRR1414332     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.2973     0.8459 0.884 0.000 0.096 0.020
#> SRR661052      1  0.3156     0.8482 0.884 0.000 0.048 0.068
#> SRR1308860     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1421159     4  0.4636     0.3478 0.000 0.040 0.188 0.772
#> SRR1340943     4  0.6462     0.2542 0.416 0.008 0.052 0.524
#> SRR1078855     1  0.3037     0.8436 0.880 0.000 0.100 0.020
#> SRR1459465     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1478679     4  0.7021    -0.1100 0.120 0.000 0.400 0.480
#> SRR1350979     3  0.4888     0.4460 0.000 0.000 0.588 0.412
#> SRR1458198     1  0.5687     0.5086 0.684 0.000 0.068 0.248
#> SRR1386910     4  0.4375     0.3892 0.000 0.032 0.180 0.788
#> SRR1465375     4  0.7215     0.3821 0.244 0.136 0.020 0.600
#> SRR1323699     3  0.6921     0.1583 0.108 0.000 0.468 0.424
#> SRR1431139     4  0.7009    -0.1518 0.120 0.000 0.392 0.488
#> SRR1373964     4  0.5996    -0.2260 0.000 0.040 0.448 0.512
#> SRR1455413     1  0.3548     0.8385 0.864 0.000 0.068 0.068
#> SRR1437163     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1347343     3  0.6015     0.1967 0.004 0.032 0.512 0.452
#> SRR1465480     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0188     0.8842 0.996 0.000 0.004 0.000
#> SRR1086514     4  0.4391     0.4193 0.000 0.252 0.008 0.740
#> SRR1430928     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1310939     4  0.3959     0.4119 0.068 0.000 0.092 0.840
#> SRR1344294     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.3444     0.5882 0.000 0.000 0.816 0.184
#> SRR1486348     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.3474     0.8401 0.868 0.000 0.064 0.068
#> SRR1500089     4  0.7238     0.2625 0.304 0.000 0.172 0.524
#> SRR1441178     1  0.4568     0.8137 0.800 0.000 0.124 0.076
#> SRR1381396     1  0.3156     0.8482 0.884 0.000 0.048 0.068
#> SRR1096081     3  0.3311     0.5902 0.000 0.000 0.828 0.172
#> SRR1349809     2  0.7474    -0.0219 0.176 0.424 0.000 0.400
#> SRR1324314     3  0.7706     0.1639 0.364 0.000 0.412 0.224
#> SRR1092444     1  0.3621     0.8362 0.860 0.000 0.072 0.068
#> SRR1382553     1  0.8874     0.2093 0.484 0.124 0.256 0.136
#> SRR1075530     4  0.5676     0.4753 0.000 0.144 0.136 0.720
#> SRR1442612     4  0.5168    -0.3040 0.000 0.004 0.492 0.504
#> SRR1360056     3  0.4499     0.4127 0.124 0.000 0.804 0.072
#> SRR1078164     1  0.4568     0.8137 0.800 0.000 0.124 0.076
#> SRR1434545     4  0.7660     0.3675 0.296 0.084 0.060 0.560
#> SRR1398251     1  0.3899     0.8157 0.840 0.000 0.108 0.052
#> SRR1375866     1  0.4344     0.8222 0.816 0.000 0.108 0.076
#> SRR1091645     4  0.5112     0.0998 0.000 0.004 0.436 0.560
#> SRR1416636     3  0.3873     0.5981 0.000 0.000 0.772 0.228
#> SRR1105441     4  0.5938    -0.2479 0.000 0.036 0.480 0.484
#> SRR1082496     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1315353     4  0.6332     0.1523 0.000 0.404 0.064 0.532
#> SRR1093697     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.3356     0.5910 0.000 0.000 0.824 0.176
#> SRR1076120     1  0.6136     0.3930 0.632 0.000 0.080 0.288
#> SRR1074410     1  0.3474     0.8401 0.868 0.000 0.064 0.068
#> SRR1340345     4  0.5676     0.4753 0.000 0.144 0.136 0.720
#> SRR1069514     4  0.6000    -0.2302 0.000 0.040 0.452 0.508
#> SRR1092636     3  0.3610     0.6032 0.000 0.000 0.800 0.200
#> SRR1365013     4  0.4988     0.4698 0.024 0.204 0.016 0.756
#> SRR1073069     1  0.4966     0.7916 0.768 0.000 0.156 0.076
#> SRR1443137     1  0.2805     0.8470 0.888 0.000 0.100 0.012
#> SRR1437143     2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR820234      2  0.0000     0.8647 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.0000     0.8849 1.000 0.000 0.000 0.000
#> SRR1390094     4  0.6716     0.3233 0.324 0.040 0.040 0.596
#> SRR1340721     1  0.3672     0.7216 0.824 0.012 0.000 0.164
#> SRR1335964     3  0.4985     0.3084 0.000 0.000 0.532 0.468
#> SRR1086869     3  0.3569     0.5862 0.000 0.000 0.804 0.196
#> SRR1453434     1  0.0336     0.8823 0.992 0.000 0.000 0.008
#> SRR1402261     4  0.6148     0.2806 0.408 0.000 0.052 0.540
#> SRR657809      4  0.4134     0.4063 0.000 0.260 0.000 0.740
#> SRR1093075     1  0.2973     0.8459 0.884 0.000 0.096 0.020
#> SRR1433329     1  0.2924     0.8454 0.884 0.000 0.100 0.016
#> SRR1353418     3  0.2596     0.5085 0.024 0.000 0.908 0.068
#> SRR1092913     4  0.6236     0.4380 0.012 0.208 0.096 0.684

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0000     0.8167 1.000 0.000 0.000 0.000 0.000
#> SRR1335605     3  0.6213     0.1424 0.072 0.000 0.540 0.356 0.032
#> SRR1432014     3  0.4045     0.4066 0.000 0.000 0.644 0.000 0.356
#> SRR1499215     3  0.6524     0.2574 0.104 0.000 0.636 0.152 0.108
#> SRR1460409     1  0.0880     0.8124 0.968 0.000 0.000 0.032 0.000
#> SRR1086441     1  0.0404     0.8161 0.988 0.000 0.000 0.012 0.000
#> SRR1097344     4  0.4978     0.6074 0.000 0.040 0.068 0.752 0.140
#> SRR1081789     3  0.6783    -0.0406 0.000 0.348 0.372 0.280 0.000
#> SRR1453005     2  0.5373     0.4112 0.000 0.632 0.092 0.276 0.000
#> SRR1366985     1  0.5972     0.6228 0.652 0.000 0.216 0.088 0.044
#> SRR815280      1  0.0162     0.8165 0.996 0.000 0.000 0.004 0.000
#> SRR1348531     1  0.3009     0.7813 0.876 0.000 0.016 0.028 0.080
#> SRR815845      5  0.2690     0.7350 0.000 0.000 0.156 0.000 0.844
#> SRR1471178     1  0.0510     0.8155 0.984 0.000 0.000 0.016 0.000
#> SRR1080696     5  0.1908     0.8125 0.000 0.000 0.092 0.000 0.908
#> SRR1078684     3  0.5209     0.5512 0.048 0.008 0.736 0.040 0.168
#> SRR1317751     5  0.0880     0.8277 0.000 0.000 0.000 0.032 0.968
#> SRR1435667     3  0.4127     0.4743 0.000 0.000 0.680 0.008 0.312
#> SRR1097905     1  0.1251     0.8104 0.956 0.000 0.008 0.036 0.000
#> SRR1456548     1  0.1168     0.8109 0.960 0.000 0.008 0.032 0.000
#> SRR1075126     1  0.2054     0.8024 0.920 0.000 0.028 0.052 0.000
#> SRR813108      3  0.5780     0.5180 0.000 0.120 0.692 0.048 0.140
#> SRR1479062     4  0.6779     0.0107 0.004 0.000 0.328 0.432 0.236
#> SRR1408703     5  0.1740     0.8327 0.000 0.000 0.056 0.012 0.932
#> SRR1332360     1  0.6573     0.6321 0.604 0.000 0.204 0.140 0.052
#> SRR1098686     1  0.0794     0.8133 0.972 0.000 0.000 0.028 0.000
#> SRR1434228     1  0.5682     0.6689 0.692 0.000 0.172 0.092 0.044
#> SRR1467149     1  0.6578    -0.0928 0.448 0.000 0.012 0.396 0.144
#> SRR1399113     2  0.0000     0.9642 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.4332     0.6248 0.000 0.032 0.160 0.780 0.028
#> SRR1092468     4  0.5638     0.4231 0.048 0.000 0.352 0.580 0.020
#> SRR1441804     1  0.1281     0.8128 0.956 0.000 0.012 0.032 0.000
#> SRR1326100     3  0.6193     0.1736 0.000 0.192 0.548 0.260 0.000
#> SRR1398815     1  0.3870     0.7515 0.820 0.000 0.080 0.092 0.008
#> SRR1436021     4  0.4964     0.1305 0.004 0.020 0.460 0.516 0.000
#> SRR1480083     2  0.0000     0.9642 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.0451     0.8160 0.988 0.000 0.008 0.004 0.000
#> SRR815542      1  0.0963     0.8111 0.964 0.000 0.000 0.036 0.000
#> SRR1400100     5  0.5253     0.0874 0.000 0.016 0.396 0.024 0.564
#> SRR1312002     1  0.7600     0.4187 0.500 0.000 0.204 0.104 0.192
#> SRR1470253     3  0.8457    -0.1813 0.300 0.000 0.304 0.172 0.224
#> SRR1414332     1  0.0000     0.8167 1.000 0.000 0.000 0.000 0.000
#> SRR1069209     1  0.5575     0.6805 0.704 0.000 0.160 0.092 0.044
#> SRR661052      1  0.3924     0.7512 0.816 0.000 0.080 0.096 0.008
#> SRR1308860     1  0.1082     0.8120 0.964 0.000 0.008 0.028 0.000
#> SRR1421159     3  0.5343     0.4669 0.000 0.004 0.684 0.172 0.140
#> SRR1340943     4  0.3627     0.6359 0.120 0.000 0.032 0.832 0.016
#> SRR1078855     1  0.5575     0.6805 0.704 0.000 0.160 0.092 0.044
#> SRR1459465     2  0.0000     0.9642 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0162     0.9639 0.000 0.996 0.004 0.000 0.000
#> SRR1478679     3  0.3605     0.5185 0.060 0.000 0.852 0.044 0.044
#> SRR1350979     3  0.4045     0.4066 0.000 0.000 0.644 0.000 0.356
#> SRR1458198     4  0.5529     0.1950 0.432 0.000 0.016 0.516 0.036
#> SRR1386910     3  0.5496    -0.1219 0.000 0.024 0.500 0.452 0.024
#> SRR1465375     4  0.4754     0.6280 0.112 0.016 0.112 0.760 0.000
#> SRR1323699     3  0.4924     0.4665 0.048 0.000 0.764 0.076 0.112
#> SRR1431139     3  0.5471     0.5444 0.060 0.000 0.708 0.056 0.176
#> SRR1373964     3  0.4313     0.5008 0.000 0.008 0.704 0.012 0.276
#> SRR1455413     1  0.4615     0.7375 0.776 0.000 0.080 0.120 0.024
#> SRR1437163     1  0.1251     0.8102 0.956 0.000 0.008 0.036 0.000
#> SRR1347343     3  0.3421     0.5162 0.000 0.008 0.824 0.016 0.152
#> SRR1465480     2  0.0000     0.9642 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.1281     0.8105 0.956 0.000 0.012 0.032 0.000
#> SRR1086514     4  0.4701     0.5634 0.000 0.044 0.252 0.700 0.004
#> SRR1430928     1  0.0290     0.8163 0.992 0.000 0.000 0.008 0.000
#> SRR1310939     4  0.5607     0.2197 0.004 0.000 0.408 0.524 0.064
#> SRR1344294     2  0.0162     0.9639 0.000 0.996 0.004 0.000 0.000
#> SRR1099402     1  0.0807     0.8146 0.976 0.000 0.012 0.012 0.000
#> SRR1468118     5  0.1444     0.8313 0.000 0.000 0.012 0.040 0.948
#> SRR1486348     1  0.0000     0.8167 1.000 0.000 0.000 0.000 0.000
#> SRR1488770     2  0.0162     0.9639 0.000 0.996 0.004 0.000 0.000
#> SRR1083732     1  0.0510     0.8155 0.984 0.000 0.000 0.016 0.000
#> SRR1456611     2  0.0000     0.9642 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.4128     0.7480 0.800 0.000 0.080 0.112 0.008
#> SRR1500089     4  0.6557     0.4865 0.240 0.000 0.044 0.588 0.128
#> SRR1441178     1  0.5884     0.6967 0.684 0.000 0.120 0.144 0.052
#> SRR1381396     1  0.3924     0.7509 0.816 0.000 0.080 0.096 0.008
#> SRR1096081     5  0.1041     0.8304 0.000 0.000 0.004 0.032 0.964
#> SRR1349809     1  0.8371    -0.3900 0.324 0.148 0.232 0.296 0.000
#> SRR1324314     3  0.7015     0.0650 0.380 0.000 0.460 0.080 0.080
#> SRR1092444     1  0.4605     0.7376 0.780 0.000 0.080 0.112 0.028
#> SRR1382553     3  0.8465     0.1436 0.300 0.100 0.436 0.092 0.072
#> SRR1075530     4  0.4752     0.6213 0.000 0.040 0.180 0.748 0.032
#> SRR1442612     3  0.4127     0.4743 0.000 0.000 0.680 0.008 0.312
#> SRR1360056     5  0.5674     0.5081 0.036 0.000 0.188 0.092 0.684
#> SRR1078164     1  0.5884     0.6967 0.684 0.000 0.120 0.144 0.052
#> SRR1434545     4  0.3843     0.6403 0.112 0.004 0.040 0.828 0.016
#> SRR1398251     1  0.5750     0.6614 0.684 0.000 0.180 0.092 0.044
#> SRR1375866     1  0.4718     0.7379 0.764 0.000 0.084 0.132 0.020
#> SRR1091645     4  0.4173     0.4721 0.000 0.000 0.012 0.688 0.300
#> SRR1416636     5  0.2006     0.8283 0.000 0.000 0.072 0.012 0.916
#> SRR1105441     3  0.4715     0.4903 0.000 0.012 0.672 0.020 0.296
#> SRR1082496     2  0.0162     0.9639 0.000 0.996 0.004 0.000 0.000
#> SRR1315353     3  0.6328     0.1757 0.000 0.164 0.552 0.276 0.008
#> SRR1093697     2  0.0162     0.9639 0.000 0.996 0.004 0.000 0.000
#> SRR1077429     5  0.1485     0.8340 0.000 0.000 0.020 0.032 0.948
#> SRR1076120     4  0.6038     0.2681 0.400 0.000 0.032 0.516 0.052
#> SRR1074410     1  0.3924     0.7509 0.816 0.000 0.080 0.096 0.008
#> SRR1340345     4  0.4752     0.6213 0.000 0.040 0.180 0.748 0.032
#> SRR1069514     3  0.4380     0.4941 0.000 0.008 0.692 0.012 0.288
#> SRR1092636     5  0.1764     0.8311 0.000 0.000 0.064 0.008 0.928
#> SRR1365013     3  0.5174    -0.0946 0.004 0.032 0.520 0.444 0.000
#> SRR1073069     1  0.6563     0.6330 0.604 0.000 0.208 0.136 0.052
#> SRR1443137     1  0.5417     0.6866 0.716 0.000 0.160 0.080 0.044
#> SRR1437143     2  0.0000     0.9642 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0000     0.8167 1.000 0.000 0.000 0.000 0.000
#> SRR820234      2  0.0162     0.9626 0.000 0.996 0.004 0.000 0.000
#> SRR1338079     1  0.0693     0.8154 0.980 0.000 0.008 0.012 0.000
#> SRR1390094     3  0.5710     0.3557 0.100 0.012 0.656 0.228 0.004
#> SRR1340721     1  0.5117     0.4288 0.652 0.000 0.072 0.276 0.000
#> SRR1335964     3  0.4747     0.4323 0.000 0.000 0.620 0.028 0.352
#> SRR1086869     5  0.1549     0.8292 0.000 0.000 0.016 0.040 0.944
#> SRR1453434     1  0.1943     0.8036 0.924 0.000 0.020 0.056 0.000
#> SRR1402261     4  0.3658     0.6382 0.116 0.000 0.036 0.832 0.016
#> SRR657809      4  0.5068     0.5051 0.000 0.060 0.300 0.640 0.000
#> SRR1093075     1  0.5575     0.6805 0.704 0.000 0.160 0.092 0.044
#> SRR1433329     1  0.5524     0.6832 0.708 0.000 0.160 0.088 0.044
#> SRR1353418     5  0.4428     0.6100 0.000 0.000 0.160 0.084 0.756
#> SRR1092913     4  0.4330     0.6446 0.020 0.036 0.108 0.812 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.0806     0.7626 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1335605     6  0.7183    -0.2101 0.028 0.000 0.248 0.240 0.044 0.440
#> SRR1432014     3  0.2214     0.7390 0.000 0.000 0.888 0.000 0.096 0.016
#> SRR1499215     6  0.3800     0.4386 0.044 0.000 0.164 0.000 0.012 0.780
#> SRR1460409     1  0.0363     0.7657 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1086441     1  0.0260     0.7653 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1097344     4  0.2713     0.6745 0.000 0.016 0.024 0.884 0.068 0.008
#> SRR1081789     4  0.8250     0.0300 0.028 0.228 0.268 0.296 0.004 0.176
#> SRR1453005     2  0.6825     0.0941 0.000 0.468 0.092 0.308 0.004 0.128
#> SRR1366985     6  0.4418     0.5941 0.432 0.000 0.008 0.008 0.004 0.548
#> SRR815280      1  0.1010     0.7529 0.960 0.000 0.000 0.004 0.000 0.036
#> SRR1348531     1  0.3463     0.6585 0.816 0.000 0.008 0.000 0.120 0.056
#> SRR815845      5  0.2664     0.7364 0.000 0.000 0.184 0.000 0.816 0.000
#> SRR1471178     1  0.0632     0.7617 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1080696     5  0.1588     0.8411 0.000 0.000 0.072 0.000 0.924 0.004
#> SRR1078684     3  0.3120     0.7357 0.008 0.000 0.856 0.020 0.024 0.092
#> SRR1317751     5  0.1666     0.8497 0.000 0.000 0.036 0.020 0.936 0.008
#> SRR1435667     3  0.2060     0.7471 0.000 0.000 0.900 0.000 0.084 0.016
#> SRR1097905     1  0.1498     0.7633 0.948 0.000 0.012 0.012 0.004 0.024
#> SRR1456548     1  0.1414     0.7636 0.952 0.000 0.012 0.012 0.004 0.020
#> SRR1075126     1  0.2361     0.6627 0.880 0.000 0.004 0.012 0.000 0.104
#> SRR813108      3  0.1616     0.7449 0.000 0.028 0.940 0.020 0.012 0.000
#> SRR1479062     6  0.5051     0.2682 0.000 0.000 0.024 0.176 0.116 0.684
#> SRR1408703     5  0.1429     0.8499 0.000 0.000 0.052 0.004 0.940 0.004
#> SRR1332360     6  0.3515     0.5526 0.324 0.000 0.000 0.000 0.000 0.676
#> SRR1098686     1  0.0458     0.7653 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1434228     6  0.4316     0.5924 0.432 0.000 0.004 0.008 0.004 0.552
#> SRR1467149     1  0.7010    -0.0573 0.420 0.000 0.016 0.328 0.188 0.048
#> SRR1399113     2  0.0146     0.9434 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1476507     4  0.2127     0.6734 0.004 0.012 0.060 0.912 0.012 0.000
#> SRR1092468     4  0.6631     0.3907 0.108 0.000 0.316 0.496 0.012 0.068
#> SRR1441804     1  0.1251     0.7655 0.956 0.000 0.008 0.000 0.012 0.024
#> SRR1326100     3  0.6842     0.2841 0.000 0.088 0.500 0.264 0.008 0.140
#> SRR1398815     1  0.5474     0.5052 0.648 0.000 0.020 0.060 0.032 0.240
#> SRR1436021     3  0.4488     0.2409 0.004 0.004 0.544 0.432 0.000 0.016
#> SRR1480083     2  0.0713     0.9364 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1472863     1  0.1294     0.7664 0.956 0.000 0.008 0.008 0.004 0.024
#> SRR815542      1  0.0363     0.7657 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1400100     5  0.5769    -0.0436 0.000 0.004 0.428 0.068 0.468 0.032
#> SRR1312002     6  0.5380     0.6046 0.336 0.000 0.008 0.004 0.088 0.564
#> SRR1470253     6  0.4932     0.4212 0.064 0.000 0.028 0.040 0.124 0.744
#> SRR1414332     1  0.0692     0.7622 0.976 0.000 0.000 0.004 0.000 0.020
#> SRR1069209     6  0.4346     0.5711 0.460 0.000 0.004 0.008 0.004 0.524
#> SRR661052      1  0.4524     0.5820 0.716 0.000 0.024 0.040 0.004 0.216
#> SRR1308860     1  0.0551     0.7687 0.984 0.000 0.000 0.004 0.004 0.008
#> SRR1421159     3  0.1726     0.7404 0.000 0.000 0.932 0.044 0.012 0.012
#> SRR1340943     4  0.2202     0.6918 0.072 0.000 0.004 0.904 0.008 0.012
#> SRR1078855     6  0.4214     0.5705 0.460 0.000 0.004 0.008 0.000 0.528
#> SRR1459465     2  0.0713     0.9364 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR816818      2  0.0582     0.9420 0.000 0.984 0.004 0.004 0.004 0.004
#> SRR1478679     3  0.4497     0.6084 0.028 0.000 0.708 0.028 0.004 0.232
#> SRR1350979     3  0.2214     0.7390 0.000 0.000 0.888 0.000 0.096 0.016
#> SRR1458198     4  0.5730     0.2598 0.408 0.000 0.008 0.496 0.048 0.040
#> SRR1386910     3  0.6668     0.0303 0.000 0.012 0.420 0.376 0.036 0.156
#> SRR1465375     4  0.3966     0.6350 0.156 0.004 0.036 0.784 0.004 0.016
#> SRR1323699     6  0.5215    -0.0363 0.024 0.000 0.404 0.020 0.016 0.536
#> SRR1431139     3  0.4419     0.7090 0.028 0.000 0.784 0.036 0.048 0.104
#> SRR1373964     3  0.2152     0.7520 0.000 0.000 0.904 0.004 0.068 0.024
#> SRR1455413     1  0.5145     0.5568 0.684 0.000 0.028 0.040 0.028 0.220
#> SRR1437163     1  0.1317     0.7638 0.956 0.000 0.008 0.016 0.004 0.016
#> SRR1347343     3  0.2930     0.7060 0.000 0.000 0.840 0.000 0.036 0.124
#> SRR1465480     2  0.0146     0.9442 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1489631     1  0.2177     0.7510 0.916 0.000 0.016 0.012 0.012 0.044
#> SRR1086514     4  0.4538     0.5232 0.000 0.012 0.228 0.704 0.004 0.052
#> SRR1430928     1  0.0458     0.7642 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1310939     4  0.5442     0.2871 0.000 0.000 0.344 0.552 0.016 0.088
#> SRR1344294     2  0.0291     0.9443 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1099402     1  0.1152     0.7475 0.952 0.000 0.000 0.004 0.000 0.044
#> SRR1468118     5  0.1408     0.8497 0.000 0.000 0.036 0.020 0.944 0.000
#> SRR1486348     1  0.0547     0.7629 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1488770     2  0.0436     0.9439 0.000 0.988 0.000 0.004 0.004 0.004
#> SRR1083732     1  0.0632     0.7617 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1456611     2  0.0146     0.9442 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1080318     1  0.5658     0.4871 0.632 0.000 0.024 0.060 0.036 0.248
#> SRR1500089     4  0.6378     0.4769 0.276 0.000 0.012 0.536 0.136 0.040
#> SRR1441178     6  0.5796     0.2493 0.376 0.000 0.020 0.052 0.028 0.524
#> SRR1381396     1  0.5613     0.4885 0.632 0.000 0.024 0.060 0.032 0.252
#> SRR1096081     5  0.1577     0.8504 0.000 0.000 0.036 0.016 0.940 0.008
#> SRR1349809     1  0.7909    -0.1641 0.412 0.044 0.080 0.280 0.012 0.172
#> SRR1324314     6  0.5857     0.5526 0.236 0.000 0.144 0.012 0.016 0.592
#> SRR1092444     1  0.6033     0.4654 0.608 0.000 0.024 0.060 0.064 0.244
#> SRR1382553     6  0.6086     0.5868 0.220 0.052 0.108 0.008 0.004 0.608
#> SRR1075530     4  0.4181     0.6463 0.000 0.012 0.104 0.792 0.028 0.064
#> SRR1442612     3  0.2060     0.7471 0.000 0.000 0.900 0.000 0.084 0.016
#> SRR1360056     5  0.4314     0.1805 0.000 0.000 0.012 0.004 0.500 0.484
#> SRR1078164     6  0.5789     0.2451 0.372 0.000 0.020 0.052 0.028 0.528
#> SRR1434545     4  0.2245     0.6918 0.068 0.000 0.004 0.904 0.012 0.012
#> SRR1398251     6  0.4412     0.5961 0.428 0.000 0.008 0.008 0.004 0.552
#> SRR1375866     1  0.5931     0.3733 0.568 0.000 0.024 0.060 0.036 0.312
#> SRR1091645     4  0.3547     0.5706 0.000 0.000 0.012 0.768 0.208 0.012
#> SRR1416636     5  0.1327     0.8464 0.000 0.000 0.064 0.000 0.936 0.000
#> SRR1105441     3  0.1701     0.7517 0.000 0.000 0.920 0.008 0.072 0.000
#> SRR1082496     2  0.0291     0.9443 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1315353     3  0.6909     0.2544 0.000 0.100 0.480 0.272 0.004 0.144
#> SRR1093697     2  0.0436     0.9439 0.000 0.988 0.000 0.004 0.004 0.004
#> SRR1077429     5  0.1245     0.8489 0.000 0.000 0.032 0.016 0.952 0.000
#> SRR1076120     4  0.5817     0.2898 0.396 0.000 0.008 0.500 0.056 0.040
#> SRR1074410     1  0.5634     0.4834 0.628 0.000 0.024 0.060 0.032 0.256
#> SRR1340345     4  0.4181     0.6463 0.000 0.012 0.104 0.792 0.028 0.064
#> SRR1069514     3  0.1901     0.7515 0.000 0.000 0.912 0.004 0.076 0.008
#> SRR1092636     5  0.1477     0.8500 0.000 0.000 0.048 0.004 0.940 0.008
#> SRR1365013     3  0.6281     0.0594 0.000 0.012 0.436 0.384 0.012 0.156
#> SRR1073069     6  0.3531     0.5536 0.328 0.000 0.000 0.000 0.000 0.672
#> SRR1443137     6  0.4227     0.5309 0.492 0.000 0.004 0.008 0.000 0.496
#> SRR1437143     2  0.0146     0.9442 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1091990     1  0.0935     0.7557 0.964 0.000 0.000 0.004 0.000 0.032
#> SRR820234      2  0.0713     0.9364 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1338079     1  0.1223     0.7657 0.960 0.000 0.008 0.012 0.004 0.016
#> SRR1390094     3  0.4216     0.6195 0.048 0.000 0.752 0.176 0.000 0.024
#> SRR1340721     1  0.6119     0.2545 0.600 0.000 0.048 0.172 0.008 0.172
#> SRR1335964     3  0.2544     0.7261 0.000 0.000 0.864 0.004 0.120 0.012
#> SRR1086869     5  0.1666     0.8489 0.000 0.000 0.036 0.020 0.936 0.008
#> SRR1453434     1  0.2094     0.6970 0.908 0.000 0.004 0.024 0.000 0.064
#> SRR1402261     4  0.2202     0.6918 0.072 0.000 0.004 0.904 0.008 0.012
#> SRR657809      4  0.5401     0.5187 0.000 0.016 0.164 0.656 0.008 0.156
#> SRR1093075     6  0.4220     0.5622 0.468 0.000 0.004 0.008 0.000 0.520
#> SRR1433329     6  0.4226     0.5374 0.484 0.000 0.004 0.008 0.000 0.504
#> SRR1353418     5  0.3534     0.6463 0.000 0.000 0.016 0.000 0.740 0.244
#> SRR1092913     4  0.1905     0.6869 0.016 0.012 0.020 0.932 0.020 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.895           0.936       0.973         0.5039 0.497   0.497
#> 3 3 0.741           0.854       0.929         0.3185 0.738   0.521
#> 4 4 0.692           0.612       0.819         0.1083 0.927   0.791
#> 5 5 0.700           0.639       0.782         0.0716 0.858   0.554
#> 6 6 0.768           0.667       0.825         0.0500 0.919   0.646

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.969 1.000 0.000
#> SRR1335605     2  0.0000      0.973 0.000 1.000
#> SRR1432014     2  0.0000      0.973 0.000 1.000
#> SRR1499215     1  0.6247      0.809 0.844 0.156
#> SRR1460409     1  0.0000      0.969 1.000 0.000
#> SRR1086441     1  0.0000      0.969 1.000 0.000
#> SRR1097344     2  0.0000      0.973 0.000 1.000
#> SRR1081789     2  0.0000      0.973 0.000 1.000
#> SRR1453005     2  0.0000      0.973 0.000 1.000
#> SRR1366985     1  0.0000      0.969 1.000 0.000
#> SRR815280      1  0.0000      0.969 1.000 0.000
#> SRR1348531     1  0.0000      0.969 1.000 0.000
#> SRR815845      2  0.0000      0.973 0.000 1.000
#> SRR1471178     1  0.0000      0.969 1.000 0.000
#> SRR1080696     2  0.0000      0.973 0.000 1.000
#> SRR1078684     2  0.0000      0.973 0.000 1.000
#> SRR1317751     1  0.9710      0.358 0.600 0.400
#> SRR1435667     2  0.0000      0.973 0.000 1.000
#> SRR1097905     1  0.0000      0.969 1.000 0.000
#> SRR1456548     1  0.0000      0.969 1.000 0.000
#> SRR1075126     1  0.0000      0.969 1.000 0.000
#> SRR813108      2  0.0000      0.973 0.000 1.000
#> SRR1479062     2  0.0000      0.973 0.000 1.000
#> SRR1408703     2  0.0000      0.973 0.000 1.000
#> SRR1332360     1  0.0000      0.969 1.000 0.000
#> SRR1098686     1  0.0000      0.969 1.000 0.000
#> SRR1434228     1  0.0000      0.969 1.000 0.000
#> SRR1467149     1  0.0000      0.969 1.000 0.000
#> SRR1399113     2  0.0000      0.973 0.000 1.000
#> SRR1476507     2  0.0000      0.973 0.000 1.000
#> SRR1092468     2  0.9491      0.428 0.368 0.632
#> SRR1441804     1  0.0000      0.969 1.000 0.000
#> SRR1326100     2  0.0000      0.973 0.000 1.000
#> SRR1398815     1  0.0000      0.969 1.000 0.000
#> SRR1436021     2  0.0000      0.973 0.000 1.000
#> SRR1480083     2  0.0000      0.973 0.000 1.000
#> SRR1472863     1  0.0000      0.969 1.000 0.000
#> SRR815542      1  0.0000      0.969 1.000 0.000
#> SRR1400100     2  0.0000      0.973 0.000 1.000
#> SRR1312002     1  0.0000      0.969 1.000 0.000
#> SRR1470253     1  0.0000      0.969 1.000 0.000
#> SRR1414332     1  0.0000      0.969 1.000 0.000
#> SRR1069209     1  0.0000      0.969 1.000 0.000
#> SRR661052      1  0.0000      0.969 1.000 0.000
#> SRR1308860     1  0.0000      0.969 1.000 0.000
#> SRR1421159     2  0.0000      0.973 0.000 1.000
#> SRR1340943     1  0.4298      0.891 0.912 0.088
#> SRR1078855     1  0.0000      0.969 1.000 0.000
#> SRR1459465     2  0.0000      0.973 0.000 1.000
#> SRR816818      2  0.0000      0.973 0.000 1.000
#> SRR1478679     2  0.3114      0.924 0.056 0.944
#> SRR1350979     2  0.0000      0.973 0.000 1.000
#> SRR1458198     1  0.0000      0.969 1.000 0.000
#> SRR1386910     2  0.0000      0.973 0.000 1.000
#> SRR1465375     2  0.7376      0.739 0.208 0.792
#> SRR1323699     2  0.7056      0.764 0.192 0.808
#> SRR1431139     2  0.6623      0.792 0.172 0.828
#> SRR1373964     2  0.0000      0.973 0.000 1.000
#> SRR1455413     1  0.0000      0.969 1.000 0.000
#> SRR1437163     1  0.0000      0.969 1.000 0.000
#> SRR1347343     2  0.0000      0.973 0.000 1.000
#> SRR1465480     2  0.0000      0.973 0.000 1.000
#> SRR1489631     1  0.0000      0.969 1.000 0.000
#> SRR1086514     2  0.0000      0.973 0.000 1.000
#> SRR1430928     1  0.0000      0.969 1.000 0.000
#> SRR1310939     2  0.0000      0.973 0.000 1.000
#> SRR1344294     2  0.0000      0.973 0.000 1.000
#> SRR1099402     1  0.0000      0.969 1.000 0.000
#> SRR1468118     2  0.9393      0.430 0.356 0.644
#> SRR1486348     1  0.0000      0.969 1.000 0.000
#> SRR1488770     2  0.0000      0.973 0.000 1.000
#> SRR1083732     1  0.0000      0.969 1.000 0.000
#> SRR1456611     2  0.0000      0.973 0.000 1.000
#> SRR1080318     1  0.0000      0.969 1.000 0.000
#> SRR1500089     1  0.0376      0.966 0.996 0.004
#> SRR1441178     1  0.0000      0.969 1.000 0.000
#> SRR1381396     1  0.0000      0.969 1.000 0.000
#> SRR1096081     1  0.9710      0.358 0.600 0.400
#> SRR1349809     2  0.3274      0.920 0.060 0.940
#> SRR1324314     1  0.0000      0.969 1.000 0.000
#> SRR1092444     1  0.0000      0.969 1.000 0.000
#> SRR1382553     1  0.5737      0.835 0.864 0.136
#> SRR1075530     2  0.0000      0.973 0.000 1.000
#> SRR1442612     2  0.0000      0.973 0.000 1.000
#> SRR1360056     1  0.0000      0.969 1.000 0.000
#> SRR1078164     1  0.0000      0.969 1.000 0.000
#> SRR1434545     2  0.2423      0.938 0.040 0.960
#> SRR1398251     1  0.0000      0.969 1.000 0.000
#> SRR1375866     1  0.0000      0.969 1.000 0.000
#> SRR1091645     2  0.0000      0.973 0.000 1.000
#> SRR1416636     2  0.0000      0.973 0.000 1.000
#> SRR1105441     2  0.0000      0.973 0.000 1.000
#> SRR1082496     2  0.0000      0.973 0.000 1.000
#> SRR1315353     2  0.0000      0.973 0.000 1.000
#> SRR1093697     2  0.0000      0.973 0.000 1.000
#> SRR1077429     1  0.8081      0.679 0.752 0.248
#> SRR1076120     1  0.0000      0.969 1.000 0.000
#> SRR1074410     1  0.0000      0.969 1.000 0.000
#> SRR1340345     2  0.0000      0.973 0.000 1.000
#> SRR1069514     2  0.0000      0.973 0.000 1.000
#> SRR1092636     1  0.7219      0.752 0.800 0.200
#> SRR1365013     2  0.0000      0.973 0.000 1.000
#> SRR1073069     1  0.0000      0.969 1.000 0.000
#> SRR1443137     1  0.0000      0.969 1.000 0.000
#> SRR1437143     2  0.0000      0.973 0.000 1.000
#> SRR1091990     1  0.0000      0.969 1.000 0.000
#> SRR820234      2  0.0000      0.973 0.000 1.000
#> SRR1338079     1  0.0000      0.969 1.000 0.000
#> SRR1390094     2  0.0000      0.973 0.000 1.000
#> SRR1340721     1  0.5059      0.863 0.888 0.112
#> SRR1335964     2  0.0000      0.973 0.000 1.000
#> SRR1086869     2  0.0000      0.973 0.000 1.000
#> SRR1453434     1  0.0000      0.969 1.000 0.000
#> SRR1402261     1  0.3733      0.908 0.928 0.072
#> SRR657809      2  0.0000      0.973 0.000 1.000
#> SRR1093075     1  0.0000      0.969 1.000 0.000
#> SRR1433329     1  0.0000      0.969 1.000 0.000
#> SRR1353418     1  0.0000      0.969 1.000 0.000
#> SRR1092913     2  0.0000      0.973 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.965 1.000 0.000 0.000
#> SRR1335605     2  0.6280      0.315 0.000 0.540 0.460
#> SRR1432014     3  0.0592      0.871 0.000 0.012 0.988
#> SRR1499215     3  0.4346      0.765 0.184 0.000 0.816
#> SRR1460409     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1086441     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1097344     2  0.4235      0.786 0.000 0.824 0.176
#> SRR1081789     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1453005     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1366985     1  0.0000      0.965 1.000 0.000 0.000
#> SRR815280      1  0.0000      0.965 1.000 0.000 0.000
#> SRR1348531     1  0.3941      0.817 0.844 0.000 0.156
#> SRR815845      3  0.0000      0.873 0.000 0.000 1.000
#> SRR1471178     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1080696     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1078684     3  0.5785      0.601 0.000 0.332 0.668
#> SRR1317751     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1435667     3  0.4178      0.805 0.000 0.172 0.828
#> SRR1097905     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1456548     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1075126     1  0.0000      0.965 1.000 0.000 0.000
#> SRR813108      2  0.5529      0.470 0.000 0.704 0.296
#> SRR1479062     3  0.5706      0.448 0.000 0.320 0.680
#> SRR1408703     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1332360     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1098686     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1434228     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1467149     1  0.4504      0.771 0.804 0.000 0.196
#> SRR1399113     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1476507     2  0.1860      0.873 0.000 0.948 0.052
#> SRR1092468     3  0.0747      0.868 0.016 0.000 0.984
#> SRR1441804     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1326100     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1398815     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1436021     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1480083     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1472863     1  0.0000      0.965 1.000 0.000 0.000
#> SRR815542      1  0.0000      0.965 1.000 0.000 0.000
#> SRR1400100     2  0.3752      0.805 0.000 0.856 0.144
#> SRR1312002     1  0.6280      0.032 0.540 0.000 0.460
#> SRR1470253     3  0.3482      0.797 0.128 0.000 0.872
#> SRR1414332     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1069209     1  0.0000      0.965 1.000 0.000 0.000
#> SRR661052      1  0.0000      0.965 1.000 0.000 0.000
#> SRR1308860     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1421159     3  0.4504      0.786 0.000 0.196 0.804
#> SRR1340943     2  0.3987      0.830 0.020 0.872 0.108
#> SRR1078855     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1459465     2  0.0000      0.898 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.898 0.000 1.000 0.000
#> SRR1478679     3  0.4555      0.783 0.000 0.200 0.800
#> SRR1350979     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1458198     1  0.4291      0.790 0.820 0.000 0.180
#> SRR1386910     2  0.6204      0.421 0.000 0.576 0.424
#> SRR1465375     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1323699     3  0.4178      0.775 0.172 0.000 0.828
#> SRR1431139     3  0.4618      0.820 0.024 0.136 0.840
#> SRR1373964     3  0.4235      0.802 0.000 0.176 0.824
#> SRR1455413     1  0.4062      0.808 0.836 0.000 0.164
#> SRR1437163     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1347343     3  0.4178      0.805 0.000 0.172 0.828
#> SRR1465480     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1489631     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1086514     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1430928     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1310939     3  0.0592      0.869 0.000 0.012 0.988
#> SRR1344294     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1468118     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1486348     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1083732     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1456611     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1080318     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1500089     3  0.3192      0.796 0.112 0.000 0.888
#> SRR1441178     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1381396     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1096081     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1349809     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1324314     3  0.4555      0.751 0.200 0.000 0.800
#> SRR1092444     1  0.4002      0.813 0.840 0.000 0.160
#> SRR1382553     3  0.9853      0.265 0.360 0.252 0.388
#> SRR1075530     2  0.4235      0.786 0.000 0.824 0.176
#> SRR1442612     3  0.3482      0.829 0.000 0.128 0.872
#> SRR1360056     3  0.1031      0.863 0.024 0.000 0.976
#> SRR1078164     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1434545     2  0.3340      0.830 0.000 0.880 0.120
#> SRR1398251     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1375866     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1091645     2  0.6168      0.450 0.000 0.588 0.412
#> SRR1416636     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1105441     3  0.4235      0.802 0.000 0.176 0.824
#> SRR1082496     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1315353     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1093697     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1077429     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1076120     1  0.4399      0.780 0.812 0.000 0.188
#> SRR1074410     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1340345     2  0.4235      0.786 0.000 0.824 0.176
#> SRR1069514     3  0.4235      0.802 0.000 0.176 0.824
#> SRR1092636     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1365013     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1073069     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1443137     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1437143     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1091990     1  0.0000      0.965 1.000 0.000 0.000
#> SRR820234      2  0.0000      0.898 0.000 1.000 0.000
#> SRR1338079     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1390094     2  0.0000      0.898 0.000 1.000 0.000
#> SRR1340721     2  0.6111      0.378 0.396 0.604 0.000
#> SRR1335964     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1086869     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1453434     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1402261     2  0.4749      0.811 0.076 0.852 0.072
#> SRR657809      2  0.0000      0.898 0.000 1.000 0.000
#> SRR1093075     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1433329     1  0.0000      0.965 1.000 0.000 0.000
#> SRR1353418     3  0.0000      0.873 0.000 0.000 1.000
#> SRR1092913     2  0.4178      0.789 0.000 0.828 0.172

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1335605     2  0.6232     0.3888 0.000 0.596 0.332 0.072
#> SRR1432014     3  0.0000     0.5801 0.000 0.000 1.000 0.000
#> SRR1499215     3  0.5619     0.2293 0.040 0.000 0.640 0.320
#> SRR1460409     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1097344     2  0.5110     0.6182 0.000 0.636 0.012 0.352
#> SRR1081789     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1453005     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1366985     1  0.5389     0.6066 0.660 0.000 0.032 0.308
#> SRR815280      1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1348531     1  0.6065     0.2919 0.644 0.000 0.080 0.276
#> SRR815845      3  0.1118     0.5697 0.000 0.000 0.964 0.036
#> SRR1471178     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.1302     0.5658 0.000 0.000 0.956 0.044
#> SRR1078684     3  0.4543     0.4149 0.000 0.324 0.676 0.000
#> SRR1317751     3  0.4898     0.0773 0.000 0.000 0.584 0.416
#> SRR1435667     3  0.1637     0.5884 0.000 0.060 0.940 0.000
#> SRR1097905     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1456548     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1075126     1  0.0469     0.8628 0.988 0.000 0.000 0.012
#> SRR813108      3  0.4898     0.3256 0.000 0.416 0.584 0.000
#> SRR1479062     4  0.3975     0.4075 0.000 0.000 0.240 0.760
#> SRR1408703     3  0.4643     0.2473 0.000 0.000 0.656 0.344
#> SRR1332360     1  0.4522     0.6378 0.680 0.000 0.000 0.320
#> SRR1098686     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1434228     1  0.4632     0.6396 0.688 0.000 0.004 0.308
#> SRR1467149     4  0.6182     0.4246 0.308 0.000 0.076 0.616
#> SRR1399113     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1476507     2  0.4990     0.6216 0.000 0.640 0.008 0.352
#> SRR1092468     3  0.5024     0.3036 0.008 0.000 0.632 0.360
#> SRR1441804     1  0.0188     0.8642 0.996 0.000 0.000 0.004
#> SRR1326100     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0469     0.8620 0.988 0.000 0.000 0.012
#> SRR1436021     2  0.1174     0.8010 0.000 0.968 0.012 0.020
#> SRR1480083     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR815542      1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1400100     2  0.6508     0.3692 0.000 0.600 0.296 0.104
#> SRR1312002     4  0.6534     0.3558 0.148 0.000 0.220 0.632
#> SRR1470253     4  0.4855     0.3341 0.004 0.000 0.352 0.644
#> SRR1414332     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.4454     0.6442 0.692 0.000 0.000 0.308
#> SRR661052      1  0.0469     0.8620 0.988 0.000 0.000 0.012
#> SRR1308860     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1421159     3  0.5137     0.4367 0.000 0.040 0.716 0.244
#> SRR1340943     2  0.5594     0.6039 0.024 0.620 0.004 0.352
#> SRR1078855     1  0.4454     0.6442 0.692 0.000 0.000 0.308
#> SRR1459465     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.6583     0.4078 0.000 0.176 0.632 0.192
#> SRR1350979     3  0.0000     0.5801 0.000 0.000 1.000 0.000
#> SRR1458198     4  0.4814     0.4137 0.316 0.000 0.008 0.676
#> SRR1386910     2  0.5460     0.4587 0.000 0.632 0.340 0.028
#> SRR1465375     2  0.3486     0.7365 0.000 0.812 0.000 0.188
#> SRR1323699     3  0.5041     0.3669 0.040 0.000 0.728 0.232
#> SRR1431139     3  0.3703     0.5765 0.012 0.064 0.868 0.056
#> SRR1373964     3  0.2921     0.5690 0.000 0.140 0.860 0.000
#> SRR1455413     1  0.6324     0.1142 0.584 0.000 0.076 0.340
#> SRR1437163     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1347343     3  0.5477     0.4601 0.000 0.092 0.728 0.180
#> SRR1465480     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0469     0.8620 0.988 0.000 0.000 0.012
#> SRR1086514     2  0.3219     0.7466 0.000 0.836 0.000 0.164
#> SRR1430928     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.4697     0.3141 0.000 0.000 0.644 0.356
#> SRR1344294     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.4643     0.2473 0.000 0.000 0.656 0.344
#> SRR1486348     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0592     0.8599 0.984 0.000 0.000 0.016
#> SRR1500089     4  0.4522     0.1387 0.000 0.000 0.320 0.680
#> SRR1441178     1  0.2814     0.7953 0.868 0.000 0.000 0.132
#> SRR1381396     1  0.0469     0.8620 0.988 0.000 0.000 0.012
#> SRR1096081     3  0.4661     0.2401 0.000 0.000 0.652 0.348
#> SRR1349809     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1324314     3  0.7227     0.1468 0.228 0.000 0.548 0.224
#> SRR1092444     1  0.6309     0.1278 0.588 0.000 0.076 0.336
#> SRR1382553     2  0.8812    -0.2490 0.040 0.340 0.312 0.308
#> SRR1075530     2  0.5253     0.6070 0.000 0.624 0.016 0.360
#> SRR1442612     3  0.0817     0.5870 0.000 0.024 0.976 0.000
#> SRR1360056     4  0.4679     0.3360 0.000 0.000 0.352 0.648
#> SRR1078164     1  0.2814     0.7953 0.868 0.000 0.000 0.132
#> SRR1434545     2  0.5165     0.6186 0.004 0.636 0.008 0.352
#> SRR1398251     1  0.4769     0.6347 0.684 0.000 0.008 0.308
#> SRR1375866     1  0.1004     0.8543 0.972 0.000 0.004 0.024
#> SRR1091645     4  0.6240     0.2401 0.000 0.136 0.200 0.664
#> SRR1416636     3  0.4585     0.2553 0.000 0.000 0.668 0.332
#> SRR1105441     3  0.3105     0.5703 0.000 0.140 0.856 0.004
#> SRR1082496     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1315353     2  0.0188     0.8081 0.000 0.996 0.004 0.000
#> SRR1093697     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.4643     0.2473 0.000 0.000 0.656 0.344
#> SRR1076120     4  0.4678     0.4442 0.232 0.000 0.024 0.744
#> SRR1074410     1  0.0469     0.8620 0.988 0.000 0.000 0.012
#> SRR1340345     2  0.5253     0.6070 0.000 0.624 0.016 0.360
#> SRR1069514     3  0.2868     0.5710 0.000 0.136 0.864 0.000
#> SRR1092636     3  0.4624     0.2499 0.000 0.000 0.660 0.340
#> SRR1365013     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1073069     1  0.4522     0.6378 0.680 0.000 0.000 0.320
#> SRR1443137     1  0.4454     0.6442 0.692 0.000 0.000 0.308
#> SRR1437143     2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR820234      2  0.0000     0.8103 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.0000     0.8660 1.000 0.000 0.000 0.000
#> SRR1390094     2  0.4054     0.6321 0.000 0.796 0.188 0.016
#> SRR1340721     2  0.4907     0.2830 0.420 0.580 0.000 0.000
#> SRR1335964     3  0.2469     0.5575 0.000 0.000 0.892 0.108
#> SRR1086869     3  0.4643     0.2473 0.000 0.000 0.656 0.344
#> SRR1453434     1  0.0336     0.8639 0.992 0.000 0.000 0.008
#> SRR1402261     2  0.6541     0.5367 0.076 0.568 0.004 0.352
#> SRR657809      2  0.3024     0.7556 0.000 0.852 0.000 0.148
#> SRR1093075     1  0.4454     0.6442 0.692 0.000 0.000 0.308
#> SRR1433329     1  0.4454     0.6442 0.692 0.000 0.000 0.308
#> SRR1353418     4  0.4713     0.3280 0.000 0.000 0.360 0.640
#> SRR1092913     2  0.5110     0.6182 0.000 0.636 0.012 0.352

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0290     0.8621 0.992 0.000 0.000 0.000 0.008
#> SRR1335605     2  0.6798     0.3282 0.004 0.524 0.100 0.044 0.328
#> SRR1432014     3  0.0000     0.6641 0.000 0.000 1.000 0.000 0.000
#> SRR1499215     5  0.3790     0.3989 0.004 0.000 0.272 0.000 0.724
#> SRR1460409     1  0.0324     0.8633 0.992 0.000 0.000 0.004 0.004
#> SRR1086441     1  0.0451     0.8627 0.988 0.000 0.000 0.004 0.008
#> SRR1097344     4  0.3521     0.7299 0.000 0.232 0.000 0.764 0.004
#> SRR1081789     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1453005     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1366985     5  0.5554     0.6351 0.316 0.000 0.092 0.000 0.592
#> SRR815280      1  0.0794     0.8493 0.972 0.000 0.000 0.000 0.028
#> SRR1348531     1  0.6652     0.3508 0.564 0.000 0.036 0.144 0.256
#> SRR815845      3  0.4541     0.5952 0.000 0.000 0.744 0.084 0.172
#> SRR1471178     1  0.0290     0.8621 0.992 0.000 0.000 0.000 0.008
#> SRR1080696     3  0.5083     0.5765 0.000 0.000 0.696 0.120 0.184
#> SRR1078684     3  0.2891     0.5581 0.000 0.176 0.824 0.000 0.000
#> SRR1317751     3  0.6821     0.3409 0.000 0.000 0.352 0.328 0.320
#> SRR1435667     3  0.0162     0.6640 0.000 0.004 0.996 0.000 0.000
#> SRR1097905     1  0.0451     0.8614 0.988 0.000 0.000 0.008 0.004
#> SRR1456548     1  0.0798     0.8583 0.976 0.000 0.000 0.008 0.016
#> SRR1075126     1  0.3229     0.6858 0.840 0.000 0.000 0.032 0.128
#> SRR813108      3  0.3305     0.5125 0.000 0.224 0.776 0.000 0.000
#> SRR1479062     5  0.3362     0.3707 0.000 0.008 0.012 0.156 0.824
#> SRR1408703     3  0.6532     0.4682 0.000 0.000 0.480 0.240 0.280
#> SRR1332360     5  0.3752     0.6243 0.292 0.000 0.000 0.000 0.708
#> SRR1098686     1  0.0290     0.8621 0.992 0.000 0.000 0.000 0.008
#> SRR1434228     5  0.4210     0.6177 0.412 0.000 0.000 0.000 0.588
#> SRR1467149     4  0.5402     0.3880 0.060 0.000 0.032 0.688 0.220
#> SRR1399113     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.3579     0.7207 0.000 0.240 0.004 0.756 0.000
#> SRR1092468     4  0.4150     0.3080 0.000 0.000 0.388 0.612 0.000
#> SRR1441804     1  0.0912     0.8565 0.972 0.000 0.000 0.016 0.012
#> SRR1326100     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1398815     1  0.2488     0.7901 0.872 0.000 0.000 0.004 0.124
#> SRR1436021     2  0.5342     0.5070 0.000 0.672 0.172 0.156 0.000
#> SRR1480083     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.0290     0.8633 0.992 0.000 0.000 0.000 0.008
#> SRR815542      1  0.0324     0.8633 0.992 0.000 0.000 0.004 0.004
#> SRR1400100     2  0.6500     0.4216 0.000 0.604 0.212 0.044 0.140
#> SRR1312002     5  0.2772     0.5136 0.052 0.000 0.044 0.012 0.892
#> SRR1470253     5  0.1605     0.4520 0.004 0.000 0.012 0.040 0.944
#> SRR1414332     1  0.0290     0.8621 0.992 0.000 0.000 0.000 0.008
#> SRR1069209     5  0.4210     0.6177 0.412 0.000 0.000 0.000 0.588
#> SRR661052      1  0.2707     0.7818 0.860 0.000 0.000 0.008 0.132
#> SRR1308860     1  0.0324     0.8632 0.992 0.000 0.000 0.004 0.004
#> SRR1421159     3  0.2233     0.6142 0.000 0.016 0.904 0.080 0.000
#> SRR1340943     4  0.3877     0.7332 0.024 0.212 0.000 0.764 0.000
#> SRR1078855     5  0.4210     0.6177 0.412 0.000 0.000 0.000 0.588
#> SRR1459465     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.4775     0.5085 0.024 0.048 0.756 0.004 0.168
#> SRR1350979     3  0.0000     0.6641 0.000 0.000 1.000 0.000 0.000
#> SRR1458198     4  0.1522     0.6777 0.012 0.000 0.000 0.944 0.044
#> SRR1386910     2  0.6989     0.3414 0.000 0.556 0.220 0.060 0.164
#> SRR1465375     2  0.4686     0.1799 0.012 0.588 0.004 0.396 0.000
#> SRR1323699     3  0.4114     0.3121 0.000 0.000 0.624 0.000 0.376
#> SRR1431139     3  0.1375     0.6584 0.008 0.008 0.960 0.016 0.008
#> SRR1373964     3  0.1043     0.6559 0.000 0.040 0.960 0.000 0.000
#> SRR1455413     1  0.6269     0.2940 0.516 0.000 0.004 0.144 0.336
#> SRR1437163     1  0.0324     0.8622 0.992 0.000 0.000 0.004 0.004
#> SRR1347343     3  0.3060     0.5954 0.000 0.024 0.848 0.000 0.128
#> SRR1465480     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.2660     0.7865 0.864 0.000 0.000 0.008 0.128
#> SRR1086514     2  0.3231     0.6466 0.000 0.800 0.004 0.196 0.000
#> SRR1430928     1  0.0290     0.8621 0.992 0.000 0.000 0.000 0.008
#> SRR1310939     4  0.4367     0.2538 0.000 0.000 0.416 0.580 0.004
#> SRR1344294     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.1410     0.8190 0.940 0.000 0.000 0.000 0.060
#> SRR1468118     3  0.6767     0.3814 0.000 0.000 0.392 0.328 0.280
#> SRR1486348     1  0.0290     0.8621 0.992 0.000 0.000 0.000 0.008
#> SRR1488770     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0290     0.8621 0.992 0.000 0.000 0.000 0.008
#> SRR1456611     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.2971     0.7591 0.836 0.000 0.000 0.008 0.156
#> SRR1500089     4  0.1444     0.6668 0.000 0.000 0.012 0.948 0.040
#> SRR1441178     5  0.4273     0.3167 0.448 0.000 0.000 0.000 0.552
#> SRR1381396     1  0.2707     0.7818 0.860 0.000 0.000 0.008 0.132
#> SRR1096081     3  0.6775     0.3780 0.000 0.000 0.388 0.328 0.284
#> SRR1349809     2  0.0162     0.8510 0.004 0.996 0.000 0.000 0.000
#> SRR1324314     5  0.7005     0.2972 0.240 0.000 0.336 0.012 0.412
#> SRR1092444     1  0.6169     0.3284 0.536 0.000 0.004 0.136 0.324
#> SRR1382553     5  0.6527     0.4217 0.048 0.252 0.112 0.000 0.588
#> SRR1075530     4  0.3461     0.7325 0.000 0.224 0.000 0.772 0.004
#> SRR1442612     3  0.0162     0.6640 0.000 0.004 0.996 0.000 0.000
#> SRR1360056     5  0.3427     0.3612 0.000 0.000 0.108 0.056 0.836
#> SRR1078164     5  0.4528     0.2744 0.444 0.000 0.000 0.008 0.548
#> SRR1434545     4  0.3366     0.7301 0.000 0.232 0.000 0.768 0.000
#> SRR1398251     5  0.4321     0.6249 0.396 0.000 0.004 0.000 0.600
#> SRR1375866     1  0.4039     0.6183 0.720 0.000 0.004 0.008 0.268
#> SRR1091645     4  0.0451     0.6967 0.000 0.008 0.000 0.988 0.004
#> SRR1416636     3  0.6496     0.4730 0.000 0.000 0.488 0.232 0.280
#> SRR1105441     3  0.1121     0.6564 0.000 0.044 0.956 0.000 0.000
#> SRR1082496     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     2  0.0609     0.8383 0.000 0.980 0.020 0.000 0.000
#> SRR1093697     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     3  0.6767     0.3814 0.000 0.000 0.392 0.328 0.280
#> SRR1076120     4  0.1121     0.6754 0.000 0.000 0.000 0.956 0.044
#> SRR1074410     1  0.2707     0.7818 0.860 0.000 0.000 0.008 0.132
#> SRR1340345     4  0.3616     0.7327 0.000 0.224 0.004 0.768 0.004
#> SRR1069514     3  0.0963     0.6573 0.000 0.036 0.964 0.000 0.000
#> SRR1092636     3  0.6532     0.4682 0.000 0.000 0.480 0.240 0.280
#> SRR1365013     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1073069     5  0.3752     0.6243 0.292 0.000 0.000 0.000 0.708
#> SRR1443137     5  0.4210     0.6177 0.412 0.000 0.000 0.000 0.588
#> SRR1437143     2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0703     0.8526 0.976 0.000 0.000 0.000 0.024
#> SRR820234      2  0.0000     0.8543 0.000 1.000 0.000 0.000 0.000
#> SRR1338079     1  0.0566     0.8611 0.984 0.000 0.000 0.004 0.012
#> SRR1390094     3  0.6802    -0.0872 0.000 0.412 0.416 0.152 0.020
#> SRR1340721     2  0.4451     0.0657 0.492 0.504 0.000 0.000 0.004
#> SRR1335964     3  0.1628     0.6541 0.000 0.000 0.936 0.056 0.008
#> SRR1086869     3  0.6767     0.3814 0.000 0.000 0.392 0.328 0.280
#> SRR1453434     1  0.3362     0.7217 0.844 0.000 0.000 0.080 0.076
#> SRR1402261     4  0.4373     0.7197 0.080 0.160 0.000 0.760 0.000
#> SRR657809      2  0.3086     0.6581 0.000 0.816 0.004 0.180 0.000
#> SRR1093075     5  0.4210     0.6177 0.412 0.000 0.000 0.000 0.588
#> SRR1433329     5  0.4210     0.6177 0.412 0.000 0.000 0.000 0.588
#> SRR1353418     5  0.4313     0.2351 0.000 0.000 0.172 0.068 0.760
#> SRR1092913     4  0.3561     0.6983 0.000 0.260 0.000 0.740 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1501    0.81283 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1335605     5  0.7022    0.00597 0.012 0.384 0.008 0.056 0.404 0.136
#> SRR1432014     3  0.0363    0.88454 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1499215     6  0.2957    0.64444 0.004 0.000 0.120 0.000 0.032 0.844
#> SRR1460409     1  0.1643    0.81370 0.924 0.000 0.000 0.008 0.000 0.068
#> SRR1086441     1  0.1556    0.81163 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1097344     4  0.1644    0.81515 0.000 0.076 0.000 0.920 0.004 0.000
#> SRR1081789     2  0.1334    0.87719 0.000 0.948 0.000 0.032 0.020 0.000
#> SRR1453005     2  0.1049    0.88163 0.000 0.960 0.000 0.032 0.008 0.000
#> SRR1366985     6  0.2928    0.77458 0.084 0.000 0.056 0.004 0.000 0.856
#> SRR815280      1  0.2527    0.74322 0.832 0.000 0.000 0.000 0.000 0.168
#> SRR1348531     5  0.5245    0.09110 0.436 0.000 0.004 0.024 0.500 0.036
#> SRR815845      5  0.3995    0.12628 0.000 0.000 0.480 0.004 0.516 0.000
#> SRR1471178     1  0.1663    0.80824 0.912 0.000 0.000 0.000 0.000 0.088
#> SRR1080696     5  0.3862    0.32534 0.000 0.000 0.388 0.004 0.608 0.000
#> SRR1078684     3  0.1501    0.84923 0.000 0.076 0.924 0.000 0.000 0.000
#> SRR1317751     5  0.2001    0.65037 0.000 0.000 0.092 0.004 0.900 0.004
#> SRR1435667     3  0.0363    0.88454 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1097905     1  0.0405    0.80590 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1456548     1  0.0725    0.80014 0.976 0.000 0.000 0.000 0.012 0.012
#> SRR1075126     1  0.4782    0.10472 0.512 0.000 0.004 0.032 0.004 0.448
#> SRR813108      3  0.1501    0.84866 0.000 0.076 0.924 0.000 0.000 0.000
#> SRR1479062     5  0.5445    0.17922 0.000 0.008 0.012 0.064 0.516 0.400
#> SRR1408703     5  0.2234    0.65084 0.000 0.000 0.124 0.004 0.872 0.000
#> SRR1332360     6  0.0622    0.73594 0.012 0.000 0.000 0.000 0.008 0.980
#> SRR1098686     1  0.1556    0.81182 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1434228     6  0.2402    0.78892 0.140 0.000 0.000 0.004 0.000 0.856
#> SRR1467149     5  0.4932    0.35342 0.088 0.000 0.000 0.240 0.660 0.012
#> SRR1399113     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.1588    0.81634 0.000 0.072 0.000 0.924 0.004 0.000
#> SRR1092468     4  0.4828    0.54217 0.000 0.000 0.276 0.640 0.080 0.004
#> SRR1441804     1  0.2039    0.78589 0.916 0.000 0.000 0.020 0.052 0.012
#> SRR1326100     2  0.1418    0.87536 0.000 0.944 0.000 0.032 0.024 0.000
#> SRR1398815     1  0.4123    0.68225 0.780 0.000 0.008 0.016 0.060 0.136
#> SRR1436021     2  0.5942    0.05213 0.000 0.424 0.356 0.220 0.000 0.000
#> SRR1480083     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.1010    0.81293 0.960 0.000 0.000 0.000 0.004 0.036
#> SRR815542      1  0.1701    0.81294 0.920 0.000 0.000 0.008 0.000 0.072
#> SRR1400100     5  0.4757    0.03757 0.000 0.468 0.048 0.000 0.484 0.000
#> SRR1312002     6  0.3633    0.56909 0.012 0.000 0.004 0.000 0.252 0.732
#> SRR1470253     6  0.4781   -0.02814 0.008 0.000 0.008 0.020 0.448 0.516
#> SRR1414332     1  0.1556    0.81173 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1069209     6  0.2482    0.78766 0.148 0.000 0.000 0.004 0.000 0.848
#> SRR661052      1  0.4123    0.68290 0.780 0.000 0.008 0.016 0.060 0.136
#> SRR1308860     1  0.0937    0.81271 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1421159     3  0.0951    0.87874 0.000 0.004 0.968 0.020 0.008 0.000
#> SRR1340943     4  0.1524    0.81810 0.000 0.060 0.000 0.932 0.008 0.000
#> SRR1078855     6  0.2482    0.78766 0.148 0.000 0.000 0.004 0.000 0.848
#> SRR1459465     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.3284    0.74216 0.000 0.000 0.800 0.000 0.032 0.168
#> SRR1350979     3  0.0363    0.88454 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1458198     4  0.3627    0.67429 0.008 0.000 0.004 0.740 0.244 0.004
#> SRR1386910     2  0.6033    0.05991 0.000 0.464 0.056 0.064 0.412 0.004
#> SRR1465375     4  0.5328    0.08225 0.076 0.440 0.004 0.476 0.000 0.004
#> SRR1323699     3  0.4250    0.19882 0.000 0.000 0.528 0.000 0.016 0.456
#> SRR1431139     3  0.1230    0.87623 0.000 0.000 0.956 0.008 0.028 0.008
#> SRR1373964     3  0.0508    0.88481 0.000 0.012 0.984 0.000 0.004 0.000
#> SRR1455413     5  0.6460    0.07657 0.380 0.000 0.008 0.032 0.436 0.144
#> SRR1437163     1  0.0291    0.80687 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1347343     3  0.1643    0.85121 0.000 0.000 0.924 0.000 0.008 0.068
#> SRR1465480     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.3434    0.71167 0.820 0.000 0.004 0.008 0.040 0.128
#> SRR1086514     2  0.3725    0.46562 0.000 0.676 0.008 0.316 0.000 0.000
#> SRR1430928     1  0.1556    0.81173 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1310939     4  0.4602    0.48740 0.000 0.000 0.320 0.628 0.048 0.004
#> SRR1344294     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.3508    0.57182 0.704 0.000 0.000 0.004 0.000 0.292
#> SRR1468118     5  0.2053    0.65292 0.000 0.000 0.108 0.004 0.888 0.000
#> SRR1486348     1  0.1610    0.81001 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR1488770     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1663    0.80824 0.912 0.000 0.000 0.000 0.000 0.088
#> SRR1456611     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.4871    0.63783 0.728 0.000 0.008 0.032 0.088 0.144
#> SRR1500089     4  0.3884    0.65466 0.004 0.000 0.012 0.708 0.272 0.004
#> SRR1441178     6  0.4510    0.58105 0.148 0.000 0.008 0.024 0.068 0.752
#> SRR1381396     1  0.4343    0.67317 0.768 0.000 0.008 0.024 0.064 0.136
#> SRR1096081     5  0.2149    0.65262 0.000 0.000 0.104 0.004 0.888 0.004
#> SRR1349809     2  0.1562    0.87367 0.004 0.940 0.000 0.032 0.024 0.000
#> SRR1324314     6  0.6510    0.43871 0.104 0.000 0.264 0.008 0.084 0.540
#> SRR1092444     5  0.6470    0.02103 0.400 0.000 0.008 0.032 0.416 0.144
#> SRR1382553     6  0.3415    0.70386 0.024 0.136 0.016 0.004 0.000 0.820
#> SRR1075530     4  0.1720    0.80528 0.000 0.040 0.000 0.928 0.032 0.000
#> SRR1442612     3  0.0363    0.88454 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1360056     5  0.4026    0.26280 0.000 0.000 0.012 0.000 0.612 0.376
#> SRR1078164     6  0.4999    0.51785 0.196 0.000 0.008 0.024 0.076 0.696
#> SRR1434545     4  0.1462    0.81830 0.000 0.056 0.000 0.936 0.008 0.000
#> SRR1398251     6  0.2462    0.78926 0.132 0.000 0.004 0.004 0.000 0.860
#> SRR1375866     1  0.5873    0.46537 0.592 0.000 0.008 0.024 0.136 0.240
#> SRR1091645     4  0.1556    0.79557 0.000 0.000 0.000 0.920 0.080 0.000
#> SRR1416636     5  0.2362    0.64671 0.000 0.000 0.136 0.004 0.860 0.000
#> SRR1105441     3  0.1003    0.87965 0.000 0.016 0.964 0.000 0.020 0.000
#> SRR1082496     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     2  0.1503    0.87206 0.000 0.944 0.032 0.016 0.008 0.000
#> SRR1093697     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.2053    0.65292 0.000 0.000 0.108 0.004 0.888 0.000
#> SRR1076120     4  0.3734    0.67344 0.008 0.000 0.004 0.736 0.244 0.008
#> SRR1074410     1  0.4489    0.66309 0.756 0.000 0.008 0.024 0.072 0.140
#> SRR1340345     4  0.1864    0.80489 0.000 0.040 0.004 0.924 0.032 0.000
#> SRR1069514     3  0.0405    0.88528 0.000 0.008 0.988 0.000 0.004 0.000
#> SRR1092636     5  0.1957    0.65414 0.000 0.000 0.112 0.000 0.888 0.000
#> SRR1365013     2  0.1575    0.87142 0.000 0.936 0.000 0.032 0.032 0.000
#> SRR1073069     6  0.0508    0.74282 0.012 0.000 0.000 0.000 0.004 0.984
#> SRR1443137     6  0.2442    0.78859 0.144 0.000 0.000 0.004 0.000 0.852
#> SRR1437143     2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.2300    0.76729 0.856 0.000 0.000 0.000 0.000 0.144
#> SRR820234      2  0.0000    0.89536 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1338079     1  0.0405    0.80614 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1390094     3  0.5301    0.48691 0.000 0.168 0.628 0.196 0.000 0.008
#> SRR1340721     1  0.5766    0.09460 0.492 0.416 0.000 0.032 0.024 0.036
#> SRR1335964     3  0.1753    0.83220 0.000 0.000 0.912 0.004 0.084 0.000
#> SRR1086869     5  0.2053    0.65292 0.000 0.000 0.108 0.004 0.888 0.000
#> SRR1453434     1  0.5365    0.33286 0.560 0.000 0.000 0.116 0.004 0.320
#> SRR1402261     4  0.1624    0.81494 0.012 0.044 0.000 0.936 0.008 0.000
#> SRR657809      2  0.4289    0.51992 0.000 0.660 0.004 0.304 0.032 0.000
#> SRR1093075     6  0.2482    0.78766 0.148 0.000 0.000 0.004 0.000 0.848
#> SRR1433329     6  0.2482    0.78766 0.148 0.000 0.000 0.004 0.000 0.848
#> SRR1353418     5  0.4152    0.38846 0.000 0.000 0.032 0.000 0.664 0.304
#> SRR1092913     4  0.1501    0.81449 0.000 0.076 0.000 0.924 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.453           0.814       0.900         0.3029 0.765   0.765
#> 3 3 0.393           0.694       0.829         0.8567 0.663   0.568
#> 4 4 0.519           0.735       0.822         0.2577 0.809   0.596
#> 5 5 0.562           0.658       0.766         0.0990 0.799   0.431
#> 6 6 0.574           0.417       0.662         0.0429 0.907   0.618

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.876 1.000 0.000
#> SRR1335605     1  0.7056      0.814 0.808 0.192
#> SRR1432014     1  0.7056      0.814 0.808 0.192
#> SRR1499215     1  0.6148      0.833 0.848 0.152
#> SRR1460409     1  0.0000      0.876 1.000 0.000
#> SRR1086441     1  0.0000      0.876 1.000 0.000
#> SRR1097344     1  0.9686      0.528 0.604 0.396
#> SRR1081789     1  0.9491      0.557 0.632 0.368
#> SRR1453005     2  0.2778      0.877 0.048 0.952
#> SRR1366985     1  0.0000      0.876 1.000 0.000
#> SRR815280      1  0.0000      0.876 1.000 0.000
#> SRR1348531     1  0.0000      0.876 1.000 0.000
#> SRR815845      1  0.7056      0.814 0.808 0.192
#> SRR1471178     1  0.0000      0.876 1.000 0.000
#> SRR1080696     1  0.7056      0.814 0.808 0.192
#> SRR1078684     1  0.7056      0.814 0.808 0.192
#> SRR1317751     1  0.7056      0.814 0.808 0.192
#> SRR1435667     1  0.9661      0.537 0.608 0.392
#> SRR1097905     1  0.0000      0.876 1.000 0.000
#> SRR1456548     1  0.0000      0.876 1.000 0.000
#> SRR1075126     1  0.0000      0.876 1.000 0.000
#> SRR813108      2  0.9686      0.130 0.396 0.604
#> SRR1479062     1  0.7056      0.814 0.808 0.192
#> SRR1408703     1  0.7056      0.814 0.808 0.192
#> SRR1332360     1  0.0000      0.876 1.000 0.000
#> SRR1098686     1  0.0000      0.876 1.000 0.000
#> SRR1434228     1  0.0000      0.876 1.000 0.000
#> SRR1467149     1  0.4431      0.854 0.908 0.092
#> SRR1399113     2  0.0000      0.917 0.000 1.000
#> SRR1476507     1  0.9686      0.528 0.604 0.396
#> SRR1092468     1  0.0000      0.876 1.000 0.000
#> SRR1441804     1  0.0000      0.876 1.000 0.000
#> SRR1326100     2  0.9996     -0.251 0.488 0.512
#> SRR1398815     1  0.0000      0.876 1.000 0.000
#> SRR1436021     1  0.9686      0.528 0.604 0.396
#> SRR1480083     2  0.0000      0.917 0.000 1.000
#> SRR1472863     1  0.0000      0.876 1.000 0.000
#> SRR815542      1  0.0000      0.876 1.000 0.000
#> SRR1400100     1  0.9686      0.528 0.604 0.396
#> SRR1312002     1  0.0000      0.876 1.000 0.000
#> SRR1470253     1  0.5519      0.842 0.872 0.128
#> SRR1414332     1  0.0000      0.876 1.000 0.000
#> SRR1069209     1  0.0000      0.876 1.000 0.000
#> SRR661052      1  0.0000      0.876 1.000 0.000
#> SRR1308860     1  0.0000      0.876 1.000 0.000
#> SRR1421159     1  0.7219      0.807 0.800 0.200
#> SRR1340943     1  0.7056      0.699 0.808 0.192
#> SRR1078855     1  0.0000      0.876 1.000 0.000
#> SRR1459465     2  0.0000      0.917 0.000 1.000
#> SRR816818      2  0.0000      0.917 0.000 1.000
#> SRR1478679     1  0.0000      0.876 1.000 0.000
#> SRR1350979     1  0.7056      0.814 0.808 0.192
#> SRR1458198     1  0.0000      0.876 1.000 0.000
#> SRR1386910     1  0.7056      0.814 0.808 0.192
#> SRR1465375     1  0.6247      0.829 0.844 0.156
#> SRR1323699     1  0.0000      0.876 1.000 0.000
#> SRR1431139     1  0.7056      0.814 0.808 0.192
#> SRR1373964     1  0.7219      0.807 0.800 0.200
#> SRR1455413     1  0.2236      0.869 0.964 0.036
#> SRR1437163     1  0.0000      0.876 1.000 0.000
#> SRR1347343     1  0.7056      0.814 0.808 0.192
#> SRR1465480     2  0.0000      0.917 0.000 1.000
#> SRR1489631     1  0.0000      0.876 1.000 0.000
#> SRR1086514     1  0.9686      0.528 0.604 0.396
#> SRR1430928     1  0.0000      0.876 1.000 0.000
#> SRR1310939     1  0.0938      0.874 0.988 0.012
#> SRR1344294     2  0.0000      0.917 0.000 1.000
#> SRR1099402     1  0.0000      0.876 1.000 0.000
#> SRR1468118     1  0.7056      0.814 0.808 0.192
#> SRR1486348     1  0.0000      0.876 1.000 0.000
#> SRR1488770     2  0.0000      0.917 0.000 1.000
#> SRR1083732     1  0.0000      0.876 1.000 0.000
#> SRR1456611     2  0.0000      0.917 0.000 1.000
#> SRR1080318     1  0.0000      0.876 1.000 0.000
#> SRR1500089     1  0.0000      0.876 1.000 0.000
#> SRR1441178     1  0.0000      0.876 1.000 0.000
#> SRR1381396     1  0.0000      0.876 1.000 0.000
#> SRR1096081     1  0.7056      0.814 0.808 0.192
#> SRR1349809     1  0.8081      0.754 0.752 0.248
#> SRR1324314     1  0.0000      0.876 1.000 0.000
#> SRR1092444     1  0.0376      0.875 0.996 0.004
#> SRR1382553     1  0.0376      0.874 0.996 0.004
#> SRR1075530     1  0.9522      0.577 0.628 0.372
#> SRR1442612     1  0.7056      0.814 0.808 0.192
#> SRR1360056     1  0.2603      0.866 0.956 0.044
#> SRR1078164     1  0.0000      0.876 1.000 0.000
#> SRR1434545     1  0.6623      0.727 0.828 0.172
#> SRR1398251     1  0.0000      0.876 1.000 0.000
#> SRR1375866     1  0.0000      0.876 1.000 0.000
#> SRR1091645     1  0.9686      0.528 0.604 0.396
#> SRR1416636     1  0.7056      0.814 0.808 0.192
#> SRR1105441     1  0.9552      0.569 0.624 0.376
#> SRR1082496     2  0.0000      0.917 0.000 1.000
#> SRR1315353     2  0.3114      0.869 0.056 0.944
#> SRR1093697     2  0.0000      0.917 0.000 1.000
#> SRR1077429     1  0.7056      0.814 0.808 0.192
#> SRR1076120     1  0.2423      0.867 0.960 0.040
#> SRR1074410     1  0.0000      0.876 1.000 0.000
#> SRR1340345     1  0.7674      0.786 0.776 0.224
#> SRR1069514     1  0.7056      0.814 0.808 0.192
#> SRR1092636     1  0.7056      0.814 0.808 0.192
#> SRR1365013     1  0.7056      0.814 0.808 0.192
#> SRR1073069     1  0.0000      0.876 1.000 0.000
#> SRR1443137     1  0.0000      0.876 1.000 0.000
#> SRR1437143     2  0.0000      0.917 0.000 1.000
#> SRR1091990     1  0.0000      0.876 1.000 0.000
#> SRR820234      2  0.0000      0.917 0.000 1.000
#> SRR1338079     1  0.0000      0.876 1.000 0.000
#> SRR1390094     1  0.6801      0.820 0.820 0.180
#> SRR1340721     1  0.0000      0.876 1.000 0.000
#> SRR1335964     1  0.7056      0.814 0.808 0.192
#> SRR1086869     1  0.7056      0.814 0.808 0.192
#> SRR1453434     1  0.0000      0.876 1.000 0.000
#> SRR1402261     1  0.0000      0.876 1.000 0.000
#> SRR657809      1  0.9393      0.599 0.644 0.356
#> SRR1093075     1  0.0000      0.876 1.000 0.000
#> SRR1433329     1  0.0000      0.876 1.000 0.000
#> SRR1353418     1  0.7056      0.814 0.808 0.192
#> SRR1092913     1  0.7056      0.814 0.808 0.192

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1335605     1  0.4605     0.7145 0.796 0.000 0.204
#> SRR1432014     3  0.0237     0.6056 0.000 0.004 0.996
#> SRR1499215     3  0.6244    -0.2395 0.440 0.000 0.560
#> SRR1460409     1  0.0424     0.8292 0.992 0.000 0.008
#> SRR1086441     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1097344     1  0.8354     0.3697 0.576 0.320 0.104
#> SRR1081789     3  0.8374     0.5761 0.144 0.240 0.616
#> SRR1453005     2  0.6154     0.1974 0.000 0.592 0.408
#> SRR1366985     1  0.5968     0.5809 0.636 0.000 0.364
#> SRR815280      1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1348531     1  0.2796     0.8128 0.908 0.000 0.092
#> SRR815845      3  0.5940     0.6512 0.204 0.036 0.760
#> SRR1471178     1  0.0237     0.8292 0.996 0.000 0.004
#> SRR1080696     3  0.0237     0.6056 0.000 0.004 0.996
#> SRR1078684     3  0.2269     0.6075 0.040 0.016 0.944
#> SRR1317751     3  0.5845     0.6377 0.308 0.004 0.688
#> SRR1435667     3  0.1529     0.5922 0.000 0.040 0.960
#> SRR1097905     1  0.1411     0.8285 0.964 0.000 0.036
#> SRR1456548     1  0.0237     0.8295 0.996 0.000 0.004
#> SRR1075126     1  0.2165     0.8234 0.936 0.000 0.064
#> SRR813108      3  0.5760     0.4047 0.000 0.328 0.672
#> SRR1479062     3  0.5754     0.6252 0.296 0.004 0.700
#> SRR1408703     3  0.5431     0.6498 0.284 0.000 0.716
#> SRR1332360     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1098686     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1434228     1  0.5621     0.6014 0.692 0.000 0.308
#> SRR1467149     1  0.3551     0.7873 0.868 0.000 0.132
#> SRR1399113     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1476507     3  0.9767     0.4190 0.248 0.320 0.432
#> SRR1092468     1  0.2400     0.8195 0.932 0.004 0.064
#> SRR1441804     1  0.1860     0.8254 0.948 0.000 0.052
#> SRR1326100     3  0.8352     0.4794 0.100 0.332 0.568
#> SRR1398815     1  0.0424     0.8292 0.992 0.000 0.008
#> SRR1436021     3  0.9171     0.4920 0.172 0.312 0.516
#> SRR1480083     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1472863     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR815542      1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1400100     3  0.8394     0.5043 0.108 0.316 0.576
#> SRR1312002     1  0.5591     0.6933 0.696 0.000 0.304
#> SRR1470253     1  0.5058     0.7521 0.756 0.000 0.244
#> SRR1414332     1  0.0237     0.8292 0.996 0.000 0.004
#> SRR1069209     1  0.5178     0.7092 0.744 0.000 0.256
#> SRR661052      1  0.1529     0.8258 0.960 0.000 0.040
#> SRR1308860     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1421159     3  0.7671     0.6371 0.300 0.072 0.628
#> SRR1340943     1  0.6375     0.6359 0.720 0.244 0.036
#> SRR1078855     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1459465     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR816818      2  0.0747     0.9393 0.000 0.984 0.016
#> SRR1478679     1  0.6079     0.5578 0.612 0.000 0.388
#> SRR1350979     3  0.4834     0.6506 0.204 0.004 0.792
#> SRR1458198     1  0.2625     0.8157 0.916 0.000 0.084
#> SRR1386910     1  0.5521     0.7062 0.788 0.032 0.180
#> SRR1465375     1  0.5377     0.7418 0.820 0.068 0.112
#> SRR1323699     3  0.6302    -0.2368 0.480 0.000 0.520
#> SRR1431139     3  0.6148     0.6062 0.356 0.004 0.640
#> SRR1373964     3  0.1636     0.6005 0.020 0.016 0.964
#> SRR1455413     1  0.2959     0.8093 0.900 0.000 0.100
#> SRR1437163     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1347343     3  0.1491     0.6016 0.016 0.016 0.968
#> SRR1465480     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1489631     1  0.1643     0.8259 0.956 0.000 0.044
#> SRR1086514     3  0.8415     0.4976 0.108 0.320 0.572
#> SRR1430928     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1310939     1  0.4682     0.7346 0.804 0.004 0.192
#> SRR1344294     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1099402     1  0.0424     0.8290 0.992 0.000 0.008
#> SRR1468118     1  0.5158     0.6692 0.764 0.004 0.232
#> SRR1486348     1  0.0237     0.8292 0.996 0.000 0.004
#> SRR1488770     2  0.0592     0.9440 0.000 0.988 0.012
#> SRR1083732     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1080318     1  0.1529     0.8258 0.960 0.000 0.040
#> SRR1500089     1  0.2796     0.8128 0.908 0.000 0.092
#> SRR1441178     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1381396     1  0.0892     0.8280 0.980 0.000 0.020
#> SRR1096081     3  0.5024     0.6697 0.220 0.004 0.776
#> SRR1349809     1  0.4384     0.7682 0.868 0.068 0.064
#> SRR1324314     1  0.2448     0.8204 0.924 0.000 0.076
#> SRR1092444     1  0.2356     0.8214 0.928 0.000 0.072
#> SRR1382553     1  0.7043     0.3778 0.532 0.020 0.448
#> SRR1075530     3  0.8674     0.5297 0.136 0.296 0.568
#> SRR1442612     3  0.1129     0.6047 0.020 0.004 0.976
#> SRR1360056     1  0.5760     0.6804 0.672 0.000 0.328
#> SRR1078164     1  0.2261     0.8283 0.932 0.000 0.068
#> SRR1434545     1  0.5803     0.6776 0.760 0.212 0.028
#> SRR1398251     1  0.6026     0.5792 0.624 0.000 0.376
#> SRR1375866     1  0.1529     0.8258 0.960 0.000 0.040
#> SRR1091645     3  0.8223     0.5261 0.108 0.288 0.604
#> SRR1416636     3  0.0237     0.6083 0.004 0.000 0.996
#> SRR1105441     3  0.8187     0.5860 0.128 0.244 0.628
#> SRR1082496     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1315353     3  0.5785     0.4003 0.000 0.332 0.668
#> SRR1093697     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1077429     1  0.4702     0.7057 0.788 0.000 0.212
#> SRR1076120     1  0.3192     0.8156 0.888 0.000 0.112
#> SRR1074410     1  0.1411     0.8257 0.964 0.000 0.036
#> SRR1340345     1  0.7431     0.5421 0.688 0.100 0.212
#> SRR1069514     3  0.5835     0.6582 0.164 0.052 0.784
#> SRR1092636     3  0.6252     0.3653 0.444 0.000 0.556
#> SRR1365013     1  0.4862     0.7306 0.820 0.020 0.160
#> SRR1073069     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1443137     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1437143     2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1091990     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR820234      2  0.0000     0.9555 0.000 1.000 0.000
#> SRR1338079     1  0.0592     0.8294 0.988 0.000 0.012
#> SRR1390094     1  0.7310     0.5673 0.600 0.040 0.360
#> SRR1340721     1  0.0000     0.8291 1.000 0.000 0.000
#> SRR1335964     3  0.5845     0.6377 0.308 0.004 0.688
#> SRR1086869     3  0.5845     0.6377 0.308 0.004 0.688
#> SRR1453434     1  0.2537     0.8238 0.920 0.000 0.080
#> SRR1402261     1  0.2165     0.8209 0.936 0.000 0.064
#> SRR657809      1  0.9644    -0.0252 0.468 0.256 0.276
#> SRR1093075     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1433329     1  0.4654     0.7190 0.792 0.000 0.208
#> SRR1353418     3  0.5291     0.3269 0.268 0.000 0.732
#> SRR1092913     1  0.5931     0.7049 0.792 0.084 0.124

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      4  0.4072     0.5544 0.252 0.000 0.000 0.748
#> SRR1335605     1  0.2882     0.7448 0.892 0.000 0.084 0.024
#> SRR1432014     3  0.0804     0.8308 0.012 0.000 0.980 0.008
#> SRR1499215     4  0.5979     0.7051 0.172 0.000 0.136 0.692
#> SRR1460409     1  0.4222     0.7397 0.728 0.000 0.000 0.272
#> SRR1086441     1  0.4277     0.7365 0.720 0.000 0.000 0.280
#> SRR1097344     1  0.6946     0.5242 0.588 0.200 0.212 0.000
#> SRR1081789     3  0.6533     0.6556 0.032 0.068 0.664 0.236
#> SRR1453005     2  0.4907     0.0649 0.000 0.580 0.420 0.000
#> SRR1366985     4  0.3497     0.7644 0.036 0.000 0.104 0.860
#> SRR815280      4  0.4134     0.5060 0.260 0.000 0.000 0.740
#> SRR1348531     1  0.0469     0.7703 0.988 0.000 0.012 0.000
#> SRR815845      3  0.0469     0.8316 0.000 0.012 0.988 0.000
#> SRR1471178     1  0.4564     0.6955 0.672 0.000 0.000 0.328
#> SRR1080696     3  0.0657     0.8272 0.012 0.000 0.984 0.004
#> SRR1078684     3  0.4081     0.8051 0.084 0.008 0.844 0.064
#> SRR1317751     3  0.3172     0.7922 0.160 0.000 0.840 0.000
#> SRR1435667     3  0.0804     0.8308 0.012 0.000 0.980 0.008
#> SRR1097905     1  0.3933     0.7773 0.792 0.000 0.008 0.200
#> SRR1456548     1  0.3649     0.7796 0.796 0.000 0.000 0.204
#> SRR1075126     1  0.4595     0.7739 0.780 0.000 0.044 0.176
#> SRR813108      3  0.3024     0.7982 0.000 0.148 0.852 0.000
#> SRR1479062     3  0.7956     0.1547 0.276 0.004 0.420 0.300
#> SRR1408703     3  0.3486     0.7770 0.188 0.000 0.812 0.000
#> SRR1332360     4  0.1807     0.7899 0.052 0.000 0.008 0.940
#> SRR1098686     1  0.3873     0.7689 0.772 0.000 0.000 0.228
#> SRR1434228     4  0.1042     0.7863 0.020 0.000 0.008 0.972
#> SRR1467149     1  0.0469     0.7703 0.988 0.000 0.012 0.000
#> SRR1399113     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1476507     3  0.6886     0.5428 0.204 0.200 0.596 0.000
#> SRR1092468     1  0.4700     0.7829 0.792 0.000 0.084 0.124
#> SRR1441804     1  0.1635     0.7801 0.948 0.000 0.008 0.044
#> SRR1326100     3  0.3764     0.7549 0.000 0.216 0.784 0.000
#> SRR1398815     1  0.3907     0.7787 0.768 0.000 0.000 0.232
#> SRR1436021     3  0.5727     0.7031 0.096 0.200 0.704 0.000
#> SRR1480083     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.4008     0.7669 0.756 0.000 0.000 0.244
#> SRR815542      1  0.4250     0.7395 0.724 0.000 0.000 0.276
#> SRR1400100     3  0.3933     0.7680 0.008 0.200 0.792 0.000
#> SRR1312002     4  0.5074     0.7302 0.236 0.000 0.040 0.724
#> SRR1470253     4  0.5453     0.6591 0.304 0.000 0.036 0.660
#> SRR1414332     4  0.4624     0.3185 0.340 0.000 0.000 0.660
#> SRR1069209     4  0.2131     0.7840 0.036 0.000 0.032 0.932
#> SRR661052      1  0.2401     0.7744 0.904 0.000 0.004 0.092
#> SRR1308860     1  0.3873     0.7689 0.772 0.000 0.000 0.228
#> SRR1421159     3  0.2021     0.8324 0.024 0.040 0.936 0.000
#> SRR1340943     1  0.3823     0.7639 0.852 0.108 0.012 0.028
#> SRR1078855     4  0.1042     0.7863 0.020 0.000 0.008 0.972
#> SRR1459465     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0817     0.9319 0.000 0.976 0.024 0.000
#> SRR1478679     1  0.5432     0.7396 0.740 0.000 0.124 0.136
#> SRR1350979     3  0.0804     0.8308 0.012 0.000 0.980 0.008
#> SRR1458198     1  0.2227     0.7801 0.928 0.000 0.036 0.036
#> SRR1386910     1  0.3377     0.7343 0.848 0.012 0.140 0.000
#> SRR1465375     1  0.2161     0.7702 0.932 0.048 0.016 0.004
#> SRR1323699     4  0.5624     0.7464 0.148 0.000 0.128 0.724
#> SRR1431139     3  0.3307     0.8129 0.104 0.000 0.868 0.028
#> SRR1373964     3  0.0927     0.8303 0.016 0.000 0.976 0.008
#> SRR1455413     1  0.1510     0.7681 0.956 0.000 0.016 0.028
#> SRR1437163     1  0.3837     0.7704 0.776 0.000 0.000 0.224
#> SRR1347343     3  0.4883     0.4921 0.016 0.000 0.696 0.288
#> SRR1465480     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.1576     0.7795 0.948 0.000 0.004 0.048
#> SRR1086514     3  0.3933     0.7680 0.008 0.200 0.792 0.000
#> SRR1430928     1  0.4277     0.7365 0.720 0.000 0.000 0.280
#> SRR1310939     1  0.5304     0.7140 0.748 0.000 0.148 0.104
#> SRR1344294     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.4804     0.6389 0.616 0.000 0.000 0.384
#> SRR1468118     1  0.3688     0.6656 0.792 0.000 0.208 0.000
#> SRR1486348     1  0.4522     0.7027 0.680 0.000 0.000 0.320
#> SRR1488770     2  0.0592     0.9397 0.000 0.984 0.016 0.000
#> SRR1083732     1  0.4277     0.7365 0.720 0.000 0.000 0.280
#> SRR1456611     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.2714     0.7581 0.884 0.000 0.004 0.112
#> SRR1500089     1  0.1305     0.7717 0.960 0.000 0.036 0.004
#> SRR1441178     4  0.0817     0.7831 0.024 0.000 0.000 0.976
#> SRR1381396     1  0.3494     0.7724 0.824 0.000 0.004 0.172
#> SRR1096081     3  0.2530     0.8124 0.112 0.000 0.888 0.000
#> SRR1349809     1  0.5845     0.7756 0.724 0.036 0.044 0.196
#> SRR1324314     4  0.4756     0.7598 0.144 0.000 0.072 0.784
#> SRR1092444     1  0.2402     0.7454 0.912 0.000 0.012 0.076
#> SRR1382553     4  0.4483     0.7517 0.036 0.032 0.104 0.828
#> SRR1075530     3  0.4245     0.7700 0.020 0.196 0.784 0.000
#> SRR1442612     3  0.0804     0.8308 0.012 0.000 0.980 0.008
#> SRR1360056     4  0.5434     0.6993 0.252 0.000 0.052 0.696
#> SRR1078164     4  0.3710     0.7208 0.192 0.000 0.004 0.804
#> SRR1434545     1  0.5513     0.7595 0.756 0.116 0.012 0.116
#> SRR1398251     4  0.4547     0.7548 0.092 0.000 0.104 0.804
#> SRR1375866     4  0.5112     0.4445 0.436 0.000 0.004 0.560
#> SRR1091645     3  0.3991     0.8022 0.048 0.120 0.832 0.000
#> SRR1416636     3  0.2773     0.8050 0.116 0.000 0.880 0.004
#> SRR1105441     3  0.3552     0.8118 0.024 0.128 0.848 0.000
#> SRR1082496     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.3726     0.7582 0.000 0.212 0.788 0.000
#> SRR1093697     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1077429     1  0.2216     0.7370 0.908 0.000 0.092 0.000
#> SRR1076120     1  0.2319     0.7800 0.924 0.000 0.036 0.040
#> SRR1074410     1  0.2944     0.7581 0.868 0.000 0.004 0.128
#> SRR1340345     1  0.6327     0.6038 0.648 0.124 0.228 0.000
#> SRR1069514     3  0.1843     0.8311 0.028 0.016 0.948 0.008
#> SRR1092636     1  0.5000    -0.3060 0.500 0.000 0.500 0.000
#> SRR1365013     1  0.5721     0.7425 0.748 0.032 0.156 0.064
#> SRR1073069     4  0.1042     0.7863 0.020 0.000 0.008 0.972
#> SRR1443137     4  0.1042     0.7863 0.020 0.000 0.008 0.972
#> SRR1437143     2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1091990     4  0.2216     0.7474 0.092 0.000 0.000 0.908
#> SRR820234      2  0.0000     0.9535 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.3649     0.7819 0.796 0.000 0.000 0.204
#> SRR1390094     1  0.6408     0.6720 0.664 0.024 0.244 0.068
#> SRR1340721     1  0.4072     0.7613 0.748 0.000 0.000 0.252
#> SRR1335964     3  0.2589     0.8196 0.116 0.000 0.884 0.000
#> SRR1086869     3  0.2704     0.8081 0.124 0.000 0.876 0.000
#> SRR1453434     1  0.5055     0.7310 0.712 0.000 0.032 0.256
#> SRR1402261     1  0.3694     0.7894 0.844 0.000 0.032 0.124
#> SRR657809      1  0.7659     0.2927 0.492 0.160 0.336 0.012
#> SRR1093075     4  0.4843     0.0415 0.396 0.000 0.000 0.604
#> SRR1433329     4  0.1042     0.7863 0.020 0.000 0.008 0.972
#> SRR1353418     4  0.6063     0.6516 0.124 0.000 0.196 0.680
#> SRR1092913     1  0.3278     0.7559 0.864 0.116 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.1965     0.6888 0.904 0.000 0.096 0.000 0.000
#> SRR1335605     5  0.3433     0.7346 0.136 0.000 0.024 0.008 0.832
#> SRR1432014     4  0.4021     0.7260 0.000 0.000 0.168 0.780 0.052
#> SRR1499215     3  0.2811     0.7615 0.012 0.000 0.876 0.012 0.100
#> SRR1460409     1  0.3696     0.5941 0.772 0.000 0.016 0.000 0.212
#> SRR1086441     1  0.0000     0.7564 1.000 0.000 0.000 0.000 0.000
#> SRR1097344     5  0.8172     0.4136 0.128 0.192 0.020 0.176 0.484
#> SRR1081789     4  0.6970     0.1818 0.192 0.012 0.304 0.484 0.008
#> SRR1453005     2  0.5043     0.0346 0.000 0.552 0.012 0.420 0.016
#> SRR1366985     3  0.1934     0.7922 0.052 0.000 0.928 0.004 0.016
#> SRR815280      1  0.1608     0.6984 0.928 0.000 0.072 0.000 0.000
#> SRR1348531     5  0.4076     0.7221 0.200 0.000 0.020 0.012 0.768
#> SRR815845      4  0.1041     0.7512 0.000 0.000 0.032 0.964 0.004
#> SRR1471178     1  0.0693     0.7599 0.980 0.000 0.008 0.000 0.012
#> SRR1080696     4  0.1478     0.7563 0.000 0.000 0.064 0.936 0.000
#> SRR1078684     4  0.4431     0.7546 0.076 0.004 0.120 0.788 0.012
#> SRR1317751     5  0.5151     0.3248 0.000 0.000 0.044 0.396 0.560
#> SRR1435667     4  0.4059     0.7242 0.000 0.000 0.172 0.776 0.052
#> SRR1097905     1  0.3456     0.7047 0.800 0.000 0.016 0.000 0.184
#> SRR1456548     1  0.4147     0.5471 0.676 0.000 0.008 0.000 0.316
#> SRR1075126     1  0.6277     0.3100 0.504 0.000 0.352 0.004 0.140
#> SRR813108      4  0.2488     0.7498 0.000 0.124 0.004 0.872 0.000
#> SRR1479062     5  0.6992     0.3076 0.088 0.000 0.264 0.100 0.548
#> SRR1408703     4  0.4404     0.6243 0.000 0.000 0.036 0.712 0.252
#> SRR1332360     3  0.3527     0.7737 0.192 0.000 0.792 0.000 0.016
#> SRR1098686     1  0.1764     0.7600 0.928 0.000 0.008 0.000 0.064
#> SRR1434228     3  0.2732     0.7902 0.160 0.000 0.840 0.000 0.000
#> SRR1467149     5  0.4002     0.7313 0.144 0.000 0.024 0.028 0.804
#> SRR1399113     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.7978     0.2462 0.100 0.192 0.004 0.436 0.268
#> SRR1092468     1  0.5677     0.2258 0.516 0.000 0.060 0.008 0.416
#> SRR1441804     5  0.3421     0.7056 0.204 0.000 0.008 0.000 0.788
#> SRR1326100     4  0.3740     0.7175 0.000 0.196 0.012 0.784 0.008
#> SRR1398815     1  0.2848     0.7222 0.840 0.000 0.004 0.000 0.156
#> SRR1436021     4  0.5505     0.6855 0.056 0.192 0.012 0.708 0.032
#> SRR1480083     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.1892     0.7580 0.916 0.000 0.004 0.000 0.080
#> SRR815542      1  0.0794     0.7603 0.972 0.000 0.000 0.000 0.028
#> SRR1400100     4  0.3427     0.7213 0.000 0.192 0.012 0.796 0.000
#> SRR1312002     3  0.3798     0.7609 0.064 0.000 0.808 0.000 0.128
#> SRR1470253     5  0.4921     0.4069 0.036 0.000 0.320 0.004 0.640
#> SRR1414332     1  0.2359     0.6820 0.904 0.000 0.060 0.000 0.036
#> SRR1069209     3  0.2690     0.7918 0.156 0.000 0.844 0.000 0.000
#> SRR661052      5  0.3093     0.7280 0.168 0.000 0.008 0.000 0.824
#> SRR1308860     1  0.2179     0.7449 0.888 0.000 0.000 0.000 0.112
#> SRR1421159     4  0.3435     0.7659 0.004 0.072 0.068 0.852 0.004
#> SRR1340943     1  0.7008    -0.2308 0.436 0.068 0.052 0.016 0.428
#> SRR1078855     3  0.3561     0.7122 0.260 0.000 0.740 0.000 0.000
#> SRR1459465     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0794     0.9260 0.000 0.972 0.000 0.028 0.000
#> SRR1478679     3  0.5503     0.5597 0.124 0.000 0.680 0.012 0.184
#> SRR1350979     4  0.4021     0.7260 0.000 0.000 0.168 0.780 0.052
#> SRR1458198     5  0.3944     0.7043 0.224 0.000 0.016 0.004 0.756
#> SRR1386910     5  0.6803     0.4458 0.136 0.012 0.020 0.292 0.540
#> SRR1465375     5  0.4465     0.7224 0.148 0.016 0.004 0.052 0.780
#> SRR1323699     3  0.2605     0.7793 0.044 0.000 0.896 0.004 0.056
#> SRR1431139     4  0.4573     0.7509 0.020 0.000 0.140 0.772 0.068
#> SRR1373964     4  0.4096     0.7264 0.000 0.000 0.176 0.772 0.052
#> SRR1455413     5  0.2806     0.7312 0.152 0.000 0.004 0.000 0.844
#> SRR1437163     1  0.2806     0.7267 0.844 0.000 0.004 0.000 0.152
#> SRR1347343     3  0.5019     0.3501 0.000 0.000 0.632 0.316 0.052
#> SRR1465480     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     5  0.3109     0.7126 0.200 0.000 0.000 0.000 0.800
#> SRR1086514     4  0.3527     0.7202 0.000 0.192 0.016 0.792 0.000
#> SRR1430928     1  0.0000     0.7564 1.000 0.000 0.000 0.000 0.000
#> SRR1310939     3  0.6380    -0.0436 0.116 0.000 0.440 0.012 0.432
#> SRR1344294     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.4450     0.7016 0.760 0.000 0.132 0.000 0.108
#> SRR1468118     5  0.5538     0.6588 0.092 0.000 0.044 0.156 0.708
#> SRR1486348     1  0.0671     0.7586 0.980 0.000 0.004 0.000 0.016
#> SRR1488770     2  0.0609     0.9354 0.000 0.980 0.000 0.020 0.000
#> SRR1083732     1  0.0000     0.7564 1.000 0.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     5  0.2462     0.7303 0.112 0.000 0.008 0.000 0.880
#> SRR1500089     5  0.4328     0.7113 0.208 0.000 0.024 0.016 0.752
#> SRR1441178     3  0.5185     0.6434 0.228 0.000 0.672 0.000 0.100
#> SRR1381396     5  0.3690     0.6351 0.224 0.000 0.012 0.000 0.764
#> SRR1096081     4  0.3460     0.6800 0.000 0.000 0.044 0.828 0.128
#> SRR1349809     1  0.4281     0.7040 0.788 0.012 0.008 0.036 0.156
#> SRR1324314     3  0.3355     0.7764 0.132 0.000 0.832 0.000 0.036
#> SRR1092444     5  0.2179     0.7326 0.100 0.000 0.004 0.000 0.896
#> SRR1382553     3  0.3355     0.7792 0.076 0.008 0.860 0.004 0.052
#> SRR1075530     4  0.4314     0.7212 0.008 0.184 0.016 0.772 0.020
#> SRR1442612     4  0.4021     0.7260 0.000 0.000 0.168 0.780 0.052
#> SRR1360056     3  0.4703     0.6703 0.004 0.000 0.748 0.124 0.124
#> SRR1078164     5  0.5142     0.2473 0.052 0.000 0.348 0.000 0.600
#> SRR1434545     1  0.5951     0.6492 0.712 0.088 0.052 0.024 0.124
#> SRR1398251     3  0.2006     0.7987 0.072 0.000 0.916 0.000 0.012
#> SRR1375866     5  0.4823     0.4768 0.052 0.000 0.276 0.000 0.672
#> SRR1091645     4  0.3781     0.7173 0.000 0.064 0.032 0.840 0.064
#> SRR1416636     5  0.5442     0.3978 0.000 0.000 0.116 0.240 0.644
#> SRR1105441     4  0.3516     0.7371 0.000 0.164 0.020 0.812 0.004
#> SRR1082496     2  0.0404     0.9419 0.000 0.988 0.000 0.012 0.000
#> SRR1315353     4  0.3807     0.7139 0.000 0.204 0.012 0.776 0.008
#> SRR1093697     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.4855     0.6956 0.096 0.000 0.040 0.096 0.768
#> SRR1076120     5  0.4443     0.7079 0.200 0.000 0.044 0.008 0.748
#> SRR1074410     5  0.2723     0.7255 0.124 0.000 0.012 0.000 0.864
#> SRR1340345     4  0.8080     0.4294 0.132 0.180 0.020 0.500 0.168
#> SRR1069514     4  0.2536     0.7582 0.000 0.000 0.128 0.868 0.004
#> SRR1092636     5  0.4757     0.5415 0.012 0.000 0.036 0.248 0.704
#> SRR1365013     4  0.7273     0.2561 0.268 0.016 0.020 0.492 0.204
#> SRR1073069     3  0.3053     0.7892 0.164 0.000 0.828 0.000 0.008
#> SRR1443137     3  0.2773     0.7896 0.164 0.000 0.836 0.000 0.000
#> SRR1437143     2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.3994     0.5208 0.772 0.000 0.188 0.000 0.040
#> SRR820234      2  0.0000     0.9498 0.000 1.000 0.000 0.000 0.000
#> SRR1338079     1  0.2852     0.7218 0.828 0.000 0.000 0.000 0.172
#> SRR1390094     1  0.7533     0.3846 0.536 0.008 0.212 0.104 0.140
#> SRR1340721     1  0.4254     0.7157 0.772 0.000 0.080 0.000 0.148
#> SRR1335964     4  0.2929     0.7280 0.000 0.000 0.008 0.840 0.152
#> SRR1086869     4  0.2645     0.7142 0.000 0.000 0.044 0.888 0.068
#> SRR1453434     1  0.4316     0.7140 0.772 0.000 0.108 0.000 0.120
#> SRR1402261     1  0.5599     0.3139 0.552 0.004 0.056 0.004 0.384
#> SRR657809      4  0.8001     0.4756 0.132 0.188 0.024 0.516 0.140
#> SRR1093075     1  0.4235     0.0328 0.576 0.000 0.424 0.000 0.000
#> SRR1433329     3  0.2773     0.7896 0.164 0.000 0.836 0.000 0.000
#> SRR1353418     3  0.4521     0.6381 0.000 0.000 0.748 0.088 0.164
#> SRR1092913     5  0.6723     0.5831 0.184 0.132 0.012 0.052 0.620

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1983    0.66175 0.908 0.000 0.000 0.000 0.020 0.072
#> SRR1335605     5  0.4617    0.41403 0.056 0.296 0.000 0.000 0.644 0.004
#> SRR1432014     3  0.3397    0.50714 0.012 0.000 0.848 0.060 0.020 0.060
#> SRR1499215     6  0.4049    0.68639 0.024 0.028 0.096 0.004 0.036 0.812
#> SRR1460409     1  0.2320    0.63477 0.864 0.000 0.000 0.000 0.132 0.004
#> SRR1086441     1  0.0458    0.69241 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1097344     2  0.5759   -0.10832 0.020 0.580 0.060 0.008 0.316 0.016
#> SRR1081789     2  0.7102   -0.38386 0.112 0.388 0.340 0.000 0.000 0.160
#> SRR1453005     2  0.3606   -0.19985 0.000 0.724 0.264 0.008 0.000 0.004
#> SRR1366985     6  0.1794    0.75113 0.040 0.000 0.036 0.000 0.000 0.924
#> SRR815280      1  0.1141    0.67655 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1348531     5  0.3510    0.55015 0.108 0.000 0.004 0.028 0.828 0.032
#> SRR815845      3  0.3536    0.37601 0.000 0.012 0.820 0.116 0.004 0.048
#> SRR1471178     1  0.1564    0.69718 0.936 0.000 0.000 0.000 0.040 0.024
#> SRR1080696     3  0.1297    0.49044 0.000 0.000 0.948 0.040 0.000 0.012
#> SRR1078684     3  0.6876    0.33225 0.184 0.080 0.572 0.000 0.112 0.052
#> SRR1317751     4  0.6810    0.67679 0.000 0.000 0.184 0.408 0.344 0.064
#> SRR1435667     3  0.3568    0.50764 0.012 0.000 0.836 0.060 0.020 0.072
#> SRR1097905     1  0.4325    0.38399 0.568 0.004 0.000 0.000 0.412 0.016
#> SRR1456548     1  0.4527    0.30544 0.516 0.004 0.000 0.000 0.456 0.024
#> SRR1075126     5  0.6249   -0.15522 0.324 0.004 0.000 0.000 0.348 0.324
#> SRR813108      3  0.1863    0.53650 0.000 0.104 0.896 0.000 0.000 0.000
#> SRR1479062     5  0.7762   -0.02719 0.176 0.044 0.084 0.012 0.468 0.216
#> SRR1408703     3  0.6474   -0.43260 0.000 0.000 0.424 0.148 0.380 0.048
#> SRR1332360     6  0.3175    0.73989 0.164 0.000 0.000 0.000 0.028 0.808
#> SRR1098686     1  0.2750    0.68111 0.844 0.000 0.000 0.000 0.136 0.020
#> SRR1434228     6  0.2003    0.76515 0.116 0.000 0.000 0.000 0.000 0.884
#> SRR1467149     5  0.3101    0.54897 0.060 0.004 0.004 0.036 0.868 0.028
#> SRR1399113     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR1476507     5  0.6788   -0.20604 0.028 0.332 0.304 0.000 0.332 0.004
#> SRR1092468     5  0.7017    0.10047 0.228 0.308 0.004 0.000 0.400 0.060
#> SRR1441804     5  0.2445    0.57236 0.108 0.000 0.000 0.000 0.872 0.020
#> SRR1326100     3  0.4226    0.43945 0.000 0.484 0.504 0.004 0.000 0.008
#> SRR1398815     1  0.3712    0.63802 0.760 0.004 0.000 0.032 0.204 0.000
#> SRR1436021     3  0.6601    0.25305 0.028 0.256 0.472 0.000 0.236 0.008
#> SRR1480083     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR1472863     1  0.2234    0.68148 0.872 0.004 0.000 0.000 0.124 0.000
#> SRR815542      1  0.1728    0.69437 0.924 0.004 0.000 0.000 0.064 0.008
#> SRR1400100     3  0.4516    0.47199 0.000 0.420 0.552 0.000 0.020 0.008
#> SRR1312002     6  0.3065    0.73618 0.052 0.000 0.004 0.000 0.100 0.844
#> SRR1470253     5  0.4531   -0.17327 0.000 0.000 0.000 0.032 0.504 0.464
#> SRR1414332     1  0.1257    0.67648 0.952 0.000 0.000 0.000 0.020 0.028
#> SRR1069209     6  0.2003    0.76540 0.116 0.000 0.000 0.000 0.000 0.884
#> SRR661052      5  0.2100    0.57137 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1308860     1  0.2964    0.62347 0.792 0.004 0.000 0.000 0.204 0.000
#> SRR1421159     3  0.3831    0.53022 0.000 0.268 0.712 0.000 0.012 0.008
#> SRR1340943     1  0.7174   -0.02434 0.364 0.220 0.000 0.004 0.336 0.076
#> SRR1078855     6  0.3266    0.63214 0.272 0.000 0.000 0.000 0.000 0.728
#> SRR1459465     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR816818      2  0.4253    0.59038 0.000 0.524 0.016 0.460 0.000 0.000
#> SRR1478679     6  0.8575   -0.04206 0.064 0.244 0.040 0.060 0.272 0.320
#> SRR1350979     3  0.3419    0.50634 0.012 0.000 0.848 0.060 0.024 0.056
#> SRR1458198     5  0.3718    0.55605 0.128 0.008 0.000 0.000 0.796 0.068
#> SRR1386910     5  0.5837    0.36931 0.056 0.348 0.048 0.000 0.540 0.008
#> SRR1465375     5  0.4040    0.53630 0.092 0.104 0.020 0.000 0.784 0.000
#> SRR1323699     6  0.3866    0.70734 0.032 0.016 0.036 0.060 0.020 0.836
#> SRR1431139     3  0.5849    0.14899 0.028 0.008 0.572 0.000 0.292 0.100
#> SRR1373964     3  0.3589    0.51298 0.012 0.000 0.832 0.060 0.016 0.080
#> SRR1455413     5  0.1204    0.56566 0.056 0.000 0.000 0.000 0.944 0.000
#> SRR1437163     1  0.4343    0.42575 0.592 0.028 0.000 0.000 0.380 0.000
#> SRR1347343     3  0.5725    0.11250 0.012 0.004 0.532 0.060 0.020 0.372
#> SRR1465480     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR1489631     5  0.2454    0.57350 0.104 0.016 0.000 0.000 0.876 0.004
#> SRR1086514     3  0.4093    0.47187 0.000 0.440 0.552 0.004 0.000 0.004
#> SRR1430928     1  0.0458    0.69241 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1310939     6  0.8397   -0.05510 0.052 0.296 0.032 0.060 0.260 0.300
#> SRR1344294     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR1099402     1  0.5722    0.39524 0.516 0.000 0.000 0.000 0.268 0.216
#> SRR1468118     5  0.6563   -0.47302 0.024 0.000 0.068 0.408 0.436 0.064
#> SRR1486348     1  0.1007    0.69449 0.956 0.000 0.000 0.000 0.044 0.000
#> SRR1488770     2  0.4095    0.59922 0.000 0.512 0.008 0.480 0.000 0.000
#> SRR1083732     1  0.0547    0.69334 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1456611     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR1080318     5  0.1575    0.54455 0.032 0.000 0.000 0.032 0.936 0.000
#> SRR1500089     5  0.3452    0.56529 0.116 0.024 0.000 0.000 0.824 0.036
#> SRR1441178     6  0.5188    0.62410 0.192 0.000 0.000 0.032 0.104 0.672
#> SRR1381396     5  0.3242    0.52745 0.148 0.004 0.000 0.032 0.816 0.000
#> SRR1096081     4  0.6781    0.77983 0.000 0.000 0.352 0.408 0.176 0.064
#> SRR1349809     1  0.6194    0.14425 0.400 0.308 0.004 0.000 0.288 0.000
#> SRR1324314     6  0.2998    0.74812 0.052 0.008 0.012 0.000 0.060 0.868
#> SRR1092444     5  0.1575    0.54455 0.032 0.000 0.000 0.032 0.936 0.000
#> SRR1382553     6  0.4485    0.70267 0.092 0.004 0.032 0.068 0.020 0.784
#> SRR1075530     2  0.4131   -0.39530 0.000 0.600 0.388 0.004 0.004 0.004
#> SRR1442612     3  0.3456    0.50794 0.012 0.000 0.844 0.060 0.020 0.064
#> SRR1360056     6  0.4987    0.48252 0.004 0.000 0.044 0.100 0.132 0.720
#> SRR1078164     6  0.5596    0.25229 0.064 0.000 0.000 0.032 0.428 0.476
#> SRR1434545     1  0.6763    0.41645 0.516 0.232 0.000 0.004 0.156 0.092
#> SRR1398251     6  0.1895    0.76337 0.072 0.000 0.016 0.000 0.000 0.912
#> SRR1375866     5  0.4428    0.04580 0.000 0.000 0.000 0.032 0.580 0.388
#> SRR1091645     4  0.8216    0.71628 0.000 0.132 0.224 0.364 0.220 0.060
#> SRR1416636     5  0.7221   -0.37206 0.012 0.020 0.244 0.208 0.472 0.044
#> SRR1105441     3  0.4018    0.48596 0.000 0.412 0.580 0.000 0.000 0.008
#> SRR1082496     2  0.3810    0.57708 0.000 0.572 0.000 0.428 0.000 0.000
#> SRR1315353     3  0.4484    0.44965 0.000 0.460 0.516 0.016 0.000 0.008
#> SRR1093697     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR1077429     5  0.5827   -0.27126 0.024 0.000 0.024 0.364 0.532 0.056
#> SRR1076120     5  0.3960    0.55361 0.128 0.016 0.000 0.000 0.784 0.072
#> SRR1074410     5  0.2333    0.54606 0.060 0.004 0.000 0.032 0.900 0.004
#> SRR1340345     2  0.5288   -0.13089 0.024 0.592 0.044 0.004 0.332 0.004
#> SRR1069514     3  0.1410    0.53219 0.000 0.008 0.944 0.000 0.004 0.044
#> SRR1092636     5  0.6256   -0.24999 0.012 0.000 0.240 0.140 0.568 0.040
#> SRR1365013     5  0.7103    0.15650 0.192 0.324 0.080 0.000 0.400 0.004
#> SRR1073069     6  0.2320    0.76103 0.132 0.000 0.000 0.000 0.004 0.864
#> SRR1443137     6  0.2003    0.76470 0.116 0.000 0.000 0.000 0.000 0.884
#> SRR1437143     2  0.3868    0.60659 0.000 0.504 0.000 0.496 0.000 0.000
#> SRR1091990     1  0.3025    0.54900 0.820 0.000 0.000 0.000 0.024 0.156
#> SRR820234      2  0.3868    0.60563 0.000 0.508 0.000 0.492 0.000 0.000
#> SRR1338079     1  0.3852    0.44001 0.612 0.004 0.000 0.000 0.384 0.000
#> SRR1390094     1  0.7035    0.40038 0.520 0.012 0.176 0.000 0.152 0.140
#> SRR1340721     1  0.6678    0.27876 0.460 0.160 0.000 0.000 0.312 0.068
#> SRR1335964     3  0.4942    0.33332 0.000 0.064 0.688 0.012 0.220 0.016
#> SRR1086869     4  0.6781    0.78067 0.000 0.000 0.352 0.408 0.176 0.064
#> SRR1453434     1  0.5273    0.53731 0.620 0.004 0.000 0.000 0.208 0.168
#> SRR1402261     5  0.6691   -0.00177 0.316 0.104 0.000 0.004 0.480 0.096
#> SRR657809      2  0.6095   -0.07792 0.024 0.568 0.104 0.000 0.280 0.024
#> SRR1093075     1  0.3672    0.25406 0.632 0.000 0.000 0.000 0.000 0.368
#> SRR1433329     6  0.2092    0.76351 0.124 0.000 0.000 0.000 0.000 0.876
#> SRR1353418     6  0.5482    0.49894 0.012 0.000 0.196 0.104 0.028 0.660
#> SRR1092913     2  0.5082   -0.22796 0.036 0.556 0.012 0.004 0.388 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.891           0.935       0.971         0.4412 0.550   0.550
#> 3 3 0.877           0.904       0.964         0.2527 0.856   0.746
#> 4 4 0.599           0.776       0.811         0.1881 0.970   0.934
#> 5 5 0.503           0.527       0.775         0.0528 0.879   0.734
#> 6 6 0.585           0.489       0.722         0.0826 0.760   0.433

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0376      0.939 0.996 0.004
#> SRR1335605     2  0.0000      0.985 0.000 1.000
#> SRR1432014     2  0.0000      0.985 0.000 1.000
#> SRR1499215     2  0.0000      0.985 0.000 1.000
#> SRR1460409     1  0.0376      0.939 0.996 0.004
#> SRR1086441     1  0.0376      0.939 0.996 0.004
#> SRR1097344     2  0.0000      0.985 0.000 1.000
#> SRR1081789     2  0.0000      0.985 0.000 1.000
#> SRR1453005     2  0.0376      0.982 0.004 0.996
#> SRR1366985     2  0.0000      0.985 0.000 1.000
#> SRR815280      1  0.0376      0.939 0.996 0.004
#> SRR1348531     1  0.9661      0.432 0.608 0.392
#> SRR815845      2  0.0000      0.985 0.000 1.000
#> SRR1471178     1  0.0376      0.939 0.996 0.004
#> SRR1080696     2  0.0000      0.985 0.000 1.000
#> SRR1078684     2  0.0000      0.985 0.000 1.000
#> SRR1317751     2  0.0000      0.985 0.000 1.000
#> SRR1435667     2  0.0000      0.985 0.000 1.000
#> SRR1097905     1  0.0376      0.939 0.996 0.004
#> SRR1456548     1  0.0376      0.939 0.996 0.004
#> SRR1075126     1  0.1184      0.933 0.984 0.016
#> SRR813108      2  0.0000      0.985 0.000 1.000
#> SRR1479062     2  0.0000      0.985 0.000 1.000
#> SRR1408703     2  0.0000      0.985 0.000 1.000
#> SRR1332360     1  0.6973      0.794 0.812 0.188
#> SRR1098686     1  0.0376      0.939 0.996 0.004
#> SRR1434228     1  0.3114      0.905 0.944 0.056
#> SRR1467149     2  0.0000      0.985 0.000 1.000
#> SRR1399113     2  0.0376      0.982 0.004 0.996
#> SRR1476507     2  0.0000      0.985 0.000 1.000
#> SRR1092468     2  0.0000      0.985 0.000 1.000
#> SRR1441804     1  0.9209      0.559 0.664 0.336
#> SRR1326100     2  0.0000      0.985 0.000 1.000
#> SRR1398815     1  0.0376      0.939 0.996 0.004
#> SRR1436021     2  0.0000      0.985 0.000 1.000
#> SRR1480083     2  0.0376      0.982 0.004 0.996
#> SRR1472863     1  0.0376      0.939 0.996 0.004
#> SRR815542      1  0.0376      0.939 0.996 0.004
#> SRR1400100     2  0.0000      0.985 0.000 1.000
#> SRR1312002     2  0.0000      0.985 0.000 1.000
#> SRR1470253     2  0.2423      0.945 0.040 0.960
#> SRR1414332     1  0.0376      0.939 0.996 0.004
#> SRR1069209     1  0.0376      0.939 0.996 0.004
#> SRR661052      1  0.0376      0.939 0.996 0.004
#> SRR1308860     1  0.0376      0.939 0.996 0.004
#> SRR1421159     2  0.0000      0.985 0.000 1.000
#> SRR1340943     2  0.0000      0.985 0.000 1.000
#> SRR1078855     1  0.0376      0.939 0.996 0.004
#> SRR1459465     2  0.0376      0.982 0.004 0.996
#> SRR816818      2  0.0376      0.982 0.004 0.996
#> SRR1478679     2  0.0000      0.985 0.000 1.000
#> SRR1350979     2  0.0000      0.985 0.000 1.000
#> SRR1458198     2  0.0000      0.985 0.000 1.000
#> SRR1386910     2  0.0000      0.985 0.000 1.000
#> SRR1465375     2  0.0000      0.985 0.000 1.000
#> SRR1323699     2  0.0000      0.985 0.000 1.000
#> SRR1431139     2  0.0000      0.985 0.000 1.000
#> SRR1373964     2  0.0000      0.985 0.000 1.000
#> SRR1455413     2  0.7453      0.704 0.212 0.788
#> SRR1437163     1  0.9522      0.438 0.628 0.372
#> SRR1347343     2  0.0000      0.985 0.000 1.000
#> SRR1465480     2  0.0376      0.982 0.004 0.996
#> SRR1489631     1  0.7219      0.780 0.800 0.200
#> SRR1086514     2  0.0000      0.985 0.000 1.000
#> SRR1430928     1  0.0376      0.939 0.996 0.004
#> SRR1310939     2  0.0000      0.985 0.000 1.000
#> SRR1344294     2  0.0376      0.982 0.004 0.996
#> SRR1099402     1  0.0376      0.939 0.996 0.004
#> SRR1468118     2  0.0000      0.985 0.000 1.000
#> SRR1486348     1  0.0376      0.939 0.996 0.004
#> SRR1488770     2  0.0376      0.982 0.004 0.996
#> SRR1083732     1  0.0376      0.939 0.996 0.004
#> SRR1456611     2  0.0376      0.982 0.004 0.996
#> SRR1080318     1  0.0376      0.939 0.996 0.004
#> SRR1500089     2  0.0000      0.985 0.000 1.000
#> SRR1441178     1  0.5294      0.858 0.880 0.120
#> SRR1381396     1  0.0376      0.939 0.996 0.004
#> SRR1096081     2  0.0000      0.985 0.000 1.000
#> SRR1349809     2  0.0000      0.985 0.000 1.000
#> SRR1324314     2  0.6343      0.792 0.160 0.840
#> SRR1092444     2  1.0000     -0.111 0.496 0.504
#> SRR1382553     2  0.0000      0.985 0.000 1.000
#> SRR1075530     2  0.0000      0.985 0.000 1.000
#> SRR1442612     2  0.0000      0.985 0.000 1.000
#> SRR1360056     2  0.0000      0.985 0.000 1.000
#> SRR1078164     1  0.7219      0.780 0.800 0.200
#> SRR1434545     2  0.0000      0.985 0.000 1.000
#> SRR1398251     2  0.4562      0.879 0.096 0.904
#> SRR1375866     1  0.7219      0.780 0.800 0.200
#> SRR1091645     2  0.0000      0.985 0.000 1.000
#> SRR1416636     2  0.0000      0.985 0.000 1.000
#> SRR1105441     2  0.0000      0.985 0.000 1.000
#> SRR1082496     2  0.0376      0.982 0.004 0.996
#> SRR1315353     2  0.0000      0.985 0.000 1.000
#> SRR1093697     2  0.0376      0.982 0.004 0.996
#> SRR1077429     2  0.0000      0.985 0.000 1.000
#> SRR1076120     2  0.0000      0.985 0.000 1.000
#> SRR1074410     1  0.0376      0.939 0.996 0.004
#> SRR1340345     2  0.0000      0.985 0.000 1.000
#> SRR1069514     2  0.0000      0.985 0.000 1.000
#> SRR1092636     2  0.0000      0.985 0.000 1.000
#> SRR1365013     2  0.0000      0.985 0.000 1.000
#> SRR1073069     1  0.7528      0.760 0.784 0.216
#> SRR1443137     1  0.1414      0.931 0.980 0.020
#> SRR1437143     2  0.0376      0.982 0.004 0.996
#> SRR1091990     1  0.0376      0.939 0.996 0.004
#> SRR820234      2  0.0376      0.982 0.004 0.996
#> SRR1338079     1  0.0376      0.939 0.996 0.004
#> SRR1390094     2  0.0000      0.985 0.000 1.000
#> SRR1340721     2  0.0376      0.982 0.004 0.996
#> SRR1335964     2  0.0000      0.985 0.000 1.000
#> SRR1086869     2  0.0000      0.985 0.000 1.000
#> SRR1453434     1  0.0672      0.937 0.992 0.008
#> SRR1402261     2  0.0000      0.985 0.000 1.000
#> SRR657809      2  0.0000      0.985 0.000 1.000
#> SRR1093075     1  0.0376      0.939 0.996 0.004
#> SRR1433329     1  0.0376      0.939 0.996 0.004
#> SRR1353418     2  0.0000      0.985 0.000 1.000
#> SRR1092913     2  0.0000      0.985 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1335605     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1432014     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1499215     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1460409     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1097344     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1081789     3  0.0424     0.9632 0.000 0.008 0.992
#> SRR1453005     3  0.5760     0.4855 0.000 0.328 0.672
#> SRR1366985     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR815280      1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1348531     3  0.6295     0.0472 0.472 0.000 0.528
#> SRR815845      3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1471178     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1080696     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1078684     3  0.0237     0.9651 0.004 0.000 0.996
#> SRR1317751     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1435667     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1097905     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1456548     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1075126     1  0.1163     0.9007 0.972 0.000 0.028
#> SRR813108      3  0.1163     0.9450 0.000 0.028 0.972
#> SRR1479062     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1408703     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1332360     1  0.5733     0.5305 0.676 0.000 0.324
#> SRR1098686     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1434228     1  0.3816     0.7576 0.852 0.000 0.148
#> SRR1467149     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1399113     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1476507     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1092468     3  0.0237     0.9651 0.004 0.000 0.996
#> SRR1441804     3  0.6225     0.1954 0.432 0.000 0.568
#> SRR1326100     3  0.0747     0.9591 0.000 0.016 0.984
#> SRR1398815     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1436021     3  0.0237     0.9651 0.004 0.000 0.996
#> SRR1480083     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1472863     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR815542      1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1400100     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1312002     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1470253     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1414332     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1069209     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR661052      1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1308860     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1421159     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1340943     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1078855     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR816818      2  0.6008     0.3834 0.000 0.628 0.372
#> SRR1478679     3  0.0237     0.9651 0.004 0.000 0.996
#> SRR1350979     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1458198     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1386910     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1465375     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1323699     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1431139     3  0.0237     0.9651 0.004 0.000 0.996
#> SRR1373964     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1455413     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1437163     1  0.4062     0.7357 0.836 0.000 0.164
#> SRR1347343     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1465480     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1489631     1  0.5291     0.6162 0.732 0.000 0.268
#> SRR1086514     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1430928     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1310939     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1344294     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1468118     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1486348     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1456611     2  0.1289     0.9176 0.000 0.968 0.032
#> SRR1080318     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1500089     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1441178     1  0.3686     0.7824 0.860 0.000 0.140
#> SRR1381396     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1096081     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1349809     3  0.0829     0.9613 0.012 0.004 0.984
#> SRR1324314     3  0.3116     0.8489 0.108 0.000 0.892
#> SRR1092444     3  0.5497     0.5679 0.292 0.000 0.708
#> SRR1382553     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1075530     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1442612     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1360056     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1078164     1  0.5254     0.6216 0.736 0.000 0.264
#> SRR1434545     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1398251     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1375866     1  0.4555     0.7080 0.800 0.000 0.200
#> SRR1091645     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1416636     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1105441     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1082496     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1315353     3  0.0237     0.9646 0.000 0.004 0.996
#> SRR1093697     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1077429     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1076120     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1074410     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1340345     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1069514     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1092636     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1365013     3  0.0237     0.9651 0.004 0.000 0.996
#> SRR1073069     1  0.5760     0.5241 0.672 0.000 0.328
#> SRR1443137     1  0.0592     0.9152 0.988 0.000 0.012
#> SRR1437143     2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR820234      2  0.0000     0.9508 0.000 1.000 0.000
#> SRR1338079     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1390094     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1340721     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR1335964     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1086869     3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1453434     1  0.0237     0.9216 0.996 0.000 0.004
#> SRR1402261     3  0.0747     0.9607 0.016 0.000 0.984
#> SRR657809      3  0.0000     0.9657 0.000 0.000 1.000
#> SRR1093075     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1433329     1  0.0000     0.9245 1.000 0.000 0.000
#> SRR1353418     3  0.0424     0.9637 0.008 0.000 0.992
#> SRR1092913     3  0.0000     0.9657 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.2216      0.873 0.908 0.000 0.000 0.092
#> SRR1335605     3  0.1792      0.792 0.000 0.000 0.932 0.068
#> SRR1432014     3  0.4992      0.605 0.000 0.000 0.524 0.476
#> SRR1499215     3  0.4817      0.675 0.000 0.000 0.612 0.388
#> SRR1460409     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1086441     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1097344     3  0.3688      0.726 0.000 0.000 0.792 0.208
#> SRR1081789     3  0.2530      0.769 0.000 0.000 0.888 0.112
#> SRR1453005     3  0.6911      0.388 0.000 0.304 0.560 0.136
#> SRR1366985     3  0.6232      0.660 0.072 0.000 0.596 0.332
#> SRR815280      1  0.0336      0.899 0.992 0.000 0.000 0.008
#> SRR1348531     1  0.6148      0.228 0.540 0.000 0.408 0.052
#> SRR815845      3  0.4331      0.739 0.000 0.000 0.712 0.288
#> SRR1471178     1  0.0000      0.899 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.4543      0.720 0.000 0.000 0.676 0.324
#> SRR1078684     3  0.3975      0.764 0.000 0.000 0.760 0.240
#> SRR1317751     3  0.3219      0.778 0.000 0.000 0.836 0.164
#> SRR1435667     3  0.4981      0.611 0.000 0.000 0.536 0.464
#> SRR1097905     1  0.0336      0.898 0.992 0.000 0.000 0.008
#> SRR1456548     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1075126     1  0.1256      0.886 0.964 0.000 0.028 0.008
#> SRR813108      3  0.4805      0.764 0.000 0.084 0.784 0.132
#> SRR1479062     3  0.1389      0.790 0.000 0.000 0.952 0.048
#> SRR1408703     3  0.3356      0.780 0.000 0.000 0.824 0.176
#> SRR1332360     1  0.6231      0.700 0.668 0.000 0.148 0.184
#> SRR1098686     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1434228     1  0.3718      0.830 0.820 0.000 0.012 0.168
#> SRR1467149     3  0.3123      0.760 0.000 0.000 0.844 0.156
#> SRR1399113     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1476507     3  0.3219      0.744 0.000 0.000 0.836 0.164
#> SRR1092468     3  0.1474      0.784 0.000 0.000 0.948 0.052
#> SRR1441804     1  0.5860      0.328 0.580 0.000 0.380 0.040
#> SRR1326100     3  0.1716      0.783 0.000 0.000 0.936 0.064
#> SRR1398815     1  0.0000      0.899 1.000 0.000 0.000 0.000
#> SRR1436021     3  0.3172      0.750 0.000 0.000 0.840 0.160
#> SRR1480083     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.2149      0.874 0.912 0.000 0.000 0.088
#> SRR815542      1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1400100     3  0.1211      0.791 0.000 0.000 0.960 0.040
#> SRR1312002     3  0.4605      0.715 0.000 0.000 0.664 0.336
#> SRR1470253     3  0.5944      0.713 0.104 0.000 0.684 0.212
#> SRR1414332     1  0.0336      0.899 0.992 0.000 0.000 0.008
#> SRR1069209     1  0.3172      0.838 0.840 0.000 0.000 0.160
#> SRR661052      1  0.0000      0.899 1.000 0.000 0.000 0.000
#> SRR1308860     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1421159     3  0.1716      0.791 0.000 0.000 0.936 0.064
#> SRR1340943     3  0.3610      0.727 0.000 0.000 0.800 0.200
#> SRR1078855     1  0.1557      0.885 0.944 0.000 0.000 0.056
#> SRR1459465     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR816818      2  0.5851      0.503 0.000 0.660 0.272 0.068
#> SRR1478679     3  0.4761      0.693 0.000 0.000 0.628 0.372
#> SRR1350979     3  0.4866      0.668 0.000 0.000 0.596 0.404
#> SRR1458198     3  0.2704      0.766 0.000 0.000 0.876 0.124
#> SRR1386910     3  0.2149      0.772 0.000 0.000 0.912 0.088
#> SRR1465375     3  0.3311      0.741 0.000 0.000 0.828 0.172
#> SRR1323699     3  0.4817      0.677 0.000 0.000 0.612 0.388
#> SRR1431139     3  0.2647      0.788 0.000 0.000 0.880 0.120
#> SRR1373964     3  0.4985      0.608 0.000 0.000 0.532 0.468
#> SRR1455413     3  0.4818      0.652 0.216 0.000 0.748 0.036
#> SRR1437163     1  0.0927      0.890 0.976 0.000 0.016 0.008
#> SRR1347343     3  0.4948      0.631 0.000 0.000 0.560 0.440
#> SRR1465480     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.5227      0.608 0.704 0.000 0.256 0.040
#> SRR1086514     3  0.3266      0.744 0.000 0.000 0.832 0.168
#> SRR1430928     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1310939     3  0.1557      0.791 0.000 0.000 0.944 0.056
#> SRR1344294     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000      0.899 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.2973      0.780 0.000 0.000 0.856 0.144
#> SRR1486348     1  0.0000      0.899 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0592      0.898 0.984 0.000 0.000 0.016
#> SRR1456611     2  0.1610      0.926 0.000 0.952 0.032 0.016
#> SRR1080318     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1500089     3  0.1940      0.783 0.000 0.000 0.924 0.076
#> SRR1441178     1  0.4840      0.793 0.784 0.000 0.100 0.116
#> SRR1381396     1  0.0336      0.899 0.992 0.000 0.000 0.008
#> SRR1096081     3  0.3610      0.773 0.000 0.000 0.800 0.200
#> SRR1349809     3  0.3266      0.745 0.000 0.000 0.832 0.168
#> SRR1324314     3  0.6578      0.670 0.108 0.000 0.592 0.300
#> SRR1092444     3  0.6179      0.291 0.392 0.000 0.552 0.056
#> SRR1382553     3  0.4406      0.733 0.000 0.000 0.700 0.300
#> SRR1075530     3  0.3837      0.708 0.000 0.000 0.776 0.224
#> SRR1442612     3  0.4981      0.611 0.000 0.000 0.536 0.464
#> SRR1360056     3  0.4053      0.758 0.004 0.000 0.768 0.228
#> SRR1078164     1  0.5574      0.739 0.728 0.000 0.148 0.124
#> SRR1434545     3  0.3486      0.732 0.000 0.000 0.812 0.188
#> SRR1398251     3  0.7456      0.428 0.256 0.000 0.508 0.236
#> SRR1375866     1  0.5522      0.742 0.732 0.000 0.148 0.120
#> SRR1091645     3  0.3219      0.752 0.000 0.000 0.836 0.164
#> SRR1416636     3  0.4406      0.734 0.000 0.000 0.700 0.300
#> SRR1105441     3  0.2760      0.784 0.000 0.000 0.872 0.128
#> SRR1082496     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.1557      0.787 0.000 0.000 0.944 0.056
#> SRR1093697     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.3074      0.783 0.000 0.000 0.848 0.152
#> SRR1076120     3  0.1716      0.782 0.000 0.000 0.936 0.064
#> SRR1074410     1  0.0921      0.895 0.972 0.000 0.000 0.028
#> SRR1340345     3  0.3907      0.703 0.000 0.000 0.768 0.232
#> SRR1069514     3  0.4972      0.614 0.000 0.000 0.544 0.456
#> SRR1092636     3  0.3907      0.760 0.000 0.000 0.768 0.232
#> SRR1365013     3  0.3074      0.753 0.000 0.000 0.848 0.152
#> SRR1073069     1  0.6473      0.672 0.644 0.000 0.168 0.188
#> SRR1443137     1  0.4332      0.816 0.792 0.000 0.032 0.176
#> SRR1437143     2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.2345      0.869 0.900 0.000 0.000 0.100
#> SRR820234      2  0.0000      0.963 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1390094     3  0.2081      0.792 0.000 0.000 0.916 0.084
#> SRR1340721     3  0.4237      0.734 0.040 0.000 0.808 0.152
#> SRR1335964     3  0.2814      0.784 0.000 0.000 0.868 0.132
#> SRR1086869     3  0.2760      0.782 0.000 0.000 0.872 0.128
#> SRR1453434     1  0.0188      0.899 0.996 0.000 0.000 0.004
#> SRR1402261     3  0.3610      0.727 0.000 0.000 0.800 0.200
#> SRR657809      3  0.3400      0.737 0.000 0.000 0.820 0.180
#> SRR1093075     1  0.0000      0.899 1.000 0.000 0.000 0.000
#> SRR1433329     1  0.3356      0.831 0.824 0.000 0.000 0.176
#> SRR1353418     3  0.4817      0.681 0.000 0.000 0.612 0.388
#> SRR1092913     3  0.3837      0.706 0.000 0.000 0.776 0.224

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.2966   5.40e-01 0.816 0.000 0.000 0.000 0.184
#> SRR1335605     4  0.4602   5.10e-01 0.052 0.000 0.240 0.708 0.000
#> SRR1432014     3  0.2891   8.38e-01 0.000 0.000 0.824 0.176 0.000
#> SRR1499215     4  0.4171   2.76e-01 0.000 0.000 0.396 0.604 0.000
#> SRR1460409     1  0.2124   7.01e-01 0.900 0.000 0.004 0.000 0.096
#> SRR1086441     1  0.0000   7.39e-01 1.000 0.000 0.000 0.000 0.000
#> SRR1097344     4  0.2424   5.24e-01 0.000 0.000 0.132 0.868 0.000
#> SRR1081789     4  0.1956   5.88e-01 0.000 0.008 0.076 0.916 0.000
#> SRR1453005     2  0.4517  -1.07e-06 0.000 0.556 0.008 0.436 0.000
#> SRR1366985     4  0.8140  -9.22e-02 0.228 0.000 0.124 0.396 0.252
#> SRR815280      1  0.0963   7.22e-01 0.964 0.000 0.000 0.000 0.036
#> SRR1348531     4  0.6069   1.48e-02 0.452 0.000 0.056 0.464 0.028
#> SRR815845      4  0.4249   3.13e-01 0.000 0.000 0.432 0.568 0.000
#> SRR1471178     1  0.0000   7.39e-01 1.000 0.000 0.000 0.000 0.000
#> SRR1080696     4  0.6203   4.14e-01 0.000 0.000 0.224 0.552 0.224
#> SRR1078684     4  0.3966   4.08e-01 0.000 0.000 0.336 0.664 0.000
#> SRR1317751     4  0.6513   2.46e-01 0.000 0.000 0.192 0.424 0.384
#> SRR1435667     3  0.3074   8.63e-01 0.000 0.000 0.804 0.196 0.000
#> SRR1097905     1  0.2233   6.96e-01 0.892 0.000 0.004 0.000 0.104
#> SRR1456548     1  0.2233   6.96e-01 0.892 0.000 0.004 0.000 0.104
#> SRR1075126     1  0.3465   6.33e-01 0.840 0.000 0.004 0.052 0.104
#> SRR813108      4  0.6008   3.57e-01 0.000 0.200 0.216 0.584 0.000
#> SRR1479062     4  0.3689   5.03e-01 0.004 0.000 0.256 0.740 0.000
#> SRR1408703     4  0.6024   4.23e-01 0.000 0.000 0.148 0.556 0.296
#> SRR1332360     5  0.6006   7.10e-01 0.404 0.000 0.012 0.080 0.504
#> SRR1098686     1  0.2179   6.99e-01 0.896 0.000 0.004 0.000 0.100
#> SRR1434228     1  0.4161  -1.48e-01 0.608 0.000 0.000 0.000 0.392
#> SRR1467149     4  0.4874   5.10e-01 0.244 0.000 0.044 0.700 0.012
#> SRR1399113     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0290   5.92e-01 0.000 0.000 0.008 0.992 0.000
#> SRR1092468     4  0.4785   5.92e-01 0.068 0.000 0.024 0.756 0.152
#> SRR1441804     4  0.5712   3.99e-02 0.452 0.000 0.032 0.488 0.028
#> SRR1326100     4  0.4026   5.01e-01 0.000 0.244 0.020 0.736 0.000
#> SRR1398815     1  0.0000   7.39e-01 1.000 0.000 0.000 0.000 0.000
#> SRR1436021     4  0.0290   5.92e-01 0.000 0.000 0.008 0.992 0.000
#> SRR1480083     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.3074   5.19e-01 0.804 0.000 0.000 0.000 0.196
#> SRR815542      1  0.2233   6.96e-01 0.892 0.000 0.004 0.000 0.104
#> SRR1400100     4  0.3109   5.44e-01 0.000 0.000 0.200 0.800 0.000
#> SRR1312002     4  0.7123   3.44e-01 0.224 0.000 0.140 0.552 0.084
#> SRR1470253     4  0.6914   3.75e-01 0.232 0.000 0.128 0.568 0.072
#> SRR1414332     1  0.0703   7.29e-01 0.976 0.000 0.000 0.000 0.024
#> SRR1069209     1  0.4114  -8.11e-02 0.624 0.000 0.000 0.000 0.376
#> SRR661052      1  0.0162   7.39e-01 0.996 0.000 0.004 0.000 0.000
#> SRR1308860     1  0.2179   6.99e-01 0.896 0.000 0.004 0.000 0.100
#> SRR1421159     4  0.2561   5.75e-01 0.000 0.000 0.144 0.856 0.000
#> SRR1340943     4  0.0955   5.97e-01 0.028 0.000 0.004 0.968 0.000
#> SRR1078855     1  0.2732   5.79e-01 0.840 0.000 0.000 0.000 0.160
#> SRR1459465     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.3579   5.42e-01 0.000 0.756 0.004 0.240 0.000
#> SRR1478679     4  0.4161   2.88e-01 0.000 0.000 0.392 0.608 0.000
#> SRR1350979     3  0.4201   3.02e-01 0.000 0.000 0.592 0.408 0.000
#> SRR1458198     4  0.4315   5.14e-01 0.244 0.000 0.016 0.728 0.012
#> SRR1386910     4  0.0510   5.96e-01 0.000 0.000 0.016 0.984 0.000
#> SRR1465375     4  0.0798   5.95e-01 0.016 0.000 0.008 0.976 0.000
#> SRR1323699     4  0.4242   1.69e-01 0.000 0.000 0.428 0.572 0.000
#> SRR1431139     4  0.4704   4.77e-01 0.016 0.000 0.276 0.688 0.020
#> SRR1373964     3  0.3336   8.56e-01 0.000 0.000 0.772 0.228 0.000
#> SRR1455413     4  0.4774   4.73e-01 0.276 0.000 0.028 0.684 0.012
#> SRR1437163     1  0.3047   6.58e-01 0.868 0.000 0.004 0.044 0.084
#> SRR1347343     3  0.3796   7.63e-01 0.000 0.000 0.700 0.300 0.000
#> SRR1465480     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.5456  -1.95e-01 0.524 0.000 0.016 0.428 0.032
#> SRR1086514     4  0.0290   5.92e-01 0.000 0.000 0.008 0.992 0.000
#> SRR1430928     1  0.0000   7.39e-01 1.000 0.000 0.000 0.000 0.000
#> SRR1310939     4  0.3809   5.00e-01 0.000 0.000 0.256 0.736 0.008
#> SRR1344294     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000   7.39e-01 1.000 0.000 0.000 0.000 0.000
#> SRR1468118     4  0.6428   2.59e-01 0.000 0.000 0.176 0.440 0.384
#> SRR1486348     1  0.0162   7.38e-01 0.996 0.000 0.000 0.000 0.004
#> SRR1488770     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.1851   6.77e-01 0.912 0.000 0.000 0.000 0.088
#> SRR1456611     2  0.0794   8.79e-01 0.000 0.972 0.000 0.028 0.000
#> SRR1080318     1  0.1205   7.30e-01 0.956 0.000 0.004 0.000 0.040
#> SRR1500089     4  0.4821   5.65e-01 0.024 0.000 0.032 0.716 0.228
#> SRR1441178     1  0.5725  -2.24e-01 0.596 0.000 0.012 0.076 0.316
#> SRR1381396     1  0.0000   7.39e-01 1.000 0.000 0.000 0.000 0.000
#> SRR1096081     4  0.6618   2.14e-01 0.000 0.000 0.216 0.400 0.384
#> SRR1349809     4  0.2177   5.89e-01 0.004 0.080 0.008 0.908 0.000
#> SRR1324314     4  0.5974   4.76e-01 0.160 0.000 0.188 0.636 0.016
#> SRR1092444     4  0.5627   4.41e-01 0.296 0.000 0.056 0.624 0.024
#> SRR1382553     4  0.4114   3.31e-01 0.000 0.000 0.376 0.624 0.000
#> SRR1075530     4  0.2230   5.33e-01 0.000 0.000 0.116 0.884 0.000
#> SRR1442612     3  0.3109   8.65e-01 0.000 0.000 0.800 0.200 0.000
#> SRR1360056     4  0.5699   4.64e-01 0.220 0.000 0.156 0.624 0.000
#> SRR1078164     1  0.5825  -2.49e-01 0.588 0.000 0.012 0.084 0.316
#> SRR1434545     4  0.1106   5.96e-01 0.024 0.000 0.012 0.964 0.000
#> SRR1398251     5  0.7779   4.48e-01 0.256 0.000 0.072 0.256 0.416
#> SRR1375866     1  0.5725  -2.24e-01 0.596 0.000 0.012 0.076 0.316
#> SRR1091645     4  0.3238   5.26e-01 0.000 0.000 0.136 0.836 0.028
#> SRR1416636     4  0.5983   4.51e-01 0.000 0.000 0.168 0.580 0.252
#> SRR1105441     4  0.4030   3.90e-01 0.000 0.000 0.352 0.648 0.000
#> SRR1082496     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     4  0.2915   5.80e-01 0.000 0.024 0.116 0.860 0.000
#> SRR1093697     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     4  0.6185   3.58e-01 0.000 0.000 0.148 0.504 0.348
#> SRR1076120     4  0.4407   5.14e-01 0.244 0.000 0.020 0.724 0.012
#> SRR1074410     1  0.2068   6.65e-01 0.904 0.000 0.000 0.004 0.092
#> SRR1340345     4  0.2230   5.33e-01 0.000 0.000 0.116 0.884 0.000
#> SRR1069514     3  0.3274   8.62e-01 0.000 0.000 0.780 0.220 0.000
#> SRR1092636     4  0.6014   4.47e-01 0.000 0.000 0.172 0.576 0.252
#> SRR1365013     4  0.0404   5.93e-01 0.000 0.000 0.012 0.988 0.000
#> SRR1073069     5  0.6006   7.10e-01 0.404 0.000 0.012 0.080 0.504
#> SRR1443137     5  0.5157   5.23e-01 0.468 0.000 0.008 0.024 0.500
#> SRR1437143     2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.3143   5.03e-01 0.796 0.000 0.000 0.000 0.204
#> SRR820234      2  0.0000   9.11e-01 0.000 1.000 0.000 0.000 0.000
#> SRR1338079     1  0.0162   7.39e-01 0.996 0.000 0.004 0.000 0.000
#> SRR1390094     4  0.5013   4.97e-01 0.084 0.000 0.232 0.684 0.000
#> SRR1340721     4  0.2574   5.90e-01 0.112 0.000 0.012 0.876 0.000
#> SRR1335964     4  0.5588   4.77e-01 0.000 0.000 0.104 0.604 0.292
#> SRR1086869     4  0.6326   2.90e-01 0.000 0.000 0.160 0.460 0.380
#> SRR1453434     1  0.2919   6.74e-01 0.868 0.000 0.004 0.024 0.104
#> SRR1402261     4  0.0992   5.97e-01 0.024 0.000 0.008 0.968 0.000
#> SRR657809      4  0.0290   5.92e-01 0.000 0.000 0.008 0.992 0.000
#> SRR1093075     1  0.0162   7.38e-01 0.996 0.000 0.000 0.000 0.004
#> SRR1433329     1  0.4306  -4.93e-01 0.508 0.000 0.000 0.000 0.492
#> SRR1353418     4  0.7260   4.10e-01 0.128 0.000 0.236 0.536 0.100
#> SRR1092913     4  0.2464   5.44e-01 0.016 0.000 0.096 0.888 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1267     0.6349 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1335605     4  0.5782     0.3462 0.032 0.000 0.180 0.628 0.008 0.152
#> SRR1432014     3  0.2122     0.6969 0.000 0.000 0.900 0.076 0.024 0.000
#> SRR1499215     3  0.6516     0.4924 0.032 0.000 0.500 0.260 0.008 0.200
#> SRR1460409     1  0.3351     0.5930 0.832 0.000 0.020 0.000 0.040 0.108
#> SRR1086441     1  0.0291     0.6506 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1097344     4  0.4468     0.4266 0.000 0.000 0.008 0.604 0.024 0.364
#> SRR1081789     4  0.2506     0.5865 0.000 0.052 0.068 0.880 0.000 0.000
#> SRR1453005     2  0.4549     0.5637 0.000 0.696 0.032 0.240 0.000 0.032
#> SRR1366985     6  0.7666     0.7100 0.312 0.000 0.200 0.172 0.004 0.312
#> SRR815280      1  0.0858     0.6465 0.968 0.000 0.004 0.000 0.000 0.028
#> SRR1348531     1  0.5349     0.0584 0.568 0.000 0.004 0.352 0.044 0.032
#> SRR815845      3  0.4686     0.5920 0.000 0.000 0.660 0.248 0.092 0.000
#> SRR1471178     1  0.0291     0.6506 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1080696     5  0.5611     0.4520 0.000 0.000 0.224 0.232 0.544 0.000
#> SRR1078684     4  0.5603    -0.0847 0.000 0.000 0.384 0.484 0.004 0.128
#> SRR1317751     5  0.1152     0.6399 0.000 0.000 0.004 0.044 0.952 0.000
#> SRR1435667     3  0.1753     0.7160 0.000 0.000 0.912 0.084 0.004 0.000
#> SRR1097905     1  0.4059     0.5744 0.796 0.000 0.048 0.004 0.044 0.108
#> SRR1456548     1  0.4059     0.5744 0.796 0.000 0.048 0.004 0.044 0.108
#> SRR1075126     1  0.4356     0.5672 0.784 0.000 0.048 0.016 0.044 0.108
#> SRR813108      3  0.6605     0.3082 0.000 0.188 0.480 0.284 0.004 0.044
#> SRR1479062     4  0.5410     0.2454 0.000 0.000 0.276 0.588 0.008 0.128
#> SRR1408703     5  0.2838     0.6692 0.000 0.000 0.004 0.188 0.808 0.000
#> SRR1332360     1  0.4672     0.1306 0.596 0.000 0.000 0.056 0.000 0.348
#> SRR1098686     1  0.3855     0.5777 0.804 0.000 0.044 0.000 0.044 0.108
#> SRR1434228     1  0.3390     0.3062 0.704 0.000 0.000 0.000 0.000 0.296
#> SRR1467149     1  0.5355    -0.0741 0.496 0.000 0.004 0.432 0.044 0.024
#> SRR1399113     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.1610     0.6031 0.000 0.000 0.000 0.916 0.000 0.084
#> SRR1092468     4  0.4729     0.4113 0.076 0.000 0.012 0.700 0.208 0.004
#> SRR1441804     1  0.5349     0.0612 0.568 0.000 0.004 0.352 0.044 0.032
#> SRR1326100     4  0.6072     0.2032 0.000 0.420 0.096 0.440 0.000 0.044
#> SRR1398815     1  0.0146     0.6506 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1436021     4  0.1265     0.6048 0.000 0.000 0.044 0.948 0.000 0.008
#> SRR1480083     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.1610     0.6274 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR815542      1  0.3855     0.5777 0.804 0.000 0.044 0.000 0.044 0.108
#> SRR1400100     4  0.3622     0.4210 0.000 0.000 0.236 0.744 0.004 0.016
#> SRR1312002     1  0.7937    -0.7397 0.308 0.000 0.200 0.228 0.012 0.252
#> SRR1470253     1  0.7983    -0.7470 0.312 0.000 0.192 0.224 0.016 0.256
#> SRR1414332     1  0.0692     0.6482 0.976 0.000 0.004 0.000 0.000 0.020
#> SRR1069209     1  0.2454     0.5802 0.840 0.000 0.000 0.000 0.000 0.160
#> SRR661052      1  0.0717     0.6513 0.976 0.000 0.000 0.000 0.008 0.016
#> SRR1308860     1  0.3498     0.5887 0.824 0.000 0.024 0.000 0.044 0.108
#> SRR1421159     4  0.5376     0.2697 0.000 0.000 0.324 0.576 0.020 0.080
#> SRR1340943     4  0.2884     0.5920 0.064 0.000 0.000 0.864 0.008 0.064
#> SRR1078855     1  0.1349     0.6382 0.940 0.000 0.004 0.000 0.000 0.056
#> SRR1459465     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.3830     0.6215 0.000 0.744 0.044 0.212 0.000 0.000
#> SRR1478679     3  0.5023     0.5488 0.000 0.000 0.600 0.312 0.004 0.084
#> SRR1350979     3  0.2706     0.7160 0.000 0.000 0.852 0.124 0.024 0.000
#> SRR1458198     1  0.5305    -0.0797 0.492 0.000 0.004 0.440 0.040 0.024
#> SRR1386910     4  0.1528     0.6125 0.000 0.000 0.028 0.944 0.016 0.012
#> SRR1465375     4  0.1991     0.6085 0.044 0.000 0.012 0.920 0.000 0.024
#> SRR1323699     3  0.5263     0.6111 0.000 0.000 0.624 0.248 0.012 0.116
#> SRR1431139     4  0.7371     0.1016 0.048 0.000 0.260 0.464 0.060 0.168
#> SRR1373964     3  0.1765     0.7219 0.000 0.000 0.904 0.096 0.000 0.000
#> SRR1455413     1  0.5272    -0.0240 0.532 0.000 0.004 0.400 0.032 0.032
#> SRR1437163     1  0.4092     0.5803 0.812 0.000 0.028 0.048 0.040 0.072
#> SRR1347343     3  0.2048     0.7283 0.000 0.000 0.880 0.120 0.000 0.000
#> SRR1465480     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.5048     0.1874 0.616 0.000 0.000 0.308 0.052 0.024
#> SRR1086514     4  0.1714     0.6066 0.000 0.000 0.000 0.908 0.000 0.092
#> SRR1430928     1  0.0291     0.6506 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1310939     4  0.5744     0.3398 0.000 0.000 0.200 0.588 0.192 0.020
#> SRR1344294     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.0291     0.6506 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1468118     5  0.1285     0.6448 0.000 0.000 0.004 0.052 0.944 0.000
#> SRR1486348     1  0.0146     0.6506 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1007     0.6444 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1456611     2  0.1124     0.9115 0.000 0.956 0.036 0.008 0.000 0.000
#> SRR1080318     1  0.2769     0.6225 0.880 0.000 0.000 0.036 0.032 0.052
#> SRR1500089     5  0.5496     0.1756 0.052 0.000 0.008 0.448 0.472 0.020
#> SRR1441178     1  0.3865     0.4761 0.752 0.000 0.000 0.056 0.000 0.192
#> SRR1381396     1  0.0146     0.6511 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1096081     5  0.1152     0.6399 0.000 0.000 0.004 0.044 0.952 0.000
#> SRR1349809     4  0.3667     0.5415 0.008 0.160 0.044 0.788 0.000 0.000
#> SRR1324314     4  0.8316    -0.3500 0.248 0.000 0.164 0.324 0.052 0.212
#> SRR1092444     1  0.5380     0.0325 0.556 0.000 0.004 0.364 0.044 0.032
#> SRR1382553     3  0.6678     0.4326 0.044 0.000 0.460 0.296 0.004 0.196
#> SRR1075530     4  0.4468     0.4319 0.000 0.000 0.008 0.604 0.024 0.364
#> SRR1442612     3  0.1753     0.7160 0.000 0.000 0.912 0.084 0.004 0.000
#> SRR1360056     1  0.8243    -0.6393 0.300 0.000 0.160 0.288 0.044 0.208
#> SRR1078164     1  0.4032     0.4609 0.740 0.000 0.000 0.068 0.000 0.192
#> SRR1434545     4  0.2934     0.5927 0.044 0.000 0.000 0.864 0.016 0.076
#> SRR1398251     6  0.6849     0.6931 0.328 0.000 0.112 0.104 0.004 0.452
#> SRR1375866     1  0.3865     0.4761 0.752 0.000 0.000 0.056 0.000 0.192
#> SRR1091645     4  0.4845     0.4120 0.000 0.000 0.008 0.580 0.048 0.364
#> SRR1416636     5  0.5265     0.5136 0.000 0.000 0.176 0.220 0.604 0.000
#> SRR1105441     3  0.4265     0.4550 0.000 0.000 0.596 0.384 0.004 0.016
#> SRR1082496     2  0.0458     0.9300 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1315353     4  0.5472     0.3216 0.000 0.060 0.292 0.600 0.000 0.048
#> SRR1093697     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.1858     0.6644 0.000 0.000 0.004 0.092 0.904 0.000
#> SRR1076120     4  0.5948    -0.1984 0.432 0.000 0.004 0.440 0.100 0.024
#> SRR1074410     1  0.1610     0.6239 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR1340345     4  0.4394     0.4323 0.000 0.000 0.008 0.608 0.020 0.364
#> SRR1069514     3  0.1806     0.7196 0.000 0.000 0.908 0.088 0.004 0.000
#> SRR1092636     5  0.4795     0.4860 0.000 0.000 0.072 0.324 0.604 0.000
#> SRR1365013     4  0.1075     0.6044 0.000 0.000 0.048 0.952 0.000 0.000
#> SRR1073069     1  0.4781     0.1659 0.608 0.000 0.000 0.072 0.000 0.320
#> SRR1443137     1  0.3719     0.4531 0.728 0.000 0.000 0.024 0.000 0.248
#> SRR1437143     2  0.0000     0.9354 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.1327     0.6330 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR820234      2  0.0458     0.9300 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1338079     1  0.0653     0.6502 0.980 0.000 0.004 0.000 0.012 0.004
#> SRR1390094     4  0.6413     0.2672 0.120 0.000 0.196 0.576 0.004 0.104
#> SRR1340721     4  0.3446     0.2790 0.308 0.000 0.000 0.692 0.000 0.000
#> SRR1335964     5  0.3426     0.6086 0.000 0.000 0.004 0.276 0.720 0.000
#> SRR1086869     5  0.2838     0.6489 0.000 0.000 0.004 0.188 0.808 0.000
#> SRR1453434     1  0.4105     0.5750 0.796 0.000 0.044 0.008 0.044 0.108
#> SRR1402261     4  0.2731     0.5966 0.044 0.000 0.000 0.876 0.012 0.068
#> SRR657809      4  0.1462     0.6108 0.000 0.000 0.008 0.936 0.000 0.056
#> SRR1093075     1  0.0436     0.6518 0.988 0.000 0.004 0.000 0.004 0.004
#> SRR1433329     1  0.3221     0.4705 0.736 0.000 0.000 0.000 0.000 0.264
#> SRR1353418     5  0.8758    -0.1040 0.104 0.000 0.244 0.224 0.248 0.180
#> SRR1092913     4  0.4179     0.4571 0.000 0.000 0.008 0.652 0.016 0.324

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.787           0.891       0.955         0.4904 0.515   0.515
#> 3 3 0.835           0.889       0.952         0.3234 0.710   0.497
#> 4 4 0.849           0.857       0.938         0.1280 0.830   0.568
#> 5 5 0.735           0.773       0.868         0.0701 0.847   0.524
#> 6 6 0.834           0.804       0.904         0.0603 0.887   0.550

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000     0.9430 1.000 0.000
#> SRR1335605     1  0.9552     0.4359 0.624 0.376
#> SRR1432014     2  0.0000     0.9619 0.000 1.000
#> SRR1499215     1  0.0000     0.9430 1.000 0.000
#> SRR1460409     1  0.0000     0.9430 1.000 0.000
#> SRR1086441     1  0.0000     0.9430 1.000 0.000
#> SRR1097344     2  0.0000     0.9619 0.000 1.000
#> SRR1081789     2  0.0000     0.9619 0.000 1.000
#> SRR1453005     2  0.0000     0.9619 0.000 1.000
#> SRR1366985     1  0.0000     0.9430 1.000 0.000
#> SRR815280      1  0.0000     0.9430 1.000 0.000
#> SRR1348531     1  0.0000     0.9430 1.000 0.000
#> SRR815845      2  0.0000     0.9619 0.000 1.000
#> SRR1471178     1  0.0000     0.9430 1.000 0.000
#> SRR1080696     2  0.7528     0.7099 0.216 0.784
#> SRR1078684     2  0.1843     0.9395 0.028 0.972
#> SRR1317751     1  0.7219     0.7482 0.800 0.200
#> SRR1435667     2  0.0000     0.9619 0.000 1.000
#> SRR1097905     1  0.0000     0.9430 1.000 0.000
#> SRR1456548     1  0.0000     0.9430 1.000 0.000
#> SRR1075126     1  0.0000     0.9430 1.000 0.000
#> SRR813108      2  0.0000     0.9619 0.000 1.000
#> SRR1479062     1  1.0000     0.0734 0.504 0.496
#> SRR1408703     1  0.7950     0.6950 0.760 0.240
#> SRR1332360     1  0.0000     0.9430 1.000 0.000
#> SRR1098686     1  0.0000     0.9430 1.000 0.000
#> SRR1434228     1  0.0000     0.9430 1.000 0.000
#> SRR1467149     1  0.0000     0.9430 1.000 0.000
#> SRR1399113     2  0.0000     0.9619 0.000 1.000
#> SRR1476507     2  0.0000     0.9619 0.000 1.000
#> SRR1092468     1  0.2043     0.9201 0.968 0.032
#> SRR1441804     1  0.0000     0.9430 1.000 0.000
#> SRR1326100     2  0.0000     0.9619 0.000 1.000
#> SRR1398815     1  0.0000     0.9430 1.000 0.000
#> SRR1436021     2  0.0000     0.9619 0.000 1.000
#> SRR1480083     2  0.0000     0.9619 0.000 1.000
#> SRR1472863     1  0.0000     0.9430 1.000 0.000
#> SRR815542      1  0.0000     0.9430 1.000 0.000
#> SRR1400100     2  0.0000     0.9619 0.000 1.000
#> SRR1312002     1  0.0000     0.9430 1.000 0.000
#> SRR1470253     1  0.0000     0.9430 1.000 0.000
#> SRR1414332     1  0.0000     0.9430 1.000 0.000
#> SRR1069209     1  0.0000     0.9430 1.000 0.000
#> SRR661052      1  0.0000     0.9430 1.000 0.000
#> SRR1308860     1  0.0000     0.9430 1.000 0.000
#> SRR1421159     2  0.0000     0.9619 0.000 1.000
#> SRR1340943     1  0.0938     0.9352 0.988 0.012
#> SRR1078855     1  0.0000     0.9430 1.000 0.000
#> SRR1459465     2  0.0000     0.9619 0.000 1.000
#> SRR816818      2  0.0000     0.9619 0.000 1.000
#> SRR1478679     2  0.6247     0.7999 0.156 0.844
#> SRR1350979     2  0.0000     0.9619 0.000 1.000
#> SRR1458198     1  0.0000     0.9430 1.000 0.000
#> SRR1386910     2  0.0000     0.9619 0.000 1.000
#> SRR1465375     2  0.8327     0.6429 0.264 0.736
#> SRR1323699     1  0.9954     0.1345 0.540 0.460
#> SRR1431139     1  0.0938     0.9350 0.988 0.012
#> SRR1373964     2  0.0000     0.9619 0.000 1.000
#> SRR1455413     1  0.0000     0.9430 1.000 0.000
#> SRR1437163     1  0.0000     0.9430 1.000 0.000
#> SRR1347343     2  0.0000     0.9619 0.000 1.000
#> SRR1465480     2  0.0000     0.9619 0.000 1.000
#> SRR1489631     1  0.0000     0.9430 1.000 0.000
#> SRR1086514     2  0.0000     0.9619 0.000 1.000
#> SRR1430928     1  0.0000     0.9430 1.000 0.000
#> SRR1310939     2  0.0376     0.9588 0.004 0.996
#> SRR1344294     2  0.0000     0.9619 0.000 1.000
#> SRR1099402     1  0.0000     0.9430 1.000 0.000
#> SRR1468118     1  0.7745     0.7115 0.772 0.228
#> SRR1486348     1  0.0000     0.9430 1.000 0.000
#> SRR1488770     2  0.0000     0.9619 0.000 1.000
#> SRR1083732     1  0.0000     0.9430 1.000 0.000
#> SRR1456611     2  0.0000     0.9619 0.000 1.000
#> SRR1080318     1  0.0000     0.9430 1.000 0.000
#> SRR1500089     1  0.0672     0.9378 0.992 0.008
#> SRR1441178     1  0.0000     0.9430 1.000 0.000
#> SRR1381396     1  0.0000     0.9430 1.000 0.000
#> SRR1096081     1  0.7299     0.7431 0.796 0.204
#> SRR1349809     2  0.8327     0.6413 0.264 0.736
#> SRR1324314     1  0.0000     0.9430 1.000 0.000
#> SRR1092444     1  0.0000     0.9430 1.000 0.000
#> SRR1382553     1  0.9754     0.3361 0.592 0.408
#> SRR1075530     2  0.0000     0.9619 0.000 1.000
#> SRR1442612     2  0.0000     0.9619 0.000 1.000
#> SRR1360056     1  0.0000     0.9430 1.000 0.000
#> SRR1078164     1  0.0000     0.9430 1.000 0.000
#> SRR1434545     2  0.5059     0.8535 0.112 0.888
#> SRR1398251     1  0.0000     0.9430 1.000 0.000
#> SRR1375866     1  0.0000     0.9430 1.000 0.000
#> SRR1091645     2  0.0000     0.9619 0.000 1.000
#> SRR1416636     1  0.8081     0.6828 0.752 0.248
#> SRR1105441     2  0.0000     0.9619 0.000 1.000
#> SRR1082496     2  0.0000     0.9619 0.000 1.000
#> SRR1315353     2  0.0000     0.9619 0.000 1.000
#> SRR1093697     2  0.0000     0.9619 0.000 1.000
#> SRR1077429     1  0.7139     0.7531 0.804 0.196
#> SRR1076120     1  0.0000     0.9430 1.000 0.000
#> SRR1074410     1  0.0000     0.9430 1.000 0.000
#> SRR1340345     2  0.0000     0.9619 0.000 1.000
#> SRR1069514     2  0.0000     0.9619 0.000 1.000
#> SRR1092636     1  0.0938     0.9351 0.988 0.012
#> SRR1365013     2  0.0000     0.9619 0.000 1.000
#> SRR1073069     1  0.0000     0.9430 1.000 0.000
#> SRR1443137     1  0.0000     0.9430 1.000 0.000
#> SRR1437143     2  0.0000     0.9619 0.000 1.000
#> SRR1091990     1  0.0000     0.9430 1.000 0.000
#> SRR820234      2  0.0000     0.9619 0.000 1.000
#> SRR1338079     1  0.0000     0.9430 1.000 0.000
#> SRR1390094     1  0.9775     0.3473 0.588 0.412
#> SRR1340721     1  0.7602     0.7041 0.780 0.220
#> SRR1335964     2  0.6801     0.7652 0.180 0.820
#> SRR1086869     2  0.9795     0.2380 0.416 0.584
#> SRR1453434     1  0.0000     0.9430 1.000 0.000
#> SRR1402261     1  0.0376     0.9404 0.996 0.004
#> SRR657809      2  0.0000     0.9619 0.000 1.000
#> SRR1093075     1  0.0000     0.9430 1.000 0.000
#> SRR1433329     1  0.0000     0.9430 1.000 0.000
#> SRR1353418     1  0.0000     0.9430 1.000 0.000
#> SRR1092913     2  0.0000     0.9619 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.976 1.000 0.000 0.000
#> SRR1335605     2  0.5178      0.796 0.164 0.808 0.028
#> SRR1432014     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1499215     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1460409     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1086441     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1097344     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1081789     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1453005     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1366985     1  0.0000      0.976 1.000 0.000 0.000
#> SRR815280      1  0.0000      0.976 1.000 0.000 0.000
#> SRR1348531     1  0.0892      0.958 0.980 0.000 0.020
#> SRR815845      3  0.0000      0.908 0.000 0.000 1.000
#> SRR1471178     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1080696     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1078684     2  0.4339      0.863 0.084 0.868 0.048
#> SRR1317751     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1435667     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1097905     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1456548     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1075126     1  0.0000      0.976 1.000 0.000 0.000
#> SRR813108      2  0.3340      0.833 0.000 0.880 0.120
#> SRR1479062     3  0.6495      0.122 0.004 0.460 0.536
#> SRR1408703     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1332360     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1098686     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1434228     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1467149     3  0.1753      0.875 0.048 0.000 0.952
#> SRR1399113     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1476507     3  0.0237      0.907 0.000 0.004 0.996
#> SRR1092468     3  0.3941      0.775 0.156 0.000 0.844
#> SRR1441804     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1326100     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1398815     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1436021     2  0.3816      0.797 0.000 0.852 0.148
#> SRR1480083     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1472863     1  0.0000      0.976 1.000 0.000 0.000
#> SRR815542      1  0.0000      0.976 1.000 0.000 0.000
#> SRR1400100     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1312002     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1470253     1  0.0424      0.969 0.992 0.000 0.008
#> SRR1414332     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1069209     1  0.0000      0.976 1.000 0.000 0.000
#> SRR661052      1  0.0000      0.976 1.000 0.000 0.000
#> SRR1308860     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1421159     3  0.1964      0.876 0.000 0.056 0.944
#> SRR1340943     1  0.0237      0.972 0.996 0.000 0.004
#> SRR1078855     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1459465     2  0.0000      0.940 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.940 0.000 1.000 0.000
#> SRR1478679     2  0.4931      0.723 0.232 0.768 0.000
#> SRR1350979     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1458198     1  0.5882      0.447 0.652 0.000 0.348
#> SRR1386910     3  0.2796      0.844 0.000 0.092 0.908
#> SRR1465375     2  0.4605      0.766 0.204 0.796 0.000
#> SRR1323699     1  0.6119      0.711 0.772 0.164 0.064
#> SRR1431139     3  0.4842      0.695 0.224 0.000 0.776
#> SRR1373964     3  0.4452      0.752 0.000 0.192 0.808
#> SRR1455413     1  0.2625      0.890 0.916 0.000 0.084
#> SRR1437163     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1347343     3  0.3619      0.813 0.000 0.136 0.864
#> SRR1465480     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1489631     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1086514     2  0.1289      0.920 0.000 0.968 0.032
#> SRR1430928     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1310939     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1344294     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1468118     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1486348     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1083732     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1456611     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1080318     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1500089     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1441178     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1381396     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1096081     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1349809     2  0.3686      0.832 0.140 0.860 0.000
#> SRR1324314     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1092444     1  0.1163      0.950 0.972 0.000 0.028
#> SRR1382553     2  0.3551      0.839 0.132 0.868 0.000
#> SRR1075530     3  0.0237      0.906 0.000 0.004 0.996
#> SRR1442612     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1360056     3  0.3412      0.805 0.124 0.000 0.876
#> SRR1078164     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1434545     3  0.6816      0.150 0.012 0.472 0.516
#> SRR1398251     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1375866     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1091645     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1416636     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1105441     3  0.0237      0.907 0.000 0.004 0.996
#> SRR1082496     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1315353     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1093697     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1077429     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1076120     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1074410     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1340345     3  0.0237      0.907 0.000 0.004 0.996
#> SRR1069514     3  0.3619      0.812 0.000 0.136 0.864
#> SRR1092636     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1365013     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1073069     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1443137     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1437143     2  0.0000      0.940 0.000 1.000 0.000
#> SRR1091990     1  0.0000      0.976 1.000 0.000 0.000
#> SRR820234      2  0.0000      0.940 0.000 1.000 0.000
#> SRR1338079     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1390094     3  0.9626      0.159 0.392 0.204 0.404
#> SRR1340721     1  0.6225      0.191 0.568 0.432 0.000
#> SRR1335964     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1086869     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1453434     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1402261     3  0.5859      0.498 0.344 0.000 0.656
#> SRR657809      2  0.0000      0.940 0.000 1.000 0.000
#> SRR1093075     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1433329     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1353418     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1092913     3  0.4654      0.713 0.000 0.208 0.792

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1335605     2  0.3810   0.713891 0.008 0.804 0.188 0.000
#> SRR1432014     3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1499215     3  0.1302   0.838931 0.044 0.000 0.956 0.000
#> SRR1460409     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.0000   0.952709 0.000 0.000 0.000 1.000
#> SRR1081789     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1453005     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1366985     3  0.4356   0.599328 0.292 0.000 0.708 0.000
#> SRR815280      1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR1348531     1  0.1118   0.953359 0.964 0.000 0.036 0.000
#> SRR815845      3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1471178     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1078684     3  0.5004   0.397062 0.004 0.392 0.604 0.000
#> SRR1317751     3  0.4164   0.602558 0.000 0.000 0.736 0.264
#> SRR1435667     3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1097905     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1456548     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1075126     1  0.0524   0.981006 0.988 0.000 0.004 0.008
#> SRR813108      3  0.4992   0.177473 0.000 0.476 0.524 0.000
#> SRR1479062     2  0.5168  -0.000806 0.000 0.500 0.496 0.004
#> SRR1408703     3  0.4543   0.507084 0.000 0.000 0.676 0.324
#> SRR1332360     1  0.0707   0.974063 0.980 0.000 0.020 0.000
#> SRR1098686     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1434228     1  0.0336   0.983400 0.992 0.000 0.008 0.000
#> SRR1467149     4  0.0188   0.951460 0.004 0.000 0.000 0.996
#> SRR1399113     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.0000   0.952709 0.000 0.000 0.000 1.000
#> SRR1092468     4  0.0188   0.951460 0.004 0.000 0.000 0.996
#> SRR1441804     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1326100     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1436021     2  0.4250   0.585017 0.000 0.724 0.000 0.276
#> SRR1480083     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR815542      1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1400100     3  0.0336   0.855978 0.000 0.000 0.992 0.008
#> SRR1312002     3  0.0000   0.856630 0.000 0.000 1.000 0.000
#> SRR1470253     3  0.2704   0.774246 0.124 0.000 0.876 0.000
#> SRR1414332     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR661052      1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1308860     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1421159     4  0.3448   0.768685 0.000 0.004 0.168 0.828
#> SRR1340943     4  0.0188   0.951460 0.004 0.000 0.000 0.996
#> SRR1078855     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR1459465     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.4969   0.722144 0.140 0.088 0.772 0.000
#> SRR1350979     3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1458198     4  0.0188   0.951460 0.004 0.000 0.000 0.996
#> SRR1386910     4  0.2919   0.883012 0.000 0.044 0.060 0.896
#> SRR1465375     2  0.4624   0.497683 0.340 0.660 0.000 0.000
#> SRR1323699     3  0.2868   0.770549 0.136 0.000 0.864 0.000
#> SRR1431139     3  0.4122   0.670141 0.236 0.000 0.760 0.004
#> SRR1373964     3  0.1867   0.825298 0.000 0.072 0.928 0.000
#> SRR1455413     1  0.2868   0.840593 0.864 0.000 0.000 0.136
#> SRR1437163     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1347343     3  0.0000   0.856630 0.000 0.000 1.000 0.000
#> SRR1465480     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1086514     2  0.4585   0.505246 0.000 0.668 0.000 0.332
#> SRR1430928     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1310939     4  0.0188   0.950632 0.000 0.000 0.004 0.996
#> SRR1344294     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR1468118     4  0.4477   0.550844 0.000 0.000 0.312 0.688
#> SRR1486348     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1500089     4  0.0000   0.952709 0.000 0.000 0.000 1.000
#> SRR1441178     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR1381396     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1096081     3  0.0707   0.850512 0.000 0.000 0.980 0.020
#> SRR1349809     2  0.2760   0.780923 0.128 0.872 0.000 0.000
#> SRR1324314     1  0.3873   0.678350 0.772 0.000 0.228 0.000
#> SRR1092444     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1382553     2  0.1004   0.875329 0.024 0.972 0.004 0.000
#> SRR1075530     4  0.0000   0.952709 0.000 0.000 0.000 1.000
#> SRR1442612     3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1360056     3  0.0000   0.856630 0.000 0.000 1.000 0.000
#> SRR1078164     1  0.0469   0.980840 0.988 0.000 0.012 0.000
#> SRR1434545     4  0.0188   0.950752 0.000 0.004 0.000 0.996
#> SRR1398251     3  0.2011   0.818556 0.080 0.000 0.920 0.000
#> SRR1375866     1  0.0336   0.982030 0.992 0.000 0.008 0.000
#> SRR1091645     4  0.0000   0.952709 0.000 0.000 0.000 1.000
#> SRR1416636     3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1105441     3  0.0376   0.856519 0.000 0.004 0.992 0.004
#> SRR1082496     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1315353     2  0.0921   0.873885 0.000 0.972 0.028 0.000
#> SRR1093697     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.4994   0.044530 0.000 0.000 0.520 0.480
#> SRR1076120     4  0.0000   0.952709 0.000 0.000 0.000 1.000
#> SRR1074410     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1340345     4  0.0000   0.952709 0.000 0.000 0.000 1.000
#> SRR1069514     3  0.0188   0.857041 0.000 0.000 0.996 0.004
#> SRR1092636     3  0.0336   0.855978 0.000 0.000 0.992 0.008
#> SRR1365013     2  0.0524   0.886571 0.008 0.988 0.000 0.004
#> SRR1073069     1  0.0817   0.970500 0.976 0.000 0.024 0.000
#> SRR1443137     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR1437143     2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR820234      2  0.0000   0.891483 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.0000   0.986689 1.000 0.000 0.000 0.000
#> SRR1390094     3  0.3569   0.716514 0.000 0.196 0.804 0.000
#> SRR1340721     2  0.4972   0.199740 0.456 0.544 0.000 0.000
#> SRR1335964     3  0.4522   0.536879 0.000 0.000 0.680 0.320
#> SRR1086869     4  0.3311   0.786239 0.000 0.000 0.172 0.828
#> SRR1453434     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR1402261     4  0.0188   0.951460 0.004 0.000 0.000 0.996
#> SRR657809      2  0.1389   0.861731 0.000 0.952 0.000 0.048
#> SRR1093075     1  0.0188   0.985564 0.996 0.000 0.004 0.000
#> SRR1433329     1  0.0336   0.983400 0.992 0.000 0.008 0.000
#> SRR1353418     3  0.0000   0.856630 0.000 0.000 1.000 0.000
#> SRR1092913     4  0.0000   0.952709 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0880     0.8774 0.968 0.000 0.000 0.000 0.032
#> SRR1335605     5  0.4402     0.2659 0.012 0.352 0.000 0.000 0.636
#> SRR1432014     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1499215     3  0.5888     0.3344 0.124 0.000 0.560 0.000 0.316
#> SRR1460409     1  0.0510     0.8800 0.984 0.000 0.000 0.000 0.016
#> SRR1086441     1  0.0162     0.8807 0.996 0.000 0.000 0.000 0.004
#> SRR1097344     4  0.0162     0.8725 0.000 0.000 0.000 0.996 0.004
#> SRR1081789     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1453005     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1366985     1  0.5414     0.2348 0.528 0.000 0.412 0.000 0.060
#> SRR815280      1  0.0963     0.8766 0.964 0.000 0.000 0.000 0.036
#> SRR1348531     5  0.3751     0.7012 0.212 0.000 0.004 0.012 0.772
#> SRR815845      3  0.4114     0.2421 0.000 0.000 0.624 0.000 0.376
#> SRR1471178     1  0.0000     0.8809 1.000 0.000 0.000 0.000 0.000
#> SRR1080696     3  0.1792     0.8172 0.000 0.000 0.916 0.000 0.084
#> SRR1078684     3  0.2325     0.8336 0.068 0.028 0.904 0.000 0.000
#> SRR1317751     5  0.4630     0.7338 0.000 0.000 0.088 0.176 0.736
#> SRR1435667     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1097905     1  0.2719     0.8230 0.852 0.000 0.000 0.004 0.144
#> SRR1456548     1  0.2719     0.8288 0.852 0.000 0.000 0.004 0.144
#> SRR1075126     1  0.0807     0.8811 0.976 0.000 0.000 0.012 0.012
#> SRR813108      3  0.1908     0.8248 0.000 0.092 0.908 0.000 0.000
#> SRR1479062     5  0.3381     0.6923 0.016 0.176 0.000 0.000 0.808
#> SRR1408703     5  0.4934     0.7224 0.000 0.000 0.104 0.188 0.708
#> SRR1332360     1  0.2377     0.8387 0.872 0.000 0.000 0.000 0.128
#> SRR1098686     1  0.1571     0.8665 0.936 0.000 0.000 0.004 0.060
#> SRR1434228     1  0.1410     0.8685 0.940 0.000 0.000 0.000 0.060
#> SRR1467149     5  0.4436     0.4991 0.008 0.000 0.000 0.396 0.596
#> SRR1399113     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0162     0.8725 0.000 0.000 0.000 0.996 0.004
#> SRR1092468     4  0.3507     0.7555 0.052 0.000 0.000 0.828 0.120
#> SRR1441804     1  0.1661     0.8740 0.940 0.000 0.000 0.024 0.036
#> SRR1326100     2  0.4127     0.7587 0.000 0.784 0.136 0.000 0.080
#> SRR1398815     1  0.2377     0.8424 0.872 0.000 0.000 0.000 0.128
#> SRR1436021     4  0.7872     0.3122 0.020 0.092 0.296 0.472 0.120
#> SRR1480083     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.2377     0.8411 0.872 0.000 0.000 0.000 0.128
#> SRR815542      1  0.0324     0.8811 0.992 0.000 0.000 0.004 0.004
#> SRR1400100     5  0.4935     0.6968 0.000 0.028 0.212 0.040 0.720
#> SRR1312002     5  0.4926     0.6972 0.132 0.000 0.152 0.000 0.716
#> SRR1470253     5  0.2964     0.7338 0.120 0.000 0.024 0.000 0.856
#> SRR1414332     1  0.0290     0.8809 0.992 0.000 0.000 0.000 0.008
#> SRR1069209     1  0.1197     0.8730 0.952 0.000 0.000 0.000 0.048
#> SRR661052      1  0.3305     0.7898 0.776 0.000 0.000 0.000 0.224
#> SRR1308860     1  0.1502     0.8681 0.940 0.000 0.000 0.004 0.056
#> SRR1421159     3  0.3922     0.7078 0.000 0.000 0.780 0.180 0.040
#> SRR1340943     4  0.0000     0.8735 0.000 0.000 0.000 1.000 0.000
#> SRR1078855     1  0.1043     0.8756 0.960 0.000 0.000 0.000 0.040
#> SRR1459465     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.1597     0.8555 0.048 0.012 0.940 0.000 0.000
#> SRR1350979     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1458198     4  0.0000     0.8735 0.000 0.000 0.000 1.000 0.000
#> SRR1386910     5  0.6432    -0.0571 0.020 0.108 0.000 0.380 0.492
#> SRR1465375     1  0.7125     0.2770 0.504 0.060 0.000 0.300 0.136
#> SRR1323699     3  0.0290     0.8797 0.000 0.000 0.992 0.000 0.008
#> SRR1431139     3  0.3888     0.7513 0.112 0.000 0.812 0.004 0.072
#> SRR1373964     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1455413     5  0.3759     0.7365 0.092 0.000 0.000 0.092 0.816
#> SRR1437163     1  0.2763     0.8216 0.848 0.000 0.000 0.004 0.148
#> SRR1347343     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1465480     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.3456     0.8017 0.800 0.000 0.000 0.016 0.184
#> SRR1086514     4  0.3442     0.7798 0.000 0.104 0.000 0.836 0.060
#> SRR1430928     1  0.0290     0.8804 0.992 0.000 0.000 0.000 0.008
#> SRR1310939     4  0.1270     0.8417 0.000 0.000 0.052 0.948 0.000
#> SRR1344294     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0510     0.8800 0.984 0.000 0.000 0.000 0.016
#> SRR1468118     5  0.4815     0.6879 0.000 0.000 0.064 0.244 0.692
#> SRR1486348     1  0.0510     0.8793 0.984 0.000 0.000 0.000 0.016
#> SRR1488770     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0162     0.8807 0.996 0.000 0.000 0.000 0.004
#> SRR1456611     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.4201     0.4140 0.592 0.000 0.000 0.000 0.408
#> SRR1500089     4  0.0000     0.8735 0.000 0.000 0.000 1.000 0.000
#> SRR1441178     1  0.3109     0.7827 0.800 0.000 0.000 0.000 0.200
#> SRR1381396     1  0.2690     0.8253 0.844 0.000 0.000 0.000 0.156
#> SRR1096081     5  0.4886     0.7107 0.000 0.000 0.188 0.100 0.712
#> SRR1349809     2  0.3477     0.7840 0.040 0.824 0.000 0.000 0.136
#> SRR1324314     1  0.3521     0.7945 0.820 0.000 0.140 0.000 0.040
#> SRR1092444     5  0.3061     0.7356 0.136 0.000 0.000 0.020 0.844
#> SRR1382553     2  0.3880     0.7162 0.152 0.800 0.004 0.000 0.044
#> SRR1075530     4  0.0162     0.8725 0.000 0.000 0.000 0.996 0.004
#> SRR1442612     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1360056     5  0.4016     0.7323 0.112 0.000 0.092 0.000 0.796
#> SRR1078164     5  0.3480     0.6210 0.248 0.000 0.000 0.000 0.752
#> SRR1434545     4  0.0000     0.8735 0.000 0.000 0.000 1.000 0.000
#> SRR1398251     1  0.4708     0.6637 0.712 0.000 0.220 0.000 0.068
#> SRR1375866     5  0.3242     0.6719 0.216 0.000 0.000 0.000 0.784
#> SRR1091645     4  0.0162     0.8725 0.000 0.000 0.000 0.996 0.004
#> SRR1416636     5  0.3642     0.6837 0.000 0.000 0.232 0.008 0.760
#> SRR1105441     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1082496     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     2  0.4138     0.3542 0.000 0.616 0.384 0.000 0.000
#> SRR1093697     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.4660     0.7255 0.000 0.000 0.080 0.192 0.728
#> SRR1076120     4  0.0162     0.8725 0.000 0.000 0.000 0.996 0.004
#> SRR1074410     1  0.2929     0.8029 0.820 0.000 0.000 0.000 0.180
#> SRR1340345     4  0.0404     0.8707 0.000 0.000 0.000 0.988 0.012
#> SRR1069514     3  0.0000     0.8820 0.000 0.000 1.000 0.000 0.000
#> SRR1092636     5  0.3527     0.7183 0.000 0.000 0.172 0.024 0.804
#> SRR1365013     4  0.7481     0.1212 0.048 0.384 0.008 0.408 0.152
#> SRR1073069     1  0.1908     0.8535 0.908 0.000 0.000 0.000 0.092
#> SRR1443137     1  0.1341     0.8701 0.944 0.000 0.000 0.000 0.056
#> SRR1437143     2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0880     0.8775 0.968 0.000 0.000 0.000 0.032
#> SRR820234      2  0.0000     0.9367 0.000 1.000 0.000 0.000 0.000
#> SRR1338079     1  0.2629     0.8355 0.860 0.000 0.000 0.004 0.136
#> SRR1390094     3  0.1200     0.8706 0.016 0.012 0.964 0.000 0.008
#> SRR1340721     1  0.5778     0.5331 0.620 0.244 0.000 0.004 0.132
#> SRR1335964     3  0.3242     0.6949 0.000 0.000 0.784 0.216 0.000
#> SRR1086869     5  0.5026     0.5329 0.000 0.000 0.040 0.372 0.588
#> SRR1453434     1  0.0703     0.8790 0.976 0.000 0.000 0.000 0.024
#> SRR1402261     4  0.0290     0.8707 0.008 0.000 0.000 0.992 0.000
#> SRR657809      4  0.6058     0.4204 0.004 0.312 0.000 0.556 0.128
#> SRR1093075     1  0.1121     0.8743 0.956 0.000 0.000 0.000 0.044
#> SRR1433329     1  0.1410     0.8685 0.940 0.000 0.000 0.000 0.060
#> SRR1353418     5  0.3491     0.6862 0.004 0.000 0.228 0.000 0.768
#> SRR1092913     4  0.0510     0.8688 0.000 0.000 0.000 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.3578     0.5803 0.660 0.000 0.000 0.000 0.000 0.340
#> SRR1335605     1  0.2179     0.8005 0.900 0.036 0.000 0.000 0.064 0.000
#> SRR1432014     3  0.0000     0.8974 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1499215     3  0.6834     0.2820 0.192 0.000 0.448 0.000 0.072 0.288
#> SRR1460409     6  0.0632     0.8532 0.024 0.000 0.000 0.000 0.000 0.976
#> SRR1086441     6  0.2491     0.7287 0.164 0.000 0.000 0.000 0.000 0.836
#> SRR1097344     4  0.0260     0.9742 0.000 0.000 0.000 0.992 0.008 0.000
#> SRR1081789     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1453005     2  0.0146     0.9288 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1366985     6  0.0713     0.8475 0.000 0.000 0.028 0.000 0.000 0.972
#> SRR815280      6  0.0000     0.8594 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1348531     5  0.1080     0.8752 0.032 0.000 0.000 0.004 0.960 0.004
#> SRR815845      3  0.3499     0.5630 0.000 0.000 0.680 0.000 0.320 0.000
#> SRR1471178     6  0.1267     0.8307 0.060 0.000 0.000 0.000 0.000 0.940
#> SRR1080696     3  0.3175     0.6617 0.000 0.000 0.744 0.000 0.256 0.000
#> SRR1078684     3  0.0891     0.8860 0.008 0.000 0.968 0.000 0.000 0.024
#> SRR1317751     5  0.0291     0.8886 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1435667     3  0.0000     0.8974 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097905     1  0.1663     0.8479 0.912 0.000 0.000 0.000 0.000 0.088
#> SRR1456548     1  0.1765     0.8539 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1075126     6  0.0146     0.8592 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR813108      3  0.0146     0.8964 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1479062     2  0.5442     0.1175 0.080 0.500 0.000 0.008 0.408 0.004
#> SRR1408703     5  0.0146     0.8882 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1332360     6  0.1219     0.8344 0.048 0.000 0.000 0.000 0.004 0.948
#> SRR1098686     1  0.3464     0.6406 0.688 0.000 0.000 0.000 0.000 0.312
#> SRR1434228     6  0.0146     0.8589 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1467149     5  0.2956     0.7908 0.120 0.000 0.000 0.040 0.840 0.000
#> SRR1399113     2  0.0146     0.9302 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.0000     0.9781 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1092468     4  0.1204     0.9418 0.056 0.000 0.000 0.944 0.000 0.000
#> SRR1441804     1  0.3756     0.6304 0.676 0.000 0.000 0.004 0.004 0.316
#> SRR1326100     3  0.2786     0.8253 0.084 0.056 0.860 0.000 0.000 0.000
#> SRR1398815     1  0.1588     0.8550 0.924 0.000 0.000 0.000 0.004 0.072
#> SRR1436021     3  0.4167     0.4396 0.024 0.000 0.632 0.344 0.000 0.000
#> SRR1480083     2  0.0146     0.9288 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.2003     0.8436 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR815542      6  0.1814     0.7986 0.100 0.000 0.000 0.000 0.000 0.900
#> SRR1400100     5  0.0260     0.8877 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1312002     6  0.4127     0.4719 0.004 0.004 0.016 0.000 0.304 0.672
#> SRR1470253     5  0.2558     0.7803 0.156 0.000 0.000 0.000 0.840 0.004
#> SRR1414332     6  0.3446     0.4844 0.308 0.000 0.000 0.000 0.000 0.692
#> SRR1069209     6  0.0000     0.8594 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR661052      1  0.1010     0.8492 0.960 0.000 0.000 0.000 0.004 0.036
#> SRR1308860     1  0.3464     0.6415 0.688 0.000 0.000 0.000 0.000 0.312
#> SRR1421159     3  0.0993     0.8903 0.024 0.000 0.964 0.012 0.000 0.000
#> SRR1340943     4  0.0146     0.9761 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1078855     6  0.0146     0.8589 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1459465     2  0.0000     0.9298 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0363     0.9287 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.0547     0.8927 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1350979     3  0.0000     0.8974 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1458198     4  0.0000     0.9781 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1386910     1  0.1819     0.8100 0.932 0.004 0.008 0.024 0.032 0.000
#> SRR1465375     1  0.2879     0.7613 0.816 0.004 0.000 0.176 0.000 0.004
#> SRR1323699     3  0.2706     0.7745 0.008 0.000 0.832 0.000 0.000 0.160
#> SRR1431139     3  0.1745     0.8737 0.056 0.000 0.924 0.000 0.000 0.020
#> SRR1373964     3  0.0000     0.8974 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1455413     1  0.2527     0.7323 0.832 0.000 0.000 0.000 0.168 0.000
#> SRR1437163     1  0.1556     0.8553 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1347343     3  0.0260     0.8965 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1465480     2  0.0260     0.9298 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.0458     0.8422 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1086514     4  0.0146     0.9771 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1430928     6  0.3828     0.0781 0.440 0.000 0.000 0.000 0.000 0.560
#> SRR1310939     4  0.0291     0.9755 0.004 0.000 0.000 0.992 0.000 0.004
#> SRR1344294     2  0.0146     0.9288 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1099402     6  0.0260     0.8585 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR1468118     5  0.0291     0.8886 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1486348     6  0.3620     0.3717 0.352 0.000 0.000 0.000 0.000 0.648
#> SRR1488770     2  0.0363     0.9287 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1083732     6  0.3151     0.5955 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1456611     2  0.0458     0.9266 0.016 0.984 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.3717     0.5627 0.708 0.000 0.000 0.000 0.276 0.016
#> SRR1500089     4  0.0000     0.9781 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1441178     6  0.2593     0.7379 0.148 0.000 0.000 0.000 0.008 0.844
#> SRR1381396     1  0.2053     0.8421 0.888 0.000 0.000 0.000 0.004 0.108
#> SRR1096081     5  0.0291     0.8886 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1349809     1  0.1327     0.8234 0.936 0.064 0.000 0.000 0.000 0.000
#> SRR1324314     6  0.2830     0.7328 0.020 0.000 0.144 0.000 0.000 0.836
#> SRR1092444     5  0.3717     0.4354 0.384 0.000 0.000 0.000 0.616 0.000
#> SRR1382553     6  0.4126     0.0265 0.004 0.480 0.004 0.000 0.000 0.512
#> SRR1075530     4  0.0260     0.9755 0.008 0.000 0.000 0.992 0.000 0.000
#> SRR1442612     3  0.0000     0.8974 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1360056     5  0.0436     0.8878 0.000 0.000 0.004 0.004 0.988 0.004
#> SRR1078164     5  0.5351     0.4678 0.148 0.000 0.000 0.000 0.572 0.280
#> SRR1434545     4  0.0000     0.9781 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1398251     6  0.0547     0.8518 0.000 0.000 0.020 0.000 0.000 0.980
#> SRR1375866     5  0.3756     0.4983 0.352 0.000 0.000 0.000 0.644 0.004
#> SRR1091645     4  0.0363     0.9712 0.000 0.000 0.000 0.988 0.012 0.000
#> SRR1416636     5  0.0146     0.8865 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1105441     3  0.0790     0.8905 0.032 0.000 0.968 0.000 0.000 0.000
#> SRR1082496     2  0.0260     0.9298 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR1315353     2  0.3961     0.1677 0.004 0.556 0.440 0.000 0.000 0.000
#> SRR1093697     2  0.0146     0.9302 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.0291     0.8886 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1076120     4  0.0000     0.9781 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1074410     1  0.1895     0.8530 0.912 0.000 0.000 0.000 0.016 0.072
#> SRR1340345     4  0.0363     0.9734 0.012 0.000 0.000 0.988 0.000 0.000
#> SRR1069514     3  0.0000     0.8974 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1092636     5  0.0146     0.8883 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1365013     1  0.0405     0.8310 0.988 0.004 0.008 0.000 0.000 0.000
#> SRR1073069     6  0.0146     0.8593 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1443137     6  0.0000     0.8594 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1437143     2  0.0363     0.9287 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1091990     6  0.0363     0.8575 0.012 0.000 0.000 0.000 0.000 0.988
#> SRR820234      2  0.0146     0.9288 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1338079     1  0.1501     0.8581 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1390094     3  0.0291     0.8966 0.000 0.004 0.992 0.000 0.000 0.004
#> SRR1340721     1  0.4023     0.7491 0.756 0.100 0.000 0.000 0.000 0.144
#> SRR1335964     3  0.1092     0.8891 0.020 0.000 0.960 0.020 0.000 0.000
#> SRR1086869     5  0.2053     0.8119 0.000 0.000 0.004 0.108 0.888 0.000
#> SRR1453434     6  0.0260     0.8574 0.000 0.000 0.000 0.008 0.000 0.992
#> SRR1402261     4  0.0000     0.9781 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR657809      4  0.4026     0.7337 0.088 0.160 0.000 0.752 0.000 0.000
#> SRR1093075     6  0.0000     0.8594 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1433329     6  0.0000     0.8594 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1353418     5  0.0260     0.8877 0.000 0.000 0.008 0.000 0.992 0.000
#> SRR1092913     4  0.0000     0.9781 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.417           0.783       0.888         0.4195 0.581   0.581
#> 3 3 0.414           0.572       0.664         0.4329 0.919   0.867
#> 4 4 0.492           0.631       0.780         0.1620 0.713   0.498
#> 5 5 0.630           0.555       0.751         0.0690 0.955   0.848
#> 6 6 0.659           0.569       0.749         0.0382 0.955   0.829

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0672     0.8714 0.992 0.008
#> SRR1335605     2  0.7528     0.7752 0.216 0.784
#> SRR1432014     1  0.9248     0.5473 0.660 0.340
#> SRR1499215     1  0.8955     0.5977 0.688 0.312
#> SRR1460409     1  0.0376     0.8687 0.996 0.004
#> SRR1086441     1  0.0672     0.8714 0.992 0.008
#> SRR1097344     2  0.6887     0.8117 0.184 0.816
#> SRR1081789     2  0.4690     0.8483 0.100 0.900
#> SRR1453005     2  0.0376     0.8565 0.004 0.996
#> SRR1366985     1  0.0000     0.8699 1.000 0.000
#> SRR815280      1  0.0376     0.8687 0.996 0.004
#> SRR1348531     1  0.2778     0.8633 0.952 0.048
#> SRR815845      2  0.9944     0.1494 0.456 0.544
#> SRR1471178     1  0.0672     0.8714 0.992 0.008
#> SRR1080696     1  0.4298     0.8505 0.912 0.088
#> SRR1078684     1  0.9129     0.5735 0.672 0.328
#> SRR1317751     1  0.3114     0.8655 0.944 0.056
#> SRR1435667     1  0.9286     0.5387 0.656 0.344
#> SRR1097905     1  0.5519     0.8274 0.872 0.128
#> SRR1456548     1  0.5408     0.8299 0.876 0.124
#> SRR1075126     1  0.2423     0.8634 0.960 0.040
#> SRR813108      2  0.0376     0.8565 0.004 0.996
#> SRR1479062     1  0.5408     0.8286 0.876 0.124
#> SRR1408703     1  0.4431     0.8483 0.908 0.092
#> SRR1332360     1  0.0000     0.8699 1.000 0.000
#> SRR1098686     1  0.0938     0.8718 0.988 0.012
#> SRR1434228     1  0.0000     0.8699 1.000 0.000
#> SRR1467149     1  0.3274     0.8622 0.940 0.060
#> SRR1399113     2  0.0376     0.8565 0.004 0.996
#> SRR1476507     2  0.7376     0.7888 0.208 0.792
#> SRR1092468     1  0.4562     0.8485 0.904 0.096
#> SRR1441804     1  0.2778     0.8633 0.952 0.048
#> SRR1326100     2  0.1414     0.8572 0.020 0.980
#> SRR1398815     1  0.0672     0.8714 0.992 0.008
#> SRR1436021     2  0.7528     0.7782 0.216 0.784
#> SRR1480083     2  0.0376     0.8565 0.004 0.996
#> SRR1472863     1  0.5408     0.8299 0.876 0.124
#> SRR815542      1  0.0376     0.8687 0.996 0.004
#> SRR1400100     1  0.9833     0.3287 0.576 0.424
#> SRR1312002     1  0.2043     0.8710 0.968 0.032
#> SRR1470253     1  0.1414     0.8720 0.980 0.020
#> SRR1414332     1  0.0672     0.8714 0.992 0.008
#> SRR1069209     1  0.0000     0.8699 1.000 0.000
#> SRR661052      1  0.5408     0.8299 0.876 0.124
#> SRR1308860     1  0.0672     0.8714 0.992 0.008
#> SRR1421159     2  0.6887     0.8130 0.184 0.816
#> SRR1340943     1  0.9661     0.3696 0.608 0.392
#> SRR1078855     1  0.0376     0.8687 0.996 0.004
#> SRR1459465     2  0.0376     0.8565 0.004 0.996
#> SRR816818      2  0.0376     0.8565 0.004 0.996
#> SRR1478679     1  0.9000     0.5914 0.684 0.316
#> SRR1350979     1  0.8386     0.6701 0.732 0.268
#> SRR1458198     1  0.0672     0.8714 0.992 0.008
#> SRR1386910     2  0.7528     0.7752 0.216 0.784
#> SRR1465375     2  0.7376     0.7888 0.208 0.792
#> SRR1323699     1  0.8955     0.5977 0.688 0.312
#> SRR1431139     1  0.9129     0.5735 0.672 0.328
#> SRR1373964     1  0.9323     0.5301 0.652 0.348
#> SRR1455413     1  0.3114     0.8657 0.944 0.056
#> SRR1437163     1  0.5294     0.8325 0.880 0.120
#> SRR1347343     1  0.9286     0.5387 0.656 0.344
#> SRR1465480     2  0.0376     0.8565 0.004 0.996
#> SRR1489631     1  0.5408     0.8299 0.876 0.124
#> SRR1086514     2  0.6887     0.8130 0.184 0.816
#> SRR1430928     1  0.0672     0.8714 0.992 0.008
#> SRR1310939     1  0.7299     0.7532 0.796 0.204
#> SRR1344294     2  0.0376     0.8565 0.004 0.996
#> SRR1099402     1  0.0376     0.8687 0.996 0.004
#> SRR1468118     1  0.2603     0.8676 0.956 0.044
#> SRR1486348     1  0.0672     0.8714 0.992 0.008
#> SRR1488770     2  0.0376     0.8565 0.004 0.996
#> SRR1083732     1  0.0672     0.8714 0.992 0.008
#> SRR1456611     2  0.0376     0.8565 0.004 0.996
#> SRR1080318     1  0.0376     0.8687 0.996 0.004
#> SRR1500089     1  0.0672     0.8714 0.992 0.008
#> SRR1441178     1  0.0376     0.8687 0.996 0.004
#> SRR1381396     1  0.0376     0.8687 0.996 0.004
#> SRR1096081     1  0.3114     0.8655 0.944 0.056
#> SRR1349809     2  0.7528     0.7752 0.216 0.784
#> SRR1324314     1  0.5629     0.8254 0.868 0.132
#> SRR1092444     1  0.0376     0.8687 0.996 0.004
#> SRR1382553     1  0.8443     0.6619 0.728 0.272
#> SRR1075530     2  0.5629     0.8423 0.132 0.868
#> SRR1442612     1  0.9286     0.5387 0.656 0.344
#> SRR1360056     1  0.1843     0.8714 0.972 0.028
#> SRR1078164     1  0.0376     0.8687 0.996 0.004
#> SRR1434545     1  0.9661     0.3696 0.608 0.392
#> SRR1398251     1  0.0376     0.8687 0.996 0.004
#> SRR1375866     1  0.0376     0.8687 0.996 0.004
#> SRR1091645     2  0.6887     0.8117 0.184 0.816
#> SRR1416636     1  0.4298     0.8505 0.912 0.088
#> SRR1105441     1  0.9635     0.4381 0.612 0.388
#> SRR1082496     2  0.0376     0.8565 0.004 0.996
#> SRR1315353     2  0.1184     0.8554 0.016 0.984
#> SRR1093697     2  0.0376     0.8565 0.004 0.996
#> SRR1077429     1  0.3274     0.8641 0.940 0.060
#> SRR1076120     1  0.0672     0.8714 0.992 0.008
#> SRR1074410     1  0.0376     0.8687 0.996 0.004
#> SRR1340345     2  0.5629     0.8423 0.132 0.868
#> SRR1069514     2  0.9988     0.0261 0.480 0.520
#> SRR1092636     1  0.2948     0.8663 0.948 0.052
#> SRR1365013     2  0.4690     0.8483 0.100 0.900
#> SRR1073069     1  0.0000     0.8699 1.000 0.000
#> SRR1443137     1  0.0376     0.8687 0.996 0.004
#> SRR1437143     2  0.0376     0.8565 0.004 0.996
#> SRR1091990     1  0.0376     0.8687 0.996 0.004
#> SRR820234      2  0.0376     0.8565 0.004 0.996
#> SRR1338079     1  0.5294     0.8325 0.880 0.120
#> SRR1390094     1  0.9993     0.0720 0.516 0.484
#> SRR1340721     2  0.7745     0.7623 0.228 0.772
#> SRR1335964     1  0.7453     0.7428 0.788 0.212
#> SRR1086869     1  0.3114     0.8655 0.944 0.056
#> SRR1453434     1  0.6343     0.7639 0.840 0.160
#> SRR1402261     1  0.9522     0.4196 0.628 0.372
#> SRR657809      2  0.6887     0.8108 0.184 0.816
#> SRR1093075     1  0.0376     0.8687 0.996 0.004
#> SRR1433329     1  0.0376     0.8687 0.996 0.004
#> SRR1353418     1  0.1843     0.8697 0.972 0.028
#> SRR1092913     2  0.5629     0.8423 0.132 0.868

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2 p3
#> SRR816969      1   0.599     0.6974 0.632 0.000 NA
#> SRR1335605     2   0.711     0.6460 0.100 0.716 NA
#> SRR1432014     1   0.859     0.1546 0.560 0.320 NA
#> SRR1499215     1   0.840     0.2052 0.588 0.296 NA
#> SRR1460409     1   0.604     0.6944 0.620 0.000 NA
#> SRR1086441     1   0.597     0.6980 0.636 0.000 NA
#> SRR1097344     2   0.583     0.6595 0.076 0.796 NA
#> SRR1081789     2   0.798     0.6834 0.076 0.584 NA
#> SRR1453005     2   0.620     0.7184 0.000 0.576 NA
#> SRR1366985     1   0.632     0.6999 0.636 0.008 NA
#> SRR815280      1   0.608     0.6917 0.612 0.000 NA
#> SRR1348531     1   0.749     0.6782 0.668 0.084 NA
#> SRR815845      2   0.929     0.3144 0.372 0.464 NA
#> SRR1471178     1   0.595     0.6988 0.640 0.000 NA
#> SRR1080696     1   0.312     0.5737 0.908 0.080 NA
#> SRR1078684     1   0.813     0.2188 0.600 0.304 NA
#> SRR1317751     1   0.257     0.6034 0.936 0.032 NA
#> SRR1435667     1   0.865     0.1476 0.556 0.320 NA
#> SRR1097905     1   0.925     0.6231 0.516 0.188 NA
#> SRR1456548     1   0.923     0.6333 0.508 0.176 NA
#> SRR1075126     1   0.806     0.6770 0.604 0.092 NA
#> SRR813108      2   0.739     0.7031 0.032 0.496 NA
#> SRR1479062     1   0.445     0.5394 0.860 0.100 NA
#> SRR1408703     1   0.321     0.5707 0.904 0.084 NA
#> SRR1332360     1   0.632     0.6999 0.636 0.008 NA
#> SRR1098686     1   0.608     0.7008 0.652 0.004 NA
#> SRR1434228     1   0.632     0.6999 0.636 0.008 NA
#> SRR1467149     1   0.744     0.6612 0.692 0.108 NA
#> SRR1399113     2   0.627     0.7141 0.000 0.544 NA
#> SRR1476507     2   0.423     0.6513 0.084 0.872 NA
#> SRR1092468     1   0.851     0.6435 0.604 0.152 NA
#> SRR1441804     1   0.749     0.6782 0.668 0.084 NA
#> SRR1326100     2   0.766     0.7064 0.044 0.504 NA
#> SRR1398815     1   0.599     0.6974 0.632 0.000 NA
#> SRR1436021     2   0.406     0.6443 0.092 0.876 NA
#> SRR1480083     2   0.627     0.7141 0.000 0.544 NA
#> SRR1472863     1   0.923     0.6333 0.508 0.176 NA
#> SRR815542      1   0.599     0.6981 0.632 0.000 NA
#> SRR1400100     1   0.857     0.0321 0.508 0.392 NA
#> SRR1312002     1   0.337     0.6146 0.908 0.052 NA
#> SRR1470253     1   0.380     0.6403 0.888 0.032 NA
#> SRR1414332     1   0.599     0.6974 0.632 0.000 NA
#> SRR1069209     1   0.632     0.6999 0.636 0.008 NA
#> SRR661052      1   0.921     0.6324 0.512 0.176 NA
#> SRR1308860     1   0.593     0.6996 0.644 0.000 NA
#> SRR1421159     2   0.350     0.6669 0.072 0.900 NA
#> SRR1340943     2   0.966    -0.0852 0.220 0.440 NA
#> SRR1078855     1   0.608     0.6917 0.612 0.000 NA
#> SRR1459465     2   0.627     0.7141 0.000 0.544 NA
#> SRR816818      2   0.627     0.7141 0.000 0.544 NA
#> SRR1478679     1   0.842     0.1992 0.584 0.300 NA
#> SRR1350979     1   0.752     0.3031 0.660 0.260 NA
#> SRR1458198     1   0.742     0.6728 0.680 0.088 NA
#> SRR1386910     2   0.711     0.6460 0.100 0.716 NA
#> SRR1465375     2   0.401     0.6475 0.084 0.880 NA
#> SRR1323699     1   0.840     0.2052 0.588 0.296 NA
#> SRR1431139     1   0.820     0.2222 0.596 0.304 NA
#> SRR1373964     1   0.867     0.1423 0.552 0.324 NA
#> SRR1455413     1   0.268     0.5866 0.924 0.068 NA
#> SRR1437163     1   0.919     0.6356 0.512 0.172 NA
#> SRR1347343     1   0.865     0.1476 0.556 0.320 NA
#> SRR1465480     2   0.627     0.7141 0.000 0.544 NA
#> SRR1489631     1   0.923     0.6333 0.508 0.176 NA
#> SRR1086514     2   0.350     0.6669 0.072 0.900 NA
#> SRR1430928     1   0.597     0.6980 0.636 0.000 NA
#> SRR1310939     1   0.620     0.4235 0.748 0.208 NA
#> SRR1344294     2   0.627     0.7141 0.000 0.544 NA
#> SRR1099402     1   0.601     0.6972 0.628 0.000 NA
#> SRR1468118     1   0.178     0.6048 0.960 0.020 NA
#> SRR1486348     1   0.599     0.6974 0.632 0.000 NA
#> SRR1488770     2   0.627     0.7141 0.000 0.544 NA
#> SRR1083732     1   0.593     0.6995 0.644 0.000 NA
#> SRR1456611     2   0.627     0.7141 0.000 0.544 NA
#> SRR1080318     1   0.601     0.6967 0.628 0.000 NA
#> SRR1500089     1   0.742     0.6728 0.680 0.088 NA
#> SRR1441178     1   0.608     0.6917 0.612 0.000 NA
#> SRR1381396     1   0.606     0.6929 0.616 0.000 NA
#> SRR1096081     1   0.257     0.6034 0.936 0.032 NA
#> SRR1349809     2   0.721     0.6486 0.100 0.708 NA
#> SRR1324314     1   0.869     0.6242 0.584 0.156 NA
#> SRR1092444     1   0.601     0.6967 0.628 0.000 NA
#> SRR1382553     1   0.811     0.2847 0.628 0.256 NA
#> SRR1075530     2   0.338     0.6905 0.044 0.908 NA
#> SRR1442612     1   0.865     0.1476 0.556 0.320 NA
#> SRR1360056     1   0.266     0.6266 0.932 0.024 NA
#> SRR1078164     1   0.608     0.6917 0.612 0.000 NA
#> SRR1434545     2   0.966    -0.0852 0.220 0.440 NA
#> SRR1398251     1   0.608     0.6917 0.612 0.000 NA
#> SRR1375866     1   0.606     0.6929 0.616 0.000 NA
#> SRR1091645     2   0.583     0.6595 0.076 0.796 NA
#> SRR1416636     1   0.312     0.5737 0.908 0.080 NA
#> SRR1105441     1   0.863     0.0947 0.532 0.356 NA
#> SRR1082496     2   0.627     0.7141 0.000 0.544 NA
#> SRR1315353     2   0.671     0.7181 0.012 0.572 NA
#> SRR1093697     2   0.627     0.7141 0.000 0.544 NA
#> SRR1077429     1   0.238     0.5914 0.936 0.056 NA
#> SRR1076120     1   0.742     0.6728 0.680 0.088 NA
#> SRR1074410     1   0.606     0.6929 0.616 0.000 NA
#> SRR1340345     2   0.338     0.6905 0.044 0.908 NA
#> SRR1069514     1   0.979    -0.2764 0.388 0.376 NA
#> SRR1092636     1   0.199     0.5980 0.948 0.048 NA
#> SRR1365013     2   0.792     0.6819 0.076 0.596 NA
#> SRR1073069     1   0.632     0.6999 0.636 0.008 NA
#> SRR1443137     1   0.608     0.6917 0.612 0.000 NA
#> SRR1437143     2   0.627     0.7141 0.000 0.544 NA
#> SRR1091990     1   0.608     0.6917 0.612 0.000 NA
#> SRR820234      2   0.625     0.7151 0.000 0.556 NA
#> SRR1338079     1   0.919     0.6356 0.512 0.172 NA
#> SRR1390094     2   0.947     0.1858 0.308 0.484 NA
#> SRR1340721     2   0.741     0.6431 0.112 0.696 NA
#> SRR1335964     1   0.648     0.3937 0.728 0.224 NA
#> SRR1086869     1   0.257     0.6034 0.936 0.032 NA
#> SRR1453434     1   0.971     0.5280 0.420 0.224 NA
#> SRR1402261     2   0.974    -0.1266 0.236 0.428 NA
#> SRR657809      2   0.400     0.6644 0.060 0.884 NA
#> SRR1093075     1   0.608     0.6917 0.612 0.000 NA
#> SRR1433329     1   0.608     0.6917 0.612 0.000 NA
#> SRR1353418     1   0.127     0.6211 0.972 0.004 NA
#> SRR1092913     2   0.338     0.6905 0.044 0.908 NA

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0657      0.839 0.984 0.000 0.004 0.012
#> SRR1335605     2  0.7511      0.132 0.008 0.492 0.348 0.152
#> SRR1432014     3  0.2142      0.651 0.000 0.016 0.928 0.056
#> SRR1499215     3  0.2797      0.667 0.028 0.016 0.912 0.044
#> SRR1460409     1  0.0657      0.839 0.984 0.000 0.004 0.012
#> SRR1086441     1  0.0804      0.839 0.980 0.000 0.008 0.012
#> SRR1097344     4  0.4988      0.560 0.000 0.236 0.036 0.728
#> SRR1081789     2  0.7598      0.208 0.000 0.460 0.324 0.216
#> SRR1453005     2  0.4919      0.536 0.000 0.752 0.048 0.200
#> SRR1366985     1  0.1940      0.815 0.924 0.000 0.076 0.000
#> SRR815280      1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1348531     1  0.6112      0.612 0.676 0.000 0.196 0.128
#> SRR815845      3  0.6339      0.269 0.008 0.252 0.652 0.088
#> SRR1471178     1  0.0937      0.839 0.976 0.000 0.012 0.012
#> SRR1080696     3  0.6163      0.683 0.164 0.000 0.676 0.160
#> SRR1078684     3  0.2977      0.667 0.020 0.024 0.904 0.052
#> SRR1317751     3  0.7122      0.622 0.192 0.000 0.560 0.248
#> SRR1435667     3  0.2060      0.649 0.000 0.016 0.932 0.052
#> SRR1097905     1  0.6274      0.619 0.664 0.000 0.184 0.152
#> SRR1456548     1  0.5613      0.680 0.724 0.000 0.156 0.120
#> SRR1075126     1  0.5470      0.696 0.736 0.000 0.116 0.148
#> SRR813108      2  0.5705      0.530 0.000 0.712 0.108 0.180
#> SRR1479062     3  0.6309      0.686 0.156 0.008 0.684 0.152
#> SRR1408703     3  0.6119      0.684 0.168 0.000 0.680 0.152
#> SRR1332360     1  0.1940      0.815 0.924 0.000 0.076 0.000
#> SRR1098686     1  0.2131      0.827 0.932 0.000 0.032 0.036
#> SRR1434228     1  0.1940      0.815 0.924 0.000 0.076 0.000
#> SRR1467149     1  0.7399      0.303 0.512 0.000 0.280 0.208
#> SRR1399113     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.6594      0.641 0.000 0.228 0.148 0.624
#> SRR1092468     1  0.7086      0.391 0.548 0.000 0.292 0.160
#> SRR1441804     1  0.6112      0.612 0.676 0.000 0.196 0.128
#> SRR1326100     2  0.5700      0.544 0.000 0.716 0.120 0.164
#> SRR1398815     1  0.0657      0.839 0.984 0.000 0.004 0.012
#> SRR1436021     4  0.7093      0.606 0.000 0.216 0.216 0.568
#> SRR1480083     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.5560      0.683 0.728 0.000 0.156 0.116
#> SRR815542      1  0.1059      0.840 0.972 0.000 0.016 0.012
#> SRR1400100     3  0.4179      0.560 0.004 0.104 0.832 0.060
#> SRR1312002     3  0.6494      0.504 0.340 0.000 0.572 0.088
#> SRR1470253     3  0.7103      0.324 0.404 0.000 0.468 0.128
#> SRR1414332     1  0.0657      0.839 0.984 0.000 0.004 0.012
#> SRR1069209     1  0.1940      0.815 0.924 0.000 0.076 0.000
#> SRR661052      1  0.5604      0.679 0.724 0.000 0.160 0.116
#> SRR1308860     1  0.1059      0.839 0.972 0.000 0.016 0.012
#> SRR1421159     4  0.6756      0.630 0.000 0.252 0.148 0.600
#> SRR1340943     4  0.6273      0.396 0.264 0.000 0.100 0.636
#> SRR1078855     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1459465     2  0.0188      0.706 0.000 0.996 0.004 0.000
#> SRR816818      2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.2694      0.666 0.024 0.016 0.916 0.044
#> SRR1350979     3  0.2675      0.689 0.048 0.000 0.908 0.044
#> SRR1458198     1  0.7437      0.314 0.512 0.000 0.240 0.248
#> SRR1386910     2  0.7511      0.132 0.008 0.492 0.348 0.152
#> SRR1465375     4  0.6656      0.640 0.000 0.220 0.160 0.620
#> SRR1323699     3  0.2797      0.667 0.028 0.016 0.912 0.044
#> SRR1431139     3  0.3187      0.667 0.028 0.024 0.896 0.052
#> SRR1373964     3  0.2174      0.646 0.000 0.020 0.928 0.052
#> SRR1455413     3  0.6465      0.658 0.228 0.000 0.636 0.136
#> SRR1437163     1  0.5515      0.687 0.732 0.000 0.152 0.116
#> SRR1347343     3  0.2060      0.649 0.000 0.016 0.932 0.052
#> SRR1465480     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.5613      0.680 0.724 0.000 0.156 0.120
#> SRR1086514     4  0.6756      0.630 0.000 0.252 0.148 0.600
#> SRR1430928     1  0.0804      0.839 0.980 0.000 0.008 0.012
#> SRR1310939     3  0.5156      0.689 0.096 0.008 0.776 0.120
#> SRR1344294     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.1182      0.840 0.968 0.000 0.016 0.016
#> SRR1468118     3  0.7007      0.637 0.208 0.000 0.580 0.212
#> SRR1486348     1  0.0657      0.839 0.984 0.000 0.004 0.012
#> SRR1488770     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.1059      0.839 0.972 0.000 0.016 0.012
#> SRR1456611     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.1406      0.835 0.960 0.000 0.016 0.024
#> SRR1500089     1  0.7437      0.314 0.512 0.000 0.240 0.248
#> SRR1441178     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1381396     1  0.0469      0.839 0.988 0.000 0.000 0.012
#> SRR1096081     3  0.7122      0.622 0.192 0.000 0.560 0.248
#> SRR1349809     2  0.7479      0.142 0.008 0.504 0.336 0.152
#> SRR1324314     1  0.6489      0.365 0.548 0.000 0.372 0.080
#> SRR1092444     1  0.1406      0.835 0.960 0.000 0.016 0.024
#> SRR1382553     3  0.3909      0.668 0.088 0.016 0.856 0.040
#> SRR1075530     4  0.6859      0.507 0.000 0.380 0.108 0.512
#> SRR1442612     3  0.2060      0.649 0.000 0.016 0.932 0.052
#> SRR1360056     3  0.6732      0.516 0.336 0.000 0.556 0.108
#> SRR1078164     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1434545     4  0.6273      0.396 0.264 0.000 0.100 0.636
#> SRR1398251     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1375866     1  0.0469      0.839 0.988 0.000 0.000 0.012
#> SRR1091645     4  0.4988      0.560 0.000 0.236 0.036 0.728
#> SRR1416636     3  0.6163      0.683 0.164 0.000 0.676 0.160
#> SRR1105441     3  0.3497      0.605 0.008 0.060 0.876 0.056
#> SRR1082496     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1315353     2  0.5328      0.519 0.000 0.724 0.064 0.212
#> SRR1093697     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.6626      0.663 0.216 0.000 0.624 0.160
#> SRR1076120     1  0.7437      0.314 0.512 0.000 0.240 0.248
#> SRR1074410     1  0.0469      0.839 0.988 0.000 0.000 0.012
#> SRR1340345     4  0.6859      0.507 0.000 0.380 0.108 0.512
#> SRR1069514     3  0.5292      0.422 0.000 0.168 0.744 0.088
#> SRR1092636     3  0.6616      0.657 0.220 0.000 0.624 0.156
#> SRR1365013     2  0.7426      0.243 0.000 0.488 0.324 0.188
#> SRR1073069     1  0.1940      0.815 0.924 0.000 0.076 0.000
#> SRR1443137     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1437143     2  0.0000      0.708 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR820234      2  0.4375      0.567 0.000 0.788 0.032 0.180
#> SRR1338079     1  0.5515      0.687 0.732 0.000 0.152 0.116
#> SRR1390094     3  0.7546      0.135 0.100 0.048 0.580 0.272
#> SRR1340721     2  0.7733      0.142 0.020 0.504 0.328 0.148
#> SRR1335964     3  0.4144      0.695 0.104 0.000 0.828 0.068
#> SRR1086869     3  0.7122      0.622 0.192 0.000 0.560 0.248
#> SRR1453434     1  0.6253      0.419 0.564 0.000 0.064 0.372
#> SRR1402261     4  0.6393      0.363 0.284 0.000 0.100 0.616
#> SRR657809      4  0.7593      0.467 0.000 0.300 0.228 0.472
#> SRR1093075     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1433329     1  0.0592      0.838 0.984 0.000 0.000 0.016
#> SRR1353418     3  0.6813      0.585 0.292 0.000 0.576 0.132
#> SRR1092913     4  0.6766      0.511 0.000 0.380 0.100 0.520

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0794     0.8374 0.972 0.000 0.000 0.000 0.028
#> SRR1335605     2  0.7677     0.2047 0.008 0.420 0.368 0.092 0.112
#> SRR1432014     3  0.0451     0.6189 0.000 0.000 0.988 0.008 0.004
#> SRR1499215     3  0.0968     0.6190 0.012 0.000 0.972 0.004 0.012
#> SRR1460409     1  0.0566     0.8373 0.984 0.000 0.004 0.000 0.012
#> SRR1086441     1  0.0865     0.8374 0.972 0.000 0.004 0.000 0.024
#> SRR1097344     4  0.3003     0.6659 0.000 0.040 0.016 0.880 0.064
#> SRR1081789     2  0.7057     0.1777 0.000 0.392 0.340 0.256 0.012
#> SRR1453005     2  0.5434     0.3732 0.000 0.580 0.060 0.356 0.004
#> SRR1366985     1  0.2069     0.8048 0.912 0.000 0.076 0.000 0.012
#> SRR815280      1  0.0290     0.8363 0.992 0.000 0.000 0.000 0.008
#> SRR1348531     1  0.6479     0.3507 0.572 0.000 0.152 0.024 0.252
#> SRR815845      3  0.6798     0.3685 0.008 0.180 0.616 0.072 0.124
#> SRR1471178     1  0.1026     0.8372 0.968 0.000 0.004 0.004 0.024
#> SRR1080696     3  0.5111     0.2464 0.024 0.000 0.588 0.012 0.376
#> SRR1078684     3  0.2745     0.6132 0.004 0.004 0.892 0.036 0.064
#> SRR1317751     5  0.4599     0.2752 0.000 0.000 0.356 0.020 0.624
#> SRR1435667     3  0.0290     0.6180 0.000 0.000 0.992 0.008 0.000
#> SRR1097905     1  0.6424     0.5048 0.612 0.000 0.200 0.040 0.148
#> SRR1456548     1  0.5730     0.6150 0.684 0.000 0.180 0.040 0.096
#> SRR1075126     1  0.5952     0.5368 0.656 0.000 0.120 0.032 0.192
#> SRR813108      2  0.5548     0.4856 0.000 0.652 0.124 0.220 0.004
#> SRR1479062     3  0.5561     0.3162 0.036 0.000 0.612 0.032 0.320
#> SRR1408703     3  0.5166     0.2559 0.028 0.000 0.592 0.012 0.368
#> SRR1332360     1  0.2069     0.8048 0.912 0.000 0.076 0.000 0.012
#> SRR1098686     1  0.2395     0.8087 0.904 0.000 0.016 0.008 0.072
#> SRR1434228     1  0.2069     0.8048 0.912 0.000 0.076 0.000 0.012
#> SRR1467149     5  0.7319     0.3098 0.340 0.000 0.208 0.036 0.416
#> SRR1399113     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.4200     0.7261 0.000 0.072 0.128 0.792 0.008
#> SRR1092468     1  0.7402    -0.0529 0.436 0.000 0.244 0.040 0.280
#> SRR1441804     1  0.6479     0.3507 0.572 0.000 0.152 0.024 0.252
#> SRR1326100     2  0.5691     0.4951 0.000 0.648 0.132 0.212 0.008
#> SRR1398815     1  0.0794     0.8374 0.972 0.000 0.000 0.000 0.028
#> SRR1436021     4  0.4824     0.6880 0.000 0.076 0.200 0.720 0.004
#> SRR1480083     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.5505     0.6295 0.700 0.000 0.180 0.036 0.084
#> SRR815542      1  0.1074     0.8371 0.968 0.000 0.012 0.004 0.016
#> SRR1400100     3  0.4493     0.5400 0.004 0.096 0.800 0.040 0.060
#> SRR1312002     3  0.6479     0.0719 0.196 0.000 0.512 0.004 0.288
#> SRR1470253     3  0.6734    -0.1603 0.268 0.000 0.408 0.000 0.324
#> SRR1414332     1  0.0794     0.8374 0.972 0.000 0.000 0.000 0.028
#> SRR1069209     1  0.2069     0.8048 0.912 0.000 0.076 0.000 0.012
#> SRR661052      1  0.5539     0.6251 0.696 0.000 0.184 0.036 0.084
#> SRR1308860     1  0.1243     0.8360 0.960 0.000 0.008 0.004 0.028
#> SRR1421159     4  0.4462     0.7189 0.000 0.100 0.128 0.768 0.004
#> SRR1340943     4  0.6668     0.4304 0.076 0.000 0.064 0.532 0.328
#> SRR1078855     1  0.0404     0.8372 0.988 0.000 0.000 0.000 0.012
#> SRR1459465     2  0.0162     0.6922 0.000 0.996 0.004 0.000 0.000
#> SRR816818      2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.0854     0.6193 0.008 0.000 0.976 0.004 0.012
#> SRR1350979     3  0.3344     0.5896 0.012 0.000 0.848 0.028 0.112
#> SRR1458198     5  0.7705     0.4847 0.240 0.000 0.144 0.132 0.484
#> SRR1386910     2  0.7677     0.2047 0.008 0.420 0.368 0.092 0.112
#> SRR1465375     4  0.4331     0.7244 0.000 0.072 0.140 0.780 0.008
#> SRR1323699     3  0.0968     0.6190 0.012 0.000 0.972 0.004 0.012
#> SRR1431139     3  0.2981     0.6119 0.012 0.004 0.884 0.036 0.064
#> SRR1373964     3  0.0510     0.6150 0.000 0.000 0.984 0.016 0.000
#> SRR1455413     3  0.5739     0.0711 0.064 0.000 0.504 0.008 0.424
#> SRR1437163     1  0.5471     0.6343 0.704 0.000 0.176 0.036 0.084
#> SRR1347343     3  0.0290     0.6180 0.000 0.000 0.992 0.008 0.000
#> SRR1465480     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.5608     0.6231 0.692 0.000 0.180 0.036 0.092
#> SRR1086514     4  0.4462     0.7189 0.000 0.100 0.128 0.768 0.004
#> SRR1430928     1  0.1026     0.8369 0.968 0.000 0.004 0.004 0.024
#> SRR1310939     3  0.5205     0.4789 0.028 0.000 0.708 0.060 0.204
#> SRR1344294     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0981     0.8384 0.972 0.000 0.008 0.008 0.012
#> SRR1468118     5  0.5133     0.2176 0.020 0.000 0.380 0.016 0.584
#> SRR1486348     1  0.0794     0.8374 0.972 0.000 0.000 0.000 0.028
#> SRR1488770     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.1280     0.8358 0.960 0.000 0.008 0.008 0.024
#> SRR1456611     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.1106     0.8297 0.964 0.000 0.012 0.000 0.024
#> SRR1500089     5  0.7705     0.4847 0.240 0.000 0.144 0.132 0.484
#> SRR1441178     1  0.0290     0.8363 0.992 0.000 0.000 0.000 0.008
#> SRR1381396     1  0.0162     0.8369 0.996 0.000 0.000 0.000 0.004
#> SRR1096081     5  0.4599     0.2752 0.000 0.000 0.356 0.020 0.624
#> SRR1349809     2  0.7665     0.2133 0.008 0.432 0.356 0.092 0.112
#> SRR1324314     1  0.6660     0.1798 0.496 0.000 0.348 0.024 0.132
#> SRR1092444     1  0.1106     0.8297 0.964 0.000 0.012 0.000 0.024
#> SRR1382553     3  0.2166     0.5778 0.072 0.000 0.912 0.004 0.012
#> SRR1075530     4  0.4670     0.6466 0.000 0.200 0.076 0.724 0.000
#> SRR1442612     3  0.0290     0.6180 0.000 0.000 0.992 0.008 0.000
#> SRR1360056     3  0.6630    -0.0321 0.176 0.000 0.468 0.008 0.348
#> SRR1078164     1  0.0290     0.8363 0.992 0.000 0.000 0.000 0.008
#> SRR1434545     4  0.6668     0.4304 0.076 0.000 0.064 0.532 0.328
#> SRR1398251     1  0.0404     0.8372 0.988 0.000 0.000 0.000 0.012
#> SRR1375866     1  0.0162     0.8369 0.996 0.000 0.000 0.000 0.004
#> SRR1091645     4  0.3003     0.6659 0.000 0.040 0.016 0.880 0.064
#> SRR1416636     3  0.5111     0.2464 0.024 0.000 0.588 0.012 0.376
#> SRR1105441     3  0.3102     0.5875 0.004 0.040 0.884 0.036 0.036
#> SRR1082496     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     2  0.5753     0.3514 0.000 0.552 0.084 0.360 0.004
#> SRR1093697     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     3  0.5541     0.0471 0.056 0.000 0.496 0.004 0.444
#> SRR1076120     5  0.7705     0.4847 0.240 0.000 0.144 0.132 0.484
#> SRR1074410     1  0.0162     0.8369 0.996 0.000 0.000 0.000 0.004
#> SRR1340345     4  0.4670     0.6466 0.000 0.200 0.076 0.724 0.000
#> SRR1069514     3  0.3950     0.4662 0.000 0.136 0.796 0.068 0.000
#> SRR1092636     3  0.5633     0.0635 0.064 0.000 0.504 0.004 0.428
#> SRR1365013     2  0.6967     0.2143 0.000 0.420 0.340 0.228 0.012
#> SRR1073069     1  0.2069     0.8048 0.912 0.000 0.076 0.000 0.012
#> SRR1443137     1  0.0404     0.8372 0.988 0.000 0.000 0.000 0.012
#> SRR1437143     2  0.0000     0.6938 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0290     0.8363 0.992 0.000 0.000 0.000 0.008
#> SRR820234      2  0.4743     0.4974 0.000 0.700 0.048 0.248 0.004
#> SRR1338079     1  0.5471     0.6343 0.704 0.000 0.176 0.036 0.084
#> SRR1390094     3  0.6368     0.1891 0.036 0.008 0.608 0.260 0.088
#> SRR1340721     2  0.7765     0.2164 0.016 0.432 0.356 0.084 0.112
#> SRR1335964     3  0.4268     0.5319 0.020 0.000 0.760 0.020 0.200
#> SRR1086869     5  0.4599     0.2752 0.000 0.000 0.356 0.020 0.624
#> SRR1453434     1  0.7732    -0.2432 0.332 0.000 0.052 0.292 0.324
#> SRR1402261     4  0.6869     0.4119 0.096 0.000 0.064 0.520 0.320
#> SRR657809      4  0.6181     0.5308 0.000 0.200 0.220 0.576 0.004
#> SRR1093075     1  0.0404     0.8372 0.988 0.000 0.000 0.000 0.012
#> SRR1433329     1  0.0404     0.8372 0.988 0.000 0.000 0.000 0.012
#> SRR1353418     3  0.6217    -0.1173 0.108 0.000 0.448 0.008 0.436
#> SRR1092913     4  0.4555     0.6492 0.000 0.200 0.068 0.732 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1003     0.8465 0.964 0.000 0.000 0.000 0.020 0.016
#> SRR1335605     3  0.8271    -0.1650 0.008 0.336 0.336 0.112 0.080 0.128
#> SRR1432014     3  0.0405     0.6660 0.000 0.000 0.988 0.000 0.008 0.004
#> SRR1499215     3  0.0984     0.6628 0.008 0.000 0.968 0.000 0.012 0.012
#> SRR1460409     1  0.0622     0.8466 0.980 0.000 0.000 0.000 0.012 0.008
#> SRR1086441     1  0.0862     0.8462 0.972 0.000 0.004 0.000 0.016 0.008
#> SRR1097344     4  0.2312     0.5996 0.000 0.000 0.000 0.876 0.012 0.112
#> SRR1081789     2  0.7231     0.0643 0.000 0.348 0.296 0.280 0.004 0.072
#> SRR1453005     2  0.5178     0.2570 0.000 0.508 0.016 0.424 0.000 0.052
#> SRR1366985     1  0.2308     0.8127 0.896 0.000 0.076 0.000 0.016 0.012
#> SRR815280      1  0.0692     0.8431 0.976 0.000 0.000 0.000 0.004 0.020
#> SRR1348531     1  0.6497     0.3617 0.548 0.000 0.076 0.016 0.268 0.092
#> SRR815845      3  0.7424     0.3985 0.008 0.112 0.536 0.080 0.188 0.076
#> SRR1471178     1  0.1007     0.8462 0.968 0.000 0.004 0.004 0.016 0.008
#> SRR1080696     3  0.4467     0.0118 0.004 0.000 0.496 0.000 0.480 0.020
#> SRR1078684     3  0.3093     0.6435 0.004 0.000 0.864 0.036 0.064 0.032
#> SRR1317751     5  0.3415     0.4512 0.000 0.000 0.080 0.004 0.820 0.096
#> SRR1435667     3  0.0291     0.6660 0.000 0.000 0.992 0.000 0.004 0.004
#> SRR1097905     1  0.6753     0.5108 0.588 0.000 0.160 0.040 0.108 0.104
#> SRR1456548     1  0.5788     0.6292 0.676 0.000 0.152 0.040 0.056 0.076
#> SRR1075126     1  0.6244     0.5408 0.624 0.000 0.076 0.020 0.144 0.136
#> SRR813108      2  0.5559     0.4428 0.000 0.620 0.084 0.248 0.000 0.048
#> SRR1479062     3  0.5047     0.1151 0.008 0.000 0.524 0.032 0.424 0.012
#> SRR1408703     3  0.4313     0.0280 0.004 0.000 0.504 0.000 0.480 0.012
#> SRR1332360     1  0.2308     0.8127 0.896 0.000 0.076 0.000 0.016 0.012
#> SRR1098686     1  0.2529     0.8151 0.892 0.000 0.012 0.004 0.064 0.028
#> SRR1434228     1  0.2308     0.8127 0.896 0.000 0.076 0.000 0.016 0.012
#> SRR1467149     5  0.7355     0.2244 0.308 0.000 0.100 0.020 0.424 0.148
#> SRR1399113     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.3021     0.7755 0.000 0.020 0.076 0.860 0.000 0.044
#> SRR1092468     1  0.7837    -0.0187 0.400 0.000 0.168 0.032 0.256 0.144
#> SRR1441804     1  0.6497     0.3617 0.548 0.000 0.076 0.016 0.268 0.092
#> SRR1326100     2  0.5909     0.4284 0.000 0.596 0.096 0.240 0.000 0.068
#> SRR1398815     1  0.1092     0.8467 0.960 0.000 0.000 0.000 0.020 0.020
#> SRR1436021     4  0.3657     0.7443 0.000 0.020 0.168 0.788 0.000 0.024
#> SRR1480083     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.5563     0.6430 0.692 0.000 0.152 0.040 0.044 0.072
#> SRR815542      1  0.1173     0.8461 0.960 0.000 0.008 0.000 0.016 0.016
#> SRR1400100     3  0.5404     0.5573 0.004 0.076 0.720 0.052 0.116 0.032
#> SRR1312002     3  0.6128    -0.1784 0.172 0.000 0.440 0.000 0.372 0.016
#> SRR1470253     5  0.6304     0.2605 0.244 0.000 0.336 0.000 0.408 0.012
#> SRR1414332     1  0.1003     0.8465 0.964 0.000 0.000 0.000 0.020 0.016
#> SRR1069209     1  0.2308     0.8127 0.896 0.000 0.076 0.000 0.016 0.012
#> SRR661052      1  0.5596     0.6388 0.688 0.000 0.156 0.040 0.044 0.072
#> SRR1308860     1  0.1350     0.8433 0.952 0.000 0.008 0.000 0.020 0.020
#> SRR1421159     4  0.3309     0.7928 0.000 0.044 0.092 0.840 0.000 0.024
#> SRR1340943     6  0.4301     0.7782 0.008 0.000 0.008 0.264 0.024 0.696
#> SRR1078855     1  0.0909     0.8439 0.968 0.000 0.000 0.000 0.012 0.020
#> SRR1459465     2  0.0146     0.6952 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR816818      2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.0870     0.6637 0.004 0.000 0.972 0.000 0.012 0.012
#> SRR1350979     3  0.3850     0.5566 0.004 0.000 0.772 0.020 0.184 0.020
#> SRR1458198     5  0.6428     0.0223 0.172 0.000 0.008 0.020 0.420 0.380
#> SRR1386910     2  0.8271     0.0799 0.008 0.336 0.336 0.112 0.080 0.128
#> SRR1465375     4  0.3111     0.7806 0.000 0.020 0.088 0.852 0.000 0.040
#> SRR1323699     3  0.0984     0.6628 0.008 0.000 0.968 0.000 0.012 0.012
#> SRR1431139     3  0.3304     0.6411 0.012 0.000 0.856 0.036 0.064 0.032
#> SRR1373964     3  0.0551     0.6647 0.000 0.000 0.984 0.008 0.004 0.004
#> SRR1455413     5  0.5677     0.2216 0.032 0.000 0.384 0.004 0.516 0.064
#> SRR1437163     1  0.5529     0.6477 0.696 0.000 0.148 0.040 0.044 0.072
#> SRR1347343     3  0.0291     0.6660 0.000 0.000 0.992 0.000 0.004 0.004
#> SRR1465480     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.5682     0.6370 0.684 0.000 0.152 0.040 0.052 0.072
#> SRR1086514     4  0.3309     0.7928 0.000 0.044 0.092 0.840 0.000 0.024
#> SRR1430928     1  0.0964     0.8458 0.968 0.000 0.004 0.000 0.016 0.012
#> SRR1310939     3  0.5649     0.3690 0.004 0.000 0.604 0.060 0.276 0.056
#> SRR1344294     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.1490     0.8463 0.948 0.000 0.008 0.004 0.016 0.024
#> SRR1468118     5  0.2723     0.4735 0.000 0.000 0.120 0.004 0.856 0.020
#> SRR1486348     1  0.1003     0.8465 0.964 0.000 0.000 0.000 0.020 0.016
#> SRR1488770     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1312     0.8442 0.956 0.000 0.008 0.004 0.020 0.012
#> SRR1456611     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.1124     0.8396 0.956 0.000 0.000 0.000 0.036 0.008
#> SRR1500089     5  0.6428     0.0223 0.172 0.000 0.008 0.020 0.420 0.380
#> SRR1441178     1  0.0777     0.8428 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1381396     1  0.0363     0.8454 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1096081     5  0.3415     0.4512 0.000 0.000 0.080 0.004 0.820 0.096
#> SRR1349809     2  0.8268     0.0899 0.008 0.348 0.324 0.112 0.080 0.128
#> SRR1324314     1  0.6781     0.2047 0.476 0.000 0.324 0.016 0.120 0.064
#> SRR1092444     1  0.1124     0.8396 0.956 0.000 0.000 0.000 0.036 0.008
#> SRR1382553     3  0.2102     0.6138 0.068 0.000 0.908 0.000 0.012 0.012
#> SRR1075530     4  0.4138     0.7551 0.000 0.132 0.060 0.780 0.004 0.024
#> SRR1442612     3  0.0291     0.6660 0.000 0.000 0.992 0.000 0.004 0.004
#> SRR1360056     5  0.5762     0.2324 0.152 0.000 0.380 0.000 0.464 0.004
#> SRR1078164     1  0.0777     0.8428 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1434545     6  0.4301     0.7782 0.008 0.000 0.008 0.264 0.024 0.696
#> SRR1398251     1  0.0909     0.8439 0.968 0.000 0.000 0.000 0.012 0.020
#> SRR1375866     1  0.0363     0.8454 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1091645     4  0.2312     0.5996 0.000 0.000 0.000 0.876 0.012 0.112
#> SRR1416636     3  0.4467     0.0118 0.004 0.000 0.496 0.000 0.480 0.020
#> SRR1105441     3  0.3315     0.6340 0.004 0.020 0.864 0.044 0.036 0.032
#> SRR1082496     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     2  0.5568     0.2389 0.000 0.488 0.044 0.420 0.000 0.048
#> SRR1093697     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.4780     0.2179 0.028 0.000 0.392 0.000 0.564 0.016
#> SRR1076120     5  0.6428     0.0223 0.172 0.000 0.008 0.020 0.420 0.380
#> SRR1074410     1  0.0363     0.8454 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1340345     4  0.4138     0.7551 0.000 0.132 0.060 0.780 0.004 0.024
#> SRR1069514     3  0.3803     0.5301 0.000 0.128 0.796 0.064 0.004 0.008
#> SRR1092636     5  0.4929     0.2021 0.036 0.000 0.404 0.000 0.544 0.016
#> SRR1365013     2  0.7183     0.1074 0.000 0.376 0.296 0.252 0.004 0.072
#> SRR1073069     1  0.2308     0.8127 0.896 0.000 0.076 0.000 0.016 0.012
#> SRR1443137     1  0.0909     0.8439 0.968 0.000 0.000 0.000 0.012 0.020
#> SRR1437143     2  0.0000     0.6968 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.0603     0.8444 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR820234      2  0.4452     0.4285 0.000 0.644 0.004 0.312 0.000 0.040
#> SRR1338079     1  0.5529     0.6477 0.696 0.000 0.148 0.040 0.044 0.072
#> SRR1390094     3  0.6101     0.2312 0.024 0.000 0.568 0.196 0.008 0.204
#> SRR1340721     2  0.8388     0.0957 0.016 0.348 0.320 0.104 0.080 0.132
#> SRR1335964     3  0.4851     0.4392 0.012 0.000 0.668 0.016 0.264 0.040
#> SRR1086869     5  0.3415     0.4512 0.000 0.000 0.080 0.004 0.820 0.096
#> SRR1453434     6  0.6205     0.4356 0.232 0.000 0.008 0.088 0.084 0.588
#> SRR1402261     6  0.4714     0.7774 0.028 0.000 0.008 0.264 0.024 0.676
#> SRR657809      4  0.5723     0.6315 0.000 0.132 0.196 0.632 0.008 0.032
#> SRR1093075     1  0.0909     0.8439 0.968 0.000 0.000 0.000 0.012 0.020
#> SRR1433329     1  0.0909     0.8439 0.968 0.000 0.000 0.000 0.012 0.020
#> SRR1353418     5  0.5076     0.3947 0.088 0.000 0.288 0.000 0.616 0.008
#> SRR1092913     4  0.3840     0.7597 0.000 0.128 0.052 0.796 0.000 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.984           0.960       0.982         0.4486 0.556   0.556
#> 3 3 0.753           0.876       0.929         0.4414 0.729   0.536
#> 4 4 0.677           0.771       0.821         0.1144 0.921   0.778
#> 5 5 0.670           0.603       0.733         0.0735 0.911   0.706
#> 6 6 0.692           0.639       0.753         0.0482 0.887   0.569

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1   0.000      0.980 1.000 0.000
#> SRR1335605     1   0.929      0.496 0.656 0.344
#> SRR1432014     1   0.644      0.814 0.836 0.164
#> SRR1499215     1   0.402      0.913 0.920 0.080
#> SRR1460409     1   0.000      0.980 1.000 0.000
#> SRR1086441     1   0.000      0.980 1.000 0.000
#> SRR1097344     2   0.000      0.983 0.000 1.000
#> SRR1081789     2   0.000      0.983 0.000 1.000
#> SRR1453005     2   0.000      0.983 0.000 1.000
#> SRR1366985     1   0.000      0.980 1.000 0.000
#> SRR815280      1   0.000      0.980 1.000 0.000
#> SRR1348531     1   0.000      0.980 1.000 0.000
#> SRR815845      2   0.000      0.983 0.000 1.000
#> SRR1471178     1   0.000      0.980 1.000 0.000
#> SRR1080696     1   0.000      0.980 1.000 0.000
#> SRR1078684     1   0.402      0.913 0.920 0.080
#> SRR1317751     1   0.000      0.980 1.000 0.000
#> SRR1435667     2   0.000      0.983 0.000 1.000
#> SRR1097905     1   0.000      0.980 1.000 0.000
#> SRR1456548     1   0.000      0.980 1.000 0.000
#> SRR1075126     1   0.000      0.980 1.000 0.000
#> SRR813108      2   0.000      0.983 0.000 1.000
#> SRR1479062     1   0.402      0.913 0.920 0.080
#> SRR1408703     1   0.000      0.980 1.000 0.000
#> SRR1332360     1   0.000      0.980 1.000 0.000
#> SRR1098686     1   0.000      0.980 1.000 0.000
#> SRR1434228     1   0.000      0.980 1.000 0.000
#> SRR1467149     1   0.000      0.980 1.000 0.000
#> SRR1399113     2   0.000      0.983 0.000 1.000
#> SRR1476507     2   0.000      0.983 0.000 1.000
#> SRR1092468     1   0.000      0.980 1.000 0.000
#> SRR1441804     1   0.000      0.980 1.000 0.000
#> SRR1326100     2   0.000      0.983 0.000 1.000
#> SRR1398815     1   0.000      0.980 1.000 0.000
#> SRR1436021     2   0.000      0.983 0.000 1.000
#> SRR1480083     2   0.000      0.983 0.000 1.000
#> SRR1472863     1   0.000      0.980 1.000 0.000
#> SRR815542      1   0.000      0.980 1.000 0.000
#> SRR1400100     2   0.000      0.983 0.000 1.000
#> SRR1312002     1   0.000      0.980 1.000 0.000
#> SRR1470253     1   0.000      0.980 1.000 0.000
#> SRR1414332     1   0.000      0.980 1.000 0.000
#> SRR1069209     1   0.000      0.980 1.000 0.000
#> SRR661052      1   0.000      0.980 1.000 0.000
#> SRR1308860     1   0.000      0.980 1.000 0.000
#> SRR1421159     2   0.000      0.983 0.000 1.000
#> SRR1340943     1   0.000      0.980 1.000 0.000
#> SRR1078855     1   0.000      0.980 1.000 0.000
#> SRR1459465     2   0.000      0.983 0.000 1.000
#> SRR816818      2   0.000      0.983 0.000 1.000
#> SRR1478679     2   0.722      0.751 0.200 0.800
#> SRR1350979     1   0.402      0.913 0.920 0.080
#> SRR1458198     1   0.000      0.980 1.000 0.000
#> SRR1386910     2   0.000      0.983 0.000 1.000
#> SRR1465375     2   0.000      0.983 0.000 1.000
#> SRR1323699     1   0.402      0.913 0.920 0.080
#> SRR1431139     1   0.000      0.980 1.000 0.000
#> SRR1373964     1   0.943      0.458 0.640 0.360
#> SRR1455413     1   0.000      0.980 1.000 0.000
#> SRR1437163     1   0.000      0.980 1.000 0.000
#> SRR1347343     1   0.552      0.860 0.872 0.128
#> SRR1465480     2   0.000      0.983 0.000 1.000
#> SRR1489631     1   0.000      0.980 1.000 0.000
#> SRR1086514     2   0.000      0.983 0.000 1.000
#> SRR1430928     1   0.000      0.980 1.000 0.000
#> SRR1310939     1   0.278      0.941 0.952 0.048
#> SRR1344294     2   0.000      0.983 0.000 1.000
#> SRR1099402     1   0.000      0.980 1.000 0.000
#> SRR1468118     1   0.000      0.980 1.000 0.000
#> SRR1486348     1   0.000      0.980 1.000 0.000
#> SRR1488770     2   0.000      0.983 0.000 1.000
#> SRR1083732     1   0.000      0.980 1.000 0.000
#> SRR1456611     2   0.000      0.983 0.000 1.000
#> SRR1080318     1   0.000      0.980 1.000 0.000
#> SRR1500089     1   0.000      0.980 1.000 0.000
#> SRR1441178     1   0.000      0.980 1.000 0.000
#> SRR1381396     1   0.000      0.980 1.000 0.000
#> SRR1096081     1   0.000      0.980 1.000 0.000
#> SRR1349809     2   0.000      0.983 0.000 1.000
#> SRR1324314     1   0.000      0.980 1.000 0.000
#> SRR1092444     1   0.000      0.980 1.000 0.000
#> SRR1382553     1   0.000      0.980 1.000 0.000
#> SRR1075530     2   0.000      0.983 0.000 1.000
#> SRR1442612     2   0.730      0.745 0.204 0.796
#> SRR1360056     1   0.000      0.980 1.000 0.000
#> SRR1078164     1   0.000      0.980 1.000 0.000
#> SRR1434545     1   0.000      0.980 1.000 0.000
#> SRR1398251     1   0.000      0.980 1.000 0.000
#> SRR1375866     1   0.000      0.980 1.000 0.000
#> SRR1091645     2   0.000      0.983 0.000 1.000
#> SRR1416636     1   0.000      0.980 1.000 0.000
#> SRR1105441     2   0.000      0.983 0.000 1.000
#> SRR1082496     2   0.000      0.983 0.000 1.000
#> SRR1315353     2   0.000      0.983 0.000 1.000
#> SRR1093697     2   0.000      0.983 0.000 1.000
#> SRR1077429     1   0.000      0.980 1.000 0.000
#> SRR1076120     1   0.000      0.980 1.000 0.000
#> SRR1074410     1   0.000      0.980 1.000 0.000
#> SRR1340345     2   0.000      0.983 0.000 1.000
#> SRR1069514     2   0.000      0.983 0.000 1.000
#> SRR1092636     1   0.000      0.980 1.000 0.000
#> SRR1365013     2   0.000      0.983 0.000 1.000
#> SRR1073069     1   0.000      0.980 1.000 0.000
#> SRR1443137     1   0.000      0.980 1.000 0.000
#> SRR1437143     2   0.000      0.983 0.000 1.000
#> SRR1091990     1   0.000      0.980 1.000 0.000
#> SRR820234      2   0.000      0.983 0.000 1.000
#> SRR1338079     1   0.000      0.980 1.000 0.000
#> SRR1390094     1   0.402      0.913 0.920 0.080
#> SRR1340721     2   0.730      0.745 0.204 0.796
#> SRR1335964     1   0.278      0.941 0.952 0.048
#> SRR1086869     1   0.000      0.980 1.000 0.000
#> SRR1453434     1   0.000      0.980 1.000 0.000
#> SRR1402261     1   0.000      0.980 1.000 0.000
#> SRR657809      2   0.000      0.983 0.000 1.000
#> SRR1093075     1   0.000      0.980 1.000 0.000
#> SRR1433329     1   0.000      0.980 1.000 0.000
#> SRR1353418     1   0.000      0.980 1.000 0.000
#> SRR1092913     2   0.000      0.983 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.958 1.000 0.000 0.000
#> SRR1335605     3  0.0747      0.903 0.000 0.016 0.984
#> SRR1432014     3  0.0892      0.903 0.000 0.020 0.980
#> SRR1499215     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1460409     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1086441     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1097344     2  0.4702      0.846 0.000 0.788 0.212
#> SRR1081789     2  0.4452      0.847 0.000 0.808 0.192
#> SRR1453005     2  0.0892      0.868 0.000 0.980 0.020
#> SRR1366985     3  0.5678      0.615 0.316 0.000 0.684
#> SRR815280      1  0.0000      0.958 1.000 0.000 0.000
#> SRR1348531     1  0.0000      0.958 1.000 0.000 0.000
#> SRR815845      3  0.1643      0.886 0.000 0.044 0.956
#> SRR1471178     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1080696     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1078684     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1317751     3  0.1163      0.907 0.028 0.000 0.972
#> SRR1435667     3  0.0892      0.903 0.000 0.020 0.980
#> SRR1097905     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1456548     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1075126     1  0.0000      0.958 1.000 0.000 0.000
#> SRR813108      2  0.0892      0.868 0.000 0.980 0.020
#> SRR1479062     3  0.0747      0.912 0.016 0.000 0.984
#> SRR1408703     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1332360     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1098686     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1434228     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1467149     1  0.5178      0.676 0.744 0.000 0.256
#> SRR1399113     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1476507     2  0.5058      0.819 0.000 0.756 0.244
#> SRR1092468     1  0.5497      0.608 0.708 0.000 0.292
#> SRR1441804     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1326100     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1398815     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1436021     2  0.4887      0.828 0.000 0.772 0.228
#> SRR1480083     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1472863     1  0.0000      0.958 1.000 0.000 0.000
#> SRR815542      1  0.0000      0.958 1.000 0.000 0.000
#> SRR1400100     3  0.3038      0.825 0.000 0.104 0.896
#> SRR1312002     3  0.5363      0.672 0.276 0.000 0.724
#> SRR1470253     3  0.4702      0.742 0.212 0.000 0.788
#> SRR1414332     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1069209     1  0.0000      0.958 1.000 0.000 0.000
#> SRR661052      1  0.0000      0.958 1.000 0.000 0.000
#> SRR1308860     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1421159     2  0.4796      0.829 0.000 0.780 0.220
#> SRR1340943     1  0.5291      0.668 0.732 0.000 0.268
#> SRR1078855     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1459465     2  0.0237      0.866 0.000 0.996 0.004
#> SRR816818      2  0.0000      0.867 0.000 1.000 0.000
#> SRR1478679     3  0.0892      0.903 0.000 0.020 0.980
#> SRR1350979     3  0.0747      0.912 0.016 0.000 0.984
#> SRR1458198     1  0.2066      0.909 0.940 0.000 0.060
#> SRR1386910     2  0.4605      0.843 0.000 0.796 0.204
#> SRR1465375     2  0.4842      0.838 0.000 0.776 0.224
#> SRR1323699     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1431139     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1373964     3  0.0892      0.903 0.000 0.020 0.980
#> SRR1455413     1  0.4121      0.797 0.832 0.000 0.168
#> SRR1437163     1  0.0424      0.952 0.992 0.000 0.008
#> SRR1347343     3  0.0892      0.903 0.000 0.020 0.980
#> SRR1465480     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1489631     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1086514     2  0.4452      0.847 0.000 0.808 0.192
#> SRR1430928     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1310939     3  0.0747      0.912 0.016 0.000 0.984
#> SRR1344294     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1468118     3  0.0747      0.912 0.016 0.000 0.984
#> SRR1486348     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1083732     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1456611     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1080318     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1500089     1  0.2261      0.902 0.932 0.000 0.068
#> SRR1441178     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1381396     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1096081     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1349809     2  0.3038      0.863 0.000 0.896 0.104
#> SRR1324314     3  0.5678      0.616 0.316 0.000 0.684
#> SRR1092444     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1382553     3  0.5678      0.616 0.316 0.000 0.684
#> SRR1075530     2  0.4702      0.846 0.000 0.788 0.212
#> SRR1442612     3  0.0892      0.903 0.000 0.020 0.980
#> SRR1360056     3  0.4654      0.746 0.208 0.000 0.792
#> SRR1078164     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1434545     1  0.5363      0.655 0.724 0.000 0.276
#> SRR1398251     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1375866     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1091645     2  0.5058      0.819 0.000 0.756 0.244
#> SRR1416636     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1105441     3  0.2959      0.830 0.000 0.100 0.900
#> SRR1082496     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1315353     2  0.6260      0.394 0.000 0.552 0.448
#> SRR1093697     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1077429     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1076120     1  0.4702      0.738 0.788 0.000 0.212
#> SRR1074410     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1340345     2  0.4702      0.846 0.000 0.788 0.212
#> SRR1069514     3  0.2448      0.855 0.000 0.076 0.924
#> SRR1092636     3  0.0892      0.913 0.020 0.000 0.980
#> SRR1365013     2  0.4555      0.845 0.000 0.800 0.200
#> SRR1073069     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1443137     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1437143     2  0.0000      0.867 0.000 1.000 0.000
#> SRR1091990     1  0.0000      0.958 1.000 0.000 0.000
#> SRR820234      2  0.0000      0.867 0.000 1.000 0.000
#> SRR1338079     1  0.0237      0.956 0.996 0.000 0.004
#> SRR1390094     3  0.0424      0.908 0.008 0.000 0.992
#> SRR1340721     2  0.6255      0.538 0.320 0.668 0.012
#> SRR1335964     3  0.0747      0.912 0.016 0.000 0.984
#> SRR1086869     3  0.0747      0.912 0.016 0.000 0.984
#> SRR1453434     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1402261     1  0.5291      0.668 0.732 0.000 0.268
#> SRR657809      2  0.4555      0.847 0.000 0.800 0.200
#> SRR1093075     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1433329     1  0.0000      0.958 1.000 0.000 0.000
#> SRR1353418     3  0.4702      0.742 0.212 0.000 0.788
#> SRR1092913     2  0.4702      0.846 0.000 0.788 0.212

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000    0.88215 1.000 0.000 0.000 0.000
#> SRR1335605     3  0.1209    0.82766 0.000 0.004 0.964 0.032
#> SRR1432014     3  0.0188    0.83554 0.000 0.004 0.996 0.000
#> SRR1499215     3  0.1209    0.83159 0.000 0.004 0.964 0.032
#> SRR1460409     1  0.1716    0.88067 0.936 0.000 0.000 0.064
#> SRR1086441     1  0.0188    0.88232 0.996 0.000 0.000 0.004
#> SRR1097344     4  0.6280    0.69211 0.000 0.316 0.080 0.604
#> SRR1081789     4  0.7811    0.50704 0.000 0.368 0.252 0.380
#> SRR1453005     2  0.4718    0.38924 0.000 0.708 0.012 0.280
#> SRR1366985     3  0.6933    0.50250 0.244 0.000 0.584 0.172
#> SRR815280      1  0.3172    0.83074 0.840 0.000 0.000 0.160
#> SRR1348531     1  0.2011    0.86897 0.920 0.000 0.000 0.080
#> SRR815845      3  0.0804    0.83216 0.000 0.008 0.980 0.012
#> SRR1471178     1  0.0000    0.88215 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.2973    0.82136 0.000 0.000 0.856 0.144
#> SRR1078684     3  0.1004    0.82849 0.000 0.004 0.972 0.024
#> SRR1317751     3  0.3444    0.81000 0.000 0.000 0.816 0.184
#> SRR1435667     3  0.0524    0.83471 0.000 0.004 0.988 0.008
#> SRR1097905     1  0.2011    0.86769 0.920 0.000 0.000 0.080
#> SRR1456548     1  0.2011    0.86769 0.920 0.000 0.000 0.080
#> SRR1075126     1  0.1940    0.87323 0.924 0.000 0.000 0.076
#> SRR813108      2  0.3117    0.77924 0.000 0.880 0.092 0.028
#> SRR1479062     3  0.3311    0.81383 0.000 0.000 0.828 0.172
#> SRR1408703     3  0.3123    0.81921 0.000 0.000 0.844 0.156
#> SRR1332360     1  0.3356    0.82243 0.824 0.000 0.000 0.176
#> SRR1098686     1  0.2011    0.86769 0.920 0.000 0.000 0.080
#> SRR1434228     1  0.3626    0.81661 0.812 0.000 0.004 0.184
#> SRR1467149     4  0.5929    0.17531 0.356 0.000 0.048 0.596
#> SRR1399113     2  0.0188    0.91841 0.000 0.996 0.000 0.004
#> SRR1476507     4  0.6432    0.70859 0.000 0.236 0.128 0.636
#> SRR1092468     1  0.7752    0.00307 0.404 0.000 0.360 0.236
#> SRR1441804     1  0.2081    0.86732 0.916 0.000 0.000 0.084
#> SRR1326100     2  0.0524    0.91034 0.000 0.988 0.008 0.004
#> SRR1398815     1  0.0188    0.88232 0.996 0.000 0.000 0.004
#> SRR1436021     4  0.7220    0.70055 0.000 0.240 0.212 0.548
#> SRR1480083     2  0.0000    0.91926 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0000    0.88215 1.000 0.000 0.000 0.000
#> SRR815542      1  0.2216    0.86805 0.908 0.000 0.000 0.092
#> SRR1400100     3  0.2675    0.78947 0.000 0.044 0.908 0.048
#> SRR1312002     3  0.6260    0.66749 0.144 0.000 0.664 0.192
#> SRR1470253     3  0.5354    0.73280 0.056 0.000 0.712 0.232
#> SRR1414332     1  0.0188    0.88232 0.996 0.000 0.000 0.004
#> SRR1069209     1  0.3444    0.81893 0.816 0.000 0.000 0.184
#> SRR661052      1  0.1637    0.87477 0.940 0.000 0.000 0.060
#> SRR1308860     1  0.2081    0.86732 0.916 0.000 0.000 0.084
#> SRR1421159     4  0.7205    0.67308 0.000 0.200 0.252 0.548
#> SRR1340943     4  0.4685    0.53426 0.156 0.000 0.060 0.784
#> SRR1078855     1  0.3400    0.82125 0.820 0.000 0.000 0.180
#> SRR1459465     2  0.0188    0.91841 0.000 0.996 0.000 0.004
#> SRR816818      2  0.0188    0.91841 0.000 0.996 0.000 0.004
#> SRR1478679     3  0.1398    0.82435 0.000 0.004 0.956 0.040
#> SRR1350979     3  0.1022    0.83789 0.000 0.000 0.968 0.032
#> SRR1458198     1  0.4838    0.72229 0.724 0.000 0.024 0.252
#> SRR1386910     4  0.7069    0.70858 0.000 0.324 0.144 0.532
#> SRR1465375     4  0.6663    0.71880 0.000 0.280 0.124 0.596
#> SRR1323699     3  0.1209    0.83159 0.000 0.004 0.964 0.032
#> SRR1431139     3  0.0921    0.83001 0.000 0.000 0.972 0.028
#> SRR1373964     3  0.0524    0.83471 0.000 0.004 0.988 0.008
#> SRR1455413     1  0.7074    0.46185 0.568 0.000 0.192 0.240
#> SRR1437163     1  0.2081    0.86646 0.916 0.000 0.000 0.084
#> SRR1347343     3  0.0657    0.83479 0.000 0.004 0.984 0.012
#> SRR1465480     2  0.0188    0.91841 0.000 0.996 0.000 0.004
#> SRR1489631     1  0.2011    0.86769 0.920 0.000 0.000 0.080
#> SRR1086514     4  0.6953    0.70084 0.000 0.336 0.128 0.536
#> SRR1430928     1  0.0000    0.88215 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.3311    0.80898 0.000 0.000 0.828 0.172
#> SRR1344294     2  0.0000    0.91926 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0188    0.88215 0.996 0.000 0.000 0.004
#> SRR1468118     3  0.3528    0.80445 0.000 0.000 0.808 0.192
#> SRR1486348     1  0.0000    0.88215 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000    0.91926 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000    0.88215 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000    0.91926 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.1716    0.87444 0.936 0.000 0.000 0.064
#> SRR1500089     1  0.5247    0.67856 0.684 0.000 0.032 0.284
#> SRR1441178     1  0.3311    0.82643 0.828 0.000 0.000 0.172
#> SRR1381396     1  0.0188    0.88232 0.996 0.000 0.000 0.004
#> SRR1096081     3  0.3356    0.81229 0.000 0.000 0.824 0.176
#> SRR1349809     2  0.6450   -0.01449 0.000 0.616 0.108 0.276
#> SRR1324314     3  0.5354    0.63237 0.232 0.000 0.712 0.056
#> SRR1092444     1  0.1940    0.87565 0.924 0.000 0.000 0.076
#> SRR1382553     3  0.6724    0.53102 0.224 0.000 0.612 0.164
#> SRR1075530     4  0.6878    0.71565 0.000 0.316 0.128 0.556
#> SRR1442612     3  0.0376    0.83442 0.000 0.004 0.992 0.004
#> SRR1360056     3  0.4661    0.75585 0.016 0.000 0.728 0.256
#> SRR1078164     1  0.3311    0.82643 0.828 0.000 0.000 0.172
#> SRR1434545     4  0.4956    0.55155 0.140 0.004 0.076 0.780
#> SRR1398251     1  0.4079    0.80852 0.800 0.000 0.020 0.180
#> SRR1375866     1  0.0188    0.88232 0.996 0.000 0.000 0.004
#> SRR1091645     4  0.6110    0.68905 0.000 0.240 0.100 0.660
#> SRR1416636     3  0.3266    0.81530 0.000 0.000 0.832 0.168
#> SRR1105441     3  0.2586    0.79271 0.000 0.040 0.912 0.048
#> SRR1082496     2  0.0188    0.91841 0.000 0.996 0.000 0.004
#> SRR1315353     3  0.7138   -0.09458 0.000 0.164 0.540 0.296
#> SRR1093697     2  0.0000    0.91926 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.3311    0.81383 0.000 0.000 0.828 0.172
#> SRR1076120     1  0.6240    0.56439 0.604 0.000 0.076 0.320
#> SRR1074410     1  0.0188    0.88232 0.996 0.000 0.000 0.004
#> SRR1340345     4  0.6878    0.71565 0.000 0.316 0.128 0.556
#> SRR1069514     3  0.1610    0.81868 0.000 0.016 0.952 0.032
#> SRR1092636     3  0.2704    0.82630 0.000 0.000 0.876 0.124
#> SRR1365013     4  0.7155    0.70998 0.000 0.300 0.164 0.536
#> SRR1073069     1  0.3400    0.82125 0.820 0.000 0.000 0.180
#> SRR1443137     1  0.3444    0.82130 0.816 0.000 0.000 0.184
#> SRR1437143     2  0.0000    0.91926 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.3172    0.83074 0.840 0.000 0.000 0.160
#> SRR820234      2  0.0469    0.91094 0.000 0.988 0.000 0.012
#> SRR1338079     1  0.1211    0.87897 0.960 0.000 0.000 0.040
#> SRR1390094     3  0.4343    0.60508 0.000 0.004 0.732 0.264
#> SRR1340721     4  0.8008    0.57344 0.172 0.180 0.068 0.580
#> SRR1335964     3  0.2216    0.82982 0.000 0.000 0.908 0.092
#> SRR1086869     3  0.3528    0.80445 0.000 0.000 0.808 0.192
#> SRR1453434     1  0.2760    0.86627 0.872 0.000 0.000 0.128
#> SRR1402261     4  0.4829    0.54018 0.156 0.000 0.068 0.776
#> SRR657809      4  0.6966    0.70607 0.000 0.328 0.132 0.540
#> SRR1093075     1  0.3400    0.82125 0.820 0.000 0.000 0.180
#> SRR1433329     1  0.3444    0.82130 0.816 0.000 0.000 0.184
#> SRR1353418     3  0.4690    0.75154 0.016 0.000 0.724 0.260
#> SRR1092913     4  0.6791    0.71413 0.000 0.316 0.120 0.564

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.2124     0.6681 0.900 0.000 0.000 0.004 0.096
#> SRR1335605     3  0.6569     0.5469 0.000 0.000 0.468 0.240 0.292
#> SRR1432014     3  0.5969     0.6888 0.000 0.008 0.608 0.140 0.244
#> SRR1499215     3  0.6002     0.6884 0.000 0.008 0.596 0.132 0.264
#> SRR1460409     1  0.1638     0.6909 0.932 0.000 0.000 0.004 0.064
#> SRR1086441     1  0.1732     0.6845 0.920 0.000 0.000 0.000 0.080
#> SRR1097344     4  0.4373     0.6442 0.000 0.088 0.048 0.804 0.060
#> SRR1081789     4  0.7135     0.2649 0.000 0.060 0.164 0.528 0.248
#> SRR1453005     2  0.4971     0.0565 0.000 0.512 0.000 0.460 0.028
#> SRR1366985     5  0.5967     0.5037 0.184 0.000 0.204 0.004 0.608
#> SRR815280      1  0.4450    -0.7055 0.508 0.000 0.000 0.004 0.488
#> SRR1348531     1  0.0000     0.7088 1.000 0.000 0.000 0.000 0.000
#> SRR815845      3  0.6483     0.6250 0.000 0.008 0.540 0.220 0.232
#> SRR1471178     1  0.1792     0.6810 0.916 0.000 0.000 0.000 0.084
#> SRR1080696     3  0.0693     0.6377 0.000 0.000 0.980 0.008 0.012
#> SRR1078684     3  0.6194     0.6749 0.000 0.008 0.580 0.164 0.248
#> SRR1317751     3  0.1830     0.5938 0.000 0.000 0.932 0.028 0.040
#> SRR1435667     3  0.5969     0.6888 0.000 0.008 0.608 0.140 0.244
#> SRR1097905     1  0.1809     0.6838 0.928 0.000 0.000 0.012 0.060
#> SRR1456548     1  0.1571     0.6892 0.936 0.000 0.000 0.004 0.060
#> SRR1075126     1  0.1386     0.6963 0.952 0.000 0.000 0.016 0.032
#> SRR813108      2  0.7042     0.3311 0.000 0.568 0.080 0.192 0.160
#> SRR1479062     3  0.0404     0.6249 0.000 0.000 0.988 0.012 0.000
#> SRR1408703     3  0.0451     0.6354 0.000 0.000 0.988 0.008 0.004
#> SRR1332360     5  0.4632     0.8112 0.448 0.000 0.012 0.000 0.540
#> SRR1098686     1  0.0510     0.7086 0.984 0.000 0.000 0.000 0.016
#> SRR1434228     5  0.5167     0.7804 0.396 0.000 0.036 0.004 0.564
#> SRR1467149     1  0.7677     0.2268 0.464 0.000 0.284 0.120 0.132
#> SRR1399113     2  0.0290     0.8995 0.000 0.992 0.000 0.008 0.000
#> SRR1476507     4  0.3991     0.6587 0.000 0.076 0.040 0.828 0.056
#> SRR1092468     1  0.7709     0.0991 0.476 0.000 0.172 0.108 0.244
#> SRR1441804     1  0.0000     0.7088 1.000 0.000 0.000 0.000 0.000
#> SRR1326100     2  0.3115     0.7715 0.000 0.852 0.000 0.112 0.036
#> SRR1398815     1  0.2389     0.6641 0.880 0.000 0.000 0.004 0.116
#> SRR1436021     4  0.5207     0.5318 0.000 0.020 0.076 0.708 0.196
#> SRR1480083     2  0.0162     0.9003 0.000 0.996 0.000 0.000 0.004
#> SRR1472863     1  0.2629     0.6818 0.860 0.000 0.000 0.004 0.136
#> SRR815542      1  0.0771     0.7017 0.976 0.000 0.000 0.004 0.020
#> SRR1400100     3  0.6619     0.5886 0.000 0.008 0.512 0.256 0.224
#> SRR1312002     3  0.5142     0.3187 0.052 0.000 0.600 0.000 0.348
#> SRR1470253     3  0.4275     0.4128 0.020 0.000 0.696 0.000 0.284
#> SRR1414332     1  0.2179     0.6651 0.896 0.000 0.000 0.004 0.100
#> SRR1069209     5  0.4764     0.8126 0.436 0.000 0.012 0.004 0.548
#> SRR661052      1  0.1831     0.6968 0.920 0.000 0.000 0.004 0.076
#> SRR1308860     1  0.0703     0.7071 0.976 0.000 0.000 0.000 0.024
#> SRR1421159     4  0.5628     0.4392 0.000 0.016 0.100 0.660 0.224
#> SRR1340943     4  0.6271     0.5312 0.116 0.000 0.088 0.660 0.136
#> SRR1078855     5  0.4425     0.8062 0.452 0.000 0.000 0.004 0.544
#> SRR1459465     2  0.0579     0.8984 0.000 0.984 0.000 0.008 0.008
#> SRR816818      2  0.0290     0.8995 0.000 0.992 0.000 0.008 0.000
#> SRR1478679     3  0.6479     0.6415 0.000 0.008 0.532 0.188 0.272
#> SRR1350979     3  0.5642     0.6921 0.000 0.000 0.624 0.136 0.240
#> SRR1458198     1  0.6368     0.3619 0.648 0.000 0.148 0.080 0.124
#> SRR1386910     4  0.6270     0.6173 0.000 0.092 0.072 0.644 0.192
#> SRR1465375     4  0.3498     0.6694 0.004 0.096 0.008 0.848 0.044
#> SRR1323699     3  0.6002     0.6884 0.000 0.008 0.596 0.132 0.264
#> SRR1431139     3  0.5896     0.6794 0.000 0.000 0.596 0.168 0.236
#> SRR1373964     3  0.5969     0.6888 0.000 0.008 0.608 0.140 0.244
#> SRR1455413     1  0.6105     0.2510 0.532 0.000 0.376 0.032 0.060
#> SRR1437163     1  0.1809     0.6838 0.928 0.000 0.000 0.012 0.060
#> SRR1347343     3  0.5969     0.6888 0.000 0.008 0.608 0.140 0.244
#> SRR1465480     2  0.0290     0.8995 0.000 0.992 0.000 0.008 0.000
#> SRR1489631     1  0.1571     0.6892 0.936 0.000 0.000 0.004 0.060
#> SRR1086514     4  0.4240     0.6422 0.000 0.148 0.016 0.788 0.048
#> SRR1430928     1  0.1908     0.6746 0.908 0.000 0.000 0.000 0.092
#> SRR1310939     3  0.5246     0.6581 0.004 0.000 0.692 0.124 0.180
#> SRR1344294     2  0.0000     0.9012 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.1908     0.6768 0.908 0.000 0.000 0.000 0.092
#> SRR1468118     3  0.2450     0.5645 0.000 0.000 0.900 0.052 0.048
#> SRR1486348     1  0.2074     0.6892 0.896 0.000 0.000 0.000 0.104
#> SRR1488770     2  0.0000     0.9012 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.1671     0.6875 0.924 0.000 0.000 0.000 0.076
#> SRR1456611     2  0.0000     0.9012 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.1357     0.7019 0.948 0.000 0.000 0.004 0.048
#> SRR1500089     1  0.7113     0.2392 0.512 0.000 0.296 0.068 0.124
#> SRR1441178     5  0.4437     0.7651 0.464 0.000 0.000 0.004 0.532
#> SRR1381396     1  0.2389     0.6641 0.880 0.000 0.000 0.004 0.116
#> SRR1096081     3  0.1668     0.5985 0.000 0.000 0.940 0.028 0.032
#> SRR1349809     4  0.6938     0.1849 0.000 0.412 0.036 0.420 0.132
#> SRR1324314     3  0.7257     0.5267 0.148 0.000 0.492 0.064 0.296
#> SRR1092444     1  0.1662     0.6962 0.936 0.000 0.004 0.004 0.056
#> SRR1382553     5  0.5116     0.0179 0.052 0.000 0.220 0.024 0.704
#> SRR1075530     4  0.3209     0.6681 0.000 0.100 0.020 0.860 0.020
#> SRR1442612     3  0.5969     0.6888 0.000 0.008 0.608 0.140 0.244
#> SRR1360056     3  0.3837     0.4345 0.000 0.000 0.692 0.000 0.308
#> SRR1078164     5  0.4434     0.7718 0.460 0.000 0.000 0.004 0.536
#> SRR1434545     4  0.6137     0.5396 0.104 0.000 0.088 0.672 0.136
#> SRR1398251     5  0.4798     0.7908 0.404 0.000 0.016 0.004 0.576
#> SRR1375866     1  0.2439     0.6602 0.876 0.000 0.000 0.004 0.120
#> SRR1091645     4  0.4704     0.6316 0.000 0.072 0.084 0.784 0.060
#> SRR1416636     3  0.0162     0.6289 0.000 0.000 0.996 0.004 0.000
#> SRR1105441     3  0.6619     0.5886 0.000 0.008 0.512 0.256 0.224
#> SRR1082496     2  0.0290     0.8995 0.000 0.992 0.000 0.008 0.000
#> SRR1315353     4  0.6888    -0.0276 0.000 0.016 0.272 0.484 0.228
#> SRR1093697     2  0.0000     0.9012 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     3  0.1310     0.6080 0.000 0.000 0.956 0.020 0.024
#> SRR1076120     1  0.7592     0.1724 0.448 0.000 0.320 0.100 0.132
#> SRR1074410     1  0.2389     0.6641 0.880 0.000 0.000 0.004 0.116
#> SRR1340345     4  0.2775     0.6683 0.000 0.100 0.020 0.876 0.004
#> SRR1069514     3  0.6778     0.5650 0.000 0.008 0.476 0.264 0.252
#> SRR1092636     3  0.1281     0.6436 0.000 0.000 0.956 0.032 0.012
#> SRR1365013     4  0.5883     0.5204 0.000 0.036 0.092 0.656 0.216
#> SRR1073069     5  0.4627     0.8133 0.444 0.000 0.012 0.000 0.544
#> SRR1443137     5  0.4287     0.7984 0.460 0.000 0.000 0.000 0.540
#> SRR1437143     2  0.0000     0.9012 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.4448    -0.6979 0.516 0.000 0.000 0.004 0.480
#> SRR820234      2  0.2110     0.8397 0.000 0.912 0.000 0.072 0.016
#> SRR1338079     1  0.1952     0.6997 0.912 0.000 0.000 0.004 0.084
#> SRR1390094     3  0.7192     0.5121 0.012 0.008 0.444 0.256 0.280
#> SRR1340721     4  0.6762     0.3465 0.356 0.044 0.000 0.496 0.104
#> SRR1335964     3  0.5224     0.6873 0.000 0.000 0.684 0.140 0.176
#> SRR1086869     3  0.2450     0.5645 0.000 0.000 0.900 0.052 0.048
#> SRR1453434     1  0.3236     0.5498 0.828 0.000 0.000 0.020 0.152
#> SRR1402261     4  0.6271     0.5312 0.116 0.000 0.088 0.660 0.136
#> SRR657809      4  0.3773     0.6649 0.000 0.100 0.020 0.832 0.048
#> SRR1093075     5  0.4425     0.8062 0.452 0.000 0.000 0.004 0.544
#> SRR1433329     5  0.4622     0.8135 0.440 0.000 0.012 0.000 0.548
#> SRR1353418     3  0.3876     0.4256 0.000 0.000 0.684 0.000 0.316
#> SRR1092913     4  0.3478     0.6599 0.000 0.100 0.024 0.848 0.028

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.3257    0.70416 0.816 0.000 0.000 0.012 0.020 0.152
#> SRR1335605     3  0.4245    0.62335 0.020 0.000 0.788 0.108 0.020 0.064
#> SRR1432014     3  0.2389    0.66226 0.000 0.000 0.864 0.000 0.128 0.008
#> SRR1499215     3  0.2793    0.66438 0.000 0.000 0.856 0.004 0.112 0.028
#> SRR1460409     1  0.3548    0.73283 0.824 0.000 0.000 0.020 0.076 0.080
#> SRR1086441     1  0.2092    0.74342 0.876 0.000 0.000 0.000 0.000 0.124
#> SRR1097344     4  0.3298    0.72862 0.000 0.028 0.012 0.856 0.040 0.064
#> SRR1081789     3  0.5251    0.36301 0.000 0.020 0.612 0.304 0.008 0.056
#> SRR1453005     4  0.6266    0.16526 0.000 0.380 0.068 0.472 0.004 0.076
#> SRR1366985     6  0.5055    0.62314 0.084 0.000 0.168 0.004 0.040 0.704
#> SRR815280      6  0.4848    0.72586 0.336 0.000 0.000 0.032 0.024 0.608
#> SRR1348531     1  0.1528    0.76039 0.936 0.000 0.000 0.000 0.048 0.016
#> SRR815845      3  0.2862    0.68513 0.000 0.000 0.872 0.056 0.052 0.020
#> SRR1471178     1  0.2135    0.74052 0.872 0.000 0.000 0.000 0.000 0.128
#> SRR1080696     5  0.3371    0.64247 0.000 0.000 0.292 0.000 0.708 0.000
#> SRR1078684     3  0.1967    0.68939 0.000 0.000 0.904 0.012 0.084 0.000
#> SRR1317751     5  0.3221    0.69061 0.000 0.000 0.188 0.000 0.792 0.020
#> SRR1435667     3  0.2278    0.66467 0.000 0.000 0.868 0.000 0.128 0.004
#> SRR1097905     1  0.2382    0.73881 0.904 0.000 0.004 0.024 0.020 0.048
#> SRR1456548     1  0.2118    0.74578 0.916 0.000 0.004 0.012 0.020 0.048
#> SRR1075126     1  0.2828    0.73078 0.872 0.000 0.004 0.012 0.080 0.032
#> SRR813108      2  0.6651    0.13628 0.000 0.432 0.376 0.116 0.004 0.072
#> SRR1479062     5  0.3915    0.62466 0.000 0.000 0.304 0.008 0.680 0.008
#> SRR1408703     5  0.3351    0.64536 0.000 0.000 0.288 0.000 0.712 0.000
#> SRR1332360     6  0.3488    0.87978 0.244 0.000 0.000 0.004 0.008 0.744
#> SRR1098686     1  0.0508    0.76925 0.984 0.000 0.004 0.000 0.000 0.012
#> SRR1434228     6  0.3702    0.86873 0.224 0.000 0.012 0.004 0.008 0.752
#> SRR1467149     5  0.6397   -0.12371 0.404 0.000 0.000 0.064 0.424 0.108
#> SRR1399113     2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.3287    0.72471 0.000 0.008 0.036 0.856 0.040 0.060
#> SRR1092468     1  0.7152    0.22677 0.484 0.000 0.244 0.040 0.184 0.048
#> SRR1441804     1  0.1594    0.75917 0.932 0.000 0.000 0.000 0.052 0.016
#> SRR1326100     2  0.5484    0.54119 0.000 0.672 0.156 0.116 0.004 0.052
#> SRR1398815     1  0.3590    0.70447 0.808 0.000 0.000 0.032 0.024 0.136
#> SRR1436021     3  0.4647    0.10238 0.000 0.000 0.508 0.460 0.012 0.020
#> SRR1480083     2  0.0508    0.89762 0.000 0.984 0.000 0.000 0.004 0.012
#> SRR1472863     1  0.3061    0.74441 0.840 0.000 0.004 0.008 0.020 0.128
#> SRR815542      1  0.2128    0.75227 0.908 0.000 0.000 0.004 0.056 0.032
#> SRR1400100     3  0.3060    0.66541 0.000 0.000 0.836 0.132 0.012 0.020
#> SRR1312002     5  0.6321    0.28229 0.024 0.000 0.156 0.004 0.420 0.396
#> SRR1470253     5  0.5158    0.61310 0.008 0.000 0.112 0.004 0.648 0.228
#> SRR1414332     1  0.3513    0.69667 0.804 0.000 0.000 0.024 0.020 0.152
#> SRR1069209     6  0.3463    0.87927 0.240 0.000 0.000 0.004 0.008 0.748
#> SRR661052      1  0.2239    0.75455 0.900 0.000 0.000 0.008 0.020 0.072
#> SRR1308860     1  0.0363    0.76901 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1421159     3  0.4642    0.32015 0.000 0.000 0.592 0.356 0.000 0.052
#> SRR1340943     4  0.6199    0.52718 0.088 0.000 0.000 0.580 0.216 0.116
#> SRR1078855     6  0.3290    0.87644 0.252 0.000 0.000 0.000 0.004 0.744
#> SRR1459465     2  0.0951    0.88946 0.000 0.968 0.000 0.008 0.004 0.020
#> SRR816818      2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.0922    0.69777 0.000 0.000 0.968 0.024 0.004 0.004
#> SRR1350979     3  0.2320    0.66128 0.000 0.000 0.864 0.000 0.132 0.004
#> SRR1458198     1  0.6064    0.31333 0.516 0.000 0.000 0.052 0.336 0.096
#> SRR1386910     3  0.6188   -0.00579 0.004 0.032 0.448 0.432 0.020 0.064
#> SRR1465375     4  0.3650    0.71372 0.004 0.032 0.072 0.840 0.016 0.036
#> SRR1323699     3  0.2793    0.66438 0.000 0.000 0.856 0.004 0.112 0.028
#> SRR1431139     3  0.2485    0.69016 0.004 0.000 0.884 0.020 0.088 0.004
#> SRR1373964     3  0.2006    0.67754 0.000 0.000 0.892 0.000 0.104 0.004
#> SRR1455413     1  0.5533    0.05948 0.464 0.000 0.012 0.020 0.456 0.048
#> SRR1437163     1  0.2382    0.73881 0.904 0.000 0.004 0.024 0.020 0.048
#> SRR1347343     3  0.2489    0.65946 0.000 0.000 0.860 0.000 0.128 0.012
#> SRR1465480     2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.2118    0.74578 0.916 0.000 0.004 0.012 0.020 0.048
#> SRR1086514     4  0.5173    0.51201 0.000 0.040 0.248 0.656 0.004 0.052
#> SRR1430928     1  0.2178    0.73816 0.868 0.000 0.000 0.000 0.000 0.132
#> SRR1310939     3  0.5359    0.37286 0.008 0.000 0.608 0.044 0.304 0.036
#> SRR1344294     2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.2340    0.72877 0.852 0.000 0.000 0.000 0.000 0.148
#> SRR1468118     5  0.2980    0.68753 0.000 0.000 0.192 0.000 0.800 0.008
#> SRR1486348     1  0.1910    0.75119 0.892 0.000 0.000 0.000 0.000 0.108
#> SRR1488770     2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.2048    0.74582 0.880 0.000 0.000 0.000 0.000 0.120
#> SRR1456611     2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.3444    0.73364 0.836 0.000 0.000 0.032 0.076 0.056
#> SRR1500089     5  0.5732    0.11323 0.348 0.000 0.000 0.032 0.532 0.088
#> SRR1441178     6  0.4770    0.82270 0.268 0.000 0.000 0.036 0.032 0.664
#> SRR1381396     1  0.3745    0.69584 0.796 0.000 0.000 0.032 0.028 0.144
#> SRR1096081     5  0.3200    0.69009 0.000 0.000 0.196 0.000 0.788 0.016
#> SRR1349809     4  0.7971    0.26111 0.028 0.280 0.260 0.348 0.020 0.064
#> SRR1324314     3  0.7288    0.07309 0.160 0.000 0.452 0.004 0.172 0.212
#> SRR1092444     1  0.3895    0.71335 0.800 0.000 0.000 0.032 0.108 0.060
#> SRR1382553     6  0.4811    0.42373 0.020 0.000 0.280 0.004 0.040 0.656
#> SRR1075530     4  0.3303    0.70182 0.000 0.040 0.092 0.844 0.004 0.020
#> SRR1442612     3  0.2278    0.66467 0.000 0.000 0.868 0.000 0.128 0.004
#> SRR1360056     5  0.4900    0.61101 0.000 0.000 0.108 0.004 0.656 0.232
#> SRR1078164     6  0.4770    0.82207 0.268 0.000 0.000 0.036 0.032 0.664
#> SRR1434545     4  0.6199    0.52718 0.088 0.000 0.000 0.580 0.216 0.116
#> SRR1398251     6  0.3411    0.87661 0.232 0.000 0.004 0.000 0.008 0.756
#> SRR1375866     1  0.3855    0.69107 0.788 0.000 0.000 0.032 0.032 0.148
#> SRR1091645     4  0.3268    0.72343 0.000 0.008 0.016 0.852 0.068 0.056
#> SRR1416636     5  0.3330    0.64873 0.000 0.000 0.284 0.000 0.716 0.000
#> SRR1105441     3  0.3048    0.67012 0.000 0.000 0.844 0.116 0.012 0.028
#> SRR1082496     2  0.0146    0.90237 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1315353     3  0.4800    0.44022 0.000 0.000 0.640 0.280 0.004 0.076
#> SRR1093697     2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.3161    0.68398 0.000 0.000 0.216 0.000 0.776 0.008
#> SRR1076120     5  0.6123    0.15218 0.320 0.000 0.000 0.060 0.524 0.096
#> SRR1074410     1  0.3855    0.69107 0.788 0.000 0.000 0.032 0.032 0.148
#> SRR1340345     4  0.2536    0.72078 0.000 0.040 0.064 0.888 0.004 0.004
#> SRR1069514     3  0.1391    0.69337 0.000 0.000 0.944 0.040 0.000 0.016
#> SRR1092636     5  0.3428    0.62888 0.000 0.000 0.304 0.000 0.696 0.000
#> SRR1365013     3  0.5783    0.14663 0.004 0.008 0.500 0.396 0.016 0.076
#> SRR1073069     6  0.3488    0.87978 0.244 0.000 0.000 0.004 0.008 0.744
#> SRR1443137     6  0.3265    0.87756 0.248 0.000 0.000 0.004 0.000 0.748
#> SRR1437143     2  0.0000    0.90359 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     6  0.4720    0.72903 0.340 0.000 0.000 0.028 0.020 0.612
#> SRR820234      2  0.3798    0.75931 0.000 0.820 0.044 0.060 0.004 0.072
#> SRR1338079     1  0.2505    0.75432 0.880 0.000 0.000 0.008 0.020 0.092
#> SRR1390094     3  0.4733    0.62021 0.016 0.000 0.760 0.084 0.092 0.048
#> SRR1340721     1  0.6738    0.19384 0.536 0.004 0.112 0.264 0.020 0.064
#> SRR1335964     3  0.3437    0.53455 0.000 0.000 0.752 0.008 0.236 0.004
#> SRR1086869     5  0.3046    0.68843 0.000 0.000 0.188 0.000 0.800 0.012
#> SRR1453434     1  0.5445    0.47823 0.632 0.000 0.000 0.020 0.160 0.188
#> SRR1402261     4  0.6199    0.52718 0.088 0.000 0.000 0.580 0.216 0.116
#> SRR657809      4  0.4389    0.66151 0.000 0.040 0.132 0.772 0.012 0.044
#> SRR1093075     6  0.3240    0.87978 0.244 0.000 0.000 0.000 0.004 0.752
#> SRR1433329     6  0.3463    0.87996 0.240 0.000 0.000 0.004 0.008 0.748
#> SRR1353418     5  0.4900    0.61101 0.000 0.000 0.108 0.004 0.656 0.232
#> SRR1092913     4  0.2600    0.73307 0.000 0.036 0.024 0.896 0.008 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.982           0.967       0.985         0.5028 0.499   0.499
#> 3 3 0.945           0.937       0.971         0.3093 0.765   0.563
#> 4 4 0.712           0.585       0.755         0.1190 0.889   0.695
#> 5 5 0.783           0.775       0.884         0.0681 0.868   0.571
#> 6 6 0.814           0.707       0.862         0.0424 0.934   0.707

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.977 1.000 0.000
#> SRR1335605     2  0.0000      0.993 0.000 1.000
#> SRR1432014     2  0.0000      0.993 0.000 1.000
#> SRR1499215     2  0.0000      0.993 0.000 1.000
#> SRR1460409     1  0.0000      0.977 1.000 0.000
#> SRR1086441     1  0.0000      0.977 1.000 0.000
#> SRR1097344     2  0.0000      0.993 0.000 1.000
#> SRR1081789     2  0.0000      0.993 0.000 1.000
#> SRR1453005     2  0.0000      0.993 0.000 1.000
#> SRR1366985     1  0.0000      0.977 1.000 0.000
#> SRR815280      1  0.0000      0.977 1.000 0.000
#> SRR1348531     1  0.0000      0.977 1.000 0.000
#> SRR815845      2  0.0000      0.993 0.000 1.000
#> SRR1471178     1  0.0000      0.977 1.000 0.000
#> SRR1080696     2  0.0000      0.993 0.000 1.000
#> SRR1078684     2  0.0000      0.993 0.000 1.000
#> SRR1317751     1  0.5842      0.837 0.860 0.140
#> SRR1435667     2  0.0000      0.993 0.000 1.000
#> SRR1097905     1  0.0000      0.977 1.000 0.000
#> SRR1456548     1  0.0000      0.977 1.000 0.000
#> SRR1075126     1  0.0000      0.977 1.000 0.000
#> SRR813108      2  0.0000      0.993 0.000 1.000
#> SRR1479062     2  0.0000      0.993 0.000 1.000
#> SRR1408703     2  0.0000      0.993 0.000 1.000
#> SRR1332360     1  0.0000      0.977 1.000 0.000
#> SRR1098686     1  0.0000      0.977 1.000 0.000
#> SRR1434228     1  0.0000      0.977 1.000 0.000
#> SRR1467149     1  0.0000      0.977 1.000 0.000
#> SRR1399113     2  0.0000      0.993 0.000 1.000
#> SRR1476507     2  0.0000      0.993 0.000 1.000
#> SRR1092468     1  0.0000      0.977 1.000 0.000
#> SRR1441804     1  0.0000      0.977 1.000 0.000
#> SRR1326100     2  0.0000      0.993 0.000 1.000
#> SRR1398815     1  0.0000      0.977 1.000 0.000
#> SRR1436021     2  0.0000      0.993 0.000 1.000
#> SRR1480083     2  0.0000      0.993 0.000 1.000
#> SRR1472863     1  0.0000      0.977 1.000 0.000
#> SRR815542      1  0.0000      0.977 1.000 0.000
#> SRR1400100     2  0.0000      0.993 0.000 1.000
#> SRR1312002     1  0.0000      0.977 1.000 0.000
#> SRR1470253     1  0.0000      0.977 1.000 0.000
#> SRR1414332     1  0.0000      0.977 1.000 0.000
#> SRR1069209     1  0.0000      0.977 1.000 0.000
#> SRR661052      1  0.0000      0.977 1.000 0.000
#> SRR1308860     1  0.0000      0.977 1.000 0.000
#> SRR1421159     2  0.0000      0.993 0.000 1.000
#> SRR1340943     1  0.0376      0.974 0.996 0.004
#> SRR1078855     1  0.0000      0.977 1.000 0.000
#> SRR1459465     2  0.0000      0.993 0.000 1.000
#> SRR816818      2  0.0000      0.993 0.000 1.000
#> SRR1478679     2  0.0000      0.993 0.000 1.000
#> SRR1350979     2  0.0000      0.993 0.000 1.000
#> SRR1458198     1  0.0000      0.977 1.000 0.000
#> SRR1386910     2  0.0000      0.993 0.000 1.000
#> SRR1465375     2  0.0000      0.993 0.000 1.000
#> SRR1323699     2  0.3274      0.934 0.060 0.940
#> SRR1431139     2  0.3733      0.921 0.072 0.928
#> SRR1373964     2  0.0000      0.993 0.000 1.000
#> SRR1455413     1  0.0000      0.977 1.000 0.000
#> SRR1437163     1  0.0000      0.977 1.000 0.000
#> SRR1347343     2  0.0000      0.993 0.000 1.000
#> SRR1465480     2  0.0000      0.993 0.000 1.000
#> SRR1489631     1  0.0000      0.977 1.000 0.000
#> SRR1086514     2  0.0000      0.993 0.000 1.000
#> SRR1430928     1  0.0000      0.977 1.000 0.000
#> SRR1310939     2  0.0000      0.993 0.000 1.000
#> SRR1344294     2  0.0000      0.993 0.000 1.000
#> SRR1099402     1  0.0000      0.977 1.000 0.000
#> SRR1468118     1  0.7528      0.739 0.784 0.216
#> SRR1486348     1  0.0000      0.977 1.000 0.000
#> SRR1488770     2  0.0000      0.993 0.000 1.000
#> SRR1083732     1  0.0000      0.977 1.000 0.000
#> SRR1456611     2  0.0000      0.993 0.000 1.000
#> SRR1080318     1  0.0000      0.977 1.000 0.000
#> SRR1500089     1  0.0000      0.977 1.000 0.000
#> SRR1441178     1  0.0000      0.977 1.000 0.000
#> SRR1381396     1  0.0000      0.977 1.000 0.000
#> SRR1096081     1  0.7056      0.772 0.808 0.192
#> SRR1349809     2  0.0000      0.993 0.000 1.000
#> SRR1324314     1  0.0000      0.977 1.000 0.000
#> SRR1092444     1  0.0000      0.977 1.000 0.000
#> SRR1382553     1  0.0000      0.977 1.000 0.000
#> SRR1075530     2  0.0000      0.993 0.000 1.000
#> SRR1442612     2  0.0000      0.993 0.000 1.000
#> SRR1360056     1  0.0000      0.977 1.000 0.000
#> SRR1078164     1  0.0000      0.977 1.000 0.000
#> SRR1434545     1  0.9460      0.458 0.636 0.364
#> SRR1398251     1  0.0000      0.977 1.000 0.000
#> SRR1375866     1  0.0000      0.977 1.000 0.000
#> SRR1091645     2  0.0000      0.993 0.000 1.000
#> SRR1416636     2  0.3114      0.937 0.056 0.944
#> SRR1105441     2  0.0000      0.993 0.000 1.000
#> SRR1082496     2  0.0000      0.993 0.000 1.000
#> SRR1315353     2  0.0000      0.993 0.000 1.000
#> SRR1093697     2  0.0000      0.993 0.000 1.000
#> SRR1077429     1  0.0000      0.977 1.000 0.000
#> SRR1076120     1  0.0000      0.977 1.000 0.000
#> SRR1074410     1  0.0000      0.977 1.000 0.000
#> SRR1340345     2  0.0000      0.993 0.000 1.000
#> SRR1069514     2  0.0000      0.993 0.000 1.000
#> SRR1092636     1  0.8608      0.606 0.716 0.284
#> SRR1365013     2  0.0000      0.993 0.000 1.000
#> SRR1073069     1  0.0000      0.977 1.000 0.000
#> SRR1443137     1  0.0000      0.977 1.000 0.000
#> SRR1437143     2  0.0000      0.993 0.000 1.000
#> SRR1091990     1  0.0000      0.977 1.000 0.000
#> SRR820234      2  0.0000      0.993 0.000 1.000
#> SRR1338079     1  0.0000      0.977 1.000 0.000
#> SRR1390094     2  0.0000      0.993 0.000 1.000
#> SRR1340721     2  0.7219      0.749 0.200 0.800
#> SRR1335964     2  0.0000      0.993 0.000 1.000
#> SRR1086869     1  0.7219      0.761 0.800 0.200
#> SRR1453434     1  0.0000      0.977 1.000 0.000
#> SRR1402261     1  0.0000      0.977 1.000 0.000
#> SRR657809      2  0.0000      0.993 0.000 1.000
#> SRR1093075     1  0.0000      0.977 1.000 0.000
#> SRR1433329     1  0.0000      0.977 1.000 0.000
#> SRR1353418     1  0.0000      0.977 1.000 0.000
#> SRR1092913     2  0.0000      0.993 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000      0.987 1.000 0.000 0.000
#> SRR1335605     2  0.3686      0.824 0.000 0.860 0.140
#> SRR1432014     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1499215     3  0.1289      0.924 0.000 0.032 0.968
#> SRR1460409     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1086441     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1097344     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1081789     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1453005     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1366985     3  0.4555      0.771 0.200 0.000 0.800
#> SRR815280      1  0.0000      0.987 1.000 0.000 0.000
#> SRR1348531     1  0.0000      0.987 1.000 0.000 0.000
#> SRR815845      3  0.5760      0.519 0.000 0.328 0.672
#> SRR1471178     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1080696     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1078684     3  0.3551      0.838 0.000 0.132 0.868
#> SRR1317751     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1435667     3  0.1289      0.924 0.000 0.032 0.968
#> SRR1097905     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1456548     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1075126     1  0.0000      0.987 1.000 0.000 0.000
#> SRR813108      2  0.0000      0.969 0.000 1.000 0.000
#> SRR1479062     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1408703     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1332360     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1098686     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1434228     1  0.5098      0.649 0.752 0.000 0.248
#> SRR1467149     1  0.1289      0.964 0.968 0.000 0.032
#> SRR1399113     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1476507     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1092468     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1441804     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1326100     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1398815     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1436021     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1480083     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1472863     1  0.0000      0.987 1.000 0.000 0.000
#> SRR815542      1  0.0000      0.987 1.000 0.000 0.000
#> SRR1400100     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1312002     3  0.4178      0.804 0.172 0.000 0.828
#> SRR1470253     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1414332     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1069209     1  0.0000      0.987 1.000 0.000 0.000
#> SRR661052      1  0.0000      0.987 1.000 0.000 0.000
#> SRR1308860     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1421159     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1340943     1  0.2689      0.933 0.932 0.036 0.032
#> SRR1078855     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1459465     2  0.0000      0.969 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.969 0.000 1.000 0.000
#> SRR1478679     3  0.5138      0.682 0.000 0.252 0.748
#> SRR1350979     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1458198     1  0.1289      0.964 0.968 0.000 0.032
#> SRR1386910     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1465375     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1323699     3  0.0424      0.936 0.008 0.000 0.992
#> SRR1431139     3  0.0983      0.933 0.004 0.016 0.980
#> SRR1373964     3  0.1289      0.924 0.000 0.032 0.968
#> SRR1455413     1  0.1289      0.964 0.968 0.000 0.032
#> SRR1437163     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1347343     3  0.0592      0.935 0.000 0.012 0.988
#> SRR1465480     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1489631     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1086514     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1430928     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1310939     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1344294     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1099402     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1468118     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1486348     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1083732     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1456611     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1080318     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1500089     1  0.1289      0.964 0.968 0.000 0.032
#> SRR1441178     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1381396     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1096081     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1349809     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1324314     3  0.5216      0.681 0.260 0.000 0.740
#> SRR1092444     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1382553     3  0.4555      0.771 0.200 0.000 0.800
#> SRR1075530     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1442612     3  0.0592      0.935 0.000 0.012 0.988
#> SRR1360056     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1078164     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1434545     2  0.2313      0.921 0.024 0.944 0.032
#> SRR1398251     1  0.2448      0.913 0.924 0.000 0.076
#> SRR1375866     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1091645     2  0.0747      0.955 0.000 0.984 0.016
#> SRR1416636     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1105441     2  0.6126      0.273 0.000 0.600 0.400
#> SRR1082496     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1315353     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1093697     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1077429     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1076120     1  0.1289      0.964 0.968 0.000 0.032
#> SRR1074410     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1340345     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1069514     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1092636     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1365013     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1073069     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1443137     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1437143     2  0.0000      0.969 0.000 1.000 0.000
#> SRR1091990     1  0.0000      0.987 1.000 0.000 0.000
#> SRR820234      2  0.0000      0.969 0.000 1.000 0.000
#> SRR1338079     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1390094     2  0.6235      0.262 0.000 0.564 0.436
#> SRR1340721     2  0.1753      0.919 0.048 0.952 0.000
#> SRR1335964     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1086869     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1453434     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1402261     1  0.2176      0.948 0.948 0.020 0.032
#> SRR657809      2  0.0000      0.969 0.000 1.000 0.000
#> SRR1093075     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1433329     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1353418     3  0.0000      0.940 0.000 0.000 1.000
#> SRR1092913     2  0.0000      0.969 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1335605     2  0.0927     0.9156 0.000 0.976 0.016 0.008
#> SRR1432014     3  0.4500     0.5150 0.000 0.000 0.684 0.316
#> SRR1499215     3  0.3528     0.5328 0.000 0.000 0.808 0.192
#> SRR1460409     1  0.3942     0.6990 0.764 0.000 0.000 0.236
#> SRR1086441     1  0.3801     0.7053 0.780 0.000 0.000 0.220
#> SRR1097344     2  0.2704     0.8388 0.000 0.876 0.000 0.124
#> SRR1081789     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1453005     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1366985     3  0.4193     0.3541 0.268 0.000 0.732 0.000
#> SRR815280      1  0.1557     0.7326 0.944 0.000 0.056 0.000
#> SRR1348531     1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR815845      2  0.7687    -0.1527 0.000 0.448 0.312 0.240
#> SRR1471178     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1080696     4  0.4977    -0.1043 0.000 0.000 0.460 0.540
#> SRR1078684     3  0.5557     0.5063 0.000 0.040 0.652 0.308
#> SRR1317751     4  0.4790     0.1226 0.000 0.000 0.380 0.620
#> SRR1435667     3  0.5206     0.5137 0.000 0.024 0.668 0.308
#> SRR1097905     1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR1456548     1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR1075126     1  0.2149     0.7384 0.912 0.000 0.000 0.088
#> SRR813108      2  0.0376     0.9265 0.000 0.992 0.004 0.004
#> SRR1479062     4  0.4790     0.1102 0.000 0.000 0.380 0.620
#> SRR1408703     4  0.4898     0.0265 0.000 0.000 0.416 0.584
#> SRR1332360     1  0.4605     0.5170 0.664 0.000 0.336 0.000
#> SRR1098686     1  0.3837     0.7041 0.776 0.000 0.000 0.224
#> SRR1434228     1  0.4981     0.2789 0.536 0.000 0.464 0.000
#> SRR1467149     4  0.4454     0.2195 0.308 0.000 0.000 0.692
#> SRR1399113     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1476507     2  0.3074     0.8105 0.000 0.848 0.000 0.152
#> SRR1092468     1  0.4999     0.3062 0.508 0.000 0.000 0.492
#> SRR1441804     1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR1326100     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1436021     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1480083     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR815542      1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR1400100     2  0.0817     0.9144 0.000 0.976 0.000 0.024
#> SRR1312002     3  0.3962     0.3934 0.152 0.000 0.820 0.028
#> SRR1470253     3  0.7220     0.2535 0.260 0.000 0.544 0.196
#> SRR1414332     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.4585     0.5219 0.668 0.000 0.332 0.000
#> SRR661052      1  0.3873     0.7023 0.772 0.000 0.000 0.228
#> SRR1308860     1  0.4008     0.6945 0.756 0.000 0.000 0.244
#> SRR1421159     2  0.0188     0.9285 0.000 0.996 0.000 0.004
#> SRR1340943     4  0.4741     0.1775 0.328 0.004 0.000 0.668
#> SRR1078855     1  0.4585     0.5221 0.668 0.000 0.332 0.000
#> SRR1459465     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.6973     0.3731 0.000 0.196 0.584 0.220
#> SRR1350979     3  0.4585     0.4954 0.000 0.000 0.668 0.332
#> SRR1458198     4  0.4585     0.1695 0.332 0.000 0.000 0.668
#> SRR1386910     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1465375     2  0.1211     0.9084 0.000 0.960 0.000 0.040
#> SRR1323699     3  0.3764     0.5353 0.000 0.000 0.784 0.216
#> SRR1431139     3  0.5112     0.4912 0.008 0.004 0.648 0.340
#> SRR1373964     3  0.5108     0.5172 0.000 0.020 0.672 0.308
#> SRR1455413     4  0.4500     0.2069 0.316 0.000 0.000 0.684
#> SRR1437163     1  0.4008     0.6945 0.756 0.000 0.000 0.244
#> SRR1347343     3  0.4454     0.5216 0.000 0.000 0.692 0.308
#> SRR1465480     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR1086514     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1430928     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1310939     4  0.4331     0.1722 0.000 0.000 0.288 0.712
#> SRR1344294     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1468118     4  0.4304     0.1807 0.000 0.000 0.284 0.716
#> SRR1486348     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR1500089     4  0.4454     0.2195 0.308 0.000 0.000 0.692
#> SRR1441178     1  0.4500     0.5386 0.684 0.000 0.316 0.000
#> SRR1381396     1  0.0188     0.7528 0.996 0.000 0.000 0.004
#> SRR1096081     4  0.4790     0.1182 0.000 0.000 0.380 0.620
#> SRR1349809     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1324314     3  0.5088     0.3287 0.288 0.000 0.688 0.024
#> SRR1092444     1  0.4040     0.6922 0.752 0.000 0.000 0.248
#> SRR1382553     3  0.4193     0.3541 0.268 0.000 0.732 0.000
#> SRR1075530     2  0.0592     0.9228 0.000 0.984 0.000 0.016
#> SRR1442612     3  0.5108     0.5172 0.000 0.020 0.672 0.308
#> SRR1360056     3  0.3356     0.3668 0.000 0.000 0.824 0.176
#> SRR1078164     1  0.3942     0.6124 0.764 0.000 0.236 0.000
#> SRR1434545     4  0.5864     0.2514 0.072 0.264 0.000 0.664
#> SRR1398251     1  0.4941     0.3506 0.564 0.000 0.436 0.000
#> SRR1375866     1  0.0000     0.7530 1.000 0.000 0.000 0.000
#> SRR1091645     2  0.4454     0.5963 0.000 0.692 0.000 0.308
#> SRR1416636     4  0.4888     0.0369 0.000 0.000 0.412 0.588
#> SRR1105441     2  0.7578    -0.0558 0.000 0.480 0.284 0.236
#> SRR1082496     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1315353     2  0.0188     0.9285 0.000 0.996 0.000 0.004
#> SRR1093697     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1077429     4  0.4776     0.1245 0.000 0.000 0.376 0.624
#> SRR1076120     4  0.5131     0.2320 0.280 0.000 0.028 0.692
#> SRR1074410     1  0.0188     0.7528 0.996 0.000 0.000 0.004
#> SRR1340345     2  0.0921     0.9162 0.000 0.972 0.000 0.028
#> SRR1069514     2  0.6790     0.4012 0.000 0.608 0.200 0.192
#> SRR1092636     4  0.4977    -0.1043 0.000 0.000 0.460 0.540
#> SRR1365013     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1073069     1  0.4661     0.5005 0.652 0.000 0.348 0.000
#> SRR1443137     1  0.4585     0.5221 0.668 0.000 0.332 0.000
#> SRR1437143     2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.2149     0.7173 0.912 0.000 0.088 0.000
#> SRR820234      2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.3873     0.7023 0.772 0.000 0.000 0.228
#> SRR1390094     4  0.7907    -0.1093 0.000 0.308 0.328 0.364
#> SRR1340721     2  0.2408     0.8221 0.104 0.896 0.000 0.000
#> SRR1335964     4  0.4746     0.1263 0.000 0.000 0.368 0.632
#> SRR1086869     4  0.4454     0.1731 0.000 0.000 0.308 0.692
#> SRR1453434     1  0.4539     0.6693 0.720 0.000 0.008 0.272
#> SRR1402261     4  0.4741     0.1775 0.328 0.004 0.000 0.668
#> SRR657809      2  0.0000     0.9302 0.000 1.000 0.000 0.000
#> SRR1093075     1  0.4585     0.5221 0.668 0.000 0.332 0.000
#> SRR1433329     1  0.4585     0.5221 0.668 0.000 0.332 0.000
#> SRR1353418     3  0.3311     0.3710 0.000 0.000 0.828 0.172
#> SRR1092913     2  0.1302     0.9056 0.000 0.956 0.000 0.044

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1335605     2  0.3174      0.785 0.000 0.844 0.132 0.004 0.020
#> SRR1432014     3  0.0000      0.720 0.000 0.000 1.000 0.000 0.000
#> SRR1499215     3  0.3561      0.544 0.000 0.000 0.740 0.000 0.260
#> SRR1460409     1  0.1697      0.921 0.932 0.000 0.000 0.060 0.008
#> SRR1086441     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1097344     2  0.3707      0.669 0.000 0.716 0.000 0.284 0.000
#> SRR1081789     2  0.0162      0.914 0.000 0.996 0.004 0.000 0.000
#> SRR1453005     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1366985     5  0.2136      0.861 0.008 0.000 0.088 0.000 0.904
#> SRR815280      1  0.2605      0.814 0.852 0.000 0.000 0.000 0.148
#> SRR1348531     1  0.0703      0.949 0.976 0.000 0.000 0.024 0.000
#> SRR815845      3  0.3766      0.545 0.000 0.268 0.728 0.000 0.004
#> SRR1471178     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1080696     3  0.4933      0.522 0.000 0.000 0.704 0.200 0.096
#> SRR1078684     3  0.0963      0.711 0.000 0.036 0.964 0.000 0.000
#> SRR1317751     4  0.6275      0.383 0.000 0.000 0.308 0.516 0.176
#> SRR1435667     3  0.0162      0.721 0.000 0.004 0.996 0.000 0.000
#> SRR1097905     1  0.0290      0.955 0.992 0.000 0.000 0.008 0.000
#> SRR1456548     1  0.0290      0.955 0.992 0.000 0.000 0.008 0.000
#> SRR1075126     1  0.2848      0.855 0.868 0.000 0.000 0.104 0.028
#> SRR813108      2  0.3612      0.609 0.000 0.732 0.268 0.000 0.000
#> SRR1479062     3  0.5831      0.066 0.000 0.000 0.496 0.408 0.096
#> SRR1408703     3  0.5137      0.479 0.000 0.000 0.676 0.228 0.096
#> SRR1332360     5  0.1908      0.912 0.092 0.000 0.000 0.000 0.908
#> SRR1098686     1  0.0000      0.957 1.000 0.000 0.000 0.000 0.000
#> SRR1434228     5  0.2077      0.911 0.084 0.000 0.008 0.000 0.908
#> SRR1467149     4  0.0451      0.677 0.004 0.000 0.000 0.988 0.008
#> SRR1399113     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     2  0.4060      0.539 0.000 0.640 0.000 0.360 0.000
#> SRR1092468     4  0.4173      0.453 0.300 0.000 0.012 0.688 0.000
#> SRR1441804     1  0.0703      0.949 0.976 0.000 0.000 0.024 0.000
#> SRR1326100     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1398815     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1436021     2  0.1341      0.889 0.000 0.944 0.000 0.056 0.000
#> SRR1480083     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR815542      1  0.1571      0.923 0.936 0.000 0.000 0.060 0.004
#> SRR1400100     2  0.0162      0.914 0.000 0.996 0.004 0.000 0.000
#> SRR1312002     5  0.1393      0.876 0.024 0.000 0.012 0.008 0.956
#> SRR1470253     5  0.0912      0.841 0.000 0.000 0.016 0.012 0.972
#> SRR1414332     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1069209     5  0.1908      0.912 0.092 0.000 0.000 0.000 0.908
#> SRR661052      1  0.0324      0.957 0.992 0.000 0.000 0.004 0.004
#> SRR1308860     1  0.0290      0.955 0.992 0.000 0.000 0.008 0.000
#> SRR1421159     2  0.4541      0.554 0.000 0.680 0.288 0.032 0.000
#> SRR1340943     4  0.1843      0.673 0.052 0.008 0.000 0.932 0.008
#> SRR1078855     5  0.1965      0.910 0.096 0.000 0.000 0.000 0.904
#> SRR1459465     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.3863      0.618 0.000 0.152 0.796 0.000 0.052
#> SRR1350979     3  0.0000      0.720 0.000 0.000 1.000 0.000 0.000
#> SRR1458198     4  0.2470      0.662 0.104 0.000 0.000 0.884 0.012
#> SRR1386910     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1465375     2  0.2732      0.816 0.000 0.840 0.000 0.160 0.000
#> SRR1323699     3  0.3274      0.584 0.000 0.000 0.780 0.000 0.220
#> SRR1431139     3  0.0290      0.718 0.000 0.000 0.992 0.008 0.000
#> SRR1373964     3  0.0162      0.721 0.000 0.004 0.996 0.000 0.000
#> SRR1455413     4  0.4372      0.610 0.172 0.000 0.000 0.756 0.072
#> SRR1437163     1  0.0290      0.955 0.992 0.000 0.000 0.008 0.000
#> SRR1347343     3  0.0000      0.720 0.000 0.000 1.000 0.000 0.000
#> SRR1465480     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.0290      0.955 0.992 0.000 0.000 0.008 0.000
#> SRR1086514     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1430928     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1310939     4  0.4620      0.179 0.000 0.000 0.392 0.592 0.016
#> SRR1344294     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0703      0.947 0.976 0.000 0.000 0.000 0.024
#> SRR1468118     4  0.5498      0.469 0.000 0.000 0.292 0.612 0.096
#> SRR1486348     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1488770     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1456611     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.0794      0.947 0.972 0.000 0.000 0.028 0.000
#> SRR1500089     4  0.2359      0.678 0.060 0.000 0.000 0.904 0.036
#> SRR1441178     5  0.3366      0.766 0.232 0.000 0.000 0.000 0.768
#> SRR1381396     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1096081     4  0.6234      0.355 0.000 0.000 0.332 0.508 0.160
#> SRR1349809     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1324314     5  0.3616      0.843 0.052 0.000 0.116 0.004 0.828
#> SRR1092444     1  0.2338      0.873 0.884 0.000 0.000 0.112 0.004
#> SRR1382553     5  0.2136      0.861 0.008 0.000 0.088 0.000 0.904
#> SRR1075530     2  0.2230      0.852 0.000 0.884 0.000 0.116 0.000
#> SRR1442612     3  0.0000      0.720 0.000 0.000 1.000 0.000 0.000
#> SRR1360056     5  0.1012      0.838 0.000 0.000 0.020 0.012 0.968
#> SRR1078164     5  0.3684      0.701 0.280 0.000 0.000 0.000 0.720
#> SRR1434545     4  0.1788      0.653 0.004 0.056 0.000 0.932 0.008
#> SRR1398251     5  0.2077      0.911 0.084 0.000 0.008 0.000 0.908
#> SRR1375866     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1091645     4  0.3561      0.470 0.000 0.260 0.000 0.740 0.000
#> SRR1416636     3  0.5516      0.339 0.000 0.000 0.608 0.296 0.096
#> SRR1105441     3  0.3913      0.489 0.000 0.324 0.676 0.000 0.000
#> SRR1082496     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     2  0.3242      0.690 0.000 0.784 0.216 0.000 0.000
#> SRR1093697     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     4  0.5815      0.263 0.000 0.000 0.396 0.508 0.096
#> SRR1076120     4  0.0566      0.677 0.004 0.000 0.000 0.984 0.012
#> SRR1074410     1  0.0162      0.957 0.996 0.000 0.000 0.000 0.004
#> SRR1340345     2  0.2516      0.833 0.000 0.860 0.000 0.140 0.000
#> SRR1069514     3  0.3561      0.534 0.000 0.260 0.740 0.000 0.000
#> SRR1092636     3  0.4964      0.516 0.000 0.000 0.700 0.204 0.096
#> SRR1365013     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1073069     5  0.1908      0.912 0.092 0.000 0.000 0.000 0.908
#> SRR1443137     5  0.1965      0.910 0.096 0.000 0.000 0.000 0.904
#> SRR1437143     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.2179      0.862 0.888 0.000 0.000 0.000 0.112
#> SRR820234      2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1338079     1  0.0451      0.956 0.988 0.000 0.000 0.008 0.004
#> SRR1390094     3  0.5405      0.266 0.000 0.076 0.596 0.328 0.000
#> SRR1340721     2  0.3305      0.658 0.224 0.776 0.000 0.000 0.000
#> SRR1335964     3  0.4612      0.550 0.000 0.000 0.736 0.180 0.084
#> SRR1086869     4  0.5534      0.459 0.000 0.000 0.300 0.604 0.096
#> SRR1453434     1  0.5928      0.355 0.548 0.000 0.000 0.328 0.124
#> SRR1402261     4  0.1788      0.673 0.056 0.004 0.000 0.932 0.008
#> SRR657809      2  0.0290      0.913 0.000 0.992 0.000 0.008 0.000
#> SRR1093075     5  0.1965      0.910 0.096 0.000 0.000 0.000 0.904
#> SRR1433329     5  0.1908      0.912 0.092 0.000 0.000 0.000 0.908
#> SRR1353418     5  0.1597      0.815 0.000 0.000 0.048 0.012 0.940
#> SRR1092913     2  0.3003      0.789 0.000 0.812 0.000 0.188 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1327     0.9002 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1335605     2  0.3799     0.6235 0.008 0.772 0.024 0.008 0.188 0.000
#> SRR1432014     3  0.0458     0.8332 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1499215     3  0.1610     0.7923 0.000 0.000 0.916 0.000 0.000 0.084
#> SRR1460409     1  0.4260     0.8013 0.776 0.000 0.004 0.104 0.024 0.092
#> SRR1086441     1  0.1204     0.9015 0.944 0.000 0.000 0.000 0.000 0.056
#> SRR1097344     4  0.4026     0.3424 0.000 0.376 0.012 0.612 0.000 0.000
#> SRR1081789     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1453005     2  0.0405     0.8838 0.000 0.988 0.004 0.008 0.000 0.000
#> SRR1366985     6  0.1007     0.8481 0.000 0.000 0.044 0.000 0.000 0.956
#> SRR815280      1  0.4165     0.4353 0.568 0.000 0.000 0.004 0.008 0.420
#> SRR1348531     1  0.3057     0.8586 0.868 0.000 0.004 0.048 0.044 0.036
#> SRR815845      3  0.5012     0.4365 0.000 0.336 0.576 0.000 0.088 0.000
#> SRR1471178     1  0.1327     0.9002 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1080696     5  0.1814     0.8334 0.000 0.000 0.100 0.000 0.900 0.000
#> SRR1078684     3  0.0725     0.8341 0.000 0.012 0.976 0.000 0.012 0.000
#> SRR1317751     5  0.0713     0.8390 0.000 0.000 0.028 0.000 0.972 0.000
#> SRR1435667     3  0.0508     0.8346 0.000 0.004 0.984 0.000 0.012 0.000
#> SRR1097905     1  0.0000     0.8926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1456548     1  0.0000     0.8926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1075126     1  0.5951     0.4491 0.536 0.000 0.004 0.212 0.008 0.240
#> SRR813108      2  0.3991    -0.0367 0.000 0.524 0.472 0.004 0.000 0.000
#> SRR1479062     5  0.2145     0.8303 0.000 0.000 0.072 0.028 0.900 0.000
#> SRR1408703     5  0.1765     0.8360 0.000 0.000 0.096 0.000 0.904 0.000
#> SRR1332360     6  0.0000     0.8700 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1098686     1  0.0547     0.8986 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1434228     6  0.0146     0.8691 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1467149     4  0.4047     0.3587 0.036 0.000 0.004 0.716 0.244 0.000
#> SRR1399113     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.3819     0.4331 0.000 0.316 0.012 0.672 0.000 0.000
#> SRR1092468     4  0.5616     0.2572 0.136 0.000 0.016 0.580 0.268 0.000
#> SRR1441804     1  0.2374     0.8748 0.904 0.000 0.004 0.048 0.016 0.028
#> SRR1326100     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1398815     1  0.1285     0.9016 0.944 0.000 0.000 0.000 0.004 0.052
#> SRR1436021     2  0.3855     0.4991 0.000 0.704 0.024 0.272 0.000 0.000
#> SRR1480083     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.0632     0.8963 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR815542      1  0.3377     0.8316 0.836 0.000 0.004 0.104 0.020 0.036
#> SRR1400100     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1312002     6  0.2446     0.7883 0.000 0.000 0.012 0.000 0.124 0.864
#> SRR1470253     6  0.3995     0.2183 0.000 0.000 0.000 0.004 0.480 0.516
#> SRR1414332     1  0.1327     0.9002 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1069209     6  0.0000     0.8700 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR661052      1  0.0146     0.8941 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1308860     1  0.0146     0.8941 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1421159     3  0.4903     0.3072 0.000 0.380 0.552 0.068 0.000 0.000
#> SRR1340943     4  0.0547     0.5236 0.000 0.000 0.000 0.980 0.020 0.000
#> SRR1078855     6  0.0000     0.8700 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1459465     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.0993     0.8286 0.000 0.024 0.964 0.000 0.000 0.012
#> SRR1350979     3  0.0790     0.8258 0.000 0.000 0.968 0.000 0.032 0.000
#> SRR1458198     4  0.5229     0.3566 0.108 0.000 0.004 0.664 0.204 0.020
#> SRR1386910     2  0.0551     0.8826 0.000 0.984 0.004 0.008 0.004 0.000
#> SRR1465375     4  0.4428     0.1671 0.004 0.452 0.012 0.528 0.004 0.000
#> SRR1323699     3  0.1610     0.7923 0.000 0.000 0.916 0.000 0.000 0.084
#> SRR1431139     3  0.0858     0.8270 0.004 0.000 0.968 0.000 0.028 0.000
#> SRR1373964     3  0.0508     0.8346 0.000 0.004 0.984 0.000 0.012 0.000
#> SRR1455413     5  0.4233     0.5589 0.080 0.000 0.004 0.180 0.736 0.000
#> SRR1437163     1  0.0146     0.8941 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1347343     3  0.0458     0.8332 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1465480     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.0000     0.8926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1086514     2  0.1124     0.8604 0.000 0.956 0.008 0.036 0.000 0.000
#> SRR1430928     1  0.1327     0.9002 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1310939     4  0.5845    -0.0678 0.000 0.000 0.212 0.472 0.316 0.000
#> SRR1344294     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.3050     0.7556 0.764 0.000 0.000 0.000 0.000 0.236
#> SRR1468118     5  0.0777     0.8370 0.000 0.000 0.024 0.004 0.972 0.000
#> SRR1486348     1  0.0713     0.8962 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1488770     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1267     0.9014 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1456611     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.2675     0.8711 0.888 0.000 0.004 0.052 0.020 0.036
#> SRR1500089     5  0.4664     0.0819 0.024 0.000 0.004 0.468 0.500 0.004
#> SRR1441178     6  0.1901     0.8004 0.076 0.000 0.000 0.004 0.008 0.912
#> SRR1381396     1  0.1668     0.9001 0.928 0.000 0.000 0.004 0.008 0.060
#> SRR1096081     5  0.0713     0.8390 0.000 0.000 0.028 0.000 0.972 0.000
#> SRR1349809     2  0.0291     0.8862 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1324314     6  0.2680     0.8009 0.000 0.000 0.076 0.000 0.056 0.868
#> SRR1092444     1  0.4290     0.7832 0.780 0.000 0.004 0.084 0.096 0.036
#> SRR1382553     6  0.1007     0.8481 0.000 0.000 0.044 0.000 0.000 0.956
#> SRR1075530     2  0.4315    -0.1169 0.000 0.496 0.012 0.488 0.004 0.000
#> SRR1442612     3  0.0458     0.8332 0.000 0.000 0.984 0.000 0.016 0.000
#> SRR1360056     6  0.4080     0.2790 0.000 0.000 0.008 0.000 0.456 0.536
#> SRR1078164     6  0.2214     0.7797 0.092 0.000 0.000 0.004 0.012 0.892
#> SRR1434545     4  0.0547     0.5236 0.000 0.000 0.000 0.980 0.020 0.000
#> SRR1398251     6  0.0146     0.8691 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1375866     1  0.1728     0.8991 0.924 0.000 0.000 0.004 0.008 0.064
#> SRR1091645     4  0.4172     0.4501 0.000 0.300 0.012 0.672 0.016 0.000
#> SRR1416636     5  0.1765     0.8360 0.000 0.000 0.096 0.000 0.904 0.000
#> SRR1105441     3  0.3728     0.4862 0.000 0.344 0.652 0.000 0.004 0.000
#> SRR1082496     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     2  0.3073     0.6542 0.000 0.788 0.204 0.008 0.000 0.000
#> SRR1093697     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.0858     0.8383 0.000 0.000 0.028 0.004 0.968 0.000
#> SRR1076120     4  0.4025     0.2737 0.016 0.000 0.004 0.668 0.312 0.000
#> SRR1074410     1  0.1728     0.8991 0.924 0.000 0.000 0.004 0.008 0.064
#> SRR1340345     4  0.4303     0.1432 0.000 0.460 0.012 0.524 0.004 0.000
#> SRR1069514     3  0.1075     0.8198 0.000 0.048 0.952 0.000 0.000 0.000
#> SRR1092636     5  0.1908     0.8354 0.000 0.000 0.096 0.004 0.900 0.000
#> SRR1365013     2  0.0405     0.8846 0.000 0.988 0.000 0.008 0.004 0.000
#> SRR1073069     6  0.0000     0.8700 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1443137     6  0.0000     0.8700 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1437143     2  0.0000     0.8900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.4098     0.3851 0.548 0.000 0.000 0.004 0.004 0.444
#> SRR820234      2  0.0291     0.8860 0.000 0.992 0.004 0.004 0.000 0.000
#> SRR1338079     1  0.0363     0.8954 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1390094     3  0.4375     0.2412 0.000 0.012 0.548 0.432 0.008 0.000
#> SRR1340721     2  0.3650     0.4971 0.272 0.716 0.000 0.008 0.004 0.000
#> SRR1335964     5  0.3979     0.2546 0.000 0.000 0.456 0.004 0.540 0.000
#> SRR1086869     5  0.0777     0.8370 0.000 0.000 0.024 0.004 0.972 0.000
#> SRR1453434     4  0.6353    -0.0324 0.340 0.000 0.004 0.460 0.024 0.172
#> SRR1402261     4  0.0547     0.5236 0.000 0.000 0.000 0.980 0.020 0.000
#> SRR657809      2  0.2214     0.7992 0.000 0.892 0.012 0.092 0.004 0.000
#> SRR1093075     6  0.0000     0.8700 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1433329     6  0.0000     0.8700 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1353418     6  0.4181     0.2147 0.000 0.000 0.012 0.000 0.476 0.512
#> SRR1092913     4  0.4268     0.2288 0.000 0.428 0.012 0.556 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.593           0.852       0.922         0.4377 0.562   0.562
#> 3 3 0.436           0.392       0.705         0.4000 0.716   0.551
#> 4 4 0.462           0.524       0.727         0.1589 0.694   0.393
#> 5 5 0.722           0.761       0.883         0.0886 0.865   0.579
#> 6 6 0.707           0.663       0.802         0.0590 0.843   0.435

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000     0.9182 1.000 0.000
#> SRR1335605     1  0.8608     0.6459 0.716 0.284
#> SRR1432014     1  0.8955     0.6201 0.688 0.312
#> SRR1499215     1  0.8861     0.6339 0.696 0.304
#> SRR1460409     1  0.0000     0.9182 1.000 0.000
#> SRR1086441     1  0.0000     0.9182 1.000 0.000
#> SRR1097344     2  0.4939     0.8965 0.108 0.892
#> SRR1081789     2  0.7815     0.7492 0.232 0.768
#> SRR1453005     2  0.4161     0.9012 0.084 0.916
#> SRR1366985     1  0.1633     0.9088 0.976 0.024
#> SRR815280      1  0.0000     0.9182 1.000 0.000
#> SRR1348531     1  0.0000     0.9182 1.000 0.000
#> SRR815845      2  0.0000     0.8964 0.000 1.000
#> SRR1471178     1  0.0000     0.9182 1.000 0.000
#> SRR1080696     1  0.8386     0.6888 0.732 0.268
#> SRR1078684     1  0.8386     0.6888 0.732 0.268
#> SRR1317751     1  0.8386     0.6888 0.732 0.268
#> SRR1435667     2  0.4161     0.9012 0.084 0.916
#> SRR1097905     1  0.0000     0.9182 1.000 0.000
#> SRR1456548     1  0.0000     0.9182 1.000 0.000
#> SRR1075126     1  0.0000     0.9182 1.000 0.000
#> SRR813108      2  0.0000     0.8964 0.000 1.000
#> SRR1479062     2  0.9896     0.1762 0.440 0.560
#> SRR1408703     1  0.8386     0.6888 0.732 0.268
#> SRR1332360     1  0.1184     0.9122 0.984 0.016
#> SRR1098686     1  0.0000     0.9182 1.000 0.000
#> SRR1434228     1  0.1633     0.9088 0.976 0.024
#> SRR1467149     1  0.0000     0.9182 1.000 0.000
#> SRR1399113     2  0.1414     0.8956 0.020 0.980
#> SRR1476507     2  0.4939     0.8965 0.108 0.892
#> SRR1092468     1  0.0000     0.9182 1.000 0.000
#> SRR1441804     1  0.0000     0.9182 1.000 0.000
#> SRR1326100     2  0.0000     0.8964 0.000 1.000
#> SRR1398815     1  0.0000     0.9182 1.000 0.000
#> SRR1436021     2  0.4161     0.9012 0.084 0.916
#> SRR1480083     2  0.0000     0.8964 0.000 1.000
#> SRR1472863     1  0.0000     0.9182 1.000 0.000
#> SRR815542      1  0.0000     0.9182 1.000 0.000
#> SRR1400100     2  0.4161     0.9012 0.084 0.916
#> SRR1312002     1  0.1633     0.9088 0.976 0.024
#> SRR1470253     1  0.1414     0.9105 0.980 0.020
#> SRR1414332     1  0.0000     0.9182 1.000 0.000
#> SRR1069209     1  0.1633     0.9088 0.976 0.024
#> SRR661052      1  0.0000     0.9182 1.000 0.000
#> SRR1308860     1  0.0000     0.9182 1.000 0.000
#> SRR1421159     2  0.4161     0.9012 0.084 0.916
#> SRR1340943     1  0.0000     0.9182 1.000 0.000
#> SRR1078855     1  0.0000     0.9182 1.000 0.000
#> SRR1459465     2  0.1633     0.8949 0.024 0.976
#> SRR816818      2  0.1633     0.8949 0.024 0.976
#> SRR1478679     1  0.6148     0.8196 0.848 0.152
#> SRR1350979     1  0.8909     0.6271 0.692 0.308
#> SRR1458198     1  0.0000     0.9182 1.000 0.000
#> SRR1386910     2  0.1633     0.8949 0.024 0.976
#> SRR1465375     2  0.9286     0.5894 0.344 0.656
#> SRR1323699     1  0.5842     0.8297 0.860 0.140
#> SRR1431139     1  0.8386     0.6888 0.732 0.268
#> SRR1373964     2  0.9977     0.0318 0.472 0.528
#> SRR1455413     1  0.0000     0.9182 1.000 0.000
#> SRR1437163     1  0.0000     0.9182 1.000 0.000
#> SRR1347343     1  0.8955     0.6201 0.688 0.312
#> SRR1465480     2  0.1633     0.8949 0.024 0.976
#> SRR1489631     1  0.0000     0.9182 1.000 0.000
#> SRR1086514     2  0.4161     0.9012 0.084 0.916
#> SRR1430928     1  0.0000     0.9182 1.000 0.000
#> SRR1310939     1  0.3431     0.8862 0.936 0.064
#> SRR1344294     2  0.0000     0.8964 0.000 1.000
#> SRR1099402     1  0.0000     0.9182 1.000 0.000
#> SRR1468118     1  0.7815     0.7179 0.768 0.232
#> SRR1486348     1  0.0000     0.9182 1.000 0.000
#> SRR1488770     2  0.0000     0.8964 0.000 1.000
#> SRR1083732     1  0.0000     0.9182 1.000 0.000
#> SRR1456611     2  0.0000     0.8964 0.000 1.000
#> SRR1080318     1  0.0000     0.9182 1.000 0.000
#> SRR1500089     1  0.0000     0.9182 1.000 0.000
#> SRR1441178     1  0.0000     0.9182 1.000 0.000
#> SRR1381396     1  0.0000     0.9182 1.000 0.000
#> SRR1096081     1  0.8327     0.6940 0.736 0.264
#> SRR1349809     1  0.8909     0.6317 0.692 0.308
#> SRR1324314     1  0.1633     0.9088 0.976 0.024
#> SRR1092444     1  0.0000     0.9182 1.000 0.000
#> SRR1382553     1  0.1633     0.9088 0.976 0.024
#> SRR1075530     2  0.4939     0.8965 0.108 0.892
#> SRR1442612     2  0.4161     0.9012 0.084 0.916
#> SRR1360056     1  0.0000     0.9182 1.000 0.000
#> SRR1078164     1  0.0000     0.9182 1.000 0.000
#> SRR1434545     1  0.0938     0.9115 0.988 0.012
#> SRR1398251     1  0.0000     0.9182 1.000 0.000
#> SRR1375866     1  0.0000     0.9182 1.000 0.000
#> SRR1091645     2  0.4939     0.8965 0.108 0.892
#> SRR1416636     1  0.8713     0.6534 0.708 0.292
#> SRR1105441     2  0.4161     0.9012 0.084 0.916
#> SRR1082496     2  0.1184     0.8960 0.016 0.984
#> SRR1315353     2  0.4161     0.9012 0.084 0.916
#> SRR1093697     2  0.0000     0.8964 0.000 1.000
#> SRR1077429     1  0.5059     0.8508 0.888 0.112
#> SRR1076120     1  0.0000     0.9182 1.000 0.000
#> SRR1074410     1  0.0000     0.9182 1.000 0.000
#> SRR1340345     2  0.4939     0.8965 0.108 0.892
#> SRR1069514     2  0.4161     0.9012 0.084 0.916
#> SRR1092636     1  0.7815     0.7341 0.768 0.232
#> SRR1365013     2  0.4939     0.8965 0.108 0.892
#> SRR1073069     1  0.1633     0.9088 0.976 0.024
#> SRR1443137     1  0.0000     0.9182 1.000 0.000
#> SRR1437143     2  0.0000     0.8964 0.000 1.000
#> SRR1091990     1  0.0000     0.9182 1.000 0.000
#> SRR820234      2  0.0000     0.8964 0.000 1.000
#> SRR1338079     1  0.0000     0.9182 1.000 0.000
#> SRR1390094     1  0.6801     0.7870 0.820 0.180
#> SRR1340721     1  0.4161     0.8446 0.916 0.084
#> SRR1335964     1  0.9044     0.6054 0.680 0.320
#> SRR1086869     1  0.8386     0.6888 0.732 0.268
#> SRR1453434     1  0.0000     0.9182 1.000 0.000
#> SRR1402261     1  0.0000     0.9182 1.000 0.000
#> SRR657809      2  0.7815     0.7713 0.232 0.768
#> SRR1093075     1  0.1184     0.9122 0.984 0.016
#> SRR1433329     1  0.1633     0.9088 0.976 0.024
#> SRR1353418     1  0.1633     0.9088 0.976 0.024
#> SRR1092913     2  0.6712     0.8373 0.176 0.824

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0424     0.7636 0.992 0.000 0.008
#> SRR1335605     2  0.8680    -0.2574 0.424 0.472 0.104
#> SRR1432014     3  0.6299     0.7746 0.000 0.476 0.524
#> SRR1499215     3  0.9953     0.4503 0.344 0.288 0.368
#> SRR1460409     1  0.3607     0.7423 0.880 0.008 0.112
#> SRR1086441     1  0.0000     0.7646 1.000 0.000 0.000
#> SRR1097344     2  0.4700     0.3871 0.008 0.812 0.180
#> SRR1081789     2  0.0424     0.3494 0.008 0.992 0.000
#> SRR1453005     2  0.6126     0.4180 0.000 0.600 0.400
#> SRR1366985     1  0.8926     0.1546 0.568 0.240 0.192
#> SRR815280      1  0.1753     0.7522 0.952 0.000 0.048
#> SRR1348531     1  0.3771     0.7412 0.876 0.012 0.112
#> SRR815845      2  0.4974    -0.1423 0.000 0.764 0.236
#> SRR1471178     1  0.0000     0.7646 1.000 0.000 0.000
#> SRR1080696     3  0.6299     0.7746 0.000 0.476 0.524
#> SRR1078684     2  0.9605    -0.4276 0.260 0.476 0.264
#> SRR1317751     2  0.9103    -0.5810 0.144 0.476 0.380
#> SRR1435667     2  0.6062    -0.5272 0.000 0.616 0.384
#> SRR1097905     1  0.6318     0.6528 0.760 0.172 0.068
#> SRR1456548     1  0.7909     0.5275 0.648 0.240 0.112
#> SRR1075126     1  0.4062     0.6887 0.836 0.164 0.000
#> SRR813108      2  0.5465     0.4052 0.000 0.712 0.288
#> SRR1479062     3  0.6676     0.7719 0.008 0.476 0.516
#> SRR1408703     3  0.7395     0.7506 0.032 0.476 0.492
#> SRR1332360     1  0.3134     0.7413 0.916 0.032 0.052
#> SRR1098686     1  0.6318     0.6528 0.760 0.172 0.068
#> SRR1434228     1  0.2096     0.7490 0.944 0.004 0.052
#> SRR1467149     1  0.8774     0.1048 0.476 0.412 0.112
#> SRR1399113     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1476507     2  0.0237     0.3518 0.004 0.996 0.000
#> SRR1092468     1  0.8779     0.0918 0.472 0.416 0.112
#> SRR1441804     1  0.3670     0.7466 0.888 0.020 0.092
#> SRR1326100     2  0.6225     0.4195 0.000 0.568 0.432
#> SRR1398815     1  0.0000     0.7646 1.000 0.000 0.000
#> SRR1436021     2  0.0424     0.3433 0.000 0.992 0.008
#> SRR1480083     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1472863     1  0.0000     0.7646 1.000 0.000 0.000
#> SRR815542      1  0.6829     0.6399 0.736 0.168 0.096
#> SRR1400100     2  0.0000     0.3499 0.000 1.000 0.000
#> SRR1312002     1  0.9148     0.1348 0.544 0.220 0.236
#> SRR1470253     1  0.8117     0.3667 0.636 0.236 0.128
#> SRR1414332     1  0.0424     0.7636 0.992 0.000 0.008
#> SRR1069209     1  0.2280     0.7487 0.940 0.008 0.052
#> SRR661052      1  0.3129     0.7504 0.904 0.008 0.088
#> SRR1308860     1  0.6318     0.6528 0.760 0.172 0.068
#> SRR1421159     2  0.0000     0.3499 0.000 1.000 0.000
#> SRR1340943     1  0.7676     0.5674 0.672 0.216 0.112
#> SRR1078855     1  0.1860     0.7505 0.948 0.000 0.052
#> SRR1459465     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR816818      2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1478679     2  0.9582    -0.4314 0.300 0.472 0.228
#> SRR1350979     3  0.7493     0.7434 0.036 0.476 0.488
#> SRR1458198     1  0.7267     0.6125 0.708 0.180 0.112
#> SRR1386910     2  0.2063     0.3227 0.044 0.948 0.008
#> SRR1465375     2  0.3375     0.2743 0.100 0.892 0.008
#> SRR1323699     3  0.9585     0.5757 0.212 0.332 0.456
#> SRR1431139     2  0.8774    -0.2672 0.412 0.476 0.112
#> SRR1373964     2  0.8260    -0.6898 0.076 0.492 0.432
#> SRR1455413     1  0.8779     0.0918 0.472 0.416 0.112
#> SRR1437163     1  0.6986     0.6299 0.724 0.180 0.096
#> SRR1347343     2  0.8277    -0.7190 0.076 0.468 0.456
#> SRR1465480     2  0.6505     0.4182 0.004 0.528 0.468
#> SRR1489631     1  0.7165     0.6221 0.716 0.172 0.112
#> SRR1086514     2  0.2625     0.3721 0.000 0.916 0.084
#> SRR1430928     1  0.1711     0.7622 0.960 0.008 0.032
#> SRR1310939     3  0.8113     0.7253 0.068 0.428 0.504
#> SRR1344294     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1099402     1  0.0000     0.7646 1.000 0.000 0.000
#> SRR1468118     2  0.9606    -0.5047 0.212 0.448 0.340
#> SRR1486348     1  0.0000     0.7646 1.000 0.000 0.000
#> SRR1488770     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1083732     1  0.0424     0.7636 0.992 0.000 0.008
#> SRR1456611     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1080318     1  0.3607     0.7423 0.880 0.008 0.112
#> SRR1500089     1  0.8710     0.1977 0.508 0.380 0.112
#> SRR1441178     1  0.1860     0.7505 0.948 0.000 0.052
#> SRR1381396     1  0.0424     0.7650 0.992 0.008 0.000
#> SRR1096081     3  0.6500     0.7748 0.004 0.464 0.532
#> SRR1349809     2  0.7752    -0.1740 0.456 0.496 0.048
#> SRR1324314     1  0.7624     0.2322 0.560 0.392 0.048
#> SRR1092444     1  0.3771     0.7416 0.876 0.012 0.112
#> SRR1382553     1  0.6109     0.5703 0.760 0.048 0.192
#> SRR1075530     2  0.0237     0.3518 0.004 0.996 0.000
#> SRR1442612     2  0.6309    -0.7628 0.000 0.504 0.496
#> SRR1360056     1  0.9806    -0.3707 0.408 0.244 0.348
#> SRR1078164     1  0.1860     0.7505 0.948 0.000 0.052
#> SRR1434545     1  0.7676     0.5674 0.672 0.216 0.112
#> SRR1398251     1  0.2448     0.7515 0.924 0.000 0.076
#> SRR1375866     1  0.0424     0.7636 0.992 0.000 0.008
#> SRR1091645     2  0.0661     0.3453 0.004 0.988 0.008
#> SRR1416636     3  0.6299     0.7746 0.000 0.476 0.524
#> SRR1105441     2  0.0000     0.3499 0.000 1.000 0.000
#> SRR1082496     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1315353     2  0.0000     0.3499 0.000 1.000 0.000
#> SRR1093697     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1077429     2  0.9457    -0.5246 0.192 0.468 0.340
#> SRR1076120     1  0.8774     0.1048 0.476 0.412 0.112
#> SRR1074410     1  0.0000     0.7646 1.000 0.000 0.000
#> SRR1340345     2  0.0592     0.3498 0.012 0.988 0.000
#> SRR1069514     2  0.3686     0.1101 0.000 0.860 0.140
#> SRR1092636     2  0.9424    -0.5272 0.188 0.472 0.340
#> SRR1365013     2  0.0237     0.3518 0.004 0.996 0.000
#> SRR1073069     1  0.3369     0.7372 0.908 0.040 0.052
#> SRR1443137     1  0.1860     0.7505 0.948 0.000 0.052
#> SRR1437143     2  0.6291     0.4194 0.000 0.532 0.468
#> SRR1091990     1  0.1753     0.7522 0.952 0.000 0.048
#> SRR820234      2  0.6244     0.4195 0.000 0.560 0.440
#> SRR1338079     1  0.2584     0.7546 0.928 0.008 0.064
#> SRR1390094     2  0.9813    -0.4547 0.260 0.424 0.316
#> SRR1340721     1  0.6804     0.6211 0.724 0.204 0.072
#> SRR1335964     2  0.9390    -0.5303 0.184 0.476 0.340
#> SRR1086869     2  0.9263    -0.5565 0.164 0.476 0.360
#> SRR1453434     1  0.2866     0.7549 0.916 0.008 0.076
#> SRR1402261     1  0.8779     0.0918 0.472 0.416 0.112
#> SRR657809      2  0.2066     0.3306 0.060 0.940 0.000
#> SRR1093075     1  0.1753     0.7522 0.952 0.000 0.048
#> SRR1433329     1  0.2096     0.7490 0.944 0.004 0.052
#> SRR1353418     3  0.9648     0.4982 0.292 0.244 0.464
#> SRR1092913     2  0.1860     0.3354 0.052 0.948 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      4  0.4477     0.5994 0.312 0.000 0.000 0.688
#> SRR1335605     1  0.3725     0.5678 0.812 0.000 0.180 0.008
#> SRR1432014     3  0.3105     0.5468 0.004 0.000 0.856 0.140
#> SRR1499215     4  0.4123     0.4792 0.008 0.000 0.220 0.772
#> SRR1460409     1  0.0336     0.6883 0.992 0.000 0.000 0.008
#> SRR1086441     1  0.3610     0.6188 0.800 0.000 0.000 0.200
#> SRR1097344     3  0.8956     0.3628 0.200 0.280 0.440 0.080
#> SRR1081789     3  0.8030     0.2870 0.100 0.268 0.552 0.080
#> SRR1453005     2  0.6890     0.1236 0.008 0.484 0.428 0.080
#> SRR1366985     4  0.3991     0.5522 0.020 0.000 0.172 0.808
#> SRR815280      4  0.3873     0.7191 0.228 0.000 0.000 0.772
#> SRR1348531     1  0.0336     0.6883 0.992 0.000 0.000 0.008
#> SRR815845      3  0.2469     0.5171 0.000 0.108 0.892 0.000
#> SRR1471178     1  0.3569     0.6222 0.804 0.000 0.000 0.196
#> SRR1080696     3  0.3105     0.5468 0.004 0.000 0.856 0.140
#> SRR1078684     3  0.6522     0.4877 0.224 0.000 0.632 0.144
#> SRR1317751     3  0.4564     0.4623 0.328 0.000 0.672 0.000
#> SRR1435667     3  0.2921     0.5463 0.000 0.000 0.860 0.140
#> SRR1097905     1  0.3074     0.6510 0.848 0.000 0.000 0.152
#> SRR1456548     1  0.1022     0.6789 0.968 0.000 0.032 0.000
#> SRR1075126     1  0.3486     0.6270 0.812 0.000 0.000 0.188
#> SRR813108      3  0.6013     0.3309 0.000 0.288 0.640 0.072
#> SRR1479062     3  0.6205     0.5522 0.196 0.000 0.668 0.136
#> SRR1408703     3  0.5380     0.5710 0.120 0.000 0.744 0.136
#> SRR1332360     4  0.3764     0.7299 0.216 0.000 0.000 0.784
#> SRR1098686     1  0.3123     0.6495 0.844 0.000 0.000 0.156
#> SRR1434228     4  0.3764     0.7299 0.216 0.000 0.000 0.784
#> SRR1467149     1  0.1716     0.6621 0.936 0.000 0.064 0.000
#> SRR1399113     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1476507     3  0.8569     0.4141 0.152 0.268 0.500 0.080
#> SRR1092468     1  0.1716     0.6621 0.936 0.000 0.064 0.000
#> SRR1441804     1  0.3123     0.6495 0.844 0.000 0.000 0.156
#> SRR1326100     3  0.6586     0.1602 0.000 0.420 0.500 0.080
#> SRR1398815     1  0.4981     0.0722 0.536 0.000 0.000 0.464
#> SRR1436021     3  0.7083     0.4621 0.120 0.268 0.596 0.016
#> SRR1480083     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.3610     0.6188 0.800 0.000 0.000 0.200
#> SRR815542      1  0.1637     0.6840 0.940 0.000 0.000 0.060
#> SRR1400100     3  0.6988     0.4619 0.112 0.268 0.604 0.016
#> SRR1312002     4  0.4907     0.5136 0.176 0.000 0.060 0.764
#> SRR1470253     4  0.6120     0.5504 0.296 0.000 0.076 0.628
#> SRR1414332     1  0.4925     0.0959 0.572 0.000 0.000 0.428
#> SRR1069209     4  0.3801     0.7292 0.220 0.000 0.000 0.780
#> SRR661052      1  0.0592     0.6889 0.984 0.000 0.000 0.016
#> SRR1308860     1  0.3123     0.6495 0.844 0.000 0.000 0.156
#> SRR1421159     3  0.8217     0.4125 0.116 0.268 0.536 0.080
#> SRR1340943     1  0.0524     0.6866 0.988 0.000 0.004 0.008
#> SRR1078855     4  0.3764     0.7299 0.216 0.000 0.000 0.784
#> SRR1459465     2  0.1610     0.8739 0.000 0.952 0.032 0.016
#> SRR816818      2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1478679     4  0.7726    -0.0295 0.228 0.000 0.368 0.404
#> SRR1350979     3  0.4775     0.5428 0.076 0.000 0.784 0.140
#> SRR1458198     1  0.0000     0.6880 1.000 0.000 0.000 0.000
#> SRR1386910     3  0.7882     0.2449 0.176 0.336 0.472 0.016
#> SRR1465375     1  0.8022     0.1027 0.584 0.192 0.144 0.080
#> SRR1323699     4  0.4158     0.4690 0.008 0.000 0.224 0.768
#> SRR1431139     1  0.5273    -0.0499 0.536 0.000 0.456 0.008
#> SRR1373964     3  0.3300     0.5475 0.008 0.000 0.848 0.144
#> SRR1455413     1  0.1716     0.6621 0.936 0.000 0.064 0.000
#> SRR1437163     1  0.0657     0.6881 0.984 0.000 0.004 0.012
#> SRR1347343     3  0.3486     0.5258 0.000 0.000 0.812 0.188
#> SRR1465480     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0188     0.6883 0.996 0.000 0.000 0.004
#> SRR1086514     3  0.8166     0.4054 0.108 0.276 0.536 0.080
#> SRR1430928     1  0.3528     0.6261 0.808 0.000 0.000 0.192
#> SRR1310939     3  0.7443     0.2856 0.392 0.000 0.436 0.172
#> SRR1344294     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.4830     0.2897 0.608 0.000 0.000 0.392
#> SRR1468118     1  0.4977     0.0319 0.540 0.000 0.460 0.000
#> SRR1486348     1  0.3610     0.6188 0.800 0.000 0.000 0.200
#> SRR1488770     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.4843     0.2051 0.604 0.000 0.000 0.396
#> SRR1456611     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.4072     0.4061 0.748 0.000 0.000 0.252
#> SRR1500089     1  0.1867     0.6616 0.928 0.000 0.072 0.000
#> SRR1441178     4  0.3764     0.7299 0.216 0.000 0.000 0.784
#> SRR1381396     1  0.3942     0.5819 0.764 0.000 0.000 0.236
#> SRR1096081     3  0.7067     0.4697 0.188 0.000 0.568 0.244
#> SRR1349809     1  0.7161     0.4291 0.592 0.200 0.200 0.008
#> SRR1324314     4  0.5648     0.6250 0.252 0.000 0.064 0.684
#> SRR1092444     1  0.2469     0.6267 0.892 0.000 0.000 0.108
#> SRR1382553     4  0.5594     0.5900 0.164 0.000 0.112 0.724
#> SRR1075530     3  0.8217     0.4125 0.116 0.268 0.536 0.080
#> SRR1442612     3  0.2921     0.5463 0.000 0.000 0.860 0.140
#> SRR1360056     4  0.7780     0.3200 0.272 0.000 0.300 0.428
#> SRR1078164     4  0.3764     0.7299 0.216 0.000 0.000 0.784
#> SRR1434545     1  0.1388     0.6785 0.960 0.028 0.000 0.012
#> SRR1398251     4  0.3982     0.7294 0.220 0.000 0.004 0.776
#> SRR1375866     4  0.4431     0.6112 0.304 0.000 0.000 0.696
#> SRR1091645     3  0.8515     0.4193 0.152 0.268 0.504 0.076
#> SRR1416636     3  0.4969     0.5450 0.088 0.000 0.772 0.140
#> SRR1105441     3  0.6988     0.4619 0.112 0.268 0.604 0.016
#> SRR1082496     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.6015     0.3533 0.000 0.268 0.652 0.080
#> SRR1093697     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.4996     0.1391 0.484 0.000 0.516 0.000
#> SRR1076120     1  0.1867     0.6570 0.928 0.000 0.072 0.000
#> SRR1074410     1  0.4992     0.0278 0.524 0.000 0.000 0.476
#> SRR1340345     3  0.9165     0.2910 0.256 0.268 0.396 0.080
#> SRR1069514     3  0.7290     0.4351 0.012 0.264 0.572 0.152
#> SRR1092636     3  0.4843     0.3602 0.396 0.000 0.604 0.000
#> SRR1365013     3  0.8240     0.4156 0.120 0.264 0.536 0.080
#> SRR1073069     4  0.4098     0.7276 0.204 0.000 0.012 0.784
#> SRR1443137     4  0.3764     0.7299 0.216 0.000 0.000 0.784
#> SRR1437143     2  0.0000     0.9137 0.000 1.000 0.000 0.000
#> SRR1091990     4  0.3801     0.7263 0.220 0.000 0.000 0.780
#> SRR820234      2  0.5966     0.4996 0.000 0.648 0.280 0.072
#> SRR1338079     1  0.3528     0.6261 0.808 0.000 0.000 0.192
#> SRR1390094     1  0.6723     0.1688 0.600 0.000 0.260 0.140
#> SRR1340721     1  0.3498     0.6534 0.832 0.000 0.008 0.160
#> SRR1335964     3  0.4605     0.4599 0.336 0.000 0.664 0.000
#> SRR1086869     3  0.4564     0.4623 0.328 0.000 0.672 0.000
#> SRR1453434     1  0.3444     0.6318 0.816 0.000 0.000 0.184
#> SRR1402261     1  0.2048     0.6581 0.928 0.000 0.064 0.008
#> SRR657809      1  0.9210    -0.2962 0.380 0.268 0.272 0.080
#> SRR1093075     4  0.4994     0.2031 0.480 0.000 0.000 0.520
#> SRR1433329     4  0.3764     0.7299 0.216 0.000 0.000 0.784
#> SRR1353418     4  0.6077     0.0715 0.044 0.000 0.460 0.496
#> SRR1092913     1  0.9219    -0.3456 0.376 0.268 0.276 0.080

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      3  0.2471     0.7489 0.136 0.000 0.864 0.000 0.000
#> SRR1335605     1  0.1364     0.8329 0.952 0.000 0.000 0.012 0.036
#> SRR1432014     5  0.0955     0.8181 0.000 0.000 0.004 0.028 0.968
#> SRR1499215     3  0.2605     0.7240 0.000 0.000 0.852 0.000 0.148
#> SRR1460409     1  0.0880     0.8349 0.968 0.000 0.000 0.000 0.032
#> SRR1086441     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1097344     4  0.0992     0.8923 0.008 0.000 0.000 0.968 0.024
#> SRR1081789     4  0.0162     0.9018 0.000 0.000 0.000 0.996 0.004
#> SRR1453005     4  0.0162     0.9015 0.000 0.004 0.000 0.996 0.000
#> SRR1366985     3  0.2516     0.7279 0.000 0.000 0.860 0.000 0.140
#> SRR815280      3  0.1121     0.8104 0.044 0.000 0.956 0.000 0.000
#> SRR1348531     1  0.0880     0.8349 0.968 0.000 0.000 0.000 0.032
#> SRR815845      5  0.2929     0.7499 0.000 0.000 0.000 0.180 0.820
#> SRR1471178     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1080696     5  0.0794     0.8195 0.000 0.000 0.000 0.028 0.972
#> SRR1078684     5  0.5218     0.1421 0.424 0.000 0.004 0.036 0.536
#> SRR1317751     5  0.2798     0.8385 0.140 0.000 0.000 0.008 0.852
#> SRR1435667     5  0.0955     0.8181 0.000 0.000 0.004 0.028 0.968
#> SRR1097905     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1456548     1  0.0794     0.8355 0.972 0.000 0.000 0.000 0.028
#> SRR1075126     1  0.2605     0.8081 0.852 0.000 0.148 0.000 0.000
#> SRR813108      4  0.0324     0.9015 0.000 0.004 0.000 0.992 0.004
#> SRR1479062     5  0.2798     0.8385 0.140 0.000 0.000 0.008 0.852
#> SRR1408703     5  0.3445     0.8358 0.140 0.000 0.000 0.036 0.824
#> SRR1332360     3  0.0162     0.8211 0.004 0.000 0.996 0.000 0.000
#> SRR1098686     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1434228     3  0.0000     0.8215 0.000 0.000 1.000 0.000 0.000
#> SRR1467149     1  0.0880     0.8349 0.968 0.000 0.000 0.000 0.032
#> SRR1399113     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0609     0.8976 0.000 0.000 0.000 0.980 0.020
#> SRR1092468     1  0.0794     0.8355 0.972 0.000 0.000 0.000 0.028
#> SRR1441804     1  0.2753     0.8129 0.856 0.000 0.136 0.000 0.008
#> SRR1326100     4  0.0671     0.8980 0.000 0.016 0.000 0.980 0.004
#> SRR1398815     3  0.4307    -0.1654 0.500 0.000 0.500 0.000 0.000
#> SRR1436021     4  0.0451     0.9016 0.008 0.000 0.000 0.988 0.004
#> SRR1480083     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR815542      1  0.1597     0.8343 0.940 0.000 0.048 0.000 0.012
#> SRR1400100     4  0.1502     0.8656 0.056 0.000 0.000 0.940 0.004
#> SRR1312002     3  0.2516     0.7170 0.140 0.000 0.860 0.000 0.000
#> SRR1470253     3  0.2798     0.7124 0.140 0.000 0.852 0.000 0.008
#> SRR1414332     3  0.4306    -0.0393 0.492 0.000 0.508 0.000 0.000
#> SRR1069209     3  0.0000     0.8215 0.000 0.000 1.000 0.000 0.000
#> SRR661052      1  0.0798     0.8374 0.976 0.000 0.008 0.000 0.016
#> SRR1308860     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1421159     4  0.0162     0.9018 0.000 0.000 0.000 0.996 0.004
#> SRR1340943     1  0.1041     0.8339 0.964 0.000 0.000 0.004 0.032
#> SRR1078855     3  0.0000     0.8215 0.000 0.000 1.000 0.000 0.000
#> SRR1459465     2  0.3480     0.6630 0.000 0.752 0.000 0.248 0.000
#> SRR816818      2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     1  0.6906     0.0774 0.460 0.000 0.360 0.028 0.152
#> SRR1350979     5  0.0000     0.8259 0.000 0.000 0.000 0.000 1.000
#> SRR1458198     1  0.0880     0.8349 0.968 0.000 0.000 0.000 0.032
#> SRR1386910     4  0.6099     0.0385 0.424 0.124 0.000 0.452 0.000
#> SRR1465375     4  0.4878     0.1141 0.440 0.000 0.000 0.536 0.024
#> SRR1323699     3  0.2605     0.7240 0.000 0.000 0.852 0.000 0.148
#> SRR1431139     1  0.1251     0.8253 0.956 0.000 0.000 0.036 0.008
#> SRR1373964     5  0.0955     0.8181 0.000 0.000 0.004 0.028 0.968
#> SRR1455413     1  0.0880     0.8349 0.968 0.000 0.000 0.000 0.032
#> SRR1437163     1  0.0798     0.8368 0.976 0.000 0.000 0.008 0.016
#> SRR1347343     5  0.0955     0.8138 0.000 0.000 0.028 0.004 0.968
#> SRR1465480     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.0794     0.8355 0.972 0.000 0.000 0.000 0.028
#> SRR1086514     4  0.0162     0.9018 0.000 0.000 0.000 0.996 0.004
#> SRR1430928     1  0.2674     0.8096 0.856 0.000 0.140 0.000 0.004
#> SRR1310939     5  0.2561     0.8362 0.144 0.000 0.000 0.000 0.856
#> SRR1344294     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.4192     0.4042 0.596 0.000 0.404 0.000 0.000
#> SRR1468118     5  0.3661     0.6998 0.276 0.000 0.000 0.000 0.724
#> SRR1486348     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1488770     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.4304     0.0680 0.516 0.000 0.484 0.000 0.000
#> SRR1456611     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.4822     0.3297 0.616 0.000 0.352 0.000 0.032
#> SRR1500089     1  0.0880     0.8349 0.968 0.000 0.000 0.000 0.032
#> SRR1441178     3  0.0404     0.8198 0.012 0.000 0.988 0.000 0.000
#> SRR1381396     1  0.3143     0.7556 0.796 0.000 0.204 0.000 0.000
#> SRR1096081     5  0.2909     0.8349 0.140 0.000 0.012 0.000 0.848
#> SRR1349809     1  0.3326     0.7652 0.824 0.152 0.000 0.024 0.000
#> SRR1324314     3  0.2179     0.7649 0.112 0.000 0.888 0.000 0.000
#> SRR1092444     1  0.3616     0.6999 0.804 0.000 0.164 0.000 0.032
#> SRR1382553     3  0.4711     0.6899 0.116 0.000 0.736 0.000 0.148
#> SRR1075530     4  0.0000     0.9016 0.000 0.000 0.000 1.000 0.000
#> SRR1442612     5  0.0955     0.8181 0.000 0.000 0.004 0.028 0.968
#> SRR1360056     5  0.6157     0.3839 0.140 0.000 0.364 0.000 0.496
#> SRR1078164     3  0.0290     0.8206 0.008 0.000 0.992 0.000 0.000
#> SRR1434545     1  0.2707     0.7726 0.876 0.000 0.000 0.100 0.024
#> SRR1398251     3  0.0162     0.8202 0.000 0.000 0.996 0.000 0.004
#> SRR1375866     3  0.2377     0.7557 0.128 0.000 0.872 0.000 0.000
#> SRR1091645     4  0.1082     0.8906 0.008 0.000 0.000 0.964 0.028
#> SRR1416636     5  0.0609     0.8322 0.020 0.000 0.000 0.000 0.980
#> SRR1105441     4  0.0162     0.9018 0.000 0.000 0.000 0.996 0.004
#> SRR1082496     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     4  0.1270     0.8747 0.000 0.000 0.000 0.948 0.052
#> SRR1093697     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.2798     0.8385 0.140 0.000 0.000 0.008 0.852
#> SRR1076120     1  0.0880     0.8349 0.968 0.000 0.000 0.000 0.032
#> SRR1074410     3  0.4297    -0.0718 0.472 0.000 0.528 0.000 0.000
#> SRR1340345     4  0.0693     0.8988 0.012 0.000 0.000 0.980 0.008
#> SRR1069514     4  0.2471     0.7927 0.000 0.000 0.000 0.864 0.136
#> SRR1092636     5  0.2798     0.8385 0.140 0.000 0.000 0.008 0.852
#> SRR1365013     4  0.0566     0.9007 0.012 0.000 0.000 0.984 0.004
#> SRR1073069     3  0.0000     0.8215 0.000 0.000 1.000 0.000 0.000
#> SRR1443137     3  0.0000     0.8215 0.000 0.000 1.000 0.000 0.000
#> SRR1437143     2  0.0000     0.9739 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     3  0.0794     0.8146 0.028 0.000 0.972 0.000 0.000
#> SRR820234      4  0.2286     0.8155 0.000 0.108 0.000 0.888 0.004
#> SRR1338079     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1390094     1  0.3876     0.4247 0.684 0.000 0.000 0.000 0.316
#> SRR1340721     1  0.2516     0.8092 0.860 0.000 0.140 0.000 0.000
#> SRR1335964     5  0.2798     0.8385 0.140 0.000 0.000 0.008 0.852
#> SRR1086869     5  0.2798     0.8385 0.140 0.000 0.000 0.008 0.852
#> SRR1453434     1  0.2763     0.8088 0.848 0.000 0.148 0.000 0.004
#> SRR1402261     1  0.1082     0.8342 0.964 0.000 0.000 0.008 0.028
#> SRR657809      4  0.0404     0.9000 0.012 0.000 0.000 0.988 0.000
#> SRR1093075     3  0.4074     0.3265 0.364 0.000 0.636 0.000 0.000
#> SRR1433329     3  0.0000     0.8215 0.000 0.000 1.000 0.000 0.000
#> SRR1353418     5  0.1851     0.7833 0.000 0.000 0.088 0.000 0.912
#> SRR1092913     4  0.1741     0.8678 0.040 0.000 0.000 0.936 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.3934     0.5298 0.708 0.000 0.032 0.000 0.000 0.260
#> SRR1335605     5  0.4168     0.7092 0.256 0.000 0.000 0.048 0.696 0.000
#> SRR1432014     3  0.3539     0.6927 0.000 0.000 0.756 0.024 0.220 0.000
#> SRR1499215     3  0.3864     0.2480 0.000 0.000 0.520 0.000 0.000 0.480
#> SRR1460409     5  0.4289     0.5099 0.444 0.000 0.012 0.000 0.540 0.004
#> SRR1086441     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1097344     4  0.2768     0.8192 0.000 0.000 0.156 0.832 0.012 0.000
#> SRR1081789     4  0.0551     0.8411 0.008 0.000 0.004 0.984 0.004 0.000
#> SRR1453005     4  0.2768     0.8192 0.000 0.000 0.156 0.832 0.012 0.000
#> SRR1366985     6  0.0146     0.8198 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR815280      1  0.3853     0.4612 0.680 0.000 0.016 0.000 0.000 0.304
#> SRR1348531     5  0.3672     0.6250 0.368 0.000 0.000 0.000 0.632 0.000
#> SRR815845      4  0.4798     0.4277 0.000 0.004 0.236 0.664 0.096 0.000
#> SRR1471178     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1080696     3  0.3539     0.6927 0.000 0.000 0.756 0.024 0.220 0.000
#> SRR1078684     3  0.7073     0.3787 0.172 0.000 0.476 0.168 0.184 0.000
#> SRR1317751     5  0.3368     0.3861 0.000 0.000 0.232 0.012 0.756 0.000
#> SRR1435667     3  0.3991     0.6871 0.000 0.000 0.756 0.088 0.156 0.000
#> SRR1097905     1  0.0790     0.7623 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR1456548     5  0.3371     0.7043 0.292 0.000 0.000 0.000 0.708 0.000
#> SRR1075126     1  0.2748     0.7218 0.848 0.000 0.000 0.000 0.024 0.128
#> SRR813108      4  0.0291     0.8410 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1479062     5  0.1257     0.6103 0.000 0.000 0.028 0.020 0.952 0.000
#> SRR1408703     5  0.3860     0.3410 0.000 0.000 0.236 0.036 0.728 0.000
#> SRR1332360     6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1098686     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1434228     6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1467149     5  0.3101     0.7240 0.244 0.000 0.000 0.000 0.756 0.000
#> SRR1399113     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.0909     0.8407 0.000 0.000 0.012 0.968 0.020 0.000
#> SRR1092468     5  0.3672     0.6250 0.368 0.000 0.000 0.000 0.632 0.000
#> SRR1441804     1  0.2793     0.5864 0.800 0.000 0.000 0.000 0.200 0.000
#> SRR1326100     4  0.0777     0.8400 0.000 0.024 0.000 0.972 0.004 0.000
#> SRR1398815     1  0.3956     0.6342 0.760 0.000 0.088 0.000 0.000 0.152
#> SRR1436021     4  0.0777     0.8353 0.000 0.000 0.004 0.972 0.024 0.000
#> SRR1480083     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR815542      1  0.2823     0.5304 0.796 0.000 0.000 0.000 0.204 0.000
#> SRR1400100     4  0.2520     0.7114 0.000 0.000 0.004 0.844 0.152 0.000
#> SRR1312002     6  0.0146     0.8203 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1470253     6  0.0937     0.7991 0.000 0.000 0.000 0.000 0.040 0.960
#> SRR1414332     1  0.2798     0.7076 0.852 0.000 0.036 0.000 0.000 0.112
#> SRR1069209     6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR661052      1  0.3868    -0.4095 0.504 0.000 0.000 0.000 0.496 0.000
#> SRR1308860     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1421159     4  0.0291     0.8410 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1340943     5  0.3713     0.7078 0.284 0.000 0.004 0.008 0.704 0.000
#> SRR1078855     6  0.3774     0.1737 0.408 0.000 0.000 0.000 0.000 0.592
#> SRR1459465     2  0.2631     0.7582 0.000 0.820 0.000 0.180 0.000 0.000
#> SRR816818      2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.5940     0.4254 0.032 0.000 0.524 0.116 0.000 0.328
#> SRR1350979     3  0.3843     0.5062 0.000 0.000 0.548 0.000 0.452 0.000
#> SRR1458198     5  0.3371     0.7043 0.292 0.000 0.000 0.000 0.708 0.000
#> SRR1386910     4  0.5523     0.4617 0.040 0.292 0.048 0.608 0.012 0.000
#> SRR1465375     4  0.3857     0.6745 0.160 0.000 0.004 0.772 0.064 0.000
#> SRR1323699     3  0.3864     0.2480 0.000 0.000 0.520 0.000 0.000 0.480
#> SRR1431139     5  0.5223     0.6297 0.200 0.000 0.004 0.168 0.628 0.000
#> SRR1373964     3  0.3991     0.6493 0.000 0.000 0.756 0.156 0.088 0.000
#> SRR1455413     5  0.3076     0.7248 0.240 0.000 0.000 0.000 0.760 0.000
#> SRR1437163     1  0.4034     0.1384 0.652 0.000 0.000 0.020 0.328 0.000
#> SRR1347343     3  0.3614     0.6829 0.000 0.000 0.752 0.000 0.220 0.028
#> SRR1465480     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     5  0.3409     0.6991 0.300 0.000 0.000 0.000 0.700 0.000
#> SRR1086514     4  0.0291     0.8410 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1430928     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310939     5  0.1714     0.5843 0.000 0.000 0.092 0.000 0.908 0.000
#> SRR1344294     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.2907     0.7257 0.828 0.000 0.000 0.000 0.020 0.152
#> SRR1468118     5  0.3457     0.4045 0.016 0.000 0.232 0.000 0.752 0.000
#> SRR1486348     1  0.0000     0.7732 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1863     0.7351 0.896 0.000 0.000 0.000 0.000 0.104
#> SRR1456611     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     5  0.5107     0.6758 0.132 0.000 0.088 0.000 0.708 0.072
#> SRR1500089     5  0.3198     0.7220 0.260 0.000 0.000 0.000 0.740 0.000
#> SRR1441178     6  0.2199     0.7733 0.020 0.000 0.088 0.000 0.000 0.892
#> SRR1381396     1  0.2554     0.7507 0.880 0.000 0.088 0.000 0.020 0.012
#> SRR1096081     5  0.3314     0.3586 0.000 0.000 0.256 0.000 0.740 0.004
#> SRR1349809     1  0.6019     0.2129 0.496 0.332 0.000 0.152 0.020 0.000
#> SRR1324314     6  0.1411     0.7747 0.060 0.000 0.000 0.000 0.004 0.936
#> SRR1092444     5  0.4989     0.6876 0.156 0.000 0.088 0.000 0.708 0.048
#> SRR1382553     3  0.4331     0.2641 0.020 0.000 0.516 0.000 0.000 0.464
#> SRR1075530     4  0.2768     0.8192 0.000 0.000 0.156 0.832 0.012 0.000
#> SRR1442612     3  0.3539     0.6927 0.000 0.000 0.756 0.024 0.220 0.000
#> SRR1360056     6  0.5651     0.0816 0.000 0.000 0.164 0.000 0.344 0.492
#> SRR1078164     6  0.3175     0.7317 0.080 0.000 0.088 0.000 0.000 0.832
#> SRR1434545     5  0.6111     0.5898 0.192 0.000 0.156 0.064 0.588 0.000
#> SRR1398251     6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1375866     6  0.4507     0.6410 0.156 0.000 0.088 0.000 0.020 0.736
#> SRR1091645     4  0.3176     0.8110 0.000 0.000 0.156 0.812 0.032 0.000
#> SRR1416636     3  0.3857     0.3834 0.000 0.000 0.532 0.000 0.468 0.000
#> SRR1105441     4  0.0291     0.8410 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1082496     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     4  0.0405     0.8401 0.000 0.000 0.004 0.988 0.008 0.000
#> SRR1093697     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.0909     0.6107 0.000 0.000 0.020 0.012 0.968 0.000
#> SRR1076120     5  0.3351     0.7071 0.288 0.000 0.000 0.000 0.712 0.000
#> SRR1074410     1  0.5204     0.4948 0.632 0.000 0.088 0.000 0.020 0.260
#> SRR1340345     4  0.2768     0.8192 0.000 0.000 0.156 0.832 0.012 0.000
#> SRR1069514     4  0.3997    -0.0554 0.000 0.000 0.488 0.508 0.004 0.000
#> SRR1092636     5  0.0909     0.6107 0.000 0.000 0.020 0.012 0.968 0.000
#> SRR1365013     4  0.0291     0.8410 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1073069     6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1443137     6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1437143     2  0.0000     0.9781 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     6  0.3551     0.6793 0.168 0.000 0.048 0.000 0.000 0.784
#> SRR820234      4  0.3276     0.6867 0.000 0.228 0.004 0.764 0.004 0.000
#> SRR1338079     1  0.1807     0.7618 0.920 0.000 0.060 0.000 0.020 0.000
#> SRR1390094     5  0.4173     0.7205 0.228 0.000 0.060 0.000 0.712 0.000
#> SRR1340721     1  0.0547     0.7661 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1335964     5  0.2830     0.5991 0.000 0.000 0.020 0.144 0.836 0.000
#> SRR1086869     5  0.3368     0.3861 0.000 0.000 0.232 0.012 0.756 0.000
#> SRR1453434     1  0.3315     0.6954 0.804 0.000 0.000 0.000 0.040 0.156
#> SRR1402261     5  0.3874     0.7105 0.276 0.000 0.012 0.008 0.704 0.000
#> SRR657809      4  0.2768     0.8192 0.000 0.000 0.156 0.832 0.012 0.000
#> SRR1093075     1  0.3797     0.2745 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR1433329     6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1353418     6  0.5609     0.1376 0.000 0.000 0.236 0.000 0.220 0.544
#> SRR1092913     4  0.2909     0.8180 0.004 0.000 0.156 0.828 0.012 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.752           0.926       0.949         0.4378 0.550   0.550
#> 3 3 0.713           0.808       0.913         0.3885 0.856   0.740
#> 4 4 0.774           0.857       0.925         0.1355 0.787   0.544
#> 5 5 0.637           0.625       0.801         0.0706 0.930   0.785
#> 6 6 0.773           0.715       0.823         0.0700 0.877   0.589

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.2603     0.9494 0.956 0.044
#> SRR1335605     2  0.0376     0.9647 0.004 0.996
#> SRR1432014     2  0.0376     0.9647 0.004 0.996
#> SRR1499215     2  0.0376     0.9647 0.004 0.996
#> SRR1460409     1  0.2603     0.9494 0.956 0.044
#> SRR1086441     1  0.2603     0.9494 0.956 0.044
#> SRR1097344     2  0.0000     0.9644 0.000 1.000
#> SRR1081789     2  0.0000     0.9644 0.000 1.000
#> SRR1453005     2  0.0000     0.9644 0.000 1.000
#> SRR1366985     2  0.0376     0.9647 0.004 0.996
#> SRR815280      1  0.6531     0.8900 0.832 0.168
#> SRR1348531     1  0.2778     0.9484 0.952 0.048
#> SRR815845      2  0.0000     0.9644 0.000 1.000
#> SRR1471178     1  0.2603     0.9494 0.956 0.044
#> SRR1080696     2  0.0376     0.9647 0.004 0.996
#> SRR1078684     2  0.0376     0.9647 0.004 0.996
#> SRR1317751     2  0.0376     0.9647 0.004 0.996
#> SRR1435667     2  0.0000     0.9644 0.000 1.000
#> SRR1097905     1  0.3114     0.9459 0.944 0.056
#> SRR1456548     1  0.2603     0.9494 0.956 0.044
#> SRR1075126     1  0.2603     0.9494 0.956 0.044
#> SRR813108      2  0.2603     0.9377 0.044 0.956
#> SRR1479062     2  0.0376     0.9647 0.004 0.996
#> SRR1408703     2  0.0376     0.9647 0.004 0.996
#> SRR1332360     1  0.6531     0.8900 0.832 0.168
#> SRR1098686     1  0.2603     0.9494 0.956 0.044
#> SRR1434228     2  0.6801     0.7507 0.180 0.820
#> SRR1467149     2  0.5519     0.8450 0.128 0.872
#> SRR1399113     2  0.2603     0.9377 0.044 0.956
#> SRR1476507     2  0.0000     0.9644 0.000 1.000
#> SRR1092468     2  0.4815     0.8728 0.104 0.896
#> SRR1441804     1  0.2603     0.9494 0.956 0.044
#> SRR1326100     2  0.2603     0.9377 0.044 0.956
#> SRR1398815     1  0.2603     0.9494 0.956 0.044
#> SRR1436021     2  0.0000     0.9644 0.000 1.000
#> SRR1480083     2  0.2603     0.9377 0.044 0.956
#> SRR1472863     1  0.6531     0.8900 0.832 0.168
#> SRR815542      1  0.2603     0.9494 0.956 0.044
#> SRR1400100     2  0.0000     0.9644 0.000 1.000
#> SRR1312002     2  0.0376     0.9647 0.004 0.996
#> SRR1470253     2  0.0376     0.9647 0.004 0.996
#> SRR1414332     1  0.2603     0.9494 0.956 0.044
#> SRR1069209     1  0.6623     0.8860 0.828 0.172
#> SRR661052      1  0.2603     0.9494 0.956 0.044
#> SRR1308860     1  0.2603     0.9494 0.956 0.044
#> SRR1421159     2  0.0000     0.9644 0.000 1.000
#> SRR1340943     2  0.2948     0.9264 0.052 0.948
#> SRR1078855     1  0.6531     0.8900 0.832 0.168
#> SRR1459465     2  0.2603     0.9377 0.044 0.956
#> SRR816818      2  0.2603     0.9377 0.044 0.956
#> SRR1478679     2  0.0376     0.9647 0.004 0.996
#> SRR1350979     2  0.0376     0.9647 0.004 0.996
#> SRR1458198     2  0.5519     0.8450 0.128 0.872
#> SRR1386910     2  0.0000     0.9644 0.000 1.000
#> SRR1465375     2  0.0376     0.9647 0.004 0.996
#> SRR1323699     2  0.0376     0.9647 0.004 0.996
#> SRR1431139     2  0.0376     0.9647 0.004 0.996
#> SRR1373964     2  0.0376     0.9647 0.004 0.996
#> SRR1455413     2  0.0376     0.9647 0.004 0.996
#> SRR1437163     1  0.3431     0.9429 0.936 0.064
#> SRR1347343     2  0.0376     0.9647 0.004 0.996
#> SRR1465480     2  0.2603     0.9377 0.044 0.956
#> SRR1489631     1  0.2603     0.9494 0.956 0.044
#> SRR1086514     2  0.0000     0.9644 0.000 1.000
#> SRR1430928     1  0.2603     0.9494 0.956 0.044
#> SRR1310939     2  0.0376     0.9647 0.004 0.996
#> SRR1344294     2  0.2603     0.9377 0.044 0.956
#> SRR1099402     1  0.2603     0.9494 0.956 0.044
#> SRR1468118     2  0.0376     0.9647 0.004 0.996
#> SRR1486348     1  0.2603     0.9494 0.956 0.044
#> SRR1488770     2  0.2603     0.9377 0.044 0.956
#> SRR1083732     1  0.2603     0.9494 0.956 0.044
#> SRR1456611     2  0.2603     0.9377 0.044 0.956
#> SRR1080318     1  0.2603     0.9494 0.956 0.044
#> SRR1500089     2  0.5519     0.8450 0.128 0.872
#> SRR1441178     1  0.6531     0.8900 0.832 0.168
#> SRR1381396     1  0.2603     0.9494 0.956 0.044
#> SRR1096081     2  0.0376     0.9647 0.004 0.996
#> SRR1349809     2  0.0000     0.9644 0.000 1.000
#> SRR1324314     2  0.1184     0.9563 0.016 0.984
#> SRR1092444     1  0.3274     0.9418 0.940 0.060
#> SRR1382553     2  0.0376     0.9647 0.004 0.996
#> SRR1075530     2  0.0000     0.9644 0.000 1.000
#> SRR1442612     2  0.0376     0.9647 0.004 0.996
#> SRR1360056     2  0.0376     0.9647 0.004 0.996
#> SRR1078164     1  0.6531     0.8900 0.832 0.168
#> SRR1434545     2  0.0376     0.9647 0.004 0.996
#> SRR1398251     2  0.9896     0.0575 0.440 0.560
#> SRR1375866     1  0.6343     0.8953 0.840 0.160
#> SRR1091645     2  0.0000     0.9644 0.000 1.000
#> SRR1416636     2  0.0376     0.9647 0.004 0.996
#> SRR1105441     2  0.0000     0.9644 0.000 1.000
#> SRR1082496     2  0.2603     0.9377 0.044 0.956
#> SRR1315353     2  0.0000     0.9644 0.000 1.000
#> SRR1093697     2  0.2603     0.9377 0.044 0.956
#> SRR1077429     2  0.0376     0.9647 0.004 0.996
#> SRR1076120     2  0.0672     0.9626 0.008 0.992
#> SRR1074410     1  0.2603     0.9494 0.956 0.044
#> SRR1340345     2  0.0000     0.9644 0.000 1.000
#> SRR1069514     2  0.0000     0.9644 0.000 1.000
#> SRR1092636     2  0.0376     0.9647 0.004 0.996
#> SRR1365013     2  0.0000     0.9644 0.000 1.000
#> SRR1073069     1  0.8955     0.6758 0.688 0.312
#> SRR1443137     1  0.6531     0.8900 0.832 0.168
#> SRR1437143     2  0.2603     0.9377 0.044 0.956
#> SRR1091990     1  0.6247     0.8976 0.844 0.156
#> SRR820234      2  0.2603     0.9377 0.044 0.956
#> SRR1338079     1  0.2603     0.9494 0.956 0.044
#> SRR1390094     2  0.0376     0.9647 0.004 0.996
#> SRR1340721     2  0.9896     0.0601 0.440 0.560
#> SRR1335964     2  0.0376     0.9647 0.004 0.996
#> SRR1086869     2  0.0376     0.9647 0.004 0.996
#> SRR1453434     1  0.2603     0.9494 0.956 0.044
#> SRR1402261     2  0.4690     0.8774 0.100 0.900
#> SRR657809      2  0.0000     0.9644 0.000 1.000
#> SRR1093075     1  0.6531     0.8900 0.832 0.168
#> SRR1433329     1  0.6712     0.8817 0.824 0.176
#> SRR1353418     2  0.0376     0.9647 0.004 0.996
#> SRR1092913     2  0.0000     0.9644 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1335605     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1432014     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1499215     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1460409     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1097344     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1081789     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1453005     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1366985     3  0.0747     0.8355 0.016 0.000 0.984
#> SRR815280      1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1348531     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR815845      3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1471178     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1080696     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1078684     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1317751     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1435667     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1097905     1  0.5178     0.5999 0.744 0.000 0.256
#> SRR1456548     1  0.0747     0.9261 0.984 0.000 0.016
#> SRR1075126     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR813108      2  0.5098     0.5837 0.000 0.752 0.248
#> SRR1479062     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1408703     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1332360     1  0.0747     0.9280 0.984 0.000 0.016
#> SRR1098686     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1434228     3  0.6225     0.0848 0.432 0.000 0.568
#> SRR1467149     3  0.0661     0.8415 0.008 0.004 0.988
#> SRR1399113     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1476507     3  0.5948     0.5759 0.000 0.360 0.640
#> SRR1092468     3  0.0237     0.8437 0.004 0.000 0.996
#> SRR1441804     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1326100     2  0.0892     0.9309 0.000 0.980 0.020
#> SRR1398815     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1436021     3  0.5948     0.5759 0.000 0.360 0.640
#> SRR1480083     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1472863     1  0.5178     0.6044 0.744 0.000 0.256
#> SRR815542      1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1400100     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1312002     3  0.1860     0.8012 0.052 0.000 0.948
#> SRR1470253     3  0.0424     0.8421 0.008 0.000 0.992
#> SRR1414332     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1069209     1  0.4605     0.7243 0.796 0.000 0.204
#> SRR661052      1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1308860     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1421159     3  0.5948     0.5759 0.000 0.360 0.640
#> SRR1340943     3  0.5378     0.6939 0.008 0.236 0.756
#> SRR1078855     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1478679     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1350979     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1458198     3  0.3038     0.7740 0.104 0.000 0.896
#> SRR1386910     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1465375     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1323699     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1431139     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1373964     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1455413     3  0.0424     0.8421 0.008 0.000 0.992
#> SRR1437163     1  0.8794    -0.1334 0.448 0.112 0.440
#> SRR1347343     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1465480     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1489631     1  0.0892     0.9221 0.980 0.000 0.020
#> SRR1086514     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1430928     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1310939     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1344294     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1468118     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1486348     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1500089     3  0.0424     0.8421 0.008 0.000 0.992
#> SRR1441178     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1096081     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1349809     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1324314     3  0.4605     0.6147 0.204 0.000 0.796
#> SRR1092444     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1382553     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1075530     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1442612     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1360056     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1078164     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1434545     3  0.6229     0.5926 0.008 0.340 0.652
#> SRR1398251     1  0.5529     0.5821 0.704 0.000 0.296
#> SRR1375866     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1091645     3  0.5948     0.5759 0.000 0.360 0.640
#> SRR1416636     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1105441     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1082496     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1315353     3  0.4291     0.7415 0.000 0.180 0.820
#> SRR1093697     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1077429     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1076120     3  0.0424     0.8421 0.008 0.000 0.992
#> SRR1074410     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1340345     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1069514     3  0.0237     0.8441 0.000 0.004 0.996
#> SRR1092636     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1365013     3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1073069     1  0.4796     0.7025 0.780 0.000 0.220
#> SRR1443137     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1437143     2  0.0000     0.9490 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR820234      2  0.5016     0.6016 0.000 0.760 0.240
#> SRR1338079     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1390094     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1340721     3  0.6169     0.5724 0.004 0.360 0.636
#> SRR1335964     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1086869     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1453434     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1402261     3  0.5461     0.6870 0.008 0.244 0.748
#> SRR657809      3  0.5968     0.5706 0.000 0.364 0.636
#> SRR1093075     1  0.0000     0.9404 1.000 0.000 0.000
#> SRR1433329     1  0.0592     0.9314 0.988 0.000 0.012
#> SRR1353418     3  0.0000     0.8453 0.000 0.000 1.000
#> SRR1092913     3  0.5968     0.5706 0.000 0.364 0.636

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1335605     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1432014     3  0.0188     0.9294 0.000 0.000 0.996 0.004
#> SRR1499215     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1460409     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.1792     0.8839 0.000 0.000 0.068 0.932
#> SRR1081789     3  0.6916     0.3073 0.000 0.280 0.572 0.148
#> SRR1453005     4  0.6037     0.5565 0.000 0.304 0.068 0.628
#> SRR1366985     3  0.2345     0.8115 0.100 0.000 0.900 0.000
#> SRR815280      1  0.1637     0.9110 0.940 0.000 0.000 0.060
#> SRR1348531     1  0.1118     0.9192 0.964 0.000 0.036 0.000
#> SRR815845      3  0.0707     0.9229 0.000 0.000 0.980 0.020
#> SRR1471178     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1078684     3  0.0336     0.9297 0.000 0.000 0.992 0.008
#> SRR1317751     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1435667     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1097905     1  0.0336     0.9238 0.992 0.000 0.008 0.000
#> SRR1456548     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1075126     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR813108      2  0.3074     0.7310 0.000 0.848 0.152 0.000
#> SRR1479062     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1408703     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1332360     1  0.3168     0.8984 0.884 0.000 0.056 0.060
#> SRR1098686     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1434228     1  0.3168     0.8984 0.884 0.000 0.056 0.060
#> SRR1467149     1  0.3626     0.7959 0.812 0.000 0.184 0.004
#> SRR1399113     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.1792     0.8839 0.000 0.000 0.068 0.932
#> SRR1092468     3  0.4053     0.6141 0.228 0.000 0.768 0.004
#> SRR1441804     1  0.1557     0.9114 0.944 0.000 0.056 0.000
#> SRR1326100     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1436021     4  0.3400     0.8407 0.000 0.000 0.180 0.820
#> SRR1480083     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.2469     0.8764 0.892 0.000 0.108 0.000
#> SRR815542      1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1400100     3  0.1867     0.8714 0.000 0.000 0.928 0.072
#> SRR1312002     3  0.0707     0.9115 0.020 0.000 0.980 0.000
#> SRR1470253     1  0.4999     0.1825 0.508 0.000 0.492 0.000
#> SRR1414332     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.2739     0.9053 0.904 0.000 0.036 0.060
#> SRR661052      1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1308860     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1421159     3  0.4977     0.0423 0.000 0.000 0.540 0.460
#> SRR1340943     4  0.3356     0.8445 0.000 0.000 0.176 0.824
#> SRR1078855     1  0.1302     0.9158 0.956 0.000 0.000 0.044
#> SRR1459465     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1350979     3  0.0188     0.9294 0.000 0.000 0.996 0.004
#> SRR1458198     1  0.3725     0.8041 0.812 0.000 0.180 0.008
#> SRR1386910     2  0.6442    -0.1329 0.000 0.492 0.068 0.440
#> SRR1465375     4  0.2814     0.8719 0.000 0.000 0.132 0.868
#> SRR1323699     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1431139     3  0.0188     0.9294 0.000 0.000 0.996 0.004
#> SRR1373964     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1455413     1  0.3486     0.7982 0.812 0.000 0.188 0.000
#> SRR1437163     1  0.0188     0.9240 0.996 0.000 0.004 0.000
#> SRR1347343     3  0.0188     0.9294 0.000 0.000 0.996 0.004
#> SRR1465480     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1086514     4  0.4261     0.8209 0.000 0.112 0.068 0.820
#> SRR1430928     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1344294     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1486348     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.1022     0.9205 0.968 0.000 0.032 0.000
#> SRR1500089     1  0.3725     0.8041 0.812 0.000 0.180 0.008
#> SRR1441178     1  0.3168     0.8984 0.884 0.000 0.056 0.060
#> SRR1381396     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1096081     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1349809     2  0.4194     0.6307 0.000 0.800 0.172 0.028
#> SRR1324314     3  0.4193     0.5586 0.268 0.000 0.732 0.000
#> SRR1092444     1  0.3024     0.8418 0.852 0.000 0.148 0.000
#> SRR1382553     3  0.0469     0.9196 0.012 0.000 0.988 0.000
#> SRR1075530     4  0.1792     0.8839 0.000 0.000 0.068 0.932
#> SRR1442612     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1360056     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1078164     1  0.3168     0.8984 0.884 0.000 0.056 0.060
#> SRR1434545     4  0.3356     0.8445 0.000 0.000 0.176 0.824
#> SRR1398251     1  0.4114     0.8555 0.828 0.000 0.112 0.060
#> SRR1375866     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1091645     4  0.2081     0.8848 0.000 0.000 0.084 0.916
#> SRR1416636     3  0.0336     0.9297 0.000 0.000 0.992 0.008
#> SRR1105441     3  0.1940     0.8674 0.000 0.000 0.924 0.076
#> SRR1082496     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.4406     0.5253 0.000 0.000 0.700 0.300
#> SRR1093697     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1076120     1  0.3668     0.7975 0.808 0.000 0.188 0.004
#> SRR1074410     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1340345     4  0.1792     0.8839 0.000 0.000 0.068 0.932
#> SRR1069514     3  0.0592     0.9272 0.000 0.000 0.984 0.016
#> SRR1092636     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1365013     4  0.7042     0.6135 0.000 0.188 0.240 0.572
#> SRR1073069     1  0.3168     0.8984 0.884 0.000 0.056 0.060
#> SRR1443137     1  0.3168     0.8984 0.884 0.000 0.056 0.060
#> SRR1437143     2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.1637     0.9110 0.940 0.000 0.000 0.060
#> SRR820234      2  0.0000     0.9266 0.000 1.000 0.000 0.000
#> SRR1338079     1  0.0000     0.9240 1.000 0.000 0.000 0.000
#> SRR1390094     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1340721     1  0.7502     0.4264 0.548 0.264 0.176 0.012
#> SRR1335964     3  0.0469     0.9292 0.000 0.000 0.988 0.012
#> SRR1086869     3  0.0336     0.9297 0.000 0.000 0.992 0.008
#> SRR1453434     1  0.0921     0.9214 0.972 0.000 0.028 0.000
#> SRR1402261     4  0.3356     0.8445 0.000 0.000 0.176 0.824
#> SRR657809      4  0.2983     0.8712 0.000 0.040 0.068 0.892
#> SRR1093075     1  0.1388     0.9197 0.960 0.000 0.012 0.028
#> SRR1433329     1  0.3168     0.8984 0.884 0.000 0.056 0.060
#> SRR1353418     3  0.0000     0.9282 0.000 0.000 1.000 0.000
#> SRR1092913     4  0.1792     0.8839 0.000 0.000 0.068 0.932

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1335605     3  0.1341     0.5591 0.000 0.000 0.944 0.056 0.000
#> SRR1432014     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1499215     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1460409     1  0.0510     0.8476 0.984 0.000 0.000 0.016 0.000
#> SRR1086441     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1097344     4  0.1197     0.8436 0.000 0.000 0.048 0.952 0.000
#> SRR1081789     3  0.5936     0.1315 0.000 0.068 0.636 0.252 0.044
#> SRR1453005     4  0.4535     0.7828 0.000 0.096 0.068 0.792 0.044
#> SRR1366985     1  0.5295     0.0898 0.488 0.000 0.464 0.000 0.048
#> SRR815280      1  0.2690     0.8032 0.844 0.000 0.000 0.000 0.156
#> SRR1348531     1  0.0992     0.8446 0.968 0.000 0.008 0.024 0.000
#> SRR815845      3  0.1121     0.5801 0.000 0.000 0.956 0.000 0.044
#> SRR1471178     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1080696     3  0.4747    -0.0526 0.000 0.000 0.500 0.016 0.484
#> SRR1078684     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1317751     3  0.4747    -0.0622 0.000 0.000 0.496 0.016 0.488
#> SRR1435667     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1097905     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1456548     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1075126     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR813108      2  0.6541     0.4664 0.000 0.604 0.164 0.188 0.044
#> SRR1479062     3  0.4287     0.0102 0.000 0.000 0.540 0.000 0.460
#> SRR1408703     3  0.4305    -0.0432 0.000 0.000 0.512 0.000 0.488
#> SRR1332360     1  0.4249     0.6008 0.568 0.000 0.000 0.000 0.432
#> SRR1098686     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1434228     1  0.4256     0.5966 0.564 0.000 0.000 0.000 0.436
#> SRR1467149     1  0.7206     0.3070 0.556 0.000 0.152 0.192 0.100
#> SRR1399113     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.1197     0.8436 0.000 0.000 0.048 0.952 0.000
#> SRR1092468     1  0.6920     0.0703 0.484 0.000 0.332 0.152 0.032
#> SRR1441804     1  0.1310     0.8397 0.956 0.000 0.020 0.024 0.000
#> SRR1326100     2  0.1121     0.8826 0.000 0.956 0.000 0.000 0.044
#> SRR1398815     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1436021     4  0.3506     0.8142 0.000 0.000 0.132 0.824 0.044
#> SRR1480083     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.2377     0.7571 0.872 0.000 0.128 0.000 0.000
#> SRR815542      1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1400100     3  0.2446     0.5423 0.000 0.000 0.900 0.056 0.044
#> SRR1312002     3  0.4307     0.4251 0.100 0.000 0.772 0.000 0.128
#> SRR1470253     3  0.4747    -0.0875 0.488 0.000 0.496 0.000 0.016
#> SRR1414332     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1069209     1  0.4015     0.6779 0.652 0.000 0.000 0.000 0.348
#> SRR661052      1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1308860     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1421159     4  0.4777     0.6071 0.000 0.000 0.292 0.664 0.044
#> SRR1340943     4  0.3691     0.7415 0.000 0.000 0.156 0.804 0.040
#> SRR1078855     1  0.2329     0.8164 0.876 0.000 0.000 0.000 0.124
#> SRR1459465     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1350979     3  0.2179     0.5433 0.000 0.000 0.888 0.000 0.112
#> SRR1458198     1  0.6649     0.4137 0.600 0.000 0.148 0.196 0.056
#> SRR1386910     4  0.5113     0.7067 0.000 0.180 0.048 0.728 0.044
#> SRR1465375     4  0.2605     0.7817 0.000 0.000 0.148 0.852 0.000
#> SRR1323699     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1431139     3  0.0898     0.5962 0.008 0.000 0.972 0.000 0.020
#> SRR1373964     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1455413     1  0.6589     0.4173 0.604 0.000 0.196 0.148 0.052
#> SRR1437163     1  0.3246     0.6933 0.808 0.000 0.008 0.184 0.000
#> SRR1347343     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1465480     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1086514     4  0.3418     0.8256 0.000 0.028 0.068 0.860 0.044
#> SRR1430928     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1310939     3  0.4305    -0.0432 0.000 0.000 0.512 0.000 0.488
#> SRR1344294     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1468118     5  0.6383     0.6427 0.000 0.000 0.328 0.184 0.488
#> SRR1486348     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1488770     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.0703     0.8464 0.976 0.000 0.000 0.024 0.000
#> SRR1500089     5  0.7611     0.7187 0.144 0.000 0.152 0.192 0.512
#> SRR1441178     1  0.2732     0.8014 0.840 0.000 0.000 0.000 0.160
#> SRR1381396     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1096081     3  0.4747    -0.0622 0.000 0.000 0.496 0.016 0.488
#> SRR1349809     2  0.5764     0.3036 0.000 0.612 0.152 0.236 0.000
#> SRR1324314     3  0.4736     0.0400 0.404 0.000 0.576 0.000 0.020
#> SRR1092444     1  0.3498     0.7413 0.832 0.000 0.132 0.024 0.012
#> SRR1382553     3  0.1124     0.5834 0.036 0.000 0.960 0.000 0.004
#> SRR1075530     4  0.1197     0.8436 0.000 0.000 0.048 0.952 0.000
#> SRR1442612     3  0.0000     0.6041 0.000 0.000 1.000 0.000 0.000
#> SRR1360056     3  0.4302    -0.0265 0.000 0.000 0.520 0.000 0.480
#> SRR1078164     1  0.2732     0.8014 0.840 0.000 0.000 0.000 0.160
#> SRR1434545     4  0.3368     0.7591 0.000 0.000 0.156 0.820 0.024
#> SRR1398251     1  0.4262     0.5922 0.560 0.000 0.000 0.000 0.440
#> SRR1375866     1  0.0794     0.8466 0.972 0.000 0.000 0.000 0.028
#> SRR1091645     4  0.1792     0.8360 0.000 0.000 0.084 0.916 0.000
#> SRR1416636     3  0.4747    -0.0622 0.000 0.000 0.496 0.016 0.488
#> SRR1105441     3  0.1764     0.5660 0.000 0.000 0.928 0.064 0.008
#> SRR1082496     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     3  0.5113    -0.0244 0.000 0.000 0.576 0.380 0.044
#> SRR1093697     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     3  0.4305    -0.0432 0.000 0.000 0.512 0.000 0.488
#> SRR1076120     5  0.7585     0.7261 0.140 0.000 0.156 0.188 0.516
#> SRR1074410     1  0.0000     0.8491 1.000 0.000 0.000 0.000 0.000
#> SRR1340345     4  0.1197     0.8436 0.000 0.000 0.048 0.952 0.000
#> SRR1069514     3  0.1282     0.5779 0.000 0.000 0.952 0.004 0.044
#> SRR1092636     3  0.2074     0.5519 0.000 0.000 0.896 0.000 0.104
#> SRR1365013     4  0.5085     0.6051 0.000 0.008 0.300 0.648 0.044
#> SRR1073069     1  0.4256     0.5966 0.564 0.000 0.000 0.000 0.436
#> SRR1443137     1  0.3586     0.7414 0.736 0.000 0.000 0.000 0.264
#> SRR1437143     2  0.0000     0.9123 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.2732     0.8014 0.840 0.000 0.000 0.000 0.160
#> SRR820234      2  0.4969     0.6253 0.000 0.732 0.036 0.188 0.044
#> SRR1338079     1  0.0290     0.8491 0.992 0.000 0.000 0.008 0.000
#> SRR1390094     3  0.2966     0.3360 0.000 0.000 0.816 0.184 0.000
#> SRR1340721     1  0.7411     0.3054 0.536 0.120 0.156 0.188 0.000
#> SRR1335964     3  0.4305    -0.0432 0.000 0.000 0.512 0.000 0.488
#> SRR1086869     5  0.6422     0.6511 0.000 0.000 0.316 0.196 0.488
#> SRR1453434     1  0.0703     0.8464 0.976 0.000 0.000 0.024 0.000
#> SRR1402261     4  0.3615     0.7471 0.000 0.000 0.156 0.808 0.036
#> SRR657809      4  0.2308     0.8389 0.000 0.004 0.048 0.912 0.036
#> SRR1093075     1  0.1478     0.8372 0.936 0.000 0.000 0.000 0.064
#> SRR1433329     1  0.4256     0.5966 0.564 0.000 0.000 0.000 0.436
#> SRR1353418     3  0.4304    -0.0350 0.000 0.000 0.516 0.000 0.484
#> SRR1092913     4  0.1197     0.8436 0.000 0.000 0.048 0.952 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1335605     3  0.0146     0.7945 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1432014     3  0.0000     0.7944 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1499215     3  0.0000     0.7944 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1460409     1  0.0260     0.8905 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1086441     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1097344     4  0.0260     0.7946 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1081789     3  0.5320     0.4123 0.000 0.000 0.572 0.140 0.000 0.288
#> SRR1453005     4  0.6468     0.5140 0.000 0.064 0.144 0.504 0.000 0.288
#> SRR1366985     6  0.4845     0.3020 0.060 0.000 0.400 0.000 0.000 0.540
#> SRR815280      1  0.2092     0.8232 0.876 0.000 0.000 0.000 0.000 0.124
#> SRR1348531     1  0.0937     0.8795 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR815845      3  0.0777     0.7903 0.000 0.000 0.972 0.004 0.000 0.024
#> SRR1471178     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1080696     5  0.3266     0.6818 0.000 0.000 0.272 0.000 0.728 0.000
#> SRR1078684     3  0.0146     0.7945 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1317751     5  0.1663     0.8323 0.000 0.000 0.088 0.000 0.912 0.000
#> SRR1435667     3  0.0000     0.7944 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097905     1  0.0260     0.8905 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1456548     1  0.0146     0.8910 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1075126     1  0.0146     0.8910 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR813108      2  0.5737     0.3455 0.000 0.512 0.272 0.000 0.000 0.216
#> SRR1479062     5  0.2558     0.8084 0.000 0.000 0.156 0.004 0.840 0.000
#> SRR1408703     5  0.2912     0.7558 0.000 0.000 0.216 0.000 0.784 0.000
#> SRR1332360     6  0.3684     0.6661 0.372 0.000 0.000 0.000 0.000 0.628
#> SRR1098686     1  0.0146     0.8910 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1434228     6  0.3684     0.6661 0.372 0.000 0.000 0.000 0.000 0.628
#> SRR1467149     5  0.6146     0.2770 0.340 0.000 0.052 0.008 0.520 0.080
#> SRR1399113     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.0260     0.7946 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1092468     1  0.5872     0.0425 0.496 0.000 0.052 0.004 0.392 0.056
#> SRR1441804     1  0.0937     0.8795 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR1326100     2  0.2300     0.7846 0.000 0.856 0.000 0.000 0.000 0.144
#> SRR1398815     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1436021     4  0.5905     0.3746 0.000 0.000 0.244 0.468 0.000 0.288
#> SRR1480083     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     1  0.1578     0.8550 0.936 0.000 0.048 0.004 0.000 0.012
#> SRR815542      1  0.0146     0.8910 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1400100     3  0.5289     0.4180 0.000 0.000 0.576 0.136 0.000 0.288
#> SRR1312002     6  0.5071     0.2973 0.060 0.000 0.396 0.000 0.008 0.536
#> SRR1470253     6  0.6324     0.6345 0.332 0.000 0.128 0.000 0.052 0.488
#> SRR1414332     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1069209     6  0.3774     0.6055 0.408 0.000 0.000 0.000 0.000 0.592
#> SRR661052      1  0.0291     0.8913 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1308860     1  0.0146     0.8910 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1421159     3  0.6103    -0.0955 0.000 0.000 0.368 0.344 0.000 0.288
#> SRR1340943     4  0.4328     0.6726 0.016 0.000 0.052 0.792 0.060 0.080
#> SRR1078855     1  0.1910     0.8380 0.892 0.000 0.000 0.000 0.000 0.108
#> SRR1459465     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.0146     0.7945 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1350979     3  0.3288     0.4462 0.000 0.000 0.724 0.000 0.276 0.000
#> SRR1458198     1  0.4449     0.6659 0.772 0.000 0.052 0.004 0.092 0.080
#> SRR1386910     4  0.6743     0.4026 0.000 0.236 0.048 0.428 0.000 0.288
#> SRR1465375     4  0.2506     0.7679 0.000 0.000 0.052 0.880 0.000 0.068
#> SRR1323699     3  0.0000     0.7944 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1431139     3  0.0653     0.7882 0.012 0.000 0.980 0.004 0.000 0.004
#> SRR1373964     3  0.0000     0.7944 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1455413     5  0.5625     0.3607 0.296 0.000 0.052 0.004 0.592 0.056
#> SRR1437163     1  0.1219     0.8559 0.948 0.000 0.048 0.004 0.000 0.000
#> SRR1347343     3  0.0000     0.7944 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1465480     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.0146     0.8910 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1086514     4  0.5492     0.5807 0.000 0.016 0.112 0.584 0.000 0.288
#> SRR1430928     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1310939     5  0.2630     0.8261 0.000 0.000 0.092 0.004 0.872 0.032
#> SRR1344294     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000     0.8909 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1468118     5  0.1765     0.8337 0.000 0.000 0.096 0.000 0.904 0.000
#> SRR1486348     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1488770     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.0146     0.8915 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1456611     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.1196     0.8748 0.952 0.000 0.000 0.000 0.040 0.008
#> SRR1500089     5  0.3426     0.7605 0.024 0.000 0.052 0.004 0.840 0.080
#> SRR1441178     1  0.2854     0.6950 0.792 0.000 0.000 0.000 0.000 0.208
#> SRR1381396     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1096081     5  0.1663     0.8323 0.000 0.000 0.088 0.000 0.912 0.000
#> SRR1349809     2  0.5283     0.5275 0.000 0.688 0.060 0.140 0.000 0.112
#> SRR1324314     6  0.6070     0.5274 0.304 0.000 0.292 0.000 0.000 0.404
#> SRR1092444     1  0.2851     0.8122 0.876 0.000 0.044 0.000 0.040 0.040
#> SRR1382553     3  0.3595     0.3905 0.008 0.000 0.704 0.000 0.000 0.288
#> SRR1075530     4  0.0405     0.7945 0.000 0.000 0.008 0.988 0.000 0.004
#> SRR1442612     3  0.0000     0.7944 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1360056     5  0.5873     0.3731 0.000 0.000 0.248 0.000 0.480 0.272
#> SRR1078164     1  0.2793     0.7099 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR1434545     4  0.2945     0.7420 0.012 0.000 0.052 0.868 0.004 0.064
#> SRR1398251     6  0.3684     0.6661 0.372 0.000 0.000 0.000 0.000 0.628
#> SRR1375866     1  0.1610     0.8579 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR1091645     4  0.0713     0.7892 0.000 0.000 0.028 0.972 0.000 0.000
#> SRR1416636     5  0.2378     0.8098 0.000 0.000 0.152 0.000 0.848 0.000
#> SRR1105441     3  0.3845     0.6343 0.000 0.000 0.772 0.140 0.000 0.088
#> SRR1082496     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     3  0.5644     0.3280 0.000 0.000 0.524 0.188 0.000 0.288
#> SRR1093697     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.1714     0.8338 0.000 0.000 0.092 0.000 0.908 0.000
#> SRR1076120     5  0.3259     0.7654 0.016 0.000 0.052 0.004 0.848 0.080
#> SRR1074410     1  0.0146     0.8915 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1340345     4  0.0260     0.7946 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1069514     3  0.1908     0.7460 0.000 0.000 0.900 0.004 0.000 0.096
#> SRR1092636     3  0.3531     0.3191 0.000 0.000 0.672 0.000 0.328 0.000
#> SRR1365013     3  0.6056     0.0312 0.000 0.000 0.412 0.300 0.000 0.288
#> SRR1073069     6  0.3684     0.6661 0.372 0.000 0.000 0.000 0.000 0.628
#> SRR1443137     1  0.3330     0.5213 0.716 0.000 0.000 0.000 0.000 0.284
#> SRR1437143     2  0.0000     0.8930 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.2092     0.8225 0.876 0.000 0.000 0.000 0.000 0.124
#> SRR820234      2  0.5373     0.4818 0.000 0.588 0.196 0.000 0.000 0.216
#> SRR1338079     1  0.1265     0.8868 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1390094     3  0.0935     0.7858 0.000 0.000 0.964 0.004 0.000 0.032
#> SRR1340721     1  0.6087     0.3403 0.628 0.208 0.052 0.040 0.000 0.072
#> SRR1335964     5  0.2001     0.8332 0.000 0.000 0.092 0.004 0.900 0.004
#> SRR1086869     5  0.1663     0.8323 0.000 0.000 0.088 0.000 0.912 0.000
#> SRR1453434     1  0.1082     0.8775 0.956 0.000 0.000 0.000 0.040 0.004
#> SRR1402261     4  0.4524     0.6601 0.020 0.000 0.052 0.780 0.068 0.080
#> SRR657809      4  0.3575     0.6874 0.000 0.000 0.008 0.708 0.000 0.284
#> SRR1093075     1  0.1765     0.8488 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1433329     6  0.3684     0.6661 0.372 0.000 0.000 0.000 0.000 0.628
#> SRR1353418     6  0.5817     0.0686 0.000 0.000 0.260 0.000 0.244 0.496
#> SRR1092913     4  0.0260     0.7946 0.000 0.000 0.008 0.992 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.897           0.944       0.975         0.4816 0.511   0.511
#> 3 3 0.721           0.790       0.904         0.3626 0.734   0.525
#> 4 4 0.853           0.873       0.941         0.1173 0.868   0.643
#> 5 5 0.732           0.705       0.818         0.0614 0.889   0.632
#> 6 6 0.777           0.698       0.857         0.0544 0.860   0.481

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.990 1.000 0.000
#> SRR1335605     2  0.7745      0.736 0.228 0.772
#> SRR1432014     2  0.3584      0.901 0.068 0.932
#> SRR1499215     1  0.5294      0.850 0.880 0.120
#> SRR1460409     1  0.0000      0.990 1.000 0.000
#> SRR1086441     1  0.0000      0.990 1.000 0.000
#> SRR1097344     2  0.0000      0.950 0.000 1.000
#> SRR1081789     2  0.0000      0.950 0.000 1.000
#> SRR1453005     2  0.0000      0.950 0.000 1.000
#> SRR1366985     1  0.0000      0.990 1.000 0.000
#> SRR815280      1  0.0000      0.990 1.000 0.000
#> SRR1348531     1  0.0000      0.990 1.000 0.000
#> SRR815845      2  0.0000      0.950 0.000 1.000
#> SRR1471178     1  0.0000      0.990 1.000 0.000
#> SRR1080696     1  0.0000      0.990 1.000 0.000
#> SRR1078684     2  0.6801      0.796 0.180 0.820
#> SRR1317751     1  0.0000      0.990 1.000 0.000
#> SRR1435667     2  0.0000      0.950 0.000 1.000
#> SRR1097905     1  0.0000      0.990 1.000 0.000
#> SRR1456548     1  0.0000      0.990 1.000 0.000
#> SRR1075126     1  0.0000      0.990 1.000 0.000
#> SRR813108      2  0.0000      0.950 0.000 1.000
#> SRR1479062     2  0.8661      0.642 0.288 0.712
#> SRR1408703     1  0.0000      0.990 1.000 0.000
#> SRR1332360     1  0.0000      0.990 1.000 0.000
#> SRR1098686     1  0.0000      0.990 1.000 0.000
#> SRR1434228     1  0.0000      0.990 1.000 0.000
#> SRR1467149     1  0.0000      0.990 1.000 0.000
#> SRR1399113     2  0.0000      0.950 0.000 1.000
#> SRR1476507     2  0.0000      0.950 0.000 1.000
#> SRR1092468     1  0.0000      0.990 1.000 0.000
#> SRR1441804     1  0.0000      0.990 1.000 0.000
#> SRR1326100     2  0.0000      0.950 0.000 1.000
#> SRR1398815     1  0.0000      0.990 1.000 0.000
#> SRR1436021     2  0.0000      0.950 0.000 1.000
#> SRR1480083     2  0.0000      0.950 0.000 1.000
#> SRR1472863     1  0.0000      0.990 1.000 0.000
#> SRR815542      1  0.0000      0.990 1.000 0.000
#> SRR1400100     2  0.0000      0.950 0.000 1.000
#> SRR1312002     1  0.0000      0.990 1.000 0.000
#> SRR1470253     1  0.0000      0.990 1.000 0.000
#> SRR1414332     1  0.0000      0.990 1.000 0.000
#> SRR1069209     1  0.0000      0.990 1.000 0.000
#> SRR661052      1  0.0000      0.990 1.000 0.000
#> SRR1308860     1  0.0000      0.990 1.000 0.000
#> SRR1421159     2  0.0000      0.950 0.000 1.000
#> SRR1340943     1  0.0000      0.990 1.000 0.000
#> SRR1078855     1  0.0000      0.990 1.000 0.000
#> SRR1459465     2  0.0000      0.950 0.000 1.000
#> SRR816818      2  0.0000      0.950 0.000 1.000
#> SRR1478679     2  0.0000      0.950 0.000 1.000
#> SRR1350979     2  0.8207      0.695 0.256 0.744
#> SRR1458198     1  0.0000      0.990 1.000 0.000
#> SRR1386910     2  0.0000      0.950 0.000 1.000
#> SRR1465375     2  0.0000      0.950 0.000 1.000
#> SRR1323699     1  0.9815      0.194 0.580 0.420
#> SRR1431139     1  0.0672      0.982 0.992 0.008
#> SRR1373964     2  0.0376      0.948 0.004 0.996
#> SRR1455413     1  0.0000      0.990 1.000 0.000
#> SRR1437163     1  0.0000      0.990 1.000 0.000
#> SRR1347343     2  0.5178      0.860 0.116 0.884
#> SRR1465480     2  0.0000      0.950 0.000 1.000
#> SRR1489631     1  0.0000      0.990 1.000 0.000
#> SRR1086514     2  0.0000      0.950 0.000 1.000
#> SRR1430928     1  0.0000      0.990 1.000 0.000
#> SRR1310939     2  0.9635      0.435 0.388 0.612
#> SRR1344294     2  0.0000      0.950 0.000 1.000
#> SRR1099402     1  0.0000      0.990 1.000 0.000
#> SRR1468118     1  0.0000      0.990 1.000 0.000
#> SRR1486348     1  0.0000      0.990 1.000 0.000
#> SRR1488770     2  0.0000      0.950 0.000 1.000
#> SRR1083732     1  0.0000      0.990 1.000 0.000
#> SRR1456611     2  0.0000      0.950 0.000 1.000
#> SRR1080318     1  0.0000      0.990 1.000 0.000
#> SRR1500089     1  0.0000      0.990 1.000 0.000
#> SRR1441178     1  0.0000      0.990 1.000 0.000
#> SRR1381396     1  0.0000      0.990 1.000 0.000
#> SRR1096081     1  0.0000      0.990 1.000 0.000
#> SRR1349809     2  0.0000      0.950 0.000 1.000
#> SRR1324314     1  0.0000      0.990 1.000 0.000
#> SRR1092444     1  0.0000      0.990 1.000 0.000
#> SRR1382553     1  0.0000      0.990 1.000 0.000
#> SRR1075530     2  0.0000      0.950 0.000 1.000
#> SRR1442612     2  0.0000      0.950 0.000 1.000
#> SRR1360056     1  0.0000      0.990 1.000 0.000
#> SRR1078164     1  0.0000      0.990 1.000 0.000
#> SRR1434545     1  0.4815      0.873 0.896 0.104
#> SRR1398251     1  0.0000      0.990 1.000 0.000
#> SRR1375866     1  0.0000      0.990 1.000 0.000
#> SRR1091645     2  0.0000      0.950 0.000 1.000
#> SRR1416636     1  0.0000      0.990 1.000 0.000
#> SRR1105441     2  0.0000      0.950 0.000 1.000
#> SRR1082496     2  0.0000      0.950 0.000 1.000
#> SRR1315353     2  0.0000      0.950 0.000 1.000
#> SRR1093697     2  0.0000      0.950 0.000 1.000
#> SRR1077429     1  0.0000      0.990 1.000 0.000
#> SRR1076120     1  0.0000      0.990 1.000 0.000
#> SRR1074410     1  0.0000      0.990 1.000 0.000
#> SRR1340345     2  0.0000      0.950 0.000 1.000
#> SRR1069514     2  0.0000      0.950 0.000 1.000
#> SRR1092636     1  0.0000      0.990 1.000 0.000
#> SRR1365013     2  0.0000      0.950 0.000 1.000
#> SRR1073069     1  0.0000      0.990 1.000 0.000
#> SRR1443137     1  0.0000      0.990 1.000 0.000
#> SRR1437143     2  0.0000      0.950 0.000 1.000
#> SRR1091990     1  0.0000      0.990 1.000 0.000
#> SRR820234      2  0.0000      0.950 0.000 1.000
#> SRR1338079     1  0.0000      0.990 1.000 0.000
#> SRR1390094     2  0.9661      0.424 0.392 0.608
#> SRR1340721     2  0.7139      0.777 0.196 0.804
#> SRR1335964     2  0.7453      0.758 0.212 0.788
#> SRR1086869     1  0.0000      0.990 1.000 0.000
#> SRR1453434     1  0.0000      0.990 1.000 0.000
#> SRR1402261     1  0.0000      0.990 1.000 0.000
#> SRR657809      2  0.0000      0.950 0.000 1.000
#> SRR1093075     1  0.0000      0.990 1.000 0.000
#> SRR1433329     1  0.0000      0.990 1.000 0.000
#> SRR1353418     1  0.0000      0.990 1.000 0.000
#> SRR1092913     2  0.0000      0.950 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1335605     2  0.3112     0.8757 0.028 0.916 0.056
#> SRR1432014     3  0.1643     0.8104 0.000 0.044 0.956
#> SRR1499215     3  0.7545     0.5817 0.272 0.076 0.652
#> SRR1460409     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1097344     3  0.6308    -0.0692 0.000 0.492 0.508
#> SRR1081789     2  0.0747     0.9137 0.000 0.984 0.016
#> SRR1453005     2  0.0892     0.9138 0.000 0.980 0.020
#> SRR1366985     1  0.6095     0.2635 0.608 0.000 0.392
#> SRR815280      1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1348531     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR815845      3  0.1643     0.8104 0.000 0.044 0.956
#> SRR1471178     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1080696     3  0.1643     0.8221 0.044 0.000 0.956
#> SRR1078684     3  0.8470     0.3481 0.104 0.344 0.552
#> SRR1317751     3  0.1860     0.8205 0.052 0.000 0.948
#> SRR1435667     3  0.1643     0.8104 0.000 0.044 0.956
#> SRR1097905     1  0.1491     0.9101 0.968 0.016 0.016
#> SRR1456548     1  0.1337     0.9124 0.972 0.012 0.016
#> SRR1075126     1  0.0237     0.9244 0.996 0.000 0.004
#> SRR813108      2  0.5291     0.6042 0.000 0.732 0.268
#> SRR1479062     3  0.0983     0.8144 0.004 0.016 0.980
#> SRR1408703     3  0.1529     0.8220 0.040 0.000 0.960
#> SRR1332360     1  0.0237     0.9240 0.996 0.000 0.004
#> SRR1098686     1  0.0237     0.9244 0.996 0.000 0.004
#> SRR1434228     1  0.3116     0.8243 0.892 0.000 0.108
#> SRR1467149     1  0.6566     0.4582 0.636 0.016 0.348
#> SRR1399113     2  0.0592     0.9141 0.000 0.988 0.012
#> SRR1476507     3  0.6274     0.0616 0.000 0.456 0.544
#> SRR1092468     1  0.1711     0.9056 0.960 0.008 0.032
#> SRR1441804     1  0.0424     0.9228 0.992 0.000 0.008
#> SRR1326100     2  0.0747     0.9137 0.000 0.984 0.016
#> SRR1398815     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1436021     2  0.0747     0.9052 0.000 0.984 0.016
#> SRR1480083     2  0.0747     0.9137 0.000 0.984 0.016
#> SRR1472863     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR815542      1  0.0592     0.9210 0.988 0.000 0.012
#> SRR1400100     3  0.3879     0.7380 0.000 0.152 0.848
#> SRR1312002     3  0.5560     0.5899 0.300 0.000 0.700
#> SRR1470253     3  0.5363     0.6315 0.276 0.000 0.724
#> SRR1414332     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1069209     1  0.0424     0.9217 0.992 0.000 0.008
#> SRR661052      1  0.0592     0.9210 0.988 0.000 0.012
#> SRR1308860     1  0.1337     0.9124 0.972 0.012 0.016
#> SRR1421159     2  0.1529     0.9090 0.000 0.960 0.040
#> SRR1340943     1  0.6912     0.1994 0.540 0.016 0.444
#> SRR1078855     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1459465     2  0.0237     0.9134 0.000 0.996 0.004
#> SRR816818      2  0.0237     0.9111 0.000 0.996 0.004
#> SRR1478679     2  0.5058     0.6461 0.000 0.756 0.244
#> SRR1350979     3  0.1620     0.8174 0.012 0.024 0.964
#> SRR1458198     1  0.5953     0.5956 0.708 0.012 0.280
#> SRR1386910     2  0.1529     0.8972 0.000 0.960 0.040
#> SRR1465375     2  0.1529     0.8929 0.000 0.960 0.040
#> SRR1323699     3  0.6106     0.6941 0.200 0.044 0.756
#> SRR1431139     3  0.6204     0.3295 0.424 0.000 0.576
#> SRR1373964     3  0.5058     0.6270 0.000 0.244 0.756
#> SRR1455413     1  0.5178     0.6256 0.744 0.000 0.256
#> SRR1437163     1  0.1636     0.9075 0.964 0.016 0.020
#> SRR1347343     3  0.1643     0.8104 0.000 0.044 0.956
#> SRR1465480     2  0.0237     0.9134 0.000 0.996 0.004
#> SRR1489631     1  0.1491     0.9101 0.968 0.016 0.016
#> SRR1086514     2  0.0892     0.9136 0.000 0.980 0.020
#> SRR1430928     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1310939     3  0.1015     0.8153 0.008 0.012 0.980
#> SRR1344294     2  0.0747     0.9137 0.000 0.984 0.016
#> SRR1099402     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1468118     3  0.0848     0.8101 0.008 0.008 0.984
#> SRR1486348     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1488770     2  0.0747     0.9137 0.000 0.984 0.016
#> SRR1083732     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1456611     2  0.0592     0.9141 0.000 0.988 0.012
#> SRR1080318     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1500089     3  0.5835     0.4310 0.340 0.000 0.660
#> SRR1441178     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1096081     3  0.1753     0.8212 0.048 0.000 0.952
#> SRR1349809     2  0.0592     0.9075 0.000 0.988 0.012
#> SRR1324314     1  0.3340     0.8096 0.880 0.000 0.120
#> SRR1092444     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1382553     1  0.5621     0.4890 0.692 0.000 0.308
#> SRR1075530     2  0.6244     0.2423 0.000 0.560 0.440
#> SRR1442612     3  0.1643     0.8104 0.000 0.044 0.956
#> SRR1360056     3  0.2066     0.8191 0.060 0.000 0.940
#> SRR1078164     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1434545     3  0.8574     0.0536 0.432 0.096 0.472
#> SRR1398251     1  0.5016     0.6303 0.760 0.000 0.240
#> SRR1375866     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1091645     3  0.4555     0.6379 0.000 0.200 0.800
#> SRR1416636     3  0.1529     0.8217 0.040 0.000 0.960
#> SRR1105441     3  0.2959     0.7825 0.000 0.100 0.900
#> SRR1082496     2  0.0592     0.9141 0.000 0.988 0.012
#> SRR1315353     3  0.3192     0.7741 0.000 0.112 0.888
#> SRR1093697     2  0.0747     0.9137 0.000 0.984 0.016
#> SRR1077429     3  0.1753     0.8208 0.048 0.000 0.952
#> SRR1076120     3  0.5465     0.5360 0.288 0.000 0.712
#> SRR1074410     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR1340345     2  0.4796     0.7098 0.000 0.780 0.220
#> SRR1069514     2  0.5785     0.4686 0.000 0.668 0.332
#> SRR1092636     3  0.1964     0.8202 0.056 0.000 0.944
#> SRR1365013     2  0.0592     0.9112 0.000 0.988 0.012
#> SRR1073069     1  0.0237     0.9240 0.996 0.000 0.004
#> SRR1443137     1  0.0237     0.9240 0.996 0.000 0.004
#> SRR1437143     2  0.0592     0.9141 0.000 0.988 0.012
#> SRR1091990     1  0.0000     0.9256 1.000 0.000 0.000
#> SRR820234      2  0.1163     0.9078 0.000 0.972 0.028
#> SRR1338079     1  0.1337     0.9124 0.972 0.012 0.016
#> SRR1390094     3  0.3293     0.8023 0.088 0.012 0.900
#> SRR1340721     2  0.5506     0.6507 0.220 0.764 0.016
#> SRR1335964     3  0.1015     0.8152 0.008 0.012 0.980
#> SRR1086869     3  0.1289     0.8181 0.032 0.000 0.968
#> SRR1453434     1  0.1031     0.9151 0.976 0.000 0.024
#> SRR1402261     1  0.6566     0.4575 0.636 0.016 0.348
#> SRR657809      2  0.1289     0.8978 0.000 0.968 0.032
#> SRR1093075     1  0.0237     0.9240 0.996 0.000 0.004
#> SRR1433329     1  0.0592     0.9190 0.988 0.000 0.012
#> SRR1353418     3  0.2066     0.8191 0.060 0.000 0.940
#> SRR1092913     2  0.3192     0.8421 0.000 0.888 0.112

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1335605     2  0.3216      0.821 0.004 0.864 0.124 0.008
#> SRR1432014     3  0.0000      0.915 0.000 0.000 1.000 0.000
#> SRR1499215     3  0.0188      0.915 0.004 0.000 0.996 0.000
#> SRR1460409     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1081789     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1453005     2  0.3681      0.769 0.000 0.816 0.008 0.176
#> SRR1366985     3  0.0592      0.911 0.016 0.000 0.984 0.000
#> SRR815280      1  0.0336      0.964 0.992 0.000 0.008 0.000
#> SRR1348531     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR815845      3  0.0817      0.909 0.000 0.024 0.976 0.000
#> SRR1471178     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0469      0.913 0.000 0.000 0.988 0.012
#> SRR1078684     3  0.3991      0.775 0.020 0.172 0.808 0.000
#> SRR1317751     3  0.1211      0.903 0.000 0.000 0.960 0.040
#> SRR1435667     3  0.0469      0.914 0.000 0.012 0.988 0.000
#> SRR1097905     1  0.0376      0.964 0.992 0.004 0.000 0.004
#> SRR1456548     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1075126     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR813108      2  0.2814      0.819 0.000 0.868 0.132 0.000
#> SRR1479062     3  0.2216      0.869 0.000 0.000 0.908 0.092
#> SRR1408703     3  0.1211      0.903 0.000 0.000 0.960 0.040
#> SRR1332360     1  0.1118      0.947 0.964 0.000 0.036 0.000
#> SRR1098686     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1434228     1  0.4866      0.325 0.596 0.000 0.404 0.000
#> SRR1467149     4  0.0000      0.903 0.000 0.000 0.000 1.000
#> SRR1399113     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1092468     4  0.4382      0.586 0.296 0.000 0.000 0.704
#> SRR1441804     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1326100     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1436021     2  0.1389      0.891 0.000 0.952 0.000 0.048
#> SRR1480083     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR815542      1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1400100     3  0.2408      0.856 0.000 0.104 0.896 0.000
#> SRR1312002     3  0.0188      0.915 0.004 0.000 0.996 0.000
#> SRR1470253     3  0.0817      0.907 0.024 0.000 0.976 0.000
#> SRR1414332     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.1557      0.930 0.944 0.000 0.056 0.000
#> SRR661052      1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1308860     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1421159     4  0.5288     -0.022 0.000 0.472 0.008 0.520
#> SRR1340943     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1078855     1  0.0817      0.955 0.976 0.000 0.024 0.000
#> SRR1459465     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1478679     2  0.3942      0.707 0.000 0.764 0.236 0.000
#> SRR1350979     3  0.0000      0.915 0.000 0.000 1.000 0.000
#> SRR1458198     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1386910     2  0.0921      0.903 0.000 0.972 0.000 0.028
#> SRR1465375     2  0.5511      0.452 0.028 0.620 0.000 0.352
#> SRR1323699     3  0.0188      0.915 0.004 0.000 0.996 0.000
#> SRR1431139     3  0.4331      0.618 0.288 0.000 0.712 0.000
#> SRR1373964     3  0.0188      0.915 0.000 0.004 0.996 0.000
#> SRR1455413     4  0.4343      0.637 0.264 0.000 0.004 0.732
#> SRR1437163     1  0.0376      0.964 0.992 0.004 0.000 0.004
#> SRR1347343     3  0.0188      0.915 0.004 0.000 0.996 0.000
#> SRR1465480     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1086514     2  0.4164      0.649 0.000 0.736 0.000 0.264
#> SRR1430928     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1310939     4  0.3266      0.741 0.000 0.000 0.168 0.832
#> SRR1344294     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1468118     4  0.3074      0.776 0.000 0.000 0.152 0.848
#> SRR1486348     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1500089     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1441178     1  0.0921      0.953 0.972 0.000 0.028 0.000
#> SRR1381396     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1096081     3  0.0817      0.910 0.000 0.000 0.976 0.024
#> SRR1349809     2  0.1109      0.897 0.028 0.968 0.000 0.004
#> SRR1324314     1  0.4382      0.588 0.704 0.000 0.296 0.000
#> SRR1092444     1  0.0657      0.958 0.984 0.000 0.004 0.012
#> SRR1382553     3  0.4483      0.606 0.284 0.004 0.712 0.000
#> SRR1075530     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1442612     3  0.0336      0.915 0.000 0.008 0.992 0.000
#> SRR1360056     3  0.0188      0.915 0.004 0.000 0.996 0.000
#> SRR1078164     1  0.0921      0.953 0.972 0.000 0.028 0.000
#> SRR1434545     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1398251     3  0.3266      0.754 0.168 0.000 0.832 0.000
#> SRR1375866     1  0.0188      0.965 0.996 0.000 0.004 0.000
#> SRR1091645     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1416636     3  0.1022      0.907 0.000 0.000 0.968 0.032
#> SRR1105441     3  0.1637      0.889 0.000 0.060 0.940 0.000
#> SRR1082496     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.3688      0.737 0.000 0.208 0.792 0.000
#> SRR1093697     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.1716      0.888 0.000 0.000 0.936 0.064
#> SRR1076120     4  0.0188      0.904 0.000 0.000 0.004 0.996
#> SRR1074410     1  0.0000      0.967 1.000 0.000 0.000 0.000
#> SRR1340345     4  0.0000      0.903 0.000 0.000 0.000 1.000
#> SRR1069514     2  0.3873      0.708 0.000 0.772 0.228 0.000
#> SRR1092636     3  0.0188      0.915 0.000 0.000 0.996 0.004
#> SRR1365013     2  0.0524      0.909 0.008 0.988 0.000 0.004
#> SRR1073069     1  0.2011      0.907 0.920 0.000 0.080 0.000
#> SRR1443137     1  0.1022      0.950 0.968 0.000 0.032 0.000
#> SRR1437143     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0336      0.964 0.992 0.000 0.008 0.000
#> SRR820234      2  0.0336      0.911 0.000 0.992 0.008 0.000
#> SRR1338079     1  0.0188      0.966 0.996 0.000 0.000 0.004
#> SRR1390094     3  0.0469      0.913 0.012 0.000 0.988 0.000
#> SRR1340721     2  0.3945      0.672 0.216 0.780 0.000 0.004
#> SRR1335964     3  0.4643      0.522 0.000 0.000 0.656 0.344
#> SRR1086869     3  0.4134      0.668 0.000 0.000 0.740 0.260
#> SRR1453434     1  0.0188      0.965 0.996 0.000 0.000 0.004
#> SRR1402261     4  0.0188      0.901 0.004 0.000 0.000 0.996
#> SRR657809      2  0.2124      0.878 0.008 0.924 0.000 0.068
#> SRR1093075     1  0.0817      0.955 0.976 0.000 0.024 0.000
#> SRR1433329     1  0.2814      0.848 0.868 0.000 0.132 0.000
#> SRR1353418     3  0.0188      0.915 0.004 0.000 0.996 0.000
#> SRR1092913     4  0.0000      0.903 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.1792    0.85451 0.916 0.000 0.084 0.000 0.000
#> SRR1335605     2  0.6269    0.51632 0.008 0.520 0.344 0.000 0.128
#> SRR1432014     3  0.4045    0.60600 0.000 0.000 0.644 0.000 0.356
#> SRR1499215     3  0.6461    0.68734 0.060 0.104 0.612 0.000 0.224
#> SRR1460409     1  0.0162    0.85680 0.996 0.000 0.004 0.000 0.000
#> SRR1086441     1  0.1043    0.85887 0.960 0.000 0.040 0.000 0.000
#> SRR1097344     4  0.0162    0.83858 0.000 0.000 0.004 0.996 0.000
#> SRR1081789     2  0.3143    0.51871 0.000 0.796 0.204 0.000 0.000
#> SRR1453005     4  0.6689    0.06315 0.000 0.344 0.244 0.412 0.000
#> SRR1366985     1  0.4528   -0.07605 0.548 0.000 0.444 0.000 0.008
#> SRR815280      1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1348531     1  0.2329    0.84488 0.876 0.000 0.124 0.000 0.000
#> SRR815845      5  0.0000    0.83126 0.000 0.000 0.000 0.000 1.000
#> SRR1471178     1  0.0703    0.85923 0.976 0.000 0.024 0.000 0.000
#> SRR1080696     5  0.0880    0.81124 0.000 0.000 0.032 0.000 0.968
#> SRR1078684     3  0.6850    0.68028 0.064 0.204 0.580 0.000 0.152
#> SRR1317751     5  0.0162    0.83082 0.000 0.000 0.000 0.004 0.996
#> SRR1435667     3  0.4045    0.60600 0.000 0.000 0.644 0.000 0.356
#> SRR1097905     1  0.5002    0.67549 0.612 0.044 0.344 0.000 0.000
#> SRR1456548     1  0.3999    0.72408 0.656 0.000 0.344 0.000 0.000
#> SRR1075126     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR813108      3  0.4101    0.52074 0.000 0.372 0.628 0.000 0.000
#> SRR1479062     3  0.6622    0.40906 0.000 0.000 0.440 0.328 0.232
#> SRR1408703     5  0.0000    0.83126 0.000 0.000 0.000 0.000 1.000
#> SRR1332360     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1098686     1  0.3534    0.78561 0.744 0.000 0.256 0.000 0.000
#> SRR1434228     1  0.0703    0.84723 0.976 0.000 0.024 0.000 0.000
#> SRR1467149     4  0.3718    0.73182 0.008 0.000 0.120 0.824 0.048
#> SRR1399113     2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0162    0.83858 0.000 0.000 0.004 0.996 0.000
#> SRR1092468     4  0.6229   -0.04674 0.392 0.000 0.144 0.464 0.000
#> SRR1441804     1  0.3143    0.81413 0.796 0.000 0.204 0.000 0.000
#> SRR1326100     2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1398815     1  0.3895    0.74278 0.680 0.000 0.320 0.000 0.000
#> SRR1436021     4  0.4450    0.18123 0.000 0.488 0.004 0.508 0.000
#> SRR1480083     2  0.4030    0.17816 0.000 0.648 0.352 0.000 0.000
#> SRR1472863     1  0.3999    0.72408 0.656 0.000 0.344 0.000 0.000
#> SRR815542      1  0.0794    0.85917 0.972 0.000 0.028 0.000 0.000
#> SRR1400100     5  0.2278    0.77962 0.000 0.032 0.060 0.000 0.908
#> SRR1312002     3  0.5934    0.58332 0.232 0.000 0.592 0.000 0.176
#> SRR1470253     5  0.0162    0.82996 0.000 0.000 0.004 0.000 0.996
#> SRR1414332     1  0.1121    0.85846 0.956 0.000 0.044 0.000 0.000
#> SRR1069209     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR661052      1  0.3999    0.72408 0.656 0.000 0.344 0.000 0.000
#> SRR1308860     1  0.3913    0.73960 0.676 0.000 0.324 0.000 0.000
#> SRR1421159     4  0.3676    0.64789 0.000 0.232 0.004 0.760 0.004
#> SRR1340943     4  0.0000    0.83918 0.000 0.000 0.000 1.000 0.000
#> SRR1078855     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1459465     2  0.0671    0.77575 0.000 0.980 0.004 0.016 0.000
#> SRR816818      2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.4608    0.56990 0.012 0.336 0.644 0.000 0.008
#> SRR1350979     3  0.4030    0.60939 0.000 0.000 0.648 0.000 0.352
#> SRR1458198     4  0.0162    0.83769 0.004 0.000 0.000 0.996 0.000
#> SRR1386910     2  0.4697    0.61752 0.000 0.648 0.320 0.000 0.032
#> SRR1465375     4  0.4795    0.68720 0.012 0.120 0.116 0.752 0.000
#> SRR1323699     3  0.6481    0.69307 0.096 0.092 0.632 0.000 0.180
#> SRR1431139     5  0.4858    0.58728 0.112 0.008 0.140 0.000 0.740
#> SRR1373964     3  0.5464    0.68555 0.000 0.128 0.648 0.000 0.224
#> SRR1455413     5  0.8561    0.00998 0.264 0.000 0.196 0.264 0.276
#> SRR1437163     1  0.3999    0.72408 0.656 0.000 0.344 0.000 0.000
#> SRR1347343     3  0.4015    0.61197 0.000 0.000 0.652 0.000 0.348
#> SRR1465480     2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.3999    0.72408 0.656 0.000 0.344 0.000 0.000
#> SRR1086514     4  0.4047    0.53143 0.000 0.320 0.004 0.676 0.000
#> SRR1430928     1  0.0880    0.85926 0.968 0.000 0.032 0.000 0.000
#> SRR1310939     4  0.1270    0.80866 0.000 0.000 0.052 0.948 0.000
#> SRR1344294     2  0.1043    0.76037 0.000 0.960 0.040 0.000 0.000
#> SRR1099402     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1468118     5  0.0510    0.82632 0.000 0.000 0.000 0.016 0.984
#> SRR1486348     1  0.2329    0.84596 0.876 0.000 0.124 0.000 0.000
#> SRR1488770     2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.1544    0.85611 0.932 0.000 0.068 0.000 0.000
#> SRR1456611     2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.2377    0.84286 0.872 0.000 0.128 0.000 0.000
#> SRR1500089     4  0.0794    0.82742 0.000 0.000 0.000 0.972 0.028
#> SRR1441178     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1381396     1  0.1908    0.85220 0.908 0.000 0.092 0.000 0.000
#> SRR1096081     5  0.0000    0.83126 0.000 0.000 0.000 0.000 1.000
#> SRR1349809     2  0.4268    0.60863 0.008 0.648 0.344 0.000 0.000
#> SRR1324314     1  0.4323    0.46007 0.656 0.000 0.012 0.000 0.332
#> SRR1092444     5  0.5564    0.41762 0.284 0.000 0.092 0.004 0.620
#> SRR1382553     3  0.4803    0.34278 0.444 0.020 0.536 0.000 0.000
#> SRR1075530     4  0.1121    0.81853 0.000 0.000 0.000 0.956 0.044
#> SRR1442612     3  0.4045    0.60600 0.000 0.000 0.644 0.000 0.356
#> SRR1360056     5  0.4166    0.19100 0.004 0.000 0.348 0.000 0.648
#> SRR1078164     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1434545     4  0.0162    0.83858 0.000 0.000 0.004 0.996 0.000
#> SRR1398251     1  0.2727    0.74596 0.868 0.000 0.116 0.000 0.016
#> SRR1375866     1  0.3196    0.81923 0.804 0.000 0.192 0.000 0.004
#> SRR1091645     4  0.0000    0.83918 0.000 0.000 0.000 1.000 0.000
#> SRR1416636     5  0.0162    0.82996 0.000 0.000 0.004 0.000 0.996
#> SRR1105441     5  0.1364    0.81470 0.000 0.012 0.036 0.000 0.952
#> SRR1082496     2  0.0162    0.78407 0.000 0.996 0.004 0.000 0.000
#> SRR1315353     3  0.4946    0.61396 0.000 0.300 0.648 0.000 0.052
#> SRR1093697     2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.0162    0.83082 0.000 0.000 0.000 0.004 0.996
#> SRR1076120     4  0.0000    0.83918 0.000 0.000 0.000 1.000 0.000
#> SRR1074410     1  0.2966    0.82306 0.816 0.000 0.184 0.000 0.000
#> SRR1340345     4  0.0000    0.83918 0.000 0.000 0.000 1.000 0.000
#> SRR1069514     3  0.4873    0.60315 0.000 0.312 0.644 0.000 0.044
#> SRR1092636     5  0.0000    0.83126 0.000 0.000 0.000 0.000 1.000
#> SRR1365013     2  0.4252    0.61155 0.008 0.652 0.340 0.000 0.000
#> SRR1073069     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1443137     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1437143     2  0.0000    0.78610 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR820234      3  0.4989    0.42666 0.000 0.416 0.552 0.032 0.000
#> SRR1338079     1  0.3999    0.72408 0.656 0.000 0.344 0.000 0.000
#> SRR1390094     3  0.5743    0.58107 0.252 0.028 0.652 0.064 0.004
#> SRR1340721     2  0.5357    0.55053 0.068 0.588 0.344 0.000 0.000
#> SRR1335964     5  0.3636    0.54606 0.000 0.000 0.000 0.272 0.728
#> SRR1086869     5  0.0703    0.82224 0.000 0.000 0.000 0.024 0.976
#> SRR1453434     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1402261     4  0.0000    0.83918 0.000 0.000 0.000 1.000 0.000
#> SRR657809      2  0.6319    0.38864 0.000 0.520 0.196 0.284 0.000
#> SRR1093075     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1433329     1  0.0290    0.85624 0.992 0.000 0.008 0.000 0.000
#> SRR1353418     5  0.1341    0.78842 0.000 0.000 0.056 0.000 0.944
#> SRR1092913     4  0.0000    0.83918 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.3868    -0.0162 0.508 0.000 0.000 0.000 0.000 0.492
#> SRR1335605     1  0.5628     0.3033 0.568 0.168 0.008 0.000 0.256 0.000
#> SRR1432014     3  0.0777     0.8716 0.000 0.000 0.972 0.000 0.024 0.004
#> SRR1499215     3  0.3972     0.6981 0.004 0.004 0.724 0.000 0.024 0.244
#> SRR1460409     6  0.1866     0.7618 0.084 0.000 0.008 0.000 0.000 0.908
#> SRR1086441     6  0.3578     0.4445 0.340 0.000 0.000 0.000 0.000 0.660
#> SRR1097344     4  0.0260     0.8747 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1081789     2  0.3668     0.6918 0.028 0.744 0.228 0.000 0.000 0.000
#> SRR1453005     4  0.5398     0.3466 0.032 0.064 0.324 0.580 0.000 0.000
#> SRR1366985     6  0.1531     0.7496 0.004 0.000 0.068 0.000 0.000 0.928
#> SRR815280      6  0.1141     0.7826 0.052 0.000 0.000 0.000 0.000 0.948
#> SRR1348531     1  0.4847     0.0965 0.500 0.000 0.000 0.000 0.056 0.444
#> SRR815845      5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1471178     6  0.3151     0.5938 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1080696     5  0.1814     0.8566 0.000 0.000 0.100 0.000 0.900 0.000
#> SRR1078684     3  0.2400     0.8263 0.064 0.024 0.896 0.000 0.000 0.016
#> SRR1317751     5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1435667     3  0.0922     0.8713 0.000 0.004 0.968 0.000 0.024 0.004
#> SRR1097905     1  0.1296     0.7214 0.948 0.004 0.004 0.000 0.000 0.044
#> SRR1456548     1  0.1765     0.7146 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1075126     6  0.0146     0.7962 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR813108      3  0.1411     0.8448 0.004 0.060 0.936 0.000 0.000 0.000
#> SRR1479062     4  0.7198     0.2727 0.032 0.024 0.256 0.492 0.172 0.024
#> SRR1408703     5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1332360     6  0.0405     0.7962 0.004 0.000 0.008 0.000 0.000 0.988
#> SRR1098686     1  0.3101     0.5874 0.756 0.000 0.000 0.000 0.000 0.244
#> SRR1434228     6  0.0725     0.7866 0.012 0.000 0.012 0.000 0.000 0.976
#> SRR1467149     4  0.4193     0.3160 0.352 0.000 0.000 0.624 0.024 0.000
#> SRR1399113     2  0.0820     0.9079 0.016 0.972 0.012 0.000 0.000 0.000
#> SRR1476507     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1092468     1  0.3468     0.5177 0.712 0.000 0.000 0.284 0.000 0.004
#> SRR1441804     1  0.2793     0.6424 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR1326100     2  0.4008     0.7137 0.064 0.740 0.196 0.000 0.000 0.000
#> SRR1398815     1  0.2706     0.6758 0.832 0.000 0.008 0.000 0.000 0.160
#> SRR1436021     4  0.5021     0.4651 0.280 0.040 0.040 0.640 0.000 0.000
#> SRR1480083     2  0.1970     0.8794 0.028 0.912 0.060 0.000 0.000 0.000
#> SRR1472863     1  0.1531     0.7230 0.928 0.000 0.004 0.000 0.000 0.068
#> SRR815542      6  0.2793     0.6553 0.200 0.000 0.000 0.000 0.000 0.800
#> SRR1400100     5  0.1245     0.9193 0.016 0.032 0.000 0.000 0.952 0.000
#> SRR1312002     6  0.4983    -0.1446 0.028 0.004 0.444 0.000 0.016 0.508
#> SRR1470253     5  0.0767     0.9342 0.004 0.000 0.008 0.000 0.976 0.012
#> SRR1414332     6  0.3531     0.4757 0.328 0.000 0.000 0.000 0.000 0.672
#> SRR1069209     6  0.0291     0.7962 0.004 0.000 0.004 0.000 0.000 0.992
#> SRR661052      1  0.1327     0.7232 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1308860     1  0.2416     0.6817 0.844 0.000 0.000 0.000 0.000 0.156
#> SRR1421159     3  0.3732     0.6566 0.004 0.024 0.744 0.228 0.000 0.000
#> SRR1340943     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1078855     6  0.0146     0.7955 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1459465     2  0.1194     0.9025 0.008 0.956 0.032 0.004 0.000 0.000
#> SRR816818      2  0.0603     0.9007 0.016 0.980 0.004 0.000 0.000 0.000
#> SRR1478679     3  0.3071     0.7733 0.000 0.016 0.804 0.000 0.000 0.180
#> SRR1350979     3  0.0547     0.8714 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR1458198     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1386910     1  0.4357     0.0361 0.560 0.420 0.012 0.000 0.008 0.000
#> SRR1465375     1  0.4930     0.0572 0.488 0.044 0.008 0.460 0.000 0.000
#> SRR1323699     3  0.3723     0.7076 0.012 0.004 0.736 0.000 0.004 0.244
#> SRR1431139     1  0.3985     0.5948 0.764 0.004 0.172 0.004 0.056 0.000
#> SRR1373964     3  0.1594     0.8604 0.000 0.000 0.932 0.000 0.016 0.052
#> SRR1455413     1  0.3473     0.6822 0.828 0.000 0.004 0.108 0.044 0.016
#> SRR1437163     1  0.1411     0.7231 0.936 0.000 0.004 0.000 0.000 0.060
#> SRR1347343     3  0.1232     0.8697 0.004 0.000 0.956 0.000 0.016 0.024
#> SRR1465480     2  0.0508     0.9060 0.012 0.984 0.004 0.000 0.000 0.000
#> SRR1489631     1  0.1471     0.7233 0.932 0.000 0.004 0.000 0.000 0.064
#> SRR1086514     4  0.1970     0.8256 0.000 0.060 0.028 0.912 0.000 0.000
#> SRR1430928     6  0.3817     0.2139 0.432 0.000 0.000 0.000 0.000 0.568
#> SRR1310939     4  0.2095     0.8350 0.016 0.000 0.028 0.916 0.000 0.040
#> SRR1344294     2  0.1176     0.9019 0.020 0.956 0.024 0.000 0.000 0.000
#> SRR1099402     6  0.0260     0.7958 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR1468118     5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1486348     1  0.3862     0.0493 0.524 0.000 0.000 0.000 0.000 0.476
#> SRR1488770     2  0.1088     0.9091 0.016 0.960 0.024 0.000 0.000 0.000
#> SRR1083732     6  0.3864     0.0576 0.480 0.000 0.000 0.000 0.000 0.520
#> SRR1456611     2  0.0547     0.9013 0.020 0.980 0.000 0.000 0.000 0.000
#> SRR1080318     6  0.4323     0.0393 0.476 0.000 0.008 0.000 0.008 0.508
#> SRR1500089     4  0.0603     0.8708 0.004 0.000 0.000 0.980 0.016 0.000
#> SRR1441178     6  0.0806     0.7934 0.020 0.000 0.008 0.000 0.000 0.972
#> SRR1381396     6  0.3955     0.3453 0.384 0.000 0.008 0.000 0.000 0.608
#> SRR1096081     5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1349809     1  0.3014     0.5893 0.804 0.184 0.012 0.000 0.000 0.000
#> SRR1324314     6  0.4722     0.4243 0.056 0.000 0.244 0.000 0.020 0.680
#> SRR1092444     5  0.2921     0.7537 0.156 0.000 0.008 0.000 0.828 0.008
#> SRR1382553     6  0.1401     0.7695 0.020 0.004 0.028 0.000 0.000 0.948
#> SRR1075530     4  0.2457     0.8025 0.000 0.084 0.000 0.880 0.036 0.000
#> SRR1442612     3  0.0777     0.8716 0.000 0.000 0.972 0.000 0.024 0.004
#> SRR1360056     5  0.3641     0.6806 0.000 0.000 0.028 0.000 0.748 0.224
#> SRR1078164     6  0.1523     0.7850 0.044 0.000 0.008 0.000 0.008 0.940
#> SRR1434545     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1398251     6  0.0937     0.7760 0.000 0.000 0.040 0.000 0.000 0.960
#> SRR1375866     6  0.3764     0.5847 0.256 0.000 0.008 0.000 0.012 0.724
#> SRR1091645     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1416636     5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1105441     3  0.4915     0.4911 0.072 0.004 0.604 0.000 0.320 0.000
#> SRR1082496     2  0.0632     0.9076 0.000 0.976 0.024 0.000 0.000 0.000
#> SRR1315353     3  0.1720     0.8497 0.032 0.040 0.928 0.000 0.000 0.000
#> SRR1093697     2  0.0820     0.9093 0.012 0.972 0.016 0.000 0.000 0.000
#> SRR1077429     5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1076120     4  0.0146     0.8761 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1074410     1  0.4083     0.0947 0.532 0.000 0.008 0.000 0.000 0.460
#> SRR1340345     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1069514     3  0.0777     0.8644 0.000 0.024 0.972 0.000 0.004 0.000
#> SRR1092636     5  0.0458     0.9360 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1365013     1  0.1838     0.6846 0.916 0.068 0.016 0.000 0.000 0.000
#> SRR1073069     6  0.0363     0.7947 0.000 0.000 0.012 0.000 0.000 0.988
#> SRR1443137     6  0.0291     0.7962 0.004 0.000 0.004 0.000 0.000 0.992
#> SRR1437143     2  0.1003     0.9081 0.020 0.964 0.016 0.000 0.000 0.000
#> SRR1091990     6  0.1007     0.7857 0.044 0.000 0.000 0.000 0.000 0.956
#> SRR820234      2  0.4400     0.3926 0.032 0.592 0.376 0.000 0.000 0.000
#> SRR1338079     1  0.1610     0.7187 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR1390094     3  0.0622     0.8695 0.000 0.008 0.980 0.000 0.000 0.012
#> SRR1340721     1  0.2905     0.6361 0.836 0.144 0.012 0.000 0.000 0.008
#> SRR1335964     3  0.3245     0.8200 0.044 0.000 0.852 0.052 0.052 0.000
#> SRR1086869     5  0.0000     0.9439 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1453434     6  0.0458     0.7919 0.000 0.000 0.000 0.016 0.000 0.984
#> SRR1402261     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR657809      1  0.5852     0.0326 0.452 0.168 0.004 0.376 0.000 0.000
#> SRR1093075     6  0.0146     0.7955 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1433329     6  0.0146     0.7955 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR1353418     5  0.1789     0.8976 0.000 0.000 0.032 0.000 0.924 0.044
#> SRR1092913     4  0.0000     0.8777 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.550           0.771       0.900         0.4616 0.539   0.539
#> 3 3 0.563           0.662       0.775         0.2561 0.800   0.646
#> 4 4 0.613           0.672       0.841         0.0865 0.899   0.761
#> 5 5 0.579           0.616       0.779         0.1422 0.863   0.642
#> 6 6 0.670           0.542       0.718         0.0542 0.963   0.872

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000     0.8649 1.000 0.000
#> SRR1335605     2  0.8661     0.6052 0.288 0.712
#> SRR1432014     1  0.9815     0.3575 0.580 0.420
#> SRR1499215     1  0.9170     0.5410 0.668 0.332
#> SRR1460409     1  0.0000     0.8649 1.000 0.000
#> SRR1086441     1  0.0000     0.8649 1.000 0.000
#> SRR1097344     2  0.0000     0.9066 0.000 1.000
#> SRR1081789     2  0.6623     0.8001 0.172 0.828
#> SRR1453005     2  0.0000     0.9066 0.000 1.000
#> SRR1366985     1  0.0000     0.8649 1.000 0.000
#> SRR815280      1  0.0000     0.8649 1.000 0.000
#> SRR1348531     1  0.0000     0.8649 1.000 0.000
#> SRR815845      2  0.7376     0.7527 0.208 0.792
#> SRR1471178     1  0.0000     0.8649 1.000 0.000
#> SRR1080696     1  0.0000     0.8649 1.000 0.000
#> SRR1078684     1  0.6623     0.7421 0.828 0.172
#> SRR1317751     1  0.0000     0.8649 1.000 0.000
#> SRR1435667     1  0.9850     0.3332 0.572 0.428
#> SRR1097905     1  0.9954     0.2365 0.540 0.460
#> SRR1456548     1  0.9954     0.2365 0.540 0.460
#> SRR1075126     1  0.0938     0.8597 0.988 0.012
#> SRR813108      2  0.2778     0.8928 0.048 0.952
#> SRR1479062     1  0.8763     0.5976 0.704 0.296
#> SRR1408703     1  0.0000     0.8649 1.000 0.000
#> SRR1332360     1  0.0000     0.8649 1.000 0.000
#> SRR1098686     1  0.1843     0.8520 0.972 0.028
#> SRR1434228     1  0.0000     0.8649 1.000 0.000
#> SRR1467149     1  0.9896     0.2963 0.560 0.440
#> SRR1399113     2  0.0000     0.9066 0.000 1.000
#> SRR1476507     2  0.0000     0.9066 0.000 1.000
#> SRR1092468     1  0.2778     0.8406 0.952 0.048
#> SRR1441804     1  0.0000     0.8649 1.000 0.000
#> SRR1326100     2  0.0000     0.9066 0.000 1.000
#> SRR1398815     1  0.0000     0.8649 1.000 0.000
#> SRR1436021     2  0.6801     0.7905 0.180 0.820
#> SRR1480083     2  0.0000     0.9066 0.000 1.000
#> SRR1472863     1  0.9933     0.2607 0.548 0.452
#> SRR815542      1  0.0000     0.8649 1.000 0.000
#> SRR1400100     2  0.8016     0.6928 0.244 0.756
#> SRR1312002     1  0.0376     0.8633 0.996 0.004
#> SRR1470253     1  0.0000     0.8649 1.000 0.000
#> SRR1414332     1  0.0000     0.8649 1.000 0.000
#> SRR1069209     1  0.0000     0.8649 1.000 0.000
#> SRR661052      1  0.9933     0.2607 0.548 0.452
#> SRR1308860     1  0.9170     0.5358 0.668 0.332
#> SRR1421159     2  0.6801     0.7905 0.180 0.820
#> SRR1340943     2  0.6048     0.8254 0.148 0.852
#> SRR1078855     1  0.0000     0.8649 1.000 0.000
#> SRR1459465     2  0.0000     0.9066 0.000 1.000
#> SRR816818      2  0.0000     0.9066 0.000 1.000
#> SRR1478679     2  0.9963     0.0297 0.464 0.536
#> SRR1350979     1  0.8909     0.5798 0.692 0.308
#> SRR1458198     1  0.0000     0.8649 1.000 0.000
#> SRR1386910     2  0.0000     0.9066 0.000 1.000
#> SRR1465375     2  0.0000     0.9066 0.000 1.000
#> SRR1323699     1  0.9286     0.5200 0.656 0.344
#> SRR1431139     1  0.2236     0.8477 0.964 0.036
#> SRR1373964     1  0.9815     0.3575 0.580 0.420
#> SRR1455413     1  0.2778     0.8406 0.952 0.048
#> SRR1437163     1  0.9963     0.2229 0.536 0.464
#> SRR1347343     1  0.9608     0.4402 0.616 0.384
#> SRR1465480     2  0.0000     0.9066 0.000 1.000
#> SRR1489631     1  0.9954     0.2365 0.540 0.460
#> SRR1086514     2  0.3274     0.8870 0.060 0.940
#> SRR1430928     1  0.0000     0.8649 1.000 0.000
#> SRR1310939     1  0.8763     0.5976 0.704 0.296
#> SRR1344294     2  0.0000     0.9066 0.000 1.000
#> SRR1099402     1  0.0000     0.8649 1.000 0.000
#> SRR1468118     1  0.7528     0.6964 0.784 0.216
#> SRR1486348     1  0.9170     0.5358 0.668 0.332
#> SRR1488770     2  0.0000     0.9066 0.000 1.000
#> SRR1083732     1  0.0000     0.8649 1.000 0.000
#> SRR1456611     2  0.0000     0.9066 0.000 1.000
#> SRR1080318     1  0.0000     0.8649 1.000 0.000
#> SRR1500089     1  0.0000     0.8649 1.000 0.000
#> SRR1441178     1  0.0000     0.8649 1.000 0.000
#> SRR1381396     1  0.0000     0.8649 1.000 0.000
#> SRR1096081     1  0.0000     0.8649 1.000 0.000
#> SRR1349809     2  0.0000     0.9066 0.000 1.000
#> SRR1324314     1  0.0376     0.8633 0.996 0.004
#> SRR1092444     1  0.0000     0.8649 1.000 0.000
#> SRR1382553     1  0.0000     0.8649 1.000 0.000
#> SRR1075530     2  0.2423     0.8956 0.040 0.960
#> SRR1442612     1  0.9815     0.3575 0.580 0.420
#> SRR1360056     1  0.7815     0.6773 0.768 0.232
#> SRR1078164     1  0.0000     0.8649 1.000 0.000
#> SRR1434545     2  0.6048     0.8254 0.148 0.852
#> SRR1398251     1  0.0000     0.8649 1.000 0.000
#> SRR1375866     1  0.0000     0.8649 1.000 0.000
#> SRR1091645     2  0.0000     0.9066 0.000 1.000
#> SRR1416636     1  0.0000     0.8649 1.000 0.000
#> SRR1105441     2  0.8499     0.6298 0.276 0.724
#> SRR1082496     2  0.0000     0.9066 0.000 1.000
#> SRR1315353     2  0.3274     0.8869 0.060 0.940
#> SRR1093697     2  0.0000     0.9066 0.000 1.000
#> SRR1077429     1  0.0000     0.8649 1.000 0.000
#> SRR1076120     1  0.0000     0.8649 1.000 0.000
#> SRR1074410     1  0.0000     0.8649 1.000 0.000
#> SRR1340345     2  0.0000     0.9066 0.000 1.000
#> SRR1069514     2  0.6801     0.7905 0.180 0.820
#> SRR1092636     1  0.2236     0.8477 0.964 0.036
#> SRR1365013     2  0.3274     0.8870 0.060 0.940
#> SRR1073069     1  0.0000     0.8649 1.000 0.000
#> SRR1443137     1  0.0000     0.8649 1.000 0.000
#> SRR1437143     2  0.0000     0.9066 0.000 1.000
#> SRR1091990     1  0.0000     0.8649 1.000 0.000
#> SRR820234      2  0.2603     0.8941 0.044 0.956
#> SRR1338079     1  0.9963     0.2229 0.536 0.464
#> SRR1390094     2  0.6247     0.8181 0.156 0.844
#> SRR1340721     2  0.0000     0.9066 0.000 1.000
#> SRR1335964     1  0.1633     0.8538 0.976 0.024
#> SRR1086869     1  0.0000     0.8649 1.000 0.000
#> SRR1453434     1  0.0000     0.8649 1.000 0.000
#> SRR1402261     2  0.6048     0.8254 0.148 0.852
#> SRR657809      2  0.0000     0.9066 0.000 1.000
#> SRR1093075     1  0.0000     0.8649 1.000 0.000
#> SRR1433329     1  0.0000     0.8649 1.000 0.000
#> SRR1353418     1  0.0000     0.8649 1.000 0.000
#> SRR1092913     2  0.0000     0.9066 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1335605     3  0.7814     0.5502 0.104 0.244 0.652
#> SRR1432014     3  0.8201     0.4755 0.400 0.076 0.524
#> SRR1499215     1  0.7661    -0.1960 0.504 0.044 0.452
#> SRR1460409     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1097344     2  0.4974     0.7352 0.000 0.764 0.236
#> SRR1081789     3  0.7251     0.3892 0.040 0.348 0.612
#> SRR1453005     2  0.3816     0.7603 0.000 0.852 0.148
#> SRR1366985     1  0.1964     0.8500 0.944 0.000 0.056
#> SRR815280      1  0.0592     0.8641 0.988 0.000 0.012
#> SRR1348531     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR815845      3  0.6229     0.4348 0.020 0.280 0.700
#> SRR1471178     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1080696     1  0.2066     0.8478 0.940 0.000 0.060
#> SRR1078684     1  0.6742     0.5147 0.708 0.052 0.240
#> SRR1317751     1  0.2066     0.8478 0.940 0.000 0.060
#> SRR1435667     3  0.7784     0.4835 0.388 0.056 0.556
#> SRR1097905     3  0.8909     0.5628 0.400 0.124 0.476
#> SRR1456548     3  0.8852     0.5674 0.396 0.120 0.484
#> SRR1075126     1  0.3038     0.8144 0.896 0.000 0.104
#> SRR813108      3  0.6295    -0.0621 0.000 0.472 0.528
#> SRR1479062     1  0.6302    -0.0966 0.520 0.000 0.480
#> SRR1408703     1  0.2066     0.8478 0.940 0.000 0.060
#> SRR1332360     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1098686     1  0.3129     0.8017 0.904 0.008 0.088
#> SRR1434228     1  0.1643     0.8528 0.956 0.000 0.044
#> SRR1467149     3  0.8779     0.5280 0.416 0.112 0.472
#> SRR1399113     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1476507     2  0.4974     0.7352 0.000 0.764 0.236
#> SRR1092468     1  0.4485     0.7613 0.844 0.020 0.136
#> SRR1441804     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1326100     2  0.4750     0.6754 0.000 0.784 0.216
#> SRR1398815     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1436021     3  0.7348     0.3862 0.044 0.348 0.608
#> SRR1480083     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1472863     3  0.8808     0.5549 0.400 0.116 0.484
#> SRR815542      1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1400100     3  0.7065     0.4912 0.052 0.276 0.672
#> SRR1312002     1  0.3116     0.8123 0.892 0.000 0.108
#> SRR1470253     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1414332     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1069209     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR661052      3  0.8808     0.5549 0.400 0.116 0.484
#> SRR1308860     1  0.7542    -0.2317 0.528 0.040 0.432
#> SRR1421159     3  0.7348     0.3862 0.044 0.348 0.608
#> SRR1340943     3  0.3293     0.3682 0.012 0.088 0.900
#> SRR1078855     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1478679     3  0.8652     0.6284 0.284 0.140 0.576
#> SRR1350979     1  0.6308    -0.1451 0.508 0.000 0.492
#> SRR1458198     1  0.0237     0.8680 0.996 0.000 0.004
#> SRR1386910     2  0.1529     0.8551 0.000 0.960 0.040
#> SRR1465375     2  0.1529     0.8551 0.000 0.960 0.040
#> SRR1323699     1  0.7674    -0.2815 0.480 0.044 0.476
#> SRR1431139     1  0.4172     0.7567 0.840 0.004 0.156
#> SRR1373964     3  0.8201     0.4755 0.400 0.076 0.524
#> SRR1455413     1  0.4485     0.7613 0.844 0.020 0.136
#> SRR1437163     3  0.8895     0.5724 0.392 0.124 0.484
#> SRR1347343     3  0.7905     0.3545 0.444 0.056 0.500
#> SRR1465480     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1489631     3  0.8852     0.5674 0.396 0.120 0.484
#> SRR1086514     2  0.6286     0.2539 0.000 0.536 0.464
#> SRR1430928     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1310939     1  0.6302    -0.0966 0.520 0.000 0.480
#> SRR1344294     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1468118     1  0.6079     0.2538 0.612 0.000 0.388
#> SRR1486348     1  0.7542    -0.2317 0.528 0.040 0.432
#> SRR1488770     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1500089     1  0.0237     0.8680 0.996 0.000 0.004
#> SRR1441178     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1096081     1  0.2066     0.8478 0.940 0.000 0.060
#> SRR1349809     2  0.1529     0.8551 0.000 0.960 0.040
#> SRR1324314     1  0.3116     0.8123 0.892 0.000 0.108
#> SRR1092444     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1382553     1  0.1964     0.8500 0.944 0.000 0.056
#> SRR1075530     2  0.5621     0.6141 0.000 0.692 0.308
#> SRR1442612     3  0.8201     0.4755 0.400 0.076 0.524
#> SRR1360056     1  0.6154     0.1585 0.592 0.000 0.408
#> SRR1078164     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1434545     3  0.3293     0.3682 0.012 0.088 0.900
#> SRR1398251     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1375866     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1091645     2  0.4974     0.7352 0.000 0.764 0.236
#> SRR1416636     1  0.2066     0.8478 0.940 0.000 0.060
#> SRR1105441     3  0.7569     0.5399 0.088 0.248 0.664
#> SRR1082496     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1315353     2  0.6252     0.2745 0.000 0.556 0.444
#> SRR1093697     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1077429     1  0.1753     0.8522 0.952 0.000 0.048
#> SRR1076120     1  0.0237     0.8680 0.996 0.000 0.004
#> SRR1074410     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1340345     2  0.2625     0.8374 0.000 0.916 0.084
#> SRR1069514     3  0.7306     0.4064 0.044 0.340 0.616
#> SRR1092636     1  0.4172     0.7567 0.840 0.004 0.156
#> SRR1365013     2  0.6286     0.2454 0.000 0.536 0.464
#> SRR1073069     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1443137     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1437143     2  0.0000     0.8588 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR820234      2  0.6215     0.3212 0.000 0.572 0.428
#> SRR1338079     3  0.8895     0.5724 0.392 0.124 0.484
#> SRR1390094     3  0.4921     0.4317 0.020 0.164 0.816
#> SRR1340721     2  0.1529     0.8551 0.000 0.960 0.040
#> SRR1335964     1  0.3816     0.7696 0.852 0.000 0.148
#> SRR1086869     1  0.2066     0.8478 0.940 0.000 0.060
#> SRR1453434     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1402261     3  0.3293     0.3682 0.012 0.088 0.900
#> SRR657809      2  0.1529     0.8551 0.000 0.960 0.040
#> SRR1093075     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1433329     1  0.0000     0.8692 1.000 0.000 0.000
#> SRR1353418     1  0.2066     0.8478 0.940 0.000 0.060
#> SRR1092913     2  0.1529     0.8551 0.000 0.960 0.040

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1335605     3  0.2831     0.4012 0.044 0.008 0.908 0.040
#> SRR1432014     3  0.4999     0.5550 0.328 0.000 0.660 0.012
#> SRR1499215     3  0.5345     0.3787 0.428 0.000 0.560 0.012
#> SRR1460409     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1097344     2  0.4621     0.6799 0.000 0.708 0.008 0.284
#> SRR1081789     3  0.4039     0.3273 0.016 0.076 0.852 0.056
#> SRR1453005     2  0.5080     0.3944 0.000 0.576 0.420 0.004
#> SRR1366985     1  0.2546     0.8361 0.900 0.000 0.092 0.008
#> SRR815280      1  0.0657     0.8803 0.984 0.000 0.004 0.012
#> SRR1348531     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR815845      3  0.3123     0.2271 0.000 0.000 0.844 0.156
#> SRR1471178     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1080696     1  0.2402     0.8458 0.912 0.000 0.076 0.012
#> SRR1078684     1  0.4990     0.3619 0.640 0.000 0.352 0.008
#> SRR1317751     1  0.2255     0.8486 0.920 0.000 0.068 0.012
#> SRR1435667     3  0.5713     0.5434 0.340 0.000 0.620 0.040
#> SRR1097905     3  0.6840     0.5423 0.332 0.004 0.560 0.104
#> SRR1456548     3  0.6748     0.5401 0.328 0.000 0.560 0.112
#> SRR1075126     1  0.3695     0.7581 0.828 0.000 0.156 0.016
#> SRR813108      3  0.6279     0.0409 0.000 0.180 0.664 0.156
#> SRR1479062     3  0.5372     0.3199 0.444 0.000 0.544 0.012
#> SRR1408703     1  0.2402     0.8458 0.912 0.000 0.076 0.012
#> SRR1332360     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1098686     1  0.3355     0.7411 0.836 0.000 0.160 0.004
#> SRR1434228     1  0.1545     0.8648 0.952 0.000 0.040 0.008
#> SRR1467149     3  0.6677     0.5382 0.348 0.000 0.552 0.100
#> SRR1399113     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1476507     2  0.4621     0.6799 0.000 0.708 0.008 0.284
#> SRR1092468     1  0.4175     0.6845 0.776 0.000 0.212 0.012
#> SRR1441804     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1326100     2  0.5163     0.2720 0.000 0.516 0.480 0.004
#> SRR1398815     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1436021     3  0.4810     0.3219 0.020 0.108 0.808 0.064
#> SRR1480083     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1472863     3  0.6717     0.5439 0.332 0.000 0.560 0.108
#> SRR815542      1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1400100     3  0.1557     0.3410 0.000 0.000 0.944 0.056
#> SRR1312002     1  0.3636     0.7503 0.820 0.000 0.172 0.008
#> SRR1470253     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1414332     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR661052      3  0.6717     0.5439 0.332 0.000 0.560 0.108
#> SRR1308860     1  0.6755    -0.3277 0.460 0.000 0.448 0.092
#> SRR1421159     3  0.4810     0.3219 0.020 0.108 0.808 0.064
#> SRR1340943     4  0.1389     0.9363 0.000 0.000 0.048 0.952
#> SRR1078855     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.4230     0.5474 0.212 0.004 0.776 0.008
#> SRR1350979     3  0.5353     0.3515 0.432 0.000 0.556 0.012
#> SRR1458198     1  0.0188     0.8862 0.996 0.000 0.004 0.000
#> SRR1386910     2  0.2483     0.8551 0.000 0.916 0.032 0.052
#> SRR1465375     2  0.2483     0.8551 0.000 0.916 0.032 0.052
#> SRR1323699     3  0.5290     0.4322 0.404 0.000 0.584 0.012
#> SRR1431139     1  0.4123     0.6785 0.772 0.000 0.220 0.008
#> SRR1373964     3  0.4999     0.5550 0.328 0.000 0.660 0.012
#> SRR1455413     1  0.4175     0.6845 0.776 0.000 0.212 0.012
#> SRR1437163     3  0.6904     0.5381 0.324 0.004 0.560 0.112
#> SRR1347343     3  0.5174     0.4951 0.368 0.000 0.620 0.012
#> SRR1465480     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1489631     3  0.6748     0.5401 0.328 0.000 0.560 0.112
#> SRR1086514     3  0.6040     0.0716 0.000 0.272 0.648 0.080
#> SRR1430928     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.5372     0.3199 0.444 0.000 0.544 0.012
#> SRR1344294     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1468118     1  0.6400     0.0145 0.524 0.000 0.408 0.068
#> SRR1486348     1  0.6755    -0.3277 0.460 0.000 0.448 0.092
#> SRR1488770     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1500089     1  0.0188     0.8862 0.996 0.000 0.004 0.000
#> SRR1441178     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1381396     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1096081     1  0.2255     0.8486 0.920 0.000 0.068 0.012
#> SRR1349809     2  0.2483     0.8551 0.000 0.916 0.032 0.052
#> SRR1324314     1  0.3636     0.7503 0.820 0.000 0.172 0.008
#> SRR1092444     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1382553     1  0.2546     0.8361 0.900 0.000 0.092 0.008
#> SRR1075530     2  0.6534     0.5253 0.000 0.624 0.244 0.132
#> SRR1442612     3  0.4999     0.5550 0.328 0.000 0.660 0.012
#> SRR1360056     1  0.6546    -0.0456 0.524 0.000 0.396 0.080
#> SRR1078164     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1434545     4  0.1389     0.9363 0.000 0.000 0.048 0.952
#> SRR1398251     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1375866     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1091645     2  0.4621     0.6799 0.000 0.708 0.008 0.284
#> SRR1416636     1  0.2402     0.8458 0.912 0.000 0.076 0.012
#> SRR1105441     3  0.2578     0.3859 0.036 0.000 0.912 0.052
#> SRR1082496     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.6950    -0.0762 0.000 0.272 0.572 0.156
#> SRR1093697     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1077429     1  0.1545     0.8658 0.952 0.000 0.040 0.008
#> SRR1076120     1  0.0188     0.8862 0.996 0.000 0.004 0.000
#> SRR1074410     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1340345     2  0.3342     0.8307 0.000 0.868 0.032 0.100
#> SRR1069514     3  0.4080     0.3364 0.020 0.072 0.852 0.056
#> SRR1092636     1  0.4123     0.6785 0.772 0.000 0.220 0.008
#> SRR1365013     3  0.5900     0.0844 0.000 0.260 0.664 0.076
#> SRR1073069     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1443137     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000     0.8670 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR820234      3  0.7031    -0.0937 0.000 0.288 0.556 0.156
#> SRR1338079     3  0.6904     0.5381 0.324 0.004 0.560 0.112
#> SRR1390094     4  0.3810     0.7856 0.008 0.000 0.188 0.804
#> SRR1340721     2  0.2483     0.8551 0.000 0.916 0.032 0.052
#> SRR1335964     1  0.4011     0.6960 0.784 0.000 0.208 0.008
#> SRR1086869     1  0.2255     0.8486 0.920 0.000 0.068 0.012
#> SRR1453434     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1402261     4  0.1389     0.9363 0.000 0.000 0.048 0.952
#> SRR657809      2  0.2483     0.8551 0.000 0.916 0.032 0.052
#> SRR1093075     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000     0.8877 1.000 0.000 0.000 0.000
#> SRR1353418     1  0.2255     0.8486 0.920 0.000 0.068 0.012
#> SRR1092913     2  0.2483     0.8551 0.000 0.916 0.032 0.052

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1335605     4  0.4661    0.48280 0.016 0.000 0.356 0.624 0.004
#> SRR1432014     3  0.4984    0.39409 0.052 0.000 0.640 0.308 0.000
#> SRR1499215     3  0.5365    0.49000 0.116 0.000 0.656 0.228 0.000
#> SRR1460409     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1097344     2  0.4706    0.68428 0.000 0.692 0.000 0.052 0.256
#> SRR1081789     4  0.4873    0.66955 0.000 0.068 0.244 0.688 0.000
#> SRR1453005     2  0.4300   -0.00335 0.000 0.524 0.000 0.476 0.000
#> SRR1366985     1  0.4126    0.42824 0.620 0.000 0.380 0.000 0.000
#> SRR815280      1  0.3002    0.73917 0.872 0.000 0.048 0.076 0.004
#> SRR1348531     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR815845      4  0.3210    0.63800 0.000 0.000 0.212 0.788 0.000
#> SRR1471178     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1080696     1  0.4546    0.38303 0.532 0.000 0.460 0.008 0.000
#> SRR1078684     3  0.6066    0.37688 0.368 0.000 0.504 0.128 0.000
#> SRR1317751     1  0.4538    0.39788 0.540 0.000 0.452 0.008 0.000
#> SRR1435667     3  0.5152    0.37522 0.052 0.000 0.632 0.312 0.004
#> SRR1097905     3  0.6196    0.36481 0.124 0.004 0.592 0.268 0.012
#> SRR1456548     3  0.6265    0.36041 0.128 0.000 0.584 0.268 0.020
#> SRR1075126     1  0.4045    0.38479 0.644 0.000 0.356 0.000 0.000
#> SRR813108      4  0.3090    0.64375 0.000 0.104 0.040 0.856 0.000
#> SRR1479062     3  0.4836    0.49405 0.096 0.000 0.716 0.188 0.000
#> SRR1408703     1  0.4546    0.38303 0.532 0.000 0.460 0.008 0.000
#> SRR1332360     1  0.1270    0.79469 0.948 0.000 0.000 0.052 0.000
#> SRR1098686     1  0.3942    0.53032 0.748 0.000 0.232 0.020 0.000
#> SRR1434228     1  0.3752    0.58212 0.708 0.000 0.292 0.000 0.000
#> SRR1467149     3  0.5900    0.38286 0.128 0.000 0.612 0.252 0.008
#> SRR1399113     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     2  0.4706    0.68428 0.000 0.692 0.000 0.052 0.256
#> SRR1092468     1  0.4824    0.25768 0.596 0.000 0.376 0.028 0.000
#> SRR1441804     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1326100     4  0.5175    0.18433 0.000 0.464 0.040 0.496 0.000
#> SRR1398815     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1436021     4  0.5463    0.67272 0.000 0.100 0.248 0.648 0.004
#> SRR1480083     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     3  0.5945    0.37168 0.124 0.000 0.600 0.268 0.008
#> SRR815542      1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1400100     4  0.3876    0.57636 0.000 0.000 0.316 0.684 0.000
#> SRR1312002     3  0.4443   -0.05654 0.472 0.000 0.524 0.004 0.000
#> SRR1470253     1  0.1478    0.79624 0.936 0.000 0.064 0.000 0.000
#> SRR1414332     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1069209     1  0.1341    0.79931 0.944 0.000 0.056 0.000 0.000
#> SRR661052      3  0.5945    0.37168 0.124 0.000 0.600 0.268 0.008
#> SRR1308860     3  0.6166    0.40817 0.272 0.000 0.564 0.160 0.004
#> SRR1421159     4  0.5463    0.67272 0.000 0.100 0.248 0.648 0.004
#> SRR1340943     5  0.0000    0.92353 0.000 0.000 0.000 0.000 1.000
#> SRR1078855     1  0.1408    0.80074 0.948 0.000 0.008 0.044 0.000
#> SRR1459465     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.4867    0.13222 0.024 0.000 0.544 0.432 0.000
#> SRR1350979     3  0.4779    0.48467 0.084 0.000 0.716 0.200 0.000
#> SRR1458198     1  0.2020    0.77915 0.900 0.000 0.100 0.000 0.000
#> SRR1386910     2  0.2349    0.86686 0.000 0.900 0.012 0.084 0.004
#> SRR1465375     2  0.2349    0.86686 0.000 0.900 0.012 0.084 0.004
#> SRR1323699     3  0.5167    0.47511 0.092 0.000 0.668 0.240 0.000
#> SRR1431139     3  0.4651    0.20854 0.372 0.000 0.608 0.020 0.000
#> SRR1373964     3  0.4984    0.39409 0.052 0.000 0.640 0.308 0.000
#> SRR1455413     1  0.4824    0.25768 0.596 0.000 0.376 0.028 0.000
#> SRR1437163     3  0.6376    0.35638 0.124 0.004 0.584 0.268 0.020
#> SRR1347343     3  0.5150    0.44756 0.076 0.000 0.652 0.272 0.000
#> SRR1465480     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     3  0.6265    0.36041 0.128 0.000 0.584 0.268 0.020
#> SRR1086514     4  0.5580    0.63836 0.000 0.256 0.096 0.640 0.008
#> SRR1430928     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1310939     3  0.4836    0.49405 0.096 0.000 0.716 0.188 0.000
#> SRR1344294     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1468118     3  0.3780    0.45257 0.132 0.000 0.808 0.060 0.000
#> SRR1486348     3  0.6166    0.40817 0.272 0.000 0.564 0.160 0.004
#> SRR1488770     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.1270    0.80095 0.948 0.000 0.052 0.000 0.000
#> SRR1456611     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.0703    0.80808 0.976 0.000 0.024 0.000 0.000
#> SRR1500089     1  0.2020    0.77915 0.900 0.000 0.100 0.000 0.000
#> SRR1441178     1  0.2616    0.75021 0.888 0.000 0.036 0.076 0.000
#> SRR1381396     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1096081     1  0.4538    0.39788 0.540 0.000 0.452 0.008 0.000
#> SRR1349809     2  0.2349    0.86686 0.000 0.900 0.012 0.084 0.004
#> SRR1324314     3  0.4443   -0.05654 0.472 0.000 0.524 0.004 0.000
#> SRR1092444     1  0.0703    0.80808 0.976 0.000 0.024 0.000 0.000
#> SRR1382553     1  0.4126    0.42824 0.620 0.000 0.380 0.000 0.000
#> SRR1075530     2  0.6135    0.47594 0.000 0.616 0.064 0.264 0.056
#> SRR1442612     3  0.4984    0.39409 0.052 0.000 0.640 0.308 0.000
#> SRR1360056     3  0.4431    0.51855 0.216 0.000 0.732 0.052 0.000
#> SRR1078164     1  0.1638    0.78552 0.932 0.000 0.004 0.064 0.000
#> SRR1434545     5  0.0000    0.92353 0.000 0.000 0.000 0.000 1.000
#> SRR1398251     1  0.1270    0.79469 0.948 0.000 0.000 0.052 0.000
#> SRR1375866     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1091645     2  0.4706    0.68428 0.000 0.692 0.000 0.052 0.256
#> SRR1416636     1  0.4546    0.38303 0.532 0.000 0.460 0.008 0.000
#> SRR1105441     4  0.4166    0.51746 0.004 0.000 0.348 0.648 0.000
#> SRR1082496     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     4  0.3530    0.55823 0.000 0.204 0.012 0.784 0.000
#> SRR1093697     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     1  0.4256    0.42432 0.564 0.000 0.436 0.000 0.000
#> SRR1076120     1  0.2020    0.77915 0.900 0.000 0.100 0.000 0.000
#> SRR1074410     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1340345     2  0.3426    0.84415 0.000 0.852 0.012 0.084 0.052
#> SRR1069514     4  0.4840    0.66420 0.000 0.064 0.248 0.688 0.000
#> SRR1092636     3  0.4651    0.20854 0.372 0.000 0.608 0.020 0.000
#> SRR1365013     4  0.5392    0.65048 0.000 0.244 0.096 0.656 0.004
#> SRR1073069     1  0.1270    0.79469 0.948 0.000 0.000 0.052 0.000
#> SRR1443137     1  0.1638    0.78552 0.932 0.000 0.004 0.064 0.000
#> SRR1437143     2  0.0000    0.88213 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.1197    0.79673 0.952 0.000 0.000 0.048 0.000
#> SRR820234      4  0.3210    0.53820 0.000 0.212 0.000 0.788 0.000
#> SRR1338079     3  0.6376    0.35638 0.124 0.004 0.584 0.268 0.020
#> SRR1390094     5  0.3474    0.72169 0.008 0.000 0.020 0.148 0.824
#> SRR1340721     2  0.2349    0.86686 0.000 0.900 0.012 0.084 0.004
#> SRR1335964     3  0.4268    0.22027 0.344 0.000 0.648 0.008 0.000
#> SRR1086869     1  0.4538    0.39788 0.540 0.000 0.452 0.008 0.000
#> SRR1453434     1  0.0000    0.81261 1.000 0.000 0.000 0.000 0.000
#> SRR1402261     5  0.0000    0.92353 0.000 0.000 0.000 0.000 1.000
#> SRR657809      2  0.2349    0.86686 0.000 0.900 0.012 0.084 0.004
#> SRR1093075     1  0.1408    0.80074 0.948 0.000 0.008 0.044 0.000
#> SRR1433329     1  0.1638    0.78552 0.932 0.000 0.004 0.064 0.000
#> SRR1353418     1  0.4538    0.39788 0.540 0.000 0.452 0.008 0.000
#> SRR1092913     2  0.2349    0.86686 0.000 0.900 0.012 0.084 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR816969      1  0.0146     0.8139 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1335605     3  0.5310     0.4777 0.000 0.012 0.512 0.000 0.404 NA
#> SRR1432014     5  0.3360     0.2720 0.000 0.000 0.264 0.000 0.732 NA
#> SRR1499215     5  0.3683     0.3761 0.044 0.000 0.192 0.000 0.764 NA
#> SRR1460409     1  0.0000     0.8135 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1086441     1  0.0146     0.8140 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1097344     2  0.4901     0.3508 0.000 0.664 0.040 0.256 0.000 NA
#> SRR1081789     3  0.3555     0.6659 0.000 0.000 0.712 0.000 0.280 NA
#> SRR1453005     3  0.4711     0.3206 0.000 0.064 0.608 0.000 0.000 NA
#> SRR1366985     1  0.3971     0.2615 0.548 0.000 0.000 0.000 0.448 NA
#> SRR815280      1  0.2742     0.7387 0.856 0.000 0.008 0.004 0.008 NA
#> SRR1348531     1  0.0260     0.8141 0.992 0.000 0.000 0.000 0.000 NA
#> SRR815845      3  0.3534     0.6692 0.000 0.000 0.740 0.000 0.244 NA
#> SRR1471178     1  0.0260     0.8139 0.992 0.000 0.000 0.000 0.000 NA
#> SRR1080696     5  0.5587    -0.1722 0.424 0.000 0.000 0.000 0.436 NA
#> SRR1078684     5  0.5475     0.3955 0.296 0.000 0.116 0.000 0.576 NA
#> SRR1317751     1  0.5587     0.1490 0.432 0.000 0.000 0.000 0.428 NA
#> SRR1435667     5  0.3521     0.2529 0.000 0.000 0.268 0.004 0.724 NA
#> SRR1097905     5  0.5785     0.2965 0.004 0.052 0.048 0.004 0.556 NA
#> SRR1456548     5  0.6024     0.2925 0.008 0.048 0.048 0.012 0.548 NA
#> SRR1075126     1  0.4131     0.3178 0.600 0.000 0.000 0.000 0.384 NA
#> SRR813108      3  0.1563     0.6329 0.000 0.000 0.932 0.000 0.056 NA
#> SRR1479062     5  0.2911     0.3959 0.024 0.000 0.144 0.000 0.832 NA
#> SRR1408703     5  0.5587    -0.1722 0.424 0.000 0.000 0.000 0.436 NA
#> SRR1332360     1  0.1462     0.7944 0.936 0.000 0.008 0.000 0.000 NA
#> SRR1098686     1  0.4834     0.4473 0.672 0.008 0.004 0.000 0.240 NA
#> SRR1434228     1  0.3756     0.4628 0.644 0.000 0.000 0.000 0.352 NA
#> SRR1467149     5  0.5787     0.3094 0.012 0.044 0.044 0.004 0.568 NA
#> SRR1399113     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1476507     2  0.4837     0.3489 0.000 0.668 0.040 0.256 0.000 NA
#> SRR1092468     1  0.5610     0.1195 0.516 0.020 0.004 0.000 0.384 NA
#> SRR1441804     1  0.0363     0.8139 0.988 0.000 0.000 0.000 0.000 NA
#> SRR1326100     3  0.5944     0.3864 0.000 0.092 0.560 0.000 0.056 NA
#> SRR1398815     1  0.0260     0.8141 0.992 0.000 0.000 0.000 0.000 NA
#> SRR1436021     3  0.4838     0.6577 0.000 0.072 0.644 0.000 0.276 NA
#> SRR1480083     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1472863     5  0.5688     0.3029 0.008 0.048 0.048 0.000 0.564 NA
#> SRR815542      1  0.0000     0.8135 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1400100     3  0.4026     0.6139 0.000 0.000 0.636 0.000 0.348 NA
#> SRR1312002     5  0.3890     0.1309 0.400 0.000 0.000 0.000 0.596 NA
#> SRR1470253     1  0.1643     0.7921 0.924 0.000 0.000 0.000 0.068 NA
#> SRR1414332     1  0.0146     0.8139 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1069209     1  0.1524     0.7958 0.932 0.000 0.000 0.000 0.060 NA
#> SRR661052      5  0.5688     0.3029 0.008 0.048 0.048 0.000 0.564 NA
#> SRR1308860     5  0.6766     0.3027 0.172 0.020 0.048 0.000 0.516 NA
#> SRR1421159     3  0.4838     0.6577 0.000 0.072 0.644 0.000 0.276 NA
#> SRR1340943     4  0.0000     0.9382 0.000 0.000 0.000 1.000 0.000 NA
#> SRR1078855     1  0.1757     0.8005 0.928 0.000 0.008 0.000 0.012 NA
#> SRR1459465     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR816818      2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1478679     5  0.4037     0.0191 0.000 0.000 0.380 0.000 0.608 NA
#> SRR1350979     5  0.2768     0.3841 0.012 0.000 0.156 0.000 0.832 NA
#> SRR1458198     1  0.2258     0.7767 0.896 0.000 0.000 0.000 0.044 NA
#> SRR1386910     2  0.0000     0.6728 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1465375     2  0.0000     0.6728 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1323699     5  0.3454     0.3583 0.024 0.000 0.208 0.000 0.768 NA
#> SRR1431139     5  0.4666     0.3220 0.296 0.000 0.008 0.000 0.644 NA
#> SRR1373964     5  0.3360     0.2720 0.000 0.000 0.264 0.000 0.732 NA
#> SRR1455413     1  0.5610     0.1195 0.516 0.020 0.004 0.000 0.384 NA
#> SRR1437163     5  0.5976     0.2896 0.004 0.052 0.048 0.012 0.548 NA
#> SRR1347343     5  0.3627     0.3303 0.020 0.000 0.224 0.000 0.752 NA
#> SRR1465480     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1489631     5  0.6024     0.2925 0.008 0.048 0.048 0.012 0.548 NA
#> SRR1086514     3  0.4945     0.6094 0.000 0.240 0.648 0.004 0.108 NA
#> SRR1430928     1  0.0260     0.8139 0.992 0.000 0.000 0.000 0.000 NA
#> SRR1310939     5  0.2911     0.3959 0.024 0.000 0.144 0.000 0.832 NA
#> SRR1344294     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1099402     1  0.0363     0.8139 0.988 0.000 0.000 0.000 0.000 NA
#> SRR1468118     5  0.4018     0.3640 0.044 0.000 0.024 0.000 0.772 NA
#> SRR1486348     5  0.6766     0.3027 0.172 0.020 0.048 0.000 0.516 NA
#> SRR1488770     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1083732     1  0.1462     0.7976 0.936 0.000 0.000 0.000 0.056 NA
#> SRR1456611     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1080318     1  0.0972     0.8065 0.964 0.000 0.000 0.000 0.028 NA
#> SRR1500089     1  0.2258     0.7767 0.896 0.000 0.000 0.000 0.044 NA
#> SRR1441178     1  0.2400     0.7494 0.872 0.000 0.008 0.000 0.004 NA
#> SRR1381396     1  0.0260     0.8141 0.992 0.000 0.000 0.000 0.000 NA
#> SRR1096081     1  0.5587     0.1490 0.432 0.000 0.000 0.000 0.428 NA
#> SRR1349809     2  0.0000     0.6728 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1324314     5  0.3890     0.1309 0.400 0.000 0.000 0.000 0.596 NA
#> SRR1092444     1  0.0972     0.8065 0.964 0.000 0.000 0.000 0.028 NA
#> SRR1382553     1  0.3971     0.2615 0.548 0.000 0.000 0.000 0.448 NA
#> SRR1075530     2  0.5788     0.3699 0.000 0.644 0.216 0.052 0.060 NA
#> SRR1442612     5  0.3360     0.2720 0.000 0.000 0.264 0.000 0.732 NA
#> SRR1360056     5  0.4387     0.4326 0.144 0.000 0.036 0.000 0.756 NA
#> SRR1078164     1  0.1701     0.7854 0.920 0.000 0.008 0.000 0.000 NA
#> SRR1434545     4  0.0000     0.9382 0.000 0.000 0.000 1.000 0.000 NA
#> SRR1398251     1  0.1462     0.7944 0.936 0.000 0.008 0.000 0.000 NA
#> SRR1375866     1  0.0363     0.8139 0.988 0.000 0.000 0.000 0.000 NA
#> SRR1091645     2  0.4837     0.3489 0.000 0.668 0.040 0.256 0.000 NA
#> SRR1416636     5  0.5587    -0.1722 0.424 0.000 0.000 0.000 0.436 NA
#> SRR1105441     3  0.4131     0.5635 0.000 0.000 0.600 0.000 0.384 NA
#> SRR1082496     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1315353     3  0.2151     0.5582 0.000 0.024 0.912 0.000 0.016 NA
#> SRR1093697     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1077429     1  0.5353     0.2100 0.472 0.000 0.000 0.000 0.420 NA
#> SRR1076120     1  0.2258     0.7767 0.896 0.000 0.000 0.000 0.044 NA
#> SRR1074410     1  0.0260     0.8141 0.992 0.000 0.000 0.000 0.000 NA
#> SRR1340345     2  0.2401     0.6007 0.000 0.900 0.024 0.048 0.000 NA
#> SRR1069514     3  0.3670     0.6622 0.000 0.000 0.704 0.000 0.284 NA
#> SRR1092636     5  0.4666     0.3220 0.296 0.000 0.008 0.000 0.644 NA
#> SRR1365013     3  0.4697     0.6332 0.000 0.200 0.688 0.004 0.108 NA
#> SRR1073069     1  0.1462     0.7944 0.936 0.000 0.008 0.000 0.000 NA
#> SRR1443137     1  0.1701     0.7854 0.920 0.000 0.008 0.000 0.000 NA
#> SRR1437143     2  0.3737     0.7311 0.000 0.608 0.000 0.000 0.000 NA
#> SRR1091990     1  0.1196     0.8004 0.952 0.000 0.008 0.000 0.000 NA
#> SRR820234      3  0.1765     0.5358 0.000 0.024 0.924 0.000 0.000 NA
#> SRR1338079     5  0.5976     0.2896 0.004 0.052 0.048 0.012 0.548 NA
#> SRR1390094     4  0.3648     0.8028 0.000 0.048 0.008 0.820 0.016 NA
#> SRR1340721     2  0.0000     0.6728 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1335964     5  0.4626     0.3274 0.272 0.000 0.000 0.000 0.652 NA
#> SRR1086869     1  0.5587     0.1490 0.432 0.000 0.000 0.000 0.428 NA
#> SRR1453434     1  0.0000     0.8135 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1402261     4  0.0000     0.9382 0.000 0.000 0.000 1.000 0.000 NA
#> SRR657809      2  0.0000     0.6728 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1093075     1  0.1757     0.8005 0.928 0.000 0.008 0.000 0.012 NA
#> SRR1433329     1  0.1701     0.7854 0.920 0.000 0.008 0.000 0.000 NA
#> SRR1353418     1  0.5561     0.1559 0.436 0.000 0.000 0.000 0.428 NA
#> SRR1092913     2  0.0000     0.6728 0.000 1.000 0.000 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.984       0.993         0.4444 0.556   0.556
#> 3 3 0.682           0.722       0.880         0.4659 0.700   0.501
#> 4 4 0.637           0.682       0.829         0.1186 0.800   0.505
#> 5 5 0.652           0.587       0.749         0.0655 0.902   0.659
#> 6 6 0.697           0.617       0.776         0.0480 0.958   0.813

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.995 1.000 0.000
#> SRR1335605     1  0.9580      0.370 0.620 0.380
#> SRR1432014     1  0.0000      0.995 1.000 0.000
#> SRR1499215     1  0.0000      0.995 1.000 0.000
#> SRR1460409     1  0.0000      0.995 1.000 0.000
#> SRR1086441     1  0.0000      0.995 1.000 0.000
#> SRR1097344     2  0.0000      0.988 0.000 1.000
#> SRR1081789     2  0.0000      0.988 0.000 1.000
#> SRR1453005     2  0.0000      0.988 0.000 1.000
#> SRR1366985     1  0.0000      0.995 1.000 0.000
#> SRR815280      1  0.0000      0.995 1.000 0.000
#> SRR1348531     1  0.0000      0.995 1.000 0.000
#> SRR815845      2  0.0672      0.982 0.008 0.992
#> SRR1471178     1  0.0000      0.995 1.000 0.000
#> SRR1080696     1  0.0000      0.995 1.000 0.000
#> SRR1078684     1  0.0000      0.995 1.000 0.000
#> SRR1317751     1  0.0000      0.995 1.000 0.000
#> SRR1435667     1  0.0000      0.995 1.000 0.000
#> SRR1097905     1  0.0000      0.995 1.000 0.000
#> SRR1456548     1  0.0000      0.995 1.000 0.000
#> SRR1075126     1  0.0000      0.995 1.000 0.000
#> SRR813108      2  0.0000      0.988 0.000 1.000
#> SRR1479062     1  0.0000      0.995 1.000 0.000
#> SRR1408703     1  0.0000      0.995 1.000 0.000
#> SRR1332360     1  0.0000      0.995 1.000 0.000
#> SRR1098686     1  0.0000      0.995 1.000 0.000
#> SRR1434228     1  0.0000      0.995 1.000 0.000
#> SRR1467149     1  0.0000      0.995 1.000 0.000
#> SRR1399113     2  0.0000      0.988 0.000 1.000
#> SRR1476507     2  0.0000      0.988 0.000 1.000
#> SRR1092468     1  0.0000      0.995 1.000 0.000
#> SRR1441804     1  0.0000      0.995 1.000 0.000
#> SRR1326100     2  0.0000      0.988 0.000 1.000
#> SRR1398815     1  0.0000      0.995 1.000 0.000
#> SRR1436021     2  0.2236      0.957 0.036 0.964
#> SRR1480083     2  0.0000      0.988 0.000 1.000
#> SRR1472863     1  0.0000      0.995 1.000 0.000
#> SRR815542      1  0.0000      0.995 1.000 0.000
#> SRR1400100     2  0.4022      0.914 0.080 0.920
#> SRR1312002     1  0.0000      0.995 1.000 0.000
#> SRR1470253     1  0.0000      0.995 1.000 0.000
#> SRR1414332     1  0.0000      0.995 1.000 0.000
#> SRR1069209     1  0.0000      0.995 1.000 0.000
#> SRR661052      1  0.0000      0.995 1.000 0.000
#> SRR1308860     1  0.0000      0.995 1.000 0.000
#> SRR1421159     2  0.0000      0.988 0.000 1.000
#> SRR1340943     1  0.0000      0.995 1.000 0.000
#> SRR1078855     1  0.0000      0.995 1.000 0.000
#> SRR1459465     2  0.0000      0.988 0.000 1.000
#> SRR816818      2  0.0000      0.988 0.000 1.000
#> SRR1478679     1  0.0000      0.995 1.000 0.000
#> SRR1350979     1  0.0000      0.995 1.000 0.000
#> SRR1458198     1  0.0000      0.995 1.000 0.000
#> SRR1386910     2  0.0000      0.988 0.000 1.000
#> SRR1465375     2  0.0000      0.988 0.000 1.000
#> SRR1323699     1  0.0000      0.995 1.000 0.000
#> SRR1431139     1  0.0000      0.995 1.000 0.000
#> SRR1373964     1  0.0000      0.995 1.000 0.000
#> SRR1455413     1  0.0000      0.995 1.000 0.000
#> SRR1437163     2  0.5629      0.853 0.132 0.868
#> SRR1347343     1  0.0000      0.995 1.000 0.000
#> SRR1465480     2  0.0000      0.988 0.000 1.000
#> SRR1489631     1  0.0000      0.995 1.000 0.000
#> SRR1086514     2  0.0000      0.988 0.000 1.000
#> SRR1430928     1  0.0000      0.995 1.000 0.000
#> SRR1310939     1  0.0000      0.995 1.000 0.000
#> SRR1344294     2  0.0000      0.988 0.000 1.000
#> SRR1099402     1  0.0000      0.995 1.000 0.000
#> SRR1468118     1  0.0000      0.995 1.000 0.000
#> SRR1486348     1  0.0000      0.995 1.000 0.000
#> SRR1488770     2  0.0000      0.988 0.000 1.000
#> SRR1083732     1  0.0000      0.995 1.000 0.000
#> SRR1456611     2  0.0000      0.988 0.000 1.000
#> SRR1080318     1  0.0000      0.995 1.000 0.000
#> SRR1500089     1  0.0000      0.995 1.000 0.000
#> SRR1441178     1  0.0000      0.995 1.000 0.000
#> SRR1381396     1  0.0000      0.995 1.000 0.000
#> SRR1096081     1  0.0000      0.995 1.000 0.000
#> SRR1349809     2  0.0000      0.988 0.000 1.000
#> SRR1324314     1  0.0000      0.995 1.000 0.000
#> SRR1092444     1  0.0000      0.995 1.000 0.000
#> SRR1382553     1  0.0000      0.995 1.000 0.000
#> SRR1075530     2  0.0000      0.988 0.000 1.000
#> SRR1442612     1  0.0000      0.995 1.000 0.000
#> SRR1360056     1  0.0000      0.995 1.000 0.000
#> SRR1078164     1  0.0000      0.995 1.000 0.000
#> SRR1434545     2  0.0000      0.988 0.000 1.000
#> SRR1398251     1  0.0000      0.995 1.000 0.000
#> SRR1375866     1  0.0000      0.995 1.000 0.000
#> SRR1091645     2  0.0000      0.988 0.000 1.000
#> SRR1416636     1  0.0000      0.995 1.000 0.000
#> SRR1105441     1  0.0000      0.995 1.000 0.000
#> SRR1082496     2  0.0000      0.988 0.000 1.000
#> SRR1315353     2  0.0000      0.988 0.000 1.000
#> SRR1093697     2  0.0000      0.988 0.000 1.000
#> SRR1077429     1  0.0000      0.995 1.000 0.000
#> SRR1076120     1  0.0000      0.995 1.000 0.000
#> SRR1074410     1  0.0000      0.995 1.000 0.000
#> SRR1340345     2  0.0000      0.988 0.000 1.000
#> SRR1069514     2  0.0000      0.988 0.000 1.000
#> SRR1092636     1  0.0000      0.995 1.000 0.000
#> SRR1365013     2  0.0000      0.988 0.000 1.000
#> SRR1073069     1  0.0000      0.995 1.000 0.000
#> SRR1443137     1  0.0000      0.995 1.000 0.000
#> SRR1437143     2  0.0000      0.988 0.000 1.000
#> SRR1091990     1  0.0000      0.995 1.000 0.000
#> SRR820234      2  0.0000      0.988 0.000 1.000
#> SRR1338079     1  0.0000      0.995 1.000 0.000
#> SRR1390094     2  0.0000      0.988 0.000 1.000
#> SRR1340721     2  0.0000      0.988 0.000 1.000
#> SRR1335964     1  0.0000      0.995 1.000 0.000
#> SRR1086869     1  0.0000      0.995 1.000 0.000
#> SRR1453434     1  0.0000      0.995 1.000 0.000
#> SRR1402261     2  0.6973      0.777 0.188 0.812
#> SRR657809      2  0.0000      0.988 0.000 1.000
#> SRR1093075     1  0.0000      0.995 1.000 0.000
#> SRR1433329     1  0.0000      0.995 1.000 0.000
#> SRR1353418     1  0.0000      0.995 1.000 0.000
#> SRR1092913     2  0.0000      0.988 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1335605     3  0.0000     0.7777 0.000 0.000 1.000
#> SRR1432014     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1499215     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1460409     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1097344     2  0.0747     0.9267 0.000 0.984 0.016
#> SRR1081789     3  0.2066     0.7502 0.000 0.060 0.940
#> SRR1453005     2  0.0237     0.9281 0.000 0.996 0.004
#> SRR1366985     1  0.6168     0.4097 0.588 0.000 0.412
#> SRR815280      1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1348531     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR815845      3  0.0237     0.7777 0.000 0.004 0.996
#> SRR1471178     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1080696     1  0.6307     0.2408 0.512 0.000 0.488
#> SRR1078684     3  0.5216     0.4706 0.260 0.000 0.740
#> SRR1317751     1  0.6168     0.4097 0.588 0.000 0.412
#> SRR1435667     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1097905     3  0.5650     0.5750 0.312 0.000 0.688
#> SRR1456548     3  0.6192     0.4262 0.420 0.000 0.580
#> SRR1075126     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR813108      3  0.5591     0.4417 0.000 0.304 0.696
#> SRR1479062     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1408703     1  0.6305     0.2510 0.516 0.000 0.484
#> SRR1332360     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1098686     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1434228     1  0.2066     0.8056 0.940 0.000 0.060
#> SRR1467149     3  0.5678     0.5704 0.316 0.000 0.684
#> SRR1399113     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1476507     2  0.5058     0.6951 0.000 0.756 0.244
#> SRR1092468     1  0.5291     0.4533 0.732 0.000 0.268
#> SRR1441804     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1326100     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1398815     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1436021     3  0.4121     0.6520 0.000 0.168 0.832
#> SRR1480083     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1472863     3  0.5591     0.5860 0.304 0.000 0.696
#> SRR815542      1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1400100     3  0.0237     0.7777 0.000 0.004 0.996
#> SRR1312002     1  0.6168     0.4097 0.588 0.000 0.412
#> SRR1470253     1  0.6168     0.4097 0.588 0.000 0.412
#> SRR1414332     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1069209     1  0.1753     0.8149 0.952 0.000 0.048
#> SRR661052      3  0.5760     0.5656 0.328 0.000 0.672
#> SRR1308860     3  0.6244     0.3968 0.440 0.000 0.560
#> SRR1421159     3  0.2165     0.7455 0.000 0.064 0.936
#> SRR1340943     3  0.6168     0.4399 0.412 0.000 0.588
#> SRR1078855     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1478679     3  0.0237     0.7798 0.004 0.000 0.996
#> SRR1350979     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1458198     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1386910     2  0.0592     0.9274 0.000 0.988 0.012
#> SRR1465375     2  0.0747     0.9267 0.000 0.984 0.016
#> SRR1323699     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1431139     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1373964     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1455413     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1437163     3  0.7114     0.4596 0.388 0.028 0.584
#> SRR1347343     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1465480     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1489631     3  0.6180     0.4335 0.416 0.000 0.584
#> SRR1086514     2  0.5397     0.6341 0.000 0.720 0.280
#> SRR1430928     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1310939     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1344294     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1468118     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1486348     1  0.5497     0.3851 0.708 0.000 0.292
#> SRR1488770     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1500089     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1441178     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1096081     1  0.6180     0.4023 0.584 0.000 0.416
#> SRR1349809     2  0.0592     0.9274 0.000 0.988 0.012
#> SRR1324314     3  0.6168     0.0511 0.412 0.000 0.588
#> SRR1092444     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1382553     1  0.6168     0.4097 0.588 0.000 0.412
#> SRR1075530     2  0.6062     0.4344 0.000 0.616 0.384
#> SRR1442612     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1360056     3  0.0747     0.7848 0.016 0.000 0.984
#> SRR1078164     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1434545     2  0.5216     0.6725 0.000 0.740 0.260
#> SRR1398251     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1375866     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1091645     2  0.2356     0.8846 0.000 0.928 0.072
#> SRR1416636     1  0.6307     0.2408 0.512 0.000 0.488
#> SRR1105441     3  0.0237     0.7798 0.004 0.000 0.996
#> SRR1082496     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1315353     3  0.4452     0.6226 0.000 0.192 0.808
#> SRR1093697     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1077429     1  0.6168     0.4097 0.588 0.000 0.412
#> SRR1076120     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1074410     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1340345     2  0.0747     0.9267 0.000 0.984 0.016
#> SRR1069514     3  0.2261     0.7449 0.000 0.068 0.932
#> SRR1092636     3  0.5621     0.3637 0.308 0.000 0.692
#> SRR1365013     2  0.6168     0.3634 0.000 0.588 0.412
#> SRR1073069     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1443137     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1437143     2  0.0000     0.9281 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR820234      2  0.0592     0.9272 0.000 0.988 0.012
#> SRR1338079     3  0.6180     0.4335 0.416 0.000 0.584
#> SRR1390094     3  0.6180     0.1569 0.000 0.416 0.584
#> SRR1340721     2  0.0747     0.9267 0.000 0.984 0.016
#> SRR1335964     3  0.0892     0.7832 0.020 0.000 0.980
#> SRR1086869     1  0.6192     0.3946 0.580 0.000 0.420
#> SRR1453434     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1402261     3  0.6540     0.4420 0.408 0.008 0.584
#> SRR657809      2  0.0592     0.9274 0.000 0.988 0.012
#> SRR1093075     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1433329     1  0.0000     0.8487 1.000 0.000 0.000
#> SRR1353418     1  0.6168     0.4097 0.588 0.000 0.412
#> SRR1092913     2  0.0747     0.9267 0.000 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0469    0.93251 0.988 0.000 0.012 0.000
#> SRR1335605     3  0.4830    0.23526 0.000 0.000 0.608 0.392
#> SRR1432014     3  0.2973    0.66865 0.000 0.000 0.856 0.144
#> SRR1499215     3  0.2281    0.68041 0.000 0.000 0.904 0.096
#> SRR1460409     1  0.0336    0.93245 0.992 0.000 0.000 0.008
#> SRR1086441     1  0.0469    0.93212 0.988 0.000 0.000 0.012
#> SRR1097344     2  0.4661    0.63164 0.000 0.652 0.000 0.348
#> SRR1081789     3  0.5163    0.00516 0.000 0.004 0.516 0.480
#> SRR1453005     2  0.0188    0.84904 0.000 0.996 0.000 0.004
#> SRR1366985     3  0.5508    0.31098 0.408 0.000 0.572 0.020
#> SRR815280      1  0.1798    0.91746 0.944 0.000 0.016 0.040
#> SRR1348531     1  0.1059    0.93139 0.972 0.000 0.016 0.012
#> SRR815845      3  0.4164    0.53774 0.000 0.000 0.736 0.264
#> SRR1471178     1  0.1297    0.92932 0.964 0.000 0.016 0.020
#> SRR1080696     3  0.3105    0.62661 0.120 0.000 0.868 0.012
#> SRR1078684     3  0.1854    0.67484 0.012 0.000 0.940 0.048
#> SRR1317751     3  0.5487    0.34097 0.400 0.000 0.580 0.020
#> SRR1435667     3  0.2973    0.66865 0.000 0.000 0.856 0.144
#> SRR1097905     4  0.4982    0.66755 0.092 0.000 0.136 0.772
#> SRR1456548     4  0.5932    0.63472 0.172 0.000 0.132 0.696
#> SRR1075126     1  0.2413    0.89309 0.916 0.000 0.064 0.020
#> SRR813108      4  0.5685    0.04805 0.000 0.024 0.460 0.516
#> SRR1479062     3  0.2760    0.67487 0.000 0.000 0.872 0.128
#> SRR1408703     3  0.3105    0.62661 0.120 0.000 0.868 0.012
#> SRR1332360     1  0.3335    0.84647 0.860 0.000 0.120 0.020
#> SRR1098686     1  0.1411    0.92856 0.960 0.000 0.020 0.020
#> SRR1434228     1  0.3554    0.82723 0.844 0.000 0.136 0.020
#> SRR1467149     4  0.6001    0.62747 0.128 0.000 0.184 0.688
#> SRR1399113     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.3873    0.45006 0.000 0.228 0.000 0.772
#> SRR1092468     1  0.4775    0.65687 0.740 0.000 0.232 0.028
#> SRR1441804     1  0.1297    0.92932 0.964 0.000 0.016 0.020
#> SRR1326100     2  0.0469    0.84668 0.000 0.988 0.000 0.012
#> SRR1398815     1  0.1297    0.92932 0.964 0.000 0.016 0.020
#> SRR1436021     4  0.3208    0.64523 0.000 0.004 0.148 0.848
#> SRR1480083     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1472863     4  0.6743    0.29819 0.096 0.000 0.392 0.512
#> SRR815542      1  0.0804    0.93259 0.980 0.000 0.008 0.012
#> SRR1400100     3  0.4008    0.55599 0.000 0.000 0.756 0.244
#> SRR1312002     3  0.5465    0.33920 0.392 0.000 0.588 0.020
#> SRR1470253     3  0.5576    0.19112 0.444 0.000 0.536 0.020
#> SRR1414332     1  0.0000    0.93211 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.3335    0.84647 0.860 0.000 0.120 0.020
#> SRR661052      4  0.7107    0.25141 0.128 0.000 0.408 0.464
#> SRR1308860     4  0.7179    0.34135 0.380 0.000 0.140 0.480
#> SRR1421159     4  0.4456    0.52189 0.000 0.004 0.280 0.716
#> SRR1340943     4  0.3266    0.65838 0.108 0.000 0.024 0.868
#> SRR1078855     1  0.1059    0.93139 0.972 0.000 0.016 0.012
#> SRR1459465     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.4661    0.34508 0.000 0.000 0.652 0.348
#> SRR1350979     3  0.2921    0.67099 0.000 0.000 0.860 0.140
#> SRR1458198     1  0.0937    0.93219 0.976 0.000 0.012 0.012
#> SRR1386910     2  0.4605    0.64254 0.000 0.664 0.000 0.336
#> SRR1465375     4  0.4697    0.14368 0.000 0.356 0.000 0.644
#> SRR1323699     3  0.2760    0.67487 0.000 0.000 0.872 0.128
#> SRR1431139     3  0.2654    0.67836 0.004 0.000 0.888 0.108
#> SRR1373964     3  0.2921    0.67099 0.000 0.000 0.860 0.140
#> SRR1455413     1  0.2413    0.89300 0.916 0.000 0.064 0.020
#> SRR1437163     4  0.3205    0.66013 0.104 0.000 0.024 0.872
#> SRR1347343     3  0.2281    0.68041 0.000 0.000 0.904 0.096
#> SRR1465480     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1489631     4  0.5624    0.65108 0.148 0.000 0.128 0.724
#> SRR1086514     4  0.4139    0.55175 0.000 0.144 0.040 0.816
#> SRR1430928     1  0.0524    0.93301 0.988 0.000 0.008 0.004
#> SRR1310939     3  0.2921    0.67099 0.000 0.000 0.860 0.140
#> SRR1344294     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.1297    0.92932 0.964 0.000 0.016 0.020
#> SRR1468118     3  0.3123    0.66232 0.000 0.000 0.844 0.156
#> SRR1486348     1  0.5676    0.61867 0.720 0.000 0.144 0.136
#> SRR1488770     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.3099    0.86299 0.876 0.000 0.104 0.020
#> SRR1456611     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0524    0.92986 0.988 0.000 0.008 0.004
#> SRR1500089     1  0.2174    0.90470 0.928 0.000 0.052 0.020
#> SRR1441178     1  0.0188    0.93156 0.996 0.000 0.004 0.000
#> SRR1381396     1  0.1297    0.92932 0.964 0.000 0.016 0.020
#> SRR1096081     3  0.5339    0.42621 0.356 0.000 0.624 0.020
#> SRR1349809     2  0.4522    0.65792 0.000 0.680 0.000 0.320
#> SRR1324314     3  0.1807    0.65434 0.052 0.000 0.940 0.008
#> SRR1092444     1  0.2174    0.90470 0.928 0.000 0.052 0.020
#> SRR1382553     3  0.5498    0.32154 0.404 0.000 0.576 0.020
#> SRR1075530     4  0.4379    0.53487 0.000 0.172 0.036 0.792
#> SRR1442612     3  0.2973    0.66865 0.000 0.000 0.856 0.144
#> SRR1360056     3  0.3266    0.65218 0.000 0.000 0.832 0.168
#> SRR1078164     1  0.2174    0.90470 0.928 0.000 0.052 0.020
#> SRR1434545     4  0.2944    0.56349 0.004 0.128 0.000 0.868
#> SRR1398251     1  0.1520    0.91755 0.956 0.000 0.024 0.020
#> SRR1375866     1  0.0779    0.93290 0.980 0.000 0.016 0.004
#> SRR1091645     4  0.4193    0.37491 0.000 0.268 0.000 0.732
#> SRR1416636     3  0.3105    0.62661 0.120 0.000 0.868 0.012
#> SRR1105441     3  0.3024    0.66588 0.000 0.000 0.852 0.148
#> SRR1082496     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1315353     4  0.5147    0.03900 0.000 0.004 0.460 0.536
#> SRR1093697     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.5476    0.33407 0.396 0.000 0.584 0.020
#> SRR1076120     1  0.2089    0.91889 0.932 0.000 0.048 0.020
#> SRR1074410     1  0.1297    0.92932 0.964 0.000 0.016 0.020
#> SRR1340345     2  0.4746    0.60263 0.000 0.632 0.000 0.368
#> SRR1069514     4  0.5151    0.10640 0.000 0.004 0.464 0.532
#> SRR1092636     3  0.1211    0.65754 0.040 0.000 0.960 0.000
#> SRR1365013     4  0.3497    0.59256 0.000 0.104 0.036 0.860
#> SRR1073069     1  0.3219    0.85507 0.868 0.000 0.112 0.020
#> SRR1443137     1  0.2174    0.90470 0.928 0.000 0.052 0.020
#> SRR1437143     2  0.0000    0.85028 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0188    0.93156 0.996 0.000 0.004 0.000
#> SRR820234      2  0.3529    0.74444 0.000 0.836 0.012 0.152
#> SRR1338079     4  0.4938    0.65094 0.148 0.000 0.080 0.772
#> SRR1390094     4  0.1584    0.66219 0.012 0.000 0.036 0.952
#> SRR1340721     2  0.4907    0.49732 0.000 0.580 0.000 0.420
#> SRR1335964     3  0.2530    0.67976 0.004 0.000 0.896 0.100
#> SRR1086869     3  0.4610    0.55230 0.236 0.000 0.744 0.020
#> SRR1453434     1  0.1610    0.92279 0.952 0.000 0.016 0.032
#> SRR1402261     4  0.3160    0.65638 0.108 0.000 0.020 0.872
#> SRR657809      2  0.4585    0.64647 0.000 0.668 0.000 0.332
#> SRR1093075     1  0.0804    0.92742 0.980 0.000 0.008 0.012
#> SRR1433329     1  0.2706    0.88382 0.900 0.000 0.080 0.020
#> SRR1353418     3  0.5517    0.31485 0.412 0.000 0.568 0.020
#> SRR1092913     2  0.4697    0.61953 0.000 0.644 0.000 0.356

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.1478    0.86695 0.936 0.000 0.000 0.000 0.064
#> SRR1335605     3  0.2408    0.61085 0.000 0.000 0.892 0.016 0.092
#> SRR1432014     3  0.3857    0.50228 0.000 0.000 0.688 0.000 0.312
#> SRR1499215     3  0.4242    0.29286 0.000 0.000 0.572 0.000 0.428
#> SRR1460409     1  0.1410    0.86756 0.940 0.000 0.000 0.000 0.060
#> SRR1086441     1  0.0981    0.86840 0.972 0.000 0.008 0.012 0.008
#> SRR1097344     4  0.5946    0.01026 0.000 0.388 0.052 0.532 0.028
#> SRR1081789     3  0.1942    0.59253 0.000 0.000 0.920 0.068 0.012
#> SRR1453005     2  0.2321    0.81465 0.000 0.912 0.056 0.024 0.008
#> SRR1366985     5  0.4623    0.48634 0.304 0.000 0.032 0.000 0.664
#> SRR815280      1  0.1211    0.86836 0.960 0.000 0.000 0.016 0.024
#> SRR1348531     1  0.1498    0.86052 0.952 0.000 0.016 0.024 0.008
#> SRR815845      3  0.2361    0.61566 0.000 0.000 0.892 0.012 0.096
#> SRR1471178     1  0.1012    0.86397 0.968 0.000 0.012 0.020 0.000
#> SRR1080696     5  0.3731    0.60060 0.040 0.000 0.160 0.000 0.800
#> SRR1078684     5  0.4452   -0.11144 0.004 0.000 0.496 0.000 0.500
#> SRR1317751     5  0.3370    0.64011 0.148 0.000 0.028 0.000 0.824
#> SRR1435667     3  0.3730    0.51507 0.000 0.000 0.712 0.000 0.288
#> SRR1097905     4  0.6808    0.46861 0.104 0.000 0.268 0.560 0.068
#> SRR1456548     4  0.6854    0.50972 0.228 0.000 0.124 0.576 0.072
#> SRR1075126     1  0.2703    0.82486 0.896 0.000 0.020 0.024 0.060
#> SRR813108      3  0.3427    0.55869 0.000 0.008 0.836 0.128 0.028
#> SRR1479062     5  0.4304   -0.06275 0.000 0.000 0.484 0.000 0.516
#> SRR1408703     5  0.3731    0.60060 0.040 0.000 0.160 0.000 0.800
#> SRR1332360     1  0.3635    0.75308 0.748 0.000 0.000 0.004 0.248
#> SRR1098686     1  0.2395    0.84102 0.912 0.000 0.016 0.024 0.048
#> SRR1434228     1  0.4426    0.52821 0.612 0.000 0.004 0.004 0.380
#> SRR1467149     4  0.7304    0.46937 0.160 0.000 0.228 0.528 0.084
#> SRR1399113     2  0.0000    0.86852 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.3869    0.52906 0.000 0.020 0.140 0.812 0.028
#> SRR1092468     1  0.4320    0.71308 0.792 0.000 0.052 0.024 0.132
#> SRR1441804     1  0.1498    0.86052 0.952 0.000 0.016 0.024 0.008
#> SRR1326100     2  0.2694    0.79965 0.000 0.892 0.068 0.032 0.008
#> SRR1398815     1  0.1012    0.86397 0.968 0.000 0.012 0.020 0.000
#> SRR1436021     3  0.4564   -0.05606 0.000 0.000 0.612 0.372 0.016
#> SRR1480083     2  0.0162    0.86753 0.000 0.996 0.004 0.000 0.000
#> SRR1472863     4  0.7177    0.26453 0.104 0.000 0.400 0.424 0.072
#> SRR815542      1  0.0771    0.87018 0.976 0.000 0.000 0.004 0.020
#> SRR1400100     3  0.2522    0.61524 0.000 0.000 0.880 0.012 0.108
#> SRR1312002     5  0.4303    0.62763 0.192 0.000 0.056 0.000 0.752
#> SRR1470253     5  0.3163    0.62599 0.164 0.000 0.012 0.000 0.824
#> SRR1414332     1  0.1041    0.87152 0.964 0.000 0.000 0.004 0.032
#> SRR1069209     1  0.4367    0.47985 0.580 0.000 0.000 0.004 0.416
#> SRR661052      4  0.7871    0.34158 0.220 0.000 0.292 0.404 0.084
#> SRR1308860     4  0.7272    0.25932 0.388 0.000 0.116 0.424 0.072
#> SRR1421159     3  0.1908    0.56574 0.000 0.000 0.908 0.092 0.000
#> SRR1340943     4  0.2353    0.59285 0.004 0.000 0.060 0.908 0.028
#> SRR1078855     1  0.0865    0.86962 0.972 0.000 0.000 0.004 0.024
#> SRR1459465     2  0.0000    0.86852 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000    0.86852 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.2280    0.61162 0.000 0.000 0.880 0.000 0.120
#> SRR1350979     3  0.4088    0.42798 0.000 0.000 0.632 0.000 0.368
#> SRR1458198     1  0.1393    0.86237 0.956 0.000 0.012 0.024 0.008
#> SRR1386910     2  0.6582    0.17798 0.000 0.484 0.108 0.380 0.028
#> SRR1465375     4  0.5203    0.37727 0.000 0.212 0.056 0.704 0.028
#> SRR1323699     3  0.4161    0.37677 0.000 0.000 0.608 0.000 0.392
#> SRR1431139     3  0.4242    0.29011 0.000 0.000 0.572 0.000 0.428
#> SRR1373964     3  0.4060    0.44166 0.000 0.000 0.640 0.000 0.360
#> SRR1455413     1  0.3226    0.80077 0.864 0.000 0.024 0.024 0.088
#> SRR1437163     4  0.3427    0.59196 0.004 0.000 0.096 0.844 0.056
#> SRR1347343     3  0.4242    0.29286 0.000 0.000 0.572 0.000 0.428
#> SRR1465480     2  0.0000    0.86852 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     4  0.6744    0.52670 0.188 0.000 0.140 0.600 0.072
#> SRR1086514     3  0.5408   -0.04202 0.000 0.020 0.584 0.364 0.032
#> SRR1430928     1  0.1341    0.86808 0.944 0.000 0.000 0.000 0.056
#> SRR1310939     3  0.4060    0.44177 0.000 0.000 0.640 0.000 0.360
#> SRR1344294     2  0.0162    0.86753 0.000 0.996 0.004 0.000 0.000
#> SRR1099402     1  0.1211    0.86131 0.960 0.000 0.016 0.024 0.000
#> SRR1468118     5  0.5056    0.22502 0.000 0.000 0.360 0.044 0.596
#> SRR1486348     1  0.6538    0.30972 0.600 0.000 0.088 0.240 0.072
#> SRR1488770     2  0.0162    0.86753 0.000 0.996 0.004 0.000 0.000
#> SRR1083732     1  0.3196    0.80682 0.804 0.000 0.000 0.004 0.192
#> SRR1456611     2  0.0000    0.86852 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.2136    0.86195 0.904 0.000 0.000 0.008 0.088
#> SRR1500089     1  0.3123    0.81035 0.812 0.000 0.000 0.004 0.184
#> SRR1441178     1  0.2179    0.85718 0.896 0.000 0.000 0.004 0.100
#> SRR1381396     1  0.1012    0.86397 0.968 0.000 0.012 0.020 0.000
#> SRR1096081     5  0.3339    0.64396 0.124 0.000 0.040 0.000 0.836
#> SRR1349809     2  0.5938    0.30251 0.000 0.556 0.056 0.360 0.028
#> SRR1324314     5  0.4522    0.41039 0.024 0.000 0.316 0.000 0.660
#> SRR1092444     1  0.3196    0.80682 0.804 0.000 0.000 0.004 0.192
#> SRR1382553     5  0.4949    0.52763 0.288 0.000 0.056 0.000 0.656
#> SRR1075530     4  0.5423    0.35749 0.000 0.020 0.400 0.552 0.028
#> SRR1442612     3  0.3774    0.51427 0.000 0.000 0.704 0.000 0.296
#> SRR1360056     5  0.5774    0.13189 0.004 0.000 0.368 0.084 0.544
#> SRR1078164     1  0.3266    0.80163 0.796 0.000 0.000 0.004 0.200
#> SRR1434545     4  0.1365    0.57401 0.000 0.004 0.040 0.952 0.004
#> SRR1398251     1  0.2389    0.85089 0.880 0.000 0.000 0.004 0.116
#> SRR1375866     1  0.1405    0.86230 0.956 0.000 0.016 0.020 0.008
#> SRR1091645     4  0.4863    0.48574 0.000 0.076 0.140 0.756 0.028
#> SRR1416636     5  0.3731    0.60060 0.040 0.000 0.160 0.000 0.800
#> SRR1105441     3  0.2848    0.60333 0.000 0.000 0.840 0.004 0.156
#> SRR1082496     2  0.0000    0.86852 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     3  0.3351    0.55711 0.000 0.004 0.836 0.132 0.028
#> SRR1093697     2  0.0162    0.86753 0.000 0.996 0.004 0.000 0.000
#> SRR1077429     5  0.3326    0.63887 0.152 0.000 0.024 0.000 0.824
#> SRR1076120     1  0.3489    0.82281 0.824 0.000 0.012 0.016 0.148
#> SRR1074410     1  0.0693    0.86635 0.980 0.000 0.008 0.012 0.000
#> SRR1340345     4  0.6107   -0.07525 0.000 0.424 0.060 0.488 0.028
#> SRR1069514     3  0.1830    0.58964 0.000 0.000 0.924 0.068 0.008
#> SRR1092636     5  0.4206    0.44776 0.016 0.000 0.288 0.000 0.696
#> SRR1365013     4  0.5390    0.32172 0.000 0.016 0.432 0.524 0.028
#> SRR1073069     1  0.3266    0.80163 0.796 0.000 0.000 0.004 0.200
#> SRR1443137     1  0.3266    0.80163 0.796 0.000 0.000 0.004 0.200
#> SRR1437143     2  0.0000    0.86852 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.2179    0.85718 0.896 0.000 0.000 0.004 0.100
#> SRR820234      3  0.6126   -0.13447 0.000 0.408 0.484 0.100 0.008
#> SRR1338079     4  0.6397    0.54418 0.156 0.000 0.136 0.640 0.068
#> SRR1390094     4  0.2325    0.59081 0.000 0.000 0.068 0.904 0.028
#> SRR1340721     4  0.6089   -0.00739 0.000 0.408 0.060 0.504 0.028
#> SRR1335964     5  0.4192    0.20497 0.000 0.000 0.404 0.000 0.596
#> SRR1086869     5  0.3593    0.63660 0.084 0.000 0.088 0.000 0.828
#> SRR1453434     1  0.1168    0.86184 0.960 0.000 0.008 0.032 0.000
#> SRR1402261     4  0.2284    0.59211 0.004 0.000 0.056 0.912 0.028
#> SRR657809      2  0.6442    0.17863 0.000 0.488 0.092 0.392 0.028
#> SRR1093075     1  0.2389    0.85089 0.880 0.000 0.000 0.004 0.116
#> SRR1433329     1  0.3266    0.80163 0.796 0.000 0.000 0.004 0.200
#> SRR1353418     5  0.3475    0.60905 0.180 0.000 0.012 0.004 0.804
#> SRR1092913     4  0.5832   -0.10274 0.000 0.436 0.040 0.496 0.028

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1268     0.7472 0.952 0.000 0.000 0.008 0.004 0.036
#> SRR1335605     3  0.2853     0.6794 0.000 0.000 0.868 0.048 0.012 0.072
#> SRR1432014     3  0.3679     0.6348 0.000 0.000 0.772 0.000 0.176 0.052
#> SRR1499215     3  0.4668     0.5151 0.000 0.000 0.652 0.008 0.284 0.056
#> SRR1460409     1  0.1296     0.7431 0.952 0.000 0.000 0.012 0.004 0.032
#> SRR1086441     1  0.3152     0.7134 0.792 0.000 0.000 0.008 0.004 0.196
#> SRR1097344     4  0.3733     0.5593 0.000 0.208 0.004 0.760 0.004 0.024
#> SRR1081789     3  0.2581     0.6372 0.000 0.000 0.860 0.120 0.000 0.020
#> SRR1453005     2  0.3503     0.7327 0.000 0.816 0.068 0.108 0.000 0.008
#> SRR1366985     5  0.6059     0.4312 0.356 0.000 0.072 0.032 0.520 0.020
#> SRR815280      1  0.1888     0.7422 0.916 0.000 0.000 0.012 0.004 0.068
#> SRR1348531     1  0.3774     0.6365 0.664 0.000 0.000 0.000 0.008 0.328
#> SRR815845      3  0.2114     0.6710 0.000 0.000 0.904 0.076 0.008 0.012
#> SRR1471178     1  0.3390     0.6598 0.704 0.000 0.000 0.000 0.000 0.296
#> SRR1080696     5  0.1411     0.7200 0.004 0.000 0.060 0.000 0.936 0.000
#> SRR1078684     3  0.5202     0.2523 0.004 0.000 0.532 0.008 0.396 0.060
#> SRR1317751     5  0.1644     0.7359 0.052 0.000 0.012 0.000 0.932 0.004
#> SRR1435667     3  0.3003     0.6461 0.000 0.000 0.812 0.000 0.172 0.016
#> SRR1097905     6  0.2307     0.8144 0.004 0.000 0.068 0.032 0.000 0.896
#> SRR1456548     6  0.2341     0.8099 0.032 0.000 0.012 0.056 0.000 0.900
#> SRR1075126     1  0.4967     0.4647 0.540 0.000 0.008 0.012 0.028 0.412
#> SRR813108      3  0.3088     0.5902 0.000 0.000 0.808 0.172 0.000 0.020
#> SRR1479062     3  0.4850     0.1114 0.000 0.000 0.496 0.000 0.448 0.056
#> SRR1408703     5  0.1411     0.7200 0.004 0.000 0.060 0.000 0.936 0.000
#> SRR1332360     1  0.3853     0.6322 0.780 0.000 0.000 0.052 0.156 0.012
#> SRR1098686     1  0.4389     0.5581 0.596 0.000 0.000 0.000 0.032 0.372
#> SRR1434228     1  0.4724     0.4042 0.648 0.000 0.000 0.052 0.288 0.012
#> SRR1467149     6  0.2386     0.8184 0.012 0.000 0.064 0.028 0.000 0.896
#> SRR1399113     2  0.0000     0.9163 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.2405     0.5773 0.000 0.016 0.004 0.892 0.008 0.080
#> SRR1092468     1  0.5833     0.3058 0.464 0.000 0.032 0.000 0.088 0.416
#> SRR1441804     1  0.3804     0.6273 0.656 0.000 0.000 0.000 0.008 0.336
#> SRR1326100     2  0.3578     0.7252 0.000 0.812 0.088 0.092 0.000 0.008
#> SRR1398815     1  0.3464     0.6477 0.688 0.000 0.000 0.000 0.000 0.312
#> SRR1436021     3  0.4011     0.5057 0.000 0.000 0.736 0.204 0.000 0.060
#> SRR1480083     2  0.0146     0.9151 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1472863     6  0.2466     0.7830 0.008 0.000 0.112 0.008 0.000 0.872
#> SRR815542      1  0.2163     0.7425 0.892 0.000 0.000 0.008 0.004 0.096
#> SRR1400100     3  0.2001     0.6742 0.000 0.000 0.912 0.068 0.008 0.012
#> SRR1312002     5  0.4950     0.6651 0.148 0.000 0.088 0.020 0.724 0.020
#> SRR1470253     5  0.2195     0.7273 0.068 0.000 0.000 0.016 0.904 0.012
#> SRR1414332     1  0.1663     0.7450 0.912 0.000 0.000 0.000 0.000 0.088
#> SRR1069209     1  0.4883     0.3391 0.608 0.000 0.000 0.052 0.328 0.012
#> SRR661052      6  0.2526     0.7916 0.024 0.000 0.096 0.004 0.000 0.876
#> SRR1308860     6  0.2501     0.7591 0.108 0.000 0.016 0.004 0.000 0.872
#> SRR1421159     3  0.2572     0.6301 0.000 0.000 0.852 0.136 0.000 0.012
#> SRR1340943     4  0.4307     0.2779 0.004 0.000 0.008 0.604 0.008 0.376
#> SRR1078855     1  0.1577     0.7428 0.940 0.000 0.000 0.016 0.008 0.036
#> SRR1459465     2  0.0000     0.9163 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.9163 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.2030     0.6787 0.000 0.000 0.908 0.000 0.028 0.064
#> SRR1350979     3  0.4147     0.5962 0.000 0.000 0.716 0.000 0.224 0.060
#> SRR1458198     1  0.3804     0.6322 0.656 0.000 0.000 0.000 0.008 0.336
#> SRR1386910     4  0.5996     0.2404 0.000 0.424 0.072 0.448 0.000 0.056
#> SRR1465375     4  0.5190     0.5754 0.000 0.204 0.012 0.648 0.000 0.136
#> SRR1323699     3  0.4467     0.5758 0.000 0.000 0.696 0.008 0.236 0.060
#> SRR1431139     3  0.5365     0.4126 0.004 0.000 0.584 0.012 0.316 0.084
#> SRR1373964     3  0.4065     0.6028 0.000 0.000 0.724 0.000 0.220 0.056
#> SRR1455413     1  0.5071     0.4600 0.536 0.000 0.008 0.000 0.060 0.396
#> SRR1437163     6  0.3690     0.3162 0.000 0.000 0.008 0.308 0.000 0.684
#> SRR1347343     3  0.4668     0.5151 0.000 0.000 0.652 0.008 0.284 0.056
#> SRR1465480     2  0.0000     0.9163 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     6  0.2463     0.8072 0.020 0.000 0.020 0.068 0.000 0.892
#> SRR1086514     3  0.4419     0.2796 0.000 0.008 0.620 0.348 0.000 0.024
#> SRR1430928     1  0.1333     0.7462 0.944 0.000 0.000 0.008 0.000 0.048
#> SRR1310939     3  0.4147     0.5962 0.000 0.000 0.716 0.000 0.224 0.060
#> SRR1344294     2  0.0146     0.9151 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1099402     1  0.3563     0.6288 0.664 0.000 0.000 0.000 0.000 0.336
#> SRR1468118     5  0.5518     0.4144 0.000 0.000 0.136 0.004 0.544 0.316
#> SRR1486348     6  0.3259     0.5855 0.216 0.000 0.012 0.000 0.000 0.772
#> SRR1488770     2  0.0146     0.9151 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1083732     1  0.4327     0.7029 0.768 0.000 0.000 0.040 0.120 0.072
#> SRR1456611     2  0.0000     0.9163 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.2231     0.7476 0.900 0.000 0.000 0.004 0.028 0.068
#> SRR1500089     1  0.3456     0.7280 0.816 0.000 0.000 0.004 0.104 0.076
#> SRR1441178     1  0.1924     0.7241 0.920 0.000 0.000 0.048 0.028 0.004
#> SRR1381396     1  0.3653     0.6570 0.692 0.000 0.000 0.008 0.000 0.300
#> SRR1096081     5  0.1578     0.7366 0.048 0.000 0.012 0.000 0.936 0.004
#> SRR1349809     2  0.4970    -0.0846 0.000 0.536 0.012 0.408 0.000 0.044
#> SRR1324314     5  0.5245     0.5195 0.016 0.000 0.248 0.016 0.652 0.068
#> SRR1092444     1  0.4121     0.7180 0.784 0.000 0.000 0.032 0.104 0.080
#> SRR1382553     5  0.6211     0.4544 0.336 0.000 0.084 0.032 0.524 0.024
#> SRR1075530     4  0.5146     0.4058 0.000 0.020 0.312 0.604 0.000 0.064
#> SRR1442612     3  0.3388     0.6419 0.000 0.000 0.792 0.000 0.172 0.036
#> SRR1360056     5  0.6319     0.2587 0.000 0.000 0.248 0.012 0.400 0.340
#> SRR1078164     1  0.3112     0.6873 0.840 0.000 0.000 0.052 0.104 0.004
#> SRR1434545     4  0.3468     0.4436 0.000 0.000 0.000 0.728 0.008 0.264
#> SRR1398251     1  0.2209     0.7185 0.904 0.000 0.000 0.052 0.040 0.004
#> SRR1375866     1  0.3741     0.6435 0.672 0.000 0.000 0.000 0.008 0.320
#> SRR1091645     4  0.2270     0.5815 0.000 0.020 0.004 0.900 0.004 0.072
#> SRR1416636     5  0.1555     0.7176 0.004 0.000 0.060 0.000 0.932 0.004
#> SRR1105441     3  0.3019     0.6806 0.000 0.000 0.860 0.036 0.080 0.024
#> SRR1082496     2  0.0000     0.9163 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     3  0.3088     0.5902 0.000 0.000 0.808 0.172 0.000 0.020
#> SRR1093697     2  0.0146     0.9151 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1077429     5  0.1719     0.7354 0.056 0.000 0.008 0.000 0.928 0.008
#> SRR1076120     1  0.5180     0.6054 0.616 0.000 0.000 0.004 0.124 0.256
#> SRR1074410     1  0.3536     0.6864 0.736 0.000 0.000 0.008 0.004 0.252
#> SRR1340345     4  0.5150     0.4459 0.000 0.344 0.020 0.580 0.000 0.056
#> SRR1069514     3  0.2402     0.6415 0.000 0.000 0.868 0.120 0.000 0.012
#> SRR1092636     5  0.4368     0.5710 0.000 0.000 0.212 0.008 0.716 0.064
#> SRR1365013     4  0.5151     0.2019 0.000 0.008 0.420 0.508 0.000 0.064
#> SRR1073069     1  0.3159     0.6784 0.836 0.000 0.000 0.052 0.108 0.004
#> SRR1443137     1  0.3017     0.6927 0.848 0.000 0.000 0.052 0.096 0.004
#> SRR1437143     2  0.0000     0.9163 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.1844     0.7254 0.924 0.000 0.000 0.048 0.024 0.004
#> SRR820234      3  0.5589     0.3299 0.000 0.176 0.612 0.192 0.000 0.020
#> SRR1338079     6  0.2502     0.7892 0.012 0.000 0.020 0.084 0.000 0.884
#> SRR1390094     4  0.4183     0.2798 0.000 0.000 0.008 0.604 0.008 0.380
#> SRR1340721     4  0.5678     0.4358 0.000 0.340 0.012 0.524 0.000 0.124
#> SRR1335964     5  0.4787     0.3956 0.000 0.000 0.312 0.004 0.620 0.064
#> SRR1086869     5  0.0964     0.7351 0.016 0.000 0.012 0.000 0.968 0.004
#> SRR1453434     1  0.3791     0.6566 0.688 0.000 0.000 0.008 0.004 0.300
#> SRR1402261     4  0.4307     0.2803 0.004 0.000 0.008 0.604 0.008 0.376
#> SRR657809      4  0.5723     0.2598 0.000 0.424 0.056 0.472 0.000 0.048
#> SRR1093075     1  0.1989     0.7226 0.916 0.000 0.000 0.052 0.028 0.004
#> SRR1433329     1  0.3112     0.6873 0.840 0.000 0.000 0.052 0.104 0.004
#> SRR1353418     5  0.2296     0.7172 0.068 0.000 0.004 0.024 0.900 0.004
#> SRR1092913     4  0.5095     0.4345 0.000 0.352 0.016 0.576 0.000 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.989       0.995         0.4930 0.509   0.509
#> 3 3 0.905           0.913       0.963         0.3400 0.754   0.549
#> 4 4 0.886           0.900       0.950         0.0945 0.900   0.714
#> 5 5 0.876           0.855       0.924         0.0529 0.916   0.716
#> 6 6 0.882           0.820       0.902         0.0366 0.969   0.873

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.992 1.000 0.000
#> SRR1335605     2  0.0000      0.999 0.000 1.000
#> SRR1432014     2  0.1633      0.976 0.024 0.976
#> SRR1499215     1  0.0000      0.992 1.000 0.000
#> SRR1460409     1  0.0000      0.992 1.000 0.000
#> SRR1086441     1  0.0000      0.992 1.000 0.000
#> SRR1097344     2  0.0000      0.999 0.000 1.000
#> SRR1081789     2  0.0000      0.999 0.000 1.000
#> SRR1453005     2  0.0000      0.999 0.000 1.000
#> SRR1366985     1  0.0000      0.992 1.000 0.000
#> SRR815280      1  0.0000      0.992 1.000 0.000
#> SRR1348531     1  0.0000      0.992 1.000 0.000
#> SRR815845      2  0.0000      0.999 0.000 1.000
#> SRR1471178     1  0.0000      0.992 1.000 0.000
#> SRR1080696     1  0.0000      0.992 1.000 0.000
#> SRR1078684     1  0.0000      0.992 1.000 0.000
#> SRR1317751     1  0.0000      0.992 1.000 0.000
#> SRR1435667     2  0.0672      0.992 0.008 0.992
#> SRR1097905     2  0.0000      0.999 0.000 1.000
#> SRR1456548     1  0.9209      0.498 0.664 0.336
#> SRR1075126     1  0.0000      0.992 1.000 0.000
#> SRR813108      2  0.0000      0.999 0.000 1.000
#> SRR1479062     1  0.0000      0.992 1.000 0.000
#> SRR1408703     1  0.0000      0.992 1.000 0.000
#> SRR1332360     1  0.0000      0.992 1.000 0.000
#> SRR1098686     1  0.0000      0.992 1.000 0.000
#> SRR1434228     1  0.0000      0.992 1.000 0.000
#> SRR1467149     1  0.0672      0.985 0.992 0.008
#> SRR1399113     2  0.0000      0.999 0.000 1.000
#> SRR1476507     2  0.0000      0.999 0.000 1.000
#> SRR1092468     1  0.0000      0.992 1.000 0.000
#> SRR1441804     1  0.0000      0.992 1.000 0.000
#> SRR1326100     2  0.0000      0.999 0.000 1.000
#> SRR1398815     1  0.0000      0.992 1.000 0.000
#> SRR1436021     2  0.0000      0.999 0.000 1.000
#> SRR1480083     2  0.0000      0.999 0.000 1.000
#> SRR1472863     2  0.0672      0.992 0.008 0.992
#> SRR815542      1  0.0000      0.992 1.000 0.000
#> SRR1400100     2  0.0000      0.999 0.000 1.000
#> SRR1312002     1  0.0000      0.992 1.000 0.000
#> SRR1470253     1  0.0000      0.992 1.000 0.000
#> SRR1414332     1  0.0000      0.992 1.000 0.000
#> SRR1069209     1  0.0000      0.992 1.000 0.000
#> SRR661052      1  0.0000      0.992 1.000 0.000
#> SRR1308860     1  0.0000      0.992 1.000 0.000
#> SRR1421159     2  0.0000      0.999 0.000 1.000
#> SRR1340943     2  0.0000      0.999 0.000 1.000
#> SRR1078855     1  0.0000      0.992 1.000 0.000
#> SRR1459465     2  0.0000      0.999 0.000 1.000
#> SRR816818      2  0.0000      0.999 0.000 1.000
#> SRR1478679     2  0.0000      0.999 0.000 1.000
#> SRR1350979     1  0.0000      0.992 1.000 0.000
#> SRR1458198     1  0.0000      0.992 1.000 0.000
#> SRR1386910     2  0.0000      0.999 0.000 1.000
#> SRR1465375     2  0.0000      0.999 0.000 1.000
#> SRR1323699     1  0.0000      0.992 1.000 0.000
#> SRR1431139     1  0.0000      0.992 1.000 0.000
#> SRR1373964     1  0.0000      0.992 1.000 0.000
#> SRR1455413     1  0.0000      0.992 1.000 0.000
#> SRR1437163     2  0.0000      0.999 0.000 1.000
#> SRR1347343     1  0.0000      0.992 1.000 0.000
#> SRR1465480     2  0.0000      0.999 0.000 1.000
#> SRR1489631     2  0.0000      0.999 0.000 1.000
#> SRR1086514     2  0.0000      0.999 0.000 1.000
#> SRR1430928     1  0.0000      0.992 1.000 0.000
#> SRR1310939     1  0.6623      0.792 0.828 0.172
#> SRR1344294     2  0.0000      0.999 0.000 1.000
#> SRR1099402     1  0.0000      0.992 1.000 0.000
#> SRR1468118     1  0.0000      0.992 1.000 0.000
#> SRR1486348     1  0.0000      0.992 1.000 0.000
#> SRR1488770     2  0.0000      0.999 0.000 1.000
#> SRR1083732     1  0.0000      0.992 1.000 0.000
#> SRR1456611     2  0.0000      0.999 0.000 1.000
#> SRR1080318     1  0.0000      0.992 1.000 0.000
#> SRR1500089     1  0.0000      0.992 1.000 0.000
#> SRR1441178     1  0.0000      0.992 1.000 0.000
#> SRR1381396     1  0.0000      0.992 1.000 0.000
#> SRR1096081     1  0.0000      0.992 1.000 0.000
#> SRR1349809     2  0.0000      0.999 0.000 1.000
#> SRR1324314     1  0.0000      0.992 1.000 0.000
#> SRR1092444     1  0.0000      0.992 1.000 0.000
#> SRR1382553     1  0.0000      0.992 1.000 0.000
#> SRR1075530     2  0.0000      0.999 0.000 1.000
#> SRR1442612     2  0.1633      0.976 0.024 0.976
#> SRR1360056     1  0.0000      0.992 1.000 0.000
#> SRR1078164     1  0.0000      0.992 1.000 0.000
#> SRR1434545     2  0.0000      0.999 0.000 1.000
#> SRR1398251     1  0.0000      0.992 1.000 0.000
#> SRR1375866     1  0.0000      0.992 1.000 0.000
#> SRR1091645     2  0.0000      0.999 0.000 1.000
#> SRR1416636     1  0.0000      0.992 1.000 0.000
#> SRR1105441     2  0.0000      0.999 0.000 1.000
#> SRR1082496     2  0.0000      0.999 0.000 1.000
#> SRR1315353     2  0.0000      0.999 0.000 1.000
#> SRR1093697     2  0.0000      0.999 0.000 1.000
#> SRR1077429     1  0.0000      0.992 1.000 0.000
#> SRR1076120     1  0.0000      0.992 1.000 0.000
#> SRR1074410     1  0.0000      0.992 1.000 0.000
#> SRR1340345     2  0.0000      0.999 0.000 1.000
#> SRR1069514     2  0.0000      0.999 0.000 1.000
#> SRR1092636     1  0.0000      0.992 1.000 0.000
#> SRR1365013     2  0.0000      0.999 0.000 1.000
#> SRR1073069     1  0.0000      0.992 1.000 0.000
#> SRR1443137     1  0.0000      0.992 1.000 0.000
#> SRR1437143     2  0.0000      0.999 0.000 1.000
#> SRR1091990     1  0.0000      0.992 1.000 0.000
#> SRR820234      2  0.0000      0.999 0.000 1.000
#> SRR1338079     2  0.0000      0.999 0.000 1.000
#> SRR1390094     2  0.0000      0.999 0.000 1.000
#> SRR1340721     2  0.0000      0.999 0.000 1.000
#> SRR1335964     1  0.0000      0.992 1.000 0.000
#> SRR1086869     1  0.0000      0.992 1.000 0.000
#> SRR1453434     1  0.0000      0.992 1.000 0.000
#> SRR1402261     2  0.0000      0.999 0.000 1.000
#> SRR657809      2  0.0000      0.999 0.000 1.000
#> SRR1093075     1  0.0000      0.992 1.000 0.000
#> SRR1433329     1  0.0000      0.992 1.000 0.000
#> SRR1353418     1  0.0000      0.992 1.000 0.000
#> SRR1092913     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1335605     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1432014     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1499215     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1460409     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1097344     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1081789     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1453005     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1366985     3  0.4555     0.7979 0.200 0.000 0.800
#> SRR815280      1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1348531     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR815845      3  0.6274     0.1666 0.000 0.456 0.544
#> SRR1471178     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1080696     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1078684     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1317751     3  0.2165     0.9027 0.064 0.000 0.936
#> SRR1435667     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1097905     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1456548     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1075126     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR813108      2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1479062     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1408703     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1332360     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1098686     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1434228     1  0.6260     0.0644 0.552 0.000 0.448
#> SRR1467149     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1399113     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1476507     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1092468     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1441804     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1326100     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1398815     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1436021     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1480083     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1472863     1  0.5733     0.5111 0.676 0.324 0.000
#> SRR815542      1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1400100     2  0.5882     0.4397 0.000 0.652 0.348
#> SRR1312002     3  0.4555     0.7979 0.200 0.000 0.800
#> SRR1470253     3  0.4555     0.7979 0.200 0.000 0.800
#> SRR1414332     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1069209     1  0.6026     0.3079 0.624 0.000 0.376
#> SRR661052      1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1308860     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1421159     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1340943     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1078855     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1478679     2  0.4605     0.7325 0.000 0.796 0.204
#> SRR1350979     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1458198     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1386910     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1465375     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1323699     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1431139     3  0.0237     0.9278 0.004 0.000 0.996
#> SRR1373964     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1455413     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1437163     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1347343     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1465480     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1489631     1  0.4062     0.7669 0.836 0.164 0.000
#> SRR1086514     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1430928     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1310939     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1344294     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1468118     3  0.1753     0.9116 0.048 0.000 0.952
#> SRR1486348     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1488770     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1083732     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1456611     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1500089     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1441178     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1096081     3  0.1753     0.9116 0.048 0.000 0.952
#> SRR1349809     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1324314     3  0.4399     0.8094 0.188 0.000 0.812
#> SRR1092444     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1382553     3  0.4555     0.7979 0.200 0.000 0.800
#> SRR1075530     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1442612     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1360056     3  0.0237     0.9278 0.004 0.000 0.996
#> SRR1078164     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1434545     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1398251     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1375866     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1091645     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1416636     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1105441     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1082496     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1315353     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1093697     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1077429     3  0.4555     0.7979 0.200 0.000 0.800
#> SRR1076120     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1074410     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1340345     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1069514     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1092636     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1365013     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1073069     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1443137     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1437143     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR820234      2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1338079     1  0.6244     0.2129 0.560 0.440 0.000
#> SRR1390094     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1340721     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1335964     3  0.0000     0.9288 0.000 0.000 1.000
#> SRR1086869     3  0.1753     0.9116 0.048 0.000 0.952
#> SRR1453434     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1402261     2  0.0000     0.9858 0.000 1.000 0.000
#> SRR657809      2  0.0000     0.9858 0.000 1.000 0.000
#> SRR1093075     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1433329     1  0.0000     0.9547 1.000 0.000 0.000
#> SRR1353418     3  0.4504     0.8019 0.196 0.000 0.804
#> SRR1092913     2  0.0000     0.9858 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1335605     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1432014     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1499215     3  0.0188      0.857 0.000 0.000 0.996 0.004
#> SRR1460409     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1097344     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1081789     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1453005     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1366985     3  0.4843      0.516 0.396 0.000 0.604 0.000
#> SRR815280      1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1348531     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR815845      2  0.5099      0.347 0.000 0.612 0.380 0.008
#> SRR1471178     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0000      0.857 0.000 0.000 1.000 0.000
#> SRR1078684     3  0.0000      0.857 0.000 0.000 1.000 0.000
#> SRR1317751     3  0.3610      0.770 0.200 0.000 0.800 0.000
#> SRR1435667     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1097905     4  0.0336      0.841 0.000 0.008 0.000 0.992
#> SRR1456548     4  0.0336      0.841 0.008 0.000 0.000 0.992
#> SRR1075126     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR813108      2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1479062     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1408703     3  0.0000      0.857 0.000 0.000 1.000 0.000
#> SRR1332360     1  0.0336      0.991 0.992 0.000 0.008 0.000
#> SRR1098686     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1434228     1  0.0336      0.991 0.992 0.000 0.008 0.000
#> SRR1467149     4  0.0336      0.841 0.008 0.000 0.000 0.992
#> SRR1399113     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1476507     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1092468     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1441804     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1326100     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1398815     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1436021     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1480083     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1472863     4  0.0376      0.841 0.004 0.004 0.000 0.992
#> SRR815542      1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1400100     2  0.1356      0.937 0.000 0.960 0.032 0.008
#> SRR1312002     3  0.4843      0.516 0.396 0.000 0.604 0.000
#> SRR1470253     3  0.4855      0.507 0.400 0.000 0.600 0.000
#> SRR1414332     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.0336      0.991 0.992 0.000 0.008 0.000
#> SRR661052      4  0.0336      0.841 0.008 0.000 0.000 0.992
#> SRR1308860     4  0.0336      0.841 0.008 0.000 0.000 0.992
#> SRR1421159     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1340943     4  0.4382      0.684 0.000 0.296 0.000 0.704
#> SRR1078855     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1478679     2  0.1722      0.918 0.000 0.944 0.048 0.008
#> SRR1350979     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1458198     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1386910     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1465375     4  0.4916      0.458 0.000 0.424 0.000 0.576
#> SRR1323699     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1431139     3  0.1637      0.838 0.060 0.000 0.940 0.000
#> SRR1373964     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1455413     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1437163     4  0.0336      0.841 0.000 0.008 0.000 0.992
#> SRR1347343     3  0.0188      0.857 0.000 0.000 0.996 0.004
#> SRR1465480     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1489631     4  0.0336      0.841 0.008 0.000 0.000 0.992
#> SRR1086514     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1430928     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1344294     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.3610      0.726 0.000 0.000 0.800 0.200
#> SRR1486348     4  0.1118      0.821 0.036 0.000 0.000 0.964
#> SRR1488770     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1500089     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1441178     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1381396     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1096081     3  0.3569      0.773 0.196 0.000 0.804 0.000
#> SRR1349809     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1324314     3  0.3610      0.770 0.200 0.000 0.800 0.000
#> SRR1092444     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1382553     3  0.4843      0.516 0.396 0.000 0.604 0.000
#> SRR1075530     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1442612     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1360056     3  0.0000      0.857 0.000 0.000 1.000 0.000
#> SRR1078164     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1434545     4  0.4406      0.680 0.000 0.300 0.000 0.700
#> SRR1398251     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1375866     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1091645     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1416636     3  0.0000      0.857 0.000 0.000 1.000 0.000
#> SRR1105441     3  0.0336      0.857 0.000 0.000 0.992 0.008
#> SRR1082496     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1315353     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1093697     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.4564      0.632 0.328 0.000 0.672 0.000
#> SRR1076120     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1074410     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1340345     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1069514     2  0.0188      0.977 0.000 0.996 0.000 0.004
#> SRR1092636     3  0.0188      0.857 0.004 0.000 0.996 0.000
#> SRR1365013     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1073069     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1443137     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR820234      2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1338079     4  0.0336      0.841 0.000 0.008 0.000 0.992
#> SRR1390094     4  0.4500      0.659 0.000 0.316 0.000 0.684
#> SRR1340721     4  0.4898      0.476 0.000 0.416 0.000 0.584
#> SRR1335964     3  0.0188      0.857 0.004 0.000 0.996 0.000
#> SRR1086869     3  0.3569      0.773 0.196 0.000 0.804 0.000
#> SRR1453434     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1402261     4  0.3907      0.740 0.000 0.232 0.000 0.768
#> SRR657809      2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR1093075     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1353418     3  0.3688      0.764 0.208 0.000 0.792 0.000
#> SRR1092913     2  0.0000      0.980 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1335605     2  0.4192      0.341 0.000 0.596 0.404 0.000 0.000
#> SRR1432014     3  0.2516      0.849 0.000 0.000 0.860 0.000 0.140
#> SRR1499215     3  0.3210      0.817 0.000 0.000 0.788 0.000 0.212
#> SRR1460409     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1097344     2  0.2389      0.832 0.000 0.880 0.116 0.004 0.000
#> SRR1081789     2  0.4242      0.271 0.000 0.572 0.428 0.000 0.000
#> SRR1453005     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1366985     5  0.4733      0.444 0.348 0.000 0.028 0.000 0.624
#> SRR815280      1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1348531     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR815845      3  0.5238      0.580 0.000 0.260 0.652 0.000 0.088
#> SRR1471178     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1080696     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> SRR1078684     5  0.1270      0.866 0.000 0.000 0.052 0.000 0.948
#> SRR1317751     5  0.0510      0.905 0.016 0.000 0.000 0.000 0.984
#> SRR1435667     3  0.2516      0.849 0.000 0.000 0.860 0.000 0.140
#> SRR1097905     4  0.0162      0.997 0.000 0.000 0.004 0.996 0.000
#> SRR1456548     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1075126     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR813108      2  0.4278      0.203 0.000 0.548 0.452 0.000 0.000
#> SRR1479062     3  0.4307      0.262 0.000 0.000 0.504 0.000 0.496
#> SRR1408703     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> SRR1332360     1  0.1671      0.896 0.924 0.000 0.000 0.000 0.076
#> SRR1098686     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1434228     1  0.4015      0.427 0.652 0.000 0.000 0.000 0.348
#> SRR1467149     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1399113     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     2  0.2629      0.820 0.000 0.860 0.136 0.004 0.000
#> SRR1092468     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1441804     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1326100     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1398815     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1436021     2  0.0162      0.884 0.000 0.996 0.004 0.000 0.000
#> SRR1480083     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     4  0.0162      0.997 0.000 0.000 0.004 0.996 0.000
#> SRR815542      1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1400100     3  0.4030      0.401 0.000 0.352 0.648 0.000 0.000
#> SRR1312002     5  0.1571      0.862 0.060 0.000 0.004 0.000 0.936
#> SRR1470253     5  0.0963      0.890 0.036 0.000 0.000 0.000 0.964
#> SRR1414332     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1069209     1  0.4138      0.331 0.616 0.000 0.000 0.000 0.384
#> SRR661052      4  0.0162      0.997 0.000 0.000 0.004 0.996 0.000
#> SRR1308860     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1421159     2  0.1671      0.839 0.000 0.924 0.076 0.000 0.000
#> SRR1340943     2  0.4808      0.711 0.000 0.728 0.136 0.136 0.000
#> SRR1078855     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1459465     2  0.0162      0.884 0.000 0.996 0.004 0.000 0.000
#> SRR816818      2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.2516      0.721 0.000 0.140 0.860 0.000 0.000
#> SRR1350979     3  0.2891      0.843 0.000 0.000 0.824 0.000 0.176
#> SRR1458198     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1386910     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1465375     2  0.2871      0.828 0.000 0.872 0.040 0.088 0.000
#> SRR1323699     3  0.3003      0.837 0.000 0.000 0.812 0.000 0.188
#> SRR1431139     5  0.0162      0.904 0.004 0.000 0.000 0.000 0.996
#> SRR1373964     3  0.2516      0.849 0.000 0.000 0.860 0.000 0.140
#> SRR1455413     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1437163     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1347343     3  0.3210      0.817 0.000 0.000 0.788 0.000 0.212
#> SRR1465480     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1086514     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1430928     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1310939     3  0.2891      0.843 0.000 0.000 0.824 0.000 0.176
#> SRR1344294     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1468118     5  0.1124      0.881 0.000 0.000 0.004 0.036 0.960
#> SRR1486348     4  0.0162      0.994 0.004 0.000 0.000 0.996 0.000
#> SRR1488770     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1500089     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1441178     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1381396     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1096081     5  0.0404      0.906 0.012 0.000 0.000 0.000 0.988
#> SRR1349809     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1324314     5  0.0671      0.905 0.016 0.000 0.004 0.000 0.980
#> SRR1092444     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1382553     5  0.4909      0.313 0.412 0.000 0.028 0.000 0.560
#> SRR1075530     2  0.0162      0.884 0.000 0.996 0.004 0.000 0.000
#> SRR1442612     3  0.2516      0.849 0.000 0.000 0.860 0.000 0.140
#> SRR1360056     5  0.1121      0.874 0.000 0.000 0.044 0.000 0.956
#> SRR1078164     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1434545     2  0.4541      0.740 0.000 0.752 0.136 0.112 0.000
#> SRR1398251     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1375866     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1091645     2  0.2488      0.828 0.000 0.872 0.124 0.004 0.000
#> SRR1416636     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> SRR1105441     3  0.2852      0.840 0.000 0.000 0.828 0.000 0.172
#> SRR1082496     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     2  0.4268      0.228 0.000 0.556 0.444 0.000 0.000
#> SRR1093697     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.0703      0.900 0.024 0.000 0.000 0.000 0.976
#> SRR1076120     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1074410     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1340345     2  0.0162      0.884 0.000 0.996 0.004 0.000 0.000
#> SRR1069514     2  0.4074      0.429 0.000 0.636 0.364 0.000 0.000
#> SRR1092636     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> SRR1365013     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1073069     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1443137     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR820234      2  0.1478      0.848 0.000 0.936 0.064 0.000 0.000
#> SRR1338079     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1390094     2  0.4183      0.765 0.000 0.780 0.136 0.084 0.000
#> SRR1340721     2  0.2561      0.807 0.000 0.856 0.000 0.144 0.000
#> SRR1335964     5  0.0000      0.902 0.000 0.000 0.000 0.000 1.000
#> SRR1086869     5  0.0404      0.906 0.012 0.000 0.000 0.000 0.988
#> SRR1453434     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1402261     2  0.5150      0.666 0.000 0.692 0.136 0.172 0.000
#> SRR657809      2  0.0000      0.884 0.000 1.000 0.000 0.000 0.000
#> SRR1093075     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000      0.976 1.000 0.000 0.000 0.000 0.000
#> SRR1353418     5  0.0510      0.905 0.016 0.000 0.000 0.000 0.984
#> SRR1092913     2  0.1831      0.853 0.000 0.920 0.076 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.1655      0.933 0.936 0.000 0.004 0.044 0.012 0.004
#> SRR1335605     2  0.4853      0.621 0.000 0.700 0.132 0.152 0.000 0.016
#> SRR1432014     3  0.0713      0.800 0.000 0.000 0.972 0.000 0.028 0.000
#> SRR1499215     3  0.1983      0.777 0.000 0.000 0.908 0.020 0.072 0.000
#> SRR1460409     1  0.0260      0.953 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1086441     1  0.0146      0.954 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1097344     4  0.3857      0.545 0.000 0.468 0.000 0.532 0.000 0.000
#> SRR1081789     2  0.4957      0.552 0.000 0.648 0.204 0.148 0.000 0.000
#> SRR1453005     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1366985     5  0.6550      0.324 0.332 0.000 0.140 0.064 0.464 0.000
#> SRR815280      1  0.0935      0.945 0.964 0.000 0.004 0.032 0.000 0.000
#> SRR1348531     1  0.0291      0.953 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR815845      3  0.6617      0.315 0.000 0.292 0.492 0.152 0.060 0.004
#> SRR1471178     1  0.0260      0.953 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1080696     5  0.0632      0.858 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1078684     5  0.4079      0.571 0.000 0.000 0.288 0.032 0.680 0.000
#> SRR1317751     5  0.0363      0.860 0.000 0.000 0.012 0.000 0.988 0.000
#> SRR1435667     3  0.0547      0.799 0.000 0.000 0.980 0.000 0.020 0.000
#> SRR1097905     6  0.0000      0.969 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1456548     6  0.1387      0.961 0.000 0.000 0.000 0.068 0.000 0.932
#> SRR1075126     1  0.1870      0.932 0.928 0.000 0.004 0.044 0.012 0.012
#> SRR813108      2  0.5498      0.325 0.000 0.528 0.324 0.148 0.000 0.000
#> SRR1479062     3  0.3991      0.158 0.000 0.000 0.524 0.004 0.472 0.000
#> SRR1408703     5  0.0547      0.859 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR1332360     1  0.3677      0.794 0.804 0.000 0.012 0.064 0.120 0.000
#> SRR1098686     1  0.0260      0.953 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1434228     1  0.5111      0.395 0.596 0.000 0.016 0.064 0.324 0.000
#> SRR1467149     6  0.0363      0.970 0.000 0.000 0.000 0.012 0.000 0.988
#> SRR1399113     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.3266      0.857 0.000 0.272 0.000 0.728 0.000 0.000
#> SRR1092468     1  0.0000      0.954 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1441804     1  0.0260      0.953 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1326100     2  0.0458      0.856 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1398815     1  0.0363      0.952 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1436021     2  0.1644      0.817 0.000 0.920 0.004 0.076 0.000 0.000
#> SRR1480083     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     6  0.0000      0.969 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR815542      1  0.0000      0.954 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1400100     3  0.5741      0.149 0.000 0.364 0.480 0.152 0.004 0.000
#> SRR1312002     5  0.2860      0.779 0.068 0.000 0.012 0.052 0.868 0.000
#> SRR1470253     5  0.1577      0.840 0.008 0.000 0.016 0.036 0.940 0.000
#> SRR1414332     1  0.0260      0.953 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1069209     1  0.5078      0.361 0.584 0.000 0.012 0.064 0.340 0.000
#> SRR661052      6  0.0000      0.969 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1308860     6  0.0790      0.971 0.000 0.000 0.000 0.032 0.000 0.968
#> SRR1421159     2  0.3551      0.714 0.000 0.792 0.060 0.148 0.000 0.000
#> SRR1340943     4  0.3418      0.861 0.008 0.192 0.000 0.784 0.000 0.016
#> SRR1078855     1  0.1370      0.938 0.948 0.000 0.004 0.036 0.012 0.000
#> SRR1459465     2  0.0146      0.861 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR816818      2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.3066      0.698 0.000 0.044 0.832 0.124 0.000 0.000
#> SRR1350979     3  0.1387      0.796 0.000 0.000 0.932 0.000 0.068 0.000
#> SRR1458198     1  0.0291      0.953 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1386910     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1465375     2  0.2571      0.733 0.000 0.876 0.000 0.060 0.000 0.064
#> SRR1323699     3  0.1682      0.792 0.000 0.000 0.928 0.020 0.052 0.000
#> SRR1431139     5  0.1320      0.852 0.000 0.000 0.036 0.016 0.948 0.000
#> SRR1373964     3  0.0632      0.800 0.000 0.000 0.976 0.000 0.024 0.000
#> SRR1455413     1  0.0146      0.954 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1437163     6  0.1387      0.961 0.000 0.000 0.000 0.068 0.000 0.932
#> SRR1347343     3  0.1867      0.782 0.000 0.000 0.916 0.020 0.064 0.000
#> SRR1465480     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     6  0.1327      0.963 0.000 0.000 0.000 0.064 0.000 0.936
#> SRR1086514     2  0.2704      0.757 0.000 0.844 0.016 0.140 0.000 0.000
#> SRR1430928     1  0.0363      0.953 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1310939     3  0.1327      0.798 0.000 0.000 0.936 0.000 0.064 0.000
#> SRR1344294     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.0260      0.953 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1468118     5  0.1923      0.816 0.000 0.000 0.016 0.004 0.916 0.064
#> SRR1486348     6  0.0458      0.959 0.016 0.000 0.000 0.000 0.000 0.984
#> SRR1488770     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.1577      0.936 0.940 0.000 0.000 0.036 0.016 0.008
#> SRR1456611     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.0000      0.954 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500089     1  0.0146      0.954 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1441178     1  0.0508      0.952 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1381396     1  0.0146      0.954 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1096081     5  0.0363      0.860 0.000 0.000 0.012 0.000 0.988 0.000
#> SRR1349809     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1324314     5  0.1367      0.841 0.000 0.000 0.012 0.044 0.944 0.000
#> SRR1092444     1  0.0146      0.954 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1382553     5  0.6663      0.241 0.360 0.000 0.152 0.064 0.424 0.000
#> SRR1075530     2  0.0146      0.861 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1442612     3  0.0713      0.800 0.000 0.000 0.972 0.000 0.028 0.000
#> SRR1360056     5  0.4089      0.608 0.000 0.000 0.264 0.040 0.696 0.000
#> SRR1078164     1  0.0260      0.953 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1434545     4  0.3231      0.869 0.000 0.200 0.000 0.784 0.000 0.016
#> SRR1398251     1  0.1442      0.936 0.944 0.000 0.004 0.040 0.012 0.000
#> SRR1375866     1  0.0260      0.953 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1091645     4  0.3634      0.774 0.000 0.356 0.000 0.644 0.000 0.000
#> SRR1416636     5  0.0632      0.858 0.000 0.000 0.024 0.000 0.976 0.000
#> SRR1105441     3  0.4050      0.678 0.000 0.000 0.752 0.152 0.096 0.000
#> SRR1082496     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     2  0.5556      0.257 0.000 0.504 0.348 0.148 0.000 0.000
#> SRR1093697     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.0363      0.860 0.000 0.000 0.012 0.000 0.988 0.000
#> SRR1076120     1  0.0363      0.952 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1074410     1  0.0000      0.954 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1340345     2  0.0260      0.858 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1069514     2  0.4701      0.599 0.000 0.684 0.168 0.148 0.000 0.000
#> SRR1092636     5  0.0458      0.860 0.000 0.000 0.016 0.000 0.984 0.000
#> SRR1365013     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1073069     1  0.2224      0.908 0.904 0.000 0.012 0.064 0.020 0.000
#> SRR1443137     1  0.1442      0.936 0.944 0.000 0.004 0.040 0.012 0.000
#> SRR1437143     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.0260      0.953 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR820234      2  0.3608      0.711 0.000 0.788 0.064 0.148 0.000 0.000
#> SRR1338079     6  0.0937      0.970 0.000 0.000 0.000 0.040 0.000 0.960
#> SRR1390094     4  0.3171      0.871 0.000 0.204 0.000 0.784 0.000 0.012
#> SRR1340721     2  0.2100      0.740 0.000 0.884 0.000 0.004 0.000 0.112
#> SRR1335964     5  0.0458      0.859 0.000 0.000 0.016 0.000 0.984 0.000
#> SRR1086869     5  0.0458      0.859 0.000 0.000 0.016 0.000 0.984 0.000
#> SRR1453434     1  0.0363      0.951 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1402261     4  0.3284      0.866 0.000 0.196 0.000 0.784 0.000 0.020
#> SRR657809      2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1093075     1  0.1442      0.936 0.944 0.000 0.004 0.040 0.012 0.000
#> SRR1433329     1  0.1442      0.936 0.944 0.000 0.004 0.040 0.012 0.000
#> SRR1353418     5  0.1257      0.850 0.000 0.000 0.020 0.028 0.952 0.000
#> SRR1092913     2  0.1387      0.795 0.000 0.932 0.000 0.068 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.746           0.816       0.926         0.4142 0.550   0.550
#> 3 3 0.886           0.924       0.965         0.5495 0.641   0.433
#> 4 4 0.912           0.925       0.966         0.1132 0.876   0.677
#> 5 5 0.942           0.906       0.961         0.0958 0.913   0.707
#> 6 6 0.826           0.645       0.810         0.0330 0.942   0.752

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 4

There is also optional best \(k\) = 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1   0.000    0.96152 1.000 0.000
#> SRR1335605     2   1.000    0.29243 0.492 0.508
#> SRR1432014     1   0.000    0.96152 1.000 0.000
#> SRR1499215     1   0.000    0.96152 1.000 0.000
#> SRR1460409     1   0.000    0.96152 1.000 0.000
#> SRR1086441     1   0.000    0.96152 1.000 0.000
#> SRR1097344     2   0.000    0.81760 0.000 1.000
#> SRR1081789     2   1.000    0.29243 0.492 0.508
#> SRR1453005     2   0.000    0.81760 0.000 1.000
#> SRR1366985     1   0.000    0.96152 1.000 0.000
#> SRR815280      1   0.000    0.96152 1.000 0.000
#> SRR1348531     1   0.000    0.96152 1.000 0.000
#> SRR815845      2   1.000    0.29243 0.492 0.508
#> SRR1471178     1   0.000    0.96152 1.000 0.000
#> SRR1080696     1   0.000    0.96152 1.000 0.000
#> SRR1078684     1   0.000    0.96152 1.000 0.000
#> SRR1317751     1   0.000    0.96152 1.000 0.000
#> SRR1435667     1   1.000   -0.25457 0.512 0.488
#> SRR1097905     1   0.998   -0.21297 0.524 0.476
#> SRR1456548     1   0.000    0.96152 1.000 0.000
#> SRR1075126     1   0.000    0.96152 1.000 0.000
#> SRR813108      2   0.871    0.62741 0.292 0.708
#> SRR1479062     1   0.000    0.96152 1.000 0.000
#> SRR1408703     1   0.000    0.96152 1.000 0.000
#> SRR1332360     1   0.000    0.96152 1.000 0.000
#> SRR1098686     1   0.000    0.96152 1.000 0.000
#> SRR1434228     1   0.000    0.96152 1.000 0.000
#> SRR1467149     1   0.000    0.96152 1.000 0.000
#> SRR1399113     2   0.000    0.81760 0.000 1.000
#> SRR1476507     2   0.000    0.81760 0.000 1.000
#> SRR1092468     1   0.000    0.96152 1.000 0.000
#> SRR1441804     1   0.000    0.96152 1.000 0.000
#> SRR1326100     2   0.000    0.81760 0.000 1.000
#> SRR1398815     1   0.000    0.96152 1.000 0.000
#> SRR1436021     2   1.000    0.29243 0.492 0.508
#> SRR1480083     2   0.000    0.81760 0.000 1.000
#> SRR1472863     1   0.443    0.84597 0.908 0.092
#> SRR815542      1   0.000    0.96152 1.000 0.000
#> SRR1400100     2   1.000    0.29243 0.492 0.508
#> SRR1312002     1   0.000    0.96152 1.000 0.000
#> SRR1470253     1   0.000    0.96152 1.000 0.000
#> SRR1414332     1   0.000    0.96152 1.000 0.000
#> SRR1069209     1   0.000    0.96152 1.000 0.000
#> SRR661052      1   0.000    0.96152 1.000 0.000
#> SRR1308860     1   0.000    0.96152 1.000 0.000
#> SRR1421159     2   1.000    0.29243 0.492 0.508
#> SRR1340943     1   0.469    0.83504 0.900 0.100
#> SRR1078855     1   0.000    0.96152 1.000 0.000
#> SRR1459465     2   0.000    0.81760 0.000 1.000
#> SRR816818      2   0.000    0.81760 0.000 1.000
#> SRR1478679     1   0.987   -0.04293 0.568 0.432
#> SRR1350979     1   0.000    0.96152 1.000 0.000
#> SRR1458198     1   0.000    0.96152 1.000 0.000
#> SRR1386910     2   0.000    0.81760 0.000 1.000
#> SRR1465375     2   0.000    0.81760 0.000 1.000
#> SRR1323699     1   0.000    0.96152 1.000 0.000
#> SRR1431139     1   0.000    0.96152 1.000 0.000
#> SRR1373964     1   0.000    0.96152 1.000 0.000
#> SRR1455413     1   0.000    0.96152 1.000 0.000
#> SRR1437163     2   1.000    0.29243 0.492 0.508
#> SRR1347343     1   0.000    0.96152 1.000 0.000
#> SRR1465480     2   0.000    0.81760 0.000 1.000
#> SRR1489631     1   0.000    0.96152 1.000 0.000
#> SRR1086514     2   0.871    0.62741 0.292 0.708
#> SRR1430928     1   0.000    0.96152 1.000 0.000
#> SRR1310939     1   0.000    0.96152 1.000 0.000
#> SRR1344294     2   0.000    0.81760 0.000 1.000
#> SRR1099402     1   0.000    0.96152 1.000 0.000
#> SRR1468118     1   0.000    0.96152 1.000 0.000
#> SRR1486348     1   0.000    0.96152 1.000 0.000
#> SRR1488770     2   0.000    0.81760 0.000 1.000
#> SRR1083732     1   0.000    0.96152 1.000 0.000
#> SRR1456611     2   0.000    0.81760 0.000 1.000
#> SRR1080318     1   0.000    0.96152 1.000 0.000
#> SRR1500089     1   0.000    0.96152 1.000 0.000
#> SRR1441178     1   0.000    0.96152 1.000 0.000
#> SRR1381396     1   0.000    0.96152 1.000 0.000
#> SRR1096081     1   0.000    0.96152 1.000 0.000
#> SRR1349809     2   0.000    0.81760 0.000 1.000
#> SRR1324314     1   0.000    0.96152 1.000 0.000
#> SRR1092444     1   0.000    0.96152 1.000 0.000
#> SRR1382553     1   0.000    0.96152 1.000 0.000
#> SRR1075530     2   0.871    0.62741 0.292 0.708
#> SRR1442612     2   1.000    0.29243 0.492 0.508
#> SRR1360056     1   0.000    0.96152 1.000 0.000
#> SRR1078164     1   0.000    0.96152 1.000 0.000
#> SRR1434545     2   0.224    0.80079 0.036 0.964
#> SRR1398251     1   0.000    0.96152 1.000 0.000
#> SRR1375866     1   0.000    0.96152 1.000 0.000
#> SRR1091645     2   0.000    0.81760 0.000 1.000
#> SRR1416636     1   0.000    0.96152 1.000 0.000
#> SRR1105441     1   0.981    0.00966 0.580 0.420
#> SRR1082496     2   0.000    0.81760 0.000 1.000
#> SRR1315353     2   0.871    0.62741 0.292 0.708
#> SRR1093697     2   0.000    0.81760 0.000 1.000
#> SRR1077429     1   0.000    0.96152 1.000 0.000
#> SRR1076120     1   0.000    0.96152 1.000 0.000
#> SRR1074410     1   0.000    0.96152 1.000 0.000
#> SRR1340345     2   0.000    0.81760 0.000 1.000
#> SRR1069514     2   1.000    0.29243 0.492 0.508
#> SRR1092636     1   0.000    0.96152 1.000 0.000
#> SRR1365013     2   0.871    0.62741 0.292 0.708
#> SRR1073069     1   0.000    0.96152 1.000 0.000
#> SRR1443137     1   0.000    0.96152 1.000 0.000
#> SRR1437143     2   0.000    0.81760 0.000 1.000
#> SRR1091990     1   0.000    0.96152 1.000 0.000
#> SRR820234      2   0.000    0.81760 0.000 1.000
#> SRR1338079     1   0.000    0.96152 1.000 0.000
#> SRR1390094     2   1.000    0.29243 0.492 0.508
#> SRR1340721     2   0.000    0.81760 0.000 1.000
#> SRR1335964     1   0.000    0.96152 1.000 0.000
#> SRR1086869     1   0.000    0.96152 1.000 0.000
#> SRR1453434     1   0.000    0.96152 1.000 0.000
#> SRR1402261     1   0.939    0.25692 0.644 0.356
#> SRR657809      2   0.000    0.81760 0.000 1.000
#> SRR1093075     1   0.000    0.96152 1.000 0.000
#> SRR1433329     1   0.000    0.96152 1.000 0.000
#> SRR1353418     1   0.000    0.96152 1.000 0.000
#> SRR1092913     2   0.000    0.81760 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1   0.000      0.932 1.000 0.000 0.000
#> SRR1335605     3   0.000      0.963 0.000 0.000 1.000
#> SRR1432014     3   0.000      0.963 0.000 0.000 1.000
#> SRR1499215     3   0.000      0.963 0.000 0.000 1.000
#> SRR1460409     1   0.000      0.932 1.000 0.000 0.000
#> SRR1086441     1   0.000      0.932 1.000 0.000 0.000
#> SRR1097344     2   0.000      0.996 0.000 1.000 0.000
#> SRR1081789     3   0.000      0.963 0.000 0.000 1.000
#> SRR1453005     2   0.000      0.996 0.000 1.000 0.000
#> SRR1366985     3   0.186      0.925 0.052 0.000 0.948
#> SRR815280      1   0.175      0.911 0.952 0.000 0.048
#> SRR1348531     1   0.000      0.932 1.000 0.000 0.000
#> SRR815845      3   0.000      0.963 0.000 0.000 1.000
#> SRR1471178     1   0.186      0.908 0.948 0.000 0.052
#> SRR1080696     3   0.000      0.963 0.000 0.000 1.000
#> SRR1078684     3   0.000      0.963 0.000 0.000 1.000
#> SRR1317751     3   0.455      0.756 0.200 0.000 0.800
#> SRR1435667     3   0.000      0.963 0.000 0.000 1.000
#> SRR1097905     3   0.000      0.963 0.000 0.000 1.000
#> SRR1456548     1   0.630      0.194 0.524 0.000 0.476
#> SRR1075126     1   0.455      0.797 0.800 0.000 0.200
#> SRR813108      3   0.445      0.755 0.000 0.192 0.808
#> SRR1479062     3   0.000      0.963 0.000 0.000 1.000
#> SRR1408703     3   0.000      0.963 0.000 0.000 1.000
#> SRR1332360     1   0.341      0.828 0.876 0.000 0.124
#> SRR1098686     1   0.455      0.797 0.800 0.000 0.200
#> SRR1434228     1   0.000      0.932 1.000 0.000 0.000
#> SRR1467149     3   0.000      0.963 0.000 0.000 1.000
#> SRR1399113     2   0.000      0.996 0.000 1.000 0.000
#> SRR1476507     2   0.000      0.996 0.000 1.000 0.000
#> SRR1092468     3   0.000      0.963 0.000 0.000 1.000
#> SRR1441804     1   0.186      0.908 0.948 0.000 0.052
#> SRR1326100     2   0.000      0.996 0.000 1.000 0.000
#> SRR1398815     1   0.455      0.797 0.800 0.000 0.200
#> SRR1436021     3   0.000      0.963 0.000 0.000 1.000
#> SRR1480083     2   0.000      0.996 0.000 1.000 0.000
#> SRR1472863     3   0.000      0.963 0.000 0.000 1.000
#> SRR815542      1   0.000      0.932 1.000 0.000 0.000
#> SRR1400100     3   0.000      0.963 0.000 0.000 1.000
#> SRR1312002     3   0.175      0.928 0.048 0.000 0.952
#> SRR1470253     3   0.186      0.925 0.052 0.000 0.948
#> SRR1414332     1   0.000      0.932 1.000 0.000 0.000
#> SRR1069209     1   0.000      0.932 1.000 0.000 0.000
#> SRR661052      3   0.000      0.963 0.000 0.000 1.000
#> SRR1308860     1   0.455      0.797 0.800 0.000 0.200
#> SRR1421159     3   0.000      0.963 0.000 0.000 1.000
#> SRR1340943     3   0.000      0.963 0.000 0.000 1.000
#> SRR1078855     1   0.000      0.932 1.000 0.000 0.000
#> SRR1459465     2   0.000      0.996 0.000 1.000 0.000
#> SRR816818      2   0.000      0.996 0.000 1.000 0.000
#> SRR1478679     3   0.000      0.963 0.000 0.000 1.000
#> SRR1350979     3   0.000      0.963 0.000 0.000 1.000
#> SRR1458198     1   0.186      0.908 0.948 0.000 0.052
#> SRR1386910     2   0.000      0.996 0.000 1.000 0.000
#> SRR1465375     2   0.000      0.996 0.000 1.000 0.000
#> SRR1323699     3   0.000      0.963 0.000 0.000 1.000
#> SRR1431139     3   0.000      0.963 0.000 0.000 1.000
#> SRR1373964     3   0.000      0.963 0.000 0.000 1.000
#> SRR1455413     3   0.000      0.963 0.000 0.000 1.000
#> SRR1437163     3   0.583      0.426 0.340 0.000 0.660
#> SRR1347343     3   0.000      0.963 0.000 0.000 1.000
#> SRR1465480     2   0.000      0.996 0.000 1.000 0.000
#> SRR1489631     1   0.455      0.797 0.800 0.000 0.200
#> SRR1086514     3   0.590      0.471 0.000 0.352 0.648
#> SRR1430928     1   0.000      0.932 1.000 0.000 0.000
#> SRR1310939     3   0.000      0.963 0.000 0.000 1.000
#> SRR1344294     2   0.000      0.996 0.000 1.000 0.000
#> SRR1099402     1   0.000      0.932 1.000 0.000 0.000
#> SRR1468118     3   0.000      0.963 0.000 0.000 1.000
#> SRR1486348     1   0.455      0.797 0.800 0.000 0.200
#> SRR1488770     2   0.000      0.996 0.000 1.000 0.000
#> SRR1083732     1   0.000      0.932 1.000 0.000 0.000
#> SRR1456611     2   0.000      0.996 0.000 1.000 0.000
#> SRR1080318     1   0.000      0.932 1.000 0.000 0.000
#> SRR1500089     1   0.000      0.932 1.000 0.000 0.000
#> SRR1441178     1   0.000      0.932 1.000 0.000 0.000
#> SRR1381396     1   0.103      0.922 0.976 0.000 0.024
#> SRR1096081     3   0.186      0.925 0.052 0.000 0.948
#> SRR1349809     2   0.000      0.996 0.000 1.000 0.000
#> SRR1324314     3   0.000      0.963 0.000 0.000 1.000
#> SRR1092444     1   0.000      0.932 1.000 0.000 0.000
#> SRR1382553     3   0.245      0.906 0.076 0.000 0.924
#> SRR1075530     3   0.000      0.963 0.000 0.000 1.000
#> SRR1442612     3   0.000      0.963 0.000 0.000 1.000
#> SRR1360056     3   0.000      0.963 0.000 0.000 1.000
#> SRR1078164     1   0.000      0.932 1.000 0.000 0.000
#> SRR1434545     2   0.245      0.909 0.000 0.924 0.076
#> SRR1398251     1   0.000      0.932 1.000 0.000 0.000
#> SRR1375866     1   0.000      0.932 1.000 0.000 0.000
#> SRR1091645     2   0.000      0.996 0.000 1.000 0.000
#> SRR1416636     3   0.000      0.963 0.000 0.000 1.000
#> SRR1105441     3   0.000      0.963 0.000 0.000 1.000
#> SRR1082496     2   0.000      0.996 0.000 1.000 0.000
#> SRR1315353     3   0.000      0.963 0.000 0.000 1.000
#> SRR1093697     2   0.000      0.996 0.000 1.000 0.000
#> SRR1077429     3   0.164      0.931 0.044 0.000 0.956
#> SRR1076120     3   0.000      0.963 0.000 0.000 1.000
#> SRR1074410     1   0.000      0.932 1.000 0.000 0.000
#> SRR1340345     2   0.000      0.996 0.000 1.000 0.000
#> SRR1069514     3   0.000      0.963 0.000 0.000 1.000
#> SRR1092636     3   0.000      0.963 0.000 0.000 1.000
#> SRR1365013     3   0.000      0.963 0.000 0.000 1.000
#> SRR1073069     1   0.000      0.932 1.000 0.000 0.000
#> SRR1443137     1   0.000      0.932 1.000 0.000 0.000
#> SRR1437143     2   0.000      0.996 0.000 1.000 0.000
#> SRR1091990     1   0.000      0.932 1.000 0.000 0.000
#> SRR820234      2   0.000      0.996 0.000 1.000 0.000
#> SRR1338079     1   0.455      0.797 0.800 0.000 0.200
#> SRR1390094     3   0.000      0.963 0.000 0.000 1.000
#> SRR1340721     2   0.000      0.996 0.000 1.000 0.000
#> SRR1335964     3   0.000      0.963 0.000 0.000 1.000
#> SRR1086869     3   0.000      0.963 0.000 0.000 1.000
#> SRR1453434     1   0.141      0.917 0.964 0.000 0.036
#> SRR1402261     3   0.455      0.721 0.200 0.000 0.800
#> SRR657809      2   0.000      0.996 0.000 1.000 0.000
#> SRR1093075     1   0.000      0.932 1.000 0.000 0.000
#> SRR1433329     1   0.000      0.932 1.000 0.000 0.000
#> SRR1353418     3   0.506      0.695 0.244 0.000 0.756
#> SRR1092913     2   0.000      0.996 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1335605     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1432014     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1499215     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1460409     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.0707      0.959 0.000 0.020 0.000 0.980
#> SRR1081789     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1453005     4  0.4008      0.672 0.000 0.244 0.000 0.756
#> SRR1366985     3  0.1474      0.925 0.052 0.000 0.948 0.000
#> SRR815280      1  0.1389      0.906 0.952 0.000 0.048 0.000
#> SRR1348531     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR815845      3  0.4746      0.420 0.000 0.000 0.632 0.368
#> SRR1471178     1  0.1474      0.904 0.948 0.000 0.052 0.000
#> SRR1080696     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1078684     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1317751     3  0.3610      0.744 0.200 0.000 0.800 0.000
#> SRR1435667     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1097905     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1456548     1  0.4992      0.222 0.524 0.000 0.476 0.000
#> SRR1075126     1  0.3610      0.780 0.800 0.000 0.200 0.000
#> SRR813108      4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1479062     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1408703     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1332360     1  0.2704      0.815 0.876 0.000 0.124 0.000
#> SRR1098686     1  0.3610      0.780 0.800 0.000 0.200 0.000
#> SRR1434228     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1467149     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1399113     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1092468     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1441804     1  0.1474      0.904 0.948 0.000 0.052 0.000
#> SRR1326100     4  0.0188      0.971 0.000 0.004 0.000 0.996
#> SRR1398815     1  0.3610      0.780 0.800 0.000 0.200 0.000
#> SRR1436021     3  0.1211      0.932 0.000 0.000 0.960 0.040
#> SRR1480083     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1472863     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR815542      1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1400100     4  0.0817      0.948 0.000 0.000 0.024 0.976
#> SRR1312002     3  0.1389      0.929 0.048 0.000 0.952 0.000
#> SRR1470253     3  0.1474      0.925 0.052 0.000 0.948 0.000
#> SRR1414332     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1069209     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR661052      3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1308860     1  0.3610      0.780 0.800 0.000 0.200 0.000
#> SRR1421159     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1340943     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1078855     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1350979     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1458198     1  0.1474      0.904 0.948 0.000 0.052 0.000
#> SRR1386910     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1465375     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1323699     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1431139     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1373964     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1455413     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1437163     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1347343     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1465480     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.3610      0.780 0.800 0.000 0.200 0.000
#> SRR1086514     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1430928     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1344294     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1486348     1  0.3610      0.780 0.800 0.000 0.200 0.000
#> SRR1488770     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1456611     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1500089     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1441178     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1381396     1  0.0817      0.919 0.976 0.000 0.024 0.000
#> SRR1096081     3  0.1474      0.925 0.052 0.000 0.948 0.000
#> SRR1349809     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1324314     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1092444     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1382553     3  0.1940      0.906 0.076 0.000 0.924 0.000
#> SRR1075530     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1442612     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1360056     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1078164     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1434545     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1398251     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1375866     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1091645     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1416636     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1105441     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1082496     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1315353     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1093697     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.1302      0.932 0.044 0.000 0.956 0.000
#> SRR1076120     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1074410     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1340345     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1069514     4  0.4103      0.610 0.000 0.000 0.256 0.744
#> SRR1092636     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1365013     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1073069     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1443137     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR820234      4  0.0707      0.958 0.000 0.020 0.000 0.980
#> SRR1338079     1  0.4591      0.793 0.800 0.000 0.116 0.084
#> SRR1390094     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1340721     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1335964     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1086869     3  0.0000      0.966 0.000 0.000 1.000 0.000
#> SRR1453434     1  0.1118      0.913 0.964 0.000 0.036 0.000
#> SRR1402261     4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR657809      4  0.0000      0.974 0.000 0.000 0.000 1.000
#> SRR1093075     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1353418     3  0.4008      0.687 0.244 0.000 0.756 0.000
#> SRR1092913     4  0.0188      0.971 0.000 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1335605     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1432014     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1499215     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1460409     1  0.0404      0.901 0.988 0.000 0.000 0.000 0.012
#> SRR1086441     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1097344     4  0.0609      0.960 0.000 0.020 0.000 0.980 0.000
#> SRR1081789     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1453005     4  0.3452      0.673 0.000 0.244 0.000 0.756 0.000
#> SRR1366985     5  0.0404      0.953 0.000 0.000 0.012 0.000 0.988
#> SRR815280      1  0.0404      0.901 0.988 0.000 0.000 0.000 0.012
#> SRR1348531     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR815845      3  0.4088      0.403 0.000 0.000 0.632 0.368 0.000
#> SRR1471178     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1080696     3  0.4291      0.136 0.000 0.000 0.536 0.000 0.464
#> SRR1078684     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1317751     5  0.0404      0.953 0.000 0.000 0.012 0.000 0.988
#> SRR1435667     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1097905     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1456548     1  0.4300      0.170 0.524 0.000 0.476 0.000 0.000
#> SRR1075126     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR813108      4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1479062     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1408703     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1332360     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000
#> SRR1098686     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1434228     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000
#> SRR1467149     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1399113     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1092468     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1441804     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1326100     4  0.0162      0.972 0.000 0.004 0.000 0.996 0.000
#> SRR1398815     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1436021     3  0.1043      0.925 0.000 0.000 0.960 0.040 0.000
#> SRR1480083     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR815542      1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1400100     4  0.0703      0.951 0.000 0.000 0.024 0.976 0.000
#> SRR1312002     5  0.1117      0.939 0.020 0.000 0.016 0.000 0.964
#> SRR1470253     5  0.0404      0.953 0.000 0.000 0.012 0.000 0.988
#> SRR1414332     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1069209     5  0.0162      0.955 0.004 0.000 0.000 0.000 0.996
#> SRR661052      3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1308860     1  0.1197      0.873 0.952 0.000 0.048 0.000 0.000
#> SRR1421159     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1340943     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1078855     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1350979     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1458198     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1386910     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1465375     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1323699     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1431139     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1373964     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1455413     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1437163     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1347343     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1465480     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.3109      0.725 0.800 0.000 0.200 0.000 0.000
#> SRR1086514     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1430928     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1310939     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1344294     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1468118     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1486348     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.4161      0.416 0.608 0.000 0.000 0.000 0.392
#> SRR1456611     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.3074      0.746 0.804 0.000 0.000 0.000 0.196
#> SRR1500089     5  0.4150      0.283 0.388 0.000 0.000 0.000 0.612
#> SRR1441178     1  0.3480      0.692 0.752 0.000 0.000 0.000 0.248
#> SRR1381396     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1096081     5  0.1270      0.911 0.000 0.000 0.052 0.000 0.948
#> SRR1349809     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1324314     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1092444     1  0.4249      0.316 0.568 0.000 0.000 0.000 0.432
#> SRR1382553     5  0.0693      0.951 0.008 0.000 0.012 0.000 0.980
#> SRR1075530     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1442612     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1360056     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1078164     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000
#> SRR1434545     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1398251     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000
#> SRR1375866     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1091645     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1416636     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1105441     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1082496     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1093697     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     3  0.2561      0.803 0.000 0.000 0.856 0.000 0.144
#> SRR1076120     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1074410     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1340345     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1069514     4  0.3534      0.631 0.000 0.000 0.256 0.744 0.000
#> SRR1092636     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1365013     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1073069     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000
#> SRR1443137     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000
#> SRR1437143     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.3480      0.692 0.752 0.000 0.000 0.000 0.248
#> SRR820234      4  0.0609      0.959 0.000 0.020 0.000 0.980 0.000
#> SRR1338079     1  0.3806      0.771 0.812 0.000 0.104 0.084 0.000
#> SRR1390094     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1340721     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1335964     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1086869     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1453434     1  0.0000      0.907 1.000 0.000 0.000 0.000 0.000
#> SRR1402261     4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR657809      4  0.0000      0.975 0.000 0.000 0.000 1.000 0.000
#> SRR1093075     5  0.0703      0.939 0.024 0.000 0.000 0.000 0.976
#> SRR1433329     5  0.0000      0.956 0.000 0.000 0.000 0.000 1.000
#> SRR1353418     5  0.0404      0.953 0.000 0.000 0.012 0.000 0.988
#> SRR1092913     4  0.0162      0.972 0.000 0.004 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1335605     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1432014     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1499215     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1460409     1  0.3620    0.49154 0.648 0.000 0.000 0.000 0.352 0.000
#> SRR1086441     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1097344     5  0.3857    0.02358 0.000 0.000 0.000 0.468 0.532 0.000
#> SRR1081789     4  0.3592    0.51472 0.000 0.000 0.000 0.656 0.344 0.000
#> SRR1453005     4  0.6000    0.19365 0.000 0.244 0.000 0.420 0.336 0.000
#> SRR1366985     6  0.3817    0.36365 0.000 0.000 0.432 0.000 0.000 0.568
#> SRR815280      1  0.1556    0.83201 0.920 0.000 0.000 0.000 0.080 0.000
#> SRR1348531     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR815845      3  0.4378    0.40315 0.000 0.000 0.632 0.328 0.040 0.000
#> SRR1471178     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1080696     6  0.3888    0.34862 0.000 0.000 0.252 0.000 0.032 0.716
#> SRR1078684     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1317751     6  0.0790    0.57860 0.000 0.000 0.000 0.000 0.032 0.968
#> SRR1435667     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097905     3  0.3728    0.47887 0.000 0.000 0.652 0.344 0.004 0.000
#> SRR1456548     3  0.6097    0.14162 0.232 0.000 0.420 0.344 0.004 0.000
#> SRR1075126     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR813108      4  0.3592    0.51472 0.000 0.000 0.000 0.656 0.344 0.000
#> SRR1479062     3  0.2003    0.79360 0.000 0.000 0.884 0.000 0.000 0.116
#> SRR1408703     3  0.4504    0.31989 0.000 0.000 0.536 0.000 0.032 0.432
#> SRR1332360     6  0.3817    0.70069 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1098686     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1434228     6  0.3817    0.70069 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1467149     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1399113     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.3592    0.51472 0.000 0.000 0.000 0.656 0.344 0.000
#> SRR1092468     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1441804     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1326100     4  0.3728    0.51049 0.000 0.004 0.000 0.652 0.344 0.000
#> SRR1398815     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1436021     3  0.0937    0.86102 0.000 0.000 0.960 0.040 0.000 0.000
#> SRR1480083     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR815542      1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1400100     4  0.4078    0.49728 0.000 0.000 0.024 0.656 0.320 0.000
#> SRR1312002     6  0.4305    0.34316 0.020 0.000 0.436 0.000 0.000 0.544
#> SRR1470253     6  0.2178    0.61357 0.000 0.000 0.132 0.000 0.000 0.868
#> SRR1414332     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1069209     6  0.3547    0.68835 0.000 0.000 0.000 0.000 0.332 0.668
#> SRR661052      3  0.0146    0.89400 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1308860     1  0.1152    0.85125 0.952 0.000 0.044 0.000 0.004 0.000
#> SRR1421159     4  0.3592    0.51472 0.000 0.000 0.000 0.656 0.344 0.000
#> SRR1340943     4  0.0146    0.48188 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1078855     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1350979     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1458198     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1386910     5  0.3857    0.02358 0.000 0.000 0.000 0.468 0.532 0.000
#> SRR1465375     4  0.2730    0.33346 0.000 0.000 0.000 0.808 0.192 0.000
#> SRR1323699     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1431139     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1373964     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1455413     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1437163     4  0.0146    0.48188 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1347343     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1465480     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     1  0.5953    0.29523 0.456 0.000 0.196 0.344 0.004 0.000
#> SRR1086514     4  0.3592    0.51472 0.000 0.000 0.000 0.656 0.344 0.000
#> SRR1430928     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310939     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1344294     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1468118     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1486348     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1488770     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.3198    0.63161 0.740 0.000 0.000 0.000 0.000 0.260
#> SRR1456611     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.2762    0.71154 0.804 0.000 0.000 0.000 0.000 0.196
#> SRR1500089     1  0.3409    0.56980 0.700 0.000 0.000 0.000 0.000 0.300
#> SRR1441178     5  0.5933   -0.39084 0.348 0.000 0.000 0.000 0.432 0.220
#> SRR1381396     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1096081     6  0.1245    0.57562 0.000 0.000 0.016 0.000 0.032 0.952
#> SRR1349809     4  0.3866    0.04979 0.000 0.000 0.000 0.516 0.484 0.000
#> SRR1324314     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1092444     1  0.5902    0.10604 0.472 0.000 0.000 0.000 0.268 0.260
#> SRR1382553     6  0.4348    0.38292 0.024 0.000 0.416 0.000 0.000 0.560
#> SRR1075530     5  0.3867   -0.06025 0.000 0.000 0.000 0.488 0.512 0.000
#> SRR1442612     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1360056     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1078164     6  0.3817    0.70069 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1434545     4  0.0000    0.48338 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1398251     6  0.3817    0.70069 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1375866     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1091645     5  0.3862   -0.00601 0.000 0.000 0.000 0.476 0.524 0.000
#> SRR1416636     3  0.4504    0.31989 0.000 0.000 0.536 0.000 0.032 0.432
#> SRR1105441     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1082496     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     4  0.3592    0.51472 0.000 0.000 0.000 0.656 0.344 0.000
#> SRR1093697     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     6  0.4517   -0.09527 0.000 0.000 0.444 0.000 0.032 0.524
#> SRR1076120     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1074410     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1340345     5  0.3857    0.02358 0.000 0.000 0.000 0.468 0.532 0.000
#> SRR1069514     4  0.5277    0.28478 0.000 0.000 0.256 0.592 0.152 0.000
#> SRR1092636     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1365013     4  0.3592    0.51472 0.000 0.000 0.000 0.656 0.344 0.000
#> SRR1073069     6  0.3817    0.70069 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1443137     6  0.3817    0.70069 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1437143     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     5  0.5933   -0.39084 0.348 0.000 0.000 0.000 0.432 0.220
#> SRR820234      4  0.4092    0.49112 0.000 0.020 0.000 0.636 0.344 0.000
#> SRR1338079     1  0.5419    0.33503 0.468 0.000 0.100 0.428 0.004 0.000
#> SRR1390094     4  0.0000    0.48338 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1340721     4  0.2697    0.33464 0.000 0.000 0.000 0.812 0.188 0.000
#> SRR1335964     3  0.0000    0.89697 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1086869     3  0.4504    0.31989 0.000 0.000 0.536 0.000 0.032 0.432
#> SRR1453434     1  0.0000    0.88898 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1402261     4  0.0146    0.48188 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR657809      5  0.3857    0.02358 0.000 0.000 0.000 0.468 0.532 0.000
#> SRR1093075     6  0.4051    0.69535 0.008 0.000 0.000 0.000 0.432 0.560
#> SRR1433329     6  0.3817    0.70069 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1353418     6  0.0000    0.59473 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1092913     5  0.3857    0.02358 0.000 0.000 0.000 0.468 0.532 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.295           0.600       0.814         0.4315 0.496   0.496
#> 3 3 0.747           0.856       0.923         0.4710 0.770   0.574
#> 4 4 0.863           0.893       0.945         0.0949 0.922   0.786
#> 5 5 0.744           0.760       0.850         0.0668 0.893   0.672
#> 6 6 0.788           0.785       0.873         0.0601 0.917   0.692

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000    0.80001 1.000 0.000
#> SRR1335605     2  0.9460    0.60128 0.364 0.636
#> SRR1432014     2  0.9393    0.60741 0.356 0.644
#> SRR1499215     2  0.9393    0.60741 0.356 0.644
#> SRR1460409     1  0.0000    0.80001 1.000 0.000
#> SRR1086441     1  0.0000    0.80001 1.000 0.000
#> SRR1097344     2  0.6887    0.54248 0.184 0.816
#> SRR1081789     2  0.9358    0.60964 0.352 0.648
#> SRR1453005     2  0.0376    0.63978 0.004 0.996
#> SRR1366985     1  0.9710    0.14477 0.600 0.400
#> SRR815280      1  0.0672    0.80124 0.992 0.008
#> SRR1348531     1  0.0938    0.80136 0.988 0.012
#> SRR815845      2  0.9732    0.52677 0.404 0.596
#> SRR1471178     1  0.0000    0.80001 1.000 0.000
#> SRR1080696     2  0.9393    0.60741 0.356 0.644
#> SRR1078684     2  0.9710    0.53517 0.400 0.600
#> SRR1317751     2  0.9754    0.51775 0.408 0.592
#> SRR1435667     2  0.9358    0.60964 0.352 0.648
#> SRR1097905     1  0.9087    0.38494 0.676 0.324
#> SRR1456548     1  0.0938    0.80136 0.988 0.012
#> SRR1075126     1  0.0376    0.80073 0.996 0.004
#> SRR813108      2  0.7453    0.64210 0.212 0.788
#> SRR1479062     2  0.9393    0.60741 0.356 0.644
#> SRR1408703     2  0.9491    0.59108 0.368 0.632
#> SRR1332360     1  0.0938    0.80136 0.988 0.012
#> SRR1098686     1  0.0938    0.80136 0.988 0.012
#> SRR1434228     1  0.8608    0.47521 0.716 0.284
#> SRR1467149     1  0.9170    0.36067 0.668 0.332
#> SRR1399113     2  0.0376    0.63978 0.004 0.996
#> SRR1476507     2  0.8016    0.47307 0.244 0.756
#> SRR1092468     1  0.7815    0.57340 0.768 0.232
#> SRR1441804     1  0.0938    0.80136 0.988 0.012
#> SRR1326100     2  0.0938    0.64181 0.012 0.988
#> SRR1398815     1  0.0000    0.80001 1.000 0.000
#> SRR1436021     1  0.9866    0.00154 0.568 0.432
#> SRR1480083     2  0.0376    0.63978 0.004 0.996
#> SRR1472863     1  0.8386    0.49696 0.732 0.268
#> SRR815542      1  0.0000    0.80001 1.000 0.000
#> SRR1400100     2  0.9393    0.60741 0.356 0.644
#> SRR1312002     1  0.9710    0.14477 0.600 0.400
#> SRR1470253     1  0.9635    0.19022 0.612 0.388
#> SRR1414332     1  0.0000    0.80001 1.000 0.000
#> SRR1069209     1  0.7219    0.62712 0.800 0.200
#> SRR661052      1  0.7528    0.59658 0.784 0.216
#> SRR1308860     1  0.0938    0.80136 0.988 0.012
#> SRR1421159     2  0.9393    0.60842 0.356 0.644
#> SRR1340943     1  0.7139    0.65802 0.804 0.196
#> SRR1078855     1  0.0000    0.80001 1.000 0.000
#> SRR1459465     2  0.0376    0.63978 0.004 0.996
#> SRR816818      2  0.0376    0.63978 0.004 0.996
#> SRR1478679     2  0.9427    0.60541 0.360 0.640
#> SRR1350979     2  0.9460    0.59717 0.364 0.636
#> SRR1458198     1  0.9170    0.36067 0.668 0.332
#> SRR1386910     2  0.6712    0.55421 0.176 0.824
#> SRR1465375     2  0.8909    0.38721 0.308 0.692
#> SRR1323699     2  0.9393    0.60741 0.356 0.644
#> SRR1431139     1  0.9970   -0.15760 0.532 0.468
#> SRR1373964     2  0.9393    0.60741 0.356 0.644
#> SRR1455413     1  0.4939    0.73028 0.892 0.108
#> SRR1437163     1  0.4690    0.74549 0.900 0.100
#> SRR1347343     2  0.9393    0.60741 0.356 0.644
#> SRR1465480     2  0.0376    0.63978 0.004 0.996
#> SRR1489631     1  0.0938    0.80136 0.988 0.012
#> SRR1086514     2  0.2043    0.64576 0.032 0.968
#> SRR1430928     1  0.0000    0.80001 1.000 0.000
#> SRR1310939     2  0.9427    0.60270 0.360 0.640
#> SRR1344294     2  0.0376    0.63978 0.004 0.996
#> SRR1099402     1  0.0000    0.80001 1.000 0.000
#> SRR1468118     1  0.9977   -0.17661 0.528 0.472
#> SRR1486348     1  0.0000    0.80001 1.000 0.000
#> SRR1488770     2  0.0376    0.63978 0.004 0.996
#> SRR1083732     1  0.0938    0.80136 0.988 0.012
#> SRR1456611     2  0.0376    0.63978 0.004 0.996
#> SRR1080318     1  0.0938    0.80136 0.988 0.012
#> SRR1500089     1  0.9129    0.37164 0.672 0.328
#> SRR1441178     1  0.0000    0.80001 1.000 0.000
#> SRR1381396     1  0.0000    0.80001 1.000 0.000
#> SRR1096081     2  0.9710    0.53517 0.400 0.600
#> SRR1349809     2  0.4431    0.62489 0.092 0.908
#> SRR1324314     2  0.9933    0.42024 0.452 0.548
#> SRR1092444     1  0.1843    0.79273 0.972 0.028
#> SRR1382553     1  0.9933   -0.08866 0.548 0.452
#> SRR1075530     2  0.6247    0.58929 0.156 0.844
#> SRR1442612     2  0.9393    0.60741 0.356 0.644
#> SRR1360056     1  0.9491    0.25101 0.632 0.368
#> SRR1078164     1  0.0000    0.80001 1.000 0.000
#> SRR1434545     1  0.8499    0.51953 0.724 0.276
#> SRR1398251     1  0.0000    0.80001 1.000 0.000
#> SRR1375866     1  0.0000    0.80001 1.000 0.000
#> SRR1091645     2  0.7950    0.47708 0.240 0.760
#> SRR1416636     2  0.9427    0.60270 0.360 0.640
#> SRR1105441     2  0.9393    0.60741 0.356 0.644
#> SRR1082496     2  0.0376    0.63978 0.004 0.996
#> SRR1315353     2  0.7674    0.64082 0.224 0.776
#> SRR1093697     2  0.0376    0.63978 0.004 0.996
#> SRR1077429     2  0.9998    0.28689 0.492 0.508
#> SRR1076120     1  0.9087    0.38207 0.676 0.324
#> SRR1074410     1  0.0000    0.80001 1.000 0.000
#> SRR1340345     2  0.7950    0.47708 0.240 0.760
#> SRR1069514     2  0.9393    0.60842 0.356 0.644
#> SRR1092636     2  0.9732    0.52677 0.404 0.596
#> SRR1365013     2  0.2236    0.64634 0.036 0.964
#> SRR1073069     1  0.0938    0.80136 0.988 0.012
#> SRR1443137     1  0.0000    0.80001 1.000 0.000
#> SRR1437143     2  0.0376    0.63978 0.004 0.996
#> SRR1091990     1  0.0000    0.80001 1.000 0.000
#> SRR820234      2  0.1184    0.64308 0.016 0.984
#> SRR1338079     1  0.0938    0.80136 0.988 0.012
#> SRR1390094     1  0.9460    0.31206 0.636 0.364
#> SRR1340721     2  0.8713    0.41524 0.292 0.708
#> SRR1335964     2  0.9710    0.53517 0.400 0.600
#> SRR1086869     2  0.9754    0.51775 0.408 0.592
#> SRR1453434     1  0.1184    0.79960 0.984 0.016
#> SRR1402261     1  0.6048    0.71031 0.852 0.148
#> SRR657809      2  0.7219    0.52859 0.200 0.800
#> SRR1093075     1  0.0000    0.80001 1.000 0.000
#> SRR1433329     1  0.0672    0.80124 0.992 0.008
#> SRR1353418     2  0.9977    0.35505 0.472 0.528
#> SRR1092913     2  0.7950    0.47708 0.240 0.760

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1335605     3  0.1525     0.9289 0.004 0.032 0.964
#> SRR1432014     3  0.0829     0.9391 0.004 0.012 0.984
#> SRR1499215     3  0.0237     0.9372 0.004 0.000 0.996
#> SRR1460409     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1086441     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1097344     2  0.5465     0.7646 0.000 0.712 0.288
#> SRR1081789     3  0.1267     0.9343 0.004 0.024 0.972
#> SRR1453005     2  0.1753     0.8301 0.000 0.952 0.048
#> SRR1366985     3  0.0892     0.9315 0.020 0.000 0.980
#> SRR815280      1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1348531     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR815845      3  0.0892     0.9328 0.000 0.020 0.980
#> SRR1471178     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1080696     3  0.0829     0.9391 0.004 0.012 0.984
#> SRR1078684     3  0.0237     0.9372 0.004 0.000 0.996
#> SRR1317751     3  0.0592     0.9381 0.000 0.012 0.988
#> SRR1435667     3  0.3193     0.8706 0.004 0.100 0.896
#> SRR1097905     1  0.5826     0.7069 0.764 0.032 0.204
#> SRR1456548     1  0.0237     0.9248 0.996 0.000 0.004
#> SRR1075126     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR813108      3  0.5327     0.6369 0.000 0.272 0.728
#> SRR1479062     3  0.0592     0.9381 0.000 0.012 0.988
#> SRR1408703     3  0.0592     0.9381 0.000 0.012 0.988
#> SRR1332360     1  0.6291     0.0528 0.532 0.000 0.468
#> SRR1098686     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1434228     3  0.5327     0.6039 0.272 0.000 0.728
#> SRR1467149     1  0.5521     0.7401 0.788 0.032 0.180
#> SRR1399113     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1476507     2  0.5497     0.7649 0.000 0.708 0.292
#> SRR1092468     1  0.2584     0.8845 0.928 0.008 0.064
#> SRR1441804     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1326100     2  0.1753     0.8301 0.000 0.952 0.048
#> SRR1398815     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1436021     1  0.9984    -0.2228 0.356 0.308 0.336
#> SRR1480083     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1472863     1  0.6542     0.6734 0.736 0.060 0.204
#> SRR815542      1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1400100     3  0.0661     0.9391 0.004 0.008 0.988
#> SRR1312002     3  0.1860     0.9023 0.052 0.000 0.948
#> SRR1470253     3  0.0892     0.9316 0.020 0.000 0.980
#> SRR1414332     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1069209     3  0.5397     0.5906 0.280 0.000 0.720
#> SRR661052      1  0.5092     0.7508 0.804 0.020 0.176
#> SRR1308860     1  0.0237     0.9248 0.996 0.000 0.004
#> SRR1421159     3  0.1289     0.9268 0.000 0.032 0.968
#> SRR1340943     1  0.4357     0.8434 0.868 0.080 0.052
#> SRR1078855     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1459465     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR816818      2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1478679     3  0.0475     0.9379 0.004 0.004 0.992
#> SRR1350979     3  0.0661     0.9391 0.004 0.008 0.988
#> SRR1458198     1  0.2773     0.8890 0.928 0.024 0.048
#> SRR1386910     2  0.5560     0.7566 0.000 0.700 0.300
#> SRR1465375     2  0.7388     0.7420 0.100 0.692 0.208
#> SRR1323699     3  0.0237     0.9372 0.004 0.000 0.996
#> SRR1431139     3  0.0424     0.9371 0.008 0.000 0.992
#> SRR1373964     3  0.0829     0.9391 0.004 0.012 0.984
#> SRR1455413     1  0.1711     0.9058 0.960 0.008 0.032
#> SRR1437163     1  0.3967     0.8576 0.884 0.072 0.044
#> SRR1347343     3  0.0475     0.9386 0.004 0.004 0.992
#> SRR1465480     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1489631     1  0.0983     0.9177 0.980 0.016 0.004
#> SRR1086514     3  0.2959     0.8519 0.000 0.100 0.900
#> SRR1430928     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1310939     3  0.0592     0.9381 0.000 0.012 0.988
#> SRR1344294     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1099402     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1468118     3  0.2031     0.9168 0.032 0.016 0.952
#> SRR1486348     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1488770     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1083732     1  0.0237     0.9248 0.996 0.000 0.004
#> SRR1456611     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1080318     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1500089     1  0.2774     0.8827 0.920 0.008 0.072
#> SRR1441178     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1381396     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1096081     3  0.0661     0.9389 0.004 0.008 0.988
#> SRR1349809     2  0.5431     0.7659 0.000 0.716 0.284
#> SRR1324314     3  0.0592     0.9351 0.012 0.000 0.988
#> SRR1092444     1  0.0237     0.9249 0.996 0.000 0.004
#> SRR1382553     3  0.0424     0.9371 0.008 0.000 0.992
#> SRR1075530     2  0.5560     0.7566 0.000 0.700 0.300
#> SRR1442612     3  0.0829     0.9391 0.004 0.012 0.984
#> SRR1360056     3  0.4784     0.7006 0.200 0.004 0.796
#> SRR1078164     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1434545     1  0.5981     0.7575 0.788 0.080 0.132
#> SRR1398251     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1375866     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1091645     2  0.5497     0.7649 0.000 0.708 0.292
#> SRR1416636     3  0.0592     0.9381 0.000 0.012 0.988
#> SRR1105441     3  0.0424     0.9378 0.000 0.008 0.992
#> SRR1082496     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1315353     3  0.2261     0.9046 0.000 0.068 0.932
#> SRR1093697     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1077429     3  0.1950     0.9125 0.040 0.008 0.952
#> SRR1076120     1  0.2680     0.8849 0.924 0.008 0.068
#> SRR1074410     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1340345     2  0.5497     0.7649 0.000 0.708 0.292
#> SRR1069514     3  0.1647     0.9259 0.004 0.036 0.960
#> SRR1092636     3  0.0475     0.9376 0.004 0.004 0.992
#> SRR1365013     2  0.5560     0.7518 0.000 0.700 0.300
#> SRR1073069     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1443137     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1437143     2  0.0000     0.8335 0.000 1.000 0.000
#> SRR1091990     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR820234      3  0.5733     0.5550 0.000 0.324 0.676
#> SRR1338079     1  0.2590     0.8807 0.924 0.072 0.004
#> SRR1390094     1  0.6922     0.6559 0.720 0.080 0.200
#> SRR1340721     2  0.7344     0.7438 0.100 0.696 0.204
#> SRR1335964     3  0.0661     0.9389 0.004 0.008 0.988
#> SRR1086869     3  0.0661     0.9389 0.004 0.008 0.988
#> SRR1453434     1  0.0475     0.9235 0.992 0.004 0.004
#> SRR1402261     1  0.3678     0.8622 0.892 0.080 0.028
#> SRR657809      2  0.5497     0.7649 0.000 0.708 0.292
#> SRR1093075     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1433329     1  0.0000     0.9262 1.000 0.000 0.000
#> SRR1353418     3  0.0592     0.9361 0.012 0.000 0.988
#> SRR1092913     2  0.5497     0.7649 0.000 0.708 0.292

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1335605     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1432014     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1499215     3  0.0469      0.941 0.000 0.000 0.988 0.012
#> SRR1460409     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1086441     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.0927      0.770 0.000 0.016 0.008 0.976
#> SRR1081789     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1453005     2  0.0672      0.981 0.000 0.984 0.008 0.008
#> SRR1366985     3  0.0779      0.936 0.016 0.000 0.980 0.004
#> SRR815280      1  0.0524      0.972 0.988 0.000 0.004 0.008
#> SRR1348531     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR815845      3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1471178     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0188      0.942 0.000 0.000 0.996 0.004
#> SRR1078684     3  0.0469      0.941 0.000 0.000 0.988 0.012
#> SRR1317751     3  0.0376      0.942 0.004 0.000 0.992 0.004
#> SRR1435667     3  0.3105      0.852 0.000 0.120 0.868 0.012
#> SRR1097905     4  0.4485      0.668 0.248 0.000 0.012 0.740
#> SRR1456548     1  0.0469      0.970 0.988 0.000 0.012 0.000
#> SRR1075126     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR813108      3  0.3710      0.776 0.000 0.192 0.804 0.004
#> SRR1479062     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1408703     3  0.0188      0.942 0.000 0.000 0.996 0.004
#> SRR1332360     1  0.0469      0.970 0.988 0.000 0.012 0.000
#> SRR1098686     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR1434228     3  0.4088      0.676 0.232 0.000 0.764 0.004
#> SRR1467149     1  0.3271      0.824 0.856 0.000 0.012 0.132
#> SRR1399113     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.0927      0.770 0.000 0.016 0.008 0.976
#> SRR1092468     1  0.0707      0.967 0.980 0.000 0.020 0.000
#> SRR1441804     1  0.0336      0.975 0.992 0.000 0.008 0.000
#> SRR1326100     2  0.0657      0.978 0.000 0.984 0.012 0.004
#> SRR1398815     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1436021     4  0.4679      0.510 0.000 0.000 0.352 0.648
#> SRR1480083     2  0.0188      0.993 0.000 0.996 0.000 0.004
#> SRR1472863     1  0.1677      0.936 0.948 0.000 0.012 0.040
#> SRR815542      1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1400100     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1312002     3  0.1661      0.907 0.052 0.000 0.944 0.004
#> SRR1470253     3  0.0895      0.934 0.020 0.000 0.976 0.004
#> SRR1414332     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1069209     3  0.4122      0.670 0.236 0.000 0.760 0.004
#> SRR661052      1  0.3047      0.847 0.872 0.000 0.012 0.116
#> SRR1308860     1  0.0469      0.970 0.988 0.000 0.012 0.000
#> SRR1421159     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1340943     4  0.4212      0.691 0.216 0.000 0.012 0.772
#> SRR1078855     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1478679     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1350979     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1458198     1  0.0469      0.973 0.988 0.000 0.012 0.000
#> SRR1386910     4  0.3450      0.726 0.000 0.156 0.008 0.836
#> SRR1465375     4  0.2727      0.767 0.004 0.084 0.012 0.900
#> SRR1323699     3  0.0469      0.941 0.000 0.000 0.988 0.012
#> SRR1431139     3  0.0376      0.942 0.004 0.000 0.992 0.004
#> SRR1373964     3  0.0469      0.941 0.000 0.000 0.988 0.012
#> SRR1455413     1  0.0592      0.970 0.984 0.000 0.016 0.000
#> SRR1437163     4  0.4820      0.636 0.296 0.000 0.012 0.692
#> SRR1347343     3  0.0469      0.941 0.000 0.000 0.988 0.012
#> SRR1465480     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0657      0.968 0.984 0.000 0.012 0.004
#> SRR1086514     3  0.0524      0.940 0.000 0.004 0.988 0.008
#> SRR1430928     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1310939     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1344294     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1468118     3  0.3946      0.781 0.020 0.000 0.812 0.168
#> SRR1486348     1  0.0188      0.975 0.996 0.000 0.004 0.000
#> SRR1488770     2  0.0188      0.993 0.000 0.996 0.000 0.004
#> SRR1083732     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR1456611     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR1500089     1  0.0469      0.973 0.988 0.000 0.012 0.000
#> SRR1441178     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR1381396     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1096081     3  0.0376      0.942 0.004 0.000 0.992 0.004
#> SRR1349809     4  0.4137      0.674 0.000 0.208 0.012 0.780
#> SRR1324314     3  0.0657      0.938 0.012 0.000 0.984 0.004
#> SRR1092444     1  0.0469      0.973 0.988 0.000 0.012 0.000
#> SRR1382553     3  0.0657      0.937 0.012 0.000 0.984 0.004
#> SRR1075530     4  0.2943      0.753 0.000 0.032 0.076 0.892
#> SRR1442612     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1360056     3  0.4800      0.475 0.340 0.000 0.656 0.004
#> SRR1078164     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1434545     4  0.4318      0.697 0.208 0.004 0.012 0.776
#> SRR1398251     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1375866     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR1091645     4  0.0927      0.770 0.000 0.016 0.008 0.976
#> SRR1416636     3  0.0188      0.942 0.000 0.000 0.996 0.004
#> SRR1105441     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1082496     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.2466      0.876 0.000 0.096 0.900 0.004
#> SRR1093697     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.2888      0.817 0.124 0.000 0.872 0.004
#> SRR1076120     1  0.0592      0.970 0.984 0.000 0.016 0.000
#> SRR1074410     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1340345     4  0.2124      0.770 0.000 0.068 0.008 0.924
#> SRR1069514     3  0.0188      0.943 0.000 0.000 0.996 0.004
#> SRR1092636     3  0.0376      0.942 0.004 0.000 0.992 0.004
#> SRR1365013     4  0.6107      0.581 0.000 0.088 0.264 0.648
#> SRR1073069     1  0.0188      0.976 0.996 0.000 0.004 0.000
#> SRR1443137     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1437143     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR820234      3  0.4188      0.705 0.000 0.244 0.752 0.004
#> SRR1338079     1  0.5127      0.312 0.632 0.000 0.012 0.356
#> SRR1390094     4  0.5408      0.169 0.488 0.000 0.012 0.500
#> SRR1340721     4  0.2989      0.762 0.004 0.100 0.012 0.884
#> SRR1335964     3  0.0376      0.942 0.004 0.000 0.992 0.004
#> SRR1086869     3  0.0376      0.942 0.004 0.000 0.992 0.004
#> SRR1453434     1  0.0336      0.973 0.992 0.000 0.008 0.000
#> SRR1402261     4  0.4248      0.689 0.220 0.000 0.012 0.768
#> SRR657809      4  0.2976      0.751 0.000 0.120 0.008 0.872
#> SRR1093075     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1433329     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1353418     3  0.0524      0.940 0.008 0.000 0.988 0.004
#> SRR1092913     4  0.1807      0.771 0.000 0.052 0.008 0.940

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.0579     0.8983 0.984 0.000 0.008 0.000 0.008
#> SRR1335605     3  0.3796     0.8687 0.000 0.000 0.700 0.000 0.300
#> SRR1432014     3  0.3752     0.8963 0.000 0.000 0.708 0.000 0.292
#> SRR1499215     3  0.4275     0.8629 0.020 0.000 0.696 0.000 0.284
#> SRR1460409     1  0.0162     0.9008 0.996 0.000 0.004 0.000 0.000
#> SRR1086441     1  0.0162     0.9003 0.996 0.000 0.004 0.000 0.000
#> SRR1097344     4  0.0566     0.7600 0.000 0.012 0.004 0.984 0.000
#> SRR1081789     3  0.3612     0.8961 0.000 0.000 0.732 0.000 0.268
#> SRR1453005     2  0.2407     0.8908 0.000 0.896 0.012 0.088 0.004
#> SRR1366985     5  0.6368     0.2988 0.400 0.000 0.164 0.000 0.436
#> SRR815280      1  0.0963     0.8933 0.964 0.000 0.036 0.000 0.000
#> SRR1348531     1  0.0451     0.8996 0.988 0.000 0.004 0.000 0.008
#> SRR815845      3  0.3684     0.8959 0.000 0.000 0.720 0.000 0.280
#> SRR1471178     1  0.0162     0.9003 0.996 0.000 0.004 0.000 0.000
#> SRR1080696     5  0.2773     0.5382 0.000 0.000 0.164 0.000 0.836
#> SRR1078684     3  0.4638     0.7938 0.028 0.000 0.648 0.000 0.324
#> SRR1317751     5  0.0771     0.6678 0.004 0.000 0.020 0.000 0.976
#> SRR1435667     3  0.3957     0.8954 0.000 0.008 0.712 0.000 0.280
#> SRR1097905     4  0.7329     0.4804 0.300 0.000 0.116 0.492 0.092
#> SRR1456548     1  0.3819     0.7285 0.772 0.000 0.208 0.004 0.016
#> SRR1075126     1  0.0880     0.8920 0.968 0.000 0.000 0.000 0.032
#> SRR813108      3  0.6138     0.6308 0.000 0.176 0.552 0.000 0.272
#> SRR1479062     3  0.4088     0.8074 0.000 0.000 0.632 0.000 0.368
#> SRR1408703     5  0.1671     0.6413 0.000 0.000 0.076 0.000 0.924
#> SRR1332360     1  0.1469     0.8807 0.948 0.000 0.016 0.000 0.036
#> SRR1098686     1  0.0880     0.8920 0.968 0.000 0.000 0.000 0.032
#> SRR1434228     1  0.4382     0.5266 0.688 0.000 0.024 0.000 0.288
#> SRR1467149     1  0.6493     0.5070 0.632 0.000 0.104 0.176 0.088
#> SRR1399113     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0566     0.7600 0.000 0.012 0.004 0.984 0.000
#> SRR1092468     1  0.2377     0.8244 0.872 0.000 0.000 0.000 0.128
#> SRR1441804     1  0.0451     0.8993 0.988 0.000 0.004 0.000 0.008
#> SRR1326100     2  0.2291     0.9051 0.000 0.908 0.012 0.072 0.008
#> SRR1398815     1  0.0162     0.9003 0.996 0.000 0.004 0.000 0.000
#> SRR1436021     4  0.5267     0.5591 0.016 0.000 0.156 0.712 0.116
#> SRR1480083     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> SRR1472863     1  0.6889     0.2921 0.528 0.000 0.280 0.040 0.152
#> SRR815542      1  0.0000     0.9000 1.000 0.000 0.000 0.000 0.000
#> SRR1400100     3  0.3684     0.8959 0.000 0.000 0.720 0.000 0.280
#> SRR1312002     5  0.5793     0.4006 0.292 0.000 0.124 0.000 0.584
#> SRR1470253     1  0.5088     0.0901 0.528 0.000 0.036 0.000 0.436
#> SRR1414332     1  0.0000     0.9000 1.000 0.000 0.000 0.000 0.000
#> SRR1069209     1  0.3821     0.6635 0.764 0.000 0.020 0.000 0.216
#> SRR661052      1  0.4714     0.7006 0.756 0.000 0.032 0.044 0.168
#> SRR1308860     1  0.3730     0.7745 0.808 0.000 0.152 0.004 0.036
#> SRR1421159     3  0.3684     0.8959 0.000 0.000 0.720 0.000 0.280
#> SRR1340943     4  0.6498     0.6431 0.164 0.000 0.224 0.584 0.028
#> SRR1078855     1  0.0290     0.9004 0.992 0.000 0.008 0.000 0.000
#> SRR1459465     2  0.0162     0.9809 0.000 0.996 0.000 0.004 0.000
#> SRR816818      2  0.0162     0.9809 0.000 0.996 0.000 0.004 0.000
#> SRR1478679     3  0.3612     0.8931 0.000 0.000 0.732 0.000 0.268
#> SRR1350979     3  0.3752     0.8963 0.000 0.000 0.708 0.000 0.292
#> SRR1458198     1  0.2068     0.8573 0.904 0.000 0.004 0.000 0.092
#> SRR1386910     4  0.2179     0.7377 0.000 0.100 0.004 0.896 0.000
#> SRR1465375     4  0.3338     0.7550 0.000 0.068 0.076 0.852 0.004
#> SRR1323699     3  0.3707     0.8900 0.000 0.000 0.716 0.000 0.284
#> SRR1431139     3  0.5083     0.5286 0.036 0.000 0.532 0.000 0.432
#> SRR1373964     3  0.3661     0.8944 0.000 0.000 0.724 0.000 0.276
#> SRR1455413     1  0.1197     0.8840 0.952 0.000 0.000 0.000 0.048
#> SRR1437163     4  0.6919     0.6082 0.208 0.000 0.220 0.536 0.036
#> SRR1347343     3  0.3684     0.8926 0.000 0.000 0.720 0.000 0.280
#> SRR1465480     2  0.0162     0.9809 0.000 0.996 0.000 0.004 0.000
#> SRR1489631     1  0.5686     0.5699 0.664 0.000 0.224 0.084 0.028
#> SRR1086514     3  0.5059     0.7423 0.000 0.008 0.712 0.092 0.188
#> SRR1430928     1  0.0451     0.9004 0.988 0.000 0.008 0.000 0.004
#> SRR1310939     3  0.3796     0.8943 0.000 0.000 0.700 0.000 0.300
#> SRR1344294     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0324     0.9001 0.992 0.000 0.004 0.000 0.004
#> SRR1468118     5  0.3606     0.5758 0.008 0.000 0.152 0.024 0.816
#> SRR1486348     1  0.1461     0.8878 0.952 0.000 0.028 0.004 0.016
#> SRR1488770     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> SRR1083732     1  0.0794     0.8958 0.972 0.000 0.000 0.000 0.028
#> SRR1456611     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.0000     0.9000 1.000 0.000 0.000 0.000 0.000
#> SRR1500089     1  0.2020     0.8529 0.900 0.000 0.000 0.000 0.100
#> SRR1441178     1  0.0404     0.8999 0.988 0.000 0.012 0.000 0.000
#> SRR1381396     1  0.0162     0.9003 0.996 0.000 0.004 0.000 0.000
#> SRR1096081     5  0.0771     0.6678 0.004 0.000 0.020 0.000 0.976
#> SRR1349809     4  0.3783     0.5939 0.000 0.252 0.000 0.740 0.008
#> SRR1324314     5  0.5313    -0.0737 0.056 0.000 0.388 0.000 0.556
#> SRR1092444     1  0.0404     0.8997 0.988 0.000 0.000 0.000 0.012
#> SRR1382553     5  0.6659     0.1432 0.248 0.000 0.316 0.000 0.436
#> SRR1075530     4  0.3285     0.7361 0.000 0.032 0.036 0.868 0.064
#> SRR1442612     3  0.3774     0.8951 0.000 0.000 0.704 0.000 0.296
#> SRR1360056     1  0.6694    -0.3130 0.408 0.000 0.244 0.000 0.348
#> SRR1078164     1  0.0579     0.8983 0.984 0.000 0.008 0.000 0.008
#> SRR1434545     4  0.4494     0.7140 0.028 0.000 0.232 0.728 0.012
#> SRR1398251     1  0.0451     0.8991 0.988 0.000 0.008 0.000 0.004
#> SRR1375866     1  0.0451     0.8996 0.988 0.000 0.004 0.000 0.008
#> SRR1091645     4  0.0566     0.7600 0.000 0.012 0.004 0.984 0.000
#> SRR1416636     5  0.2179     0.6093 0.000 0.000 0.112 0.000 0.888
#> SRR1105441     3  0.3752     0.8959 0.000 0.000 0.708 0.000 0.292
#> SRR1082496     2  0.0162     0.9809 0.000 0.996 0.000 0.004 0.000
#> SRR1315353     3  0.4138     0.8812 0.000 0.016 0.708 0.000 0.276
#> SRR1093697     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     5  0.1281     0.6603 0.032 0.000 0.012 0.000 0.956
#> SRR1076120     1  0.2329     0.8357 0.876 0.000 0.000 0.000 0.124
#> SRR1074410     1  0.0162     0.9003 0.996 0.000 0.004 0.000 0.000
#> SRR1340345     4  0.1270     0.7567 0.000 0.052 0.000 0.948 0.000
#> SRR1069514     3  0.3612     0.8931 0.000 0.000 0.732 0.000 0.268
#> SRR1092636     5  0.4876    -0.1263 0.028 0.000 0.396 0.000 0.576
#> SRR1365013     4  0.6157     0.4978 0.000 0.060 0.268 0.612 0.060
#> SRR1073069     1  0.0807     0.8954 0.976 0.000 0.012 0.000 0.012
#> SRR1443137     1  0.0579     0.8983 0.984 0.000 0.008 0.000 0.008
#> SRR1437143     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0290     0.8996 0.992 0.000 0.008 0.000 0.000
#> SRR820234      3  0.7200     0.3886 0.000 0.236 0.540 0.088 0.136
#> SRR1338079     4  0.7238     0.5378 0.268 0.000 0.228 0.468 0.036
#> SRR1390094     4  0.5550     0.7103 0.068 0.000 0.280 0.636 0.016
#> SRR1340721     4  0.3520     0.7507 0.000 0.080 0.076 0.840 0.004
#> SRR1335964     5  0.2230     0.6201 0.000 0.000 0.116 0.000 0.884
#> SRR1086869     5  0.0771     0.6678 0.004 0.000 0.020 0.000 0.976
#> SRR1453434     1  0.0162     0.9003 0.996 0.000 0.004 0.000 0.000
#> SRR1402261     4  0.6481     0.6468 0.156 0.000 0.232 0.584 0.028
#> SRR657809      4  0.1851     0.7443 0.000 0.088 0.000 0.912 0.000
#> SRR1093075     1  0.0451     0.8991 0.988 0.000 0.008 0.000 0.004
#> SRR1433329     1  0.0579     0.8983 0.984 0.000 0.008 0.000 0.008
#> SRR1353418     5  0.2793     0.6398 0.088 0.000 0.036 0.000 0.876
#> SRR1092913     4  0.1121     0.7582 0.000 0.044 0.000 0.956 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      1  0.0291     0.9148 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1335605     3  0.0914     0.8421 0.000 0.000 0.968 0.016 0.016 0.000
#> SRR1432014     3  0.1088     0.8419 0.000 0.000 0.960 0.000 0.024 0.016
#> SRR1499215     3  0.2230     0.8106 0.000 0.000 0.892 0.000 0.024 0.084
#> SRR1460409     1  0.0891     0.9089 0.968 0.000 0.000 0.000 0.008 0.024
#> SRR1086441     1  0.0363     0.9142 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1097344     4  0.1745     0.8727 0.000 0.012 0.000 0.920 0.000 0.068
#> SRR1081789     3  0.1584     0.8279 0.000 0.000 0.928 0.064 0.008 0.000
#> SRR1453005     2  0.4838     0.3081 0.000 0.564 0.064 0.372 0.000 0.000
#> SRR1366985     1  0.6308     0.2405 0.540 0.000 0.104 0.000 0.272 0.084
#> SRR815280      1  0.1049     0.9059 0.960 0.000 0.000 0.000 0.008 0.032
#> SRR1348531     1  0.0260     0.9149 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR815845      3  0.1584     0.8245 0.000 0.000 0.928 0.064 0.008 0.000
#> SRR1471178     1  0.0363     0.9142 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1080696     5  0.2527     0.6952 0.000 0.000 0.168 0.000 0.832 0.000
#> SRR1078684     3  0.2737     0.7921 0.004 0.000 0.868 0.000 0.044 0.084
#> SRR1317751     5  0.1049     0.7582 0.008 0.000 0.032 0.000 0.960 0.000
#> SRR1435667     3  0.1995     0.8378 0.000 0.000 0.912 0.000 0.036 0.052
#> SRR1097905     6  0.4579     0.7360 0.072 0.000 0.004 0.088 0.072 0.764
#> SRR1456548     6  0.3584     0.6895 0.308 0.000 0.000 0.004 0.000 0.688
#> SRR1075126     1  0.0405     0.9137 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR813108      3  0.4780     0.6629 0.000 0.168 0.720 0.068 0.044 0.000
#> SRR1479062     3  0.2730     0.7169 0.000 0.000 0.808 0.000 0.192 0.000
#> SRR1408703     5  0.1714     0.7492 0.000 0.000 0.092 0.000 0.908 0.000
#> SRR1332360     1  0.2585     0.8211 0.880 0.000 0.024 0.000 0.012 0.084
#> SRR1098686     1  0.0146     0.9147 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1434228     1  0.5188     0.5571 0.676 0.000 0.044 0.000 0.196 0.084
#> SRR1467149     6  0.4978     0.7337 0.224 0.000 0.004 0.044 0.044 0.684
#> SRR1399113     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1476507     4  0.1745     0.8727 0.000 0.012 0.000 0.920 0.000 0.068
#> SRR1092468     1  0.2773     0.7574 0.828 0.000 0.004 0.000 0.164 0.004
#> SRR1441804     1  0.0260     0.9142 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1326100     2  0.3432     0.7518 0.000 0.800 0.052 0.148 0.000 0.000
#> SRR1398815     1  0.0458     0.9133 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1436021     3  0.3338     0.7488 0.004 0.000 0.832 0.096 0.004 0.064
#> SRR1480083     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1472863     6  0.7066     0.4893 0.148 0.000 0.212 0.024 0.096 0.520
#> SRR815542      1  0.0508     0.9132 0.984 0.000 0.000 0.000 0.004 0.012
#> SRR1400100     3  0.0547     0.8413 0.000 0.000 0.980 0.020 0.000 0.000
#> SRR1312002     5  0.6578     0.3284 0.348 0.000 0.112 0.000 0.456 0.084
#> SRR1470253     1  0.5981     0.0526 0.488 0.000 0.048 0.000 0.380 0.084
#> SRR1414332     1  0.0405     0.9150 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1069209     1  0.4149     0.7213 0.784 0.000 0.036 0.000 0.096 0.084
#> SRR661052      6  0.5195     0.6578 0.296 0.000 0.008 0.028 0.044 0.624
#> SRR1308860     6  0.3652     0.6746 0.324 0.000 0.000 0.004 0.000 0.672
#> SRR1421159     3  0.1531     0.8264 0.000 0.000 0.928 0.068 0.004 0.000
#> SRR1340943     6  0.2841     0.6905 0.012 0.000 0.000 0.164 0.000 0.824
#> SRR1078855     1  0.0405     0.9150 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1459465     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR816818      2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     3  0.1462     0.8325 0.000 0.000 0.936 0.000 0.008 0.056
#> SRR1350979     3  0.1594     0.8337 0.000 0.000 0.932 0.000 0.016 0.052
#> SRR1458198     1  0.1588     0.8677 0.924 0.000 0.000 0.000 0.072 0.004
#> SRR1386910     4  0.1700     0.8404 0.000 0.080 0.004 0.916 0.000 0.000
#> SRR1465375     4  0.3279     0.8433 0.000 0.028 0.000 0.796 0.000 0.176
#> SRR1323699     3  0.2039     0.8180 0.000 0.000 0.904 0.000 0.020 0.076
#> SRR1431139     3  0.4354     0.5739 0.004 0.000 0.720 0.000 0.196 0.080
#> SRR1373964     3  0.1757     0.8240 0.000 0.000 0.916 0.000 0.008 0.076
#> SRR1455413     1  0.0603     0.9088 0.980 0.000 0.000 0.000 0.016 0.004
#> SRR1437163     6  0.2997     0.7406 0.060 0.000 0.000 0.096 0.000 0.844
#> SRR1347343     3  0.2255     0.8231 0.000 0.000 0.892 0.000 0.028 0.080
#> SRR1465480     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1489631     6  0.2814     0.7586 0.172 0.000 0.000 0.008 0.000 0.820
#> SRR1086514     3  0.4617     0.1894 0.000 0.016 0.544 0.424 0.016 0.000
#> SRR1430928     1  0.0405     0.9149 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1310939     3  0.0937     0.8404 0.000 0.000 0.960 0.000 0.040 0.000
#> SRR1344294     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1099402     1  0.0458     0.9133 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1468118     5  0.4412     0.5824 0.012 0.000 0.320 0.008 0.648 0.012
#> SRR1486348     1  0.2340     0.7646 0.852 0.000 0.000 0.000 0.000 0.148
#> SRR1488770     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1083732     1  0.0405     0.9127 0.988 0.000 0.008 0.000 0.000 0.004
#> SRR1456611     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1080318     1  0.0000     0.9150 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500089     1  0.1556     0.8627 0.920 0.000 0.000 0.000 0.080 0.000
#> SRR1441178     1  0.0405     0.9151 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1381396     1  0.0458     0.9133 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1096081     5  0.1049     0.7582 0.008 0.000 0.032 0.000 0.960 0.000
#> SRR1349809     4  0.3626     0.8294 0.000 0.144 0.000 0.788 0.000 0.068
#> SRR1324314     5  0.6109     0.4956 0.068 0.000 0.324 0.000 0.524 0.084
#> SRR1092444     1  0.0000     0.9150 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1382553     1  0.6431     0.2434 0.540 0.000 0.132 0.000 0.244 0.084
#> SRR1075530     4  0.3225     0.8688 0.000 0.036 0.048 0.852 0.000 0.064
#> SRR1442612     3  0.0632     0.8404 0.000 0.000 0.976 0.000 0.024 0.000
#> SRR1360056     3  0.6072     0.3093 0.184 0.000 0.588 0.000 0.172 0.056
#> SRR1078164     1  0.0260     0.9147 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1434545     6  0.2841     0.6905 0.012 0.000 0.000 0.164 0.000 0.824
#> SRR1398251     1  0.0405     0.9150 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1375866     1  0.0363     0.9152 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1091645     4  0.1745     0.8727 0.000 0.012 0.000 0.920 0.000 0.068
#> SRR1416636     5  0.2048     0.7362 0.000 0.000 0.120 0.000 0.880 0.000
#> SRR1105441     3  0.0632     0.8404 0.000 0.000 0.976 0.000 0.024 0.000
#> SRR1082496     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1315353     3  0.2237     0.8125 0.000 0.000 0.896 0.068 0.036 0.000
#> SRR1093697     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077429     5  0.1434     0.7562 0.012 0.000 0.048 0.000 0.940 0.000
#> SRR1076120     1  0.1753     0.8577 0.912 0.000 0.004 0.000 0.084 0.000
#> SRR1074410     1  0.0458     0.9133 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1340345     4  0.2448     0.8814 0.000 0.052 0.000 0.884 0.000 0.064
#> SRR1069514     3  0.1584     0.8279 0.000 0.000 0.928 0.064 0.008 0.000
#> SRR1092636     5  0.5141     0.5497 0.008 0.000 0.316 0.000 0.592 0.084
#> SRR1365013     4  0.4649     0.2980 0.000 0.048 0.380 0.572 0.000 0.000
#> SRR1073069     1  0.1138     0.8962 0.960 0.000 0.004 0.000 0.012 0.024
#> SRR1443137     1  0.0260     0.9147 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1437143     2  0.0000     0.9453 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.0291     0.9148 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR820234      3  0.5673     0.5577 0.000 0.176 0.628 0.156 0.040 0.000
#> SRR1338079     6  0.3261     0.7588 0.104 0.000 0.000 0.072 0.000 0.824
#> SRR1390094     6  0.2928     0.7396 0.056 0.000 0.004 0.084 0.000 0.856
#> SRR1340721     4  0.3283     0.8523 0.000 0.036 0.000 0.804 0.000 0.160
#> SRR1335964     5  0.3373     0.7014 0.008 0.000 0.248 0.000 0.744 0.000
#> SRR1086869     5  0.1049     0.7582 0.008 0.000 0.032 0.000 0.960 0.000
#> SRR1453434     1  0.0405     0.9139 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1402261     6  0.2805     0.6921 0.012 0.000 0.000 0.160 0.000 0.828
#> SRR657809      4  0.2905     0.8715 0.000 0.084 0.000 0.852 0.000 0.064
#> SRR1093075     1  0.0405     0.9149 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1433329     1  0.0260     0.9147 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1353418     5  0.3632     0.7220 0.044 0.000 0.048 0.000 0.824 0.084
#> SRR1092913     4  0.2179     0.8815 0.000 0.036 0.000 0.900 0.000 0.064

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17780 rows and 119 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.948           0.941       0.976         0.4046 0.596   0.596
#> 3 3 0.716           0.857       0.922         0.5916 0.677   0.489
#> 4 4 0.823           0.853       0.929         0.1072 0.852   0.620
#> 5 5 0.691           0.651       0.812         0.0788 0.929   0.769
#> 6 6 0.662           0.574       0.743         0.0576 0.823   0.419

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR816969      1  0.0000      0.981 1.000 0.000
#> SRR1335605     1  0.9427      0.408 0.640 0.360
#> SRR1432014     1  0.0376      0.978 0.996 0.004
#> SRR1499215     1  0.0000      0.981 1.000 0.000
#> SRR1460409     1  0.0000      0.981 1.000 0.000
#> SRR1086441     1  0.0000      0.981 1.000 0.000
#> SRR1097344     2  0.0000      0.957 0.000 1.000
#> SRR1081789     2  0.8267      0.665 0.260 0.740
#> SRR1453005     2  0.0000      0.957 0.000 1.000
#> SRR1366985     1  0.0000      0.981 1.000 0.000
#> SRR815280      1  0.0000      0.981 1.000 0.000
#> SRR1348531     1  0.0000      0.981 1.000 0.000
#> SRR815845      2  0.6343      0.808 0.160 0.840
#> SRR1471178     1  0.0000      0.981 1.000 0.000
#> SRR1080696     1  0.0000      0.981 1.000 0.000
#> SRR1078684     1  0.0000      0.981 1.000 0.000
#> SRR1317751     1  0.0000      0.981 1.000 0.000
#> SRR1435667     1  0.0000      0.981 1.000 0.000
#> SRR1097905     1  0.0000      0.981 1.000 0.000
#> SRR1456548     1  0.0000      0.981 1.000 0.000
#> SRR1075126     1  0.0000      0.981 1.000 0.000
#> SRR813108      2  0.0000      0.957 0.000 1.000
#> SRR1479062     1  0.0000      0.981 1.000 0.000
#> SRR1408703     1  0.0000      0.981 1.000 0.000
#> SRR1332360     1  0.0000      0.981 1.000 0.000
#> SRR1098686     1  0.0000      0.981 1.000 0.000
#> SRR1434228     1  0.0000      0.981 1.000 0.000
#> SRR1467149     1  0.0000      0.981 1.000 0.000
#> SRR1399113     2  0.0000      0.957 0.000 1.000
#> SRR1476507     2  0.0672      0.953 0.008 0.992
#> SRR1092468     1  0.0000      0.981 1.000 0.000
#> SRR1441804     1  0.0000      0.981 1.000 0.000
#> SRR1326100     2  0.0000      0.957 0.000 1.000
#> SRR1398815     1  0.0000      0.981 1.000 0.000
#> SRR1436021     1  0.9850      0.211 0.572 0.428
#> SRR1480083     2  0.0000      0.957 0.000 1.000
#> SRR1472863     1  0.0000      0.981 1.000 0.000
#> SRR815542      1  0.0000      0.981 1.000 0.000
#> SRR1400100     1  0.9866      0.198 0.568 0.432
#> SRR1312002     1  0.0000      0.981 1.000 0.000
#> SRR1470253     1  0.0000      0.981 1.000 0.000
#> SRR1414332     1  0.0000      0.981 1.000 0.000
#> SRR1069209     1  0.0000      0.981 1.000 0.000
#> SRR661052      1  0.0000      0.981 1.000 0.000
#> SRR1308860     1  0.0000      0.981 1.000 0.000
#> SRR1421159     2  0.9491      0.447 0.368 0.632
#> SRR1340943     1  0.0000      0.981 1.000 0.000
#> SRR1078855     1  0.0000      0.981 1.000 0.000
#> SRR1459465     2  0.0000      0.957 0.000 1.000
#> SRR816818      2  0.0000      0.957 0.000 1.000
#> SRR1478679     1  0.7528      0.705 0.784 0.216
#> SRR1350979     1  0.0000      0.981 1.000 0.000
#> SRR1458198     1  0.0000      0.981 1.000 0.000
#> SRR1386910     2  0.0000      0.957 0.000 1.000
#> SRR1465375     2  0.0000      0.957 0.000 1.000
#> SRR1323699     1  0.0000      0.981 1.000 0.000
#> SRR1431139     1  0.0000      0.981 1.000 0.000
#> SRR1373964     1  0.0000      0.981 1.000 0.000
#> SRR1455413     1  0.0000      0.981 1.000 0.000
#> SRR1437163     1  0.0000      0.981 1.000 0.000
#> SRR1347343     1  0.0000      0.981 1.000 0.000
#> SRR1465480     2  0.0000      0.957 0.000 1.000
#> SRR1489631     1  0.0000      0.981 1.000 0.000
#> SRR1086514     2  0.0000      0.957 0.000 1.000
#> SRR1430928     1  0.0000      0.981 1.000 0.000
#> SRR1310939     1  0.0000      0.981 1.000 0.000
#> SRR1344294     2  0.0000      0.957 0.000 1.000
#> SRR1099402     1  0.0000      0.981 1.000 0.000
#> SRR1468118     1  0.0000      0.981 1.000 0.000
#> SRR1486348     1  0.0000      0.981 1.000 0.000
#> SRR1488770     2  0.0000      0.957 0.000 1.000
#> SRR1083732     1  0.0000      0.981 1.000 0.000
#> SRR1456611     2  0.0000      0.957 0.000 1.000
#> SRR1080318     1  0.0000      0.981 1.000 0.000
#> SRR1500089     1  0.0000      0.981 1.000 0.000
#> SRR1441178     1  0.0000      0.981 1.000 0.000
#> SRR1381396     1  0.0000      0.981 1.000 0.000
#> SRR1096081     1  0.0000      0.981 1.000 0.000
#> SRR1349809     2  0.0000      0.957 0.000 1.000
#> SRR1324314     1  0.0000      0.981 1.000 0.000
#> SRR1092444     1  0.0000      0.981 1.000 0.000
#> SRR1382553     1  0.0000      0.981 1.000 0.000
#> SRR1075530     2  0.0938      0.950 0.012 0.988
#> SRR1442612     1  0.0672      0.974 0.992 0.008
#> SRR1360056     1  0.0000      0.981 1.000 0.000
#> SRR1078164     1  0.0000      0.981 1.000 0.000
#> SRR1434545     1  0.0000      0.981 1.000 0.000
#> SRR1398251     1  0.0000      0.981 1.000 0.000
#> SRR1375866     1  0.0000      0.981 1.000 0.000
#> SRR1091645     2  0.0000      0.957 0.000 1.000
#> SRR1416636     1  0.0000      0.981 1.000 0.000
#> SRR1105441     1  0.2603      0.937 0.956 0.044
#> SRR1082496     2  0.0000      0.957 0.000 1.000
#> SRR1315353     2  0.0938      0.950 0.012 0.988
#> SRR1093697     2  0.0000      0.957 0.000 1.000
#> SRR1077429     1  0.0000      0.981 1.000 0.000
#> SRR1076120     1  0.0000      0.981 1.000 0.000
#> SRR1074410     1  0.0000      0.981 1.000 0.000
#> SRR1340345     2  0.0000      0.957 0.000 1.000
#> SRR1069514     2  0.9323      0.495 0.348 0.652
#> SRR1092636     1  0.0000      0.981 1.000 0.000
#> SRR1365013     2  0.5842      0.831 0.140 0.860
#> SRR1073069     1  0.0000      0.981 1.000 0.000
#> SRR1443137     1  0.0000      0.981 1.000 0.000
#> SRR1437143     2  0.0000      0.957 0.000 1.000
#> SRR1091990     1  0.0000      0.981 1.000 0.000
#> SRR820234      2  0.0000      0.957 0.000 1.000
#> SRR1338079     1  0.0000      0.981 1.000 0.000
#> SRR1390094     1  0.0000      0.981 1.000 0.000
#> SRR1340721     2  0.0000      0.957 0.000 1.000
#> SRR1335964     1  0.0000      0.981 1.000 0.000
#> SRR1086869     1  0.0000      0.981 1.000 0.000
#> SRR1453434     1  0.0000      0.981 1.000 0.000
#> SRR1402261     1  0.0000      0.981 1.000 0.000
#> SRR657809      2  0.0000      0.957 0.000 1.000
#> SRR1093075     1  0.0000      0.981 1.000 0.000
#> SRR1433329     1  0.0000      0.981 1.000 0.000
#> SRR1353418     1  0.0000      0.981 1.000 0.000
#> SRR1092913     2  0.0000      0.957 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR816969      1  0.3752      0.890 0.856 0.000 0.144
#> SRR1335605     2  0.7222      0.616 0.220 0.696 0.084
#> SRR1432014     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1499215     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1460409     1  0.2878      0.917 0.904 0.000 0.096
#> SRR1086441     1  0.1163      0.925 0.972 0.000 0.028
#> SRR1097344     2  0.1643      0.919 0.044 0.956 0.000
#> SRR1081789     3  0.5216      0.616 0.000 0.260 0.740
#> SRR1453005     2  0.2261      0.881 0.000 0.932 0.068
#> SRR1366985     3  0.0747      0.887 0.016 0.000 0.984
#> SRR815280      1  0.2448      0.924 0.924 0.000 0.076
#> SRR1348531     1  0.1643      0.927 0.956 0.000 0.044
#> SRR815845      3  0.2959      0.819 0.000 0.100 0.900
#> SRR1471178     1  0.1753      0.927 0.952 0.000 0.048
#> SRR1080696     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1078684     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1317751     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1435667     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1097905     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1456548     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1075126     1  0.3116      0.912 0.892 0.000 0.108
#> SRR813108      3  0.3412      0.783 0.000 0.124 0.876
#> SRR1479062     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1408703     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1332360     1  0.5363      0.723 0.724 0.000 0.276
#> SRR1098686     1  0.2261      0.926 0.932 0.000 0.068
#> SRR1434228     3  0.4399      0.734 0.188 0.000 0.812
#> SRR1467149     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1399113     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1476507     2  0.2356      0.906 0.072 0.928 0.000
#> SRR1092468     1  0.3816      0.888 0.852 0.000 0.148
#> SRR1441804     1  0.0237      0.918 0.996 0.000 0.004
#> SRR1326100     2  0.5988      0.381 0.000 0.632 0.368
#> SRR1398815     1  0.1643      0.927 0.956 0.000 0.044
#> SRR1436021     2  0.6521      0.611 0.248 0.712 0.040
#> SRR1480083     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1472863     1  0.1163      0.925 0.972 0.000 0.028
#> SRR815542      1  0.2261      0.926 0.932 0.000 0.068
#> SRR1400100     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1312002     3  0.3551      0.802 0.132 0.000 0.868
#> SRR1470253     3  0.0892      0.885 0.020 0.000 0.980
#> SRR1414332     1  0.2261      0.926 0.932 0.000 0.068
#> SRR1069209     3  0.5926      0.399 0.356 0.000 0.644
#> SRR661052      1  0.0000      0.917 1.000 0.000 0.000
#> SRR1308860     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1421159     2  0.5024      0.703 0.004 0.776 0.220
#> SRR1340943     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1078855     1  0.2356      0.925 0.928 0.000 0.072
#> SRR1459465     2  0.0000      0.928 0.000 1.000 0.000
#> SRR816818      2  0.0000      0.928 0.000 1.000 0.000
#> SRR1478679     3  0.5375      0.783 0.128 0.056 0.816
#> SRR1350979     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1458198     1  0.0592      0.921 0.988 0.000 0.012
#> SRR1386910     2  0.1289      0.922 0.032 0.968 0.000
#> SRR1465375     2  0.3551      0.860 0.132 0.868 0.000
#> SRR1323699     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1431139     3  0.5178      0.640 0.256 0.000 0.744
#> SRR1373964     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1455413     1  0.3116      0.912 0.892 0.000 0.108
#> SRR1437163     1  0.0237      0.915 0.996 0.004 0.000
#> SRR1347343     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1465480     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1489631     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1086514     2  0.1753      0.901 0.000 0.952 0.048
#> SRR1430928     1  0.4452      0.842 0.808 0.000 0.192
#> SRR1310939     3  0.0592      0.889 0.012 0.000 0.988
#> SRR1344294     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1099402     1  0.0424      0.920 0.992 0.000 0.008
#> SRR1468118     1  0.4235      0.859 0.824 0.000 0.176
#> SRR1486348     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1488770     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1083732     1  0.3752      0.890 0.856 0.000 0.144
#> SRR1456611     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1080318     1  0.2448      0.924 0.924 0.000 0.076
#> SRR1500089     1  0.3941      0.881 0.844 0.000 0.156
#> SRR1441178     1  0.2711      0.920 0.912 0.000 0.088
#> SRR1381396     1  0.1031      0.924 0.976 0.000 0.024
#> SRR1096081     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1349809     2  0.0237      0.928 0.004 0.996 0.000
#> SRR1324314     3  0.5216      0.630 0.260 0.000 0.740
#> SRR1092444     1  0.3192      0.910 0.888 0.000 0.112
#> SRR1382553     3  0.0747      0.887 0.016 0.000 0.984
#> SRR1075530     2  0.0237      0.928 0.004 0.996 0.000
#> SRR1442612     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1360056     3  0.5650      0.537 0.312 0.000 0.688
#> SRR1078164     1  0.3686      0.893 0.860 0.000 0.140
#> SRR1434545     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1398251     1  0.3686      0.894 0.860 0.000 0.140
#> SRR1375866     1  0.1753      0.927 0.952 0.000 0.048
#> SRR1091645     2  0.2066      0.913 0.060 0.940 0.000
#> SRR1416636     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1105441     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1082496     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1315353     3  0.3619      0.780 0.000 0.136 0.864
#> SRR1093697     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1077429     3  0.6154      0.249 0.408 0.000 0.592
#> SRR1076120     1  0.3752      0.891 0.856 0.000 0.144
#> SRR1074410     1  0.1411      0.926 0.964 0.000 0.036
#> SRR1340345     2  0.1753      0.918 0.048 0.952 0.000
#> SRR1069514     3  0.6154      0.302 0.000 0.408 0.592
#> SRR1092636     3  0.0424      0.890 0.008 0.000 0.992
#> SRR1365013     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1073069     1  0.5591      0.676 0.696 0.000 0.304
#> SRR1443137     1  0.3941      0.880 0.844 0.000 0.156
#> SRR1437143     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1091990     1  0.1964      0.926 0.944 0.000 0.056
#> SRR820234      3  0.5178      0.616 0.000 0.256 0.744
#> SRR1338079     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1390094     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1340721     2  0.3267      0.874 0.116 0.884 0.000
#> SRR1335964     3  0.1163      0.881 0.028 0.000 0.972
#> SRR1086869     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1453434     1  0.0000      0.917 1.000 0.000 0.000
#> SRR1402261     1  0.0000      0.917 1.000 0.000 0.000
#> SRR657809      2  0.1643      0.919 0.044 0.956 0.000
#> SRR1093075     1  0.3941      0.880 0.844 0.000 0.156
#> SRR1433329     1  0.5591      0.677 0.696 0.000 0.304
#> SRR1353418     3  0.0000      0.892 0.000 0.000 1.000
#> SRR1092913     2  0.2066      0.913 0.060 0.940 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR816969      1  0.0524      0.954 0.988 0.000 0.004 0.008
#> SRR1335605     2  0.3568      0.785 0.116 0.856 0.004 0.024
#> SRR1432014     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1499215     3  0.2266      0.821 0.084 0.000 0.912 0.004
#> SRR1460409     1  0.0188      0.954 0.996 0.000 0.004 0.000
#> SRR1086441     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> SRR1097344     4  0.1118      0.930 0.000 0.036 0.000 0.964
#> SRR1081789     2  0.3726      0.707 0.000 0.788 0.212 0.000
#> SRR1453005     2  0.0469      0.909 0.000 0.988 0.012 0.000
#> SRR1366985     3  0.4584      0.600 0.300 0.000 0.696 0.004
#> SRR815280      1  0.0188      0.954 0.996 0.000 0.000 0.004
#> SRR1348531     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> SRR815845      3  0.1151      0.853 0.000 0.008 0.968 0.024
#> SRR1471178     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> SRR1080696     3  0.0188      0.861 0.000 0.000 0.996 0.004
#> SRR1078684     3  0.2334      0.819 0.088 0.000 0.908 0.004
#> SRR1317751     3  0.1118      0.852 0.000 0.000 0.964 0.036
#> SRR1435667     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1097905     1  0.1584      0.936 0.952 0.012 0.000 0.036
#> SRR1456548     1  0.0336      0.953 0.992 0.000 0.000 0.008
#> SRR1075126     1  0.0469      0.953 0.988 0.000 0.000 0.012
#> SRR813108      3  0.0592      0.857 0.000 0.016 0.984 0.000
#> SRR1479062     3  0.0469      0.860 0.000 0.000 0.988 0.012
#> SRR1408703     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1332360     1  0.1109      0.942 0.968 0.000 0.028 0.004
#> SRR1098686     1  0.0376      0.954 0.992 0.000 0.004 0.004
#> SRR1434228     1  0.3870      0.724 0.788 0.000 0.208 0.004
#> SRR1467149     4  0.2345      0.845 0.100 0.000 0.000 0.900
#> SRR1399113     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1476507     4  0.0921      0.934 0.000 0.028 0.000 0.972
#> SRR1092468     1  0.2197      0.894 0.916 0.000 0.080 0.004
#> SRR1441804     1  0.0921      0.948 0.972 0.000 0.000 0.028
#> SRR1326100     2  0.1474      0.883 0.000 0.948 0.052 0.000
#> SRR1398815     1  0.0895      0.950 0.976 0.000 0.004 0.020
#> SRR1436021     2  0.6040      0.423 0.052 0.620 0.004 0.324
#> SRR1480083     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1472863     1  0.0817      0.949 0.976 0.000 0.000 0.024
#> SRR815542      1  0.0188      0.954 0.996 0.000 0.004 0.000
#> SRR1400100     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1312002     3  0.4950      0.443 0.376 0.000 0.620 0.004
#> SRR1470253     3  0.3355      0.755 0.160 0.000 0.836 0.004
#> SRR1414332     1  0.0188      0.954 0.996 0.000 0.004 0.000
#> SRR1069209     1  0.5097      0.165 0.568 0.000 0.428 0.004
#> SRR661052      1  0.1022      0.946 0.968 0.000 0.000 0.032
#> SRR1308860     1  0.1022      0.946 0.968 0.000 0.000 0.032
#> SRR1421159     3  0.5108      0.523 0.000 0.308 0.672 0.020
#> SRR1340943     4  0.0817      0.937 0.024 0.000 0.000 0.976
#> SRR1078855     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> SRR1459465     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR816818      2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1478679     2  0.6602      0.413 0.324 0.584 0.088 0.004
#> SRR1350979     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1458198     4  0.0817      0.937 0.024 0.000 0.000 0.976
#> SRR1386910     2  0.2760      0.842 0.000 0.872 0.000 0.128
#> SRR1465375     2  0.2918      0.847 0.008 0.876 0.000 0.116
#> SRR1323699     3  0.1557      0.839 0.056 0.000 0.944 0.000
#> SRR1431139     3  0.4647      0.616 0.288 0.000 0.704 0.008
#> SRR1373964     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1455413     1  0.0672      0.953 0.984 0.000 0.008 0.008
#> SRR1437163     1  0.4319      0.697 0.760 0.012 0.000 0.228
#> SRR1347343     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1465480     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1489631     1  0.0592      0.952 0.984 0.000 0.000 0.016
#> SRR1086514     3  0.6979      0.274 0.000 0.344 0.528 0.128
#> SRR1430928     1  0.0657      0.950 0.984 0.000 0.012 0.004
#> SRR1310939     3  0.2868      0.781 0.000 0.000 0.864 0.136
#> SRR1344294     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1099402     1  0.0188      0.954 0.996 0.000 0.000 0.004
#> SRR1468118     4  0.0336      0.929 0.000 0.000 0.008 0.992
#> SRR1486348     1  0.0817      0.949 0.976 0.000 0.000 0.024
#> SRR1488770     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1083732     1  0.0592      0.950 0.984 0.000 0.016 0.000
#> SRR1456611     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1080318     1  0.0376      0.954 0.992 0.000 0.004 0.004
#> SRR1500089     4  0.5464      0.661 0.212 0.000 0.072 0.716
#> SRR1441178     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> SRR1381396     1  0.0188      0.954 0.996 0.000 0.000 0.004
#> SRR1096081     3  0.0707      0.857 0.000 0.000 0.980 0.020
#> SRR1349809     2  0.0188      0.913 0.000 0.996 0.000 0.004
#> SRR1324314     1  0.4328      0.665 0.748 0.000 0.244 0.008
#> SRR1092444     1  0.1059      0.949 0.972 0.000 0.016 0.012
#> SRR1382553     3  0.5088      0.327 0.424 0.000 0.572 0.004
#> SRR1075530     4  0.1209      0.931 0.000 0.032 0.004 0.964
#> SRR1442612     3  0.0000      0.861 0.000 0.000 1.000 0.000
#> SRR1360056     3  0.5112      0.447 0.384 0.000 0.608 0.008
#> SRR1078164     1  0.0376      0.953 0.992 0.000 0.004 0.004
#> SRR1434545     4  0.0817      0.937 0.024 0.000 0.000 0.976
#> SRR1398251     1  0.0188      0.954 0.996 0.000 0.004 0.000
#> SRR1375866     1  0.0817      0.949 0.976 0.000 0.000 0.024
#> SRR1091645     4  0.0921      0.933 0.000 0.028 0.000 0.972
#> SRR1416636     3  0.0188      0.861 0.000 0.000 0.996 0.004
#> SRR1105441     3  0.0188      0.861 0.000 0.000 0.996 0.004
#> SRR1082496     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1315353     3  0.2266      0.816 0.000 0.004 0.912 0.084
#> SRR1093697     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1077429     3  0.2840      0.830 0.056 0.000 0.900 0.044
#> SRR1076120     4  0.0817      0.937 0.024 0.000 0.000 0.976
#> SRR1074410     1  0.0188      0.954 0.996 0.000 0.000 0.004
#> SRR1340345     4  0.2530      0.866 0.000 0.112 0.000 0.888
#> SRR1069514     2  0.2255      0.866 0.012 0.920 0.068 0.000
#> SRR1092636     3  0.0469      0.859 0.012 0.000 0.988 0.000
#> SRR1365013     2  0.2345      0.855 0.000 0.900 0.000 0.100
#> SRR1073069     1  0.1398      0.931 0.956 0.000 0.040 0.004
#> SRR1443137     1  0.0376      0.953 0.992 0.000 0.004 0.004
#> SRR1437143     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1091990     1  0.0000      0.954 1.000 0.000 0.000 0.000
#> SRR820234      3  0.3024      0.758 0.000 0.148 0.852 0.000
#> SRR1338079     1  0.1118      0.944 0.964 0.000 0.000 0.036
#> SRR1390094     1  0.2589      0.855 0.884 0.000 0.000 0.116
#> SRR1340721     2  0.1388      0.900 0.012 0.960 0.000 0.028
#> SRR1335964     3  0.1389      0.847 0.000 0.000 0.952 0.048
#> SRR1086869     3  0.4250      0.613 0.000 0.000 0.724 0.276
#> SRR1453434     1  0.0592      0.951 0.984 0.000 0.000 0.016
#> SRR1402261     4  0.0817      0.937 0.024 0.000 0.000 0.976
#> SRR657809      2  0.1118      0.902 0.000 0.964 0.000 0.036
#> SRR1093075     1  0.0376      0.953 0.992 0.000 0.004 0.004
#> SRR1433329     1  0.1661      0.920 0.944 0.000 0.052 0.004
#> SRR1353418     3  0.0188      0.861 0.004 0.000 0.996 0.000
#> SRR1092913     4  0.1557      0.917 0.000 0.056 0.000 0.944

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR816969      1  0.1478    0.80150 0.936 0.000 0.000 0.000 0.064
#> SRR1335605     2  0.5552    0.28762 0.008 0.588 0.064 0.000 0.340
#> SRR1432014     3  0.0162    0.71470 0.000 0.000 0.996 0.000 0.004
#> SRR1499215     3  0.5004    0.60929 0.092 0.000 0.692 0.000 0.216
#> SRR1460409     1  0.2074    0.79437 0.896 0.000 0.000 0.000 0.104
#> SRR1086441     1  0.0290    0.79958 0.992 0.000 0.000 0.000 0.008
#> SRR1097344     4  0.0404    0.86114 0.000 0.012 0.000 0.988 0.000
#> SRR1081789     2  0.3508    0.61251 0.000 0.748 0.252 0.000 0.000
#> SRR1453005     2  0.3177    0.66289 0.000 0.792 0.208 0.000 0.000
#> SRR1366985     1  0.6369    0.34458 0.520 0.000 0.240 0.000 0.240
#> SRR815280      1  0.0162    0.79994 0.996 0.000 0.000 0.000 0.004
#> SRR1348531     1  0.1478    0.80243 0.936 0.000 0.000 0.000 0.064
#> SRR815845      3  0.3857    0.68322 0.000 0.000 0.688 0.000 0.312
#> SRR1471178     1  0.0162    0.79934 0.996 0.000 0.000 0.000 0.004
#> SRR1080696     3  0.2891    0.73646 0.000 0.000 0.824 0.000 0.176
#> SRR1078684     3  0.5798    0.49735 0.156 0.000 0.608 0.000 0.236
#> SRR1317751     3  0.4375    0.67993 0.004 0.000 0.628 0.004 0.364
#> SRR1435667     3  0.2020    0.69879 0.000 0.000 0.900 0.000 0.100
#> SRR1097905     5  0.6495    0.36439 0.380 0.148 0.000 0.008 0.464
#> SRR1456548     1  0.0290    0.79889 0.992 0.000 0.000 0.000 0.008
#> SRR1075126     1  0.0290    0.79889 0.992 0.000 0.000 0.000 0.008
#> SRR813108      3  0.3639    0.65778 0.000 0.024 0.792 0.000 0.184
#> SRR1479062     3  0.1851    0.72661 0.000 0.000 0.912 0.000 0.088
#> SRR1408703     3  0.3534    0.72354 0.000 0.000 0.744 0.000 0.256
#> SRR1332360     1  0.2249    0.79395 0.896 0.000 0.008 0.000 0.096
#> SRR1098686     1  0.1732    0.79804 0.920 0.000 0.000 0.000 0.080
#> SRR1434228     1  0.4197    0.65429 0.728 0.000 0.028 0.000 0.244
#> SRR1467149     5  0.5387    0.47778 0.040 0.000 0.048 0.224 0.688
#> SRR1399113     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1476507     4  0.0162    0.86195 0.000 0.004 0.000 0.996 0.000
#> SRR1092468     1  0.3491    0.70978 0.768 0.000 0.004 0.000 0.228
#> SRR1441804     1  0.4015    0.34981 0.652 0.000 0.000 0.000 0.348
#> SRR1326100     2  0.0290    0.81233 0.000 0.992 0.008 0.000 0.000
#> SRR1398815     1  0.2230    0.73116 0.884 0.000 0.000 0.000 0.116
#> SRR1436021     4  0.5340    0.47092 0.036 0.324 0.000 0.620 0.020
#> SRR1480083     2  0.0609    0.80711 0.000 0.980 0.020 0.000 0.000
#> SRR1472863     1  0.4787    0.00394 0.548 0.020 0.000 0.000 0.432
#> SRR815542      1  0.2583    0.78183 0.864 0.000 0.000 0.004 0.132
#> SRR1400100     3  0.3876    0.69505 0.000 0.000 0.684 0.000 0.316
#> SRR1312002     3  0.6279    0.36946 0.280 0.000 0.528 0.000 0.192
#> SRR1470253     3  0.5320    0.65277 0.052 0.000 0.524 0.000 0.424
#> SRR1414332     1  0.0404    0.80130 0.988 0.000 0.000 0.000 0.012
#> SRR1069209     1  0.4801    0.58655 0.668 0.000 0.048 0.000 0.284
#> SRR661052      5  0.4806    0.50373 0.328 0.028 0.004 0.000 0.640
#> SRR1308860     1  0.4341    0.14284 0.592 0.000 0.000 0.004 0.404
#> SRR1421159     2  0.6422    0.30502 0.008 0.576 0.060 0.308 0.048
#> SRR1340943     4  0.0000    0.86171 0.000 0.000 0.000 1.000 0.000
#> SRR1078855     1  0.0162    0.79994 0.996 0.000 0.000 0.000 0.004
#> SRR1459465     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR816818      2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1478679     2  0.7219    0.17933 0.288 0.504 0.140 0.000 0.068
#> SRR1350979     3  0.1671    0.70497 0.000 0.000 0.924 0.000 0.076
#> SRR1458198     4  0.0290    0.86020 0.000 0.000 0.000 0.992 0.008
#> SRR1386910     5  0.6604    0.21677 0.000 0.352 0.116 0.028 0.504
#> SRR1465375     2  0.4675    0.32963 0.004 0.620 0.000 0.016 0.360
#> SRR1323699     3  0.1965    0.70542 0.000 0.000 0.904 0.000 0.096
#> SRR1431139     3  0.5834    0.62738 0.104 0.000 0.532 0.000 0.364
#> SRR1373964     3  0.2561    0.68629 0.000 0.000 0.856 0.000 0.144
#> SRR1455413     1  0.1965    0.79414 0.904 0.000 0.000 0.000 0.096
#> SRR1437163     1  0.5250   -0.04191 0.536 0.000 0.000 0.048 0.416
#> SRR1347343     3  0.2230    0.69221 0.000 0.000 0.884 0.000 0.116
#> SRR1465480     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1489631     1  0.3109    0.61598 0.800 0.000 0.000 0.000 0.200
#> SRR1086514     4  0.4696    0.23584 0.000 0.428 0.016 0.556 0.000
#> SRR1430928     1  0.2230    0.78759 0.884 0.000 0.000 0.000 0.116
#> SRR1310939     3  0.3506    0.65946 0.000 0.000 0.824 0.132 0.044
#> SRR1344294     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1099402     1  0.0290    0.79889 0.992 0.000 0.000 0.000 0.008
#> SRR1468118     5  0.4599    0.42801 0.000 0.000 0.156 0.100 0.744
#> SRR1486348     1  0.3274    0.58511 0.780 0.000 0.000 0.000 0.220
#> SRR1488770     2  0.0404    0.81114 0.000 0.988 0.012 0.000 0.000
#> SRR1083732     1  0.2338    0.78861 0.884 0.000 0.004 0.000 0.112
#> SRR1456611     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1080318     1  0.2329    0.78409 0.876 0.000 0.000 0.000 0.124
#> SRR1500089     4  0.6515    0.29910 0.212 0.000 0.016 0.560 0.212
#> SRR1441178     1  0.0162    0.79994 0.996 0.000 0.000 0.000 0.004
#> SRR1381396     1  0.0290    0.79889 0.992 0.000 0.000 0.000 0.008
#> SRR1096081     3  0.4084    0.69140 0.000 0.000 0.668 0.004 0.328
#> SRR1349809     2  0.0162    0.81259 0.000 0.996 0.000 0.000 0.004
#> SRR1324314     3  0.6605    0.42263 0.236 0.000 0.452 0.000 0.312
#> SRR1092444     1  0.2719    0.77273 0.852 0.000 0.004 0.000 0.144
#> SRR1382553     1  0.6128    0.41859 0.564 0.000 0.204 0.000 0.232
#> SRR1075530     4  0.1701    0.83972 0.000 0.028 0.016 0.944 0.012
#> SRR1442612     3  0.0290    0.71456 0.000 0.000 0.992 0.000 0.008
#> SRR1360056     3  0.4219    0.53689 0.000 0.000 0.584 0.000 0.416
#> SRR1078164     1  0.2286    0.78870 0.888 0.000 0.004 0.000 0.108
#> SRR1434545     4  0.0162    0.86100 0.000 0.000 0.000 0.996 0.004
#> SRR1398251     1  0.0162    0.79994 0.996 0.000 0.000 0.000 0.004
#> SRR1375866     1  0.4201    0.28668 0.592 0.000 0.000 0.000 0.408
#> SRR1091645     4  0.0000    0.86171 0.000 0.000 0.000 1.000 0.000
#> SRR1416636     3  0.3636    0.71304 0.000 0.000 0.728 0.000 0.272
#> SRR1105441     3  0.3074    0.73591 0.000 0.000 0.804 0.000 0.196
#> SRR1082496     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1315353     3  0.1430    0.69556 0.000 0.052 0.944 0.000 0.004
#> SRR1093697     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1077429     3  0.5161    0.65146 0.024 0.000 0.568 0.012 0.396
#> SRR1076120     4  0.0703    0.84635 0.000 0.000 0.000 0.976 0.024
#> SRR1074410     1  0.0162    0.79934 0.996 0.000 0.000 0.000 0.004
#> SRR1340345     4  0.1043    0.84889 0.000 0.040 0.000 0.960 0.000
#> SRR1069514     2  0.1952    0.76514 0.004 0.912 0.084 0.000 0.000
#> SRR1092636     3  0.4045    0.68074 0.000 0.000 0.644 0.000 0.356
#> SRR1365013     2  0.3174    0.72870 0.000 0.868 0.080 0.036 0.016
#> SRR1073069     1  0.2763    0.76750 0.848 0.000 0.004 0.000 0.148
#> SRR1443137     1  0.1608    0.79969 0.928 0.000 0.000 0.000 0.072
#> SRR1437143     2  0.0000    0.81421 0.000 1.000 0.000 0.000 0.000
#> SRR1091990     1  0.0510    0.80225 0.984 0.000 0.000 0.000 0.016
#> SRR820234      3  0.3884    0.43339 0.000 0.288 0.708 0.000 0.004
#> SRR1338079     1  0.4510    0.03343 0.560 0.000 0.000 0.008 0.432
#> SRR1390094     1  0.5689    0.36687 0.604 0.000 0.060 0.316 0.020
#> SRR1340721     2  0.4403    0.19100 0.000 0.560 0.000 0.004 0.436
#> SRR1335964     3  0.4232    0.69732 0.000 0.000 0.676 0.012 0.312
#> SRR1086869     3  0.5714    0.61074 0.000 0.000 0.580 0.108 0.312
#> SRR1453434     1  0.3550    0.65317 0.796 0.000 0.000 0.184 0.020
#> SRR1402261     4  0.0000    0.86171 0.000 0.000 0.000 1.000 0.000
#> SRR657809      2  0.4517    0.18224 0.000 0.556 0.000 0.008 0.436
#> SRR1093075     1  0.1043    0.80239 0.960 0.000 0.000 0.000 0.040
#> SRR1433329     1  0.2806    0.76497 0.844 0.000 0.004 0.000 0.152
#> SRR1353418     3  0.3849    0.72926 0.016 0.000 0.752 0.000 0.232
#> SRR1092913     4  0.1251    0.84820 0.000 0.036 0.000 0.956 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR816969      6  0.3728    0.02420 0.344 0.000 0.004 0.000 0.000 0.652
#> SRR1335605     2  0.4964    0.47995 0.080 0.608 0.000 0.000 0.308 0.004
#> SRR1432014     3  0.2100    0.76527 0.000 0.000 0.884 0.000 0.112 0.004
#> SRR1499215     3  0.4834   -0.00919 0.000 0.004 0.484 0.000 0.044 0.468
#> SRR1460409     6  0.2845    0.51761 0.172 0.000 0.004 0.000 0.004 0.820
#> SRR1086441     1  0.4025    0.62523 0.576 0.000 0.008 0.000 0.000 0.416
#> SRR1097344     4  0.0146    0.86681 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1081789     3  0.3076    0.63276 0.000 0.240 0.760 0.000 0.000 0.000
#> SRR1453005     3  0.2946    0.69950 0.004 0.184 0.808 0.004 0.000 0.000
#> SRR1366985     6  0.2282    0.69621 0.020 0.000 0.068 0.000 0.012 0.900
#> SRR815280      1  0.3971    0.61111 0.548 0.000 0.000 0.000 0.004 0.448
#> SRR1348531     6  0.4002   -0.25169 0.404 0.000 0.000 0.000 0.008 0.588
#> SRR815845      5  0.2114    0.63499 0.012 0.000 0.076 0.000 0.904 0.008
#> SRR1471178     1  0.3923    0.63528 0.580 0.000 0.004 0.000 0.000 0.416
#> SRR1080696     5  0.4985    0.28470 0.000 0.000 0.376 0.000 0.548 0.076
#> SRR1078684     6  0.4787    0.38282 0.004 0.000 0.312 0.000 0.064 0.620
#> SRR1317751     5  0.4165    0.59542 0.000 0.000 0.036 0.000 0.672 0.292
#> SRR1435667     3  0.1265    0.78277 0.000 0.000 0.948 0.000 0.044 0.008
#> SRR1097905     1  0.6143   -0.05172 0.516 0.192 0.000 0.000 0.268 0.024
#> SRR1456548     1  0.4090    0.64474 0.604 0.000 0.004 0.000 0.008 0.384
#> SRR1075126     1  0.3547    0.64366 0.696 0.000 0.000 0.000 0.004 0.300
#> SRR813108      3  0.3304    0.69130 0.004 0.008 0.820 0.000 0.024 0.144
#> SRR1479062     3  0.3482    0.50056 0.000 0.000 0.684 0.000 0.316 0.000
#> SRR1408703     5  0.4557    0.61148 0.000 0.000 0.072 0.000 0.660 0.268
#> SRR1332360     6  0.1918    0.65893 0.088 0.000 0.008 0.000 0.000 0.904
#> SRR1098686     6  0.2841    0.59933 0.164 0.000 0.012 0.000 0.000 0.824
#> SRR1434228     6  0.0909    0.70365 0.020 0.000 0.012 0.000 0.000 0.968
#> SRR1467149     5  0.3933    0.52514 0.220 0.000 0.000 0.032 0.740 0.008
#> SRR1399113     2  0.0146    0.78106 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR1476507     4  0.0436    0.86645 0.004 0.000 0.004 0.988 0.004 0.000
#> SRR1092468     6  0.3018    0.68809 0.036 0.000 0.040 0.032 0.016 0.876
#> SRR1441804     1  0.4466    0.50124 0.708 0.000 0.000 0.000 0.116 0.176
#> SRR1326100     2  0.1700    0.76141 0.000 0.916 0.080 0.000 0.004 0.000
#> SRR1398815     1  0.3240    0.62592 0.752 0.000 0.004 0.000 0.000 0.244
#> SRR1436021     2  0.4577    0.61712 0.012 0.732 0.000 0.152 0.004 0.100
#> SRR1480083     2  0.3198    0.53360 0.000 0.740 0.260 0.000 0.000 0.000
#> SRR1472863     1  0.3492    0.46112 0.796 0.004 0.000 0.000 0.160 0.040
#> SRR815542      6  0.2398    0.62747 0.104 0.000 0.020 0.000 0.000 0.876
#> SRR1400100     5  0.3088    0.68919 0.000 0.000 0.048 0.000 0.832 0.120
#> SRR1312002     3  0.4220    0.50054 0.028 0.000 0.664 0.000 0.004 0.304
#> SRR1470253     6  0.5004    0.00166 0.000 0.000 0.084 0.000 0.348 0.568
#> SRR1414332     1  0.4025    0.60830 0.576 0.000 0.008 0.000 0.000 0.416
#> SRR1069209     6  0.2066    0.69347 0.000 0.000 0.052 0.000 0.040 0.908
#> SRR661052      5  0.3989    0.25021 0.468 0.000 0.000 0.000 0.528 0.004
#> SRR1308860     1  0.2843    0.50235 0.848 0.000 0.000 0.000 0.116 0.036
#> SRR1421159     2  0.6296   -0.04686 0.004 0.432 0.036 0.432 0.012 0.084
#> SRR1340943     4  0.0291    0.86693 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1078855     1  0.3881    0.64183 0.600 0.000 0.000 0.000 0.004 0.396
#> SRR1459465     2  0.0146    0.78106 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR816818      2  0.0000    0.78101 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1478679     2  0.7128    0.04583 0.092 0.376 0.204 0.000 0.000 0.328
#> SRR1350979     3  0.2094    0.78221 0.004 0.000 0.908 0.000 0.064 0.024
#> SRR1458198     4  0.0551    0.86431 0.004 0.000 0.000 0.984 0.008 0.004
#> SRR1386910     5  0.5133    0.12785 0.108 0.312 0.000 0.000 0.580 0.000
#> SRR1465375     2  0.4377    0.53837 0.368 0.608 0.004 0.008 0.012 0.000
#> SRR1323699     3  0.2197    0.77808 0.000 0.000 0.900 0.000 0.056 0.044
#> SRR1431139     6  0.4616    0.35543 0.004 0.000 0.080 0.000 0.236 0.680
#> SRR1373964     3  0.1934    0.77554 0.000 0.000 0.916 0.000 0.044 0.040
#> SRR1455413     6  0.1624    0.70487 0.040 0.000 0.004 0.000 0.020 0.936
#> SRR1437163     1  0.2502    0.51208 0.884 0.000 0.000 0.012 0.084 0.020
#> SRR1347343     3  0.1196    0.78330 0.000 0.000 0.952 0.000 0.040 0.008
#> SRR1465480     2  0.0146    0.78106 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR1489631     1  0.3110    0.63525 0.792 0.000 0.000 0.000 0.012 0.196
#> SRR1086514     4  0.4171    0.27664 0.004 0.380 0.012 0.604 0.000 0.000
#> SRR1430928     6  0.2445    0.61871 0.108 0.000 0.020 0.000 0.000 0.872
#> SRR1310939     3  0.3381    0.75586 0.004 0.000 0.836 0.092 0.056 0.012
#> SRR1344294     2  0.0146    0.78091 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR1099402     1  0.4076    0.62818 0.564 0.000 0.004 0.000 0.004 0.428
#> SRR1468118     5  0.2086    0.62218 0.064 0.000 0.004 0.012 0.912 0.008
#> SRR1486348     1  0.2312    0.60005 0.876 0.000 0.000 0.000 0.012 0.112
#> SRR1488770     2  0.1523    0.77507 0.008 0.940 0.044 0.000 0.008 0.000
#> SRR1083732     6  0.2282    0.69293 0.068 0.000 0.020 0.000 0.012 0.900
#> SRR1456611     2  0.0984    0.77867 0.012 0.968 0.012 0.000 0.008 0.000
#> SRR1080318     6  0.1851    0.70485 0.036 0.000 0.012 0.000 0.024 0.928
#> SRR1500089     6  0.4857    0.44299 0.004 0.000 0.012 0.228 0.076 0.680
#> SRR1441178     1  0.3971    0.61111 0.548 0.000 0.000 0.000 0.004 0.448
#> SRR1381396     1  0.3852    0.64116 0.612 0.000 0.000 0.000 0.004 0.384
#> SRR1096081     5  0.3618    0.68958 0.000 0.000 0.048 0.000 0.776 0.176
#> SRR1349809     2  0.1285    0.77298 0.052 0.944 0.000 0.000 0.004 0.000
#> SRR1324314     6  0.6205   -0.08503 0.056 0.000 0.100 0.000 0.364 0.480
#> SRR1092444     6  0.2358    0.69690 0.028 0.000 0.016 0.000 0.056 0.900
#> SRR1382553     6  0.2112    0.67818 0.016 0.000 0.088 0.000 0.000 0.896
#> SRR1075530     2  0.6135    0.05651 0.004 0.396 0.000 0.360 0.240 0.000
#> SRR1442612     3  0.1957    0.76530 0.000 0.000 0.888 0.000 0.112 0.000
#> SRR1360056     5  0.4582    0.49713 0.116 0.000 0.160 0.000 0.716 0.008
#> SRR1078164     6  0.0790    0.69543 0.032 0.000 0.000 0.000 0.000 0.968
#> SRR1434545     4  0.0291    0.86704 0.004 0.000 0.004 0.992 0.000 0.000
#> SRR1398251     1  0.3971    0.61111 0.548 0.000 0.000 0.000 0.004 0.448
#> SRR1375866     1  0.4963    0.45484 0.612 0.000 0.000 0.000 0.100 0.288
#> SRR1091645     4  0.0000    0.86699 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1416636     5  0.3530    0.62659 0.000 0.000 0.152 0.000 0.792 0.056
#> SRR1105441     5  0.5260    0.26156 0.008 0.000 0.072 0.000 0.464 0.456
#> SRR1082496     2  0.0146    0.78106 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR1315353     3  0.2149    0.77885 0.004 0.016 0.900 0.000 0.080 0.000
#> SRR1093697     2  0.0603    0.78004 0.000 0.980 0.016 0.000 0.004 0.000
#> SRR1077429     5  0.4692    0.29322 0.000 0.000 0.044 0.000 0.512 0.444
#> SRR1076120     4  0.1511    0.83314 0.004 0.000 0.000 0.940 0.012 0.044
#> SRR1074410     1  0.4076    0.60563 0.564 0.000 0.004 0.000 0.004 0.428
#> SRR1340345     4  0.3593    0.70856 0.008 0.176 0.004 0.788 0.024 0.000
#> SRR1069514     2  0.2619    0.75334 0.008 0.884 0.072 0.000 0.004 0.032
#> SRR1092636     5  0.3662    0.69223 0.004 0.000 0.044 0.000 0.780 0.172
#> SRR1365013     2  0.3703    0.70201 0.072 0.792 0.004 0.000 0.132 0.000
#> SRR1073069     6  0.1196    0.69491 0.040 0.000 0.008 0.000 0.000 0.952
#> SRR1443137     6  0.3265    0.33711 0.248 0.000 0.000 0.000 0.004 0.748
#> SRR1437143     2  0.0000    0.78101 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1091990     1  0.4086    0.58285 0.528 0.000 0.008 0.000 0.000 0.464
#> SRR820234      3  0.2717    0.75045 0.004 0.100 0.868 0.004 0.024 0.000
#> SRR1338079     1  0.2197    0.55330 0.900 0.000 0.000 0.000 0.056 0.044
#> SRR1390094     3  0.7685    0.19950 0.244 0.004 0.392 0.248 0.020 0.092
#> SRR1340721     2  0.5502    0.41371 0.404 0.480 0.000 0.004 0.112 0.000
#> SRR1335964     5  0.3978    0.68154 0.000 0.000 0.064 0.000 0.744 0.192
#> SRR1086869     5  0.3433    0.68980 0.004 0.000 0.032 0.024 0.832 0.108
#> SRR1453434     4  0.5661    0.16985 0.152 0.000 0.004 0.556 0.004 0.284
#> SRR1402261     4  0.0291    0.86704 0.004 0.000 0.004 0.992 0.000 0.000
#> SRR657809      2  0.5543    0.47474 0.204 0.556 0.000 0.000 0.240 0.000
#> SRR1093075     1  0.4114    0.59497 0.532 0.000 0.004 0.000 0.004 0.460
#> SRR1433329     6  0.0790    0.69620 0.032 0.000 0.000 0.000 0.000 0.968
#> SRR1353418     6  0.5099   -0.23278 0.000 0.000 0.080 0.000 0.424 0.496
#> SRR1092913     4  0.2558    0.80886 0.012 0.084 0.004 0.884 0.016 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0