cola Report for recount2:GTEx_spleen

Date: 2019-12-25 22:49:43 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 17611   118

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance
SD:mclust 2 1.000 0.975 0.988 **
ATC:kmeans 2 1.000 0.971 0.988 **
ATC:skmeans 2 1.000 0.986 0.994 **
MAD:mclust 2 1.000 0.978 0.990 **
ATC:pam 3 0.900 0.904 0.962 *
SD:skmeans 2 0.820 0.898 0.958
MAD:skmeans 2 0.787 0.898 0.957
SD:kmeans 2 0.740 0.845 0.940
CV:NMF 2 0.739 0.885 0.949
CV:skmeans 2 0.653 0.827 0.921
CV:pam 3 0.639 0.824 0.913
MAD:kmeans 5 0.639 0.653 0.786
MAD:pam 4 0.595 0.673 0.817
MAD:NMF 4 0.576 0.707 0.827
CV:kmeans 2 0.569 0.764 0.901
SD:NMF 3 0.555 0.774 0.870
CV:mclust 2 0.512 0.861 0.895
SD:pam 3 0.463 0.684 0.808
ATC:hclust 3 0.424 0.711 0.828
ATC:NMF 3 0.374 0.708 0.816
SD:hclust 3 0.219 0.607 0.774
MAD:hclust 3 0.212 0.588 0.706
ATC:mclust 2 0.209 0.736 0.800
CV:hclust 3 0.080 0.517 0.709

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.896           0.919       0.967          0.411 0.594   0.594
#> CV:NMF      2 0.739           0.885       0.949          0.451 0.554   0.554
#> MAD:NMF     2 0.895           0.928       0.971          0.411 0.594   0.594
#> ATC:NMF     2 0.488           0.818       0.898          0.402 0.618   0.618
#> SD:skmeans  2 0.820           0.898       0.958          0.496 0.503   0.503
#> CV:skmeans  2 0.653           0.827       0.921          0.494 0.501   0.501
#> MAD:skmeans 2 0.787           0.898       0.957          0.496 0.503   0.503
#> ATC:skmeans 2 1.000           0.986       0.994          0.502 0.499   0.499
#> SD:mclust   2 1.000           0.975       0.988          0.408 0.586   0.586
#> CV:mclust   2 0.512           0.861       0.895          0.427 0.572   0.572
#> MAD:mclust  2 1.000           0.978       0.990          0.402 0.594   0.594
#> ATC:mclust  2 0.209           0.736       0.800          0.440 0.498   0.498
#> SD:kmeans   2 0.740           0.845       0.940          0.437 0.566   0.566
#> CV:kmeans   2 0.569           0.764       0.901          0.442 0.560   0.560
#> MAD:kmeans  2 0.658           0.823       0.929          0.440 0.579   0.579
#> ATC:kmeans  2 1.000           0.971       0.988          0.472 0.533   0.533
#> SD:pam      2 0.825           0.908       0.956          0.393 0.618   0.618
#> CV:pam      2 0.492           0.857       0.890          0.381 0.644   0.644
#> MAD:pam     2 0.852           0.897       0.956          0.391 0.618   0.618
#> ATC:pam     2 0.564           0.773       0.894          0.452 0.560   0.560
#> SD:hclust   2 0.206           0.488       0.756          0.310 0.609   0.609
#> CV:hclust   2 0.272           0.790       0.849          0.212 0.950   0.950
#> MAD:hclust  2 0.190           0.676       0.777          0.359 0.524   0.524
#> ATC:hclust  2 0.350           0.833       0.884          0.414 0.566   0.566
get_stats(res_list, k = 3)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.5549           0.774       0.870          0.540 0.700   0.526
#> CV:NMF      3 0.6686           0.816       0.909          0.341 0.797   0.653
#> MAD:NMF     3 0.4720           0.656       0.818          0.585 0.682   0.497
#> ATC:NMF     3 0.3742           0.708       0.816          0.487 0.733   0.590
#> SD:skmeans  3 0.6128           0.701       0.863          0.339 0.788   0.603
#> CV:skmeans  3 0.5175           0.504       0.730          0.342 0.689   0.455
#> MAD:skmeans 3 0.5859           0.659       0.845          0.340 0.770   0.574
#> ATC:skmeans 3 0.7428           0.899       0.915          0.300 0.794   0.606
#> SD:mclust   3 0.5598           0.505       0.752          0.529 0.794   0.651
#> CV:mclust   3 0.3588           0.669       0.807          0.414 0.787   0.632
#> MAD:mclust  3 0.5758           0.809       0.874          0.606 0.740   0.562
#> ATC:mclust  3 0.2511           0.341       0.657          0.358 0.692   0.496
#> SD:kmeans   3 0.4484           0.644       0.789          0.434 0.702   0.511
#> CV:kmeans   3 0.3760           0.476       0.728          0.401 0.829   0.705
#> MAD:kmeans  3 0.4599           0.651       0.810          0.444 0.714   0.529
#> ATC:kmeans  3 0.6052           0.802       0.884          0.336 0.746   0.560
#> SD:pam      3 0.4632           0.684       0.808          0.634 0.656   0.476
#> CV:pam      3 0.6390           0.824       0.913          0.593 0.720   0.582
#> MAD:pam     3 0.4410           0.647       0.832          0.639 0.684   0.511
#> ATC:pam     3 0.9003           0.904       0.962          0.427 0.728   0.544
#> SD:hclust   3 0.2186           0.607       0.774          0.709 0.638   0.490
#> CV:hclust   3 0.0803           0.517       0.709          1.458 0.544   0.520
#> MAD:hclust  3 0.2124           0.588       0.706          0.541 0.767   0.614
#> ATC:hclust  3 0.4245           0.711       0.828          0.486 0.780   0.616
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.549           0.635       0.791         0.1701 0.803   0.519
#> CV:NMF      4 0.488           0.448       0.705         0.1935 0.862   0.681
#> MAD:NMF     4 0.576           0.707       0.827         0.1415 0.825   0.549
#> ATC:NMF     4 0.445           0.486       0.725         0.2041 0.728   0.438
#> SD:skmeans  4 0.763           0.816       0.905         0.1303 0.828   0.556
#> CV:skmeans  4 0.515           0.596       0.762         0.1291 0.822   0.530
#> MAD:skmeans 4 0.742           0.811       0.903         0.1292 0.829   0.552
#> ATC:skmeans 4 0.579           0.572       0.784         0.1195 0.874   0.659
#> SD:mclust   4 0.496           0.596       0.739         0.1055 0.833   0.595
#> CV:mclust   4 0.434           0.651       0.745         0.1211 0.935   0.839
#> MAD:mclust  4 0.484           0.519       0.711         0.0824 0.864   0.642
#> ATC:mclust  4 0.288           0.454       0.638         0.1344 0.705   0.405
#> SD:kmeans   4 0.511           0.484       0.678         0.1472 0.748   0.416
#> CV:kmeans   4 0.428           0.466       0.681         0.1568 0.802   0.578
#> MAD:kmeans  4 0.549           0.595       0.753         0.1443 0.868   0.648
#> ATC:kmeans  4 0.585           0.597       0.789         0.1566 0.862   0.644
#> SD:pam      4 0.504           0.560       0.793         0.1467 0.771   0.457
#> CV:pam      4 0.628           0.716       0.833         0.1730 0.848   0.645
#> MAD:pam     4 0.595           0.673       0.817         0.1506 0.812   0.535
#> ATC:pam     4 0.801           0.851       0.922         0.1564 0.857   0.623
#> SD:hclust   4 0.287           0.622       0.717         0.2241 0.817   0.613
#> CV:hclust   4 0.125           0.433       0.662         0.1563 0.920   0.843
#> MAD:hclust  4 0.264           0.442       0.640         0.1822 0.873   0.725
#> ATC:hclust  4 0.490           0.477       0.702         0.1617 0.856   0.630
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.586           0.556       0.766         0.0616 0.843   0.485
#> CV:NMF      5 0.534           0.556       0.734         0.0862 0.762   0.382
#> MAD:NMF     5 0.600           0.529       0.767         0.0574 0.819   0.428
#> ATC:NMF     5 0.482           0.435       0.645         0.0853 0.722   0.285
#> SD:skmeans  5 0.704           0.635       0.803         0.0588 0.864   0.541
#> CV:skmeans  5 0.550           0.509       0.702         0.0659 0.934   0.748
#> MAD:skmeans 5 0.701           0.642       0.799         0.0602 0.887   0.595
#> ATC:skmeans 5 0.630           0.495       0.745         0.0634 0.845   0.533
#> SD:mclust   5 0.514           0.557       0.732         0.0891 0.867   0.582
#> CV:mclust   5 0.572           0.734       0.791         0.0663 0.927   0.809
#> MAD:mclust  5 0.523           0.420       0.649         0.0657 0.826   0.499
#> ATC:mclust  5 0.482           0.401       0.726         0.0779 0.795   0.462
#> SD:kmeans   5 0.645           0.648       0.801         0.0774 0.845   0.526
#> CV:kmeans   5 0.506           0.520       0.700         0.0755 0.867   0.607
#> MAD:kmeans  5 0.639           0.653       0.786         0.0647 0.932   0.766
#> ATC:kmeans  5 0.595           0.558       0.738         0.0736 0.887   0.623
#> SD:pam      5 0.572           0.495       0.736         0.0634 0.917   0.714
#> CV:pam      5 0.725           0.770       0.865         0.0981 0.879   0.614
#> MAD:pam     5 0.583           0.498       0.734         0.0651 0.948   0.810
#> ATC:pam     5 0.732           0.747       0.869         0.0541 0.946   0.794
#> SD:hclust   5 0.346           0.587       0.706         0.0785 0.972   0.909
#> CV:hclust   5 0.204           0.443       0.617         0.1178 0.873   0.724
#> MAD:hclust  5 0.355           0.581       0.689         0.0894 0.864   0.643
#> ATC:hclust  5 0.496           0.400       0.621         0.0515 0.921   0.747
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.581           0.405       0.651         0.0429 0.859   0.472
#> CV:NMF      6 0.601           0.505       0.711         0.0511 0.875   0.509
#> MAD:NMF     6 0.579           0.427       0.692         0.0423 0.882   0.536
#> ATC:NMF     6 0.574           0.542       0.720         0.0491 0.833   0.407
#> SD:skmeans  6 0.695           0.590       0.768         0.0403 0.932   0.707
#> CV:skmeans  6 0.619           0.477       0.683         0.0423 0.915   0.639
#> MAD:skmeans 6 0.702           0.627       0.777         0.0398 0.926   0.678
#> ATC:skmeans 6 0.703           0.571       0.765         0.0458 0.888   0.576
#> SD:mclust   6 0.558           0.554       0.704         0.0408 0.897   0.636
#> CV:mclust   6 0.619           0.606       0.767         0.0460 0.996   0.989
#> MAD:mclust  6 0.565           0.417       0.660         0.0483 0.832   0.451
#> ATC:mclust  6 0.535           0.427       0.682         0.0600 0.919   0.721
#> SD:kmeans   6 0.658           0.553       0.694         0.0481 0.888   0.595
#> CV:kmeans   6 0.578           0.509       0.691         0.0493 0.951   0.795
#> MAD:kmeans  6 0.662           0.551       0.704         0.0494 0.896   0.605
#> ATC:kmeans  6 0.647           0.476       0.667         0.0470 0.930   0.703
#> SD:pam      6 0.653           0.576       0.761         0.0330 0.945   0.774
#> CV:pam      6 0.694           0.624       0.794         0.0277 0.951   0.783
#> MAD:pam     6 0.662           0.483       0.739         0.0364 0.917   0.676
#> ATC:pam     6 0.763           0.716       0.825         0.0342 0.956   0.805
#> SD:hclust   6 0.425           0.597       0.720         0.0565 0.947   0.824
#> CV:hclust   6 0.308           0.335       0.588         0.0772 0.920   0.780
#> MAD:hclust  6 0.426           0.580       0.698         0.0364 0.989   0.961
#> ATC:hclust  6 0.518           0.482       0.595         0.0445 0.869   0.554

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.206           0.488       0.756         0.3103 0.609   0.609
#> 3 3 0.219           0.607       0.774         0.7089 0.638   0.490
#> 4 4 0.287           0.622       0.717         0.2241 0.817   0.613
#> 5 5 0.346           0.587       0.706         0.0785 0.972   0.909
#> 6 6 0.425           0.597       0.720         0.0565 0.947   0.824

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     1  0.0000     0.7010 1.000 0.000
#> SRR1429287     1  0.1633     0.6999 0.976 0.024
#> SRR1359238     1  0.9170     0.2065 0.668 0.332
#> SRR1309597     1  0.5059     0.6914 0.888 0.112
#> SRR1441398     2  0.9983     0.6616 0.476 0.524
#> SRR1084055     1  0.0000     0.7010 1.000 0.000
#> SRR1417566     1  0.7376     0.5754 0.792 0.208
#> SRR1351857     1  0.8813     0.1602 0.700 0.300
#> SRR1487485     1  0.4939     0.6929 0.892 0.108
#> SRR1335875     1  0.6148     0.6683 0.848 0.152
#> SRR1073947     2  0.9988     0.6785 0.480 0.520
#> SRR1443483     1  0.5629     0.6824 0.868 0.132
#> SRR1346794     1  0.9209     0.2388 0.664 0.336
#> SRR1405245     2  0.9996     0.6523 0.488 0.512
#> SRR1409677     1  0.2948     0.7016 0.948 0.052
#> SRR1095549     1  0.9635    -0.1068 0.612 0.388
#> SRR1323788     1  0.9710    -0.1522 0.600 0.400
#> SRR1314054     1  0.0000     0.7010 1.000 0.000
#> SRR1077944     1  0.9998    -0.5928 0.508 0.492
#> SRR1480587     1  0.2043     0.7067 0.968 0.032
#> SRR1311205     2  0.9988     0.6735 0.480 0.520
#> SRR1076369     1  0.9896    -0.2526 0.560 0.440
#> SRR1453549     1  0.3431     0.7107 0.936 0.064
#> SRR1345782     2  0.9963     0.6878 0.464 0.536
#> SRR1447850     1  0.0938     0.7007 0.988 0.012
#> SRR1391553     1  0.6048     0.6731 0.852 0.148
#> SRR1444156     1  0.0672     0.6959 0.992 0.008
#> SRR1471731     1  0.5294     0.6918 0.880 0.120
#> SRR1120987     1  0.3879     0.7037 0.924 0.076
#> SRR1477363     2  0.9993     0.6540 0.484 0.516
#> SRR1391961     2  0.1414     0.3594 0.020 0.980
#> SRR1373879     1  0.5178     0.6918 0.884 0.116
#> SRR1318732     1  0.5629     0.6918 0.868 0.132
#> SRR1091404     2  0.9977     0.6839 0.472 0.528
#> SRR1402109     1  0.5178     0.6918 0.884 0.116
#> SRR1407336     1  0.6343     0.6661 0.840 0.160
#> SRR1097417     1  0.5842     0.6790 0.860 0.140
#> SRR1396227     1  0.9775    -0.3139 0.588 0.412
#> SRR1400775     1  0.0000     0.7010 1.000 0.000
#> SRR1392861     1  0.1843     0.7039 0.972 0.028
#> SRR1472929     2  0.1184     0.3493 0.016 0.984
#> SRR1436740     1  0.1843     0.7039 0.972 0.028
#> SRR1477057     1  0.8713     0.3039 0.708 0.292
#> SRR1311980     1  0.6048     0.6731 0.852 0.148
#> SRR1069400     1  0.6343     0.6661 0.840 0.160
#> SRR1351016     2  0.9988     0.6735 0.480 0.520
#> SRR1096291     1  0.4690     0.7033 0.900 0.100
#> SRR1418145     1  0.4298     0.6985 0.912 0.088
#> SRR1488111     1  0.3879     0.7037 0.924 0.076
#> SRR1370495     1  0.9460    -0.0188 0.636 0.364
#> SRR1352639     1  0.6531     0.6592 0.832 0.168
#> SRR1348911     1  0.5737     0.6828 0.864 0.136
#> SRR1467386     1  0.9983    -0.5753 0.524 0.476
#> SRR1415956     2  0.9933     0.6822 0.452 0.548
#> SRR1500495     2  0.9983     0.6616 0.476 0.524
#> SRR1405099     2  0.9933     0.6822 0.452 0.548
#> SRR1345585     1  0.5059     0.6989 0.888 0.112
#> SRR1093196     1  0.5294     0.6918 0.880 0.120
#> SRR1466006     1  0.8144     0.4487 0.748 0.252
#> SRR1351557     1  0.0000     0.7010 1.000 0.000
#> SRR1382687     1  0.9933    -0.4713 0.548 0.452
#> SRR1375549     1  0.9775    -0.2381 0.588 0.412
#> SRR1101765     1  0.9896    -0.2526 0.560 0.440
#> SRR1334461     2  0.0672     0.3530 0.008 0.992
#> SRR1094073     1  0.0000     0.7010 1.000 0.000
#> SRR1077549     2  0.9993     0.6718 0.484 0.516
#> SRR1440332     1  0.9970    -0.5166 0.532 0.468
#> SRR1454177     1  0.1843     0.7039 0.972 0.028
#> SRR1082447     2  0.9988     0.6662 0.480 0.520
#> SRR1420043     1  0.3431     0.7107 0.936 0.064
#> SRR1432500     2  1.0000     0.6296 0.500 0.500
#> SRR1378045     1  0.0672     0.6959 0.992 0.008
#> SRR1334200     2  0.6801     0.3493 0.180 0.820
#> SRR1069539     1  0.4690     0.7033 0.900 0.100
#> SRR1343031     1  0.6343     0.6661 0.840 0.160
#> SRR1319690     1  0.9996    -0.5798 0.512 0.488
#> SRR1310604     1  0.0376     0.6994 0.996 0.004
#> SRR1327747     1  0.9000     0.3303 0.684 0.316
#> SRR1072456     1  0.0376     0.6994 0.996 0.004
#> SRR1367896     1  0.5842     0.6790 0.860 0.140
#> SRR1480107     2  0.9963     0.6878 0.464 0.536
#> SRR1377756     1  0.9996    -0.6112 0.512 0.488
#> SRR1435272     1  0.4298     0.6777 0.912 0.088
#> SRR1089230     1  0.2423     0.7061 0.960 0.040
#> SRR1389522     1  0.6048     0.6748 0.852 0.148
#> SRR1080600     1  0.8144     0.4487 0.748 0.252
#> SRR1086935     1  0.1184     0.6991 0.984 0.016
#> SRR1344060     2  0.6531     0.3564 0.168 0.832
#> SRR1467922     1  0.0672     0.6959 0.992 0.008
#> SRR1090984     1  0.7883     0.5295 0.764 0.236
#> SRR1456991     2  0.9963     0.6878 0.464 0.536
#> SRR1085039     2  0.9977     0.6807 0.472 0.528
#> SRR1069303     2  0.9993     0.6748 0.484 0.516
#> SRR1091500     1  0.1633     0.7060 0.976 0.024
#> SRR1075198     1  0.4022     0.7038 0.920 0.080
#> SRR1086915     1  0.5946     0.6063 0.856 0.144
#> SRR1499503     1  0.0376     0.6994 0.996 0.004
#> SRR1094312     1  0.0000     0.7010 1.000 0.000
#> SRR1352437     2  0.9993     0.6748 0.484 0.516
#> SRR1436323     1  0.5294     0.6918 0.880 0.120
#> SRR1073507     2  0.9993     0.6718 0.484 0.516
#> SRR1401972     2  0.9993     0.6748 0.484 0.516
#> SRR1415510     1  0.0376     0.6994 0.996 0.004
#> SRR1327279     2  0.9988     0.6785 0.480 0.520
#> SRR1086983     1  0.8813     0.1602 0.700 0.300
#> SRR1105174     2  0.9933     0.6822 0.452 0.548
#> SRR1468893     2  0.9977     0.6853 0.472 0.528
#> SRR1362555     1  0.4022     0.7038 0.920 0.080
#> SRR1074526     2  0.3879     0.3624 0.076 0.924
#> SRR1326225     1  0.0000     0.7010 1.000 0.000
#> SRR1401933     1  0.9795    -0.3275 0.584 0.416
#> SRR1324062     1  0.9944    -0.5068 0.544 0.456
#> SRR1102296     1  0.9922    -0.4452 0.552 0.448
#> SRR1085087     2  0.9993     0.6718 0.484 0.516
#> SRR1079046     1  0.9775    -0.2461 0.588 0.412
#> SRR1328339     1  0.7674     0.5562 0.776 0.224
#> SRR1079782     1  0.4022     0.7038 0.920 0.080
#> SRR1092257     1  0.3879     0.7037 0.924 0.076

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     3  0.3998     0.6164 0.056 0.060 0.884
#> SRR1429287     3  0.4636     0.6574 0.116 0.036 0.848
#> SRR1359238     1  0.5384     0.6544 0.788 0.024 0.188
#> SRR1309597     3  0.6835     0.5885 0.284 0.040 0.676
#> SRR1441398     1  0.2879     0.8094 0.924 0.052 0.024
#> SRR1084055     3  0.4194     0.6214 0.064 0.060 0.876
#> SRR1417566     1  0.7059    -0.1573 0.520 0.020 0.460
#> SRR1351857     1  0.5894     0.6423 0.752 0.028 0.220
#> SRR1487485     3  0.6735     0.6101 0.260 0.044 0.696
#> SRR1335875     3  0.7065     0.5322 0.352 0.032 0.616
#> SRR1073947     1  0.0661     0.8138 0.988 0.008 0.004
#> SRR1443483     3  0.7246     0.5914 0.276 0.060 0.664
#> SRR1346794     1  0.6546     0.5927 0.716 0.044 0.240
#> SRR1405245     1  0.2414     0.8118 0.940 0.040 0.020
#> SRR1409677     3  0.7283     0.2714 0.460 0.028 0.512
#> SRR1095549     1  0.4615     0.7179 0.836 0.020 0.144
#> SRR1323788     1  0.5058     0.7182 0.820 0.032 0.148
#> SRR1314054     3  0.5004     0.6311 0.088 0.072 0.840
#> SRR1077944     1  0.2773     0.8097 0.928 0.024 0.048
#> SRR1480587     3  0.4745     0.6193 0.068 0.080 0.852
#> SRR1311205     1  0.0848     0.8155 0.984 0.008 0.008
#> SRR1076369     1  0.7337     0.6500 0.708 0.140 0.152
#> SRR1453549     3  0.7411     0.4151 0.416 0.036 0.548
#> SRR1345782     1  0.0892     0.8110 0.980 0.020 0.000
#> SRR1447850     3  0.5608     0.6445 0.120 0.072 0.808
#> SRR1391553     3  0.7279     0.4852 0.376 0.036 0.588
#> SRR1444156     3  0.2711     0.5617 0.000 0.088 0.912
#> SRR1471731     3  0.7480     0.3274 0.456 0.036 0.508
#> SRR1120987     3  0.5012     0.6487 0.204 0.008 0.788
#> SRR1477363     1  0.2187     0.8118 0.948 0.024 0.028
#> SRR1391961     2  0.4291     0.9081 0.152 0.840 0.008
#> SRR1373879     3  0.7395     0.4787 0.380 0.040 0.580
#> SRR1318732     3  0.7878     0.4389 0.392 0.060 0.548
#> SRR1091404     1  0.1170     0.8155 0.976 0.016 0.008
#> SRR1402109     3  0.7395     0.4787 0.380 0.040 0.580
#> SRR1407336     3  0.7974     0.3627 0.436 0.060 0.504
#> SRR1097417     3  0.7259     0.6044 0.248 0.072 0.680
#> SRR1396227     1  0.3682     0.7710 0.876 0.008 0.116
#> SRR1400775     3  0.4737     0.6276 0.084 0.064 0.852
#> SRR1392861     3  0.7295     0.1986 0.480 0.028 0.492
#> SRR1472929     2  0.4059     0.9017 0.128 0.860 0.012
#> SRR1436740     3  0.7295     0.1986 0.480 0.028 0.492
#> SRR1477057     3  0.7013     0.3164 0.432 0.020 0.548
#> SRR1311980     3  0.7311     0.4700 0.384 0.036 0.580
#> SRR1069400     3  0.7742     0.5215 0.356 0.060 0.584
#> SRR1351016     1  0.0848     0.8155 0.984 0.008 0.008
#> SRR1096291     3  0.7357     0.5677 0.332 0.048 0.620
#> SRR1418145     3  0.6448     0.5185 0.352 0.012 0.636
#> SRR1488111     3  0.5012     0.6487 0.204 0.008 0.788
#> SRR1370495     1  0.6512     0.4626 0.676 0.024 0.300
#> SRR1352639     3  0.6313     0.5907 0.308 0.016 0.676
#> SRR1348911     3  0.6744     0.5866 0.300 0.032 0.668
#> SRR1467386     1  0.1860     0.8128 0.948 0.000 0.052
#> SRR1415956     1  0.1289     0.8065 0.968 0.032 0.000
#> SRR1500495     1  0.2879     0.8094 0.924 0.052 0.024
#> SRR1405099     1  0.1289     0.8065 0.968 0.032 0.000
#> SRR1345585     3  0.7285     0.5795 0.320 0.048 0.632
#> SRR1093196     3  0.7476     0.3390 0.452 0.036 0.512
#> SRR1466006     3  0.6016     0.4207 0.020 0.256 0.724
#> SRR1351557     3  0.4469     0.6150 0.060 0.076 0.864
#> SRR1382687     1  0.4063     0.7809 0.868 0.020 0.112
#> SRR1375549     1  0.5618     0.7285 0.796 0.048 0.156
#> SRR1101765     1  0.7337     0.6500 0.708 0.140 0.152
#> SRR1334461     2  0.3983     0.9063 0.144 0.852 0.004
#> SRR1094073     3  0.4469     0.6150 0.060 0.076 0.864
#> SRR1077549     1  0.0848     0.8154 0.984 0.008 0.008
#> SRR1440332     1  0.2845     0.7977 0.920 0.012 0.068
#> SRR1454177     3  0.7295     0.1986 0.480 0.028 0.492
#> SRR1082447     1  0.1919     0.8169 0.956 0.020 0.024
#> SRR1420043     3  0.7411     0.4151 0.416 0.036 0.548
#> SRR1432500     1  0.1267     0.8163 0.972 0.004 0.024
#> SRR1378045     3  0.3832     0.6053 0.036 0.076 0.888
#> SRR1334200     2  0.6865     0.8478 0.104 0.736 0.160
#> SRR1069539     3  0.7334     0.5731 0.328 0.048 0.624
#> SRR1343031     3  0.7878     0.4624 0.392 0.060 0.548
#> SRR1319690     1  0.3554     0.8017 0.900 0.036 0.064
#> SRR1310604     3  0.4095     0.6155 0.056 0.064 0.880
#> SRR1327747     1  0.6781     0.5533 0.704 0.052 0.244
#> SRR1072456     3  0.4095     0.6155 0.056 0.064 0.880
#> SRR1367896     3  0.7259     0.6044 0.248 0.072 0.680
#> SRR1480107     1  0.0892     0.8110 0.980 0.020 0.000
#> SRR1377756     1  0.2636     0.8110 0.932 0.020 0.048
#> SRR1435272     1  0.7248     0.0176 0.536 0.028 0.436
#> SRR1089230     1  0.7295    -0.1792 0.492 0.028 0.480
#> SRR1389522     3  0.7451     0.5757 0.304 0.060 0.636
#> SRR1080600     3  0.6016     0.4207 0.020 0.256 0.724
#> SRR1086935     3  0.7319     0.3614 0.420 0.032 0.548
#> SRR1344060     2  0.6693     0.8601 0.104 0.748 0.148
#> SRR1467922     3  0.2711     0.5617 0.000 0.088 0.912
#> SRR1090984     1  0.7152    -0.0948 0.532 0.024 0.444
#> SRR1456991     1  0.0892     0.8110 0.980 0.020 0.000
#> SRR1085039     1  0.1482     0.8156 0.968 0.020 0.012
#> SRR1069303     1  0.0848     0.8147 0.984 0.008 0.008
#> SRR1091500     3  0.6031     0.6337 0.116 0.096 0.788
#> SRR1075198     3  0.5414     0.6458 0.212 0.016 0.772
#> SRR1086915     1  0.7067     0.2638 0.596 0.028 0.376
#> SRR1499503     3  0.4095     0.6155 0.056 0.064 0.880
#> SRR1094312     3  0.4737     0.6276 0.084 0.064 0.852
#> SRR1352437     1  0.0848     0.8147 0.984 0.008 0.008
#> SRR1436323     1  0.7493    -0.2629 0.484 0.036 0.480
#> SRR1073507     1  0.0848     0.8154 0.984 0.008 0.008
#> SRR1401972     1  0.0848     0.8147 0.984 0.008 0.008
#> SRR1415510     3  0.4290     0.6231 0.064 0.064 0.872
#> SRR1327279     1  0.1015     0.8153 0.980 0.008 0.012
#> SRR1086983     1  0.5894     0.6423 0.752 0.028 0.220
#> SRR1105174     1  0.1163     0.8078 0.972 0.028 0.000
#> SRR1468893     1  0.1129     0.8162 0.976 0.020 0.004
#> SRR1362555     3  0.5414     0.6458 0.212 0.016 0.772
#> SRR1074526     2  0.5235     0.9091 0.152 0.812 0.036
#> SRR1326225     3  0.4194     0.6214 0.064 0.060 0.876
#> SRR1401933     1  0.3845     0.7722 0.872 0.012 0.116
#> SRR1324062     1  0.3349     0.7819 0.888 0.004 0.108
#> SRR1102296     1  0.5597     0.5890 0.764 0.020 0.216
#> SRR1085087     1  0.1170     0.8162 0.976 0.008 0.016
#> SRR1079046     1  0.6990     0.6386 0.728 0.108 0.164
#> SRR1328339     3  0.7063     0.3248 0.464 0.020 0.516
#> SRR1079782     3  0.5414     0.6458 0.212 0.016 0.772
#> SRR1092257     3  0.5012     0.6487 0.204 0.008 0.788

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.3808     0.6986 0.012 0.812 0.176 0.000
#> SRR1429287     2  0.5881     0.4905 0.028 0.656 0.296 0.020
#> SRR1359238     1  0.5618     0.5326 0.672 0.028 0.288 0.012
#> SRR1309597     3  0.4238     0.6023 0.108 0.060 0.828 0.004
#> SRR1441398     1  0.2611     0.8059 0.896 0.000 0.096 0.008
#> SRR1084055     2  0.3808     0.7005 0.012 0.824 0.160 0.004
#> SRR1417566     3  0.6123     0.4618 0.372 0.056 0.572 0.000
#> SRR1351857     1  0.7651     0.3068 0.552 0.180 0.248 0.020
#> SRR1487485     3  0.4965     0.5824 0.112 0.100 0.784 0.004
#> SRR1335875     3  0.5434     0.6174 0.188 0.084 0.728 0.000
#> SRR1073947     1  0.1661     0.8149 0.944 0.000 0.052 0.004
#> SRR1443483     3  0.4504     0.5746 0.088 0.064 0.828 0.020
#> SRR1346794     1  0.6017     0.5179 0.664 0.040 0.276 0.020
#> SRR1405245     1  0.2593     0.8114 0.892 0.000 0.104 0.004
#> SRR1409677     3  0.8210     0.4674 0.264 0.260 0.456 0.020
#> SRR1095549     1  0.4963     0.6774 0.740 0.024 0.228 0.008
#> SRR1323788     1  0.4931     0.6904 0.760 0.028 0.200 0.012
#> SRR1314054     2  0.3774     0.6915 0.008 0.820 0.168 0.004
#> SRR1077944     1  0.2384     0.8131 0.916 0.008 0.072 0.004
#> SRR1480587     2  0.4434     0.6846 0.016 0.772 0.208 0.004
#> SRR1311205     1  0.2401     0.8083 0.904 0.000 0.092 0.004
#> SRR1076369     1  0.6887     0.5984 0.676 0.048 0.156 0.120
#> SRR1453549     3  0.7681     0.4976 0.188 0.260 0.536 0.016
#> SRR1345782     1  0.1109     0.8125 0.968 0.000 0.028 0.004
#> SRR1447850     2  0.4869     0.6187 0.028 0.780 0.172 0.020
#> SRR1391553     3  0.5464     0.6436 0.212 0.072 0.716 0.000
#> SRR1444156     2  0.5231     0.5683 0.000 0.676 0.296 0.028
#> SRR1471731     3  0.5646     0.6521 0.272 0.056 0.672 0.000
#> SRR1120987     2  0.6982     0.4474 0.108 0.584 0.296 0.012
#> SRR1477363     1  0.2635     0.8169 0.908 0.004 0.072 0.016
#> SRR1391961     4  0.2748     0.8817 0.072 0.004 0.020 0.904
#> SRR1373879     3  0.4974     0.6659 0.224 0.040 0.736 0.000
#> SRR1318732     3  0.6216     0.6204 0.272 0.080 0.644 0.004
#> SRR1091404     1  0.1209     0.8165 0.964 0.004 0.032 0.000
#> SRR1402109     3  0.4974     0.6659 0.224 0.040 0.736 0.000
#> SRR1407336     3  0.5636     0.6613 0.248 0.036 0.700 0.016
#> SRR1097417     3  0.4744     0.5305 0.056 0.088 0.820 0.036
#> SRR1396227     1  0.4625     0.7531 0.804 0.044 0.140 0.012
#> SRR1400775     2  0.3400     0.6970 0.012 0.856 0.128 0.004
#> SRR1392861     3  0.8120     0.4546 0.240 0.264 0.476 0.020
#> SRR1472929     4  0.2810     0.8564 0.008 0.008 0.088 0.896
#> SRR1436740     3  0.8120     0.4546 0.240 0.264 0.476 0.020
#> SRR1477057     2  0.7666     0.0949 0.392 0.448 0.148 0.012
#> SRR1311980     3  0.5363     0.6472 0.216 0.064 0.720 0.000
#> SRR1069400     3  0.5044     0.6359 0.156 0.044 0.780 0.020
#> SRR1351016     1  0.2401     0.8083 0.904 0.000 0.092 0.004
#> SRR1096291     3  0.7596     0.4929 0.168 0.240 0.568 0.024
#> SRR1418145     2  0.8140     0.0404 0.228 0.440 0.316 0.016
#> SRR1488111     2  0.6982     0.4474 0.108 0.584 0.296 0.012
#> SRR1370495     1  0.7084     0.4585 0.616 0.216 0.152 0.016
#> SRR1352639     2  0.7916     0.2709 0.232 0.484 0.272 0.012
#> SRR1348911     3  0.4998     0.5892 0.128 0.088 0.780 0.004
#> SRR1467386     1  0.3350     0.8013 0.864 0.016 0.116 0.004
#> SRR1415956     1  0.1174     0.8055 0.968 0.000 0.020 0.012
#> SRR1500495     1  0.2611     0.8059 0.896 0.000 0.096 0.008
#> SRR1405099     1  0.0804     0.8090 0.980 0.000 0.008 0.012
#> SRR1345585     3  0.5437     0.6367 0.144 0.104 0.748 0.004
#> SRR1093196     3  0.5592     0.6549 0.264 0.056 0.680 0.000
#> SRR1466006     2  0.7392     0.3219 0.000 0.472 0.356 0.172
#> SRR1351557     2  0.3863     0.6921 0.008 0.812 0.176 0.004
#> SRR1382687     1  0.4132     0.7636 0.804 0.008 0.176 0.012
#> SRR1375549     1  0.5345     0.7088 0.776 0.076 0.124 0.024
#> SRR1101765     1  0.6844     0.6042 0.680 0.048 0.152 0.120
#> SRR1334461     4  0.2521     0.8780 0.060 0.004 0.020 0.916
#> SRR1094073     2  0.3907     0.6908 0.008 0.808 0.180 0.004
#> SRR1077549     1  0.1661     0.8179 0.944 0.000 0.052 0.004
#> SRR1440332     1  0.3632     0.7626 0.832 0.008 0.156 0.004
#> SRR1454177     3  0.8120     0.4546 0.240 0.264 0.476 0.020
#> SRR1082447     1  0.1489     0.8204 0.952 0.004 0.044 0.000
#> SRR1420043     3  0.7681     0.4976 0.188 0.260 0.536 0.016
#> SRR1432500     1  0.3006     0.8060 0.888 0.012 0.092 0.008
#> SRR1378045     3  0.5842    -0.3128 0.000 0.448 0.520 0.032
#> SRR1334200     4  0.5748     0.8208 0.024 0.176 0.064 0.736
#> SRR1069539     3  0.7620     0.4868 0.168 0.244 0.564 0.024
#> SRR1343031     3  0.5460     0.6549 0.204 0.040 0.736 0.020
#> SRR1319690     1  0.3623     0.7947 0.856 0.016 0.116 0.012
#> SRR1310604     2  0.3990     0.6993 0.012 0.808 0.176 0.004
#> SRR1327747     1  0.6068     0.4441 0.648 0.032 0.296 0.024
#> SRR1072456     2  0.4088     0.6982 0.012 0.808 0.172 0.008
#> SRR1367896     3  0.4744     0.5305 0.056 0.088 0.820 0.036
#> SRR1480107     1  0.1109     0.8125 0.968 0.000 0.028 0.004
#> SRR1377756     1  0.2989     0.8117 0.884 0.004 0.100 0.012
#> SRR1435272     3  0.8295     0.4183 0.300 0.252 0.428 0.020
#> SRR1089230     3  0.8142     0.4570 0.256 0.252 0.472 0.020
#> SRR1389522     3  0.4959     0.6015 0.124 0.060 0.796 0.020
#> SRR1080600     2  0.7392     0.3219 0.000 0.472 0.356 0.172
#> SRR1086935     3  0.8001     0.4266 0.184 0.296 0.496 0.024
#> SRR1344060     4  0.5561     0.8302 0.024 0.172 0.056 0.748
#> SRR1467922     2  0.5231     0.5683 0.000 0.676 0.296 0.028
#> SRR1090984     3  0.6449     0.4206 0.380 0.056 0.556 0.008
#> SRR1456991     1  0.1109     0.8125 0.968 0.000 0.028 0.004
#> SRR1085039     1  0.1305     0.8193 0.960 0.004 0.036 0.000
#> SRR1069303     1  0.1994     0.8140 0.936 0.008 0.052 0.004
#> SRR1091500     2  0.4592     0.6297 0.028 0.812 0.132 0.028
#> SRR1075198     2  0.7325     0.4231 0.112 0.552 0.316 0.020
#> SRR1086915     1  0.8320    -0.2041 0.404 0.240 0.336 0.020
#> SRR1499503     2  0.4088     0.6982 0.012 0.808 0.172 0.008
#> SRR1094312     2  0.3400     0.6970 0.012 0.856 0.128 0.004
#> SRR1352437     1  0.1994     0.8140 0.936 0.008 0.052 0.004
#> SRR1436323     3  0.5546     0.6247 0.292 0.044 0.664 0.000
#> SRR1073507     1  0.1661     0.8179 0.944 0.000 0.052 0.004
#> SRR1401972     1  0.1994     0.8140 0.936 0.008 0.052 0.004
#> SRR1415510     2  0.4279     0.6871 0.012 0.780 0.204 0.004
#> SRR1327279     1  0.1902     0.8140 0.932 0.000 0.064 0.004
#> SRR1086983     1  0.7651     0.3068 0.552 0.180 0.248 0.020
#> SRR1105174     1  0.0937     0.8102 0.976 0.000 0.012 0.012
#> SRR1468893     1  0.1798     0.8190 0.944 0.000 0.040 0.016
#> SRR1362555     2  0.7325     0.4231 0.112 0.552 0.316 0.020
#> SRR1074526     4  0.5239     0.8751 0.084 0.088 0.036 0.792
#> SRR1326225     2  0.3808     0.7005 0.012 0.824 0.160 0.004
#> SRR1401933     1  0.4574     0.7511 0.808 0.044 0.136 0.012
#> SRR1324062     1  0.4121     0.7516 0.796 0.020 0.184 0.000
#> SRR1102296     1  0.5720     0.4945 0.652 0.052 0.296 0.000
#> SRR1085087     1  0.2125     0.8182 0.932 0.012 0.052 0.004
#> SRR1079046     1  0.6396     0.6220 0.720 0.136 0.072 0.072
#> SRR1328339     3  0.6404     0.5648 0.296 0.096 0.608 0.000
#> SRR1079782     2  0.7325     0.4231 0.112 0.552 0.316 0.020
#> SRR1092257     2  0.6982     0.4474 0.108 0.584 0.296 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.2700     0.6837 0.004 0.884 0.088 0.024 0.000
#> SRR1429287     2  0.6438     0.4803 0.020 0.568 0.152 0.260 0.000
#> SRR1359238     1  0.5691     0.5154 0.648 0.008 0.212 0.132 0.000
#> SRR1309597     3  0.2012     0.6168 0.060 0.020 0.920 0.000 0.000
#> SRR1441398     1  0.3193     0.7624 0.840 0.000 0.132 0.028 0.000
#> SRR1084055     2  0.2052     0.6865 0.004 0.912 0.080 0.004 0.000
#> SRR1417566     3  0.6489     0.3481 0.332 0.044 0.540 0.084 0.000
#> SRR1351857     1  0.7129    -0.1091 0.528 0.104 0.092 0.276 0.000
#> SRR1487485     3  0.3518     0.6140 0.064 0.044 0.856 0.036 0.000
#> SRR1335875     3  0.4598     0.6076 0.152 0.056 0.768 0.024 0.000
#> SRR1073947     1  0.1725     0.7916 0.936 0.000 0.044 0.020 0.000
#> SRR1443483     3  0.2165     0.5978 0.036 0.024 0.924 0.000 0.016
#> SRR1346794     1  0.6052     0.5273 0.644 0.028 0.184 0.144 0.000
#> SRR1405245     1  0.2864     0.7761 0.852 0.000 0.136 0.012 0.000
#> SRR1409677     4  0.8275     0.7881 0.232 0.152 0.232 0.384 0.000
#> SRR1095549     1  0.5045     0.6575 0.720 0.008 0.164 0.108 0.000
#> SRR1323788     1  0.4704     0.6843 0.748 0.008 0.160 0.084 0.000
#> SRR1314054     2  0.3526     0.6684 0.000 0.832 0.072 0.096 0.000
#> SRR1077944     1  0.2166     0.7950 0.912 0.004 0.072 0.012 0.000
#> SRR1480587     2  0.3452     0.6757 0.008 0.840 0.124 0.024 0.004
#> SRR1311205     1  0.2482     0.7844 0.892 0.000 0.084 0.024 0.000
#> SRR1076369     1  0.6182     0.5467 0.656 0.016 0.100 0.200 0.028
#> SRR1453549     3  0.8126    -0.4467 0.168 0.148 0.396 0.288 0.000
#> SRR1345782     1  0.0880     0.7918 0.968 0.000 0.032 0.000 0.000
#> SRR1447850     2  0.5115     0.5531 0.020 0.696 0.052 0.232 0.000
#> SRR1391553     3  0.5006     0.6005 0.168 0.048 0.740 0.044 0.000
#> SRR1444156     2  0.5122     0.4985 0.000 0.688 0.200 0.112 0.000
#> SRR1471731     3  0.6542     0.3853 0.216 0.028 0.580 0.176 0.000
#> SRR1120987     2  0.7144     0.5031 0.096 0.564 0.180 0.160 0.000
#> SRR1477363     1  0.2536     0.7910 0.900 0.004 0.052 0.044 0.000
#> SRR1391961     5  0.2787     0.8231 0.028 0.000 0.004 0.088 0.880
#> SRR1373879     3  0.4702     0.6027 0.172 0.020 0.752 0.056 0.000
#> SRR1318732     3  0.6267     0.4683 0.240 0.064 0.628 0.064 0.004
#> SRR1091404     1  0.1251     0.7950 0.956 0.000 0.036 0.008 0.000
#> SRR1402109     3  0.4702     0.6027 0.172 0.020 0.752 0.056 0.000
#> SRR1407336     3  0.5925     0.5278 0.188 0.020 0.676 0.100 0.016
#> SRR1097417     3  0.3005     0.5829 0.028 0.048 0.884 0.000 0.040
#> SRR1396227     1  0.4314     0.7169 0.796 0.024 0.060 0.120 0.000
#> SRR1400775     2  0.2529     0.6825 0.004 0.900 0.056 0.040 0.000
#> SRR1392861     4  0.8128     0.9140 0.208 0.164 0.200 0.428 0.000
#> SRR1472929     5  0.1990     0.7912 0.000 0.008 0.068 0.004 0.920
#> SRR1436740     4  0.8128     0.9140 0.208 0.164 0.200 0.428 0.000
#> SRR1477057     2  0.7340     0.0241 0.392 0.400 0.056 0.152 0.000
#> SRR1311980     3  0.5042     0.5973 0.172 0.044 0.736 0.048 0.000
#> SRR1069400     3  0.4499     0.6059 0.108 0.012 0.796 0.068 0.016
#> SRR1351016     1  0.2482     0.7844 0.892 0.000 0.084 0.024 0.000
#> SRR1096291     3  0.8404     0.0321 0.148 0.180 0.436 0.220 0.016
#> SRR1418145     2  0.8214     0.1207 0.208 0.432 0.204 0.152 0.004
#> SRR1488111     2  0.7144     0.5031 0.096 0.564 0.180 0.160 0.000
#> SRR1370495     1  0.6833     0.4026 0.608 0.164 0.076 0.148 0.004
#> SRR1352639     2  0.7790     0.3793 0.212 0.492 0.180 0.112 0.004
#> SRR1348911     3  0.3019     0.6165 0.088 0.048 0.864 0.000 0.000
#> SRR1467386     1  0.3354     0.7668 0.844 0.000 0.068 0.088 0.000
#> SRR1415956     1  0.1579     0.7768 0.944 0.000 0.024 0.032 0.000
#> SRR1500495     1  0.3193     0.7624 0.840 0.000 0.132 0.028 0.000
#> SRR1405099     1  0.1300     0.7803 0.956 0.000 0.016 0.028 0.000
#> SRR1345585     3  0.5433     0.5894 0.120 0.068 0.736 0.072 0.004
#> SRR1093196     3  0.6521     0.3943 0.208 0.028 0.584 0.180 0.000
#> SRR1466006     2  0.7563     0.2731 0.000 0.428 0.252 0.268 0.052
#> SRR1351557     2  0.2654     0.6757 0.000 0.884 0.084 0.032 0.000
#> SRR1382687     1  0.4088     0.7442 0.792 0.004 0.140 0.064 0.000
#> SRR1375549     1  0.4989     0.6705 0.752 0.044 0.064 0.140 0.000
#> SRR1101765     1  0.6211     0.5452 0.652 0.016 0.100 0.204 0.028
#> SRR1334461     5  0.0865     0.8098 0.024 0.000 0.000 0.004 0.972
#> SRR1094073     2  0.2769     0.6737 0.000 0.876 0.092 0.032 0.000
#> SRR1077549     1  0.1661     0.7919 0.940 0.000 0.036 0.024 0.000
#> SRR1440332     1  0.3871     0.7359 0.808 0.004 0.132 0.056 0.000
#> SRR1454177     4  0.8128     0.9140 0.208 0.164 0.200 0.428 0.000
#> SRR1082447     1  0.1893     0.7981 0.928 0.000 0.048 0.024 0.000
#> SRR1420043     3  0.8126    -0.4467 0.168 0.148 0.396 0.288 0.000
#> SRR1432500     1  0.3073     0.7708 0.872 0.008 0.068 0.052 0.000
#> SRR1378045     3  0.5911    -0.1244 0.000 0.408 0.488 0.104 0.000
#> SRR1334200     5  0.7062     0.7511 0.004 0.140 0.044 0.296 0.516
#> SRR1069539     3  0.8426     0.0377 0.148 0.184 0.432 0.220 0.016
#> SRR1343031     3  0.5064     0.5843 0.148 0.012 0.748 0.076 0.016
#> SRR1319690     1  0.3689     0.7655 0.820 0.004 0.128 0.048 0.000
#> SRR1310604     2  0.2946     0.6844 0.004 0.876 0.088 0.028 0.004
#> SRR1327747     1  0.6101     0.4715 0.624 0.020 0.208 0.148 0.000
#> SRR1072456     2  0.2767     0.6821 0.004 0.884 0.088 0.020 0.004
#> SRR1367896     3  0.3005     0.5829 0.028 0.048 0.884 0.000 0.040
#> SRR1480107     1  0.0880     0.7918 0.968 0.000 0.032 0.000 0.000
#> SRR1377756     1  0.2940     0.7880 0.876 0.004 0.072 0.048 0.000
#> SRR1435272     4  0.8189     0.8271 0.276 0.156 0.176 0.392 0.000
#> SRR1089230     4  0.8073     0.8972 0.228 0.148 0.192 0.432 0.000
#> SRR1389522     3  0.2959     0.6151 0.072 0.024 0.884 0.004 0.016
#> SRR1080600     2  0.7563     0.2731 0.000 0.428 0.252 0.268 0.052
#> SRR1086935     4  0.7902     0.8288 0.152 0.176 0.204 0.468 0.000
#> SRR1344060     5  0.6607     0.7708 0.004 0.136 0.028 0.260 0.572
#> SRR1467922     2  0.5122     0.4985 0.000 0.688 0.200 0.112 0.000
#> SRR1090984     3  0.6425     0.3102 0.356 0.036 0.524 0.084 0.000
#> SRR1456991     1  0.0880     0.7918 0.968 0.000 0.032 0.000 0.000
#> SRR1085039     1  0.1741     0.7962 0.936 0.000 0.040 0.024 0.000
#> SRR1069303     1  0.1907     0.7867 0.928 0.000 0.028 0.044 0.000
#> SRR1091500     2  0.4078     0.6009 0.020 0.792 0.028 0.160 0.000
#> SRR1075198     2  0.7269     0.4909 0.092 0.556 0.208 0.140 0.004
#> SRR1086915     1  0.8006    -0.6589 0.380 0.144 0.140 0.336 0.000
#> SRR1499503     2  0.2767     0.6821 0.004 0.884 0.088 0.020 0.004
#> SRR1094312     2  0.2529     0.6825 0.004 0.900 0.056 0.040 0.000
#> SRR1352437     1  0.1907     0.7867 0.928 0.000 0.028 0.044 0.000
#> SRR1436323     3  0.6521     0.3341 0.240 0.020 0.564 0.176 0.000
#> SRR1073507     1  0.1661     0.7919 0.940 0.000 0.036 0.024 0.000
#> SRR1401972     1  0.1907     0.7867 0.928 0.000 0.028 0.044 0.000
#> SRR1415510     2  0.3280     0.6750 0.004 0.848 0.120 0.024 0.004
#> SRR1327279     1  0.2193     0.7883 0.912 0.000 0.060 0.028 0.000
#> SRR1086983     1  0.7129    -0.1091 0.528 0.104 0.092 0.276 0.000
#> SRR1105174     1  0.1399     0.7815 0.952 0.000 0.020 0.028 0.000
#> SRR1468893     1  0.1915     0.7962 0.928 0.000 0.032 0.040 0.000
#> SRR1362555     2  0.7269     0.4909 0.092 0.556 0.208 0.140 0.004
#> SRR1074526     5  0.6165     0.8017 0.036 0.028 0.020 0.360 0.556
#> SRR1326225     2  0.2052     0.6865 0.004 0.912 0.080 0.004 0.000
#> SRR1401933     1  0.4406     0.7159 0.788 0.024 0.060 0.128 0.000
#> SRR1324062     1  0.4514     0.7016 0.756 0.016 0.184 0.044 0.000
#> SRR1102296     1  0.5180     0.4796 0.628 0.032 0.324 0.016 0.000
#> SRR1085087     1  0.2251     0.7945 0.916 0.008 0.052 0.024 0.000
#> SRR1079046     1  0.5808     0.5441 0.692 0.084 0.032 0.180 0.012
#> SRR1328339     3  0.6017     0.4717 0.264 0.060 0.624 0.052 0.000
#> SRR1079782     2  0.7269     0.4909 0.092 0.556 0.208 0.140 0.004
#> SRR1092257     2  0.7144     0.5031 0.096 0.564 0.180 0.160 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2   0.167     0.6538 0.000 0.928 0.060 0.004 0.000 0.008
#> SRR1429287     2   0.697     0.4735 0.004 0.484 0.108 0.248 0.000 0.156
#> SRR1359238     1   0.591     0.3951 0.548 0.000 0.204 0.232 0.000 0.016
#> SRR1309597     3   0.115     0.6736 0.028 0.004 0.960 0.004 0.000 0.004
#> SRR1441398     1   0.345     0.6981 0.792 0.000 0.164 0.044 0.000 0.000
#> SRR1084055     2   0.186     0.6587 0.000 0.920 0.060 0.016 0.000 0.004
#> SRR1417566     3   0.583     0.4103 0.304 0.020 0.560 0.108 0.000 0.008
#> SRR1351857     4   0.525     0.2916 0.440 0.032 0.036 0.492 0.000 0.000
#> SRR1487485     3   0.296     0.6718 0.028 0.036 0.872 0.060 0.000 0.004
#> SRR1335875     3   0.393     0.6651 0.108 0.036 0.808 0.036 0.000 0.012
#> SRR1073947     1   0.256     0.7467 0.868 0.000 0.028 0.104 0.000 0.000
#> SRR1443483     3   0.176     0.6596 0.016 0.008 0.936 0.008 0.000 0.032
#> SRR1346794     1   0.594     0.4968 0.616 0.012 0.180 0.160 0.000 0.032
#> SRR1405245     1   0.325     0.7250 0.808 0.000 0.156 0.036 0.000 0.000
#> SRR1409677     4   0.587     0.6681 0.176 0.052 0.120 0.640 0.000 0.012
#> SRR1095549     1   0.541     0.5913 0.632 0.000 0.140 0.208 0.000 0.020
#> SRR1323788     1   0.467     0.6555 0.724 0.000 0.144 0.112 0.000 0.020
#> SRR1314054     2   0.380     0.6343 0.000 0.808 0.052 0.104 0.000 0.036
#> SRR1077944     1   0.229     0.7634 0.892 0.000 0.072 0.036 0.000 0.000
#> SRR1480587     2   0.254     0.6463 0.000 0.880 0.088 0.008 0.000 0.024
#> SRR1311205     1   0.321     0.7368 0.828 0.000 0.072 0.100 0.000 0.000
#> SRR1076369     1   0.595     0.5185 0.640 0.008 0.068 0.096 0.004 0.184
#> SRR1453549     4   0.661     0.3264 0.128 0.048 0.344 0.468 0.000 0.012
#> SRR1345782     1   0.126     0.7612 0.952 0.000 0.028 0.020 0.000 0.000
#> SRR1447850     2   0.557     0.5328 0.004 0.624 0.048 0.252 0.000 0.072
#> SRR1391553     3   0.429     0.6620 0.104 0.020 0.780 0.084 0.000 0.012
#> SRR1444156     2   0.504     0.4382 0.000 0.716 0.116 0.096 0.000 0.072
#> SRR1471731     3   0.551     0.4068 0.112 0.008 0.532 0.348 0.000 0.000
#> SRR1120987     2   0.764     0.5185 0.080 0.504 0.132 0.140 0.000 0.144
#> SRR1477363     1   0.285     0.7560 0.868 0.000 0.048 0.072 0.000 0.012
#> SRR1391961     5   0.228     0.7494 0.000 0.000 0.004 0.000 0.868 0.128
#> SRR1373879     3   0.433     0.6596 0.108 0.008 0.760 0.116 0.000 0.008
#> SRR1318732     3   0.604     0.5455 0.216 0.048 0.620 0.092 0.000 0.024
#> SRR1091404     1   0.142     0.7641 0.944 0.000 0.032 0.024 0.000 0.000
#> SRR1402109     3   0.433     0.6596 0.108 0.008 0.760 0.116 0.000 0.008
#> SRR1407336     3   0.570     0.5529 0.100 0.008 0.632 0.220 0.000 0.040
#> SRR1097417     3   0.277     0.6435 0.008 0.032 0.892 0.008 0.020 0.040
#> SRR1396227     1   0.475     0.6605 0.708 0.016 0.036 0.216 0.000 0.024
#> SRR1400775     2   0.283     0.6550 0.000 0.876 0.048 0.048 0.000 0.028
#> SRR1392861     4   0.438     0.7246 0.112 0.052 0.068 0.768 0.000 0.000
#> SRR1472929     5   0.233     0.7529 0.000 0.008 0.048 0.004 0.904 0.036
#> SRR1436740     4   0.438     0.7246 0.112 0.052 0.068 0.768 0.000 0.000
#> SRR1477057     1   0.752    -0.0315 0.384 0.356 0.048 0.136 0.000 0.076
#> SRR1311980     3   0.435     0.6577 0.104 0.016 0.772 0.096 0.000 0.012
#> SRR1069400     3   0.448     0.6544 0.068 0.008 0.768 0.116 0.000 0.040
#> SRR1351016     1   0.321     0.7368 0.828 0.000 0.072 0.100 0.000 0.000
#> SRR1096291     3   0.788     0.0606 0.096 0.140 0.352 0.348 0.000 0.064
#> SRR1418145     2   0.844     0.3203 0.144 0.388 0.140 0.180 0.000 0.148
#> SRR1488111     2   0.764     0.5185 0.080 0.504 0.132 0.140 0.000 0.144
#> SRR1370495     1   0.709     0.4021 0.548 0.124 0.052 0.188 0.000 0.088
#> SRR1352639     2   0.806     0.4124 0.204 0.440 0.124 0.112 0.000 0.120
#> SRR1348911     3   0.234     0.6730 0.056 0.036 0.900 0.004 0.000 0.004
#> SRR1467386     1   0.382     0.6975 0.760 0.000 0.044 0.192 0.000 0.004
#> SRR1415956     1   0.168     0.7350 0.928 0.000 0.020 0.052 0.000 0.000
#> SRR1500495     1   0.345     0.6981 0.792 0.000 0.164 0.044 0.000 0.000
#> SRR1405099     1   0.143     0.7389 0.940 0.000 0.012 0.048 0.000 0.000
#> SRR1345585     3   0.529     0.6569 0.088 0.048 0.716 0.124 0.000 0.024
#> SRR1093196     3   0.551     0.4061 0.112 0.008 0.532 0.348 0.000 0.000
#> SRR1466006     2   0.660     0.1280 0.000 0.416 0.132 0.068 0.000 0.384
#> SRR1351557     2   0.208     0.6472 0.000 0.912 0.060 0.016 0.000 0.012
#> SRR1382687     1   0.421     0.7095 0.764 0.000 0.128 0.092 0.000 0.016
#> SRR1375549     1   0.504     0.6391 0.732 0.024 0.048 0.136 0.000 0.060
#> SRR1101765     1   0.603     0.5146 0.632 0.008 0.068 0.104 0.004 0.184
#> SRR1334461     5   0.026     0.8133 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR1094073     2   0.219     0.6448 0.000 0.904 0.068 0.016 0.000 0.012
#> SRR1077549     1   0.253     0.7449 0.868 0.000 0.024 0.108 0.000 0.000
#> SRR1440332     1   0.415     0.6738 0.744 0.000 0.112 0.144 0.000 0.000
#> SRR1454177     4   0.438     0.7246 0.112 0.052 0.068 0.768 0.000 0.000
#> SRR1082447     1   0.163     0.7659 0.932 0.000 0.044 0.024 0.000 0.000
#> SRR1420043     4   0.661     0.3264 0.128 0.048 0.344 0.468 0.000 0.012
#> SRR1432500     1   0.357     0.7081 0.796 0.004 0.052 0.148 0.000 0.000
#> SRR1378045     2   0.636     0.0929 0.000 0.424 0.412 0.088 0.000 0.076
#> SRR1334200     6   0.503     0.7679 0.000 0.116 0.012 0.004 0.188 0.680
#> SRR1069539     3   0.789     0.0660 0.096 0.144 0.352 0.344 0.000 0.064
#> SRR1343031     3   0.506     0.6264 0.096 0.008 0.716 0.140 0.000 0.040
#> SRR1319690     1   0.376     0.7182 0.792 0.000 0.140 0.056 0.000 0.012
#> SRR1310604     2   0.191     0.6547 0.000 0.920 0.060 0.004 0.004 0.012
#> SRR1327747     1   0.578     0.4382 0.596 0.000 0.208 0.168 0.000 0.028
#> SRR1072456     2   0.170     0.6528 0.000 0.928 0.060 0.004 0.004 0.004
#> SRR1367896     3   0.277     0.6435 0.008 0.032 0.892 0.008 0.020 0.040
#> SRR1480107     1   0.126     0.7612 0.952 0.000 0.028 0.020 0.000 0.000
#> SRR1377756     1   0.313     0.7554 0.852 0.000 0.060 0.072 0.000 0.016
#> SRR1435272     4   0.486     0.7190 0.184 0.052 0.056 0.708 0.000 0.000
#> SRR1089230     4   0.435     0.7287 0.132 0.048 0.056 0.764 0.000 0.000
#> SRR1389522     3   0.250     0.6728 0.044 0.012 0.900 0.012 0.000 0.032
#> SRR1080600     2   0.660     0.1280 0.000 0.416 0.132 0.068 0.000 0.384
#> SRR1086935     4   0.382     0.6576 0.056 0.056 0.064 0.820 0.000 0.004
#> SRR1344060     6   0.527     0.7587 0.000 0.112 0.012 0.000 0.256 0.620
#> SRR1467922     2   0.504     0.4382 0.000 0.716 0.116 0.096 0.000 0.072
#> SRR1090984     3   0.600     0.3764 0.316 0.016 0.540 0.112 0.000 0.016
#> SRR1456991     1   0.126     0.7612 0.952 0.000 0.028 0.020 0.000 0.000
#> SRR1085039     1   0.149     0.7640 0.940 0.000 0.036 0.024 0.000 0.000
#> SRR1069303     1   0.258     0.7314 0.848 0.000 0.004 0.144 0.000 0.004
#> SRR1091500     2   0.476     0.5833 0.004 0.732 0.032 0.144 0.000 0.088
#> SRR1075198     2   0.761     0.5101 0.072 0.504 0.152 0.124 0.000 0.148
#> SRR1086915     4   0.520     0.6419 0.296 0.052 0.036 0.616 0.000 0.000
#> SRR1499503     2   0.170     0.6528 0.000 0.928 0.060 0.004 0.004 0.004
#> SRR1094312     2   0.283     0.6550 0.000 0.876 0.048 0.048 0.000 0.028
#> SRR1352437     1   0.258     0.7314 0.848 0.000 0.004 0.144 0.000 0.004
#> SRR1436323     3   0.561     0.3614 0.124 0.008 0.520 0.348 0.000 0.000
#> SRR1073507     1   0.253     0.7449 0.868 0.000 0.024 0.108 0.000 0.000
#> SRR1401972     1   0.258     0.7314 0.848 0.000 0.004 0.144 0.000 0.004
#> SRR1415510     2   0.226     0.6451 0.000 0.892 0.092 0.004 0.004 0.008
#> SRR1327279     1   0.293     0.7378 0.844 0.000 0.044 0.112 0.000 0.000
#> SRR1086983     4   0.525     0.2916 0.440 0.032 0.036 0.492 0.000 0.000
#> SRR1105174     1   0.146     0.7401 0.940 0.000 0.016 0.044 0.000 0.000
#> SRR1468893     1   0.245     0.7666 0.888 0.000 0.020 0.080 0.000 0.012
#> SRR1362555     2   0.761     0.5101 0.072 0.504 0.152 0.124 0.000 0.148
#> SRR1074526     6   0.334     0.5749 0.000 0.000 0.004 0.000 0.260 0.736
#> SRR1326225     2   0.186     0.6587 0.000 0.920 0.060 0.016 0.000 0.004
#> SRR1401933     1   0.466     0.6821 0.732 0.016 0.040 0.184 0.000 0.028
#> SRR1324062     1   0.499     0.6351 0.676 0.000 0.180 0.132 0.000 0.012
#> SRR1102296     1   0.509     0.4942 0.604 0.028 0.328 0.036 0.000 0.004
#> SRR1085087     1   0.298     0.7458 0.844 0.004 0.036 0.116 0.000 0.000
#> SRR1079046     1   0.589     0.5232 0.660 0.052 0.028 0.152 0.000 0.108
#> SRR1328339     3   0.539     0.5259 0.224 0.036 0.656 0.076 0.000 0.008
#> SRR1079782     2   0.761     0.5101 0.072 0.504 0.152 0.124 0.000 0.148
#> SRR1092257     2   0.764     0.5185 0.080 0.504 0.132 0.140 0.000 0.144

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.740           0.845       0.940         0.4372 0.566   0.566
#> 3 3 0.448           0.644       0.789         0.4338 0.702   0.511
#> 4 4 0.511           0.484       0.678         0.1472 0.748   0.416
#> 5 5 0.645           0.648       0.801         0.0774 0.845   0.526
#> 6 6 0.658           0.553       0.694         0.0481 0.888   0.595

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000     0.9067 0.000 1.000
#> SRR1429287     2  0.0000     0.9067 0.000 1.000
#> SRR1359238     1  0.0000     0.9419 1.000 0.000
#> SRR1309597     1  0.8861     0.5735 0.696 0.304
#> SRR1441398     1  0.0000     0.9419 1.000 0.000
#> SRR1084055     2  0.0000     0.9067 0.000 1.000
#> SRR1417566     1  0.6531     0.7824 0.832 0.168
#> SRR1351857     1  0.0000     0.9419 1.000 0.000
#> SRR1487485     2  0.9998    -0.0164 0.492 0.508
#> SRR1335875     1  0.6343     0.7916 0.840 0.160
#> SRR1073947     1  0.0000     0.9419 1.000 0.000
#> SRR1443483     1  0.8861     0.5735 0.696 0.304
#> SRR1346794     1  0.0000     0.9419 1.000 0.000
#> SRR1405245     1  0.0000     0.9419 1.000 0.000
#> SRR1409677     1  0.0000     0.9419 1.000 0.000
#> SRR1095549     1  0.0000     0.9419 1.000 0.000
#> SRR1323788     1  0.0000     0.9419 1.000 0.000
#> SRR1314054     2  0.0000     0.9067 0.000 1.000
#> SRR1077944     1  0.0000     0.9419 1.000 0.000
#> SRR1480587     2  0.0000     0.9067 0.000 1.000
#> SRR1311205     1  0.0000     0.9419 1.000 0.000
#> SRR1076369     1  0.0000     0.9419 1.000 0.000
#> SRR1453549     1  0.0000     0.9419 1.000 0.000
#> SRR1345782     1  0.0000     0.9419 1.000 0.000
#> SRR1447850     2  0.0000     0.9067 0.000 1.000
#> SRR1391553     2  0.9977     0.0601 0.472 0.528
#> SRR1444156     2  0.0000     0.9067 0.000 1.000
#> SRR1471731     1  0.6531     0.7824 0.832 0.168
#> SRR1120987     1  0.0000     0.9419 1.000 0.000
#> SRR1477363     1  0.0000     0.9419 1.000 0.000
#> SRR1391961     2  0.9963     0.2047 0.464 0.536
#> SRR1373879     1  0.0000     0.9419 1.000 0.000
#> SRR1318732     1  0.7883     0.6903 0.764 0.236
#> SRR1091404     1  0.0000     0.9419 1.000 0.000
#> SRR1402109     1  0.0000     0.9419 1.000 0.000
#> SRR1407336     1  0.1414     0.9265 0.980 0.020
#> SRR1097417     2  0.2236     0.8821 0.036 0.964
#> SRR1396227     1  0.0000     0.9419 1.000 0.000
#> SRR1400775     2  0.0000     0.9067 0.000 1.000
#> SRR1392861     1  0.0000     0.9419 1.000 0.000
#> SRR1472929     2  0.1414     0.8943 0.020 0.980
#> SRR1436740     1  0.0000     0.9419 1.000 0.000
#> SRR1477057     2  0.0000     0.9067 0.000 1.000
#> SRR1311980     1  0.6343     0.7916 0.840 0.160
#> SRR1069400     1  0.8813     0.5812 0.700 0.300
#> SRR1351016     1  0.0000     0.9419 1.000 0.000
#> SRR1096291     1  0.0000     0.9419 1.000 0.000
#> SRR1418145     1  0.0000     0.9419 1.000 0.000
#> SRR1488111     2  0.8861     0.5334 0.304 0.696
#> SRR1370495     1  0.0000     0.9419 1.000 0.000
#> SRR1352639     1  0.0000     0.9419 1.000 0.000
#> SRR1348911     1  0.9000     0.5497 0.684 0.316
#> SRR1467386     1  0.0000     0.9419 1.000 0.000
#> SRR1415956     1  0.0000     0.9419 1.000 0.000
#> SRR1500495     1  0.0000     0.9419 1.000 0.000
#> SRR1405099     1  0.0000     0.9419 1.000 0.000
#> SRR1345585     2  0.9998    -0.0164 0.492 0.508
#> SRR1093196     1  0.6531     0.7824 0.832 0.168
#> SRR1466006     2  0.0000     0.9067 0.000 1.000
#> SRR1351557     2  0.0000     0.9067 0.000 1.000
#> SRR1382687     1  0.0000     0.9419 1.000 0.000
#> SRR1375549     1  0.0000     0.9419 1.000 0.000
#> SRR1101765     1  0.0000     0.9419 1.000 0.000
#> SRR1334461     2  0.9996     0.1322 0.488 0.512
#> SRR1094073     2  0.0000     0.9067 0.000 1.000
#> SRR1077549     1  0.0000     0.9419 1.000 0.000
#> SRR1440332     1  0.0000     0.9419 1.000 0.000
#> SRR1454177     1  0.0000     0.9419 1.000 0.000
#> SRR1082447     1  0.0000     0.9419 1.000 0.000
#> SRR1420043     1  0.0000     0.9419 1.000 0.000
#> SRR1432500     1  0.0000     0.9419 1.000 0.000
#> SRR1378045     2  0.0000     0.9067 0.000 1.000
#> SRR1334200     2  0.1184     0.8971 0.016 0.984
#> SRR1069539     1  0.9922     0.1947 0.552 0.448
#> SRR1343031     1  0.0000     0.9419 1.000 0.000
#> SRR1319690     1  0.0000     0.9419 1.000 0.000
#> SRR1310604     2  0.0000     0.9067 0.000 1.000
#> SRR1327747     1  0.0000     0.9419 1.000 0.000
#> SRR1072456     2  0.0000     0.9067 0.000 1.000
#> SRR1367896     1  0.9000     0.5497 0.684 0.316
#> SRR1480107     1  0.0000     0.9419 1.000 0.000
#> SRR1377756     1  0.0000     0.9419 1.000 0.000
#> SRR1435272     1  0.0000     0.9419 1.000 0.000
#> SRR1089230     1  0.0000     0.9419 1.000 0.000
#> SRR1389522     1  0.2603     0.9064 0.956 0.044
#> SRR1080600     2  0.0000     0.9067 0.000 1.000
#> SRR1086935     1  0.8555     0.6159 0.720 0.280
#> SRR1344060     2  0.2948     0.8710 0.052 0.948
#> SRR1467922     2  0.0000     0.9067 0.000 1.000
#> SRR1090984     1  0.0000     0.9419 1.000 0.000
#> SRR1456991     1  0.0000     0.9419 1.000 0.000
#> SRR1085039     1  0.0000     0.9419 1.000 0.000
#> SRR1069303     1  0.0000     0.9419 1.000 0.000
#> SRR1091500     2  0.0000     0.9067 0.000 1.000
#> SRR1075198     2  0.0000     0.9067 0.000 1.000
#> SRR1086915     1  0.0000     0.9419 1.000 0.000
#> SRR1499503     2  0.0000     0.9067 0.000 1.000
#> SRR1094312     2  0.0000     0.9067 0.000 1.000
#> SRR1352437     1  0.0000     0.9419 1.000 0.000
#> SRR1436323     1  0.0000     0.9419 1.000 0.000
#> SRR1073507     1  0.0000     0.9419 1.000 0.000
#> SRR1401972     1  0.0000     0.9419 1.000 0.000
#> SRR1415510     2  0.0000     0.9067 0.000 1.000
#> SRR1327279     1  0.0000     0.9419 1.000 0.000
#> SRR1086983     1  0.0000     0.9419 1.000 0.000
#> SRR1105174     1  0.0000     0.9419 1.000 0.000
#> SRR1468893     1  0.0000     0.9419 1.000 0.000
#> SRR1362555     2  0.0376     0.9045 0.004 0.996
#> SRR1074526     2  0.7299     0.7090 0.204 0.796
#> SRR1326225     2  0.0000     0.9067 0.000 1.000
#> SRR1401933     1  0.0000     0.9419 1.000 0.000
#> SRR1324062     1  0.0000     0.9419 1.000 0.000
#> SRR1102296     1  0.0000     0.9419 1.000 0.000
#> SRR1085087     1  0.0000     0.9419 1.000 0.000
#> SRR1079046     1  0.9996    -0.0859 0.512 0.488
#> SRR1328339     1  0.7139     0.7479 0.804 0.196
#> SRR1079782     2  0.0000     0.9067 0.000 1.000
#> SRR1092257     2  0.0000     0.9067 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0424     0.9368 0.000 0.992 0.008
#> SRR1429287     2  0.2165     0.9217 0.000 0.936 0.064
#> SRR1359238     1  0.6307    -0.2875 0.512 0.000 0.488
#> SRR1309597     3  0.7536     0.6221 0.304 0.064 0.632
#> SRR1441398     1  0.3941     0.6262 0.844 0.000 0.156
#> SRR1084055     2  0.1411     0.9289 0.000 0.964 0.036
#> SRR1417566     1  0.7389    -0.2084 0.504 0.032 0.464
#> SRR1351857     1  0.5291     0.4986 0.732 0.000 0.268
#> SRR1487485     3  0.6981     0.6173 0.068 0.228 0.704
#> SRR1335875     3  0.6772     0.6744 0.304 0.032 0.664
#> SRR1073947     1  0.3412     0.6772 0.876 0.000 0.124
#> SRR1443483     3  0.7015     0.6941 0.240 0.064 0.696
#> SRR1346794     1  0.4605     0.5922 0.796 0.000 0.204
#> SRR1405245     1  0.4121     0.6126 0.832 0.000 0.168
#> SRR1409677     3  0.6215     0.4761 0.428 0.000 0.572
#> SRR1095549     1  0.4887     0.5440 0.772 0.000 0.228
#> SRR1323788     1  0.3686     0.6406 0.860 0.000 0.140
#> SRR1314054     2  0.0237     0.9373 0.000 0.996 0.004
#> SRR1077944     1  0.0892     0.7137 0.980 0.000 0.020
#> SRR1480587     2  0.0424     0.9368 0.000 0.992 0.008
#> SRR1311205     1  0.2537     0.6916 0.920 0.000 0.080
#> SRR1076369     1  0.6081     0.4329 0.652 0.004 0.344
#> SRR1453549     3  0.4796     0.7370 0.220 0.000 0.780
#> SRR1345782     1  0.2165     0.7042 0.936 0.000 0.064
#> SRR1447850     2  0.1860     0.9161 0.000 0.948 0.052
#> SRR1391553     3  0.6096     0.5405 0.016 0.280 0.704
#> SRR1444156     2  0.0592     0.9370 0.000 0.988 0.012
#> SRR1471731     3  0.5503     0.7400 0.208 0.020 0.772
#> SRR1120987     1  0.6664    -0.0254 0.528 0.008 0.464
#> SRR1477363     1  0.1031     0.7147 0.976 0.000 0.024
#> SRR1391961     1  0.8608     0.3955 0.604 0.192 0.204
#> SRR1373879     3  0.4887     0.7358 0.228 0.000 0.772
#> SRR1318732     1  0.8070    -0.3021 0.468 0.064 0.468
#> SRR1091404     1  0.0892     0.7148 0.980 0.000 0.020
#> SRR1402109     3  0.5016     0.7347 0.240 0.000 0.760
#> SRR1407336     3  0.5202     0.7401 0.220 0.008 0.772
#> SRR1097417     3  0.6254     0.4703 0.056 0.188 0.756
#> SRR1396227     1  0.2356     0.7058 0.928 0.000 0.072
#> SRR1400775     2  0.0237     0.9373 0.000 0.996 0.004
#> SRR1392861     3  0.5058     0.7287 0.244 0.000 0.756
#> SRR1472929     2  0.7801     0.6719 0.088 0.636 0.276
#> SRR1436740     3  0.6192     0.4877 0.420 0.000 0.580
#> SRR1477057     2  0.2165     0.9222 0.000 0.936 0.064
#> SRR1311980     3  0.5643     0.7363 0.220 0.020 0.760
#> SRR1069400     3  0.6764     0.7079 0.224 0.060 0.716
#> SRR1351016     1  0.3116     0.6934 0.892 0.000 0.108
#> SRR1096291     3  0.6033     0.6386 0.336 0.004 0.660
#> SRR1418145     1  0.6483     0.0215 0.544 0.004 0.452
#> SRR1488111     3  0.6952     0.3345 0.024 0.376 0.600
#> SRR1370495     1  0.2774     0.6880 0.920 0.008 0.072
#> SRR1352639     1  0.2301     0.7156 0.936 0.004 0.060
#> SRR1348911     3  0.7053     0.6844 0.244 0.064 0.692
#> SRR1467386     1  0.4062     0.6454 0.836 0.000 0.164
#> SRR1415956     1  0.2165     0.6996 0.936 0.000 0.064
#> SRR1500495     1  0.3879     0.6307 0.848 0.000 0.152
#> SRR1405099     1  0.0747     0.7142 0.984 0.000 0.016
#> SRR1345585     3  0.7263     0.6183 0.084 0.224 0.692
#> SRR1093196     3  0.5597     0.7411 0.216 0.020 0.764
#> SRR1466006     2  0.0747     0.9372 0.000 0.984 0.016
#> SRR1351557     2  0.0424     0.9373 0.000 0.992 0.008
#> SRR1382687     1  0.4346     0.6341 0.816 0.000 0.184
#> SRR1375549     1  0.2066     0.7004 0.940 0.000 0.060
#> SRR1101765     1  0.3038     0.6738 0.896 0.000 0.104
#> SRR1334461     1  0.8608     0.3955 0.604 0.192 0.204
#> SRR1094073     2  0.0592     0.9370 0.000 0.988 0.012
#> SRR1077549     3  0.6307     0.3149 0.488 0.000 0.512
#> SRR1440332     3  0.6126     0.5271 0.400 0.000 0.600
#> SRR1454177     3  0.5926     0.6058 0.356 0.000 0.644
#> SRR1082447     1  0.0424     0.7152 0.992 0.000 0.008
#> SRR1420043     3  0.5016     0.7332 0.240 0.000 0.760
#> SRR1432500     1  0.5363     0.4735 0.724 0.000 0.276
#> SRR1378045     2  0.4887     0.6935 0.000 0.772 0.228
#> SRR1334200     2  0.7613     0.7155 0.116 0.680 0.204
#> SRR1069539     3  0.6910     0.6844 0.144 0.120 0.736
#> SRR1343031     3  0.4974     0.7329 0.236 0.000 0.764
#> SRR1319690     1  0.6140     0.0242 0.596 0.000 0.404
#> SRR1310604     2  0.1411     0.9327 0.000 0.964 0.036
#> SRR1327747     3  0.6359     0.5235 0.404 0.004 0.592
#> SRR1072456     2  0.0592     0.9372 0.000 0.988 0.012
#> SRR1367896     3  0.6542     0.7006 0.204 0.060 0.736
#> SRR1480107     1  0.0424     0.7153 0.992 0.000 0.008
#> SRR1377756     1  0.2537     0.6973 0.920 0.000 0.080
#> SRR1435272     3  0.6008     0.5897 0.372 0.000 0.628
#> SRR1089230     3  0.6307     0.2988 0.488 0.000 0.512
#> SRR1389522     3  0.6818     0.6030 0.348 0.024 0.628
#> SRR1080600     2  0.1643     0.9322 0.000 0.956 0.044
#> SRR1086935     3  0.7878     0.6457 0.160 0.172 0.668
#> SRR1344060     2  0.8981     0.5476 0.228 0.564 0.208
#> SRR1467922     2  0.0592     0.9370 0.000 0.988 0.012
#> SRR1090984     1  0.4605     0.5770 0.796 0.000 0.204
#> SRR1456991     1  0.0892     0.7148 0.980 0.000 0.020
#> SRR1085039     1  0.0592     0.7156 0.988 0.000 0.012
#> SRR1069303     1  0.3941     0.6583 0.844 0.000 0.156
#> SRR1091500     2  0.1163     0.9323 0.000 0.972 0.028
#> SRR1075198     2  0.1529     0.9317 0.000 0.960 0.040
#> SRR1086915     1  0.5905     0.3108 0.648 0.000 0.352
#> SRR1499503     2  0.0424     0.9368 0.000 0.992 0.008
#> SRR1094312     2  0.0237     0.9373 0.000 0.996 0.004
#> SRR1352437     1  0.4796     0.5930 0.780 0.000 0.220
#> SRR1436323     3  0.5016     0.7336 0.240 0.000 0.760
#> SRR1073507     1  0.4062     0.6454 0.836 0.000 0.164
#> SRR1401972     1  0.3941     0.6583 0.844 0.000 0.156
#> SRR1415510     2  0.0424     0.9368 0.000 0.992 0.008
#> SRR1327279     1  0.5835     0.3346 0.660 0.000 0.340
#> SRR1086983     1  0.5706     0.3876 0.680 0.000 0.320
#> SRR1105174     1  0.0892     0.7148 0.980 0.000 0.020
#> SRR1468893     1  0.0747     0.7147 0.984 0.000 0.016
#> SRR1362555     2  0.2982     0.9100 0.024 0.920 0.056
#> SRR1074526     1  0.9442     0.1918 0.496 0.288 0.216
#> SRR1326225     2  0.0592     0.9370 0.000 0.988 0.012
#> SRR1401933     1  0.3619     0.6747 0.864 0.000 0.136
#> SRR1324062     1  0.5733     0.3803 0.676 0.000 0.324
#> SRR1102296     1  0.1411     0.7157 0.964 0.000 0.036
#> SRR1085087     1  0.4346     0.6302 0.816 0.000 0.184
#> SRR1079046     1  0.5348     0.5705 0.796 0.028 0.176
#> SRR1328339     1  0.5899     0.4934 0.736 0.020 0.244
#> SRR1079782     2  0.1964     0.9239 0.000 0.944 0.056
#> SRR1092257     2  0.2261     0.9179 0.000 0.932 0.068

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0188     0.9664 0.004 0.996 0.000 0.000
#> SRR1429287     2  0.3272     0.9240 0.080 0.884 0.024 0.012
#> SRR1359238     4  0.3547     0.5463 0.016 0.000 0.144 0.840
#> SRR1309597     3  0.2716     0.7280 0.052 0.008 0.912 0.028
#> SRR1441398     1  0.7812     0.4097 0.396 0.000 0.256 0.348
#> SRR1084055     2  0.0672     0.9644 0.008 0.984 0.008 0.000
#> SRR1417566     3  0.5574     0.5134 0.124 0.000 0.728 0.148
#> SRR1351857     4  0.3037     0.5471 0.020 0.000 0.100 0.880
#> SRR1487485     3  0.4068     0.7144 0.004 0.092 0.840 0.064
#> SRR1335875     3  0.3117     0.7049 0.028 0.000 0.880 0.092
#> SRR1073947     4  0.5496     0.1976 0.232 0.000 0.064 0.704
#> SRR1443483     3  0.2433     0.7363 0.012 0.008 0.920 0.060
#> SRR1346794     1  0.7795     0.4058 0.420 0.000 0.268 0.312
#> SRR1405245     1  0.7916     0.3721 0.352 0.000 0.336 0.312
#> SRR1409677     4  0.5136     0.4142 0.048 0.000 0.224 0.728
#> SRR1095549     1  0.7919     0.3115 0.352 0.000 0.324 0.324
#> SRR1323788     1  0.7782     0.4006 0.396 0.000 0.244 0.360
#> SRR1314054     2  0.0524     0.9640 0.004 0.988 0.008 0.000
#> SRR1077944     4  0.6452    -0.3845 0.464 0.000 0.068 0.468
#> SRR1480587     2  0.0188     0.9664 0.004 0.996 0.000 0.000
#> SRR1311205     4  0.7314    -0.4077 0.424 0.000 0.152 0.424
#> SRR1076369     1  0.6973     0.3406 0.556 0.000 0.300 0.144
#> SRR1453549     3  0.3528     0.6942 0.000 0.000 0.808 0.192
#> SRR1345782     4  0.7154    -0.4019 0.432 0.000 0.132 0.436
#> SRR1447850     2  0.2700     0.9266 0.044 0.916 0.020 0.020
#> SRR1391553     3  0.4165     0.6762 0.012 0.140 0.824 0.024
#> SRR1444156     2  0.0188     0.9657 0.004 0.996 0.000 0.000
#> SRR1471731     3  0.4677     0.5902 0.004 0.000 0.680 0.316
#> SRR1120987     4  0.4872     0.4976 0.076 0.000 0.148 0.776
#> SRR1477363     4  0.6332    -0.3520 0.452 0.000 0.060 0.488
#> SRR1391961     1  0.5270     0.3346 0.788 0.108 0.036 0.068
#> SRR1373879     3  0.2408     0.7281 0.000 0.000 0.896 0.104
#> SRR1318732     3  0.5953     0.5447 0.172 0.012 0.716 0.100
#> SRR1091404     1  0.6268     0.3887 0.496 0.000 0.056 0.448
#> SRR1402109     3  0.3688     0.6825 0.000 0.000 0.792 0.208
#> SRR1407336     3  0.4356     0.6142 0.000 0.000 0.708 0.292
#> SRR1097417     3  0.4462     0.6069 0.164 0.044 0.792 0.000
#> SRR1396227     4  0.5805    -0.1645 0.388 0.000 0.036 0.576
#> SRR1400775     2  0.0336     0.9650 0.000 0.992 0.008 0.000
#> SRR1392861     4  0.5869     0.0843 0.044 0.000 0.360 0.596
#> SRR1472929     1  0.6398    -0.1349 0.576 0.344 0.080 0.000
#> SRR1436740     4  0.4998     0.4398 0.052 0.000 0.200 0.748
#> SRR1477057     2  0.2945     0.9362 0.056 0.904 0.024 0.016
#> SRR1311980     3  0.2984     0.7264 0.028 0.000 0.888 0.084
#> SRR1069400     3  0.2053     0.7345 0.004 0.000 0.924 0.072
#> SRR1351016     4  0.6407    -0.1232 0.332 0.000 0.084 0.584
#> SRR1096291     4  0.5810     0.3251 0.064 0.000 0.276 0.660
#> SRR1418145     4  0.4938     0.4952 0.080 0.000 0.148 0.772
#> SRR1488111     4  0.8835     0.0774 0.076 0.216 0.240 0.468
#> SRR1370495     1  0.5957     0.3949 0.588 0.000 0.048 0.364
#> SRR1352639     4  0.6417    -0.1617 0.388 0.000 0.072 0.540
#> SRR1348911     3  0.2790     0.7239 0.012 0.012 0.904 0.072
#> SRR1467386     4  0.2412     0.4890 0.084 0.000 0.008 0.908
#> SRR1415956     1  0.6919     0.4249 0.500 0.000 0.112 0.388
#> SRR1500495     1  0.7803     0.4098 0.396 0.000 0.252 0.352
#> SRR1405099     1  0.6265     0.3896 0.500 0.000 0.056 0.444
#> SRR1345585     3  0.3400     0.7257 0.008 0.068 0.880 0.044
#> SRR1093196     3  0.4406     0.6088 0.000 0.000 0.700 0.300
#> SRR1466006     2  0.0188     0.9664 0.004 0.996 0.000 0.000
#> SRR1351557     2  0.0188     0.9664 0.004 0.996 0.000 0.000
#> SRR1382687     4  0.3485     0.4424 0.116 0.000 0.028 0.856
#> SRR1375549     1  0.5597     0.3346 0.516 0.000 0.020 0.464
#> SRR1101765     1  0.5213     0.3936 0.652 0.000 0.020 0.328
#> SRR1334461     1  0.5270     0.3346 0.788 0.108 0.036 0.068
#> SRR1094073     2  0.0000     0.9661 0.000 1.000 0.000 0.000
#> SRR1077549     4  0.3591     0.5316 0.008 0.000 0.168 0.824
#> SRR1440332     4  0.5213     0.3544 0.020 0.000 0.328 0.652
#> SRR1454177     4  0.5472     0.3025 0.044 0.000 0.280 0.676
#> SRR1082447     1  0.6268     0.3887 0.496 0.000 0.056 0.448
#> SRR1420043     3  0.4356     0.6132 0.000 0.000 0.708 0.292
#> SRR1432500     4  0.3312     0.5224 0.072 0.000 0.052 0.876
#> SRR1378045     3  0.4936     0.3373 0.004 0.372 0.624 0.000
#> SRR1334200     1  0.6069    -0.1536 0.600 0.352 0.040 0.008
#> SRR1069539     3  0.7257     0.2655 0.068 0.032 0.500 0.400
#> SRR1343031     3  0.3726     0.6796 0.000 0.000 0.788 0.212
#> SRR1319690     3  0.6835     0.2662 0.252 0.000 0.592 0.156
#> SRR1310604     2  0.2021     0.9473 0.040 0.936 0.024 0.000
#> SRR1327747     3  0.6523     0.5725 0.156 0.000 0.636 0.208
#> SRR1072456     2  0.0188     0.9664 0.004 0.996 0.000 0.000
#> SRR1367896     3  0.2099     0.7335 0.012 0.008 0.936 0.044
#> SRR1480107     1  0.6277     0.3605 0.476 0.000 0.056 0.468
#> SRR1377756     4  0.4546     0.2339 0.256 0.000 0.012 0.732
#> SRR1435272     4  0.5235     0.3901 0.048 0.000 0.236 0.716
#> SRR1089230     4  0.4544     0.4881 0.048 0.000 0.164 0.788
#> SRR1389522     3  0.2660     0.7195 0.056 0.000 0.908 0.036
#> SRR1080600     2  0.2521     0.9339 0.064 0.912 0.024 0.000
#> SRR1086935     4  0.6895     0.1693 0.056 0.040 0.300 0.604
#> SRR1344060     1  0.5988    -0.0697 0.628 0.324 0.036 0.012
#> SRR1467922     2  0.0188     0.9657 0.004 0.996 0.000 0.000
#> SRR1090984     3  0.7646    -0.2171 0.292 0.000 0.464 0.244
#> SRR1456991     1  0.6337     0.3606 0.476 0.000 0.060 0.464
#> SRR1085039     4  0.6229    -0.2836 0.416 0.000 0.056 0.528
#> SRR1069303     4  0.4199     0.3889 0.164 0.000 0.032 0.804
#> SRR1091500     2  0.0804     0.9634 0.012 0.980 0.008 0.000
#> SRR1075198     2  0.2075     0.9472 0.044 0.936 0.016 0.004
#> SRR1086915     4  0.3634     0.5428 0.048 0.000 0.096 0.856
#> SRR1499503     2  0.0188     0.9664 0.004 0.996 0.000 0.000
#> SRR1094312     2  0.0336     0.9650 0.000 0.992 0.008 0.000
#> SRR1352437     4  0.3383     0.4972 0.076 0.000 0.052 0.872
#> SRR1436323     3  0.4905     0.5189 0.004 0.000 0.632 0.364
#> SRR1073507     4  0.2611     0.4793 0.096 0.000 0.008 0.896
#> SRR1401972     4  0.4199     0.3889 0.164 0.000 0.032 0.804
#> SRR1415510     2  0.0188     0.9664 0.004 0.996 0.000 0.000
#> SRR1327279     4  0.4890     0.4982 0.080 0.000 0.144 0.776
#> SRR1086983     4  0.2805     0.5474 0.012 0.000 0.100 0.888
#> SRR1105174     1  0.6268     0.3887 0.496 0.000 0.056 0.448
#> SRR1468893     4  0.5503    -0.3103 0.468 0.000 0.016 0.516
#> SRR1362555     2  0.3143     0.9207 0.080 0.888 0.024 0.008
#> SRR1074526     1  0.5412     0.3169 0.768 0.140 0.068 0.024
#> SRR1326225     2  0.0336     0.9650 0.000 0.992 0.008 0.000
#> SRR1401933     4  0.4281     0.3835 0.180 0.000 0.028 0.792
#> SRR1324062     4  0.3754     0.5197 0.064 0.000 0.084 0.852
#> SRR1102296     4  0.6906    -0.3305 0.408 0.000 0.108 0.484
#> SRR1085087     4  0.1867     0.4956 0.072 0.000 0.000 0.928
#> SRR1079046     1  0.4606     0.4165 0.724 0.000 0.012 0.264
#> SRR1328339     3  0.7486    -0.1156 0.272 0.000 0.500 0.228
#> SRR1079782     2  0.3398     0.9163 0.080 0.880 0.020 0.020
#> SRR1092257     2  0.4008     0.8991 0.092 0.852 0.024 0.032

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0162    0.90426 0.000 0.996 0.000 0.000 0.004
#> SRR1429287     2  0.4747    0.77085 0.000 0.744 0.004 0.128 0.124
#> SRR1359238     4  0.4080    0.65032 0.212 0.000 0.012 0.760 0.016
#> SRR1309597     3  0.2253    0.75255 0.028 0.000 0.920 0.036 0.016
#> SRR1441398     1  0.3830    0.65512 0.820 0.000 0.124 0.016 0.040
#> SRR1084055     2  0.0955    0.90406 0.000 0.968 0.004 0.000 0.028
#> SRR1417566     3  0.4967    0.57999 0.204 0.000 0.716 0.012 0.068
#> SRR1351857     4  0.3446    0.74143 0.144 0.000 0.016 0.828 0.012
#> SRR1487485     3  0.2270    0.75234 0.000 0.012 0.916 0.052 0.020
#> SRR1335875     3  0.1787    0.74250 0.032 0.000 0.940 0.012 0.016
#> SRR1073947     1  0.5377    0.49246 0.664 0.000 0.024 0.260 0.052
#> SRR1443483     3  0.2228    0.75360 0.008 0.000 0.916 0.056 0.020
#> SRR1346794     1  0.5371    0.56402 0.700 0.000 0.200 0.032 0.068
#> SRR1405245     1  0.4054    0.64620 0.800 0.000 0.144 0.016 0.040
#> SRR1409677     4  0.2308    0.80606 0.048 0.000 0.036 0.912 0.004
#> SRR1095549     1  0.5720    0.54750 0.672 0.000 0.212 0.076 0.040
#> SRR1323788     1  0.4233    0.66501 0.804 0.000 0.108 0.024 0.064
#> SRR1314054     2  0.0955    0.90038 0.000 0.968 0.004 0.000 0.028
#> SRR1077944     1  0.0854    0.71054 0.976 0.000 0.004 0.008 0.012
#> SRR1480587     2  0.0703    0.90302 0.000 0.976 0.000 0.000 0.024
#> SRR1311205     1  0.2677    0.70604 0.896 0.000 0.064 0.020 0.020
#> SRR1076369     1  0.7318    0.11581 0.436 0.000 0.200 0.040 0.324
#> SRR1453549     3  0.3475    0.70323 0.004 0.000 0.804 0.180 0.012
#> SRR1345782     1  0.2204    0.70940 0.920 0.000 0.048 0.016 0.016
#> SRR1447850     2  0.4051    0.79235 0.000 0.816 0.020 0.096 0.068
#> SRR1391553     3  0.2555    0.72876 0.004 0.024 0.908 0.016 0.048
#> SRR1444156     2  0.0566    0.90321 0.000 0.984 0.004 0.000 0.012
#> SRR1471731     3  0.5010    0.44180 0.008 0.000 0.592 0.376 0.024
#> SRR1120987     4  0.1948    0.78282 0.024 0.000 0.008 0.932 0.036
#> SRR1477363     1  0.1412    0.71003 0.952 0.000 0.004 0.008 0.036
#> SRR1391961     5  0.4619    0.88659 0.148 0.068 0.012 0.004 0.768
#> SRR1373879     3  0.2517    0.75010 0.004 0.000 0.884 0.104 0.008
#> SRR1318732     3  0.5330    0.53857 0.248 0.000 0.668 0.012 0.072
#> SRR1091404     1  0.1483    0.70586 0.952 0.000 0.012 0.008 0.028
#> SRR1402109     3  0.4159    0.62235 0.008 0.000 0.716 0.268 0.008
#> SRR1407336     3  0.4813    0.45677 0.004 0.000 0.600 0.376 0.020
#> SRR1097417     3  0.3236    0.66684 0.004 0.004 0.844 0.016 0.132
#> SRR1396227     1  0.4254    0.69100 0.808 0.000 0.032 0.068 0.092
#> SRR1400775     2  0.0451    0.90358 0.000 0.988 0.004 0.000 0.008
#> SRR1392861     4  0.2352    0.76841 0.004 0.000 0.092 0.896 0.008
#> SRR1472929     5  0.4360    0.86139 0.024 0.148 0.036 0.004 0.788
#> SRR1436740     4  0.2347    0.80371 0.056 0.000 0.016 0.912 0.016
#> SRR1477057     2  0.4390    0.81445 0.008 0.792 0.016 0.048 0.136
#> SRR1311980     3  0.2273    0.74289 0.024 0.000 0.920 0.032 0.024
#> SRR1069400     3  0.2228    0.75360 0.008 0.000 0.916 0.056 0.020
#> SRR1351016     1  0.4160    0.65542 0.804 0.000 0.024 0.124 0.048
#> SRR1096291     4  0.2625    0.77003 0.012 0.000 0.048 0.900 0.040
#> SRR1418145     4  0.2456    0.76583 0.024 0.000 0.008 0.904 0.064
#> SRR1488111     4  0.5203    0.58212 0.004 0.112 0.052 0.752 0.080
#> SRR1370495     1  0.4584    0.54113 0.716 0.000 0.000 0.056 0.228
#> SRR1352639     1  0.3812    0.66836 0.824 0.000 0.008 0.076 0.092
#> SRR1348911     3  0.0854    0.74770 0.012 0.000 0.976 0.008 0.004
#> SRR1467386     1  0.4890    0.19884 0.524 0.000 0.000 0.452 0.024
#> SRR1415956     1  0.1808    0.70237 0.936 0.000 0.012 0.008 0.044
#> SRR1500495     1  0.3531    0.67093 0.844 0.000 0.100 0.016 0.040
#> SRR1405099     1  0.1124    0.70604 0.960 0.000 0.004 0.000 0.036
#> SRR1345585     3  0.1893    0.74694 0.000 0.012 0.936 0.024 0.028
#> SRR1093196     3  0.4824    0.43392 0.004 0.000 0.596 0.380 0.020
#> SRR1466006     2  0.1410    0.89319 0.000 0.940 0.000 0.000 0.060
#> SRR1351557     2  0.0000    0.90465 0.000 1.000 0.000 0.000 0.000
#> SRR1382687     1  0.4636    0.65175 0.756 0.000 0.016 0.168 0.060
#> SRR1375549     1  0.2429    0.69931 0.900 0.000 0.004 0.020 0.076
#> SRR1101765     1  0.6065    0.24688 0.560 0.000 0.004 0.132 0.304
#> SRR1334461     5  0.4619    0.88659 0.148 0.068 0.012 0.004 0.768
#> SRR1094073     2  0.0451    0.90397 0.000 0.988 0.004 0.000 0.008
#> SRR1077549     4  0.4121    0.64116 0.208 0.000 0.008 0.760 0.024
#> SRR1440332     1  0.6796    0.06530 0.428 0.000 0.140 0.408 0.024
#> SRR1454177     4  0.2054    0.80030 0.028 0.000 0.052 0.920 0.000
#> SRR1082447     1  0.1644    0.70615 0.940 0.000 0.004 0.008 0.048
#> SRR1420043     3  0.4541    0.46096 0.004 0.000 0.608 0.380 0.008
#> SRR1432500     1  0.4999    0.10740 0.504 0.000 0.008 0.472 0.016
#> SRR1378045     3  0.4007    0.55219 0.000 0.220 0.756 0.004 0.020
#> SRR1334200     5  0.3864    0.87501 0.028 0.132 0.008 0.012 0.820
#> SRR1069539     4  0.5025    0.48741 0.004 0.000 0.212 0.700 0.084
#> SRR1343031     3  0.4420    0.62624 0.012 0.000 0.712 0.260 0.016
#> SRR1319690     3  0.5937    0.21600 0.408 0.000 0.512 0.020 0.060
#> SRR1310604     2  0.2959    0.85283 0.000 0.864 0.000 0.036 0.100
#> SRR1327747     3  0.7612    0.41960 0.264 0.000 0.444 0.228 0.064
#> SRR1072456     2  0.0963    0.90028 0.000 0.964 0.000 0.000 0.036
#> SRR1367896     3  0.1646    0.74998 0.004 0.000 0.944 0.032 0.020
#> SRR1480107     1  0.1405    0.70740 0.956 0.000 0.008 0.016 0.020
#> SRR1377756     1  0.3670    0.70742 0.832 0.000 0.008 0.100 0.060
#> SRR1435272     4  0.1997    0.80486 0.036 0.000 0.040 0.924 0.000
#> SRR1089230     4  0.2095    0.80256 0.060 0.000 0.012 0.920 0.008
#> SRR1389522     3  0.2263    0.74768 0.036 0.000 0.920 0.024 0.020
#> SRR1080600     2  0.3506    0.83125 0.000 0.824 0.000 0.044 0.132
#> SRR1086935     4  0.2663    0.78657 0.012 0.008 0.064 0.900 0.016
#> SRR1344060     5  0.3875    0.88748 0.048 0.120 0.008 0.004 0.820
#> SRR1467922     2  0.0566    0.90321 0.000 0.984 0.004 0.000 0.012
#> SRR1090984     1  0.5809    0.00443 0.468 0.000 0.456 0.008 0.068
#> SRR1456991     1  0.1314    0.70853 0.960 0.000 0.016 0.012 0.012
#> SRR1085039     1  0.2027    0.71107 0.928 0.000 0.008 0.040 0.024
#> SRR1069303     1  0.6056    0.34134 0.560 0.000 0.028 0.344 0.068
#> SRR1091500     2  0.0865    0.89997 0.000 0.972 0.004 0.000 0.024
#> SRR1075198     2  0.3934    0.81566 0.000 0.800 0.000 0.076 0.124
#> SRR1086915     4  0.2050    0.80046 0.064 0.000 0.008 0.920 0.008
#> SRR1499503     2  0.0671    0.90258 0.000 0.980 0.004 0.000 0.016
#> SRR1094312     2  0.0324    0.90403 0.000 0.992 0.004 0.000 0.004
#> SRR1352437     1  0.6200    0.17868 0.488 0.000 0.028 0.416 0.068
#> SRR1436323     4  0.5368   -0.21638 0.008 0.000 0.476 0.480 0.036
#> SRR1073507     1  0.5040    0.17067 0.516 0.000 0.004 0.456 0.024
#> SRR1401972     1  0.6056    0.34134 0.560 0.000 0.028 0.344 0.068
#> SRR1415510     2  0.0771    0.90261 0.000 0.976 0.004 0.000 0.020
#> SRR1327279     1  0.5903    0.16464 0.500 0.000 0.056 0.424 0.020
#> SRR1086983     4  0.3449    0.71056 0.164 0.000 0.000 0.812 0.024
#> SRR1105174     1  0.1682    0.70461 0.940 0.000 0.012 0.004 0.044
#> SRR1468893     1  0.2046    0.70945 0.916 0.000 0.000 0.016 0.068
#> SRR1362555     2  0.4138    0.79911 0.000 0.780 0.000 0.072 0.148
#> SRR1074526     5  0.4339    0.88376 0.116 0.052 0.016 0.012 0.804
#> SRR1326225     2  0.0579    0.90373 0.000 0.984 0.008 0.000 0.008
#> SRR1401933     1  0.6239    0.37445 0.536 0.000 0.028 0.356 0.080
#> SRR1324062     1  0.6169    0.13567 0.464 0.000 0.028 0.444 0.064
#> SRR1102296     1  0.3160    0.69485 0.876 0.000 0.040 0.032 0.052
#> SRR1085087     4  0.5549   -0.14698 0.472 0.000 0.008 0.472 0.048
#> SRR1079046     1  0.4570    0.36477 0.648 0.000 0.004 0.016 0.332
#> SRR1328339     3  0.5289    0.25506 0.400 0.000 0.556 0.008 0.036
#> SRR1079782     2  0.4478    0.77134 0.004 0.764 0.000 0.144 0.088
#> SRR1092257     2  0.5358    0.68464 0.004 0.692 0.008 0.200 0.096

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0748     0.8017 0.000 0.976 0.000 0.016 0.004 0.004
#> SRR1429287     2  0.5451     0.4803 0.000 0.464 0.000 0.452 0.056 0.028
#> SRR1359238     6  0.5696     0.0973 0.116 0.000 0.032 0.260 0.000 0.592
#> SRR1309597     3  0.1553     0.7795 0.008 0.000 0.944 0.032 0.012 0.004
#> SRR1441398     1  0.2344     0.5957 0.896 0.000 0.068 0.000 0.008 0.028
#> SRR1084055     2  0.1275     0.8039 0.000 0.956 0.000 0.016 0.012 0.016
#> SRR1417566     3  0.6731     0.0768 0.380 0.000 0.444 0.044 0.032 0.100
#> SRR1351857     6  0.4873    -0.3436 0.036 0.000 0.016 0.376 0.000 0.572
#> SRR1487485     3  0.1636     0.7825 0.000 0.004 0.936 0.036 0.000 0.024
#> SRR1335875     3  0.3414     0.7291 0.052 0.000 0.852 0.020 0.024 0.052
#> SRR1073947     6  0.4687     0.2909 0.440 0.000 0.004 0.012 0.016 0.528
#> SRR1443483     3  0.1230     0.7801 0.000 0.000 0.956 0.028 0.008 0.008
#> SRR1346794     1  0.4772     0.5377 0.748 0.000 0.128 0.048 0.012 0.064
#> SRR1405245     1  0.3025     0.5930 0.860 0.000 0.068 0.004 0.008 0.060
#> SRR1409677     4  0.4771     0.6542 0.004 0.000 0.032 0.524 0.004 0.436
#> SRR1095549     1  0.6191     0.4359 0.568 0.000 0.168 0.028 0.012 0.224
#> SRR1323788     1  0.3060     0.5821 0.868 0.000 0.060 0.016 0.012 0.044
#> SRR1314054     2  0.1890     0.7866 0.000 0.916 0.000 0.060 0.024 0.000
#> SRR1077944     1  0.2504     0.5659 0.856 0.000 0.000 0.004 0.004 0.136
#> SRR1480587     2  0.1173     0.8013 0.000 0.960 0.000 0.016 0.008 0.016
#> SRR1311205     1  0.4234     0.4359 0.708 0.000 0.024 0.008 0.008 0.252
#> SRR1076369     1  0.7401     0.3973 0.528 0.000 0.172 0.108 0.116 0.076
#> SRR1453549     3  0.4195     0.7486 0.024 0.000 0.776 0.132 0.004 0.064
#> SRR1345782     1  0.4301     0.4353 0.696 0.000 0.024 0.008 0.008 0.264
#> SRR1447850     2  0.4608     0.6543 0.000 0.712 0.000 0.208 0.036 0.044
#> SRR1391553     3  0.4679     0.7047 0.044 0.008 0.776 0.048 0.024 0.100
#> SRR1444156     2  0.0458     0.8022 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1471731     3  0.6051     0.5286 0.020 0.000 0.552 0.232 0.004 0.192
#> SRR1120987     4  0.3967     0.5910 0.000 0.000 0.008 0.668 0.008 0.316
#> SRR1477363     1  0.2504     0.5503 0.856 0.000 0.000 0.004 0.004 0.136
#> SRR1391961     5  0.1798     0.9382 0.020 0.020 0.000 0.000 0.932 0.028
#> SRR1373879     3  0.2492     0.7752 0.000 0.000 0.888 0.068 0.008 0.036
#> SRR1318732     1  0.6189     0.0231 0.464 0.004 0.416 0.048 0.016 0.052
#> SRR1091404     1  0.3122     0.5281 0.804 0.000 0.000 0.000 0.020 0.176
#> SRR1402109     3  0.3912     0.7163 0.000 0.000 0.776 0.148 0.008 0.068
#> SRR1407336     3  0.5016     0.6091 0.000 0.000 0.664 0.192 0.008 0.136
#> SRR1097417     3  0.3246     0.6571 0.000 0.000 0.812 0.012 0.160 0.016
#> SRR1396227     1  0.4937     0.2247 0.564 0.000 0.008 0.024 0.016 0.388
#> SRR1400775     2  0.1349     0.7943 0.000 0.940 0.000 0.056 0.004 0.000
#> SRR1392861     4  0.5013     0.6400 0.000 0.000 0.060 0.508 0.004 0.428
#> SRR1472929     5  0.2395     0.9100 0.000 0.072 0.004 0.012 0.896 0.016
#> SRR1436740     4  0.4666     0.6264 0.004 0.000 0.024 0.492 0.004 0.476
#> SRR1477057     2  0.6259     0.4965 0.000 0.488 0.000 0.340 0.048 0.124
#> SRR1311980     3  0.3969     0.7243 0.044 0.000 0.816 0.032 0.024 0.084
#> SRR1069400     3  0.1483     0.7806 0.000 0.000 0.944 0.036 0.008 0.012
#> SRR1351016     1  0.4477     0.0992 0.564 0.000 0.004 0.012 0.008 0.412
#> SRR1096291     4  0.4723     0.5941 0.000 0.000 0.064 0.636 0.004 0.296
#> SRR1418145     4  0.3455     0.5254 0.000 0.000 0.004 0.776 0.020 0.200
#> SRR1488111     4  0.4259     0.4420 0.000 0.060 0.016 0.788 0.028 0.108
#> SRR1370495     1  0.7220     0.1736 0.384 0.000 0.008 0.332 0.080 0.196
#> SRR1352639     1  0.6728     0.1614 0.460 0.000 0.008 0.268 0.036 0.228
#> SRR1348911     3  0.2162     0.7535 0.016 0.000 0.920 0.020 0.016 0.028
#> SRR1467386     6  0.4884     0.5868 0.324 0.000 0.008 0.060 0.000 0.608
#> SRR1415956     1  0.1124     0.5985 0.956 0.000 0.000 0.000 0.008 0.036
#> SRR1500495     1  0.2848     0.5941 0.872 0.000 0.060 0.004 0.008 0.056
#> SRR1405099     1  0.2346     0.5611 0.868 0.000 0.000 0.000 0.008 0.124
#> SRR1345585     3  0.2151     0.7680 0.012 0.004 0.916 0.032 0.000 0.036
#> SRR1093196     3  0.5167     0.5868 0.000 0.000 0.632 0.216 0.004 0.148
#> SRR1466006     2  0.1861     0.7941 0.000 0.928 0.000 0.036 0.020 0.016
#> SRR1351557     2  0.0458     0.8046 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1382687     1  0.3570     0.4410 0.752 0.000 0.004 0.016 0.000 0.228
#> SRR1375549     1  0.4660     0.5312 0.736 0.000 0.000 0.124 0.032 0.108
#> SRR1101765     1  0.6185     0.3971 0.572 0.000 0.000 0.208 0.160 0.060
#> SRR1334461     5  0.1874     0.9332 0.028 0.016 0.000 0.000 0.928 0.028
#> SRR1094073     2  0.0260     0.8024 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1077549     6  0.5065     0.2288 0.080 0.000 0.036 0.184 0.004 0.696
#> SRR1440332     6  0.7009     0.2143 0.340 0.000 0.172 0.092 0.000 0.396
#> SRR1454177     4  0.4958     0.6425 0.004 0.000 0.044 0.496 0.004 0.452
#> SRR1082447     1  0.2737     0.5846 0.868 0.000 0.000 0.012 0.024 0.096
#> SRR1420043     3  0.4919     0.6063 0.000 0.000 0.664 0.204 0.004 0.128
#> SRR1432500     6  0.5490     0.5239 0.364 0.000 0.016 0.088 0.000 0.532
#> SRR1378045     2  0.6368    -0.0890 0.016 0.440 0.436 0.052 0.020 0.036
#> SRR1334200     5  0.2512     0.9309 0.008 0.048 0.000 0.040 0.896 0.008
#> SRR1069539     4  0.5065     0.4942 0.000 0.000 0.168 0.680 0.020 0.132
#> SRR1343031     3  0.3852     0.7230 0.000 0.000 0.784 0.136 0.008 0.072
#> SRR1319690     1  0.4971     0.4743 0.676 0.000 0.244 0.020 0.016 0.044
#> SRR1310604     2  0.4667     0.6392 0.000 0.664 0.004 0.280 0.036 0.016
#> SRR1327747     1  0.6968     0.1156 0.456 0.000 0.320 0.088 0.012 0.124
#> SRR1072456     2  0.1173     0.8013 0.000 0.960 0.000 0.016 0.008 0.016
#> SRR1367896     3  0.0717     0.7749 0.000 0.000 0.976 0.000 0.016 0.008
#> SRR1480107     1  0.4063     0.4028 0.692 0.000 0.000 0.008 0.020 0.280
#> SRR1377756     1  0.2699     0.5798 0.856 0.000 0.000 0.008 0.012 0.124
#> SRR1435272     4  0.4842     0.6487 0.004 0.000 0.036 0.508 0.004 0.448
#> SRR1089230     4  0.4694     0.6361 0.008 0.000 0.020 0.496 0.004 0.472
#> SRR1389522     3  0.1140     0.7762 0.008 0.000 0.964 0.008 0.012 0.008
#> SRR1080600     2  0.4854     0.6184 0.000 0.636 0.004 0.304 0.036 0.020
#> SRR1086935     4  0.4912     0.6499 0.004 0.008 0.020 0.512 0.008 0.448
#> SRR1344060     5  0.1836     0.9388 0.008 0.048 0.000 0.012 0.928 0.004
#> SRR1467922     2  0.0458     0.8022 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1090984     1  0.5974     0.4018 0.592 0.000 0.276 0.040 0.028 0.064
#> SRR1456991     1  0.3829     0.4280 0.720 0.000 0.004 0.008 0.008 0.260
#> SRR1085039     1  0.4008     0.3368 0.672 0.000 0.000 0.004 0.016 0.308
#> SRR1069303     6  0.4604     0.5867 0.232 0.000 0.008 0.028 0.028 0.704
#> SRR1091500     2  0.1867     0.7851 0.000 0.916 0.000 0.064 0.020 0.000
#> SRR1075198     2  0.4897     0.5930 0.000 0.600 0.004 0.344 0.040 0.012
#> SRR1086915     4  0.4412     0.6218 0.008 0.000 0.012 0.500 0.000 0.480
#> SRR1499503     2  0.0862     0.8011 0.000 0.972 0.000 0.016 0.004 0.008
#> SRR1094312     2  0.1141     0.7968 0.000 0.948 0.000 0.052 0.000 0.000
#> SRR1352437     6  0.4322     0.6117 0.204 0.000 0.008 0.036 0.016 0.736
#> SRR1436323     3  0.6806     0.3234 0.048 0.000 0.448 0.232 0.004 0.268
#> SRR1073507     6  0.4703     0.6174 0.280 0.000 0.008 0.060 0.000 0.652
#> SRR1401972     6  0.4604     0.5867 0.232 0.000 0.008 0.028 0.028 0.704
#> SRR1415510     2  0.1078     0.8012 0.000 0.964 0.000 0.016 0.008 0.012
#> SRR1327279     6  0.5994     0.4966 0.332 0.000 0.068 0.060 0.004 0.536
#> SRR1086983     6  0.4529    -0.2694 0.028 0.000 0.012 0.332 0.000 0.628
#> SRR1105174     1  0.2263     0.5746 0.884 0.000 0.000 0.000 0.016 0.100
#> SRR1468893     1  0.2920     0.5840 0.844 0.000 0.000 0.008 0.020 0.128
#> SRR1362555     2  0.5546     0.5437 0.004 0.536 0.004 0.380 0.044 0.032
#> SRR1074526     5  0.2214     0.9235 0.012 0.012 0.000 0.028 0.916 0.032
#> SRR1326225     2  0.0547     0.8019 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1401933     1  0.5959     0.1220 0.472 0.000 0.012 0.108 0.012 0.396
#> SRR1324062     6  0.4623     0.5998 0.240 0.000 0.008 0.040 0.016 0.696
#> SRR1102296     1  0.5588     0.2196 0.532 0.000 0.028 0.020 0.036 0.384
#> SRR1085087     6  0.3782     0.6268 0.224 0.000 0.000 0.036 0.000 0.740
#> SRR1079046     1  0.5980     0.4530 0.616 0.000 0.000 0.136 0.168 0.080
#> SRR1328339     1  0.6168     0.2177 0.504 0.000 0.368 0.036 0.024 0.068
#> SRR1079782     2  0.5256     0.4978 0.000 0.492 0.004 0.444 0.032 0.028
#> SRR1092257     4  0.5456    -0.4150 0.000 0.416 0.000 0.500 0.044 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.820           0.898       0.958         0.4960 0.503   0.503
#> 3 3 0.613           0.701       0.863         0.3388 0.788   0.603
#> 4 4 0.763           0.816       0.905         0.1303 0.828   0.556
#> 5 5 0.704           0.635       0.803         0.0588 0.864   0.541
#> 6 6 0.695           0.590       0.768         0.0403 0.932   0.707

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000      0.943 0.000 1.000
#> SRR1429287     2  0.0000      0.943 0.000 1.000
#> SRR1359238     1  0.0000      0.964 1.000 0.000
#> SRR1309597     2  0.5294      0.843 0.120 0.880
#> SRR1441398     1  0.0000      0.964 1.000 0.000
#> SRR1084055     2  0.0000      0.943 0.000 1.000
#> SRR1417566     2  0.0672      0.938 0.008 0.992
#> SRR1351857     1  0.0000      0.964 1.000 0.000
#> SRR1487485     2  0.0376      0.941 0.004 0.996
#> SRR1335875     2  0.0000      0.943 0.000 1.000
#> SRR1073947     1  0.0000      0.964 1.000 0.000
#> SRR1443483     2  0.4690      0.863 0.100 0.900
#> SRR1346794     1  0.0000      0.964 1.000 0.000
#> SRR1405245     1  0.0000      0.964 1.000 0.000
#> SRR1409677     1  0.0000      0.964 1.000 0.000
#> SRR1095549     1  0.0000      0.964 1.000 0.000
#> SRR1323788     1  0.0000      0.964 1.000 0.000
#> SRR1314054     2  0.0000      0.943 0.000 1.000
#> SRR1077944     1  0.0000      0.964 1.000 0.000
#> SRR1480587     2  0.0000      0.943 0.000 1.000
#> SRR1311205     1  0.0000      0.964 1.000 0.000
#> SRR1076369     1  0.9815      0.187 0.580 0.420
#> SRR1453549     1  0.1184      0.950 0.984 0.016
#> SRR1345782     1  0.0000      0.964 1.000 0.000
#> SRR1447850     2  0.0000      0.943 0.000 1.000
#> SRR1391553     2  0.0000      0.943 0.000 1.000
#> SRR1444156     2  0.0000      0.943 0.000 1.000
#> SRR1471731     2  0.9732      0.383 0.404 0.596
#> SRR1120987     1  0.3114      0.913 0.944 0.056
#> SRR1477363     1  0.0000      0.964 1.000 0.000
#> SRR1391961     1  0.9833      0.281 0.576 0.424
#> SRR1373879     1  0.2948      0.916 0.948 0.052
#> SRR1318732     2  0.7139      0.754 0.196 0.804
#> SRR1091404     1  0.0000      0.964 1.000 0.000
#> SRR1402109     1  0.0000      0.964 1.000 0.000
#> SRR1407336     2  0.9732      0.383 0.404 0.596
#> SRR1097417     2  0.0000      0.943 0.000 1.000
#> SRR1396227     1  0.0000      0.964 1.000 0.000
#> SRR1400775     2  0.0000      0.943 0.000 1.000
#> SRR1392861     1  0.3274      0.908 0.940 0.060
#> SRR1472929     2  0.0000      0.943 0.000 1.000
#> SRR1436740     1  0.0000      0.964 1.000 0.000
#> SRR1477057     2  0.0000      0.943 0.000 1.000
#> SRR1311980     2  0.0938      0.936 0.012 0.988
#> SRR1069400     2  0.5629      0.830 0.132 0.868
#> SRR1351016     1  0.0000      0.964 1.000 0.000
#> SRR1096291     2  0.9909      0.274 0.444 0.556
#> SRR1418145     1  0.0000      0.964 1.000 0.000
#> SRR1488111     2  0.0000      0.943 0.000 1.000
#> SRR1370495     1  0.1184      0.951 0.984 0.016
#> SRR1352639     1  0.7376      0.726 0.792 0.208
#> SRR1348911     2  0.0000      0.943 0.000 1.000
#> SRR1467386     1  0.0000      0.964 1.000 0.000
#> SRR1415956     1  0.0000      0.964 1.000 0.000
#> SRR1500495     1  0.0000      0.964 1.000 0.000
#> SRR1405099     1  0.0000      0.964 1.000 0.000
#> SRR1345585     2  0.0000      0.943 0.000 1.000
#> SRR1093196     2  0.9732      0.383 0.404 0.596
#> SRR1466006     2  0.0000      0.943 0.000 1.000
#> SRR1351557     2  0.0000      0.943 0.000 1.000
#> SRR1382687     1  0.0000      0.964 1.000 0.000
#> SRR1375549     1  0.0000      0.964 1.000 0.000
#> SRR1101765     1  0.0000      0.964 1.000 0.000
#> SRR1334461     1  0.9732      0.336 0.596 0.404
#> SRR1094073     2  0.0000      0.943 0.000 1.000
#> SRR1077549     1  0.0000      0.964 1.000 0.000
#> SRR1440332     1  0.0000      0.964 1.000 0.000
#> SRR1454177     1  0.0000      0.964 1.000 0.000
#> SRR1082447     1  0.0000      0.964 1.000 0.000
#> SRR1420043     1  0.0000      0.964 1.000 0.000
#> SRR1432500     1  0.0000      0.964 1.000 0.000
#> SRR1378045     2  0.0000      0.943 0.000 1.000
#> SRR1334200     2  0.0000      0.943 0.000 1.000
#> SRR1069539     2  0.0000      0.943 0.000 1.000
#> SRR1343031     1  0.0000      0.964 1.000 0.000
#> SRR1319690     1  0.0000      0.964 1.000 0.000
#> SRR1310604     2  0.0000      0.943 0.000 1.000
#> SRR1327747     1  0.0000      0.964 1.000 0.000
#> SRR1072456     2  0.0000      0.943 0.000 1.000
#> SRR1367896     2  0.0000      0.943 0.000 1.000
#> SRR1480107     1  0.0000      0.964 1.000 0.000
#> SRR1377756     1  0.0000      0.964 1.000 0.000
#> SRR1435272     1  0.0000      0.964 1.000 0.000
#> SRR1089230     1  0.0000      0.964 1.000 0.000
#> SRR1389522     2  0.4161      0.877 0.084 0.916
#> SRR1080600     2  0.0000      0.943 0.000 1.000
#> SRR1086935     2  0.9732      0.383 0.404 0.596
#> SRR1344060     2  0.0000      0.943 0.000 1.000
#> SRR1467922     2  0.0000      0.943 0.000 1.000
#> SRR1090984     1  0.0672      0.957 0.992 0.008
#> SRR1456991     1  0.0000      0.964 1.000 0.000
#> SRR1085039     1  0.0000      0.964 1.000 0.000
#> SRR1069303     1  0.0000      0.964 1.000 0.000
#> SRR1091500     2  0.0000      0.943 0.000 1.000
#> SRR1075198     2  0.0000      0.943 0.000 1.000
#> SRR1086915     1  0.0000      0.964 1.000 0.000
#> SRR1499503     2  0.0000      0.943 0.000 1.000
#> SRR1094312     2  0.0000      0.943 0.000 1.000
#> SRR1352437     1  0.0000      0.964 1.000 0.000
#> SRR1436323     1  0.0000      0.964 1.000 0.000
#> SRR1073507     1  0.0000      0.964 1.000 0.000
#> SRR1401972     1  0.0000      0.964 1.000 0.000
#> SRR1415510     2  0.0000      0.943 0.000 1.000
#> SRR1327279     1  0.0000      0.964 1.000 0.000
#> SRR1086983     1  0.0000      0.964 1.000 0.000
#> SRR1105174     1  0.0000      0.964 1.000 0.000
#> SRR1468893     1  0.0000      0.964 1.000 0.000
#> SRR1362555     2  0.0000      0.943 0.000 1.000
#> SRR1074526     2  0.0672      0.938 0.008 0.992
#> SRR1326225     2  0.0000      0.943 0.000 1.000
#> SRR1401933     1  0.0000      0.964 1.000 0.000
#> SRR1324062     1  0.0000      0.964 1.000 0.000
#> SRR1102296     1  0.5737      0.823 0.864 0.136
#> SRR1085087     1  0.0000      0.964 1.000 0.000
#> SRR1079046     1  0.9552      0.406 0.624 0.376
#> SRR1328339     2  0.0000      0.943 0.000 1.000
#> SRR1079782     2  0.0000      0.943 0.000 1.000
#> SRR1092257     2  0.0000      0.943 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1429287     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1359238     1  0.5363     0.6503 0.724 0.000 0.276
#> SRR1309597     3  0.3213     0.7890 0.060 0.028 0.912
#> SRR1441398     1  0.6204     0.0720 0.576 0.000 0.424
#> SRR1084055     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1417566     3  0.7146     0.6065 0.264 0.060 0.676
#> SRR1351857     1  0.5178     0.6665 0.744 0.000 0.256
#> SRR1487485     3  0.1964     0.7971 0.000 0.056 0.944
#> SRR1335875     3  0.5860     0.6850 0.024 0.228 0.748
#> SRR1073947     1  0.2261     0.7585 0.932 0.000 0.068
#> SRR1443483     3  0.1774     0.8008 0.016 0.024 0.960
#> SRR1346794     1  0.6225     0.0462 0.568 0.000 0.432
#> SRR1405245     1  0.6309    -0.1653 0.504 0.000 0.496
#> SRR1409677     1  0.6204     0.4553 0.576 0.000 0.424
#> SRR1095549     1  0.6235     0.0704 0.564 0.000 0.436
#> SRR1323788     1  0.6126     0.1404 0.600 0.000 0.400
#> SRR1314054     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1077944     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1480587     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1311205     1  0.1529     0.7417 0.960 0.000 0.040
#> SRR1076369     1  0.6309    -0.1421 0.504 0.000 0.496
#> SRR1453549     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1345782     1  0.0892     0.7520 0.980 0.000 0.020
#> SRR1447850     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1391553     3  0.5465     0.6195 0.000 0.288 0.712
#> SRR1444156     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1471731     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1120987     1  0.9557     0.4078 0.484 0.248 0.268
#> SRR1477363     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1391961     1  0.6295     0.1885 0.528 0.472 0.000
#> SRR1373879     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1318732     3  0.6402     0.6458 0.236 0.040 0.724
#> SRR1091404     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1402109     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1407336     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1097417     3  0.5621     0.5928 0.000 0.308 0.692
#> SRR1396227     1  0.0424     0.7602 0.992 0.000 0.008
#> SRR1400775     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1392861     3  0.0592     0.7911 0.012 0.000 0.988
#> SRR1472929     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1436740     1  0.6168     0.4756 0.588 0.000 0.412
#> SRR1477057     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1311980     3  0.0983     0.7975 0.016 0.004 0.980
#> SRR1069400     3  0.0424     0.8003 0.000 0.008 0.992
#> SRR1351016     1  0.2165     0.7592 0.936 0.000 0.064
#> SRR1096291     2  0.8496     0.3104 0.112 0.564 0.324
#> SRR1418145     1  0.9364     0.4463 0.512 0.220 0.268
#> SRR1488111     2  0.1031     0.9495 0.000 0.976 0.024
#> SRR1370495     1  0.5216     0.5868 0.740 0.260 0.000
#> SRR1352639     1  0.6111     0.3729 0.604 0.396 0.000
#> SRR1348911     3  0.4931     0.6888 0.000 0.232 0.768
#> SRR1467386     1  0.2959     0.7504 0.900 0.000 0.100
#> SRR1415956     1  0.1411     0.7440 0.964 0.000 0.036
#> SRR1500495     1  0.6192     0.0847 0.580 0.000 0.420
#> SRR1405099     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1345585     3  0.3752     0.7613 0.000 0.144 0.856
#> SRR1093196     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1466006     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1351557     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1382687     1  0.1289     0.7607 0.968 0.000 0.032
#> SRR1375549     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1101765     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1334461     1  0.6045     0.4173 0.620 0.380 0.000
#> SRR1094073     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1077549     1  0.5465     0.6390 0.712 0.000 0.288
#> SRR1440332     1  0.6204     0.4809 0.576 0.000 0.424
#> SRR1454177     3  0.6291    -0.2572 0.468 0.000 0.532
#> SRR1082447     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1420043     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1432500     1  0.4974     0.6798 0.764 0.000 0.236
#> SRR1378045     3  0.5621     0.5926 0.000 0.308 0.692
#> SRR1334200     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1069539     2  0.5138     0.6274 0.000 0.748 0.252
#> SRR1343031     3  0.0000     0.7990 0.000 0.000 1.000
#> SRR1319690     3  0.5397     0.6039 0.280 0.000 0.720
#> SRR1310604     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1327747     3  0.3482     0.7526 0.128 0.000 0.872
#> SRR1072456     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1367896     3  0.1860     0.7973 0.000 0.052 0.948
#> SRR1480107     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1377756     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1435272     1  0.6295     0.3628 0.528 0.000 0.472
#> SRR1089230     1  0.5591     0.6228 0.696 0.000 0.304
#> SRR1389522     3  0.3030     0.7744 0.092 0.004 0.904
#> SRR1080600     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1086935     3  0.7471     0.0292 0.036 0.448 0.516
#> SRR1344060     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1467922     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1090984     3  0.6260     0.2849 0.448 0.000 0.552
#> SRR1456991     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1085039     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1069303     1  0.2261     0.7584 0.932 0.000 0.068
#> SRR1091500     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1075198     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1086915     1  0.5178     0.6665 0.744 0.000 0.256
#> SRR1499503     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1094312     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1352437     1  0.3116     0.7480 0.892 0.000 0.108
#> SRR1436323     3  0.0424     0.7971 0.008 0.000 0.992
#> SRR1073507     1  0.3038     0.7493 0.896 0.000 0.104
#> SRR1401972     1  0.2261     0.7584 0.932 0.000 0.068
#> SRR1415510     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1327279     1  0.5254     0.6604 0.736 0.000 0.264
#> SRR1086983     1  0.5178     0.6665 0.744 0.000 0.256
#> SRR1105174     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1468893     1  0.0000     0.7594 1.000 0.000 0.000
#> SRR1362555     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1074526     2  0.0237     0.9693 0.004 0.996 0.000
#> SRR1326225     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1401933     1  0.2165     0.7596 0.936 0.000 0.064
#> SRR1324062     1  0.4702     0.6964 0.788 0.000 0.212
#> SRR1102296     1  0.0592     0.7589 0.988 0.012 0.000
#> SRR1085087     1  0.3116     0.7480 0.892 0.000 0.108
#> SRR1079046     1  0.3879     0.6705 0.848 0.152 0.000
#> SRR1328339     3  0.7250     0.3885 0.396 0.032 0.572
#> SRR1079782     2  0.0000     0.9737 0.000 1.000 0.000
#> SRR1092257     2  0.0000     0.9737 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1429287     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1359238     4  0.0336     0.8591 0.008 0.000 0.000 0.992
#> SRR1309597     3  0.0376     0.8882 0.004 0.000 0.992 0.004
#> SRR1441398     1  0.1557     0.8510 0.944 0.000 0.056 0.000
#> SRR1084055     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1417566     3  0.4539     0.5992 0.272 0.008 0.720 0.000
#> SRR1351857     4  0.0188     0.8596 0.004 0.000 0.000 0.996
#> SRR1487485     3  0.0376     0.8883 0.000 0.004 0.992 0.004
#> SRR1335875     3  0.0376     0.8871 0.004 0.004 0.992 0.000
#> SRR1073947     1  0.5155    -0.1347 0.528 0.000 0.004 0.468
#> SRR1443483     3  0.0469     0.8886 0.000 0.000 0.988 0.012
#> SRR1346794     1  0.2796     0.8267 0.892 0.000 0.092 0.016
#> SRR1405245     1  0.2081     0.8393 0.916 0.000 0.084 0.000
#> SRR1409677     4  0.0336     0.8554 0.000 0.000 0.008 0.992
#> SRR1095549     1  0.4379     0.7329 0.792 0.000 0.172 0.036
#> SRR1323788     1  0.1474     0.8528 0.948 0.000 0.052 0.000
#> SRR1314054     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1077944     1  0.0000     0.8640 1.000 0.000 0.000 0.000
#> SRR1480587     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1311205     1  0.0469     0.8615 0.988 0.000 0.000 0.012
#> SRR1076369     1  0.4579     0.6994 0.768 0.000 0.200 0.032
#> SRR1453549     3  0.1940     0.8700 0.000 0.000 0.924 0.076
#> SRR1345782     1  0.0188     0.8636 0.996 0.000 0.000 0.004
#> SRR1447850     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1391553     3  0.0336     0.8861 0.000 0.008 0.992 0.000
#> SRR1444156     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1471731     3  0.3942     0.7466 0.000 0.000 0.764 0.236
#> SRR1120987     4  0.0657     0.8579 0.004 0.012 0.000 0.984
#> SRR1477363     1  0.0000     0.8640 1.000 0.000 0.000 0.000
#> SRR1391961     1  0.4762     0.5609 0.692 0.300 0.004 0.004
#> SRR1373879     3  0.1637     0.8769 0.000 0.000 0.940 0.060
#> SRR1318732     3  0.4522     0.6197 0.264 0.004 0.728 0.004
#> SRR1091404     1  0.0000     0.8640 1.000 0.000 0.000 0.000
#> SRR1402109     3  0.2704     0.8492 0.000 0.000 0.876 0.124
#> SRR1407336     3  0.3649     0.7913 0.000 0.000 0.796 0.204
#> SRR1097417     3  0.0336     0.8884 0.000 0.000 0.992 0.008
#> SRR1396227     1  0.2401     0.8011 0.904 0.000 0.004 0.092
#> SRR1400775     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1392861     4  0.1022     0.8405 0.000 0.000 0.032 0.968
#> SRR1472929     2  0.1706     0.9231 0.016 0.948 0.036 0.000
#> SRR1436740     4  0.0000     0.8580 0.000 0.000 0.000 1.000
#> SRR1477057     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1311980     3  0.0188     0.8875 0.000 0.004 0.996 0.000
#> SRR1069400     3  0.0469     0.8886 0.000 0.000 0.988 0.012
#> SRR1351016     1  0.4252     0.5553 0.744 0.000 0.004 0.252
#> SRR1096291     4  0.0188     0.8570 0.000 0.000 0.004 0.996
#> SRR1418145     4  0.0524     0.8589 0.004 0.008 0.000 0.988
#> SRR1488111     2  0.1867     0.9006 0.000 0.928 0.000 0.072
#> SRR1370495     1  0.4720     0.6192 0.720 0.264 0.000 0.016
#> SRR1352639     2  0.7634     0.0314 0.352 0.436 0.000 0.212
#> SRR1348911     3  0.0000     0.8874 0.000 0.000 1.000 0.000
#> SRR1467386     4  0.3801     0.7791 0.220 0.000 0.000 0.780
#> SRR1415956     1  0.0188     0.8640 0.996 0.000 0.004 0.000
#> SRR1500495     1  0.1389     0.8543 0.952 0.000 0.048 0.000
#> SRR1405099     1  0.0000     0.8640 1.000 0.000 0.000 0.000
#> SRR1345585     3  0.0188     0.8873 0.000 0.004 0.996 0.000
#> SRR1093196     3  0.3726     0.7833 0.000 0.000 0.788 0.212
#> SRR1466006     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1351557     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1382687     4  0.5150     0.5114 0.396 0.000 0.008 0.596
#> SRR1375549     1  0.0336     0.8636 0.992 0.000 0.000 0.008
#> SRR1101765     1  0.2345     0.8181 0.900 0.000 0.000 0.100
#> SRR1334461     1  0.4687     0.5827 0.704 0.288 0.004 0.004
#> SRR1094073     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1077549     4  0.0469     0.8591 0.012 0.000 0.000 0.988
#> SRR1440332     4  0.4297     0.7827 0.096 0.000 0.084 0.820
#> SRR1454177     4  0.0469     0.8540 0.000 0.000 0.012 0.988
#> SRR1082447     1  0.0188     0.8639 0.996 0.000 0.000 0.004
#> SRR1420043     3  0.3569     0.7969 0.000 0.000 0.804 0.196
#> SRR1432500     4  0.3266     0.8181 0.168 0.000 0.000 0.832
#> SRR1378045     3  0.1389     0.8638 0.000 0.048 0.952 0.000
#> SRR1334200     2  0.0524     0.9551 0.000 0.988 0.008 0.004
#> SRR1069539     2  0.6444     0.4980 0.000 0.612 0.104 0.284
#> SRR1343031     3  0.2814     0.8442 0.000 0.000 0.868 0.132
#> SRR1319690     1  0.4978     0.3760 0.612 0.000 0.384 0.004
#> SRR1310604     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1327747     3  0.6752     0.5609 0.280 0.000 0.588 0.132
#> SRR1072456     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1367896     3  0.0336     0.8884 0.000 0.000 0.992 0.008
#> SRR1480107     1  0.0336     0.8627 0.992 0.000 0.000 0.008
#> SRR1377756     4  0.4977     0.3591 0.460 0.000 0.000 0.540
#> SRR1435272     4  0.0336     0.8554 0.000 0.000 0.008 0.992
#> SRR1089230     4  0.0000     0.8580 0.000 0.000 0.000 1.000
#> SRR1389522     3  0.0524     0.8885 0.004 0.000 0.988 0.008
#> SRR1080600     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1086935     4  0.0657     0.8552 0.000 0.004 0.012 0.984
#> SRR1344060     2  0.0524     0.9551 0.000 0.988 0.008 0.004
#> SRR1467922     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1090984     1  0.3266     0.7723 0.832 0.000 0.168 0.000
#> SRR1456991     1  0.0336     0.8627 0.992 0.000 0.000 0.008
#> SRR1085039     1  0.3123     0.7240 0.844 0.000 0.000 0.156
#> SRR1069303     4  0.4535     0.6868 0.292 0.000 0.004 0.704
#> SRR1091500     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1075198     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1086915     4  0.0336     0.8602 0.008 0.000 0.000 0.992
#> SRR1499503     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1094312     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1352437     4  0.3490     0.8198 0.156 0.004 0.004 0.836
#> SRR1436323     3  0.4866     0.4595 0.000 0.000 0.596 0.404
#> SRR1073507     4  0.3356     0.8118 0.176 0.000 0.000 0.824
#> SRR1401972     4  0.4535     0.6868 0.292 0.000 0.004 0.704
#> SRR1415510     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1327279     4  0.4417     0.8093 0.160 0.000 0.044 0.796
#> SRR1086983     4  0.0336     0.8602 0.008 0.000 0.000 0.992
#> SRR1105174     1  0.0000     0.8640 1.000 0.000 0.000 0.000
#> SRR1468893     1  0.0592     0.8624 0.984 0.000 0.000 0.016
#> SRR1362555     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1074526     2  0.3380     0.8049 0.136 0.852 0.008 0.004
#> SRR1326225     2  0.0188     0.9590 0.000 0.996 0.004 0.000
#> SRR1401933     4  0.5055     0.4696 0.368 0.000 0.008 0.624
#> SRR1324062     4  0.4126     0.7775 0.216 0.004 0.004 0.776
#> SRR1102296     1  0.1229     0.8598 0.968 0.004 0.020 0.008
#> SRR1085087     4  0.3402     0.8181 0.164 0.004 0.000 0.832
#> SRR1079046     1  0.0672     0.8628 0.984 0.008 0.000 0.008
#> SRR1328339     1  0.3801     0.7167 0.780 0.000 0.220 0.000
#> SRR1079782     2  0.0000     0.9585 0.000 1.000 0.000 0.000
#> SRR1092257     2  0.0188     0.9565 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0162    0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1429287     2  0.1121    0.94523 0.000 0.956 0.000 0.000 0.044
#> SRR1359238     4  0.1764    0.76614 0.064 0.000 0.008 0.928 0.000
#> SRR1309597     3  0.0162    0.78472 0.000 0.000 0.996 0.000 0.004
#> SRR1441398     1  0.3612    0.61643 0.800 0.000 0.028 0.000 0.172
#> SRR1084055     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1417566     3  0.6107    0.48379 0.116 0.020 0.604 0.000 0.260
#> SRR1351857     4  0.1282    0.77825 0.044 0.000 0.000 0.952 0.004
#> SRR1487485     3  0.0566    0.78482 0.000 0.000 0.984 0.004 0.012
#> SRR1335875     3  0.2266    0.76771 0.008 0.016 0.912 0.000 0.064
#> SRR1073947     1  0.3794    0.59846 0.800 0.000 0.000 0.152 0.048
#> SRR1443483     3  0.0451    0.78489 0.000 0.000 0.988 0.004 0.008
#> SRR1346794     5  0.5291    0.15805 0.348 0.000 0.052 0.004 0.596
#> SRR1405245     1  0.4096    0.60392 0.772 0.000 0.052 0.000 0.176
#> SRR1409677     4  0.0898    0.78606 0.000 0.000 0.020 0.972 0.008
#> SRR1095549     1  0.6635    0.06637 0.444 0.000 0.064 0.060 0.432
#> SRR1323788     1  0.4181    0.58490 0.732 0.000 0.020 0.004 0.244
#> SRR1314054     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1077944     1  0.1792    0.65865 0.916 0.000 0.000 0.000 0.084
#> SRR1480587     2  0.0162    0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1311205     1  0.0613    0.66416 0.984 0.000 0.004 0.004 0.008
#> SRR1076369     5  0.2848    0.57091 0.104 0.000 0.028 0.000 0.868
#> SRR1453549     3  0.2616    0.77222 0.000 0.000 0.880 0.100 0.020
#> SRR1345782     1  0.0451    0.66286 0.988 0.000 0.004 0.000 0.008
#> SRR1447850     2  0.0510    0.95497 0.000 0.984 0.000 0.016 0.000
#> SRR1391553     3  0.3181    0.73957 0.000 0.072 0.856 0.000 0.072
#> SRR1444156     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1471731     3  0.4909    0.48060 0.000 0.000 0.588 0.380 0.032
#> SRR1120987     4  0.0794    0.78775 0.000 0.000 0.000 0.972 0.028
#> SRR1477363     1  0.2424    0.64132 0.868 0.000 0.000 0.000 0.132
#> SRR1391961     5  0.5384    0.64520 0.140 0.196 0.000 0.000 0.664
#> SRR1373879     3  0.2017    0.77405 0.000 0.000 0.912 0.080 0.008
#> SRR1318732     3  0.5798    0.45400 0.156 0.000 0.608 0.000 0.236
#> SRR1091404     1  0.4138    0.26418 0.616 0.000 0.000 0.000 0.384
#> SRR1402109     3  0.3551    0.68416 0.000 0.000 0.772 0.220 0.008
#> SRR1407336     3  0.4551    0.50087 0.000 0.000 0.616 0.368 0.016
#> SRR1097417     3  0.2470    0.73519 0.000 0.012 0.884 0.000 0.104
#> SRR1396227     1  0.5110    0.57985 0.680 0.000 0.000 0.096 0.224
#> SRR1400775     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1392861     4  0.0794    0.78276 0.000 0.000 0.028 0.972 0.000
#> SRR1472929     5  0.4863    0.44639 0.008 0.384 0.016 0.000 0.592
#> SRR1436740     4  0.0000    0.79153 0.000 0.000 0.000 1.000 0.000
#> SRR1477057     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1311980     3  0.1638    0.77407 0.000 0.004 0.932 0.000 0.064
#> SRR1069400     3  0.0671    0.78381 0.000 0.000 0.980 0.004 0.016
#> SRR1351016     1  0.2588    0.64424 0.892 0.000 0.000 0.060 0.048
#> SRR1096291     4  0.2142    0.75924 0.000 0.004 0.028 0.920 0.048
#> SRR1418145     4  0.0794    0.78622 0.000 0.000 0.000 0.972 0.028
#> SRR1488111     2  0.3495    0.75978 0.000 0.812 0.000 0.160 0.028
#> SRR1370495     5  0.5167    0.61451 0.200 0.116 0.000 0.000 0.684
#> SRR1352639     1  0.6188    0.31573 0.620 0.248 0.000 0.048 0.084
#> SRR1348911     3  0.0992    0.78022 0.000 0.008 0.968 0.000 0.024
#> SRR1467386     1  0.4415    0.14578 0.552 0.000 0.000 0.444 0.004
#> SRR1415956     1  0.3424    0.59004 0.760 0.000 0.000 0.000 0.240
#> SRR1500495     1  0.3242    0.62391 0.816 0.000 0.012 0.000 0.172
#> SRR1405099     1  0.2561    0.63858 0.856 0.000 0.000 0.000 0.144
#> SRR1345585     3  0.0703    0.78269 0.000 0.000 0.976 0.000 0.024
#> SRR1093196     3  0.4341    0.51247 0.000 0.000 0.628 0.364 0.008
#> SRR1466006     2  0.0404    0.96315 0.000 0.988 0.000 0.000 0.012
#> SRR1351557     2  0.0162    0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1382687     1  0.5572    0.61060 0.644 0.000 0.000 0.164 0.192
#> SRR1375549     5  0.3210    0.51834 0.212 0.000 0.000 0.000 0.788
#> SRR1101765     5  0.3283    0.56577 0.140 0.000 0.000 0.028 0.832
#> SRR1334461     5  0.5440    0.64026 0.156 0.184 0.000 0.000 0.660
#> SRR1094073     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1077549     4  0.3047    0.67608 0.160 0.000 0.004 0.832 0.004
#> SRR1440332     1  0.5615    0.38164 0.628 0.000 0.080 0.280 0.012
#> SRR1454177     4  0.0290    0.79150 0.000 0.000 0.008 0.992 0.000
#> SRR1082447     1  0.4287    0.22540 0.540 0.000 0.000 0.000 0.460
#> SRR1420043     3  0.4380    0.48774 0.000 0.000 0.616 0.376 0.008
#> SRR1432500     1  0.4375    0.20228 0.576 0.000 0.000 0.420 0.004
#> SRR1378045     3  0.3242    0.71099 0.000 0.116 0.844 0.000 0.040
#> SRR1334200     5  0.4045    0.50152 0.000 0.356 0.000 0.000 0.644
#> SRR1069539     4  0.6219    0.38063 0.000 0.248 0.064 0.620 0.068
#> SRR1343031     3  0.4173    0.67097 0.012 0.000 0.748 0.224 0.016
#> SRR1319690     3  0.6651    0.13751 0.312 0.000 0.440 0.000 0.248
#> SRR1310604     2  0.0794    0.95512 0.000 0.972 0.000 0.000 0.028
#> SRR1327747     3  0.8194    0.31304 0.164 0.000 0.412 0.200 0.224
#> SRR1072456     2  0.0162    0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1367896     3  0.0510    0.78331 0.000 0.000 0.984 0.000 0.016
#> SRR1480107     1  0.0807    0.66147 0.976 0.000 0.000 0.012 0.012
#> SRR1377756     1  0.5440    0.61115 0.660 0.000 0.000 0.156 0.184
#> SRR1435272     4  0.0162    0.79182 0.000 0.000 0.004 0.996 0.000
#> SRR1089230     4  0.0162    0.79172 0.000 0.000 0.000 0.996 0.004
#> SRR1389522     3  0.0609    0.78342 0.000 0.000 0.980 0.000 0.020
#> SRR1080600     2  0.2773    0.80816 0.000 0.836 0.000 0.000 0.164
#> SRR1086935     4  0.0693    0.78861 0.000 0.012 0.000 0.980 0.008
#> SRR1344060     5  0.4045    0.50151 0.000 0.356 0.000 0.000 0.644
#> SRR1467922     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1090984     5  0.6458    0.07423 0.292 0.000 0.216 0.000 0.492
#> SRR1456991     1  0.0404    0.66167 0.988 0.000 0.000 0.000 0.012
#> SRR1085039     1  0.3536    0.65556 0.832 0.000 0.000 0.084 0.084
#> SRR1069303     1  0.5844    0.25678 0.528 0.000 0.000 0.368 0.104
#> SRR1091500     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1075198     2  0.1408    0.94183 0.000 0.948 0.000 0.008 0.044
#> SRR1086915     4  0.0000    0.79153 0.000 0.000 0.000 1.000 0.000
#> SRR1499503     2  0.0162    0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1094312     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1352437     4  0.5599   -0.00975 0.444 0.000 0.000 0.484 0.072
#> SRR1436323     4  0.5491   -0.23941 0.004 0.000 0.452 0.492 0.052
#> SRR1073507     4  0.4452   -0.03642 0.496 0.000 0.000 0.500 0.004
#> SRR1401972     1  0.5844    0.25678 0.528 0.000 0.000 0.368 0.104
#> SRR1415510     2  0.0290    0.96502 0.000 0.992 0.000 0.000 0.008
#> SRR1327279     1  0.5436    0.37502 0.636 0.000 0.056 0.292 0.016
#> SRR1086983     4  0.1410    0.76810 0.060 0.000 0.000 0.940 0.000
#> SRR1105174     1  0.2732    0.63188 0.840 0.000 0.000 0.000 0.160
#> SRR1468893     1  0.4233    0.62115 0.748 0.000 0.000 0.044 0.208
#> SRR1362555     2  0.2127    0.88484 0.000 0.892 0.000 0.000 0.108
#> SRR1074526     5  0.4275    0.60748 0.020 0.284 0.000 0.000 0.696
#> SRR1326225     2  0.0000    0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1401933     4  0.6846    0.04424 0.224 0.000 0.008 0.436 0.332
#> SRR1324062     1  0.5352    0.20867 0.536 0.000 0.000 0.408 0.056
#> SRR1102296     1  0.3036    0.63951 0.868 0.012 0.008 0.008 0.104
#> SRR1085087     4  0.4818    0.04120 0.460 0.000 0.000 0.520 0.020
#> SRR1079046     5  0.2852    0.56214 0.172 0.000 0.000 0.000 0.828
#> SRR1328339     1  0.7057   -0.05472 0.344 0.008 0.316 0.000 0.332
#> SRR1079782     2  0.1661    0.93491 0.000 0.940 0.000 0.024 0.036
#> SRR1092257     2  0.1579    0.93349 0.000 0.944 0.000 0.032 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0458     0.8865 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1429287     2  0.3526     0.8027 0.000 0.820 0.000 0.012 0.080 0.088
#> SRR1359238     4  0.3529     0.6921 0.176 0.000 0.028 0.788 0.000 0.008
#> SRR1309597     3  0.0547     0.7641 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1441398     1  0.4410     0.0902 0.560 0.000 0.028 0.000 0.000 0.412
#> SRR1084055     2  0.0405     0.8864 0.000 0.988 0.000 0.000 0.008 0.004
#> SRR1417566     6  0.4651     0.5124 0.036 0.024 0.140 0.000 0.044 0.756
#> SRR1351857     4  0.2515     0.7721 0.104 0.000 0.008 0.876 0.004 0.008
#> SRR1487485     3  0.2261     0.7447 0.000 0.000 0.884 0.004 0.008 0.104
#> SRR1335875     3  0.5104     0.5631 0.024 0.012 0.640 0.000 0.040 0.284
#> SRR1073947     1  0.2433     0.5318 0.884 0.000 0.000 0.072 0.000 0.044
#> SRR1443483     3  0.0000     0.7636 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1346794     6  0.5211     0.5066 0.180 0.000 0.016 0.004 0.132 0.668
#> SRR1405245     1  0.4453     0.1071 0.568 0.000 0.032 0.000 0.000 0.400
#> SRR1409677     4  0.1320     0.8157 0.000 0.000 0.036 0.948 0.000 0.016
#> SRR1095549     6  0.7476     0.3136 0.308 0.000 0.116 0.068 0.068 0.440
#> SRR1323788     6  0.4507     0.1183 0.432 0.000 0.008 0.004 0.012 0.544
#> SRR1314054     2  0.0291     0.8870 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1077944     1  0.2823     0.4327 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR1480587     2  0.0458     0.8865 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1311205     1  0.1738     0.5231 0.928 0.000 0.016 0.004 0.000 0.052
#> SRR1076369     5  0.4623     0.5534 0.048 0.000 0.004 0.004 0.652 0.292
#> SRR1453549     3  0.4154     0.7331 0.004 0.000 0.772 0.080 0.012 0.132
#> SRR1345782     1  0.1682     0.5203 0.928 0.000 0.020 0.000 0.000 0.052
#> SRR1447850     2  0.1777     0.8664 0.000 0.932 0.000 0.024 0.032 0.012
#> SRR1391553     3  0.6584     0.2701 0.000 0.180 0.408 0.000 0.044 0.368
#> SRR1444156     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731     3  0.6259     0.2641 0.000 0.000 0.380 0.360 0.008 0.252
#> SRR1120987     4  0.3489     0.7531 0.012 0.004 0.000 0.828 0.060 0.096
#> SRR1477363     1  0.3101     0.3986 0.756 0.000 0.000 0.000 0.000 0.244
#> SRR1391961     5  0.2775     0.8028 0.040 0.104 0.000 0.000 0.856 0.000
#> SRR1373879     3  0.1075     0.7618 0.000 0.000 0.952 0.048 0.000 0.000
#> SRR1318732     6  0.4838     0.5452 0.072 0.008 0.216 0.000 0.012 0.692
#> SRR1091404     1  0.5202     0.2431 0.612 0.000 0.000 0.000 0.224 0.164
#> SRR1402109     3  0.2416     0.7147 0.000 0.000 0.844 0.156 0.000 0.000
#> SRR1407336     3  0.3445     0.6345 0.000 0.000 0.744 0.244 0.000 0.012
#> SRR1097417     3  0.3351     0.7098 0.000 0.016 0.832 0.000 0.104 0.048
#> SRR1396227     1  0.6057     0.1693 0.480 0.000 0.000 0.092 0.048 0.380
#> SRR1400775     2  0.0146     0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1392861     4  0.0858     0.8168 0.000 0.000 0.028 0.968 0.004 0.000
#> SRR1472929     5  0.2909     0.7757 0.004 0.156 0.012 0.000 0.828 0.000
#> SRR1436740     4  0.0405     0.8214 0.000 0.000 0.004 0.988 0.000 0.008
#> SRR1477057     2  0.1549     0.8694 0.000 0.936 0.000 0.000 0.020 0.044
#> SRR1311980     3  0.4390     0.6085 0.000 0.004 0.668 0.000 0.044 0.284
#> SRR1069400     3  0.0260     0.7634 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR1351016     1  0.2333     0.5321 0.896 0.000 0.004 0.040 0.000 0.060
#> SRR1096291     4  0.4901     0.6901 0.004 0.004 0.104 0.744 0.068 0.076
#> SRR1418145     4  0.3410     0.7432 0.004 0.000 0.000 0.820 0.076 0.100
#> SRR1488111     2  0.5701     0.6179 0.000 0.644 0.000 0.176 0.080 0.100
#> SRR1370495     5  0.2834     0.7374 0.060 0.008 0.000 0.008 0.876 0.048
#> SRR1352639     1  0.6507     0.3061 0.604 0.108 0.000 0.024 0.152 0.112
#> SRR1348911     3  0.3737     0.6804 0.000 0.008 0.772 0.000 0.036 0.184
#> SRR1467386     1  0.4199     0.4219 0.640 0.000 0.000 0.336 0.004 0.020
#> SRR1415956     1  0.4057     0.0982 0.556 0.000 0.000 0.000 0.008 0.436
#> SRR1500495     1  0.4362     0.1435 0.584 0.000 0.028 0.000 0.000 0.388
#> SRR1405099     1  0.3426     0.3693 0.720 0.000 0.000 0.000 0.004 0.276
#> SRR1345585     3  0.3376     0.6699 0.000 0.000 0.764 0.000 0.016 0.220
#> SRR1093196     3  0.4755     0.5329 0.000 0.000 0.632 0.304 0.008 0.056
#> SRR1466006     2  0.0790     0.8833 0.000 0.968 0.000 0.000 0.032 0.000
#> SRR1351557     2  0.0363     0.8870 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1382687     6  0.5830    -0.1603 0.416 0.000 0.000 0.160 0.004 0.420
#> SRR1375549     5  0.4986     0.5206 0.096 0.000 0.000 0.004 0.628 0.272
#> SRR1101765     5  0.4379     0.6166 0.052 0.000 0.000 0.008 0.700 0.240
#> SRR1334461     5  0.2837     0.7979 0.056 0.088 0.000 0.000 0.856 0.000
#> SRR1094073     2  0.0146     0.8875 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1077549     4  0.4737     0.4246 0.308 0.000 0.044 0.636 0.004 0.008
#> SRR1440332     1  0.5504     0.3396 0.624 0.000 0.216 0.136 0.000 0.024
#> SRR1454177     4  0.0146     0.8216 0.000 0.000 0.004 0.996 0.000 0.000
#> SRR1082447     1  0.5565     0.0934 0.508 0.000 0.000 0.000 0.152 0.340
#> SRR1420043     3  0.3198     0.6292 0.000 0.000 0.740 0.260 0.000 0.000
#> SRR1432500     1  0.3411     0.4912 0.756 0.000 0.008 0.232 0.000 0.004
#> SRR1378045     2  0.6819    -0.2978 0.000 0.336 0.320 0.000 0.040 0.304
#> SRR1334200     5  0.2048     0.7981 0.000 0.120 0.000 0.000 0.880 0.000
#> SRR1069539     4  0.6913     0.4788 0.000 0.060 0.184 0.572 0.096 0.088
#> SRR1343031     3  0.2070     0.7400 0.012 0.000 0.896 0.092 0.000 0.000
#> SRR1319690     6  0.5537     0.5334 0.212 0.000 0.188 0.000 0.008 0.592
#> SRR1310604     2  0.1956     0.8607 0.000 0.908 0.000 0.004 0.080 0.008
#> SRR1327747     6  0.6699     0.3774 0.060 0.000 0.268 0.148 0.012 0.512
#> SRR1072456     2  0.0632     0.8845 0.000 0.976 0.000 0.000 0.024 0.000
#> SRR1367896     3  0.0806     0.7636 0.000 0.000 0.972 0.000 0.008 0.020
#> SRR1480107     1  0.0291     0.5340 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1377756     1  0.5750     0.2409 0.512 0.000 0.000 0.132 0.012 0.344
#> SRR1435272     4  0.0146     0.8216 0.000 0.000 0.004 0.996 0.000 0.000
#> SRR1089230     4  0.0837     0.8173 0.000 0.000 0.004 0.972 0.004 0.020
#> SRR1389522     3  0.0000     0.7636 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1080600     2  0.4049     0.6766 0.000 0.708 0.000 0.004 0.256 0.032
#> SRR1086935     4  0.1413     0.8113 0.000 0.008 0.004 0.948 0.004 0.036
#> SRR1344060     5  0.2178     0.7949 0.000 0.132 0.000 0.000 0.868 0.000
#> SRR1467922     2  0.0000     0.8873 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984     6  0.4656     0.5764 0.112 0.000 0.064 0.000 0.076 0.748
#> SRR1456991     1  0.0692     0.5307 0.976 0.000 0.004 0.000 0.000 0.020
#> SRR1085039     1  0.3544     0.5178 0.820 0.000 0.000 0.064 0.016 0.100
#> SRR1069303     1  0.6186     0.3791 0.532 0.000 0.000 0.272 0.040 0.156
#> SRR1091500     2  0.0146     0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1075198     2  0.3699     0.7938 0.000 0.796 0.000 0.004 0.112 0.088
#> SRR1086915     4  0.0405     0.8201 0.008 0.000 0.000 0.988 0.000 0.004
#> SRR1499503     2  0.0547     0.8856 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1094312     2  0.0146     0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1352437     1  0.6113     0.2779 0.480 0.000 0.000 0.344 0.024 0.152
#> SRR1436323     4  0.6597    -0.0395 0.012 0.000 0.280 0.444 0.016 0.248
#> SRR1073507     1  0.3847     0.4004 0.644 0.000 0.000 0.348 0.000 0.008
#> SRR1401972     1  0.6171     0.3815 0.536 0.000 0.000 0.268 0.040 0.156
#> SRR1415510     2  0.0547     0.8856 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1327279     1  0.4622     0.4472 0.712 0.000 0.160 0.120 0.000 0.008
#> SRR1086983     4  0.2454     0.7622 0.104 0.000 0.000 0.876 0.004 0.016
#> SRR1105174     1  0.3766     0.3234 0.684 0.000 0.000 0.000 0.012 0.304
#> SRR1468893     1  0.5210     0.2596 0.576 0.000 0.000 0.040 0.036 0.348
#> SRR1362555     2  0.4905     0.6158 0.000 0.640 0.000 0.004 0.264 0.092
#> SRR1074526     5  0.2389     0.7978 0.000 0.128 0.000 0.000 0.864 0.008
#> SRR1326225     2  0.0146     0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1401933     6  0.5808     0.2373 0.060 0.000 0.000 0.348 0.060 0.532
#> SRR1324062     1  0.6013     0.3807 0.516 0.000 0.000 0.300 0.020 0.164
#> SRR1102296     1  0.4190     0.4103 0.692 0.000 0.000 0.000 0.048 0.260
#> SRR1085087     1  0.5105     0.2726 0.540 0.000 0.000 0.388 0.008 0.064
#> SRR1079046     5  0.3381     0.7126 0.044 0.000 0.000 0.000 0.800 0.156
#> SRR1328339     6  0.5734     0.5567 0.128 0.012 0.124 0.000 0.068 0.668
#> SRR1079782     2  0.4247     0.7754 0.000 0.776 0.000 0.036 0.096 0.092
#> SRR1092257     2  0.4571     0.7506 0.000 0.756 0.000 0.072 0.068 0.104

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.825           0.908       0.956         0.3928 0.618   0.618
#> 3 3 0.463           0.684       0.808         0.6335 0.656   0.476
#> 4 4 0.504           0.560       0.793         0.1467 0.771   0.457
#> 5 5 0.572           0.495       0.736         0.0634 0.917   0.714
#> 6 6 0.653           0.576       0.761         0.0330 0.945   0.774

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000     0.9382 0.000 1.000
#> SRR1429287     2  0.0376     0.9374 0.004 0.996
#> SRR1359238     1  0.0376     0.9577 0.996 0.004
#> SRR1309597     1  0.1633     0.9560 0.976 0.024
#> SRR1441398     1  0.0000     0.9575 1.000 0.000
#> SRR1084055     2  0.0000     0.9382 0.000 1.000
#> SRR1417566     1  0.1633     0.9560 0.976 0.024
#> SRR1351857     1  0.1633     0.9560 0.976 0.024
#> SRR1487485     1  0.6712     0.7922 0.824 0.176
#> SRR1335875     1  0.1633     0.9560 0.976 0.024
#> SRR1073947     1  0.0000     0.9575 1.000 0.000
#> SRR1443483     1  0.1633     0.9560 0.976 0.024
#> SRR1346794     1  0.1633     0.9560 0.976 0.024
#> SRR1405245     1  0.0000     0.9575 1.000 0.000
#> SRR1409677     1  0.1633     0.9560 0.976 0.024
#> SRR1095549     1  0.1414     0.9567 0.980 0.020
#> SRR1323788     1  0.1633     0.9560 0.976 0.024
#> SRR1314054     2  0.0938     0.9347 0.012 0.988
#> SRR1077944     1  0.0000     0.9575 1.000 0.000
#> SRR1480587     2  0.0000     0.9382 0.000 1.000
#> SRR1311205     1  0.0000     0.9575 1.000 0.000
#> SRR1076369     1  0.0000     0.9575 1.000 0.000
#> SRR1453549     1  0.1633     0.9560 0.976 0.024
#> SRR1345782     1  0.0000     0.9575 1.000 0.000
#> SRR1447850     2  0.4161     0.8880 0.084 0.916
#> SRR1391553     2  0.5059     0.8666 0.112 0.888
#> SRR1444156     2  0.0000     0.9382 0.000 1.000
#> SRR1471731     1  0.1633     0.9560 0.976 0.024
#> SRR1120987     1  0.8555     0.6111 0.720 0.280
#> SRR1477363     1  0.0000     0.9575 1.000 0.000
#> SRR1391961     1  0.3584     0.9078 0.932 0.068
#> SRR1373879     1  0.1633     0.9560 0.976 0.024
#> SRR1318732     1  0.2603     0.9440 0.956 0.044
#> SRR1091404     1  0.0376     0.9562 0.996 0.004
#> SRR1402109     1  0.1633     0.9560 0.976 0.024
#> SRR1407336     1  0.1633     0.9560 0.976 0.024
#> SRR1097417     2  0.9833     0.2820 0.424 0.576
#> SRR1396227     1  0.0000     0.9575 1.000 0.000
#> SRR1400775     2  0.0000     0.9382 0.000 1.000
#> SRR1392861     1  0.1633     0.9560 0.976 0.024
#> SRR1472929     1  0.9129     0.5038 0.672 0.328
#> SRR1436740     1  0.1633     0.9560 0.976 0.024
#> SRR1477057     2  0.6247     0.8401 0.156 0.844
#> SRR1311980     1  0.0000     0.9575 1.000 0.000
#> SRR1069400     1  0.1633     0.9560 0.976 0.024
#> SRR1351016     1  0.0000     0.9575 1.000 0.000
#> SRR1096291     1  0.1633     0.9560 0.976 0.024
#> SRR1418145     1  0.1414     0.9567 0.980 0.020
#> SRR1488111     2  0.8327     0.6732 0.264 0.736
#> SRR1370495     1  0.0672     0.9545 0.992 0.008
#> SRR1352639     1  0.0938     0.9525 0.988 0.012
#> SRR1348911     1  0.0672     0.9576 0.992 0.008
#> SRR1467386     1  0.0000     0.9575 1.000 0.000
#> SRR1415956     1  0.0000     0.9575 1.000 0.000
#> SRR1500495     1  0.0000     0.9575 1.000 0.000
#> SRR1405099     1  0.0000     0.9575 1.000 0.000
#> SRR1345585     1  0.2423     0.9459 0.960 0.040
#> SRR1093196     1  0.1633     0.9560 0.976 0.024
#> SRR1466006     2  0.0000     0.9382 0.000 1.000
#> SRR1351557     2  0.0000     0.9382 0.000 1.000
#> SRR1382687     1  0.1414     0.9567 0.980 0.020
#> SRR1375549     1  0.0672     0.9545 0.992 0.008
#> SRR1101765     1  0.1633     0.9560 0.976 0.024
#> SRR1334461     1  0.4815     0.8663 0.896 0.104
#> SRR1094073     2  0.0000     0.9382 0.000 1.000
#> SRR1077549     1  0.0000     0.9575 1.000 0.000
#> SRR1440332     1  0.0000     0.9575 1.000 0.000
#> SRR1454177     1  0.1633     0.9560 0.976 0.024
#> SRR1082447     1  0.0000     0.9575 1.000 0.000
#> SRR1420043     1  0.1633     0.9560 0.976 0.024
#> SRR1432500     1  0.0000     0.9575 1.000 0.000
#> SRR1378045     2  0.1184     0.9330 0.016 0.984
#> SRR1334200     1  0.9552     0.4271 0.624 0.376
#> SRR1069539     1  0.1843     0.9547 0.972 0.028
#> SRR1343031     1  0.0376     0.9576 0.996 0.004
#> SRR1319690     1  0.1633     0.9560 0.976 0.024
#> SRR1310604     2  0.0000     0.9382 0.000 1.000
#> SRR1327747     1  0.1633     0.9560 0.976 0.024
#> SRR1072456     2  0.1633     0.9239 0.024 0.976
#> SRR1367896     1  0.0672     0.9576 0.992 0.008
#> SRR1480107     1  0.0000     0.9575 1.000 0.000
#> SRR1377756     1  0.1414     0.9567 0.980 0.020
#> SRR1435272     1  0.1633     0.9560 0.976 0.024
#> SRR1089230     1  0.1633     0.9560 0.976 0.024
#> SRR1389522     1  0.0672     0.9545 0.992 0.008
#> SRR1080600     2  0.5737     0.8326 0.136 0.864
#> SRR1086935     2  0.8327     0.6715 0.264 0.736
#> SRR1344060     1  1.0000    -0.0631 0.500 0.500
#> SRR1467922     2  0.0000     0.9382 0.000 1.000
#> SRR1090984     1  0.0000     0.9575 1.000 0.000
#> SRR1456991     1  0.0000     0.9575 1.000 0.000
#> SRR1085039     1  0.0000     0.9575 1.000 0.000
#> SRR1069303     1  0.0000     0.9575 1.000 0.000
#> SRR1091500     2  0.0938     0.9319 0.012 0.988
#> SRR1075198     2  0.0000     0.9382 0.000 1.000
#> SRR1086915     1  0.1633     0.9560 0.976 0.024
#> SRR1499503     2  0.0000     0.9382 0.000 1.000
#> SRR1094312     2  0.0000     0.9382 0.000 1.000
#> SRR1352437     1  0.7883     0.6631 0.764 0.236
#> SRR1436323     1  0.1633     0.9560 0.976 0.024
#> SRR1073507     1  0.0000     0.9575 1.000 0.000
#> SRR1401972     1  0.0000     0.9575 1.000 0.000
#> SRR1415510     2  0.0672     0.9362 0.008 0.992
#> SRR1327279     1  0.0000     0.9575 1.000 0.000
#> SRR1086983     1  0.1633     0.9560 0.976 0.024
#> SRR1105174     1  0.0000     0.9575 1.000 0.000
#> SRR1468893     1  0.0000     0.9575 1.000 0.000
#> SRR1362555     1  0.8016     0.6720 0.756 0.244
#> SRR1074526     2  0.7139     0.7971 0.196 0.804
#> SRR1326225     2  0.0000     0.9382 0.000 1.000
#> SRR1401933     1  0.0000     0.9575 1.000 0.000
#> SRR1324062     1  0.0000     0.9575 1.000 0.000
#> SRR1102296     1  0.3584     0.9042 0.932 0.068
#> SRR1085087     1  0.0000     0.9575 1.000 0.000
#> SRR1079046     1  0.5946     0.8242 0.856 0.144
#> SRR1328339     1  0.0000     0.9575 1.000 0.000
#> SRR1079782     2  0.0000     0.9382 0.000 1.000
#> SRR1092257     2  0.1184     0.9327 0.016 0.984

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1429287     2  0.4654     0.7594 0.000 0.792 0.208
#> SRR1359238     1  0.6215     0.2724 0.572 0.000 0.428
#> SRR1309597     1  0.6168     0.3425 0.588 0.000 0.412
#> SRR1441398     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1084055     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1417566     3  0.4887     0.7214 0.228 0.000 0.772
#> SRR1351857     3  0.6309    -0.2764 0.496 0.000 0.504
#> SRR1487485     3  0.2356     0.7657 0.072 0.000 0.928
#> SRR1335875     3  0.5785     0.6351 0.332 0.000 0.668
#> SRR1073947     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1443483     1  0.6252     0.2675 0.556 0.000 0.444
#> SRR1346794     1  0.5465     0.5353 0.712 0.000 0.288
#> SRR1405245     1  0.4750     0.6654 0.784 0.000 0.216
#> SRR1409677     3  0.1753     0.7585 0.048 0.000 0.952
#> SRR1095549     1  0.3879     0.7105 0.848 0.000 0.152
#> SRR1323788     3  0.4974     0.7148 0.236 0.000 0.764
#> SRR1314054     2  0.3412     0.8058 0.000 0.876 0.124
#> SRR1077944     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1480587     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1311205     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1076369     1  0.3686     0.7179 0.860 0.000 0.140
#> SRR1453549     3  0.5431     0.6781 0.284 0.000 0.716
#> SRR1345782     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1447850     2  0.4605     0.7232 0.000 0.796 0.204
#> SRR1391553     3  0.7274     0.4830 0.052 0.304 0.644
#> SRR1444156     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1471731     3  0.2356     0.7657 0.072 0.000 0.928
#> SRR1120987     3  0.5327     0.6353 0.272 0.000 0.728
#> SRR1477363     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1391961     1  0.1643     0.7977 0.956 0.044 0.000
#> SRR1373879     3  0.2356     0.7657 0.072 0.000 0.928
#> SRR1318732     3  0.3686     0.7461 0.140 0.000 0.860
#> SRR1091404     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1402109     3  0.3267     0.7539 0.116 0.000 0.884
#> SRR1407336     3  0.2356     0.7657 0.072 0.000 0.928
#> SRR1097417     3  0.3764     0.7616 0.068 0.040 0.892
#> SRR1396227     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1400775     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1392861     3  0.0000     0.7550 0.000 0.000 1.000
#> SRR1472929     1  0.6111     0.3542 0.604 0.396 0.000
#> SRR1436740     3  0.0000     0.7550 0.000 0.000 1.000
#> SRR1477057     2  0.6887     0.6047 0.060 0.704 0.236
#> SRR1311980     3  0.6235     0.4700 0.436 0.000 0.564
#> SRR1069400     3  0.4555     0.6874 0.200 0.000 0.800
#> SRR1351016     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1096291     3  0.4750     0.6209 0.216 0.000 0.784
#> SRR1418145     1  0.5465     0.6277 0.712 0.000 0.288
#> SRR1488111     3  0.7273     0.6894 0.156 0.132 0.712
#> SRR1370495     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1352639     1  0.3619     0.7372 0.864 0.000 0.136
#> SRR1348911     3  0.5926     0.6048 0.356 0.000 0.644
#> SRR1467386     1  0.5785     0.3537 0.668 0.000 0.332
#> SRR1415956     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1500495     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1405099     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1345585     3  0.2537     0.7663 0.080 0.000 0.920
#> SRR1093196     3  0.2356     0.7657 0.072 0.000 0.928
#> SRR1466006     2  0.0237     0.8932 0.000 0.996 0.004
#> SRR1351557     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1382687     3  0.5810     0.6306 0.336 0.000 0.664
#> SRR1375549     1  0.2356     0.7850 0.928 0.000 0.072
#> SRR1101765     1  0.6309    -0.0526 0.504 0.000 0.496
#> SRR1334461     1  0.1964     0.7926 0.944 0.056 0.000
#> SRR1094073     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1077549     3  0.5835     0.6273 0.340 0.000 0.660
#> SRR1440332     1  0.3816     0.7093 0.852 0.000 0.148
#> SRR1454177     3  0.0000     0.7550 0.000 0.000 1.000
#> SRR1082447     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1420043     3  0.1163     0.7627 0.028 0.000 0.972
#> SRR1432500     1  0.4796     0.6926 0.780 0.000 0.220
#> SRR1378045     2  0.5948     0.4180 0.000 0.640 0.360
#> SRR1334200     3  0.9156     0.5422 0.256 0.204 0.540
#> SRR1069539     3  0.0000     0.7550 0.000 0.000 1.000
#> SRR1343031     3  0.5988     0.3766 0.368 0.000 0.632
#> SRR1319690     3  0.5431     0.6816 0.284 0.000 0.716
#> SRR1310604     2  0.2711     0.8506 0.000 0.912 0.088
#> SRR1327747     3  0.5678     0.4046 0.316 0.000 0.684
#> SRR1072456     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1367896     3  0.4399     0.7089 0.188 0.000 0.812
#> SRR1480107     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1377756     1  0.5178     0.6577 0.744 0.000 0.256
#> SRR1435272     3  0.0000     0.7550 0.000 0.000 1.000
#> SRR1089230     3  0.0000     0.7550 0.000 0.000 1.000
#> SRR1389522     1  0.4887     0.6206 0.772 0.000 0.228
#> SRR1080600     3  0.8518    -0.0886 0.092 0.436 0.472
#> SRR1086935     3  0.0000     0.7550 0.000 0.000 1.000
#> SRR1344060     2  0.5905     0.4025 0.352 0.648 0.000
#> SRR1467922     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1090984     3  0.6062     0.5700 0.384 0.000 0.616
#> SRR1456991     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1085039     1  0.2356     0.7850 0.928 0.000 0.072
#> SRR1069303     1  0.1860     0.7960 0.948 0.000 0.052
#> SRR1091500     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1075198     2  0.3340     0.8202 0.000 0.880 0.120
#> SRR1086915     3  0.3941     0.7253 0.156 0.000 0.844
#> SRR1499503     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1094312     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1352437     3  0.7424     0.6136 0.300 0.060 0.640
#> SRR1436323     3  0.2356     0.7657 0.072 0.000 0.928
#> SRR1073507     1  0.2356     0.7850 0.928 0.000 0.072
#> SRR1401972     1  0.3412     0.7313 0.876 0.000 0.124
#> SRR1415510     2  0.5431     0.5727 0.000 0.716 0.284
#> SRR1327279     1  0.3816     0.7093 0.852 0.000 0.148
#> SRR1086983     3  0.5216     0.6469 0.260 0.000 0.740
#> SRR1105174     1  0.2356     0.7850 0.928 0.000 0.072
#> SRR1468893     1  0.0424     0.8132 0.992 0.000 0.008
#> SRR1362555     1  0.6225     0.2649 0.568 0.432 0.000
#> SRR1074526     1  0.9767    -0.2368 0.404 0.232 0.364
#> SRR1326225     2  0.0000     0.8946 0.000 1.000 0.000
#> SRR1401933     1  0.5560     0.4377 0.700 0.000 0.300
#> SRR1324062     3  0.6215     0.4842 0.428 0.000 0.572
#> SRR1102296     1  0.5207     0.7166 0.824 0.052 0.124
#> SRR1085087     1  0.2448     0.7850 0.924 0.000 0.076
#> SRR1079046     1  0.4569     0.7554 0.860 0.068 0.072
#> SRR1328339     1  0.0000     0.8140 1.000 0.000 0.000
#> SRR1079782     2  0.2959     0.8464 0.000 0.900 0.100
#> SRR1092257     2  0.2165     0.8637 0.000 0.936 0.064

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0592     0.8555 0.000 0.984 0.000 0.016
#> SRR1429287     4  0.5877     0.4834 0.000 0.276 0.068 0.656
#> SRR1359238     4  0.6049     0.6784 0.184 0.000 0.132 0.684
#> SRR1309597     3  0.6910     0.2977 0.324 0.000 0.548 0.128
#> SRR1441398     1  0.1022     0.7192 0.968 0.000 0.000 0.032
#> SRR1084055     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1417566     3  0.5039     0.1044 0.404 0.000 0.592 0.004
#> SRR1351857     4  0.3333     0.7188 0.088 0.000 0.040 0.872
#> SRR1487485     3  0.0000     0.6832 0.000 0.000 1.000 0.000
#> SRR1335875     3  0.5000    -0.1495 0.500 0.000 0.500 0.000
#> SRR1073947     1  0.0000     0.7244 1.000 0.000 0.000 0.000
#> SRR1443483     3  0.6950     0.3150 0.272 0.000 0.572 0.156
#> SRR1346794     1  0.7545    -0.0488 0.440 0.000 0.368 0.192
#> SRR1405245     1  0.4737     0.5442 0.728 0.000 0.252 0.020
#> SRR1409677     4  0.3401     0.7035 0.008 0.000 0.152 0.840
#> SRR1095549     1  0.3324     0.6402 0.852 0.000 0.136 0.012
#> SRR1323788     3  0.4877     0.3127 0.328 0.000 0.664 0.008
#> SRR1314054     2  0.2973     0.7540 0.000 0.856 0.144 0.000
#> SRR1077944     1  0.0188     0.7244 0.996 0.000 0.000 0.004
#> SRR1480587     2  0.0592     0.8555 0.000 0.984 0.000 0.016
#> SRR1311205     1  0.0188     0.7242 0.996 0.000 0.000 0.004
#> SRR1076369     1  0.7818     0.0672 0.416 0.000 0.292 0.292
#> SRR1453549     3  0.4977    -0.0482 0.460 0.000 0.540 0.000
#> SRR1345782     1  0.0000     0.7244 1.000 0.000 0.000 0.000
#> SRR1447850     2  0.3837     0.6643 0.000 0.776 0.224 0.000
#> SRR1391553     3  0.6079    -0.0460 0.044 0.464 0.492 0.000
#> SRR1444156     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1471731     3  0.0000     0.6832 0.000 0.000 1.000 0.000
#> SRR1120987     4  0.1635     0.7170 0.044 0.000 0.008 0.948
#> SRR1477363     1  0.0817     0.7208 0.976 0.000 0.000 0.024
#> SRR1391961     1  0.2610     0.6905 0.900 0.012 0.000 0.088
#> SRR1373879     3  0.0000     0.6832 0.000 0.000 1.000 0.000
#> SRR1318732     3  0.3768     0.5587 0.008 0.000 0.808 0.184
#> SRR1091404     1  0.0188     0.7244 0.996 0.000 0.000 0.004
#> SRR1402109     3  0.1302     0.6768 0.044 0.000 0.956 0.000
#> SRR1407336     3  0.3024     0.5712 0.000 0.000 0.852 0.148
#> SRR1097417     3  0.1042     0.6773 0.000 0.020 0.972 0.008
#> SRR1396227     1  0.0188     0.7242 0.996 0.000 0.000 0.004
#> SRR1400775     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1392861     3  0.0000     0.6832 0.000 0.000 1.000 0.000
#> SRR1472929     1  0.6974     0.1070 0.488 0.396 0.000 0.116
#> SRR1436740     4  0.4431     0.5865 0.000 0.000 0.304 0.696
#> SRR1477057     2  0.7004     0.5027 0.160 0.628 0.196 0.016
#> SRR1311980     1  0.4888     0.2838 0.588 0.000 0.412 0.000
#> SRR1069400     3  0.2342     0.6606 0.080 0.000 0.912 0.008
#> SRR1351016     1  0.0000     0.7244 1.000 0.000 0.000 0.000
#> SRR1096291     4  0.5010     0.6807 0.108 0.000 0.120 0.772
#> SRR1418145     4  0.1610     0.7165 0.016 0.000 0.032 0.952
#> SRR1488111     3  0.7521     0.1410 0.352 0.096 0.520 0.032
#> SRR1370495     1  0.2469     0.6877 0.892 0.000 0.000 0.108
#> SRR1352639     1  0.7872    -0.1076 0.376 0.000 0.344 0.280
#> SRR1348911     1  0.5000     0.0966 0.500 0.000 0.500 0.000
#> SRR1467386     1  0.4401     0.5346 0.724 0.000 0.272 0.004
#> SRR1415956     1  0.0817     0.7208 0.976 0.000 0.000 0.024
#> SRR1500495     1  0.1209     0.7184 0.964 0.000 0.004 0.032
#> SRR1405099     1  0.0817     0.7208 0.976 0.000 0.000 0.024
#> SRR1345585     3  0.0895     0.6807 0.004 0.000 0.976 0.020
#> SRR1093196     3  0.0336     0.6818 0.000 0.000 0.992 0.008
#> SRR1466006     2  0.0657     0.8556 0.000 0.984 0.004 0.012
#> SRR1351557     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1382687     1  0.4977     0.2029 0.540 0.000 0.460 0.000
#> SRR1375549     4  0.3528     0.6804 0.192 0.000 0.000 0.808
#> SRR1101765     4  0.3577     0.6927 0.156 0.000 0.012 0.832
#> SRR1334461     1  0.3307     0.6761 0.868 0.028 0.000 0.104
#> SRR1094073     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1077549     1  0.5161     0.1763 0.520 0.000 0.476 0.004
#> SRR1440332     1  0.3554     0.6615 0.844 0.000 0.020 0.136
#> SRR1454177     3  0.4967    -0.1684 0.000 0.000 0.548 0.452
#> SRR1082447     1  0.0921     0.7216 0.972 0.000 0.000 0.028
#> SRR1420043     3  0.0000     0.6832 0.000 0.000 1.000 0.000
#> SRR1432500     4  0.6031     0.6570 0.168 0.000 0.144 0.688
#> SRR1378045     2  0.4406     0.5410 0.000 0.700 0.300 0.000
#> SRR1334200     4  0.9135    -0.0832 0.296 0.072 0.256 0.376
#> SRR1069539     4  0.3975     0.6322 0.000 0.000 0.240 0.760
#> SRR1343031     3  0.3172     0.6017 0.160 0.000 0.840 0.000
#> SRR1319690     3  0.4406     0.5839 0.192 0.000 0.780 0.028
#> SRR1310604     2  0.5140     0.7234 0.000 0.760 0.096 0.144
#> SRR1327747     4  0.6474     0.5157 0.120 0.000 0.256 0.624
#> SRR1072456     2  0.0592     0.8555 0.000 0.984 0.000 0.016
#> SRR1367896     3  0.2149     0.6557 0.088 0.000 0.912 0.000
#> SRR1480107     1  0.0188     0.7244 0.996 0.000 0.000 0.004
#> SRR1377756     4  0.3873     0.7182 0.096 0.000 0.060 0.844
#> SRR1435272     4  0.4454     0.5831 0.000 0.000 0.308 0.692
#> SRR1089230     4  0.1716     0.7167 0.000 0.000 0.064 0.936
#> SRR1389522     1  0.5931    -0.0271 0.504 0.000 0.460 0.036
#> SRR1080600     3  0.7824     0.0707 0.004 0.216 0.424 0.356
#> SRR1086935     4  0.5000     0.1820 0.000 0.000 0.500 0.500
#> SRR1344060     2  0.7301     0.4549 0.236 0.536 0.000 0.228
#> SRR1467922     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1090984     1  0.4985     0.1794 0.532 0.000 0.468 0.000
#> SRR1456991     1  0.0188     0.7244 0.996 0.000 0.000 0.004
#> SRR1085039     1  0.3610     0.5798 0.800 0.000 0.000 0.200
#> SRR1069303     1  0.3123     0.6371 0.844 0.000 0.000 0.156
#> SRR1091500     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1075198     2  0.6269     0.5856 0.000 0.632 0.096 0.272
#> SRR1086915     4  0.2888     0.7086 0.004 0.000 0.124 0.872
#> SRR1499503     2  0.0592     0.8555 0.000 0.984 0.000 0.016
#> SRR1094312     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1352437     1  0.5236     0.2586 0.560 0.008 0.432 0.000
#> SRR1436323     3  0.0336     0.6822 0.000 0.000 0.992 0.008
#> SRR1073507     1  0.4250     0.4613 0.724 0.000 0.000 0.276
#> SRR1401972     1  0.3052     0.6538 0.860 0.000 0.136 0.004
#> SRR1415510     2  0.3443     0.7654 0.000 0.848 0.136 0.016
#> SRR1327279     1  0.3495     0.6583 0.844 0.000 0.016 0.140
#> SRR1086983     4  0.4781     0.6521 0.036 0.000 0.212 0.752
#> SRR1105174     4  0.4356     0.6215 0.292 0.000 0.000 0.708
#> SRR1468893     4  0.4941     0.3815 0.436 0.000 0.000 0.564
#> SRR1362555     2  0.7377     0.3939 0.216 0.520 0.000 0.264
#> SRR1074526     1  0.7824     0.4739 0.608 0.184 0.108 0.100
#> SRR1326225     2  0.0000     0.8578 0.000 1.000 0.000 0.000
#> SRR1401933     1  0.5772     0.5770 0.708 0.000 0.116 0.176
#> SRR1324062     1  0.4866     0.3067 0.596 0.000 0.404 0.000
#> SRR1102296     1  0.4057     0.6332 0.816 0.032 0.152 0.000
#> SRR1085087     1  0.4790     0.3868 0.620 0.000 0.000 0.380
#> SRR1079046     4  0.3626     0.6817 0.184 0.004 0.000 0.812
#> SRR1328339     1  0.0188     0.7244 0.996 0.000 0.000 0.004
#> SRR1079782     4  0.3074     0.6073 0.000 0.152 0.000 0.848
#> SRR1092257     2  0.4134     0.6530 0.000 0.740 0.000 0.260

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.2852    0.70127 0.000 0.828 0.000 0.000 0.172
#> SRR1429287     4  0.6963    0.21602 0.000 0.288 0.028 0.496 0.188
#> SRR1359238     4  0.3047    0.74819 0.044 0.000 0.084 0.868 0.004
#> SRR1309597     5  0.7291    0.03698 0.340 0.000 0.152 0.056 0.452
#> SRR1441398     1  0.4349    0.51763 0.756 0.000 0.000 0.068 0.176
#> SRR1084055     2  0.0794    0.77487 0.000 0.972 0.000 0.000 0.028
#> SRR1417566     3  0.3047    0.60556 0.160 0.000 0.832 0.004 0.004
#> SRR1351857     4  0.1478    0.75513 0.000 0.000 0.064 0.936 0.000
#> SRR1487485     3  0.0000    0.66588 0.000 0.000 1.000 0.000 0.000
#> SRR1335875     3  0.3967    0.51813 0.264 0.000 0.724 0.000 0.012
#> SRR1073947     1  0.0000    0.63995 1.000 0.000 0.000 0.000 0.000
#> SRR1443483     3  0.7688   -0.20292 0.324 0.000 0.332 0.048 0.296
#> SRR1346794     1  0.7646    0.01657 0.432 0.000 0.312 0.076 0.180
#> SRR1405245     1  0.6553    0.36462 0.592 0.000 0.200 0.036 0.172
#> SRR1409677     4  0.3058    0.74917 0.000 0.000 0.096 0.860 0.044
#> SRR1095549     1  0.6179    0.36727 0.664 0.000 0.108 0.076 0.152
#> SRR1323788     3  0.4928    0.59373 0.072 0.000 0.768 0.064 0.096
#> SRR1314054     2  0.2548    0.69232 0.000 0.876 0.116 0.004 0.004
#> SRR1077944     1  0.0771    0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1480587     2  0.1478    0.76377 0.000 0.936 0.000 0.000 0.064
#> SRR1311205     1  0.0290    0.63988 0.992 0.000 0.000 0.008 0.000
#> SRR1076369     1  0.7657   -0.08047 0.456 0.000 0.128 0.116 0.300
#> SRR1453549     3  0.3039    0.58589 0.192 0.000 0.808 0.000 0.000
#> SRR1345782     1  0.0000    0.63995 1.000 0.000 0.000 0.000 0.000
#> SRR1447850     2  0.2921    0.65977 0.000 0.844 0.148 0.004 0.004
#> SRR1391553     3  0.4143    0.47222 0.008 0.260 0.724 0.004 0.004
#> SRR1444156     2  0.0000    0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1471731     3  0.0324    0.66597 0.000 0.000 0.992 0.004 0.004
#> SRR1120987     4  0.3248    0.74275 0.064 0.000 0.020 0.868 0.048
#> SRR1477363     1  0.4162    0.52704 0.768 0.000 0.000 0.056 0.176
#> SRR1391961     1  0.4211    0.29586 0.636 0.000 0.000 0.004 0.360
#> SRR1373879     3  0.0404    0.66465 0.000 0.000 0.988 0.000 0.012
#> SRR1318732     3  0.5187    0.51048 0.020 0.000 0.700 0.064 0.216
#> SRR1091404     1  0.0771    0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1402109     3  0.3732    0.56521 0.032 0.000 0.792 0.000 0.176
#> SRR1407336     3  0.4797    0.45158 0.004 0.000 0.676 0.040 0.280
#> SRR1097417     3  0.5036    0.43509 0.000 0.052 0.628 0.000 0.320
#> SRR1396227     1  0.1410    0.62953 0.940 0.000 0.000 0.060 0.000
#> SRR1400775     2  0.0000    0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1392861     3  0.0000    0.66588 0.000 0.000 1.000 0.000 0.000
#> SRR1472929     5  0.3495    0.41899 0.028 0.160 0.000 0.000 0.812
#> SRR1436740     4  0.2329    0.74149 0.000 0.000 0.124 0.876 0.000
#> SRR1477057     2  0.6101    0.41515 0.128 0.660 0.176 0.008 0.028
#> SRR1311980     1  0.4273    0.08967 0.552 0.000 0.448 0.000 0.000
#> SRR1069400     3  0.5000    0.46139 0.068 0.000 0.688 0.004 0.240
#> SRR1351016     1  0.0000    0.63995 1.000 0.000 0.000 0.000 0.000
#> SRR1096291     4  0.4904    0.67808 0.044 0.000 0.132 0.760 0.064
#> SRR1418145     4  0.2972    0.74283 0.004 0.000 0.040 0.872 0.084
#> SRR1488111     3  0.5444    0.53355 0.112 0.016 0.720 0.012 0.140
#> SRR1370495     1  0.3343    0.52739 0.812 0.000 0.000 0.016 0.172
#> SRR1352639     1  0.7220    0.12257 0.496 0.000 0.048 0.192 0.264
#> SRR1348911     3  0.4201    0.27335 0.408 0.000 0.592 0.000 0.000
#> SRR1467386     1  0.3752    0.57451 0.812 0.000 0.124 0.064 0.000
#> SRR1415956     1  0.4226    0.52410 0.764 0.000 0.000 0.060 0.176
#> SRR1500495     1  0.4349    0.51763 0.756 0.000 0.000 0.068 0.176
#> SRR1405099     1  0.4162    0.52704 0.768 0.000 0.000 0.056 0.176
#> SRR1345585     3  0.1525    0.65785 0.004 0.000 0.948 0.036 0.012
#> SRR1093196     3  0.0693    0.66505 0.000 0.000 0.980 0.008 0.012
#> SRR1466006     2  0.2848    0.71301 0.000 0.840 0.004 0.000 0.156
#> SRR1351557     2  0.0290    0.77854 0.000 0.992 0.000 0.000 0.008
#> SRR1382687     3  0.4350    0.28025 0.408 0.000 0.588 0.004 0.000
#> SRR1375549     4  0.3075    0.70937 0.092 0.000 0.000 0.860 0.048
#> SRR1101765     4  0.2595    0.71665 0.080 0.000 0.000 0.888 0.032
#> SRR1334461     1  0.5868   -0.00911 0.472 0.052 0.000 0.020 0.456
#> SRR1094073     2  0.0000    0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1077549     1  0.5625    0.21485 0.564 0.000 0.368 0.056 0.012
#> SRR1440332     1  0.2162    0.62601 0.916 0.000 0.012 0.064 0.008
#> SRR1454177     4  0.4171    0.43918 0.000 0.000 0.396 0.604 0.000
#> SRR1082447     1  0.2068    0.61987 0.904 0.000 0.000 0.092 0.004
#> SRR1420043     3  0.0000    0.66588 0.000 0.000 1.000 0.000 0.000
#> SRR1432500     4  0.3675    0.67090 0.188 0.000 0.024 0.788 0.000
#> SRR1378045     2  0.4196    0.35537 0.000 0.640 0.356 0.000 0.004
#> SRR1334200     5  0.7372    0.38122 0.060 0.072 0.208 0.072 0.588
#> SRR1069539     4  0.6374    0.30755 0.000 0.000 0.196 0.504 0.300
#> SRR1343031     3  0.5949    0.28998 0.172 0.000 0.588 0.000 0.240
#> SRR1319690     3  0.5379    0.51006 0.056 0.000 0.712 0.052 0.180
#> SRR1310604     2  0.5932    0.12329 0.000 0.496 0.072 0.012 0.420
#> SRR1327747     3  0.7420    0.14742 0.120 0.000 0.488 0.292 0.100
#> SRR1072456     2  0.2852    0.70127 0.000 0.828 0.000 0.000 0.172
#> SRR1367896     3  0.4602    0.48574 0.052 0.000 0.708 0.000 0.240
#> SRR1480107     1  0.0771    0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1377756     4  0.3375    0.75428 0.020 0.000 0.072 0.860 0.048
#> SRR1435272     4  0.2966    0.71493 0.000 0.000 0.184 0.816 0.000
#> SRR1089230     4  0.1478    0.75513 0.000 0.000 0.064 0.936 0.000
#> SRR1389522     1  0.7309   -0.17436 0.412 0.000 0.176 0.044 0.368
#> SRR1080600     5  0.6514    0.36859 0.000 0.160 0.128 0.080 0.632
#> SRR1086935     3  0.3876    0.43235 0.000 0.000 0.684 0.316 0.000
#> SRR1344060     5  0.5816   -0.12130 0.040 0.420 0.000 0.028 0.512
#> SRR1467922     2  0.0162    0.77990 0.000 0.996 0.000 0.000 0.004
#> SRR1090984     1  0.4268    0.10603 0.556 0.000 0.444 0.000 0.000
#> SRR1456991     1  0.0771    0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1085039     1  0.4339    0.36837 0.652 0.000 0.000 0.336 0.012
#> SRR1069303     1  0.4138    0.32292 0.616 0.000 0.000 0.384 0.000
#> SRR1091500     2  0.0000    0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1075198     2  0.6803    0.34884 0.000 0.544 0.104 0.060 0.292
#> SRR1086915     4  0.2867    0.75176 0.004 0.000 0.072 0.880 0.044
#> SRR1499503     2  0.2852    0.70127 0.000 0.828 0.000 0.000 0.172
#> SRR1094312     2  0.0000    0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1352437     1  0.4497    0.14766 0.568 0.008 0.424 0.000 0.000
#> SRR1436323     3  0.1638    0.64546 0.000 0.000 0.932 0.064 0.004
#> SRR1073507     4  0.4307   -0.07122 0.500 0.000 0.000 0.500 0.000
#> SRR1401972     1  0.2079    0.62625 0.916 0.000 0.020 0.064 0.000
#> SRR1415510     2  0.6352    0.18153 0.000 0.488 0.336 0.000 0.176
#> SRR1327279     1  0.2433    0.62053 0.908 0.000 0.024 0.012 0.056
#> SRR1086983     4  0.2569    0.73568 0.068 0.000 0.040 0.892 0.000
#> SRR1105174     4  0.5339    0.52186 0.152 0.000 0.000 0.672 0.176
#> SRR1468893     4  0.3953    0.59088 0.168 0.000 0.000 0.784 0.048
#> SRR1362555     1  0.8024   -0.28427 0.356 0.328 0.000 0.096 0.220
#> SRR1074526     5  0.6728    0.04831 0.396 0.024 0.084 0.016 0.480
#> SRR1326225     2  0.0000    0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1401933     1  0.4359    0.56364 0.776 0.000 0.092 0.128 0.004
#> SRR1324062     1  0.4249    0.13999 0.568 0.000 0.432 0.000 0.000
#> SRR1102296     1  0.2331    0.61311 0.900 0.020 0.080 0.000 0.000
#> SRR1085087     1  0.4262    0.20577 0.560 0.000 0.000 0.440 0.000
#> SRR1079046     4  0.3455    0.69950 0.084 0.004 0.000 0.844 0.068
#> SRR1328339     1  0.0566    0.63951 0.984 0.000 0.000 0.012 0.004
#> SRR1079782     4  0.5789    0.43178 0.000 0.124 0.004 0.612 0.260
#> SRR1092257     2  0.4683    0.52759 0.000 0.732 0.000 0.176 0.092

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.2165     0.7833 0.000 0.884 0.000 0.000 0.108 0.008
#> SRR1429287     4  0.7106     0.3157 0.000 0.228 0.008 0.484 0.164 0.116
#> SRR1359238     4  0.2237     0.7765 0.036 0.000 0.068 0.896 0.000 0.000
#> SRR1309597     6  0.3618     0.4043 0.176 0.000 0.000 0.048 0.000 0.776
#> SRR1441398     1  0.4000     0.5468 0.724 0.000 0.000 0.048 0.000 0.228
#> SRR1084055     2  0.0692     0.8175 0.000 0.976 0.000 0.000 0.020 0.004
#> SRR1417566     3  0.2704     0.6851 0.140 0.000 0.844 0.000 0.000 0.016
#> SRR1351857     4  0.1349     0.7801 0.000 0.000 0.056 0.940 0.000 0.004
#> SRR1487485     3  0.0790     0.7123 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1335875     3  0.2902     0.6511 0.196 0.000 0.800 0.000 0.000 0.004
#> SRR1073947     1  0.0146     0.6926 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1443483     6  0.5512     0.5672 0.152 0.000 0.208 0.020 0.000 0.620
#> SRR1346794     1  0.6696     0.2224 0.476 0.000 0.240 0.060 0.000 0.224
#> SRR1405245     1  0.5897     0.4251 0.576 0.000 0.116 0.044 0.000 0.264
#> SRR1409677     4  0.2685     0.7735 0.000 0.000 0.072 0.868 0.000 0.060
#> SRR1095549     1  0.4969     0.4914 0.712 0.000 0.064 0.068 0.000 0.156
#> SRR1323788     3  0.3671     0.6936 0.036 0.000 0.820 0.056 0.000 0.088
#> SRR1314054     2  0.1908     0.7655 0.000 0.900 0.096 0.004 0.000 0.000
#> SRR1077944     1  0.0000     0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1480587     2  0.1682     0.8086 0.000 0.928 0.000 0.000 0.052 0.020
#> SRR1311205     1  0.0405     0.6928 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1076369     6  0.6260     0.4476 0.272 0.000 0.072 0.080 0.012 0.564
#> SRR1453549     3  0.2048     0.7041 0.120 0.000 0.880 0.000 0.000 0.000
#> SRR1345782     1  0.0000     0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1447850     2  0.2445     0.7453 0.000 0.868 0.120 0.004 0.000 0.008
#> SRR1391553     3  0.3263     0.6386 0.020 0.176 0.800 0.004 0.000 0.000
#> SRR1444156     2  0.0291     0.8186 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1471731     3  0.0458     0.7109 0.000 0.000 0.984 0.000 0.000 0.016
#> SRR1120987     4  0.2604     0.7702 0.056 0.000 0.032 0.888 0.000 0.024
#> SRR1477363     1  0.3938     0.5496 0.728 0.000 0.000 0.044 0.000 0.228
#> SRR1391961     5  0.2882     0.7258 0.180 0.000 0.000 0.008 0.812 0.000
#> SRR1373879     3  0.0790     0.7123 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1318732     3  0.4651     0.5632 0.016 0.000 0.676 0.052 0.000 0.256
#> SRR1091404     1  0.0000     0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1402109     3  0.3647    -0.0389 0.000 0.000 0.640 0.000 0.000 0.360
#> SRR1407336     6  0.4489     0.5592 0.008 0.000 0.404 0.020 0.000 0.568
#> SRR1097417     6  0.5790     0.4819 0.000 0.048 0.396 0.000 0.064 0.492
#> SRR1396227     1  0.1719     0.6795 0.924 0.000 0.000 0.060 0.000 0.016
#> SRR1400775     2  0.0000     0.8183 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1392861     3  0.0000     0.7156 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1472929     5  0.4354     0.5636 0.000 0.080 0.000 0.000 0.704 0.216
#> SRR1436740     4  0.1958     0.7725 0.000 0.000 0.100 0.896 0.000 0.004
#> SRR1477057     2  0.4927     0.5309 0.188 0.700 0.092 0.008 0.008 0.004
#> SRR1311980     1  0.3868    -0.0207 0.508 0.000 0.492 0.000 0.000 0.000
#> SRR1069400     6  0.4315     0.5234 0.008 0.000 0.460 0.008 0.000 0.524
#> SRR1351016     1  0.0146     0.6926 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1096291     4  0.4289     0.7115 0.028 0.000 0.100 0.768 0.000 0.104
#> SRR1418145     4  0.2414     0.7623 0.000 0.000 0.012 0.896 0.036 0.056
#> SRR1488111     3  0.4460     0.6671 0.048 0.016 0.796 0.016 0.080 0.044
#> SRR1370495     1  0.2605     0.6383 0.876 0.000 0.000 0.020 0.092 0.012
#> SRR1352639     1  0.7082     0.3064 0.536 0.000 0.032 0.192 0.132 0.108
#> SRR1348911     3  0.3515     0.4822 0.324 0.000 0.676 0.000 0.000 0.000
#> SRR1467386     1  0.3953     0.5589 0.744 0.000 0.196 0.060 0.000 0.000
#> SRR1415956     1  0.3938     0.5496 0.728 0.000 0.000 0.044 0.000 0.228
#> SRR1500495     1  0.4138     0.5439 0.720 0.000 0.004 0.048 0.000 0.228
#> SRR1405099     1  0.3938     0.5496 0.728 0.000 0.000 0.044 0.000 0.228
#> SRR1345585     3  0.1794     0.7085 0.000 0.000 0.924 0.036 0.000 0.040
#> SRR1093196     3  0.1411     0.6936 0.000 0.000 0.936 0.004 0.000 0.060
#> SRR1466006     2  0.4175     0.6801 0.000 0.740 0.000 0.000 0.104 0.156
#> SRR1351557     2  0.1524     0.8018 0.000 0.932 0.000 0.000 0.008 0.060
#> SRR1382687     3  0.4141     0.3464 0.388 0.000 0.596 0.000 0.000 0.016
#> SRR1375549     4  0.2339     0.7525 0.072 0.000 0.000 0.896 0.012 0.020
#> SRR1101765     4  0.1719     0.7576 0.060 0.000 0.000 0.924 0.000 0.016
#> SRR1334461     5  0.2742     0.7708 0.076 0.044 0.000 0.008 0.872 0.000
#> SRR1094073     2  0.0260     0.8186 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1077549     1  0.5159     0.1046 0.524 0.000 0.408 0.052 0.000 0.016
#> SRR1440332     1  0.1461     0.6849 0.940 0.000 0.000 0.044 0.000 0.016
#> SRR1454177     4  0.4224     0.5161 0.000 0.000 0.340 0.632 0.000 0.028
#> SRR1082447     1  0.1387     0.6722 0.932 0.000 0.000 0.068 0.000 0.000
#> SRR1420043     3  0.0790     0.7123 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1432500     4  0.3558     0.7126 0.168 0.000 0.012 0.792 0.000 0.028
#> SRR1378045     2  0.4245     0.3605 0.000 0.604 0.376 0.000 0.016 0.004
#> SRR1334200     5  0.5554     0.6141 0.008 0.052 0.184 0.012 0.680 0.064
#> SRR1069539     6  0.5005     0.4866 0.000 0.000 0.136 0.156 0.020 0.688
#> SRR1343031     6  0.4147     0.5398 0.012 0.000 0.436 0.000 0.000 0.552
#> SRR1319690     3  0.4772     0.5585 0.024 0.000 0.668 0.048 0.000 0.260
#> SRR1310604     6  0.5328     0.2909 0.000 0.184 0.016 0.012 0.120 0.668
#> SRR1327747     3  0.6884     0.2439 0.140 0.000 0.496 0.224 0.000 0.140
#> SRR1072456     2  0.2165     0.7833 0.000 0.884 0.000 0.000 0.108 0.008
#> SRR1367896     6  0.3838     0.5209 0.000 0.000 0.448 0.000 0.000 0.552
#> SRR1480107     1  0.0000     0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1377756     4  0.2918     0.7799 0.020 0.000 0.064 0.868 0.000 0.048
#> SRR1435272     4  0.2482     0.7605 0.000 0.000 0.148 0.848 0.000 0.004
#> SRR1089230     4  0.1204     0.7796 0.000 0.000 0.056 0.944 0.000 0.000
#> SRR1389522     6  0.5152     0.4640 0.192 0.000 0.072 0.044 0.004 0.688
#> SRR1080600     6  0.5140     0.3894 0.000 0.032 0.044 0.040 0.172 0.712
#> SRR1086935     3  0.3198     0.5345 0.000 0.000 0.740 0.260 0.000 0.000
#> SRR1344060     5  0.2213     0.7428 0.000 0.100 0.000 0.008 0.888 0.004
#> SRR1467922     2  0.0603     0.8179 0.000 0.980 0.000 0.000 0.016 0.004
#> SRR1090984     1  0.3868    -0.0325 0.508 0.000 0.492 0.000 0.000 0.000
#> SRR1456991     1  0.0000     0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1085039     1  0.3737     0.2094 0.608 0.000 0.000 0.392 0.000 0.000
#> SRR1069303     1  0.4184     0.2593 0.576 0.000 0.000 0.408 0.000 0.016
#> SRR1091500     2  0.0000     0.8183 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1075198     2  0.7333     0.2992 0.000 0.444 0.056 0.040 0.176 0.284
#> SRR1086915     4  0.2433     0.7777 0.000 0.000 0.072 0.884 0.000 0.044
#> SRR1499503     2  0.2266     0.7828 0.000 0.880 0.000 0.000 0.108 0.012
#> SRR1094312     2  0.0260     0.8186 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1352437     1  0.4384     0.0475 0.520 0.000 0.460 0.004 0.000 0.016
#> SRR1436323     3  0.1387     0.7041 0.000 0.000 0.932 0.068 0.000 0.000
#> SRR1073507     4  0.3860     0.0171 0.472 0.000 0.000 0.528 0.000 0.000
#> SRR1401972     1  0.1779     0.6790 0.920 0.000 0.000 0.064 0.000 0.016
#> SRR1415510     2  0.5743     0.1009 0.000 0.456 0.420 0.000 0.108 0.016
#> SRR1327279     1  0.1267     0.6845 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1086983     4  0.1719     0.7651 0.060 0.000 0.016 0.924 0.000 0.000
#> SRR1105174     4  0.4979     0.5207 0.136 0.000 0.000 0.640 0.000 0.224
#> SRR1468893     4  0.3909     0.5157 0.244 0.000 0.000 0.720 0.000 0.036
#> SRR1362555     1  0.8559    -0.2054 0.308 0.180 0.000 0.080 0.236 0.196
#> SRR1074526     5  0.3377     0.7354 0.148 0.000 0.028 0.012 0.812 0.000
#> SRR1326225     2  0.0146     0.8180 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1401933     1  0.4269     0.5595 0.724 0.000 0.184 0.092 0.000 0.000
#> SRR1324062     1  0.4124     0.0289 0.516 0.000 0.476 0.004 0.000 0.004
#> SRR1102296     1  0.1970     0.6745 0.912 0.028 0.060 0.000 0.000 0.000
#> SRR1085087     1  0.3998     0.0401 0.504 0.000 0.000 0.492 0.000 0.004
#> SRR1079046     4  0.3453     0.7075 0.064 0.000 0.000 0.824 0.012 0.100
#> SRR1328339     1  0.0000     0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1079782     4  0.6733     0.3730 0.000 0.092 0.004 0.528 0.176 0.200
#> SRR1092257     2  0.4914     0.6317 0.000 0.728 0.000 0.112 0.080 0.080

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.975       0.988         0.4075 0.586   0.586
#> 3 3 0.560           0.505       0.752         0.5286 0.794   0.651
#> 4 4 0.496           0.596       0.739         0.1055 0.833   0.595
#> 5 5 0.514           0.557       0.732         0.0891 0.867   0.582
#> 6 6 0.558           0.554       0.704         0.0408 0.897   0.636

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000      0.966 0.000 1.000
#> SRR1429287     2  0.0000      0.966 0.000 1.000
#> SRR1359238     1  0.0000      0.996 1.000 0.000
#> SRR1309597     1  0.0376      0.995 0.996 0.004
#> SRR1441398     1  0.0000      0.996 1.000 0.000
#> SRR1084055     2  0.0000      0.966 0.000 1.000
#> SRR1417566     1  0.0376      0.995 0.996 0.004
#> SRR1351857     1  0.0000      0.996 1.000 0.000
#> SRR1487485     1  0.0376      0.995 0.996 0.004
#> SRR1335875     1  0.0376      0.995 0.996 0.004
#> SRR1073947     1  0.0000      0.996 1.000 0.000
#> SRR1443483     1  0.0376      0.995 0.996 0.004
#> SRR1346794     1  0.0000      0.996 1.000 0.000
#> SRR1405245     1  0.0000      0.996 1.000 0.000
#> SRR1409677     1  0.0000      0.996 1.000 0.000
#> SRR1095549     1  0.0000      0.996 1.000 0.000
#> SRR1323788     1  0.0000      0.996 1.000 0.000
#> SRR1314054     2  0.0000      0.966 0.000 1.000
#> SRR1077944     1  0.0000      0.996 1.000 0.000
#> SRR1480587     2  0.0000      0.966 0.000 1.000
#> SRR1311205     1  0.0000      0.996 1.000 0.000
#> SRR1076369     1  0.0376      0.995 0.996 0.004
#> SRR1453549     1  0.0376      0.995 0.996 0.004
#> SRR1345782     1  0.0000      0.996 1.000 0.000
#> SRR1447850     2  0.0000      0.966 0.000 1.000
#> SRR1391553     1  0.0672      0.992 0.992 0.008
#> SRR1444156     2  0.0000      0.966 0.000 1.000
#> SRR1471731     1  0.0000      0.996 1.000 0.000
#> SRR1120987     1  0.0376      0.995 0.996 0.004
#> SRR1477363     1  0.0000      0.996 1.000 0.000
#> SRR1391961     2  0.0376      0.963 0.004 0.996
#> SRR1373879     1  0.0376      0.995 0.996 0.004
#> SRR1318732     1  0.0376      0.995 0.996 0.004
#> SRR1091404     1  0.0000      0.996 1.000 0.000
#> SRR1402109     1  0.0000      0.996 1.000 0.000
#> SRR1407336     1  0.0376      0.995 0.996 0.004
#> SRR1097417     2  0.9686      0.371 0.396 0.604
#> SRR1396227     1  0.0000      0.996 1.000 0.000
#> SRR1400775     2  0.0000      0.966 0.000 1.000
#> SRR1392861     1  0.0000      0.996 1.000 0.000
#> SRR1472929     2  0.0000      0.966 0.000 1.000
#> SRR1436740     1  0.0000      0.996 1.000 0.000
#> SRR1477057     2  0.0000      0.966 0.000 1.000
#> SRR1311980     1  0.0376      0.995 0.996 0.004
#> SRR1069400     1  0.0376      0.995 0.996 0.004
#> SRR1351016     1  0.0000      0.996 1.000 0.000
#> SRR1096291     1  0.0376      0.995 0.996 0.004
#> SRR1418145     1  0.0376      0.995 0.996 0.004
#> SRR1488111     1  0.2778      0.950 0.952 0.048
#> SRR1370495     1  0.0376      0.995 0.996 0.004
#> SRR1352639     1  0.0376      0.995 0.996 0.004
#> SRR1348911     1  0.0376      0.995 0.996 0.004
#> SRR1467386     1  0.0000      0.996 1.000 0.000
#> SRR1415956     1  0.0000      0.996 1.000 0.000
#> SRR1500495     1  0.0000      0.996 1.000 0.000
#> SRR1405099     1  0.0000      0.996 1.000 0.000
#> SRR1345585     1  0.0376      0.995 0.996 0.004
#> SRR1093196     1  0.0000      0.996 1.000 0.000
#> SRR1466006     2  0.0000      0.966 0.000 1.000
#> SRR1351557     2  0.0000      0.966 0.000 1.000
#> SRR1382687     1  0.0000      0.996 1.000 0.000
#> SRR1375549     1  0.0376      0.995 0.996 0.004
#> SRR1101765     1  0.5059      0.869 0.888 0.112
#> SRR1334461     2  0.0000      0.966 0.000 1.000
#> SRR1094073     2  0.0000      0.966 0.000 1.000
#> SRR1077549     1  0.0000      0.996 1.000 0.000
#> SRR1440332     1  0.0000      0.996 1.000 0.000
#> SRR1454177     1  0.0000      0.996 1.000 0.000
#> SRR1082447     1  0.0000      0.996 1.000 0.000
#> SRR1420043     1  0.0000      0.996 1.000 0.000
#> SRR1432500     1  0.0000      0.996 1.000 0.000
#> SRR1378045     2  0.8144      0.681 0.252 0.748
#> SRR1334200     2  0.0000      0.966 0.000 1.000
#> SRR1069539     1  0.0376      0.995 0.996 0.004
#> SRR1343031     1  0.0000      0.996 1.000 0.000
#> SRR1319690     1  0.0000      0.996 1.000 0.000
#> SRR1310604     2  0.0000      0.966 0.000 1.000
#> SRR1327747     1  0.0000      0.996 1.000 0.000
#> SRR1072456     2  0.0000      0.966 0.000 1.000
#> SRR1367896     1  0.0376      0.995 0.996 0.004
#> SRR1480107     1  0.0000      0.996 1.000 0.000
#> SRR1377756     1  0.0000      0.996 1.000 0.000
#> SRR1435272     1  0.0000      0.996 1.000 0.000
#> SRR1089230     1  0.0000      0.996 1.000 0.000
#> SRR1389522     1  0.0376      0.995 0.996 0.004
#> SRR1080600     2  0.0000      0.966 0.000 1.000
#> SRR1086935     1  0.0376      0.995 0.996 0.004
#> SRR1344060     2  0.0000      0.966 0.000 1.000
#> SRR1467922     2  0.0000      0.966 0.000 1.000
#> SRR1090984     1  0.0376      0.995 0.996 0.004
#> SRR1456991     1  0.0000      0.996 1.000 0.000
#> SRR1085039     1  0.0000      0.996 1.000 0.000
#> SRR1069303     1  0.0000      0.996 1.000 0.000
#> SRR1091500     2  0.0000      0.966 0.000 1.000
#> SRR1075198     2  0.0000      0.966 0.000 1.000
#> SRR1086915     1  0.0000      0.996 1.000 0.000
#> SRR1499503     2  0.0000      0.966 0.000 1.000
#> SRR1094312     2  0.0000      0.966 0.000 1.000
#> SRR1352437     1  0.0000      0.996 1.000 0.000
#> SRR1436323     1  0.0000      0.996 1.000 0.000
#> SRR1073507     1  0.0376      0.995 0.996 0.004
#> SRR1401972     1  0.0000      0.996 1.000 0.000
#> SRR1415510     2  0.0000      0.966 0.000 1.000
#> SRR1327279     1  0.0000      0.996 1.000 0.000
#> SRR1086983     1  0.0000      0.996 1.000 0.000
#> SRR1105174     1  0.0000      0.996 1.000 0.000
#> SRR1468893     1  0.0000      0.996 1.000 0.000
#> SRR1362555     2  0.0000      0.966 0.000 1.000
#> SRR1074526     2  0.3733      0.906 0.072 0.928
#> SRR1326225     2  0.0000      0.966 0.000 1.000
#> SRR1401933     1  0.0000      0.996 1.000 0.000
#> SRR1324062     1  0.0000      0.996 1.000 0.000
#> SRR1102296     1  0.0376      0.995 0.996 0.004
#> SRR1085087     1  0.0000      0.996 1.000 0.000
#> SRR1079046     2  0.5946      0.832 0.144 0.856
#> SRR1328339     1  0.0376      0.995 0.996 0.004
#> SRR1079782     2  0.7815      0.713 0.232 0.768
#> SRR1092257     2  0.0000      0.966 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1429287     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1359238     1  0.2959   0.505684 0.900 0.000 0.100
#> SRR1309597     3  0.5760   0.651089 0.328 0.000 0.672
#> SRR1441398     1  0.6302  -0.408739 0.520 0.000 0.480
#> SRR1084055     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1417566     3  0.5926   0.000765 0.356 0.000 0.644
#> SRR1351857     1  0.0237   0.582982 0.996 0.000 0.004
#> SRR1487485     3  0.5785   0.651901 0.332 0.000 0.668
#> SRR1335875     3  0.6308   0.468732 0.492 0.000 0.508
#> SRR1073947     1  0.0237   0.583241 0.996 0.000 0.004
#> SRR1443483     3  0.5785   0.651901 0.332 0.000 0.668
#> SRR1346794     1  0.6126  -0.191606 0.600 0.000 0.400
#> SRR1405245     1  0.6299  -0.397380 0.524 0.000 0.476
#> SRR1409677     1  0.1529   0.559225 0.960 0.000 0.040
#> SRR1095549     1  0.6111  -0.191722 0.604 0.000 0.396
#> SRR1323788     1  0.6204  -0.276213 0.576 0.000 0.424
#> SRR1314054     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1077944     1  0.2261   0.551146 0.932 0.000 0.068
#> SRR1480587     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1311205     1  0.6140  -0.205492 0.596 0.000 0.404
#> SRR1076369     3  0.6008   0.056314 0.372 0.000 0.628
#> SRR1453549     1  0.6154  -0.238951 0.592 0.000 0.408
#> SRR1345782     1  0.6215  -0.272172 0.572 0.000 0.428
#> SRR1447850     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1391553     3  0.5696   0.322199 0.148 0.056 0.796
#> SRR1444156     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1471731     3  0.6305   0.495714 0.484 0.000 0.516
#> SRR1120987     1  0.6102   0.411806 0.672 0.008 0.320
#> SRR1477363     1  0.2165   0.554668 0.936 0.000 0.064
#> SRR1391961     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1373879     3  0.6126   0.615039 0.400 0.000 0.600
#> SRR1318732     3  0.5760   0.650112 0.328 0.000 0.672
#> SRR1091404     1  0.5706   0.424174 0.680 0.000 0.320
#> SRR1402109     3  0.6299   0.509135 0.476 0.000 0.524
#> SRR1407336     3  0.6244   0.572209 0.440 0.000 0.560
#> SRR1097417     2  0.7178   0.364200 0.024 0.512 0.464
#> SRR1396227     1  0.3816   0.513692 0.852 0.000 0.148
#> SRR1400775     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1392861     1  0.1643   0.560361 0.956 0.000 0.044
#> SRR1472929     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1436740     1  0.0000   0.583334 1.000 0.000 0.000
#> SRR1477057     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1311980     1  0.6260  -0.353046 0.552 0.000 0.448
#> SRR1069400     3  0.5785   0.651901 0.332 0.000 0.668
#> SRR1351016     1  0.2625   0.529173 0.916 0.000 0.084
#> SRR1096291     1  0.6168   0.342147 0.588 0.000 0.412
#> SRR1418145     1  0.5760   0.413384 0.672 0.000 0.328
#> SRR1488111     1  0.8827   0.227756 0.496 0.120 0.384
#> SRR1370495     1  0.8486   0.315606 0.548 0.104 0.348
#> SRR1352639     1  0.5926   0.398968 0.644 0.000 0.356
#> SRR1348911     3  0.5706   0.639334 0.320 0.000 0.680
#> SRR1467386     1  0.1753   0.558765 0.952 0.000 0.048
#> SRR1415956     1  0.6079  -0.163747 0.612 0.000 0.388
#> SRR1500495     1  0.6295  -0.389467 0.528 0.000 0.472
#> SRR1405099     1  0.2537   0.539866 0.920 0.000 0.080
#> SRR1345585     3  0.5785   0.651901 0.332 0.000 0.668
#> SRR1093196     3  0.6126   0.613515 0.400 0.000 0.600
#> SRR1466006     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1351557     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1382687     1  0.3340   0.477812 0.880 0.000 0.120
#> SRR1375549     1  0.5733   0.418287 0.676 0.000 0.324
#> SRR1101765     1  0.9484   0.224859 0.472 0.200 0.328
#> SRR1334461     2  0.0237   0.969666 0.000 0.996 0.004
#> SRR1094073     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1077549     1  0.1964   0.551535 0.944 0.000 0.056
#> SRR1440332     1  0.6154  -0.242964 0.592 0.000 0.408
#> SRR1454177     1  0.0000   0.583334 1.000 0.000 0.000
#> SRR1082447     1  0.3116   0.542370 0.892 0.000 0.108
#> SRR1420043     3  0.6307   0.487532 0.488 0.000 0.512
#> SRR1432500     1  0.1031   0.574519 0.976 0.000 0.024
#> SRR1378045     3  0.6291  -0.310704 0.000 0.468 0.532
#> SRR1334200     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1069539     3  0.6308  -0.263710 0.492 0.000 0.508
#> SRR1343031     1  0.6295  -0.413336 0.528 0.000 0.472
#> SRR1319690     3  0.6280   0.518600 0.460 0.000 0.540
#> SRR1310604     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1327747     1  0.6252  -0.319657 0.556 0.000 0.444
#> SRR1072456     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1367896     3  0.5785   0.651901 0.332 0.000 0.668
#> SRR1480107     1  0.0592   0.582225 0.988 0.000 0.012
#> SRR1377756     1  0.0237   0.583241 0.996 0.000 0.004
#> SRR1435272     1  0.0592   0.578758 0.988 0.000 0.012
#> SRR1089230     1  0.0000   0.583334 1.000 0.000 0.000
#> SRR1389522     3  0.5733   0.649186 0.324 0.000 0.676
#> SRR1080600     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1086935     1  0.7190   0.388561 0.636 0.044 0.320
#> SRR1344060     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1467922     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1090984     1  0.6252   0.011638 0.556 0.000 0.444
#> SRR1456991     1  0.5138   0.230119 0.748 0.000 0.252
#> SRR1085039     1  0.0424   0.582951 0.992 0.000 0.008
#> SRR1069303     1  0.5650   0.421249 0.688 0.000 0.312
#> SRR1091500     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1075198     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1086915     1  0.0000   0.583334 1.000 0.000 0.000
#> SRR1499503     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1094312     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1352437     1  0.5621   0.423872 0.692 0.000 0.308
#> SRR1436323     1  0.6111  -0.206613 0.604 0.000 0.396
#> SRR1073507     1  0.0000   0.583334 1.000 0.000 0.000
#> SRR1401972     1  0.5650   0.421249 0.688 0.000 0.312
#> SRR1415510     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1327279     1  0.3816   0.431393 0.852 0.000 0.148
#> SRR1086983     1  0.0000   0.583334 1.000 0.000 0.000
#> SRR1105174     1  0.0892   0.580297 0.980 0.000 0.020
#> SRR1468893     1  0.0424   0.582346 0.992 0.000 0.008
#> SRR1362555     2  0.0000   0.971503 0.000 1.000 0.000
#> SRR1074526     2  0.0592   0.961985 0.012 0.988 0.000
#> SRR1326225     2  0.0592   0.970076 0.000 0.988 0.012
#> SRR1401933     1  0.0237   0.582982 0.996 0.000 0.004
#> SRR1324062     1  0.0000   0.583334 1.000 0.000 0.000
#> SRR1102296     1  0.5810   0.408748 0.664 0.000 0.336
#> SRR1085087     1  0.5397   0.438928 0.720 0.000 0.280
#> SRR1079046     2  0.4531   0.729364 0.168 0.824 0.008
#> SRR1328339     3  0.6737   0.130496 0.272 0.040 0.688
#> SRR1079782     2  0.3889   0.870231 0.032 0.884 0.084
#> SRR1092257     2  0.0000   0.971503 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1429287     2  0.2101     0.8809 0.060 0.928 0.012 0.000
#> SRR1359238     4  0.3498     0.6263 0.008 0.000 0.160 0.832
#> SRR1309597     3  0.3105     0.6495 0.004 0.000 0.856 0.140
#> SRR1441398     3  0.5543     0.5205 0.020 0.000 0.556 0.424
#> SRR1084055     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1417566     1  0.7402     0.6156 0.500 0.000 0.308 0.192
#> SRR1351857     4  0.1388     0.6860 0.012 0.000 0.028 0.960
#> SRR1487485     3  0.3351     0.6569 0.008 0.000 0.844 0.148
#> SRR1335875     3  0.5800     0.4774 0.032 0.000 0.548 0.420
#> SRR1073947     4  0.0937     0.6749 0.012 0.000 0.012 0.976
#> SRR1443483     3  0.3105     0.6495 0.004 0.000 0.856 0.140
#> SRR1346794     4  0.5358     0.3967 0.048 0.000 0.252 0.700
#> SRR1405245     3  0.5581     0.4793 0.020 0.000 0.532 0.448
#> SRR1409677     4  0.2796     0.6782 0.016 0.000 0.092 0.892
#> SRR1095549     4  0.5511     0.1492 0.028 0.000 0.352 0.620
#> SRR1323788     4  0.5597    -0.3060 0.020 0.000 0.464 0.516
#> SRR1314054     2  0.1635     0.8869 0.044 0.948 0.008 0.000
#> SRR1077944     4  0.1833     0.6736 0.024 0.000 0.032 0.944
#> SRR1480587     2  0.0469     0.8875 0.012 0.988 0.000 0.000
#> SRR1311205     4  0.5428     0.0138 0.020 0.000 0.380 0.600
#> SRR1076369     1  0.7309     0.6989 0.504 0.000 0.172 0.324
#> SRR1453549     4  0.5132    -0.2103 0.004 0.000 0.448 0.548
#> SRR1345782     4  0.5543    -0.1567 0.020 0.000 0.424 0.556
#> SRR1447850     2  0.4397     0.8396 0.168 0.800 0.020 0.012
#> SRR1391553     3  0.6793    -0.3156 0.428 0.020 0.500 0.052
#> SRR1444156     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1471731     3  0.5417     0.5529 0.016 0.000 0.572 0.412
#> SRR1120987     1  0.6340     0.7908 0.620 0.000 0.096 0.284
#> SRR1477363     4  0.2089     0.6782 0.020 0.000 0.048 0.932
#> SRR1391961     2  0.6871     0.6856 0.316 0.580 0.092 0.012
#> SRR1373879     3  0.4950     0.6111 0.004 0.000 0.620 0.376
#> SRR1318732     3  0.4776     0.6569 0.024 0.000 0.732 0.244
#> SRR1091404     1  0.5933     0.6949 0.552 0.000 0.040 0.408
#> SRR1402109     3  0.5203     0.5541 0.008 0.000 0.576 0.416
#> SRR1407336     3  0.5016     0.5964 0.004 0.000 0.600 0.396
#> SRR1097417     1  0.8352     0.4952 0.520 0.276 0.120 0.084
#> SRR1396227     4  0.3900     0.4935 0.164 0.000 0.020 0.816
#> SRR1400775     2  0.1854     0.8823 0.048 0.940 0.012 0.000
#> SRR1392861     4  0.6005     0.2316 0.060 0.000 0.324 0.616
#> SRR1472929     2  0.5528     0.7771 0.144 0.732 0.124 0.000
#> SRR1436740     4  0.4245     0.6309 0.064 0.000 0.116 0.820
#> SRR1477057     2  0.4210     0.8521 0.152 0.816 0.012 0.020
#> SRR1311980     3  0.5793     0.5876 0.040 0.000 0.600 0.360
#> SRR1069400     3  0.3448     0.6631 0.004 0.000 0.828 0.168
#> SRR1351016     4  0.1767     0.6831 0.012 0.000 0.044 0.944
#> SRR1096291     1  0.7152     0.7882 0.544 0.000 0.172 0.284
#> SRR1418145     1  0.6585     0.7955 0.584 0.000 0.104 0.312
#> SRR1488111     1  0.7741     0.7694 0.592 0.060 0.124 0.224
#> SRR1370495     1  0.6920     0.7993 0.596 0.012 0.108 0.284
#> SRR1352639     1  0.6739     0.7970 0.576 0.000 0.120 0.304
#> SRR1348911     3  0.6705     0.5219 0.148 0.000 0.608 0.244
#> SRR1467386     4  0.3105     0.6574 0.004 0.000 0.140 0.856
#> SRR1415956     4  0.4163     0.5178 0.020 0.000 0.188 0.792
#> SRR1500495     3  0.5594     0.4479 0.020 0.000 0.520 0.460
#> SRR1405099     4  0.1929     0.6738 0.024 0.000 0.036 0.940
#> SRR1345585     3  0.3743     0.6532 0.016 0.000 0.824 0.160
#> SRR1093196     3  0.4920     0.6109 0.004 0.000 0.628 0.368
#> SRR1466006     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1351557     2  0.0657     0.8870 0.004 0.984 0.012 0.000
#> SRR1382687     4  0.4194     0.5194 0.008 0.000 0.228 0.764
#> SRR1375549     1  0.5666     0.7678 0.616 0.000 0.036 0.348
#> SRR1101765     1  0.6149     0.7627 0.596 0.016 0.032 0.356
#> SRR1334461     2  0.6889     0.6815 0.320 0.576 0.092 0.012
#> SRR1094073     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1077549     4  0.4194     0.6136 0.028 0.000 0.172 0.800
#> SRR1440332     4  0.5257    -0.2220 0.008 0.000 0.444 0.548
#> SRR1454177     4  0.5218     0.5344 0.064 0.000 0.200 0.736
#> SRR1082447     4  0.3047     0.6149 0.116 0.000 0.012 0.872
#> SRR1420043     3  0.5724     0.5041 0.028 0.000 0.548 0.424
#> SRR1432500     4  0.3032     0.6589 0.008 0.000 0.124 0.868
#> SRR1378045     1  0.7149     0.3878 0.552 0.264 0.184 0.000
#> SRR1334200     2  0.2402     0.8811 0.076 0.912 0.012 0.000
#> SRR1069539     1  0.6915     0.7590 0.592 0.000 0.212 0.196
#> SRR1343031     3  0.4972     0.4880 0.000 0.000 0.544 0.456
#> SRR1319690     3  0.5526     0.5379 0.020 0.000 0.564 0.416
#> SRR1310604     2  0.1677     0.8841 0.040 0.948 0.012 0.000
#> SRR1327747     4  0.5506    -0.3164 0.016 0.000 0.472 0.512
#> SRR1072456     2  0.1256     0.8860 0.028 0.964 0.008 0.000
#> SRR1367896     3  0.3708     0.6518 0.020 0.000 0.832 0.148
#> SRR1480107     4  0.1297     0.6739 0.020 0.000 0.016 0.964
#> SRR1377756     4  0.1576     0.6881 0.004 0.000 0.048 0.948
#> SRR1435272     4  0.5213     0.5191 0.052 0.000 0.224 0.724
#> SRR1089230     4  0.3128     0.6734 0.040 0.000 0.076 0.884
#> SRR1389522     3  0.3791     0.6634 0.004 0.000 0.796 0.200
#> SRR1080600     2  0.1677     0.8841 0.040 0.948 0.012 0.000
#> SRR1086935     1  0.6914     0.7566 0.624 0.028 0.088 0.260
#> SRR1344060     2  0.6107     0.7391 0.264 0.648 0.088 0.000
#> SRR1467922     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1090984     4  0.7544    -0.3846 0.352 0.000 0.196 0.452
#> SRR1456991     4  0.2521     0.6643 0.024 0.000 0.064 0.912
#> SRR1085039     4  0.0779     0.6765 0.016 0.000 0.004 0.980
#> SRR1069303     4  0.5295    -0.5553 0.488 0.000 0.008 0.504
#> SRR1091500     2  0.3217     0.8600 0.128 0.860 0.012 0.000
#> SRR1075198     2  0.3047     0.8551 0.116 0.872 0.012 0.000
#> SRR1086915     4  0.2256     0.6826 0.020 0.000 0.056 0.924
#> SRR1499503     2  0.0469     0.8875 0.012 0.988 0.000 0.000
#> SRR1094312     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1352437     1  0.5294     0.5417 0.508 0.000 0.008 0.484
#> SRR1436323     4  0.5268    -0.2301 0.008 0.000 0.452 0.540
#> SRR1073507     4  0.2048     0.6854 0.008 0.000 0.064 0.928
#> SRR1401972     1  0.5277     0.6014 0.532 0.000 0.008 0.460
#> SRR1415510     2  0.1677     0.8841 0.040 0.948 0.012 0.000
#> SRR1327279     4  0.3810     0.5917 0.008 0.000 0.188 0.804
#> SRR1086983     4  0.3439     0.6683 0.048 0.000 0.084 0.868
#> SRR1105174     4  0.1724     0.6767 0.020 0.000 0.032 0.948
#> SRR1468893     4  0.0779     0.6763 0.016 0.000 0.004 0.980
#> SRR1362555     2  0.3276     0.8649 0.064 0.888 0.012 0.036
#> SRR1074526     2  0.6957     0.6907 0.312 0.576 0.100 0.012
#> SRR1326225     2  0.0937     0.8863 0.012 0.976 0.012 0.000
#> SRR1401933     4  0.2131     0.6857 0.032 0.000 0.036 0.932
#> SRR1324062     4  0.3245     0.6721 0.056 0.000 0.064 0.880
#> SRR1102296     1  0.6383     0.7997 0.612 0.000 0.096 0.292
#> SRR1085087     4  0.5007    -0.1308 0.356 0.000 0.008 0.636
#> SRR1079046     2  0.8059     0.5948 0.336 0.500 0.104 0.060
#> SRR1328339     1  0.7147     0.7566 0.560 0.000 0.216 0.224
#> SRR1079782     2  0.6671     0.3183 0.372 0.552 0.012 0.064
#> SRR1092257     2  0.3662     0.8632 0.148 0.836 0.012 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0404     0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1429287     2  0.3682     0.7540 0.000 0.820 0.000 0.072 0.108
#> SRR1359238     1  0.4568     0.6772 0.788 0.000 0.088 0.036 0.088
#> SRR1309597     3  0.2267     0.6794 0.048 0.000 0.916 0.028 0.008
#> SRR1441398     1  0.3659     0.5588 0.768 0.000 0.220 0.000 0.012
#> SRR1084055     2  0.0510     0.8017 0.000 0.984 0.000 0.000 0.016
#> SRR1417566     4  0.6465     0.1143 0.140 0.000 0.412 0.440 0.008
#> SRR1351857     1  0.5212     0.6725 0.748 0.000 0.068 0.096 0.088
#> SRR1487485     3  0.1780     0.6805 0.024 0.000 0.940 0.028 0.008
#> SRR1335875     3  0.5850     0.4903 0.272 0.004 0.600 0.124 0.000
#> SRR1073947     1  0.3231     0.6506 0.800 0.000 0.000 0.196 0.004
#> SRR1443483     3  0.2228     0.6819 0.040 0.000 0.920 0.028 0.012
#> SRR1346794     1  0.3579     0.5104 0.756 0.000 0.240 0.004 0.000
#> SRR1405245     1  0.4088     0.3999 0.688 0.000 0.304 0.000 0.008
#> SRR1409677     1  0.7055     0.1949 0.440 0.000 0.280 0.264 0.016
#> SRR1095549     1  0.3923     0.6733 0.812 0.000 0.132 0.016 0.040
#> SRR1323788     1  0.5385     0.6121 0.692 0.000 0.208 0.024 0.076
#> SRR1314054     2  0.3620     0.7568 0.000 0.824 0.000 0.068 0.108
#> SRR1077944     1  0.1282     0.6748 0.952 0.000 0.044 0.004 0.000
#> SRR1480587     2  0.1043     0.8036 0.000 0.960 0.000 0.000 0.040
#> SRR1311205     1  0.2074     0.6628 0.896 0.000 0.104 0.000 0.000
#> SRR1076369     4  0.6571     0.3631 0.392 0.000 0.204 0.404 0.000
#> SRR1453549     3  0.4588     0.6824 0.220 0.000 0.720 0.060 0.000
#> SRR1345782     1  0.2179     0.6627 0.888 0.000 0.112 0.000 0.000
#> SRR1447850     2  0.5136     0.6245 0.000 0.688 0.000 0.196 0.116
#> SRR1391553     3  0.6342     0.1084 0.012 0.088 0.564 0.320 0.016
#> SRR1444156     2  0.0404     0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1471731     3  0.4400     0.6656 0.108 0.000 0.788 0.088 0.016
#> SRR1120987     4  0.2625     0.5056 0.108 0.000 0.016 0.876 0.000
#> SRR1477363     1  0.2074     0.6725 0.920 0.000 0.036 0.044 0.000
#> SRR1391961     5  0.3010     0.9276 0.004 0.172 0.000 0.000 0.824
#> SRR1373879     3  0.3822     0.7001 0.152 0.000 0.808 0.020 0.020
#> SRR1318732     3  0.2548     0.6758 0.072 0.000 0.896 0.028 0.004
#> SRR1091404     1  0.5036    -0.1129 0.560 0.000 0.036 0.404 0.000
#> SRR1402109     3  0.4159     0.6922 0.160 0.000 0.788 0.032 0.020
#> SRR1407336     3  0.4023     0.6975 0.164 0.000 0.792 0.028 0.016
#> SRR1097417     4  0.8573     0.1149 0.060 0.180 0.328 0.372 0.060
#> SRR1396227     1  0.4181     0.5002 0.676 0.000 0.004 0.316 0.004
#> SRR1400775     2  0.0609     0.8070 0.000 0.980 0.000 0.000 0.020
#> SRR1392861     3  0.6530     0.1867 0.196 0.000 0.424 0.380 0.000
#> SRR1472929     5  0.5008     0.7208 0.024 0.344 0.012 0.000 0.620
#> SRR1436740     4  0.6642    -0.0532 0.232 0.000 0.340 0.428 0.000
#> SRR1477057     2  0.5672     0.6025 0.016 0.672 0.000 0.156 0.156
#> SRR1311980     3  0.5083     0.6614 0.160 0.000 0.700 0.140 0.000
#> SRR1069400     3  0.2692     0.6896 0.092 0.000 0.884 0.016 0.008
#> SRR1351016     1  0.3584     0.6997 0.848 0.000 0.040 0.084 0.028
#> SRR1096291     4  0.6521     0.3978 0.244 0.000 0.272 0.484 0.000
#> SRR1418145     4  0.3106     0.5093 0.132 0.000 0.024 0.844 0.000
#> SRR1488111     4  0.5060     0.3706 0.072 0.100 0.040 0.772 0.016
#> SRR1370495     4  0.5359     0.3762 0.412 0.000 0.056 0.532 0.000
#> SRR1352639     4  0.6697     0.4077 0.364 0.048 0.068 0.512 0.008
#> SRR1348911     3  0.5597     0.4326 0.160 0.000 0.640 0.200 0.000
#> SRR1467386     1  0.4656     0.6547 0.740 0.000 0.076 0.180 0.004
#> SRR1415956     1  0.1704     0.6641 0.928 0.000 0.068 0.004 0.000
#> SRR1500495     1  0.3246     0.6043 0.808 0.000 0.184 0.000 0.008
#> SRR1405099     1  0.2221     0.6719 0.912 0.000 0.036 0.052 0.000
#> SRR1345585     3  0.2308     0.6637 0.036 0.000 0.912 0.048 0.004
#> SRR1093196     3  0.3911     0.6807 0.100 0.000 0.824 0.056 0.020
#> SRR1466006     2  0.0404     0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1351557     2  0.0290     0.8060 0.000 0.992 0.000 0.000 0.008
#> SRR1382687     1  0.6280     0.4923 0.600 0.000 0.268 0.044 0.088
#> SRR1375549     4  0.5148     0.3516 0.432 0.000 0.040 0.528 0.000
#> SRR1101765     4  0.5910     0.3366 0.452 0.000 0.040 0.476 0.032
#> SRR1334461     5  0.3318     0.9158 0.008 0.192 0.000 0.000 0.800
#> SRR1094073     2  0.0404     0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1077549     1  0.5307     0.5721 0.676 0.000 0.168 0.156 0.000
#> SRR1440332     1  0.5680     0.5935 0.672 0.000 0.212 0.032 0.084
#> SRR1454177     4  0.6682    -0.1223 0.236 0.000 0.368 0.396 0.000
#> SRR1082447     1  0.2983     0.6561 0.864 0.000 0.040 0.096 0.000
#> SRR1420043     3  0.4305     0.6886 0.152 0.000 0.784 0.044 0.020
#> SRR1432500     1  0.5059     0.6760 0.760 0.000 0.072 0.084 0.084
#> SRR1378045     2  0.7998    -0.0991 0.004 0.364 0.200 0.348 0.084
#> SRR1334200     2  0.4367     0.3805 0.000 0.620 0.000 0.008 0.372
#> SRR1069539     4  0.5788     0.1091 0.076 0.004 0.440 0.480 0.000
#> SRR1343031     3  0.5070     0.5498 0.316 0.000 0.640 0.028 0.016
#> SRR1319690     3  0.4249     0.4181 0.432 0.000 0.568 0.000 0.000
#> SRR1310604     2  0.2249     0.7886 0.000 0.896 0.000 0.008 0.096
#> SRR1327747     3  0.4210     0.4477 0.412 0.000 0.588 0.000 0.000
#> SRR1072456     2  0.1430     0.8008 0.000 0.944 0.000 0.004 0.052
#> SRR1367896     3  0.2193     0.6659 0.028 0.000 0.920 0.044 0.008
#> SRR1480107     1  0.1774     0.6813 0.932 0.000 0.016 0.052 0.000
#> SRR1377756     1  0.4378     0.6907 0.800 0.000 0.032 0.088 0.080
#> SRR1435272     4  0.6718    -0.1477 0.248 0.000 0.368 0.384 0.000
#> SRR1089230     1  0.6467     0.2072 0.432 0.000 0.140 0.420 0.008
#> SRR1389522     3  0.4647     0.4918 0.352 0.000 0.628 0.016 0.004
#> SRR1080600     2  0.2124     0.7895 0.000 0.900 0.000 0.004 0.096
#> SRR1086935     4  0.4343     0.4290 0.072 0.056 0.064 0.808 0.000
#> SRR1344060     5  0.3160     0.9223 0.000 0.188 0.000 0.004 0.808
#> SRR1467922     2  0.0404     0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1090984     1  0.6016    -0.0661 0.548 0.000 0.140 0.312 0.000
#> SRR1456991     1  0.2074     0.6743 0.920 0.000 0.036 0.044 0.000
#> SRR1085039     1  0.2644     0.6868 0.888 0.000 0.012 0.088 0.012
#> SRR1069303     4  0.4359     0.2553 0.412 0.000 0.000 0.584 0.004
#> SRR1091500     2  0.2873     0.7270 0.000 0.856 0.000 0.016 0.128
#> SRR1075198     2  0.3112     0.7738 0.000 0.856 0.000 0.044 0.100
#> SRR1086915     1  0.6529     0.5145 0.592 0.000 0.076 0.256 0.076
#> SRR1499503     2  0.1043     0.8062 0.000 0.960 0.000 0.000 0.040
#> SRR1094312     2  0.0000     0.8055 0.000 1.000 0.000 0.000 0.000
#> SRR1352437     4  0.3491     0.4396 0.228 0.000 0.000 0.768 0.004
#> SRR1436323     3  0.5589     0.6040 0.188 0.000 0.676 0.120 0.016
#> SRR1073507     1  0.4444     0.6536 0.748 0.000 0.072 0.180 0.000
#> SRR1401972     4  0.4288     0.3149 0.384 0.000 0.000 0.612 0.004
#> SRR1415510     2  0.2124     0.7895 0.000 0.900 0.000 0.004 0.096
#> SRR1327279     1  0.4458     0.6790 0.796 0.000 0.084 0.036 0.084
#> SRR1086983     1  0.4732     0.6306 0.716 0.000 0.076 0.208 0.000
#> SRR1105174     1  0.2304     0.6737 0.908 0.000 0.044 0.048 0.000
#> SRR1468893     1  0.1764     0.6899 0.928 0.000 0.008 0.064 0.000
#> SRR1362555     2  0.6262     0.4473 0.156 0.652 0.000 0.064 0.128
#> SRR1074526     5  0.3047     0.9219 0.004 0.160 0.004 0.000 0.832
#> SRR1326225     2  0.0404     0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1401933     1  0.5232     0.6723 0.744 0.000 0.060 0.112 0.084
#> SRR1324062     1  0.4985     0.5734 0.680 0.000 0.076 0.244 0.000
#> SRR1102296     4  0.5578     0.4338 0.308 0.008 0.056 0.620 0.008
#> SRR1085087     4  0.4586     0.0623 0.468 0.000 0.004 0.524 0.004
#> SRR1079046     5  0.3600     0.9122 0.008 0.152 0.008 0.012 0.820
#> SRR1328339     4  0.7230     0.2761 0.212 0.004 0.312 0.448 0.024
#> SRR1079782     2  0.6180     0.1789 0.008 0.456 0.000 0.432 0.104
#> SRR1092257     2  0.6001     0.4492 0.000 0.580 0.000 0.244 0.176

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0000    0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429287     2  0.5856    0.64160 0.000 0.636 0.040 0.224 0.060 0.040
#> SRR1359238     1  0.4840    0.63763 0.732 0.000 0.004 0.060 0.060 0.144
#> SRR1309597     3  0.1950    0.66980 0.032 0.000 0.924 0.016 0.000 0.028
#> SRR1441398     1  0.2371    0.60974 0.900 0.000 0.032 0.052 0.016 0.000
#> SRR1084055     2  0.1556    0.75719 0.000 0.920 0.000 0.000 0.080 0.000
#> SRR1417566     6  0.6109    0.36969 0.284 0.004 0.204 0.004 0.004 0.500
#> SRR1351857     1  0.5888    0.58775 0.560 0.000 0.004 0.064 0.060 0.312
#> SRR1487485     3  0.1861    0.66412 0.020 0.000 0.928 0.016 0.000 0.036
#> SRR1335875     1  0.6672   -0.17654 0.416 0.016 0.376 0.028 0.000 0.164
#> SRR1073947     1  0.4467    0.55787 0.564 0.000 0.004 0.024 0.000 0.408
#> SRR1443483     3  0.1806    0.64925 0.044 0.000 0.928 0.020 0.000 0.008
#> SRR1346794     1  0.3096    0.60125 0.868 0.000 0.052 0.016 0.016 0.048
#> SRR1405245     1  0.2384    0.60634 0.900 0.000 0.044 0.040 0.016 0.000
#> SRR1409677     1  0.6994    0.30685 0.456 0.000 0.096 0.220 0.000 0.228
#> SRR1095549     1  0.1793    0.64130 0.932 0.000 0.004 0.040 0.016 0.008
#> SRR1323788     1  0.4587    0.59593 0.780 0.000 0.044 0.084 0.052 0.040
#> SRR1314054     2  0.5043    0.67921 0.000 0.688 0.040 0.208 0.060 0.004
#> SRR1077944     1  0.1232    0.64366 0.956 0.000 0.004 0.016 0.000 0.024
#> SRR1480587     2  0.1168    0.80233 0.000 0.956 0.000 0.016 0.028 0.000
#> SRR1311205     1  0.1218    0.63233 0.956 0.000 0.012 0.028 0.000 0.004
#> SRR1076369     6  0.5859    0.48031 0.408 0.000 0.088 0.008 0.020 0.476
#> SRR1453549     1  0.6510    0.11802 0.540 0.000 0.224 0.144 0.000 0.092
#> SRR1345782     1  0.1218    0.62944 0.956 0.000 0.012 0.028 0.004 0.000
#> SRR1447850     2  0.6539    0.55801 0.000 0.572 0.040 0.240 0.056 0.092
#> SRR1391553     3  0.6487    0.34818 0.036 0.068 0.568 0.048 0.008 0.272
#> SRR1444156     2  0.0000    0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731     4  0.6401    0.61767 0.176 0.000 0.240 0.528 0.000 0.056
#> SRR1120987     6  0.3078    0.50245 0.032 0.000 0.028 0.084 0.000 0.856
#> SRR1477363     1  0.2592    0.65010 0.864 0.000 0.004 0.016 0.000 0.116
#> SRR1391961     5  0.1700    0.90621 0.004 0.080 0.000 0.000 0.916 0.000
#> SRR1373879     1  0.6857   -0.45798 0.348 0.000 0.308 0.300 0.000 0.044
#> SRR1318732     3  0.2644    0.67662 0.060 0.000 0.880 0.000 0.008 0.052
#> SRR1091404     6  0.5164    0.45695 0.416 0.000 0.024 0.032 0.004 0.524
#> SRR1402109     4  0.6953    0.44838 0.300 0.000 0.276 0.368 0.000 0.056
#> SRR1407336     3  0.6773   -0.36581 0.320 0.000 0.404 0.228 0.000 0.048
#> SRR1097417     6  0.7919    0.11048 0.048 0.224 0.268 0.024 0.040 0.396
#> SRR1396227     1  0.4446    0.52171 0.532 0.000 0.004 0.020 0.000 0.444
#> SRR1400775     2  0.1074    0.80640 0.000 0.960 0.000 0.012 0.028 0.000
#> SRR1392861     4  0.5680    0.66595 0.048 0.000 0.088 0.600 0.000 0.264
#> SRR1472929     5  0.4379    0.61356 0.024 0.336 0.000 0.008 0.632 0.000
#> SRR1436740     4  0.5604    0.64281 0.048 0.000 0.072 0.592 0.000 0.288
#> SRR1477057     2  0.6520    0.58172 0.000 0.576 0.036 0.224 0.116 0.048
#> SRR1311980     1  0.6911   -0.19853 0.404 0.000 0.360 0.120 0.000 0.116
#> SRR1069400     3  0.2476    0.66794 0.072 0.000 0.888 0.008 0.000 0.032
#> SRR1351016     1  0.2734    0.66276 0.860 0.000 0.004 0.016 0.004 0.116
#> SRR1096291     6  0.6391    0.45459 0.228 0.000 0.188 0.044 0.004 0.536
#> SRR1418145     6  0.3590    0.51341 0.052 0.000 0.044 0.076 0.000 0.828
#> SRR1488111     6  0.6617    0.46198 0.036 0.072 0.060 0.220 0.016 0.596
#> SRR1370495     6  0.5681    0.57851 0.200 0.008 0.068 0.064 0.004 0.656
#> SRR1352639     6  0.5993    0.59099 0.204 0.048 0.076 0.028 0.004 0.640
#> SRR1348911     3  0.5144    0.41278 0.100 0.004 0.624 0.004 0.000 0.268
#> SRR1467386     1  0.5498    0.57236 0.556 0.000 0.004 0.116 0.004 0.320
#> SRR1415956     1  0.1642    0.62754 0.936 0.000 0.004 0.032 0.000 0.028
#> SRR1500495     1  0.2084    0.61727 0.916 0.000 0.024 0.044 0.016 0.000
#> SRR1405099     1  0.3203    0.61955 0.812 0.000 0.004 0.024 0.000 0.160
#> SRR1345585     3  0.2201    0.67922 0.036 0.000 0.904 0.004 0.000 0.056
#> SRR1093196     4  0.6273    0.61553 0.164 0.000 0.240 0.544 0.000 0.052
#> SRR1466006     2  0.0146    0.80833 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1351557     2  0.0458    0.80923 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1382687     1  0.6655    0.58067 0.592 0.000 0.056 0.108 0.060 0.184
#> SRR1375549     6  0.5164    0.58750 0.216 0.000 0.052 0.052 0.004 0.676
#> SRR1101765     6  0.6393    0.57187 0.256 0.016 0.040 0.072 0.028 0.588
#> SRR1334461     5  0.1908    0.90123 0.004 0.096 0.000 0.000 0.900 0.000
#> SRR1094073     2  0.0000    0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549     1  0.6137    0.49180 0.524 0.000 0.052 0.092 0.004 0.328
#> SRR1440332     1  0.5335    0.57285 0.728 0.000 0.052 0.092 0.060 0.068
#> SRR1454177     4  0.5457    0.66066 0.036 0.000 0.084 0.616 0.000 0.264
#> SRR1082447     1  0.3780    0.57607 0.744 0.000 0.004 0.028 0.000 0.224
#> SRR1420043     4  0.6315    0.61284 0.176 0.000 0.212 0.552 0.000 0.060
#> SRR1432500     1  0.6081    0.59315 0.584 0.000 0.004 0.108 0.060 0.244
#> SRR1378045     3  0.7721    0.04422 0.004 0.232 0.388 0.028 0.080 0.268
#> SRR1334200     2  0.4486    0.45650 0.000 0.584 0.004 0.028 0.384 0.000
#> SRR1069539     6  0.6187    0.41793 0.092 0.000 0.232 0.088 0.004 0.584
#> SRR1343031     1  0.6022    0.28479 0.588 0.000 0.208 0.152 0.000 0.052
#> SRR1319690     1  0.4148    0.48206 0.748 0.000 0.188 0.048 0.016 0.000
#> SRR1310604     2  0.4129    0.74190 0.000 0.780 0.032 0.028 0.148 0.012
#> SRR1327747     1  0.3781    0.49671 0.772 0.000 0.184 0.028 0.016 0.000
#> SRR1072456     2  0.1391    0.80070 0.000 0.944 0.000 0.016 0.040 0.000
#> SRR1367896     3  0.2007    0.67990 0.036 0.000 0.916 0.004 0.000 0.044
#> SRR1480107     1  0.3541    0.59956 0.748 0.000 0.000 0.020 0.000 0.232
#> SRR1377756     1  0.5261    0.61845 0.652 0.000 0.004 0.040 0.060 0.244
#> SRR1435272     4  0.5534    0.66182 0.044 0.000 0.080 0.612 0.000 0.264
#> SRR1089230     1  0.6615    0.36286 0.444 0.000 0.040 0.156 0.008 0.352
#> SRR1389522     3  0.4676    0.28616 0.384 0.000 0.572 0.004 0.000 0.040
#> SRR1080600     2  0.2425    0.78733 0.000 0.884 0.004 0.024 0.088 0.000
#> SRR1086935     6  0.4416    0.34326 0.076 0.000 0.000 0.212 0.004 0.708
#> SRR1344060     5  0.2100    0.89960 0.000 0.112 0.000 0.000 0.884 0.004
#> SRR1467922     2  0.0000    0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984     6  0.5161    0.46109 0.452 0.000 0.072 0.000 0.004 0.472
#> SRR1456991     1  0.2492    0.61139 0.876 0.000 0.004 0.020 0.000 0.100
#> SRR1085039     1  0.3965    0.61119 0.716 0.000 0.004 0.020 0.004 0.256
#> SRR1069303     6  0.3236    0.36837 0.180 0.000 0.000 0.024 0.000 0.796
#> SRR1091500     2  0.4444    0.55393 0.000 0.676 0.000 0.068 0.256 0.000
#> SRR1075198     2  0.5955    0.66999 0.000 0.660 0.032 0.116 0.136 0.056
#> SRR1086915     1  0.6089    0.55569 0.560 0.000 0.012 0.096 0.040 0.292
#> SRR1499503     2  0.1074    0.80328 0.000 0.960 0.000 0.012 0.028 0.000
#> SRR1094312     2  0.0146    0.80870 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1352437     6  0.3408    0.40049 0.152 0.000 0.000 0.048 0.000 0.800
#> SRR1436323     4  0.7295    0.55066 0.276 0.000 0.232 0.380 0.000 0.112
#> SRR1073507     1  0.5175    0.56268 0.572 0.000 0.000 0.092 0.004 0.332
#> SRR1401972     6  0.2624    0.43952 0.124 0.000 0.000 0.020 0.000 0.856
#> SRR1415510     2  0.3171    0.77048 0.000 0.844 0.028 0.024 0.104 0.000
#> SRR1327279     1  0.4608    0.63674 0.752 0.000 0.000 0.080 0.060 0.108
#> SRR1086983     1  0.5399    0.51360 0.528 0.000 0.000 0.108 0.004 0.360
#> SRR1105174     1  0.3409    0.59946 0.788 0.000 0.004 0.024 0.000 0.184
#> SRR1468893     1  0.3930    0.63998 0.728 0.000 0.004 0.032 0.000 0.236
#> SRR1362555     2  0.6535    0.56066 0.012 0.588 0.028 0.076 0.236 0.060
#> SRR1074526     5  0.2306    0.90712 0.004 0.096 0.004 0.008 0.888 0.000
#> SRR1326225     2  0.0000    0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1401933     1  0.5724    0.62242 0.652 0.000 0.012 0.084 0.060 0.192
#> SRR1324062     1  0.5958    0.49137 0.516 0.000 0.040 0.100 0.000 0.344
#> SRR1102296     6  0.5116    0.59217 0.120 0.020 0.052 0.060 0.008 0.740
#> SRR1085087     6  0.3950    0.09324 0.276 0.000 0.000 0.028 0.000 0.696
#> SRR1079046     5  0.3029    0.88990 0.004 0.076 0.032 0.008 0.868 0.012
#> SRR1328339     6  0.6216    0.45460 0.212 0.012 0.208 0.008 0.008 0.552
#> SRR1079782     6  0.7723    0.00211 0.000 0.256 0.032 0.256 0.084 0.372
#> SRR1092257     2  0.6333    0.58724 0.000 0.592 0.036 0.228 0.100 0.044

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.896           0.919       0.967         0.4108 0.594   0.594
#> 3 3 0.555           0.774       0.870         0.5404 0.700   0.526
#> 4 4 0.549           0.635       0.791         0.1701 0.803   0.519
#> 5 5 0.586           0.556       0.766         0.0616 0.843   0.485
#> 6 6 0.581           0.405       0.651         0.0429 0.859   0.472

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000    0.94718 0.000 1.000
#> SRR1429287     2  0.0000    0.94718 0.000 1.000
#> SRR1359238     1  0.0000    0.97136 1.000 0.000
#> SRR1309597     1  0.0000    0.97136 1.000 0.000
#> SRR1441398     1  0.0000    0.97136 1.000 0.000
#> SRR1084055     2  0.0000    0.94718 0.000 1.000
#> SRR1417566     1  0.4161    0.89448 0.916 0.084
#> SRR1351857     1  0.0000    0.97136 1.000 0.000
#> SRR1487485     2  0.7299    0.73689 0.204 0.796
#> SRR1335875     1  0.2778    0.92899 0.952 0.048
#> SRR1073947     1  0.0000    0.97136 1.000 0.000
#> SRR1443483     1  0.0000    0.97136 1.000 0.000
#> SRR1346794     1  0.0000    0.97136 1.000 0.000
#> SRR1405245     1  0.0000    0.97136 1.000 0.000
#> SRR1409677     1  0.0000    0.97136 1.000 0.000
#> SRR1095549     1  0.0000    0.97136 1.000 0.000
#> SRR1323788     1  0.0000    0.97136 1.000 0.000
#> SRR1314054     2  0.0000    0.94718 0.000 1.000
#> SRR1077944     1  0.0000    0.97136 1.000 0.000
#> SRR1480587     2  0.0000    0.94718 0.000 1.000
#> SRR1311205     1  0.0000    0.97136 1.000 0.000
#> SRR1076369     1  0.0000    0.97136 1.000 0.000
#> SRR1453549     1  0.0000    0.97136 1.000 0.000
#> SRR1345782     1  0.0000    0.97136 1.000 0.000
#> SRR1447850     2  0.0000    0.94718 0.000 1.000
#> SRR1391553     2  0.0000    0.94718 0.000 1.000
#> SRR1444156     2  0.0000    0.94718 0.000 1.000
#> SRR1471731     1  0.0938    0.96166 0.988 0.012
#> SRR1120987     1  0.4431    0.88338 0.908 0.092
#> SRR1477363     1  0.0000    0.97136 1.000 0.000
#> SRR1391961     1  0.6801    0.77318 0.820 0.180
#> SRR1373879     1  0.0000    0.97136 1.000 0.000
#> SRR1318732     1  0.1633    0.95135 0.976 0.024
#> SRR1091404     1  0.0000    0.97136 1.000 0.000
#> SRR1402109     1  0.0000    0.97136 1.000 0.000
#> SRR1407336     1  0.0000    0.97136 1.000 0.000
#> SRR1097417     2  0.0000    0.94718 0.000 1.000
#> SRR1396227     1  0.0000    0.97136 1.000 0.000
#> SRR1400775     2  0.0000    0.94718 0.000 1.000
#> SRR1392861     1  0.0000    0.97136 1.000 0.000
#> SRR1472929     2  0.0376    0.94407 0.004 0.996
#> SRR1436740     1  0.0000    0.97136 1.000 0.000
#> SRR1477057     2  0.0000    0.94718 0.000 1.000
#> SRR1311980     1  0.6148    0.81248 0.848 0.152
#> SRR1069400     1  0.0000    0.97136 1.000 0.000
#> SRR1351016     1  0.0000    0.97136 1.000 0.000
#> SRR1096291     1  0.0000    0.97136 1.000 0.000
#> SRR1418145     1  0.0000    0.97136 1.000 0.000
#> SRR1488111     2  0.8955    0.54664 0.312 0.688
#> SRR1370495     1  0.0000    0.97136 1.000 0.000
#> SRR1352639     1  0.0000    0.97136 1.000 0.000
#> SRR1348911     1  0.1843    0.94829 0.972 0.028
#> SRR1467386     1  0.0000    0.97136 1.000 0.000
#> SRR1415956     1  0.0000    0.97136 1.000 0.000
#> SRR1500495     1  0.0000    0.97136 1.000 0.000
#> SRR1405099     1  0.0000    0.97136 1.000 0.000
#> SRR1345585     2  0.8813    0.58598 0.300 0.700
#> SRR1093196     1  0.0000    0.97136 1.000 0.000
#> SRR1466006     2  0.0000    0.94718 0.000 1.000
#> SRR1351557     2  0.0000    0.94718 0.000 1.000
#> SRR1382687     1  0.0000    0.97136 1.000 0.000
#> SRR1375549     1  0.0000    0.97136 1.000 0.000
#> SRR1101765     1  0.0000    0.97136 1.000 0.000
#> SRR1334461     1  0.0672    0.96501 0.992 0.008
#> SRR1094073     2  0.0000    0.94718 0.000 1.000
#> SRR1077549     1  0.0000    0.97136 1.000 0.000
#> SRR1440332     1  0.0000    0.97136 1.000 0.000
#> SRR1454177     1  0.0000    0.97136 1.000 0.000
#> SRR1082447     1  0.0000    0.97136 1.000 0.000
#> SRR1420043     1  0.0000    0.97136 1.000 0.000
#> SRR1432500     1  0.0000    0.97136 1.000 0.000
#> SRR1378045     2  0.0000    0.94718 0.000 1.000
#> SRR1334200     1  0.9686    0.33913 0.604 0.396
#> SRR1069539     1  0.8763    0.56461 0.704 0.296
#> SRR1343031     1  0.0000    0.97136 1.000 0.000
#> SRR1319690     1  0.0000    0.97136 1.000 0.000
#> SRR1310604     2  0.0000    0.94718 0.000 1.000
#> SRR1327747     1  0.0000    0.97136 1.000 0.000
#> SRR1072456     2  0.0000    0.94718 0.000 1.000
#> SRR1367896     1  0.7745    0.70754 0.772 0.228
#> SRR1480107     1  0.0000    0.97136 1.000 0.000
#> SRR1377756     1  0.0000    0.97136 1.000 0.000
#> SRR1435272     1  0.0000    0.97136 1.000 0.000
#> SRR1089230     1  0.0000    0.97136 1.000 0.000
#> SRR1389522     1  0.0000    0.97136 1.000 0.000
#> SRR1080600     2  0.0000    0.94718 0.000 1.000
#> SRR1086935     2  0.9993    0.10059 0.484 0.516
#> SRR1344060     1  1.0000   -0.00414 0.504 0.496
#> SRR1467922     2  0.0000    0.94718 0.000 1.000
#> SRR1090984     1  0.0000    0.97136 1.000 0.000
#> SRR1456991     1  0.0000    0.97136 1.000 0.000
#> SRR1085039     1  0.0000    0.97136 1.000 0.000
#> SRR1069303     1  0.0000    0.97136 1.000 0.000
#> SRR1091500     2  0.0000    0.94718 0.000 1.000
#> SRR1075198     2  0.0000    0.94718 0.000 1.000
#> SRR1086915     1  0.0000    0.97136 1.000 0.000
#> SRR1499503     2  0.0000    0.94718 0.000 1.000
#> SRR1094312     2  0.0000    0.94718 0.000 1.000
#> SRR1352437     1  0.0000    0.97136 1.000 0.000
#> SRR1436323     1  0.0000    0.97136 1.000 0.000
#> SRR1073507     1  0.0000    0.97136 1.000 0.000
#> SRR1401972     1  0.0000    0.97136 1.000 0.000
#> SRR1415510     2  0.0000    0.94718 0.000 1.000
#> SRR1327279     1  0.0000    0.97136 1.000 0.000
#> SRR1086983     1  0.0000    0.97136 1.000 0.000
#> SRR1105174     1  0.0000    0.97136 1.000 0.000
#> SRR1468893     1  0.0000    0.97136 1.000 0.000
#> SRR1362555     2  0.8909    0.55422 0.308 0.692
#> SRR1074526     1  0.7674    0.70836 0.776 0.224
#> SRR1326225     2  0.0000    0.94718 0.000 1.000
#> SRR1401933     1  0.0000    0.97136 1.000 0.000
#> SRR1324062     1  0.0000    0.97136 1.000 0.000
#> SRR1102296     1  0.0000    0.97136 1.000 0.000
#> SRR1085087     1  0.0000    0.97136 1.000 0.000
#> SRR1079046     1  0.0000    0.97136 1.000 0.000
#> SRR1328339     1  0.0000    0.97136 1.000 0.000
#> SRR1079782     2  0.0000    0.94718 0.000 1.000
#> SRR1092257     2  0.0000    0.94718 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.1163      0.921 0.028 0.972 0.000
#> SRR1429287     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1359238     3  0.2066      0.837 0.060 0.000 0.940
#> SRR1309597     3  0.3752      0.793 0.144 0.000 0.856
#> SRR1441398     3  0.5560      0.634 0.300 0.000 0.700
#> SRR1084055     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1417566     2  0.7164      0.468 0.044 0.640 0.316
#> SRR1351857     3  0.3412      0.808 0.124 0.000 0.876
#> SRR1487485     3  0.6373      0.281 0.004 0.408 0.588
#> SRR1335875     3  0.4281      0.805 0.072 0.056 0.872
#> SRR1073947     1  0.5948      0.481 0.640 0.000 0.360
#> SRR1443483     3  0.2959      0.808 0.100 0.000 0.900
#> SRR1346794     3  0.5810      0.568 0.336 0.000 0.664
#> SRR1405245     3  0.5138      0.701 0.252 0.000 0.748
#> SRR1409677     3  0.2066      0.834 0.060 0.000 0.940
#> SRR1095549     3  0.4504      0.759 0.196 0.000 0.804
#> SRR1323788     3  0.3038      0.823 0.104 0.000 0.896
#> SRR1314054     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1077944     3  0.6168      0.460 0.412 0.000 0.588
#> SRR1480587     2  0.1643      0.914 0.044 0.956 0.000
#> SRR1311205     3  0.4842      0.733 0.224 0.000 0.776
#> SRR1076369     1  0.2356      0.801 0.928 0.000 0.072
#> SRR1453549     3  0.0747      0.836 0.016 0.000 0.984
#> SRR1345782     3  0.5529      0.641 0.296 0.000 0.704
#> SRR1447850     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1391553     2  0.1753      0.902 0.000 0.952 0.048
#> SRR1444156     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1471731     3  0.1031      0.831 0.000 0.024 0.976
#> SRR1120987     3  0.6756      0.608 0.232 0.056 0.712
#> SRR1477363     3  0.5785      0.603 0.332 0.000 0.668
#> SRR1391961     1  0.0829      0.823 0.984 0.004 0.012
#> SRR1373879     3  0.0747      0.832 0.016 0.000 0.984
#> SRR1318732     3  0.6143      0.676 0.256 0.024 0.720
#> SRR1091404     1  0.0424      0.824 0.992 0.000 0.008
#> SRR1402109     3  0.0892      0.832 0.020 0.000 0.980
#> SRR1407336     3  0.1031      0.831 0.024 0.000 0.976
#> SRR1097417     2  0.6027      0.724 0.164 0.776 0.060
#> SRR1396227     3  0.6045      0.457 0.380 0.000 0.620
#> SRR1400775     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1392861     3  0.2066      0.834 0.060 0.000 0.940
#> SRR1472929     1  0.3213      0.788 0.912 0.028 0.060
#> SRR1436740     3  0.2165      0.833 0.064 0.000 0.936
#> SRR1477057     2  0.0424      0.927 0.008 0.992 0.000
#> SRR1311980     3  0.2681      0.825 0.040 0.028 0.932
#> SRR1069400     3  0.3192      0.803 0.112 0.000 0.888
#> SRR1351016     3  0.4887      0.772 0.228 0.000 0.772
#> SRR1096291     3  0.1964      0.835 0.056 0.000 0.944
#> SRR1418145     3  0.4346      0.738 0.184 0.000 0.816
#> SRR1488111     2  0.3539      0.841 0.012 0.888 0.100
#> SRR1370495     1  0.0592      0.824 0.988 0.000 0.012
#> SRR1352639     1  0.4346      0.736 0.816 0.000 0.184
#> SRR1348911     3  0.6039      0.735 0.104 0.108 0.788
#> SRR1467386     3  0.2448      0.833 0.076 0.000 0.924
#> SRR1415956     1  0.2261      0.809 0.932 0.000 0.068
#> SRR1500495     3  0.5706      0.601 0.320 0.000 0.680
#> SRR1405099     1  0.1753      0.825 0.952 0.000 0.048
#> SRR1345585     3  0.6379      0.586 0.032 0.256 0.712
#> SRR1093196     3  0.0747      0.832 0.016 0.000 0.984
#> SRR1466006     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1351557     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1382687     3  0.2356      0.835 0.072 0.000 0.928
#> SRR1375549     1  0.2625      0.802 0.916 0.000 0.084
#> SRR1101765     1  0.2261      0.812 0.932 0.000 0.068
#> SRR1334461     1  0.0592      0.824 0.988 0.000 0.012
#> SRR1094073     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1077549     3  0.2066      0.834 0.060 0.000 0.940
#> SRR1440332     3  0.1411      0.836 0.036 0.000 0.964
#> SRR1454177     3  0.2066      0.834 0.060 0.000 0.940
#> SRR1082447     1  0.3551      0.778 0.868 0.000 0.132
#> SRR1420043     3  0.0424      0.834 0.008 0.000 0.992
#> SRR1432500     3  0.2356      0.833 0.072 0.000 0.928
#> SRR1378045     2  0.2280      0.894 0.008 0.940 0.052
#> SRR1334200     1  0.3918      0.727 0.856 0.140 0.004
#> SRR1069539     2  0.6264      0.387 0.004 0.616 0.380
#> SRR1343031     3  0.2959      0.808 0.100 0.000 0.900
#> SRR1319690     3  0.4887      0.728 0.228 0.000 0.772
#> SRR1310604     2  0.2878      0.884 0.096 0.904 0.000
#> SRR1327747     3  0.2959      0.815 0.100 0.000 0.900
#> SRR1072456     2  0.2261      0.903 0.068 0.932 0.000
#> SRR1367896     3  0.6653      0.692 0.112 0.136 0.752
#> SRR1480107     1  0.2537      0.812 0.920 0.000 0.080
#> SRR1377756     3  0.3038      0.829 0.104 0.000 0.896
#> SRR1435272     3  0.2066      0.834 0.060 0.000 0.940
#> SRR1089230     3  0.2165      0.833 0.064 0.000 0.936
#> SRR1389522     3  0.5138      0.704 0.252 0.000 0.748
#> SRR1080600     2  0.3412      0.856 0.124 0.876 0.000
#> SRR1086935     3  0.4920      0.774 0.052 0.108 0.840
#> SRR1344060     1  0.4062      0.698 0.836 0.164 0.000
#> SRR1467922     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1090984     1  0.5948      0.416 0.640 0.000 0.360
#> SRR1456991     1  0.2356      0.807 0.928 0.000 0.072
#> SRR1085039     1  0.6192      0.291 0.580 0.000 0.420
#> SRR1069303     1  0.6079      0.447 0.612 0.000 0.388
#> SRR1091500     2  0.2625      0.876 0.084 0.916 0.000
#> SRR1075198     2  0.1031      0.923 0.024 0.976 0.000
#> SRR1086915     3  0.2356      0.833 0.072 0.000 0.928
#> SRR1499503     2  0.1163      0.921 0.028 0.972 0.000
#> SRR1094312     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1352437     3  0.3340      0.804 0.120 0.000 0.880
#> SRR1436323     3  0.0237      0.834 0.004 0.000 0.996
#> SRR1073507     3  0.3192      0.823 0.112 0.000 0.888
#> SRR1401972     1  0.6252      0.306 0.556 0.000 0.444
#> SRR1415510     2  0.3192      0.865 0.112 0.888 0.000
#> SRR1327279     3  0.2796      0.839 0.092 0.000 0.908
#> SRR1086983     3  0.2165      0.833 0.064 0.000 0.936
#> SRR1105174     1  0.1411      0.824 0.964 0.000 0.036
#> SRR1468893     1  0.6225      0.245 0.568 0.000 0.432
#> SRR1362555     1  0.4399      0.664 0.812 0.188 0.000
#> SRR1074526     1  0.3995      0.759 0.868 0.116 0.016
#> SRR1326225     2  0.0000      0.928 0.000 1.000 0.000
#> SRR1401933     3  0.2625      0.832 0.084 0.000 0.916
#> SRR1324062     3  0.2165      0.833 0.064 0.000 0.936
#> SRR1102296     1  0.3539      0.804 0.888 0.012 0.100
#> SRR1085087     3  0.4235      0.768 0.176 0.000 0.824
#> SRR1079046     1  0.1163      0.822 0.972 0.000 0.028
#> SRR1328339     1  0.2261      0.803 0.932 0.000 0.068
#> SRR1079782     2  0.0237      0.927 0.000 0.996 0.004
#> SRR1092257     2  0.1711      0.908 0.008 0.960 0.032

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0524     0.8650 0.008 0.988 0.004 0.000
#> SRR1429287     2  0.0657     0.8656 0.004 0.984 0.000 0.012
#> SRR1359238     4  0.3486     0.6419 0.000 0.000 0.188 0.812
#> SRR1309597     3  0.3448     0.7199 0.004 0.000 0.828 0.168
#> SRR1441398     3  0.4638     0.7299 0.152 0.000 0.788 0.060
#> SRR1084055     2  0.1004     0.8715 0.004 0.972 0.024 0.000
#> SRR1417566     2  0.7473     0.1538 0.132 0.496 0.360 0.012
#> SRR1351857     4  0.2699     0.7560 0.068 0.000 0.028 0.904
#> SRR1487485     3  0.5590     0.6611 0.000 0.064 0.692 0.244
#> SRR1335875     3  0.3893     0.6459 0.008 0.000 0.796 0.196
#> SRR1073947     1  0.2089     0.7480 0.932 0.000 0.020 0.048
#> SRR1443483     3  0.3311     0.7173 0.000 0.000 0.828 0.172
#> SRR1346794     3  0.5894     0.6931 0.200 0.000 0.692 0.108
#> SRR1405245     3  0.4688     0.7437 0.128 0.000 0.792 0.080
#> SRR1409677     4  0.0336     0.7666 0.000 0.000 0.008 0.992
#> SRR1095549     3  0.6155     0.6956 0.176 0.000 0.676 0.148
#> SRR1323788     3  0.7252     0.1966 0.144 0.000 0.436 0.420
#> SRR1314054     2  0.3591     0.8592 0.000 0.824 0.168 0.008
#> SRR1077944     1  0.7601     0.0698 0.472 0.000 0.296 0.232
#> SRR1480587     2  0.1722     0.8542 0.008 0.944 0.048 0.000
#> SRR1311205     3  0.6078     0.6977 0.152 0.000 0.684 0.164
#> SRR1076369     3  0.6127     0.5723 0.180 0.116 0.696 0.008
#> SRR1453549     4  0.3907     0.5804 0.000 0.000 0.232 0.768
#> SRR1345782     3  0.5050     0.7349 0.152 0.000 0.764 0.084
#> SRR1447850     2  0.5582     0.7978 0.000 0.724 0.168 0.108
#> SRR1391553     2  0.4284     0.8276 0.000 0.764 0.224 0.012
#> SRR1444156     2  0.3266     0.8603 0.000 0.832 0.168 0.000
#> SRR1471731     4  0.1302     0.7601 0.000 0.000 0.044 0.956
#> SRR1120987     4  0.2559     0.7390 0.016 0.048 0.016 0.920
#> SRR1477363     4  0.7836     0.0571 0.348 0.000 0.264 0.388
#> SRR1391961     1  0.1867     0.7454 0.928 0.072 0.000 0.000
#> SRR1373879     3  0.4955     0.3626 0.000 0.000 0.556 0.444
#> SRR1318732     3  0.4057     0.7185 0.152 0.000 0.816 0.032
#> SRR1091404     1  0.0921     0.7500 0.972 0.000 0.028 0.000
#> SRR1402109     3  0.4925     0.4162 0.000 0.000 0.572 0.428
#> SRR1407336     4  0.4967    -0.1204 0.000 0.000 0.452 0.548
#> SRR1097417     3  0.3626     0.4445 0.004 0.184 0.812 0.000
#> SRR1396227     4  0.5060     0.2780 0.412 0.000 0.004 0.584
#> SRR1400775     2  0.3219     0.8618 0.000 0.836 0.164 0.000
#> SRR1392861     4  0.0336     0.7662 0.000 0.000 0.008 0.992
#> SRR1472929     1  0.7681     0.1709 0.404 0.216 0.380 0.000
#> SRR1436740     4  0.0188     0.7657 0.000 0.000 0.004 0.996
#> SRR1477057     2  0.3805     0.8670 0.008 0.832 0.148 0.012
#> SRR1311980     3  0.5459     0.1194 0.000 0.016 0.552 0.432
#> SRR1069400     3  0.3356     0.7149 0.000 0.000 0.824 0.176
#> SRR1351016     1  0.7741     0.0434 0.440 0.000 0.264 0.296
#> SRR1096291     4  0.1743     0.7549 0.000 0.004 0.056 0.940
#> SRR1418145     4  0.1890     0.7525 0.008 0.056 0.000 0.936
#> SRR1488111     4  0.5688    -0.0588 0.000 0.464 0.024 0.512
#> SRR1370495     1  0.3266     0.7010 0.832 0.168 0.000 0.000
#> SRR1352639     1  0.6475     0.6445 0.668 0.168 0.008 0.156
#> SRR1348911     3  0.1452     0.7002 0.000 0.008 0.956 0.036
#> SRR1467386     4  0.4378     0.6866 0.164 0.000 0.040 0.796
#> SRR1415956     1  0.3528     0.6126 0.808 0.000 0.192 0.000
#> SRR1500495     3  0.4499     0.7231 0.160 0.000 0.792 0.048
#> SRR1405099     1  0.2048     0.7352 0.928 0.000 0.064 0.008
#> SRR1345585     3  0.4308     0.7348 0.032 0.012 0.820 0.136
#> SRR1093196     4  0.4164     0.4927 0.000 0.000 0.264 0.736
#> SRR1466006     2  0.0672     0.8639 0.008 0.984 0.008 0.000
#> SRR1351557     2  0.0524     0.8680 0.004 0.988 0.008 0.000
#> SRR1382687     4  0.5102     0.6505 0.100 0.000 0.136 0.764
#> SRR1375549     1  0.1488     0.7577 0.956 0.012 0.000 0.032
#> SRR1101765     1  0.0817     0.7553 0.976 0.024 0.000 0.000
#> SRR1334461     1  0.2868     0.7187 0.864 0.136 0.000 0.000
#> SRR1094073     2  0.2760     0.8712 0.000 0.872 0.128 0.000
#> SRR1077549     4  0.0707     0.7664 0.000 0.000 0.020 0.980
#> SRR1440332     4  0.5396    -0.1348 0.012 0.000 0.464 0.524
#> SRR1454177     4  0.0188     0.7666 0.000 0.000 0.004 0.996
#> SRR1082447     1  0.1059     0.7535 0.972 0.000 0.012 0.016
#> SRR1420043     4  0.4164     0.5127 0.000 0.000 0.264 0.736
#> SRR1432500     4  0.2760     0.7079 0.000 0.000 0.128 0.872
#> SRR1378045     3  0.4804    -0.1350 0.000 0.384 0.616 0.000
#> SRR1334200     1  0.3831     0.6698 0.792 0.204 0.004 0.000
#> SRR1069539     4  0.7890    -0.0316 0.004 0.372 0.228 0.396
#> SRR1343031     3  0.4522     0.6125 0.000 0.000 0.680 0.320
#> SRR1319690     3  0.4764     0.7457 0.124 0.000 0.788 0.088
#> SRR1310604     2  0.3501     0.7916 0.020 0.848 0.132 0.000
#> SRR1327747     3  0.4993     0.6735 0.028 0.000 0.712 0.260
#> SRR1072456     2  0.1890     0.8554 0.008 0.936 0.056 0.000
#> SRR1367896     3  0.3300     0.7231 0.000 0.008 0.848 0.144
#> SRR1480107     1  0.0804     0.7532 0.980 0.000 0.012 0.008
#> SRR1377756     4  0.3355     0.7078 0.160 0.000 0.004 0.836
#> SRR1435272     4  0.0000     0.7660 0.000 0.000 0.000 1.000
#> SRR1089230     4  0.0188     0.7668 0.004 0.000 0.000 0.996
#> SRR1389522     3  0.4626     0.7395 0.064 0.036 0.828 0.072
#> SRR1080600     2  0.4345     0.7300 0.020 0.788 0.188 0.004
#> SRR1086935     4  0.2500     0.7336 0.000 0.044 0.040 0.916
#> SRR1344060     1  0.3726     0.6650 0.788 0.212 0.000 0.000
#> SRR1467922     2  0.3219     0.8618 0.000 0.836 0.164 0.000
#> SRR1090984     3  0.5792     0.2462 0.456 0.008 0.520 0.016
#> SRR1456991     1  0.4356     0.4414 0.708 0.000 0.292 0.000
#> SRR1085039     1  0.3959     0.6947 0.840 0.000 0.068 0.092
#> SRR1069303     1  0.5143     0.1536 0.540 0.000 0.004 0.456
#> SRR1091500     2  0.4517     0.8538 0.036 0.792 0.168 0.004
#> SRR1075198     2  0.1059     0.8611 0.012 0.972 0.016 0.000
#> SRR1086915     4  0.0779     0.7681 0.016 0.000 0.004 0.980
#> SRR1499503     2  0.1792     0.8522 0.000 0.932 0.068 0.000
#> SRR1094312     2  0.2589     0.8730 0.000 0.884 0.116 0.000
#> SRR1352437     4  0.5006     0.6718 0.136 0.016 0.060 0.788
#> SRR1436323     4  0.1022     0.7626 0.000 0.000 0.032 0.968
#> SRR1073507     4  0.3486     0.7019 0.188 0.000 0.000 0.812
#> SRR1401972     1  0.5155     0.1150 0.528 0.000 0.004 0.468
#> SRR1415510     2  0.2271     0.8583 0.008 0.916 0.076 0.000
#> SRR1327279     4  0.5453     0.4099 0.036 0.000 0.304 0.660
#> SRR1086983     4  0.0592     0.7686 0.016 0.000 0.000 0.984
#> SRR1105174     1  0.1792     0.7328 0.932 0.000 0.068 0.000
#> SRR1468893     1  0.4277     0.5210 0.720 0.000 0.000 0.280
#> SRR1362555     1  0.4720     0.5994 0.720 0.264 0.016 0.000
#> SRR1074526     1  0.2976     0.7097 0.872 0.008 0.120 0.000
#> SRR1326225     2  0.3123     0.8646 0.000 0.844 0.156 0.000
#> SRR1401933     4  0.2714     0.7410 0.112 0.000 0.004 0.884
#> SRR1324062     4  0.1833     0.7621 0.024 0.000 0.032 0.944
#> SRR1102296     1  0.1739     0.7556 0.952 0.008 0.024 0.016
#> SRR1085087     4  0.4072     0.5949 0.252 0.000 0.000 0.748
#> SRR1079046     1  0.1022     0.7540 0.968 0.032 0.000 0.000
#> SRR1328339     3  0.5630     0.4390 0.360 0.032 0.608 0.000
#> SRR1079782     2  0.1909     0.8485 0.008 0.940 0.004 0.048
#> SRR1092257     2  0.5857     0.7985 0.008 0.720 0.164 0.108

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     5  0.4046    0.51145 0.000 0.296 0.008 0.000 0.696
#> SRR1429287     5  0.3928    0.62453 0.004 0.156 0.004 0.036 0.800
#> SRR1359238     4  0.1502    0.80077 0.000 0.000 0.056 0.940 0.004
#> SRR1309597     3  0.0912    0.64854 0.000 0.000 0.972 0.016 0.012
#> SRR1441398     3  0.4354    0.45576 0.368 0.000 0.624 0.008 0.000
#> SRR1084055     5  0.3246    0.60436 0.000 0.184 0.008 0.000 0.808
#> SRR1417566     3  0.6483    0.34200 0.160 0.396 0.440 0.004 0.000
#> SRR1351857     4  0.2470    0.78407 0.012 0.000 0.000 0.884 0.104
#> SRR1487485     3  0.3063    0.64828 0.000 0.020 0.864 0.104 0.012
#> SRR1335875     3  0.6271    0.52357 0.276 0.084 0.596 0.044 0.000
#> SRR1073947     1  0.1329    0.70759 0.956 0.000 0.032 0.004 0.008
#> SRR1443483     3  0.1493    0.64476 0.000 0.000 0.948 0.028 0.024
#> SRR1346794     3  0.5526    0.34956 0.404 0.000 0.540 0.012 0.044
#> SRR1405245     3  0.4642    0.52308 0.308 0.000 0.660 0.032 0.000
#> SRR1409677     4  0.0880    0.81026 0.000 0.000 0.000 0.968 0.032
#> SRR1095549     3  0.5299    0.50146 0.296 0.000 0.640 0.052 0.012
#> SRR1323788     3  0.5501    0.30009 0.444 0.000 0.492 0.064 0.000
#> SRR1314054     2  0.0833    0.77341 0.004 0.976 0.000 0.004 0.016
#> SRR1077944     1  0.3196    0.59658 0.804 0.000 0.192 0.004 0.000
#> SRR1480587     5  0.6080    0.34613 0.000 0.344 0.136 0.000 0.520
#> SRR1311205     3  0.5043    0.45663 0.356 0.000 0.600 0.044 0.000
#> SRR1076369     5  0.5531    0.54587 0.168 0.000 0.164 0.004 0.664
#> SRR1453549     3  0.5579    0.42444 0.064 0.004 0.540 0.392 0.000
#> SRR1345782     3  0.3949    0.53119 0.300 0.000 0.696 0.000 0.004
#> SRR1447850     2  0.0486    0.77011 0.004 0.988 0.000 0.004 0.004
#> SRR1391553     2  0.0510    0.76237 0.000 0.984 0.016 0.000 0.000
#> SRR1444156     2  0.0290    0.77158 0.000 0.992 0.000 0.000 0.008
#> SRR1471731     4  0.2233    0.76657 0.000 0.004 0.104 0.892 0.000
#> SRR1120987     4  0.2011    0.78922 0.004 0.000 0.000 0.908 0.088
#> SRR1477363     1  0.4372    0.48913 0.712 0.000 0.260 0.024 0.004
#> SRR1391961     1  0.4640    0.26443 0.584 0.000 0.016 0.000 0.400
#> SRR1373879     3  0.4663    0.44793 0.020 0.000 0.604 0.376 0.000
#> SRR1318732     3  0.2780    0.64983 0.112 0.004 0.872 0.008 0.004
#> SRR1091404     1  0.3883    0.63032 0.780 0.000 0.036 0.000 0.184
#> SRR1402109     3  0.4480    0.37895 0.004 0.000 0.592 0.400 0.004
#> SRR1407336     4  0.2522    0.76465 0.000 0.000 0.108 0.880 0.012
#> SRR1097417     3  0.3991    0.50097 0.000 0.048 0.780 0.000 0.172
#> SRR1396227     1  0.2053    0.69530 0.924 0.000 0.048 0.024 0.004
#> SRR1400775     2  0.0566    0.77327 0.004 0.984 0.000 0.000 0.012
#> SRR1392861     4  0.0404    0.81191 0.000 0.000 0.012 0.988 0.000
#> SRR1472929     5  0.4430    0.60933 0.036 0.000 0.256 0.000 0.708
#> SRR1436740     4  0.0162    0.81335 0.000 0.000 0.000 0.996 0.004
#> SRR1477057     2  0.5000    0.55897 0.068 0.688 0.000 0.004 0.240
#> SRR1311980     3  0.7581    0.39335 0.204 0.348 0.392 0.056 0.000
#> SRR1069400     3  0.2569    0.60603 0.000 0.000 0.892 0.040 0.068
#> SRR1351016     1  0.4142    0.42278 0.684 0.000 0.308 0.004 0.004
#> SRR1096291     4  0.2864    0.75942 0.000 0.000 0.012 0.852 0.136
#> SRR1418145     4  0.3700    0.62699 0.008 0.000 0.000 0.752 0.240
#> SRR1488111     4  0.5086    0.53434 0.004 0.096 0.000 0.700 0.200
#> SRR1370495     5  0.2011    0.63532 0.088 0.000 0.000 0.004 0.908
#> SRR1352639     5  0.5460    0.32936 0.364 0.000 0.016 0.040 0.580
#> SRR1348911     3  0.4690    0.62671 0.108 0.140 0.748 0.004 0.000
#> SRR1467386     4  0.5088    0.16776 0.436 0.000 0.036 0.528 0.000
#> SRR1415956     1  0.3424    0.54011 0.760 0.000 0.240 0.000 0.000
#> SRR1500495     3  0.4354    0.45195 0.368 0.000 0.624 0.008 0.000
#> SRR1405099     1  0.2179    0.67150 0.888 0.000 0.112 0.000 0.000
#> SRR1345585     3  0.1074    0.64855 0.000 0.004 0.968 0.016 0.012
#> SRR1093196     4  0.2338    0.75491 0.000 0.000 0.112 0.884 0.004
#> SRR1466006     5  0.4879    0.57846 0.000 0.228 0.076 0.000 0.696
#> SRR1351557     2  0.4443    0.00421 0.004 0.524 0.000 0.000 0.472
#> SRR1382687     3  0.6534    0.24923 0.388 0.000 0.416 0.196 0.000
#> SRR1375549     1  0.3484    0.65582 0.824 0.000 0.004 0.028 0.144
#> SRR1101765     5  0.6121    0.06223 0.376 0.000 0.004 0.116 0.504
#> SRR1334461     1  0.4746    0.05662 0.504 0.000 0.016 0.000 0.480
#> SRR1094073     2  0.3837    0.48099 0.000 0.692 0.000 0.000 0.308
#> SRR1077549     4  0.0771    0.81143 0.004 0.000 0.020 0.976 0.000
#> SRR1440332     3  0.5211    0.33960 0.044 0.000 0.524 0.432 0.000
#> SRR1454177     4  0.0162    0.81318 0.000 0.000 0.004 0.996 0.000
#> SRR1082447     1  0.0898    0.70644 0.972 0.000 0.008 0.000 0.020
#> SRR1420043     4  0.3123    0.65354 0.000 0.000 0.184 0.812 0.004
#> SRR1432500     4  0.1282    0.80549 0.004 0.000 0.044 0.952 0.000
#> SRR1378045     2  0.3966    0.39312 0.000 0.664 0.336 0.000 0.000
#> SRR1334200     5  0.1764    0.64163 0.064 0.000 0.000 0.008 0.928
#> SRR1069539     5  0.4302    0.52069 0.000 0.000 0.032 0.248 0.720
#> SRR1343031     3  0.4430    0.21209 0.000 0.000 0.540 0.456 0.004
#> SRR1319690     3  0.2984    0.65143 0.108 0.000 0.860 0.032 0.000
#> SRR1310604     5  0.2522    0.66425 0.000 0.012 0.108 0.000 0.880
#> SRR1327747     3  0.4903    0.56927 0.028 0.000 0.712 0.228 0.032
#> SRR1072456     5  0.6130    0.47499 0.000 0.264 0.180 0.000 0.556
#> SRR1367896     3  0.1475    0.64635 0.004 0.012 0.956 0.012 0.016
#> SRR1480107     1  0.0992    0.70725 0.968 0.000 0.024 0.000 0.008
#> SRR1377756     1  0.5055    0.16011 0.544 0.000 0.016 0.428 0.012
#> SRR1435272     4  0.0162    0.81318 0.000 0.000 0.004 0.996 0.000
#> SRR1089230     4  0.1943    0.80315 0.020 0.000 0.000 0.924 0.056
#> SRR1389522     3  0.1012    0.64897 0.020 0.000 0.968 0.000 0.012
#> SRR1080600     5  0.3163    0.65728 0.000 0.012 0.164 0.000 0.824
#> SRR1086935     4  0.1596    0.80943 0.012 0.012 0.000 0.948 0.028
#> SRR1344060     5  0.2719    0.60173 0.144 0.000 0.004 0.000 0.852
#> SRR1467922     2  0.0794    0.77308 0.000 0.972 0.000 0.000 0.028
#> SRR1090984     1  0.4430   -0.06826 0.540 0.004 0.456 0.000 0.000
#> SRR1456991     1  0.3949    0.44640 0.696 0.000 0.300 0.000 0.004
#> SRR1085039     1  0.3012    0.70108 0.872 0.000 0.072 0.004 0.052
#> SRR1069303     1  0.1915    0.69883 0.928 0.000 0.000 0.040 0.032
#> SRR1091500     2  0.1892    0.73920 0.004 0.916 0.000 0.000 0.080
#> SRR1075198     5  0.4535    0.64838 0.000 0.124 0.084 0.016 0.776
#> SRR1086915     4  0.1331    0.80859 0.008 0.000 0.000 0.952 0.040
#> SRR1499503     5  0.6066    0.51378 0.000 0.240 0.188 0.000 0.572
#> SRR1094312     2  0.3231    0.66235 0.004 0.800 0.000 0.000 0.196
#> SRR1352437     1  0.5153    0.55051 0.684 0.112 0.000 0.204 0.000
#> SRR1436323     4  0.1591    0.80405 0.004 0.000 0.052 0.940 0.004
#> SRR1073507     4  0.4067    0.53426 0.300 0.000 0.008 0.692 0.000
#> SRR1401972     1  0.1588    0.70454 0.948 0.008 0.000 0.028 0.016
#> SRR1415510     5  0.6303    0.49914 0.004 0.212 0.228 0.000 0.556
#> SRR1327279     4  0.6191   -0.29136 0.136 0.000 0.424 0.440 0.000
#> SRR1086983     4  0.1251    0.80938 0.036 0.000 0.008 0.956 0.000
#> SRR1105174     1  0.2669    0.68317 0.876 0.000 0.104 0.000 0.020
#> SRR1468893     1  0.1612    0.70605 0.948 0.000 0.012 0.024 0.016
#> SRR1362555     5  0.1569    0.65881 0.044 0.000 0.004 0.008 0.944
#> SRR1074526     1  0.4531    0.20223 0.568 0.004 0.000 0.004 0.424
#> SRR1326225     2  0.1908    0.74856 0.000 0.908 0.000 0.000 0.092
#> SRR1401933     4  0.5121    0.22659 0.416 0.000 0.012 0.552 0.020
#> SRR1324062     4  0.5251    0.27174 0.372 0.012 0.032 0.584 0.000
#> SRR1102296     1  0.2331    0.69910 0.912 0.060 0.020 0.004 0.004
#> SRR1085087     1  0.4644    0.32550 0.604 0.000 0.012 0.380 0.004
#> SRR1079046     1  0.2536    0.66720 0.868 0.000 0.004 0.000 0.128
#> SRR1328339     1  0.4425   -0.03099 0.544 0.004 0.452 0.000 0.000
#> SRR1079782     5  0.6032    0.44057 0.004 0.256 0.004 0.136 0.600
#> SRR1092257     2  0.5745    0.37027 0.004 0.592 0.000 0.100 0.304

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.4832     0.5090 0.000 0.672 0.224 0.000 0.096 0.008
#> SRR1429287     2  0.1969     0.6459 0.000 0.920 0.004 0.020 0.004 0.052
#> SRR1359238     4  0.2540     0.6815 0.104 0.004 0.000 0.872 0.000 0.020
#> SRR1309597     1  0.4420     0.4324 0.624 0.008 0.000 0.012 0.008 0.348
#> SRR1441398     1  0.1950     0.4453 0.912 0.000 0.000 0.000 0.024 0.064
#> SRR1084055     2  0.5978     0.4411 0.000 0.532 0.152 0.000 0.292 0.024
#> SRR1417566     1  0.4512     0.2210 0.676 0.000 0.028 0.000 0.024 0.272
#> SRR1351857     4  0.5081     0.5480 0.000 0.020 0.000 0.676 0.180 0.124
#> SRR1487485     1  0.5708     0.4082 0.548 0.008 0.004 0.112 0.004 0.324
#> SRR1335875     1  0.2846     0.4725 0.872 0.000 0.080 0.004 0.016 0.028
#> SRR1073947     5  0.4372     0.4521 0.184 0.000 0.000 0.008 0.728 0.080
#> SRR1443483     1  0.5355     0.4224 0.580 0.028 0.000 0.032 0.016 0.344
#> SRR1346794     6  0.5374     0.4518 0.372 0.052 0.000 0.000 0.032 0.544
#> SRR1405245     1  0.1668     0.4564 0.928 0.000 0.000 0.004 0.008 0.060
#> SRR1409677     4  0.2687     0.6718 0.008 0.044 0.000 0.876 0.000 0.072
#> SRR1095549     1  0.7055     0.0490 0.356 0.000 0.000 0.080 0.208 0.356
#> SRR1323788     1  0.4684    -0.0753 0.604 0.000 0.000 0.008 0.040 0.348
#> SRR1314054     3  0.1769     0.7691 0.000 0.060 0.924 0.012 0.004 0.000
#> SRR1077944     1  0.5569    -0.0346 0.540 0.000 0.000 0.000 0.280 0.180
#> SRR1480587     2  0.5281     0.5510 0.016 0.616 0.080 0.000 0.004 0.284
#> SRR1311205     1  0.3331     0.4045 0.816 0.000 0.000 0.004 0.136 0.044
#> SRR1076369     6  0.4537     0.1507 0.012 0.316 0.000 0.000 0.032 0.640
#> SRR1453549     4  0.4524     0.3121 0.452 0.000 0.000 0.520 0.004 0.024
#> SRR1345782     1  0.4344     0.4477 0.748 0.000 0.000 0.028 0.168 0.056
#> SRR1447850     3  0.1010     0.7513 0.000 0.000 0.960 0.036 0.004 0.000
#> SRR1391553     3  0.0858     0.7514 0.028 0.000 0.968 0.000 0.004 0.000
#> SRR1444156     3  0.0146     0.7564 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1471731     4  0.3826     0.6390 0.124 0.004 0.000 0.784 0.000 0.088
#> SRR1120987     4  0.3786     0.5424 0.000 0.240 0.004 0.736 0.004 0.016
#> SRR1477363     1  0.5437     0.0839 0.596 0.000 0.000 0.004 0.204 0.196
#> SRR1391961     5  0.2179     0.4230 0.000 0.064 0.000 0.000 0.900 0.036
#> SRR1373879     4  0.5069     0.2352 0.472 0.004 0.000 0.476 0.020 0.028
#> SRR1318732     1  0.4428     0.1912 0.528 0.012 0.004 0.000 0.004 0.452
#> SRR1091404     5  0.4437     0.4090 0.120 0.016 0.000 0.000 0.744 0.120
#> SRR1402109     4  0.5164     0.2906 0.444 0.004 0.000 0.496 0.016 0.040
#> SRR1407336     4  0.2980     0.6759 0.116 0.004 0.000 0.848 0.004 0.028
#> SRR1097417     1  0.7059     0.1981 0.456 0.036 0.048 0.008 0.348 0.104
#> SRR1396227     6  0.6118     0.2382 0.380 0.000 0.000 0.004 0.232 0.384
#> SRR1400775     3  0.1700     0.7660 0.000 0.080 0.916 0.000 0.004 0.000
#> SRR1392861     4  0.0582     0.6827 0.000 0.004 0.004 0.984 0.004 0.004
#> SRR1472929     2  0.5310     0.4438 0.004 0.480 0.000 0.000 0.428 0.088
#> SRR1436740     4  0.1536     0.6741 0.000 0.040 0.004 0.940 0.000 0.016
#> SRR1477057     3  0.6991     0.2810 0.008 0.280 0.460 0.004 0.192 0.056
#> SRR1311980     1  0.4946     0.3985 0.700 0.000 0.200 0.064 0.008 0.028
#> SRR1069400     1  0.6537     0.3829 0.524 0.052 0.000 0.076 0.036 0.312
#> SRR1351016     1  0.5293    -0.2470 0.484 0.000 0.000 0.008 0.432 0.076
#> SRR1096291     4  0.3374     0.5824 0.000 0.208 0.000 0.772 0.000 0.020
#> SRR1418145     2  0.4654     0.1026 0.000 0.544 0.000 0.412 0.000 0.044
#> SRR1488111     4  0.4924     0.3097 0.000 0.368 0.016 0.580 0.004 0.032
#> SRR1370495     2  0.2191     0.6571 0.000 0.876 0.000 0.000 0.120 0.004
#> SRR1352639     2  0.6156     0.3952 0.132 0.616 0.000 0.008 0.164 0.080
#> SRR1348911     1  0.5637     0.2934 0.608 0.000 0.288 0.032 0.040 0.032
#> SRR1467386     4  0.5855     0.4178 0.084 0.000 0.000 0.632 0.164 0.120
#> SRR1415956     1  0.5134     0.0780 0.620 0.000 0.000 0.000 0.152 0.228
#> SRR1500495     1  0.1926     0.4482 0.912 0.000 0.000 0.000 0.020 0.068
#> SRR1405099     1  0.5837    -0.1898 0.452 0.000 0.000 0.000 0.352 0.196
#> SRR1345585     1  0.4528     0.4006 0.564 0.028 0.000 0.000 0.004 0.404
#> SRR1093196     4  0.1464     0.6906 0.036 0.004 0.000 0.944 0.000 0.016
#> SRR1466006     2  0.3273     0.6440 0.000 0.776 0.008 0.000 0.004 0.212
#> SRR1351557     2  0.3733     0.4509 0.000 0.700 0.288 0.000 0.008 0.004
#> SRR1382687     1  0.4928     0.0295 0.628 0.000 0.000 0.028 0.040 0.304
#> SRR1375549     6  0.6707     0.4364 0.084 0.284 0.000 0.012 0.108 0.512
#> SRR1101765     6  0.6151     0.3196 0.000 0.340 0.000 0.040 0.124 0.496
#> SRR1334461     5  0.2060     0.4226 0.000 0.084 0.000 0.000 0.900 0.016
#> SRR1094073     3  0.3841     0.3583 0.000 0.380 0.616 0.000 0.004 0.000
#> SRR1077549     4  0.1649     0.6870 0.040 0.000 0.000 0.936 0.008 0.016
#> SRR1440332     4  0.4698     0.3243 0.436 0.000 0.000 0.528 0.012 0.024
#> SRR1454177     4  0.0653     0.6848 0.012 0.000 0.000 0.980 0.004 0.004
#> SRR1082447     6  0.5871     0.3857 0.320 0.000 0.000 0.000 0.216 0.464
#> SRR1420043     4  0.3333     0.6293 0.192 0.000 0.000 0.784 0.000 0.024
#> SRR1432500     4  0.3410     0.6670 0.128 0.004 0.000 0.824 0.016 0.028
#> SRR1378045     3  0.5646     0.2508 0.296 0.004 0.552 0.000 0.004 0.144
#> SRR1334200     2  0.5420     0.3492 0.000 0.572 0.000 0.000 0.172 0.256
#> SRR1069539     2  0.3041     0.6263 0.000 0.832 0.000 0.128 0.000 0.040
#> SRR1343031     4  0.5280     0.4635 0.320 0.004 0.000 0.596 0.024 0.056
#> SRR1319690     1  0.2762     0.4453 0.804 0.000 0.000 0.000 0.000 0.196
#> SRR1310604     2  0.4634     0.6192 0.000 0.688 0.000 0.000 0.188 0.124
#> SRR1327747     6  0.5740    -0.0184 0.288 0.108 0.000 0.032 0.000 0.572
#> SRR1072456     2  0.5792     0.5482 0.008 0.600 0.112 0.000 0.028 0.252
#> SRR1367896     1  0.5866     0.4207 0.580 0.020 0.000 0.064 0.036 0.300
#> SRR1480107     5  0.5156     0.3292 0.272 0.000 0.000 0.000 0.600 0.128
#> SRR1377756     6  0.6230     0.4747 0.344 0.016 0.000 0.076 0.048 0.516
#> SRR1435272     4  0.0291     0.6828 0.000 0.004 0.000 0.992 0.000 0.004
#> SRR1089230     4  0.5933     0.1131 0.000 0.220 0.000 0.432 0.000 0.348
#> SRR1389522     1  0.5427     0.4342 0.604 0.016 0.000 0.040 0.032 0.308
#> SRR1080600     2  0.2730     0.6480 0.000 0.808 0.000 0.000 0.000 0.192
#> SRR1086935     4  0.5535     0.4493 0.000 0.124 0.016 0.612 0.004 0.244
#> SRR1344060     5  0.4852    -0.3695 0.000 0.452 0.000 0.000 0.492 0.056
#> SRR1467922     3  0.1987     0.7637 0.004 0.080 0.908 0.000 0.004 0.004
#> SRR1090984     1  0.4186     0.2955 0.756 0.000 0.016 0.000 0.064 0.164
#> SRR1456991     5  0.5116     0.2275 0.444 0.000 0.000 0.004 0.484 0.068
#> SRR1085039     5  0.4418     0.4156 0.140 0.000 0.000 0.012 0.740 0.108
#> SRR1069303     5  0.7120     0.0838 0.284 0.012 0.008 0.036 0.420 0.240
#> SRR1091500     3  0.1700     0.7507 0.000 0.024 0.928 0.000 0.048 0.000
#> SRR1075198     2  0.0935     0.6636 0.000 0.964 0.000 0.004 0.000 0.032
#> SRR1086915     4  0.4344     0.5585 0.000 0.188 0.000 0.716 0.000 0.096
#> SRR1499503     2  0.6190     0.5168 0.012 0.588 0.160 0.000 0.040 0.200
#> SRR1094312     3  0.3756     0.6183 0.000 0.240 0.736 0.000 0.016 0.008
#> SRR1352437     5  0.8327     0.1990 0.128 0.000 0.144 0.264 0.364 0.100
#> SRR1436323     4  0.5404     0.4165 0.100 0.020 0.000 0.604 0.000 0.276
#> SRR1073507     4  0.3648     0.6332 0.024 0.000 0.000 0.808 0.128 0.040
#> SRR1401972     5  0.6933    -0.1020 0.316 0.004 0.008 0.024 0.352 0.296
#> SRR1415510     2  0.5015     0.5448 0.016 0.600 0.044 0.000 0.004 0.336
#> SRR1327279     4  0.6504     0.3423 0.292 0.000 0.000 0.468 0.200 0.040
#> SRR1086983     4  0.1515     0.6798 0.000 0.020 0.000 0.944 0.008 0.028
#> SRR1105174     1  0.5819    -0.3779 0.420 0.000 0.000 0.000 0.184 0.396
#> SRR1468893     6  0.5639     0.4314 0.348 0.004 0.000 0.004 0.124 0.520
#> SRR1362555     2  0.1152     0.6624 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1074526     5  0.5400     0.1857 0.000 0.092 0.032 0.000 0.628 0.248
#> SRR1326225     3  0.2730     0.6848 0.000 0.192 0.808 0.000 0.000 0.000
#> SRR1401933     6  0.7033     0.4891 0.236 0.100 0.000 0.108 0.032 0.524
#> SRR1324062     4  0.6047     0.1440 0.316 0.000 0.012 0.544 0.032 0.096
#> SRR1102296     5  0.5781     0.2612 0.324 0.000 0.016 0.000 0.528 0.132
#> SRR1085087     4  0.7406    -0.0845 0.180 0.016 0.000 0.420 0.284 0.100
#> SRR1079046     6  0.6885     0.4143 0.136 0.188 0.000 0.000 0.172 0.504
#> SRR1328339     1  0.3301     0.4027 0.828 0.000 0.004 0.000 0.100 0.068
#> SRR1079782     2  0.2544     0.6438 0.000 0.896 0.036 0.044 0.004 0.020
#> SRR1092257     2  0.6616     0.2044 0.000 0.520 0.304 0.092 0.052 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.2719           0.790       0.849         0.2116 0.950   0.950
#> 3 3 0.0803           0.517       0.709         1.4581 0.544   0.520
#> 4 4 0.1253           0.433       0.662         0.1563 0.920   0.843
#> 5 5 0.2040           0.443       0.617         0.1178 0.873   0.724
#> 6 6 0.3083           0.335       0.588         0.0772 0.920   0.780

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     1  0.7674      0.799 0.776 0.224
#> SRR1429287     1  0.7219      0.811 0.800 0.200
#> SRR1359238     1  0.2236      0.818 0.964 0.036
#> SRR1309597     1  0.0672      0.808 0.992 0.008
#> SRR1441398     1  0.3274      0.767 0.940 0.060
#> SRR1084055     1  0.8207      0.777 0.744 0.256
#> SRR1417566     1  0.8763      0.745 0.704 0.296
#> SRR1351857     1  0.3733      0.827 0.928 0.072
#> SRR1487485     1  0.8763      0.750 0.704 0.296
#> SRR1335875     1  0.9044      0.727 0.680 0.320
#> SRR1073947     1  0.8813      0.741 0.700 0.300
#> SRR1443483     1  0.1414      0.808 0.980 0.020
#> SRR1346794     1  0.0672      0.809 0.992 0.008
#> SRR1405245     1  0.1633      0.813 0.976 0.024
#> SRR1409677     1  0.1633      0.814 0.976 0.024
#> SRR1095549     1  0.4161      0.829 0.916 0.084
#> SRR1323788     1  0.1633      0.813 0.976 0.024
#> SRR1314054     1  0.8267      0.775 0.740 0.260
#> SRR1077944     1  0.3733      0.829 0.928 0.072
#> SRR1480587     1  0.7376      0.805 0.792 0.208
#> SRR1311205     1  0.1184      0.804 0.984 0.016
#> SRR1076369     1  0.0938      0.806 0.988 0.012
#> SRR1453549     1  0.5946      0.820 0.856 0.144
#> SRR1345782     1  0.0672      0.808 0.992 0.008
#> SRR1447850     1  0.9608      0.655 0.616 0.384
#> SRR1391553     1  0.9170      0.715 0.668 0.332
#> SRR1444156     1  0.8016      0.784 0.756 0.244
#> SRR1471731     1  0.7376      0.807 0.792 0.208
#> SRR1120987     1  0.5519      0.828 0.872 0.128
#> SRR1477363     1  0.0938      0.806 0.988 0.012
#> SRR1391961     2  0.9710      0.939 0.400 0.600
#> SRR1373879     1  0.3584      0.826 0.932 0.068
#> SRR1318732     1  0.1843      0.815 0.972 0.028
#> SRR1091404     1  0.3584      0.829 0.932 0.068
#> SRR1402109     1  0.2778      0.818 0.952 0.048
#> SRR1407336     1  0.1184      0.809 0.984 0.016
#> SRR1097417     1  0.8955      0.735 0.688 0.312
#> SRR1396227     1  0.8713      0.750 0.708 0.292
#> SRR1400775     1  0.9087      0.729 0.676 0.324
#> SRR1392861     1  0.7745      0.799 0.772 0.228
#> SRR1472929     2  0.9608      0.971 0.384 0.616
#> SRR1436740     1  0.7376      0.806 0.792 0.208
#> SRR1477057     1  0.9710      0.618 0.600 0.400
#> SRR1311980     1  0.9170      0.715 0.668 0.332
#> SRR1069400     1  0.0938      0.806 0.988 0.012
#> SRR1351016     1  0.3584      0.829 0.932 0.068
#> SRR1096291     1  0.3584      0.827 0.932 0.068
#> SRR1418145     1  0.3584      0.821 0.932 0.068
#> SRR1488111     1  0.7376      0.808 0.792 0.208
#> SRR1370495     1  0.5408      0.701 0.876 0.124
#> SRR1352639     1  0.3431      0.815 0.936 0.064
#> SRR1348911     1  0.8713      0.751 0.708 0.292
#> SRR1467386     1  0.4161      0.829 0.916 0.084
#> SRR1415956     1  0.3274      0.767 0.940 0.060
#> SRR1500495     1  0.1184      0.804 0.984 0.016
#> SRR1405099     1  0.3274      0.767 0.940 0.060
#> SRR1345585     1  0.6531      0.817 0.832 0.168
#> SRR1093196     1  0.6887      0.815 0.816 0.184
#> SRR1466006     1  0.7376      0.804 0.792 0.208
#> SRR1351557     1  0.7299      0.806 0.796 0.204
#> SRR1382687     1  0.1843      0.815 0.972 0.028
#> SRR1375549     1  0.4161      0.736 0.916 0.084
#> SRR1101765     1  0.0938      0.806 0.988 0.012
#> SRR1334461     2  0.9608      0.971 0.384 0.616
#> SRR1094073     1  0.8608      0.759 0.716 0.284
#> SRR1077549     1  0.5178      0.830 0.884 0.116
#> SRR1440332     1  0.0938      0.806 0.988 0.012
#> SRR1454177     1  0.7745      0.799 0.772 0.228
#> SRR1082447     1  0.4431      0.830 0.908 0.092
#> SRR1420043     1  0.3733      0.830 0.928 0.072
#> SRR1432500     1  0.0938      0.806 0.988 0.012
#> SRR1378045     1  0.9000      0.731 0.684 0.316
#> SRR1334200     1  0.4161      0.821 0.916 0.084
#> SRR1069539     1  0.3584      0.827 0.932 0.068
#> SRR1343031     1  0.0938      0.806 0.988 0.012
#> SRR1319690     1  0.0672      0.807 0.992 0.008
#> SRR1310604     1  0.7056      0.809 0.808 0.192
#> SRR1327747     1  0.1184      0.810 0.984 0.016
#> SRR1072456     1  0.7674      0.794 0.776 0.224
#> SRR1367896     1  0.9044      0.730 0.680 0.320
#> SRR1480107     1  0.0672      0.808 0.992 0.008
#> SRR1377756     1  0.1633      0.813 0.976 0.024
#> SRR1435272     1  0.7745      0.799 0.772 0.228
#> SRR1089230     1  0.2043      0.815 0.968 0.032
#> SRR1389522     1  0.1414      0.801 0.980 0.020
#> SRR1080600     1  0.2603      0.820 0.956 0.044
#> SRR1086935     1  0.9286      0.705 0.656 0.344
#> SRR1344060     1  0.8713      0.352 0.708 0.292
#> SRR1467922     1  0.8713      0.753 0.708 0.292
#> SRR1090984     1  0.8713      0.749 0.708 0.292
#> SRR1456991     1  0.0672      0.808 0.992 0.008
#> SRR1085039     1  0.2778      0.815 0.952 0.048
#> SRR1069303     1  0.9170      0.712 0.668 0.332
#> SRR1091500     1  0.8267      0.775 0.740 0.260
#> SRR1075198     1  0.3733      0.820 0.928 0.072
#> SRR1086915     1  0.3274      0.825 0.940 0.060
#> SRR1499503     1  0.7056      0.809 0.808 0.192
#> SRR1094312     1  0.8267      0.775 0.740 0.260
#> SRR1352437     1  0.9209      0.710 0.664 0.336
#> SRR1436323     1  0.7139      0.811 0.804 0.196
#> SRR1073507     1  0.4298      0.830 0.912 0.088
#> SRR1401972     1  0.9170      0.712 0.668 0.332
#> SRR1415510     1  0.7056      0.809 0.808 0.192
#> SRR1327279     1  0.1843      0.812 0.972 0.028
#> SRR1086983     1  0.6887      0.818 0.816 0.184
#> SRR1105174     1  0.0672      0.807 0.992 0.008
#> SRR1468893     1  0.1633      0.813 0.976 0.024
#> SRR1362555     1  0.3733      0.817 0.928 0.072
#> SRR1074526     1  0.7674      0.792 0.776 0.224
#> SRR1326225     1  0.8207      0.777 0.744 0.256
#> SRR1401933     1  0.1633      0.813 0.976 0.024
#> SRR1324062     1  0.9044      0.727 0.680 0.320
#> SRR1102296     1  0.9129      0.720 0.672 0.328
#> SRR1085087     1  0.2236      0.816 0.964 0.036
#> SRR1079046     1  0.4690      0.721 0.900 0.100
#> SRR1328339     1  0.8861      0.740 0.696 0.304
#> SRR1079782     1  0.3879      0.818 0.924 0.076
#> SRR1092257     1  0.7674      0.800 0.776 0.224

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.5117   0.609272 0.108 0.832 0.060
#> SRR1429287     2  0.4821   0.541847 0.064 0.848 0.088
#> SRR1359238     1  0.6562   0.572816 0.700 0.264 0.036
#> SRR1309597     1  0.4465   0.673426 0.820 0.176 0.004
#> SRR1441398     1  0.2200   0.634612 0.940 0.004 0.056
#> SRR1084055     2  0.4556   0.615526 0.080 0.860 0.060
#> SRR1417566     2  0.9105   0.319598 0.348 0.500 0.152
#> SRR1351857     1  0.6446   0.640910 0.736 0.212 0.052
#> SRR1487485     2  0.8105   0.549258 0.196 0.648 0.156
#> SRR1335875     2  0.9361   0.218488 0.396 0.436 0.168
#> SRR1073947     1  0.8067   0.409466 0.652 0.160 0.188
#> SRR1443483     1  0.4915   0.666769 0.804 0.184 0.012
#> SRR1346794     1  0.6090   0.566420 0.716 0.264 0.020
#> SRR1405245     1  0.3583   0.664222 0.900 0.056 0.044
#> SRR1409677     1  0.6570   0.499979 0.668 0.308 0.024
#> SRR1095549     1  0.4768   0.695212 0.848 0.100 0.052
#> SRR1323788     1  0.3583   0.664222 0.900 0.056 0.044
#> SRR1314054     2  0.2663   0.586944 0.024 0.932 0.044
#> SRR1077944     1  0.3797   0.669669 0.892 0.052 0.056
#> SRR1480587     2  0.5905   0.623145 0.184 0.772 0.044
#> SRR1311205     1  0.2152   0.678595 0.948 0.036 0.016
#> SRR1076369     1  0.6984   0.261104 0.560 0.420 0.020
#> SRR1453549     1  0.6936   0.586050 0.704 0.232 0.064
#> SRR1345782     1  0.0592   0.656765 0.988 0.000 0.012
#> SRR1447850     2  0.6723   0.523567 0.048 0.704 0.248
#> SRR1391553     2  0.8938   0.420972 0.284 0.552 0.164
#> SRR1444156     2  0.1399   0.569498 0.004 0.968 0.028
#> SRR1471731     1  0.8685   0.377230 0.548 0.328 0.124
#> SRR1120987     2  0.7770   0.308631 0.384 0.560 0.056
#> SRR1477363     1  0.1585   0.670402 0.964 0.028 0.008
#> SRR1391961     3  0.7402   0.942018 0.324 0.052 0.624
#> SRR1373879     1  0.5852   0.677856 0.776 0.180 0.044
#> SRR1318732     1  0.4818   0.671317 0.844 0.108 0.048
#> SRR1091404     1  0.3375   0.666149 0.908 0.044 0.048
#> SRR1402109     1  0.5467   0.682630 0.792 0.176 0.032
#> SRR1407336     1  0.4755   0.668891 0.808 0.184 0.008
#> SRR1097417     2  0.8743   0.459133 0.268 0.576 0.156
#> SRR1396227     1  0.7975   0.420288 0.660 0.160 0.180
#> SRR1400775     2  0.7265   0.592908 0.160 0.712 0.128
#> SRR1392861     2  0.9028  -0.055388 0.432 0.436 0.132
#> SRR1472929     3  0.6769   0.971967 0.320 0.028 0.652
#> SRR1436740     1  0.8925   0.111081 0.464 0.412 0.124
#> SRR1477057     1  0.9686  -0.000224 0.452 0.308 0.240
#> SRR1311980     2  0.9174   0.361879 0.332 0.504 0.164
#> SRR1069400     1  0.4700   0.668773 0.812 0.180 0.008
#> SRR1351016     1  0.3375   0.666149 0.908 0.044 0.048
#> SRR1096291     1  0.7480   0.133204 0.508 0.456 0.036
#> SRR1418145     2  0.7555   0.219472 0.440 0.520 0.040
#> SRR1488111     2  0.6937   0.545780 0.272 0.680 0.048
#> SRR1370495     1  0.8287   0.373191 0.616 0.256 0.128
#> SRR1352639     1  0.7208   0.338341 0.620 0.340 0.040
#> SRR1348911     2  0.9199   0.377743 0.328 0.504 0.168
#> SRR1467386     1  0.4768   0.695212 0.848 0.100 0.052
#> SRR1415956     1  0.2301   0.635637 0.936 0.004 0.060
#> SRR1500495     1  0.1999   0.678410 0.952 0.036 0.012
#> SRR1405099     1  0.2200   0.634612 0.940 0.004 0.056
#> SRR1345585     1  0.7724   0.469996 0.620 0.308 0.072
#> SRR1093196     1  0.8543   0.448389 0.580 0.292 0.128
#> SRR1466006     2  0.5875   0.508565 0.072 0.792 0.136
#> SRR1351557     2  0.5637   0.626895 0.172 0.788 0.040
#> SRR1382687     1  0.3983   0.665401 0.884 0.068 0.048
#> SRR1375549     1  0.7227   0.507202 0.704 0.200 0.096
#> SRR1101765     1  0.6994   0.249917 0.556 0.424 0.020
#> SRR1334461     3  0.6769   0.971967 0.320 0.028 0.652
#> SRR1094073     2  0.3030   0.544061 0.004 0.904 0.092
#> SRR1077549     1  0.5407   0.661690 0.820 0.104 0.076
#> SRR1440332     1  0.4353   0.681594 0.836 0.156 0.008
#> SRR1454177     2  0.9028  -0.055388 0.432 0.436 0.132
#> SRR1082447     1  0.5093   0.683423 0.836 0.088 0.076
#> SRR1420043     1  0.6188   0.645974 0.744 0.216 0.040
#> SRR1432500     1  0.3532   0.699724 0.884 0.108 0.008
#> SRR1378045     2  0.7672   0.573703 0.156 0.684 0.160
#> SRR1334200     2  0.6662   0.465404 0.192 0.736 0.072
#> SRR1069539     1  0.7480   0.133204 0.508 0.456 0.036
#> SRR1343031     1  0.4531   0.675869 0.824 0.168 0.008
#> SRR1319690     1  0.4755   0.661204 0.808 0.184 0.008
#> SRR1310604     2  0.5951   0.617194 0.196 0.764 0.040
#> SRR1327747     1  0.4968   0.675720 0.800 0.188 0.012
#> SRR1072456     2  0.6710   0.607435 0.196 0.732 0.072
#> SRR1367896     2  0.8958   0.424704 0.280 0.552 0.168
#> SRR1480107     1  0.0829   0.658387 0.984 0.004 0.012
#> SRR1377756     1  0.3583   0.664222 0.900 0.056 0.044
#> SRR1435272     1  0.9028   0.032433 0.436 0.432 0.132
#> SRR1089230     1  0.7379   0.358292 0.584 0.376 0.040
#> SRR1389522     1  0.4663   0.681013 0.828 0.156 0.016
#> SRR1080600     2  0.6662   0.432379 0.252 0.704 0.044
#> SRR1086935     2  0.7666   0.569811 0.128 0.680 0.192
#> SRR1344060     2  0.9198   0.120023 0.192 0.528 0.280
#> SRR1467922     2  0.3644   0.529572 0.004 0.872 0.124
#> SRR1090984     2  0.9129   0.284942 0.372 0.480 0.148
#> SRR1456991     1  0.0829   0.658387 0.984 0.004 0.012
#> SRR1085039     1  0.3742   0.699866 0.892 0.072 0.036
#> SRR1069303     1  0.8437   0.334753 0.620 0.200 0.180
#> SRR1091500     2  0.2663   0.586944 0.024 0.932 0.044
#> SRR1075198     2  0.7610   0.265202 0.420 0.536 0.044
#> SRR1086915     1  0.7600   0.477047 0.612 0.328 0.060
#> SRR1499503     2  0.5951   0.617194 0.196 0.764 0.040
#> SRR1094312     2  0.3267   0.592826 0.044 0.912 0.044
#> SRR1352437     1  0.8442   0.340751 0.620 0.188 0.192
#> SRR1436323     1  0.8614   0.424301 0.568 0.304 0.128
#> SRR1073507     1  0.4749   0.680138 0.852 0.072 0.076
#> SRR1401972     1  0.8437   0.334753 0.620 0.200 0.180
#> SRR1415510     2  0.5407   0.623890 0.156 0.804 0.040
#> SRR1327279     1  0.3933   0.701152 0.880 0.092 0.028
#> SRR1086983     1  0.7548   0.564611 0.684 0.204 0.112
#> SRR1105174     1  0.4589   0.669775 0.820 0.172 0.008
#> SRR1468893     1  0.3583   0.664222 0.900 0.056 0.044
#> SRR1362555     2  0.7708   0.259638 0.424 0.528 0.048
#> SRR1074526     2  0.7564   0.523163 0.156 0.692 0.152
#> SRR1326225     2  0.3083   0.581807 0.024 0.916 0.060
#> SRR1401933     1  0.3875   0.670986 0.888 0.068 0.044
#> SRR1324062     2  0.9299   0.197624 0.408 0.432 0.160
#> SRR1102296     1  0.9358   0.135742 0.496 0.312 0.192
#> SRR1085087     1  0.4056   0.706254 0.876 0.092 0.032
#> SRR1079046     1  0.7635   0.482129 0.676 0.212 0.112
#> SRR1328339     2  0.9243   0.286043 0.368 0.472 0.160
#> SRR1079782     2  0.7690   0.274069 0.416 0.536 0.048
#> SRR1092257     2  0.6982   0.596164 0.220 0.708 0.072

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2   0.725     0.2180 0.088 0.628 0.056 0.228
#> SRR1429287     4   0.630     0.4689 0.016 0.408 0.032 0.544
#> SRR1359238     1   0.639     0.5711 0.652 0.160 0.000 0.188
#> SRR1309597     1   0.395     0.6266 0.780 0.216 0.004 0.000
#> SRR1441398     1   0.277     0.6630 0.908 0.024 0.060 0.008
#> SRR1084055     2   0.622     0.2210 0.056 0.664 0.020 0.260
#> SRR1417566     2   0.554     0.3780 0.280 0.680 0.008 0.032
#> SRR1351857     1   0.599     0.6272 0.692 0.164 0.000 0.144
#> SRR1487485     2   0.471     0.4224 0.144 0.796 0.008 0.052
#> SRR1335875     2   0.608     0.3296 0.320 0.628 0.016 0.036
#> SRR1073947     1   0.685     0.3782 0.608 0.296 0.032 0.064
#> SRR1443483     1   0.461     0.6207 0.764 0.212 0.008 0.016
#> SRR1346794     1   0.693     0.5240 0.616 0.132 0.012 0.240
#> SRR1405245     1   0.507     0.6360 0.780 0.028 0.036 0.156
#> SRR1409677     1   0.720     0.4719 0.568 0.180 0.004 0.248
#> SRR1095549     1   0.436     0.6679 0.812 0.124 0.000 0.064
#> SRR1323788     1   0.474     0.6445 0.796 0.028 0.024 0.152
#> SRR1314054     2   0.463     0.1486 0.000 0.720 0.012 0.268
#> SRR1077944     1   0.377     0.6652 0.864 0.084 0.020 0.032
#> SRR1480587     2   0.783     0.3210 0.156 0.596 0.064 0.184
#> SRR1311205     1   0.232     0.6802 0.928 0.048 0.012 0.012
#> SRR1076369     1   0.746     0.2222 0.460 0.136 0.008 0.396
#> SRR1453549     1   0.578     0.5621 0.676 0.272 0.012 0.040
#> SRR1345782     1   0.114     0.6736 0.972 0.008 0.012 0.008
#> SRR1447850     2   0.665    -0.0988 0.004 0.616 0.116 0.264
#> SRR1391553     2   0.515     0.4410 0.208 0.744 0.008 0.040
#> SRR1444156     2   0.469     0.1538 0.000 0.724 0.016 0.260
#> SRR1471731     1   0.718     0.3054 0.488 0.412 0.020 0.080
#> SRR1120987     2   0.796     0.2479 0.316 0.460 0.012 0.212
#> SRR1477363     1   0.196     0.6809 0.944 0.020 0.008 0.028
#> SRR1391961     3   0.558     0.9335 0.152 0.028 0.756 0.064
#> SRR1373879     1   0.514     0.6362 0.740 0.216 0.008 0.036
#> SRR1318732     1   0.627     0.6179 0.712 0.084 0.036 0.168
#> SRR1091404     1   0.326     0.6667 0.888 0.072 0.020 0.020
#> SRR1402109     1   0.485     0.6448 0.760 0.200 0.004 0.036
#> SRR1407336     1   0.443     0.6241 0.764 0.220 0.004 0.012
#> SRR1097417     2   0.587     0.4266 0.196 0.716 0.016 0.072
#> SRR1396227     1   0.721     0.3491 0.580 0.304 0.036 0.080
#> SRR1400775     2   0.669     0.2907 0.120 0.668 0.024 0.188
#> SRR1392861     2   0.786    -0.0498 0.368 0.428 0.008 0.196
#> SRR1472929     3   0.458     0.9677 0.156 0.016 0.800 0.028
#> SRR1436740     2   0.816    -0.1204 0.388 0.396 0.020 0.196
#> SRR1477057     1   0.891    -0.1032 0.384 0.376 0.088 0.152
#> SRR1311980     2   0.560     0.4366 0.252 0.696 0.008 0.044
#> SRR1069400     1   0.439     0.6246 0.768 0.216 0.004 0.012
#> SRR1351016     1   0.326     0.6667 0.888 0.072 0.020 0.020
#> SRR1096291     1   0.789     0.1021 0.444 0.372 0.016 0.168
#> SRR1418145     2   0.860     0.1691 0.380 0.388 0.048 0.184
#> SRR1488111     2   0.769     0.3102 0.232 0.528 0.012 0.228
#> SRR1370495     1   0.862     0.2877 0.524 0.116 0.136 0.224
#> SRR1352639     1   0.761     0.2717 0.564 0.288 0.044 0.104
#> SRR1348911     2   0.531     0.4388 0.256 0.708 0.012 0.024
#> SRR1467386     1   0.436     0.6679 0.812 0.124 0.000 0.064
#> SRR1415956     1   0.280     0.6650 0.908 0.020 0.060 0.012
#> SRR1500495     1   0.219     0.6789 0.932 0.048 0.008 0.012
#> SRR1405099     1   0.267     0.6641 0.912 0.020 0.060 0.008
#> SRR1345585     1   0.568     0.4097 0.580 0.396 0.016 0.008
#> SRR1093196     1   0.714     0.3768 0.512 0.384 0.016 0.088
#> SRR1466006     4   0.615     0.6046 0.012 0.296 0.052 0.640
#> SRR1351557     2   0.765     0.3134 0.144 0.612 0.060 0.184
#> SRR1382687     1   0.552     0.6287 0.756 0.044 0.036 0.164
#> SRR1375549     1   0.757     0.4534 0.616 0.084 0.088 0.212
#> SRR1101765     1   0.734     0.2171 0.460 0.136 0.004 0.400
#> SRR1334461     3   0.458     0.9677 0.156 0.016 0.800 0.028
#> SRR1094073     2   0.578     0.0305 0.000 0.664 0.064 0.272
#> SRR1077549     1   0.477     0.6469 0.800 0.136 0.016 0.048
#> SRR1440332     1   0.408     0.6419 0.800 0.184 0.004 0.012
#> SRR1454177     2   0.786    -0.0498 0.368 0.428 0.008 0.196
#> SRR1082447     1   0.485     0.6621 0.800 0.124 0.016 0.060
#> SRR1420043     1   0.519     0.6045 0.712 0.256 0.008 0.024
#> SRR1432500     1   0.373     0.6765 0.856 0.096 0.004 0.044
#> SRR1378045     2   0.418     0.4060 0.116 0.832 0.008 0.044
#> SRR1334200     4   0.643     0.6357 0.096 0.184 0.028 0.692
#> SRR1069539     1   0.789     0.1021 0.444 0.372 0.016 0.168
#> SRR1343031     1   0.428     0.6354 0.788 0.192 0.004 0.016
#> SRR1319690     1   0.512     0.6362 0.756 0.080 0.000 0.164
#> SRR1310604     2   0.781     0.3210 0.164 0.596 0.060 0.180
#> SRR1327747     1   0.538     0.6446 0.748 0.160 0.004 0.088
#> SRR1072456     2   0.825     0.2924 0.164 0.568 0.092 0.176
#> SRR1367896     2   0.534     0.4328 0.212 0.736 0.016 0.036
#> SRR1480107     1   0.127     0.6750 0.968 0.012 0.012 0.008
#> SRR1377756     1   0.517     0.6341 0.772 0.028 0.036 0.164
#> SRR1435272     2   0.782    -0.0619 0.376 0.428 0.008 0.188
#> SRR1089230     1   0.761     0.3704 0.488 0.168 0.008 0.336
#> SRR1389522     1   0.430     0.6368 0.788 0.192 0.008 0.012
#> SRR1080600     4   0.740     0.5635 0.180 0.260 0.008 0.552
#> SRR1086935     2   0.605     0.2499 0.068 0.692 0.016 0.224
#> SRR1344060     4   0.851     0.4298 0.100 0.136 0.236 0.528
#> SRR1467922     2   0.624    -0.0319 0.000 0.636 0.096 0.268
#> SRR1090984     2   0.539     0.3674 0.300 0.672 0.012 0.016
#> SRR1456991     1   0.127     0.6750 0.968 0.012 0.012 0.008
#> SRR1085039     1   0.362     0.6845 0.864 0.084 0.004 0.048
#> SRR1069303     1   0.709     0.2540 0.548 0.344 0.016 0.092
#> SRR1091500     2   0.454     0.1470 0.000 0.720 0.008 0.272
#> SRR1075198     2   0.865     0.1573 0.360 0.404 0.052 0.184
#> SRR1086915     1   0.742     0.4718 0.540 0.232 0.004 0.224
#> SRR1499503     2   0.781     0.3210 0.164 0.596 0.060 0.180
#> SRR1094312     2   0.533     0.1701 0.024 0.692 0.008 0.276
#> SRR1352437     1   0.723     0.2583 0.540 0.352 0.028 0.080
#> SRR1436323     1   0.726     0.3505 0.500 0.392 0.020 0.088
#> SRR1073507     1   0.441     0.6638 0.828 0.104 0.016 0.052
#> SRR1401972     1   0.709     0.2540 0.548 0.344 0.016 0.092
#> SRR1415510     2   0.745     0.2846 0.120 0.628 0.060 0.192
#> SRR1327279     1   0.392     0.6775 0.840 0.124 0.008 0.028
#> SRR1086983     1   0.652     0.5364 0.644 0.252 0.012 0.092
#> SRR1105174     1   0.490     0.6445 0.772 0.072 0.000 0.156
#> SRR1468893     1   0.512     0.6363 0.776 0.028 0.036 0.160
#> SRR1362555     2   0.868     0.1396 0.364 0.396 0.052 0.188
#> SRR1074526     4   0.693     0.4377 0.076 0.180 0.072 0.672
#> SRR1326225     2   0.491     0.1217 0.000 0.704 0.020 0.276
#> SRR1401933     1   0.525     0.6339 0.764 0.028 0.036 0.172
#> SRR1324062     2   0.636     0.3066 0.340 0.596 0.012 0.052
#> SRR1102296     2   0.697    -0.0015 0.416 0.504 0.032 0.048
#> SRR1085087     1   0.425     0.6834 0.832 0.116 0.016 0.036
#> SRR1079046     1   0.808     0.3627 0.564 0.088 0.108 0.240
#> SRR1328339     2   0.522     0.3781 0.292 0.684 0.008 0.016
#> SRR1079782     2   0.867     0.1531 0.356 0.404 0.052 0.188
#> SRR1092257     2   0.798     0.2437 0.180 0.528 0.032 0.260

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2   0.415    0.56444 0.080 0.828 0.024 0.016 0.052
#> SRR1429287     4   0.597    0.37154 0.004 0.424 0.036 0.504 0.032
#> SRR1359238     1   0.664    0.50953 0.628 0.104 0.176 0.088 0.004
#> SRR1309597     1   0.493    0.54160 0.744 0.108 0.132 0.016 0.000
#> SRR1441398     1   0.365    0.57984 0.836 0.000 0.100 0.012 0.052
#> SRR1084055     2   0.479    0.52689 0.048 0.796 0.076 0.060 0.020
#> SRR1417566     3   0.714    0.44643 0.216 0.336 0.428 0.004 0.016
#> SRR1351857     1   0.605    0.51377 0.656 0.068 0.216 0.056 0.004
#> SRR1487485     2   0.663   -0.21131 0.144 0.500 0.340 0.004 0.012
#> SRR1335875     3   0.700    0.51497 0.236 0.312 0.440 0.004 0.008
#> SRR1073947     3   0.560    0.27537 0.464 0.052 0.476 0.008 0.000
#> SRR1443483     1   0.468    0.53904 0.756 0.104 0.132 0.008 0.000
#> SRR1346794     1   0.757    0.46515 0.552 0.096 0.180 0.156 0.016
#> SRR1405245     1   0.592    0.49667 0.656 0.008 0.236 0.060 0.040
#> SRR1409677     1   0.785    0.42446 0.516 0.128 0.180 0.164 0.012
#> SRR1095549     1   0.407    0.52652 0.748 0.020 0.228 0.004 0.000
#> SRR1323788     1   0.538    0.52840 0.704 0.008 0.208 0.052 0.028
#> SRR1314054     2   0.308    0.49204 0.000 0.872 0.064 0.056 0.008
#> SRR1077944     1   0.334    0.53941 0.812 0.016 0.172 0.000 0.000
#> SRR1480587     2   0.505    0.57716 0.132 0.760 0.056 0.008 0.044
#> SRR1311205     1   0.203    0.60817 0.924 0.020 0.052 0.004 0.000
#> SRR1076369     1   0.823    0.25042 0.420 0.108 0.184 0.276 0.012
#> SRR1453549     1   0.559    0.39215 0.652 0.136 0.208 0.004 0.000
#> SRR1345782     1   0.183    0.59289 0.920 0.000 0.076 0.004 0.000
#> SRR1447850     2   0.752    0.11087 0.000 0.524 0.188 0.152 0.136
#> SRR1391553     3   0.689    0.39577 0.140 0.396 0.440 0.008 0.016
#> SRR1444156     2   0.136    0.52559 0.004 0.960 0.016 0.012 0.008
#> SRR1471731     1   0.715   -0.07672 0.432 0.172 0.368 0.020 0.008
#> SRR1120987     2   0.836    0.21526 0.272 0.420 0.156 0.136 0.016
#> SRR1477363     1   0.227    0.61457 0.912 0.012 0.064 0.012 0.000
#> SRR1391961     5   0.509    0.92618 0.120 0.044 0.020 0.048 0.768
#> SRR1373879     1   0.541    0.52810 0.696 0.096 0.192 0.008 0.008
#> SRR1318732     1   0.682    0.45543 0.600 0.048 0.252 0.056 0.044
#> SRR1091404     1   0.300    0.55309 0.840 0.012 0.148 0.000 0.000
#> SRR1402109     1   0.501    0.55111 0.724 0.096 0.172 0.004 0.004
#> SRR1407336     1   0.455    0.54204 0.760 0.100 0.136 0.004 0.000
#> SRR1097417     3   0.765    0.36844 0.144 0.384 0.408 0.040 0.024
#> SRR1396227     3   0.561    0.32650 0.416 0.048 0.524 0.012 0.000
#> SRR1400775     2   0.633    0.36017 0.060 0.632 0.244 0.044 0.020
#> SRR1392861     3   0.782    0.30139 0.308 0.188 0.424 0.076 0.004
#> SRR1472929     5   0.394    0.96391 0.132 0.036 0.000 0.020 0.812
#> SRR1436740     3   0.784    0.25403 0.324 0.164 0.420 0.088 0.004
#> SRR1477057     3   0.848    0.35781 0.264 0.180 0.432 0.048 0.076
#> SRR1311980     3   0.710    0.46490 0.180 0.356 0.440 0.008 0.016
#> SRR1069400     1   0.451    0.54368 0.764 0.100 0.132 0.004 0.000
#> SRR1351016     1   0.300    0.55309 0.840 0.012 0.148 0.000 0.000
#> SRR1096291     1   0.783    0.14809 0.420 0.348 0.124 0.100 0.008
#> SRR1418145     2   0.794    0.28186 0.344 0.436 0.056 0.124 0.040
#> SRR1488111     2   0.776    0.39995 0.200 0.540 0.120 0.116 0.024
#> SRR1370495     1   0.902    0.21174 0.448 0.132 0.128 0.156 0.136
#> SRR1352639     1   0.729    0.27971 0.532 0.292 0.060 0.092 0.024
#> SRR1348911     3   0.703    0.45289 0.204 0.364 0.416 0.004 0.012
#> SRR1467386     1   0.407    0.52652 0.748 0.020 0.228 0.004 0.000
#> SRR1415956     1   0.354    0.58224 0.844 0.000 0.092 0.012 0.052
#> SRR1500495     1   0.189    0.60856 0.932 0.020 0.044 0.004 0.000
#> SRR1405099     1   0.348    0.58236 0.848 0.000 0.088 0.012 0.052
#> SRR1345585     1   0.637    0.21183 0.564 0.192 0.236 0.004 0.004
#> SRR1093196     1   0.714    0.04658 0.452 0.156 0.356 0.032 0.004
#> SRR1466006     4   0.547    0.51701 0.000 0.332 0.008 0.600 0.060
#> SRR1351557     2   0.483    0.57960 0.124 0.776 0.052 0.008 0.040
#> SRR1382687     1   0.611    0.49373 0.656 0.016 0.224 0.060 0.044
#> SRR1375549     1   0.833    0.37305 0.512 0.072 0.152 0.172 0.092
#> SRR1101765     1   0.822    0.24691 0.420 0.108 0.180 0.280 0.012
#> SRR1334461     5   0.394    0.96391 0.132 0.036 0.000 0.020 0.812
#> SRR1094073     2   0.300    0.47318 0.004 0.884 0.016 0.032 0.064
#> SRR1077549     1   0.460    0.49626 0.748 0.040 0.196 0.012 0.004
#> SRR1440332     1   0.426    0.56510 0.784 0.088 0.124 0.004 0.000
#> SRR1454177     3   0.786    0.29932 0.308 0.188 0.420 0.080 0.004
#> SRR1082447     1   0.447    0.52645 0.748 0.028 0.208 0.012 0.004
#> SRR1420043     1   0.532    0.47300 0.680 0.116 0.200 0.004 0.000
#> SRR1432500     1   0.345    0.60394 0.840 0.048 0.108 0.004 0.000
#> SRR1378045     2   0.631   -0.13452 0.116 0.528 0.344 0.004 0.008
#> SRR1334200     4   0.425    0.52182 0.056 0.096 0.020 0.816 0.012
#> SRR1069539     1   0.783    0.14809 0.420 0.348 0.124 0.100 0.008
#> SRR1343031     1   0.426    0.55724 0.784 0.088 0.124 0.004 0.000
#> SRR1319690     1   0.536    0.58617 0.744 0.052 0.120 0.076 0.008
#> SRR1310604     2   0.502    0.57562 0.140 0.756 0.056 0.004 0.044
#> SRR1327747     1   0.545    0.58010 0.732 0.088 0.124 0.052 0.004
#> SRR1072456     2   0.546    0.56122 0.140 0.728 0.052 0.004 0.076
#> SRR1367896     3   0.706    0.41285 0.156 0.384 0.432 0.008 0.020
#> SRR1480107     1   0.196    0.59286 0.916 0.000 0.076 0.008 0.000
#> SRR1377756     1   0.582    0.50407 0.672 0.008 0.220 0.060 0.040
#> SRR1435272     3   0.779    0.29924 0.316 0.188 0.420 0.072 0.004
#> SRR1089230     1   0.826    0.34831 0.432 0.112 0.228 0.216 0.012
#> SRR1389522     1   0.460    0.54621 0.760 0.088 0.144 0.008 0.000
#> SRR1080600     4   0.690    0.43449 0.152 0.264 0.036 0.544 0.004
#> SRR1086935     3   0.711    0.14222 0.048 0.400 0.448 0.092 0.012
#> SRR1344060     4   0.670    0.34331 0.060 0.080 0.020 0.620 0.220
#> SRR1467922     2   0.348    0.43791 0.004 0.852 0.016 0.032 0.096
#> SRR1090984     3   0.717    0.48596 0.248 0.328 0.408 0.008 0.008
#> SRR1456991     1   0.196    0.59286 0.916 0.000 0.076 0.008 0.000
#> SRR1085039     1   0.342    0.60648 0.844 0.020 0.120 0.012 0.004
#> SRR1069303     3   0.644    0.41766 0.384 0.100 0.496 0.012 0.008
#> SRR1091500     2   0.315    0.49158 0.000 0.868 0.064 0.060 0.008
#> SRR1075198     2   0.781    0.29922 0.328 0.460 0.048 0.124 0.040
#> SRR1086915     1   0.787    0.39562 0.500 0.164 0.200 0.128 0.008
#> SRR1499503     2   0.502    0.57562 0.140 0.756 0.056 0.004 0.044
#> SRR1094312     2   0.351    0.51351 0.016 0.860 0.056 0.060 0.008
#> SRR1352437     3   0.581    0.42128 0.376 0.076 0.540 0.008 0.000
#> SRR1436323     1   0.715   -0.00514 0.440 0.156 0.368 0.032 0.004
#> SRR1073507     1   0.407    0.53028 0.776 0.016 0.192 0.012 0.004
#> SRR1401972     3   0.644    0.41766 0.384 0.100 0.496 0.012 0.008
#> SRR1415510     2   0.458    0.57553 0.112 0.796 0.036 0.012 0.044
#> SRR1327279     1   0.365    0.59419 0.816 0.036 0.144 0.004 0.000
#> SRR1086983     1   0.612    0.25046 0.576 0.080 0.320 0.020 0.004
#> SRR1105174     1   0.509    0.59284 0.764 0.048 0.108 0.072 0.008
#> SRR1468893     1   0.579    0.50695 0.676 0.008 0.216 0.060 0.040
#> SRR1362555     2   0.782    0.28953 0.336 0.452 0.048 0.124 0.040
#> SRR1074526     4   0.549    0.31749 0.040 0.016 0.184 0.716 0.044
#> SRR1326225     2   0.346    0.48387 0.000 0.856 0.060 0.064 0.020
#> SRR1401933     1   0.606    0.48815 0.644 0.008 0.240 0.068 0.040
#> SRR1324062     3   0.729    0.52248 0.284 0.300 0.396 0.004 0.016
#> SRR1102296     3   0.633    0.54627 0.276 0.164 0.552 0.008 0.000
#> SRR1085087     1   0.405    0.58706 0.788 0.040 0.164 0.008 0.000
#> SRR1079046     1   0.875    0.26604 0.460 0.076 0.156 0.196 0.112
#> SRR1328339     3   0.688    0.48969 0.224 0.332 0.436 0.004 0.004
#> SRR1079782     2   0.783    0.29908 0.324 0.460 0.048 0.128 0.040
#> SRR1092257     2   0.725    0.45831 0.148 0.612 0.076 0.124 0.040

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2   0.469     0.5762 0.064 0.776 0.060 0.044 0.056 0.000
#> SRR1429287     6   0.664     0.3882 0.000 0.336 0.044 0.120 0.020 0.480
#> SRR1359238     1   0.599    -0.1571 0.596 0.024 0.076 0.264 0.000 0.040
#> SRR1309597     1   0.421     0.4235 0.740 0.024 0.200 0.036 0.000 0.000
#> SRR1441398     1   0.395     0.4480 0.804 0.000 0.060 0.080 0.056 0.000
#> SRR1084055     2   0.475     0.5291 0.020 0.776 0.092 0.060 0.020 0.032
#> SRR1417566     3   0.629     0.4627 0.188 0.204 0.552 0.056 0.000 0.000
#> SRR1351857     1   0.593     0.1380 0.620 0.020 0.128 0.204 0.000 0.028
#> SRR1487485     3   0.599     0.2887 0.140 0.348 0.496 0.004 0.008 0.004
#> SRR1335875     3   0.621     0.5061 0.200 0.180 0.580 0.024 0.008 0.008
#> SRR1073947     3   0.612     0.3242 0.300 0.008 0.484 0.204 0.004 0.000
#> SRR1443483     1   0.392     0.4330 0.756 0.016 0.204 0.020 0.000 0.004
#> SRR1346794     1   0.583    -0.4481 0.528 0.028 0.036 0.372 0.000 0.036
#> SRR1405245     1   0.551     0.2011 0.592 0.000 0.052 0.300 0.056 0.000
#> SRR1409677     1   0.660    -0.5341 0.488 0.044 0.072 0.352 0.000 0.044
#> SRR1095549     1   0.467     0.3673 0.696 0.004 0.180 0.120 0.000 0.000
#> SRR1323788     1   0.486     0.2261 0.644 0.000 0.028 0.288 0.040 0.000
#> SRR1314054     2   0.324     0.5098 0.004 0.856 0.084 0.024 0.008 0.024
#> SRR1077944     1   0.470     0.4235 0.716 0.000 0.144 0.128 0.008 0.004
#> SRR1480587     2   0.573     0.5778 0.084 0.696 0.076 0.096 0.048 0.000
#> SRR1311205     1   0.234     0.4908 0.896 0.000 0.048 0.052 0.004 0.000
#> SRR1076369     4   0.687     0.7504 0.392 0.060 0.024 0.416 0.000 0.108
#> SRR1453549     1   0.551     0.3495 0.656 0.088 0.188 0.068 0.000 0.000
#> SRR1345782     1   0.337     0.4627 0.824 0.000 0.080 0.092 0.004 0.000
#> SRR1447850     2   0.788     0.0502 0.000 0.468 0.192 0.120 0.100 0.120
#> SRR1391553     3   0.553     0.4457 0.112 0.212 0.644 0.024 0.004 0.004
#> SRR1444156     2   0.151     0.5408 0.012 0.944 0.036 0.004 0.004 0.000
#> SRR1471731     3   0.654     0.0907 0.384 0.060 0.420 0.136 0.000 0.000
#> SRR1120987     2   0.813     0.0683 0.240 0.340 0.148 0.240 0.004 0.028
#> SRR1477363     1   0.198     0.4719 0.912 0.000 0.016 0.068 0.004 0.000
#> SRR1391961     5   0.445     0.9274 0.112 0.032 0.004 0.040 0.784 0.028
#> SRR1373879     1   0.463     0.4320 0.700 0.016 0.240 0.032 0.004 0.008
#> SRR1318732     1   0.647     0.1281 0.540 0.020 0.100 0.284 0.056 0.000
#> SRR1091404     1   0.442     0.4422 0.744 0.000 0.136 0.108 0.008 0.004
#> SRR1402109     1   0.423     0.4465 0.728 0.012 0.224 0.028 0.000 0.008
#> SRR1407336     1   0.377     0.4349 0.760 0.012 0.204 0.024 0.000 0.000
#> SRR1097417     3   0.649     0.4332 0.132 0.204 0.584 0.016 0.004 0.060
#> SRR1396227     3   0.602     0.3427 0.228 0.004 0.500 0.264 0.004 0.000
#> SRR1400775     2   0.625     0.3841 0.024 0.576 0.260 0.112 0.008 0.020
#> SRR1392861     3   0.781     0.1760 0.268 0.092 0.380 0.228 0.004 0.028
#> SRR1472929     5   0.347     0.9646 0.124 0.032 0.000 0.024 0.820 0.000
#> SRR1436740     3   0.773     0.1284 0.280 0.072 0.360 0.256 0.004 0.028
#> SRR1477057     3   0.857     0.2258 0.144 0.108 0.416 0.220 0.072 0.040
#> SRR1311980     3   0.598     0.4780 0.144 0.196 0.612 0.040 0.004 0.004
#> SRR1069400     1   0.374     0.4351 0.764 0.012 0.200 0.024 0.000 0.000
#> SRR1351016     1   0.442     0.4422 0.744 0.000 0.136 0.108 0.008 0.004
#> SRR1096291     1   0.754    -0.2983 0.392 0.232 0.112 0.252 0.000 0.012
#> SRR1418145     2   0.800     0.0189 0.272 0.340 0.076 0.268 0.032 0.012
#> SRR1488111     2   0.803     0.3597 0.148 0.436 0.172 0.196 0.012 0.036
#> SRR1370495     1   0.788    -0.5243 0.376 0.072 0.028 0.360 0.124 0.040
#> SRR1352639     1   0.725    -0.2225 0.468 0.220 0.060 0.228 0.016 0.008
#> SRR1348911     3   0.612     0.4637 0.184 0.228 0.560 0.020 0.004 0.004
#> SRR1467386     1   0.467     0.3673 0.696 0.004 0.180 0.120 0.000 0.000
#> SRR1415956     1   0.401     0.4444 0.796 0.000 0.048 0.100 0.056 0.000
#> SRR1500495     1   0.187     0.4879 0.924 0.000 0.036 0.036 0.004 0.000
#> SRR1405099     1   0.395     0.4434 0.800 0.000 0.044 0.100 0.056 0.000
#> SRR1345585     1   0.569     0.2660 0.572 0.100 0.296 0.032 0.000 0.000
#> SRR1093196     3   0.655    -0.0241 0.400 0.032 0.408 0.152 0.004 0.004
#> SRR1466006     6   0.665     0.5043 0.000 0.244 0.008 0.168 0.060 0.520
#> SRR1351557     2   0.545     0.5813 0.076 0.720 0.072 0.084 0.048 0.000
#> SRR1382687     1   0.553     0.1804 0.596 0.008 0.036 0.304 0.056 0.000
#> SRR1375549     1   0.670    -0.5443 0.436 0.016 0.024 0.412 0.072 0.040
#> SRR1101765     4   0.690     0.7500 0.392 0.060 0.024 0.412 0.000 0.112
#> SRR1334461     5   0.347     0.9646 0.124 0.032 0.000 0.024 0.820 0.000
#> SRR1094073     2   0.286     0.5025 0.012 0.884 0.024 0.008 0.060 0.012
#> SRR1077549     1   0.524     0.3878 0.664 0.004 0.180 0.140 0.004 0.008
#> SRR1440332     1   0.363     0.4552 0.796 0.012 0.160 0.028 0.004 0.000
#> SRR1454177     3   0.782     0.1738 0.268 0.092 0.376 0.232 0.004 0.028
#> SRR1082447     1   0.516     0.3985 0.676 0.004 0.156 0.152 0.004 0.008
#> SRR1420043     1   0.486     0.4176 0.676 0.032 0.240 0.052 0.000 0.000
#> SRR1432500     1   0.314     0.4557 0.848 0.012 0.084 0.056 0.000 0.000
#> SRR1378045     3   0.568     0.2184 0.108 0.392 0.488 0.008 0.000 0.004
#> SRR1334200     6   0.323     0.5053 0.012 0.004 0.004 0.176 0.000 0.804
#> SRR1069539     1   0.754    -0.2983 0.392 0.232 0.112 0.252 0.000 0.012
#> SRR1343031     1   0.358     0.4464 0.784 0.012 0.180 0.024 0.000 0.000
#> SRR1319690     1   0.419     0.2052 0.740 0.016 0.016 0.212 0.000 0.016
#> SRR1310604     2   0.578     0.5767 0.092 0.692 0.076 0.092 0.048 0.000
#> SRR1327747     1   0.485     0.3540 0.720 0.012 0.124 0.132 0.000 0.012
#> SRR1072456     2   0.610     0.5640 0.096 0.668 0.068 0.092 0.076 0.000
#> SRR1367896     3   0.576     0.4584 0.148 0.204 0.620 0.012 0.004 0.012
#> SRR1480107     1   0.341     0.4632 0.820 0.000 0.080 0.096 0.004 0.000
#> SRR1377756     1   0.516     0.1993 0.612 0.000 0.028 0.304 0.056 0.000
#> SRR1435272     3   0.775     0.1829 0.276 0.092 0.380 0.224 0.004 0.024
#> SRR1089230     4   0.689     0.6363 0.404 0.048 0.060 0.416 0.000 0.072
#> SRR1389522     1   0.401     0.4494 0.756 0.016 0.196 0.028 0.004 0.000
#> SRR1080600     6   0.746     0.3455 0.136 0.176 0.008 0.232 0.004 0.444
#> SRR1086935     3   0.773     0.2016 0.048 0.296 0.392 0.208 0.008 0.048
#> SRR1344060     6   0.552     0.3504 0.016 0.000 0.000 0.164 0.208 0.612
#> SRR1467922     2   0.346     0.4758 0.012 0.848 0.028 0.012 0.084 0.016
#> SRR1090984     3   0.613     0.4866 0.212 0.200 0.552 0.036 0.000 0.000
#> SRR1456991     1   0.341     0.4632 0.820 0.000 0.080 0.096 0.004 0.000
#> SRR1085039     1   0.333     0.4846 0.840 0.004 0.088 0.056 0.000 0.012
#> SRR1069303     3   0.640     0.3619 0.196 0.040 0.528 0.232 0.004 0.000
#> SRR1091500     2   0.332     0.5082 0.004 0.852 0.084 0.024 0.008 0.028
#> SRR1075198     2   0.791     0.0860 0.260 0.356 0.068 0.272 0.032 0.012
#> SRR1086915     1   0.711    -0.3828 0.464 0.072 0.096 0.324 0.000 0.044
#> SRR1499503     2   0.578     0.5767 0.092 0.692 0.076 0.092 0.048 0.000
#> SRR1094312     2   0.382     0.5302 0.016 0.828 0.088 0.032 0.008 0.028
#> SRR1352437     3   0.604     0.3792 0.200 0.020 0.556 0.220 0.004 0.000
#> SRR1436323     3   0.664     0.0118 0.392 0.036 0.404 0.160 0.004 0.004
#> SRR1073507     1   0.492     0.4076 0.692 0.000 0.152 0.144 0.004 0.008
#> SRR1401972     3   0.640     0.3619 0.196 0.040 0.528 0.232 0.004 0.000
#> SRR1415510     2   0.528     0.5797 0.088 0.732 0.076 0.056 0.048 0.000
#> SRR1327279     1   0.348     0.4919 0.808 0.000 0.132 0.056 0.004 0.000
#> SRR1086983     1   0.641     0.2097 0.524 0.036 0.276 0.156 0.004 0.004
#> SRR1105174     1   0.391     0.2410 0.760 0.016 0.008 0.200 0.000 0.016
#> SRR1468893     1   0.514     0.2082 0.616 0.000 0.028 0.300 0.056 0.000
#> SRR1362555     2   0.790     0.0783 0.268 0.356 0.064 0.268 0.028 0.016
#> SRR1074526     6   0.476     0.3117 0.008 0.012 0.060 0.180 0.012 0.728
#> SRR1326225     2   0.367     0.5023 0.004 0.836 0.084 0.024 0.020 0.032
#> SRR1401933     1   0.543     0.1427 0.576 0.000 0.040 0.328 0.056 0.000
#> SRR1324062     3   0.651     0.5128 0.268 0.144 0.528 0.052 0.004 0.004
#> SRR1102296     3   0.571     0.5018 0.192 0.052 0.640 0.112 0.004 0.000
#> SRR1085087     1   0.441     0.4595 0.752 0.016 0.144 0.084 0.004 0.000
#> SRR1079046     4   0.724     0.4521 0.392 0.016 0.024 0.404 0.092 0.072
#> SRR1328339     3   0.586     0.4894 0.188 0.200 0.584 0.028 0.000 0.000
#> SRR1079782     2   0.798     0.0962 0.256 0.356 0.068 0.272 0.032 0.016
#> SRR1092257     2   0.777     0.4192 0.116 0.512 0.124 0.176 0.024 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.569           0.764       0.901         0.4422 0.560   0.560
#> 3 3 0.376           0.476       0.728         0.4011 0.829   0.705
#> 4 4 0.428           0.466       0.681         0.1568 0.802   0.578
#> 5 5 0.506           0.520       0.700         0.0755 0.867   0.607
#> 6 6 0.578           0.509       0.691         0.0493 0.951   0.795

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000    0.82493 0.000 1.000
#> SRR1429287     2  0.0000    0.82493 0.000 1.000
#> SRR1359238     1  0.0000    0.90002 1.000 0.000
#> SRR1309597     1  0.1414    0.89156 0.980 0.020
#> SRR1441398     1  0.0000    0.90002 1.000 0.000
#> SRR1084055     2  0.0000    0.82493 0.000 1.000
#> SRR1417566     1  0.8713    0.58299 0.708 0.292
#> SRR1351857     1  0.0000    0.90002 1.000 0.000
#> SRR1487485     2  0.9775    0.25205 0.412 0.588
#> SRR1335875     1  0.8661    0.58978 0.712 0.288
#> SRR1073947     1  0.0000    0.90002 1.000 0.000
#> SRR1443483     1  0.1414    0.89156 0.980 0.020
#> SRR1346794     1  0.0000    0.90002 1.000 0.000
#> SRR1405245     1  0.0000    0.90002 1.000 0.000
#> SRR1409677     1  0.3733    0.85407 0.928 0.072
#> SRR1095549     1  0.0000    0.90002 1.000 0.000
#> SRR1323788     1  0.0000    0.90002 1.000 0.000
#> SRR1314054     2  0.0000    0.82493 0.000 1.000
#> SRR1077944     1  0.0000    0.90002 1.000 0.000
#> SRR1480587     2  0.0000    0.82493 0.000 1.000
#> SRR1311205     1  0.0000    0.90002 1.000 0.000
#> SRR1076369     1  0.2603    0.87644 0.956 0.044
#> SRR1453549     1  0.3114    0.87168 0.944 0.056
#> SRR1345782     1  0.0000    0.90002 1.000 0.000
#> SRR1447850     2  0.0000    0.82493 0.000 1.000
#> SRR1391553     2  0.9170    0.45544 0.332 0.668
#> SRR1444156     2  0.0000    0.82493 0.000 1.000
#> SRR1471731     1  0.1414    0.89156 0.980 0.020
#> SRR1120987     2  0.8713    0.62711 0.292 0.708
#> SRR1477363     1  0.0000    0.90002 1.000 0.000
#> SRR1391961     2  0.8861    0.54901 0.304 0.696
#> SRR1373879     1  0.1414    0.89156 0.980 0.020
#> SRR1318732     1  0.0938    0.89528 0.988 0.012
#> SRR1091404     1  0.0000    0.90002 1.000 0.000
#> SRR1402109     1  0.0000    0.90002 1.000 0.000
#> SRR1407336     1  0.1414    0.89156 0.980 0.020
#> SRR1097417     2  0.9732    0.32681 0.404 0.596
#> SRR1396227     1  0.0000    0.90002 1.000 0.000
#> SRR1400775     2  0.0000    0.82493 0.000 1.000
#> SRR1392861     1  0.8499    0.62518 0.724 0.276
#> SRR1472929     2  1.0000    0.20811 0.500 0.500
#> SRR1436740     1  0.0672    0.89670 0.992 0.008
#> SRR1477057     2  0.3431    0.79391 0.064 0.936
#> SRR1311980     1  0.8386    0.60955 0.732 0.268
#> SRR1069400     1  0.1414    0.89156 0.980 0.020
#> SRR1351016     1  0.0000    0.90002 1.000 0.000
#> SRR1096291     1  0.3879    0.85112 0.924 0.076
#> SRR1418145     2  0.8267    0.65504 0.260 0.740
#> SRR1488111     2  0.0000    0.82493 0.000 1.000
#> SRR1370495     1  0.9710    0.11754 0.600 0.400
#> SRR1352639     1  0.0000    0.90002 1.000 0.000
#> SRR1348911     1  0.8713    0.58299 0.708 0.292
#> SRR1467386     1  0.0000    0.90002 1.000 0.000
#> SRR1415956     1  0.0000    0.90002 1.000 0.000
#> SRR1500495     1  0.0000    0.90002 1.000 0.000
#> SRR1405099     1  0.0000    0.90002 1.000 0.000
#> SRR1345585     1  0.4562    0.83138 0.904 0.096
#> SRR1093196     1  0.2948    0.87128 0.948 0.052
#> SRR1466006     2  0.0000    0.82493 0.000 1.000
#> SRR1351557     2  0.0000    0.82493 0.000 1.000
#> SRR1382687     1  0.0000    0.90002 1.000 0.000
#> SRR1375549     1  0.6048    0.73971 0.852 0.148
#> SRR1101765     1  0.3733    0.85407 0.928 0.072
#> SRR1334461     1  0.9896   -0.02614 0.560 0.440
#> SRR1094073     2  0.0000    0.82493 0.000 1.000
#> SRR1077549     1  0.0000    0.90002 1.000 0.000
#> SRR1440332     1  0.0000    0.90002 1.000 0.000
#> SRR1454177     1  0.3879    0.85112 0.924 0.076
#> SRR1082447     1  0.0000    0.90002 1.000 0.000
#> SRR1420043     1  0.0000    0.90002 1.000 0.000
#> SRR1432500     1  0.0000    0.90002 1.000 0.000
#> SRR1378045     2  0.9358    0.41102 0.352 0.648
#> SRR1334200     2  0.9850    0.37183 0.428 0.572
#> SRR1069539     1  0.9933   -0.00699 0.548 0.452
#> SRR1343031     1  0.0000    0.90002 1.000 0.000
#> SRR1319690     1  0.0000    0.90002 1.000 0.000
#> SRR1310604     2  0.7883    0.67879 0.236 0.764
#> SRR1327747     1  0.0000    0.90002 1.000 0.000
#> SRR1072456     2  0.0000    0.82493 0.000 1.000
#> SRR1367896     1  0.8661    0.58978 0.712 0.288
#> SRR1480107     1  0.0000    0.90002 1.000 0.000
#> SRR1377756     1  0.0000    0.90002 1.000 0.000
#> SRR1435272     1  0.3879    0.85112 0.924 0.076
#> SRR1089230     1  0.3733    0.85407 0.928 0.072
#> SRR1389522     1  0.0000    0.90002 1.000 0.000
#> SRR1080600     2  0.8081    0.66654 0.248 0.752
#> SRR1086935     2  0.9815    0.22902 0.420 0.580
#> SRR1344060     2  0.9552    0.48541 0.376 0.624
#> SRR1467922     2  0.0000    0.82493 0.000 1.000
#> SRR1090984     1  0.8267    0.62177 0.740 0.260
#> SRR1456991     1  0.0000    0.90002 1.000 0.000
#> SRR1085039     1  0.0000    0.90002 1.000 0.000
#> SRR1069303     1  0.8267    0.62177 0.740 0.260
#> SRR1091500     2  0.0000    0.82493 0.000 1.000
#> SRR1075198     2  0.8016    0.67099 0.244 0.756
#> SRR1086915     1  0.3584    0.85757 0.932 0.068
#> SRR1499503     2  0.0000    0.82493 0.000 1.000
#> SRR1094312     2  0.0000    0.82493 0.000 1.000
#> SRR1352437     1  0.8267    0.62177 0.740 0.260
#> SRR1436323     1  0.0000    0.90002 1.000 0.000
#> SRR1073507     1  0.0000    0.90002 1.000 0.000
#> SRR1401972     1  0.8267    0.62177 0.740 0.260
#> SRR1415510     2  0.0000    0.82493 0.000 1.000
#> SRR1327279     1  0.0000    0.90002 1.000 0.000
#> SRR1086983     1  0.0000    0.90002 1.000 0.000
#> SRR1105174     1  0.0000    0.90002 1.000 0.000
#> SRR1468893     1  0.0000    0.90002 1.000 0.000
#> SRR1362555     2  0.8016    0.67099 0.244 0.756
#> SRR1074526     2  0.6973    0.69425 0.188 0.812
#> SRR1326225     2  0.0000    0.82493 0.000 1.000
#> SRR1401933     1  0.0000    0.90002 1.000 0.000
#> SRR1324062     1  0.7745    0.66598 0.772 0.228
#> SRR1102296     1  0.8267    0.62177 0.740 0.260
#> SRR1085087     1  0.0000    0.90002 1.000 0.000
#> SRR1079046     1  0.9954   -0.09854 0.540 0.460
#> SRR1328339     1  0.5737    0.78538 0.864 0.136
#> SRR1079782     2  0.6801    0.72718 0.180 0.820
#> SRR1092257     2  0.0000    0.82493 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.3116    0.74223 0.000 0.892 0.108
#> SRR1429287     2  0.4346    0.71013 0.000 0.816 0.184
#> SRR1359238     1  0.0592    0.66877 0.988 0.000 0.012
#> SRR1309597     1  0.1860    0.66653 0.948 0.000 0.052
#> SRR1441398     1  0.6204    0.29122 0.576 0.000 0.424
#> SRR1084055     2  0.2796    0.73573 0.000 0.908 0.092
#> SRR1417566     1  0.9865   -0.16418 0.404 0.264 0.332
#> SRR1351857     1  0.1643    0.66457 0.956 0.000 0.044
#> SRR1487485     2  0.9266   -0.05427 0.420 0.424 0.156
#> SRR1335875     1  0.9815   -0.15194 0.420 0.256 0.324
#> SRR1073947     1  0.6192    0.28817 0.580 0.000 0.420
#> SRR1443483     1  0.1529    0.66782 0.960 0.000 0.040
#> SRR1346794     1  0.2711    0.65814 0.912 0.000 0.088
#> SRR1405245     1  0.5926    0.46364 0.644 0.000 0.356
#> SRR1409677     1  0.3472    0.63648 0.904 0.040 0.056
#> SRR1095549     1  0.1411    0.67062 0.964 0.000 0.036
#> SRR1323788     1  0.2959    0.66191 0.900 0.000 0.100
#> SRR1314054     2  0.1031    0.73232 0.000 0.976 0.024
#> SRR1077944     1  0.5968    0.37570 0.636 0.000 0.364
#> SRR1480587     2  0.3752    0.73420 0.000 0.856 0.144
#> SRR1311205     1  0.6045    0.34041 0.620 0.000 0.380
#> SRR1076369     1  0.5992    0.45151 0.716 0.016 0.268
#> SRR1453549     1  0.3573    0.60559 0.876 0.004 0.120
#> SRR1345782     1  0.5560    0.45960 0.700 0.000 0.300
#> SRR1447850     2  0.3038    0.65872 0.000 0.896 0.104
#> SRR1391553     2  0.8649    0.21725 0.232 0.596 0.172
#> SRR1444156     2  0.0592    0.74794 0.000 0.988 0.012
#> SRR1471731     1  0.4521    0.56897 0.816 0.004 0.180
#> SRR1120987     2  0.8521   -0.00928 0.440 0.468 0.092
#> SRR1477363     1  0.3038    0.65878 0.896 0.000 0.104
#> SRR1391961     3  0.6337    0.30686 0.028 0.264 0.708
#> SRR1373879     1  0.1529    0.66679 0.960 0.000 0.040
#> SRR1318732     1  0.5244    0.59127 0.756 0.004 0.240
#> SRR1091404     1  0.6215    0.28486 0.572 0.000 0.428
#> SRR1402109     1  0.1289    0.66823 0.968 0.000 0.032
#> SRR1407336     1  0.0747    0.66717 0.984 0.000 0.016
#> SRR1097417     3  0.9952    0.23547 0.332 0.292 0.376
#> SRR1396227     3  0.6260   -0.06680 0.448 0.000 0.552
#> SRR1400775     2  0.1411    0.74062 0.000 0.964 0.036
#> SRR1392861     1  0.8105    0.28860 0.648 0.196 0.156
#> SRR1472929     3  0.5970    0.40394 0.060 0.160 0.780
#> SRR1436740     1  0.3502    0.65376 0.896 0.020 0.084
#> SRR1477057     2  0.6192    0.19165 0.000 0.580 0.420
#> SRR1311980     3  0.9657    0.33186 0.300 0.240 0.460
#> SRR1069400     1  0.1411    0.66820 0.964 0.000 0.036
#> SRR1351016     1  0.6126    0.31729 0.600 0.000 0.400
#> SRR1096291     1  0.4206    0.61616 0.872 0.040 0.088
#> SRR1418145     2  0.8957    0.44348 0.192 0.564 0.244
#> SRR1488111     2  0.1170    0.74681 0.008 0.976 0.016
#> SRR1370495     3  0.6438    0.43770 0.100 0.136 0.764
#> SRR1352639     3  0.6286   -0.09714 0.464 0.000 0.536
#> SRR1348911     1  0.9934   -0.19960 0.388 0.292 0.320
#> SRR1467386     1  0.4796    0.55646 0.780 0.000 0.220
#> SRR1415956     1  0.6252    0.26268 0.556 0.000 0.444
#> SRR1500495     1  0.5591    0.47219 0.696 0.000 0.304
#> SRR1405099     1  0.6215    0.28121 0.572 0.000 0.428
#> SRR1345585     1  0.4035    0.62662 0.880 0.040 0.080
#> SRR1093196     1  0.2269    0.66217 0.944 0.016 0.040
#> SRR1466006     2  0.5678    0.63032 0.000 0.684 0.316
#> SRR1351557     2  0.2448    0.74766 0.000 0.924 0.076
#> SRR1382687     1  0.4452    0.62130 0.808 0.000 0.192
#> SRR1375549     3  0.5365    0.37035 0.252 0.004 0.744
#> SRR1101765     1  0.6867    0.37179 0.672 0.040 0.288
#> SRR1334461     3  0.6313    0.42659 0.084 0.148 0.768
#> SRR1094073     2  0.0592    0.74794 0.000 0.988 0.012
#> SRR1077549     1  0.2356    0.66186 0.928 0.000 0.072
#> SRR1440332     1  0.0747    0.67023 0.984 0.000 0.016
#> SRR1454177     1  0.4289    0.62058 0.868 0.040 0.092
#> SRR1082447     1  0.6192    0.31385 0.580 0.000 0.420
#> SRR1420043     1  0.1031    0.66677 0.976 0.000 0.024
#> SRR1432500     1  0.0892    0.66971 0.980 0.000 0.020
#> SRR1378045     2  0.8576    0.22473 0.240 0.600 0.160
#> SRR1334200     3  0.9183    0.17365 0.324 0.168 0.508
#> SRR1069539     1  0.8423    0.19656 0.616 0.156 0.228
#> SRR1343031     1  0.0747    0.66934 0.984 0.000 0.016
#> SRR1319690     1  0.2711    0.66109 0.912 0.000 0.088
#> SRR1310604     2  0.7338    0.59857 0.060 0.652 0.288
#> SRR1327747     1  0.1964    0.66212 0.944 0.000 0.056
#> SRR1072456     2  0.4062    0.72662 0.000 0.836 0.164
#> SRR1367896     1  0.9736   -0.12400 0.436 0.240 0.324
#> SRR1480107     1  0.6204    0.28697 0.576 0.000 0.424
#> SRR1377756     1  0.4178    0.62826 0.828 0.000 0.172
#> SRR1435272     1  0.2926    0.64859 0.924 0.040 0.036
#> SRR1089230     1  0.4449    0.61389 0.860 0.040 0.100
#> SRR1389522     1  0.4931    0.53698 0.768 0.000 0.232
#> SRR1080600     2  0.7334    0.56253 0.048 0.624 0.328
#> SRR1086935     1  0.9494   -0.10206 0.412 0.404 0.184
#> SRR1344060     3  0.5678    0.35965 0.032 0.192 0.776
#> SRR1467922     2  0.0592    0.74794 0.000 0.988 0.012
#> SRR1090984     1  0.9651   -0.16057 0.400 0.208 0.392
#> SRR1456991     1  0.6154    0.29653 0.592 0.000 0.408
#> SRR1085039     1  0.2711    0.65922 0.912 0.000 0.088
#> SRR1069303     3  0.8659    0.44977 0.176 0.228 0.596
#> SRR1091500     2  0.1289    0.74219 0.000 0.968 0.032
#> SRR1075198     2  0.7091    0.61179 0.064 0.688 0.248
#> SRR1086915     1  0.4449    0.61389 0.860 0.040 0.100
#> SRR1499503     2  0.3551    0.73839 0.000 0.868 0.132
#> SRR1094312     2  0.1163    0.74317 0.000 0.972 0.028
#> SRR1352437     3  0.9489    0.37075 0.280 0.228 0.492
#> SRR1436323     1  0.2066    0.66509 0.940 0.000 0.060
#> SRR1073507     1  0.5948    0.38140 0.640 0.000 0.360
#> SRR1401972     3  0.9151    0.41493 0.228 0.228 0.544
#> SRR1415510     2  0.2959    0.74594 0.000 0.900 0.100
#> SRR1327279     1  0.2356    0.66353 0.928 0.000 0.072
#> SRR1086983     1  0.2356    0.66614 0.928 0.000 0.072
#> SRR1105174     1  0.4842    0.59557 0.776 0.000 0.224
#> SRR1468893     1  0.6291    0.25509 0.532 0.000 0.468
#> SRR1362555     2  0.7660    0.55977 0.064 0.612 0.324
#> SRR1074526     3  0.9887    0.11347 0.268 0.336 0.396
#> SRR1326225     2  0.0237    0.74318 0.000 0.996 0.004
#> SRR1401933     1  0.6008    0.41832 0.628 0.000 0.372
#> SRR1324062     1  0.8398    0.24738 0.624 0.184 0.192
#> SRR1102296     3  0.9263    0.39115 0.252 0.220 0.528
#> SRR1085087     1  0.6168    0.30355 0.588 0.000 0.412
#> SRR1079046     3  0.5603    0.42509 0.060 0.136 0.804
#> SRR1328339     3  0.8025    0.05093 0.420 0.064 0.516
#> SRR1079782     2  0.7015    0.61639 0.064 0.696 0.240
#> SRR1092257     2  0.0237    0.74318 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0336    0.83968 0.008 0.992 0.000 0.000
#> SRR1429287     2  0.4553    0.74936 0.180 0.780 0.040 0.000
#> SRR1359238     4  0.1059    0.62514 0.012 0.000 0.016 0.972
#> SRR1309597     4  0.3862    0.57595 0.024 0.000 0.152 0.824
#> SRR1441398     4  0.7879   -0.07429 0.288 0.000 0.332 0.380
#> SRR1084055     2  0.1624    0.83897 0.020 0.952 0.028 0.000
#> SRR1417566     3  0.4326    0.57113 0.036 0.036 0.840 0.088
#> SRR1351857     4  0.1302    0.62072 0.044 0.000 0.000 0.956
#> SRR1487485     4  0.8072   -0.08067 0.024 0.168 0.372 0.436
#> SRR1335875     3  0.5146    0.56158 0.004 0.076 0.764 0.156
#> SRR1073947     3  0.7773   -0.05969 0.284 0.000 0.432 0.284
#> SRR1443483     4  0.3271    0.58491 0.012 0.000 0.132 0.856
#> SRR1346794     4  0.5383    0.56281 0.160 0.000 0.100 0.740
#> SRR1405245     3  0.7883   -0.00751 0.316 0.000 0.384 0.300
#> SRR1409677     4  0.2708    0.60211 0.076 0.016 0.004 0.904
#> SRR1095549     4  0.4127    0.60638 0.052 0.000 0.124 0.824
#> SRR1323788     4  0.6883    0.45841 0.212 0.000 0.192 0.596
#> SRR1314054     2  0.1792    0.82390 0.000 0.932 0.068 0.000
#> SRR1077944     4  0.7792   -0.00537 0.260 0.000 0.324 0.416
#> SRR1480587     2  0.1118    0.83493 0.036 0.964 0.000 0.000
#> SRR1311205     4  0.7792    0.01741 0.260 0.000 0.324 0.416
#> SRR1076369     4  0.5483    0.18630 0.448 0.000 0.016 0.536
#> SRR1453549     4  0.4252    0.45522 0.004 0.000 0.252 0.744
#> SRR1345782     4  0.7438    0.20955 0.188 0.000 0.328 0.484
#> SRR1447850     2  0.2976    0.78183 0.008 0.872 0.120 0.000
#> SRR1391553     3  0.6216    0.40335 0.004 0.272 0.644 0.080
#> SRR1444156     2  0.0895    0.83986 0.004 0.976 0.020 0.000
#> SRR1471731     3  0.5495    0.30902 0.028 0.000 0.624 0.348
#> SRR1120987     4  0.8312    0.30109 0.112 0.192 0.132 0.564
#> SRR1477363     4  0.5947    0.48413 0.112 0.000 0.200 0.688
#> SRR1391961     1  0.6178    0.47230 0.688 0.208 0.092 0.012
#> SRR1373879     4  0.2704    0.59771 0.000 0.000 0.124 0.876
#> SRR1318732     3  0.8054    0.11467 0.300 0.008 0.424 0.268
#> SRR1091404     4  0.7917   -0.16046 0.340 0.000 0.312 0.348
#> SRR1402109     4  0.2530    0.60319 0.000 0.000 0.112 0.888
#> SRR1407336     4  0.1635    0.62107 0.008 0.000 0.044 0.948
#> SRR1097417     3  0.7144    0.49597 0.068 0.092 0.656 0.184
#> SRR1396227     3  0.5859    0.25715 0.284 0.000 0.652 0.064
#> SRR1400775     2  0.2142    0.82957 0.016 0.928 0.056 0.000
#> SRR1392861     4  0.5382    0.34886 0.016 0.016 0.280 0.688
#> SRR1472929     1  0.5862    0.54140 0.752 0.124 0.080 0.044
#> SRR1436740     4  0.5874    0.48774 0.064 0.008 0.240 0.688
#> SRR1477057     2  0.7379    0.15289 0.364 0.468 0.168 0.000
#> SRR1311980     3  0.2546    0.56096 0.008 0.028 0.920 0.044
#> SRR1069400     4  0.2125    0.61326 0.004 0.000 0.076 0.920
#> SRR1351016     3  0.7874   -0.13359 0.284 0.000 0.380 0.336
#> SRR1096291     4  0.3494    0.58267 0.116 0.016 0.008 0.860
#> SRR1418145     2  0.7812    0.24003 0.244 0.460 0.004 0.292
#> SRR1488111     2  0.2421    0.83296 0.020 0.924 0.048 0.008
#> SRR1370495     1  0.6190    0.55398 0.736 0.060 0.088 0.116
#> SRR1352639     1  0.7583    0.26121 0.480 0.000 0.280 0.240
#> SRR1348911     3  0.6022    0.54512 0.012 0.132 0.716 0.140
#> SRR1467386     4  0.6248    0.42055 0.100 0.000 0.260 0.640
#> SRR1415956     3  0.7908   -0.19499 0.336 0.000 0.360 0.304
#> SRR1500495     4  0.7357    0.22364 0.180 0.000 0.320 0.500
#> SRR1405099     1  0.7923    0.12131 0.344 0.000 0.328 0.328
#> SRR1345585     4  0.5243    0.42474 0.012 0.016 0.276 0.696
#> SRR1093196     4  0.3791    0.60131 0.032 0.008 0.108 0.852
#> SRR1466006     2  0.4262    0.71801 0.236 0.756 0.008 0.000
#> SRR1351557     2  0.0336    0.83968 0.008 0.992 0.000 0.000
#> SRR1382687     4  0.7577    0.22163 0.216 0.000 0.316 0.468
#> SRR1375549     1  0.4411    0.55151 0.824 0.012 0.052 0.112
#> SRR1101765     4  0.5895    0.21880 0.392 0.016 0.016 0.576
#> SRR1334461     1  0.6374    0.55200 0.728 0.084 0.092 0.096
#> SRR1094073     2  0.0895    0.83986 0.004 0.976 0.020 0.000
#> SRR1077549     4  0.5148    0.52649 0.056 0.000 0.208 0.736
#> SRR1440332     4  0.1520    0.62707 0.020 0.000 0.024 0.956
#> SRR1454177     4  0.4217    0.53673 0.016 0.016 0.152 0.816
#> SRR1082447     1  0.7836    0.15402 0.408 0.000 0.288 0.304
#> SRR1420043     4  0.1661    0.61900 0.004 0.000 0.052 0.944
#> SRR1432500     4  0.1284    0.62571 0.012 0.000 0.024 0.964
#> SRR1378045     3  0.6258    0.31617 0.000 0.324 0.600 0.076
#> SRR1334200     1  0.5206    0.41357 0.752 0.044 0.012 0.192
#> SRR1069539     4  0.5327    0.45026 0.208 0.056 0.004 0.732
#> SRR1343031     4  0.1452    0.62344 0.008 0.000 0.036 0.956
#> SRR1319690     4  0.4297    0.60216 0.084 0.000 0.096 0.820
#> SRR1310604     2  0.5964    0.63706 0.244 0.676 0.004 0.076
#> SRR1327747     4  0.2385    0.62154 0.052 0.000 0.028 0.920
#> SRR1072456     2  0.1398    0.83265 0.040 0.956 0.004 0.000
#> SRR1367896     3  0.4709    0.55143 0.008 0.024 0.768 0.200
#> SRR1480107     4  0.7919   -0.15290 0.324 0.000 0.324 0.352
#> SRR1377756     4  0.6921    0.41525 0.260 0.000 0.160 0.580
#> SRR1435272     4  0.2310    0.61401 0.020 0.016 0.032 0.932
#> SRR1089230     4  0.3873    0.56785 0.144 0.016 0.008 0.832
#> SRR1389522     4  0.6701    0.33281 0.120 0.000 0.296 0.584
#> SRR1080600     2  0.7062    0.42164 0.360 0.528 0.008 0.104
#> SRR1086935     4  0.7566   -0.03532 0.028 0.100 0.388 0.484
#> SRR1344060     1  0.3899    0.52312 0.840 0.108 0.052 0.000
#> SRR1467922     2  0.0895    0.83986 0.004 0.976 0.020 0.000
#> SRR1090984     3  0.4241    0.56108 0.056 0.016 0.840 0.088
#> SRR1456991     4  0.7916   -0.15049 0.312 0.000 0.336 0.352
#> SRR1085039     4  0.4514    0.56410 0.056 0.000 0.148 0.796
#> SRR1069303     3  0.4834    0.40955 0.200 0.024 0.764 0.012
#> SRR1091500     2  0.1488    0.83905 0.012 0.956 0.032 0.000
#> SRR1075198     2  0.6116    0.61442 0.248 0.664 0.004 0.084
#> SRR1086915     4  0.3717    0.57593 0.132 0.016 0.008 0.844
#> SRR1499503     2  0.0592    0.83877 0.016 0.984 0.000 0.000
#> SRR1094312     2  0.1356    0.83948 0.008 0.960 0.032 0.000
#> SRR1352437     3  0.4877    0.48791 0.096 0.012 0.800 0.092
#> SRR1436323     4  0.4462    0.59071 0.044 0.000 0.164 0.792
#> SRR1073507     4  0.7747    0.04072 0.252 0.000 0.316 0.432
#> SRR1401972     3  0.4968    0.46202 0.148 0.024 0.788 0.040
#> SRR1415510     2  0.0336    0.83968 0.008 0.992 0.000 0.000
#> SRR1327279     4  0.3863    0.58201 0.028 0.000 0.144 0.828
#> SRR1086983     4  0.5710    0.53939 0.100 0.000 0.192 0.708
#> SRR1105174     4  0.6881    0.34887 0.236 0.000 0.172 0.592
#> SRR1468893     1  0.7347    0.25062 0.528 0.000 0.244 0.228
#> SRR1362555     2  0.6391    0.56590 0.292 0.620 0.004 0.084
#> SRR1074526     1  0.8424    0.25663 0.544 0.128 0.108 0.220
#> SRR1326225     2  0.1389    0.83449 0.000 0.952 0.048 0.000
#> SRR1401933     1  0.7536    0.22412 0.492 0.000 0.244 0.264
#> SRR1324062     3  0.4785    0.55425 0.008 0.024 0.760 0.208
#> SRR1102296     3  0.4129    0.48738 0.104 0.012 0.840 0.044
#> SRR1085087     4  0.7641    0.01483 0.208 0.000 0.376 0.416
#> SRR1079046     1  0.4300    0.55664 0.844 0.076 0.036 0.044
#> SRR1328339     3  0.3421    0.53621 0.044 0.000 0.868 0.088
#> SRR1079782     2  0.5798    0.65328 0.208 0.704 0.004 0.084
#> SRR1092257     2  0.1389    0.83449 0.000 0.952 0.048 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.1965     0.7930 0.024 0.924 0.000 0.000 0.052
#> SRR1429287     2  0.6093     0.4777 0.016 0.604 0.088 0.008 0.284
#> SRR1359238     4  0.1544     0.6127 0.068 0.000 0.000 0.932 0.000
#> SRR1309597     4  0.6082     0.4277 0.116 0.000 0.216 0.636 0.032
#> SRR1441398     1  0.7199     0.5680 0.508 0.000 0.108 0.296 0.088
#> SRR1084055     2  0.1739     0.7935 0.004 0.940 0.024 0.000 0.032
#> SRR1417566     3  0.3529     0.6869 0.072 0.028 0.860 0.032 0.008
#> SRR1351857     4  0.1885     0.6219 0.032 0.000 0.012 0.936 0.020
#> SRR1487485     3  0.6715     0.0307 0.032 0.068 0.448 0.436 0.016
#> SRR1335875     3  0.5005     0.6926 0.096 0.040 0.756 0.108 0.000
#> SRR1073947     1  0.4435     0.6406 0.768 0.000 0.056 0.164 0.012
#> SRR1443483     4  0.4712     0.5344 0.080 0.000 0.180 0.736 0.004
#> SRR1346794     4  0.6510     0.3240 0.204 0.000 0.080 0.620 0.096
#> SRR1405245     1  0.7946     0.2489 0.400 0.000 0.320 0.160 0.120
#> SRR1409677     4  0.2354     0.6194 0.008 0.012 0.012 0.916 0.052
#> SRR1095549     4  0.4262     0.4575 0.252 0.000 0.016 0.724 0.008
#> SRR1323788     4  0.7851     0.0570 0.320 0.000 0.160 0.412 0.108
#> SRR1314054     2  0.1117     0.7953 0.000 0.964 0.020 0.000 0.016
#> SRR1077944     1  0.4054     0.6632 0.744 0.000 0.008 0.236 0.012
#> SRR1480587     2  0.2325     0.7901 0.028 0.904 0.000 0.000 0.068
#> SRR1311205     1  0.5340     0.6438 0.648 0.000 0.028 0.288 0.036
#> SRR1076369     4  0.7567     0.0666 0.088 0.000 0.136 0.416 0.360
#> SRR1453549     4  0.4681     0.5071 0.040 0.000 0.260 0.696 0.004
#> SRR1345782     1  0.5207     0.5860 0.620 0.000 0.044 0.328 0.008
#> SRR1447850     2  0.2351     0.7558 0.000 0.896 0.088 0.000 0.016
#> SRR1391553     3  0.4055     0.6124 0.008 0.192 0.776 0.020 0.004
#> SRR1444156     2  0.0865     0.7996 0.024 0.972 0.000 0.000 0.004
#> SRR1471731     3  0.4579     0.5943 0.048 0.004 0.740 0.204 0.004
#> SRR1120987     4  0.8003     0.3259 0.116 0.136 0.048 0.544 0.156
#> SRR1477363     4  0.6207    -0.1929 0.388 0.000 0.056 0.516 0.040
#> SRR1391961     5  0.5750     0.6775 0.244 0.080 0.020 0.004 0.652
#> SRR1373879     4  0.4269     0.5822 0.076 0.000 0.140 0.780 0.004
#> SRR1318732     3  0.8477     0.0494 0.264 0.016 0.400 0.192 0.128
#> SRR1091404     1  0.4116     0.6867 0.756 0.000 0.004 0.212 0.028
#> SRR1402109     4  0.3839     0.5900 0.072 0.000 0.108 0.816 0.004
#> SRR1407336     4  0.2074     0.6256 0.036 0.000 0.044 0.920 0.000
#> SRR1097417     3  0.5715     0.6773 0.064 0.068 0.736 0.104 0.028
#> SRR1396227     1  0.4846     0.0178 0.644 0.000 0.324 0.012 0.020
#> SRR1400775     2  0.1310     0.7959 0.000 0.956 0.024 0.000 0.020
#> SRR1392861     4  0.5053     0.4355 0.008 0.032 0.264 0.684 0.012
#> SRR1472929     5  0.4466     0.7139 0.200 0.016 0.016 0.012 0.756
#> SRR1436740     4  0.6039     0.3938 0.244 0.004 0.112 0.624 0.016
#> SRR1477057     2  0.7992    -0.1988 0.244 0.372 0.088 0.000 0.296
#> SRR1311980     3  0.3795     0.6773 0.184 0.024 0.788 0.004 0.000
#> SRR1069400     4  0.3449     0.6007 0.064 0.000 0.088 0.844 0.004
#> SRR1351016     1  0.4446     0.6715 0.752 0.000 0.040 0.196 0.012
#> SRR1096291     4  0.3716     0.6002 0.032 0.016 0.024 0.852 0.076
#> SRR1418145     5  0.7144     0.1020 0.000 0.316 0.012 0.328 0.344
#> SRR1488111     2  0.3160     0.7653 0.000 0.876 0.032 0.040 0.052
#> SRR1370495     5  0.4798     0.7063 0.212 0.008 0.016 0.032 0.732
#> SRR1352639     1  0.5582     0.3570 0.624 0.000 0.008 0.084 0.284
#> SRR1348911     3  0.5664     0.6891 0.112 0.068 0.720 0.096 0.004
#> SRR1467386     1  0.4637     0.4270 0.568 0.000 0.004 0.420 0.008
#> SRR1415956     1  0.6334     0.6668 0.636 0.000 0.076 0.200 0.088
#> SRR1500495     1  0.7065     0.4300 0.444 0.000 0.128 0.380 0.048
#> SRR1405099     1  0.6108     0.6695 0.648 0.000 0.056 0.208 0.088
#> SRR1345585     4  0.5026     0.4107 0.024 0.008 0.336 0.628 0.004
#> SRR1093196     4  0.3971     0.6161 0.068 0.008 0.092 0.824 0.008
#> SRR1466006     2  0.6157     0.4150 0.036 0.552 0.064 0.000 0.348
#> SRR1351557     2  0.1893     0.7944 0.024 0.928 0.000 0.000 0.048
#> SRR1382687     4  0.8035     0.1139 0.244 0.000 0.264 0.392 0.100
#> SRR1375549     5  0.5225     0.5876 0.288 0.000 0.016 0.044 0.652
#> SRR1101765     4  0.6759     0.0500 0.036 0.008 0.084 0.468 0.404
#> SRR1334461     5  0.4904     0.7043 0.216 0.008 0.016 0.036 0.724
#> SRR1094073     2  0.0992     0.7996 0.024 0.968 0.000 0.000 0.008
#> SRR1077549     4  0.5119     0.2637 0.360 0.000 0.048 0.592 0.000
#> SRR1440332     4  0.2463     0.6011 0.100 0.000 0.008 0.888 0.004
#> SRR1454177     4  0.4229     0.5822 0.012 0.016 0.184 0.776 0.012
#> SRR1082447     1  0.5959     0.6170 0.664 0.000 0.072 0.200 0.064
#> SRR1420043     4  0.2664     0.6142 0.064 0.000 0.040 0.892 0.004
#> SRR1432500     4  0.2911     0.5675 0.136 0.000 0.004 0.852 0.008
#> SRR1378045     3  0.4323     0.5790 0.000 0.240 0.728 0.028 0.004
#> SRR1334200     5  0.4127     0.6409 0.052 0.008 0.076 0.036 0.828
#> SRR1069539     4  0.4765     0.4585 0.008 0.016 0.016 0.704 0.256
#> SRR1343031     4  0.3081     0.6039 0.072 0.000 0.056 0.868 0.004
#> SRR1319690     4  0.5889     0.4669 0.132 0.000 0.120 0.688 0.060
#> SRR1310604     2  0.5854     0.3868 0.012 0.556 0.016 0.040 0.376
#> SRR1327747     4  0.2777     0.6178 0.040 0.000 0.036 0.896 0.028
#> SRR1072456     2  0.3317     0.7623 0.032 0.848 0.008 0.000 0.112
#> SRR1367896     3  0.4882     0.6861 0.100 0.024 0.756 0.120 0.000
#> SRR1480107     1  0.4110     0.6800 0.776 0.000 0.012 0.184 0.028
#> SRR1377756     4  0.7794     0.1538 0.272 0.000 0.144 0.456 0.128
#> SRR1435272     4  0.1877     0.6279 0.004 0.016 0.024 0.940 0.016
#> SRR1089230     4  0.4207     0.5919 0.044 0.016 0.028 0.824 0.088
#> SRR1389522     4  0.6908    -0.1197 0.328 0.000 0.200 0.456 0.016
#> SRR1080600     5  0.7001     0.0942 0.008 0.336 0.072 0.072 0.512
#> SRR1086935     4  0.6156     0.1145 0.012 0.052 0.392 0.524 0.020
#> SRR1344060     5  0.3716     0.7203 0.176 0.008 0.012 0.004 0.800
#> SRR1467922     2  0.0992     0.7996 0.024 0.968 0.000 0.000 0.008
#> SRR1090984     3  0.4587     0.6504 0.088 0.020 0.800 0.072 0.020
#> SRR1456991     1  0.4446     0.6800 0.752 0.000 0.012 0.196 0.040
#> SRR1085039     4  0.4774     0.1672 0.328 0.000 0.012 0.644 0.016
#> SRR1069303     3  0.5563     0.3896 0.452 0.024 0.500 0.004 0.020
#> SRR1091500     2  0.1211     0.7971 0.000 0.960 0.016 0.000 0.024
#> SRR1075198     2  0.5455     0.3873 0.000 0.572 0.012 0.044 0.372
#> SRR1086915     4  0.3933     0.5970 0.044 0.012 0.028 0.840 0.076
#> SRR1499503     2  0.2104     0.7925 0.024 0.916 0.000 0.000 0.060
#> SRR1094312     2  0.1117     0.7976 0.000 0.964 0.016 0.000 0.020
#> SRR1352437     3  0.5579     0.4332 0.420 0.016 0.524 0.040 0.000
#> SRR1436323     4  0.4288     0.5825 0.136 0.000 0.072 0.784 0.008
#> SRR1073507     1  0.4083     0.6586 0.728 0.000 0.008 0.256 0.008
#> SRR1401972     3  0.5282     0.4242 0.440 0.024 0.524 0.004 0.008
#> SRR1415510     2  0.2264     0.7919 0.024 0.912 0.000 0.004 0.060
#> SRR1327279     4  0.4754     0.4133 0.232 0.000 0.048 0.712 0.008
#> SRR1086983     4  0.5179     0.4305 0.252 0.000 0.048 0.680 0.020
#> SRR1105174     1  0.7078     0.2979 0.428 0.000 0.084 0.408 0.080
#> SRR1468893     1  0.7409     0.4570 0.536 0.000 0.116 0.168 0.180
#> SRR1362555     2  0.6187     0.1865 0.016 0.476 0.020 0.044 0.444
#> SRR1074526     5  0.7403     0.4971 0.036 0.152 0.128 0.088 0.596
#> SRR1326225     2  0.1012     0.7962 0.000 0.968 0.020 0.000 0.012
#> SRR1401933     1  0.7633     0.3493 0.504 0.000 0.144 0.212 0.140
#> SRR1324062     3  0.5025     0.6829 0.132 0.020 0.740 0.108 0.000
#> SRR1102296     3  0.5143     0.4076 0.456 0.012 0.516 0.012 0.004
#> SRR1085087     1  0.5374     0.6069 0.652 0.000 0.076 0.264 0.008
#> SRR1079046     5  0.4078     0.7114 0.152 0.000 0.020 0.032 0.796
#> SRR1328339     3  0.4352     0.6337 0.244 0.000 0.720 0.036 0.000
#> SRR1079782     2  0.5355     0.4441 0.000 0.604 0.012 0.044 0.340
#> SRR1092257     2  0.1211     0.7940 0.000 0.960 0.024 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2   0.272     0.7416 0.008 0.884 0.012 0.000 0.032 0.064
#> SRR1429287     2   0.679     0.1388 0.012 0.440 0.032 0.000 0.216 0.300
#> SRR1359238     4   0.249     0.6268 0.100 0.000 0.000 0.876 0.004 0.020
#> SRR1309597     4   0.658     0.4013 0.140 0.000 0.196 0.556 0.004 0.104
#> SRR1441398     1   0.668     0.4881 0.564 0.000 0.060 0.196 0.028 0.152
#> SRR1084055     2   0.143     0.7490 0.000 0.948 0.024 0.000 0.008 0.020
#> SRR1417566     3   0.311     0.6689 0.052 0.000 0.832 0.000 0.000 0.116
#> SRR1351857     4   0.212     0.6163 0.024 0.000 0.004 0.912 0.004 0.056
#> SRR1487485     3   0.627    -0.0998 0.012 0.044 0.436 0.424 0.000 0.084
#> SRR1335875     3   0.365     0.6912 0.064 0.024 0.832 0.068 0.000 0.012
#> SRR1073947     1   0.366     0.6036 0.832 0.000 0.072 0.060 0.016 0.020
#> SRR1443483     4   0.508     0.5704 0.092 0.000 0.160 0.704 0.004 0.040
#> SRR1346794     4   0.716    -0.2493 0.324 0.000 0.008 0.352 0.056 0.260
#> SRR1405245     6   0.682     0.4108 0.316 0.000 0.148 0.076 0.004 0.456
#> SRR1409677     4   0.308     0.6021 0.028 0.000 0.000 0.860 0.056 0.056
#> SRR1095549     4   0.530     0.1786 0.364 0.000 0.020 0.552 0.000 0.064
#> SRR1323788     6   0.666     0.5114 0.248 0.000 0.064 0.200 0.000 0.488
#> SRR1314054     2   0.201     0.7386 0.000 0.908 0.068 0.000 0.000 0.024
#> SRR1077944     1   0.327     0.6376 0.832 0.000 0.008 0.108 0.000 0.052
#> SRR1480587     2   0.322     0.7329 0.008 0.848 0.008 0.000 0.048 0.088
#> SRR1311205     1   0.460     0.6534 0.716 0.000 0.020 0.216 0.016 0.032
#> SRR1076369     6   0.717    -0.0236 0.064 0.000 0.020 0.204 0.256 0.456
#> SRR1453549     4   0.412     0.5566 0.024 0.000 0.244 0.716 0.000 0.016
#> SRR1345782     1   0.475     0.6273 0.680 0.000 0.028 0.252 0.004 0.036
#> SRR1447850     2   0.315     0.7167 0.012 0.848 0.080 0.000 0.000 0.060
#> SRR1391553     3   0.284     0.6776 0.004 0.064 0.876 0.016 0.000 0.040
#> SRR1444156     2   0.246     0.7427 0.008 0.892 0.048 0.000 0.000 0.052
#> SRR1471731     3   0.416     0.6166 0.016 0.000 0.756 0.168 0.000 0.060
#> SRR1120987     4   0.750     0.3287 0.100 0.104 0.048 0.580 0.084 0.084
#> SRR1477363     1   0.621     0.3825 0.496 0.000 0.020 0.328 0.008 0.148
#> SRR1391961     5   0.413     0.6511 0.124 0.048 0.008 0.004 0.792 0.024
#> SRR1373879     4   0.461     0.5912 0.060 0.000 0.176 0.728 0.000 0.036
#> SRR1318732     6   0.663     0.5349 0.180 0.000 0.224 0.068 0.004 0.524
#> SRR1091404     1   0.319     0.6747 0.840 0.000 0.000 0.112 0.024 0.024
#> SRR1402109     4   0.438     0.6053 0.072 0.000 0.132 0.760 0.000 0.036
#> SRR1407336     4   0.200     0.6422 0.028 0.000 0.044 0.920 0.004 0.004
#> SRR1097417     3   0.416     0.6756 0.040 0.036 0.808 0.088 0.004 0.024
#> SRR1396227     1   0.528     0.1123 0.620 0.000 0.292 0.008 0.024 0.056
#> SRR1400775     2   0.155     0.7454 0.000 0.940 0.036 0.000 0.004 0.020
#> SRR1392861     4   0.374     0.5363 0.008 0.000 0.184 0.772 0.000 0.036
#> SRR1472929     5   0.295     0.6777 0.104 0.016 0.004 0.004 0.860 0.012
#> SRR1436740     4   0.575     0.3866 0.256 0.000 0.076 0.608 0.004 0.056
#> SRR1477057     2   0.816    -0.1425 0.188 0.348 0.088 0.000 0.292 0.084
#> SRR1311980     3   0.331     0.6885 0.128 0.000 0.820 0.004 0.000 0.048
#> SRR1069400     4   0.433     0.6130 0.080 0.000 0.104 0.776 0.004 0.036
#> SRR1351016     1   0.359     0.6427 0.832 0.000 0.048 0.088 0.012 0.020
#> SRR1096291     4   0.345     0.5718 0.032 0.000 0.000 0.836 0.072 0.060
#> SRR1418145     5   0.803     0.2127 0.012 0.212 0.012 0.284 0.336 0.144
#> SRR1488111     2   0.559     0.6188 0.004 0.716 0.076 0.080 0.048 0.076
#> SRR1370495     5   0.427     0.6664 0.116 0.036 0.004 0.004 0.784 0.056
#> SRR1352639     1   0.546     0.4229 0.672 0.012 0.008 0.040 0.212 0.056
#> SRR1348911     3   0.389     0.6878 0.068 0.032 0.820 0.064 0.000 0.016
#> SRR1467386     1   0.405     0.5792 0.664 0.000 0.000 0.312 0.000 0.024
#> SRR1415956     1   0.584     0.5919 0.668 0.000 0.044 0.140 0.036 0.112
#> SRR1500495     1   0.665     0.4467 0.528 0.000 0.060 0.264 0.016 0.132
#> SRR1405099     1   0.547     0.6036 0.692 0.000 0.024 0.136 0.036 0.112
#> SRR1345585     4   0.557     0.3891 0.028 0.000 0.344 0.556 0.004 0.068
#> SRR1093196     4   0.309     0.6339 0.032 0.000 0.060 0.860 0.000 0.048
#> SRR1466006     2   0.682     0.1290 0.012 0.388 0.024 0.000 0.248 0.328
#> SRR1351557     2   0.289     0.7399 0.008 0.872 0.012 0.000 0.032 0.076
#> SRR1382687     6   0.696     0.5778 0.176 0.000 0.128 0.184 0.004 0.508
#> SRR1375549     5   0.550     0.5286 0.224 0.000 0.008 0.020 0.636 0.112
#> SRR1101765     6   0.722    -0.1888 0.040 0.000 0.020 0.272 0.324 0.344
#> SRR1334461     5   0.292     0.6754 0.120 0.016 0.004 0.004 0.852 0.004
#> SRR1094073     2   0.246     0.7427 0.008 0.892 0.048 0.000 0.000 0.052
#> SRR1077549     4   0.480     0.2597 0.400 0.000 0.020 0.556 0.000 0.024
#> SRR1440332     4   0.372     0.6110 0.128 0.000 0.024 0.808 0.004 0.036
#> SRR1454177     4   0.321     0.5880 0.016 0.000 0.116 0.836 0.000 0.032
#> SRR1082447     1   0.447     0.4796 0.740 0.000 0.012 0.068 0.008 0.172
#> SRR1420043     4   0.261     0.6404 0.036 0.000 0.052 0.888 0.000 0.024
#> SRR1432500     4   0.388     0.5491 0.200 0.000 0.012 0.760 0.004 0.024
#> SRR1378045     3   0.410     0.6076 0.008 0.140 0.780 0.016 0.000 0.056
#> SRR1334200     5   0.472     0.5497 0.020 0.000 0.020 0.012 0.656 0.292
#> SRR1069539     4   0.529     0.4054 0.012 0.012 0.004 0.672 0.200 0.100
#> SRR1343031     4   0.404     0.6196 0.096 0.000 0.076 0.796 0.004 0.028
#> SRR1319690     4   0.685     0.2319 0.204 0.000 0.080 0.512 0.008 0.196
#> SRR1310604     2   0.574     0.2564 0.008 0.496 0.008 0.004 0.396 0.088
#> SRR1327747     4   0.398     0.5739 0.068 0.000 0.008 0.792 0.012 0.120
#> SRR1072456     2   0.381     0.7089 0.004 0.800 0.008 0.000 0.100 0.088
#> SRR1367896     3   0.371     0.6728 0.060 0.004 0.816 0.100 0.000 0.020
#> SRR1480107     1   0.294     0.6704 0.848 0.000 0.004 0.112 0.036 0.000
#> SRR1377756     6   0.660     0.5515 0.200 0.000 0.052 0.236 0.004 0.508
#> SRR1435272     4   0.172     0.6264 0.004 0.000 0.032 0.932 0.000 0.032
#> SRR1089230     4   0.483     0.4989 0.052 0.000 0.004 0.736 0.076 0.132
#> SRR1389522     4   0.688    -0.1267 0.360 0.000 0.188 0.396 0.008 0.048
#> SRR1080600     5   0.701     0.2824 0.008 0.212 0.020 0.020 0.408 0.332
#> SRR1086935     4   0.625     0.0747 0.020 0.024 0.388 0.468 0.000 0.100
#> SRR1344060     5   0.239     0.6832 0.064 0.004 0.004 0.000 0.896 0.032
#> SRR1467922     2   0.246     0.7427 0.008 0.892 0.048 0.000 0.000 0.052
#> SRR1090984     3   0.445     0.5509 0.084 0.000 0.728 0.012 0.000 0.176
#> SRR1456991     1   0.376     0.6747 0.808 0.000 0.024 0.128 0.032 0.008
#> SRR1085039     4   0.517    -0.1461 0.448 0.000 0.016 0.492 0.004 0.040
#> SRR1069303     3   0.541     0.4886 0.364 0.000 0.552 0.004 0.024 0.056
#> SRR1091500     2   0.148     0.7458 0.000 0.940 0.040 0.000 0.000 0.020
#> SRR1075198     2   0.622     0.2076 0.008 0.460 0.012 0.008 0.388 0.124
#> SRR1086915     4   0.418     0.5377 0.044 0.000 0.000 0.784 0.076 0.096
#> SRR1499503     2   0.256     0.7412 0.008 0.888 0.004 0.000 0.032 0.068
#> SRR1094312     2   0.109     0.7489 0.000 0.960 0.020 0.000 0.000 0.020
#> SRR1352437     3   0.530     0.5080 0.360 0.000 0.560 0.040 0.000 0.040
#> SRR1436323     4   0.473     0.5662 0.160 0.000 0.052 0.728 0.000 0.060
#> SRR1073507     1   0.345     0.6423 0.800 0.000 0.012 0.164 0.000 0.024
#> SRR1401972     3   0.532     0.5021 0.356 0.000 0.564 0.004 0.020 0.056
#> SRR1415510     2   0.361     0.7343 0.012 0.836 0.040 0.000 0.036 0.076
#> SRR1327279     4   0.471     0.3927 0.284 0.000 0.028 0.656 0.000 0.032
#> SRR1086983     4   0.496     0.4740 0.156 0.000 0.028 0.700 0.000 0.116
#> SRR1105174     1   0.632     0.3234 0.500 0.000 0.016 0.260 0.008 0.216
#> SRR1468893     6   0.600     0.3604 0.388 0.000 0.032 0.056 0.024 0.500
#> SRR1362555     2   0.594     0.1318 0.008 0.436 0.008 0.004 0.436 0.108
#> SRR1074526     5   0.722     0.4460 0.020 0.108 0.060 0.028 0.496 0.288
#> SRR1326225     2   0.166     0.7436 0.000 0.928 0.056 0.000 0.000 0.016
#> SRR1401933     6   0.630     0.4911 0.324 0.000 0.048 0.096 0.012 0.520
#> SRR1324062     3   0.420     0.6830 0.084 0.000 0.784 0.084 0.000 0.048
#> SRR1102296     3   0.467     0.4612 0.412 0.000 0.548 0.004 0.000 0.036
#> SRR1085087     1   0.558     0.5522 0.648 0.000 0.108 0.204 0.012 0.028
#> SRR1079046     5   0.348     0.6673 0.056 0.004 0.012 0.000 0.828 0.100
#> SRR1328339     3   0.334     0.6696 0.208 0.000 0.776 0.004 0.000 0.012
#> SRR1079782     2   0.603     0.3026 0.008 0.508 0.012 0.004 0.348 0.120
#> SRR1092257     2   0.191     0.7443 0.000 0.924 0.044 0.000 0.012 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.653           0.827       0.921         0.4937 0.501   0.501
#> 3 3 0.518           0.504       0.730         0.3423 0.689   0.455
#> 4 4 0.515           0.596       0.762         0.1291 0.822   0.530
#> 5 5 0.550           0.509       0.702         0.0659 0.934   0.748
#> 6 6 0.619           0.477       0.683         0.0423 0.915   0.639

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000     0.8754 0.000 1.000
#> SRR1429287     2  0.0000     0.8754 0.000 1.000
#> SRR1359238     1  0.0000     0.9373 1.000 0.000
#> SRR1309597     1  0.1184     0.9298 0.984 0.016
#> SRR1441398     1  0.0000     0.9373 1.000 0.000
#> SRR1084055     2  0.0000     0.8754 0.000 1.000
#> SRR1417566     2  0.2043     0.8663 0.032 0.968
#> SRR1351857     1  0.0000     0.9373 1.000 0.000
#> SRR1487485     2  0.0000     0.8754 0.000 1.000
#> SRR1335875     2  0.8555     0.6488 0.280 0.720
#> SRR1073947     1  0.0000     0.9373 1.000 0.000
#> SRR1443483     1  0.1414     0.9278 0.980 0.020
#> SRR1346794     1  0.0000     0.9373 1.000 0.000
#> SRR1405245     1  0.0000     0.9373 1.000 0.000
#> SRR1409677     1  0.3274     0.9025 0.940 0.060
#> SRR1095549     1  0.0000     0.9373 1.000 0.000
#> SRR1323788     1  0.0000     0.9373 1.000 0.000
#> SRR1314054     2  0.0000     0.8754 0.000 1.000
#> SRR1077944     1  0.0000     0.9373 1.000 0.000
#> SRR1480587     2  0.0000     0.8754 0.000 1.000
#> SRR1311205     1  0.0000     0.9373 1.000 0.000
#> SRR1076369     1  0.8555     0.5974 0.720 0.280
#> SRR1453549     1  0.8016     0.6716 0.756 0.244
#> SRR1345782     1  0.0000     0.9373 1.000 0.000
#> SRR1447850     2  0.0000     0.8754 0.000 1.000
#> SRR1391553     2  0.0000     0.8754 0.000 1.000
#> SRR1444156     2  0.0000     0.8754 0.000 1.000
#> SRR1471731     1  0.4815     0.8650 0.896 0.104
#> SRR1120987     2  0.1184     0.8709 0.016 0.984
#> SRR1477363     1  0.0000     0.9373 1.000 0.000
#> SRR1391961     2  0.3274     0.8521 0.060 0.940
#> SRR1373879     1  0.2236     0.9188 0.964 0.036
#> SRR1318732     1  0.9686     0.3266 0.604 0.396
#> SRR1091404     1  0.0000     0.9373 1.000 0.000
#> SRR1402109     1  0.0000     0.9373 1.000 0.000
#> SRR1407336     1  0.3274     0.9025 0.940 0.060
#> SRR1097417     2  0.1184     0.8711 0.016 0.984
#> SRR1396227     1  0.3733     0.8759 0.928 0.072
#> SRR1400775     2  0.0000     0.8754 0.000 1.000
#> SRR1392861     1  0.8327     0.6453 0.736 0.264
#> SRR1472929     2  0.5408     0.8262 0.124 0.876
#> SRR1436740     1  0.2778     0.9105 0.952 0.048
#> SRR1477057     2  0.1184     0.8709 0.016 0.984
#> SRR1311980     2  0.8861     0.6197 0.304 0.696
#> SRR1069400     1  0.2603     0.9137 0.956 0.044
#> SRR1351016     1  0.0000     0.9373 1.000 0.000
#> SRR1096291     1  0.3584     0.8965 0.932 0.068
#> SRR1418145     2  0.7056     0.7391 0.192 0.808
#> SRR1488111     2  0.0000     0.8754 0.000 1.000
#> SRR1370495     2  0.8499     0.6700 0.276 0.724
#> SRR1352639     1  0.0376     0.9354 0.996 0.004
#> SRR1348911     2  0.7815     0.7098 0.232 0.768
#> SRR1467386     1  0.0000     0.9373 1.000 0.000
#> SRR1415956     1  0.0000     0.9373 1.000 0.000
#> SRR1500495     1  0.0000     0.9373 1.000 0.000
#> SRR1405099     1  0.0000     0.9373 1.000 0.000
#> SRR1345585     1  0.9988     0.0808 0.520 0.480
#> SRR1093196     1  0.3274     0.9025 0.940 0.060
#> SRR1466006     2  0.0000     0.8754 0.000 1.000
#> SRR1351557     2  0.0000     0.8754 0.000 1.000
#> SRR1382687     1  0.0376     0.9351 0.996 0.004
#> SRR1375549     1  0.7950     0.6348 0.760 0.240
#> SRR1101765     1  0.8661     0.5818 0.712 0.288
#> SRR1334461     2  0.8386     0.6843 0.268 0.732
#> SRR1094073     2  0.0000     0.8754 0.000 1.000
#> SRR1077549     1  0.0000     0.9373 1.000 0.000
#> SRR1440332     1  0.0000     0.9373 1.000 0.000
#> SRR1454177     1  0.3431     0.9007 0.936 0.064
#> SRR1082447     1  0.0000     0.9373 1.000 0.000
#> SRR1420043     1  0.0000     0.9373 1.000 0.000
#> SRR1432500     1  0.0000     0.9373 1.000 0.000
#> SRR1378045     2  0.0000     0.8754 0.000 1.000
#> SRR1334200     2  0.3274     0.8498 0.060 0.940
#> SRR1069539     2  0.9896     0.2226 0.440 0.560
#> SRR1343031     1  0.0000     0.9373 1.000 0.000
#> SRR1319690     1  0.0000     0.9373 1.000 0.000
#> SRR1310604     2  0.4022     0.8380 0.080 0.920
#> SRR1327747     1  0.0376     0.9356 0.996 0.004
#> SRR1072456     2  0.0000     0.8754 0.000 1.000
#> SRR1367896     2  0.8555     0.6488 0.280 0.720
#> SRR1480107     1  0.0000     0.9373 1.000 0.000
#> SRR1377756     1  0.0000     0.9373 1.000 0.000
#> SRR1435272     1  0.3274     0.9025 0.940 0.060
#> SRR1089230     1  0.3274     0.9025 0.940 0.060
#> SRR1389522     1  0.0000     0.9373 1.000 0.000
#> SRR1080600     2  0.7139     0.7344 0.196 0.804
#> SRR1086935     2  0.0000     0.8754 0.000 1.000
#> SRR1344060     2  0.3274     0.8521 0.060 0.940
#> SRR1467922     2  0.0000     0.8754 0.000 1.000
#> SRR1090984     2  0.9248     0.5615 0.340 0.660
#> SRR1456991     1  0.0000     0.9373 1.000 0.000
#> SRR1085039     1  0.0000     0.9373 1.000 0.000
#> SRR1069303     2  0.9850     0.3737 0.428 0.572
#> SRR1091500     2  0.0000     0.8754 0.000 1.000
#> SRR1075198     2  0.6801     0.7522 0.180 0.820
#> SRR1086915     1  0.3274     0.9025 0.940 0.060
#> SRR1499503     2  0.0000     0.8754 0.000 1.000
#> SRR1094312     2  0.0000     0.8754 0.000 1.000
#> SRR1352437     2  0.9896     0.3412 0.440 0.560
#> SRR1436323     1  0.0000     0.9373 1.000 0.000
#> SRR1073507     1  0.0000     0.9373 1.000 0.000
#> SRR1401972     2  0.9850     0.3737 0.428 0.572
#> SRR1415510     2  0.0000     0.8754 0.000 1.000
#> SRR1327279     1  0.0000     0.9373 1.000 0.000
#> SRR1086983     1  0.0000     0.9373 1.000 0.000
#> SRR1105174     1  0.0000     0.9373 1.000 0.000
#> SRR1468893     1  0.0000     0.9373 1.000 0.000
#> SRR1362555     2  0.7139     0.7344 0.196 0.804
#> SRR1074526     2  0.0000     0.8754 0.000 1.000
#> SRR1326225     2  0.0000     0.8754 0.000 1.000
#> SRR1401933     1  0.0000     0.9373 1.000 0.000
#> SRR1324062     1  0.9775     0.1802 0.588 0.412
#> SRR1102296     2  0.9795     0.4040 0.416 0.584
#> SRR1085087     1  0.2043     0.9143 0.968 0.032
#> SRR1079046     2  0.3274     0.8521 0.060 0.940
#> SRR1328339     2  0.9732     0.4327 0.404 0.596
#> SRR1079782     2  0.3733     0.8430 0.072 0.928
#> SRR1092257     2  0.0000     0.8754 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0000     0.8453 0.000 1.000 0.000
#> SRR1429287     2  0.0000     0.8453 0.000 1.000 0.000
#> SRR1359238     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1309597     3  0.6460     0.5878 0.440 0.004 0.556
#> SRR1441398     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1084055     2  0.0424     0.8455 0.000 0.992 0.008
#> SRR1417566     2  0.9805     0.1439 0.240 0.396 0.364
#> SRR1351857     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1487485     3  0.6305    -0.2537 0.000 0.484 0.516
#> SRR1335875     3  0.9836    -0.1929 0.252 0.344 0.404
#> SRR1073947     1  0.3752     0.5631 0.856 0.000 0.144
#> SRR1443483     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1346794     1  0.6180    -0.3740 0.584 0.000 0.416
#> SRR1405245     1  0.3879     0.5657 0.848 0.000 0.152
#> SRR1409677     3  0.6045     0.5766 0.380 0.000 0.620
#> SRR1095549     3  0.6309     0.5260 0.500 0.000 0.500
#> SRR1323788     1  0.6302    -0.5172 0.520 0.000 0.480
#> SRR1314054     2  0.1643     0.8319 0.000 0.956 0.044
#> SRR1077944     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1480587     2  0.0000     0.8453 0.000 1.000 0.000
#> SRR1311205     1  0.0424     0.6115 0.992 0.000 0.008
#> SRR1076369     3  0.6587     0.5608 0.352 0.016 0.632
#> SRR1453549     3  0.2448     0.3990 0.000 0.076 0.924
#> SRR1345782     1  0.1031     0.5996 0.976 0.000 0.024
#> SRR1447850     2  0.5178     0.6566 0.000 0.744 0.256
#> SRR1391553     2  0.6209     0.5252 0.004 0.628 0.368
#> SRR1444156     2  0.0747     0.8444 0.000 0.984 0.016
#> SRR1471731     3  0.3618     0.4296 0.104 0.012 0.884
#> SRR1120987     2  0.5529     0.5833 0.000 0.704 0.296
#> SRR1477363     1  0.5058     0.1779 0.756 0.000 0.244
#> SRR1391961     2  0.6280     0.1926 0.460 0.540 0.000
#> SRR1373879     3  0.6062     0.5840 0.384 0.000 0.616
#> SRR1318732     3  0.9268    -0.0322 0.348 0.168 0.484
#> SRR1091404     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1402109     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1407336     3  0.6204     0.5918 0.424 0.000 0.576
#> SRR1097417     2  0.6008     0.5262 0.000 0.628 0.372
#> SRR1396227     1  0.5926     0.4340 0.644 0.000 0.356
#> SRR1400775     2  0.0747     0.8444 0.000 0.984 0.016
#> SRR1392861     3  0.2448     0.3990 0.000 0.076 0.924
#> SRR1472929     2  0.8249     0.2267 0.424 0.500 0.076
#> SRR1436740     3  0.4452     0.4354 0.192 0.000 0.808
#> SRR1477057     2  0.5461     0.6551 0.216 0.768 0.016
#> SRR1311980     1  0.8784     0.3627 0.512 0.120 0.368
#> SRR1069400     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1351016     1  0.0892     0.6132 0.980 0.000 0.020
#> SRR1096291     3  0.5968     0.5701 0.364 0.000 0.636
#> SRR1418145     2  0.2625     0.8147 0.000 0.916 0.084
#> SRR1488111     2  0.0592     0.8453 0.000 0.988 0.012
#> SRR1370495     1  0.8273    -0.1282 0.476 0.448 0.076
#> SRR1352639     1  0.4658     0.5627 0.856 0.068 0.076
#> SRR1348911     3  0.9811    -0.2403 0.240 0.376 0.384
#> SRR1467386     1  0.4974     0.1753 0.764 0.000 0.236
#> SRR1415956     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1500495     1  0.1860     0.5761 0.948 0.000 0.052
#> SRR1405099     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1345585     3  0.7495     0.3220 0.120 0.188 0.692
#> SRR1093196     3  0.4605     0.5138 0.204 0.000 0.796
#> SRR1466006     2  0.2448     0.8180 0.000 0.924 0.076
#> SRR1351557     2  0.0237     0.8456 0.000 0.996 0.004
#> SRR1382687     3  0.4750     0.4394 0.216 0.000 0.784
#> SRR1375549     1  0.6324     0.4942 0.764 0.160 0.076
#> SRR1101765     3  0.6696     0.5605 0.348 0.020 0.632
#> SRR1334461     1  0.8249    -0.0628 0.500 0.424 0.076
#> SRR1094073     2  0.0747     0.8444 0.000 0.984 0.016
#> SRR1077549     3  0.6274     0.4109 0.456 0.000 0.544
#> SRR1440332     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1454177     3  0.3267     0.4657 0.116 0.000 0.884
#> SRR1082447     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1420043     3  0.6204     0.5910 0.424 0.000 0.576
#> SRR1432500     3  0.6252     0.5852 0.444 0.000 0.556
#> SRR1378045     2  0.6247     0.5149 0.004 0.620 0.376
#> SRR1334200     2  0.2860     0.8138 0.004 0.912 0.084
#> SRR1069539     3  0.6345     0.1618 0.004 0.400 0.596
#> SRR1343031     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1319690     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1310604     2  0.2448     0.8180 0.000 0.924 0.076
#> SRR1327747     3  0.6244     0.5884 0.440 0.000 0.560
#> SRR1072456     2  0.0000     0.8453 0.000 1.000 0.000
#> SRR1367896     3  0.9808    -0.1553 0.280 0.288 0.432
#> SRR1480107     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1377756     3  0.6168     0.4895 0.412 0.000 0.588
#> SRR1435272     3  0.6215     0.5911 0.428 0.000 0.572
#> SRR1089230     3  0.5968     0.5701 0.364 0.000 0.636
#> SRR1389522     1  0.2066     0.5704 0.940 0.000 0.060
#> SRR1080600     2  0.2448     0.8180 0.000 0.924 0.076
#> SRR1086935     3  0.3272     0.3795 0.004 0.104 0.892
#> SRR1344060     2  0.8102     0.3553 0.368 0.556 0.076
#> SRR1467922     2  0.0747     0.8444 0.000 0.984 0.016
#> SRR1090984     1  0.8087     0.4052 0.560 0.076 0.364
#> SRR1456991     1  0.0000     0.6157 1.000 0.000 0.000
#> SRR1085039     1  0.5785    -0.1154 0.668 0.000 0.332
#> SRR1069303     1  0.8087     0.4052 0.560 0.076 0.364
#> SRR1091500     2  0.0592     0.8453 0.000 0.988 0.012
#> SRR1075198     2  0.2448     0.8180 0.000 0.924 0.076
#> SRR1086915     3  0.5968     0.5701 0.364 0.000 0.636
#> SRR1499503     2  0.0000     0.8453 0.000 1.000 0.000
#> SRR1094312     2  0.0592     0.8453 0.000 0.988 0.012
#> SRR1352437     1  0.8087     0.4052 0.560 0.076 0.364
#> SRR1436323     3  0.4931     0.4850 0.232 0.000 0.768
#> SRR1073507     1  0.0747     0.6047 0.984 0.000 0.016
#> SRR1401972     1  0.8087     0.4052 0.560 0.076 0.364
#> SRR1415510     2  0.0237     0.8456 0.000 0.996 0.004
#> SRR1327279     1  0.6140    -0.3176 0.596 0.000 0.404
#> SRR1086983     3  0.6307     0.5269 0.488 0.000 0.512
#> SRR1105174     1  0.4346     0.3427 0.816 0.000 0.184
#> SRR1468893     1  0.2796     0.5818 0.908 0.000 0.092
#> SRR1362555     2  0.2448     0.8180 0.000 0.924 0.076
#> SRR1074526     2  0.2486     0.8257 0.008 0.932 0.060
#> SRR1326225     2  0.0592     0.8453 0.000 0.988 0.012
#> SRR1401933     1  0.4346     0.4703 0.816 0.000 0.184
#> SRR1324062     3  0.7970    -0.0810 0.300 0.088 0.612
#> SRR1102296     1  0.8087     0.4052 0.560 0.076 0.364
#> SRR1085087     1  0.4994     0.5449 0.816 0.024 0.160
#> SRR1079046     2  0.8273     0.1651 0.448 0.476 0.076
#> SRR1328339     1  0.7693     0.4132 0.580 0.056 0.364
#> SRR1079782     2  0.2448     0.8180 0.000 0.924 0.076
#> SRR1092257     2  0.0592     0.8453 0.000 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.1211      0.872 0.000 0.960 0.040 0.000
#> SRR1429287     2  0.0707      0.866 0.000 0.980 0.020 0.000
#> SRR1359238     4  0.1398      0.723 0.040 0.000 0.004 0.956
#> SRR1309597     4  0.6524      0.530 0.120 0.000 0.264 0.616
#> SRR1441398     1  0.5361      0.619 0.724 0.000 0.068 0.208
#> SRR1084055     2  0.1940      0.872 0.000 0.924 0.076 0.000
#> SRR1417566     3  0.2586      0.710 0.012 0.068 0.912 0.008
#> SRR1351857     4  0.1488      0.722 0.032 0.000 0.012 0.956
#> SRR1487485     3  0.7188      0.416 0.000 0.244 0.552 0.204
#> SRR1335875     3  0.2895      0.713 0.032 0.044 0.908 0.016
#> SRR1073947     1  0.5376      0.542 0.736 0.000 0.176 0.088
#> SRR1443483     4  0.5056      0.638 0.044 0.000 0.224 0.732
#> SRR1346794     4  0.7102     -0.177 0.448 0.020 0.072 0.460
#> SRR1405245     1  0.6750      0.125 0.540 0.000 0.356 0.104
#> SRR1409677     4  0.2521      0.719 0.060 0.004 0.020 0.916
#> SRR1095549     4  0.5519      0.481 0.264 0.000 0.052 0.684
#> SRR1323788     1  0.7500     -0.171 0.416 0.000 0.180 0.404
#> SRR1314054     2  0.2921      0.831 0.000 0.860 0.140 0.000
#> SRR1077944     1  0.3557      0.640 0.856 0.000 0.036 0.108
#> SRR1480587     2  0.1211      0.872 0.000 0.960 0.040 0.000
#> SRR1311205     1  0.4764      0.632 0.748 0.000 0.032 0.220
#> SRR1076369     4  0.6537      0.531 0.264 0.036 0.052 0.648
#> SRR1453549     4  0.5595      0.355 0.012 0.008 0.404 0.576
#> SRR1345782     1  0.5648      0.595 0.684 0.000 0.064 0.252
#> SRR1447850     2  0.4477      0.586 0.000 0.688 0.312 0.000
#> SRR1391553     3  0.2760      0.689 0.000 0.128 0.872 0.000
#> SRR1444156     2  0.2149      0.867 0.000 0.912 0.088 0.000
#> SRR1471731     3  0.4456      0.624 0.044 0.004 0.804 0.148
#> SRR1120987     2  0.7493      0.518 0.092 0.608 0.064 0.236
#> SRR1477363     1  0.6189      0.431 0.568 0.000 0.060 0.372
#> SRR1391961     1  0.6177      0.140 0.488 0.468 0.040 0.004
#> SRR1373879     4  0.4839      0.674 0.052 0.000 0.184 0.764
#> SRR1318732     3  0.7196      0.355 0.308 0.020 0.568 0.104
#> SRR1091404     1  0.4054      0.648 0.796 0.000 0.016 0.188
#> SRR1402109     4  0.4462      0.688 0.044 0.000 0.164 0.792
#> SRR1407336     4  0.2385      0.727 0.028 0.000 0.052 0.920
#> SRR1097417     3  0.3533      0.695 0.008 0.104 0.864 0.024
#> SRR1396227     1  0.5173      0.330 0.660 0.000 0.320 0.020
#> SRR1400775     2  0.2408      0.860 0.000 0.896 0.104 0.000
#> SRR1392861     4  0.4769      0.473 0.000 0.008 0.308 0.684
#> SRR1472929     1  0.6007      0.125 0.520 0.444 0.032 0.004
#> SRR1436740     4  0.6187      0.584 0.144 0.000 0.184 0.672
#> SRR1477057     2  0.5110      0.733 0.132 0.764 0.104 0.000
#> SRR1311980     3  0.2053      0.704 0.072 0.004 0.924 0.000
#> SRR1069400     4  0.3877      0.713 0.048 0.000 0.112 0.840
#> SRR1351016     1  0.5091      0.635 0.752 0.000 0.068 0.180
#> SRR1096291     4  0.4232      0.668 0.168 0.004 0.024 0.804
#> SRR1418145     2  0.2830      0.825 0.060 0.904 0.004 0.032
#> SRR1488111     2  0.2081      0.869 0.000 0.916 0.084 0.000
#> SRR1370495     1  0.6850      0.320 0.560 0.360 0.036 0.044
#> SRR1352639     1  0.2636      0.602 0.916 0.052 0.012 0.020
#> SRR1348911     3  0.3215      0.707 0.020 0.076 0.888 0.016
#> SRR1467386     1  0.5427      0.356 0.568 0.000 0.016 0.416
#> SRR1415956     1  0.4035      0.652 0.804 0.000 0.020 0.176
#> SRR1500495     1  0.6100      0.553 0.644 0.000 0.084 0.272
#> SRR1405099     1  0.3969      0.651 0.804 0.000 0.016 0.180
#> SRR1345585     3  0.6500      0.231 0.016 0.048 0.568 0.368
#> SRR1093196     4  0.4050      0.709 0.036 0.000 0.144 0.820
#> SRR1466006     2  0.0804      0.861 0.008 0.980 0.012 0.000
#> SRR1351557     2  0.1302      0.872 0.000 0.956 0.044 0.000
#> SRR1382687     3  0.7824      0.222 0.244 0.004 0.456 0.296
#> SRR1375549     1  0.5515      0.584 0.776 0.092 0.040 0.092
#> SRR1101765     4  0.5975      0.596 0.192 0.044 0.044 0.720
#> SRR1334461     1  0.6118      0.358 0.604 0.348 0.032 0.016
#> SRR1094073     2  0.2149      0.867 0.000 0.912 0.088 0.000
#> SRR1077549     4  0.5962      0.540 0.260 0.000 0.080 0.660
#> SRR1440332     4  0.3279      0.709 0.096 0.000 0.032 0.872
#> SRR1454177     4  0.4194      0.602 0.008 0.000 0.228 0.764
#> SRR1082447     1  0.3634      0.607 0.856 0.000 0.048 0.096
#> SRR1420043     4  0.3128      0.725 0.040 0.000 0.076 0.884
#> SRR1432500     4  0.3266      0.694 0.108 0.000 0.024 0.868
#> SRR1378045     3  0.3172      0.674 0.000 0.160 0.840 0.000
#> SRR1334200     2  0.6428      0.611 0.208 0.688 0.056 0.048
#> SRR1069539     4  0.6904      0.449 0.148 0.248 0.004 0.600
#> SRR1343031     4  0.3716      0.713 0.052 0.000 0.096 0.852
#> SRR1319690     4  0.5990      0.607 0.164 0.000 0.144 0.692
#> SRR1310604     2  0.1674      0.848 0.032 0.952 0.004 0.012
#> SRR1327747     4  0.2739      0.715 0.060 0.000 0.036 0.904
#> SRR1072456     2  0.1474      0.871 0.000 0.948 0.052 0.000
#> SRR1367896     3  0.2643      0.711 0.024 0.028 0.920 0.028
#> SRR1480107     1  0.4245      0.642 0.784 0.000 0.020 0.196
#> SRR1377756     1  0.7641     -0.107 0.416 0.000 0.208 0.376
#> SRR1435272     4  0.1305      0.729 0.004 0.000 0.036 0.960
#> SRR1089230     4  0.4260      0.652 0.180 0.004 0.020 0.796
#> SRR1389522     1  0.7728      0.232 0.424 0.000 0.236 0.340
#> SRR1080600     2  0.3702      0.795 0.100 0.860 0.012 0.028
#> SRR1086935     3  0.5564      0.165 0.000 0.020 0.544 0.436
#> SRR1344060     2  0.5997      0.128 0.436 0.528 0.032 0.004
#> SRR1467922     2  0.2149      0.867 0.000 0.912 0.088 0.000
#> SRR1090984     3  0.3389      0.678 0.104 0.004 0.868 0.024
#> SRR1456991     1  0.4464      0.639 0.768 0.000 0.024 0.208
#> SRR1085039     4  0.5943      0.203 0.360 0.000 0.048 0.592
#> SRR1069303     3  0.5080      0.308 0.420 0.000 0.576 0.004
#> SRR1091500     2  0.2216      0.866 0.000 0.908 0.092 0.000
#> SRR1075198     2  0.2365      0.832 0.064 0.920 0.004 0.012
#> SRR1086915     4  0.3990      0.657 0.176 0.004 0.012 0.808
#> SRR1499503     2  0.1211      0.872 0.000 0.960 0.040 0.000
#> SRR1094312     2  0.2216      0.866 0.000 0.908 0.092 0.000
#> SRR1352437     3  0.5596      0.466 0.332 0.000 0.632 0.036
#> SRR1436323     4  0.5859      0.635 0.156 0.000 0.140 0.704
#> SRR1073507     1  0.4095      0.635 0.804 0.000 0.024 0.172
#> SRR1401972     3  0.4905      0.425 0.364 0.000 0.632 0.004
#> SRR1415510     2  0.1302      0.872 0.000 0.956 0.044 0.000
#> SRR1327279     4  0.5118      0.620 0.176 0.000 0.072 0.752
#> SRR1086983     4  0.6238      0.496 0.296 0.000 0.084 0.620
#> SRR1105174     1  0.5339      0.493 0.688 0.000 0.040 0.272
#> SRR1468893     1  0.4055      0.574 0.832 0.000 0.060 0.108
#> SRR1362555     2  0.2781      0.823 0.072 0.904 0.008 0.016
#> SRR1074526     2  0.7313      0.580 0.064 0.640 0.192 0.104
#> SRR1326225     2  0.2345      0.863 0.000 0.900 0.100 0.000
#> SRR1401933     1  0.4906      0.532 0.776 0.000 0.084 0.140
#> SRR1324062     3  0.3547      0.696 0.064 0.000 0.864 0.072
#> SRR1102296     3  0.4936      0.423 0.372 0.000 0.624 0.004
#> SRR1085087     1  0.6442      0.601 0.676 0.016 0.108 0.200
#> SRR1079046     1  0.6440      0.276 0.568 0.372 0.044 0.016
#> SRR1328339     3  0.4533      0.600 0.232 0.004 0.752 0.012
#> SRR1079782     2  0.2040      0.841 0.048 0.936 0.004 0.012
#> SRR1092257     2  0.2281      0.864 0.000 0.904 0.096 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0955     0.8229 0.000 0.968 0.004 0.000 0.028
#> SRR1429287     2  0.3098     0.7667 0.000 0.836 0.016 0.000 0.148
#> SRR1359238     4  0.2819     0.6431 0.060 0.000 0.004 0.884 0.052
#> SRR1309597     4  0.6992     0.3852 0.140 0.000 0.176 0.584 0.100
#> SRR1441398     1  0.6625     0.5372 0.596 0.000 0.052 0.212 0.140
#> SRR1084055     2  0.1485     0.8223 0.000 0.948 0.020 0.000 0.032
#> SRR1417566     3  0.3385     0.6628 0.016 0.084 0.856 0.000 0.044
#> SRR1351857     4  0.3730     0.6284 0.036 0.000 0.004 0.808 0.152
#> SRR1487485     3  0.7369     0.3111 0.004 0.288 0.420 0.264 0.024
#> SRR1335875     3  0.3796     0.6666 0.016 0.088 0.840 0.048 0.008
#> SRR1073947     1  0.4348     0.5190 0.768 0.000 0.180 0.032 0.020
#> SRR1443483     4  0.4112     0.5925 0.048 0.000 0.136 0.800 0.016
#> SRR1346794     5  0.7194    -0.1008 0.292 0.000 0.032 0.216 0.460
#> SRR1405245     1  0.7180     0.2743 0.500 0.000 0.204 0.044 0.252
#> SRR1409677     4  0.3754     0.6140 0.020 0.000 0.008 0.796 0.176
#> SRR1095549     4  0.6846    -0.0735 0.404 0.000 0.048 0.448 0.100
#> SRR1323788     1  0.7857     0.2071 0.432 0.000 0.148 0.124 0.296
#> SRR1314054     2  0.1341     0.8106 0.000 0.944 0.056 0.000 0.000
#> SRR1077944     1  0.2790     0.5390 0.892 0.000 0.028 0.020 0.060
#> SRR1480587     2  0.0963     0.8212 0.000 0.964 0.000 0.000 0.036
#> SRR1311205     1  0.4670     0.6083 0.748 0.000 0.032 0.188 0.032
#> SRR1076369     5  0.5456     0.3018 0.120 0.000 0.016 0.172 0.692
#> SRR1453549     4  0.5059     0.3899 0.008 0.008 0.316 0.644 0.024
#> SRR1345782     1  0.5140     0.5524 0.668 0.000 0.044 0.272 0.016
#> SRR1447850     2  0.2753     0.7296 0.000 0.856 0.136 0.000 0.008
#> SRR1391553     3  0.2583     0.6571 0.000 0.132 0.864 0.000 0.004
#> SRR1444156     2  0.0609     0.8252 0.000 0.980 0.020 0.000 0.000
#> SRR1471731     3  0.3981     0.6314 0.044 0.000 0.820 0.108 0.028
#> SRR1120987     2  0.8498     0.0779 0.052 0.436 0.072 0.248 0.192
#> SRR1477363     1  0.6476     0.4586 0.544 0.000 0.024 0.308 0.124
#> SRR1391961     5  0.6835     0.4464 0.292 0.276 0.004 0.000 0.428
#> SRR1373879     4  0.3602     0.6075 0.036 0.000 0.140 0.820 0.004
#> SRR1318732     3  0.7354     0.1090 0.260 0.008 0.408 0.016 0.308
#> SRR1091404     1  0.4480     0.6011 0.776 0.000 0.016 0.140 0.068
#> SRR1402109     4  0.3299     0.6178 0.040 0.000 0.108 0.848 0.004
#> SRR1407336     4  0.1597     0.6491 0.008 0.000 0.020 0.948 0.024
#> SRR1097417     3  0.5425     0.6228 0.008 0.140 0.732 0.080 0.040
#> SRR1396227     1  0.5264     0.2471 0.604 0.000 0.340 0.004 0.052
#> SRR1400775     2  0.0963     0.8218 0.000 0.964 0.036 0.000 0.000
#> SRR1392861     4  0.5583     0.4820 0.004 0.016 0.224 0.672 0.084
#> SRR1472929     5  0.6000     0.5251 0.268 0.160 0.000 0.000 0.572
#> SRR1436740     4  0.7624     0.4000 0.208 0.000 0.180 0.500 0.112
#> SRR1477057     2  0.6236     0.4841 0.120 0.656 0.068 0.000 0.156
#> SRR1311980     3  0.1893     0.6700 0.048 0.024 0.928 0.000 0.000
#> SRR1069400     4  0.2792     0.6271 0.040 0.000 0.072 0.884 0.004
#> SRR1351016     1  0.4503     0.5726 0.780 0.000 0.112 0.092 0.016
#> SRR1096291     4  0.5436     0.5271 0.084 0.004 0.008 0.672 0.232
#> SRR1418145     2  0.4691     0.5435 0.000 0.636 0.004 0.020 0.340
#> SRR1488111     2  0.1364     0.8261 0.000 0.952 0.036 0.000 0.012
#> SRR1370495     5  0.5903     0.5154 0.292 0.120 0.000 0.004 0.584
#> SRR1352639     1  0.5075     0.2133 0.620 0.012 0.020 0.004 0.344
#> SRR1348911     3  0.4177     0.6481 0.004 0.148 0.796 0.036 0.016
#> SRR1467386     1  0.5593     0.4713 0.628 0.000 0.032 0.296 0.044
#> SRR1415956     1  0.5236     0.5981 0.720 0.000 0.020 0.148 0.112
#> SRR1500495     1  0.6461     0.5127 0.584 0.000 0.044 0.268 0.104
#> SRR1405099     1  0.5170     0.5944 0.724 0.000 0.020 0.156 0.100
#> SRR1345585     3  0.6736     0.0834 0.024 0.048 0.464 0.424 0.040
#> SRR1093196     4  0.5306     0.5924 0.072 0.000 0.160 0.724 0.044
#> SRR1466006     2  0.3143     0.7204 0.000 0.796 0.000 0.000 0.204
#> SRR1351557     2  0.0865     0.8236 0.000 0.972 0.004 0.000 0.024
#> SRR1382687     3  0.7920     0.0713 0.288 0.000 0.348 0.072 0.292
#> SRR1375549     5  0.4474     0.4071 0.332 0.004 0.000 0.012 0.652
#> SRR1101765     5  0.4746     0.2199 0.032 0.000 0.008 0.276 0.684
#> SRR1334461     5  0.6011     0.4882 0.320 0.120 0.000 0.004 0.556
#> SRR1094073     2  0.0609     0.8252 0.000 0.980 0.020 0.000 0.000
#> SRR1077549     4  0.7127     0.2198 0.368 0.000 0.112 0.456 0.064
#> SRR1440332     4  0.3784     0.5861 0.140 0.000 0.024 0.816 0.020
#> SRR1454177     4  0.5232     0.5571 0.024 0.000 0.164 0.720 0.092
#> SRR1082447     1  0.4268     0.3841 0.708 0.000 0.016 0.004 0.272
#> SRR1420043     4  0.1695     0.6472 0.008 0.000 0.044 0.940 0.008
#> SRR1432500     4  0.3728     0.5688 0.164 0.000 0.008 0.804 0.024
#> SRR1378045     3  0.3933     0.6194 0.000 0.196 0.776 0.008 0.020
#> SRR1334200     5  0.3584     0.5331 0.020 0.148 0.000 0.012 0.820
#> SRR1069539     4  0.6427     0.2402 0.008 0.112 0.008 0.508 0.364
#> SRR1343031     4  0.2673     0.6281 0.044 0.000 0.060 0.892 0.004
#> SRR1319690     4  0.7307     0.1837 0.200 0.000 0.052 0.488 0.260
#> SRR1310604     2  0.3752     0.6287 0.000 0.708 0.000 0.000 0.292
#> SRR1327747     4  0.4940     0.5679 0.052 0.000 0.020 0.720 0.208
#> SRR1072456     2  0.1908     0.7994 0.000 0.908 0.000 0.000 0.092
#> SRR1367896     3  0.4357     0.6496 0.016 0.056 0.804 0.112 0.012
#> SRR1480107     1  0.3862     0.5999 0.816 0.000 0.032 0.132 0.020
#> SRR1377756     5  0.7797    -0.1437 0.368 0.000 0.168 0.092 0.372
#> SRR1435272     4  0.2992     0.6427 0.012 0.000 0.024 0.872 0.092
#> SRR1089230     4  0.6006     0.4272 0.096 0.000 0.012 0.564 0.328
#> SRR1389522     4  0.7428    -0.1921 0.384 0.000 0.144 0.404 0.068
#> SRR1080600     2  0.4440     0.3105 0.000 0.528 0.000 0.004 0.468
#> SRR1086935     3  0.8133     0.1824 0.024 0.096 0.440 0.304 0.136
#> SRR1344060     5  0.6083     0.5381 0.204 0.224 0.000 0.000 0.572
#> SRR1467922     2  0.0865     0.8229 0.000 0.972 0.024 0.000 0.004
#> SRR1090984     3  0.4602     0.6147 0.100 0.020 0.776 0.000 0.104
#> SRR1456991     1  0.4411     0.5985 0.780 0.000 0.036 0.152 0.032
#> SRR1085039     4  0.6017    -0.1202 0.436 0.000 0.020 0.480 0.064
#> SRR1069303     3  0.5334     0.3902 0.328 0.008 0.612 0.000 0.052
#> SRR1091500     2  0.1082     0.8246 0.000 0.964 0.028 0.000 0.008
#> SRR1075198     2  0.3895     0.5876 0.000 0.680 0.000 0.000 0.320
#> SRR1086915     4  0.5699     0.4774 0.092 0.000 0.008 0.612 0.288
#> SRR1499503     2  0.0794     0.8226 0.000 0.972 0.000 0.000 0.028
#> SRR1094312     2  0.0794     0.8246 0.000 0.972 0.028 0.000 0.000
#> SRR1352437     3  0.5398     0.4970 0.260 0.004 0.668 0.044 0.024
#> SRR1436323     4  0.6852     0.4437 0.212 0.000 0.140 0.580 0.068
#> SRR1073507     1  0.3636     0.5700 0.848 0.000 0.032 0.072 0.048
#> SRR1401972     3  0.5110     0.4783 0.272 0.012 0.668 0.000 0.048
#> SRR1415510     2  0.1012     0.8241 0.000 0.968 0.012 0.000 0.020
#> SRR1327279     4  0.5091     0.4815 0.208 0.000 0.056 0.712 0.024
#> SRR1086983     4  0.7840     0.2749 0.320 0.000 0.088 0.400 0.192
#> SRR1105174     1  0.6683     0.3979 0.532 0.000 0.020 0.180 0.268
#> SRR1468893     1  0.5769     0.1962 0.524 0.000 0.048 0.020 0.408
#> SRR1362555     2  0.4251     0.5114 0.000 0.624 0.000 0.004 0.372
#> SRR1074526     5  0.6387     0.3465 0.020 0.296 0.060 0.032 0.592
#> SRR1326225     2  0.0880     0.8239 0.000 0.968 0.032 0.000 0.000
#> SRR1401933     1  0.6237     0.1032 0.460 0.000 0.100 0.012 0.428
#> SRR1324062     3  0.3587     0.6619 0.048 0.020 0.864 0.044 0.024
#> SRR1102296     3  0.4670     0.4506 0.328 0.008 0.648 0.000 0.016
#> SRR1085087     1  0.6757     0.4719 0.608 0.004 0.200 0.112 0.076
#> SRR1079046     5  0.5375     0.5484 0.196 0.124 0.004 0.000 0.676
#> SRR1328339     3  0.4375     0.5956 0.200 0.008 0.756 0.004 0.032
#> SRR1079782     2  0.3814     0.6406 0.000 0.720 0.004 0.000 0.276
#> SRR1092257     2  0.1041     0.8248 0.000 0.964 0.032 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0858     0.8302 0.000 0.968 0.000 0.000 0.028 0.004
#> SRR1429287     2  0.3121     0.6983 0.000 0.796 0.008 0.000 0.192 0.004
#> SRR1359238     4  0.4522     0.5181 0.140 0.000 0.012 0.760 0.036 0.052
#> SRR1309597     4  0.8160     0.2416 0.136 0.000 0.200 0.360 0.052 0.252
#> SRR1441398     1  0.6890     0.1890 0.456 0.000 0.016 0.120 0.072 0.336
#> SRR1084055     2  0.1219     0.8226 0.000 0.948 0.004 0.000 0.048 0.000
#> SRR1417566     3  0.3408     0.6411 0.000 0.048 0.800 0.000 0.000 0.152
#> SRR1351857     4  0.4398     0.4904 0.056 0.000 0.004 0.776 0.068 0.096
#> SRR1487485     3  0.7627     0.2452 0.012 0.276 0.452 0.140 0.032 0.088
#> SRR1335875     3  0.2543     0.6638 0.020 0.036 0.904 0.020 0.016 0.004
#> SRR1073947     1  0.3596     0.5128 0.828 0.000 0.104 0.012 0.032 0.024
#> SRR1443483     4  0.7539     0.4162 0.132 0.000 0.200 0.492 0.052 0.124
#> SRR1346794     6  0.7591     0.3364 0.204 0.000 0.020 0.136 0.204 0.436
#> SRR1405245     6  0.4755     0.5620 0.184 0.000 0.064 0.008 0.024 0.720
#> SRR1409677     4  0.4106     0.4930 0.028 0.000 0.004 0.788 0.116 0.064
#> SRR1095549     1  0.6991     0.2711 0.492 0.000 0.044 0.252 0.032 0.180
#> SRR1323788     6  0.3415     0.6127 0.120 0.000 0.024 0.024 0.004 0.828
#> SRR1314054     2  0.0547     0.8268 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR1077944     1  0.3354     0.4703 0.792 0.000 0.000 0.008 0.016 0.184
#> SRR1480587     2  0.1531     0.8154 0.000 0.928 0.000 0.000 0.068 0.004
#> SRR1311205     1  0.4885     0.5204 0.744 0.000 0.012 0.108 0.052 0.084
#> SRR1076369     6  0.5819     0.1431 0.000 0.000 0.008 0.148 0.368 0.476
#> SRR1453549     4  0.5685     0.2815 0.032 0.000 0.380 0.528 0.016 0.044
#> SRR1345782     1  0.5288     0.4962 0.716 0.000 0.040 0.132 0.032 0.080
#> SRR1447850     2  0.2214     0.7626 0.000 0.892 0.092 0.000 0.004 0.012
#> SRR1391553     3  0.3406     0.6526 0.000 0.136 0.816 0.004 0.004 0.040
#> SRR1444156     2  0.0146     0.8320 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1471731     3  0.5390     0.5933 0.040 0.000 0.688 0.108 0.012 0.152
#> SRR1120987     4  0.7615     0.0703 0.028 0.352 0.028 0.412 0.104 0.076
#> SRR1477363     1  0.6525     0.1022 0.428 0.000 0.016 0.148 0.024 0.384
#> SRR1391961     5  0.4813     0.6365 0.144 0.156 0.008 0.000 0.692 0.000
#> SRR1373879     4  0.6999     0.4596 0.108 0.000 0.212 0.544 0.040 0.096
#> SRR1318732     6  0.3240     0.5972 0.028 0.008 0.144 0.000 0.000 0.820
#> SRR1091404     1  0.3481     0.5566 0.836 0.000 0.000 0.044 0.052 0.068
#> SRR1402109     4  0.6712     0.4725 0.096 0.000 0.168 0.592 0.044 0.100
#> SRR1407336     4  0.4397     0.5463 0.056 0.000 0.076 0.792 0.028 0.048
#> SRR1097417     3  0.4989     0.5952 0.012 0.088 0.760 0.028 0.072 0.040
#> SRR1396227     1  0.6140     0.0911 0.556 0.000 0.272 0.000 0.072 0.100
#> SRR1400775     2  0.0520     0.8318 0.000 0.984 0.008 0.000 0.008 0.000
#> SRR1392861     4  0.4144     0.4767 0.008 0.004 0.172 0.768 0.016 0.032
#> SRR1472929     5  0.3667     0.6859 0.124 0.040 0.004 0.000 0.812 0.020
#> SRR1436740     4  0.6764     0.2335 0.296 0.000 0.068 0.504 0.020 0.112
#> SRR1477057     2  0.6171     0.1051 0.120 0.516 0.048 0.000 0.316 0.000
#> SRR1311980     3  0.3075     0.6741 0.096 0.004 0.852 0.008 0.000 0.040
#> SRR1069400     4  0.6946     0.4677 0.116 0.000 0.148 0.576 0.052 0.108
#> SRR1351016     1  0.2689     0.5440 0.888 0.000 0.056 0.008 0.032 0.016
#> SRR1096291     4  0.5159     0.4195 0.008 0.000 0.016 0.676 0.104 0.196
#> SRR1418145     2  0.6179     0.0731 0.004 0.460 0.012 0.092 0.408 0.024
#> SRR1488111     2  0.1490     0.8248 0.000 0.948 0.016 0.008 0.024 0.004
#> SRR1370495     5  0.2806     0.6801 0.136 0.016 0.000 0.004 0.844 0.000
#> SRR1352639     1  0.6315     0.1622 0.472 0.004 0.012 0.008 0.340 0.164
#> SRR1348911     3  0.3288     0.6534 0.016 0.076 0.860 0.012 0.020 0.016
#> SRR1467386     1  0.3827     0.5175 0.776 0.000 0.000 0.164 0.008 0.052
#> SRR1415956     1  0.6723     0.3538 0.556 0.000 0.036 0.084 0.084 0.240
#> SRR1500495     1  0.6925     0.1930 0.452 0.000 0.024 0.156 0.044 0.324
#> SRR1405099     1  0.6058     0.3954 0.604 0.000 0.016 0.072 0.068 0.240
#> SRR1345585     3  0.7766     0.1591 0.056 0.040 0.476 0.224 0.032 0.172
#> SRR1093196     4  0.6290     0.4559 0.112 0.000 0.096 0.628 0.024 0.140
#> SRR1466006     2  0.3910     0.4985 0.000 0.660 0.004 0.000 0.328 0.008
#> SRR1351557     2  0.0692     0.8308 0.000 0.976 0.000 0.000 0.020 0.004
#> SRR1382687     6  0.3649     0.6083 0.032 0.000 0.108 0.044 0.000 0.816
#> SRR1375549     5  0.4373     0.5789 0.192 0.000 0.000 0.004 0.720 0.084
#> SRR1101765     5  0.6203     0.1743 0.008 0.004 0.008 0.292 0.508 0.180
#> SRR1334461     5  0.3109     0.6658 0.168 0.016 0.000 0.004 0.812 0.000
#> SRR1094073     2  0.0146     0.8320 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1077549     1  0.5265     0.1471 0.568 0.000 0.020 0.360 0.008 0.044
#> SRR1440332     4  0.6966     0.3572 0.252 0.000 0.076 0.528 0.044 0.100
#> SRR1454177     4  0.4145     0.5080 0.036 0.000 0.104 0.800 0.024 0.036
#> SRR1082447     1  0.4746     0.0135 0.508 0.000 0.000 0.000 0.048 0.444
#> SRR1420043     4  0.5420     0.5261 0.072 0.000 0.124 0.712 0.036 0.056
#> SRR1432500     4  0.5798     0.3339 0.296 0.000 0.036 0.592 0.036 0.040
#> SRR1378045     3  0.3746     0.6120 0.000 0.192 0.760 0.000 0.000 0.048
#> SRR1334200     5  0.3783     0.6056 0.000 0.048 0.004 0.012 0.796 0.140
#> SRR1069539     4  0.6131     0.2717 0.000 0.048 0.016 0.552 0.308 0.076
#> SRR1343031     4  0.6686     0.4641 0.148 0.000 0.132 0.596 0.044 0.080
#> SRR1319690     6  0.7561     0.1157 0.144 0.000 0.068 0.280 0.064 0.444
#> SRR1310604     2  0.4070     0.3197 0.000 0.568 0.000 0.004 0.424 0.004
#> SRR1327747     4  0.6157     0.3587 0.064 0.000 0.012 0.580 0.084 0.260
#> SRR1072456     2  0.2558     0.7530 0.000 0.840 0.000 0.000 0.156 0.004
#> SRR1367896     3  0.4262     0.5841 0.040 0.008 0.812 0.052 0.036 0.052
#> SRR1480107     1  0.2172     0.5601 0.912 0.000 0.000 0.020 0.044 0.024
#> SRR1377756     6  0.3756     0.6212 0.064 0.000 0.032 0.080 0.004 0.820
#> SRR1435272     4  0.2420     0.5253 0.008 0.000 0.016 0.904 0.028 0.044
#> SRR1089230     4  0.5526     0.3344 0.012 0.000 0.004 0.604 0.128 0.252
#> SRR1389522     1  0.8256     0.0448 0.360 0.000 0.220 0.224 0.064 0.132
#> SRR1080600     5  0.5298     0.3097 0.000 0.332 0.012 0.028 0.592 0.036
#> SRR1086935     4  0.7420     0.0552 0.008 0.068 0.320 0.436 0.032 0.136
#> SRR1344060     5  0.4515     0.6821 0.092 0.076 0.004 0.000 0.768 0.060
#> SRR1467922     2  0.0146     0.8320 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1090984     3  0.4563     0.4501 0.024 0.004 0.636 0.000 0.012 0.324
#> SRR1456991     1  0.2756     0.5648 0.880 0.000 0.012 0.044 0.060 0.004
#> SRR1085039     1  0.7040     0.2680 0.468 0.000 0.032 0.296 0.048 0.156
#> SRR1069303     3  0.6167     0.4235 0.332 0.000 0.520 0.004 0.084 0.060
#> SRR1091500     2  0.0146     0.8324 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1075198     2  0.4783     0.2192 0.000 0.528 0.012 0.016 0.436 0.008
#> SRR1086915     4  0.5339     0.3690 0.012 0.000 0.008 0.640 0.108 0.232
#> SRR1499503     2  0.0858     0.8302 0.000 0.968 0.000 0.000 0.028 0.004
#> SRR1094312     2  0.0146     0.8324 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1352437     3  0.5684     0.4674 0.344 0.000 0.560 0.036 0.020 0.040
#> SRR1436323     4  0.7428     0.1837 0.272 0.000 0.088 0.408 0.016 0.216
#> SRR1073507     1  0.2883     0.5412 0.864 0.000 0.000 0.032 0.016 0.088
#> SRR1401972     3  0.5875     0.4663 0.324 0.000 0.552 0.004 0.056 0.064
#> SRR1415510     2  0.1592     0.8209 0.000 0.940 0.020 0.000 0.032 0.008
#> SRR1327279     4  0.7075     0.1605 0.368 0.000 0.120 0.420 0.036 0.056
#> SRR1086983     4  0.6518     0.0743 0.180 0.000 0.008 0.428 0.024 0.360
#> SRR1105174     6  0.6154     0.1705 0.340 0.000 0.008 0.076 0.056 0.520
#> SRR1468893     6  0.4419     0.5875 0.140 0.000 0.004 0.016 0.088 0.752
#> SRR1362555     5  0.4591     0.0446 0.000 0.420 0.012 0.008 0.552 0.008
#> SRR1074526     5  0.7000     0.4227 0.016 0.268 0.040 0.068 0.536 0.072
#> SRR1326225     2  0.0260     0.8309 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1401933     6  0.4861     0.5799 0.120 0.000 0.020 0.032 0.084 0.744
#> SRR1324062     3  0.4981     0.6446 0.080 0.004 0.744 0.076 0.008 0.088
#> SRR1102296     3  0.5232     0.4263 0.384 0.000 0.548 0.004 0.024 0.040
#> SRR1085087     1  0.5042     0.4396 0.740 0.004 0.132 0.036 0.056 0.032
#> SRR1079046     5  0.3620     0.6727 0.072 0.032 0.000 0.000 0.824 0.072
#> SRR1328339     3  0.4377     0.6127 0.204 0.004 0.728 0.000 0.012 0.052
#> SRR1079782     2  0.4365     0.4591 0.000 0.640 0.012 0.008 0.332 0.008
#> SRR1092257     2  0.0862     0.8296 0.000 0.972 0.016 0.000 0.008 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.492           0.857       0.890         0.3808 0.644   0.644
#> 3 3 0.639           0.824       0.913         0.5927 0.720   0.582
#> 4 4 0.628           0.716       0.833         0.1730 0.848   0.645
#> 5 5 0.725           0.770       0.865         0.0981 0.879   0.614
#> 6 6 0.694           0.624       0.794         0.0277 0.951   0.783

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0376      0.913 0.004 0.996
#> SRR1429287     2  0.0376      0.913 0.004 0.996
#> SRR1359238     1  0.4815      0.876 0.896 0.104
#> SRR1309597     1  0.0000      0.851 1.000 0.000
#> SRR1441398     1  0.0000      0.851 1.000 0.000
#> SRR1084055     2  0.0000      0.915 0.000 1.000
#> SRR1417566     1  0.7219      0.887 0.800 0.200
#> SRR1351857     1  0.4431      0.874 0.908 0.092
#> SRR1487485     1  0.7219      0.887 0.800 0.200
#> SRR1335875     1  0.7219      0.887 0.800 0.200
#> SRR1073947     1  0.7219      0.887 0.800 0.200
#> SRR1443483     1  0.0000      0.851 1.000 0.000
#> SRR1346794     1  0.0000      0.851 1.000 0.000
#> SRR1405245     1  0.1414      0.857 0.980 0.020
#> SRR1409677     1  0.0000      0.851 1.000 0.000
#> SRR1095549     1  0.0000      0.851 1.000 0.000
#> SRR1323788     1  0.7219      0.887 0.800 0.200
#> SRR1314054     1  0.7299      0.885 0.796 0.204
#> SRR1077944     1  0.0000      0.851 1.000 0.000
#> SRR1480587     2  0.1414      0.908 0.020 0.980
#> SRR1311205     1  0.0000      0.851 1.000 0.000
#> SRR1076369     1  0.0000      0.851 1.000 0.000
#> SRR1453549     1  0.7219      0.887 0.800 0.200
#> SRR1345782     1  0.0672      0.853 0.992 0.008
#> SRR1447850     1  0.8081      0.845 0.752 0.248
#> SRR1391553     1  0.7299      0.885 0.796 0.204
#> SRR1444156     2  0.0000      0.915 0.000 1.000
#> SRR1471731     1  0.7219      0.887 0.800 0.200
#> SRR1120987     1  0.7219      0.887 0.800 0.200
#> SRR1477363     1  0.0000      0.851 1.000 0.000
#> SRR1391961     2  0.9710      0.052 0.400 0.600
#> SRR1373879     1  0.7219      0.887 0.800 0.200
#> SRR1318732     1  0.3274      0.867 0.940 0.060
#> SRR1091404     1  0.0000      0.851 1.000 0.000
#> SRR1402109     1  0.7219      0.887 0.800 0.200
#> SRR1407336     1  0.7219      0.887 0.800 0.200
#> SRR1097417     1  0.7950      0.853 0.760 0.240
#> SRR1396227     1  0.7299      0.885 0.796 0.204
#> SRR1400775     2  0.0000      0.915 0.000 1.000
#> SRR1392861     1  0.7219      0.887 0.800 0.200
#> SRR1472929     2  0.7219      0.794 0.200 0.800
#> SRR1436740     1  0.7219      0.887 0.800 0.200
#> SRR1477057     2  0.0000      0.915 0.000 1.000
#> SRR1311980     1  0.7299      0.885 0.796 0.204
#> SRR1069400     1  0.6887      0.886 0.816 0.184
#> SRR1351016     1  0.7219      0.887 0.800 0.200
#> SRR1096291     1  0.7219      0.887 0.800 0.200
#> SRR1418145     1  0.6973      0.887 0.812 0.188
#> SRR1488111     1  0.7219      0.887 0.800 0.200
#> SRR1370495     2  0.8763      0.731 0.296 0.704
#> SRR1352639     1  0.0000      0.851 1.000 0.000
#> SRR1348911     1  0.7219      0.887 0.800 0.200
#> SRR1467386     1  0.0000      0.851 1.000 0.000
#> SRR1415956     1  0.0000      0.851 1.000 0.000
#> SRR1500495     1  0.0000      0.851 1.000 0.000
#> SRR1405099     1  0.0000      0.851 1.000 0.000
#> SRR1345585     1  0.7219      0.887 0.800 0.200
#> SRR1093196     1  0.7219      0.887 0.800 0.200
#> SRR1466006     2  0.0000      0.915 0.000 1.000
#> SRR1351557     2  0.0000      0.915 0.000 1.000
#> SRR1382687     1  0.7219      0.887 0.800 0.200
#> SRR1375549     1  0.9881     -0.166 0.564 0.436
#> SRR1101765     1  0.0000      0.851 1.000 0.000
#> SRR1334461     2  0.7453      0.791 0.212 0.788
#> SRR1094073     2  0.0000      0.915 0.000 1.000
#> SRR1077549     1  0.7219      0.887 0.800 0.200
#> SRR1440332     1  0.0000      0.851 1.000 0.000
#> SRR1454177     1  0.7219      0.887 0.800 0.200
#> SRR1082447     1  0.4431      0.874 0.908 0.092
#> SRR1420043     1  0.7219      0.887 0.800 0.200
#> SRR1432500     1  0.0000      0.851 1.000 0.000
#> SRR1378045     1  0.7219      0.887 0.800 0.200
#> SRR1334200     1  0.7453      0.879 0.788 0.212
#> SRR1069539     1  0.7219      0.887 0.800 0.200
#> SRR1343031     1  0.5946      0.882 0.856 0.144
#> SRR1319690     1  0.0000      0.851 1.000 0.000
#> SRR1310604     2  0.2423      0.900 0.040 0.960
#> SRR1327747     1  0.0000      0.851 1.000 0.000
#> SRR1072456     2  0.0376      0.914 0.004 0.996
#> SRR1367896     1  0.7219      0.887 0.800 0.200
#> SRR1480107     1  0.0000      0.851 1.000 0.000
#> SRR1377756     1  0.7219      0.887 0.800 0.200
#> SRR1435272     1  0.7219      0.887 0.800 0.200
#> SRR1089230     1  0.0672      0.853 0.992 0.008
#> SRR1389522     1  0.0000      0.851 1.000 0.000
#> SRR1080600     2  0.7299      0.793 0.204 0.796
#> SRR1086935     1  0.7219      0.887 0.800 0.200
#> SRR1344060     2  0.0000      0.915 0.000 1.000
#> SRR1467922     2  0.0000      0.915 0.000 1.000
#> SRR1090984     1  0.7219      0.887 0.800 0.200
#> SRR1456991     1  0.0000      0.851 1.000 0.000
#> SRR1085039     1  0.0000      0.851 1.000 0.000
#> SRR1069303     1  0.7299      0.885 0.796 0.204
#> SRR1091500     2  0.0000      0.915 0.000 1.000
#> SRR1075198     2  0.5178      0.854 0.116 0.884
#> SRR1086915     1  0.5737      0.881 0.864 0.136
#> SRR1499503     2  0.0000      0.915 0.000 1.000
#> SRR1094312     2  0.0000      0.915 0.000 1.000
#> SRR1352437     1  0.7219      0.887 0.800 0.200
#> SRR1436323     1  0.7219      0.887 0.800 0.200
#> SRR1073507     1  0.0000      0.851 1.000 0.000
#> SRR1401972     1  0.7219      0.887 0.800 0.200
#> SRR1415510     2  0.1184      0.904 0.016 0.984
#> SRR1327279     1  0.0000      0.851 1.000 0.000
#> SRR1086983     1  0.7219      0.887 0.800 0.200
#> SRR1105174     1  0.0000      0.851 1.000 0.000
#> SRR1468893     1  0.0000      0.851 1.000 0.000
#> SRR1362555     2  0.7219      0.794 0.200 0.800
#> SRR1074526     1  0.7376      0.882 0.792 0.208
#> SRR1326225     2  0.0000      0.915 0.000 1.000
#> SRR1401933     1  0.0000      0.851 1.000 0.000
#> SRR1324062     1  0.7219      0.887 0.800 0.200
#> SRR1102296     1  0.7219      0.887 0.800 0.200
#> SRR1085087     1  0.0938      0.855 0.988 0.012
#> SRR1079046     1  0.2603      0.816 0.956 0.044
#> SRR1328339     1  0.7219      0.887 0.800 0.200
#> SRR1079782     2  0.7602      0.796 0.220 0.780
#> SRR1092257     1  0.7299      0.885 0.796 0.204

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0237     0.9401 0.000 0.996 0.004
#> SRR1429287     2  0.3038     0.8894 0.000 0.896 0.104
#> SRR1359238     3  0.2878     0.8429 0.096 0.000 0.904
#> SRR1309597     1  0.0237     0.9010 0.996 0.000 0.004
#> SRR1441398     1  0.0000     0.9003 1.000 0.000 0.000
#> SRR1084055     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1417566     3  0.1289     0.8782 0.032 0.000 0.968
#> SRR1351857     3  0.4346     0.7877 0.184 0.000 0.816
#> SRR1487485     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1335875     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1073947     3  0.4750     0.6887 0.216 0.000 0.784
#> SRR1443483     1  0.2796     0.8501 0.908 0.000 0.092
#> SRR1346794     1  0.0237     0.9010 0.996 0.000 0.004
#> SRR1405245     1  0.1031     0.8933 0.976 0.000 0.024
#> SRR1409677     3  0.6295     0.2829 0.472 0.000 0.528
#> SRR1095549     3  0.4555     0.7486 0.200 0.000 0.800
#> SRR1323788     3  0.2959     0.8425 0.100 0.000 0.900
#> SRR1314054     3  0.3412     0.8257 0.000 0.124 0.876
#> SRR1077944     3  0.5431     0.6498 0.284 0.000 0.716
#> SRR1480587     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1311205     1  0.0237     0.9007 0.996 0.000 0.004
#> SRR1076369     1  0.4002     0.7669 0.840 0.000 0.160
#> SRR1453549     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1345782     3  0.6026     0.5314 0.376 0.000 0.624
#> SRR1447850     3  0.4235     0.7809 0.000 0.176 0.824
#> SRR1391553     3  0.0237     0.8866 0.000 0.004 0.996
#> SRR1444156     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1471731     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1120987     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1477363     1  0.0237     0.9010 0.996 0.000 0.004
#> SRR1391961     3  0.8976     0.0393 0.128 0.416 0.456
#> SRR1373879     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1318732     1  0.4925     0.8076 0.844 0.076 0.080
#> SRR1091404     1  0.2448     0.8522 0.924 0.000 0.076
#> SRR1402109     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1407336     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1097417     3  0.1529     0.8690 0.000 0.040 0.960
#> SRR1396227     3  0.2860     0.8550 0.084 0.004 0.912
#> SRR1400775     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1392861     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1472929     1  0.5178     0.6322 0.744 0.256 0.000
#> SRR1436740     3  0.0237     0.8867 0.004 0.000 0.996
#> SRR1477057     2  0.3851     0.8537 0.004 0.860 0.136
#> SRR1311980     3  0.0475     0.8859 0.004 0.004 0.992
#> SRR1069400     3  0.0747     0.8840 0.016 0.000 0.984
#> SRR1351016     3  0.0424     0.8866 0.008 0.000 0.992
#> SRR1096291     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1418145     3  0.3532     0.8367 0.108 0.008 0.884
#> SRR1488111     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1370495     1  0.1289     0.8854 0.968 0.032 0.000
#> SRR1352639     1  0.0237     0.9010 0.996 0.000 0.004
#> SRR1348911     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1467386     3  0.5465     0.6651 0.288 0.000 0.712
#> SRR1415956     1  0.0000     0.9003 1.000 0.000 0.000
#> SRR1500495     1  0.0237     0.9010 0.996 0.000 0.004
#> SRR1405099     1  0.0000     0.9003 1.000 0.000 0.000
#> SRR1345585     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1093196     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1466006     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1351557     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1382687     3  0.2796     0.8477 0.092 0.000 0.908
#> SRR1375549     1  0.0237     0.8997 0.996 0.004 0.000
#> SRR1101765     3  0.5621     0.6458 0.308 0.000 0.692
#> SRR1334461     1  0.2959     0.8298 0.900 0.100 0.000
#> SRR1094073     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1077549     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1440332     1  0.3941     0.8018 0.844 0.000 0.156
#> SRR1454177     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1082447     1  0.5363     0.6416 0.724 0.000 0.276
#> SRR1420043     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1432500     3  0.6008     0.5147 0.372 0.000 0.628
#> SRR1378045     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1334200     3  0.3539     0.8383 0.100 0.012 0.888
#> SRR1069539     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1343031     3  0.1964     0.8678 0.056 0.000 0.944
#> SRR1319690     1  0.3340     0.8308 0.880 0.000 0.120
#> SRR1310604     2  0.4094     0.8808 0.028 0.872 0.100
#> SRR1327747     3  0.6308     0.0837 0.492 0.000 0.508
#> SRR1072456     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1367896     3  0.1643     0.8687 0.044 0.000 0.956
#> SRR1480107     1  0.0000     0.9003 1.000 0.000 0.000
#> SRR1377756     3  0.2959     0.8425 0.100 0.000 0.900
#> SRR1435272     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1089230     3  0.4452     0.7575 0.192 0.000 0.808
#> SRR1389522     1  0.2448     0.8636 0.924 0.000 0.076
#> SRR1080600     2  0.3644     0.8352 0.124 0.872 0.004
#> SRR1086935     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1344060     2  0.1751     0.9314 0.012 0.960 0.028
#> SRR1467922     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1090984     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1456991     1  0.0000     0.9003 1.000 0.000 0.000
#> SRR1085039     3  0.5178     0.7048 0.256 0.000 0.744
#> SRR1069303     3  0.5378     0.7094 0.236 0.008 0.756
#> SRR1091500     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1075198     2  0.4087     0.8840 0.068 0.880 0.052
#> SRR1086915     3  0.2165     0.8635 0.064 0.000 0.936
#> SRR1499503     2  0.1964     0.9214 0.000 0.944 0.056
#> SRR1094312     2  0.0000     0.9412 0.000 1.000 0.000
#> SRR1352437     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1436323     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1073507     3  0.6095     0.5003 0.392 0.000 0.608
#> SRR1401972     3  0.0237     0.8867 0.004 0.000 0.996
#> SRR1415510     2  0.3686     0.8530 0.000 0.860 0.140
#> SRR1327279     3  0.5905     0.5761 0.352 0.000 0.648
#> SRR1086983     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1105174     1  0.0237     0.9010 0.996 0.000 0.004
#> SRR1468893     1  0.0000     0.9003 1.000 0.000 0.000
#> SRR1362555     1  0.5621     0.5264 0.692 0.308 0.000
#> SRR1074526     3  0.0892     0.8822 0.000 0.020 0.980
#> SRR1326225     2  0.2448     0.9090 0.000 0.924 0.076
#> SRR1401933     1  0.6045     0.2585 0.620 0.000 0.380
#> SRR1324062     3  0.0747     0.8840 0.016 0.000 0.984
#> SRR1102296     3  0.0000     0.8876 0.000 0.000 1.000
#> SRR1085087     3  0.5859     0.5944 0.344 0.000 0.656
#> SRR1079046     1  0.0475     0.8997 0.992 0.004 0.004
#> SRR1328339     3  0.0237     0.8867 0.004 0.000 0.996
#> SRR1079782     2  0.4423     0.8513 0.088 0.864 0.048
#> SRR1092257     3  0.3686     0.8157 0.000 0.140 0.860

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0657     0.8860 0.012 0.984 0.000 0.004
#> SRR1429287     2  0.2737     0.8223 0.104 0.888 0.000 0.008
#> SRR1359238     4  0.0672     0.6269 0.008 0.000 0.008 0.984
#> SRR1309597     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1441398     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1084055     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1417566     4  0.4955     0.8008 0.344 0.000 0.008 0.648
#> SRR1351857     4  0.1042     0.6182 0.008 0.000 0.020 0.972
#> SRR1487485     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1335875     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1073947     1  0.1722     0.6494 0.944 0.000 0.008 0.048
#> SRR1443483     3  0.0804     0.8726 0.008 0.000 0.980 0.012
#> SRR1346794     3  0.0336     0.8778 0.008 0.000 0.992 0.000
#> SRR1405245     3  0.2227     0.8453 0.036 0.000 0.928 0.036
#> SRR1409677     4  0.3355     0.4754 0.004 0.000 0.160 0.836
#> SRR1095549     4  0.6497     0.6527 0.160 0.000 0.200 0.640
#> SRR1323788     4  0.5339     0.7945 0.356 0.000 0.020 0.624
#> SRR1314054     4  0.6346     0.7013 0.152 0.192 0.000 0.656
#> SRR1077944     1  0.4502     0.6351 0.748 0.000 0.236 0.016
#> SRR1480587     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1311205     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1076369     3  0.5295     0.3220 0.008 0.000 0.504 0.488
#> SRR1453549     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1345782     1  0.5279     0.6313 0.704 0.000 0.252 0.044
#> SRR1447850     4  0.6845     0.6410 0.168 0.236 0.000 0.596
#> SRR1391553     4  0.4761     0.8044 0.332 0.004 0.000 0.664
#> SRR1444156     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1471731     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1120987     4  0.0000     0.6373 0.000 0.000 0.000 1.000
#> SRR1477363     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1391961     1  0.2730     0.6582 0.896 0.088 0.016 0.000
#> SRR1373879     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1318732     3  0.4617     0.6822 0.032 0.000 0.764 0.204
#> SRR1091404     1  0.4804     0.4599 0.616 0.000 0.384 0.000
#> SRR1402109     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1407336     4  0.4643     0.8044 0.344 0.000 0.000 0.656
#> SRR1097417     4  0.5677     0.7838 0.332 0.040 0.000 0.628
#> SRR1396227     1  0.1674     0.6559 0.952 0.004 0.012 0.032
#> SRR1400775     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1392861     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1472929     3  0.3392     0.7771 0.020 0.124 0.856 0.000
#> SRR1436740     1  0.4585     0.5910 0.668 0.000 0.000 0.332
#> SRR1477057     1  0.4482     0.4822 0.728 0.264 0.000 0.008
#> SRR1311980     1  0.2944     0.5376 0.868 0.004 0.000 0.128
#> SRR1069400     4  0.5069     0.8024 0.320 0.000 0.016 0.664
#> SRR1351016     1  0.1489     0.6463 0.952 0.000 0.004 0.044
#> SRR1096291     4  0.0000     0.6373 0.000 0.000 0.000 1.000
#> SRR1418145     4  0.1229     0.6148 0.008 0.004 0.020 0.968
#> SRR1488111     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1370495     3  0.0707     0.8740 0.020 0.000 0.980 0.000
#> SRR1352639     3  0.1305     0.8640 0.004 0.000 0.960 0.036
#> SRR1348911     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1467386     1  0.6080     0.6164 0.664 0.000 0.236 0.100
#> SRR1415956     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1500495     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1405099     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1345585     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1093196     4  0.4643     0.8040 0.344 0.000 0.000 0.656
#> SRR1466006     2  0.0895     0.8837 0.004 0.976 0.000 0.020
#> SRR1351557     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1382687     4  0.4284     0.7305 0.200 0.000 0.020 0.780
#> SRR1375549     1  0.5538     0.5297 0.644 0.000 0.036 0.320
#> SRR1101765     4  0.1706     0.5953 0.016 0.000 0.036 0.948
#> SRR1334461     3  0.1042     0.8719 0.020 0.008 0.972 0.000
#> SRR1094073     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1077549     4  0.4999     0.6185 0.492 0.000 0.000 0.508
#> SRR1440332     3  0.2048     0.8237 0.008 0.000 0.928 0.064
#> SRR1454177     4  0.4477     0.8032 0.312 0.000 0.000 0.688
#> SRR1082447     1  0.5938     0.1864 0.488 0.000 0.476 0.036
#> SRR1420043     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1432500     4  0.6412     0.4663 0.080 0.000 0.348 0.572
#> SRR1378045     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1334200     4  0.1762     0.6086 0.016 0.012 0.020 0.952
#> SRR1069539     4  0.0000     0.6373 0.000 0.000 0.000 1.000
#> SRR1343031     4  0.5697     0.7828 0.280 0.000 0.056 0.664
#> SRR1319690     3  0.1209     0.8588 0.004 0.000 0.964 0.032
#> SRR1310604     2  0.4695     0.7732 0.140 0.804 0.028 0.028
#> SRR1327747     4  0.5244     0.0424 0.008 0.000 0.436 0.556
#> SRR1072456     2  0.0188     0.8899 0.004 0.996 0.000 0.000
#> SRR1367896     4  0.5755     0.7813 0.332 0.000 0.044 0.624
#> SRR1480107     1  0.4804     0.4599 0.616 0.000 0.384 0.000
#> SRR1377756     4  0.1411     0.6090 0.020 0.000 0.020 0.960
#> SRR1435272     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1089230     4  0.1042     0.6173 0.008 0.000 0.020 0.972
#> SRR1389522     3  0.0336     0.8770 0.000 0.000 0.992 0.008
#> SRR1080600     2  0.5173     0.6386 0.020 0.660 0.000 0.320
#> SRR1086935     4  0.4477     0.8033 0.312 0.000 0.000 0.688
#> SRR1344060     2  0.5565     0.6978 0.068 0.700 0.000 0.232
#> SRR1467922     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1090984     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1456991     1  0.4761     0.4620 0.628 0.000 0.372 0.000
#> SRR1085039     4  0.6555     0.6424 0.156 0.000 0.212 0.632
#> SRR1069303     1  0.1962     0.6631 0.944 0.008 0.024 0.024
#> SRR1091500     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1075198     2  0.3895     0.7785 0.012 0.804 0.000 0.184
#> SRR1086915     4  0.0188     0.6350 0.000 0.000 0.004 0.996
#> SRR1499503     2  0.1867     0.8536 0.072 0.928 0.000 0.000
#> SRR1094312     2  0.0000     0.8908 0.000 1.000 0.000 0.000
#> SRR1352437     4  0.4776     0.7775 0.376 0.000 0.000 0.624
#> SRR1436323     4  0.4776     0.7820 0.376 0.000 0.000 0.624
#> SRR1073507     1  0.6675     0.5491 0.616 0.000 0.228 0.156
#> SRR1401972     1  0.1389     0.6425 0.952 0.000 0.000 0.048
#> SRR1415510     2  0.4095     0.7033 0.192 0.792 0.000 0.016
#> SRR1327279     1  0.7834     0.0120 0.372 0.000 0.260 0.368
#> SRR1086983     4  0.0000     0.6373 0.000 0.000 0.000 1.000
#> SRR1105174     3  0.0000     0.8794 0.000 0.000 1.000 0.000
#> SRR1468893     3  0.5311     0.5451 0.024 0.000 0.648 0.328
#> SRR1362555     3  0.6192     0.3436 0.020 0.364 0.588 0.028
#> SRR1074526     4  0.4910     0.7908 0.276 0.020 0.000 0.704
#> SRR1326225     2  0.2345     0.8313 0.100 0.900 0.000 0.000
#> SRR1401933     1  0.5038     0.5220 0.652 0.000 0.012 0.336
#> SRR1324062     4  0.4781     0.8044 0.336 0.000 0.004 0.660
#> SRR1102296     4  0.4605     0.8049 0.336 0.000 0.000 0.664
#> SRR1085087     1  0.4900     0.6374 0.732 0.000 0.236 0.032
#> SRR1079046     3  0.3737     0.7796 0.020 0.004 0.840 0.136
#> SRR1328339     1  0.2760     0.5324 0.872 0.000 0.000 0.128
#> SRR1079782     2  0.5364     0.5819 0.008 0.616 0.008 0.368
#> SRR1092257     4  0.6275     0.6887 0.136 0.204 0.000 0.660

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.1498     0.9230 0.024 0.952 0.016 0.008 0.000
#> SRR1429287     2  0.3398     0.8917 0.044 0.864 0.044 0.048 0.000
#> SRR1359238     4  0.2775     0.8046 0.000 0.004 0.100 0.876 0.020
#> SRR1309597     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1441398     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1084055     2  0.0609     0.9253 0.020 0.980 0.000 0.000 0.000
#> SRR1417566     3  0.0451     0.8785 0.008 0.000 0.988 0.004 0.000
#> SRR1351857     4  0.2712     0.8073 0.000 0.000 0.088 0.880 0.032
#> SRR1487485     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1335875     3  0.0162     0.8800 0.000 0.000 0.996 0.000 0.004
#> SRR1073947     1  0.3274     0.7497 0.780 0.000 0.220 0.000 0.000
#> SRR1443483     5  0.0771     0.8904 0.000 0.000 0.004 0.020 0.976
#> SRR1346794     5  0.0290     0.8934 0.000 0.000 0.000 0.008 0.992
#> SRR1405245     5  0.3355     0.7960 0.132 0.000 0.000 0.036 0.832
#> SRR1409677     4  0.2416     0.7839 0.000 0.000 0.012 0.888 0.100
#> SRR1095549     3  0.3109     0.7035 0.000 0.000 0.800 0.000 0.200
#> SRR1323788     3  0.2989     0.7932 0.132 0.000 0.852 0.008 0.008
#> SRR1314054     3  0.3319     0.7595 0.020 0.160 0.820 0.000 0.000
#> SRR1077944     1  0.3840     0.7600 0.780 0.000 0.016 0.008 0.196
#> SRR1480587     2  0.0000     0.9283 0.000 1.000 0.000 0.000 0.000
#> SRR1311205     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1076369     4  0.1270     0.7936 0.000 0.000 0.000 0.948 0.052
#> SRR1453549     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1345782     1  0.4495     0.7575 0.736 0.000 0.064 0.000 0.200
#> SRR1447850     3  0.4985     0.6614 0.088 0.200 0.708 0.004 0.000
#> SRR1391553     3  0.0404     0.8786 0.012 0.000 0.988 0.000 0.000
#> SRR1444156     2  0.0290     0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1471731     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1120987     4  0.2020     0.8049 0.000 0.000 0.100 0.900 0.000
#> SRR1477363     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1391961     1  0.4196     0.7299 0.828 0.068 0.048 0.044 0.012
#> SRR1373879     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1318732     5  0.4760     0.7239 0.132 0.004 0.004 0.108 0.752
#> SRR1091404     1  0.3274     0.7465 0.780 0.000 0.000 0.000 0.220
#> SRR1402109     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1407336     3  0.0693     0.8774 0.008 0.000 0.980 0.012 0.000
#> SRR1097417     3  0.0963     0.8651 0.000 0.036 0.964 0.000 0.000
#> SRR1396227     1  0.3109     0.7550 0.800 0.000 0.200 0.000 0.000
#> SRR1400775     2  0.0609     0.9253 0.020 0.980 0.000 0.000 0.000
#> SRR1392861     3  0.0162     0.8797 0.000 0.000 0.996 0.004 0.000
#> SRR1472929     5  0.5000     0.7161 0.048 0.160 0.000 0.048 0.744
#> SRR1436740     4  0.5275     0.4922 0.276 0.000 0.084 0.640 0.000
#> SRR1477057     1  0.4130     0.7297 0.804 0.108 0.076 0.012 0.000
#> SRR1311980     1  0.4150     0.5103 0.612 0.000 0.388 0.000 0.000
#> SRR1069400     3  0.0671     0.8755 0.000 0.000 0.980 0.004 0.016
#> SRR1351016     1  0.3398     0.7523 0.780 0.000 0.216 0.000 0.004
#> SRR1096291     4  0.2020     0.8053 0.000 0.000 0.100 0.900 0.000
#> SRR1418145     4  0.2073     0.8033 0.016 0.004 0.044 0.928 0.008
#> SRR1488111     3  0.1095     0.8697 0.012 0.008 0.968 0.012 0.000
#> SRR1370495     5  0.2589     0.8508 0.048 0.008 0.000 0.044 0.900
#> SRR1352639     5  0.1928     0.8683 0.004 0.000 0.004 0.072 0.920
#> SRR1348911     3  0.0162     0.8794 0.004 0.000 0.996 0.000 0.000
#> SRR1467386     1  0.5166     0.7211 0.680 0.000 0.108 0.000 0.212
#> SRR1415956     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1500495     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1405099     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1345585     3  0.0162     0.8800 0.000 0.000 0.996 0.000 0.004
#> SRR1093196     3  0.0693     0.8774 0.008 0.000 0.980 0.012 0.000
#> SRR1466006     2  0.1106     0.9229 0.012 0.964 0.000 0.024 0.000
#> SRR1351557     2  0.0290     0.9278 0.008 0.992 0.000 0.000 0.000
#> SRR1382687     3  0.4471     0.7268 0.132 0.000 0.772 0.088 0.008
#> SRR1375549     4  0.4817     0.2043 0.404 0.000 0.000 0.572 0.024
#> SRR1101765     4  0.0771     0.7955 0.000 0.000 0.004 0.976 0.020
#> SRR1334461     5  0.2804     0.8475 0.048 0.016 0.000 0.044 0.892
#> SRR1094073     2  0.0290     0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1077549     3  0.3561     0.5557 0.260 0.000 0.740 0.000 0.000
#> SRR1440332     5  0.1557     0.8529 0.000 0.000 0.052 0.008 0.940
#> SRR1454177     3  0.3561     0.5943 0.000 0.000 0.740 0.260 0.000
#> SRR1082447     1  0.6141     0.3138 0.460 0.000 0.112 0.004 0.424
#> SRR1420043     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1432500     3  0.4135     0.5181 0.000 0.000 0.656 0.004 0.340
#> SRR1378045     3  0.0162     0.8797 0.000 0.004 0.996 0.000 0.000
#> SRR1334200     4  0.1883     0.7934 0.048 0.000 0.012 0.932 0.008
#> SRR1069539     4  0.2020     0.8049 0.000 0.000 0.100 0.900 0.000
#> SRR1343031     3  0.1430     0.8530 0.000 0.000 0.944 0.004 0.052
#> SRR1319690     5  0.0703     0.8839 0.000 0.000 0.024 0.000 0.976
#> SRR1310604     2  0.3964     0.8670 0.044 0.844 0.052 0.044 0.016
#> SRR1327747     4  0.5441     0.5400 0.000 0.000 0.096 0.624 0.280
#> SRR1072456     2  0.1469     0.9183 0.036 0.948 0.000 0.016 0.000
#> SRR1367896     3  0.1043     0.8636 0.000 0.000 0.960 0.000 0.040
#> SRR1480107     1  0.3398     0.7479 0.780 0.000 0.000 0.004 0.216
#> SRR1377756     4  0.4059     0.7705 0.132 0.000 0.060 0.800 0.008
#> SRR1435272     3  0.0162     0.8797 0.000 0.000 0.996 0.004 0.000
#> SRR1089230     4  0.1408     0.7978 0.000 0.000 0.008 0.948 0.044
#> SRR1389522     5  0.0404     0.8920 0.000 0.000 0.012 0.000 0.988
#> SRR1080600     4  0.4848     0.0216 0.024 0.420 0.000 0.556 0.000
#> SRR1086935     3  0.4088     0.3471 0.000 0.000 0.632 0.368 0.000
#> SRR1344060     2  0.5166     0.7013 0.100 0.692 0.004 0.204 0.000
#> SRR1467922     2  0.0290     0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1090984     3  0.0162     0.8800 0.000 0.000 0.996 0.000 0.004
#> SRR1456991     1  0.3274     0.7454 0.780 0.000 0.000 0.000 0.220
#> SRR1085039     3  0.3388     0.6986 0.000 0.000 0.792 0.008 0.200
#> SRR1069303     1  0.3210     0.7514 0.788 0.000 0.212 0.000 0.000
#> SRR1091500     2  0.0609     0.9253 0.020 0.980 0.000 0.000 0.000
#> SRR1075198     2  0.4065     0.7909 0.048 0.772 0.000 0.180 0.000
#> SRR1086915     4  0.2540     0.8090 0.000 0.000 0.088 0.888 0.024
#> SRR1499503     2  0.2234     0.9099 0.032 0.920 0.036 0.012 0.000
#> SRR1094312     2  0.0290     0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1352437     3  0.1410     0.8526 0.060 0.000 0.940 0.000 0.000
#> SRR1436323     3  0.1502     0.8484 0.056 0.000 0.940 0.004 0.000
#> SRR1073507     1  0.3690     0.7521 0.780 0.000 0.000 0.020 0.200
#> SRR1401972     1  0.3177     0.7530 0.792 0.000 0.208 0.000 0.000
#> SRR1415510     2  0.3498     0.8179 0.024 0.832 0.132 0.012 0.000
#> SRR1327279     3  0.6780     0.0297 0.284 0.000 0.472 0.008 0.236
#> SRR1086983     4  0.2329     0.7923 0.000 0.000 0.124 0.876 0.000
#> SRR1105174     5  0.0000     0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1468893     4  0.5816     0.4461 0.132 0.000 0.000 0.588 0.280
#> SRR1362555     5  0.6859     0.2189 0.048 0.356 0.000 0.108 0.488
#> SRR1074526     4  0.5061     0.2273 0.016 0.012 0.432 0.540 0.000
#> SRR1326225     2  0.2367     0.8873 0.020 0.904 0.072 0.004 0.000
#> SRR1401933     1  0.3143     0.5977 0.796 0.000 0.000 0.204 0.000
#> SRR1324062     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1102296     3  0.0162     0.8794 0.004 0.000 0.996 0.000 0.000
#> SRR1085087     1  0.3849     0.7688 0.800 0.000 0.020 0.016 0.164
#> SRR1079046     5  0.4488     0.6276 0.020 0.004 0.004 0.268 0.704
#> SRR1328339     1  0.4171     0.5062 0.604 0.000 0.396 0.000 0.000
#> SRR1079782     4  0.3019     0.7432 0.048 0.088 0.000 0.864 0.000
#> SRR1092257     3  0.6149     0.5246 0.020 0.160 0.620 0.200 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.3244    0.64145 0.000 0.732 0.000 0.000 0.268 0.000
#> SRR1429287     2  0.4618    0.62296 0.000 0.684 0.032 0.032 0.252 0.000
#> SRR1359238     4  0.2643    0.72123 0.000 0.000 0.128 0.856 0.008 0.008
#> SRR1309597     1  0.0146    0.88336 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1441398     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1084055     2  0.1444    0.70593 0.000 0.928 0.000 0.000 0.072 0.000
#> SRR1417566     3  0.1728    0.80646 0.000 0.000 0.924 0.004 0.064 0.008
#> SRR1351857     4  0.2752    0.73412 0.012 0.000 0.104 0.864 0.000 0.020
#> SRR1487485     3  0.0000    0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1335875     3  0.0146    0.83839 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1073947     6  0.4946    0.60460 0.100 0.000 0.284 0.000 0.000 0.616
#> SRR1443483     1  0.0922    0.86426 0.968 0.000 0.004 0.024 0.004 0.000
#> SRR1346794     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405245     1  0.4792    0.56407 0.720 0.000 0.000 0.028 0.124 0.128
#> SRR1409677     4  0.2282    0.70599 0.088 0.000 0.024 0.888 0.000 0.000
#> SRR1095549     3  0.3296    0.66710 0.180 0.000 0.796 0.000 0.004 0.020
#> SRR1323788     3  0.4978    0.59454 0.000 0.000 0.700 0.028 0.144 0.128
#> SRR1314054     3  0.5020    0.30527 0.000 0.372 0.548 0.000 0.080 0.000
#> SRR1077944     6  0.5202    0.60780 0.188 0.000 0.196 0.000 0.000 0.616
#> SRR1480587     2  0.1910    0.72354 0.000 0.892 0.000 0.000 0.108 0.000
#> SRR1311205     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1076369     4  0.0790    0.71362 0.032 0.000 0.000 0.968 0.000 0.000
#> SRR1453549     3  0.0000    0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1345782     6  0.5461    0.59185 0.164 0.000 0.248 0.000 0.004 0.584
#> SRR1447850     2  0.7554    0.04815 0.000 0.384 0.156 0.004 0.224 0.232
#> SRR1391553     3  0.0632    0.83551 0.000 0.000 0.976 0.000 0.024 0.000
#> SRR1444156     2  0.0713    0.71061 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1471731     3  0.1015    0.83422 0.000 0.004 0.968 0.004 0.012 0.012
#> SRR1120987     4  0.1814    0.73809 0.000 0.000 0.100 0.900 0.000 0.000
#> SRR1477363     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1391961     5  0.4612    0.41668 0.000 0.052 0.004 0.000 0.636 0.308
#> SRR1373879     3  0.0000    0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1318732     1  0.5630    0.48785 0.656 0.000 0.004 0.052 0.160 0.128
#> SRR1091404     6  0.4596    0.51907 0.340 0.000 0.036 0.008 0.000 0.616
#> SRR1402109     3  0.0146    0.83789 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1407336     3  0.1442    0.82433 0.000 0.000 0.944 0.012 0.004 0.040
#> SRR1097417     3  0.1010    0.82461 0.000 0.036 0.960 0.000 0.004 0.000
#> SRR1396227     6  0.2234    0.57582 0.000 0.000 0.124 0.004 0.000 0.872
#> SRR1400775     2  0.1267    0.70046 0.000 0.940 0.000 0.000 0.060 0.000
#> SRR1392861     3  0.0146    0.83816 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1472929     5  0.4596    0.63853 0.204 0.096 0.000 0.004 0.696 0.000
#> SRR1436740     4  0.4167    0.34661 0.000 0.000 0.020 0.612 0.000 0.368
#> SRR1477057     5  0.7024    0.20475 0.000 0.268 0.056 0.004 0.396 0.276
#> SRR1311980     6  0.3727    0.36173 0.000 0.000 0.388 0.000 0.000 0.612
#> SRR1069400     3  0.0717    0.83540 0.016 0.000 0.976 0.000 0.008 0.000
#> SRR1351016     6  0.3659    0.52248 0.000 0.000 0.364 0.000 0.000 0.636
#> SRR1096291     4  0.2020    0.73869 0.000 0.000 0.096 0.896 0.008 0.000
#> SRR1418145     4  0.3189    0.71944 0.000 0.004 0.060 0.848 0.080 0.008
#> SRR1488111     3  0.1007    0.82549 0.000 0.000 0.956 0.000 0.044 0.000
#> SRR1370495     5  0.3695    0.54754 0.376 0.000 0.000 0.000 0.624 0.000
#> SRR1352639     1  0.2034    0.80415 0.912 0.000 0.004 0.060 0.024 0.000
#> SRR1348911     3  0.0146    0.83781 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1467386     6  0.5506    0.56913 0.180 0.000 0.264 0.000 0.000 0.556
#> SRR1415956     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500495     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405099     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345585     3  0.0146    0.83839 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1093196     3  0.0951    0.83438 0.000 0.000 0.968 0.008 0.004 0.020
#> SRR1466006     2  0.2527    0.70140 0.000 0.832 0.000 0.000 0.168 0.000
#> SRR1351557     2  0.2135    0.72179 0.000 0.872 0.000 0.000 0.128 0.000
#> SRR1382687     3  0.5436    0.55264 0.000 0.000 0.664 0.048 0.160 0.128
#> SRR1375549     4  0.6157   -0.16975 0.012 0.000 0.000 0.400 0.396 0.192
#> SRR1101765     4  0.1003    0.71141 0.016 0.000 0.000 0.964 0.020 0.000
#> SRR1334461     5  0.3515    0.60300 0.324 0.000 0.000 0.000 0.676 0.000
#> SRR1094073     2  0.0937    0.71797 0.000 0.960 0.000 0.000 0.040 0.000
#> SRR1077549     3  0.3409    0.44435 0.000 0.000 0.700 0.000 0.000 0.300
#> SRR1440332     1  0.1364    0.82239 0.944 0.000 0.048 0.004 0.004 0.000
#> SRR1454177     3  0.3360    0.56177 0.000 0.000 0.732 0.264 0.000 0.004
#> SRR1082447     1  0.5297   -0.18870 0.496 0.000 0.088 0.004 0.000 0.412
#> SRR1420043     3  0.0000    0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1432500     3  0.3699    0.46141 0.336 0.000 0.660 0.004 0.000 0.000
#> SRR1378045     3  0.0146    0.83830 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1334200     4  0.3296    0.65703 0.000 0.000 0.008 0.828 0.116 0.048
#> SRR1069539     4  0.1908    0.73891 0.000 0.000 0.096 0.900 0.004 0.000
#> SRR1343031     3  0.1349    0.81075 0.056 0.000 0.940 0.000 0.004 0.000
#> SRR1319690     1  0.0458    0.87163 0.984 0.000 0.016 0.000 0.000 0.000
#> SRR1310604     2  0.4174    0.54904 0.004 0.628 0.016 0.000 0.352 0.000
#> SRR1327747     4  0.5042    0.44462 0.288 0.000 0.108 0.604 0.000 0.000
#> SRR1072456     2  0.3482    0.60395 0.000 0.684 0.000 0.000 0.316 0.000
#> SRR1367896     3  0.1082    0.82383 0.040 0.000 0.956 0.000 0.004 0.000
#> SRR1480107     6  0.3795    0.47192 0.364 0.000 0.000 0.000 0.004 0.632
#> SRR1377756     4  0.5041    0.58945 0.000 0.000 0.024 0.688 0.160 0.128
#> SRR1435272     3  0.0146    0.83816 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1089230     4  0.0976    0.71902 0.016 0.000 0.008 0.968 0.000 0.008
#> SRR1389522     1  0.0146    0.88306 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1080600     4  0.5595   -0.12542 0.000 0.392 0.000 0.464 0.144 0.000
#> SRR1086935     3  0.4289    0.29731 0.000 0.000 0.612 0.360 0.028 0.000
#> SRR1344060     5  0.4301    0.46500 0.000 0.144 0.004 0.100 0.748 0.004
#> SRR1467922     2  0.1556    0.72230 0.000 0.920 0.000 0.000 0.080 0.000
#> SRR1090984     3  0.0858    0.83049 0.004 0.000 0.968 0.000 0.028 0.000
#> SRR1456991     6  0.3930    0.39233 0.420 0.000 0.000 0.000 0.004 0.576
#> SRR1085039     3  0.3183    0.65150 0.200 0.000 0.788 0.008 0.004 0.000
#> SRR1069303     6  0.2762    0.57259 0.000 0.000 0.196 0.000 0.000 0.804
#> SRR1091500     2  0.1411    0.69857 0.000 0.936 0.004 0.000 0.060 0.000
#> SRR1075198     2  0.5179    0.42262 0.000 0.516 0.000 0.092 0.392 0.000
#> SRR1086915     4  0.2121    0.73891 0.012 0.000 0.096 0.892 0.000 0.000
#> SRR1499503     2  0.4152    0.59964 0.000 0.664 0.032 0.000 0.304 0.000
#> SRR1094312     2  0.1075    0.70395 0.000 0.952 0.000 0.000 0.048 0.000
#> SRR1352437     3  0.3266    0.55792 0.000 0.000 0.728 0.000 0.000 0.272
#> SRR1436323     3  0.2191    0.76477 0.000 0.000 0.876 0.004 0.000 0.120
#> SRR1073507     6  0.5036    0.48354 0.140 0.000 0.000 0.228 0.000 0.632
#> SRR1401972     6  0.2871    0.57293 0.000 0.000 0.192 0.004 0.000 0.804
#> SRR1415510     2  0.5150    0.51048 0.000 0.624 0.188 0.000 0.188 0.000
#> SRR1327279     3  0.5975    0.13683 0.232 0.000 0.532 0.008 0.004 0.224
#> SRR1086983     4  0.2575    0.73521 0.000 0.000 0.100 0.872 0.024 0.004
#> SRR1105174     1  0.0000    0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1468893     4  0.6954    0.27899 0.236 0.000 0.000 0.480 0.156 0.128
#> SRR1362555     5  0.5058    0.61218 0.172 0.088 0.000 0.044 0.696 0.000
#> SRR1074526     4  0.4967    0.30440 0.000 0.016 0.392 0.552 0.040 0.000
#> SRR1326225     2  0.3544    0.68473 0.000 0.800 0.080 0.000 0.120 0.000
#> SRR1401933     6  0.5277    0.16046 0.000 0.000 0.000 0.364 0.108 0.528
#> SRR1324062     3  0.0000    0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1102296     3  0.0146    0.83826 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1085087     6  0.2958    0.54241 0.096 0.000 0.012 0.004 0.028 0.860
#> SRR1079046     5  0.6044    0.41990 0.348 0.000 0.004 0.216 0.432 0.000
#> SRR1328339     3  0.3833   -0.04084 0.000 0.000 0.556 0.000 0.000 0.444
#> SRR1079782     4  0.5351    0.39009 0.000 0.200 0.000 0.592 0.208 0.000
#> SRR1092257     2  0.6922   -0.00786 0.000 0.376 0.368 0.180 0.076 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.512           0.861       0.895         0.4268 0.572   0.572
#> 3 3 0.359           0.669       0.807         0.4144 0.787   0.632
#> 4 4 0.434           0.651       0.745         0.1211 0.935   0.839
#> 5 5 0.572           0.734       0.791         0.0663 0.927   0.809
#> 6 6 0.619           0.606       0.767         0.0460 0.996   0.989

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000     0.9630 0.000 1.000
#> SRR1429287     2  0.0000     0.9630 0.000 1.000
#> SRR1359238     1  0.0000     0.8413 1.000 0.000
#> SRR1309597     1  0.1414     0.8479 0.980 0.020
#> SRR1441398     1  0.2423     0.8506 0.960 0.040
#> SRR1084055     2  0.0000     0.9630 0.000 1.000
#> SRR1417566     1  0.8386     0.8248 0.732 0.268
#> SRR1351857     1  0.0000     0.8413 1.000 0.000
#> SRR1487485     1  0.8207     0.8334 0.744 0.256
#> SRR1335875     1  0.8386     0.8248 0.732 0.268
#> SRR1073947     1  0.8327     0.8280 0.736 0.264
#> SRR1443483     1  0.0672     0.8448 0.992 0.008
#> SRR1346794     1  0.0672     0.8448 0.992 0.008
#> SRR1405245     1  0.7376     0.8492 0.792 0.208
#> SRR1409677     1  0.1184     0.8472 0.984 0.016
#> SRR1095549     1  0.0000     0.8413 1.000 0.000
#> SRR1323788     1  0.7219     0.8490 0.800 0.200
#> SRR1314054     2  0.0000     0.9630 0.000 1.000
#> SRR1077944     1  0.0938     0.8467 0.988 0.012
#> SRR1480587     2  0.0000     0.9630 0.000 1.000
#> SRR1311205     1  0.0672     0.8448 0.992 0.008
#> SRR1076369     1  0.8144     0.8361 0.748 0.252
#> SRR1453549     1  0.7376     0.8485 0.792 0.208
#> SRR1345782     1  0.0672     0.8448 0.992 0.008
#> SRR1447850     2  0.0000     0.9630 0.000 1.000
#> SRR1391553     1  0.8386     0.8248 0.732 0.268
#> SRR1444156     2  0.0000     0.9630 0.000 1.000
#> SRR1471731     1  0.8016     0.8377 0.756 0.244
#> SRR1120987     1  0.8386     0.8248 0.732 0.268
#> SRR1477363     1  0.0000     0.8413 1.000 0.000
#> SRR1391961     2  0.0000     0.9630 0.000 1.000
#> SRR1373879     1  0.3114     0.8567 0.944 0.056
#> SRR1318732     1  0.8081     0.8376 0.752 0.248
#> SRR1091404     1  0.1843     0.8496 0.972 0.028
#> SRR1402109     1  0.0000     0.8413 1.000 0.000
#> SRR1407336     1  0.0000     0.8413 1.000 0.000
#> SRR1097417     2  0.9850    -0.0922 0.428 0.572
#> SRR1396227     1  0.8386     0.8248 0.732 0.268
#> SRR1400775     2  0.0000     0.9630 0.000 1.000
#> SRR1392861     1  0.8081     0.8376 0.752 0.248
#> SRR1472929     2  0.0000     0.9630 0.000 1.000
#> SRR1436740     1  0.8144     0.8357 0.748 0.252
#> SRR1477057     2  0.0000     0.9630 0.000 1.000
#> SRR1311980     1  0.8386     0.8248 0.732 0.268
#> SRR1069400     1  0.0938     0.8461 0.988 0.012
#> SRR1351016     1  0.2778     0.8506 0.952 0.048
#> SRR1096291     1  0.6531     0.8579 0.832 0.168
#> SRR1418145     1  0.9427     0.6960 0.640 0.360
#> SRR1488111     2  0.5946     0.7755 0.144 0.856
#> SRR1370495     2  0.0000     0.9630 0.000 1.000
#> SRR1352639     1  0.8207     0.8334 0.744 0.256
#> SRR1348911     1  0.8386     0.8248 0.732 0.268
#> SRR1467386     1  0.0672     0.8448 0.992 0.008
#> SRR1415956     1  0.3114     0.8501 0.944 0.056
#> SRR1500495     1  0.0672     0.8448 0.992 0.008
#> SRR1405099     1  0.2948     0.8505 0.948 0.052
#> SRR1345585     1  0.6247     0.8592 0.844 0.156
#> SRR1093196     1  0.0938     0.8461 0.988 0.012
#> SRR1466006     2  0.0000     0.9630 0.000 1.000
#> SRR1351557     2  0.0000     0.9630 0.000 1.000
#> SRR1382687     1  0.7376     0.8485 0.792 0.208
#> SRR1375549     2  0.8267     0.5408 0.260 0.740
#> SRR1101765     1  0.8016     0.8378 0.756 0.244
#> SRR1334461     2  0.0000     0.9630 0.000 1.000
#> SRR1094073     2  0.0000     0.9630 0.000 1.000
#> SRR1077549     1  0.7376     0.8502 0.792 0.208
#> SRR1440332     1  0.0000     0.8413 1.000 0.000
#> SRR1454177     1  0.8081     0.8376 0.752 0.248
#> SRR1082447     1  0.7376     0.8492 0.792 0.208
#> SRR1420043     1  0.2603     0.8553 0.956 0.044
#> SRR1432500     1  0.0000     0.8413 1.000 0.000
#> SRR1378045     1  0.8386     0.8248 0.732 0.268
#> SRR1334200     2  0.0376     0.9590 0.004 0.996
#> SRR1069539     1  0.8081     0.8376 0.752 0.248
#> SRR1343031     1  0.0000     0.8413 1.000 0.000
#> SRR1319690     1  0.0672     0.8448 0.992 0.008
#> SRR1310604     2  0.0000     0.9630 0.000 1.000
#> SRR1327747     1  0.0672     0.8448 0.992 0.008
#> SRR1072456     2  0.0000     0.9630 0.000 1.000
#> SRR1367896     1  0.8267     0.8308 0.740 0.260
#> SRR1480107     1  0.2603     0.8510 0.956 0.044
#> SRR1377756     1  0.7219     0.8490 0.800 0.200
#> SRR1435272     1  0.2778     0.8510 0.952 0.048
#> SRR1089230     1  0.7602     0.8469 0.780 0.220
#> SRR1389522     1  0.1633     0.8490 0.976 0.024
#> SRR1080600     2  0.0000     0.9630 0.000 1.000
#> SRR1086935     1  0.8386     0.8248 0.732 0.268
#> SRR1344060     2  0.0000     0.9630 0.000 1.000
#> SRR1467922     2  0.0000     0.9630 0.000 1.000
#> SRR1090984     1  0.8267     0.8308 0.740 0.260
#> SRR1456991     1  0.3114     0.8500 0.944 0.056
#> SRR1085039     1  0.0000     0.8413 1.000 0.000
#> SRR1069303     1  0.8813     0.7878 0.700 0.300
#> SRR1091500     2  0.0000     0.9630 0.000 1.000
#> SRR1075198     2  0.0000     0.9630 0.000 1.000
#> SRR1086915     1  0.5842     0.8581 0.860 0.140
#> SRR1499503     2  0.0000     0.9630 0.000 1.000
#> SRR1094312     2  0.0000     0.9630 0.000 1.000
#> SRR1352437     1  0.8386     0.8248 0.732 0.268
#> SRR1436323     1  0.0000     0.8413 1.000 0.000
#> SRR1073507     1  0.3114     0.8573 0.944 0.056
#> SRR1401972     1  0.8386     0.8248 0.732 0.268
#> SRR1415510     2  0.0000     0.9630 0.000 1.000
#> SRR1327279     1  0.0000     0.8413 1.000 0.000
#> SRR1086983     1  0.6623     0.8564 0.828 0.172
#> SRR1105174     1  0.3431     0.8579 0.936 0.064
#> SRR1468893     1  0.7376     0.8492 0.792 0.208
#> SRR1362555     2  0.0000     0.9630 0.000 1.000
#> SRR1074526     2  0.6712     0.7191 0.176 0.824
#> SRR1326225     2  0.0000     0.9630 0.000 1.000
#> SRR1401933     1  0.7376     0.8492 0.792 0.208
#> SRR1324062     1  0.8327     0.8279 0.736 0.264
#> SRR1102296     1  0.8386     0.8248 0.732 0.268
#> SRR1085087     1  0.7219     0.8520 0.800 0.200
#> SRR1079046     2  0.0000     0.9630 0.000 1.000
#> SRR1328339     1  0.8267     0.8308 0.740 0.260
#> SRR1079782     2  0.0000     0.9630 0.000 1.000
#> SRR1092257     2  0.0000     0.9630 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0892     0.8838 0.020 0.980 0.000
#> SRR1429287     2  0.0892     0.8845 0.020 0.980 0.000
#> SRR1359238     3  0.1529     0.7727 0.040 0.000 0.960
#> SRR1309597     3  0.1529     0.7690 0.040 0.000 0.960
#> SRR1441398     3  0.4504     0.6594 0.196 0.000 0.804
#> SRR1084055     2  0.0892     0.8758 0.020 0.980 0.000
#> SRR1417566     1  0.8965     0.6915 0.564 0.240 0.196
#> SRR1351857     3  0.1529     0.7727 0.040 0.000 0.960
#> SRR1487485     3  0.9780    -0.3896 0.344 0.240 0.416
#> SRR1335875     1  0.6922     0.7432 0.720 0.080 0.200
#> SRR1073947     1  0.5576     0.6977 0.812 0.084 0.104
#> SRR1443483     3  0.0237     0.7766 0.004 0.000 0.996
#> SRR1346794     3  0.0892     0.7773 0.020 0.000 0.980
#> SRR1405245     3  0.6297     0.6408 0.060 0.184 0.756
#> SRR1409677     3  0.1989     0.7736 0.048 0.004 0.948
#> SRR1095549     3  0.0237     0.7777 0.004 0.000 0.996
#> SRR1323788     3  0.5277     0.6530 0.024 0.180 0.796
#> SRR1314054     2  0.0424     0.8840 0.008 0.992 0.000
#> SRR1077944     3  0.3267     0.7559 0.116 0.000 0.884
#> SRR1480587     2  0.0424     0.8850 0.008 0.992 0.000
#> SRR1311205     3  0.2711     0.7528 0.088 0.000 0.912
#> SRR1076369     3  0.7413     0.5260 0.092 0.224 0.684
#> SRR1453549     3  0.6062     0.6496 0.160 0.064 0.776
#> SRR1345782     3  0.2356     0.7601 0.072 0.000 0.928
#> SRR1447850     2  0.0592     0.8851 0.012 0.988 0.000
#> SRR1391553     1  0.6827     0.7436 0.728 0.080 0.192
#> SRR1444156     2  0.0747     0.8760 0.016 0.984 0.000
#> SRR1471731     3  0.7557     0.4564 0.264 0.080 0.656
#> SRR1120987     1  0.9631     0.5642 0.468 0.244 0.288
#> SRR1477363     3  0.0237     0.7777 0.004 0.000 0.996
#> SRR1391961     2  0.3941     0.8360 0.156 0.844 0.000
#> SRR1373879     3  0.0848     0.7788 0.008 0.008 0.984
#> SRR1318732     1  0.9715     0.4595 0.400 0.220 0.380
#> SRR1091404     3  0.6079     0.2579 0.388 0.000 0.612
#> SRR1402109     3  0.0237     0.7766 0.004 0.000 0.996
#> SRR1407336     3  0.0000     0.7772 0.000 0.000 1.000
#> SRR1097417     1  0.9046     0.5282 0.516 0.332 0.152
#> SRR1396227     1  0.4925     0.6994 0.844 0.080 0.076
#> SRR1400775     2  0.0592     0.8786 0.012 0.988 0.000
#> SRR1392861     3  0.7058     0.5983 0.212 0.080 0.708
#> SRR1472929     2  0.4062     0.8339 0.164 0.836 0.000
#> SRR1436740     3  0.7501     0.5790 0.212 0.104 0.684
#> SRR1477057     2  0.3573     0.8444 0.120 0.876 0.004
#> SRR1311980     1  0.6827     0.7436 0.728 0.080 0.192
#> SRR1069400     3  0.0424     0.7762 0.008 0.000 0.992
#> SRR1351016     3  0.6527     0.1998 0.404 0.008 0.588
#> SRR1096291     3  0.4217     0.7366 0.032 0.100 0.868
#> SRR1418145     1  0.9496     0.4730 0.440 0.372 0.188
#> SRR1488111     2  0.8684    -0.1532 0.392 0.500 0.108
#> SRR1370495     2  0.4399     0.8191 0.188 0.812 0.000
#> SRR1352639     1  0.9680     0.6032 0.456 0.244 0.300
#> SRR1348911     1  0.8303     0.7413 0.632 0.172 0.196
#> SRR1467386     3  0.3038     0.7593 0.104 0.000 0.896
#> SRR1415956     1  0.6309     0.0795 0.504 0.000 0.496
#> SRR1500495     3  0.1529     0.7719 0.040 0.000 0.960
#> SRR1405099     3  0.6280     0.0453 0.460 0.000 0.540
#> SRR1345585     3  0.6962     0.2196 0.316 0.036 0.648
#> SRR1093196     3  0.0237     0.7785 0.004 0.000 0.996
#> SRR1466006     2  0.0747     0.8847 0.016 0.984 0.000
#> SRR1351557     2  0.0000     0.8839 0.000 1.000 0.000
#> SRR1382687     3  0.5842     0.6366 0.036 0.196 0.768
#> SRR1375549     1  0.7674    -0.0622 0.480 0.476 0.044
#> SRR1101765     3  0.8005     0.5152 0.128 0.224 0.648
#> SRR1334461     2  0.4062     0.8339 0.164 0.836 0.000
#> SRR1094073     2  0.0237     0.8825 0.004 0.996 0.000
#> SRR1077549     3  0.6446     0.6430 0.212 0.052 0.736
#> SRR1440332     3  0.0237     0.7766 0.004 0.000 0.996
#> SRR1454177     3  0.7058     0.5983 0.212 0.080 0.708
#> SRR1082447     3  0.7382     0.6282 0.116 0.184 0.700
#> SRR1420043     3  0.0661     0.7786 0.008 0.004 0.988
#> SRR1432500     3  0.1529     0.7727 0.040 0.000 0.960
#> SRR1378045     1  0.8876     0.7203 0.576 0.204 0.220
#> SRR1334200     2  0.7703     0.4324 0.232 0.664 0.104
#> SRR1069539     3  0.9624    -0.1039 0.292 0.240 0.468
#> SRR1343031     3  0.0237     0.7766 0.004 0.000 0.996
#> SRR1319690     3  0.0592     0.7756 0.012 0.000 0.988
#> SRR1310604     2  0.5339     0.7607 0.096 0.824 0.080
#> SRR1327747     3  0.0237     0.7771 0.004 0.000 0.996
#> SRR1072456     2  0.0592     0.8853 0.012 0.988 0.000
#> SRR1367896     1  0.7101     0.7394 0.704 0.080 0.216
#> SRR1480107     3  0.5254     0.6178 0.264 0.000 0.736
#> SRR1377756     3  0.6203     0.6454 0.056 0.184 0.760
#> SRR1435272     3  0.2116     0.7749 0.040 0.012 0.948
#> SRR1089230     3  0.6229     0.6580 0.064 0.172 0.764
#> SRR1389522     3  0.6330     0.0267 0.396 0.004 0.600
#> SRR1080600     2  0.3340     0.8445 0.120 0.880 0.000
#> SRR1086935     3  0.9040     0.2528 0.204 0.240 0.556
#> SRR1344060     2  0.4002     0.8345 0.160 0.840 0.000
#> SRR1467922     2  0.0424     0.8850 0.008 0.992 0.000
#> SRR1090984     1  0.9351     0.6779 0.516 0.228 0.256
#> SRR1456991     1  0.6244     0.2567 0.560 0.000 0.440
#> SRR1085039     3  0.1529     0.7727 0.040 0.000 0.960
#> SRR1069303     1  0.4636     0.6550 0.852 0.104 0.044
#> SRR1091500     2  0.0747     0.8785 0.016 0.984 0.000
#> SRR1075198     2  0.3038     0.8564 0.104 0.896 0.000
#> SRR1086915     3  0.4642     0.7424 0.060 0.084 0.856
#> SRR1499503     2  0.0424     0.8850 0.008 0.992 0.000
#> SRR1094312     2  0.0747     0.8760 0.016 0.984 0.000
#> SRR1352437     1  0.6291     0.7388 0.768 0.080 0.152
#> SRR1436323     3  0.0661     0.7802 0.008 0.004 0.988
#> SRR1073507     3  0.3715     0.7531 0.128 0.004 0.868
#> SRR1401972     1  0.6372     0.7408 0.764 0.084 0.152
#> SRR1415510     2  0.2796     0.8563 0.092 0.908 0.000
#> SRR1327279     3  0.1163     0.7762 0.028 0.000 0.972
#> SRR1086983     3  0.4995     0.7378 0.068 0.092 0.840
#> SRR1105174     3  0.3083     0.7758 0.060 0.024 0.916
#> SRR1468893     3  0.7179     0.6338 0.104 0.184 0.712
#> SRR1362555     2  0.5243     0.7449 0.072 0.828 0.100
#> SRR1074526     2  0.8378     0.2087 0.284 0.596 0.120
#> SRR1326225     2  0.0747     0.8760 0.016 0.984 0.000
#> SRR1401933     3  0.7036     0.6366 0.096 0.184 0.720
#> SRR1324062     1  0.7876     0.5843 0.612 0.080 0.308
#> SRR1102296     1  0.6349     0.7389 0.764 0.080 0.156
#> SRR1085087     1  0.8134     0.6193 0.584 0.088 0.328
#> SRR1079046     2  0.4291     0.8236 0.180 0.820 0.000
#> SRR1328339     1  0.7222     0.7389 0.696 0.084 0.220
#> SRR1079782     2  0.3038     0.8564 0.104 0.896 0.000
#> SRR1092257     2  0.0892     0.8758 0.020 0.980 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1396765     2  0.4511     0.7589 0.000 0.724 0.008 NA
#> SRR1429287     2  0.4621     0.7592 0.000 0.708 0.008 NA
#> SRR1359238     1  0.0937     0.7737 0.976 0.000 0.012 NA
#> SRR1309597     1  0.4440     0.7350 0.804 0.000 0.060 NA
#> SRR1441398     1  0.6989     0.5219 0.600 0.004 0.184 NA
#> SRR1084055     2  0.5125     0.7380 0.000 0.604 0.008 NA
#> SRR1417566     3  0.4965     0.7527 0.112 0.100 0.784 NA
#> SRR1351857     1  0.1584     0.7733 0.952 0.000 0.012 NA
#> SRR1487485     3  0.8359     0.5448 0.248 0.200 0.504 NA
#> SRR1335875     3  0.3488     0.7708 0.108 0.020 0.864 NA
#> SRR1073947     3  0.5911     0.3906 0.304 0.016 0.648 NA
#> SRR1443483     1  0.3198     0.7656 0.880 0.000 0.040 NA
#> SRR1346794     1  0.3945     0.7504 0.828 0.004 0.024 NA
#> SRR1405245     1  0.6603     0.6824 0.708 0.128 0.068 NA
#> SRR1409677     1  0.3109     0.7645 0.880 0.004 0.016 NA
#> SRR1095549     1  0.1824     0.7727 0.936 0.000 0.004 NA
#> SRR1323788     1  0.5943     0.6940 0.736 0.124 0.024 NA
#> SRR1314054     2  0.5326     0.7383 0.000 0.604 0.016 NA
#> SRR1077944     1  0.2660     0.7648 0.908 0.000 0.036 NA
#> SRR1480587     2  0.4955     0.7498 0.000 0.648 0.008 NA
#> SRR1311205     1  0.3617     0.7541 0.860 0.000 0.064 NA
#> SRR1076369     1  0.8311     0.4844 0.568 0.176 0.116 NA
#> SRR1453549     1  0.6099     0.6143 0.688 0.012 0.220 NA
#> SRR1345782     1  0.3156     0.7640 0.884 0.000 0.048 NA
#> SRR1447850     2  0.4908     0.7545 0.000 0.692 0.016 NA
#> SRR1391553     3  0.3853     0.7679 0.100 0.040 0.852 NA
#> SRR1444156     2  0.5125     0.7380 0.000 0.604 0.008 NA
#> SRR1471731     1  0.5838     0.3027 0.560 0.012 0.412 NA
#> SRR1120987     3  0.7948     0.6105 0.228 0.200 0.540 NA
#> SRR1477363     1  0.2179     0.7732 0.924 0.000 0.012 NA
#> SRR1391961     2  0.3934     0.6641 0.000 0.836 0.048 NA
#> SRR1373879     1  0.2473     0.7709 0.908 0.000 0.012 NA
#> SRR1318732     3  0.8868     0.5214 0.248 0.144 0.488 NA
#> SRR1091404     1  0.6786     0.4636 0.608 0.004 0.256 NA
#> SRR1402109     1  0.1584     0.7732 0.952 0.000 0.012 NA
#> SRR1407336     1  0.2255     0.7730 0.920 0.000 0.012 NA
#> SRR1097417     3  0.6636     0.5773 0.108 0.256 0.628 NA
#> SRR1396227     3  0.3215     0.7308 0.076 0.016 0.888 NA
#> SRR1400775     2  0.5125     0.7380 0.000 0.604 0.008 NA
#> SRR1392861     1  0.6000     0.5831 0.688 0.020 0.240 NA
#> SRR1472929     2  0.3523     0.6596 0.000 0.856 0.032 NA
#> SRR1436740     1  0.5849     0.5894 0.692 0.032 0.248 NA
#> SRR1477057     2  0.7211     0.7093 0.008 0.540 0.128 NA
#> SRR1311980     3  0.2465     0.7406 0.044 0.020 0.924 NA
#> SRR1069400     1  0.3907     0.7511 0.836 0.000 0.044 NA
#> SRR1351016     1  0.6704     0.3728 0.568 0.004 0.336 NA
#> SRR1096291     1  0.5734     0.7066 0.744 0.116 0.016 NA
#> SRR1418145     3  0.7530     0.3864 0.112 0.392 0.476 NA
#> SRR1488111     2  0.7138     0.0650 0.056 0.516 0.392 NA
#> SRR1370495     2  0.3674     0.6496 0.000 0.848 0.036 NA
#> SRR1352639     3  0.7913     0.6029 0.236 0.200 0.536 NA
#> SRR1348911     3  0.3976     0.7717 0.112 0.044 0.840 NA
#> SRR1467386     1  0.3194     0.7584 0.888 0.004 0.056 NA
#> SRR1415956     1  0.7636     0.3481 0.500 0.004 0.268 NA
#> SRR1500495     1  0.3181     0.7654 0.888 0.004 0.064 NA
#> SRR1405099     1  0.7654     0.3476 0.496 0.004 0.272 NA
#> SRR1345585     3  0.6993     0.2865 0.440 0.032 0.480 NA
#> SRR1093196     1  0.2542     0.7713 0.904 0.000 0.012 NA
#> SRR1466006     2  0.4661     0.7535 0.000 0.728 0.016 NA
#> SRR1351557     2  0.5055     0.7443 0.000 0.624 0.008 NA
#> SRR1382687     1  0.6047     0.6813 0.724 0.128 0.020 NA
#> SRR1375549     2  0.7930    -0.0821 0.100 0.496 0.352 NA
#> SRR1101765     1  0.8111     0.5266 0.588 0.164 0.108 NA
#> SRR1334461     2  0.3523     0.6596 0.000 0.856 0.032 NA
#> SRR1094073     2  0.5125     0.7380 0.000 0.604 0.008 NA
#> SRR1077549     1  0.4647     0.7045 0.796 0.012 0.156 NA
#> SRR1440332     1  0.1938     0.7728 0.936 0.000 0.012 NA
#> SRR1454177     1  0.6030     0.5849 0.684 0.020 0.244 NA
#> SRR1082447     1  0.6570     0.6808 0.712 0.124 0.080 NA
#> SRR1420043     1  0.1909     0.7762 0.940 0.004 0.008 NA
#> SRR1432500     1  0.1406     0.7720 0.960 0.000 0.016 NA
#> SRR1378045     3  0.5429     0.6518 0.048 0.184 0.748 NA
#> SRR1334200     2  0.6001     0.4235 0.096 0.728 0.152 NA
#> SRR1069539     1  0.9398    -0.3472 0.340 0.212 0.340 NA
#> SRR1343031     1  0.1302     0.7732 0.956 0.000 0.000 NA
#> SRR1319690     1  0.3428     0.7574 0.844 0.000 0.012 NA
#> SRR1310604     2  0.2218     0.6767 0.036 0.932 0.028 NA
#> SRR1327747     1  0.3105     0.7615 0.856 0.000 0.004 NA
#> SRR1072456     2  0.5088     0.7582 0.000 0.688 0.024 NA
#> SRR1367896     3  0.3166     0.7702 0.116 0.016 0.868 NA
#> SRR1480107     1  0.7059     0.4835 0.592 0.004 0.200 NA
#> SRR1377756     1  0.5510     0.6903 0.760 0.124 0.016 NA
#> SRR1435272     1  0.2352     0.7731 0.928 0.012 0.016 NA
#> SRR1089230     1  0.6212     0.6846 0.724 0.132 0.036 NA
#> SRR1389522     1  0.5564     0.4525 0.656 0.012 0.312 NA
#> SRR1080600     2  0.2125     0.6913 0.004 0.932 0.052 NA
#> SRR1086935     3  0.8125     0.3544 0.364 0.104 0.472 NA
#> SRR1344060     2  0.4060     0.6555 0.004 0.836 0.048 NA
#> SRR1467922     2  0.4831     0.7552 0.000 0.704 0.016 NA
#> SRR1090984     3  0.4362     0.7698 0.136 0.040 0.816 NA
#> SRR1456991     1  0.7508     0.3034 0.496 0.004 0.324 NA
#> SRR1085039     1  0.1059     0.7729 0.972 0.000 0.016 NA
#> SRR1069303     3  0.3069     0.6918 0.008 0.060 0.896 NA
#> SRR1091500     2  0.5125     0.7380 0.000 0.604 0.008 NA
#> SRR1075198     2  0.1022     0.7010 0.000 0.968 0.032 NA
#> SRR1086915     1  0.5715     0.7116 0.756 0.108 0.028 NA
#> SRR1499503     2  0.4511     0.7583 0.000 0.724 0.008 NA
#> SRR1094312     2  0.5125     0.7380 0.000 0.604 0.008 NA
#> SRR1352437     3  0.2718     0.7296 0.056 0.020 0.912 NA
#> SRR1436323     1  0.1661     0.7745 0.944 0.000 0.004 NA
#> SRR1073507     1  0.4544     0.7518 0.832 0.036 0.076 NA
#> SRR1401972     3  0.2718     0.7296 0.056 0.020 0.912 NA
#> SRR1415510     2  0.2214     0.7127 0.000 0.928 0.044 NA
#> SRR1327279     1  0.2060     0.7734 0.932 0.000 0.016 NA
#> SRR1086983     1  0.3911     0.7477 0.856 0.092 0.028 NA
#> SRR1105174     1  0.4478     0.7528 0.832 0.088 0.028 NA
#> SRR1468893     1  0.6685     0.6699 0.700 0.128 0.060 NA
#> SRR1362555     2  0.2797     0.6527 0.056 0.908 0.028 NA
#> SRR1074526     2  0.6797     0.2392 0.100 0.608 0.280 NA
#> SRR1326225     2  0.5125     0.7380 0.000 0.604 0.008 NA
#> SRR1401933     1  0.6023     0.6848 0.736 0.124 0.032 NA
#> SRR1324062     3  0.4768     0.7297 0.192 0.016 0.772 NA
#> SRR1102296     3  0.3166     0.7458 0.080 0.020 0.888 NA
#> SRR1085087     3  0.5565     0.6054 0.308 0.032 0.656 NA
#> SRR1079046     2  0.3822     0.6464 0.004 0.844 0.032 NA
#> SRR1328339     3  0.3607     0.7677 0.124 0.016 0.852 NA
#> SRR1079782     2  0.1109     0.7036 0.000 0.968 0.028 NA
#> SRR1092257     2  0.5125     0.7380 0.000 0.604 0.008 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1396765     2  0.4216    0.71127 0.000 0.780 0.000 NA 0.100
#> SRR1429287     2  0.3752    0.75049 0.000 0.812 0.000 NA 0.064
#> SRR1359238     1  0.1282    0.83218 0.952 0.000 0.000 NA 0.004
#> SRR1309597     1  0.4377    0.78434 0.760 0.000 0.048 NA 0.008
#> SRR1441398     1  0.3701    0.80749 0.836 0.000 0.044 NA 0.020
#> SRR1084055     2  0.0162    0.90398 0.000 0.996 0.000 NA 0.004
#> SRR1417566     3  0.1699    0.75207 0.036 0.004 0.944 NA 0.008
#> SRR1351857     1  0.1043    0.83208 0.960 0.000 0.000 NA 0.000
#> SRR1487485     3  0.6761    0.60008 0.068 0.044 0.652 NA 0.160
#> SRR1335875     3  0.1186    0.74830 0.020 0.000 0.964 NA 0.008
#> SRR1073947     1  0.6617    0.64803 0.616 0.000 0.176 NA 0.072
#> SRR1443483     1  0.3063    0.82265 0.864 0.000 0.036 NA 0.004
#> SRR1346794     1  0.3597    0.79884 0.800 0.000 0.012 NA 0.008
#> SRR1405245     1  0.4529    0.73203 0.732 0.000 0.040 NA 0.008
#> SRR1409677     1  0.4145    0.77329 0.736 0.004 0.004 NA 0.012
#> SRR1095549     1  0.0932    0.83085 0.972 0.000 0.004 NA 0.004
#> SRR1323788     1  0.2777    0.82050 0.864 0.000 0.016 NA 0.000
#> SRR1314054     2  0.0000    0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1077944     1  0.2208    0.82709 0.908 0.000 0.020 NA 0.000
#> SRR1480587     2  0.1270    0.88049 0.000 0.948 0.000 NA 0.052
#> SRR1311205     1  0.2102    0.82752 0.916 0.000 0.012 NA 0.004
#> SRR1076369     1  0.7262    0.38410 0.456 0.052 0.056 NA 0.040
#> SRR1453549     1  0.5686    0.64228 0.656 0.000 0.208 NA 0.012
#> SRR1345782     1  0.1892    0.82464 0.916 0.000 0.004 NA 0.000
#> SRR1447850     2  0.0794    0.89449 0.000 0.972 0.000 NA 0.000
#> SRR1391553     3  0.1805    0.74845 0.020 0.008 0.944 NA 0.016
#> SRR1444156     2  0.0000    0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1471731     1  0.5757    0.21951 0.496 0.000 0.416 NA 0.000
#> SRR1120987     3  0.4759    0.73367 0.064 0.036 0.792 NA 0.016
#> SRR1477363     1  0.1082    0.83120 0.964 0.000 0.000 NA 0.008
#> SRR1391961     5  0.3928    0.77118 0.000 0.176 0.008 NA 0.788
#> SRR1373879     1  0.2805    0.81713 0.872 0.000 0.012 NA 0.008
#> SRR1318732     3  0.6429    0.49376 0.108 0.004 0.480 NA 0.012
#> SRR1091404     1  0.4659    0.79120 0.744 0.000 0.084 NA 0.004
#> SRR1402109     1  0.1630    0.82972 0.944 0.000 0.016 NA 0.004
#> SRR1407336     1  0.2644    0.82102 0.888 0.000 0.012 NA 0.012
#> SRR1097417     3  0.5135    0.64110 0.044 0.072 0.752 NA 0.128
#> SRR1396227     3  0.5801    0.67068 0.096 0.000 0.700 NA 0.076
#> SRR1400775     2  0.0162    0.90398 0.000 0.996 0.000 NA 0.004
#> SRR1392861     1  0.6318    0.53967 0.576 0.000 0.260 NA 0.016
#> SRR1472929     5  0.4230    0.77391 0.000 0.192 0.008 NA 0.764
#> SRR1436740     1  0.5682    0.68916 0.664 0.000 0.168 NA 0.012
#> SRR1477057     2  0.4077    0.70867 0.000 0.800 0.128 NA 0.064
#> SRR1311980     3  0.3086    0.73311 0.020 0.000 0.876 NA 0.068
#> SRR1069400     1  0.4195    0.78699 0.768 0.000 0.036 NA 0.008
#> SRR1351016     1  0.4225    0.81070 0.784 0.000 0.076 NA 0.004
#> SRR1096291     1  0.4598    0.75597 0.716 0.000 0.008 NA 0.036
#> SRR1418145     3  0.8337    0.19569 0.040 0.076 0.448 NA 0.256
#> SRR1488111     3  0.8084    0.06962 0.008 0.188 0.464 NA 0.212
#> SRR1370495     5  0.3304    0.78135 0.000 0.168 0.016 NA 0.816
#> SRR1352639     3  0.6497    0.56415 0.284 0.008 0.588 NA 0.064
#> SRR1348911     3  0.1243    0.75160 0.028 0.008 0.960 NA 0.004
#> SRR1467386     1  0.2825    0.81417 0.860 0.000 0.016 NA 0.000
#> SRR1415956     1  0.4565    0.78856 0.788 0.000 0.068 NA 0.040
#> SRR1500495     1  0.2522    0.82681 0.896 0.000 0.024 NA 0.004
#> SRR1405099     1  0.4539    0.78707 0.788 0.000 0.060 NA 0.040
#> SRR1345585     3  0.6832    0.44788 0.300 0.000 0.472 NA 0.012
#> SRR1093196     1  0.3272    0.81255 0.848 0.000 0.016 NA 0.016
#> SRR1466006     2  0.4334    0.71348 0.000 0.764 0.000 NA 0.080
#> SRR1351557     2  0.0162    0.90426 0.000 0.996 0.000 NA 0.004
#> SRR1382687     1  0.4624    0.70416 0.676 0.000 0.016 NA 0.012
#> SRR1375549     5  0.8203    0.00125 0.208 0.052 0.280 NA 0.424
#> SRR1101765     1  0.7356    0.46985 0.512 0.060 0.056 NA 0.048
#> SRR1334461     5  0.3813    0.77263 0.000 0.164 0.008 NA 0.800
#> SRR1094073     2  0.0000    0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1077549     1  0.2609    0.83028 0.896 0.000 0.048 NA 0.004
#> SRR1440332     1  0.1697    0.82800 0.932 0.000 0.008 NA 0.000
#> SRR1454177     1  0.5696    0.67536 0.668 0.000 0.176 NA 0.016
#> SRR1082447     1  0.3224    0.82063 0.824 0.000 0.016 NA 0.000
#> SRR1420043     1  0.1854    0.83313 0.936 0.000 0.020 NA 0.008
#> SRR1432500     1  0.1704    0.82805 0.928 0.000 0.004 NA 0.000
#> SRR1378045     3  0.2956    0.72506 0.008 0.064 0.888 NA 0.024
#> SRR1334200     5  0.7441    0.72784 0.032 0.188 0.048 NA 0.560
#> SRR1069539     3  0.9224    0.15900 0.168 0.048 0.300 NA 0.196
#> SRR1343031     1  0.0867    0.83006 0.976 0.000 0.008 NA 0.008
#> SRR1319690     1  0.3387    0.80679 0.828 0.000 0.012 NA 0.012
#> SRR1310604     5  0.5760    0.76474 0.000 0.240 0.024 NA 0.648
#> SRR1327747     1  0.2957    0.81467 0.860 0.000 0.008 NA 0.012
#> SRR1072456     2  0.2536    0.80443 0.000 0.868 0.000 NA 0.128
#> SRR1367896     3  0.2264    0.75479 0.060 0.000 0.912 NA 0.004
#> SRR1480107     1  0.4361    0.78857 0.788 0.000 0.040 NA 0.032
#> SRR1377756     1  0.3790    0.73413 0.724 0.000 0.004 NA 0.000
#> SRR1435272     1  0.3173    0.82442 0.856 0.000 0.016 NA 0.016
#> SRR1089230     1  0.4851    0.76014 0.704 0.004 0.008 NA 0.040
#> SRR1389522     1  0.5527    0.62214 0.656 0.000 0.232 NA 0.008
#> SRR1080600     5  0.6349    0.75161 0.004 0.240 0.024 NA 0.604
#> SRR1086935     3  0.4633    0.71396 0.140 0.008 0.776 NA 0.016
#> SRR1344060     5  0.4260    0.76663 0.000 0.164 0.008 NA 0.776
#> SRR1467922     2  0.0703    0.89672 0.000 0.976 0.000 NA 0.000
#> SRR1090984     3  0.2729    0.75348 0.084 0.000 0.884 NA 0.004
#> SRR1456991     1  0.5651    0.75466 0.692 0.000 0.104 NA 0.036
#> SRR1085039     1  0.1082    0.83150 0.964 0.000 0.008 NA 0.000
#> SRR1069303     3  0.3850    0.70643 0.008 0.008 0.828 NA 0.108
#> SRR1091500     2  0.0703    0.89087 0.000 0.976 0.000 NA 0.024
#> SRR1075198     5  0.6260    0.74749 0.000 0.244 0.024 NA 0.600
#> SRR1086915     1  0.4605    0.76210 0.708 0.000 0.004 NA 0.040
#> SRR1499503     2  0.4361    0.69359 0.000 0.768 0.000 NA 0.108
#> SRR1094312     2  0.0162    0.90398 0.000 0.996 0.000 NA 0.004
#> SRR1352437     3  0.3976    0.72334 0.024 0.000 0.824 NA 0.068
#> SRR1436323     1  0.2526    0.82283 0.896 0.000 0.012 NA 0.012
#> SRR1073507     1  0.3012    0.81393 0.852 0.000 0.024 NA 0.000
#> SRR1401972     3  0.3794    0.71716 0.016 0.000 0.832 NA 0.072
#> SRR1415510     5  0.6528    0.69532 0.000 0.292 0.028 NA 0.552
#> SRR1327279     1  0.0992    0.83035 0.968 0.000 0.008 NA 0.000
#> SRR1086983     1  0.1934    0.83421 0.928 0.000 0.016 NA 0.004
#> SRR1105174     1  0.1952    0.82597 0.912 0.000 0.000 NA 0.004
#> SRR1468893     1  0.4442    0.70087 0.676 0.000 0.016 NA 0.004
#> SRR1362555     5  0.4783    0.77464 0.008 0.232 0.024 NA 0.720
#> SRR1074526     5  0.8898    0.29310 0.032 0.196 0.300 NA 0.332
#> SRR1326225     2  0.0000    0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1401933     1  0.4156    0.73362 0.700 0.000 0.004 NA 0.008
#> SRR1324062     3  0.4367    0.72583 0.128 0.000 0.784 NA 0.012
#> SRR1102296     3  0.3365    0.73356 0.028 0.000 0.864 NA 0.052
#> SRR1085087     3  0.4910    0.59504 0.276 0.000 0.672 NA 0.004
#> SRR1079046     5  0.3443    0.77879 0.000 0.164 0.008 NA 0.816
#> SRR1328339     3  0.2966    0.73116 0.136 0.000 0.848 NA 0.000
#> SRR1079782     5  0.6297    0.74537 0.000 0.244 0.024 NA 0.596
#> SRR1092257     2  0.0404    0.90195 0.000 0.988 0.000 NA 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1396765     2  0.2491     0.8529 0.000 0.836 0.000 0.000 0.164 NA
#> SRR1429287     2  0.2883     0.7890 0.000 0.788 0.000 0.000 0.212 NA
#> SRR1359238     1  0.0820     0.7633 0.972 0.000 0.012 0.016 0.000 NA
#> SRR1309597     1  0.3399     0.6957 0.816 0.000 0.024 0.140 0.000 NA
#> SRR1441398     1  0.3850     0.7125 0.716 0.000 0.020 0.260 0.000 NA
#> SRR1084055     2  0.0260     0.9136 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1417566     3  0.1338     0.5669 0.032 0.000 0.952 0.004 0.008 NA
#> SRR1351857     1  0.2019     0.7670 0.900 0.000 0.012 0.088 0.000 NA
#> SRR1487485     3  0.6833     0.0574 0.080 0.012 0.616 0.120 0.108 NA
#> SRR1335875     3  0.1616     0.5761 0.020 0.000 0.932 0.000 0.000 NA
#> SRR1073947     1  0.6171     0.5359 0.580 0.000 0.168 0.188 0.000 NA
#> SRR1443483     1  0.2294     0.7643 0.896 0.000 0.020 0.076 0.000 NA
#> SRR1346794     1  0.2215     0.7486 0.900 0.000 0.012 0.076 0.000 NA
#> SRR1405245     1  0.4182     0.6587 0.660 0.000 0.024 0.312 0.000 NA
#> SRR1409677     1  0.2999     0.7275 0.852 0.000 0.004 0.072 0.000 NA
#> SRR1095549     1  0.1765     0.7651 0.904 0.000 0.000 0.096 0.000 NA
#> SRR1323788     1  0.3844     0.6846 0.676 0.000 0.008 0.312 0.000 NA
#> SRR1314054     2  0.0547     0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1077944     1  0.2631     0.7627 0.856 0.000 0.012 0.128 0.000 NA
#> SRR1480587     2  0.1556     0.8961 0.000 0.920 0.000 0.000 0.080 NA
#> SRR1311205     1  0.3253     0.7445 0.788 0.000 0.020 0.192 0.000 NA
#> SRR1076369     1  0.6482     0.1093 0.476 0.000 0.040 0.376 0.040 NA
#> SRR1453549     1  0.5504     0.4424 0.640 0.000 0.224 0.072 0.000 NA
#> SRR1345782     1  0.3240     0.7250 0.752 0.000 0.004 0.244 0.000 NA
#> SRR1447850     2  0.3664     0.8373 0.000 0.812 0.000 0.108 0.020 NA
#> SRR1391553     3  0.2245     0.5706 0.016 0.000 0.908 0.000 0.036 NA
#> SRR1444156     2  0.0547     0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1471731     1  0.6480    -0.1419 0.444 0.000 0.372 0.068 0.000 NA
#> SRR1120987     3  0.4839     0.4549 0.032 0.000 0.744 0.100 0.016 NA
#> SRR1477363     1  0.1814     0.7669 0.900 0.000 0.000 0.100 0.000 NA
#> SRR1391961     5  0.3603     0.7278 0.000 0.056 0.000 0.012 0.808 NA
#> SRR1373879     1  0.1942     0.7412 0.916 0.000 0.012 0.064 0.000 NA
#> SRR1318732     3  0.6536    -0.3898 0.096 0.000 0.444 0.380 0.004 NA
#> SRR1091404     1  0.3699     0.7450 0.780 0.000 0.032 0.176 0.000 NA
#> SRR1402109     1  0.0862     0.7581 0.972 0.000 0.008 0.016 0.000 NA
#> SRR1407336     1  0.1578     0.7459 0.936 0.000 0.012 0.048 0.000 NA
#> SRR1097417     3  0.4136     0.3663 0.036 0.000 0.720 0.004 0.236 NA
#> SRR1396227     3  0.5728     0.4089 0.056 0.000 0.580 0.072 0.000 NA
#> SRR1400775     2  0.0146     0.9130 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1392861     1  0.6816     0.2117 0.504 0.000 0.216 0.112 0.000 NA
#> SRR1472929     5  0.3227     0.7360 0.000 0.028 0.000 0.016 0.832 NA
#> SRR1436740     1  0.6049     0.4541 0.612 0.000 0.172 0.104 0.000 NA
#> SRR1477057     2  0.3691     0.7544 0.000 0.788 0.148 0.000 0.060 NA
#> SRR1311980     3  0.3483     0.5207 0.016 0.000 0.748 0.000 0.000 NA
#> SRR1069400     1  0.2257     0.7410 0.904 0.000 0.016 0.060 0.000 NA
#> SRR1351016     1  0.3516     0.7448 0.792 0.000 0.024 0.172 0.000 NA
#> SRR1096291     1  0.4473     0.6349 0.732 0.000 0.012 0.100 0.000 NA
#> SRR1418145     3  0.7446    -0.3526 0.036 0.008 0.440 0.140 0.312 NA
#> SRR1488111     3  0.6882    -0.0952 0.016 0.132 0.504 0.040 0.292 NA
#> SRR1370495     5  0.2325     0.7596 0.000 0.020 0.008 0.004 0.900 NA
#> SRR1352639     3  0.7626    -0.4118 0.100 0.000 0.452 0.200 0.040 NA
#> SRR1348911     3  0.1148     0.5735 0.020 0.000 0.960 0.004 0.000 NA
#> SRR1467386     1  0.3740     0.7200 0.728 0.000 0.012 0.252 0.000 NA
#> SRR1415956     1  0.3957     0.7108 0.712 0.000 0.020 0.260 0.000 NA
#> SRR1500495     1  0.3141     0.7469 0.788 0.000 0.012 0.200 0.000 NA
#> SRR1405099     1  0.4035     0.6892 0.680 0.000 0.020 0.296 0.000 NA
#> SRR1345585     3  0.6926    -0.3507 0.284 0.000 0.464 0.176 0.008 NA
#> SRR1093196     1  0.2015     0.7440 0.916 0.000 0.012 0.056 0.000 NA
#> SRR1466006     2  0.3583     0.8383 0.000 0.820 0.000 0.108 0.040 NA
#> SRR1351557     2  0.0865     0.9148 0.000 0.964 0.000 0.000 0.036 NA
#> SRR1382687     1  0.3756     0.6339 0.736 0.000 0.008 0.240 0.000 NA
#> SRR1375549     5  0.8075    -0.3612 0.044 0.000 0.292 0.136 0.344 NA
#> SRR1101765     1  0.7259     0.0460 0.468 0.000 0.048 0.300 0.084 NA
#> SRR1334461     5  0.2976     0.7354 0.000 0.020 0.000 0.012 0.844 NA
#> SRR1094073     2  0.0547     0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1077549     1  0.3962     0.7167 0.764 0.000 0.116 0.120 0.000 NA
#> SRR1440332     1  0.2562     0.7528 0.828 0.000 0.000 0.172 0.000 NA
#> SRR1454177     1  0.6221     0.4141 0.592 0.000 0.176 0.104 0.000 NA
#> SRR1082447     1  0.3708     0.7227 0.752 0.000 0.020 0.220 0.000 NA
#> SRR1420043     1  0.2825     0.7617 0.844 0.000 0.008 0.136 0.000 NA
#> SRR1432500     1  0.3078     0.7480 0.796 0.000 0.012 0.192 0.000 NA
#> SRR1378045     3  0.2987     0.5429 0.028 0.024 0.876 0.004 0.060 NA
#> SRR1334200     5  0.4646     0.6216 0.012 0.012 0.044 0.172 0.744 NA
#> SRR1069539     4  0.8637     0.0000 0.152 0.000 0.264 0.284 0.200 NA
#> SRR1343031     1  0.1524     0.7649 0.932 0.000 0.008 0.060 0.000 NA
#> SRR1319690     1  0.2222     0.7601 0.896 0.000 0.008 0.084 0.000 NA
#> SRR1310604     5  0.1649     0.7697 0.000 0.036 0.032 0.000 0.932 NA
#> SRR1327747     1  0.1655     0.7585 0.932 0.000 0.008 0.052 0.000 NA
#> SRR1072456     2  0.2553     0.8523 0.000 0.848 0.000 0.000 0.144 NA
#> SRR1367896     3  0.2307     0.5570 0.044 0.000 0.908 0.016 0.004 NA
#> SRR1480107     1  0.4311     0.6811 0.668 0.000 0.024 0.296 0.000 NA
#> SRR1377756     1  0.3240     0.6490 0.752 0.000 0.000 0.244 0.000 NA
#> SRR1435272     1  0.2506     0.7548 0.880 0.000 0.000 0.068 0.000 NA
#> SRR1089230     1  0.4280     0.6541 0.736 0.000 0.004 0.092 0.000 NA
#> SRR1389522     1  0.6165     0.1673 0.556 0.000 0.176 0.224 0.000 NA
#> SRR1080600     5  0.2415     0.7634 0.000 0.036 0.032 0.024 0.904 NA
#> SRR1086935     3  0.5037     0.4326 0.036 0.000 0.728 0.112 0.016 NA
#> SRR1344060     5  0.4394     0.6778 0.000 0.020 0.000 0.120 0.752 NA
#> SRR1467922     2  0.3171     0.8581 0.000 0.844 0.000 0.104 0.024 NA
#> SRR1090984     3  0.3050     0.5216 0.048 0.000 0.864 0.040 0.000 NA
#> SRR1456991     1  0.4021     0.7188 0.748 0.000 0.024 0.204 0.000 NA
#> SRR1085039     1  0.1434     0.7670 0.940 0.000 0.012 0.048 0.000 NA
#> SRR1069303     3  0.4130     0.4948 0.000 0.000 0.696 0.000 0.044 NA
#> SRR1091500     2  0.0260     0.9120 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1075198     5  0.1649     0.7697 0.000 0.036 0.032 0.000 0.932 NA
#> SRR1086915     1  0.4169     0.6558 0.744 0.000 0.004 0.080 0.000 NA
#> SRR1499503     2  0.2300     0.8716 0.000 0.856 0.000 0.000 0.144 NA
#> SRR1094312     2  0.0146     0.9130 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1352437     3  0.4074     0.5014 0.012 0.000 0.704 0.020 0.000 NA
#> SRR1436323     1  0.1370     0.7522 0.948 0.000 0.012 0.036 0.000 NA
#> SRR1073507     1  0.3724     0.7127 0.716 0.000 0.012 0.268 0.000 NA
#> SRR1401972     3  0.4014     0.5011 0.012 0.000 0.704 0.016 0.000 NA
#> SRR1415510     5  0.2798     0.7147 0.000 0.112 0.036 0.000 0.852 NA
#> SRR1327279     1  0.2513     0.7606 0.852 0.000 0.008 0.140 0.000 NA
#> SRR1086983     1  0.3485     0.7532 0.784 0.000 0.028 0.184 0.000 NA
#> SRR1105174     1  0.3201     0.7452 0.780 0.000 0.012 0.208 0.000 NA
#> SRR1468893     1  0.4415     0.5905 0.556 0.000 0.020 0.420 0.000 NA
#> SRR1362555     5  0.1575     0.7697 0.000 0.032 0.032 0.000 0.936 NA
#> SRR1074526     5  0.6648     0.1173 0.012 0.040 0.284 0.116 0.532 NA
#> SRR1326225     2  0.0547     0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1401933     1  0.3954     0.6513 0.684 0.000 0.016 0.296 0.000 NA
#> SRR1324062     3  0.5495     0.4386 0.132 0.000 0.644 0.036 0.000 NA
#> SRR1102296     3  0.3730     0.5214 0.008 0.000 0.740 0.016 0.000 NA
#> SRR1085087     3  0.5331     0.2009 0.200 0.000 0.660 0.040 0.000 NA
#> SRR1079046     5  0.2876     0.7537 0.000 0.020 0.004 0.020 0.868 NA
#> SRR1328339     3  0.2886     0.5270 0.060 0.000 0.872 0.028 0.000 NA
#> SRR1079782     5  0.1649     0.7697 0.000 0.036 0.032 0.000 0.932 NA
#> SRR1092257     2  0.0547     0.9154 0.000 0.980 0.000 0.000 0.020 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.739           0.885       0.949         0.4512 0.554   0.554
#> 3 3 0.669           0.816       0.909         0.3415 0.797   0.653
#> 4 4 0.488           0.448       0.705         0.1935 0.862   0.681
#> 5 5 0.534           0.556       0.734         0.0862 0.762   0.382
#> 6 6 0.601           0.505       0.711         0.0511 0.875   0.509

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000      0.933 0.000 1.000
#> SRR1429287     2  0.0000      0.933 0.000 1.000
#> SRR1359238     1  0.0000      0.949 1.000 0.000
#> SRR1309597     1  0.0000      0.949 1.000 0.000
#> SRR1441398     1  0.0000      0.949 1.000 0.000
#> SRR1084055     2  0.0000      0.933 0.000 1.000
#> SRR1417566     2  0.2603      0.905 0.044 0.956
#> SRR1351857     1  0.0000      0.949 1.000 0.000
#> SRR1487485     2  0.0000      0.933 0.000 1.000
#> SRR1335875     2  0.9686      0.345 0.396 0.604
#> SRR1073947     1  0.0000      0.949 1.000 0.000
#> SRR1443483     1  0.0000      0.949 1.000 0.000
#> SRR1346794     1  0.0000      0.949 1.000 0.000
#> SRR1405245     1  0.0000      0.949 1.000 0.000
#> SRR1409677     1  0.0000      0.949 1.000 0.000
#> SRR1095549     1  0.0000      0.949 1.000 0.000
#> SRR1323788     1  0.0000      0.949 1.000 0.000
#> SRR1314054     2  0.0000      0.933 0.000 1.000
#> SRR1077944     1  0.0000      0.949 1.000 0.000
#> SRR1480587     2  0.0000      0.933 0.000 1.000
#> SRR1311205     1  0.0000      0.949 1.000 0.000
#> SRR1076369     1  0.0000      0.949 1.000 0.000
#> SRR1453549     1  0.6887      0.764 0.816 0.184
#> SRR1345782     1  0.0000      0.949 1.000 0.000
#> SRR1447850     2  0.0000      0.933 0.000 1.000
#> SRR1391553     2  0.0000      0.933 0.000 1.000
#> SRR1444156     2  0.0000      0.933 0.000 1.000
#> SRR1471731     1  0.0000      0.949 1.000 0.000
#> SRR1120987     2  0.5519      0.830 0.128 0.872
#> SRR1477363     1  0.0000      0.949 1.000 0.000
#> SRR1391961     1  0.9552      0.421 0.624 0.376
#> SRR1373879     1  0.0000      0.949 1.000 0.000
#> SRR1318732     1  0.1414      0.933 0.980 0.020
#> SRR1091404     1  0.0000      0.949 1.000 0.000
#> SRR1402109     1  0.0000      0.949 1.000 0.000
#> SRR1407336     1  0.0000      0.949 1.000 0.000
#> SRR1097417     2  0.0376      0.931 0.004 0.996
#> SRR1396227     1  0.0000      0.949 1.000 0.000
#> SRR1400775     2  0.0000      0.933 0.000 1.000
#> SRR1392861     1  0.9000      0.560 0.684 0.316
#> SRR1472929     1  0.4690      0.864 0.900 0.100
#> SRR1436740     1  0.0000      0.949 1.000 0.000
#> SRR1477057     2  0.0000      0.933 0.000 1.000
#> SRR1311980     2  0.9358      0.463 0.352 0.648
#> SRR1069400     1  0.0000      0.949 1.000 0.000
#> SRR1351016     1  0.0000      0.949 1.000 0.000
#> SRR1096291     1  0.0000      0.949 1.000 0.000
#> SRR1418145     2  0.7602      0.727 0.220 0.780
#> SRR1488111     2  0.0000      0.933 0.000 1.000
#> SRR1370495     1  0.0000      0.949 1.000 0.000
#> SRR1352639     1  0.0000      0.949 1.000 0.000
#> SRR1348911     2  0.7883      0.690 0.236 0.764
#> SRR1467386     1  0.0000      0.949 1.000 0.000
#> SRR1415956     1  0.0000      0.949 1.000 0.000
#> SRR1500495     1  0.0000      0.949 1.000 0.000
#> SRR1405099     1  0.0000      0.949 1.000 0.000
#> SRR1345585     1  0.6148      0.794 0.848 0.152
#> SRR1093196     1  0.0000      0.949 1.000 0.000
#> SRR1466006     2  0.0000      0.933 0.000 1.000
#> SRR1351557     2  0.0000      0.933 0.000 1.000
#> SRR1382687     1  0.0000      0.949 1.000 0.000
#> SRR1375549     1  0.0000      0.949 1.000 0.000
#> SRR1101765     1  0.0000      0.949 1.000 0.000
#> SRR1334461     1  0.0000      0.949 1.000 0.000
#> SRR1094073     2  0.0000      0.933 0.000 1.000
#> SRR1077549     1  0.0000      0.949 1.000 0.000
#> SRR1440332     1  0.0000      0.949 1.000 0.000
#> SRR1454177     1  0.0000      0.949 1.000 0.000
#> SRR1082447     1  0.0000      0.949 1.000 0.000
#> SRR1420043     1  0.0000      0.949 1.000 0.000
#> SRR1432500     1  0.0000      0.949 1.000 0.000
#> SRR1378045     2  0.0000      0.933 0.000 1.000
#> SRR1334200     1  0.4690      0.855 0.900 0.100
#> SRR1069539     1  0.9286      0.458 0.656 0.344
#> SRR1343031     1  0.0000      0.949 1.000 0.000
#> SRR1319690     1  0.0000      0.949 1.000 0.000
#> SRR1310604     2  0.0000      0.933 0.000 1.000
#> SRR1327747     1  0.0000      0.949 1.000 0.000
#> SRR1072456     2  0.0000      0.933 0.000 1.000
#> SRR1367896     1  0.8499      0.633 0.724 0.276
#> SRR1480107     1  0.0000      0.949 1.000 0.000
#> SRR1377756     1  0.0000      0.949 1.000 0.000
#> SRR1435272     1  0.0000      0.949 1.000 0.000
#> SRR1089230     1  0.0000      0.949 1.000 0.000
#> SRR1389522     1  0.0000      0.949 1.000 0.000
#> SRR1080600     2  0.7528      0.724 0.216 0.784
#> SRR1086935     2  0.0000      0.933 0.000 1.000
#> SRR1344060     2  0.9087      0.539 0.324 0.676
#> SRR1467922     2  0.0000      0.933 0.000 1.000
#> SRR1090984     1  0.7674      0.712 0.776 0.224
#> SRR1456991     1  0.0000      0.949 1.000 0.000
#> SRR1085039     1  0.0000      0.949 1.000 0.000
#> SRR1069303     1  0.8207      0.665 0.744 0.256
#> SRR1091500     2  0.0000      0.933 0.000 1.000
#> SRR1075198     2  0.4161      0.871 0.084 0.916
#> SRR1086915     1  0.0000      0.949 1.000 0.000
#> SRR1499503     2  0.0000      0.933 0.000 1.000
#> SRR1094312     2  0.0000      0.933 0.000 1.000
#> SRR1352437     1  0.9358      0.480 0.648 0.352
#> SRR1436323     1  0.0000      0.949 1.000 0.000
#> SRR1073507     1  0.0000      0.949 1.000 0.000
#> SRR1401972     1  0.8909      0.574 0.692 0.308
#> SRR1415510     2  0.0000      0.933 0.000 1.000
#> SRR1327279     1  0.0000      0.949 1.000 0.000
#> SRR1086983     1  0.0000      0.949 1.000 0.000
#> SRR1105174     1  0.0000      0.949 1.000 0.000
#> SRR1468893     1  0.0000      0.949 1.000 0.000
#> SRR1362555     2  0.8207      0.667 0.256 0.744
#> SRR1074526     2  0.4022      0.876 0.080 0.920
#> SRR1326225     2  0.0000      0.933 0.000 1.000
#> SRR1401933     1  0.0000      0.949 1.000 0.000
#> SRR1324062     1  0.8081      0.677 0.752 0.248
#> SRR1102296     1  0.9000      0.559 0.684 0.316
#> SRR1085087     1  0.0000      0.949 1.000 0.000
#> SRR1079046     1  0.3114      0.904 0.944 0.056
#> SRR1328339     1  0.0376      0.946 0.996 0.004
#> SRR1079782     2  0.0000      0.933 0.000 1.000
#> SRR1092257     2  0.0000      0.933 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.5706     0.6366 0.000 0.680 0.320
#> SRR1429287     2  0.5431     0.6868 0.000 0.716 0.284
#> SRR1359238     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1309597     1  0.5785     0.6082 0.668 0.332 0.000
#> SRR1441398     1  0.4555     0.7927 0.800 0.200 0.000
#> SRR1084055     2  0.4974     0.7470 0.000 0.764 0.236
#> SRR1417566     3  0.3340     0.7603 0.120 0.000 0.880
#> SRR1351857     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1487485     3  0.0592     0.8486 0.012 0.000 0.988
#> SRR1335875     3  0.5201     0.6237 0.236 0.004 0.760
#> SRR1073947     1  0.0892     0.9110 0.980 0.020 0.000
#> SRR1443483     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1346794     1  0.4121     0.8246 0.832 0.168 0.000
#> SRR1405245     1  0.1753     0.9037 0.952 0.048 0.000
#> SRR1409677     1  0.1753     0.8976 0.952 0.048 0.000
#> SRR1095549     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1323788     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1314054     3  0.0000     0.8501 0.000 0.000 1.000
#> SRR1077944     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1480587     2  0.2878     0.8384 0.000 0.904 0.096
#> SRR1311205     1  0.2878     0.8753 0.904 0.096 0.000
#> SRR1076369     2  0.0237     0.8629 0.004 0.996 0.000
#> SRR1453549     1  0.1529     0.8969 0.960 0.000 0.040
#> SRR1345782     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1447850     3  0.0000     0.8501 0.000 0.000 1.000
#> SRR1391553     3  0.0000     0.8501 0.000 0.000 1.000
#> SRR1444156     3  0.0237     0.8503 0.000 0.004 0.996
#> SRR1471731     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1120987     3  0.4725     0.7720 0.088 0.060 0.852
#> SRR1477363     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1391961     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1373879     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1318732     1  0.5174     0.8127 0.832 0.092 0.076
#> SRR1091404     1  0.6168     0.4427 0.588 0.412 0.000
#> SRR1402109     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1407336     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1097417     3  0.4887     0.6218 0.000 0.228 0.772
#> SRR1396227     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1400775     3  0.0592     0.8493 0.000 0.012 0.988
#> SRR1392861     3  0.6305     0.0936 0.484 0.000 0.516
#> SRR1472929     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1436740     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1477057     2  0.2165     0.8500 0.000 0.936 0.064
#> SRR1311980     3  0.6267     0.1837 0.452 0.000 0.548
#> SRR1069400     1  0.1163     0.9092 0.972 0.028 0.000
#> SRR1351016     1  0.0237     0.9151 0.996 0.004 0.000
#> SRR1096291     1  0.2796     0.8674 0.908 0.092 0.000
#> SRR1418145     2  0.4121     0.7966 0.000 0.832 0.168
#> SRR1488111     3  0.2356     0.8017 0.000 0.072 0.928
#> SRR1370495     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1352639     2  0.0237     0.8629 0.004 0.996 0.000
#> SRR1348911     3  0.2537     0.8003 0.080 0.000 0.920
#> SRR1467386     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1415956     1  0.3941     0.8333 0.844 0.156 0.000
#> SRR1500495     1  0.4121     0.8229 0.832 0.168 0.000
#> SRR1405099     1  0.4702     0.7809 0.788 0.212 0.000
#> SRR1345585     1  0.5016     0.6853 0.760 0.000 0.240
#> SRR1093196     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1466006     2  0.5098     0.7275 0.000 0.752 0.248
#> SRR1351557     3  0.5733     0.3355 0.000 0.324 0.676
#> SRR1382687     1  0.0237     0.9148 0.996 0.004 0.000
#> SRR1375549     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1101765     2  0.0237     0.8629 0.004 0.996 0.000
#> SRR1334461     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1094073     3  0.0424     0.8499 0.000 0.008 0.992
#> SRR1077549     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1440332     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1454177     1  0.0237     0.9145 0.996 0.000 0.004
#> SRR1082447     1  0.0237     0.9150 0.996 0.004 0.000
#> SRR1420043     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1432500     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1378045     3  0.0000     0.8501 0.000 0.000 1.000
#> SRR1334200     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1069539     2  0.7398     0.6654 0.120 0.700 0.180
#> SRR1343031     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1319690     1  0.4178     0.8200 0.828 0.172 0.000
#> SRR1310604     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1327747     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1072456     2  0.0237     0.8645 0.000 0.996 0.004
#> SRR1367896     1  0.4982     0.8139 0.828 0.036 0.136
#> SRR1480107     1  0.2261     0.8906 0.932 0.068 0.000
#> SRR1377756     1  0.1031     0.9085 0.976 0.024 0.000
#> SRR1435272     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1089230     1  0.2066     0.8901 0.940 0.060 0.000
#> SRR1389522     1  0.6095     0.4898 0.608 0.392 0.000
#> SRR1080600     2  0.1860     0.8544 0.000 0.948 0.052
#> SRR1086935     3  0.0892     0.8436 0.020 0.000 0.980
#> SRR1344060     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1467922     3  0.2066     0.8128 0.000 0.060 0.940
#> SRR1090984     1  0.4379     0.8637 0.868 0.072 0.060
#> SRR1456991     1  0.5835     0.5966 0.660 0.340 0.000
#> SRR1085039     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1069303     1  0.6644     0.7413 0.748 0.092 0.160
#> SRR1091500     3  0.0747     0.8481 0.000 0.016 0.984
#> SRR1075198     2  0.3686     0.8151 0.000 0.860 0.140
#> SRR1086915     1  0.1411     0.9033 0.964 0.036 0.000
#> SRR1499503     2  0.4605     0.7711 0.000 0.796 0.204
#> SRR1094312     3  0.0592     0.8493 0.000 0.012 0.988
#> SRR1352437     1  0.5591     0.5475 0.696 0.000 0.304
#> SRR1436323     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1073507     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1401972     1  0.4346     0.7561 0.816 0.000 0.184
#> SRR1415510     2  0.6062     0.5308 0.000 0.616 0.384
#> SRR1327279     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1086983     1  0.0000     0.9157 1.000 0.000 0.000
#> SRR1105174     1  0.3038     0.8725 0.896 0.104 0.000
#> SRR1468893     1  0.2165     0.8988 0.936 0.064 0.000
#> SRR1362555     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1074526     2  0.5882     0.4184 0.000 0.652 0.348
#> SRR1326225     3  0.0592     0.8488 0.000 0.012 0.988
#> SRR1401933     1  0.0424     0.9138 0.992 0.008 0.000
#> SRR1324062     1  0.3816     0.8019 0.852 0.000 0.148
#> SRR1102296     1  0.5726     0.7027 0.760 0.024 0.216
#> SRR1085087     1  0.0237     0.9151 0.996 0.004 0.000
#> SRR1079046     2  0.0000     0.8656 0.000 1.000 0.000
#> SRR1328339     1  0.3686     0.8454 0.860 0.140 0.000
#> SRR1079782     2  0.5785     0.6179 0.000 0.668 0.332
#> SRR1092257     3  0.0237     0.8503 0.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.3810     0.7070 0.008 0.804 0.188 0.000
#> SRR1429287     2  0.2021     0.7857 0.012 0.932 0.056 0.000
#> SRR1359238     4  0.3123     0.5394 0.156 0.000 0.000 0.844
#> SRR1309597     4  0.5851     0.1472 0.084 0.236 0.000 0.680
#> SRR1441398     4  0.5311    -0.0943 0.328 0.024 0.000 0.648
#> SRR1084055     2  0.4103     0.6255 0.000 0.744 0.256 0.000
#> SRR1417566     3  0.5110     0.4970 0.012 0.008 0.688 0.292
#> SRR1351857     4  0.4916     0.4347 0.424 0.000 0.000 0.576
#> SRR1487485     3  0.6421     0.4949 0.012 0.080 0.644 0.264
#> SRR1335875     3  0.6970     0.3336 0.168 0.000 0.576 0.256
#> SRR1073947     1  0.5461     0.4286 0.508 0.008 0.004 0.480
#> SRR1443483     4  0.4083     0.3928 0.068 0.100 0.000 0.832
#> SRR1346794     4  0.6810     0.3475 0.248 0.156 0.000 0.596
#> SRR1405245     4  0.5268     0.3993 0.396 0.012 0.000 0.592
#> SRR1409677     4  0.5273     0.4077 0.456 0.008 0.000 0.536
#> SRR1095549     4  0.1557     0.5292 0.056 0.000 0.000 0.944
#> SRR1323788     4  0.4713     0.4426 0.360 0.000 0.000 0.640
#> SRR1314054     3  0.0188     0.7265 0.004 0.000 0.996 0.000
#> SRR1077944     4  0.4008     0.5333 0.244 0.000 0.000 0.756
#> SRR1480587     2  0.2222     0.7796 0.016 0.924 0.060 0.000
#> SRR1311205     4  0.4730    -0.1714 0.364 0.000 0.000 0.636
#> SRR1076369     2  0.5339     0.4198 0.384 0.600 0.000 0.016
#> SRR1453549     4  0.2111     0.4945 0.044 0.000 0.024 0.932
#> SRR1345782     4  0.3024     0.3821 0.148 0.000 0.000 0.852
#> SRR1447850     3  0.0188     0.7265 0.004 0.000 0.996 0.000
#> SRR1391553     3  0.0188     0.7265 0.004 0.000 0.996 0.000
#> SRR1444156     3  0.0188     0.7265 0.004 0.000 0.996 0.000
#> SRR1471731     4  0.2411     0.5304 0.040 0.000 0.040 0.920
#> SRR1120987     3  0.7620     0.3164 0.324 0.004 0.480 0.192
#> SRR1477363     4  0.2589     0.4202 0.116 0.000 0.000 0.884
#> SRR1391961     2  0.5151     0.4285 0.464 0.532 0.000 0.004
#> SRR1373879     4  0.2281     0.4487 0.096 0.000 0.000 0.904
#> SRR1318732     1  0.7627    -0.2665 0.436 0.176 0.004 0.384
#> SRR1091404     1  0.6770     0.4581 0.496 0.096 0.000 0.408
#> SRR1402109     4  0.1211     0.4983 0.040 0.000 0.000 0.960
#> SRR1407336     4  0.2149     0.5352 0.088 0.000 0.000 0.912
#> SRR1097417     3  0.5645     0.6040 0.060 0.028 0.748 0.164
#> SRR1396227     4  0.4713     0.2182 0.360 0.000 0.000 0.640
#> SRR1400775     3  0.1902     0.7011 0.004 0.064 0.932 0.000
#> SRR1392861     4  0.6843     0.2615 0.112 0.000 0.356 0.532
#> SRR1472929     2  0.2704     0.7741 0.124 0.876 0.000 0.000
#> SRR1436740     4  0.3907     0.5277 0.232 0.000 0.000 0.768
#> SRR1477057     2  0.5558     0.5735 0.364 0.608 0.028 0.000
#> SRR1311980     3  0.5025     0.5743 0.032 0.000 0.716 0.252
#> SRR1069400     4  0.4072     0.3820 0.052 0.120 0.000 0.828
#> SRR1351016     4  0.4819    -0.0932 0.344 0.004 0.000 0.652
#> SRR1096291     4  0.4972     0.4130 0.456 0.000 0.000 0.544
#> SRR1418145     2  0.1520     0.7905 0.020 0.956 0.024 0.000
#> SRR1488111     3  0.5158    -0.1172 0.004 0.472 0.524 0.000
#> SRR1370495     2  0.4454     0.6428 0.308 0.692 0.000 0.000
#> SRR1352639     2  0.5838     0.4242 0.444 0.524 0.000 0.032
#> SRR1348911     3  0.6423     0.4544 0.092 0.008 0.644 0.256
#> SRR1467386     4  0.2973     0.5045 0.144 0.000 0.000 0.856
#> SRR1415956     4  0.5407    -0.4655 0.484 0.012 0.000 0.504
#> SRR1500495     4  0.5353    -0.3603 0.432 0.012 0.000 0.556
#> SRR1405099     1  0.5165     0.4432 0.512 0.004 0.000 0.484
#> SRR1345585     4  0.5474     0.2896 0.056 0.164 0.024 0.756
#> SRR1093196     4  0.3907     0.5285 0.232 0.000 0.000 0.768
#> SRR1466006     2  0.2032     0.7839 0.036 0.936 0.028 0.000
#> SRR1351557     2  0.5119     0.3092 0.004 0.556 0.440 0.000
#> SRR1382687     4  0.4977     0.4112 0.460 0.000 0.000 0.540
#> SRR1375549     2  0.3873     0.7297 0.228 0.772 0.000 0.000
#> SRR1101765     2  0.5329     0.3942 0.420 0.568 0.000 0.012
#> SRR1334461     2  0.4967     0.4576 0.452 0.548 0.000 0.000
#> SRR1094073     3  0.0376     0.7257 0.004 0.004 0.992 0.000
#> SRR1077549     4  0.3157     0.5364 0.144 0.000 0.004 0.852
#> SRR1440332     4  0.0336     0.5173 0.008 0.000 0.000 0.992
#> SRR1454177     4  0.3972     0.5333 0.204 0.000 0.008 0.788
#> SRR1082447     1  0.5290    -0.4295 0.516 0.008 0.000 0.476
#> SRR1420043     4  0.1211     0.5269 0.040 0.000 0.000 0.960
#> SRR1432500     4  0.3444     0.3818 0.184 0.000 0.000 0.816
#> SRR1378045     3  0.0188     0.7265 0.004 0.000 0.996 0.000
#> SRR1334200     2  0.2149     0.7696 0.088 0.912 0.000 0.000
#> SRR1069539     2  0.4442     0.7203 0.092 0.832 0.024 0.052
#> SRR1343031     4  0.1022     0.5030 0.032 0.000 0.000 0.968
#> SRR1319690     4  0.5198     0.4444 0.252 0.040 0.000 0.708
#> SRR1310604     2  0.1151     0.7909 0.024 0.968 0.008 0.000
#> SRR1327747     4  0.5599     0.4721 0.316 0.040 0.000 0.644
#> SRR1072456     2  0.2563     0.7908 0.072 0.908 0.020 0.000
#> SRR1367896     4  0.5916     0.2594 0.144 0.032 0.084 0.740
#> SRR1480107     4  0.5409    -0.4331 0.492 0.012 0.000 0.496
#> SRR1377756     4  0.4985     0.4043 0.468 0.000 0.000 0.532
#> SRR1435272     4  0.3975     0.5281 0.240 0.000 0.000 0.760
#> SRR1089230     4  0.5402     0.3915 0.472 0.012 0.000 0.516
#> SRR1389522     4  0.6790    -0.1832 0.296 0.128 0.000 0.576
#> SRR1080600     2  0.1677     0.7839 0.040 0.948 0.012 0.000
#> SRR1086935     3  0.7711     0.1894 0.340 0.000 0.428 0.232
#> SRR1344060     2  0.2216     0.7824 0.092 0.908 0.000 0.000
#> SRR1467922     3  0.0188     0.7265 0.004 0.000 0.996 0.000
#> SRR1090984     4  0.7620     0.1417 0.324 0.000 0.220 0.456
#> SRR1456991     1  0.5600     0.4496 0.512 0.020 0.000 0.468
#> SRR1085039     4  0.4220     0.2478 0.248 0.004 0.000 0.748
#> SRR1069303     1  0.7485     0.3612 0.560 0.012 0.212 0.216
#> SRR1091500     3  0.2714     0.6720 0.004 0.112 0.884 0.000
#> SRR1075198     2  0.0707     0.7872 0.000 0.980 0.020 0.000
#> SRR1086915     4  0.5155     0.4018 0.468 0.004 0.000 0.528
#> SRR1499503     2  0.1743     0.7822 0.004 0.940 0.056 0.000
#> SRR1094312     3  0.2401     0.6813 0.004 0.092 0.904 0.000
#> SRR1352437     3  0.5927     0.5003 0.076 0.000 0.660 0.264
#> SRR1436323     4  0.3024     0.5389 0.148 0.000 0.000 0.852
#> SRR1073507     4  0.4222     0.5197 0.272 0.000 0.000 0.728
#> SRR1401972     3  0.6742     0.4753 0.232 0.000 0.608 0.160
#> SRR1415510     2  0.2799     0.7523 0.008 0.884 0.108 0.000
#> SRR1327279     4  0.2589     0.4204 0.116 0.000 0.000 0.884
#> SRR1086983     4  0.4855     0.4486 0.400 0.000 0.000 0.600
#> SRR1105174     4  0.4978     0.4080 0.384 0.004 0.000 0.612
#> SRR1468893     4  0.5285     0.3933 0.468 0.008 0.000 0.524
#> SRR1362555     2  0.0895     0.7897 0.020 0.976 0.004 0.000
#> SRR1074526     1  0.6712    -0.2707 0.576 0.332 0.084 0.008
#> SRR1326225     3  0.3710     0.5700 0.004 0.192 0.804 0.000
#> SRR1401933     4  0.5281     0.4018 0.464 0.008 0.000 0.528
#> SRR1324062     3  0.6276     0.2960 0.064 0.000 0.556 0.380
#> SRR1102296     1  0.7729     0.4158 0.496 0.008 0.208 0.288
#> SRR1085087     1  0.5167     0.3478 0.508 0.004 0.000 0.488
#> SRR1079046     2  0.4790     0.6001 0.380 0.620 0.000 0.000
#> SRR1328339     1  0.4999     0.4348 0.508 0.000 0.000 0.492
#> SRR1079782     2  0.1637     0.7826 0.000 0.940 0.060 0.000
#> SRR1092257     3  0.0188     0.7265 0.004 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     5  0.1493   0.853812 0.024 0.028 0.000 0.000 0.948
#> SRR1429287     5  0.2696   0.838420 0.012 0.052 0.000 0.040 0.896
#> SRR1359238     4  0.6114   0.331586 0.128 0.000 0.400 0.472 0.000
#> SRR1309597     3  0.3334   0.691040 0.080 0.000 0.852 0.004 0.064
#> SRR1441398     3  0.2621   0.693666 0.112 0.000 0.876 0.004 0.008
#> SRR1084055     5  0.2409   0.833754 0.032 0.068 0.000 0.000 0.900
#> SRR1417566     3  0.6489  -0.000367 0.100 0.440 0.440 0.008 0.012
#> SRR1351857     4  0.3750   0.632580 0.060 0.000 0.116 0.820 0.004
#> SRR1487485     3  0.5748   0.609464 0.124 0.120 0.708 0.008 0.040
#> SRR1335875     3  0.5376   0.277917 0.056 0.424 0.520 0.000 0.000
#> SRR1073947     1  0.3196   0.606440 0.804 0.000 0.192 0.004 0.000
#> SRR1443483     3  0.2142   0.722439 0.048 0.000 0.920 0.004 0.028
#> SRR1346794     4  0.7451   0.196318 0.124 0.000 0.372 0.420 0.084
#> SRR1405245     3  0.4974   0.412243 0.040 0.000 0.640 0.316 0.004
#> SRR1409677     4  0.3585   0.628656 0.052 0.000 0.088 0.844 0.016
#> SRR1095549     3  0.3368   0.666605 0.024 0.000 0.820 0.156 0.000
#> SRR1323788     4  0.5048  -0.041408 0.032 0.000 0.476 0.492 0.000
#> SRR1314054     2  0.0162   0.755330 0.004 0.996 0.000 0.000 0.000
#> SRR1077944     4  0.6349   0.449721 0.232 0.000 0.244 0.524 0.000
#> SRR1480587     5  0.2484   0.833487 0.068 0.004 0.028 0.000 0.900
#> SRR1311205     3  0.2852   0.664056 0.172 0.000 0.828 0.000 0.000
#> SRR1076369     4  0.5883   0.059116 0.056 0.000 0.024 0.552 0.368
#> SRR1453549     3  0.4398   0.685649 0.068 0.052 0.804 0.076 0.000
#> SRR1345782     3  0.1725   0.725696 0.044 0.000 0.936 0.020 0.000
#> SRR1447850     2  0.0000   0.756122 0.000 1.000 0.000 0.000 0.000
#> SRR1391553     2  0.0000   0.756122 0.000 1.000 0.000 0.000 0.000
#> SRR1444156     2  0.1704   0.750921 0.068 0.928 0.000 0.000 0.004
#> SRR1471731     3  0.4254   0.673449 0.096 0.012 0.796 0.096 0.000
#> SRR1120987     4  0.6383   0.554400 0.168 0.104 0.032 0.664 0.032
#> SRR1477363     3  0.2719   0.718814 0.068 0.000 0.884 0.048 0.000
#> SRR1391961     1  0.4570   0.392119 0.632 0.000 0.020 0.000 0.348
#> SRR1373879     3  0.2077   0.730033 0.040 0.000 0.920 0.040 0.000
#> SRR1318732     4  0.6944   0.185597 0.056 0.000 0.328 0.504 0.112
#> SRR1091404     1  0.4369   0.599776 0.720 0.000 0.252 0.012 0.016
#> SRR1402109     3  0.3119   0.700213 0.072 0.000 0.860 0.068 0.000
#> SRR1407336     3  0.5759   0.139606 0.108 0.000 0.568 0.324 0.000
#> SRR1097417     3  0.5070   0.490422 0.016 0.316 0.640 0.000 0.028
#> SRR1396227     1  0.5816   0.382703 0.608 0.000 0.164 0.228 0.000
#> SRR1400775     2  0.2074   0.746339 0.000 0.896 0.000 0.000 0.104
#> SRR1392861     4  0.8000   0.423340 0.116 0.252 0.208 0.424 0.000
#> SRR1472929     5  0.2654   0.822452 0.064 0.000 0.048 0.000 0.888
#> SRR1436740     4  0.6218   0.572390 0.200 0.064 0.092 0.644 0.000
#> SRR1477057     1  0.5126   0.158478 0.536 0.024 0.000 0.008 0.432
#> SRR1311980     2  0.4443  -0.156905 0.000 0.524 0.472 0.004 0.000
#> SRR1069400     3  0.3175   0.723582 0.064 0.000 0.872 0.020 0.044
#> SRR1351016     1  0.4341   0.292686 0.592 0.000 0.404 0.004 0.000
#> SRR1096291     4  0.4752   0.625601 0.084 0.000 0.144 0.756 0.016
#> SRR1418145     5  0.2233   0.815588 0.004 0.000 0.000 0.104 0.892
#> SRR1488111     5  0.3318   0.753666 0.008 0.192 0.000 0.000 0.800
#> SRR1370495     5  0.4030   0.416105 0.352 0.000 0.000 0.000 0.648
#> SRR1352639     1  0.4796   0.101948 0.516 0.000 0.012 0.004 0.468
#> SRR1348911     3  0.4797   0.609027 0.104 0.172 0.724 0.000 0.000
#> SRR1467386     4  0.6664   0.287737 0.232 0.000 0.360 0.408 0.000
#> SRR1415956     3  0.3452   0.578239 0.244 0.000 0.756 0.000 0.000
#> SRR1500495     3  0.2179   0.692017 0.112 0.000 0.888 0.000 0.000
#> SRR1405099     1  0.4201   0.358471 0.592 0.000 0.408 0.000 0.000
#> SRR1345585     3  0.3893   0.690192 0.076 0.004 0.832 0.016 0.072
#> SRR1093196     4  0.6200   0.452038 0.160 0.000 0.320 0.520 0.000
#> SRR1466006     5  0.2142   0.836949 0.048 0.000 0.004 0.028 0.920
#> SRR1351557     5  0.4289   0.722286 0.064 0.176 0.000 0.000 0.760
#> SRR1382687     4  0.2597   0.612153 0.024 0.000 0.092 0.884 0.000
#> SRR1375549     5  0.6785   0.271745 0.228 0.000 0.012 0.268 0.492
#> SRR1101765     4  0.3621   0.446517 0.020 0.000 0.000 0.788 0.192
#> SRR1334461     1  0.4101   0.348831 0.628 0.000 0.000 0.000 0.372
#> SRR1094073     2  0.3517   0.727627 0.068 0.832 0.000 0.000 0.100
#> SRR1077549     4  0.6878   0.466718 0.220 0.016 0.280 0.484 0.000
#> SRR1440332     3  0.3647   0.662839 0.052 0.000 0.816 0.132 0.000
#> SRR1454177     4  0.7240   0.478847 0.136 0.076 0.276 0.512 0.000
#> SRR1082447     4  0.3387   0.548274 0.128 0.000 0.032 0.836 0.004
#> SRR1420043     3  0.4711   0.580181 0.116 0.000 0.736 0.148 0.000
#> SRR1432500     3  0.5038   0.551916 0.132 0.000 0.704 0.164 0.000
#> SRR1378045     2  0.1942   0.748281 0.068 0.920 0.012 0.000 0.000
#> SRR1334200     5  0.3759   0.691964 0.016 0.000 0.000 0.220 0.764
#> SRR1069539     5  0.3073   0.825014 0.052 0.000 0.008 0.068 0.872
#> SRR1343031     3  0.4022   0.654645 0.100 0.000 0.796 0.104 0.000
#> SRR1319690     3  0.3073   0.691801 0.024 0.000 0.856 0.116 0.004
#> SRR1310604     5  0.0963   0.848609 0.036 0.000 0.000 0.000 0.964
#> SRR1327747     4  0.5631   0.525510 0.072 0.000 0.268 0.640 0.020
#> SRR1072456     5  0.2172   0.845886 0.076 0.000 0.016 0.000 0.908
#> SRR1367896     3  0.2790   0.723133 0.028 0.060 0.892 0.000 0.020
#> SRR1480107     1  0.3970   0.604532 0.752 0.000 0.224 0.024 0.000
#> SRR1377756     4  0.1725   0.602458 0.020 0.000 0.044 0.936 0.000
#> SRR1435272     4  0.6886   0.443848 0.136 0.040 0.316 0.508 0.000
#> SRR1089230     4  0.0693   0.600048 0.000 0.000 0.008 0.980 0.012
#> SRR1389522     3  0.2139   0.712235 0.052 0.000 0.916 0.000 0.032
#> SRR1080600     5  0.2228   0.838787 0.048 0.000 0.000 0.040 0.912
#> SRR1086935     4  0.3710   0.552098 0.024 0.192 0.000 0.784 0.000
#> SRR1344060     5  0.2124   0.835453 0.056 0.000 0.000 0.028 0.916
#> SRR1467922     2  0.2110   0.751167 0.072 0.912 0.000 0.000 0.016
#> SRR1090984     3  0.8290   0.118190 0.144 0.272 0.364 0.220 0.000
#> SRR1456991     1  0.4161   0.401069 0.608 0.000 0.392 0.000 0.000
#> SRR1085039     3  0.4589   0.548257 0.248 0.000 0.704 0.048 0.000
#> SRR1069303     1  0.4744   0.540444 0.764 0.156 0.028 0.048 0.004
#> SRR1091500     2  0.2964   0.723674 0.024 0.856 0.000 0.000 0.120
#> SRR1075198     5  0.0671   0.853150 0.016 0.000 0.004 0.000 0.980
#> SRR1086915     4  0.1605   0.612223 0.040 0.000 0.012 0.944 0.004
#> SRR1499503     5  0.0579   0.854612 0.000 0.008 0.008 0.000 0.984
#> SRR1094312     2  0.3630   0.662134 0.016 0.780 0.000 0.000 0.204
#> SRR1352437     2  0.7135   0.215199 0.228 0.512 0.044 0.216 0.000
#> SRR1436323     4  0.6304   0.349849 0.156 0.000 0.384 0.460 0.000
#> SRR1073507     4  0.5714   0.488377 0.292 0.000 0.116 0.592 0.000
#> SRR1401972     1  0.6769   0.161927 0.444 0.308 0.004 0.244 0.000
#> SRR1415510     5  0.5081   0.716388 0.104 0.080 0.060 0.000 0.756
#> SRR1327279     3  0.3058   0.697799 0.044 0.000 0.860 0.096 0.000
#> SRR1086983     4  0.4454   0.621735 0.112 0.000 0.128 0.760 0.000
#> SRR1105174     4  0.6475   0.161492 0.212 0.000 0.304 0.484 0.000
#> SRR1468893     4  0.1901   0.582240 0.040 0.000 0.024 0.932 0.004
#> SRR1362555     5  0.0324   0.853351 0.004 0.000 0.004 0.000 0.992
#> SRR1074526     4  0.7903   0.084323 0.212 0.140 0.000 0.464 0.184
#> SRR1326225     2  0.4126   0.311804 0.000 0.620 0.000 0.000 0.380
#> SRR1401933     4  0.1822   0.591881 0.036 0.000 0.024 0.936 0.004
#> SRR1324062     2  0.7328   0.255041 0.120 0.528 0.240 0.112 0.000
#> SRR1102296     1  0.5083   0.599154 0.700 0.140 0.160 0.000 0.000
#> SRR1085087     1  0.4797   0.587317 0.736 0.000 0.176 0.080 0.008
#> SRR1079046     1  0.6202   0.380278 0.564 0.000 0.008 0.144 0.284
#> SRR1328339     3  0.4088   0.319491 0.368 0.000 0.632 0.000 0.000
#> SRR1079782     5  0.0693   0.854886 0.008 0.012 0.000 0.000 0.980
#> SRR1092257     2  0.2179   0.744640 0.004 0.896 0.000 0.000 0.100

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0972    0.81190 0.000 0.964 0.008 0.000 0.028 0.000
#> SRR1429287     2  0.2835    0.79308 0.008 0.876 0.004 0.036 0.004 0.072
#> SRR1359238     4  0.2805    0.58756 0.012 0.000 0.160 0.828 0.000 0.000
#> SRR1309597     3  0.3098    0.63416 0.060 0.032 0.868 0.028 0.000 0.012
#> SRR1441398     3  0.2680    0.64532 0.108 0.000 0.860 0.000 0.000 0.032
#> SRR1084055     2  0.1774    0.80611 0.024 0.936 0.004 0.004 0.028 0.004
#> SRR1417566     3  0.5607    0.20711 0.004 0.000 0.524 0.004 0.348 0.120
#> SRR1351857     4  0.4332    0.41259 0.000 0.000 0.048 0.664 0.000 0.288
#> SRR1487485     3  0.5171    0.59801 0.028 0.008 0.728 0.076 0.136 0.024
#> SRR1335875     3  0.6767    0.39722 0.128 0.000 0.488 0.112 0.272 0.000
#> SRR1073947     1  0.2373    0.62899 0.888 0.004 0.084 0.024 0.000 0.000
#> SRR1443483     3  0.3145    0.62914 0.012 0.012 0.828 0.144 0.000 0.004
#> SRR1346794     6  0.6637    0.39804 0.164 0.036 0.320 0.012 0.000 0.468
#> SRR1405245     3  0.4426    0.13817 0.020 0.000 0.596 0.008 0.000 0.376
#> SRR1409677     4  0.4480    0.56514 0.004 0.040 0.056 0.756 0.000 0.144
#> SRR1095549     3  0.5209    0.57421 0.044 0.000 0.688 0.132 0.000 0.136
#> SRR1323788     6  0.4227    0.41733 0.004 0.000 0.344 0.020 0.000 0.632
#> SRR1314054     5  0.2278    0.74812 0.000 0.004 0.000 0.128 0.868 0.000
#> SRR1077944     1  0.6763    0.21026 0.436 0.000 0.052 0.236 0.000 0.276
#> SRR1480587     2  0.3366    0.74838 0.000 0.824 0.080 0.000 0.092 0.004
#> SRR1311205     3  0.4234    0.51369 0.324 0.000 0.644 0.032 0.000 0.000
#> SRR1076369     6  0.2251    0.62745 0.000 0.052 0.036 0.008 0.000 0.904
#> SRR1453549     4  0.4095   -0.03242 0.008 0.000 0.480 0.512 0.000 0.000
#> SRR1345782     3  0.3834    0.51923 0.024 0.000 0.708 0.268 0.000 0.000
#> SRR1447850     5  0.2092    0.74724 0.000 0.000 0.000 0.124 0.876 0.000
#> SRR1391553     5  0.2333    0.74908 0.000 0.000 0.004 0.120 0.872 0.004
#> SRR1444156     5  0.0405    0.73983 0.000 0.004 0.008 0.000 0.988 0.000
#> SRR1471731     3  0.6019    0.43824 0.056 0.004 0.656 0.144 0.024 0.116
#> SRR1120987     4  0.4342    0.44008 0.028 0.052 0.000 0.772 0.012 0.136
#> SRR1477363     3  0.3863    0.64096 0.164 0.000 0.776 0.048 0.000 0.012
#> SRR1391961     1  0.5552    0.17412 0.552 0.360 0.028 0.012 0.000 0.048
#> SRR1373879     3  0.3728    0.40243 0.004 0.000 0.652 0.344 0.000 0.000
#> SRR1318732     6  0.4316    0.33766 0.004 0.008 0.432 0.004 0.000 0.552
#> SRR1091404     1  0.2309    0.62343 0.888 0.000 0.084 0.000 0.000 0.028
#> SRR1402109     3  0.3854    0.11042 0.000 0.000 0.536 0.464 0.000 0.000
#> SRR1407336     4  0.3320    0.55305 0.016 0.000 0.212 0.772 0.000 0.000
#> SRR1097417     3  0.6578    0.44566 0.024 0.024 0.512 0.328 0.096 0.016
#> SRR1396227     1  0.5187    0.45949 0.672 0.000 0.036 0.072 0.004 0.216
#> SRR1400775     5  0.4204    0.73255 0.040 0.124 0.000 0.060 0.776 0.000
#> SRR1392861     4  0.1245    0.59696 0.000 0.000 0.016 0.952 0.032 0.000
#> SRR1472929     2  0.3341    0.74831 0.116 0.816 0.068 0.000 0.000 0.000
#> SRR1436740     4  0.5421    0.35455 0.132 0.000 0.008 0.640 0.012 0.208
#> SRR1477057     2  0.4999    0.22494 0.456 0.496 0.000 0.024 0.020 0.004
#> SRR1311980     5  0.5517    0.24741 0.000 0.000 0.352 0.124 0.520 0.004
#> SRR1069400     3  0.4455    0.37868 0.016 0.016 0.616 0.352 0.000 0.000
#> SRR1351016     1  0.2702    0.62972 0.868 0.000 0.092 0.036 0.000 0.004
#> SRR1096291     4  0.3248    0.50971 0.004 0.004 0.000 0.768 0.000 0.224
#> SRR1418145     2  0.1565    0.80825 0.004 0.940 0.000 0.028 0.000 0.028
#> SRR1488111     2  0.2678    0.76263 0.004 0.860 0.000 0.116 0.020 0.000
#> SRR1370495     2  0.3309    0.62165 0.280 0.720 0.000 0.000 0.000 0.000
#> SRR1352639     2  0.4471    0.17186 0.472 0.500 0.028 0.000 0.000 0.000
#> SRR1348911     3  0.4681    0.47885 0.032 0.000 0.620 0.016 0.332 0.000
#> SRR1467386     1  0.6740    0.12065 0.416 0.000 0.096 0.372 0.000 0.116
#> SRR1415956     3  0.3898    0.52763 0.296 0.000 0.684 0.000 0.000 0.020
#> SRR1500495     3  0.3053    0.64221 0.168 0.000 0.812 0.020 0.000 0.000
#> SRR1405099     1  0.3620    0.31744 0.648 0.000 0.352 0.000 0.000 0.000
#> SRR1345585     3  0.2922    0.63173 0.008 0.028 0.876 0.028 0.000 0.060
#> SRR1093196     4  0.4575    0.59104 0.064 0.000 0.100 0.756 0.000 0.080
#> SRR1466006     2  0.2065    0.79882 0.004 0.912 0.052 0.000 0.000 0.032
#> SRR1351557     2  0.3271    0.67303 0.000 0.760 0.008 0.000 0.232 0.000
#> SRR1382687     6  0.3277    0.64140 0.000 0.000 0.084 0.092 0.000 0.824
#> SRR1375549     6  0.5624    0.10102 0.388 0.084 0.004 0.016 0.000 0.508
#> SRR1101765     6  0.3414    0.57146 0.008 0.140 0.000 0.040 0.000 0.812
#> SRR1334461     1  0.4275    0.29256 0.644 0.328 0.020 0.008 0.000 0.000
#> SRR1094073     5  0.3634    0.49326 0.000 0.296 0.008 0.000 0.696 0.000
#> SRR1077549     4  0.3220    0.57506 0.128 0.000 0.028 0.832 0.004 0.008
#> SRR1440332     4  0.3998   -0.03697 0.004 0.000 0.492 0.504 0.000 0.000
#> SRR1454177     4  0.0870    0.60749 0.004 0.000 0.012 0.972 0.000 0.012
#> SRR1082447     6  0.3056    0.55787 0.160 0.000 0.008 0.012 0.000 0.820
#> SRR1420043     4  0.3409    0.45537 0.000 0.000 0.300 0.700 0.000 0.000
#> SRR1432500     4  0.3853    0.45090 0.016 0.000 0.304 0.680 0.000 0.000
#> SRR1378045     5  0.2945    0.63131 0.000 0.000 0.156 0.000 0.824 0.020
#> SRR1334200     2  0.4435    0.35763 0.004 0.576 0.004 0.016 0.000 0.400
#> SRR1069539     2  0.3264    0.68137 0.008 0.796 0.000 0.184 0.000 0.012
#> SRR1343031     4  0.4084    0.22284 0.012 0.000 0.400 0.588 0.000 0.000
#> SRR1319690     3  0.2419    0.65200 0.016 0.000 0.896 0.060 0.000 0.028
#> SRR1310604     2  0.1003    0.81068 0.028 0.964 0.004 0.004 0.000 0.000
#> SRR1327747     6  0.5975    0.47394 0.016 0.020 0.308 0.104 0.000 0.552
#> SRR1072456     2  0.2375    0.79866 0.020 0.896 0.016 0.000 0.068 0.000
#> SRR1367896     3  0.3499    0.59927 0.012 0.004 0.780 0.196 0.008 0.000
#> SRR1480107     1  0.2032    0.62235 0.920 0.000 0.036 0.024 0.000 0.020
#> SRR1377756     6  0.2373    0.64215 0.004 0.000 0.024 0.084 0.000 0.888
#> SRR1435272     4  0.2320    0.60254 0.000 0.000 0.132 0.864 0.000 0.004
#> SRR1089230     6  0.3081    0.56251 0.000 0.004 0.000 0.220 0.000 0.776
#> SRR1389522     3  0.3392    0.63413 0.040 0.012 0.820 0.128 0.000 0.000
#> SRR1080600     2  0.1562    0.80763 0.004 0.940 0.032 0.000 0.000 0.024
#> SRR1086935     6  0.5767    0.34631 0.000 0.000 0.004 0.300 0.180 0.516
#> SRR1344060     2  0.2747    0.78148 0.028 0.868 0.004 0.004 0.000 0.096
#> SRR1467922     5  0.0862    0.73754 0.000 0.008 0.016 0.000 0.972 0.004
#> SRR1090984     6  0.7255    0.29388 0.116 0.000 0.256 0.000 0.224 0.404
#> SRR1456991     1  0.3398    0.44636 0.740 0.008 0.252 0.000 0.000 0.000
#> SRR1085039     3  0.6274    0.27471 0.156 0.000 0.488 0.320 0.000 0.036
#> SRR1069303     1  0.4629    0.57567 0.760 0.000 0.012 0.120 0.064 0.044
#> SRR1091500     5  0.5410    0.69252 0.020 0.160 0.004 0.116 0.684 0.016
#> SRR1075198     2  0.0603    0.81165 0.004 0.980 0.016 0.000 0.000 0.000
#> SRR1086915     6  0.3872    0.28898 0.000 0.004 0.000 0.392 0.000 0.604
#> SRR1499503     2  0.0436    0.81241 0.004 0.988 0.004 0.000 0.004 0.000
#> SRR1094312     5  0.4155    0.51491 0.012 0.316 0.000 0.012 0.660 0.000
#> SRR1352437     4  0.6398   -0.02245 0.280 0.000 0.004 0.436 0.268 0.012
#> SRR1436323     4  0.7581   -0.00376 0.188 0.000 0.216 0.348 0.000 0.248
#> SRR1073507     1  0.6695    0.10942 0.372 0.000 0.040 0.364 0.000 0.224
#> SRR1401972     1  0.7225    0.34778 0.464 0.000 0.004 0.184 0.148 0.200
#> SRR1415510     2  0.4213    0.67392 0.004 0.744 0.092 0.000 0.160 0.000
#> SRR1327279     4  0.4141    0.17117 0.012 0.000 0.432 0.556 0.000 0.000
#> SRR1086983     4  0.4524    0.33876 0.000 0.000 0.048 0.616 0.000 0.336
#> SRR1105174     6  0.4783    0.47211 0.204 0.000 0.128 0.000 0.000 0.668
#> SRR1468893     6  0.1838    0.64013 0.020 0.000 0.012 0.040 0.000 0.928
#> SRR1362555     2  0.0291    0.81133 0.004 0.992 0.004 0.000 0.000 0.000
#> SRR1074526     6  0.7326    0.36745 0.088 0.136 0.004 0.152 0.072 0.548
#> SRR1326225     2  0.4775    0.42161 0.000 0.632 0.000 0.084 0.284 0.000
#> SRR1401933     6  0.1909    0.64142 0.024 0.000 0.004 0.052 0.000 0.920
#> SRR1324062     4  0.5626   -0.03363 0.048 0.000 0.032 0.544 0.364 0.012
#> SRR1102296     1  0.2806    0.62530 0.872 0.000 0.060 0.012 0.056 0.000
#> SRR1085087     1  0.4164    0.56698 0.756 0.004 0.032 0.188 0.004 0.016
#> SRR1079046     1  0.6580    0.24348 0.488 0.184 0.012 0.016 0.008 0.292
#> SRR1328339     3  0.4789    0.39588 0.364 0.000 0.584 0.000 0.044 0.008
#> SRR1079782     2  0.0363    0.81147 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1092257     5  0.4996    0.65960 0.004 0.216 0.000 0.128 0.652 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.190           0.676       0.777         0.3586 0.524   0.524
#> 3 3 0.212           0.588       0.706         0.5408 0.767   0.614
#> 4 4 0.264           0.442       0.640         0.1822 0.873   0.725
#> 5 5 0.355           0.581       0.689         0.0894 0.864   0.643
#> 6 6 0.426           0.580       0.698         0.0364 0.989   0.961

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0376     0.8066 0.004 0.996
#> SRR1429287     2  0.2043     0.8055 0.032 0.968
#> SRR1359238     2  0.9795    -0.2519 0.416 0.584
#> SRR1309597     2  0.4939     0.7790 0.108 0.892
#> SRR1441398     1  0.9580     0.7654 0.620 0.380
#> SRR1084055     2  0.0376     0.8066 0.004 0.996
#> SRR1417566     2  0.8443     0.4623 0.272 0.728
#> SRR1351857     2  0.9358    -0.0449 0.352 0.648
#> SRR1487485     2  0.4815     0.7814 0.104 0.896
#> SRR1335875     2  0.5519     0.7693 0.128 0.872
#> SRR1073947     1  0.9635     0.7781 0.612 0.388
#> SRR1443483     2  0.4939     0.7790 0.108 0.892
#> SRR1346794     2  0.9754    -0.0405 0.408 0.592
#> SRR1405245     1  0.9815     0.7422 0.580 0.420
#> SRR1409677     2  0.3274     0.8012 0.060 0.940
#> SRR1095549     2  0.9944    -0.3958 0.456 0.544
#> SRR1323788     2  0.9988    -0.4786 0.480 0.520
#> SRR1314054     2  0.0376     0.8058 0.004 0.996
#> SRR1077944     1  0.9608     0.7805 0.616 0.384
#> SRR1480587     2  0.0938     0.8097 0.012 0.988
#> SRR1311205     1  0.9710     0.7743 0.600 0.400
#> SRR1076369     1  0.9044     0.6997 0.680 0.320
#> SRR1453549     2  0.3274     0.8115 0.060 0.940
#> SRR1345782     1  0.9393     0.7938 0.644 0.356
#> SRR1447850     2  0.0938     0.8074 0.012 0.988
#> SRR1391553     2  0.5294     0.7734 0.120 0.880
#> SRR1444156     2  0.0000     0.8048 0.000 1.000
#> SRR1471731     2  0.5178     0.7796 0.116 0.884
#> SRR1120987     2  0.3114     0.8053 0.056 0.944
#> SRR1477363     1  0.9393     0.7956 0.644 0.356
#> SRR1391961     1  0.3733     0.5704 0.928 0.072
#> SRR1373879     2  0.5059     0.7792 0.112 0.888
#> SRR1318732     2  0.7815     0.5921 0.232 0.768
#> SRR1091404     1  0.9044     0.7914 0.680 0.320
#> SRR1402109     2  0.5059     0.7792 0.112 0.888
#> SRR1407336     2  0.5629     0.7640 0.132 0.868
#> SRR1097417     2  0.5629     0.7665 0.132 0.868
#> SRR1396227     1  0.9977     0.6609 0.528 0.472
#> SRR1400775     2  0.0376     0.8066 0.004 0.996
#> SRR1392861     2  0.2948     0.8029 0.052 0.948
#> SRR1472929     1  0.0672     0.5044 0.992 0.008
#> SRR1436740     2  0.2948     0.8029 0.052 0.948
#> SRR1477057     2  0.9732    -0.2877 0.404 0.596
#> SRR1311980     2  0.5629     0.7644 0.132 0.868
#> SRR1069400     2  0.5519     0.7690 0.128 0.872
#> SRR1351016     1  0.9710     0.7743 0.600 0.400
#> SRR1096291     2  0.3274     0.8094 0.060 0.940
#> SRR1418145     2  0.3733     0.8003 0.072 0.928
#> SRR1488111     2  0.3114     0.8053 0.056 0.944
#> SRR1370495     1  0.9993     0.6302 0.516 0.484
#> SRR1352639     2  0.6343     0.7431 0.160 0.840
#> SRR1348911     2  0.5294     0.7758 0.120 0.880
#> SRR1467386     1  0.9909     0.7193 0.556 0.444
#> SRR1415956     1  0.8555     0.7682 0.720 0.280
#> SRR1500495     1  0.9580     0.7654 0.620 0.380
#> SRR1405099     1  0.8555     0.7682 0.720 0.280
#> SRR1345585     2  0.5946     0.7473 0.144 0.856
#> SRR1093196     2  0.4939     0.7840 0.108 0.892
#> SRR1466006     2  0.4161     0.7704 0.084 0.916
#> SRR1351557     2  0.0376     0.8066 0.004 0.996
#> SRR1382687     1  0.9686     0.7769 0.604 0.396
#> SRR1375549     1  0.9686     0.7314 0.604 0.396
#> SRR1101765     1  0.9087     0.6964 0.676 0.324
#> SRR1334461     1  0.0000     0.5058 1.000 0.000
#> SRR1094073     2  0.0376     0.8066 0.004 0.996
#> SRR1077549     1  0.9866     0.7391 0.568 0.432
#> SRR1440332     1  0.9998     0.5967 0.508 0.492
#> SRR1454177     2  0.2948     0.8029 0.052 0.948
#> SRR1082447     1  0.9129     0.7944 0.672 0.328
#> SRR1420043     2  0.3274     0.8115 0.060 0.940
#> SRR1432500     1  0.9996     0.6328 0.512 0.488
#> SRR1378045     2  0.0000     0.8048 0.000 1.000
#> SRR1334200     1  0.7528     0.5728 0.784 0.216
#> SRR1069539     2  0.3274     0.8094 0.060 0.940
#> SRR1343031     2  0.5629     0.7664 0.132 0.868
#> SRR1319690     1  0.9963     0.5920 0.536 0.464
#> SRR1310604     2  0.0376     0.8066 0.004 0.996
#> SRR1327747     2  0.9775    -0.0942 0.412 0.588
#> SRR1072456     2  0.0376     0.8066 0.004 0.996
#> SRR1367896     2  0.5178     0.7747 0.116 0.884
#> SRR1480107     1  0.9044     0.7914 0.680 0.320
#> SRR1377756     1  0.9427     0.7953 0.640 0.360
#> SRR1435272     2  0.4939     0.7524 0.108 0.892
#> SRR1089230     2  0.3114     0.8018 0.056 0.944
#> SRR1389522     2  0.5737     0.7617 0.136 0.864
#> SRR1080600     2  0.4161     0.7704 0.084 0.916
#> SRR1086935     2  0.0672     0.8063 0.008 0.992
#> SRR1344060     1  0.7376     0.5764 0.792 0.208
#> SRR1467922     2  0.0000     0.8048 0.000 1.000
#> SRR1090984     2  0.8909     0.3608 0.308 0.692
#> SRR1456991     1  0.9129     0.7936 0.672 0.328
#> SRR1085039     1  0.9044     0.7915 0.680 0.320
#> SRR1069303     1  0.9686     0.7726 0.604 0.396
#> SRR1091500     2  0.1633     0.8086 0.024 0.976
#> SRR1075198     2  0.3431     0.8001 0.064 0.936
#> SRR1086915     2  0.7056     0.6065 0.192 0.808
#> SRR1499503     2  0.0376     0.8066 0.004 0.996
#> SRR1094312     2  0.0376     0.8066 0.004 0.996
#> SRR1352437     1  0.9686     0.7726 0.604 0.396
#> SRR1436323     2  0.5178     0.7796 0.116 0.884
#> SRR1073507     1  0.9866     0.7391 0.568 0.432
#> SRR1401972     1  0.9686     0.7726 0.604 0.396
#> SRR1415510     2  0.0376     0.8066 0.004 0.996
#> SRR1327279     1  0.9754     0.7632 0.592 0.408
#> SRR1086983     2  0.9358    -0.0449 0.352 0.648
#> SRR1105174     1  0.8555     0.7682 0.720 0.280
#> SRR1468893     1  0.9286     0.7956 0.656 0.344
#> SRR1362555     2  0.3431     0.8001 0.064 0.936
#> SRR1074526     1  0.5629     0.5876 0.868 0.132
#> SRR1326225     2  0.0376     0.8066 0.004 0.996
#> SRR1401933     1  0.9933     0.6981 0.548 0.452
#> SRR1324062     1  0.9795     0.7541 0.584 0.416
#> SRR1102296     2  0.9795    -0.2144 0.416 0.584
#> SRR1085087     1  0.9661     0.7755 0.608 0.392
#> SRR1079046     1  0.9710     0.7036 0.600 0.400
#> SRR1328339     2  0.8144     0.5168 0.252 0.748
#> SRR1079782     2  0.3431     0.8001 0.064 0.936
#> SRR1092257     2  0.3114     0.8053 0.056 0.944

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     3  0.2584     0.6314 0.008 0.064 0.928
#> SRR1429287     3  0.4821     0.6641 0.064 0.088 0.848
#> SRR1359238     1  0.6109     0.6147 0.760 0.048 0.192
#> SRR1309597     3  0.7400     0.5989 0.264 0.072 0.664
#> SRR1441398     1  0.5722     0.7113 0.800 0.132 0.068
#> SRR1084055     3  0.2584     0.6314 0.008 0.064 0.928
#> SRR1417566     1  0.8033    -0.0220 0.512 0.064 0.424
#> SRR1351857     1  0.6882     0.5818 0.732 0.096 0.172
#> SRR1487485     3  0.7184     0.6118 0.240 0.072 0.688
#> SRR1335875     3  0.7828     0.5371 0.340 0.068 0.592
#> SRR1073947     1  0.0237     0.7400 0.996 0.004 0.000
#> SRR1443483     3  0.7400     0.5989 0.264 0.072 0.664
#> SRR1346794     1  0.8949     0.3556 0.532 0.148 0.320
#> SRR1405245     1  0.5085     0.7262 0.836 0.092 0.072
#> SRR1409677     3  0.8880     0.3272 0.416 0.120 0.464
#> SRR1095549     1  0.5988     0.6641 0.776 0.056 0.168
#> SRR1323788     1  0.6264     0.6746 0.764 0.068 0.168
#> SRR1314054     3  0.4665     0.6436 0.048 0.100 0.852
#> SRR1077944     1  0.4628     0.7414 0.856 0.088 0.056
#> SRR1480587     3  0.2845     0.6330 0.012 0.068 0.920
#> SRR1311205     1  0.2050     0.7499 0.952 0.020 0.028
#> SRR1076369     1  0.8637     0.2014 0.564 0.308 0.128
#> SRR1453549     3  0.8586     0.4474 0.376 0.104 0.520
#> SRR1345782     1  0.3722     0.7364 0.888 0.088 0.024
#> SRR1447850     3  0.5304     0.6528 0.068 0.108 0.824
#> SRR1391553     3  0.7981     0.5281 0.340 0.076 0.584
#> SRR1444156     3  0.2796     0.6128 0.000 0.092 0.908
#> SRR1471731     3  0.8180     0.4530 0.392 0.076 0.532
#> SRR1120987     3  0.5618     0.6675 0.156 0.048 0.796
#> SRR1477363     1  0.2651     0.7380 0.928 0.060 0.012
#> SRR1391961     2  0.6684     0.8501 0.292 0.676 0.032
#> SRR1373879     3  0.8157     0.4711 0.384 0.076 0.540
#> SRR1318732     3  0.8463     0.1925 0.444 0.088 0.468
#> SRR1091404     1  0.2356     0.7135 0.928 0.072 0.000
#> SRR1402109     3  0.8157     0.4711 0.384 0.076 0.540
#> SRR1407336     3  0.8227     0.4643 0.384 0.080 0.536
#> SRR1097417     3  0.7639     0.6042 0.256 0.088 0.656
#> SRR1396227     1  0.4232     0.7330 0.872 0.044 0.084
#> SRR1400775     3  0.4137     0.6352 0.032 0.096 0.872
#> SRR1392861     3  0.8876     0.3328 0.412 0.120 0.468
#> SRR1472929     2  0.5109     0.8406 0.212 0.780 0.008
#> SRR1436740     3  0.8876     0.3328 0.412 0.120 0.468
#> SRR1477057     1  0.7283     0.0608 0.512 0.028 0.460
#> SRR1311980     3  0.7996     0.4799 0.380 0.068 0.552
#> SRR1069400     3  0.8037     0.5159 0.352 0.076 0.572
#> SRR1351016     1  0.2050     0.7499 0.952 0.020 0.028
#> SRR1096291     3  0.6703     0.6235 0.268 0.040 0.692
#> SRR1418145     3  0.6796     0.6329 0.236 0.056 0.708
#> SRR1488111     3  0.5618     0.6675 0.156 0.048 0.796
#> SRR1370495     1  0.6400     0.6104 0.740 0.052 0.208
#> SRR1352639     3  0.6964     0.6011 0.264 0.052 0.684
#> SRR1348911     3  0.7283     0.6067 0.260 0.068 0.672
#> SRR1467386     1  0.3780     0.7440 0.892 0.044 0.064
#> SRR1415956     1  0.3267     0.6806 0.884 0.116 0.000
#> SRR1500495     1  0.5722     0.7113 0.800 0.132 0.068
#> SRR1405099     1  0.3267     0.6806 0.884 0.116 0.000
#> SRR1345585     3  0.7903     0.4942 0.356 0.068 0.576
#> SRR1093196     3  0.8143     0.5054 0.360 0.080 0.560
#> SRR1466006     3  0.3532     0.6225 0.008 0.108 0.884
#> SRR1351557     3  0.3846     0.6196 0.016 0.108 0.876
#> SRR1382687     1  0.4379     0.7341 0.868 0.060 0.072
#> SRR1375549     1  0.6728     0.6550 0.748 0.128 0.124
#> SRR1101765     1  0.8668     0.1903 0.564 0.304 0.132
#> SRR1334461     2  0.5138     0.8427 0.252 0.748 0.000
#> SRR1094073     3  0.3846     0.6196 0.016 0.108 0.876
#> SRR1077549     1  0.1832     0.7459 0.956 0.008 0.036
#> SRR1440332     1  0.4217     0.7258 0.868 0.032 0.100
#> SRR1454177     3  0.8876     0.3328 0.412 0.120 0.468
#> SRR1082447     1  0.2774     0.7204 0.920 0.072 0.008
#> SRR1420043     3  0.8586     0.4474 0.376 0.104 0.520
#> SRR1432500     1  0.3587     0.7325 0.892 0.020 0.088
#> SRR1378045     3  0.4015     0.6326 0.028 0.096 0.876
#> SRR1334200     2  0.8685     0.8001 0.212 0.596 0.192
#> SRR1069539     3  0.6703     0.6235 0.268 0.040 0.692
#> SRR1343031     3  0.8144     0.4801 0.380 0.076 0.544
#> SRR1319690     1  0.7256     0.6627 0.712 0.124 0.164
#> SRR1310604     3  0.2584     0.6314 0.008 0.064 0.928
#> SRR1327747     1  0.8863     0.3846 0.544 0.144 0.312
#> SRR1072456     3  0.2584     0.6314 0.008 0.064 0.928
#> SRR1367896     3  0.7446     0.6011 0.260 0.076 0.664
#> SRR1480107     1  0.2261     0.7158 0.932 0.068 0.000
#> SRR1377756     1  0.2550     0.7403 0.932 0.056 0.012
#> SRR1435272     1  0.8814    -0.1541 0.480 0.116 0.404
#> SRR1089230     3  0.8932     0.3021 0.420 0.124 0.456
#> SRR1389522     3  0.7666     0.5811 0.288 0.076 0.636
#> SRR1080600     3  0.3532     0.6225 0.008 0.108 0.884
#> SRR1086935     3  0.8630     0.4902 0.328 0.120 0.552
#> SRR1344060     2  0.8614     0.8205 0.228 0.600 0.172
#> SRR1467922     3  0.2796     0.6128 0.000 0.092 0.908
#> SRR1090984     1  0.8215     0.1441 0.540 0.080 0.380
#> SRR1456991     1  0.2261     0.7189 0.932 0.068 0.000
#> SRR1085039     1  0.2356     0.7129 0.928 0.072 0.000
#> SRR1069303     1  0.0661     0.7411 0.988 0.008 0.004
#> SRR1091500     3  0.5237     0.6273 0.056 0.120 0.824
#> SRR1075198     3  0.5538     0.6644 0.132 0.060 0.808
#> SRR1086915     1  0.8491     0.1986 0.572 0.116 0.312
#> SRR1499503     3  0.2584     0.6314 0.008 0.064 0.928
#> SRR1094312     3  0.4137     0.6352 0.032 0.096 0.872
#> SRR1352437     1  0.0661     0.7411 0.988 0.008 0.004
#> SRR1436323     3  0.8211     0.4290 0.404 0.076 0.520
#> SRR1073507     1  0.1832     0.7459 0.956 0.008 0.036
#> SRR1401972     1  0.0661     0.7411 0.988 0.008 0.004
#> SRR1415510     3  0.2749     0.6334 0.012 0.064 0.924
#> SRR1327279     1  0.1170     0.7454 0.976 0.008 0.016
#> SRR1086983     1  0.6882     0.5818 0.732 0.096 0.172
#> SRR1105174     1  0.3192     0.6786 0.888 0.112 0.000
#> SRR1468893     1  0.2496     0.7314 0.928 0.068 0.004
#> SRR1362555     3  0.5538     0.6644 0.132 0.060 0.808
#> SRR1074526     2  0.7666     0.8497 0.288 0.636 0.076
#> SRR1326225     3  0.2584     0.6314 0.008 0.064 0.928
#> SRR1401933     1  0.4914     0.7322 0.844 0.068 0.088
#> SRR1324062     1  0.1905     0.7509 0.956 0.016 0.028
#> SRR1102296     1  0.6781     0.5209 0.704 0.052 0.244
#> SRR1085087     1  0.0592     0.7418 0.988 0.012 0.000
#> SRR1079046     1  0.7221     0.5575 0.716 0.148 0.136
#> SRR1328339     1  0.7993    -0.1809 0.484 0.060 0.456
#> SRR1079782     3  0.5538     0.6644 0.132 0.060 0.808
#> SRR1092257     3  0.5558     0.6678 0.152 0.048 0.800

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2   0.467    0.39338 0.000 0.700 0.292 0.008
#> SRR1429287     2   0.439    0.32959 0.024 0.816 0.140 0.020
#> SRR1359238     1   0.624    0.53833 0.668 0.168 0.164 0.000
#> SRR1309597     3   0.705    0.74656 0.124 0.392 0.484 0.000
#> SRR1441398     1   0.617    0.65082 0.712 0.068 0.184 0.036
#> SRR1084055     2   0.467    0.39338 0.000 0.700 0.292 0.008
#> SRR1417566     1   0.787   -0.34068 0.388 0.328 0.284 0.000
#> SRR1351857     1   0.725    0.51029 0.620 0.196 0.156 0.028
#> SRR1487485     3   0.675    0.70367 0.092 0.440 0.468 0.000
#> SRR1335875     3   0.747    0.72303 0.180 0.368 0.452 0.000
#> SRR1073947     1   0.204    0.76022 0.936 0.012 0.048 0.004
#> SRR1443483     3   0.701    0.74410 0.120 0.392 0.488 0.000
#> SRR1346794     1   0.865    0.17900 0.460 0.280 0.204 0.056
#> SRR1405245     1   0.532    0.68083 0.768 0.072 0.144 0.016
#> SRR1409677     2   0.841   -0.00362 0.276 0.440 0.256 0.028
#> SRR1095549     1   0.613    0.60004 0.692 0.148 0.156 0.004
#> SRR1323788     1   0.604    0.59768 0.708 0.148 0.136 0.008
#> SRR1314054     2   0.523    0.40577 0.012 0.684 0.292 0.012
#> SRR1077944     1   0.426    0.75308 0.848 0.060 0.052 0.040
#> SRR1480587     2   0.475    0.38689 0.000 0.688 0.304 0.008
#> SRR1311205     1   0.258    0.75877 0.912 0.036 0.052 0.000
#> SRR1076369     1   0.827    0.37925 0.544 0.112 0.096 0.248
#> SRR1453549     2   0.815   -0.29200 0.216 0.416 0.352 0.016
#> SRR1345782     1   0.340    0.75816 0.888 0.028 0.044 0.040
#> SRR1447850     2   0.557    0.40178 0.028 0.692 0.264 0.016
#> SRR1391553     3   0.740    0.73339 0.168 0.376 0.456 0.000
#> SRR1444156     2   0.574    0.31878 0.000 0.540 0.432 0.028
#> SRR1471731     2   0.777   -0.60552 0.240 0.384 0.376 0.000
#> SRR1120987     2   0.446    0.29360 0.100 0.824 0.064 0.012
#> SRR1477363     1   0.263    0.75986 0.920 0.024 0.036 0.020
#> SRR1391961     4   0.404    0.86256 0.116 0.012 0.032 0.840
#> SRR1373879     3   0.773    0.68067 0.232 0.356 0.412 0.000
#> SRR1318732     2   0.792   -0.47093 0.324 0.344 0.332 0.000
#> SRR1091404     1   0.204    0.75471 0.936 0.012 0.004 0.048
#> SRR1402109     3   0.773    0.68067 0.232 0.356 0.412 0.000
#> SRR1407336     3   0.777    0.65283 0.240 0.376 0.384 0.000
#> SRR1097417     3   0.773    0.71143 0.108 0.384 0.476 0.032
#> SRR1396227     1   0.466    0.73017 0.804 0.108 0.084 0.004
#> SRR1400775     2   0.487    0.41194 0.004 0.720 0.260 0.016
#> SRR1392861     2   0.843    0.03617 0.256 0.432 0.284 0.028
#> SRR1472929     4   0.194    0.83386 0.012 0.000 0.052 0.936
#> SRR1436740     2   0.843    0.03617 0.256 0.432 0.284 0.028
#> SRR1477057     1   0.685    0.15726 0.472 0.448 0.068 0.012
#> SRR1311980     3   0.765    0.70807 0.220 0.336 0.444 0.000
#> SRR1069400     3   0.764    0.72815 0.208 0.376 0.416 0.000
#> SRR1351016     1   0.266    0.75882 0.908 0.036 0.056 0.000
#> SRR1096291     2   0.636   -0.03402 0.160 0.656 0.184 0.000
#> SRR1418145     2   0.514    0.21082 0.180 0.764 0.036 0.020
#> SRR1488111     2   0.446    0.29360 0.100 0.824 0.064 0.012
#> SRR1370495     1   0.600    0.64095 0.700 0.224 0.044 0.032
#> SRR1352639     2   0.484    0.20277 0.224 0.748 0.012 0.016
#> SRR1348911     3   0.703    0.68353 0.120 0.408 0.472 0.000
#> SRR1467386     1   0.427    0.74337 0.828 0.068 0.100 0.004
#> SRR1415956     1   0.316    0.72311 0.884 0.000 0.052 0.064
#> SRR1500495     1   0.617    0.65082 0.712 0.068 0.184 0.036
#> SRR1405099     1   0.316    0.72311 0.884 0.000 0.052 0.064
#> SRR1345585     2   0.769   -0.65008 0.220 0.416 0.364 0.000
#> SRR1093196     2   0.767   -0.63811 0.216 0.416 0.368 0.000
#> SRR1466006     2   0.553    0.23325 0.000 0.704 0.228 0.068
#> SRR1351557     2   0.469    0.40916 0.000 0.724 0.260 0.016
#> SRR1382687     1   0.462    0.72406 0.812 0.048 0.124 0.016
#> SRR1375549     1   0.604    0.69947 0.736 0.148 0.048 0.068
#> SRR1101765     1   0.822    0.37385 0.548 0.112 0.092 0.248
#> SRR1334461     4   0.164    0.85317 0.060 0.000 0.000 0.940
#> SRR1094073     2   0.469    0.40916 0.000 0.724 0.260 0.016
#> SRR1077549     1   0.258    0.75714 0.912 0.036 0.052 0.000
#> SRR1440332     1   0.521    0.67166 0.756 0.104 0.140 0.000
#> SRR1454177     2   0.843    0.03617 0.256 0.432 0.284 0.028
#> SRR1082447     1   0.214    0.75706 0.936 0.012 0.012 0.040
#> SRR1420043     2   0.815   -0.29200 0.216 0.416 0.352 0.016
#> SRR1432500     1   0.461    0.71556 0.808 0.100 0.088 0.004
#> SRR1378045     3   0.577   -0.29287 0.000 0.464 0.508 0.028
#> SRR1334200     4   0.689    0.80719 0.064 0.144 0.108 0.684
#> SRR1069539     2   0.636   -0.03402 0.160 0.656 0.184 0.000
#> SRR1343031     3   0.774    0.70305 0.232 0.360 0.408 0.000
#> SRR1319690     1   0.732    0.55454 0.628 0.144 0.188 0.040
#> SRR1310604     2   0.467    0.39338 0.000 0.700 0.292 0.008
#> SRR1327747     1   0.851    0.21957 0.476 0.264 0.212 0.048
#> SRR1072456     2   0.467    0.39338 0.000 0.700 0.292 0.008
#> SRR1367896     3   0.722    0.73471 0.112 0.392 0.488 0.008
#> SRR1480107     1   0.182    0.75411 0.944 0.008 0.004 0.044
#> SRR1377756     1   0.263    0.76233 0.920 0.024 0.036 0.020
#> SRR1435272     2   0.856    0.02467 0.324 0.376 0.272 0.028
#> SRR1089230     2   0.847    0.03106 0.256 0.420 0.296 0.028
#> SRR1389522     3   0.747    0.74598 0.140 0.376 0.476 0.008
#> SRR1080600     2   0.553    0.23325 0.000 0.704 0.228 0.068
#> SRR1086935     2   0.806    0.05028 0.168 0.480 0.324 0.028
#> SRR1344060     4   0.686    0.83021 0.080 0.120 0.108 0.692
#> SRR1467922     2   0.574    0.31878 0.000 0.540 0.432 0.028
#> SRR1090984     1   0.779   -0.23870 0.424 0.280 0.296 0.000
#> SRR1456991     1   0.188    0.75575 0.944 0.008 0.008 0.040
#> SRR1085039     1   0.186    0.75236 0.944 0.004 0.012 0.040
#> SRR1069303     1   0.216    0.75713 0.928 0.008 0.060 0.004
#> SRR1091500     2   0.565    0.40778 0.020 0.700 0.248 0.032
#> SRR1075198     2   0.342    0.31378 0.088 0.876 0.016 0.020
#> SRR1086915     1   0.820    0.17819 0.460 0.324 0.188 0.028
#> SRR1499503     2   0.467    0.39338 0.000 0.700 0.292 0.008
#> SRR1094312     2   0.487    0.41194 0.004 0.720 0.260 0.016
#> SRR1352437     1   0.216    0.75713 0.928 0.008 0.060 0.004
#> SRR1436323     2   0.780   -0.59220 0.248 0.376 0.376 0.000
#> SRR1073507     1   0.258    0.75714 0.912 0.036 0.052 0.000
#> SRR1401972     1   0.216    0.75713 0.928 0.008 0.060 0.004
#> SRR1415510     2   0.485    0.39103 0.004 0.696 0.292 0.008
#> SRR1327279     1   0.260    0.75763 0.908 0.024 0.068 0.000
#> SRR1086983     1   0.722    0.51414 0.624 0.192 0.156 0.028
#> SRR1105174     1   0.300    0.72255 0.896 0.004 0.036 0.064
#> SRR1468893     1   0.219    0.75364 0.932 0.004 0.044 0.020
#> SRR1362555     2   0.341    0.31305 0.088 0.876 0.012 0.024
#> SRR1074526     4   0.589    0.85053 0.128 0.020 0.116 0.736
#> SRR1326225     2   0.467    0.39338 0.000 0.700 0.292 0.008
#> SRR1401933     1   0.444    0.73650 0.816 0.112 0.068 0.004
#> SRR1324062     1   0.294    0.76061 0.900 0.044 0.052 0.004
#> SRR1102296     1   0.712    0.38161 0.584 0.200 0.212 0.004
#> SRR1085087     1   0.228    0.75978 0.928 0.020 0.048 0.004
#> SRR1079046     1   0.660    0.62299 0.712 0.108 0.080 0.100
#> SRR1328339     2   0.792   -0.46361 0.340 0.348 0.312 0.000
#> SRR1079782     2   0.341    0.31305 0.088 0.876 0.012 0.024
#> SRR1092257     2   0.439    0.29794 0.100 0.828 0.060 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2   0.239     0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1429287     2   0.745     0.4459 0.008 0.456 0.228 0.276 0.032
#> SRR1359238     1   0.658     0.3895 0.548 0.028 0.288 0.136 0.000
#> SRR1309597     3   0.204     0.6728 0.036 0.028 0.928 0.008 0.000
#> SRR1441398     1   0.458     0.5819 0.696 0.000 0.272 0.012 0.020
#> SRR1084055     2   0.239     0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1417566     3   0.622     0.4174 0.336 0.056 0.564 0.040 0.004
#> SRR1351857     1   0.657     0.0431 0.524 0.060 0.068 0.348 0.000
#> SRR1487485     3   0.322     0.6608 0.028 0.076 0.868 0.028 0.000
#> SRR1335875     3   0.476     0.6766 0.104 0.076 0.776 0.044 0.000
#> SRR1073947     1   0.271     0.7093 0.876 0.000 0.024 0.100 0.000
#> SRR1443483     3   0.195     0.6703 0.032 0.028 0.932 0.008 0.000
#> SRR1346794     1   0.733     0.0743 0.472 0.028 0.364 0.092 0.044
#> SRR1405245     1   0.384     0.6241 0.736 0.000 0.256 0.004 0.004
#> SRR1409677     4   0.745     0.7925 0.160 0.108 0.208 0.524 0.000
#> SRR1095549     1   0.571     0.5148 0.632 0.008 0.248 0.112 0.000
#> SRR1323788     1   0.477     0.5530 0.680 0.008 0.280 0.032 0.000
#> SRR1314054     2   0.449     0.6265 0.004 0.760 0.080 0.156 0.000
#> SRR1077944     1   0.378     0.7121 0.828 0.008 0.120 0.036 0.008
#> SRR1480587     2   0.274     0.6847 0.000 0.860 0.132 0.004 0.004
#> SRR1311205     1   0.362     0.7065 0.824 0.000 0.108 0.068 0.000
#> SRR1076369     1   0.674     0.3616 0.568 0.004 0.040 0.128 0.260
#> SRR1453549     3   0.721     0.0291 0.104 0.084 0.484 0.328 0.000
#> SRR1345782     1   0.286     0.7226 0.872 0.000 0.104 0.016 0.008
#> SRR1447850     2   0.563     0.5512 0.012 0.652 0.104 0.232 0.000
#> SRR1391553     3   0.465     0.6873 0.096 0.076 0.784 0.044 0.000
#> SRR1444156     2   0.406     0.5193 0.000 0.800 0.112 0.084 0.004
#> SRR1471731     3   0.597     0.5894 0.108 0.040 0.660 0.192 0.000
#> SRR1120987     2   0.773     0.3871 0.068 0.420 0.272 0.240 0.000
#> SRR1477363     1   0.207     0.7262 0.920 0.000 0.060 0.016 0.004
#> SRR1391961     5   0.536     0.8048 0.072 0.016 0.008 0.200 0.704
#> SRR1373879     3   0.487     0.6614 0.100 0.028 0.760 0.112 0.000
#> SRR1318732     3   0.595     0.5191 0.276 0.056 0.628 0.032 0.008
#> SRR1091404     1   0.188     0.7228 0.936 0.000 0.032 0.020 0.012
#> SRR1402109     3   0.487     0.6614 0.100 0.028 0.760 0.112 0.000
#> SRR1407336     3   0.535     0.6492 0.112 0.036 0.724 0.128 0.000
#> SRR1097417     3   0.256     0.6482 0.024 0.032 0.912 0.008 0.024
#> SRR1396227     1   0.477     0.6310 0.748 0.020 0.060 0.172 0.000
#> SRR1400775     2   0.309     0.6533 0.000 0.856 0.040 0.104 0.000
#> SRR1392861     4   0.699     0.8622 0.144 0.108 0.160 0.588 0.000
#> SRR1472929     5   0.492     0.7782 0.004 0.004 0.072 0.200 0.720
#> SRR1436740     4   0.699     0.8622 0.144 0.108 0.160 0.588 0.000
#> SRR1477057     1   0.726     0.0846 0.456 0.344 0.060 0.140 0.000
#> SRR1311980     3   0.517     0.6780 0.116 0.060 0.748 0.076 0.000
#> SRR1069400     3   0.366     0.6865 0.096 0.012 0.836 0.056 0.000
#> SRR1351016     1   0.363     0.7066 0.824 0.000 0.104 0.072 0.000
#> SRR1096291     3   0.797    -0.1108 0.084 0.276 0.376 0.264 0.000
#> SRR1418145     2   0.842     0.1999 0.120 0.356 0.292 0.224 0.008
#> SRR1488111     2   0.773     0.3871 0.068 0.420 0.272 0.240 0.000
#> SRR1370495     1   0.657     0.5320 0.656 0.080 0.100 0.148 0.016
#> SRR1352639     2   0.852     0.2684 0.200 0.380 0.268 0.140 0.012
#> SRR1348911     3   0.350     0.6465 0.056 0.092 0.844 0.008 0.000
#> SRR1467386     1   0.433     0.6582 0.776 0.012 0.052 0.160 0.000
#> SRR1415956     1   0.240     0.7012 0.912 0.000 0.040 0.012 0.036
#> SRR1500495     1   0.458     0.5819 0.696 0.000 0.272 0.012 0.020
#> SRR1405099     1   0.240     0.7012 0.912 0.000 0.040 0.012 0.036
#> SRR1345585     3   0.523     0.6562 0.132 0.060 0.740 0.068 0.000
#> SRR1093196     3   0.577     0.6179 0.100 0.052 0.692 0.156 0.000
#> SRR1466006     2   0.709     0.5394 0.000 0.532 0.276 0.092 0.100
#> SRR1351557     2   0.287     0.6729 0.000 0.880 0.072 0.044 0.004
#> SRR1382687     1   0.388     0.6868 0.800 0.004 0.164 0.024 0.008
#> SRR1375549     1   0.511     0.6280 0.764 0.020 0.060 0.124 0.032
#> SRR1101765     1   0.663     0.3565 0.572 0.004 0.032 0.128 0.264
#> SRR1334461     5   0.389     0.7894 0.008 0.004 0.008 0.208 0.772
#> SRR1094073     2   0.287     0.6729 0.000 0.880 0.072 0.044 0.004
#> SRR1077549     1   0.365     0.6935 0.828 0.008 0.044 0.120 0.000
#> SRR1440332     1   0.568     0.5752 0.644 0.008 0.228 0.120 0.000
#> SRR1454177     4   0.699     0.8622 0.144 0.108 0.160 0.588 0.000
#> SRR1082447     1   0.157     0.7265 0.948 0.000 0.032 0.012 0.008
#> SRR1420043     3   0.721     0.0291 0.104 0.084 0.484 0.328 0.000
#> SRR1432500     1   0.528     0.5921 0.704 0.016 0.096 0.184 0.000
#> SRR1378045     2   0.519     0.3859 0.000 0.672 0.244 0.080 0.004
#> SRR1334200     5   0.544     0.7492 0.048 0.116 0.044 0.040 0.752
#> SRR1069539     3   0.797    -0.1108 0.084 0.276 0.376 0.264 0.000
#> SRR1343031     3   0.418     0.6767 0.112 0.012 0.800 0.076 0.000
#> SRR1319690     1   0.545     0.4739 0.628 0.012 0.316 0.024 0.020
#> SRR1310604     2   0.239     0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1327747     1   0.738     0.1010 0.468 0.036 0.368 0.084 0.044
#> SRR1072456     2   0.239     0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1367896     3   0.220     0.6655 0.032 0.032 0.924 0.008 0.004
#> SRR1480107     1   0.187     0.7227 0.936 0.000 0.036 0.016 0.012
#> SRR1377756     1   0.207     0.7270 0.920 0.000 0.060 0.016 0.004
#> SRR1435272     4   0.727     0.8014 0.216 0.092 0.152 0.540 0.000
#> SRR1089230     4   0.680     0.8522 0.148 0.100 0.144 0.608 0.000
#> SRR1389522     3   0.263     0.6762 0.052 0.024 0.904 0.016 0.004
#> SRR1080600     2   0.709     0.5394 0.000 0.532 0.276 0.092 0.100
#> SRR1086935     4   0.670     0.7233 0.068 0.148 0.180 0.604 0.000
#> SRR1344060     5   0.550     0.7685 0.068 0.100 0.040 0.040 0.752
#> SRR1467922     2   0.406     0.5193 0.000 0.800 0.112 0.084 0.004
#> SRR1090984     3   0.569     0.3517 0.372 0.032 0.568 0.020 0.008
#> SRR1456991     1   0.184     0.7235 0.936 0.000 0.040 0.016 0.008
#> SRR1085039     1   0.139     0.7234 0.956 0.000 0.024 0.012 0.008
#> SRR1069303     1   0.263     0.6969 0.860 0.000 0.004 0.136 0.000
#> SRR1091500     2   0.405     0.5991 0.008 0.788 0.016 0.176 0.012
#> SRR1075198     2   0.780     0.4589 0.064 0.460 0.276 0.188 0.012
#> SRR1086915     4   0.727     0.5160 0.360 0.088 0.100 0.452 0.000
#> SRR1499503     2   0.239     0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1094312     2   0.309     0.6533 0.000 0.856 0.040 0.104 0.000
#> SRR1352437     1   0.263     0.6969 0.860 0.000 0.004 0.136 0.000
#> SRR1436323     3   0.607     0.5767 0.112 0.040 0.648 0.200 0.000
#> SRR1073507     1   0.365     0.6935 0.828 0.008 0.044 0.120 0.000
#> SRR1401972     1   0.263     0.6969 0.860 0.000 0.004 0.136 0.000
#> SRR1415510     2   0.296     0.6834 0.000 0.848 0.140 0.004 0.008
#> SRR1327279     1   0.370     0.7032 0.820 0.000 0.096 0.084 0.000
#> SRR1086983     1   0.653     0.0455 0.524 0.060 0.064 0.352 0.000
#> SRR1105174     1   0.187     0.6977 0.936 0.000 0.012 0.016 0.036
#> SRR1468893     1   0.234     0.7188 0.908 0.000 0.012 0.068 0.012
#> SRR1362555     2   0.785     0.4513 0.064 0.452 0.276 0.196 0.012
#> SRR1074526     5   0.425     0.7827 0.112 0.016 0.004 0.064 0.804
#> SRR1326225     2   0.239     0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1401933     1   0.482     0.6484 0.764 0.024 0.068 0.140 0.004
#> SRR1324062     1   0.382     0.7108 0.824 0.008 0.084 0.084 0.000
#> SRR1102296     1   0.640     0.2690 0.524 0.056 0.364 0.056 0.000
#> SRR1085087     1   0.302     0.7082 0.864 0.000 0.048 0.088 0.000
#> SRR1079046     1   0.540     0.5840 0.748 0.052 0.016 0.116 0.068
#> SRR1328339     3   0.584     0.5145 0.268 0.060 0.632 0.040 0.000
#> SRR1079782     2   0.785     0.4513 0.064 0.452 0.276 0.196 0.012
#> SRR1092257     2   0.772     0.3951 0.068 0.424 0.268 0.240 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.1858     0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1429287     2  0.7427     0.4603 0.000 0.400 0.188 0.220 0.000 0.192
#> SRR1359238     1  0.6117     0.4236 0.524 0.012 0.272 0.184 0.000 0.008
#> SRR1309597     3  0.0993     0.7014 0.024 0.012 0.964 0.000 0.000 0.000
#> SRR1441398     1  0.4397     0.5521 0.672 0.000 0.284 0.032 0.000 0.012
#> SRR1084055     2  0.1858     0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1417566     3  0.6007     0.4392 0.312 0.036 0.548 0.096 0.000 0.008
#> SRR1351857     1  0.5096     0.1078 0.496 0.024 0.020 0.452 0.000 0.008
#> SRR1487485     3  0.2978     0.6910 0.012 0.056 0.860 0.072 0.000 0.000
#> SRR1335875     3  0.4203     0.7061 0.092 0.056 0.796 0.044 0.000 0.012
#> SRR1073947     1  0.2581     0.7082 0.860 0.000 0.020 0.120 0.000 0.000
#> SRR1443483     3  0.1053     0.6978 0.020 0.012 0.964 0.000 0.004 0.000
#> SRR1346794     1  0.6808     0.0735 0.464 0.020 0.324 0.148 0.000 0.044
#> SRR1405245     1  0.3812     0.5979 0.712 0.000 0.268 0.016 0.000 0.004
#> SRR1409677     4  0.5149     0.6960 0.136 0.048 0.096 0.712 0.000 0.008
#> SRR1095549     1  0.5575     0.5344 0.600 0.008 0.224 0.164 0.000 0.004
#> SRR1323788     1  0.4786     0.5414 0.660 0.008 0.256 0.076 0.000 0.000
#> SRR1314054     2  0.5405     0.5719 0.000 0.684 0.056 0.140 0.004 0.116
#> SRR1077944     1  0.2979     0.7123 0.840 0.000 0.116 0.044 0.000 0.000
#> SRR1480587     2  0.2261     0.6473 0.000 0.884 0.104 0.004 0.000 0.008
#> SRR1311205     1  0.3468     0.7075 0.816 0.000 0.088 0.092 0.000 0.004
#> SRR1076369     1  0.5989     0.3451 0.564 0.004 0.032 0.080 0.012 0.308
#> SRR1453549     3  0.6102     0.1540 0.100 0.028 0.452 0.412 0.000 0.008
#> SRR1345782     1  0.2263     0.7224 0.884 0.000 0.100 0.016 0.000 0.000
#> SRR1447850     2  0.6095     0.5300 0.000 0.580 0.064 0.228 0.000 0.128
#> SRR1391553     3  0.4251     0.7170 0.084 0.056 0.792 0.060 0.000 0.008
#> SRR1444156     2  0.4090     0.4547 0.000 0.792 0.048 0.092 0.000 0.068
#> SRR1471731     3  0.5317     0.6133 0.088 0.024 0.620 0.268 0.000 0.000
#> SRR1120987     2  0.8235     0.4225 0.060 0.376 0.216 0.184 0.000 0.164
#> SRR1477363     1  0.2118     0.7248 0.916 0.004 0.048 0.020 0.000 0.012
#> SRR1391961     5  0.3098     0.7536 0.040 0.000 0.000 0.004 0.836 0.120
#> SRR1373879     3  0.4435     0.6980 0.076 0.012 0.748 0.156 0.000 0.008
#> SRR1318732     3  0.5785     0.5505 0.256 0.036 0.604 0.096 0.000 0.008
#> SRR1091404     1  0.1321     0.7221 0.952 0.000 0.024 0.020 0.004 0.000
#> SRR1402109     3  0.4435     0.6980 0.076 0.012 0.748 0.156 0.000 0.008
#> SRR1407336     3  0.4761     0.6811 0.088 0.012 0.704 0.192 0.004 0.000
#> SRR1097417     3  0.2074     0.6747 0.016 0.016 0.924 0.000 0.028 0.016
#> SRR1396227     1  0.4423     0.6391 0.720 0.020 0.012 0.224 0.000 0.024
#> SRR1400775     2  0.4008     0.6148 0.000 0.796 0.040 0.068 0.000 0.096
#> SRR1392861     4  0.3829     0.7462 0.112 0.048 0.036 0.804 0.000 0.000
#> SRR1472929     5  0.1528     0.7974 0.000 0.000 0.048 0.000 0.936 0.016
#> SRR1436740     4  0.3829     0.7462 0.112 0.048 0.036 0.804 0.000 0.000
#> SRR1477057     1  0.7074     0.1337 0.448 0.320 0.016 0.128 0.000 0.088
#> SRR1311980     3  0.4609     0.7112 0.100 0.040 0.764 0.084 0.000 0.012
#> SRR1069400     3  0.3565     0.7169 0.076 0.000 0.820 0.092 0.004 0.008
#> SRR1351016     1  0.3466     0.7076 0.816 0.000 0.084 0.096 0.000 0.004
#> SRR1096291     4  0.8286     0.1295 0.080 0.248 0.292 0.308 0.008 0.064
#> SRR1418145     2  0.8635     0.2795 0.100 0.328 0.240 0.196 0.004 0.132
#> SRR1488111     2  0.8235     0.4225 0.060 0.376 0.216 0.184 0.000 0.164
#> SRR1370495     1  0.6369     0.5409 0.636 0.072 0.040 0.148 0.004 0.100
#> SRR1352639     2  0.8648     0.2970 0.192 0.344 0.216 0.132 0.004 0.112
#> SRR1348911     3  0.2842     0.6749 0.044 0.076 0.868 0.012 0.000 0.000
#> SRR1467386     1  0.4044     0.6533 0.740 0.004 0.040 0.212 0.000 0.004
#> SRR1415956     1  0.2244     0.7010 0.912 0.000 0.036 0.032 0.004 0.016
#> SRR1500495     1  0.4397     0.5521 0.672 0.000 0.284 0.032 0.000 0.012
#> SRR1405099     1  0.2244     0.7010 0.912 0.000 0.036 0.032 0.004 0.016
#> SRR1345585     3  0.5060     0.6847 0.112 0.036 0.708 0.140 0.000 0.004
#> SRR1093196     3  0.5178     0.6439 0.084 0.028 0.652 0.236 0.000 0.000
#> SRR1466006     2  0.6693     0.4463 0.000 0.516 0.232 0.060 0.008 0.184
#> SRR1351557     2  0.3066     0.6331 0.000 0.860 0.056 0.024 0.000 0.060
#> SRR1382687     1  0.3892     0.6875 0.792 0.008 0.144 0.040 0.000 0.016
#> SRR1375549     1  0.4571     0.6279 0.760 0.024 0.016 0.124 0.000 0.076
#> SRR1101765     1  0.5868     0.3398 0.568 0.004 0.024 0.080 0.012 0.312
#> SRR1334461     5  0.0547     0.8306 0.000 0.000 0.000 0.000 0.980 0.020
#> SRR1094073     2  0.3066     0.6331 0.000 0.860 0.056 0.024 0.000 0.060
#> SRR1077549     1  0.3388     0.6887 0.804 0.004 0.036 0.156 0.000 0.000
#> SRR1440332     1  0.5207     0.5821 0.628 0.000 0.212 0.156 0.000 0.004
#> SRR1454177     4  0.3829     0.7462 0.112 0.048 0.036 0.804 0.000 0.000
#> SRR1082447     1  0.1092     0.7253 0.960 0.000 0.020 0.020 0.000 0.000
#> SRR1420043     3  0.6102     0.1540 0.100 0.028 0.452 0.412 0.000 0.008
#> SRR1432500     1  0.4738     0.5998 0.684 0.004 0.072 0.232 0.000 0.008
#> SRR1378045     2  0.5504     0.3028 0.000 0.656 0.188 0.092 0.000 0.064
#> SRR1334200     6  0.4959     0.8005 0.008 0.076 0.028 0.012 0.140 0.736
#> SRR1069539     4  0.8286     0.1295 0.080 0.248 0.292 0.308 0.008 0.064
#> SRR1343031     3  0.3997     0.7087 0.092 0.000 0.784 0.112 0.004 0.008
#> SRR1319690     1  0.5257     0.4556 0.612 0.008 0.296 0.072 0.000 0.012
#> SRR1310604     2  0.1858     0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1327747     1  0.6669     0.1059 0.460 0.012 0.332 0.156 0.000 0.040
#> SRR1072456     2  0.1858     0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1367896     3  0.1369     0.6901 0.016 0.016 0.952 0.000 0.016 0.000
#> SRR1480107     1  0.1313     0.7219 0.952 0.000 0.028 0.016 0.004 0.000
#> SRR1377756     1  0.2183     0.7266 0.912 0.004 0.052 0.020 0.000 0.012
#> SRR1435272     4  0.4646     0.7031 0.188 0.040 0.036 0.728 0.000 0.008
#> SRR1089230     4  0.4056     0.7341 0.116 0.044 0.028 0.800 0.004 0.008
#> SRR1389522     3  0.1914     0.7052 0.040 0.012 0.928 0.008 0.012 0.000
#> SRR1080600     2  0.6693     0.4463 0.000 0.516 0.232 0.060 0.008 0.184
#> SRR1086935     4  0.3715     0.6383 0.036 0.084 0.044 0.828 0.004 0.004
#> SRR1344060     6  0.4855     0.8220 0.016 0.064 0.028 0.004 0.148 0.740
#> SRR1467922     2  0.4090     0.4547 0.000 0.792 0.048 0.092 0.000 0.068
#> SRR1090984     3  0.5600     0.3590 0.352 0.020 0.548 0.072 0.000 0.008
#> SRR1456991     1  0.1245     0.7226 0.952 0.000 0.032 0.016 0.000 0.000
#> SRR1085039     1  0.0909     0.7221 0.968 0.000 0.012 0.020 0.000 0.000
#> SRR1069303     1  0.2491     0.6956 0.836 0.000 0.000 0.164 0.000 0.000
#> SRR1091500     2  0.4564     0.5592 0.000 0.720 0.008 0.132 0.000 0.140
#> SRR1075198     2  0.8107     0.4670 0.056 0.416 0.224 0.152 0.004 0.148
#> SRR1086915     4  0.5335     0.4211 0.332 0.040 0.032 0.588 0.000 0.008
#> SRR1499503     2  0.1858     0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1094312     2  0.4008     0.6148 0.000 0.796 0.040 0.068 0.000 0.096
#> SRR1352437     1  0.2491     0.6956 0.836 0.000 0.000 0.164 0.000 0.000
#> SRR1436323     3  0.5396     0.6011 0.092 0.024 0.608 0.276 0.000 0.000
#> SRR1073507     1  0.3388     0.6887 0.804 0.004 0.036 0.156 0.000 0.000
#> SRR1401972     1  0.2491     0.6956 0.836 0.000 0.000 0.164 0.000 0.000
#> SRR1415510     2  0.2488     0.6411 0.000 0.864 0.124 0.008 0.000 0.004
#> SRR1327279     1  0.3554     0.7014 0.808 0.000 0.080 0.108 0.000 0.004
#> SRR1086983     1  0.4871     0.1101 0.496 0.024 0.020 0.460 0.000 0.000
#> SRR1105174     1  0.1722     0.6970 0.936 0.000 0.008 0.036 0.004 0.016
#> SRR1468893     1  0.2290     0.7177 0.892 0.000 0.004 0.084 0.000 0.020
#> SRR1362555     2  0.8152     0.4615 0.056 0.408 0.224 0.156 0.004 0.152
#> SRR1074526     6  0.4023     0.6555 0.052 0.000 0.000 0.008 0.188 0.752
#> SRR1326225     2  0.1858     0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1401933     1  0.4391     0.6512 0.740 0.020 0.016 0.196 0.000 0.028
#> SRR1324062     1  0.3759     0.7085 0.808 0.004 0.076 0.100 0.000 0.012
#> SRR1102296     1  0.5932     0.2298 0.512 0.056 0.368 0.060 0.000 0.004
#> SRR1085087     1  0.3005     0.7069 0.848 0.000 0.036 0.108 0.000 0.008
#> SRR1079046     1  0.5026     0.5908 0.728 0.036 0.008 0.100 0.004 0.124
#> SRR1328339     3  0.5496     0.5541 0.252 0.052 0.624 0.072 0.000 0.000
#> SRR1079782     2  0.8152     0.4615 0.056 0.408 0.224 0.156 0.004 0.152
#> SRR1092257     2  0.8219     0.4289 0.060 0.380 0.216 0.180 0.000 0.164

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.658           0.823       0.929         0.4400 0.579   0.579
#> 3 3 0.460           0.651       0.810         0.4444 0.714   0.529
#> 4 4 0.549           0.595       0.753         0.1443 0.868   0.648
#> 5 5 0.639           0.653       0.786         0.0647 0.932   0.766
#> 6 6 0.662           0.551       0.704         0.0494 0.896   0.605

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000     0.9225 0.000 1.000
#> SRR1429287     2  0.0000     0.9225 0.000 1.000
#> SRR1359238     1  0.0000     0.9153 1.000 0.000
#> SRR1309597     1  0.9580     0.4109 0.620 0.380
#> SRR1441398     1  0.0000     0.9153 1.000 0.000
#> SRR1084055     2  0.0000     0.9225 0.000 1.000
#> SRR1417566     1  0.8386     0.6320 0.732 0.268
#> SRR1351857     1  0.0000     0.9153 1.000 0.000
#> SRR1487485     2  0.9686     0.3152 0.396 0.604
#> SRR1335875     1  0.7674     0.6949 0.776 0.224
#> SRR1073947     1  0.0000     0.9153 1.000 0.000
#> SRR1443483     1  0.9580     0.4109 0.620 0.380
#> SRR1346794     1  0.0000     0.9153 1.000 0.000
#> SRR1405245     1  0.0000     0.9153 1.000 0.000
#> SRR1409677     1  0.0000     0.9153 1.000 0.000
#> SRR1095549     1  0.0000     0.9153 1.000 0.000
#> SRR1323788     1  0.0000     0.9153 1.000 0.000
#> SRR1314054     2  0.0000     0.9225 0.000 1.000
#> SRR1077944     1  0.0000     0.9153 1.000 0.000
#> SRR1480587     2  0.0000     0.9225 0.000 1.000
#> SRR1311205     1  0.0000     0.9153 1.000 0.000
#> SRR1076369     1  0.0376     0.9125 0.996 0.004
#> SRR1453549     1  0.0000     0.9153 1.000 0.000
#> SRR1345782     1  0.0000     0.9153 1.000 0.000
#> SRR1447850     2  0.0000     0.9225 0.000 1.000
#> SRR1391553     2  0.9686     0.3152 0.396 0.604
#> SRR1444156     2  0.0000     0.9225 0.000 1.000
#> SRR1471731     1  0.8499     0.6192 0.724 0.276
#> SRR1120987     1  0.0000     0.9153 1.000 0.000
#> SRR1477363     1  0.0000     0.9153 1.000 0.000
#> SRR1391961     1  0.9710     0.2965 0.600 0.400
#> SRR1373879     1  0.0000     0.9153 1.000 0.000
#> SRR1318732     1  0.9393     0.4672 0.644 0.356
#> SRR1091404     1  0.0000     0.9153 1.000 0.000
#> SRR1402109     1  0.0000     0.9153 1.000 0.000
#> SRR1407336     1  0.7299     0.7220 0.796 0.204
#> SRR1097417     2  0.8016     0.6450 0.244 0.756
#> SRR1396227     1  0.0000     0.9153 1.000 0.000
#> SRR1400775     2  0.0000     0.9225 0.000 1.000
#> SRR1392861     1  0.0000     0.9153 1.000 0.000
#> SRR1472929     2  0.0938     0.9137 0.012 0.988
#> SRR1436740     1  0.0000     0.9153 1.000 0.000
#> SRR1477057     2  0.0000     0.9225 0.000 1.000
#> SRR1311980     1  0.7745     0.6895 0.772 0.228
#> SRR1069400     1  0.9358     0.4761 0.648 0.352
#> SRR1351016     1  0.0000     0.9153 1.000 0.000
#> SRR1096291     1  0.1414     0.9006 0.980 0.020
#> SRR1418145     1  0.0000     0.9153 1.000 0.000
#> SRR1488111     2  0.7745     0.6694 0.228 0.772
#> SRR1370495     1  0.0000     0.9153 1.000 0.000
#> SRR1352639     1  0.0672     0.9092 0.992 0.008
#> SRR1348911     1  0.9608     0.4013 0.616 0.384
#> SRR1467386     1  0.0000     0.9153 1.000 0.000
#> SRR1415956     1  0.0000     0.9153 1.000 0.000
#> SRR1500495     1  0.0000     0.9153 1.000 0.000
#> SRR1405099     1  0.0000     0.9153 1.000 0.000
#> SRR1345585     2  0.9686     0.3152 0.396 0.604
#> SRR1093196     1  0.8499     0.6192 0.724 0.276
#> SRR1466006     2  0.0000     0.9225 0.000 1.000
#> SRR1351557     2  0.0000     0.9225 0.000 1.000
#> SRR1382687     1  0.0000     0.9153 1.000 0.000
#> SRR1375549     1  0.0000     0.9153 1.000 0.000
#> SRR1101765     1  0.0000     0.9153 1.000 0.000
#> SRR1334461     1  0.9710     0.2965 0.600 0.400
#> SRR1094073     2  0.0000     0.9225 0.000 1.000
#> SRR1077549     1  0.0000     0.9153 1.000 0.000
#> SRR1440332     1  0.0000     0.9153 1.000 0.000
#> SRR1454177     1  0.0000     0.9153 1.000 0.000
#> SRR1082447     1  0.0000     0.9153 1.000 0.000
#> SRR1420043     1  0.0000     0.9153 1.000 0.000
#> SRR1432500     1  0.0000     0.9153 1.000 0.000
#> SRR1378045     2  0.0000     0.9225 0.000 1.000
#> SRR1334200     2  0.0938     0.9137 0.012 0.988
#> SRR1069539     2  0.9963     0.0919 0.464 0.536
#> SRR1343031     1  0.0000     0.9153 1.000 0.000
#> SRR1319690     1  0.0000     0.9153 1.000 0.000
#> SRR1310604     2  0.0000     0.9225 0.000 1.000
#> SRR1327747     1  0.0000     0.9153 1.000 0.000
#> SRR1072456     2  0.0000     0.9225 0.000 1.000
#> SRR1367896     1  0.9608     0.4013 0.616 0.384
#> SRR1480107     1  0.0000     0.9153 1.000 0.000
#> SRR1377756     1  0.0000     0.9153 1.000 0.000
#> SRR1435272     1  0.0000     0.9153 1.000 0.000
#> SRR1089230     1  0.0000     0.9153 1.000 0.000
#> SRR1389522     1  0.5519     0.8047 0.872 0.128
#> SRR1080600     2  0.0000     0.9225 0.000 1.000
#> SRR1086935     1  0.8713     0.5917 0.708 0.292
#> SRR1344060     2  0.5408     0.8080 0.124 0.876
#> SRR1467922     2  0.0000     0.9225 0.000 1.000
#> SRR1090984     1  0.0000     0.9153 1.000 0.000
#> SRR1456991     1  0.0000     0.9153 1.000 0.000
#> SRR1085039     1  0.0000     0.9153 1.000 0.000
#> SRR1069303     1  0.0000     0.9153 1.000 0.000
#> SRR1091500     2  0.0000     0.9225 0.000 1.000
#> SRR1075198     2  0.0000     0.9225 0.000 1.000
#> SRR1086915     1  0.0000     0.9153 1.000 0.000
#> SRR1499503     2  0.0000     0.9225 0.000 1.000
#> SRR1094312     2  0.0000     0.9225 0.000 1.000
#> SRR1352437     1  0.0000     0.9153 1.000 0.000
#> SRR1436323     1  0.0000     0.9153 1.000 0.000
#> SRR1073507     1  0.0000     0.9153 1.000 0.000
#> SRR1401972     1  0.0000     0.9153 1.000 0.000
#> SRR1415510     2  0.0000     0.9225 0.000 1.000
#> SRR1327279     1  0.0000     0.9153 1.000 0.000
#> SRR1086983     1  0.0000     0.9153 1.000 0.000
#> SRR1105174     1  0.0000     0.9153 1.000 0.000
#> SRR1468893     1  0.0000     0.9153 1.000 0.000
#> SRR1362555     2  0.0000     0.9225 0.000 1.000
#> SRR1074526     1  0.9977     0.0809 0.528 0.472
#> SRR1326225     2  0.0000     0.9225 0.000 1.000
#> SRR1401933     1  0.0000     0.9153 1.000 0.000
#> SRR1324062     1  0.0000     0.9153 1.000 0.000
#> SRR1102296     1  0.0000     0.9153 1.000 0.000
#> SRR1085087     1  0.0000     0.9153 1.000 0.000
#> SRR1079046     1  0.9491     0.3767 0.632 0.368
#> SRR1328339     1  0.8327     0.6393 0.736 0.264
#> SRR1079782     2  0.0000     0.9225 0.000 1.000
#> SRR1092257     2  0.0000     0.9225 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0237     0.9317 0.000 0.996 0.004
#> SRR1429287     2  0.2165     0.9144 0.000 0.936 0.064
#> SRR1359238     3  0.6308     0.2360 0.492 0.000 0.508
#> SRR1309597     3  0.7085     0.6487 0.188 0.096 0.716
#> SRR1441398     1  0.4887     0.5248 0.772 0.000 0.228
#> SRR1084055     2  0.1643     0.9243 0.000 0.956 0.044
#> SRR1417566     3  0.7759     0.2165 0.476 0.048 0.476
#> SRR1351857     1  0.5678     0.4275 0.684 0.000 0.316
#> SRR1487485     3  0.6295     0.6100 0.036 0.236 0.728
#> SRR1335875     3  0.7065     0.6361 0.288 0.048 0.664
#> SRR1073947     1  0.2448     0.7278 0.924 0.000 0.076
#> SRR1443483     3  0.6605     0.6728 0.152 0.096 0.752
#> SRR1346794     1  0.5216     0.4826 0.740 0.000 0.260
#> SRR1405245     1  0.5098     0.4910 0.752 0.000 0.248
#> SRR1409677     3  0.6468     0.3466 0.444 0.004 0.552
#> SRR1095549     1  0.5327     0.4512 0.728 0.000 0.272
#> SRR1323788     1  0.4291     0.5946 0.820 0.000 0.180
#> SRR1314054     2  0.0424     0.9306 0.000 0.992 0.008
#> SRR1077944     1  0.0000     0.7418 1.000 0.000 0.000
#> SRR1480587     2  0.0424     0.9313 0.000 0.992 0.008
#> SRR1311205     1  0.2796     0.6896 0.908 0.000 0.092
#> SRR1076369     1  0.6460     0.0981 0.556 0.004 0.440
#> SRR1453549     3  0.4291     0.6997 0.180 0.000 0.820
#> SRR1345782     1  0.1529     0.7277 0.960 0.000 0.040
#> SRR1447850     2  0.1643     0.9137 0.000 0.956 0.044
#> SRR1391553     3  0.5977     0.5884 0.020 0.252 0.728
#> SRR1444156     2  0.0592     0.9304 0.000 0.988 0.012
#> SRR1471731     3  0.5222     0.7089 0.144 0.040 0.816
#> SRR1120987     1  0.6617     0.1470 0.556 0.008 0.436
#> SRR1477363     1  0.0000     0.7418 1.000 0.000 0.000
#> SRR1391961     1  0.5688     0.6015 0.788 0.044 0.168
#> SRR1373879     3  0.4452     0.7012 0.192 0.000 0.808
#> SRR1318732     3  0.8559     0.3772 0.388 0.100 0.512
#> SRR1091404     1  0.0592     0.7400 0.988 0.000 0.012
#> SRR1402109     3  0.4452     0.6980 0.192 0.000 0.808
#> SRR1407336     3  0.4390     0.7079 0.148 0.012 0.840
#> SRR1097417     3  0.6254     0.6211 0.116 0.108 0.776
#> SRR1396227     1  0.2165     0.7315 0.936 0.000 0.064
#> SRR1400775     2  0.0000     0.9317 0.000 1.000 0.000
#> SRR1392861     3  0.4834     0.6876 0.204 0.004 0.792
#> SRR1472929     2  0.7564     0.6342 0.068 0.636 0.296
#> SRR1436740     3  0.6451     0.3663 0.436 0.004 0.560
#> SRR1477057     2  0.2066     0.9157 0.000 0.940 0.060
#> SRR1311980     3  0.5508     0.7045 0.188 0.028 0.784
#> SRR1069400     3  0.6151     0.6858 0.160 0.068 0.772
#> SRR1351016     1  0.2356     0.7294 0.928 0.000 0.072
#> SRR1096291     3  0.5905     0.5124 0.352 0.000 0.648
#> SRR1418145     1  0.6617     0.1470 0.556 0.008 0.436
#> SRR1488111     3  0.7030     0.2937 0.024 0.396 0.580
#> SRR1370495     1  0.2955     0.7070 0.912 0.008 0.080
#> SRR1352639     1  0.2056     0.7369 0.952 0.024 0.024
#> SRR1348911     3  0.7227     0.6538 0.200 0.096 0.704
#> SRR1467386     1  0.4002     0.6720 0.840 0.000 0.160
#> SRR1415956     1  0.2796     0.6922 0.908 0.000 0.092
#> SRR1500495     1  0.4887     0.5248 0.772 0.000 0.228
#> SRR1405099     1  0.0237     0.7410 0.996 0.000 0.004
#> SRR1345585     3  0.6977     0.6196 0.076 0.212 0.712
#> SRR1093196     3  0.5173     0.7089 0.148 0.036 0.816
#> SRR1466006     2  0.0424     0.9319 0.000 0.992 0.008
#> SRR1351557     2  0.0237     0.9312 0.000 0.996 0.004
#> SRR1382687     1  0.4504     0.6382 0.804 0.000 0.196
#> SRR1375549     1  0.2096     0.7282 0.944 0.004 0.052
#> SRR1101765     1  0.2682     0.7213 0.920 0.004 0.076
#> SRR1334461     1  0.5688     0.6015 0.788 0.044 0.168
#> SRR1094073     2  0.0424     0.9312 0.000 0.992 0.008
#> SRR1077549     3  0.6305     0.2467 0.484 0.000 0.516
#> SRR1440332     3  0.6008     0.4997 0.372 0.000 0.628
#> SRR1454177     3  0.6314     0.4586 0.392 0.004 0.604
#> SRR1082447     1  0.0000     0.7418 1.000 0.000 0.000
#> SRR1420043     3  0.4399     0.6966 0.188 0.000 0.812
#> SRR1432500     1  0.5529     0.4632 0.704 0.000 0.296
#> SRR1378045     2  0.6019     0.5576 0.012 0.700 0.288
#> SRR1334200     2  0.6652     0.7688 0.084 0.744 0.172
#> SRR1069539     3  0.6854     0.6063 0.068 0.216 0.716
#> SRR1343031     3  0.4504     0.7007 0.196 0.000 0.804
#> SRR1319690     1  0.6280    -0.1391 0.540 0.000 0.460
#> SRR1310604     2  0.2066     0.9183 0.000 0.940 0.060
#> SRR1327747     3  0.5733     0.6159 0.324 0.000 0.676
#> SRR1072456     2  0.1289     0.9262 0.000 0.968 0.032
#> SRR1367896     3  0.6605     0.6718 0.152 0.096 0.752
#> SRR1480107     1  0.0000     0.7418 1.000 0.000 0.000
#> SRR1377756     1  0.2796     0.7185 0.908 0.000 0.092
#> SRR1435272     3  0.6359     0.4359 0.404 0.004 0.592
#> SRR1089230     3  0.6274     0.3196 0.456 0.000 0.544
#> SRR1389522     3  0.6337     0.6410 0.264 0.028 0.708
#> SRR1080600     2  0.1753     0.9239 0.000 0.952 0.048
#> SRR1086935     3  0.8374     0.5706 0.144 0.240 0.616
#> SRR1344060     2  0.9149     0.3997 0.316 0.516 0.168
#> SRR1467922     2  0.0592     0.9304 0.000 0.988 0.012
#> SRR1090984     1  0.5254     0.4641 0.736 0.000 0.264
#> SRR1456991     1  0.0000     0.7418 1.000 0.000 0.000
#> SRR1085039     1  0.0000     0.7418 1.000 0.000 0.000
#> SRR1069303     1  0.3192     0.7089 0.888 0.000 0.112
#> SRR1091500     2  0.1643     0.9207 0.000 0.956 0.044
#> SRR1075198     2  0.1163     0.9307 0.000 0.972 0.028
#> SRR1086915     1  0.5859     0.3785 0.656 0.000 0.344
#> SRR1499503     2  0.0424     0.9313 0.000 0.992 0.008
#> SRR1094312     2  0.0000     0.9317 0.000 1.000 0.000
#> SRR1352437     1  0.5158     0.5854 0.764 0.004 0.232
#> SRR1436323     3  0.4399     0.6969 0.188 0.000 0.812
#> SRR1073507     1  0.4002     0.6720 0.840 0.000 0.160
#> SRR1401972     1  0.3192     0.7089 0.888 0.000 0.112
#> SRR1415510     2  0.0592     0.9313 0.000 0.988 0.012
#> SRR1327279     1  0.5650     0.4127 0.688 0.000 0.312
#> SRR1086983     1  0.5810     0.3901 0.664 0.000 0.336
#> SRR1105174     1  0.0000     0.7418 1.000 0.000 0.000
#> SRR1468893     1  0.1163     0.7398 0.972 0.000 0.028
#> SRR1362555     2  0.2866     0.9062 0.008 0.916 0.076
#> SRR1074526     1  0.6138     0.5819 0.768 0.060 0.172
#> SRR1326225     2  0.0424     0.9313 0.000 0.992 0.008
#> SRR1401933     1  0.3816     0.6880 0.852 0.000 0.148
#> SRR1324062     1  0.5690     0.4867 0.708 0.004 0.288
#> SRR1102296     1  0.0237     0.7410 0.996 0.000 0.004
#> SRR1085087     1  0.5070     0.5961 0.772 0.004 0.224
#> SRR1079046     1  0.4418     0.6499 0.848 0.020 0.132
#> SRR1328339     1  0.6823     0.3660 0.668 0.036 0.296
#> SRR1079782     2  0.1411     0.9246 0.000 0.964 0.036
#> SRR1092257     2  0.2356     0.9088 0.000 0.928 0.072

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0188     0.9240 0.000 0.996 0.004 0.000
#> SRR1429287     2  0.2909     0.8919 0.000 0.888 0.020 0.092
#> SRR1359238     4  0.5358     0.7550 0.252 0.000 0.048 0.700
#> SRR1309597     3  0.4610     0.7783 0.084 0.016 0.820 0.080
#> SRR1441398     1  0.4454     0.4189 0.692 0.000 0.308 0.000
#> SRR1084055     2  0.1297     0.9170 0.000 0.964 0.016 0.020
#> SRR1417566     3  0.4855     0.5794 0.268 0.000 0.712 0.020
#> SRR1351857     4  0.4621     0.7167 0.284 0.000 0.008 0.708
#> SRR1487485     3  0.4830     0.7676 0.016 0.068 0.804 0.112
#> SRR1335875     3  0.4088     0.7489 0.140 0.000 0.820 0.040
#> SRR1073947     1  0.4642     0.4130 0.740 0.000 0.020 0.240
#> SRR1443483     3  0.4641     0.7822 0.064 0.016 0.816 0.104
#> SRR1346794     1  0.5311     0.3634 0.648 0.000 0.328 0.024
#> SRR1405245     1  0.4817     0.2783 0.612 0.000 0.388 0.000
#> SRR1409677     4  0.5664     0.7941 0.156 0.000 0.124 0.720
#> SRR1095549     1  0.6356     0.3160 0.604 0.000 0.308 0.088
#> SRR1323788     1  0.4690     0.4690 0.712 0.000 0.276 0.012
#> SRR1314054     2  0.0779     0.9215 0.000 0.980 0.004 0.016
#> SRR1077944     1  0.1297     0.6387 0.964 0.000 0.020 0.016
#> SRR1480587     2  0.0188     0.9240 0.000 0.996 0.004 0.000
#> SRR1311205     1  0.3108     0.6223 0.872 0.000 0.112 0.016
#> SRR1076369     1  0.6813     0.1682 0.516 0.000 0.380 0.104
#> SRR1453549     3  0.4767     0.7169 0.020 0.000 0.724 0.256
#> SRR1345782     1  0.2522     0.6327 0.908 0.000 0.076 0.016
#> SRR1447850     2  0.1722     0.9098 0.000 0.944 0.008 0.048
#> SRR1391553     3  0.4553     0.7528 0.012 0.092 0.820 0.076
#> SRR1444156     2  0.0188     0.9233 0.000 0.996 0.004 0.000
#> SRR1471731     3  0.5070     0.4936 0.004 0.000 0.580 0.416
#> SRR1120987     4  0.4644     0.7796 0.164 0.004 0.044 0.788
#> SRR1477363     1  0.1520     0.6370 0.956 0.000 0.020 0.024
#> SRR1391961     1  0.7471     0.4309 0.568 0.016 0.176 0.240
#> SRR1373879     3  0.4379     0.7679 0.036 0.000 0.792 0.172
#> SRR1318732     3  0.5478     0.6512 0.228 0.016 0.720 0.036
#> SRR1091404     1  0.0657     0.6409 0.984 0.000 0.012 0.004
#> SRR1402109     3  0.5050     0.7025 0.028 0.000 0.704 0.268
#> SRR1407336     3  0.4936     0.5683 0.004 0.000 0.624 0.372
#> SRR1097417     3  0.4867     0.7150 0.064 0.020 0.804 0.112
#> SRR1396227     1  0.3485     0.5826 0.856 0.000 0.028 0.116
#> SRR1400775     2  0.0188     0.9240 0.000 0.996 0.004 0.000
#> SRR1392861     4  0.5279     0.6971 0.072 0.000 0.192 0.736
#> SRR1472929     2  0.9833     0.1666 0.172 0.304 0.292 0.232
#> SRR1436740     4  0.5339     0.8020 0.156 0.000 0.100 0.744
#> SRR1477057     2  0.3084     0.8980 0.012 0.896 0.028 0.064
#> SRR1311980     3  0.4424     0.7679 0.088 0.000 0.812 0.100
#> SRR1069400     3  0.4498     0.7786 0.044 0.008 0.808 0.140
#> SRR1351016     1  0.3803     0.5562 0.836 0.000 0.032 0.132
#> SRR1096291     4  0.5119     0.7731 0.112 0.000 0.124 0.764
#> SRR1418145     4  0.4598     0.7783 0.160 0.004 0.044 0.792
#> SRR1488111     4  0.6099     0.5265 0.008 0.172 0.120 0.700
#> SRR1370495     1  0.4219     0.5967 0.832 0.004 0.076 0.088
#> SRR1352639     1  0.4825     0.5678 0.792 0.020 0.036 0.152
#> SRR1348911     3  0.4443     0.7612 0.120 0.012 0.820 0.048
#> SRR1467386     1  0.5165    -0.2257 0.512 0.000 0.004 0.484
#> SRR1415956     1  0.2334     0.6280 0.908 0.000 0.088 0.004
#> SRR1500495     1  0.4406     0.4334 0.700 0.000 0.300 0.000
#> SRR1405099     1  0.0592     0.6405 0.984 0.000 0.016 0.000
#> SRR1345585     3  0.4694     0.7769 0.044 0.048 0.824 0.084
#> SRR1093196     3  0.4950     0.5624 0.004 0.000 0.620 0.376
#> SRR1466006     2  0.0000     0.9239 0.000 1.000 0.000 0.000
#> SRR1351557     2  0.0000     0.9239 0.000 1.000 0.000 0.000
#> SRR1382687     1  0.5510    -0.2356 0.504 0.000 0.016 0.480
#> SRR1375549     1  0.2408     0.6293 0.920 0.000 0.036 0.044
#> SRR1101765     1  0.4735     0.5688 0.784 0.000 0.068 0.148
#> SRR1334461     1  0.7402     0.4338 0.576 0.016 0.168 0.240
#> SRR1094073     2  0.0188     0.9233 0.000 0.996 0.004 0.000
#> SRR1077549     4  0.5404     0.7601 0.248 0.000 0.052 0.700
#> SRR1440332     4  0.7396     0.4424 0.216 0.000 0.268 0.516
#> SRR1454177     4  0.5432     0.7769 0.124 0.000 0.136 0.740
#> SRR1082447     1  0.0937     0.6396 0.976 0.000 0.012 0.012
#> SRR1420043     3  0.5050     0.4927 0.004 0.000 0.588 0.408
#> SRR1432500     4  0.5137     0.3702 0.452 0.000 0.004 0.544
#> SRR1378045     3  0.4964     0.3747 0.004 0.380 0.616 0.000
#> SRR1334200     2  0.9668     0.2725 0.204 0.368 0.164 0.264
#> SRR1069539     4  0.5895     0.4287 0.024 0.032 0.268 0.676
#> SRR1343031     3  0.5309     0.7134 0.044 0.000 0.700 0.256
#> SRR1319690     3  0.4781     0.4793 0.336 0.000 0.660 0.004
#> SRR1310604     2  0.2699     0.9006 0.000 0.904 0.028 0.068
#> SRR1327747     3  0.7088     0.6166 0.204 0.000 0.568 0.228
#> SRR1072456     2  0.1174     0.9176 0.000 0.968 0.012 0.020
#> SRR1367896     3  0.4422     0.7810 0.044 0.016 0.824 0.116
#> SRR1480107     1  0.0895     0.6373 0.976 0.000 0.004 0.020
#> SRR1377756     1  0.5057     0.2392 0.648 0.000 0.012 0.340
#> SRR1435272     4  0.5428     0.7920 0.140 0.000 0.120 0.740
#> SRR1089230     4  0.5265     0.8022 0.160 0.000 0.092 0.748
#> SRR1389522     3  0.4359     0.7763 0.100 0.000 0.816 0.084
#> SRR1080600     2  0.2965     0.8939 0.000 0.892 0.036 0.072
#> SRR1086935     4  0.5998     0.7228 0.064 0.052 0.144 0.740
#> SRR1344060     1  0.9823    -0.0914 0.304 0.284 0.164 0.248
#> SRR1467922     2  0.0188     0.9233 0.000 0.996 0.004 0.000
#> SRR1090984     1  0.5151     0.0944 0.532 0.000 0.464 0.004
#> SRR1456991     1  0.1174     0.6396 0.968 0.000 0.012 0.020
#> SRR1085039     1  0.2197     0.6108 0.916 0.000 0.004 0.080
#> SRR1069303     1  0.5323     0.1917 0.628 0.000 0.020 0.352
#> SRR1091500     2  0.0895     0.9215 0.000 0.976 0.020 0.004
#> SRR1075198     2  0.2124     0.9062 0.000 0.924 0.008 0.068
#> SRR1086915     4  0.4360     0.7477 0.248 0.000 0.008 0.744
#> SRR1499503     2  0.0336     0.9235 0.000 0.992 0.008 0.000
#> SRR1094312     2  0.0188     0.9240 0.000 0.996 0.004 0.000
#> SRR1352437     1  0.5688    -0.1768 0.512 0.000 0.024 0.464
#> SRR1436323     3  0.5126     0.4321 0.004 0.000 0.552 0.444
#> SRR1073507     1  0.5165    -0.2265 0.512 0.000 0.004 0.484
#> SRR1401972     1  0.5323     0.1917 0.628 0.000 0.020 0.352
#> SRR1415510     2  0.0336     0.9235 0.000 0.992 0.008 0.000
#> SRR1327279     1  0.6559    -0.3701 0.468 0.000 0.076 0.456
#> SRR1086983     4  0.4647     0.7100 0.288 0.000 0.008 0.704
#> SRR1105174     1  0.0707     0.6405 0.980 0.000 0.020 0.000
#> SRR1468893     1  0.2222     0.6197 0.924 0.000 0.016 0.060
#> SRR1362555     2  0.3851     0.8754 0.004 0.852 0.056 0.088
#> SRR1074526     1  0.7678     0.4196 0.556 0.024 0.172 0.248
#> SRR1326225     2  0.0188     0.9233 0.000 0.996 0.004 0.000
#> SRR1401933     1  0.5856    -0.2079 0.504 0.000 0.032 0.464
#> SRR1324062     4  0.6074     0.3133 0.456 0.000 0.044 0.500
#> SRR1102296     1  0.1733     0.6362 0.948 0.000 0.024 0.028
#> SRR1085087     1  0.5503    -0.1893 0.516 0.000 0.016 0.468
#> SRR1079046     1  0.4901     0.5653 0.780 0.000 0.108 0.112
#> SRR1328339     1  0.5165     0.0115 0.512 0.000 0.484 0.004
#> SRR1079782     2  0.2480     0.8977 0.000 0.904 0.008 0.088
#> SRR1092257     2  0.3224     0.8747 0.000 0.864 0.016 0.120

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0566     0.8890 0.000 0.984 0.000 0.012 0.004
#> SRR1429287     2  0.5377     0.7471 0.000 0.712 0.024 0.140 0.124
#> SRR1359238     4  0.4054     0.6515 0.236 0.000 0.008 0.744 0.012
#> SRR1309597     3  0.2104     0.7527 0.044 0.000 0.924 0.024 0.008
#> SRR1441398     1  0.3649     0.6039 0.808 0.000 0.152 0.000 0.040
#> SRR1084055     2  0.1205     0.8870 0.000 0.956 0.000 0.004 0.040
#> SRR1417566     3  0.5170     0.5682 0.232 0.000 0.688 0.012 0.068
#> SRR1351857     4  0.3242     0.7422 0.172 0.000 0.000 0.816 0.012
#> SRR1487485     3  0.1960     0.7503 0.000 0.020 0.928 0.048 0.004
#> SRR1335875     3  0.1740     0.7401 0.056 0.000 0.932 0.000 0.012
#> SRR1073947     1  0.5094     0.5487 0.704 0.000 0.020 0.220 0.056
#> SRR1443483     3  0.2116     0.7543 0.028 0.000 0.924 0.040 0.008
#> SRR1346794     1  0.5898     0.3924 0.624 0.000 0.264 0.024 0.088
#> SRR1405245     1  0.3885     0.5838 0.784 0.000 0.176 0.000 0.040
#> SRR1409677     4  0.2438     0.8179 0.040 0.000 0.060 0.900 0.000
#> SRR1095549     1  0.6425     0.3544 0.592 0.000 0.268 0.080 0.060
#> SRR1323788     1  0.4190     0.6122 0.792 0.000 0.140 0.012 0.056
#> SRR1314054     2  0.1116     0.8875 0.000 0.964 0.004 0.004 0.028
#> SRR1077944     1  0.1461     0.6994 0.952 0.000 0.004 0.016 0.028
#> SRR1480587     2  0.1503     0.8864 0.000 0.952 0.008 0.020 0.020
#> SRR1311205     1  0.1195     0.6952 0.960 0.000 0.028 0.000 0.012
#> SRR1076369     1  0.7039     0.1116 0.464 0.000 0.308 0.024 0.204
#> SRR1453549     3  0.3476     0.7341 0.020 0.000 0.816 0.160 0.004
#> SRR1345782     1  0.1074     0.6979 0.968 0.000 0.012 0.004 0.016
#> SRR1447850     2  0.3730     0.8051 0.000 0.828 0.012 0.112 0.048
#> SRR1391553     3  0.2162     0.7395 0.020 0.020 0.928 0.004 0.028
#> SRR1444156     2  0.0324     0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1471731     3  0.4822     0.5476 0.012 0.000 0.632 0.340 0.016
#> SRR1120987     4  0.2507     0.7918 0.028 0.000 0.020 0.908 0.044
#> SRR1477363     1  0.1012     0.7003 0.968 0.000 0.000 0.012 0.020
#> SRR1391961     5  0.3280     0.8334 0.160 0.004 0.012 0.000 0.824
#> SRR1373879     3  0.2349     0.7514 0.012 0.000 0.900 0.084 0.004
#> SRR1318732     3  0.5331     0.5957 0.228 0.008 0.692 0.016 0.056
#> SRR1091404     1  0.1484     0.6941 0.944 0.000 0.000 0.008 0.048
#> SRR1402109     3  0.3578     0.7042 0.008 0.000 0.784 0.204 0.004
#> SRR1407336     3  0.3928     0.6121 0.000 0.000 0.700 0.296 0.004
#> SRR1097417     3  0.3504     0.6337 0.016 0.000 0.816 0.008 0.160
#> SRR1396227     1  0.4532     0.6777 0.792 0.000 0.040 0.080 0.088
#> SRR1400775     2  0.0566     0.8884 0.000 0.984 0.004 0.000 0.012
#> SRR1392861     4  0.2069     0.8024 0.012 0.000 0.076 0.912 0.000
#> SRR1472929     5  0.4178     0.8005 0.024 0.140 0.016 0.016 0.804
#> SRR1436740     4  0.1990     0.8250 0.040 0.000 0.028 0.928 0.004
#> SRR1477057     2  0.5139     0.7776 0.008 0.748 0.036 0.060 0.148
#> SRR1311980     3  0.2217     0.7427 0.044 0.000 0.920 0.012 0.024
#> SRR1069400     3  0.2086     0.7543 0.020 0.000 0.924 0.048 0.008
#> SRR1351016     1  0.3907     0.6693 0.828 0.000 0.032 0.096 0.044
#> SRR1096291     4  0.2747     0.7819 0.020 0.000 0.036 0.896 0.048
#> SRR1418145     4  0.3135     0.7467 0.020 0.000 0.024 0.868 0.088
#> SRR1488111     4  0.4717     0.6441 0.000 0.048 0.072 0.780 0.100
#> SRR1370495     1  0.5149     0.5262 0.692 0.000 0.016 0.060 0.232
#> SRR1352639     1  0.4874     0.6043 0.768 0.012 0.016 0.084 0.120
#> SRR1348911     3  0.1682     0.7426 0.044 0.000 0.940 0.004 0.012
#> SRR1467386     1  0.4731     0.1437 0.528 0.000 0.000 0.456 0.016
#> SRR1415956     1  0.2321     0.6794 0.912 0.000 0.024 0.008 0.056
#> SRR1500495     1  0.3141     0.6402 0.852 0.000 0.108 0.000 0.040
#> SRR1405099     1  0.1043     0.6934 0.960 0.000 0.000 0.000 0.040
#> SRR1345585     3  0.1918     0.7509 0.012 0.016 0.940 0.020 0.012
#> SRR1093196     3  0.3816     0.6052 0.000 0.000 0.696 0.304 0.000
#> SRR1466006     2  0.1772     0.8838 0.000 0.940 0.008 0.020 0.032
#> SRR1351557     2  0.0566     0.8915 0.000 0.984 0.000 0.012 0.004
#> SRR1382687     1  0.4544     0.6232 0.740 0.000 0.012 0.208 0.040
#> SRR1375549     1  0.3646     0.6674 0.828 0.000 0.008 0.044 0.120
#> SRR1101765     1  0.6502     0.2838 0.536 0.000 0.008 0.216 0.240
#> SRR1334461     5  0.3205     0.8258 0.176 0.004 0.004 0.000 0.816
#> SRR1094073     2  0.0324     0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1077549     4  0.3947     0.6546 0.236 0.000 0.008 0.748 0.008
#> SRR1440332     1  0.6923     0.1256 0.448 0.000 0.200 0.336 0.016
#> SRR1454177     4  0.1981     0.8204 0.028 0.000 0.048 0.924 0.000
#> SRR1082447     1  0.2390     0.6884 0.896 0.000 0.000 0.020 0.084
#> SRR1420043     3  0.4122     0.6043 0.004 0.000 0.688 0.304 0.004
#> SRR1432500     4  0.4802    -0.0161 0.480 0.000 0.004 0.504 0.012
#> SRR1378045     3  0.4269     0.4706 0.000 0.300 0.684 0.000 0.016
#> SRR1334200     5  0.3151     0.8336 0.024 0.092 0.004 0.012 0.868
#> SRR1069539     4  0.4651     0.5875 0.000 0.004 0.156 0.748 0.092
#> SRR1343031     3  0.3751     0.6977 0.012 0.000 0.772 0.212 0.004
#> SRR1319690     3  0.5455     0.2938 0.416 0.000 0.528 0.004 0.052
#> SRR1310604     2  0.4202     0.8218 0.000 0.804 0.024 0.056 0.116
#> SRR1327747     3  0.7106     0.5057 0.260 0.000 0.520 0.168 0.052
#> SRR1072456     2  0.1686     0.8848 0.000 0.944 0.008 0.020 0.028
#> SRR1367896     3  0.1989     0.7517 0.020 0.000 0.932 0.032 0.016
#> SRR1480107     1  0.1331     0.6942 0.952 0.000 0.000 0.008 0.040
#> SRR1377756     1  0.3573     0.6795 0.812 0.000 0.000 0.152 0.036
#> SRR1435272     4  0.1750     0.8231 0.028 0.000 0.036 0.936 0.000
#> SRR1089230     4  0.1557     0.8200 0.052 0.000 0.000 0.940 0.008
#> SRR1389522     3  0.2178     0.7518 0.048 0.000 0.920 0.024 0.008
#> SRR1080600     2  0.4662     0.7929 0.000 0.764 0.024 0.060 0.152
#> SRR1086935     4  0.2150     0.8171 0.016 0.020 0.032 0.928 0.004
#> SRR1344060     5  0.3038     0.8449 0.032 0.080 0.004 0.008 0.876
#> SRR1467922     2  0.0324     0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1090984     3  0.5901     0.0598 0.456 0.000 0.460 0.008 0.076
#> SRR1456991     1  0.0865     0.6974 0.972 0.000 0.004 0.000 0.024
#> SRR1085039     1  0.1965     0.6951 0.924 0.000 0.000 0.052 0.024
#> SRR1069303     1  0.6371     0.3668 0.544 0.000 0.036 0.336 0.084
#> SRR1091500     2  0.0671     0.8880 0.000 0.980 0.004 0.000 0.016
#> SRR1075198     2  0.4779     0.8001 0.000 0.764 0.024 0.092 0.120
#> SRR1086915     4  0.1671     0.8179 0.076 0.000 0.000 0.924 0.000
#> SRR1499503     2  0.0968     0.8873 0.000 0.972 0.004 0.012 0.012
#> SRR1094312     2  0.0566     0.8884 0.000 0.984 0.004 0.000 0.012
#> SRR1352437     1  0.6495     0.1593 0.464 0.000 0.040 0.420 0.076
#> SRR1436323     3  0.5012     0.4960 0.016 0.000 0.600 0.368 0.016
#> SRR1073507     1  0.4747     0.0380 0.500 0.000 0.000 0.484 0.016
#> SRR1401972     1  0.6371     0.3668 0.544 0.000 0.036 0.336 0.084
#> SRR1415510     2  0.1721     0.8846 0.000 0.944 0.016 0.020 0.020
#> SRR1327279     1  0.5995     0.0974 0.512 0.000 0.072 0.400 0.016
#> SRR1086983     4  0.3355     0.7294 0.184 0.000 0.000 0.804 0.012
#> SRR1105174     1  0.1557     0.6929 0.940 0.000 0.000 0.008 0.052
#> SRR1468893     1  0.2291     0.6993 0.908 0.000 0.000 0.036 0.056
#> SRR1362555     2  0.5392     0.7681 0.008 0.724 0.024 0.092 0.152
#> SRR1074526     5  0.3465     0.8389 0.116 0.004 0.012 0.024 0.844
#> SRR1326225     2  0.0324     0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1401933     1  0.6195     0.4126 0.552 0.000 0.028 0.340 0.080
#> SRR1324062     1  0.6147     0.2410 0.524 0.000 0.048 0.384 0.044
#> SRR1102296     1  0.2792     0.6854 0.884 0.000 0.040 0.004 0.072
#> SRR1085087     1  0.5949     0.1309 0.492 0.000 0.028 0.432 0.048
#> SRR1079046     1  0.4922     0.4109 0.636 0.000 0.008 0.028 0.328
#> SRR1328339     3  0.5790     0.1856 0.424 0.000 0.500 0.008 0.068
#> SRR1079782     2  0.5400     0.7448 0.000 0.708 0.024 0.156 0.112
#> SRR1092257     2  0.5663     0.6660 0.000 0.664 0.020 0.216 0.100

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0405     0.7754 0.000 0.988 0.000 0.008 0.004 0.000
#> SRR1429287     2  0.6939     0.5218 0.004 0.492 0.000 0.220 0.096 0.188
#> SRR1359238     4  0.5588     0.5723 0.404 0.000 0.060 0.500 0.000 0.036
#> SRR1309597     3  0.1375     0.8106 0.004 0.000 0.952 0.008 0.008 0.028
#> SRR1441398     6  0.5175     0.3698 0.308 0.000 0.100 0.000 0.004 0.588
#> SRR1084055     2  0.1148     0.7766 0.000 0.960 0.000 0.004 0.020 0.016
#> SRR1417566     6  0.5841     0.2763 0.044 0.000 0.384 0.028 0.028 0.516
#> SRR1351857     4  0.4062     0.7271 0.344 0.000 0.004 0.640 0.000 0.012
#> SRR1487485     3  0.1708     0.8128 0.000 0.000 0.932 0.024 0.004 0.040
#> SRR1335875     3  0.3370     0.7726 0.032 0.000 0.852 0.020 0.024 0.072
#> SRR1073947     1  0.1338     0.5322 0.952 0.000 0.004 0.008 0.004 0.032
#> SRR1443483     3  0.0912     0.8111 0.004 0.000 0.972 0.008 0.012 0.004
#> SRR1346794     6  0.4743     0.5220 0.088 0.000 0.144 0.020 0.012 0.736
#> SRR1405245     6  0.5486     0.3435 0.316 0.000 0.132 0.000 0.004 0.548
#> SRR1409677     4  0.4028     0.7901 0.192 0.000 0.044 0.752 0.000 0.012
#> SRR1095549     6  0.6308     0.4360 0.208 0.000 0.184 0.040 0.008 0.560
#> SRR1323788     6  0.4779     0.4332 0.264 0.000 0.072 0.008 0.000 0.656
#> SRR1314054     2  0.1173     0.7745 0.000 0.960 0.000 0.016 0.016 0.008
#> SRR1077944     6  0.4107     0.0700 0.452 0.000 0.000 0.004 0.004 0.540
#> SRR1480587     2  0.2157     0.7696 0.000 0.916 0.008 0.008 0.028 0.040
#> SRR1311205     1  0.4487     0.3219 0.608 0.000 0.024 0.004 0.004 0.360
#> SRR1076369     6  0.5212     0.5137 0.024 0.000 0.196 0.020 0.072 0.688
#> SRR1453549     3  0.3830     0.7876 0.008 0.000 0.796 0.120 0.004 0.072
#> SRR1345782     1  0.4622     0.3272 0.608 0.000 0.036 0.000 0.008 0.348
#> SRR1447850     2  0.3692     0.7020 0.000 0.816 0.008 0.116 0.020 0.040
#> SRR1391553     3  0.3966     0.7540 0.028 0.004 0.812 0.024 0.024 0.108
#> SRR1444156     2  0.0862     0.7697 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1471731     3  0.6448     0.4486 0.080 0.000 0.500 0.324 0.004 0.092
#> SRR1120987     4  0.3820     0.7145 0.128 0.000 0.000 0.796 0.020 0.056
#> SRR1477363     1  0.3986     0.1570 0.532 0.000 0.000 0.000 0.004 0.464
#> SRR1391961     5  0.2685     0.8952 0.080 0.000 0.004 0.000 0.872 0.044
#> SRR1373879     3  0.1152     0.8142 0.000 0.000 0.952 0.044 0.004 0.000
#> SRR1318732     6  0.4447     0.2723 0.000 0.000 0.420 0.012 0.012 0.556
#> SRR1091404     1  0.4279     0.1406 0.548 0.000 0.000 0.004 0.012 0.436
#> SRR1402109     3  0.2872     0.7695 0.012 0.000 0.832 0.152 0.004 0.000
#> SRR1407336     3  0.4127     0.6359 0.012 0.000 0.692 0.280 0.004 0.012
#> SRR1097417     3  0.2822     0.7228 0.004 0.000 0.852 0.016 0.124 0.004
#> SRR1396227     1  0.4578     0.1531 0.548 0.000 0.004 0.008 0.016 0.424
#> SRR1400775     2  0.0881     0.7748 0.000 0.972 0.000 0.012 0.008 0.008
#> SRR1392861     4  0.3755     0.7945 0.192 0.000 0.028 0.768 0.000 0.012
#> SRR1472929     5  0.2186     0.8858 0.000 0.056 0.012 0.000 0.908 0.024
#> SRR1436740     4  0.3642     0.7988 0.236 0.000 0.008 0.744 0.000 0.012
#> SRR1477057     2  0.7448     0.5213 0.052 0.508 0.008 0.152 0.068 0.212
#> SRR1311980     3  0.3398     0.7744 0.040 0.000 0.852 0.020 0.024 0.064
#> SRR1069400     3  0.1015     0.8114 0.004 0.000 0.968 0.012 0.012 0.004
#> SRR1351016     1  0.3166     0.4842 0.800 0.000 0.008 0.008 0.000 0.184
#> SRR1096291     4  0.3783     0.6694 0.060 0.000 0.032 0.832 0.028 0.048
#> SRR1418145     4  0.4525     0.5521 0.060 0.000 0.000 0.748 0.048 0.144
#> SRR1488111     4  0.5507     0.4376 0.016 0.028 0.024 0.696 0.064 0.172
#> SRR1370495     6  0.7253    -0.0765 0.304 0.000 0.000 0.184 0.124 0.388
#> SRR1352639     1  0.6852     0.2216 0.472 0.000 0.000 0.196 0.084 0.248
#> SRR1348911     3  0.2608     0.7900 0.012 0.000 0.896 0.020 0.028 0.044
#> SRR1467386     1  0.2714     0.4859 0.848 0.000 0.004 0.136 0.000 0.012
#> SRR1415956     6  0.3847     0.2169 0.348 0.000 0.000 0.000 0.008 0.644
#> SRR1500495     6  0.5177     0.2617 0.364 0.000 0.084 0.000 0.004 0.548
#> SRR1405099     1  0.4184     0.1188 0.504 0.000 0.000 0.000 0.012 0.484
#> SRR1345585     3  0.2306     0.7908 0.000 0.000 0.888 0.016 0.004 0.092
#> SRR1093196     3  0.4620     0.5952 0.012 0.000 0.636 0.320 0.004 0.028
#> SRR1466006     2  0.2442     0.7655 0.000 0.900 0.008 0.008 0.036 0.048
#> SRR1351557     2  0.0891     0.7785 0.000 0.968 0.000 0.008 0.000 0.024
#> SRR1382687     1  0.4867     0.1783 0.536 0.000 0.004 0.040 0.004 0.416
#> SRR1375549     6  0.3841     0.3339 0.244 0.000 0.000 0.000 0.032 0.724
#> SRR1101765     6  0.5644     0.3575 0.128 0.000 0.000 0.120 0.092 0.660
#> SRR1334461     5  0.2758     0.9025 0.080 0.012 0.000 0.000 0.872 0.036
#> SRR1094073     2  0.0622     0.7717 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1077549     4  0.4908     0.5281 0.468 0.000 0.036 0.484 0.000 0.012
#> SRR1440332     1  0.7393     0.1146 0.440 0.000 0.228 0.180 0.008 0.144
#> SRR1454177     4  0.3748     0.7989 0.212 0.000 0.020 0.756 0.000 0.012
#> SRR1082447     6  0.4310     0.1752 0.404 0.000 0.000 0.004 0.016 0.576
#> SRR1420043     3  0.4190     0.6024 0.012 0.000 0.668 0.304 0.000 0.016
#> SRR1432500     1  0.3477     0.4714 0.804 0.000 0.016 0.160 0.004 0.016
#> SRR1378045     2  0.6164    -0.0837 0.000 0.460 0.416 0.032 0.024 0.068
#> SRR1334200     5  0.1956     0.9048 0.008 0.040 0.004 0.008 0.928 0.012
#> SRR1069539     4  0.4406     0.5603 0.008 0.000 0.088 0.780 0.052 0.072
#> SRR1343031     3  0.3252     0.7781 0.032 0.000 0.832 0.124 0.008 0.004
#> SRR1319690     6  0.4524     0.5070 0.036 0.000 0.312 0.004 0.004 0.644
#> SRR1310604     2  0.6736     0.5681 0.000 0.556 0.012 0.176 0.104 0.152
#> SRR1327747     6  0.5593     0.3824 0.008 0.000 0.272 0.136 0.004 0.580
#> SRR1072456     2  0.2233     0.7683 0.000 0.912 0.008 0.008 0.032 0.040
#> SRR1367896     3  0.0665     0.8103 0.000 0.000 0.980 0.008 0.008 0.004
#> SRR1480107     1  0.3802     0.3752 0.676 0.000 0.000 0.000 0.012 0.312
#> SRR1377756     1  0.4563     0.1379 0.504 0.000 0.000 0.020 0.008 0.468
#> SRR1435272     4  0.3381     0.8006 0.212 0.000 0.008 0.772 0.000 0.008
#> SRR1089230     4  0.3921     0.7956 0.224 0.000 0.004 0.736 0.000 0.036
#> SRR1389522     3  0.1026     0.8100 0.004 0.000 0.968 0.008 0.012 0.008
#> SRR1080600     2  0.6783     0.5622 0.000 0.552 0.012 0.172 0.112 0.152
#> SRR1086935     4  0.3963     0.7901 0.208 0.000 0.016 0.748 0.000 0.028
#> SRR1344060     5  0.1749     0.9070 0.016 0.044 0.004 0.004 0.932 0.000
#> SRR1467922     2  0.0862     0.7697 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1090984     6  0.5774     0.5011 0.092 0.000 0.268 0.016 0.024 0.600
#> SRR1456991     1  0.3955     0.3530 0.648 0.000 0.004 0.000 0.008 0.340
#> SRR1085039     1  0.3152     0.4794 0.792 0.000 0.000 0.008 0.004 0.196
#> SRR1069303     1  0.3421     0.4983 0.840 0.000 0.008 0.052 0.016 0.084
#> SRR1091500     2  0.1180     0.7730 0.000 0.960 0.000 0.012 0.012 0.016
#> SRR1075198     2  0.6813     0.5455 0.000 0.524 0.004 0.192 0.108 0.172
#> SRR1086915     4  0.3584     0.7961 0.244 0.000 0.004 0.740 0.000 0.012
#> SRR1499503     2  0.1086     0.7715 0.000 0.964 0.000 0.012 0.012 0.012
#> SRR1094312     2  0.0779     0.7752 0.000 0.976 0.000 0.008 0.008 0.008
#> SRR1352437     1  0.3921     0.4544 0.800 0.000 0.008 0.100 0.012 0.080
#> SRR1436323     3  0.7085     0.2352 0.100 0.000 0.396 0.352 0.004 0.148
#> SRR1073507     1  0.2848     0.4495 0.828 0.000 0.004 0.160 0.000 0.008
#> SRR1401972     1  0.3421     0.4983 0.840 0.000 0.008 0.052 0.016 0.084
#> SRR1415510     2  0.2373     0.7687 0.000 0.908 0.016 0.012 0.024 0.040
#> SRR1327279     1  0.4570     0.4668 0.744 0.000 0.104 0.128 0.004 0.020
#> SRR1086983     4  0.3965     0.6974 0.376 0.000 0.004 0.616 0.004 0.000
#> SRR1105174     1  0.4303     0.1055 0.524 0.000 0.000 0.004 0.012 0.460
#> SRR1468893     6  0.4264    -0.1230 0.484 0.000 0.000 0.000 0.016 0.500
#> SRR1362555     2  0.7198     0.5054 0.004 0.480 0.004 0.192 0.120 0.200
#> SRR1074526     5  0.2999     0.8921 0.060 0.004 0.004 0.004 0.864 0.064
#> SRR1326225     2  0.0717     0.7707 0.000 0.976 0.000 0.008 0.000 0.016
#> SRR1401933     6  0.6489     0.1192 0.264 0.000 0.024 0.200 0.012 0.500
#> SRR1324062     1  0.3925     0.4984 0.800 0.000 0.008 0.096 0.012 0.084
#> SRR1102296     1  0.4837     0.3749 0.652 0.000 0.012 0.016 0.032 0.288
#> SRR1085087     1  0.3770     0.4360 0.800 0.000 0.004 0.136 0.016 0.044
#> SRR1079046     6  0.4823     0.3253 0.216 0.000 0.000 0.000 0.124 0.660
#> SRR1328339     6  0.5899     0.4785 0.084 0.000 0.324 0.016 0.024 0.552
#> SRR1079782     2  0.6916     0.5188 0.004 0.488 0.000 0.232 0.088 0.188
#> SRR1092257     2  0.6990     0.4369 0.008 0.440 0.000 0.312 0.072 0.168

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.787           0.898       0.957         0.4959 0.503   0.503
#> 3 3 0.586           0.659       0.845         0.3404 0.770   0.574
#> 4 4 0.742           0.811       0.903         0.1292 0.829   0.552
#> 5 5 0.701           0.642       0.799         0.0602 0.887   0.595
#> 6 6 0.702           0.627       0.777         0.0398 0.926   0.678

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000      0.942 0.000 1.000
#> SRR1429287     2  0.0000      0.942 0.000 1.000
#> SRR1359238     1  0.0000      0.962 1.000 0.000
#> SRR1309597     2  0.4431      0.871 0.092 0.908
#> SRR1441398     1  0.0000      0.962 1.000 0.000
#> SRR1084055     2  0.0000      0.942 0.000 1.000
#> SRR1417566     2  0.0000      0.942 0.000 1.000
#> SRR1351857     1  0.0000      0.962 1.000 0.000
#> SRR1487485     2  0.0000      0.942 0.000 1.000
#> SRR1335875     2  0.0000      0.942 0.000 1.000
#> SRR1073947     1  0.0000      0.962 1.000 0.000
#> SRR1443483     2  0.4431      0.871 0.092 0.908
#> SRR1346794     1  0.0000      0.962 1.000 0.000
#> SRR1405245     1  0.0000      0.962 1.000 0.000
#> SRR1409677     1  0.0000      0.962 1.000 0.000
#> SRR1095549     1  0.0000      0.962 1.000 0.000
#> SRR1323788     1  0.0000      0.962 1.000 0.000
#> SRR1314054     2  0.0000      0.942 0.000 1.000
#> SRR1077944     1  0.0000      0.962 1.000 0.000
#> SRR1480587     2  0.0000      0.942 0.000 1.000
#> SRR1311205     1  0.0000      0.962 1.000 0.000
#> SRR1076369     1  0.9754      0.228 0.592 0.408
#> SRR1453549     1  0.2948      0.916 0.948 0.052
#> SRR1345782     1  0.0000      0.962 1.000 0.000
#> SRR1447850     2  0.0000      0.942 0.000 1.000
#> SRR1391553     2  0.0000      0.942 0.000 1.000
#> SRR1444156     2  0.0000      0.942 0.000 1.000
#> SRR1471731     2  0.9710      0.390 0.400 0.600
#> SRR1120987     1  0.0000      0.962 1.000 0.000
#> SRR1477363     1  0.0000      0.962 1.000 0.000
#> SRR1391961     1  0.9710      0.340 0.600 0.400
#> SRR1373879     1  0.6247      0.794 0.844 0.156
#> SRR1318732     2  0.1184      0.931 0.016 0.984
#> SRR1091404     1  0.0000      0.962 1.000 0.000
#> SRR1402109     1  0.1184      0.949 0.984 0.016
#> SRR1407336     2  0.9710      0.390 0.400 0.600
#> SRR1097417     2  0.0000      0.942 0.000 1.000
#> SRR1396227     1  0.0000      0.962 1.000 0.000
#> SRR1400775     2  0.0000      0.942 0.000 1.000
#> SRR1392861     1  0.6438      0.783 0.836 0.164
#> SRR1472929     2  0.0000      0.942 0.000 1.000
#> SRR1436740     1  0.0000      0.962 1.000 0.000
#> SRR1477057     2  0.0000      0.942 0.000 1.000
#> SRR1311980     2  0.5178      0.847 0.116 0.884
#> SRR1069400     2  0.7219      0.748 0.200 0.800
#> SRR1351016     1  0.0000      0.962 1.000 0.000
#> SRR1096291     2  0.9710      0.390 0.400 0.600
#> SRR1418145     1  0.0000      0.962 1.000 0.000
#> SRR1488111     2  0.0000      0.942 0.000 1.000
#> SRR1370495     1  0.2423      0.928 0.960 0.040
#> SRR1352639     1  0.7219      0.740 0.800 0.200
#> SRR1348911     2  0.0000      0.942 0.000 1.000
#> SRR1467386     1  0.0000      0.962 1.000 0.000
#> SRR1415956     1  0.0000      0.962 1.000 0.000
#> SRR1500495     1  0.0000      0.962 1.000 0.000
#> SRR1405099     1  0.0000      0.962 1.000 0.000
#> SRR1345585     2  0.0000      0.942 0.000 1.000
#> SRR1093196     2  0.9710      0.390 0.400 0.600
#> SRR1466006     2  0.0000      0.942 0.000 1.000
#> SRR1351557     2  0.0000      0.942 0.000 1.000
#> SRR1382687     1  0.0000      0.962 1.000 0.000
#> SRR1375549     1  0.0000      0.962 1.000 0.000
#> SRR1101765     1  0.0000      0.962 1.000 0.000
#> SRR1334461     1  0.9710      0.340 0.600 0.400
#> SRR1094073     2  0.0000      0.942 0.000 1.000
#> SRR1077549     1  0.0000      0.962 1.000 0.000
#> SRR1440332     1  0.0000      0.962 1.000 0.000
#> SRR1454177     1  0.0000      0.962 1.000 0.000
#> SRR1082447     1  0.0000      0.962 1.000 0.000
#> SRR1420043     1  0.0000      0.962 1.000 0.000
#> SRR1432500     1  0.0000      0.962 1.000 0.000
#> SRR1378045     2  0.0000      0.942 0.000 1.000
#> SRR1334200     2  0.0000      0.942 0.000 1.000
#> SRR1069539     2  0.0000      0.942 0.000 1.000
#> SRR1343031     1  0.0000      0.962 1.000 0.000
#> SRR1319690     1  0.0000      0.962 1.000 0.000
#> SRR1310604     2  0.0000      0.942 0.000 1.000
#> SRR1327747     1  0.0938      0.953 0.988 0.012
#> SRR1072456     2  0.0000      0.942 0.000 1.000
#> SRR1367896     2  0.0000      0.942 0.000 1.000
#> SRR1480107     1  0.0000      0.962 1.000 0.000
#> SRR1377756     1  0.0000      0.962 1.000 0.000
#> SRR1435272     1  0.0000      0.962 1.000 0.000
#> SRR1089230     1  0.0000      0.962 1.000 0.000
#> SRR1389522     2  0.4431      0.871 0.092 0.908
#> SRR1080600     2  0.0000      0.942 0.000 1.000
#> SRR1086935     2  0.9710      0.390 0.400 0.600
#> SRR1344060     2  0.1184      0.930 0.016 0.984
#> SRR1467922     2  0.0000      0.942 0.000 1.000
#> SRR1090984     1  0.0000      0.962 1.000 0.000
#> SRR1456991     1  0.0000      0.962 1.000 0.000
#> SRR1085039     1  0.0000      0.962 1.000 0.000
#> SRR1069303     1  0.0000      0.962 1.000 0.000
#> SRR1091500     2  0.0000      0.942 0.000 1.000
#> SRR1075198     2  0.0000      0.942 0.000 1.000
#> SRR1086915     1  0.0000      0.962 1.000 0.000
#> SRR1499503     2  0.0000      0.942 0.000 1.000
#> SRR1094312     2  0.0000      0.942 0.000 1.000
#> SRR1352437     1  0.0000      0.962 1.000 0.000
#> SRR1436323     1  0.2043      0.936 0.968 0.032
#> SRR1073507     1  0.0000      0.962 1.000 0.000
#> SRR1401972     1  0.0000      0.962 1.000 0.000
#> SRR1415510     2  0.0000      0.942 0.000 1.000
#> SRR1327279     1  0.0000      0.962 1.000 0.000
#> SRR1086983     1  0.0000      0.962 1.000 0.000
#> SRR1105174     1  0.0000      0.962 1.000 0.000
#> SRR1468893     1  0.0000      0.962 1.000 0.000
#> SRR1362555     2  0.0000      0.942 0.000 1.000
#> SRR1074526     2  0.6247      0.790 0.156 0.844
#> SRR1326225     2  0.0000      0.942 0.000 1.000
#> SRR1401933     1  0.0000      0.962 1.000 0.000
#> SRR1324062     1  0.0000      0.962 1.000 0.000
#> SRR1102296     1  0.4939      0.857 0.892 0.108
#> SRR1085087     1  0.0000      0.962 1.000 0.000
#> SRR1079046     1  0.8327      0.637 0.736 0.264
#> SRR1328339     2  0.0000      0.942 0.000 1.000
#> SRR1079782     2  0.0000      0.942 0.000 1.000
#> SRR1092257     2  0.0000      0.942 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1429287     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1359238     1  0.5785    0.60085 0.668 0.000 0.332
#> SRR1309597     3  0.4891    0.70279 0.124 0.040 0.836
#> SRR1441398     1  0.6291   -0.16001 0.532 0.000 0.468
#> SRR1084055     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1417566     3  0.7523    0.58852 0.260 0.080 0.660
#> SRR1351857     1  0.5560    0.63192 0.700 0.000 0.300
#> SRR1487485     3  0.2711    0.72697 0.000 0.088 0.912
#> SRR1335875     3  0.6803    0.59247 0.040 0.280 0.680
#> SRR1073947     1  0.3412    0.72939 0.876 0.000 0.124
#> SRR1443483     3  0.2492    0.73347 0.016 0.048 0.936
#> SRR1346794     1  0.6295   -0.17179 0.528 0.000 0.472
#> SRR1405245     1  0.6307   -0.21380 0.512 0.000 0.488
#> SRR1409677     1  0.6302    0.37515 0.520 0.000 0.480
#> SRR1095549     1  0.6267   -0.09245 0.548 0.000 0.452
#> SRR1323788     1  0.6168   -0.00440 0.588 0.000 0.412
#> SRR1314054     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1077944     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1480587     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1311205     1  0.2796    0.66699 0.908 0.000 0.092
#> SRR1076369     3  0.6509    0.25995 0.472 0.004 0.524
#> SRR1453549     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1345782     1  0.1163    0.71798 0.972 0.000 0.028
#> SRR1447850     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1391553     3  0.5785    0.53499 0.000 0.332 0.668
#> SRR1444156     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1471731     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1120987     1  0.9405    0.40506 0.484 0.192 0.324
#> SRR1477363     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1391961     1  0.5621    0.52129 0.692 0.308 0.000
#> SRR1373879     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1318732     3  0.7610    0.61923 0.216 0.108 0.676
#> SRR1091404     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1402109     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1407336     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1097417     3  0.5760    0.54065 0.000 0.328 0.672
#> SRR1396227     1  0.0237    0.73254 0.996 0.000 0.004
#> SRR1400775     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1392861     3  0.1289    0.70378 0.032 0.000 0.968
#> SRR1472929     2  0.0892    0.94542 0.000 0.980 0.020
#> SRR1436740     1  0.6299    0.38270 0.524 0.000 0.476
#> SRR1477057     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1311980     3  0.1315    0.72713 0.020 0.008 0.972
#> SRR1069400     3  0.0237    0.73020 0.000 0.004 0.996
#> SRR1351016     1  0.3340    0.73013 0.880 0.000 0.120
#> SRR1096291     2  0.7905    0.34243 0.072 0.588 0.340
#> SRR1418145     1  0.9335    0.41609 0.492 0.184 0.324
#> SRR1488111     2  0.2625    0.87733 0.000 0.916 0.084
#> SRR1370495     1  0.4291    0.63408 0.820 0.180 0.000
#> SRR1352639     1  0.6111    0.36345 0.604 0.396 0.000
#> SRR1348911     3  0.5988    0.57247 0.008 0.304 0.688
#> SRR1467386     1  0.4178    0.71394 0.828 0.000 0.172
#> SRR1415956     1  0.2356    0.68605 0.928 0.000 0.072
#> SRR1500495     1  0.6286   -0.14955 0.536 0.000 0.464
#> SRR1405099     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1345585     3  0.5618    0.62196 0.008 0.260 0.732
#> SRR1093196     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1466006     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1351557     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1382687     1  0.2711    0.73403 0.912 0.000 0.088
#> SRR1375549     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1101765     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1334461     1  0.5216    0.56881 0.740 0.260 0.000
#> SRR1094073     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1077549     1  0.5882    0.58350 0.652 0.000 0.348
#> SRR1440332     3  0.6305   -0.33114 0.484 0.000 0.516
#> SRR1454177     3  0.6305   -0.33348 0.484 0.000 0.516
#> SRR1082447     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1420043     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1432500     1  0.5327    0.65286 0.728 0.000 0.272
#> SRR1378045     3  0.5810    0.52886 0.000 0.336 0.664
#> SRR1334200     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1069539     2  0.5178    0.62282 0.000 0.744 0.256
#> SRR1343031     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1319690     3  0.5760    0.53035 0.328 0.000 0.672
#> SRR1310604     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1327747     3  0.4178    0.67625 0.172 0.000 0.828
#> SRR1072456     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1367896     3  0.2165    0.73119 0.000 0.064 0.936
#> SRR1480107     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1377756     1  0.1411    0.73474 0.964 0.000 0.036
#> SRR1435272     1  0.6309    0.34261 0.504 0.000 0.496
#> SRR1089230     1  0.5926    0.57419 0.644 0.000 0.356
#> SRR1389522     3  0.4514    0.68691 0.156 0.012 0.832
#> SRR1080600     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1086935     3  0.7895    0.00788 0.056 0.436 0.508
#> SRR1344060     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1467922     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1090984     3  0.6309    0.21631 0.496 0.000 0.504
#> SRR1456991     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1085039     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1069303     1  0.3412    0.72939 0.876 0.000 0.124
#> SRR1091500     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1075198     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1086915     1  0.5678    0.61657 0.684 0.000 0.316
#> SRR1499503     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1094312     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1352437     1  0.4235    0.71233 0.824 0.000 0.176
#> SRR1436323     3  0.0000    0.72950 0.000 0.000 1.000
#> SRR1073507     1  0.4291    0.71065 0.820 0.000 0.180
#> SRR1401972     1  0.3412    0.72939 0.876 0.000 0.124
#> SRR1415510     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1327279     1  0.5560    0.63159 0.700 0.000 0.300
#> SRR1086983     1  0.5560    0.63192 0.700 0.000 0.300
#> SRR1105174     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1468893     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1362555     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1074526     2  0.2878    0.85364 0.096 0.904 0.000
#> SRR1326225     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1401933     1  0.3551    0.72759 0.868 0.000 0.132
#> SRR1324062     1  0.4750    0.69138 0.784 0.000 0.216
#> SRR1102296     1  0.0000    0.73199 1.000 0.000 0.000
#> SRR1085087     1  0.4291    0.71065 0.820 0.000 0.180
#> SRR1079046     1  0.2625    0.68766 0.916 0.084 0.000
#> SRR1328339     3  0.7283    0.28632 0.460 0.028 0.512
#> SRR1079782     2  0.0000    0.96640 0.000 1.000 0.000
#> SRR1092257     2  0.0000    0.96640 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1429287     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1359238     4  0.0000      0.846 0.000 0.000 0.000 1.000
#> SRR1309597     3  0.0188      0.882 0.004 0.000 0.996 0.000
#> SRR1441398     1  0.2266      0.835 0.912 0.000 0.084 0.004
#> SRR1084055     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1417566     3  0.4008      0.664 0.244 0.000 0.756 0.000
#> SRR1351857     4  0.0000      0.846 0.000 0.000 0.000 1.000
#> SRR1487485     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> SRR1335875     3  0.0336      0.882 0.008 0.000 0.992 0.000
#> SRR1073947     1  0.4866      0.108 0.596 0.000 0.000 0.404
#> SRR1443483     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> SRR1346794     1  0.3852      0.738 0.808 0.000 0.180 0.012
#> SRR1405245     1  0.2944      0.808 0.868 0.000 0.128 0.004
#> SRR1409677     4  0.0707      0.837 0.000 0.000 0.020 0.980
#> SRR1095549     1  0.5188      0.611 0.716 0.000 0.240 0.044
#> SRR1323788     1  0.2714      0.817 0.884 0.000 0.112 0.004
#> SRR1314054     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1077944     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1480587     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1311205     1  0.0188      0.865 0.996 0.000 0.000 0.004
#> SRR1076369     1  0.5105      0.571 0.696 0.000 0.276 0.028
#> SRR1453549     3  0.1716      0.864 0.000 0.000 0.936 0.064
#> SRR1345782     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1447850     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1391553     3  0.0376      0.881 0.004 0.004 0.992 0.000
#> SRR1444156     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1471731     3  0.4220      0.711 0.004 0.000 0.748 0.248
#> SRR1120987     4  0.0188      0.845 0.000 0.004 0.000 0.996
#> SRR1477363     1  0.0469      0.864 0.988 0.000 0.000 0.012
#> SRR1391961     1  0.3751      0.701 0.800 0.196 0.000 0.004
#> SRR1373879     3  0.1302      0.870 0.000 0.000 0.956 0.044
#> SRR1318732     3  0.3649      0.719 0.204 0.000 0.796 0.000
#> SRR1091404     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1402109     3  0.2530      0.841 0.000 0.000 0.888 0.112
#> SRR1407336     3  0.3444      0.790 0.000 0.000 0.816 0.184
#> SRR1097417     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> SRR1396227     1  0.1211      0.848 0.960 0.000 0.000 0.040
#> SRR1400775     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1392861     4  0.0707      0.836 0.000 0.000 0.020 0.980
#> SRR1472929     2  0.2494      0.888 0.036 0.916 0.048 0.000
#> SRR1436740     4  0.0000      0.846 0.000 0.000 0.000 1.000
#> SRR1477057     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1311980     3  0.0336      0.882 0.008 0.000 0.992 0.000
#> SRR1069400     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> SRR1351016     1  0.3649      0.647 0.796 0.000 0.000 0.204
#> SRR1096291     4  0.0524      0.841 0.000 0.004 0.008 0.988
#> SRR1418145     4  0.0188      0.845 0.000 0.004 0.000 0.996
#> SRR1488111     2  0.1389      0.918 0.000 0.952 0.000 0.048
#> SRR1370495     1  0.3768      0.710 0.808 0.184 0.000 0.008
#> SRR1352639     2  0.6764      0.104 0.404 0.500 0.000 0.096
#> SRR1348911     3  0.0336      0.882 0.008 0.000 0.992 0.000
#> SRR1467386     4  0.3610      0.784 0.200 0.000 0.000 0.800
#> SRR1415956     1  0.0000      0.865 1.000 0.000 0.000 0.000
#> SRR1500495     1  0.1824      0.847 0.936 0.000 0.060 0.004
#> SRR1405099     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1345585     3  0.0188      0.882 0.004 0.000 0.996 0.000
#> SRR1093196     3  0.3444      0.790 0.000 0.000 0.816 0.184
#> SRR1466006     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1351557     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1382687     4  0.4843      0.542 0.396 0.000 0.000 0.604
#> SRR1375549     1  0.0592      0.863 0.984 0.000 0.000 0.016
#> SRR1101765     1  0.3569      0.726 0.804 0.000 0.000 0.196
#> SRR1334461     1  0.3626      0.713 0.812 0.184 0.000 0.004
#> SRR1094073     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1077549     4  0.0188      0.845 0.000 0.000 0.004 0.996
#> SRR1440332     4  0.5330      0.727 0.120 0.000 0.132 0.748
#> SRR1454177     4  0.0336      0.843 0.000 0.000 0.008 0.992
#> SRR1082447     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1420043     3  0.3649      0.768 0.000 0.000 0.796 0.204
#> SRR1432500     4  0.3311      0.798 0.172 0.000 0.000 0.828
#> SRR1378045     3  0.2654      0.812 0.004 0.108 0.888 0.000
#> SRR1334200     2  0.0336      0.950 0.008 0.992 0.000 0.000
#> SRR1069539     2  0.6536      0.427 0.000 0.580 0.096 0.324
#> SRR1343031     3  0.2704      0.833 0.000 0.000 0.876 0.124
#> SRR1319690     3  0.4907      0.265 0.420 0.000 0.580 0.000
#> SRR1310604     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1327747     3  0.5964      0.670 0.228 0.000 0.676 0.096
#> SRR1072456     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1367896     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> SRR1480107     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1377756     4  0.4916      0.469 0.424 0.000 0.000 0.576
#> SRR1435272     4  0.0188      0.845 0.000 0.000 0.004 0.996
#> SRR1089230     4  0.0188      0.845 0.004 0.000 0.000 0.996
#> SRR1389522     3  0.0000      0.882 0.000 0.000 1.000 0.000
#> SRR1080600     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1086935     4  0.0469      0.840 0.000 0.012 0.000 0.988
#> SRR1344060     2  0.0707      0.941 0.020 0.980 0.000 0.000
#> SRR1467922     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1090984     1  0.4008      0.673 0.756 0.000 0.244 0.000
#> SRR1456991     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1085039     1  0.3172      0.726 0.840 0.000 0.000 0.160
#> SRR1069303     4  0.4643      0.624 0.344 0.000 0.000 0.656
#> SRR1091500     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1075198     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1086915     4  0.0000      0.846 0.000 0.000 0.000 1.000
#> SRR1499503     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1094312     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1352437     4  0.3649      0.780 0.204 0.000 0.000 0.796
#> SRR1436323     3  0.4920      0.518 0.004 0.000 0.628 0.368
#> SRR1073507     4  0.3610      0.782 0.200 0.000 0.000 0.800
#> SRR1401972     4  0.4643      0.624 0.344 0.000 0.000 0.656
#> SRR1415510     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1327279     4  0.5410      0.758 0.192 0.000 0.080 0.728
#> SRR1086983     4  0.0000      0.846 0.000 0.000 0.000 1.000
#> SRR1105174     1  0.0469      0.864 0.988 0.000 0.000 0.012
#> SRR1468893     1  0.1211      0.851 0.960 0.000 0.000 0.040
#> SRR1362555     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1074526     2  0.4546      0.611 0.256 0.732 0.000 0.012
#> SRR1326225     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1401933     4  0.4661      0.560 0.348 0.000 0.000 0.652
#> SRR1324062     4  0.4406      0.687 0.300 0.000 0.000 0.700
#> SRR1102296     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1085087     4  0.3801      0.768 0.220 0.000 0.000 0.780
#> SRR1079046     1  0.0336      0.865 0.992 0.000 0.000 0.008
#> SRR1328339     1  0.4164      0.638 0.736 0.000 0.264 0.000
#> SRR1079782     2  0.0000      0.956 0.000 1.000 0.000 0.000
#> SRR1092257     2  0.0188      0.953 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0162     0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1429287     2  0.0865     0.9625 0.000 0.972 0.000 0.004 0.024
#> SRR1359238     4  0.1764     0.7689 0.064 0.000 0.008 0.928 0.000
#> SRR1309597     3  0.0609     0.7854 0.000 0.000 0.980 0.000 0.020
#> SRR1441398     1  0.4719     0.5359 0.696 0.000 0.056 0.000 0.248
#> SRR1084055     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1417566     3  0.5908     0.3564 0.108 0.000 0.512 0.000 0.380
#> SRR1351857     4  0.0955     0.7835 0.028 0.000 0.004 0.968 0.000
#> SRR1487485     3  0.0963     0.7851 0.000 0.000 0.964 0.000 0.036
#> SRR1335875     3  0.2922     0.7555 0.056 0.000 0.872 0.000 0.072
#> SRR1073947     1  0.3283     0.6044 0.832 0.000 0.000 0.140 0.028
#> SRR1443483     3  0.0290     0.7849 0.000 0.000 0.992 0.000 0.008
#> SRR1346794     5  0.4902     0.2892 0.304 0.000 0.048 0.000 0.648
#> SRR1405245     1  0.4850     0.5345 0.700 0.000 0.076 0.000 0.224
#> SRR1409677     4  0.0880     0.7751 0.000 0.000 0.032 0.968 0.000
#> SRR1095549     5  0.6138     0.2149 0.376 0.000 0.068 0.028 0.528
#> SRR1323788     1  0.4848     0.4859 0.644 0.000 0.032 0.004 0.320
#> SRR1314054     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1077944     1  0.2690     0.6395 0.844 0.000 0.000 0.000 0.156
#> SRR1480587     2  0.0162     0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1311205     1  0.1386     0.6657 0.952 0.000 0.016 0.000 0.032
#> SRR1076369     5  0.3304     0.5204 0.128 0.000 0.028 0.004 0.840
#> SRR1453549     3  0.2632     0.7841 0.000 0.000 0.888 0.072 0.040
#> SRR1345782     1  0.1907     0.6616 0.928 0.000 0.028 0.000 0.044
#> SRR1447850     2  0.1121     0.9367 0.000 0.956 0.000 0.044 0.000
#> SRR1391553     3  0.3857     0.7295 0.000 0.084 0.808 0.000 0.108
#> SRR1444156     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1471731     3  0.5314     0.6154 0.004 0.000 0.632 0.296 0.068
#> SRR1120987     4  0.0671     0.7857 0.004 0.000 0.000 0.980 0.016
#> SRR1477363     1  0.2377     0.6468 0.872 0.000 0.000 0.000 0.128
#> SRR1391961     5  0.5808     0.5223 0.232 0.160 0.000 0.000 0.608
#> SRR1373879     3  0.1251     0.7832 0.000 0.000 0.956 0.036 0.008
#> SRR1318732     3  0.5952     0.3903 0.128 0.000 0.548 0.000 0.324
#> SRR1091404     1  0.4182     0.1089 0.600 0.000 0.000 0.000 0.400
#> SRR1402109     3  0.2929     0.7477 0.000 0.000 0.840 0.152 0.008
#> SRR1407336     3  0.3967     0.6625 0.000 0.000 0.724 0.264 0.012
#> SRR1097417     3  0.2329     0.7398 0.000 0.000 0.876 0.000 0.124
#> SRR1396227     1  0.4649     0.5744 0.720 0.000 0.000 0.068 0.212
#> SRR1400775     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1392861     4  0.0404     0.7857 0.000 0.000 0.012 0.988 0.000
#> SRR1472929     5  0.5312     0.3550 0.016 0.388 0.028 0.000 0.568
#> SRR1436740     4  0.0000     0.7884 0.000 0.000 0.000 1.000 0.000
#> SRR1477057     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1311980     3  0.2172     0.7746 0.016 0.000 0.908 0.000 0.076
#> SRR1069400     3  0.0609     0.7833 0.000 0.000 0.980 0.000 0.020
#> SRR1351016     1  0.2616     0.6357 0.888 0.000 0.000 0.076 0.036
#> SRR1096291     4  0.2149     0.7477 0.000 0.000 0.036 0.916 0.048
#> SRR1418145     4  0.0771     0.7841 0.004 0.000 0.000 0.976 0.020
#> SRR1488111     2  0.3141     0.7862 0.000 0.832 0.000 0.152 0.016
#> SRR1370495     5  0.5391     0.4884 0.300 0.084 0.000 0.000 0.616
#> SRR1352639     1  0.5792     0.3852 0.680 0.188 0.000 0.052 0.080
#> SRR1348911     3  0.1357     0.7815 0.004 0.000 0.948 0.000 0.048
#> SRR1467386     4  0.4278     0.2538 0.452 0.000 0.000 0.548 0.000
#> SRR1415956     1  0.3534     0.5718 0.744 0.000 0.000 0.000 0.256
#> SRR1500495     1  0.4453     0.5617 0.724 0.000 0.048 0.000 0.228
#> SRR1405099     1  0.2377     0.6408 0.872 0.000 0.000 0.000 0.128
#> SRR1345585     3  0.1608     0.7793 0.000 0.000 0.928 0.000 0.072
#> SRR1093196     3  0.4026     0.6850 0.000 0.000 0.736 0.244 0.020
#> SRR1466006     2  0.0290     0.9719 0.000 0.992 0.000 0.000 0.008
#> SRR1351557     2  0.0162     0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1382687     1  0.5659     0.5712 0.632 0.000 0.000 0.164 0.204
#> SRR1375549     5  0.3636     0.4587 0.272 0.000 0.000 0.000 0.728
#> SRR1101765     5  0.4177     0.5186 0.164 0.000 0.000 0.064 0.772
#> SRR1334461     5  0.5699     0.5078 0.264 0.128 0.000 0.000 0.608
#> SRR1094073     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1077549     4  0.2997     0.7077 0.148 0.000 0.012 0.840 0.000
#> SRR1440332     1  0.6443     0.2852 0.552 0.000 0.152 0.280 0.016
#> SRR1454177     4  0.0000     0.7884 0.000 0.000 0.000 1.000 0.000
#> SRR1082447     1  0.4297     0.0406 0.528 0.000 0.000 0.000 0.472
#> SRR1420043     3  0.3857     0.6022 0.000 0.000 0.688 0.312 0.000
#> SRR1432500     4  0.4451     0.1308 0.492 0.000 0.004 0.504 0.000
#> SRR1378045     3  0.4698     0.6402 0.000 0.172 0.732 0.000 0.096
#> SRR1334200     5  0.4359     0.3070 0.004 0.412 0.000 0.000 0.584
#> SRR1069539     4  0.6303     0.4078 0.000 0.204 0.092 0.636 0.068
#> SRR1343031     3  0.3154     0.7434 0.004 0.000 0.836 0.148 0.012
#> SRR1319690     3  0.6581     0.1768 0.224 0.000 0.452 0.000 0.324
#> SRR1310604     2  0.0880     0.9603 0.000 0.968 0.000 0.000 0.032
#> SRR1327747     3  0.7853     0.3079 0.132 0.000 0.428 0.136 0.304
#> SRR1072456     2  0.0162     0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1367896     3  0.0510     0.7834 0.000 0.000 0.984 0.000 0.016
#> SRR1480107     1  0.0510     0.6603 0.984 0.000 0.000 0.000 0.016
#> SRR1377756     1  0.5775     0.5584 0.608 0.000 0.000 0.244 0.148
#> SRR1435272     4  0.0000     0.7884 0.000 0.000 0.000 1.000 0.000
#> SRR1089230     4  0.0290     0.7877 0.000 0.000 0.000 0.992 0.008
#> SRR1389522     3  0.0609     0.7833 0.000 0.000 0.980 0.000 0.020
#> SRR1080600     2  0.1965     0.9033 0.000 0.904 0.000 0.000 0.096
#> SRR1086935     4  0.0566     0.7866 0.004 0.000 0.000 0.984 0.012
#> SRR1344060     5  0.4940     0.3535 0.032 0.392 0.000 0.000 0.576
#> SRR1467922     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1090984     5  0.5827     0.2499 0.260 0.000 0.144 0.000 0.596
#> SRR1456991     1  0.0703     0.6607 0.976 0.000 0.000 0.000 0.024
#> SRR1085039     1  0.3164     0.6388 0.852 0.000 0.000 0.104 0.044
#> SRR1069303     1  0.4987     0.2818 0.616 0.000 0.000 0.340 0.044
#> SRR1091500     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1075198     2  0.1121     0.9528 0.000 0.956 0.000 0.000 0.044
#> SRR1086915     4  0.0162     0.7884 0.004 0.000 0.000 0.996 0.000
#> SRR1499503     2  0.0162     0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1094312     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1352437     4  0.5165     0.2070 0.448 0.000 0.000 0.512 0.040
#> SRR1436323     3  0.5990     0.4937 0.008 0.000 0.540 0.356 0.096
#> SRR1073507     4  0.4242     0.3103 0.428 0.000 0.000 0.572 0.000
#> SRR1401972     1  0.4987     0.2818 0.616 0.000 0.000 0.340 0.044
#> SRR1415510     2  0.0162     0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1327279     1  0.5865     0.2017 0.568 0.000 0.104 0.324 0.004
#> SRR1086983     4  0.1571     0.7712 0.060 0.000 0.000 0.936 0.004
#> SRR1105174     1  0.3003     0.6127 0.812 0.000 0.000 0.000 0.188
#> SRR1468893     1  0.3438     0.6313 0.808 0.000 0.000 0.020 0.172
#> SRR1362555     2  0.1732     0.9207 0.000 0.920 0.000 0.000 0.080
#> SRR1074526     5  0.4800     0.5502 0.052 0.272 0.000 0.000 0.676
#> SRR1326225     2  0.0000     0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1401933     4  0.7068    -0.0421 0.256 0.000 0.012 0.372 0.360
#> SRR1324062     1  0.4898     0.2297 0.592 0.000 0.000 0.376 0.032
#> SRR1102296     1  0.1894     0.6478 0.920 0.008 0.000 0.000 0.072
#> SRR1085087     4  0.4743     0.1759 0.472 0.000 0.000 0.512 0.016
#> SRR1079046     5  0.3508     0.4913 0.252 0.000 0.000 0.000 0.748
#> SRR1328339     5  0.6411     0.1471 0.312 0.000 0.196 0.000 0.492
#> SRR1079782     2  0.1281     0.9553 0.000 0.956 0.000 0.012 0.032
#> SRR1092257     2  0.1211     0.9517 0.000 0.960 0.000 0.024 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429287     2  0.3375     0.8429 0.000 0.828 0.000 0.008 0.088 0.076
#> SRR1359238     4  0.3755     0.7371 0.112 0.000 0.052 0.812 0.016 0.008
#> SRR1309597     3  0.1075     0.7558 0.000 0.000 0.952 0.000 0.000 0.048
#> SRR1441398     1  0.5406     0.2625 0.556 0.000 0.040 0.000 0.048 0.356
#> SRR1084055     2  0.0458     0.9222 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1417566     6  0.3759     0.5566 0.020 0.024 0.132 0.000 0.016 0.808
#> SRR1351857     4  0.2267     0.7988 0.064 0.000 0.008 0.904 0.020 0.004
#> SRR1487485     3  0.2520     0.7175 0.000 0.000 0.844 0.004 0.000 0.152
#> SRR1335875     3  0.4768     0.4703 0.044 0.008 0.628 0.000 0.004 0.316
#> SRR1073947     1  0.2188     0.5963 0.912 0.000 0.000 0.032 0.020 0.036
#> SRR1443483     3  0.0146     0.7626 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1346794     6  0.5058     0.4622 0.124 0.000 0.016 0.000 0.188 0.672
#> SRR1405245     1  0.5223     0.3139 0.588 0.000 0.040 0.000 0.040 0.332
#> SRR1409677     4  0.1364     0.8190 0.004 0.000 0.048 0.944 0.000 0.004
#> SRR1095549     6  0.7702     0.3429 0.244 0.000 0.144 0.044 0.124 0.444
#> SRR1323788     6  0.5677    -0.0151 0.416 0.000 0.024 0.004 0.072 0.484
#> SRR1314054     2  0.0458     0.9229 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1077944     1  0.3746     0.5315 0.760 0.000 0.000 0.000 0.048 0.192
#> SRR1480587     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1311205     1  0.1983     0.5904 0.916 0.000 0.012 0.000 0.012 0.060
#> SRR1076369     5  0.4695     0.5066 0.032 0.000 0.024 0.000 0.648 0.296
#> SRR1453549     3  0.4314     0.7109 0.004 0.000 0.736 0.104 0.000 0.156
#> SRR1345782     1  0.2743     0.5869 0.880 0.000 0.032 0.000 0.028 0.060
#> SRR1447850     2  0.1498     0.9016 0.000 0.940 0.000 0.032 0.028 0.000
#> SRR1391553     6  0.5934    -0.0607 0.000 0.184 0.376 0.000 0.004 0.436
#> SRR1444156     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731     3  0.6105     0.2079 0.000 0.000 0.380 0.308 0.000 0.312
#> SRR1120987     4  0.2532     0.7928 0.008 0.000 0.000 0.884 0.032 0.076
#> SRR1477363     1  0.3663     0.5259 0.776 0.000 0.004 0.000 0.040 0.180
#> SRR1391961     5  0.3031     0.7841 0.048 0.072 0.000 0.000 0.860 0.020
#> SRR1373879     3  0.1007     0.7621 0.000 0.000 0.956 0.044 0.000 0.000
#> SRR1318732     6  0.4663     0.5434 0.040 0.004 0.196 0.000 0.040 0.720
#> SRR1091404     1  0.5333     0.3696 0.576 0.000 0.004 0.000 0.300 0.120
#> SRR1402109     3  0.1957     0.7388 0.000 0.000 0.888 0.112 0.000 0.000
#> SRR1407336     3  0.3529     0.6577 0.000 0.000 0.764 0.208 0.000 0.028
#> SRR1097417     3  0.2618     0.7127 0.000 0.000 0.872 0.000 0.076 0.052
#> SRR1396227     1  0.6337     0.2374 0.444 0.000 0.000 0.096 0.068 0.392
#> SRR1400775     2  0.0146     0.9257 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1392861     4  0.0363     0.8362 0.000 0.000 0.012 0.988 0.000 0.000
#> SRR1472929     5  0.3372     0.7344 0.008 0.176 0.020 0.000 0.796 0.000
#> SRR1436740     4  0.0260     0.8373 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1477057     2  0.1225     0.9121 0.000 0.952 0.000 0.000 0.036 0.012
#> SRR1311980     3  0.4134     0.5203 0.028 0.000 0.656 0.000 0.000 0.316
#> SRR1069400     3  0.0260     0.7639 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR1351016     1  0.2137     0.5975 0.912 0.000 0.000 0.028 0.012 0.048
#> SRR1096291     4  0.4339     0.7168 0.000 0.000 0.076 0.776 0.068 0.080
#> SRR1418145     4  0.3368     0.7496 0.004 0.000 0.000 0.824 0.084 0.088
#> SRR1488111     2  0.5765     0.5915 0.000 0.624 0.000 0.212 0.076 0.088
#> SRR1370495     5  0.2731     0.7339 0.068 0.012 0.000 0.000 0.876 0.044
#> SRR1352639     1  0.5948     0.4540 0.656 0.076 0.004 0.012 0.148 0.104
#> SRR1348911     3  0.3722     0.5848 0.008 0.004 0.724 0.000 0.004 0.260
#> SRR1467386     1  0.4788     0.3165 0.564 0.000 0.000 0.392 0.024 0.020
#> SRR1415956     1  0.4988     0.2877 0.552 0.000 0.004 0.000 0.064 0.380
#> SRR1500495     1  0.5149     0.3265 0.596 0.000 0.036 0.000 0.040 0.328
#> SRR1405099     1  0.3905     0.5022 0.744 0.000 0.004 0.000 0.040 0.212
#> SRR1345585     3  0.3266     0.6033 0.000 0.000 0.728 0.000 0.000 0.272
#> SRR1093196     3  0.4633     0.6084 0.000 0.000 0.676 0.224 0.000 0.100
#> SRR1466006     2  0.0458     0.9236 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1351557     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1382687     1  0.6086     0.3809 0.488 0.000 0.000 0.164 0.020 0.328
#> SRR1375549     5  0.3950     0.6059 0.040 0.000 0.000 0.000 0.720 0.240
#> SRR1101765     5  0.4035     0.6321 0.032 0.000 0.000 0.016 0.744 0.208
#> SRR1334461     5  0.2830     0.7766 0.068 0.064 0.000 0.000 0.864 0.004
#> SRR1094073     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549     4  0.4832     0.4948 0.268 0.000 0.056 0.660 0.008 0.008
#> SRR1440332     1  0.5581     0.4214 0.628 0.000 0.188 0.160 0.004 0.020
#> SRR1454177     4  0.0000     0.8381 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1082447     1  0.6044     0.1497 0.416 0.000 0.000 0.000 0.308 0.276
#> SRR1420043     3  0.3420     0.6422 0.000 0.000 0.748 0.240 0.000 0.012
#> SRR1432500     1  0.3811     0.5377 0.732 0.000 0.004 0.244 0.016 0.004
#> SRR1378045     6  0.6163     0.1166 0.000 0.304 0.276 0.000 0.004 0.416
#> SRR1334200     5  0.2558     0.7486 0.000 0.156 0.000 0.000 0.840 0.004
#> SRR1069539     4  0.6415     0.5526 0.000 0.048 0.160 0.624 0.084 0.084
#> SRR1343031     3  0.2163     0.7390 0.008 0.000 0.892 0.096 0.000 0.004
#> SRR1319690     6  0.6178     0.5298 0.156 0.000 0.212 0.000 0.060 0.572
#> SRR1310604     2  0.1657     0.9002 0.000 0.928 0.000 0.000 0.056 0.016
#> SRR1327747     6  0.6786     0.3621 0.040 0.000 0.296 0.100 0.052 0.512
#> SRR1072456     2  0.0458     0.9222 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1367896     3  0.0146     0.7629 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1480107     1  0.1461     0.5980 0.940 0.000 0.000 0.000 0.044 0.016
#> SRR1377756     1  0.6124     0.4801 0.564 0.000 0.000 0.176 0.044 0.216
#> SRR1435272     4  0.0000     0.8381 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1089230     4  0.0405     0.8368 0.000 0.000 0.000 0.988 0.004 0.008
#> SRR1389522     3  0.0146     0.7626 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1080600     2  0.3695     0.7798 0.000 0.776 0.000 0.000 0.164 0.060
#> SRR1086935     4  0.0405     0.8368 0.000 0.000 0.000 0.988 0.004 0.008
#> SRR1344060     5  0.2520     0.7543 0.000 0.152 0.000 0.000 0.844 0.004
#> SRR1467922     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984     6  0.4492     0.5754 0.076 0.000 0.088 0.000 0.072 0.764
#> SRR1456991     1  0.1716     0.5952 0.932 0.000 0.004 0.000 0.036 0.028
#> SRR1085039     1  0.3181     0.5999 0.852 0.000 0.000 0.028 0.076 0.044
#> SRR1069303     1  0.6279     0.4384 0.532 0.000 0.000 0.260 0.048 0.160
#> SRR1091500     2  0.0260     0.9255 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1075198     2  0.3175     0.8414 0.000 0.832 0.000 0.000 0.088 0.080
#> SRR1086915     4  0.0146     0.8377 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1499503     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1094312     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1352437     1  0.6412     0.3047 0.472 0.000 0.000 0.332 0.048 0.148
#> SRR1436323     4  0.6315    -0.2098 0.000 0.000 0.288 0.368 0.008 0.336
#> SRR1073507     1  0.4688     0.3168 0.572 0.000 0.000 0.388 0.028 0.012
#> SRR1401972     1  0.6305     0.4360 0.528 0.000 0.000 0.260 0.048 0.164
#> SRR1415510     2  0.0291     0.9247 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1327279     1  0.4254     0.5459 0.772 0.000 0.104 0.104 0.008 0.012
#> SRR1086983     4  0.2402     0.7782 0.084 0.000 0.000 0.888 0.008 0.020
#> SRR1105174     1  0.4556     0.5010 0.704 0.000 0.004 0.000 0.100 0.192
#> SRR1468893     1  0.5594     0.4863 0.612 0.000 0.000 0.060 0.068 0.260
#> SRR1362555     2  0.4215     0.7271 0.000 0.724 0.000 0.000 0.196 0.080
#> SRR1074526     5  0.2554     0.7814 0.000 0.076 0.000 0.000 0.876 0.048
#> SRR1326225     2  0.0000     0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1401933     6  0.5847     0.2026 0.060 0.000 0.000 0.344 0.064 0.532
#> SRR1324062     1  0.5776     0.4432 0.544 0.000 0.000 0.284 0.012 0.160
#> SRR1102296     1  0.4203     0.5044 0.704 0.004 0.004 0.004 0.024 0.260
#> SRR1085087     1  0.5630     0.2791 0.516 0.000 0.000 0.380 0.032 0.072
#> SRR1079046     5  0.2358     0.7375 0.016 0.000 0.000 0.000 0.876 0.108
#> SRR1328339     6  0.5120     0.5430 0.116 0.004 0.116 0.000 0.052 0.712
#> SRR1079782     2  0.3859     0.8215 0.000 0.804 0.000 0.028 0.088 0.080
#> SRR1092257     2  0.4109     0.8102 0.000 0.792 0.000 0.060 0.060 0.088

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.852           0.897       0.956         0.3910 0.618   0.618
#> 3 3 0.441           0.647       0.832         0.6391 0.684   0.511
#> 4 4 0.595           0.673       0.817         0.1506 0.812   0.535
#> 5 5 0.583           0.498       0.734         0.0651 0.948   0.810
#> 6 6 0.662           0.483       0.739         0.0364 0.917   0.676

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000     0.9284 0.000 1.000
#> SRR1429287     2  0.0000     0.9284 0.000 1.000
#> SRR1359238     1  0.0938     0.9588 0.988 0.012
#> SRR1309597     1  0.0938     0.9588 0.988 0.012
#> SRR1441398     1  0.0000     0.9590 1.000 0.000
#> SRR1084055     2  0.0938     0.9220 0.012 0.988
#> SRR1417566     1  0.0938     0.9588 0.988 0.012
#> SRR1351857     1  0.0938     0.9588 0.988 0.012
#> SRR1487485     1  0.9635     0.3519 0.612 0.388
#> SRR1335875     1  0.0938     0.9588 0.988 0.012
#> SRR1073947     1  0.0000     0.9590 1.000 0.000
#> SRR1443483     1  0.0938     0.9588 0.988 0.012
#> SRR1346794     1  0.0938     0.9588 0.988 0.012
#> SRR1405245     1  0.0000     0.9590 1.000 0.000
#> SRR1409677     1  0.0938     0.9588 0.988 0.012
#> SRR1095549     1  0.0938     0.9588 0.988 0.012
#> SRR1323788     1  0.0938     0.9588 0.988 0.012
#> SRR1314054     2  0.0376     0.9270 0.004 0.996
#> SRR1077944     1  0.0000     0.9590 1.000 0.000
#> SRR1480587     2  0.0000     0.9284 0.000 1.000
#> SRR1311205     1  0.0000     0.9590 1.000 0.000
#> SRR1076369     1  0.0000     0.9590 1.000 0.000
#> SRR1453549     1  0.0938     0.9588 0.988 0.012
#> SRR1345782     1  0.0000     0.9590 1.000 0.000
#> SRR1447850     2  0.1414     0.9185 0.020 0.980
#> SRR1391553     2  0.6973     0.7693 0.188 0.812
#> SRR1444156     2  0.0000     0.9284 0.000 1.000
#> SRR1471731     1  0.0938     0.9588 0.988 0.012
#> SRR1120987     1  0.9358     0.4252 0.648 0.352
#> SRR1477363     1  0.0000     0.9590 1.000 0.000
#> SRR1391961     1  0.2778     0.9222 0.952 0.048
#> SRR1373879     1  0.0938     0.9588 0.988 0.012
#> SRR1318732     1  0.3114     0.9238 0.944 0.056
#> SRR1091404     1  0.0000     0.9590 1.000 0.000
#> SRR1402109     1  0.0938     0.9588 0.988 0.012
#> SRR1407336     1  0.0938     0.9588 0.988 0.012
#> SRR1097417     1  0.9970     0.0916 0.532 0.468
#> SRR1396227     1  0.0000     0.9590 1.000 0.000
#> SRR1400775     2  0.0000     0.9284 0.000 1.000
#> SRR1392861     1  0.0938     0.9588 0.988 0.012
#> SRR1472929     1  0.7602     0.7040 0.780 0.220
#> SRR1436740     1  0.0938     0.9588 0.988 0.012
#> SRR1477057     2  0.8386     0.6694 0.268 0.732
#> SRR1311980     1  0.0000     0.9590 1.000 0.000
#> SRR1069400     1  0.0938     0.9588 0.988 0.012
#> SRR1351016     1  0.0000     0.9590 1.000 0.000
#> SRR1096291     1  0.0938     0.9588 0.988 0.012
#> SRR1418145     1  0.0938     0.9588 0.988 0.012
#> SRR1488111     2  0.9608     0.4107 0.384 0.616
#> SRR1370495     1  0.0000     0.9590 1.000 0.000
#> SRR1352639     1  0.0376     0.9573 0.996 0.004
#> SRR1348911     1  0.0000     0.9590 1.000 0.000
#> SRR1467386     1  0.0938     0.9588 0.988 0.012
#> SRR1415956     1  0.0000     0.9590 1.000 0.000
#> SRR1500495     1  0.0000     0.9590 1.000 0.000
#> SRR1405099     1  0.0000     0.9590 1.000 0.000
#> SRR1345585     1  0.4298     0.8892 0.912 0.088
#> SRR1093196     1  0.0938     0.9588 0.988 0.012
#> SRR1466006     2  0.0000     0.9284 0.000 1.000
#> SRR1351557     2  0.0000     0.9284 0.000 1.000
#> SRR1382687     1  0.0938     0.9588 0.988 0.012
#> SRR1375549     1  0.0000     0.9590 1.000 0.000
#> SRR1101765     1  0.0938     0.9588 0.988 0.012
#> SRR1334461     1  0.2423     0.9292 0.960 0.040
#> SRR1094073     2  0.0000     0.9284 0.000 1.000
#> SRR1077549     1  0.0000     0.9590 1.000 0.000
#> SRR1440332     1  0.0000     0.9590 1.000 0.000
#> SRR1454177     1  0.0938     0.9588 0.988 0.012
#> SRR1082447     1  0.0000     0.9590 1.000 0.000
#> SRR1420043     1  0.0938     0.9588 0.988 0.012
#> SRR1432500     1  0.0000     0.9590 1.000 0.000
#> SRR1378045     2  0.1184     0.9208 0.016 0.984
#> SRR1334200     2  0.9998     0.0241 0.492 0.508
#> SRR1069539     1  0.1184     0.9567 0.984 0.016
#> SRR1343031     1  0.0000     0.9590 1.000 0.000
#> SRR1319690     1  0.0938     0.9588 0.988 0.012
#> SRR1310604     2  0.0000     0.9284 0.000 1.000
#> SRR1327747     1  0.0938     0.9588 0.988 0.012
#> SRR1072456     2  0.0938     0.9220 0.012 0.988
#> SRR1367896     1  0.0376     0.9574 0.996 0.004
#> SRR1480107     1  0.0000     0.9590 1.000 0.000
#> SRR1377756     1  0.0938     0.9588 0.988 0.012
#> SRR1435272     1  0.0938     0.9588 0.988 0.012
#> SRR1089230     1  0.0938     0.9588 0.988 0.012
#> SRR1389522     1  0.0000     0.9590 1.000 0.000
#> SRR1080600     2  0.0000     0.9284 0.000 1.000
#> SRR1086935     2  0.8555     0.6344 0.280 0.720
#> SRR1344060     1  0.9044     0.5100 0.680 0.320
#> SRR1467922     2  0.0000     0.9284 0.000 1.000
#> SRR1090984     1  0.0376     0.9591 0.996 0.004
#> SRR1456991     1  0.0000     0.9590 1.000 0.000
#> SRR1085039     1  0.0000     0.9590 1.000 0.000
#> SRR1069303     1  0.0000     0.9590 1.000 0.000
#> SRR1091500     2  0.0938     0.9220 0.012 0.988
#> SRR1075198     2  0.0000     0.9284 0.000 1.000
#> SRR1086915     1  0.0938     0.9588 0.988 0.012
#> SRR1499503     2  0.0000     0.9284 0.000 1.000
#> SRR1094312     2  0.0000     0.9284 0.000 1.000
#> SRR1352437     1  0.8763     0.5377 0.704 0.296
#> SRR1436323     1  0.0938     0.9588 0.988 0.012
#> SRR1073507     1  0.0000     0.9590 1.000 0.000
#> SRR1401972     1  0.0000     0.9590 1.000 0.000
#> SRR1415510     2  0.0376     0.9270 0.004 0.996
#> SRR1327279     1  0.0000     0.9590 1.000 0.000
#> SRR1086983     1  0.0938     0.9588 0.988 0.012
#> SRR1105174     1  0.0000     0.9590 1.000 0.000
#> SRR1468893     1  0.0000     0.9590 1.000 0.000
#> SRR1362555     1  0.8499     0.6053 0.724 0.276
#> SRR1074526     2  0.8016     0.7084 0.244 0.756
#> SRR1326225     2  0.0000     0.9284 0.000 1.000
#> SRR1401933     1  0.0672     0.9590 0.992 0.008
#> SRR1324062     1  0.0000     0.9590 1.000 0.000
#> SRR1102296     1  0.4562     0.8672 0.904 0.096
#> SRR1085087     1  0.0000     0.9590 1.000 0.000
#> SRR1079046     1  0.6712     0.7690 0.824 0.176
#> SRR1328339     1  0.0000     0.9590 1.000 0.000
#> SRR1079782     2  0.0000     0.9284 0.000 1.000
#> SRR1092257     2  0.2603     0.9010 0.044 0.956

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1429287     2  0.4178     0.7509 0.000 0.828 0.172
#> SRR1359238     1  0.6062     0.5077 0.616 0.000 0.384
#> SRR1309597     3  0.6225     0.4557 0.432 0.000 0.568
#> SRR1441398     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1084055     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1417566     3  0.6180     0.3933 0.416 0.000 0.584
#> SRR1351857     3  0.4555     0.5906 0.200 0.000 0.800
#> SRR1487485     3  0.4351     0.7486 0.168 0.004 0.828
#> SRR1335875     1  0.5327     0.5593 0.728 0.000 0.272
#> SRR1073947     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1443483     3  0.5988     0.5613 0.368 0.000 0.632
#> SRR1346794     3  0.6180     0.5005 0.416 0.000 0.584
#> SRR1405245     1  0.5254     0.5044 0.736 0.000 0.264
#> SRR1409677     3  0.4178     0.5739 0.172 0.000 0.828
#> SRR1095549     1  0.5810     0.1872 0.664 0.000 0.336
#> SRR1323788     1  0.6235     0.2012 0.564 0.000 0.436
#> SRR1314054     2  0.1289     0.8651 0.000 0.968 0.032
#> SRR1077944     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1480587     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1311205     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1076369     1  0.5968     0.0845 0.636 0.000 0.364
#> SRR1453549     1  0.6111     0.3217 0.604 0.000 0.396
#> SRR1345782     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1447850     2  0.3340     0.8016 0.000 0.880 0.120
#> SRR1391553     2  0.8163     0.4864 0.124 0.628 0.248
#> SRR1444156     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1471731     3  0.4235     0.7472 0.176 0.000 0.824
#> SRR1120987     1  0.6745     0.4475 0.560 0.012 0.428
#> SRR1477363     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1391961     1  0.1399     0.7547 0.968 0.028 0.004
#> SRR1373879     3  0.4178     0.7480 0.172 0.000 0.828
#> SRR1318732     3  0.4291     0.7477 0.180 0.000 0.820
#> SRR1091404     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1402109     3  0.4452     0.7425 0.192 0.000 0.808
#> SRR1407336     3  0.4178     0.7480 0.172 0.000 0.828
#> SRR1097417     3  0.5947     0.7302 0.172 0.052 0.776
#> SRR1396227     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1400775     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1392861     3  0.0000     0.7238 0.000 0.000 1.000
#> SRR1472929     1  0.6225     0.1528 0.568 0.432 0.000
#> SRR1436740     3  0.0000     0.7238 0.000 0.000 1.000
#> SRR1477057     2  0.7572     0.5923 0.184 0.688 0.128
#> SRR1311980     1  0.5058     0.5972 0.756 0.000 0.244
#> SRR1069400     3  0.4605     0.7398 0.204 0.000 0.796
#> SRR1351016     1  0.0424     0.7602 0.992 0.000 0.008
#> SRR1096291     3  0.4235     0.6216 0.176 0.000 0.824
#> SRR1418145     1  0.6235     0.3743 0.564 0.000 0.436
#> SRR1488111     3  0.9458     0.1773 0.184 0.368 0.448
#> SRR1370495     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1352639     1  0.4452     0.5916 0.808 0.000 0.192
#> SRR1348911     1  0.5517     0.5616 0.728 0.004 0.268
#> SRR1467386     1  0.3941     0.6893 0.844 0.000 0.156
#> SRR1415956     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1500495     1  0.0237     0.7609 0.996 0.000 0.004
#> SRR1405099     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1345585     3  0.4291     0.7465 0.180 0.000 0.820
#> SRR1093196     3  0.4178     0.7480 0.172 0.000 0.828
#> SRR1466006     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1351557     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1382687     1  0.5178     0.5830 0.744 0.000 0.256
#> SRR1375549     1  0.4178     0.6735 0.828 0.000 0.172
#> SRR1101765     3  0.6299    -0.1789 0.476 0.000 0.524
#> SRR1334461     1  0.1031     0.7555 0.976 0.024 0.000
#> SRR1094073     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1077549     1  0.6154     0.2191 0.592 0.000 0.408
#> SRR1440332     1  0.1643     0.7509 0.956 0.000 0.044
#> SRR1454177     3  0.0000     0.7238 0.000 0.000 1.000
#> SRR1082447     1  0.2878     0.7278 0.904 0.000 0.096
#> SRR1420043     3  0.0424     0.7269 0.008 0.000 0.992
#> SRR1432500     1  0.4750     0.6668 0.784 0.000 0.216
#> SRR1378045     2  0.2625     0.8343 0.000 0.916 0.084
#> SRR1334200     3  0.9591     0.3538 0.296 0.232 0.472
#> SRR1069539     3  0.0000     0.7238 0.000 0.000 1.000
#> SRR1343031     3  0.4931     0.7176 0.232 0.000 0.768
#> SRR1319690     1  0.6302     0.0082 0.520 0.000 0.480
#> SRR1310604     2  0.3482     0.7964 0.000 0.872 0.128
#> SRR1327747     3  0.3038     0.6853 0.104 0.000 0.896
#> SRR1072456     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1367896     3  0.4605     0.7366 0.204 0.000 0.796
#> SRR1480107     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1377756     1  0.6180     0.4181 0.584 0.000 0.416
#> SRR1435272     3  0.0000     0.7238 0.000 0.000 1.000
#> SRR1089230     3  0.0000     0.7238 0.000 0.000 1.000
#> SRR1389522     3  0.6267     0.4273 0.452 0.000 0.548
#> SRR1080600     2  0.6244     0.2475 0.000 0.560 0.440
#> SRR1086935     3  0.0237     0.7228 0.000 0.004 0.996
#> SRR1344060     2  0.6126     0.3653 0.400 0.600 0.000
#> SRR1467922     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1090984     1  0.4842     0.6156 0.776 0.000 0.224
#> SRR1456991     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1085039     1  0.4291     0.6719 0.820 0.000 0.180
#> SRR1069303     1  0.3192     0.7302 0.888 0.000 0.112
#> SRR1091500     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1075198     2  0.5678     0.5136 0.000 0.684 0.316
#> SRR1086915     3  0.5397     0.3399 0.280 0.000 0.720
#> SRR1499503     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1094312     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1352437     1  0.8374     0.5043 0.616 0.144 0.240
#> SRR1436323     3  0.4178     0.7480 0.172 0.000 0.828
#> SRR1073507     1  0.4235     0.6736 0.824 0.000 0.176
#> SRR1401972     1  0.1860     0.7499 0.948 0.000 0.052
#> SRR1415510     2  0.2165     0.8483 0.000 0.936 0.064
#> SRR1327279     1  0.1643     0.7509 0.956 0.000 0.044
#> SRR1086983     1  0.6252     0.4317 0.556 0.000 0.444
#> SRR1105174     1  0.4178     0.6735 0.828 0.000 0.172
#> SRR1468893     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1362555     2  0.5968     0.4422 0.364 0.636 0.000
#> SRR1074526     1  0.8896     0.4467 0.564 0.172 0.264
#> SRR1326225     2  0.0000     0.8777 0.000 1.000 0.000
#> SRR1401933     1  0.3412     0.7193 0.876 0.000 0.124
#> SRR1324062     1  0.4796     0.6261 0.780 0.000 0.220
#> SRR1102296     1  0.3141     0.7399 0.912 0.068 0.020
#> SRR1085087     1  0.4346     0.6736 0.816 0.000 0.184
#> SRR1079046     1  0.7165     0.6033 0.716 0.112 0.172
#> SRR1328339     1  0.0000     0.7612 1.000 0.000 0.000
#> SRR1079782     2  0.0747     0.8736 0.000 0.984 0.016
#> SRR1092257     2  0.2496     0.8425 0.004 0.928 0.068

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1429287     4  0.4994     0.1022 0.000 0.480 0.000 0.520
#> SRR1359238     4  0.5280     0.7067 0.124 0.000 0.124 0.752
#> SRR1309597     3  0.6134     0.5575 0.236 0.000 0.660 0.104
#> SRR1441398     1  0.2345     0.8008 0.900 0.000 0.000 0.100
#> SRR1084055     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1417566     3  0.4998    -0.1529 0.488 0.000 0.512 0.000
#> SRR1351857     4  0.2345     0.7410 0.000 0.000 0.100 0.900
#> SRR1487485     3  0.0000     0.7972 0.000 0.000 1.000 0.000
#> SRR1335875     1  0.3610     0.7476 0.800 0.000 0.200 0.000
#> SRR1073947     1  0.0000     0.8263 1.000 0.000 0.000 0.000
#> SRR1443483     3  0.2928     0.7389 0.052 0.000 0.896 0.052
#> SRR1346794     4  0.7327     0.2330 0.176 0.000 0.320 0.504
#> SRR1405245     1  0.5786     0.5511 0.640 0.000 0.308 0.052
#> SRR1409677     4  0.2760     0.7379 0.000 0.000 0.128 0.872
#> SRR1095549     1  0.4781     0.3662 0.660 0.000 0.336 0.004
#> SRR1323788     1  0.4998     0.2463 0.512 0.000 0.488 0.000
#> SRR1314054     2  0.1389     0.8223 0.000 0.952 0.048 0.000
#> SRR1077944     1  0.1389     0.8213 0.952 0.000 0.000 0.048
#> SRR1480587     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1311205     1  0.0336     0.8272 0.992 0.000 0.000 0.008
#> SRR1076369     3  0.7145     0.4527 0.252 0.000 0.556 0.192
#> SRR1453549     1  0.4406     0.6525 0.700 0.000 0.300 0.000
#> SRR1345782     1  0.0000     0.8263 1.000 0.000 0.000 0.000
#> SRR1447850     2  0.1940     0.8041 0.000 0.924 0.076 0.000
#> SRR1391553     2  0.6650     0.5009 0.176 0.624 0.200 0.000
#> SRR1444156     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1471731     3  0.0188     0.7967 0.004 0.000 0.996 0.000
#> SRR1120987     4  0.2345     0.7256 0.100 0.000 0.000 0.900
#> SRR1477363     1  0.2345     0.8008 0.900 0.000 0.000 0.100
#> SRR1391961     1  0.0188     0.8267 0.996 0.004 0.000 0.000
#> SRR1373879     3  0.0000     0.7972 0.000 0.000 1.000 0.000
#> SRR1318732     3  0.3307     0.7466 0.028 0.000 0.868 0.104
#> SRR1091404     1  0.1389     0.8213 0.952 0.000 0.000 0.048
#> SRR1402109     3  0.0000     0.7972 0.000 0.000 1.000 0.000
#> SRR1407336     3  0.1557     0.7640 0.000 0.000 0.944 0.056
#> SRR1097417     3  0.1792     0.7589 0.000 0.068 0.932 0.000
#> SRR1396227     1  0.0000     0.8263 1.000 0.000 0.000 0.000
#> SRR1400775     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1392861     3  0.0000     0.7972 0.000 0.000 1.000 0.000
#> SRR1472929     1  0.6476     0.4840 0.616 0.272 0.000 0.112
#> SRR1436740     4  0.3311     0.7263 0.000 0.000 0.172 0.828
#> SRR1477057     2  0.6808     0.3678 0.320 0.560 0.120 0.000
#> SRR1311980     1  0.3528     0.7551 0.808 0.000 0.192 0.000
#> SRR1069400     3  0.0336     0.7953 0.000 0.000 0.992 0.008
#> SRR1351016     1  0.0592     0.8275 0.984 0.000 0.016 0.000
#> SRR1096291     4  0.6351     0.3884 0.080 0.000 0.332 0.588
#> SRR1418145     4  0.2610     0.7429 0.012 0.000 0.088 0.900
#> SRR1488111     2  0.8383    -0.0656 0.336 0.340 0.308 0.016
#> SRR1370495     1  0.1637     0.8225 0.940 0.000 0.000 0.060
#> SRR1352639     3  0.8037     0.1021 0.312 0.004 0.384 0.300
#> SRR1348911     1  0.3610     0.7476 0.800 0.000 0.200 0.000
#> SRR1467386     1  0.3052     0.7906 0.860 0.000 0.136 0.004
#> SRR1415956     1  0.2345     0.8008 0.900 0.000 0.000 0.100
#> SRR1500495     1  0.2530     0.8003 0.896 0.000 0.004 0.100
#> SRR1405099     1  0.2345     0.8008 0.900 0.000 0.000 0.100
#> SRR1345585     3  0.1489     0.7791 0.004 0.000 0.952 0.044
#> SRR1093196     3  0.0188     0.7962 0.000 0.000 0.996 0.004
#> SRR1466006     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1351557     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1382687     1  0.3402     0.7753 0.832 0.000 0.164 0.004
#> SRR1375549     4  0.2704     0.7051 0.124 0.000 0.000 0.876
#> SRR1101765     4  0.2345     0.7080 0.100 0.000 0.000 0.900
#> SRR1334461     1  0.2081     0.8088 0.916 0.000 0.000 0.084
#> SRR1094073     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1077549     1  0.5105     0.3082 0.564 0.000 0.432 0.004
#> SRR1440332     1  0.2844     0.8109 0.900 0.000 0.048 0.052
#> SRR1454177     4  0.4992     0.3161 0.000 0.000 0.476 0.524
#> SRR1082447     1  0.1716     0.8211 0.936 0.000 0.000 0.064
#> SRR1420043     3  0.0000     0.7972 0.000 0.000 1.000 0.000
#> SRR1432500     4  0.4072     0.7199 0.120 0.000 0.052 0.828
#> SRR1378045     2  0.1474     0.8209 0.000 0.948 0.052 0.000
#> SRR1334200     1  0.9969    -0.1068 0.288 0.244 0.224 0.244
#> SRR1069539     4  0.4972     0.2635 0.000 0.000 0.456 0.544
#> SRR1343031     3  0.0592     0.7933 0.016 0.000 0.984 0.000
#> SRR1319690     3  0.5990     0.3306 0.336 0.000 0.608 0.056
#> SRR1310604     2  0.4538     0.6236 0.000 0.760 0.216 0.024
#> SRR1327747     4  0.4790     0.3180 0.000 0.000 0.380 0.620
#> SRR1072456     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1367896     3  0.0000     0.7972 0.000 0.000 1.000 0.000
#> SRR1480107     1  0.1389     0.8213 0.952 0.000 0.000 0.048
#> SRR1377756     4  0.2799     0.7437 0.008 0.000 0.108 0.884
#> SRR1435272     4  0.3311     0.7263 0.000 0.000 0.172 0.828
#> SRR1089230     4  0.2345     0.7410 0.000 0.000 0.100 0.900
#> SRR1389522     3  0.5417     0.5804 0.240 0.000 0.704 0.056
#> SRR1080600     3  0.6443     0.1954 0.000 0.400 0.528 0.072
#> SRR1086935     4  0.4382     0.6096 0.000 0.000 0.296 0.704
#> SRR1344060     2  0.6538     0.4773 0.292 0.600 0.000 0.108
#> SRR1467922     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1090984     1  0.3311     0.7711 0.828 0.000 0.172 0.000
#> SRR1456991     1  0.1302     0.8222 0.956 0.000 0.000 0.044
#> SRR1085039     1  0.2704     0.7947 0.876 0.000 0.000 0.124
#> SRR1069303     1  0.3032     0.7823 0.868 0.000 0.008 0.124
#> SRR1091500     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1075198     2  0.6180     0.4231 0.000 0.624 0.296 0.080
#> SRR1086915     4  0.2345     0.7410 0.000 0.000 0.100 0.900
#> SRR1499503     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1094312     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1352437     1  0.3757     0.7768 0.828 0.020 0.152 0.000
#> SRR1436323     3  0.0188     0.7960 0.000 0.000 0.996 0.004
#> SRR1073507     4  0.4999     0.0982 0.492 0.000 0.000 0.508
#> SRR1401972     1  0.2216     0.8102 0.908 0.000 0.092 0.000
#> SRR1415510     2  0.0188     0.8447 0.000 0.996 0.004 0.000
#> SRR1327279     1  0.2844     0.8109 0.900 0.000 0.048 0.052
#> SRR1086983     4  0.3778     0.7260 0.100 0.000 0.052 0.848
#> SRR1105174     4  0.2760     0.7033 0.128 0.000 0.000 0.872
#> SRR1468893     4  0.4193     0.5507 0.268 0.000 0.000 0.732
#> SRR1362555     2  0.5875     0.5941 0.092 0.684 0.000 0.224
#> SRR1074526     1  0.7312     0.5958 0.660 0.112 0.124 0.104
#> SRR1326225     2  0.0000     0.8464 0.000 1.000 0.000 0.000
#> SRR1401933     1  0.3160     0.7975 0.872 0.000 0.020 0.108
#> SRR1324062     1  0.3172     0.7798 0.840 0.000 0.160 0.000
#> SRR1102296     1  0.2530     0.8065 0.896 0.004 0.100 0.000
#> SRR1085087     1  0.3688     0.7217 0.792 0.000 0.000 0.208
#> SRR1079046     4  0.2704     0.7051 0.124 0.000 0.000 0.876
#> SRR1328339     1  0.1389     0.8213 0.952 0.000 0.000 0.048
#> SRR1079782     2  0.4304     0.5959 0.000 0.716 0.000 0.284
#> SRR1092257     2  0.4454     0.5553 0.000 0.692 0.000 0.308

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.2953     0.7155 0.000 0.844 0.000 0.012 0.144
#> SRR1429287     4  0.6241     0.1219 0.000 0.324 0.000 0.512 0.164
#> SRR1359238     4  0.6637     0.5481 0.116 0.000 0.124 0.628 0.132
#> SRR1309597     3  0.5375     0.0755 0.076 0.000 0.604 0.000 0.320
#> SRR1441398     1  0.4045     0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1084055     2  0.1043     0.7584 0.000 0.960 0.000 0.000 0.040
#> SRR1417566     1  0.6786    -0.1584 0.384 0.000 0.292 0.000 0.324
#> SRR1351857     4  0.2806     0.6904 0.004 0.000 0.152 0.844 0.000
#> SRR1487485     3  0.3895     0.3726 0.000 0.000 0.680 0.000 0.320
#> SRR1335875     1  0.5878     0.2728 0.556 0.000 0.120 0.000 0.324
#> SRR1073947     1  0.0000     0.7315 1.000 0.000 0.000 0.000 0.000
#> SRR1443483     3  0.2166     0.4533 0.072 0.000 0.912 0.004 0.012
#> SRR1346794     5  0.6340     0.2475 0.196 0.000 0.128 0.048 0.628
#> SRR1405245     1  0.6507     0.0685 0.472 0.000 0.212 0.000 0.316
#> SRR1409677     4  0.2891     0.6851 0.000 0.000 0.176 0.824 0.000
#> SRR1095549     1  0.5517     0.1224 0.520 0.000 0.420 0.004 0.056
#> SRR1323788     5  0.6489     0.0969 0.192 0.000 0.360 0.000 0.448
#> SRR1314054     2  0.0880     0.7513 0.000 0.968 0.032 0.000 0.000
#> SRR1077944     1  0.1608     0.7216 0.928 0.000 0.000 0.000 0.072
#> SRR1480587     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1311205     1  0.0324     0.7325 0.992 0.000 0.000 0.004 0.004
#> SRR1076369     3  0.7066     0.0408 0.200 0.000 0.548 0.060 0.192
#> SRR1453549     1  0.6748    -0.1012 0.404 0.000 0.276 0.000 0.320
#> SRR1345782     1  0.0162     0.7317 0.996 0.000 0.000 0.000 0.004
#> SRR1447850     2  0.1648     0.7455 0.000 0.940 0.040 0.020 0.000
#> SRR1391553     2  0.7824    -0.1585 0.136 0.420 0.124 0.000 0.320
#> SRR1444156     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1471731     3  0.4251     0.3274 0.004 0.000 0.624 0.000 0.372
#> SRR1120987     4  0.2719     0.6523 0.144 0.000 0.004 0.852 0.000
#> SRR1477363     1  0.4045     0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1391961     1  0.2899     0.7127 0.872 0.000 0.008 0.020 0.100
#> SRR1373879     3  0.3305     0.4439 0.000 0.000 0.776 0.000 0.224
#> SRR1318732     5  0.4183     0.1786 0.008 0.000 0.324 0.000 0.668
#> SRR1091404     1  0.1544     0.7215 0.932 0.000 0.000 0.000 0.068
#> SRR1402109     3  0.0703     0.5226 0.000 0.000 0.976 0.000 0.024
#> SRR1407336     3  0.0290     0.5216 0.000 0.000 0.992 0.008 0.000
#> SRR1097417     3  0.4252     0.3014 0.000 0.072 0.780 0.004 0.144
#> SRR1396227     1  0.0162     0.7319 0.996 0.000 0.000 0.000 0.004
#> SRR1400775     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1392861     3  0.4165     0.3663 0.000 0.000 0.672 0.008 0.320
#> SRR1472929     5  0.8696     0.1503 0.136 0.056 0.232 0.132 0.444
#> SRR1436740     4  0.2891     0.6851 0.000 0.000 0.176 0.824 0.000
#> SRR1477057     2  0.5587     0.3945 0.256 0.644 0.088 0.012 0.000
#> SRR1311980     1  0.2723     0.7011 0.864 0.000 0.124 0.000 0.012
#> SRR1069400     3  0.0162     0.5233 0.004 0.000 0.996 0.000 0.000
#> SRR1351016     1  0.0162     0.7319 0.996 0.000 0.004 0.000 0.000
#> SRR1096291     4  0.4484     0.5292 0.044 0.000 0.192 0.752 0.012
#> SRR1418145     4  0.0566     0.6481 0.000 0.000 0.012 0.984 0.004
#> SRR1488111     5  0.8762     0.2083 0.084 0.108 0.176 0.168 0.464
#> SRR1370495     1  0.4010     0.6373 0.792 0.000 0.000 0.072 0.136
#> SRR1352639     4  0.8083    -0.1582 0.292 0.000 0.116 0.388 0.204
#> SRR1348911     1  0.4479     0.6282 0.744 0.000 0.184 0.000 0.072
#> SRR1467386     1  0.4352     0.6330 0.772 0.000 0.076 0.004 0.148
#> SRR1415956     1  0.4045     0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1500495     1  0.4045     0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1405099     1  0.4045     0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1345585     3  0.4517     0.2187 0.008 0.000 0.556 0.000 0.436
#> SRR1093196     3  0.3521     0.4413 0.000 0.000 0.764 0.004 0.232
#> SRR1466006     2  0.4835     0.6625 0.000 0.724 0.000 0.120 0.156
#> SRR1351557     2  0.1106     0.7589 0.000 0.964 0.000 0.024 0.012
#> SRR1382687     1  0.5195     0.5116 0.676 0.000 0.108 0.000 0.216
#> SRR1375549     4  0.4101     0.6298 0.048 0.000 0.000 0.768 0.184
#> SRR1101765     4  0.3238     0.6492 0.028 0.000 0.000 0.836 0.136
#> SRR1334461     1  0.4603     0.5507 0.668 0.000 0.000 0.032 0.300
#> SRR1094073     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1077549     1  0.3521     0.6500 0.764 0.000 0.232 0.004 0.000
#> SRR1440332     1  0.2286     0.7155 0.888 0.000 0.108 0.004 0.000
#> SRR1454177     4  0.4310     0.4610 0.000 0.000 0.392 0.604 0.004
#> SRR1082447     1  0.2989     0.7176 0.868 0.000 0.000 0.060 0.072
#> SRR1420043     3  0.3895     0.3726 0.000 0.000 0.680 0.000 0.320
#> SRR1432500     4  0.3093     0.6414 0.168 0.000 0.008 0.824 0.000
#> SRR1378045     2  0.1725     0.7340 0.000 0.936 0.020 0.000 0.044
#> SRR1334200     5  0.8425     0.1283 0.032 0.116 0.224 0.172 0.456
#> SRR1069539     4  0.5047     0.1284 0.000 0.000 0.472 0.496 0.032
#> SRR1343031     3  0.0703     0.5119 0.024 0.000 0.976 0.000 0.000
#> SRR1319690     5  0.4270     0.1596 0.004 0.000 0.336 0.004 0.656
#> SRR1310604     2  0.8308     0.1869 0.000 0.368 0.248 0.148 0.236
#> SRR1327747     5  0.6728     0.0652 0.004 0.000 0.268 0.264 0.464
#> SRR1072456     2  0.2953     0.7155 0.000 0.844 0.000 0.012 0.144
#> SRR1367896     3  0.0000     0.5233 0.000 0.000 1.000 0.000 0.000
#> SRR1480107     1  0.1544     0.7215 0.932 0.000 0.000 0.000 0.068
#> SRR1377756     4  0.3047     0.6896 0.004 0.000 0.160 0.832 0.004
#> SRR1435272     4  0.2891     0.6851 0.000 0.000 0.176 0.824 0.000
#> SRR1089230     4  0.2806     0.6899 0.000 0.000 0.152 0.844 0.004
#> SRR1389522     3  0.5027     0.2283 0.112 0.000 0.700 0.000 0.188
#> SRR1080600     3  0.8055    -0.0686 0.000 0.156 0.436 0.176 0.232
#> SRR1086935     4  0.5935     0.3561 0.000 0.000 0.268 0.580 0.152
#> SRR1344060     2  0.8076     0.3575 0.188 0.456 0.008 0.116 0.232
#> SRR1467922     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1090984     1  0.4312     0.6361 0.772 0.000 0.104 0.000 0.124
#> SRR1456991     1  0.1478     0.7228 0.936 0.000 0.000 0.000 0.064
#> SRR1085039     1  0.5003     0.6867 0.764 0.000 0.080 0.084 0.072
#> SRR1069303     1  0.2629     0.6897 0.860 0.000 0.000 0.136 0.004
#> SRR1091500     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1075198     2  0.8219     0.2763 0.000 0.408 0.188 0.176 0.228
#> SRR1086915     4  0.2690     0.6894 0.000 0.000 0.156 0.844 0.000
#> SRR1499503     2  0.2953     0.7155 0.000 0.844 0.000 0.012 0.144
#> SRR1094312     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1352437     1  0.3971     0.6594 0.800 0.000 0.100 0.000 0.100
#> SRR1436323     3  0.4251     0.3286 0.000 0.000 0.624 0.004 0.372
#> SRR1073507     4  0.4307     0.0322 0.496 0.000 0.000 0.504 0.000
#> SRR1401972     1  0.1041     0.7300 0.964 0.000 0.032 0.000 0.004
#> SRR1415510     2  0.4658     0.2385 0.000 0.504 0.000 0.012 0.484
#> SRR1327279     1  0.2424     0.7051 0.868 0.000 0.132 0.000 0.000
#> SRR1086983     4  0.2964     0.6477 0.152 0.000 0.004 0.840 0.004
#> SRR1105174     4  0.4977     0.4661 0.040 0.000 0.000 0.604 0.356
#> SRR1468893     4  0.5862     0.4363 0.220 0.000 0.000 0.604 0.176
#> SRR1362555     2  0.8302     0.2944 0.164 0.384 0.000 0.224 0.228
#> SRR1074526     1  0.7764     0.4018 0.536 0.044 0.208 0.056 0.156
#> SRR1326225     2  0.0000     0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1401933     1  0.4564     0.6495 0.772 0.000 0.040 0.036 0.152
#> SRR1324062     1  0.2439     0.7086 0.876 0.000 0.120 0.000 0.004
#> SRR1102296     1  0.1915     0.7266 0.928 0.040 0.032 0.000 0.000
#> SRR1085087     1  0.3336     0.6134 0.772 0.000 0.000 0.228 0.000
#> SRR1079046     4  0.3687     0.6329 0.028 0.000 0.000 0.792 0.180
#> SRR1328339     1  0.1544     0.7215 0.932 0.000 0.000 0.000 0.068
#> SRR1079782     2  0.6235     0.4542 0.000 0.500 0.000 0.344 0.156
#> SRR1092257     2  0.4637     0.5589 0.000 0.672 0.000 0.292 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.3190    0.69771 0.000 0.772 0.000 0.000 0.008 0.220
#> SRR1429287     4  0.6238    0.12344 0.000 0.272 0.000 0.452 0.012 0.264
#> SRR1359238     4  0.4437    0.67593 0.068 0.000 0.044 0.768 0.004 0.116
#> SRR1309597     3  0.7625    0.02974 0.076 0.000 0.420 0.048 0.284 0.172
#> SRR1441398     1  0.6492    0.17907 0.472 0.000 0.000 0.048 0.312 0.168
#> SRR1084055     2  0.0993    0.83957 0.000 0.964 0.000 0.000 0.012 0.024
#> SRR1417566     6  0.6159   -0.08455 0.252 0.000 0.348 0.004 0.000 0.396
#> SRR1351857     4  0.1075    0.79829 0.000 0.000 0.048 0.952 0.000 0.000
#> SRR1487485     3  0.3828    0.33832 0.000 0.000 0.560 0.000 0.000 0.440
#> SRR1335875     1  0.4751    0.11685 0.500 0.000 0.048 0.000 0.000 0.452
#> SRR1073947     1  0.0000    0.66602 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1443483     3  0.1168    0.52507 0.028 0.000 0.956 0.000 0.016 0.000
#> SRR1346794     6  0.6948    0.06914 0.268 0.000 0.000 0.056 0.308 0.368
#> SRR1405245     1  0.7153    0.11231 0.448 0.000 0.032 0.044 0.284 0.192
#> SRR1409677     4  0.2454    0.74773 0.000 0.000 0.160 0.840 0.000 0.000
#> SRR1095549     3  0.4712    0.06959 0.452 0.000 0.512 0.000 0.024 0.012
#> SRR1323788     6  0.5994    0.09857 0.156 0.000 0.220 0.008 0.028 0.588
#> SRR1314054     2  0.0363    0.84378 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1077944     1  0.1075    0.66118 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR1480587     2  0.0458    0.84621 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1311205     1  0.0146    0.66637 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1076369     3  0.5079    0.38117 0.088 0.000 0.720 0.052 0.132 0.008
#> SRR1453549     6  0.5932    0.09745 0.336 0.000 0.224 0.000 0.000 0.440
#> SRR1345782     1  0.0146    0.66625 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1447850     2  0.1377    0.83115 0.000 0.952 0.024 0.004 0.004 0.016
#> SRR1391553     6  0.6415    0.20317 0.132 0.372 0.052 0.000 0.000 0.444
#> SRR1444156     2  0.0146    0.84795 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1471731     3  0.4218    0.36444 0.004 0.000 0.584 0.012 0.000 0.400
#> SRR1120987     4  0.1267    0.77787 0.060 0.000 0.000 0.940 0.000 0.000
#> SRR1477363     1  0.6404    0.18310 0.472 0.000 0.000 0.040 0.320 0.168
#> SRR1391961     5  0.3867    0.49249 0.328 0.000 0.000 0.000 0.660 0.012
#> SRR1373879     3  0.3515    0.42364 0.000 0.000 0.676 0.000 0.000 0.324
#> SRR1318732     6  0.5504    0.17884 0.004 0.000 0.048 0.056 0.280 0.612
#> SRR1091404     1  0.1075    0.66118 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR1402109     3  0.1141    0.53947 0.000 0.000 0.948 0.000 0.000 0.052
#> SRR1407336     3  0.0000    0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097417     3  0.3992    0.36921 0.004 0.064 0.756 0.000 0.000 0.176
#> SRR1396227     1  0.0363    0.66596 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1400775     2  0.0000    0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1392861     3  0.3817    0.34549 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1472929     5  0.7571    0.47521 0.120 0.032 0.132 0.000 0.420 0.296
#> SRR1436740     4  0.1610    0.79127 0.000 0.000 0.084 0.916 0.000 0.000
#> SRR1477057     2  0.4283    0.37232 0.288 0.672 0.004 0.000 0.000 0.036
#> SRR1311980     1  0.2954    0.62020 0.844 0.000 0.048 0.000 0.000 0.108
#> SRR1069400     3  0.0000    0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1351016     1  0.0000    0.66602 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1096291     4  0.4868    0.39373 0.016 0.000 0.332 0.608 0.000 0.044
#> SRR1418145     4  0.1204    0.77991 0.000 0.000 0.000 0.944 0.000 0.056
#> SRR1488111     6  0.4390    0.18082 0.088 0.048 0.084 0.004 0.000 0.776
#> SRR1370495     1  0.4062    0.43133 0.744 0.000 0.000 0.060 0.004 0.192
#> SRR1352639     6  0.6767   -0.15739 0.368 0.000 0.044 0.172 0.008 0.408
#> SRR1348911     1  0.4746    0.48231 0.668 0.000 0.116 0.000 0.000 0.216
#> SRR1467386     1  0.3309    0.50886 0.720 0.000 0.000 0.000 0.000 0.280
#> SRR1415956     1  0.6404    0.18310 0.472 0.000 0.000 0.040 0.320 0.168
#> SRR1500495     1  0.6515    0.17274 0.468 0.000 0.000 0.048 0.312 0.172
#> SRR1405099     1  0.6404    0.18310 0.472 0.000 0.000 0.040 0.320 0.168
#> SRR1345585     3  0.5947    0.27981 0.004 0.000 0.480 0.040 0.076 0.400
#> SRR1093196     3  0.3288    0.45150 0.000 0.000 0.724 0.000 0.000 0.276
#> SRR1466006     2  0.3746    0.66522 0.000 0.712 0.000 0.004 0.012 0.272
#> SRR1351557     2  0.0865    0.83682 0.000 0.964 0.000 0.000 0.000 0.036
#> SRR1382687     1  0.4466    0.35443 0.612 0.000 0.032 0.004 0.000 0.352
#> SRR1375549     4  0.1152    0.77638 0.000 0.000 0.000 0.952 0.044 0.004
#> SRR1101765     4  0.1285    0.77827 0.000 0.000 0.004 0.944 0.052 0.000
#> SRR1334461     5  0.4012    0.59564 0.076 0.000 0.000 0.000 0.748 0.176
#> SRR1094073     2  0.0000    0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549     1  0.4475    0.49939 0.692 0.000 0.220 0.000 0.000 0.088
#> SRR1440332     1  0.1765    0.63930 0.904 0.000 0.096 0.000 0.000 0.000
#> SRR1454177     4  0.3774    0.55235 0.000 0.000 0.328 0.664 0.000 0.008
#> SRR1082447     1  0.3185    0.61830 0.832 0.000 0.000 0.116 0.048 0.004
#> SRR1420043     3  0.3828    0.33832 0.000 0.000 0.560 0.000 0.000 0.440
#> SRR1432500     4  0.1349    0.78104 0.056 0.000 0.004 0.940 0.000 0.000
#> SRR1378045     2  0.2095    0.76944 0.000 0.904 0.016 0.000 0.004 0.076
#> SRR1334200     5  0.6823    0.39981 0.000 0.064 0.156 0.004 0.388 0.388
#> SRR1069539     3  0.4886    0.33271 0.000 0.000 0.652 0.244 0.004 0.100
#> SRR1343031     3  0.0000    0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1319690     6  0.5467    0.17541 0.004 0.000 0.052 0.048 0.284 0.612
#> SRR1310604     6  0.6539   -0.15485 0.000 0.292 0.336 0.000 0.020 0.352
#> SRR1327747     6  0.6322   -0.12342 0.000 0.000 0.260 0.316 0.012 0.412
#> SRR1072456     2  0.3190    0.69771 0.000 0.772 0.000 0.000 0.008 0.220
#> SRR1367896     3  0.0000    0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1480107     1  0.0865    0.66139 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1377756     4  0.1204    0.79733 0.000 0.000 0.056 0.944 0.000 0.000
#> SRR1435272     4  0.1267    0.79685 0.000 0.000 0.060 0.940 0.000 0.000
#> SRR1089230     4  0.1075    0.79816 0.000 0.000 0.048 0.952 0.000 0.000
#> SRR1389522     3  0.6355    0.23465 0.044 0.000 0.592 0.040 0.228 0.096
#> SRR1080600     3  0.5608   -0.05202 0.000 0.100 0.500 0.004 0.008 0.388
#> SRR1086935     4  0.4633    0.50988 0.000 0.000 0.100 0.676 0.000 0.224
#> SRR1344060     5  0.4734    0.54536 0.000 0.120 0.000 0.000 0.672 0.208
#> SRR1467922     2  0.0146    0.84795 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1090984     1  0.4115    0.49140 0.696 0.000 0.032 0.004 0.000 0.268
#> SRR1456991     1  0.0865    0.66139 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1085039     1  0.5119    0.51838 0.692 0.000 0.088 0.172 0.048 0.000
#> SRR1069303     1  0.2912    0.58337 0.816 0.000 0.000 0.172 0.012 0.000
#> SRR1091500     2  0.0000    0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1075198     6  0.6334   -0.20142 0.000 0.368 0.232 0.004 0.008 0.388
#> SRR1086915     4  0.1075    0.79829 0.000 0.000 0.048 0.952 0.000 0.000
#> SRR1499503     2  0.3230    0.70259 0.000 0.776 0.000 0.000 0.012 0.212
#> SRR1094312     2  0.0000    0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1352437     1  0.3876    0.53044 0.728 0.000 0.016 0.000 0.012 0.244
#> SRR1436323     3  0.4517    0.31461 0.000 0.000 0.524 0.032 0.000 0.444
#> SRR1073507     1  0.3868    0.05061 0.508 0.000 0.000 0.492 0.000 0.000
#> SRR1401972     1  0.0508    0.66596 0.984 0.000 0.004 0.000 0.012 0.000
#> SRR1415510     6  0.4218    0.00609 0.000 0.400 0.000 0.004 0.012 0.584
#> SRR1327279     1  0.2003    0.62763 0.884 0.000 0.116 0.000 0.000 0.000
#> SRR1086983     4  0.1204    0.77959 0.056 0.000 0.000 0.944 0.000 0.000
#> SRR1105174     4  0.6119    0.24325 0.020 0.000 0.000 0.480 0.332 0.168
#> SRR1468893     4  0.3337    0.49058 0.260 0.000 0.000 0.736 0.004 0.000
#> SRR1362555     6  0.7584   -0.23977 0.244 0.244 0.000 0.012 0.116 0.384
#> SRR1074526     5  0.4211    0.51533 0.276 0.004 0.020 0.004 0.692 0.004
#> SRR1326225     2  0.0146    0.84795 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1401933     1  0.5166    0.48794 0.672 0.000 0.064 0.052 0.000 0.212
#> SRR1324062     1  0.2258    0.64771 0.896 0.000 0.044 0.000 0.000 0.060
#> SRR1102296     1  0.1471    0.64671 0.932 0.064 0.004 0.000 0.000 0.000
#> SRR1085087     1  0.3690    0.45950 0.700 0.000 0.000 0.288 0.012 0.000
#> SRR1079046     4  0.2915    0.67835 0.000 0.000 0.000 0.808 0.184 0.008
#> SRR1328339     1  0.1010    0.66129 0.960 0.000 0.000 0.000 0.036 0.004
#> SRR1079782     2  0.5686    0.31203 0.000 0.456 0.000 0.160 0.000 0.384
#> SRR1092257     2  0.4734    0.56377 0.000 0.680 0.000 0.152 0.000 0.168

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.978       0.990         0.4017 0.594   0.594
#> 3 3 0.576           0.809       0.874         0.6055 0.740   0.562
#> 4 4 0.484           0.519       0.711         0.0824 0.864   0.642
#> 5 5 0.523           0.420       0.649         0.0657 0.826   0.499
#> 6 6 0.565           0.417       0.660         0.0483 0.832   0.451

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2   0.000      0.970 0.000 1.000
#> SRR1429287     2   0.000      0.970 0.000 1.000
#> SRR1359238     1   0.000      0.997 1.000 0.000
#> SRR1309597     1   0.000      0.997 1.000 0.000
#> SRR1441398     1   0.000      0.997 1.000 0.000
#> SRR1084055     2   0.000      0.970 0.000 1.000
#> SRR1417566     1   0.000      0.997 1.000 0.000
#> SRR1351857     1   0.000      0.997 1.000 0.000
#> SRR1487485     1   0.000      0.997 1.000 0.000
#> SRR1335875     1   0.000      0.997 1.000 0.000
#> SRR1073947     1   0.000      0.997 1.000 0.000
#> SRR1443483     1   0.000      0.997 1.000 0.000
#> SRR1346794     1   0.000      0.997 1.000 0.000
#> SRR1405245     1   0.000      0.997 1.000 0.000
#> SRR1409677     1   0.000      0.997 1.000 0.000
#> SRR1095549     1   0.000      0.997 1.000 0.000
#> SRR1323788     1   0.000      0.997 1.000 0.000
#> SRR1314054     2   0.000      0.970 0.000 1.000
#> SRR1077944     1   0.000      0.997 1.000 0.000
#> SRR1480587     2   0.000      0.970 0.000 1.000
#> SRR1311205     1   0.000      0.997 1.000 0.000
#> SRR1076369     1   0.000      0.997 1.000 0.000
#> SRR1453549     1   0.000      0.997 1.000 0.000
#> SRR1345782     1   0.000      0.997 1.000 0.000
#> SRR1447850     2   0.000      0.970 0.000 1.000
#> SRR1391553     1   0.000      0.997 1.000 0.000
#> SRR1444156     2   0.000      0.970 0.000 1.000
#> SRR1471731     1   0.000      0.997 1.000 0.000
#> SRR1120987     1   0.000      0.997 1.000 0.000
#> SRR1477363     1   0.000      0.997 1.000 0.000
#> SRR1391961     2   0.518      0.875 0.116 0.884
#> SRR1373879     1   0.000      0.997 1.000 0.000
#> SRR1318732     1   0.000      0.997 1.000 0.000
#> SRR1091404     1   0.000      0.997 1.000 0.000
#> SRR1402109     1   0.000      0.997 1.000 0.000
#> SRR1407336     1   0.000      0.997 1.000 0.000
#> SRR1097417     1   0.808      0.657 0.752 0.248
#> SRR1396227     1   0.000      0.997 1.000 0.000
#> SRR1400775     2   0.000      0.970 0.000 1.000
#> SRR1392861     1   0.000      0.997 1.000 0.000
#> SRR1472929     2   0.000      0.970 0.000 1.000
#> SRR1436740     1   0.000      0.997 1.000 0.000
#> SRR1477057     2   0.000      0.970 0.000 1.000
#> SRR1311980     1   0.000      0.997 1.000 0.000
#> SRR1069400     1   0.000      0.997 1.000 0.000
#> SRR1351016     1   0.000      0.997 1.000 0.000
#> SRR1096291     1   0.000      0.997 1.000 0.000
#> SRR1418145     1   0.000      0.997 1.000 0.000
#> SRR1488111     1   0.000      0.997 1.000 0.000
#> SRR1370495     1   0.000      0.997 1.000 0.000
#> SRR1352639     1   0.000      0.997 1.000 0.000
#> SRR1348911     1   0.000      0.997 1.000 0.000
#> SRR1467386     1   0.000      0.997 1.000 0.000
#> SRR1415956     1   0.000      0.997 1.000 0.000
#> SRR1500495     1   0.000      0.997 1.000 0.000
#> SRR1405099     1   0.000      0.997 1.000 0.000
#> SRR1345585     1   0.000      0.997 1.000 0.000
#> SRR1093196     1   0.000      0.997 1.000 0.000
#> SRR1466006     2   0.000      0.970 0.000 1.000
#> SRR1351557     2   0.000      0.970 0.000 1.000
#> SRR1382687     1   0.000      0.997 1.000 0.000
#> SRR1375549     1   0.000      0.997 1.000 0.000
#> SRR1101765     1   0.184      0.968 0.972 0.028
#> SRR1334461     2   0.388      0.912 0.076 0.924
#> SRR1094073     2   0.000      0.970 0.000 1.000
#> SRR1077549     1   0.000      0.997 1.000 0.000
#> SRR1440332     1   0.000      0.997 1.000 0.000
#> SRR1454177     1   0.000      0.997 1.000 0.000
#> SRR1082447     1   0.000      0.997 1.000 0.000
#> SRR1420043     1   0.000      0.997 1.000 0.000
#> SRR1432500     1   0.000      0.997 1.000 0.000
#> SRR1378045     2   0.946      0.447 0.364 0.636
#> SRR1334200     2   0.000      0.970 0.000 1.000
#> SRR1069539     1   0.000      0.997 1.000 0.000
#> SRR1343031     1   0.000      0.997 1.000 0.000
#> SRR1319690     1   0.000      0.997 1.000 0.000
#> SRR1310604     2   0.000      0.970 0.000 1.000
#> SRR1327747     1   0.000      0.997 1.000 0.000
#> SRR1072456     2   0.000      0.970 0.000 1.000
#> SRR1367896     1   0.000      0.997 1.000 0.000
#> SRR1480107     1   0.000      0.997 1.000 0.000
#> SRR1377756     1   0.000      0.997 1.000 0.000
#> SRR1435272     1   0.000      0.997 1.000 0.000
#> SRR1089230     1   0.000      0.997 1.000 0.000
#> SRR1389522     1   0.000      0.997 1.000 0.000
#> SRR1080600     2   0.000      0.970 0.000 1.000
#> SRR1086935     1   0.000      0.997 1.000 0.000
#> SRR1344060     2   0.000      0.970 0.000 1.000
#> SRR1467922     2   0.000      0.970 0.000 1.000
#> SRR1090984     1   0.000      0.997 1.000 0.000
#> SRR1456991     1   0.000      0.997 1.000 0.000
#> SRR1085039     1   0.000      0.997 1.000 0.000
#> SRR1069303     1   0.000      0.997 1.000 0.000
#> SRR1091500     2   0.000      0.970 0.000 1.000
#> SRR1075198     2   0.000      0.970 0.000 1.000
#> SRR1086915     1   0.000      0.997 1.000 0.000
#> SRR1499503     2   0.000      0.970 0.000 1.000
#> SRR1094312     2   0.000      0.970 0.000 1.000
#> SRR1352437     1   0.000      0.997 1.000 0.000
#> SRR1436323     1   0.000      0.997 1.000 0.000
#> SRR1073507     1   0.000      0.997 1.000 0.000
#> SRR1401972     1   0.000      0.997 1.000 0.000
#> SRR1415510     2   0.000      0.970 0.000 1.000
#> SRR1327279     1   0.000      0.997 1.000 0.000
#> SRR1086983     1   0.000      0.997 1.000 0.000
#> SRR1105174     1   0.000      0.997 1.000 0.000
#> SRR1468893     1   0.000      0.997 1.000 0.000
#> SRR1362555     2   0.000      0.970 0.000 1.000
#> SRR1074526     2   0.529      0.871 0.120 0.880
#> SRR1326225     2   0.000      0.970 0.000 1.000
#> SRR1401933     1   0.000      0.997 1.000 0.000
#> SRR1324062     1   0.000      0.997 1.000 0.000
#> SRR1102296     1   0.000      0.997 1.000 0.000
#> SRR1085087     1   0.000      0.997 1.000 0.000
#> SRR1079046     2   0.529      0.871 0.120 0.880
#> SRR1328339     1   0.000      0.997 1.000 0.000
#> SRR1079782     2   0.595      0.839 0.144 0.856
#> SRR1092257     2   0.000      0.970 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1429287     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1359238     1  0.6126      0.506 0.600 0.000 0.400
#> SRR1309597     3  0.0592      0.835 0.012 0.000 0.988
#> SRR1441398     3  0.3619      0.814 0.136 0.000 0.864
#> SRR1084055     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1417566     3  0.6309      0.310 0.500 0.000 0.500
#> SRR1351857     1  0.4399      0.842 0.812 0.000 0.188
#> SRR1487485     3  0.0747      0.834 0.016 0.000 0.984
#> SRR1335875     3  0.2448      0.834 0.076 0.000 0.924
#> SRR1073947     1  0.4062      0.840 0.836 0.000 0.164
#> SRR1443483     3  0.0747      0.834 0.016 0.000 0.984
#> SRR1346794     3  0.5016      0.719 0.240 0.000 0.760
#> SRR1405245     3  0.2537      0.834 0.080 0.000 0.920
#> SRR1409677     1  0.5178      0.794 0.744 0.000 0.256
#> SRR1095549     3  0.4842      0.744 0.224 0.000 0.776
#> SRR1323788     3  0.3941      0.794 0.156 0.000 0.844
#> SRR1314054     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1077944     1  0.5363      0.740 0.724 0.000 0.276
#> SRR1480587     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1311205     3  0.4842      0.739 0.224 0.000 0.776
#> SRR1076369     3  0.5810      0.643 0.336 0.000 0.664
#> SRR1453549     3  0.3412      0.817 0.124 0.000 0.876
#> SRR1345782     3  0.4291      0.782 0.180 0.000 0.820
#> SRR1447850     2  0.1774      0.931 0.016 0.960 0.024
#> SRR1391553     3  0.6018      0.611 0.308 0.008 0.684
#> SRR1444156     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1471731     3  0.2261      0.837 0.068 0.000 0.932
#> SRR1120987     1  0.1525      0.797 0.964 0.004 0.032
#> SRR1477363     1  0.4702      0.816 0.788 0.000 0.212
#> SRR1391961     2  0.3918      0.844 0.120 0.868 0.012
#> SRR1373879     3  0.0747      0.834 0.016 0.000 0.984
#> SRR1318732     3  0.1411      0.830 0.036 0.000 0.964
#> SRR1091404     1  0.1289      0.797 0.968 0.000 0.032
#> SRR1402109     3  0.1289      0.838 0.032 0.000 0.968
#> SRR1407336     3  0.1031      0.837 0.024 0.000 0.976
#> SRR1097417     3  0.8556      0.459 0.164 0.232 0.604
#> SRR1396227     1  0.3116      0.837 0.892 0.000 0.108
#> SRR1400775     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1392861     1  0.5291      0.788 0.732 0.000 0.268
#> SRR1472929     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1436740     1  0.4346      0.841 0.816 0.000 0.184
#> SRR1477057     2  0.0592      0.957 0.012 0.988 0.000
#> SRR1311980     3  0.3752      0.805 0.144 0.000 0.856
#> SRR1069400     3  0.0747      0.834 0.016 0.000 0.984
#> SRR1351016     1  0.5497      0.720 0.708 0.000 0.292
#> SRR1096291     1  0.3340      0.759 0.880 0.000 0.120
#> SRR1418145     1  0.1860      0.797 0.948 0.000 0.052
#> SRR1488111     1  0.5207      0.691 0.824 0.052 0.124
#> SRR1370495     1  0.5180      0.654 0.812 0.156 0.032
#> SRR1352639     1  0.1643      0.796 0.956 0.000 0.044
#> SRR1348911     3  0.1529      0.830 0.040 0.000 0.960
#> SRR1467386     1  0.4887      0.815 0.772 0.000 0.228
#> SRR1415956     3  0.5497      0.634 0.292 0.000 0.708
#> SRR1500495     3  0.3551      0.816 0.132 0.000 0.868
#> SRR1405099     1  0.5016      0.787 0.760 0.000 0.240
#> SRR1345585     3  0.0747      0.834 0.016 0.000 0.984
#> SRR1093196     3  0.0747      0.834 0.016 0.000 0.984
#> SRR1466006     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1351557     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1382687     1  0.5926      0.620 0.644 0.000 0.356
#> SRR1375549     1  0.0892      0.792 0.980 0.000 0.020
#> SRR1101765     1  0.5348      0.630 0.796 0.176 0.028
#> SRR1334461     2  0.3120      0.889 0.080 0.908 0.012
#> SRR1094073     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1077549     1  0.5058      0.798 0.756 0.000 0.244
#> SRR1440332     3  0.3941      0.799 0.156 0.000 0.844
#> SRR1454177     1  0.4399      0.840 0.812 0.000 0.188
#> SRR1082447     1  0.3192      0.834 0.888 0.000 0.112
#> SRR1420043     3  0.1163      0.837 0.028 0.000 0.972
#> SRR1432500     1  0.4702      0.831 0.788 0.000 0.212
#> SRR1378045     2  0.8955      0.238 0.144 0.524 0.332
#> SRR1334200     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1069539     1  0.7011      0.590 0.720 0.092 0.188
#> SRR1343031     3  0.1643      0.839 0.044 0.000 0.956
#> SRR1319690     3  0.1289      0.830 0.032 0.000 0.968
#> SRR1310604     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1327747     3  0.2261      0.839 0.068 0.000 0.932
#> SRR1072456     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1367896     3  0.0747      0.834 0.016 0.000 0.984
#> SRR1480107     1  0.4178      0.837 0.828 0.000 0.172
#> SRR1377756     1  0.4291      0.842 0.820 0.000 0.180
#> SRR1435272     1  0.4750      0.828 0.784 0.000 0.216
#> SRR1089230     1  0.4346      0.841 0.816 0.000 0.184
#> SRR1389522     3  0.1163      0.831 0.028 0.000 0.972
#> SRR1080600     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1086935     1  0.3583      0.771 0.900 0.056 0.044
#> SRR1344060     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1467922     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1090984     3  0.6180      0.473 0.416 0.000 0.584
#> SRR1456991     3  0.6267      0.163 0.452 0.000 0.548
#> SRR1085039     1  0.4235      0.837 0.824 0.000 0.176
#> SRR1069303     1  0.1031      0.801 0.976 0.000 0.024
#> SRR1091500     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1075198     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1086915     1  0.4291      0.842 0.820 0.000 0.180
#> SRR1499503     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1094312     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1352437     1  0.1289      0.801 0.968 0.000 0.032
#> SRR1436323     3  0.3879      0.800 0.152 0.000 0.848
#> SRR1073507     1  0.4178      0.843 0.828 0.000 0.172
#> SRR1401972     1  0.1031      0.802 0.976 0.000 0.024
#> SRR1415510     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1327279     1  0.5948      0.612 0.640 0.000 0.360
#> SRR1086983     1  0.4346      0.841 0.816 0.000 0.184
#> SRR1105174     1  0.4452      0.831 0.808 0.000 0.192
#> SRR1468893     1  0.4178      0.837 0.828 0.000 0.172
#> SRR1362555     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1074526     2  0.4861      0.764 0.180 0.808 0.012
#> SRR1326225     2  0.0000      0.963 0.000 1.000 0.000
#> SRR1401933     1  0.4399      0.842 0.812 0.000 0.188
#> SRR1324062     1  0.4291      0.842 0.820 0.000 0.180
#> SRR1102296     1  0.0892      0.792 0.980 0.000 0.020
#> SRR1085087     1  0.1163      0.802 0.972 0.000 0.028
#> SRR1079046     2  0.4805      0.770 0.176 0.812 0.012
#> SRR1328339     3  0.8119      0.419 0.432 0.068 0.500
#> SRR1079782     2  0.0592      0.955 0.012 0.988 0.000
#> SRR1092257     2  0.0000      0.963 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1429287     2  0.0817     0.8903 0.024 0.976 0.000 0.000
#> SRR1359238     4  0.3249     0.6302 0.008 0.000 0.140 0.852
#> SRR1309597     3  0.2868     0.7100 0.000 0.000 0.864 0.136
#> SRR1441398     3  0.5812     0.5953 0.048 0.000 0.624 0.328
#> SRR1084055     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1417566     3  0.6350     0.2063 0.252 0.000 0.636 0.112
#> SRR1351857     4  0.0707     0.6870 0.000 0.000 0.020 0.980
#> SRR1487485     3  0.2589     0.7048 0.000 0.000 0.884 0.116
#> SRR1335875     3  0.4807     0.6253 0.024 0.000 0.728 0.248
#> SRR1073947     4  0.0927     0.6849 0.016 0.000 0.008 0.976
#> SRR1443483     3  0.2868     0.7100 0.000 0.000 0.864 0.136
#> SRR1346794     4  0.6395    -0.2873 0.064 0.000 0.464 0.472
#> SRR1405245     3  0.5712     0.6306 0.048 0.000 0.644 0.308
#> SRR1409677     4  0.2799     0.6517 0.008 0.000 0.108 0.884
#> SRR1095549     4  0.6031    -0.2014 0.044 0.000 0.420 0.536
#> SRR1323788     3  0.5775     0.5052 0.032 0.000 0.560 0.408
#> SRR1314054     2  0.0592     0.8928 0.016 0.984 0.000 0.000
#> SRR1077944     4  0.2830     0.6732 0.060 0.000 0.040 0.900
#> SRR1480587     2  0.0336     0.8954 0.008 0.992 0.000 0.000
#> SRR1311205     4  0.6229    -0.1846 0.056 0.000 0.416 0.528
#> SRR1076369     3  0.7792    -0.0343 0.256 0.000 0.412 0.332
#> SRR1453549     3  0.5217     0.5840 0.012 0.000 0.608 0.380
#> SRR1345782     4  0.6275    -0.3090 0.056 0.000 0.460 0.484
#> SRR1447850     2  0.3400     0.7889 0.180 0.820 0.000 0.000
#> SRR1391553     3  0.4839     0.4063 0.184 0.000 0.764 0.052
#> SRR1444156     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1471731     3  0.4456     0.6890 0.004 0.000 0.716 0.280
#> SRR1120987     4  0.7768    -0.3471 0.384 0.004 0.200 0.412
#> SRR1477363     4  0.2335     0.6754 0.060 0.000 0.020 0.920
#> SRR1391961     1  0.5288    -0.3825 0.520 0.472 0.000 0.008
#> SRR1373879     3  0.3908     0.7124 0.004 0.000 0.784 0.212
#> SRR1318732     3  0.3402     0.6974 0.004 0.000 0.832 0.164
#> SRR1091404     4  0.7220    -0.2360 0.384 0.000 0.144 0.472
#> SRR1402109     3  0.4539     0.6823 0.008 0.000 0.720 0.272
#> SRR1407336     3  0.4088     0.7093 0.004 0.000 0.764 0.232
#> SRR1097417     3  0.8531    -0.1421 0.264 0.156 0.504 0.076
#> SRR1396227     4  0.3521     0.5850 0.084 0.000 0.052 0.864
#> SRR1400775     2  0.2011     0.8912 0.080 0.920 0.000 0.000
#> SRR1392861     4  0.5323     0.1390 0.020 0.000 0.352 0.628
#> SRR1472929     2  0.3975     0.7144 0.240 0.760 0.000 0.000
#> SRR1436740     4  0.2882     0.6606 0.024 0.000 0.084 0.892
#> SRR1477057     2  0.3893     0.7766 0.196 0.796 0.000 0.008
#> SRR1311980     3  0.4546     0.6960 0.012 0.000 0.732 0.256
#> SRR1069400     3  0.2868     0.7100 0.000 0.000 0.864 0.136
#> SRR1351016     4  0.2408     0.6856 0.036 0.000 0.044 0.920
#> SRR1096291     4  0.7924    -0.4156 0.336 0.000 0.328 0.336
#> SRR1418145     4  0.7830    -0.3809 0.356 0.000 0.260 0.384
#> SRR1488111     1  0.7908     0.3482 0.360 0.000 0.304 0.336
#> SRR1370495     1  0.7968     0.3856 0.424 0.008 0.224 0.344
#> SRR1352639     1  0.7800     0.3503 0.380 0.000 0.248 0.372
#> SRR1348911     3  0.4990     0.6280 0.060 0.000 0.756 0.184
#> SRR1467386     4  0.2329     0.6839 0.012 0.000 0.072 0.916
#> SRR1415956     4  0.6058     0.0719 0.060 0.000 0.336 0.604
#> SRR1500495     3  0.6147     0.5177 0.056 0.000 0.564 0.380
#> SRR1405099     4  0.2489     0.6740 0.068 0.000 0.020 0.912
#> SRR1345585     3  0.2216     0.6875 0.000 0.000 0.908 0.092
#> SRR1093196     3  0.3982     0.7096 0.004 0.000 0.776 0.220
#> SRR1466006     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1351557     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1382687     4  0.3681     0.5877 0.008 0.000 0.176 0.816
#> SRR1375549     1  0.7314     0.2720 0.428 0.000 0.152 0.420
#> SRR1101765     1  0.7508     0.2508 0.428 0.008 0.140 0.424
#> SRR1334461     1  0.5288    -0.3825 0.520 0.472 0.000 0.008
#> SRR1094073     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1077549     4  0.2610     0.6691 0.012 0.000 0.088 0.900
#> SRR1440332     3  0.5657     0.4520 0.024 0.000 0.540 0.436
#> SRR1454177     4  0.3853     0.5877 0.020 0.000 0.160 0.820
#> SRR1082447     4  0.3497     0.6336 0.104 0.000 0.036 0.860
#> SRR1420043     3  0.4769     0.6549 0.008 0.000 0.684 0.308
#> SRR1432500     4  0.1890     0.6891 0.008 0.000 0.056 0.936
#> SRR1378045     3  0.8129    -0.0929 0.268 0.352 0.372 0.008
#> SRR1334200     2  0.0817     0.8909 0.024 0.976 0.000 0.000
#> SRR1069539     1  0.8121     0.3707 0.372 0.008 0.356 0.264
#> SRR1343031     3  0.4483     0.6732 0.004 0.000 0.712 0.284
#> SRR1319690     3  0.4420     0.7036 0.012 0.000 0.748 0.240
#> SRR1310604     2  0.0188     0.8935 0.004 0.996 0.000 0.000
#> SRR1327747     3  0.4844     0.6729 0.012 0.000 0.688 0.300
#> SRR1072456     2  0.0188     0.8949 0.004 0.996 0.000 0.000
#> SRR1367896     3  0.2760     0.7082 0.000 0.000 0.872 0.128
#> SRR1480107     4  0.2179     0.6733 0.064 0.000 0.012 0.924
#> SRR1377756     4  0.0779     0.6872 0.004 0.000 0.016 0.980
#> SRR1435272     4  0.3790     0.5865 0.016 0.000 0.164 0.820
#> SRR1089230     4  0.1356     0.6811 0.008 0.000 0.032 0.960
#> SRR1389522     3  0.3311     0.7121 0.000 0.000 0.828 0.172
#> SRR1080600     2  0.0000     0.8943 0.000 1.000 0.000 0.000
#> SRR1086935     4  0.8171    -0.3001 0.368 0.024 0.184 0.424
#> SRR1344060     2  0.4977     0.4398 0.460 0.540 0.000 0.000
#> SRR1467922     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1090984     4  0.7269     0.1745 0.156 0.000 0.356 0.488
#> SRR1456991     4  0.4318     0.5988 0.068 0.000 0.116 0.816
#> SRR1085039     4  0.1970     0.6738 0.060 0.000 0.008 0.932
#> SRR1069303     4  0.6506     0.1291 0.240 0.000 0.132 0.628
#> SRR1091500     2  0.3569     0.8331 0.196 0.804 0.000 0.000
#> SRR1075198     2  0.1637     0.8725 0.060 0.940 0.000 0.000
#> SRR1086915     4  0.0804     0.6840 0.008 0.000 0.012 0.980
#> SRR1499503     2  0.0469     0.8957 0.012 0.988 0.000 0.000
#> SRR1094312     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1352437     4  0.6578     0.1139 0.244 0.000 0.136 0.620
#> SRR1436323     3  0.5055     0.5981 0.008 0.000 0.624 0.368
#> SRR1073507     4  0.0804     0.6826 0.008 0.000 0.012 0.980
#> SRR1401972     4  0.6630     0.0861 0.252 0.000 0.136 0.612
#> SRR1415510     2  0.0000     0.8943 0.000 1.000 0.000 0.000
#> SRR1327279     4  0.2924     0.6594 0.016 0.000 0.100 0.884
#> SRR1086983     4  0.1388     0.6836 0.012 0.000 0.028 0.960
#> SRR1105174     4  0.2413     0.6743 0.064 0.000 0.020 0.916
#> SRR1468893     4  0.1722     0.6767 0.048 0.000 0.008 0.944
#> SRR1362555     2  0.1629     0.8792 0.024 0.952 0.000 0.024
#> SRR1074526     2  0.5296     0.3348 0.496 0.496 0.000 0.008
#> SRR1326225     2  0.1716     0.8926 0.064 0.936 0.000 0.000
#> SRR1401933     4  0.1109     0.6833 0.004 0.000 0.028 0.968
#> SRR1324062     4  0.1059     0.6857 0.012 0.000 0.016 0.972
#> SRR1102296     1  0.7463     0.3689 0.456 0.000 0.180 0.364
#> SRR1085087     4  0.6147     0.2289 0.200 0.000 0.128 0.672
#> SRR1079046     1  0.5500    -0.3728 0.520 0.464 0.000 0.016
#> SRR1328339     3  0.7762    -0.2467 0.356 0.004 0.436 0.204
#> SRR1079782     2  0.4704     0.6737 0.204 0.764 0.004 0.028
#> SRR1092257     2  0.2859     0.8494 0.112 0.880 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0000    0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1429287     2  0.3547    0.82129 0.000 0.836 0.004 0.060 0.100
#> SRR1359238     1  0.5791   -0.05084 0.472 0.000 0.076 0.448 0.004
#> SRR1309597     3  0.0898    0.69485 0.000 0.000 0.972 0.020 0.008
#> SRR1441398     4  0.6278    0.36224 0.180 0.000 0.264 0.552 0.004
#> SRR1084055     2  0.0290    0.85554 0.000 0.992 0.000 0.000 0.008
#> SRR1417566     3  0.6508    0.48877 0.316 0.004 0.512 0.164 0.004
#> SRR1351857     1  0.5091    0.20117 0.624 0.000 0.044 0.328 0.004
#> SRR1487485     3  0.0833    0.69399 0.004 0.000 0.976 0.016 0.004
#> SRR1335875     3  0.5772    0.52936 0.104 0.004 0.592 0.300 0.000
#> SRR1073947     1  0.4015    0.21613 0.652 0.000 0.000 0.348 0.000
#> SRR1443483     3  0.1153    0.69721 0.004 0.000 0.964 0.024 0.008
#> SRR1346794     4  0.6227    0.31609 0.184 0.000 0.280 0.536 0.000
#> SRR1405245     4  0.6265    0.34949 0.160 0.000 0.296 0.540 0.004
#> SRR1409677     4  0.6666    0.01380 0.356 0.000 0.200 0.440 0.004
#> SRR1095549     4  0.6521    0.33000 0.308 0.000 0.192 0.496 0.004
#> SRR1323788     4  0.6717    0.32720 0.324 0.000 0.200 0.468 0.008
#> SRR1314054     2  0.3359    0.82826 0.000 0.848 0.004 0.052 0.096
#> SRR1077944     4  0.4630    0.09616 0.396 0.000 0.016 0.588 0.000
#> SRR1480587     2  0.1341    0.85701 0.000 0.944 0.000 0.000 0.056
#> SRR1311205     4  0.5940    0.32149 0.292 0.000 0.140 0.568 0.000
#> SRR1076369     1  0.6979   -0.06738 0.408 0.000 0.288 0.296 0.008
#> SRR1453549     3  0.4927    0.62307 0.052 0.000 0.692 0.248 0.008
#> SRR1345782     4  0.5974    0.33039 0.284 0.000 0.148 0.568 0.000
#> SRR1447850     2  0.5374    0.69196 0.000 0.696 0.012 0.164 0.128
#> SRR1391553     3  0.4329    0.57791 0.236 0.008 0.736 0.012 0.008
#> SRR1444156     2  0.0000    0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1471731     3  0.5077    0.62898 0.084 0.000 0.728 0.168 0.020
#> SRR1120987     1  0.4770    0.18955 0.716 0.000 0.024 0.232 0.028
#> SRR1477363     4  0.4655   -0.03856 0.476 0.000 0.012 0.512 0.000
#> SRR1391961     5  0.1981    0.87459 0.000 0.048 0.000 0.028 0.924
#> SRR1373879     3  0.3690    0.68824 0.020 0.000 0.780 0.200 0.000
#> SRR1318732     3  0.2339    0.69630 0.028 0.000 0.912 0.052 0.008
#> SRR1091404     1  0.4577    0.22471 0.716 0.000 0.028 0.244 0.012
#> SRR1402109     3  0.5083    0.62344 0.084 0.000 0.692 0.220 0.004
#> SRR1407336     3  0.3901    0.68714 0.024 0.000 0.776 0.196 0.004
#> SRR1097417     3  0.7289    0.39756 0.296 0.144 0.508 0.024 0.028
#> SRR1396227     1  0.4183    0.19950 0.668 0.000 0.008 0.324 0.000
#> SRR1400775     2  0.0693    0.85951 0.000 0.980 0.000 0.008 0.012
#> SRR1392861     4  0.7091   -0.03389 0.224 0.000 0.292 0.460 0.024
#> SRR1472929     5  0.4403    0.26510 0.000 0.436 0.000 0.004 0.560
#> SRR1436740     4  0.6942    0.11825 0.260 0.000 0.216 0.500 0.024
#> SRR1477057     2  0.5586    0.57395 0.016 0.640 0.004 0.060 0.280
#> SRR1311980     3  0.3613    0.70484 0.016 0.000 0.812 0.160 0.012
#> SRR1069400     3  0.2411    0.70754 0.000 0.000 0.884 0.108 0.008
#> SRR1351016     1  0.4659    0.01221 0.496 0.000 0.012 0.492 0.000
#> SRR1096291     1  0.6354   -0.03834 0.528 0.000 0.316 0.148 0.008
#> SRR1418145     1  0.5345    0.19740 0.696 0.000 0.096 0.192 0.016
#> SRR1488111     1  0.7375    0.00698 0.476 0.008 0.192 0.288 0.036
#> SRR1370495     1  0.5185    0.25567 0.756 0.012 0.108 0.092 0.032
#> SRR1352639     1  0.5076    0.24294 0.744 0.000 0.140 0.080 0.036
#> SRR1348911     3  0.5805    0.58991 0.160 0.000 0.640 0.192 0.008
#> SRR1467386     1  0.5102    0.14794 0.580 0.000 0.044 0.376 0.000
#> SRR1415956     4  0.5409    0.25423 0.316 0.000 0.080 0.604 0.000
#> SRR1500495     4  0.6325    0.36552 0.212 0.000 0.232 0.552 0.004
#> SRR1405099     4  0.4562   -0.06057 0.492 0.000 0.008 0.500 0.000
#> SRR1345585     3  0.1836    0.67539 0.040 0.000 0.936 0.016 0.008
#> SRR1093196     3  0.3648    0.68275 0.024 0.000 0.812 0.156 0.008
#> SRR1466006     2  0.0000    0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1351557     2  0.0324    0.85914 0.000 0.992 0.000 0.004 0.004
#> SRR1382687     1  0.6105   -0.09730 0.464 0.000 0.108 0.424 0.004
#> SRR1375549     1  0.4032    0.26447 0.792 0.000 0.020 0.164 0.024
#> SRR1101765     1  0.4495    0.25821 0.772 0.012 0.020 0.172 0.024
#> SRR1334461     5  0.1981    0.87459 0.000 0.048 0.000 0.028 0.924
#> SRR1094073     2  0.0000    0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1077549     1  0.5701    0.05568 0.568 0.000 0.100 0.332 0.000
#> SRR1440332     4  0.6630    0.32678 0.316 0.000 0.208 0.472 0.004
#> SRR1454177     4  0.7056    0.11023 0.260 0.000 0.240 0.476 0.024
#> SRR1082447     1  0.4818    0.04128 0.520 0.000 0.020 0.460 0.000
#> SRR1420043     3  0.5094    0.62412 0.084 0.000 0.712 0.192 0.012
#> SRR1432500     1  0.5113    0.19110 0.604 0.000 0.040 0.352 0.004
#> SRR1378045     2  0.8068   -0.05713 0.224 0.364 0.336 0.012 0.064
#> SRR1334200     2  0.3435    0.80594 0.000 0.820 0.004 0.020 0.156
#> SRR1069539     3  0.7046    0.33954 0.416 0.032 0.440 0.092 0.020
#> SRR1343031     3  0.5719    0.45976 0.120 0.000 0.596 0.284 0.000
#> SRR1319690     3  0.5290    0.38951 0.044 0.000 0.560 0.392 0.004
#> SRR1310604     2  0.2112    0.84942 0.000 0.908 0.004 0.004 0.084
#> SRR1327747     3  0.5615    0.39643 0.064 0.000 0.568 0.360 0.008
#> SRR1072456     2  0.1571    0.85549 0.000 0.936 0.004 0.000 0.060
#> SRR1367896     3  0.1357    0.70494 0.000 0.000 0.948 0.048 0.004
#> SRR1480107     1  0.4306    0.01988 0.508 0.000 0.000 0.492 0.000
#> SRR1377756     1  0.5281    0.12624 0.564 0.000 0.044 0.388 0.004
#> SRR1435272     4  0.6972    0.12521 0.248 0.000 0.232 0.496 0.024
#> SRR1089230     4  0.6145   -0.04706 0.440 0.000 0.112 0.444 0.004
#> SRR1389522     3  0.4088    0.53315 0.000 0.000 0.688 0.304 0.008
#> SRR1080600     2  0.1638    0.85461 0.000 0.932 0.004 0.000 0.064
#> SRR1086935     1  0.6173    0.11153 0.572 0.040 0.020 0.340 0.028
#> SRR1344060     5  0.2233    0.84562 0.000 0.104 0.004 0.000 0.892
#> SRR1467922     2  0.0000    0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1090984     4  0.6534    0.15427 0.388 0.000 0.196 0.416 0.000
#> SRR1456991     4  0.4653   -0.02786 0.472 0.000 0.012 0.516 0.000
#> SRR1085039     1  0.4331    0.16516 0.596 0.000 0.004 0.400 0.000
#> SRR1069303     1  0.1764    0.30702 0.928 0.000 0.008 0.064 0.000
#> SRR1091500     2  0.3264    0.73105 0.000 0.820 0.000 0.016 0.164
#> SRR1075198     2  0.3037    0.83549 0.000 0.864 0.004 0.032 0.100
#> SRR1086915     1  0.5363    0.17371 0.572 0.000 0.052 0.372 0.004
#> SRR1499503     2  0.0963    0.85958 0.000 0.964 0.000 0.000 0.036
#> SRR1094312     2  0.0162    0.85810 0.000 0.996 0.000 0.004 0.000
#> SRR1352437     1  0.2707    0.26385 0.860 0.000 0.008 0.132 0.000
#> SRR1436323     3  0.5648    0.54604 0.164 0.000 0.660 0.168 0.008
#> SRR1073507     1  0.4714    0.21327 0.644 0.000 0.032 0.324 0.000
#> SRR1401972     1  0.0898    0.30807 0.972 0.000 0.008 0.020 0.000
#> SRR1415510     2  0.1638    0.85461 0.000 0.932 0.004 0.000 0.064
#> SRR1327279     1  0.5597   -0.00245 0.488 0.000 0.060 0.448 0.004
#> SRR1086983     1  0.4697    0.21499 0.660 0.000 0.036 0.304 0.000
#> SRR1105174     4  0.4562   -0.06561 0.496 0.000 0.008 0.496 0.000
#> SRR1468893     1  0.4150    0.18633 0.612 0.000 0.000 0.388 0.000
#> SRR1362555     2  0.5030    0.74368 0.064 0.756 0.004 0.040 0.136
#> SRR1074526     5  0.3108    0.86492 0.028 0.064 0.004 0.024 0.880
#> SRR1326225     2  0.0000    0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1401933     1  0.5396    0.07950 0.532 0.000 0.048 0.416 0.004
#> SRR1324062     1  0.5176    0.11877 0.572 0.000 0.048 0.380 0.000
#> SRR1102296     1  0.4205    0.27939 0.804 0.000 0.020 0.068 0.108
#> SRR1085087     1  0.2358    0.30078 0.888 0.000 0.008 0.104 0.000
#> SRR1079046     5  0.2333    0.86505 0.016 0.040 0.000 0.028 0.916
#> SRR1328339     1  0.7999   -0.27521 0.408 0.016 0.344 0.152 0.080
#> SRR1079782     2  0.6658    0.59443 0.116 0.636 0.004 0.136 0.108
#> SRR1092257     2  0.5426    0.67453 0.000 0.676 0.004 0.160 0.160

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0508    0.83093 0.000 0.984 0.000 0.004 0.012 0.000
#> SRR1429287     2  0.5117    0.72402 0.000 0.692 0.028 0.208 0.048 0.024
#> SRR1359238     1  0.4426    0.34655 0.684 0.000 0.004 0.036 0.008 0.268
#> SRR1309597     3  0.1364    0.55405 0.020 0.000 0.952 0.012 0.000 0.016
#> SRR1441398     6  0.5332    0.10772 0.392 0.000 0.064 0.012 0.004 0.528
#> SRR1084055     2  0.0937    0.81779 0.000 0.960 0.000 0.000 0.040 0.000
#> SRR1417566     6  0.4974    0.09204 0.084 0.004 0.248 0.008 0.000 0.656
#> SRR1351857     1  0.2165    0.55643 0.912 0.000 0.004 0.024 0.008 0.052
#> SRR1487485     3  0.1377    0.55003 0.016 0.004 0.952 0.004 0.000 0.024
#> SRR1335875     6  0.6166   -0.12476 0.184 0.004 0.400 0.008 0.000 0.404
#> SRR1073947     1  0.1349    0.54858 0.940 0.000 0.000 0.004 0.000 0.056
#> SRR1443483     3  0.1251    0.55134 0.024 0.000 0.956 0.012 0.000 0.008
#> SRR1346794     6  0.5016    0.13464 0.392 0.000 0.076 0.000 0.000 0.532
#> SRR1405245     6  0.5342    0.10839 0.396 0.000 0.076 0.012 0.000 0.516
#> SRR1409677     1  0.5242    0.29377 0.668 0.000 0.084 0.204 0.000 0.044
#> SRR1095549     1  0.4097   -0.01525 0.504 0.000 0.008 0.000 0.000 0.488
#> SRR1323788     1  0.5251    0.01554 0.500 0.000 0.032 0.028 0.004 0.436
#> SRR1314054     2  0.5169    0.71053 0.000 0.684 0.028 0.216 0.048 0.024
#> SRR1077944     1  0.4126    0.01315 0.512 0.000 0.004 0.004 0.000 0.480
#> SRR1480587     2  0.1049    0.83059 0.000 0.960 0.000 0.008 0.032 0.000
#> SRR1311205     6  0.4253    0.03353 0.460 0.000 0.016 0.000 0.000 0.524
#> SRR1076369     6  0.4423    0.35034 0.136 0.000 0.112 0.012 0.000 0.740
#> SRR1453549     6  0.7410   -0.00145 0.296 0.000 0.268 0.116 0.000 0.320
#> SRR1345782     6  0.4482    0.04539 0.448 0.000 0.012 0.012 0.000 0.528
#> SRR1447850     2  0.6552    0.53529 0.000 0.528 0.032 0.304 0.060 0.076
#> SRR1391553     3  0.5313    0.48301 0.036 0.016 0.668 0.056 0.000 0.224
#> SRR1444156     2  0.0000    0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731     4  0.6844   -0.10476 0.096 0.000 0.368 0.404 0.000 0.132
#> SRR1120987     6  0.5855   -0.13984 0.396 0.000 0.000 0.192 0.000 0.412
#> SRR1477363     1  0.3383    0.39115 0.728 0.000 0.000 0.004 0.000 0.268
#> SRR1391961     5  0.1257    0.84563 0.000 0.020 0.000 0.000 0.952 0.028
#> SRR1373879     3  0.7155    0.35841 0.120 0.000 0.420 0.176 0.000 0.284
#> SRR1318732     3  0.2074    0.56302 0.036 0.000 0.912 0.004 0.000 0.048
#> SRR1091404     6  0.4788    0.08289 0.396 0.000 0.016 0.028 0.000 0.560
#> SRR1402109     3  0.7134    0.27655 0.096 0.000 0.416 0.244 0.000 0.244
#> SRR1407336     3  0.7145    0.33587 0.132 0.000 0.448 0.188 0.000 0.232
#> SRR1097417     3  0.6382    0.32302 0.012 0.152 0.488 0.016 0.004 0.328
#> SRR1396227     1  0.2544    0.52345 0.864 0.000 0.012 0.004 0.000 0.120
#> SRR1400775     2  0.1572    0.82972 0.000 0.936 0.000 0.028 0.036 0.000
#> SRR1392861     4  0.4273    0.81842 0.260 0.000 0.032 0.696 0.000 0.012
#> SRR1472929     5  0.4453    0.27119 0.000 0.424 0.000 0.012 0.552 0.012
#> SRR1436740     4  0.4383    0.80166 0.276 0.000 0.024 0.680 0.000 0.020
#> SRR1477057     2  0.5905    0.66255 0.000 0.624 0.028 0.212 0.112 0.024
#> SRR1311980     3  0.6227    0.40399 0.084 0.000 0.536 0.088 0.000 0.292
#> SRR1069400     3  0.3624    0.55220 0.060 0.000 0.784 0.000 0.000 0.156
#> SRR1351016     1  0.3565    0.32631 0.692 0.000 0.000 0.004 0.000 0.304
#> SRR1096291     6  0.5141    0.14731 0.080 0.000 0.196 0.044 0.000 0.680
#> SRR1418145     1  0.6089   -0.05760 0.436 0.000 0.028 0.128 0.000 0.408
#> SRR1488111     6  0.6158    0.08878 0.040 0.016 0.100 0.248 0.004 0.592
#> SRR1370495     6  0.5777    0.25639 0.260 0.000 0.060 0.072 0.004 0.604
#> SRR1352639     6  0.6129    0.24181 0.284 0.008 0.084 0.032 0.016 0.576
#> SRR1348911     3  0.5106    0.38958 0.044 0.004 0.568 0.016 0.000 0.368
#> SRR1467386     1  0.1921    0.55549 0.916 0.000 0.000 0.052 0.000 0.032
#> SRR1415956     6  0.3991   -0.00573 0.472 0.000 0.000 0.004 0.000 0.524
#> SRR1500495     6  0.5003    0.08811 0.420 0.000 0.036 0.012 0.004 0.528
#> SRR1405099     1  0.3628    0.39063 0.720 0.000 0.000 0.004 0.008 0.268
#> SRR1345585     3  0.1196    0.55269 0.008 0.000 0.952 0.000 0.000 0.040
#> SRR1093196     3  0.6603   -0.02835 0.068 0.000 0.404 0.396 0.000 0.132
#> SRR1466006     2  0.0260    0.83230 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1351557     2  0.0603    0.83503 0.000 0.980 0.000 0.016 0.004 0.000
#> SRR1382687     1  0.4018    0.45341 0.768 0.000 0.012 0.036 0.008 0.176
#> SRR1375549     6  0.4917    0.18864 0.320 0.000 0.020 0.036 0.004 0.620
#> SRR1101765     6  0.5467    0.20177 0.316 0.028 0.020 0.040 0.000 0.596
#> SRR1334461     5  0.1257    0.84563 0.000 0.020 0.000 0.000 0.952 0.028
#> SRR1094073     2  0.0000    0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549     1  0.3944    0.47024 0.768 0.000 0.008 0.060 0.000 0.164
#> SRR1440332     1  0.5885    0.05544 0.512 0.000 0.064 0.048 0.004 0.372
#> SRR1454177     4  0.4152    0.81947 0.264 0.000 0.024 0.700 0.000 0.012
#> SRR1082447     1  0.3788    0.40667 0.704 0.000 0.012 0.004 0.000 0.280
#> SRR1420043     3  0.6704   -0.05373 0.076 0.000 0.396 0.392 0.000 0.136
#> SRR1432500     1  0.2445    0.56004 0.896 0.000 0.004 0.060 0.008 0.032
#> SRR1378045     3  0.7807    0.02488 0.032 0.324 0.388 0.032 0.044 0.180
#> SRR1334200     2  0.4595    0.71099 0.000 0.696 0.012 0.068 0.224 0.000
#> SRR1069539     6  0.5739   -0.00796 0.024 0.024 0.256 0.080 0.000 0.616
#> SRR1343031     1  0.7253   -0.15071 0.352 0.000 0.228 0.100 0.000 0.320
#> SRR1319690     6  0.6205    0.18007 0.328 0.000 0.200 0.016 0.000 0.456
#> SRR1310604     2  0.3354    0.79671 0.000 0.824 0.020 0.028 0.128 0.000
#> SRR1327747     6  0.6118    0.17975 0.340 0.000 0.240 0.004 0.000 0.416
#> SRR1072456     2  0.1391    0.82881 0.000 0.944 0.000 0.016 0.040 0.000
#> SRR1367896     3  0.3207    0.57242 0.052 0.004 0.840 0.004 0.000 0.100
#> SRR1480107     1  0.3463    0.44760 0.748 0.000 0.000 0.004 0.008 0.240
#> SRR1377756     1  0.1036    0.56342 0.964 0.000 0.000 0.008 0.004 0.024
#> SRR1435272     4  0.4203    0.81863 0.260 0.000 0.028 0.700 0.000 0.012
#> SRR1089230     1  0.4663    0.24431 0.680 0.000 0.012 0.244 0.000 0.064
#> SRR1389522     3  0.5304    0.33274 0.200 0.000 0.600 0.000 0.000 0.200
#> SRR1080600     2  0.1801    0.82577 0.000 0.924 0.004 0.016 0.056 0.000
#> SRR1086935     6  0.6250   -0.35024 0.236 0.004 0.004 0.364 0.000 0.392
#> SRR1344060     5  0.1958    0.80022 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1467922     2  0.0000    0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984     6  0.4421    0.27265 0.256 0.000 0.056 0.004 0.000 0.684
#> SRR1456991     1  0.3807    0.22846 0.628 0.000 0.000 0.004 0.000 0.368
#> SRR1085039     1  0.2234    0.53840 0.872 0.000 0.000 0.004 0.000 0.124
#> SRR1069303     1  0.3699    0.25679 0.660 0.000 0.000 0.004 0.000 0.336
#> SRR1091500     2  0.5165    0.45260 0.000 0.600 0.000 0.072 0.312 0.016
#> SRR1075198     2  0.4858    0.75963 0.000 0.724 0.028 0.156 0.084 0.008
#> SRR1086915     1  0.2052    0.54839 0.912 0.000 0.000 0.028 0.004 0.056
#> SRR1499503     2  0.0891    0.83097 0.000 0.968 0.000 0.008 0.024 0.000
#> SRR1094312     2  0.0291    0.83421 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1352437     1  0.4131    0.16984 0.600 0.000 0.000 0.016 0.000 0.384
#> SRR1436323     3  0.7210    0.03555 0.160 0.000 0.420 0.276 0.000 0.144
#> SRR1073507     1  0.1367    0.55386 0.944 0.000 0.000 0.044 0.000 0.012
#> SRR1401972     1  0.3872    0.16653 0.604 0.000 0.000 0.004 0.000 0.392
#> SRR1415510     2  0.2257    0.82154 0.000 0.904 0.020 0.016 0.060 0.000
#> SRR1327279     1  0.3920    0.47922 0.772 0.000 0.008 0.036 0.008 0.176
#> SRR1086983     1  0.1845    0.54395 0.920 0.000 0.000 0.052 0.000 0.028
#> SRR1105174     1  0.3827    0.37793 0.680 0.000 0.000 0.004 0.008 0.308
#> SRR1468893     1  0.1152    0.55909 0.952 0.000 0.000 0.004 0.000 0.044
#> SRR1362555     2  0.5014    0.71269 0.008 0.684 0.012 0.096 0.200 0.000
#> SRR1074526     5  0.2681    0.80529 0.048 0.020 0.000 0.004 0.888 0.040
#> SRR1326225     2  0.0000    0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1401933     1  0.3756    0.44265 0.736 0.000 0.000 0.016 0.008 0.240
#> SRR1324062     1  0.3394    0.48752 0.804 0.000 0.000 0.052 0.000 0.144
#> SRR1102296     6  0.6255    0.17291 0.336 0.000 0.020 0.056 0.064 0.524
#> SRR1085087     1  0.3707    0.28963 0.680 0.000 0.000 0.008 0.000 0.312
#> SRR1079046     5  0.1772    0.84343 0.000 0.020 0.008 0.008 0.936 0.028
#> SRR1328339     6  0.5755    0.13790 0.060 0.008 0.200 0.016 0.056 0.660
#> SRR1079782     2  0.6576    0.56732 0.000 0.564 0.032 0.208 0.040 0.156
#> SRR1092257     2  0.5488    0.68803 0.000 0.652 0.028 0.232 0.064 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.895           0.928       0.971         0.4112 0.594   0.594
#> 3 3 0.472           0.656       0.818         0.5852 0.682   0.497
#> 4 4 0.576           0.707       0.827         0.1415 0.825   0.549
#> 5 5 0.600           0.529       0.767         0.0574 0.819   0.428
#> 6 6 0.579           0.427       0.692         0.0423 0.882   0.536

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000     0.9546 0.000 1.000
#> SRR1429287     2  0.0000     0.9546 0.000 1.000
#> SRR1359238     1  0.0000     0.9739 1.000 0.000
#> SRR1309597     1  0.0000     0.9739 1.000 0.000
#> SRR1441398     1  0.0000     0.9739 1.000 0.000
#> SRR1084055     2  0.0000     0.9546 0.000 1.000
#> SRR1417566     1  0.3584     0.9102 0.932 0.068
#> SRR1351857     1  0.0000     0.9739 1.000 0.000
#> SRR1487485     2  0.5629     0.8329 0.132 0.868
#> SRR1335875     1  0.0376     0.9707 0.996 0.004
#> SRR1073947     1  0.0000     0.9739 1.000 0.000
#> SRR1443483     1  0.0000     0.9739 1.000 0.000
#> SRR1346794     1  0.0000     0.9739 1.000 0.000
#> SRR1405245     1  0.0000     0.9739 1.000 0.000
#> SRR1409677     1  0.0000     0.9739 1.000 0.000
#> SRR1095549     1  0.0000     0.9739 1.000 0.000
#> SRR1323788     1  0.0000     0.9739 1.000 0.000
#> SRR1314054     2  0.0000     0.9546 0.000 1.000
#> SRR1077944     1  0.0000     0.9739 1.000 0.000
#> SRR1480587     2  0.0000     0.9546 0.000 1.000
#> SRR1311205     1  0.0000     0.9739 1.000 0.000
#> SRR1076369     1  0.0000     0.9739 1.000 0.000
#> SRR1453549     1  0.0000     0.9739 1.000 0.000
#> SRR1345782     1  0.0000     0.9739 1.000 0.000
#> SRR1447850     2  0.0000     0.9546 0.000 1.000
#> SRR1391553     2  0.0000     0.9546 0.000 1.000
#> SRR1444156     2  0.0000     0.9546 0.000 1.000
#> SRR1471731     1  0.5946     0.8185 0.856 0.144
#> SRR1120987     1  0.1843     0.9498 0.972 0.028
#> SRR1477363     1  0.0000     0.9739 1.000 0.000
#> SRR1391961     1  0.5946     0.8190 0.856 0.144
#> SRR1373879     1  0.0000     0.9739 1.000 0.000
#> SRR1318732     1  0.7056     0.7515 0.808 0.192
#> SRR1091404     1  0.0000     0.9739 1.000 0.000
#> SRR1402109     1  0.0000     0.9739 1.000 0.000
#> SRR1407336     1  0.0000     0.9739 1.000 0.000
#> SRR1097417     2  0.0376     0.9523 0.004 0.996
#> SRR1396227     1  0.0000     0.9739 1.000 0.000
#> SRR1400775     2  0.0000     0.9546 0.000 1.000
#> SRR1392861     1  0.0000     0.9739 1.000 0.000
#> SRR1472929     2  0.1414     0.9408 0.020 0.980
#> SRR1436740     1  0.0000     0.9739 1.000 0.000
#> SRR1477057     2  0.0672     0.9497 0.008 0.992
#> SRR1311980     1  0.0672     0.9675 0.992 0.008
#> SRR1069400     1  0.0000     0.9739 1.000 0.000
#> SRR1351016     1  0.0000     0.9739 1.000 0.000
#> SRR1096291     1  0.0000     0.9739 1.000 0.000
#> SRR1418145     1  0.0000     0.9739 1.000 0.000
#> SRR1488111     2  0.7950     0.6907 0.240 0.760
#> SRR1370495     1  0.0000     0.9739 1.000 0.000
#> SRR1352639     1  0.0000     0.9739 1.000 0.000
#> SRR1348911     1  0.2043     0.9464 0.968 0.032
#> SRR1467386     1  0.0000     0.9739 1.000 0.000
#> SRR1415956     1  0.0000     0.9739 1.000 0.000
#> SRR1500495     1  0.0000     0.9739 1.000 0.000
#> SRR1405099     1  0.0000     0.9739 1.000 0.000
#> SRR1345585     2  0.8555     0.6215 0.280 0.720
#> SRR1093196     1  0.0672     0.9673 0.992 0.008
#> SRR1466006     2  0.0000     0.9546 0.000 1.000
#> SRR1351557     2  0.0000     0.9546 0.000 1.000
#> SRR1382687     1  0.0000     0.9739 1.000 0.000
#> SRR1375549     1  0.0000     0.9739 1.000 0.000
#> SRR1101765     1  0.0000     0.9739 1.000 0.000
#> SRR1334461     1  0.0000     0.9739 1.000 0.000
#> SRR1094073     2  0.0000     0.9546 0.000 1.000
#> SRR1077549     1  0.0000     0.9739 1.000 0.000
#> SRR1440332     1  0.0000     0.9739 1.000 0.000
#> SRR1454177     1  0.0000     0.9739 1.000 0.000
#> SRR1082447     1  0.0000     0.9739 1.000 0.000
#> SRR1420043     1  0.0000     0.9739 1.000 0.000
#> SRR1432500     1  0.0000     0.9739 1.000 0.000
#> SRR1378045     2  0.0000     0.9546 0.000 1.000
#> SRR1334200     1  0.8081     0.6614 0.752 0.248
#> SRR1069539     1  0.9993     0.0188 0.516 0.484
#> SRR1343031     1  0.0000     0.9739 1.000 0.000
#> SRR1319690     1  0.0000     0.9739 1.000 0.000
#> SRR1310604     2  0.0000     0.9546 0.000 1.000
#> SRR1327747     1  0.0000     0.9739 1.000 0.000
#> SRR1072456     2  0.0000     0.9546 0.000 1.000
#> SRR1367896     1  0.8861     0.5535 0.696 0.304
#> SRR1480107     1  0.0000     0.9739 1.000 0.000
#> SRR1377756     1  0.0000     0.9739 1.000 0.000
#> SRR1435272     1  0.0000     0.9739 1.000 0.000
#> SRR1089230     1  0.0000     0.9739 1.000 0.000
#> SRR1389522     1  0.0000     0.9739 1.000 0.000
#> SRR1080600     2  0.0000     0.9546 0.000 1.000
#> SRR1086935     2  0.9963     0.1577 0.464 0.536
#> SRR1344060     1  0.9732     0.3008 0.596 0.404
#> SRR1467922     2  0.0000     0.9546 0.000 1.000
#> SRR1090984     1  0.0000     0.9739 1.000 0.000
#> SRR1456991     1  0.0000     0.9739 1.000 0.000
#> SRR1085039     1  0.0000     0.9739 1.000 0.000
#> SRR1069303     1  0.0000     0.9739 1.000 0.000
#> SRR1091500     2  0.0000     0.9546 0.000 1.000
#> SRR1075198     2  0.0000     0.9546 0.000 1.000
#> SRR1086915     1  0.0000     0.9739 1.000 0.000
#> SRR1499503     2  0.0000     0.9546 0.000 1.000
#> SRR1094312     2  0.0000     0.9546 0.000 1.000
#> SRR1352437     1  0.0000     0.9739 1.000 0.000
#> SRR1436323     1  0.0000     0.9739 1.000 0.000
#> SRR1073507     1  0.0000     0.9739 1.000 0.000
#> SRR1401972     1  0.0000     0.9739 1.000 0.000
#> SRR1415510     2  0.0000     0.9546 0.000 1.000
#> SRR1327279     1  0.0000     0.9739 1.000 0.000
#> SRR1086983     1  0.0000     0.9739 1.000 0.000
#> SRR1105174     1  0.0000     0.9739 1.000 0.000
#> SRR1468893     1  0.0000     0.9739 1.000 0.000
#> SRR1362555     2  0.7883     0.6963 0.236 0.764
#> SRR1074526     1  0.0000     0.9739 1.000 0.000
#> SRR1326225     2  0.0000     0.9546 0.000 1.000
#> SRR1401933     1  0.0000     0.9739 1.000 0.000
#> SRR1324062     1  0.0000     0.9739 1.000 0.000
#> SRR1102296     1  0.0000     0.9739 1.000 0.000
#> SRR1085087     1  0.0000     0.9739 1.000 0.000
#> SRR1079046     1  0.0000     0.9739 1.000 0.000
#> SRR1328339     1  0.0000     0.9739 1.000 0.000
#> SRR1079782     2  0.0000     0.9546 0.000 1.000
#> SRR1092257     2  0.0938     0.9470 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.0237     0.9261 0.004 0.996 0.000
#> SRR1429287     2  0.0237     0.9255 0.000 0.996 0.004
#> SRR1359238     3  0.4399     0.6861 0.188 0.000 0.812
#> SRR1309597     3  0.5138     0.5344 0.252 0.000 0.748
#> SRR1441398     3  0.6095     0.2895 0.392 0.000 0.608
#> SRR1084055     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1417566     2  0.8345     0.4292 0.116 0.596 0.288
#> SRR1351857     3  0.5363     0.6077 0.276 0.000 0.724
#> SRR1487485     3  0.5327     0.5139 0.000 0.272 0.728
#> SRR1335875     3  0.7232     0.5185 0.116 0.172 0.712
#> SRR1073947     1  0.2537     0.7369 0.920 0.000 0.080
#> SRR1443483     3  0.2682     0.6732 0.076 0.004 0.920
#> SRR1346794     3  0.6095     0.2911 0.392 0.000 0.608
#> SRR1405245     3  0.5968     0.3510 0.364 0.000 0.636
#> SRR1409677     3  0.4555     0.6765 0.200 0.000 0.800
#> SRR1095549     3  0.5465     0.4800 0.288 0.000 0.712
#> SRR1323788     3  0.4291     0.6187 0.180 0.000 0.820
#> SRR1314054     2  0.0237     0.9255 0.000 0.996 0.004
#> SRR1077944     1  0.4931     0.5922 0.768 0.000 0.232
#> SRR1480587     2  0.0237     0.9261 0.004 0.996 0.000
#> SRR1311205     3  0.5905     0.3846 0.352 0.000 0.648
#> SRR1076369     1  0.5988     0.4095 0.632 0.000 0.368
#> SRR1453549     3  0.2165     0.7005 0.064 0.000 0.936
#> SRR1345782     3  0.6126     0.2713 0.400 0.000 0.600
#> SRR1447850     2  0.0424     0.9242 0.000 0.992 0.008
#> SRR1391553     2  0.2356     0.8782 0.000 0.928 0.072
#> SRR1444156     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1471731     3  0.2261     0.6821 0.000 0.068 0.932
#> SRR1120987     3  0.6483     0.2420 0.452 0.004 0.544
#> SRR1477363     1  0.5216     0.4939 0.740 0.000 0.260
#> SRR1391961     1  0.2400     0.7548 0.932 0.004 0.064
#> SRR1373879     3  0.0424     0.6939 0.008 0.000 0.992
#> SRR1318732     3  0.7189     0.4253 0.292 0.052 0.656
#> SRR1091404     1  0.1289     0.7647 0.968 0.000 0.032
#> SRR1402109     3  0.1031     0.6903 0.024 0.000 0.976
#> SRR1407336     3  0.0237     0.6928 0.004 0.000 0.996
#> SRR1097417     2  0.7323     0.6153 0.104 0.700 0.196
#> SRR1396227     1  0.5058     0.5420 0.756 0.000 0.244
#> SRR1400775     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1392861     3  0.4399     0.6819 0.188 0.000 0.812
#> SRR1472929     1  0.6007     0.6308 0.764 0.044 0.192
#> SRR1436740     3  0.4555     0.6765 0.200 0.000 0.800
#> SRR1477057     2  0.0424     0.9236 0.008 0.992 0.000
#> SRR1311980     3  0.1860     0.6828 0.052 0.000 0.948
#> SRR1069400     3  0.3116     0.6591 0.108 0.000 0.892
#> SRR1351016     1  0.6225     0.0162 0.568 0.000 0.432
#> SRR1096291     3  0.4504     0.6786 0.196 0.000 0.804
#> SRR1418145     3  0.6180     0.3399 0.416 0.000 0.584
#> SRR1488111     2  0.4586     0.8092 0.048 0.856 0.096
#> SRR1370495     1  0.2537     0.7460 0.920 0.000 0.080
#> SRR1352639     1  0.1753     0.7549 0.952 0.000 0.048
#> SRR1348911     3  0.7569     0.4578 0.088 0.248 0.664
#> SRR1467386     3  0.5016     0.6646 0.240 0.000 0.760
#> SRR1415956     1  0.4346     0.6701 0.816 0.000 0.184
#> SRR1500495     3  0.6168     0.2416 0.412 0.000 0.588
#> SRR1405099     1  0.1753     0.7614 0.952 0.000 0.048
#> SRR1345585     3  0.5536     0.5366 0.012 0.236 0.752
#> SRR1093196     3  0.0661     0.6940 0.004 0.008 0.988
#> SRR1466006     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1351557     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1382687     3  0.4796     0.6781 0.220 0.000 0.780
#> SRR1375549     1  0.1529     0.7518 0.960 0.000 0.040
#> SRR1101765     1  0.2165     0.7384 0.936 0.000 0.064
#> SRR1334461     1  0.1753     0.7611 0.952 0.000 0.048
#> SRR1094073     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1077549     3  0.4452     0.6806 0.192 0.000 0.808
#> SRR1440332     3  0.2356     0.6828 0.072 0.000 0.928
#> SRR1454177     3  0.4452     0.6806 0.192 0.000 0.808
#> SRR1082447     1  0.0892     0.7639 0.980 0.000 0.020
#> SRR1420043     3  0.1031     0.6971 0.024 0.000 0.976
#> SRR1432500     3  0.4842     0.6736 0.224 0.000 0.776
#> SRR1378045     2  0.3340     0.8312 0.000 0.880 0.120
#> SRR1334200     1  0.6067     0.5904 0.736 0.236 0.028
#> SRR1069539     2  0.6460     0.2070 0.004 0.556 0.440
#> SRR1343031     3  0.2261     0.6769 0.068 0.000 0.932
#> SRR1319690     3  0.5678     0.4368 0.316 0.000 0.684
#> SRR1310604     2  0.0892     0.9183 0.020 0.980 0.000
#> SRR1327747     3  0.3752     0.6417 0.144 0.000 0.856
#> SRR1072456     2  0.0424     0.9247 0.008 0.992 0.000
#> SRR1367896     3  0.5764     0.6033 0.076 0.124 0.800
#> SRR1480107     1  0.1163     0.7669 0.972 0.000 0.028
#> SRR1377756     3  0.5465     0.6225 0.288 0.000 0.712
#> SRR1435272     3  0.4452     0.6806 0.192 0.000 0.808
#> SRR1089230     3  0.4654     0.6721 0.208 0.000 0.792
#> SRR1389522     3  0.6008     0.3384 0.372 0.000 0.628
#> SRR1080600     2  0.0237     0.9261 0.004 0.996 0.000
#> SRR1086935     3  0.6807     0.6327 0.172 0.092 0.736
#> SRR1344060     1  0.6562     0.5448 0.700 0.264 0.036
#> SRR1467922     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1090984     1  0.5327     0.5913 0.728 0.000 0.272
#> SRR1456991     1  0.4121     0.6801 0.832 0.000 0.168
#> SRR1085039     1  0.3038     0.7217 0.896 0.000 0.104
#> SRR1069303     1  0.5254     0.5010 0.736 0.000 0.264
#> SRR1091500     2  0.3983     0.7990 0.144 0.852 0.004
#> SRR1075198     2  0.0237     0.9261 0.004 0.996 0.000
#> SRR1086915     3  0.4842     0.6601 0.224 0.000 0.776
#> SRR1499503     2  0.0237     0.9261 0.004 0.996 0.000
#> SRR1094312     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1352437     3  0.6252     0.2664 0.444 0.000 0.556
#> SRR1436323     3  0.0892     0.6971 0.020 0.000 0.980
#> SRR1073507     3  0.5926     0.5151 0.356 0.000 0.644
#> SRR1401972     1  0.5621     0.4132 0.692 0.000 0.308
#> SRR1415510     2  0.0892     0.9182 0.020 0.980 0.000
#> SRR1327279     3  0.5098     0.6735 0.248 0.000 0.752
#> SRR1086983     3  0.4750     0.6664 0.216 0.000 0.784
#> SRR1105174     1  0.0592     0.7663 0.988 0.000 0.012
#> SRR1468893     1  0.3816     0.6799 0.852 0.000 0.148
#> SRR1362555     1  0.6274     0.1023 0.544 0.456 0.000
#> SRR1074526     1  0.0237     0.7647 0.996 0.000 0.004
#> SRR1326225     2  0.0000     0.9263 0.000 1.000 0.000
#> SRR1401933     3  0.4842     0.6653 0.224 0.000 0.776
#> SRR1324062     3  0.4702     0.6694 0.212 0.000 0.788
#> SRR1102296     1  0.0592     0.7645 0.988 0.000 0.012
#> SRR1085087     1  0.6267     0.0199 0.548 0.000 0.452
#> SRR1079046     1  0.0237     0.7647 0.996 0.000 0.004
#> SRR1328339     1  0.4555     0.6439 0.800 0.000 0.200
#> SRR1079782     2  0.0892     0.9169 0.000 0.980 0.020
#> SRR1092257     2  0.5473     0.7455 0.140 0.808 0.052

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.0592     0.8759 0.000 0.984 0.016 0.000
#> SRR1429287     2  0.0779     0.8780 0.004 0.980 0.000 0.016
#> SRR1359238     4  0.2973     0.7582 0.000 0.000 0.144 0.856
#> SRR1309597     3  0.3432     0.7363 0.008 0.004 0.848 0.140
#> SRR1441398     3  0.3764     0.7439 0.172 0.000 0.816 0.012
#> SRR1084055     2  0.0779     0.8772 0.004 0.980 0.016 0.000
#> SRR1417566     3  0.7409     0.2567 0.144 0.404 0.448 0.004
#> SRR1351857     4  0.1488     0.8174 0.032 0.000 0.012 0.956
#> SRR1487485     3  0.4964     0.6526 0.000 0.032 0.724 0.244
#> SRR1335875     3  0.3854     0.6864 0.012 0.008 0.828 0.152
#> SRR1073947     1  0.1042     0.8249 0.972 0.000 0.008 0.020
#> SRR1443483     3  0.3351     0.7298 0.000 0.008 0.844 0.148
#> SRR1346794     3  0.5123     0.7046 0.232 0.000 0.724 0.044
#> SRR1405245     3  0.3708     0.7546 0.148 0.000 0.832 0.020
#> SRR1409677     4  0.0188     0.8177 0.000 0.000 0.004 0.996
#> SRR1095549     3  0.6353     0.6910 0.208 0.000 0.652 0.140
#> SRR1323788     4  0.7279    -0.0597 0.148 0.000 0.408 0.444
#> SRR1314054     2  0.3495     0.8654 0.000 0.844 0.140 0.016
#> SRR1077944     1  0.6071     0.5712 0.684 0.000 0.172 0.144
#> SRR1480587     2  0.2216     0.8548 0.000 0.908 0.092 0.000
#> SRR1311205     3  0.5766     0.7174 0.192 0.000 0.704 0.104
#> SRR1076369     3  0.4149     0.7325 0.168 0.028 0.804 0.000
#> SRR1453549     4  0.3074     0.7436 0.000 0.000 0.152 0.848
#> SRR1345782     3  0.4245     0.7323 0.196 0.000 0.784 0.020
#> SRR1447850     2  0.4841     0.8327 0.000 0.780 0.140 0.080
#> SRR1391553     2  0.4746     0.6111 0.000 0.632 0.368 0.000
#> SRR1444156     2  0.2921     0.8676 0.000 0.860 0.140 0.000
#> SRR1471731     4  0.1940     0.7959 0.000 0.000 0.076 0.924
#> SRR1120987     4  0.2412     0.7767 0.008 0.084 0.000 0.908
#> SRR1477363     1  0.6566     0.5248 0.624 0.000 0.140 0.236
#> SRR1391961     1  0.1209     0.8145 0.964 0.032 0.004 0.000
#> SRR1373879     4  0.4985     0.0366 0.000 0.000 0.468 0.532
#> SRR1318732     3  0.3428     0.7530 0.144 0.000 0.844 0.012
#> SRR1091404     1  0.0592     0.8211 0.984 0.000 0.016 0.000
#> SRR1402109     3  0.4992     0.1659 0.000 0.000 0.524 0.476
#> SRR1407336     4  0.4522     0.4511 0.000 0.000 0.320 0.680
#> SRR1097417     3  0.2198     0.6684 0.008 0.072 0.920 0.000
#> SRR1396227     1  0.5388     0.1320 0.532 0.000 0.012 0.456
#> SRR1400775     2  0.2921     0.8676 0.000 0.860 0.140 0.000
#> SRR1392861     4  0.0000     0.8172 0.000 0.000 0.000 1.000
#> SRR1472929     3  0.7220     0.3308 0.260 0.196 0.544 0.000
#> SRR1436740     4  0.0188     0.8169 0.004 0.000 0.000 0.996
#> SRR1477057     2  0.3046     0.8786 0.004 0.884 0.096 0.016
#> SRR1311980     3  0.5097     0.1741 0.000 0.004 0.568 0.428
#> SRR1069400     3  0.3123     0.7267 0.000 0.000 0.844 0.156
#> SRR1351016     1  0.4389     0.7373 0.812 0.000 0.116 0.072
#> SRR1096291     4  0.0469     0.8178 0.000 0.000 0.012 0.988
#> SRR1418145     4  0.2610     0.7750 0.012 0.088 0.000 0.900
#> SRR1488111     2  0.5060     0.3634 0.004 0.584 0.000 0.412
#> SRR1370495     1  0.3495     0.7419 0.844 0.140 0.016 0.000
#> SRR1352639     1  0.5530     0.7387 0.760 0.144 0.024 0.072
#> SRR1348911     3  0.0927     0.7324 0.000 0.008 0.976 0.016
#> SRR1467386     4  0.4050     0.7217 0.168 0.000 0.024 0.808
#> SRR1415956     1  0.3726     0.6308 0.788 0.000 0.212 0.000
#> SRR1500495     3  0.3852     0.7402 0.180 0.000 0.808 0.012
#> SRR1405099     1  0.1510     0.8203 0.956 0.000 0.028 0.016
#> SRR1345585     3  0.4185     0.7498 0.036 0.012 0.832 0.120
#> SRR1093196     4  0.3266     0.7192 0.000 0.000 0.168 0.832
#> SRR1466006     2  0.0817     0.8757 0.000 0.976 0.024 0.000
#> SRR1351557     2  0.1118     0.8832 0.000 0.964 0.036 0.000
#> SRR1382687     4  0.4586     0.7083 0.136 0.000 0.068 0.796
#> SRR1375549     1  0.1398     0.8226 0.956 0.004 0.000 0.040
#> SRR1101765     1  0.0188     0.8231 0.996 0.004 0.000 0.000
#> SRR1334461     1  0.2654     0.7725 0.888 0.108 0.004 0.000
#> SRR1094073     2  0.2647     0.8746 0.000 0.880 0.120 0.000
#> SRR1077549     4  0.0469     0.8170 0.000 0.000 0.012 0.988
#> SRR1440332     4  0.5172     0.2633 0.008 0.000 0.404 0.588
#> SRR1454177     4  0.0000     0.8172 0.000 0.000 0.000 1.000
#> SRR1082447     1  0.0895     0.8248 0.976 0.000 0.004 0.020
#> SRR1420043     4  0.3266     0.7258 0.000 0.000 0.168 0.832
#> SRR1432500     4  0.2466     0.7922 0.004 0.000 0.096 0.900
#> SRR1378045     3  0.3649     0.5038 0.000 0.204 0.796 0.000
#> SRR1334200     1  0.3946     0.7212 0.812 0.168 0.020 0.000
#> SRR1069539     4  0.7228     0.2643 0.004 0.332 0.140 0.524
#> SRR1343031     3  0.4564     0.5360 0.000 0.000 0.672 0.328
#> SRR1319690     3  0.3999     0.7590 0.140 0.000 0.824 0.036
#> SRR1310604     2  0.3142     0.8176 0.008 0.860 0.132 0.000
#> SRR1327747     3  0.4951     0.6915 0.044 0.000 0.744 0.212
#> SRR1072456     2  0.2266     0.8587 0.004 0.912 0.084 0.000
#> SRR1367896     3  0.3208     0.7300 0.000 0.004 0.848 0.148
#> SRR1480107     1  0.0376     0.8236 0.992 0.000 0.004 0.004
#> SRR1377756     4  0.3494     0.7326 0.172 0.000 0.004 0.824
#> SRR1435272     4  0.0000     0.8172 0.000 0.000 0.000 1.000
#> SRR1089230     4  0.0336     0.8173 0.008 0.000 0.000 0.992
#> SRR1389522     3  0.4150     0.7575 0.076 0.056 0.848 0.020
#> SRR1080600     2  0.3528     0.7596 0.000 0.808 0.192 0.000
#> SRR1086935     4  0.1398     0.8032 0.000 0.040 0.004 0.956
#> SRR1344060     1  0.4175     0.6969 0.784 0.200 0.016 0.000
#> SRR1467922     2  0.3024     0.8672 0.000 0.852 0.148 0.000
#> SRR1090984     3  0.5447     0.2901 0.460 0.008 0.528 0.004
#> SRR1456991     1  0.3873     0.6069 0.772 0.000 0.228 0.000
#> SRR1085039     1  0.1820     0.8200 0.944 0.000 0.020 0.036
#> SRR1069303     1  0.4040     0.6701 0.752 0.000 0.000 0.248
#> SRR1091500     2  0.4746     0.8492 0.064 0.792 0.140 0.004
#> SRR1075198     2  0.0707     0.8755 0.000 0.980 0.020 0.000
#> SRR1086915     4  0.0469     0.8174 0.012 0.000 0.000 0.988
#> SRR1499503     2  0.2216     0.8531 0.000 0.908 0.092 0.000
#> SRR1094312     2  0.2011     0.8820 0.000 0.920 0.080 0.000
#> SRR1352437     4  0.4821     0.6961 0.160 0.008 0.048 0.784
#> SRR1436323     4  0.1716     0.8021 0.000 0.000 0.064 0.936
#> SRR1073507     4  0.3801     0.6854 0.220 0.000 0.000 0.780
#> SRR1401972     1  0.4482     0.6416 0.728 0.008 0.000 0.264
#> SRR1415510     2  0.2589     0.8653 0.000 0.884 0.116 0.000
#> SRR1327279     4  0.4937     0.6963 0.064 0.000 0.172 0.764
#> SRR1086983     4  0.0707     0.8165 0.020 0.000 0.000 0.980
#> SRR1105174     1  0.1209     0.8172 0.964 0.000 0.032 0.004
#> SRR1468893     1  0.3088     0.7721 0.864 0.000 0.008 0.128
#> SRR1362555     1  0.5339     0.4487 0.624 0.356 0.020 0.000
#> SRR1074526     1  0.0188     0.8231 0.996 0.004 0.000 0.000
#> SRR1326225     2  0.2973     0.8677 0.000 0.856 0.144 0.000
#> SRR1401933     4  0.2081     0.7963 0.084 0.000 0.000 0.916
#> SRR1324062     4  0.0524     0.8188 0.008 0.000 0.004 0.988
#> SRR1102296     1  0.0592     0.8251 0.984 0.000 0.000 0.016
#> SRR1085087     4  0.5125     0.3055 0.388 0.008 0.000 0.604
#> SRR1079046     1  0.0188     0.8231 0.996 0.004 0.000 0.000
#> SRR1328339     3  0.5172     0.4251 0.404 0.008 0.588 0.000
#> SRR1079782     2  0.1584     0.8715 0.000 0.952 0.012 0.036
#> SRR1092257     2  0.4346     0.8396 0.004 0.824 0.076 0.096

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     5  0.3999    0.31705 0.000 0.344 0.000 0.000 0.656
#> SRR1429287     5  0.4636    0.35485 0.000 0.308 0.004 0.024 0.664
#> SRR1359238     4  0.1792    0.80427 0.000 0.000 0.084 0.916 0.000
#> SRR1309597     3  0.0486    0.67190 0.004 0.000 0.988 0.004 0.004
#> SRR1441398     3  0.4196    0.49208 0.356 0.000 0.640 0.004 0.000
#> SRR1084055     5  0.2864    0.52607 0.000 0.136 0.012 0.000 0.852
#> SRR1417566     3  0.6478    0.50250 0.152 0.300 0.536 0.004 0.008
#> SRR1351857     4  0.3607    0.66203 0.004 0.000 0.000 0.752 0.244
#> SRR1487485     3  0.1845    0.67168 0.000 0.016 0.928 0.056 0.000
#> SRR1335875     3  0.5793    0.45950 0.352 0.068 0.568 0.008 0.004
#> SRR1073947     1  0.0703    0.71949 0.976 0.000 0.000 0.000 0.024
#> SRR1443483     3  0.0865    0.66077 0.000 0.000 0.972 0.004 0.024
#> SRR1346794     3  0.5064    0.35003 0.416 0.000 0.552 0.004 0.028
#> SRR1405245     3  0.4196    0.49093 0.356 0.000 0.640 0.004 0.000
#> SRR1409677     4  0.0703    0.82869 0.000 0.000 0.000 0.976 0.024
#> SRR1095549     3  0.6308    0.42965 0.284 0.000 0.588 0.044 0.084
#> SRR1323788     3  0.5925    0.39081 0.384 0.000 0.528 0.076 0.012
#> SRR1314054     2  0.1341    0.75557 0.000 0.944 0.000 0.000 0.056
#> SRR1077944     1  0.2127    0.67474 0.892 0.000 0.108 0.000 0.000
#> SRR1480587     2  0.5597    0.06937 0.000 0.488 0.072 0.000 0.440
#> SRR1311205     3  0.4397    0.35465 0.432 0.000 0.564 0.004 0.000
#> SRR1076369     5  0.5882    0.43054 0.148 0.000 0.264 0.000 0.588
#> SRR1453549     3  0.5403    0.20424 0.056 0.000 0.488 0.456 0.000
#> SRR1345782     3  0.3752    0.56463 0.292 0.000 0.708 0.000 0.000
#> SRR1447850     2  0.0963    0.73868 0.000 0.964 0.000 0.036 0.000
#> SRR1391553     2  0.1408    0.71245 0.008 0.948 0.044 0.000 0.000
#> SRR1444156     2  0.0000    0.74757 0.000 1.000 0.000 0.000 0.000
#> SRR1471731     4  0.2886    0.75190 0.008 0.000 0.148 0.844 0.000
#> SRR1120987     4  0.2011    0.80029 0.004 0.000 0.000 0.908 0.088
#> SRR1477363     1  0.3274    0.55291 0.780 0.000 0.220 0.000 0.000
#> SRR1391961     1  0.4283    0.17284 0.544 0.000 0.000 0.000 0.456
#> SRR1373879     3  0.4621    0.29119 0.008 0.000 0.576 0.412 0.004
#> SRR1318732     3  0.2393    0.67514 0.080 0.000 0.900 0.004 0.016
#> SRR1091404     1  0.3957    0.50623 0.712 0.000 0.008 0.000 0.280
#> SRR1402109     3  0.4545    0.18157 0.004 0.000 0.560 0.432 0.004
#> SRR1407336     4  0.2519    0.79548 0.000 0.000 0.100 0.884 0.016
#> SRR1097417     3  0.3636    0.48710 0.000 0.000 0.728 0.000 0.272
#> SRR1396227     1  0.1153    0.71556 0.964 0.000 0.024 0.004 0.008
#> SRR1400775     2  0.0794    0.75763 0.000 0.972 0.000 0.000 0.028
#> SRR1392861     4  0.0162    0.82900 0.000 0.000 0.004 0.996 0.000
#> SRR1472929     5  0.3918    0.52326 0.008 0.008 0.232 0.000 0.752
#> SRR1436740     4  0.0324    0.82933 0.004 0.000 0.000 0.992 0.004
#> SRR1477057     2  0.5013    0.57313 0.080 0.680 0.000 0.000 0.240
#> SRR1311980     3  0.6689    0.54413 0.264 0.116 0.568 0.052 0.000
#> SRR1069400     3  0.1704    0.63391 0.000 0.000 0.928 0.004 0.068
#> SRR1351016     1  0.3231    0.58508 0.800 0.000 0.196 0.000 0.004
#> SRR1096291     4  0.3366    0.70195 0.000 0.000 0.004 0.784 0.212
#> SRR1418145     4  0.3816    0.54533 0.000 0.000 0.000 0.696 0.304
#> SRR1488111     4  0.5754    0.33132 0.000 0.260 0.000 0.604 0.136
#> SRR1370495     5  0.2929    0.53278 0.180 0.000 0.000 0.000 0.820
#> SRR1352639     5  0.4504    0.26436 0.428 0.000 0.000 0.008 0.564
#> SRR1348911     3  0.4237    0.64662 0.152 0.076 0.772 0.000 0.000
#> SRR1467386     1  0.4740    0.08322 0.516 0.000 0.016 0.468 0.000
#> SRR1415956     1  0.3160    0.59127 0.808 0.000 0.188 0.000 0.004
#> SRR1500495     3  0.4182    0.42205 0.400 0.000 0.600 0.000 0.000
#> SRR1405099     1  0.1270    0.70531 0.948 0.000 0.052 0.000 0.000
#> SRR1345585     3  0.0609    0.66556 0.000 0.000 0.980 0.000 0.020
#> SRR1093196     4  0.2471    0.76647 0.000 0.000 0.136 0.864 0.000
#> SRR1466006     5  0.5320    0.22255 0.000 0.368 0.060 0.000 0.572
#> SRR1351557     2  0.4101    0.41226 0.000 0.628 0.000 0.000 0.372
#> SRR1382687     1  0.6019    0.04711 0.528 0.000 0.368 0.096 0.008
#> SRR1375549     1  0.2411    0.69908 0.884 0.000 0.000 0.008 0.108
#> SRR1101765     5  0.5558    0.11067 0.360 0.000 0.000 0.080 0.560
#> SRR1334461     5  0.4307   -0.10549 0.496 0.000 0.000 0.000 0.504
#> SRR1094073     2  0.3730    0.57189 0.000 0.712 0.000 0.000 0.288
#> SRR1077549     4  0.0671    0.82847 0.004 0.000 0.016 0.980 0.000
#> SRR1440332     3  0.5071    0.26999 0.036 0.000 0.540 0.424 0.000
#> SRR1454177     4  0.0000    0.82957 0.000 0.000 0.000 1.000 0.000
#> SRR1082447     1  0.1043    0.71738 0.960 0.000 0.000 0.000 0.040
#> SRR1420043     4  0.2561    0.74788 0.000 0.000 0.144 0.856 0.000
#> SRR1432500     4  0.1205    0.82497 0.004 0.000 0.040 0.956 0.000
#> SRR1378045     3  0.4446    0.11741 0.000 0.476 0.520 0.000 0.004
#> SRR1334200     5  0.1205    0.55438 0.040 0.000 0.000 0.004 0.956
#> SRR1069539     5  0.4067    0.45500 0.000 0.004 0.020 0.228 0.748
#> SRR1343031     4  0.5114   -0.00557 0.000 0.000 0.476 0.488 0.036
#> SRR1319690     3  0.2731    0.67069 0.104 0.000 0.876 0.016 0.004
#> SRR1310604     5  0.2233    0.56013 0.000 0.016 0.080 0.000 0.904
#> SRR1327747     3  0.3142    0.65620 0.004 0.000 0.856 0.108 0.032
#> SRR1072456     5  0.6264    0.20894 0.000 0.344 0.160 0.000 0.496
#> SRR1367896     3  0.1365    0.65724 0.004 0.000 0.952 0.004 0.040
#> SRR1480107     1  0.1041    0.71847 0.964 0.000 0.004 0.000 0.032
#> SRR1377756     1  0.4401    0.53205 0.684 0.000 0.004 0.296 0.016
#> SRR1435272     4  0.0000    0.82957 0.000 0.000 0.000 1.000 0.000
#> SRR1089230     4  0.1557    0.82096 0.008 0.000 0.000 0.940 0.052
#> SRR1389522     3  0.1168    0.66425 0.008 0.000 0.960 0.000 0.032
#> SRR1080600     5  0.3696    0.53337 0.000 0.016 0.212 0.000 0.772
#> SRR1086935     4  0.0671    0.82935 0.004 0.000 0.000 0.980 0.016
#> SRR1344060     5  0.2069    0.54792 0.076 0.012 0.000 0.000 0.912
#> SRR1467922     2  0.0000    0.74757 0.000 1.000 0.000 0.000 0.000
#> SRR1090984     1  0.4684   -0.09910 0.536 0.004 0.452 0.000 0.008
#> SRR1456991     1  0.3333    0.56147 0.788 0.000 0.208 0.000 0.004
#> SRR1085039     1  0.3284    0.66643 0.828 0.000 0.024 0.000 0.148
#> SRR1069303     1  0.1117    0.71997 0.964 0.000 0.000 0.016 0.020
#> SRR1091500     2  0.1197    0.73583 0.000 0.952 0.000 0.000 0.048
#> SRR1075198     5  0.5120    0.42558 0.000 0.252 0.056 0.012 0.680
#> SRR1086915     4  0.1124    0.82663 0.004 0.000 0.000 0.960 0.036
#> SRR1499503     5  0.6148    0.29960 0.000 0.304 0.160 0.000 0.536
#> SRR1094312     2  0.2966    0.69079 0.000 0.816 0.000 0.000 0.184
#> SRR1352437     1  0.3589    0.67183 0.824 0.040 0.004 0.132 0.000
#> SRR1436323     4  0.2295    0.80446 0.004 0.000 0.088 0.900 0.008
#> SRR1073507     4  0.4151    0.40496 0.344 0.000 0.004 0.652 0.000
#> SRR1401972     1  0.0671    0.72102 0.980 0.000 0.000 0.016 0.004
#> SRR1415510     5  0.6512    0.15886 0.000 0.348 0.200 0.000 0.452
#> SRR1327279     4  0.6357    0.07641 0.128 0.000 0.340 0.520 0.012
#> SRR1086983     4  0.1638    0.80660 0.064 0.000 0.004 0.932 0.000
#> SRR1105174     1  0.2278    0.70898 0.908 0.000 0.060 0.000 0.032
#> SRR1468893     1  0.0727    0.71933 0.980 0.000 0.012 0.004 0.004
#> SRR1362555     5  0.3888    0.52570 0.176 0.032 0.000 0.004 0.788
#> SRR1074526     1  0.4304    0.10980 0.516 0.000 0.000 0.000 0.484
#> SRR1326225     2  0.1792    0.75024 0.000 0.916 0.000 0.000 0.084
#> SRR1401933     1  0.4945    0.24404 0.536 0.000 0.004 0.440 0.020
#> SRR1324062     1  0.4904    0.17144 0.504 0.000 0.024 0.472 0.000
#> SRR1102296     1  0.0854    0.71816 0.976 0.008 0.012 0.000 0.004
#> SRR1085087     1  0.3538    0.65027 0.804 0.000 0.004 0.176 0.016
#> SRR1079046     1  0.1851    0.70106 0.912 0.000 0.000 0.000 0.088
#> SRR1328339     1  0.4430   -0.10046 0.540 0.004 0.456 0.000 0.000
#> SRR1079782     5  0.5495    0.10231 0.000 0.408 0.008 0.048 0.536
#> SRR1092257     2  0.5523    0.38604 0.008 0.584 0.000 0.060 0.348

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.5155     0.4125 0.000 0.596 0.000 0.000 0.124 0.280
#> SRR1429287     2  0.2095     0.6202 0.008 0.920 0.000 0.040 0.012 0.020
#> SRR1359238     4  0.2070     0.6716 0.000 0.000 0.092 0.896 0.012 0.000
#> SRR1309597     3  0.0653     0.6090 0.004 0.012 0.980 0.000 0.004 0.000
#> SRR1441398     3  0.4325     0.2356 0.456 0.000 0.524 0.000 0.020 0.000
#> SRR1084055     2  0.5635     0.2766 0.000 0.492 0.008 0.000 0.380 0.120
#> SRR1417566     1  0.5146     0.1111 0.576 0.020 0.360 0.000 0.036 0.008
#> SRR1351857     4  0.4384     0.4775 0.036 0.012 0.000 0.684 0.268 0.000
#> SRR1487485     3  0.3338     0.5929 0.016 0.012 0.860 0.068 0.028 0.016
#> SRR1335875     3  0.6069     0.3975 0.312 0.000 0.536 0.000 0.064 0.088
#> SRR1073947     5  0.4747     0.1678 0.308 0.004 0.052 0.000 0.632 0.004
#> SRR1443483     3  0.1237     0.6055 0.000 0.020 0.956 0.004 0.020 0.000
#> SRR1346794     1  0.5707     0.3482 0.648 0.148 0.148 0.004 0.052 0.000
#> SRR1405245     3  0.4212     0.3001 0.424 0.000 0.560 0.000 0.016 0.000
#> SRR1409677     4  0.1226     0.6656 0.004 0.040 0.000 0.952 0.004 0.000
#> SRR1095549     1  0.7100     0.0495 0.440 0.012 0.276 0.064 0.208 0.000
#> SRR1323788     1  0.4479     0.2783 0.672 0.000 0.280 0.024 0.024 0.000
#> SRR1314054     6  0.1918     0.7594 0.000 0.088 0.000 0.008 0.000 0.904
#> SRR1077944     1  0.3893     0.5414 0.768 0.000 0.140 0.000 0.092 0.000
#> SRR1480587     2  0.5801     0.4844 0.000 0.580 0.260 0.000 0.032 0.128
#> SRR1311205     3  0.5316     0.1876 0.416 0.000 0.480 0.000 0.104 0.000
#> SRR1076369     2  0.7184     0.1016 0.348 0.364 0.200 0.004 0.084 0.000
#> SRR1453549     4  0.4695     0.1869 0.008 0.000 0.476 0.492 0.020 0.004
#> SRR1345782     3  0.5495     0.4961 0.156 0.000 0.604 0.012 0.228 0.000
#> SRR1447850     6  0.1152     0.7505 0.000 0.004 0.000 0.044 0.000 0.952
#> SRR1391553     6  0.2002     0.7140 0.012 0.004 0.076 0.000 0.000 0.908
#> SRR1444156     6  0.0146     0.7559 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1471731     4  0.4887     0.5890 0.092 0.020 0.136 0.732 0.020 0.000
#> SRR1120987     4  0.4118     0.4342 0.000 0.312 0.000 0.660 0.028 0.000
#> SRR1477363     1  0.4990     0.4182 0.644 0.000 0.204 0.000 0.152 0.000
#> SRR1391961     5  0.2747     0.5693 0.096 0.044 0.000 0.000 0.860 0.000
#> SRR1373879     4  0.4403     0.2238 0.000 0.000 0.468 0.508 0.024 0.000
#> SRR1318732     3  0.5644     0.3026 0.344 0.048 0.548 0.000 0.060 0.000
#> SRR1091404     5  0.3872     0.2035 0.392 0.004 0.000 0.000 0.604 0.000
#> SRR1402109     4  0.4253     0.2569 0.000 0.000 0.460 0.524 0.016 0.000
#> SRR1407336     4  0.2623     0.6557 0.000 0.000 0.132 0.852 0.016 0.000
#> SRR1097417     3  0.4752     0.2403 0.000 0.024 0.516 0.004 0.448 0.008
#> SRR1396227     1  0.1701     0.5488 0.920 0.000 0.008 0.000 0.072 0.000
#> SRR1400775     6  0.2020     0.7549 0.000 0.096 0.000 0.000 0.008 0.896
#> SRR1392861     4  0.0405     0.6742 0.000 0.000 0.008 0.988 0.004 0.000
#> SRR1472929     5  0.5226    -0.2454 0.000 0.448 0.092 0.000 0.460 0.000
#> SRR1436740     4  0.0291     0.6712 0.000 0.004 0.000 0.992 0.004 0.000
#> SRR1477057     6  0.6845     0.2965 0.084 0.236 0.000 0.000 0.204 0.476
#> SRR1311980     3  0.6364     0.4785 0.232 0.000 0.584 0.092 0.020 0.072
#> SRR1069400     3  0.3133     0.5665 0.000 0.040 0.856 0.032 0.072 0.000
#> SRR1351016     1  0.5897     0.2520 0.456 0.000 0.180 0.004 0.360 0.000
#> SRR1096291     4  0.4049     0.3915 0.000 0.332 0.000 0.648 0.020 0.000
#> SRR1418145     2  0.4270     0.3687 0.024 0.660 0.000 0.308 0.008 0.000
#> SRR1488111     4  0.6135     0.0324 0.008 0.396 0.000 0.472 0.044 0.080
#> SRR1370495     2  0.3103     0.5818 0.064 0.836 0.000 0.000 0.100 0.000
#> SRR1352639     2  0.5739     0.1499 0.284 0.528 0.000 0.000 0.184 0.004
#> SRR1348911     3  0.6019     0.3842 0.044 0.000 0.552 0.012 0.076 0.316
#> SRR1467386     4  0.5066     0.3702 0.308 0.000 0.012 0.608 0.072 0.000
#> SRR1415956     1  0.3542     0.5178 0.788 0.000 0.160 0.000 0.052 0.000
#> SRR1500495     3  0.4256     0.2180 0.464 0.000 0.520 0.000 0.016 0.000
#> SRR1405099     1  0.3938     0.4919 0.728 0.000 0.044 0.000 0.228 0.000
#> SRR1345585     3  0.2954     0.5656 0.028 0.060 0.868 0.000 0.044 0.000
#> SRR1093196     4  0.1327     0.6801 0.000 0.000 0.064 0.936 0.000 0.000
#> SRR1466006     2  0.4268     0.5930 0.000 0.748 0.180 0.000 0.040 0.032
#> SRR1351557     2  0.3986     0.2782 0.004 0.608 0.000 0.000 0.004 0.384
#> SRR1382687     1  0.3739     0.4613 0.776 0.000 0.176 0.040 0.008 0.000
#> SRR1375549     1  0.4851     0.2454 0.636 0.292 0.000 0.012 0.060 0.000
#> SRR1101765     1  0.6699    -0.0268 0.428 0.360 0.000 0.080 0.132 0.000
#> SRR1334461     5  0.2888     0.5691 0.092 0.056 0.000 0.000 0.852 0.000
#> SRR1094073     6  0.3531     0.4362 0.000 0.328 0.000 0.000 0.000 0.672
#> SRR1077549     4  0.2250     0.6698 0.000 0.000 0.092 0.888 0.020 0.000
#> SRR1440332     4  0.4653     0.1889 0.012 0.000 0.476 0.492 0.020 0.000
#> SRR1454177     4  0.0405     0.6747 0.000 0.000 0.008 0.988 0.004 0.000
#> SRR1082447     1  0.2234     0.5152 0.872 0.000 0.004 0.000 0.124 0.000
#> SRR1420043     4  0.3104     0.6211 0.000 0.000 0.184 0.800 0.016 0.000
#> SRR1432500     4  0.3867     0.6382 0.004 0.004 0.124 0.788 0.080 0.000
#> SRR1378045     6  0.5382    -0.0129 0.032 0.012 0.464 0.000 0.024 0.468
#> SRR1334200     2  0.4059     0.5190 0.088 0.760 0.000 0.004 0.148 0.000
#> SRR1069539     2  0.3592     0.5896 0.000 0.812 0.020 0.124 0.044 0.000
#> SRR1343031     4  0.5110     0.3118 0.000 0.004 0.396 0.528 0.072 0.000
#> SRR1319690     3  0.4063     0.4898 0.280 0.008 0.692 0.000 0.020 0.000
#> SRR1310604     2  0.5011     0.4425 0.000 0.616 0.112 0.000 0.272 0.000
#> SRR1327747     3  0.7200     0.1561 0.288 0.160 0.460 0.036 0.056 0.000
#> SRR1072456     2  0.6114     0.4843 0.000 0.576 0.204 0.000 0.052 0.168
#> SRR1367896     3  0.2784     0.5884 0.000 0.020 0.868 0.020 0.092 0.000
#> SRR1480107     1  0.3975     0.2924 0.600 0.000 0.008 0.000 0.392 0.000
#> SRR1377756     1  0.3259     0.5064 0.844 0.032 0.004 0.100 0.020 0.000
#> SRR1435272     4  0.0291     0.6730 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1089230     4  0.6495     0.2544 0.260 0.268 0.000 0.444 0.028 0.000
#> SRR1389522     3  0.2518     0.5990 0.004 0.012 0.884 0.012 0.088 0.000
#> SRR1080600     2  0.2307     0.6233 0.004 0.896 0.068 0.000 0.032 0.000
#> SRR1086935     4  0.5689     0.4658 0.196 0.176 0.000 0.608 0.012 0.008
#> SRR1344060     5  0.4325    -0.1525 0.020 0.456 0.000 0.000 0.524 0.000
#> SRR1467922     6  0.0692     0.7633 0.000 0.020 0.000 0.000 0.004 0.976
#> SRR1090984     1  0.4115     0.1514 0.624 0.000 0.360 0.000 0.004 0.012
#> SRR1456991     1  0.5667     0.2514 0.472 0.000 0.160 0.000 0.368 0.000
#> SRR1085039     5  0.4428     0.3985 0.244 0.000 0.072 0.000 0.684 0.000
#> SRR1069303     1  0.3371     0.4917 0.780 0.000 0.000 0.016 0.200 0.004
#> SRR1091500     6  0.1257     0.7578 0.000 0.028 0.000 0.000 0.020 0.952
#> SRR1075198     2  0.0665     0.6268 0.000 0.980 0.008 0.008 0.000 0.004
#> SRR1086915     4  0.5305     0.4172 0.120 0.268 0.000 0.604 0.008 0.000
#> SRR1499503     2  0.6347     0.4191 0.000 0.544 0.144 0.000 0.068 0.244
#> SRR1094312     6  0.3387     0.6891 0.000 0.164 0.000 0.000 0.040 0.796
#> SRR1352437     1  0.7170     0.1250 0.424 0.000 0.000 0.136 0.280 0.160
#> SRR1436323     4  0.5697     0.3739 0.320 0.012 0.088 0.564 0.016 0.000
#> SRR1073507     4  0.3837     0.5994 0.068 0.000 0.008 0.784 0.140 0.000
#> SRR1401972     1  0.3073     0.5132 0.816 0.000 0.000 0.016 0.164 0.004
#> SRR1415510     2  0.5643     0.4701 0.016 0.568 0.336 0.000 0.044 0.036
#> SRR1327279     4  0.6370     0.2465 0.008 0.004 0.256 0.404 0.328 0.000
#> SRR1086983     4  0.1845     0.6613 0.072 0.008 0.000 0.916 0.004 0.000
#> SRR1105174     1  0.2997     0.5577 0.844 0.000 0.060 0.000 0.096 0.000
#> SRR1468893     1  0.1493     0.5399 0.936 0.004 0.000 0.004 0.056 0.000
#> SRR1362555     2  0.2201     0.6195 0.024 0.912 0.012 0.000 0.048 0.004
#> SRR1074526     5  0.4597     0.4377 0.276 0.072 0.000 0.000 0.652 0.000
#> SRR1326225     6  0.2597     0.6965 0.000 0.176 0.000 0.000 0.000 0.824
#> SRR1401933     1  0.5098     0.3953 0.700 0.112 0.004 0.152 0.032 0.000
#> SRR1324062     1  0.5573     0.1768 0.476 0.004 0.020 0.444 0.048 0.008
#> SRR1102296     1  0.4302     0.3744 0.628 0.000 0.004 0.000 0.344 0.024
#> SRR1085087     1  0.6506     0.1968 0.436 0.024 0.000 0.208 0.328 0.004
#> SRR1079046     1  0.3707     0.4261 0.784 0.136 0.000 0.000 0.080 0.000
#> SRR1328339     1  0.4591    -0.1574 0.500 0.000 0.464 0.000 0.036 0.000
#> SRR1079782     2  0.3462     0.6175 0.008 0.848 0.004 0.060 0.024 0.056
#> SRR1092257     2  0.6335     0.3591 0.028 0.572 0.000 0.048 0.092 0.260

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.350           0.833       0.884         0.4138 0.566   0.566
#> 3 3 0.424           0.711       0.828         0.4862 0.780   0.616
#> 4 4 0.490           0.477       0.702         0.1617 0.856   0.630
#> 5 5 0.496           0.400       0.621         0.0515 0.921   0.747
#> 6 6 0.518           0.482       0.595         0.0445 0.869   0.554

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000      0.884 0.000 1.000
#> SRR1429287     1  0.6801      0.872 0.820 0.180
#> SRR1359238     1  0.5629      0.891 0.868 0.132
#> SRR1309597     1  0.0000      0.850 1.000 0.000
#> SRR1441398     1  0.0000      0.850 1.000 0.000
#> SRR1084055     1  0.9209      0.647 0.664 0.336
#> SRR1417566     1  0.5519      0.891 0.872 0.128
#> SRR1351857     2  0.0000      0.884 0.000 1.000
#> SRR1487485     1  0.7219      0.862 0.800 0.200
#> SRR1335875     1  0.5842      0.891 0.860 0.140
#> SRR1073947     1  0.6247      0.887 0.844 0.156
#> SRR1443483     1  0.5178      0.890 0.884 0.116
#> SRR1346794     1  0.5629      0.891 0.868 0.132
#> SRR1405245     1  0.0000      0.850 1.000 0.000
#> SRR1409677     2  0.3114      0.868 0.056 0.944
#> SRR1095549     2  0.7674      0.721 0.224 0.776
#> SRR1323788     1  0.7815      0.826 0.768 0.232
#> SRR1314054     2  0.0000      0.884 0.000 1.000
#> SRR1077944     1  0.5842      0.891 0.860 0.140
#> SRR1480587     1  0.0000      0.850 1.000 0.000
#> SRR1311205     1  0.0000      0.850 1.000 0.000
#> SRR1076369     1  0.5842      0.889 0.860 0.140
#> SRR1453549     1  0.5629      0.891 0.868 0.132
#> SRR1345782     1  0.7815      0.826 0.768 0.232
#> SRR1447850     1  0.8443      0.787 0.728 0.272
#> SRR1391553     1  0.6531      0.879 0.832 0.168
#> SRR1444156     2  0.0000      0.884 0.000 1.000
#> SRR1471731     1  0.6531      0.879 0.832 0.168
#> SRR1120987     2  0.0672      0.884 0.008 0.992
#> SRR1477363     1  0.5737      0.890 0.864 0.136
#> SRR1391961     1  0.0000      0.850 1.000 0.000
#> SRR1373879     2  0.7883      0.702 0.236 0.764
#> SRR1318732     1  0.6531      0.879 0.832 0.168
#> SRR1091404     2  0.9552      0.358 0.376 0.624
#> SRR1402109     1  0.8555      0.755 0.720 0.280
#> SRR1407336     2  0.8081      0.682 0.248 0.752
#> SRR1097417     1  0.2236      0.859 0.964 0.036
#> SRR1396227     1  0.5737      0.891 0.864 0.136
#> SRR1400775     1  0.9491      0.620 0.632 0.368
#> SRR1392861     2  0.0672      0.884 0.008 0.992
#> SRR1472929     1  0.0000      0.850 1.000 0.000
#> SRR1436740     2  0.0000      0.884 0.000 1.000
#> SRR1477057     1  0.6048      0.888 0.852 0.148
#> SRR1311980     1  0.0000      0.850 1.000 0.000
#> SRR1069400     1  0.5946      0.888 0.856 0.144
#> SRR1351016     1  0.0672      0.853 0.992 0.008
#> SRR1096291     2  0.0000      0.884 0.000 1.000
#> SRR1418145     1  0.9491      0.632 0.632 0.368
#> SRR1488111     1  0.6048      0.888 0.852 0.148
#> SRR1370495     1  0.0000      0.850 1.000 0.000
#> SRR1352639     1  0.8386      0.785 0.732 0.268
#> SRR1348911     1  0.0000      0.850 1.000 0.000
#> SRR1467386     2  0.5519      0.827 0.128 0.872
#> SRR1415956     1  0.0000      0.850 1.000 0.000
#> SRR1500495     1  0.0000      0.850 1.000 0.000
#> SRR1405099     1  0.0000      0.850 1.000 0.000
#> SRR1345585     1  0.6531      0.879 0.832 0.168
#> SRR1093196     1  0.7453      0.850 0.788 0.212
#> SRR1466006     1  0.0000      0.850 1.000 0.000
#> SRR1351557     1  0.6973      0.867 0.812 0.188
#> SRR1382687     1  0.5737      0.890 0.864 0.136
#> SRR1375549     1  0.6048      0.888 0.852 0.148
#> SRR1101765     2  0.0000      0.884 0.000 1.000
#> SRR1334461     1  0.0000      0.850 1.000 0.000
#> SRR1094073     2  0.0000      0.884 0.000 1.000
#> SRR1077549     2  0.7674      0.721 0.224 0.776
#> SRR1440332     1  0.7528      0.846 0.784 0.216
#> SRR1454177     2  0.0000      0.884 0.000 1.000
#> SRR1082447     2  0.8909      0.557 0.308 0.692
#> SRR1420043     1  0.5629      0.891 0.868 0.132
#> SRR1432500     1  0.5946      0.889 0.856 0.144
#> SRR1378045     1  0.9209      0.682 0.664 0.336
#> SRR1334200     1  0.0000      0.850 1.000 0.000
#> SRR1069539     2  0.0000      0.884 0.000 1.000
#> SRR1343031     1  0.8555      0.755 0.720 0.280
#> SRR1319690     1  0.5629      0.891 0.868 0.132
#> SRR1310604     1  0.6712      0.871 0.824 0.176
#> SRR1327747     1  0.5519      0.891 0.872 0.128
#> SRR1072456     1  0.0000      0.850 1.000 0.000
#> SRR1367896     1  0.0000      0.850 1.000 0.000
#> SRR1480107     1  0.0672      0.853 0.992 0.008
#> SRR1377756     1  0.5629      0.891 0.868 0.132
#> SRR1435272     2  0.0000      0.884 0.000 1.000
#> SRR1089230     2  0.0000      0.884 0.000 1.000
#> SRR1389522     1  0.5178      0.890 0.884 0.116
#> SRR1080600     1  0.6801      0.868 0.820 0.180
#> SRR1086935     2  0.0000      0.884 0.000 1.000
#> SRR1344060     1  0.0000      0.850 1.000 0.000
#> SRR1467922     2  0.0000      0.884 0.000 1.000
#> SRR1090984     1  0.0000      0.850 1.000 0.000
#> SRR1456991     1  0.0672      0.853 0.992 0.008
#> SRR1085039     2  0.8909      0.557 0.308 0.692
#> SRR1069303     1  0.5519      0.891 0.872 0.128
#> SRR1091500     2  0.0000      0.884 0.000 1.000
#> SRR1075198     1  0.7139      0.861 0.804 0.196
#> SRR1086915     2  0.0672      0.884 0.008 0.992
#> SRR1499503     2  0.9522      0.251 0.372 0.628
#> SRR1094312     1  0.9491      0.620 0.632 0.368
#> SRR1352437     2  0.4022      0.858 0.080 0.920
#> SRR1436323     1  0.6048      0.888 0.852 0.148
#> SRR1073507     2  0.5519      0.827 0.128 0.872
#> SRR1401972     1  0.5519      0.891 0.872 0.128
#> SRR1415510     1  0.6048      0.888 0.852 0.148
#> SRR1327279     2  0.7674      0.721 0.224 0.776
#> SRR1086983     2  0.5519      0.827 0.128 0.872
#> SRR1105174     2  0.5737      0.820 0.136 0.864
#> SRR1468893     1  0.0376      0.852 0.996 0.004
#> SRR1362555     1  0.0000      0.850 1.000 0.000
#> SRR1074526     2  0.0000      0.884 0.000 1.000
#> SRR1326225     2  0.0938      0.882 0.012 0.988
#> SRR1401933     1  0.6343      0.884 0.840 0.160
#> SRR1324062     1  0.5842      0.891 0.860 0.140
#> SRR1102296     1  0.9635      0.555 0.612 0.388
#> SRR1085087     2  0.4022      0.858 0.080 0.920
#> SRR1079046     1  0.6801      0.872 0.820 0.180
#> SRR1328339     1  0.5519      0.891 0.872 0.128
#> SRR1079782     1  0.7056      0.864 0.808 0.192
#> SRR1092257     2  0.1414      0.881 0.020 0.980

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1429287     1  0.0592      0.809 0.988 0.012 0.000
#> SRR1359238     1  0.3192      0.801 0.888 0.112 0.000
#> SRR1309597     2  0.0892      0.763 0.020 0.980 0.000
#> SRR1441398     2  0.5216      0.728 0.260 0.740 0.000
#> SRR1084055     1  0.9474      0.320 0.496 0.272 0.232
#> SRR1417566     1  0.4172      0.789 0.840 0.156 0.004
#> SRR1351857     3  0.0592      0.825 0.012 0.000 0.988
#> SRR1487485     1  0.2434      0.812 0.940 0.036 0.024
#> SRR1335875     1  0.2878      0.808 0.904 0.096 0.000
#> SRR1073947     1  0.3607      0.807 0.880 0.112 0.008
#> SRR1443483     1  0.6286      0.271 0.536 0.464 0.000
#> SRR1346794     1  0.3340      0.799 0.880 0.120 0.000
#> SRR1405245     2  0.5216      0.728 0.260 0.740 0.000
#> SRR1409677     3  0.2448      0.809 0.076 0.000 0.924
#> SRR1095549     3  0.7067      0.539 0.376 0.028 0.596
#> SRR1323788     1  0.4966      0.790 0.840 0.100 0.060
#> SRR1314054     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1077944     1  0.3644      0.795 0.872 0.124 0.004
#> SRR1480587     2  0.0892      0.763 0.020 0.980 0.000
#> SRR1311205     2  0.5810      0.673 0.336 0.664 0.000
#> SRR1076369     1  0.6505      0.200 0.528 0.468 0.004
#> SRR1453549     1  0.3192      0.801 0.888 0.112 0.000
#> SRR1345782     1  0.4966      0.790 0.840 0.100 0.060
#> SRR1447850     1  0.3349      0.760 0.888 0.004 0.108
#> SRR1391553     1  0.2066      0.810 0.940 0.060 0.000
#> SRR1444156     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1471731     1  0.2066      0.810 0.940 0.060 0.000
#> SRR1120987     3  0.1163      0.825 0.028 0.000 0.972
#> SRR1477363     1  0.3116      0.802 0.892 0.108 0.000
#> SRR1391961     2  0.1860      0.769 0.052 0.948 0.000
#> SRR1373879     3  0.7114      0.515 0.388 0.028 0.584
#> SRR1318732     1  0.2066      0.810 0.940 0.060 0.000
#> SRR1091404     1  0.7268     -0.133 0.524 0.028 0.448
#> SRR1402109     1  0.6100      0.719 0.784 0.096 0.120
#> SRR1407336     3  0.7156      0.489 0.400 0.028 0.572
#> SRR1097417     2  0.4784      0.636 0.200 0.796 0.004
#> SRR1396227     1  0.2796      0.810 0.908 0.092 0.000
#> SRR1400775     1  0.5366      0.666 0.776 0.016 0.208
#> SRR1392861     3  0.2165      0.815 0.064 0.000 0.936
#> SRR1472929     2  0.0747      0.760 0.016 0.984 0.000
#> SRR1436740     3  0.0592      0.824 0.012 0.000 0.988
#> SRR1477057     1  0.1860      0.815 0.948 0.052 0.000
#> SRR1311980     2  0.5216      0.728 0.260 0.740 0.000
#> SRR1069400     1  0.6057      0.499 0.656 0.340 0.004
#> SRR1351016     2  0.6235      0.497 0.436 0.564 0.000
#> SRR1096291     3  0.0592      0.825 0.012 0.000 0.988
#> SRR1418145     1  0.4861      0.681 0.800 0.008 0.192
#> SRR1488111     1  0.1860      0.815 0.948 0.052 0.000
#> SRR1370495     2  0.0892      0.763 0.020 0.980 0.000
#> SRR1352639     1  0.4709      0.776 0.852 0.056 0.092
#> SRR1348911     2  0.5706      0.680 0.320 0.680 0.000
#> SRR1467386     3  0.5623      0.680 0.280 0.004 0.716
#> SRR1415956     2  0.5529      0.710 0.296 0.704 0.000
#> SRR1500495     2  0.5810      0.673 0.336 0.664 0.000
#> SRR1405099     2  0.5529      0.710 0.296 0.704 0.000
#> SRR1345585     1  0.2066      0.810 0.940 0.060 0.000
#> SRR1093196     1  0.2031      0.807 0.952 0.016 0.032
#> SRR1466006     2  0.2625      0.762 0.084 0.916 0.000
#> SRR1351557     1  0.1170      0.809 0.976 0.016 0.008
#> SRR1382687     1  0.3116      0.802 0.892 0.108 0.000
#> SRR1375549     1  0.1860      0.815 0.948 0.052 0.000
#> SRR1101765     3  0.1289      0.824 0.032 0.000 0.968
#> SRR1334461     2  0.1860      0.769 0.052 0.948 0.000
#> SRR1094073     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1077549     3  0.7067      0.539 0.376 0.028 0.596
#> SRR1440332     1  0.4253      0.805 0.872 0.080 0.048
#> SRR1454177     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1082447     3  0.7278      0.336 0.456 0.028 0.516
#> SRR1420043     1  0.3619      0.787 0.864 0.136 0.000
#> SRR1432500     1  0.3112      0.807 0.900 0.096 0.004
#> SRR1378045     1  0.5236      0.712 0.804 0.028 0.168
#> SRR1334200     2  0.1643      0.766 0.044 0.956 0.000
#> SRR1069539     3  0.0592      0.825 0.012 0.000 0.988
#> SRR1343031     1  0.6100      0.719 0.784 0.096 0.120
#> SRR1319690     1  0.3267      0.802 0.884 0.116 0.000
#> SRR1310604     1  0.6881      0.500 0.648 0.320 0.032
#> SRR1327747     1  0.3482      0.796 0.872 0.128 0.000
#> SRR1072456     2  0.2625      0.762 0.084 0.916 0.000
#> SRR1367896     2  0.2537      0.752 0.080 0.920 0.000
#> SRR1480107     2  0.6235      0.497 0.436 0.564 0.000
#> SRR1377756     1  0.3619      0.787 0.864 0.136 0.000
#> SRR1435272     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1089230     3  0.0592      0.825 0.012 0.000 0.988
#> SRR1389522     1  0.6168      0.406 0.588 0.412 0.000
#> SRR1080600     1  0.6988      0.496 0.644 0.320 0.036
#> SRR1086935     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1344060     2  0.1643      0.766 0.044 0.956 0.000
#> SRR1467922     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1090984     2  0.5968      0.611 0.364 0.636 0.000
#> SRR1456991     2  0.6204      0.521 0.424 0.576 0.000
#> SRR1085039     3  0.7278      0.336 0.456 0.028 0.516
#> SRR1069303     1  0.3551      0.790 0.868 0.132 0.000
#> SRR1091500     3  0.0237      0.823 0.004 0.000 0.996
#> SRR1075198     1  0.1491      0.809 0.968 0.016 0.016
#> SRR1086915     3  0.1289      0.825 0.032 0.000 0.968
#> SRR1499503     3  0.6505      0.108 0.468 0.004 0.528
#> SRR1094312     1  0.5366      0.666 0.776 0.016 0.208
#> SRR1352437     3  0.4351      0.769 0.168 0.004 0.828
#> SRR1436323     1  0.2537      0.813 0.920 0.080 0.000
#> SRR1073507     3  0.5623      0.680 0.280 0.004 0.716
#> SRR1401972     1  0.3551      0.790 0.868 0.132 0.000
#> SRR1415510     1  0.5929      0.528 0.676 0.320 0.004
#> SRR1327279     3  0.7067      0.539 0.376 0.028 0.596
#> SRR1086983     3  0.5623      0.680 0.280 0.004 0.716
#> SRR1105174     3  0.5722      0.667 0.292 0.004 0.704
#> SRR1468893     2  0.5785      0.677 0.332 0.668 0.000
#> SRR1362555     2  0.0892      0.763 0.020 0.980 0.000
#> SRR1074526     3  0.0237      0.819 0.000 0.004 0.996
#> SRR1326225     3  0.1399      0.820 0.028 0.004 0.968
#> SRR1401933     1  0.1411      0.814 0.964 0.036 0.000
#> SRR1324062     1  0.2959      0.807 0.900 0.100 0.000
#> SRR1102296     1  0.5455      0.655 0.776 0.020 0.204
#> SRR1085087     3  0.4409      0.767 0.172 0.004 0.824
#> SRR1079046     1  0.0592      0.809 0.988 0.012 0.000
#> SRR1328339     1  0.4233      0.784 0.836 0.160 0.004
#> SRR1079782     1  0.0848      0.807 0.984 0.008 0.008
#> SRR1092257     3  0.1643      0.823 0.044 0.000 0.956

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     4  0.0779     0.7819 0.000 0.016 0.004 0.980
#> SRR1429287     2  0.4999    -0.1114 0.492 0.508 0.000 0.000
#> SRR1359238     1  0.1256     0.6162 0.964 0.028 0.008 0.000
#> SRR1309597     3  0.0336     0.6661 0.008 0.000 0.992 0.000
#> SRR1441398     3  0.5898     0.5849 0.316 0.056 0.628 0.000
#> SRR1084055     2  0.9094     0.3095 0.096 0.444 0.244 0.216
#> SRR1417566     1  0.3970     0.5721 0.836 0.124 0.036 0.004
#> SRR1351857     4  0.0779     0.7862 0.004 0.016 0.000 0.980
#> SRR1487485     1  0.5789     0.3010 0.600 0.368 0.008 0.024
#> SRR1335875     1  0.2867     0.6048 0.884 0.104 0.012 0.000
#> SRR1073947     1  0.2926     0.5956 0.888 0.096 0.012 0.004
#> SRR1443483     3  0.7840    -0.1650 0.268 0.340 0.392 0.000
#> SRR1346794     1  0.1629     0.6169 0.952 0.024 0.024 0.000
#> SRR1405245     3  0.5898     0.5849 0.316 0.056 0.628 0.000
#> SRR1409677     4  0.2271     0.7685 0.008 0.076 0.000 0.916
#> SRR1095549     4  0.7086     0.4858 0.160 0.292 0.000 0.548
#> SRR1323788     1  0.5443     0.3976 0.720 0.232 0.024 0.024
#> SRR1314054     4  0.0779     0.7819 0.000 0.016 0.004 0.980
#> SRR1077944     1  0.2007     0.6176 0.940 0.036 0.020 0.004
#> SRR1480587     3  0.0336     0.6661 0.008 0.000 0.992 0.000
#> SRR1311205     3  0.6471     0.4739 0.416 0.072 0.512 0.000
#> SRR1076369     2  0.7561     0.1939 0.192 0.424 0.384 0.000
#> SRR1453549     1  0.1042     0.6162 0.972 0.020 0.008 0.000
#> SRR1345782     1  0.5443     0.3976 0.720 0.232 0.024 0.024
#> SRR1447850     2  0.6845     0.0669 0.448 0.452 0.000 0.100
#> SRR1391553     1  0.5420     0.3696 0.624 0.352 0.024 0.000
#> SRR1444156     4  0.1209     0.7776 0.000 0.032 0.004 0.964
#> SRR1471731     1  0.5420     0.3696 0.624 0.352 0.024 0.000
#> SRR1120987     4  0.1114     0.7864 0.008 0.016 0.004 0.972
#> SRR1477363     1  0.0804     0.6173 0.980 0.012 0.008 0.000
#> SRR1391961     3  0.3082     0.6500 0.032 0.084 0.884 0.000
#> SRR1373879     4  0.7188     0.4629 0.172 0.292 0.000 0.536
#> SRR1318732     1  0.5420     0.3696 0.624 0.352 0.024 0.000
#> SRR1091404     4  0.7844     0.1038 0.308 0.288 0.000 0.404
#> SRR1402109     2  0.7802     0.2403 0.384 0.480 0.052 0.084
#> SRR1407336     4  0.7238     0.4409 0.172 0.304 0.000 0.524
#> SRR1097417     3  0.5198     0.4805 0.040 0.252 0.708 0.000
#> SRR1396227     1  0.2928     0.6024 0.880 0.108 0.012 0.000
#> SRR1400775     2  0.7416     0.3056 0.312 0.496 0.000 0.192
#> SRR1392861     4  0.2300     0.7756 0.028 0.048 0.000 0.924
#> SRR1472929     3  0.0188     0.6641 0.004 0.000 0.996 0.000
#> SRR1436740     4  0.0779     0.7847 0.004 0.016 0.000 0.980
#> SRR1477057     1  0.4697     0.3266 0.644 0.356 0.000 0.000
#> SRR1311980     3  0.5898     0.5849 0.316 0.056 0.628 0.000
#> SRR1069400     2  0.7796     0.3877 0.288 0.424 0.288 0.000
#> SRR1351016     1  0.6792    -0.2592 0.476 0.096 0.428 0.000
#> SRR1096291     4  0.0779     0.7862 0.004 0.016 0.000 0.980
#> SRR1418145     1  0.7510    -0.1463 0.436 0.380 0.000 0.184
#> SRR1488111     1  0.4697     0.3266 0.644 0.356 0.000 0.000
#> SRR1370495     3  0.0336     0.6661 0.008 0.000 0.992 0.000
#> SRR1352639     1  0.5986     0.2040 0.620 0.320 0.000 0.060
#> SRR1348911     3  0.6206     0.4850 0.404 0.056 0.540 0.000
#> SRR1467386     4  0.6167     0.6255 0.124 0.208 0.000 0.668
#> SRR1415956     3  0.6228     0.5373 0.364 0.064 0.572 0.000
#> SRR1500495     3  0.6471     0.4739 0.416 0.072 0.512 0.000
#> SRR1405099     3  0.6228     0.5373 0.364 0.064 0.572 0.000
#> SRR1345585     1  0.5420     0.3696 0.624 0.352 0.024 0.000
#> SRR1093196     1  0.5833     0.0780 0.532 0.440 0.004 0.024
#> SRR1466006     3  0.3427     0.6334 0.028 0.112 0.860 0.000
#> SRR1351557     2  0.5296    -0.1445 0.496 0.496 0.008 0.000
#> SRR1382687     1  0.0804     0.6173 0.980 0.012 0.008 0.000
#> SRR1375549     1  0.4679     0.3334 0.648 0.352 0.000 0.000
#> SRR1101765     4  0.1042     0.7871 0.008 0.020 0.000 0.972
#> SRR1334461     3  0.3082     0.6500 0.032 0.084 0.884 0.000
#> SRR1094073     4  0.1209     0.7776 0.000 0.032 0.004 0.964
#> SRR1077549     4  0.7086     0.4858 0.160 0.292 0.000 0.548
#> SRR1440332     1  0.4671     0.4330 0.752 0.220 0.000 0.028
#> SRR1454177     4  0.0921     0.7805 0.000 0.028 0.000 0.972
#> SRR1082447     4  0.7643     0.3021 0.256 0.276 0.000 0.468
#> SRR1420043     1  0.1151     0.6119 0.968 0.008 0.024 0.000
#> SRR1432500     1  0.1585     0.6157 0.952 0.040 0.004 0.004
#> SRR1378045     2  0.7273     0.2543 0.400 0.452 0.000 0.148
#> SRR1334200     3  0.1677     0.6609 0.012 0.040 0.948 0.000
#> SRR1069539     4  0.0779     0.7862 0.004 0.016 0.000 0.980
#> SRR1343031     2  0.7802     0.2403 0.384 0.480 0.052 0.084
#> SRR1319690     1  0.2101     0.6110 0.928 0.060 0.012 0.000
#> SRR1310604     2  0.7541     0.4052 0.148 0.552 0.280 0.020
#> SRR1327747     1  0.2222     0.6064 0.924 0.060 0.016 0.000
#> SRR1072456     3  0.3427     0.6334 0.028 0.112 0.860 0.000
#> SRR1367896     3  0.3554     0.6184 0.020 0.136 0.844 0.000
#> SRR1480107     1  0.6792    -0.2592 0.476 0.096 0.428 0.000
#> SRR1377756     1  0.1151     0.6119 0.968 0.008 0.024 0.000
#> SRR1435272     4  0.0921     0.7805 0.000 0.028 0.000 0.972
#> SRR1089230     4  0.0895     0.7855 0.004 0.020 0.000 0.976
#> SRR1389522     3  0.7905    -0.2706 0.312 0.320 0.368 0.000
#> SRR1080600     2  0.7251     0.3766 0.112 0.584 0.280 0.024
#> SRR1086935     4  0.1209     0.7776 0.000 0.032 0.004 0.964
#> SRR1344060     3  0.1677     0.6609 0.012 0.040 0.948 0.000
#> SRR1467922     4  0.0779     0.7819 0.000 0.016 0.004 0.980
#> SRR1090984     3  0.6327     0.4015 0.444 0.060 0.496 0.000
#> SRR1456991     1  0.6884    -0.2859 0.464 0.104 0.432 0.000
#> SRR1085039     4  0.7643     0.3021 0.256 0.276 0.000 0.468
#> SRR1069303     1  0.1411     0.6087 0.960 0.020 0.020 0.000
#> SRR1091500     4  0.1209     0.7776 0.000 0.032 0.004 0.964
#> SRR1075198     1  0.5451     0.1687 0.524 0.464 0.008 0.004
#> SRR1086915     4  0.1059     0.7857 0.012 0.016 0.000 0.972
#> SRR1499503     4  0.7005     0.1437 0.104 0.392 0.004 0.500
#> SRR1094312     2  0.7416     0.3056 0.312 0.496 0.000 0.192
#> SRR1352437     4  0.4469     0.7196 0.080 0.112 0.000 0.808
#> SRR1436323     1  0.4307     0.5315 0.784 0.192 0.024 0.000
#> SRR1073507     4  0.6167     0.6255 0.124 0.208 0.000 0.668
#> SRR1401972     1  0.1411     0.6087 0.960 0.020 0.020 0.000
#> SRR1415510     2  0.7851     0.3477 0.324 0.396 0.280 0.000
#> SRR1327279     4  0.7086     0.4858 0.160 0.292 0.000 0.548
#> SRR1086983     4  0.6167     0.6255 0.124 0.208 0.000 0.668
#> SRR1105174     4  0.6265     0.6148 0.124 0.220 0.000 0.656
#> SRR1468893     3  0.6024     0.4693 0.416 0.044 0.540 0.000
#> SRR1362555     3  0.0336     0.6661 0.008 0.000 0.992 0.000
#> SRR1074526     4  0.1824     0.7795 0.000 0.060 0.004 0.936
#> SRR1326225     4  0.1771     0.7790 0.012 0.036 0.004 0.948
#> SRR1401933     1  0.4713     0.3176 0.640 0.360 0.000 0.000
#> SRR1324062     1  0.2676     0.6063 0.896 0.092 0.012 0.000
#> SRR1102296     1  0.7260    -0.0485 0.532 0.280 0.000 0.188
#> SRR1085087     4  0.4535     0.7175 0.084 0.112 0.000 0.804
#> SRR1079046     2  0.4999    -0.1114 0.492 0.508 0.000 0.000
#> SRR1328339     1  0.3241     0.5764 0.884 0.072 0.040 0.004
#> SRR1079782     1  0.5000     0.0669 0.504 0.496 0.000 0.000
#> SRR1092257     4  0.1920     0.7828 0.024 0.028 0.004 0.944

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1396765     4  0.3093     0.7213 0.000 0.008 NA 0.824 0.000
#> SRR1429287     2  0.4457     0.2224 0.368 0.620 NA 0.000 0.000
#> SRR1359238     1  0.1205     0.5572 0.956 0.040 NA 0.000 0.000
#> SRR1309597     5  0.0000     0.5740 0.000 0.000 NA 0.000 1.000
#> SRR1441398     5  0.6544     0.2982 0.308 0.004 NA 0.000 0.492
#> SRR1084055     2  0.8754     0.1436 0.048 0.424 NA 0.168 0.236
#> SRR1417566     1  0.3828     0.5029 0.828 0.100 NA 0.004 0.008
#> SRR1351857     4  0.1560     0.7423 0.004 0.028 NA 0.948 0.000
#> SRR1487485     1  0.5416    -0.0501 0.488 0.468 NA 0.028 0.000
#> SRR1335875     1  0.2727     0.5307 0.868 0.116 NA 0.000 0.000
#> SRR1073947     1  0.2608     0.5304 0.888 0.088 NA 0.004 0.000
#> SRR1443483     5  0.8440    -0.0470 0.252 0.204 NA 0.000 0.348
#> SRR1346794     1  0.1356     0.5594 0.956 0.028 NA 0.000 0.004
#> SRR1405245     5  0.6544     0.2982 0.308 0.004 NA 0.000 0.492
#> SRR1409677     4  0.2228     0.7395 0.008 0.068 NA 0.912 0.000
#> SRR1095549     4  0.7058     0.5032 0.152 0.240 NA 0.544 0.000
#> SRR1323788     1  0.5208     0.3177 0.720 0.176 NA 0.028 0.000
#> SRR1314054     4  0.3093     0.7213 0.000 0.008 NA 0.824 0.000
#> SRR1077944     1  0.1708     0.5580 0.944 0.032 NA 0.004 0.004
#> SRR1480587     5  0.0000     0.5740 0.000 0.000 NA 0.000 1.000
#> SRR1311205     1  0.6912    -0.1725 0.408 0.008 NA 0.000 0.348
#> SRR1076369     2  0.8474     0.0879 0.168 0.308 NA 0.000 0.272
#> SRR1453549     1  0.0955     0.5586 0.968 0.028 NA 0.000 0.000
#> SRR1345782     1  0.5208     0.3177 0.720 0.176 NA 0.028 0.000
#> SRR1447850     2  0.6008     0.3270 0.316 0.572 NA 0.100 0.000
#> SRR1391553     1  0.5296     0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1444156     4  0.4168     0.6977 0.000 0.044 NA 0.756 0.000
#> SRR1471731     1  0.5296     0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1120987     4  0.1498     0.7487 0.008 0.016 NA 0.952 0.000
#> SRR1477363     1  0.0510     0.5591 0.984 0.016 NA 0.000 0.000
#> SRR1391961     5  0.5119     0.4817 0.028 0.008 NA 0.000 0.576
#> SRR1373879     4  0.7140     0.4855 0.160 0.244 NA 0.532 0.000
#> SRR1318732     1  0.5296     0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1091404     4  0.7672     0.1651 0.292 0.252 NA 0.400 0.000
#> SRR1402109     1  0.8349    -0.2444 0.364 0.364 NA 0.084 0.032
#> SRR1407336     4  0.7239     0.4633 0.164 0.248 NA 0.520 0.000
#> SRR1097417     5  0.6725     0.3568 0.016 0.160 NA 0.000 0.468
#> SRR1396227     1  0.2920     0.5181 0.852 0.132 NA 0.000 0.000
#> SRR1400775     2  0.7030     0.4000 0.240 0.528 NA 0.188 0.000
#> SRR1392861     4  0.2855     0.7434 0.028 0.040 NA 0.892 0.000
#> SRR1472929     5  0.0162     0.5741 0.000 0.000 NA 0.000 0.996
#> SRR1436740     4  0.1412     0.7437 0.004 0.008 NA 0.952 0.000
#> SRR1477057     1  0.4610     0.0971 0.556 0.432 NA 0.000 0.000
#> SRR1311980     5  0.6544     0.2982 0.308 0.004 NA 0.000 0.492
#> SRR1069400     2  0.8354     0.2364 0.264 0.332 NA 0.000 0.264
#> SRR1351016     1  0.7368     0.0843 0.468 0.048 NA 0.000 0.264
#> SRR1096291     4  0.1560     0.7423 0.004 0.028 NA 0.948 0.000
#> SRR1418145     2  0.6584     0.2930 0.344 0.464 NA 0.188 0.000
#> SRR1488111     1  0.4610     0.0971 0.556 0.432 NA 0.000 0.000
#> SRR1370495     5  0.0000     0.5740 0.000 0.000 NA 0.000 1.000
#> SRR1352639     1  0.6227     0.1225 0.588 0.296 NA 0.064 0.000
#> SRR1348911     1  0.6950    -0.1690 0.396 0.008 NA 0.000 0.348
#> SRR1467386     4  0.5970     0.6203 0.120 0.176 NA 0.664 0.000
#> SRR1415956     5  0.6861     0.2218 0.356 0.008 NA 0.000 0.416
#> SRR1500495     1  0.6912    -0.1725 0.408 0.008 NA 0.000 0.348
#> SRR1405099     5  0.6861     0.2218 0.356 0.008 NA 0.000 0.416
#> SRR1345585     1  0.5296     0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1093196     2  0.5720     0.1912 0.400 0.536 NA 0.028 0.000
#> SRR1466006     5  0.5470     0.4663 0.020 0.032 NA 0.000 0.560
#> SRR1351557     2  0.4703     0.2502 0.352 0.628 NA 0.004 0.004
#> SRR1382687     1  0.0510     0.5591 0.984 0.016 NA 0.000 0.000
#> SRR1375549     1  0.4597     0.1128 0.564 0.424 NA 0.000 0.000
#> SRR1101765     4  0.0992     0.7485 0.008 0.024 NA 0.968 0.000
#> SRR1334461     5  0.5119     0.4817 0.028 0.008 NA 0.000 0.576
#> SRR1094073     4  0.4168     0.6977 0.000 0.044 NA 0.756 0.000
#> SRR1077549     4  0.7058     0.5032 0.152 0.240 NA 0.544 0.000
#> SRR1440332     1  0.4862     0.3569 0.724 0.212 NA 0.028 0.000
#> SRR1454177     4  0.2124     0.7308 0.000 0.028 NA 0.916 0.000
#> SRR1082447     4  0.7473     0.3379 0.244 0.236 NA 0.464 0.000
#> SRR1420043     1  0.0833     0.5590 0.976 0.004 NA 0.000 0.004
#> SRR1432500     1  0.1282     0.5528 0.952 0.044 NA 0.004 0.000
#> SRR1378045     2  0.7579     0.2946 0.328 0.440 NA 0.144 0.000
#> SRR1334200     5  0.3552     0.5535 0.012 0.012 NA 0.000 0.812
#> SRR1069539     4  0.1560     0.7423 0.004 0.028 NA 0.948 0.000
#> SRR1343031     2  0.8349     0.1830 0.364 0.364 NA 0.084 0.032
#> SRR1319690     1  0.1809     0.5496 0.928 0.060 NA 0.000 0.000
#> SRR1310604     2  0.7783     0.2294 0.096 0.500 NA 0.020 0.268
#> SRR1327747     1  0.1942     0.5443 0.920 0.068 NA 0.000 0.000
#> SRR1072456     5  0.5470     0.4663 0.020 0.032 NA 0.000 0.560
#> SRR1367896     5  0.5556     0.4648 0.012 0.048 NA 0.000 0.552
#> SRR1480107     1  0.7368     0.0843 0.468 0.048 NA 0.000 0.264
#> SRR1377756     1  0.0833     0.5590 0.976 0.004 NA 0.000 0.004
#> SRR1435272     4  0.2124     0.7308 0.000 0.028 NA 0.916 0.000
#> SRR1089230     4  0.1646     0.7412 0.004 0.032 NA 0.944 0.000
#> SRR1389522     5  0.8375    -0.1305 0.288 0.220 NA 0.000 0.336
#> SRR1080600     2  0.7474     0.1967 0.060 0.528 NA 0.024 0.268
#> SRR1086935     4  0.2824     0.7192 0.000 0.032 NA 0.872 0.000
#> SRR1344060     5  0.3592     0.5529 0.012 0.012 NA 0.000 0.808
#> SRR1467922     4  0.3456     0.7128 0.000 0.016 NA 0.800 0.000
#> SRR1090984     1  0.6912    -0.0861 0.436 0.012 NA 0.000 0.336
#> SRR1456991     1  0.7421     0.0625 0.456 0.048 NA 0.000 0.264
#> SRR1085039     4  0.7473     0.3379 0.244 0.236 NA 0.464 0.000
#> SRR1069303     1  0.1403     0.5561 0.952 0.024 NA 0.000 0.000
#> SRR1091500     4  0.4134     0.7002 0.000 0.044 NA 0.760 0.000
#> SRR1075198     2  0.4908     0.1836 0.380 0.596 NA 0.008 0.004
#> SRR1086915     4  0.1012     0.7458 0.012 0.020 NA 0.968 0.000
#> SRR1499503     2  0.7534    -0.0043 0.052 0.420 NA 0.312 0.000
#> SRR1094312     2  0.7030     0.4000 0.240 0.528 NA 0.188 0.000
#> SRR1352437     4  0.4138     0.7012 0.080 0.104 NA 0.804 0.000
#> SRR1436323     1  0.4338     0.3662 0.712 0.264 NA 0.000 0.008
#> SRR1073507     4  0.5970     0.6203 0.120 0.176 NA 0.664 0.000
#> SRR1401972     1  0.1403     0.5561 0.952 0.024 NA 0.000 0.000
#> SRR1415510     2  0.8144     0.3378 0.284 0.352 NA 0.000 0.260
#> SRR1327279     4  0.7058     0.5032 0.152 0.240 NA 0.544 0.000
#> SRR1086983     4  0.5970     0.6203 0.120 0.176 NA 0.664 0.000
#> SRR1105174     4  0.6103     0.6113 0.120 0.184 NA 0.652 0.000
#> SRR1468893     5  0.6938     0.1489 0.396 0.020 NA 0.000 0.408
#> SRR1362555     5  0.0290     0.5740 0.000 0.000 NA 0.000 0.992
#> SRR1074526     4  0.5010     0.6787 0.000 0.076 NA 0.676 0.000
#> SRR1326225     4  0.4382     0.6979 0.004 0.060 NA 0.760 0.000
#> SRR1401933     1  0.4538     0.0424 0.540 0.452 NA 0.000 0.000
#> SRR1324062     1  0.2573     0.5336 0.880 0.104 NA 0.000 0.000
#> SRR1102296     1  0.7032    -0.1198 0.492 0.288 NA 0.188 0.000
#> SRR1085087     4  0.4194     0.6996 0.084 0.104 NA 0.800 0.000
#> SRR1079046     2  0.4457     0.2224 0.368 0.620 NA 0.000 0.000
#> SRR1328339     1  0.3012     0.5246 0.880 0.040 NA 0.004 0.008
#> SRR1079782     2  0.4362     0.2439 0.360 0.632 NA 0.004 0.000
#> SRR1092257     4  0.2444     0.7484 0.024 0.028 NA 0.912 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2   0.509   0.595032 0.000 0.568 0.004 0.348 0.000 0.080
#> SRR1429287     3   0.709   0.041224 0.348 0.008 0.424 0.096 0.004 0.120
#> SRR1359238     1   0.153   0.631310 0.944 0.004 0.032 0.016 0.000 0.004
#> SRR1309597     5   0.419   0.640037 0.000 0.008 0.000 0.004 0.548 0.440
#> SRR1441398     6   0.451   0.771320 0.300 0.008 0.000 0.004 0.032 0.656
#> SRR1084055     3   0.637   0.166990 0.008 0.140 0.620 0.080 0.140 0.012
#> SRR1417566     1   0.408   0.610204 0.812 0.004 0.056 0.076 0.012 0.040
#> SRR1351857     2   0.413   0.582875 0.004 0.600 0.004 0.388 0.000 0.004
#> SRR1487485     1   0.731   0.199766 0.476 0.020 0.228 0.164 0.000 0.112
#> SRR1335875     1   0.331   0.641345 0.852 0.004 0.044 0.060 0.000 0.040
#> SRR1073947     1   0.293   0.626544 0.856 0.000 0.020 0.104 0.000 0.020
#> SRR1443483     3   0.761   0.192201 0.208 0.004 0.428 0.020 0.240 0.100
#> SRR1346794     1   0.202   0.632174 0.928 0.008 0.028 0.020 0.004 0.012
#> SRR1405245     6   0.451   0.771320 0.300 0.008 0.000 0.004 0.032 0.656
#> SRR1409677     4   0.327   0.340419 0.000 0.248 0.000 0.748 0.000 0.004
#> SRR1095549     4   0.352   0.645707 0.112 0.004 0.064 0.816 0.000 0.004
#> SRR1323788     1   0.477   0.461034 0.692 0.004 0.064 0.224 0.000 0.016
#> SRR1314054     2   0.508   0.601322 0.000 0.572 0.004 0.344 0.000 0.080
#> SRR1077944     1   0.216   0.632540 0.916 0.008 0.012 0.052 0.004 0.008
#> SRR1480587     5   0.433   0.640536 0.000 0.008 0.004 0.004 0.544 0.440
#> SRR1311205     6   0.443   0.844456 0.400 0.004 0.004 0.000 0.016 0.576
#> SRR1076369     3   0.570   0.174443 0.104 0.004 0.544 0.016 0.332 0.000
#> SRR1453549     1   0.120   0.629557 0.960 0.004 0.016 0.016 0.000 0.004
#> SRR1345782     1   0.477   0.461034 0.692 0.004 0.064 0.224 0.000 0.016
#> SRR1447850     3   0.799   0.154887 0.292 0.060 0.396 0.144 0.004 0.104
#> SRR1391553     1   0.730   0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1444156     2   0.343   0.680191 0.000 0.824 0.008 0.084 0.000 0.084
#> SRR1471731     1   0.730   0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1120987     4   0.387   0.018143 0.004 0.392 0.000 0.604 0.000 0.000
#> SRR1477363     1   0.112   0.630855 0.960 0.004 0.008 0.028 0.000 0.000
#> SRR1391961     5   0.143   0.680085 0.020 0.000 0.008 0.000 0.948 0.024
#> SRR1373879     4   0.367   0.641053 0.120 0.004 0.068 0.804 0.000 0.004
#> SRR1318732     1   0.730   0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1091404     4   0.485   0.426398 0.252 0.004 0.072 0.664 0.000 0.008
#> SRR1402109     3   0.747   0.215042 0.316 0.004 0.328 0.284 0.036 0.032
#> SRR1407336     4   0.372   0.632930 0.128 0.000 0.076 0.792 0.000 0.004
#> SRR1097417     5   0.459   0.400455 0.004 0.008 0.312 0.008 0.648 0.020
#> SRR1396227     1   0.350   0.630709 0.836 0.000 0.056 0.056 0.000 0.052
#> SRR1400775     3   0.789   0.304130 0.208 0.100 0.400 0.244 0.000 0.048
#> SRR1392861     4   0.397   0.228880 0.016 0.300 0.000 0.680 0.000 0.004
#> SRR1472929     5   0.419   0.644610 0.000 0.008 0.000 0.004 0.552 0.436
#> SRR1436740     4   0.396  -0.162445 0.000 0.440 0.000 0.556 0.000 0.004
#> SRR1477057     1   0.620   0.267233 0.552 0.008 0.300 0.052 0.004 0.084
#> SRR1311980     6   0.451   0.771320 0.300 0.008 0.000 0.004 0.032 0.656
#> SRR1069400     3   0.599   0.352111 0.216 0.004 0.564 0.020 0.196 0.000
#> SRR1351016     6   0.512   0.734406 0.460 0.004 0.008 0.032 0.008 0.488
#> SRR1096291     2   0.413   0.582875 0.004 0.600 0.004 0.388 0.000 0.004
#> SRR1418145     1   0.813  -0.172632 0.332 0.116 0.324 0.160 0.000 0.068
#> SRR1488111     1   0.620   0.267233 0.552 0.008 0.300 0.052 0.004 0.084
#> SRR1370495     5   0.433   0.640536 0.000 0.008 0.004 0.004 0.544 0.440
#> SRR1352639     1   0.607   0.274878 0.548 0.004 0.164 0.260 0.000 0.024
#> SRR1348911     6   0.548   0.803536 0.396 0.004 0.004 0.000 0.096 0.500
#> SRR1467386     4   0.226   0.646378 0.080 0.028 0.000 0.892 0.000 0.000
#> SRR1415956     6   0.374   0.826025 0.348 0.000 0.000 0.000 0.004 0.648
#> SRR1500495     6   0.443   0.844456 0.400 0.004 0.004 0.000 0.016 0.576
#> SRR1405099     6   0.374   0.826025 0.348 0.000 0.000 0.000 0.004 0.648
#> SRR1345585     1   0.730   0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1093196     3   0.723   0.099323 0.344 0.012 0.400 0.144 0.000 0.100
#> SRR1466006     5   0.137   0.670360 0.004 0.000 0.040 0.004 0.948 0.004
#> SRR1351557     3   0.763   0.032083 0.336 0.008 0.356 0.176 0.008 0.116
#> SRR1382687     1   0.112   0.630855 0.960 0.004 0.008 0.028 0.000 0.000
#> SRR1375549     1   0.618   0.281582 0.560 0.008 0.292 0.052 0.004 0.084
#> SRR1101765     4   0.444  -0.088006 0.004 0.392 0.008 0.584 0.000 0.012
#> SRR1334461     5   0.143   0.680085 0.020 0.000 0.008 0.000 0.948 0.024
#> SRR1094073     2   0.343   0.680191 0.000 0.824 0.008 0.084 0.000 0.084
#> SRR1077549     4   0.352   0.645707 0.112 0.004 0.064 0.816 0.000 0.004
#> SRR1440332     1   0.488   0.458010 0.688 0.004 0.160 0.144 0.000 0.004
#> SRR1454177     2   0.345   0.670310 0.000 0.716 0.000 0.280 0.000 0.004
#> SRR1082447     4   0.420   0.549513 0.204 0.000 0.056 0.732 0.000 0.008
#> SRR1420043     1   0.147   0.614505 0.952 0.008 0.008 0.020 0.004 0.008
#> SRR1432500     1   0.177   0.642934 0.924 0.004 0.012 0.060 0.000 0.000
#> SRR1378045     3   0.758   0.311048 0.272 0.088 0.424 0.188 0.004 0.024
#> SRR1334200     5   0.391   0.708262 0.004 0.000 0.016 0.004 0.716 0.260
#> SRR1069539     2   0.413   0.582875 0.004 0.600 0.004 0.388 0.000 0.004
#> SRR1343031     3   0.747   0.215042 0.316 0.004 0.328 0.284 0.036 0.032
#> SRR1319690     1   0.189   0.631468 0.928 0.004 0.044 0.016 0.004 0.004
#> SRR1310604     3   0.444   0.272855 0.040 0.008 0.744 0.028 0.180 0.000
#> SRR1327747     1   0.201   0.620846 0.924 0.008 0.036 0.024 0.000 0.008
#> SRR1072456     5   0.137   0.670360 0.004 0.000 0.040 0.004 0.948 0.004
#> SRR1367896     5   0.452   0.535835 0.004 0.000 0.200 0.000 0.704 0.092
#> SRR1480107     6   0.512   0.734406 0.460 0.004 0.008 0.032 0.008 0.488
#> SRR1377756     1   0.147   0.614505 0.952 0.008 0.008 0.020 0.004 0.008
#> SRR1435272     2   0.345   0.670310 0.000 0.716 0.000 0.280 0.000 0.004
#> SRR1089230     2   0.409   0.601645 0.004 0.616 0.004 0.372 0.000 0.004
#> SRR1389522     3   0.755   0.265941 0.248 0.004 0.440 0.024 0.196 0.088
#> SRR1080600     3   0.400   0.230935 0.008 0.016 0.768 0.028 0.180 0.000
#> SRR1086935     2   0.266   0.693886 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1344060     5   0.388   0.709023 0.004 0.000 0.016 0.004 0.720 0.256
#> SRR1467922     2   0.470   0.625483 0.000 0.684 0.008 0.224 0.000 0.084
#> SRR1090984     6   0.543   0.785124 0.440 0.004 0.012 0.000 0.068 0.476
#> SRR1456991     6   0.537   0.744591 0.448 0.004 0.012 0.032 0.016 0.488
#> SRR1085039     4   0.420   0.549513 0.204 0.000 0.056 0.732 0.000 0.008
#> SRR1069303     1   0.179   0.608038 0.932 0.000 0.016 0.020 0.000 0.032
#> SRR1091500     2   0.337   0.683502 0.000 0.824 0.004 0.088 0.000 0.084
#> SRR1075198     1   0.757  -0.041150 0.360 0.004 0.328 0.184 0.008 0.116
#> SRR1086915     4   0.368   0.226881 0.004 0.300 0.000 0.692 0.000 0.004
#> SRR1499503     3   0.688  -0.000832 0.012 0.320 0.468 0.104 0.000 0.096
#> SRR1094312     3   0.789   0.304130 0.208 0.100 0.400 0.244 0.000 0.048
#> SRR1352437     4   0.397   0.516478 0.060 0.180 0.000 0.756 0.000 0.004
#> SRR1436323     1   0.535   0.509259 0.708 0.008 0.132 0.072 0.004 0.076
#> SRR1073507     4   0.226   0.646378 0.080 0.028 0.000 0.892 0.000 0.000
#> SRR1401972     1   0.179   0.608038 0.932 0.000 0.016 0.020 0.000 0.032
#> SRR1415510     3   0.705   0.366047 0.264 0.016 0.488 0.036 0.180 0.016
#> SRR1327279     4   0.352   0.645707 0.112 0.004 0.064 0.816 0.000 0.004
#> SRR1086983     4   0.226   0.646378 0.080 0.028 0.000 0.892 0.000 0.000
#> SRR1105174     4   0.201   0.647770 0.080 0.016 0.000 0.904 0.000 0.000
#> SRR1468893     6   0.400   0.822789 0.388 0.000 0.004 0.000 0.004 0.604
#> SRR1362555     5   0.432   0.647377 0.000 0.008 0.004 0.004 0.552 0.432
#> SRR1074526     2   0.558   0.558321 0.000 0.632 0.032 0.172 0.000 0.164
#> SRR1326225     2   0.568   0.572681 0.004 0.608 0.036 0.256 0.000 0.096
#> SRR1401933     1   0.619   0.236609 0.532 0.008 0.320 0.060 0.000 0.080
#> SRR1324062     1   0.303   0.641842 0.864 0.000 0.036 0.060 0.000 0.040
#> SRR1102296     1   0.696   0.060803 0.440 0.040 0.144 0.344 0.000 0.032
#> SRR1085087     4   0.396   0.524881 0.064 0.172 0.000 0.760 0.000 0.004
#> SRR1079046     3   0.709   0.041224 0.348 0.008 0.424 0.096 0.004 0.120
#> SRR1328339     1   0.329   0.577489 0.864 0.004 0.048 0.028 0.016 0.040
#> SRR1079782     3   0.740   0.026795 0.340 0.008 0.364 0.172 0.000 0.116
#> SRR1092257     4   0.440   0.001731 0.020 0.412 0.004 0.564 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.971       0.988         0.4718 0.533   0.533
#> 3 3 0.605           0.802       0.884         0.3357 0.746   0.560
#> 4 4 0.585           0.597       0.789         0.1566 0.862   0.644
#> 5 5 0.595           0.558       0.738         0.0736 0.887   0.623
#> 6 6 0.647           0.476       0.667         0.0470 0.930   0.703

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000      0.995 0.000 1.000
#> SRR1429287     1  0.0000      0.984 1.000 0.000
#> SRR1359238     1  0.0000      0.984 1.000 0.000
#> SRR1309597     1  0.0000      0.984 1.000 0.000
#> SRR1441398     1  0.0000      0.984 1.000 0.000
#> SRR1084055     2  0.0000      0.995 0.000 1.000
#> SRR1417566     1  0.0000      0.984 1.000 0.000
#> SRR1351857     2  0.0000      0.995 0.000 1.000
#> SRR1487485     1  0.0000      0.984 1.000 0.000
#> SRR1335875     1  0.0000      0.984 1.000 0.000
#> SRR1073947     1  0.0000      0.984 1.000 0.000
#> SRR1443483     1  0.0000      0.984 1.000 0.000
#> SRR1346794     1  0.0000      0.984 1.000 0.000
#> SRR1405245     1  0.0000      0.984 1.000 0.000
#> SRR1409677     2  0.0000      0.995 0.000 1.000
#> SRR1095549     2  0.0000      0.995 0.000 1.000
#> SRR1323788     1  0.0000      0.984 1.000 0.000
#> SRR1314054     2  0.0000      0.995 0.000 1.000
#> SRR1077944     1  0.0000      0.984 1.000 0.000
#> SRR1480587     1  0.0000      0.984 1.000 0.000
#> SRR1311205     1  0.0000      0.984 1.000 0.000
#> SRR1076369     1  0.0000      0.984 1.000 0.000
#> SRR1453549     1  0.0376      0.981 0.996 0.004
#> SRR1345782     1  0.0000      0.984 1.000 0.000
#> SRR1447850     2  0.0000      0.995 0.000 1.000
#> SRR1391553     1  0.0000      0.984 1.000 0.000
#> SRR1444156     2  0.0000      0.995 0.000 1.000
#> SRR1471731     1  0.0000      0.984 1.000 0.000
#> SRR1120987     2  0.0000      0.995 0.000 1.000
#> SRR1477363     1  0.0000      0.984 1.000 0.000
#> SRR1391961     1  0.0000      0.984 1.000 0.000
#> SRR1373879     2  0.0000      0.995 0.000 1.000
#> SRR1318732     1  0.0000      0.984 1.000 0.000
#> SRR1091404     1  0.9866      0.262 0.568 0.432
#> SRR1402109     1  0.0376      0.981 0.996 0.004
#> SRR1407336     2  0.0000      0.995 0.000 1.000
#> SRR1097417     1  0.0000      0.984 1.000 0.000
#> SRR1396227     1  0.0000      0.984 1.000 0.000
#> SRR1400775     2  0.0000      0.995 0.000 1.000
#> SRR1392861     2  0.0000      0.995 0.000 1.000
#> SRR1472929     1  0.0000      0.984 1.000 0.000
#> SRR1436740     2  0.0000      0.995 0.000 1.000
#> SRR1477057     1  0.0000      0.984 1.000 0.000
#> SRR1311980     1  0.0000      0.984 1.000 0.000
#> SRR1069400     1  0.0000      0.984 1.000 0.000
#> SRR1351016     1  0.0000      0.984 1.000 0.000
#> SRR1096291     2  0.0000      0.995 0.000 1.000
#> SRR1418145     2  0.0672      0.987 0.008 0.992
#> SRR1488111     1  0.0000      0.984 1.000 0.000
#> SRR1370495     1  0.0000      0.984 1.000 0.000
#> SRR1352639     1  0.0376      0.981 0.996 0.004
#> SRR1348911     1  0.0000      0.984 1.000 0.000
#> SRR1467386     2  0.0000      0.995 0.000 1.000
#> SRR1415956     1  0.0000      0.984 1.000 0.000
#> SRR1500495     1  0.0000      0.984 1.000 0.000
#> SRR1405099     1  0.0000      0.984 1.000 0.000
#> SRR1345585     1  0.0000      0.984 1.000 0.000
#> SRR1093196     1  0.9710      0.352 0.600 0.400
#> SRR1466006     1  0.0000      0.984 1.000 0.000
#> SRR1351557     1  0.0000      0.984 1.000 0.000
#> SRR1382687     1  0.0000      0.984 1.000 0.000
#> SRR1375549     1  0.0000      0.984 1.000 0.000
#> SRR1101765     2  0.0000      0.995 0.000 1.000
#> SRR1334461     1  0.0000      0.984 1.000 0.000
#> SRR1094073     2  0.0000      0.995 0.000 1.000
#> SRR1077549     2  0.0000      0.995 0.000 1.000
#> SRR1440332     1  0.0376      0.981 0.996 0.004
#> SRR1454177     2  0.0000      0.995 0.000 1.000
#> SRR1082447     2  0.0000      0.995 0.000 1.000
#> SRR1420043     1  0.0000      0.984 1.000 0.000
#> SRR1432500     1  0.0376      0.981 0.996 0.004
#> SRR1378045     2  0.7139      0.753 0.196 0.804
#> SRR1334200     1  0.0000      0.984 1.000 0.000
#> SRR1069539     2  0.0000      0.995 0.000 1.000
#> SRR1343031     1  0.0376      0.981 0.996 0.004
#> SRR1319690     1  0.0000      0.984 1.000 0.000
#> SRR1310604     1  0.4161      0.902 0.916 0.084
#> SRR1327747     1  0.0000      0.984 1.000 0.000
#> SRR1072456     1  0.0000      0.984 1.000 0.000
#> SRR1367896     1  0.0000      0.984 1.000 0.000
#> SRR1480107     1  0.0000      0.984 1.000 0.000
#> SRR1377756     1  0.0000      0.984 1.000 0.000
#> SRR1435272     2  0.0000      0.995 0.000 1.000
#> SRR1089230     2  0.0000      0.995 0.000 1.000
#> SRR1389522     1  0.0000      0.984 1.000 0.000
#> SRR1080600     1  0.3274      0.928 0.940 0.060
#> SRR1086935     2  0.0000      0.995 0.000 1.000
#> SRR1344060     1  0.0000      0.984 1.000 0.000
#> SRR1467922     2  0.0000      0.995 0.000 1.000
#> SRR1090984     1  0.0000      0.984 1.000 0.000
#> SRR1456991     1  0.0000      0.984 1.000 0.000
#> SRR1085039     2  0.0000      0.995 0.000 1.000
#> SRR1069303     1  0.0000      0.984 1.000 0.000
#> SRR1091500     2  0.0000      0.995 0.000 1.000
#> SRR1075198     1  0.0376      0.981 0.996 0.004
#> SRR1086915     2  0.0000      0.995 0.000 1.000
#> SRR1499503     2  0.0000      0.995 0.000 1.000
#> SRR1094312     2  0.0000      0.995 0.000 1.000
#> SRR1352437     2  0.0000      0.995 0.000 1.000
#> SRR1436323     1  0.0000      0.984 1.000 0.000
#> SRR1073507     2  0.0000      0.995 0.000 1.000
#> SRR1401972     1  0.0376      0.981 0.996 0.004
#> SRR1415510     1  0.0000      0.984 1.000 0.000
#> SRR1327279     2  0.0000      0.995 0.000 1.000
#> SRR1086983     2  0.0000      0.995 0.000 1.000
#> SRR1105174     2  0.0000      0.995 0.000 1.000
#> SRR1468893     1  0.0000      0.984 1.000 0.000
#> SRR1362555     1  0.0000      0.984 1.000 0.000
#> SRR1074526     2  0.0000      0.995 0.000 1.000
#> SRR1326225     2  0.0000      0.995 0.000 1.000
#> SRR1401933     1  0.0000      0.984 1.000 0.000
#> SRR1324062     1  0.0000      0.984 1.000 0.000
#> SRR1102296     2  0.0000      0.995 0.000 1.000
#> SRR1085087     2  0.0000      0.995 0.000 1.000
#> SRR1079046     1  0.0000      0.984 1.000 0.000
#> SRR1328339     1  0.0000      0.984 1.000 0.000
#> SRR1079782     1  0.6623      0.793 0.828 0.172
#> SRR1092257     2  0.0000      0.995 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1429287     1  0.2796      0.842 0.908 0.092 0.000
#> SRR1359238     1  0.0000      0.861 1.000 0.000 0.000
#> SRR1309597     2  0.2261      0.880 0.068 0.932 0.000
#> SRR1441398     2  0.4346      0.862 0.184 0.816 0.000
#> SRR1084055     3  0.5635      0.777 0.036 0.180 0.784
#> SRR1417566     1  0.2537      0.846 0.920 0.080 0.000
#> SRR1351857     3  0.0000      0.905 0.000 0.000 1.000
#> SRR1487485     1  0.2878      0.843 0.904 0.096 0.000
#> SRR1335875     1  0.1411      0.859 0.964 0.036 0.000
#> SRR1073947     1  0.2339      0.844 0.940 0.012 0.048
#> SRR1443483     1  0.5497      0.643 0.708 0.292 0.000
#> SRR1346794     1  0.0892      0.861 0.980 0.020 0.000
#> SRR1405245     2  0.4346      0.862 0.184 0.816 0.000
#> SRR1409677     3  0.1411      0.902 0.036 0.000 0.964
#> SRR1095549     3  0.2448      0.889 0.076 0.000 0.924
#> SRR1323788     1  0.0661      0.861 0.988 0.008 0.004
#> SRR1314054     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1077944     1  0.0592      0.861 0.988 0.012 0.000
#> SRR1480587     2  0.2261      0.880 0.068 0.932 0.000
#> SRR1311205     2  0.4346      0.862 0.184 0.816 0.000
#> SRR1076369     1  0.4555      0.771 0.800 0.200 0.000
#> SRR1453549     1  0.0592      0.858 0.988 0.000 0.012
#> SRR1345782     1  0.1411      0.859 0.964 0.036 0.000
#> SRR1447850     1  0.7213      0.567 0.668 0.060 0.272
#> SRR1391553     1  0.2711      0.841 0.912 0.088 0.000
#> SRR1444156     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1471731     1  0.6192      0.118 0.580 0.420 0.000
#> SRR1120987     3  0.0000      0.905 0.000 0.000 1.000
#> SRR1477363     1  0.0892      0.861 0.980 0.020 0.000
#> SRR1391961     2  0.6274      0.115 0.456 0.544 0.000
#> SRR1373879     3  0.2448      0.889 0.076 0.000 0.924
#> SRR1318732     1  0.5216      0.599 0.740 0.260 0.000
#> SRR1091404     1  0.3590      0.821 0.896 0.028 0.076
#> SRR1402109     1  0.3237      0.835 0.912 0.032 0.056
#> SRR1407336     3  0.6659      0.171 0.460 0.008 0.532
#> SRR1097417     2  0.6267      0.124 0.452 0.548 0.000
#> SRR1396227     1  0.0983      0.861 0.980 0.016 0.004
#> SRR1400775     1  0.7199      0.579 0.676 0.064 0.260
#> SRR1392861     3  0.1964      0.898 0.056 0.000 0.944
#> SRR1472929     2  0.2165      0.879 0.064 0.936 0.000
#> SRR1436740     3  0.1411      0.902 0.036 0.000 0.964
#> SRR1477057     1  0.2625      0.843 0.916 0.084 0.000
#> SRR1311980     2  0.4346      0.862 0.184 0.816 0.000
#> SRR1069400     1  0.4178      0.787 0.828 0.172 0.000
#> SRR1351016     1  0.5706      0.455 0.680 0.320 0.000
#> SRR1096291     3  0.0000      0.905 0.000 0.000 1.000
#> SRR1418145     1  0.2959      0.812 0.900 0.000 0.100
#> SRR1488111     1  0.2625      0.843 0.916 0.084 0.000
#> SRR1370495     2  0.2261      0.880 0.068 0.932 0.000
#> SRR1352639     1  0.2280      0.841 0.940 0.008 0.052
#> SRR1348911     2  0.2165      0.879 0.064 0.936 0.000
#> SRR1467386     3  0.2261      0.893 0.068 0.000 0.932
#> SRR1415956     2  0.4399      0.859 0.188 0.812 0.000
#> SRR1500495     2  0.4399      0.859 0.188 0.812 0.000
#> SRR1405099     2  0.4399      0.859 0.188 0.812 0.000
#> SRR1345585     1  0.3267      0.836 0.884 0.116 0.000
#> SRR1093196     1  0.2680      0.832 0.924 0.008 0.068
#> SRR1466006     2  0.2356      0.871 0.072 0.928 0.000
#> SRR1351557     1  0.2448      0.851 0.924 0.076 0.000
#> SRR1382687     1  0.0892      0.861 0.980 0.020 0.000
#> SRR1375549     1  0.2625      0.843 0.916 0.084 0.000
#> SRR1101765     3  0.0747      0.903 0.000 0.016 0.984
#> SRR1334461     2  0.2165      0.879 0.064 0.936 0.000
#> SRR1094073     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1077549     3  0.2261      0.893 0.068 0.000 0.932
#> SRR1440332     1  0.2280      0.841 0.940 0.008 0.052
#> SRR1454177     3  0.0000      0.905 0.000 0.000 1.000
#> SRR1082447     3  0.6274      0.191 0.456 0.000 0.544
#> SRR1420043     1  0.1411      0.859 0.964 0.036 0.000
#> SRR1432500     1  0.2651      0.837 0.928 0.012 0.060
#> SRR1378045     1  0.6318      0.691 0.760 0.068 0.172
#> SRR1334200     2  0.2165      0.879 0.064 0.936 0.000
#> SRR1069539     3  0.1031      0.901 0.000 0.024 0.976
#> SRR1343031     1  0.3237      0.835 0.912 0.032 0.056
#> SRR1319690     1  0.2711      0.841 0.912 0.088 0.000
#> SRR1310604     1  0.4121      0.788 0.832 0.168 0.000
#> SRR1327747     1  0.2711      0.841 0.912 0.088 0.000
#> SRR1072456     2  0.2356      0.870 0.072 0.928 0.000
#> SRR1367896     2  0.2448      0.867 0.076 0.924 0.000
#> SRR1480107     1  0.2711      0.841 0.912 0.088 0.000
#> SRR1377756     1  0.0892      0.861 0.980 0.020 0.000
#> SRR1435272     3  0.0000      0.905 0.000 0.000 1.000
#> SRR1089230     3  0.0000      0.905 0.000 0.000 1.000
#> SRR1389522     1  0.6225      0.304 0.568 0.432 0.000
#> SRR1080600     1  0.5016      0.755 0.760 0.240 0.000
#> SRR1086935     3  0.1529      0.897 0.000 0.040 0.960
#> SRR1344060     2  0.2165      0.879 0.064 0.936 0.000
#> SRR1467922     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1090984     2  0.4178      0.865 0.172 0.828 0.000
#> SRR1456991     2  0.4399      0.859 0.188 0.812 0.000
#> SRR1085039     3  0.6079      0.399 0.388 0.000 0.612
#> SRR1069303     1  0.1411      0.859 0.964 0.036 0.000
#> SRR1091500     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1075198     1  0.2625      0.848 0.916 0.084 0.000
#> SRR1086915     3  0.1860      0.899 0.052 0.000 0.948
#> SRR1499503     3  0.3649      0.880 0.036 0.068 0.896
#> SRR1094312     1  0.7363      0.540 0.656 0.064 0.280
#> SRR1352437     3  0.1753      0.899 0.048 0.000 0.952
#> SRR1436323     1  0.2711      0.841 0.912 0.088 0.000
#> SRR1073507     3  0.1860      0.898 0.052 0.000 0.948
#> SRR1401972     1  0.2804      0.838 0.924 0.016 0.060
#> SRR1415510     1  0.4235      0.784 0.824 0.176 0.000
#> SRR1327279     3  0.5138      0.685 0.252 0.000 0.748
#> SRR1086983     3  0.1529      0.901 0.040 0.000 0.960
#> SRR1105174     3  0.2261      0.893 0.068 0.000 0.932
#> SRR1468893     2  0.5733      0.666 0.324 0.676 0.000
#> SRR1362555     2  0.2711      0.878 0.088 0.912 0.000
#> SRR1074526     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1326225     3  0.2066      0.890 0.000 0.060 0.940
#> SRR1401933     1  0.0747      0.861 0.984 0.016 0.000
#> SRR1324062     1  0.1411      0.859 0.964 0.036 0.000
#> SRR1102296     1  0.5465      0.586 0.712 0.000 0.288
#> SRR1085087     3  0.2261      0.893 0.068 0.000 0.932
#> SRR1079046     1  0.2066      0.854 0.940 0.060 0.000
#> SRR1328339     1  0.2959      0.843 0.900 0.100 0.000
#> SRR1079782     1  0.2096      0.841 0.944 0.004 0.052
#> SRR1092257     3  0.0747      0.903 0.000 0.016 0.984

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     4  0.3219   0.749881 0.000 0.000 0.164 0.836
#> SRR1429287     1  0.3497   0.687183 0.860 0.036 0.104 0.000
#> SRR1359238     1  0.1902   0.732350 0.932 0.004 0.064 0.000
#> SRR1309597     2  0.0592   0.879369 0.016 0.984 0.000 0.000
#> SRR1441398     2  0.1824   0.875143 0.060 0.936 0.004 0.000
#> SRR1084055     3  0.4282   0.409419 0.008 0.024 0.808 0.160
#> SRR1417566     1  0.1452   0.732840 0.956 0.008 0.036 0.000
#> SRR1351857     4  0.0592   0.807689 0.000 0.000 0.016 0.984
#> SRR1487485     1  0.5510   0.241230 0.600 0.024 0.376 0.000
#> SRR1335875     1  0.2124   0.730685 0.924 0.008 0.068 0.000
#> SRR1073947     1  0.3681   0.667375 0.816 0.008 0.176 0.000
#> SRR1443483     3  0.7391   0.141980 0.396 0.164 0.440 0.000
#> SRR1346794     1  0.0524   0.737002 0.988 0.004 0.008 0.000
#> SRR1405245     2  0.1978   0.873358 0.068 0.928 0.004 0.000
#> SRR1409677     4  0.2342   0.782589 0.008 0.000 0.080 0.912
#> SRR1095549     3  0.5151  -0.045771 0.004 0.000 0.532 0.464
#> SRR1323788     1  0.3831   0.628951 0.792 0.004 0.204 0.000
#> SRR1314054     4  0.3219   0.749881 0.000 0.000 0.164 0.836
#> SRR1077944     1  0.2675   0.715746 0.892 0.008 0.100 0.000
#> SRR1480587     2  0.0592   0.879369 0.016 0.984 0.000 0.000
#> SRR1311205     2  0.2125   0.870440 0.076 0.920 0.004 0.000
#> SRR1076369     1  0.6443   0.032161 0.528 0.072 0.400 0.000
#> SRR1453549     1  0.1940   0.728923 0.924 0.000 0.076 0.000
#> SRR1345782     1  0.4741   0.445516 0.668 0.004 0.328 0.000
#> SRR1447850     1  0.6178  -0.000987 0.480 0.004 0.476 0.040
#> SRR1391553     1  0.1042   0.734593 0.972 0.020 0.008 0.000
#> SRR1444156     4  0.3219   0.749881 0.000 0.000 0.164 0.836
#> SRR1471731     1  0.2271   0.711418 0.916 0.076 0.008 0.000
#> SRR1120987     4  0.0188   0.809992 0.000 0.000 0.004 0.996
#> SRR1477363     1  0.2675   0.718213 0.892 0.008 0.100 0.000
#> SRR1391961     3  0.7869   0.223629 0.312 0.296 0.392 0.000
#> SRR1373879     3  0.5392  -0.039957 0.012 0.000 0.528 0.460
#> SRR1318732     1  0.1545   0.730092 0.952 0.040 0.008 0.000
#> SRR1091404     3  0.5827   0.204096 0.396 0.000 0.568 0.036
#> SRR1402109     3  0.5062   0.411550 0.284 0.000 0.692 0.024
#> SRR1407336     3  0.5346   0.494180 0.076 0.000 0.732 0.192
#> SRR1097417     3  0.7854   0.225326 0.304 0.296 0.400 0.000
#> SRR1396227     1  0.2799   0.714132 0.884 0.008 0.108 0.000
#> SRR1400775     3  0.5460   0.397407 0.276 0.004 0.684 0.036
#> SRR1392861     4  0.4452   0.634578 0.008 0.000 0.260 0.732
#> SRR1472929     2  0.0657   0.873273 0.004 0.984 0.012 0.000
#> SRR1436740     4  0.2124   0.786659 0.008 0.000 0.068 0.924
#> SRR1477057     1  0.2882   0.707761 0.892 0.024 0.084 0.000
#> SRR1311980     2  0.1978   0.873358 0.068 0.928 0.004 0.000
#> SRR1069400     1  0.6337  -0.043999 0.476 0.060 0.464 0.000
#> SRR1351016     1  0.2944   0.680066 0.868 0.128 0.004 0.000
#> SRR1096291     4  0.0188   0.809539 0.000 0.000 0.004 0.996
#> SRR1418145     1  0.6057   0.271573 0.588 0.004 0.364 0.044
#> SRR1488111     1  0.2742   0.712569 0.900 0.024 0.076 0.000
#> SRR1370495     2  0.0592   0.879369 0.016 0.984 0.000 0.000
#> SRR1352639     1  0.5165   0.060030 0.512 0.004 0.484 0.000
#> SRR1348911     2  0.0657   0.878463 0.012 0.984 0.004 0.000
#> SRR1467386     4  0.5090   0.545824 0.016 0.000 0.324 0.660
#> SRR1415956     2  0.2125   0.870440 0.076 0.920 0.004 0.000
#> SRR1500495     2  0.2125   0.870440 0.076 0.920 0.004 0.000
#> SRR1405099     2  0.2125   0.870440 0.076 0.920 0.004 0.000
#> SRR1345585     1  0.4932   0.481825 0.728 0.032 0.240 0.000
#> SRR1093196     3  0.5976   0.160425 0.452 0.008 0.516 0.024
#> SRR1466006     2  0.5875   0.583160 0.092 0.684 0.224 0.000
#> SRR1351557     1  0.3842   0.675659 0.836 0.036 0.128 0.000
#> SRR1382687     1  0.2048   0.733730 0.928 0.008 0.064 0.000
#> SRR1375549     1  0.2742   0.712569 0.900 0.024 0.076 0.000
#> SRR1101765     4  0.0000   0.809769 0.000 0.000 0.000 1.000
#> SRR1334461     2  0.0657   0.873273 0.004 0.984 0.012 0.000
#> SRR1094073     4  0.3219   0.749881 0.000 0.000 0.164 0.836
#> SRR1077549     4  0.5075   0.520214 0.012 0.000 0.344 0.644
#> SRR1440332     1  0.5151   0.120497 0.532 0.004 0.464 0.000
#> SRR1454177     4  0.0000   0.809769 0.000 0.000 0.000 1.000
#> SRR1082447     3  0.6714   0.264481 0.100 0.000 0.540 0.360
#> SRR1420043     1  0.2480   0.719306 0.904 0.008 0.088 0.000
#> SRR1432500     1  0.5427   0.383761 0.640 0.004 0.336 0.020
#> SRR1378045     3  0.4567   0.489417 0.236 0.004 0.748 0.012
#> SRR1334200     2  0.0657   0.877227 0.012 0.984 0.004 0.000
#> SRR1069539     4  0.0921   0.805817 0.000 0.000 0.028 0.972
#> SRR1343031     3  0.5105   0.421111 0.276 0.000 0.696 0.028
#> SRR1319690     1  0.1297   0.736220 0.964 0.020 0.016 0.000
#> SRR1310604     3  0.5883   0.357993 0.300 0.060 0.640 0.000
#> SRR1327747     1  0.1411   0.732714 0.960 0.020 0.020 0.000
#> SRR1072456     2  0.4464   0.687306 0.024 0.768 0.208 0.000
#> SRR1367896     2  0.3908   0.700928 0.004 0.784 0.212 0.000
#> SRR1480107     1  0.3398   0.706679 0.872 0.068 0.060 0.000
#> SRR1377756     1  0.2546   0.718303 0.900 0.008 0.092 0.000
#> SRR1435272     4  0.0336   0.809303 0.000 0.000 0.008 0.992
#> SRR1089230     4  0.0000   0.809769 0.000 0.000 0.000 1.000
#> SRR1389522     3  0.7463   0.160705 0.384 0.176 0.440 0.000
#> SRR1080600     3  0.5062   0.463564 0.184 0.064 0.752 0.000
#> SRR1086935     4  0.0817   0.805670 0.000 0.000 0.024 0.976
#> SRR1344060     2  0.0804   0.871110 0.008 0.980 0.012 0.000
#> SRR1467922     4  0.3583   0.733645 0.000 0.004 0.180 0.816
#> SRR1090984     2  0.4220   0.675830 0.248 0.748 0.004 0.000
#> SRR1456991     2  0.4632   0.595287 0.308 0.688 0.004 0.000
#> SRR1085039     3  0.6677   0.255610 0.096 0.000 0.540 0.364
#> SRR1069303     1  0.2675   0.717502 0.892 0.008 0.100 0.000
#> SRR1091500     4  0.3219   0.749881 0.000 0.000 0.164 0.836
#> SRR1075198     1  0.5792   0.212092 0.552 0.032 0.416 0.000
#> SRR1086915     4  0.4690   0.628112 0.016 0.000 0.260 0.724
#> SRR1499503     3  0.4034   0.395306 0.012 0.004 0.804 0.180
#> SRR1094312     3  0.5284   0.437306 0.240 0.004 0.716 0.040
#> SRR1352437     4  0.4606   0.626993 0.012 0.000 0.264 0.724
#> SRR1436323     1  0.1284   0.733320 0.964 0.024 0.012 0.000
#> SRR1073507     4  0.5090   0.545824 0.016 0.000 0.324 0.660
#> SRR1401972     1  0.4897   0.425556 0.668 0.004 0.324 0.004
#> SRR1415510     1  0.5148   0.574372 0.736 0.056 0.208 0.000
#> SRR1327279     3  0.6500   0.226444 0.080 0.000 0.544 0.376
#> SRR1086983     4  0.2662   0.774246 0.016 0.000 0.084 0.900
#> SRR1105174     4  0.5130   0.534958 0.016 0.000 0.332 0.652
#> SRR1468893     2  0.4372   0.636210 0.268 0.728 0.004 0.000
#> SRR1362555     2  0.0592   0.879369 0.016 0.984 0.000 0.000
#> SRR1074526     4  0.3311   0.747883 0.000 0.000 0.172 0.828
#> SRR1326225     4  0.3494   0.740600 0.000 0.004 0.172 0.824
#> SRR1401933     1  0.1722   0.732849 0.944 0.008 0.048 0.000
#> SRR1324062     1  0.2737   0.716130 0.888 0.008 0.104 0.000
#> SRR1102296     3  0.6458   0.187808 0.408 0.000 0.520 0.072
#> SRR1085087     4  0.5110   0.539094 0.016 0.000 0.328 0.656
#> SRR1079046     1  0.2775   0.709603 0.896 0.020 0.084 0.000
#> SRR1328339     1  0.5231   0.274154 0.604 0.012 0.384 0.000
#> SRR1079782     1  0.4946   0.430883 0.680 0.008 0.308 0.004
#> SRR1092257     4  0.0188   0.809992 0.000 0.000 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0324     0.7005 0.000 0.992 0.004 0.004 0.000
#> SRR1429287     1  0.5329     0.5893 0.692 0.000 0.212 0.076 0.020
#> SRR1359238     1  0.2439     0.7267 0.876 0.000 0.120 0.004 0.000
#> SRR1309597     5  0.1197     0.8509 0.000 0.000 0.048 0.000 0.952
#> SRR1441398     5  0.1041     0.8533 0.032 0.000 0.000 0.004 0.964
#> SRR1084055     3  0.6200     0.4469 0.000 0.256 0.548 0.196 0.000
#> SRR1417566     1  0.3652     0.6487 0.784 0.000 0.200 0.012 0.004
#> SRR1351857     2  0.4088     0.6117 0.000 0.632 0.000 0.368 0.000
#> SRR1487485     3  0.5363     0.1705 0.372 0.000 0.572 0.052 0.004
#> SRR1335875     1  0.1267     0.7384 0.960 0.000 0.004 0.024 0.012
#> SRR1073947     1  0.5392     0.4780 0.668 0.000 0.056 0.252 0.024
#> SRR1443483     3  0.5679     0.5282 0.188 0.000 0.672 0.120 0.020
#> SRR1346794     1  0.1365     0.7382 0.952 0.000 0.040 0.004 0.004
#> SRR1405245     5  0.1205     0.8527 0.040 0.000 0.000 0.004 0.956
#> SRR1409677     4  0.4227     0.0327 0.000 0.420 0.000 0.580 0.000
#> SRR1095549     4  0.3859     0.6216 0.004 0.084 0.096 0.816 0.000
#> SRR1323788     1  0.4988     0.5345 0.716 0.000 0.084 0.192 0.008
#> SRR1314054     2  0.0324     0.7005 0.000 0.992 0.004 0.004 0.000
#> SRR1077944     1  0.1399     0.7332 0.952 0.000 0.020 0.028 0.000
#> SRR1480587     5  0.1197     0.8509 0.000 0.000 0.048 0.000 0.952
#> SRR1311205     5  0.1764     0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1076369     3  0.4788     0.5433 0.144 0.000 0.760 0.068 0.028
#> SRR1453549     1  0.1701     0.7385 0.936 0.000 0.048 0.016 0.000
#> SRR1345782     1  0.6413     0.2472 0.552 0.000 0.232 0.208 0.008
#> SRR1447850     3  0.8591     0.2489 0.248 0.268 0.268 0.216 0.000
#> SRR1391553     1  0.2228     0.7319 0.908 0.000 0.076 0.012 0.004
#> SRR1444156     2  0.0404     0.6983 0.000 0.988 0.012 0.000 0.000
#> SRR1471731     1  0.3584     0.7088 0.836 0.000 0.112 0.012 0.040
#> SRR1120987     2  0.3966     0.6742 0.000 0.664 0.000 0.336 0.000
#> SRR1477363     1  0.0404     0.7380 0.988 0.000 0.000 0.012 0.000
#> SRR1391961     3  0.5360     0.5221 0.088 0.000 0.736 0.068 0.108
#> SRR1373879     4  0.4059     0.6154 0.012 0.068 0.112 0.808 0.000
#> SRR1318732     1  0.4097     0.6367 0.756 0.000 0.216 0.008 0.020
#> SRR1091404     4  0.6649    -0.1311 0.268 0.000 0.284 0.448 0.000
#> SRR1402109     3  0.6644     0.2956 0.192 0.000 0.432 0.372 0.004
#> SRR1407336     4  0.5347    -0.0631 0.040 0.008 0.396 0.556 0.000
#> SRR1097417     3  0.4832     0.5307 0.060 0.000 0.772 0.060 0.108
#> SRR1396227     1  0.1836     0.7304 0.936 0.000 0.016 0.040 0.008
#> SRR1400775     3  0.8352     0.3670 0.136 0.272 0.320 0.272 0.000
#> SRR1392861     4  0.3612     0.5087 0.000 0.268 0.000 0.732 0.000
#> SRR1472929     5  0.1732     0.8394 0.000 0.000 0.080 0.000 0.920
#> SRR1436740     4  0.4448    -0.2300 0.000 0.480 0.004 0.516 0.000
#> SRR1477057     1  0.4272     0.6737 0.780 0.000 0.152 0.060 0.008
#> SRR1311980     5  0.1205     0.8527 0.040 0.000 0.000 0.004 0.956
#> SRR1069400     3  0.5523     0.5224 0.200 0.000 0.668 0.124 0.008
#> SRR1351016     1  0.3474     0.6701 0.832 0.000 0.028 0.008 0.132
#> SRR1096291     2  0.3966     0.6742 0.000 0.664 0.000 0.336 0.000
#> SRR1418145     1  0.6767     0.1542 0.428 0.008 0.196 0.368 0.000
#> SRR1488111     1  0.3871     0.6870 0.808 0.000 0.132 0.056 0.004
#> SRR1370495     5  0.1197     0.8509 0.000 0.000 0.048 0.000 0.952
#> SRR1352639     1  0.6529     0.0685 0.436 0.000 0.168 0.392 0.004
#> SRR1348911     5  0.2583     0.8141 0.000 0.000 0.132 0.004 0.864
#> SRR1467386     4  0.3562     0.6050 0.016 0.196 0.000 0.788 0.000
#> SRR1415956     5  0.1764     0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1500495     5  0.1764     0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1405099     5  0.1764     0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1345585     1  0.5233     0.0672 0.488 0.000 0.476 0.008 0.028
#> SRR1093196     3  0.6569     0.2930 0.304 0.000 0.464 0.232 0.000
#> SRR1466006     3  0.4151     0.1558 0.004 0.000 0.652 0.000 0.344
#> SRR1351557     1  0.6000     0.4606 0.596 0.000 0.292 0.092 0.020
#> SRR1382687     1  0.0579     0.7390 0.984 0.000 0.008 0.008 0.000
#> SRR1375549     1  0.3543     0.6991 0.832 0.000 0.124 0.036 0.008
#> SRR1101765     2  0.3949     0.6788 0.000 0.668 0.000 0.332 0.000
#> SRR1334461     5  0.2763     0.8025 0.000 0.000 0.148 0.004 0.848
#> SRR1094073     2  0.0404     0.6983 0.000 0.988 0.012 0.000 0.000
#> SRR1077549     4  0.3773     0.6225 0.004 0.164 0.032 0.800 0.000
#> SRR1440332     1  0.6252     0.1895 0.508 0.000 0.164 0.328 0.000
#> SRR1454177     2  0.4084     0.6808 0.000 0.668 0.004 0.328 0.000
#> SRR1082447     4  0.4539     0.5804 0.068 0.036 0.108 0.788 0.000
#> SRR1420043     1  0.1012     0.7372 0.968 0.000 0.020 0.012 0.000
#> SRR1432500     1  0.4297     0.4987 0.692 0.000 0.020 0.288 0.000
#> SRR1378045     3  0.7892     0.4870 0.144 0.168 0.464 0.224 0.000
#> SRR1334200     5  0.2286     0.8311 0.000 0.000 0.108 0.004 0.888
#> SRR1069539     2  0.3752     0.6930 0.000 0.708 0.000 0.292 0.000
#> SRR1343031     3  0.6585     0.2940 0.180 0.000 0.440 0.376 0.004
#> SRR1319690     1  0.1644     0.7390 0.940 0.000 0.048 0.008 0.004
#> SRR1310604     3  0.4723     0.5627 0.064 0.000 0.768 0.136 0.032
#> SRR1327747     1  0.2463     0.7259 0.888 0.000 0.100 0.004 0.008
#> SRR1072456     3  0.4321     0.0495 0.004 0.000 0.600 0.000 0.396
#> SRR1367896     3  0.4968    -0.1274 0.000 0.000 0.516 0.028 0.456
#> SRR1480107     1  0.3542     0.6725 0.840 0.000 0.028 0.020 0.112
#> SRR1377756     1  0.0693     0.7369 0.980 0.000 0.008 0.012 0.000
#> SRR1435272     2  0.4101     0.6772 0.000 0.664 0.004 0.332 0.000
#> SRR1089230     2  0.4084     0.6808 0.000 0.668 0.004 0.328 0.000
#> SRR1389522     3  0.5509     0.5463 0.164 0.000 0.700 0.108 0.028
#> SRR1080600     3  0.4790     0.5618 0.032 0.024 0.780 0.132 0.032
#> SRR1086935     2  0.3838     0.6951 0.000 0.716 0.004 0.280 0.000
#> SRR1344060     5  0.3366     0.7428 0.000 0.000 0.212 0.004 0.784
#> SRR1467922     2  0.1568     0.6468 0.000 0.944 0.036 0.020 0.000
#> SRR1090984     5  0.5407     0.6317 0.180 0.000 0.128 0.008 0.684
#> SRR1456991     5  0.5262     0.3264 0.388 0.000 0.036 0.008 0.568
#> SRR1085039     4  0.4462     0.5985 0.060 0.044 0.100 0.796 0.000
#> SRR1069303     1  0.2420     0.7206 0.912 0.000 0.016 0.036 0.036
#> SRR1091500     2  0.0404     0.6983 0.000 0.988 0.012 0.000 0.000
#> SRR1075198     3  0.6882     0.0787 0.356 0.000 0.460 0.160 0.024
#> SRR1086915     4  0.3586     0.5165 0.000 0.264 0.000 0.736 0.000
#> SRR1499503     3  0.6630     0.3615 0.000 0.376 0.404 0.220 0.000
#> SRR1094312     3  0.8252     0.3640 0.116 0.292 0.320 0.272 0.000
#> SRR1352437     4  0.3521     0.5636 0.004 0.232 0.000 0.764 0.000
#> SRR1436323     1  0.2284     0.7271 0.896 0.000 0.096 0.004 0.004
#> SRR1073507     4  0.3496     0.6024 0.012 0.200 0.000 0.788 0.000
#> SRR1401972     1  0.3828     0.6321 0.788 0.000 0.020 0.184 0.008
#> SRR1415510     1  0.6376     0.1342 0.448 0.000 0.444 0.076 0.032
#> SRR1327279     4  0.4460     0.5844 0.048 0.044 0.116 0.792 0.000
#> SRR1086983     4  0.4074     0.2546 0.000 0.364 0.000 0.636 0.000
#> SRR1105174     4  0.3511     0.6142 0.012 0.184 0.004 0.800 0.000
#> SRR1468893     5  0.3756     0.6239 0.248 0.000 0.000 0.008 0.744
#> SRR1362555     5  0.1341     0.8502 0.000 0.000 0.056 0.000 0.944
#> SRR1074526     2  0.0290     0.6979 0.000 0.992 0.008 0.000 0.000
#> SRR1326225     2  0.0671     0.6881 0.000 0.980 0.016 0.004 0.000
#> SRR1401933     1  0.3384     0.7058 0.848 0.000 0.088 0.060 0.004
#> SRR1324062     1  0.2417     0.7244 0.912 0.000 0.016 0.040 0.032
#> SRR1102296     4  0.5847     0.1316 0.312 0.008 0.096 0.584 0.000
#> SRR1085087     4  0.3586     0.6082 0.020 0.188 0.000 0.792 0.000
#> SRR1079046     1  0.4059     0.6768 0.800 0.000 0.132 0.060 0.008
#> SRR1328339     1  0.5673     0.1486 0.544 0.000 0.388 0.056 0.012
#> SRR1079782     1  0.6170     0.4224 0.576 0.000 0.232 0.188 0.004
#> SRR1092257     2  0.3949     0.6787 0.000 0.668 0.000 0.332 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0520    0.66932 0.000 0.984 0.008 0.008 0.000 0.000
#> SRR1429287     6  0.4724    0.10073 0.468 0.004 0.020 0.004 0.004 0.500
#> SRR1359238     1  0.3485    0.54271 0.784 0.000 0.028 0.004 0.000 0.184
#> SRR1309597     5  0.2866    0.77600 0.000 0.004 0.052 0.000 0.860 0.084
#> SRR1441398     5  0.0146    0.77749 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1084055     3  0.7403    0.05615 0.000 0.268 0.364 0.128 0.000 0.240
#> SRR1417566     1  0.5386    0.36361 0.588 0.000 0.264 0.000 0.004 0.144
#> SRR1351857     2  0.4897    0.54759 0.000 0.556 0.004 0.384 0.000 0.056
#> SRR1487485     3  0.6425   -0.16387 0.244 0.000 0.408 0.012 0.004 0.332
#> SRR1335875     1  0.1841    0.62888 0.920 0.000 0.000 0.008 0.008 0.064
#> SRR1073947     1  0.5027    0.42097 0.672 0.000 0.064 0.236 0.008 0.020
#> SRR1443483     3  0.3610    0.46255 0.092 0.000 0.820 0.072 0.004 0.012
#> SRR1346794     1  0.2837    0.60952 0.856 0.000 0.056 0.000 0.000 0.088
#> SRR1405245     5  0.0146    0.77749 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1409677     4  0.3996    0.47780 0.000 0.180 0.012 0.760 0.000 0.048
#> SRR1095549     4  0.3705    0.64512 0.000 0.008 0.180 0.776 0.000 0.036
#> SRR1323788     1  0.5496    0.33688 0.592 0.000 0.240 0.160 0.000 0.008
#> SRR1314054     2  0.0260    0.67026 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1077944     1  0.2314    0.63523 0.900 0.000 0.056 0.036 0.000 0.008
#> SRR1480587     5  0.3096    0.77553 0.004 0.004 0.048 0.000 0.848 0.096
#> SRR1311205     5  0.1442    0.76437 0.040 0.000 0.004 0.000 0.944 0.012
#> SRR1076369     3  0.3271    0.46044 0.028 0.000 0.848 0.032 0.004 0.088
#> SRR1453549     1  0.2265    0.62157 0.900 0.000 0.024 0.008 0.000 0.068
#> SRR1345782     1  0.5962    0.16167 0.500 0.000 0.328 0.156 0.000 0.016
#> SRR1447850     6  0.6686    0.46248 0.144 0.224 0.020 0.064 0.000 0.548
#> SRR1391553     1  0.4214    0.53591 0.736 0.000 0.076 0.000 0.004 0.184
#> SRR1444156     2  0.0951    0.66861 0.000 0.968 0.004 0.008 0.000 0.020
#> SRR1471731     1  0.5375    0.46049 0.648 0.000 0.112 0.000 0.032 0.208
#> SRR1120987     2  0.5080    0.57635 0.000 0.552 0.012 0.380 0.000 0.056
#> SRR1477363     1  0.1148    0.63586 0.960 0.000 0.000 0.020 0.004 0.016
#> SRR1391961     3  0.4094    0.44339 0.012 0.004 0.752 0.004 0.028 0.200
#> SRR1373879     4  0.3090    0.67558 0.000 0.004 0.140 0.828 0.000 0.028
#> SRR1318732     1  0.5513    0.39761 0.596 0.000 0.188 0.000 0.008 0.208
#> SRR1091404     4  0.7242    0.05862 0.196 0.000 0.260 0.416 0.000 0.128
#> SRR1402109     3  0.6535    0.29645 0.164 0.000 0.512 0.256 0.000 0.068
#> SRR1407336     4  0.5479    0.16607 0.012 0.000 0.380 0.516 0.000 0.092
#> SRR1097417     3  0.3937    0.44627 0.008 0.004 0.764 0.004 0.028 0.192
#> SRR1396227     1  0.2128    0.62614 0.908 0.000 0.000 0.032 0.004 0.056
#> SRR1400775     6  0.7196    0.36758 0.056 0.244 0.076 0.112 0.000 0.512
#> SRR1392861     4  0.3088    0.59821 0.000 0.120 0.000 0.832 0.000 0.048
#> SRR1472929     5  0.4125    0.73327 0.000 0.004 0.100 0.000 0.756 0.140
#> SRR1436740     4  0.4724    0.20253 0.000 0.276 0.012 0.656 0.000 0.056
#> SRR1477057     1  0.4421    0.09255 0.552 0.000 0.020 0.004 0.000 0.424
#> SRR1311980     5  0.0146    0.77749 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1069400     3  0.4676    0.42258 0.104 0.000 0.748 0.072 0.000 0.076
#> SRR1351016     1  0.3980    0.58201 0.784 0.000 0.056 0.000 0.136 0.024
#> SRR1096291     2  0.4840    0.58583 0.000 0.580 0.004 0.360 0.000 0.056
#> SRR1418145     6  0.5742    0.46932 0.292 0.000 0.004 0.180 0.000 0.524
#> SRR1488111     1  0.4223    0.24766 0.612 0.000 0.016 0.004 0.000 0.368
#> SRR1370495     5  0.3096    0.77553 0.004 0.004 0.048 0.000 0.848 0.096
#> SRR1352639     1  0.7072    0.00451 0.412 0.000 0.200 0.296 0.000 0.092
#> SRR1348911     5  0.5317    0.62747 0.000 0.004 0.236 0.004 0.620 0.136
#> SRR1467386     4  0.1285    0.69423 0.004 0.052 0.000 0.944 0.000 0.000
#> SRR1415956     5  0.1410    0.76216 0.044 0.000 0.004 0.000 0.944 0.008
#> SRR1500495     5  0.1410    0.76216 0.044 0.000 0.004 0.000 0.944 0.008
#> SRR1405099     5  0.1410    0.76216 0.044 0.000 0.004 0.000 0.944 0.008
#> SRR1345585     3  0.6243   -0.08286 0.376 0.000 0.408 0.008 0.004 0.204
#> SRR1093196     6  0.7295    0.17743 0.184 0.000 0.284 0.136 0.000 0.396
#> SRR1466006     3  0.5991    0.19713 0.004 0.008 0.512 0.004 0.148 0.324
#> SRR1351557     6  0.3864    0.43199 0.344 0.000 0.000 0.004 0.004 0.648
#> SRR1382687     1  0.1138    0.63641 0.960 0.000 0.000 0.012 0.004 0.024
#> SRR1375549     1  0.4213    0.30029 0.636 0.000 0.020 0.004 0.000 0.340
#> SRR1101765     2  0.4934    0.58960 0.000 0.568 0.016 0.376 0.000 0.040
#> SRR1334461     5  0.5909    0.53851 0.000 0.004 0.264 0.004 0.524 0.204
#> SRR1094073     2  0.0862    0.66907 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1077549     4  0.2492    0.70287 0.000 0.036 0.068 0.888 0.000 0.008
#> SRR1440332     1  0.6648    0.12131 0.472 0.000 0.232 0.244 0.000 0.052
#> SRR1454177     2  0.4879    0.60452 0.000 0.584 0.008 0.356 0.000 0.052
#> SRR1082447     4  0.3765    0.66711 0.040 0.000 0.132 0.800 0.000 0.028
#> SRR1420043     1  0.1945    0.63708 0.920 0.000 0.056 0.016 0.004 0.004
#> SRR1432500     1  0.3828    0.46099 0.724 0.000 0.008 0.252 0.000 0.016
#> SRR1378045     3  0.8216    0.03662 0.100 0.176 0.376 0.092 0.000 0.256
#> SRR1334200     5  0.5717    0.61008 0.004 0.004 0.168 0.004 0.580 0.240
#> SRR1069539     2  0.4505    0.63333 0.000 0.668 0.004 0.272 0.000 0.056
#> SRR1343031     3  0.6565    0.29038 0.164 0.000 0.504 0.264 0.000 0.068
#> SRR1319690     1  0.2532    0.62934 0.884 0.000 0.060 0.000 0.004 0.052
#> SRR1310604     3  0.5698   -0.01756 0.036 0.004 0.456 0.056 0.000 0.448
#> SRR1327747     1  0.4275    0.52590 0.728 0.000 0.076 0.000 0.004 0.192
#> SRR1072456     3  0.5720    0.14799 0.000 0.004 0.560 0.004 0.180 0.252
#> SRR1367896     3  0.5337    0.19128 0.000 0.004 0.628 0.004 0.188 0.176
#> SRR1480107     1  0.3816    0.59186 0.808 0.000 0.056 0.008 0.112 0.016
#> SRR1377756     1  0.1053    0.64067 0.964 0.000 0.012 0.020 0.004 0.000
#> SRR1435272     2  0.4929    0.58651 0.000 0.564 0.008 0.376 0.000 0.052
#> SRR1089230     2  0.4879    0.60443 0.000 0.584 0.008 0.356 0.000 0.052
#> SRR1389522     3  0.2853    0.47379 0.068 0.000 0.868 0.056 0.004 0.004
#> SRR1080600     6  0.5405   -0.15709 0.016 0.004 0.456 0.048 0.004 0.472
#> SRR1086935     2  0.4513    0.63952 0.000 0.676 0.008 0.264 0.000 0.052
#> SRR1344060     5  0.6188    0.41023 0.000 0.004 0.328 0.004 0.436 0.228
#> SRR1467922     2  0.1801    0.63014 0.000 0.924 0.016 0.004 0.000 0.056
#> SRR1090984     5  0.7211    0.31623 0.204 0.000 0.164 0.000 0.448 0.184
#> SRR1456991     1  0.5359    0.13109 0.484 0.000 0.060 0.000 0.436 0.020
#> SRR1085039     4  0.3573    0.67906 0.036 0.000 0.120 0.816 0.000 0.028
#> SRR1069303     1  0.2701    0.62021 0.884 0.000 0.000 0.028 0.044 0.044
#> SRR1091500     2  0.1167    0.66747 0.000 0.960 0.012 0.008 0.000 0.020
#> SRR1075198     6  0.5866    0.47549 0.180 0.004 0.168 0.028 0.004 0.616
#> SRR1086915     4  0.3049    0.61550 0.000 0.104 0.004 0.844 0.000 0.048
#> SRR1499503     2  0.7379   -0.29622 0.000 0.364 0.232 0.124 0.000 0.280
#> SRR1094312     6  0.7145    0.33391 0.040 0.276 0.080 0.112 0.000 0.492
#> SRR1352437     4  0.2854    0.63420 0.004 0.088 0.000 0.860 0.000 0.048
#> SRR1436323     1  0.4313    0.52937 0.728 0.000 0.084 0.000 0.004 0.184
#> SRR1073507     4  0.1285    0.69423 0.004 0.052 0.000 0.944 0.000 0.000
#> SRR1401972     1  0.3254    0.56813 0.820 0.000 0.000 0.124 0.000 0.056
#> SRR1415510     6  0.5433    0.49614 0.260 0.004 0.120 0.004 0.004 0.608
#> SRR1327279     4  0.3488    0.65005 0.012 0.000 0.160 0.800 0.000 0.028
#> SRR1086983     4  0.3490    0.51000 0.000 0.176 0.000 0.784 0.000 0.040
#> SRR1105174     4  0.1862    0.70090 0.004 0.044 0.016 0.928 0.000 0.008
#> SRR1468893     5  0.3301    0.58159 0.216 0.000 0.004 0.000 0.772 0.008
#> SRR1362555     5  0.3218    0.77273 0.004 0.004 0.044 0.000 0.836 0.112
#> SRR1074526     2  0.0862    0.66785 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1326225     2  0.1511    0.64339 0.000 0.940 0.012 0.004 0.000 0.044
#> SRR1401933     1  0.3547    0.34296 0.668 0.000 0.000 0.000 0.000 0.332
#> SRR1324062     1  0.2755    0.61964 0.880 0.000 0.000 0.028 0.036 0.056
#> SRR1102296     4  0.6074    0.33300 0.264 0.000 0.092 0.568 0.000 0.076
#> SRR1085087     4  0.1477    0.69328 0.004 0.048 0.000 0.940 0.000 0.008
#> SRR1079046     1  0.4387    0.15467 0.572 0.000 0.020 0.004 0.000 0.404
#> SRR1328339     3  0.4622   -0.09148 0.484 0.000 0.488 0.004 0.008 0.016
#> SRR1079782     6  0.4362    0.39141 0.388 0.000 0.000 0.028 0.000 0.584
#> SRR1092257     2  0.5080    0.57635 0.000 0.552 0.012 0.380 0.000 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.986       0.994         0.5019 0.499   0.499
#> 3 3 0.743           0.899       0.915         0.3000 0.794   0.606
#> 4 4 0.579           0.572       0.784         0.1195 0.874   0.659
#> 5 5 0.630           0.495       0.745         0.0634 0.845   0.533
#> 6 6 0.703           0.571       0.765         0.0458 0.888   0.576

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.0000      0.999 0.000 1.000
#> SRR1429287     1  0.0000      0.990 1.000 0.000
#> SRR1359238     1  0.0000      0.990 1.000 0.000
#> SRR1309597     1  0.0000      0.990 1.000 0.000
#> SRR1441398     1  0.0000      0.990 1.000 0.000
#> SRR1084055     2  0.0000      0.999 0.000 1.000
#> SRR1417566     1  0.0000      0.990 1.000 0.000
#> SRR1351857     2  0.0000      0.999 0.000 1.000
#> SRR1487485     1  0.0000      0.990 1.000 0.000
#> SRR1335875     1  0.0000      0.990 1.000 0.000
#> SRR1073947     1  0.0000      0.990 1.000 0.000
#> SRR1443483     1  0.0000      0.990 1.000 0.000
#> SRR1346794     1  0.0000      0.990 1.000 0.000
#> SRR1405245     1  0.0000      0.990 1.000 0.000
#> SRR1409677     2  0.0000      0.999 0.000 1.000
#> SRR1095549     2  0.0000      0.999 0.000 1.000
#> SRR1323788     1  0.0000      0.990 1.000 0.000
#> SRR1314054     2  0.0000      0.999 0.000 1.000
#> SRR1077944     1  0.0000      0.990 1.000 0.000
#> SRR1480587     1  0.0000      0.990 1.000 0.000
#> SRR1311205     1  0.0000      0.990 1.000 0.000
#> SRR1076369     1  0.0000      0.990 1.000 0.000
#> SRR1453549     1  0.8267      0.650 0.740 0.260
#> SRR1345782     1  0.0000      0.990 1.000 0.000
#> SRR1447850     2  0.0000      0.999 0.000 1.000
#> SRR1391553     1  0.0000      0.990 1.000 0.000
#> SRR1444156     2  0.0000      0.999 0.000 1.000
#> SRR1471731     1  0.0000      0.990 1.000 0.000
#> SRR1120987     2  0.0000      0.999 0.000 1.000
#> SRR1477363     1  0.0000      0.990 1.000 0.000
#> SRR1391961     1  0.0000      0.990 1.000 0.000
#> SRR1373879     2  0.0000      0.999 0.000 1.000
#> SRR1318732     1  0.0000      0.990 1.000 0.000
#> SRR1091404     2  0.0000      0.999 0.000 1.000
#> SRR1402109     2  0.0000      0.999 0.000 1.000
#> SRR1407336     2  0.0000      0.999 0.000 1.000
#> SRR1097417     1  0.0000      0.990 1.000 0.000
#> SRR1396227     1  0.0000      0.990 1.000 0.000
#> SRR1400775     2  0.0000      0.999 0.000 1.000
#> SRR1392861     2  0.0000      0.999 0.000 1.000
#> SRR1472929     1  0.0000      0.990 1.000 0.000
#> SRR1436740     2  0.0000      0.999 0.000 1.000
#> SRR1477057     1  0.0000      0.990 1.000 0.000
#> SRR1311980     1  0.0000      0.990 1.000 0.000
#> SRR1069400     1  0.0376      0.986 0.996 0.004
#> SRR1351016     1  0.0000      0.990 1.000 0.000
#> SRR1096291     2  0.0000      0.999 0.000 1.000
#> SRR1418145     2  0.0000      0.999 0.000 1.000
#> SRR1488111     1  0.0000      0.990 1.000 0.000
#> SRR1370495     1  0.0000      0.990 1.000 0.000
#> SRR1352639     2  0.0000      0.999 0.000 1.000
#> SRR1348911     1  0.0000      0.990 1.000 0.000
#> SRR1467386     2  0.0000      0.999 0.000 1.000
#> SRR1415956     1  0.0000      0.990 1.000 0.000
#> SRR1500495     1  0.0000      0.990 1.000 0.000
#> SRR1405099     1  0.0000      0.990 1.000 0.000
#> SRR1345585     1  0.0000      0.990 1.000 0.000
#> SRR1093196     2  0.0000      0.999 0.000 1.000
#> SRR1466006     1  0.0000      0.990 1.000 0.000
#> SRR1351557     1  0.0000      0.990 1.000 0.000
#> SRR1382687     1  0.0000      0.990 1.000 0.000
#> SRR1375549     1  0.0000      0.990 1.000 0.000
#> SRR1101765     2  0.0000      0.999 0.000 1.000
#> SRR1334461     1  0.0000      0.990 1.000 0.000
#> SRR1094073     2  0.0000      0.999 0.000 1.000
#> SRR1077549     2  0.0000      0.999 0.000 1.000
#> SRR1440332     2  0.2043      0.966 0.032 0.968
#> SRR1454177     2  0.0000      0.999 0.000 1.000
#> SRR1082447     2  0.0000      0.999 0.000 1.000
#> SRR1420043     1  0.0000      0.990 1.000 0.000
#> SRR1432500     2  0.0000      0.999 0.000 1.000
#> SRR1378045     2  0.0000      0.999 0.000 1.000
#> SRR1334200     1  0.0000      0.990 1.000 0.000
#> SRR1069539     2  0.0000      0.999 0.000 1.000
#> SRR1343031     2  0.0000      0.999 0.000 1.000
#> SRR1319690     1  0.0000      0.990 1.000 0.000
#> SRR1310604     2  0.0000      0.999 0.000 1.000
#> SRR1327747     1  0.0000      0.990 1.000 0.000
#> SRR1072456     1  0.0000      0.990 1.000 0.000
#> SRR1367896     1  0.0000      0.990 1.000 0.000
#> SRR1480107     1  0.0000      0.990 1.000 0.000
#> SRR1377756     1  0.0000      0.990 1.000 0.000
#> SRR1435272     2  0.0000      0.999 0.000 1.000
#> SRR1089230     2  0.0000      0.999 0.000 1.000
#> SRR1389522     1  0.0000      0.990 1.000 0.000
#> SRR1080600     2  0.0000      0.999 0.000 1.000
#> SRR1086935     2  0.0000      0.999 0.000 1.000
#> SRR1344060     1  0.0000      0.990 1.000 0.000
#> SRR1467922     2  0.0000      0.999 0.000 1.000
#> SRR1090984     1  0.0000      0.990 1.000 0.000
#> SRR1456991     1  0.0000      0.990 1.000 0.000
#> SRR1085039     2  0.0000      0.999 0.000 1.000
#> SRR1069303     1  0.0000      0.990 1.000 0.000
#> SRR1091500     2  0.0000      0.999 0.000 1.000
#> SRR1075198     1  0.9635      0.374 0.612 0.388
#> SRR1086915     2  0.0000      0.999 0.000 1.000
#> SRR1499503     2  0.0000      0.999 0.000 1.000
#> SRR1094312     2  0.0000      0.999 0.000 1.000
#> SRR1352437     2  0.0000      0.999 0.000 1.000
#> SRR1436323     1  0.0000      0.990 1.000 0.000
#> SRR1073507     2  0.0000      0.999 0.000 1.000
#> SRR1401972     2  0.0000      0.999 0.000 1.000
#> SRR1415510     1  0.0000      0.990 1.000 0.000
#> SRR1327279     2  0.0000      0.999 0.000 1.000
#> SRR1086983     2  0.0000      0.999 0.000 1.000
#> SRR1105174     2  0.0000      0.999 0.000 1.000
#> SRR1468893     1  0.0000      0.990 1.000 0.000
#> SRR1362555     1  0.0000      0.990 1.000 0.000
#> SRR1074526     2  0.0000      0.999 0.000 1.000
#> SRR1326225     2  0.0000      0.999 0.000 1.000
#> SRR1401933     1  0.0000      0.990 1.000 0.000
#> SRR1324062     1  0.0000      0.990 1.000 0.000
#> SRR1102296     2  0.0000      0.999 0.000 1.000
#> SRR1085087     2  0.0000      0.999 0.000 1.000
#> SRR1079046     1  0.0000      0.990 1.000 0.000
#> SRR1328339     1  0.0000      0.990 1.000 0.000
#> SRR1079782     2  0.0000      0.999 0.000 1.000
#> SRR1092257     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1429287     2  0.5216      0.790 0.260 0.740 0.000
#> SRR1359238     1  0.0424      0.880 0.992 0.008 0.000
#> SRR1309597     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1441398     1  0.4178      0.861 0.828 0.172 0.000
#> SRR1084055     3  0.5431      0.625 0.000 0.284 0.716
#> SRR1417566     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1351857     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1487485     2  0.0237      0.894 0.004 0.996 0.000
#> SRR1335875     1  0.0592      0.883 0.988 0.012 0.000
#> SRR1073947     1  0.1267      0.884 0.972 0.024 0.004
#> SRR1443483     2  0.0237      0.894 0.004 0.996 0.000
#> SRR1346794     1  0.3038      0.892 0.896 0.104 0.000
#> SRR1405245     1  0.4178      0.861 0.828 0.172 0.000
#> SRR1409677     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1095549     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1323788     1  0.3267      0.891 0.884 0.116 0.000
#> SRR1314054     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1077944     1  0.3116      0.892 0.892 0.108 0.000
#> SRR1480587     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1311205     1  0.4178      0.861 0.828 0.172 0.000
#> SRR1076369     2  0.0237      0.894 0.004 0.996 0.000
#> SRR1453549     1  0.2261      0.823 0.932 0.000 0.068
#> SRR1345782     1  0.3879      0.872 0.848 0.152 0.000
#> SRR1447850     3  0.0983      0.969 0.016 0.004 0.980
#> SRR1391553     1  0.3619      0.884 0.864 0.136 0.000
#> SRR1444156     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1471731     1  0.4291      0.852 0.820 0.180 0.000
#> SRR1120987     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1477363     1  0.0592      0.883 0.988 0.012 0.000
#> SRR1391961     2  0.0237      0.894 0.004 0.996 0.000
#> SRR1373879     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1318732     2  0.3752      0.868 0.144 0.856 0.000
#> SRR1091404     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1402109     3  0.4178      0.821 0.000 0.172 0.828
#> SRR1407336     3  0.0424      0.976 0.000 0.008 0.992
#> SRR1097417     2  0.0000      0.892 0.000 1.000 0.000
#> SRR1396227     1  0.0592      0.883 0.988 0.012 0.000
#> SRR1400775     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1392861     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1472929     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1436740     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1477057     1  0.2356      0.867 0.928 0.072 0.000
#> SRR1311980     1  0.4178      0.861 0.828 0.172 0.000
#> SRR1069400     2  0.0000      0.892 0.000 1.000 0.000
#> SRR1351016     1  0.3340      0.890 0.880 0.120 0.000
#> SRR1096291     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1418145     3  0.0237      0.978 0.004 0.000 0.996
#> SRR1488111     1  0.0592      0.881 0.988 0.012 0.000
#> SRR1370495     2  0.3879      0.860 0.152 0.848 0.000
#> SRR1352639     3  0.0661      0.973 0.008 0.004 0.988
#> SRR1348911     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1467386     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1415956     1  0.3686      0.883 0.860 0.140 0.000
#> SRR1500495     1  0.3686      0.883 0.860 0.140 0.000
#> SRR1405099     1  0.3686      0.883 0.860 0.140 0.000
#> SRR1345585     2  0.0424      0.895 0.008 0.992 0.000
#> SRR1093196     3  0.0592      0.975 0.000 0.012 0.988
#> SRR1466006     2  0.0237      0.894 0.004 0.996 0.000
#> SRR1351557     2  0.5178      0.794 0.256 0.744 0.000
#> SRR1382687     1  0.0000      0.877 1.000 0.000 0.000
#> SRR1375549     1  0.0592      0.881 0.988 0.012 0.000
#> SRR1101765     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1334461     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1094073     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1077549     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1440332     1  0.6169      0.462 0.636 0.004 0.360
#> SRR1454177     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1082447     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1420043     1  0.3038      0.892 0.896 0.104 0.000
#> SRR1432500     1  0.3752      0.747 0.856 0.000 0.144
#> SRR1378045     3  0.3482      0.871 0.000 0.128 0.872
#> SRR1334200     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1069539     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1343031     3  0.4172      0.836 0.004 0.156 0.840
#> SRR1319690     1  0.3340      0.890 0.880 0.120 0.000
#> SRR1310604     2  0.4390      0.755 0.012 0.840 0.148
#> SRR1327747     1  0.6215      0.335 0.572 0.428 0.000
#> SRR1072456     2  0.0424      0.895 0.008 0.992 0.000
#> SRR1367896     2  0.0237      0.894 0.004 0.996 0.000
#> SRR1480107     1  0.3267      0.890 0.884 0.116 0.000
#> SRR1377756     1  0.0747      0.884 0.984 0.016 0.000
#> SRR1435272     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1089230     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1389522     2  0.0237      0.894 0.004 0.996 0.000
#> SRR1080600     2  0.4059      0.772 0.012 0.860 0.128
#> SRR1086935     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1344060     2  0.3482      0.881 0.128 0.872 0.000
#> SRR1467922     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1090984     2  0.3941      0.856 0.156 0.844 0.000
#> SRR1456991     1  0.3686      0.883 0.860 0.140 0.000
#> SRR1085039     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1069303     1  0.0747      0.884 0.984 0.016 0.000
#> SRR1091500     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1075198     2  0.4136      0.780 0.020 0.864 0.116
#> SRR1086915     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1499503     3  0.0892      0.969 0.000 0.020 0.980
#> SRR1094312     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1352437     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1436323     1  0.4121      0.863 0.832 0.168 0.000
#> SRR1073507     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1401972     1  0.3551      0.760 0.868 0.000 0.132
#> SRR1415510     2  0.1411      0.890 0.036 0.964 0.000
#> SRR1327279     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1086983     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1105174     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1468893     1  0.3192      0.892 0.888 0.112 0.000
#> SRR1362555     2  0.3879      0.860 0.152 0.848 0.000
#> SRR1074526     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1326225     3  0.0237      0.979 0.000 0.004 0.996
#> SRR1401933     1  0.0000      0.877 1.000 0.000 0.000
#> SRR1324062     1  0.0747      0.884 0.984 0.016 0.000
#> SRR1102296     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1085087     3  0.0000      0.980 0.000 0.000 1.000
#> SRR1079046     1  0.0592      0.881 0.988 0.012 0.000
#> SRR1328339     2  0.2261      0.892 0.068 0.932 0.000
#> SRR1079782     3  0.3644      0.866 0.124 0.004 0.872
#> SRR1092257     3  0.0000      0.980 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     4  0.4713     0.0910 0.000 0.360 0.000 0.640
#> SRR1429287     3  0.7416     0.1942 0.312 0.192 0.496 0.000
#> SRR1359238     1  0.4614     0.7079 0.792 0.064 0.144 0.000
#> SRR1309597     3  0.1022     0.7411 0.032 0.000 0.968 0.000
#> SRR1441398     3  0.4916    -0.1353 0.424 0.000 0.576 0.000
#> SRR1084055     2  0.5231     0.5893 0.000 0.676 0.028 0.296
#> SRR1417566     3  0.0707     0.7461 0.020 0.000 0.980 0.000
#> SRR1351857     4  0.2345     0.7502 0.000 0.100 0.000 0.900
#> SRR1487485     3  0.5028     0.4004 0.004 0.400 0.596 0.000
#> SRR1335875     1  0.1940     0.7519 0.924 0.000 0.076 0.000
#> SRR1073947     1  0.4105     0.6730 0.840 0.100 0.052 0.008
#> SRR1443483     3  0.4477     0.5751 0.000 0.312 0.688 0.000
#> SRR1346794     1  0.3074     0.7391 0.848 0.000 0.152 0.000
#> SRR1405245     1  0.5000     0.3451 0.500 0.000 0.500 0.000
#> SRR1409677     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1095549     4  0.2814     0.7354 0.000 0.132 0.000 0.868
#> SRR1323788     1  0.5752     0.6325 0.732 0.132 0.128 0.008
#> SRR1314054     4  0.4713     0.0910 0.000 0.360 0.000 0.640
#> SRR1077944     1  0.2773     0.7387 0.880 0.004 0.116 0.000
#> SRR1480587     3  0.1118     0.7389 0.036 0.000 0.964 0.000
#> SRR1311205     3  0.4925    -0.1500 0.428 0.000 0.572 0.000
#> SRR1076369     3  0.3649     0.6810 0.000 0.204 0.796 0.000
#> SRR1453549     1  0.1284     0.7200 0.964 0.012 0.000 0.024
#> SRR1345782     3  0.7068     0.3270 0.296 0.156 0.548 0.000
#> SRR1447850     2  0.5699     0.5455 0.032 0.588 0.000 0.380
#> SRR1391553     1  0.4925     0.5363 0.572 0.000 0.428 0.000
#> SRR1444156     4  0.4713     0.0910 0.000 0.360 0.000 0.640
#> SRR1471731     3  0.5155    -0.3428 0.468 0.004 0.528 0.000
#> SRR1120987     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1477363     1  0.0336     0.7311 0.992 0.000 0.008 0.000
#> SRR1391961     3  0.3448     0.7132 0.004 0.168 0.828 0.000
#> SRR1373879     4  0.2530     0.7462 0.000 0.112 0.000 0.888
#> SRR1318732     3  0.2281     0.6854 0.096 0.000 0.904 0.000
#> SRR1091404     4  0.2814     0.7343 0.000 0.132 0.000 0.868
#> SRR1402109     4  0.6974     0.2444 0.008 0.412 0.088 0.492
#> SRR1407336     4  0.4072     0.6155 0.000 0.252 0.000 0.748
#> SRR1097417     3  0.3726     0.6772 0.000 0.212 0.788 0.000
#> SRR1396227     1  0.1211     0.7430 0.960 0.000 0.040 0.000
#> SRR1400775     2  0.4989     0.4433 0.000 0.528 0.000 0.472
#> SRR1392861     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1472929     3  0.1510     0.7523 0.016 0.028 0.956 0.000
#> SRR1436740     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1477057     1  0.5432     0.6729 0.716 0.068 0.216 0.000
#> SRR1311980     1  0.5000     0.3451 0.500 0.000 0.500 0.000
#> SRR1069400     3  0.4477     0.5751 0.000 0.312 0.688 0.000
#> SRR1351016     1  0.4522     0.6604 0.680 0.000 0.320 0.000
#> SRR1096291     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1418145     4  0.3883     0.5867 0.012 0.144 0.012 0.832
#> SRR1488111     1  0.5172     0.6906 0.744 0.068 0.188 0.000
#> SRR1370495     3  0.1637     0.7221 0.060 0.000 0.940 0.000
#> SRR1352639     4  0.6565     0.4737 0.148 0.224 0.000 0.628
#> SRR1348911     3  0.1510     0.7523 0.016 0.028 0.956 0.000
#> SRR1467386     4  0.2345     0.7498 0.000 0.100 0.000 0.900
#> SRR1415956     1  0.4855     0.5498 0.600 0.000 0.400 0.000
#> SRR1500495     1  0.4898     0.5282 0.584 0.000 0.416 0.000
#> SRR1405099     1  0.4605     0.6418 0.664 0.000 0.336 0.000
#> SRR1345585     3  0.2329     0.7496 0.012 0.072 0.916 0.000
#> SRR1093196     2  0.4936     0.5111 0.000 0.624 0.004 0.372
#> SRR1466006     3  0.2179     0.7509 0.012 0.064 0.924 0.000
#> SRR1351557     2  0.6603     0.3156 0.104 0.580 0.316 0.000
#> SRR1382687     1  0.0000     0.7279 1.000 0.000 0.000 0.000
#> SRR1375549     1  0.5172     0.6906 0.744 0.068 0.188 0.000
#> SRR1101765     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1334461     3  0.1510     0.7523 0.016 0.028 0.956 0.000
#> SRR1094073     4  0.4713     0.0910 0.000 0.360 0.000 0.640
#> SRR1077549     4  0.2589     0.7444 0.000 0.116 0.000 0.884
#> SRR1440332     4  0.7660     0.3292 0.244 0.212 0.012 0.532
#> SRR1454177     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1082447     4  0.2530     0.7462 0.000 0.112 0.000 0.888
#> SRR1420043     1  0.2589     0.7397 0.884 0.000 0.116 0.000
#> SRR1432500     1  0.6269     0.2683 0.632 0.096 0.000 0.272
#> SRR1378045     2  0.3933     0.5864 0.000 0.792 0.008 0.200
#> SRR1334200     3  0.0592     0.7475 0.016 0.000 0.984 0.000
#> SRR1069539     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1343031     4  0.6871     0.2584 0.008 0.412 0.080 0.500
#> SRR1319690     1  0.4250     0.6993 0.724 0.000 0.276 0.000
#> SRR1310604     2  0.6603     0.3178 0.000 0.580 0.316 0.104
#> SRR1327747     3  0.5110     0.1161 0.352 0.012 0.636 0.000
#> SRR1072456     3  0.3108     0.7449 0.016 0.112 0.872 0.000
#> SRR1367896     3  0.3688     0.6808 0.000 0.208 0.792 0.000
#> SRR1480107     1  0.4103     0.7043 0.744 0.000 0.256 0.000
#> SRR1377756     1  0.1022     0.7387 0.968 0.000 0.032 0.000
#> SRR1435272     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1089230     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1389522     3  0.3873     0.6688 0.000 0.228 0.772 0.000
#> SRR1080600     2  0.4608     0.2264 0.000 0.692 0.304 0.004
#> SRR1086935     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1344060     3  0.1510     0.7523 0.016 0.028 0.956 0.000
#> SRR1467922     2  0.4994     0.4257 0.000 0.520 0.000 0.480
#> SRR1090984     3  0.1867     0.7113 0.072 0.000 0.928 0.000
#> SRR1456991     1  0.4994     0.3854 0.520 0.000 0.480 0.000
#> SRR1085039     4  0.2530     0.7462 0.000 0.112 0.000 0.888
#> SRR1069303     1  0.1792     0.7499 0.932 0.000 0.068 0.000
#> SRR1091500     4  0.4713     0.0910 0.000 0.360 0.000 0.640
#> SRR1075198     2  0.4673     0.3051 0.008 0.700 0.292 0.000
#> SRR1086915     4  0.0000     0.7551 0.000 0.000 0.000 1.000
#> SRR1499503     2  0.4898     0.5155 0.000 0.584 0.000 0.416
#> SRR1094312     2  0.4989     0.4433 0.000 0.528 0.000 0.472
#> SRR1352437     4  0.0188     0.7551 0.000 0.004 0.000 0.996
#> SRR1436323     1  0.5329     0.5438 0.568 0.012 0.420 0.000
#> SRR1073507     4  0.2345     0.7498 0.000 0.100 0.000 0.900
#> SRR1401972     1  0.2053     0.6839 0.924 0.004 0.000 0.072
#> SRR1415510     3  0.5987     0.0899 0.040 0.440 0.520 0.000
#> SRR1327279     4  0.3219     0.7110 0.000 0.164 0.000 0.836
#> SRR1086983     4  0.2345     0.7498 0.000 0.100 0.000 0.900
#> SRR1105174     4  0.2469     0.7474 0.000 0.108 0.000 0.892
#> SRR1468893     1  0.4040     0.7162 0.752 0.000 0.248 0.000
#> SRR1362555     3  0.1557     0.7252 0.056 0.000 0.944 0.000
#> SRR1074526     4  0.1389     0.7330 0.000 0.048 0.000 0.952
#> SRR1326225     4  0.4998    -0.3968 0.000 0.488 0.000 0.512
#> SRR1401933     1  0.3239     0.7165 0.880 0.068 0.052 0.000
#> SRR1324062     1  0.1716     0.7490 0.936 0.000 0.064 0.000
#> SRR1102296     4  0.3801     0.4798 0.000 0.220 0.000 0.780
#> SRR1085087     4  0.2345     0.7498 0.000 0.100 0.000 0.900
#> SRR1079046     1  0.5007     0.6966 0.760 0.068 0.172 0.000
#> SRR1328339     3  0.1970     0.7502 0.008 0.060 0.932 0.000
#> SRR1079782     2  0.7413     0.5693 0.120 0.576 0.028 0.276
#> SRR1092257     4  0.4304     0.3224 0.000 0.284 0.000 0.716

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     4  0.4304     0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1429287     3  0.6591     0.1253 0.108 0.304 0.548 0.000 0.040
#> SRR1359238     3  0.7444    -0.0173 0.344 0.224 0.392 0.000 0.040
#> SRR1309597     3  0.2074     0.5082 0.000 0.000 0.896 0.000 0.104
#> SRR1441398     3  0.4327     0.4022 0.360 0.000 0.632 0.000 0.008
#> SRR1084055     2  0.5786     0.5435 0.000 0.632 0.004 0.196 0.168
#> SRR1417566     3  0.3183     0.4820 0.016 0.000 0.828 0.000 0.156
#> SRR1351857     4  0.0771     0.8256 0.000 0.004 0.000 0.976 0.020
#> SRR1487485     3  0.6693    -0.1735 0.000 0.364 0.396 0.000 0.240
#> SRR1335875     1  0.3339     0.6572 0.836 0.040 0.124 0.000 0.000
#> SRR1073947     1  0.3462     0.6902 0.860 0.012 0.028 0.016 0.084
#> SRR1443483     5  0.1608     0.6373 0.000 0.000 0.072 0.000 0.928
#> SRR1346794     1  0.3631     0.6185 0.788 0.008 0.196 0.000 0.008
#> SRR1405245     3  0.4341     0.3993 0.364 0.000 0.628 0.000 0.008
#> SRR1409677     4  0.0609     0.8280 0.000 0.020 0.000 0.980 0.000
#> SRR1095549     4  0.2798     0.7430 0.008 0.000 0.000 0.852 0.140
#> SRR1323788     1  0.4870     0.5179 0.680 0.000 0.028 0.016 0.276
#> SRR1314054     4  0.4304     0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1077944     1  0.1981     0.7001 0.920 0.000 0.064 0.000 0.016
#> SRR1480587     3  0.1965     0.5117 0.000 0.000 0.904 0.000 0.096
#> SRR1311205     3  0.4341     0.3993 0.364 0.000 0.628 0.000 0.008
#> SRR1076369     5  0.4327     0.5236 0.000 0.008 0.360 0.000 0.632
#> SRR1453549     1  0.4821     0.5826 0.776 0.064 0.120 0.008 0.032
#> SRR1345782     5  0.5281     0.1910 0.348 0.000 0.044 0.008 0.600
#> SRR1447850     2  0.1430     0.5696 0.000 0.944 0.000 0.052 0.004
#> SRR1391553     3  0.4443     0.4223 0.300 0.012 0.680 0.000 0.008
#> SRR1444156     4  0.4304     0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1471731     3  0.3073     0.5217 0.116 0.024 0.856 0.000 0.004
#> SRR1120987     4  0.0794     0.8259 0.000 0.028 0.000 0.972 0.000
#> SRR1477363     1  0.0404     0.7106 0.988 0.000 0.012 0.000 0.000
#> SRR1391961     5  0.4331     0.4519 0.000 0.004 0.400 0.000 0.596
#> SRR1373879     4  0.1121     0.8189 0.000 0.000 0.000 0.956 0.044
#> SRR1318732     3  0.2653     0.5202 0.024 0.000 0.880 0.000 0.096
#> SRR1091404     4  0.1124     0.8228 0.000 0.004 0.000 0.960 0.036
#> SRR1402109     5  0.2561     0.4864 0.000 0.000 0.000 0.144 0.856
#> SRR1407336     4  0.4682     0.4370 0.000 0.024 0.000 0.620 0.356
#> SRR1097417     5  0.4327     0.5236 0.000 0.008 0.360 0.000 0.632
#> SRR1396227     1  0.2427     0.7078 0.912 0.028 0.048 0.004 0.008
#> SRR1400775     2  0.3305     0.5351 0.000 0.776 0.000 0.224 0.000
#> SRR1392861     4  0.0510     0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1472929     3  0.3684     0.3410 0.000 0.000 0.720 0.000 0.280
#> SRR1436740     4  0.0703     0.8272 0.000 0.024 0.000 0.976 0.000
#> SRR1477057     3  0.6793     0.2565 0.172 0.228 0.560 0.000 0.040
#> SRR1311980     3  0.4327     0.4037 0.360 0.000 0.632 0.000 0.008
#> SRR1069400     5  0.1671     0.6367 0.000 0.000 0.076 0.000 0.924
#> SRR1351016     3  0.4434     0.2372 0.460 0.000 0.536 0.000 0.004
#> SRR1096291     4  0.0671     0.8288 0.000 0.016 0.000 0.980 0.004
#> SRR1418145     4  0.4890     0.6330 0.016 0.092 0.104 0.772 0.016
#> SRR1488111     3  0.7318     0.1102 0.268 0.232 0.460 0.000 0.040
#> SRR1370495     3  0.2020     0.5110 0.000 0.000 0.900 0.000 0.100
#> SRR1352639     1  0.7435     0.1435 0.360 0.032 0.000 0.264 0.344
#> SRR1348911     3  0.3814     0.3523 0.004 0.000 0.720 0.000 0.276
#> SRR1467386     4  0.0992     0.8215 0.008 0.000 0.000 0.968 0.024
#> SRR1415956     3  0.4367     0.3211 0.416 0.000 0.580 0.000 0.004
#> SRR1500495     3  0.4331     0.3486 0.400 0.000 0.596 0.000 0.004
#> SRR1405099     3  0.4434     0.2303 0.460 0.000 0.536 0.000 0.004
#> SRR1345585     3  0.3333     0.3965 0.000 0.004 0.788 0.000 0.208
#> SRR1093196     2  0.7162     0.4066 0.000 0.484 0.040 0.188 0.288
#> SRR1466006     3  0.3829     0.3953 0.000 0.028 0.776 0.000 0.196
#> SRR1351557     2  0.5881     0.3404 0.048 0.564 0.356 0.000 0.032
#> SRR1382687     1  0.1970     0.6840 0.924 0.012 0.060 0.000 0.004
#> SRR1375549     3  0.7301     0.1131 0.268 0.228 0.464 0.000 0.040
#> SRR1101765     4  0.0794     0.8258 0.000 0.028 0.000 0.972 0.000
#> SRR1334461     3  0.3816     0.3101 0.000 0.000 0.696 0.000 0.304
#> SRR1094073     4  0.4304     0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1077549     4  0.1484     0.8127 0.008 0.000 0.000 0.944 0.048
#> SRR1440332     1  0.6682     0.1261 0.396 0.000 0.000 0.236 0.368
#> SRR1454177     4  0.0510     0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1082447     4  0.1082     0.8208 0.008 0.000 0.000 0.964 0.028
#> SRR1420043     1  0.1952     0.6881 0.912 0.000 0.084 0.000 0.004
#> SRR1432500     1  0.4556     0.4483 0.680 0.000 0.004 0.292 0.024
#> SRR1378045     2  0.4546     0.4548 0.000 0.668 0.000 0.028 0.304
#> SRR1334200     3  0.2074     0.5064 0.000 0.000 0.896 0.000 0.104
#> SRR1069539     4  0.0865     0.8275 0.000 0.024 0.000 0.972 0.004
#> SRR1343031     5  0.2561     0.4864 0.000 0.000 0.000 0.144 0.856
#> SRR1319690     3  0.4889     0.1871 0.476 0.004 0.504 0.000 0.016
#> SRR1310604     2  0.7691     0.2904 0.000 0.448 0.200 0.080 0.272
#> SRR1327747     3  0.3932     0.4703 0.116 0.032 0.820 0.000 0.032
#> SRR1072456     3  0.4331     0.0673 0.000 0.004 0.596 0.000 0.400
#> SRR1367896     5  0.4101     0.4957 0.000 0.000 0.372 0.000 0.628
#> SRR1480107     1  0.4410    -0.0186 0.556 0.000 0.440 0.000 0.004
#> SRR1377756     1  0.0671     0.7085 0.980 0.000 0.016 0.000 0.004
#> SRR1435272     4  0.0510     0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1089230     4  0.0510     0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1389522     5  0.2690     0.6550 0.000 0.000 0.156 0.000 0.844
#> SRR1080600     2  0.6374     0.2599 0.000 0.504 0.196 0.000 0.300
#> SRR1086935     4  0.0794     0.8259 0.000 0.028 0.000 0.972 0.000
#> SRR1344060     3  0.3752     0.3225 0.000 0.000 0.708 0.000 0.292
#> SRR1467922     2  0.3816     0.4072 0.000 0.696 0.000 0.304 0.000
#> SRR1090984     3  0.2179     0.5136 0.004 0.000 0.896 0.000 0.100
#> SRR1456991     3  0.4436     0.3540 0.396 0.000 0.596 0.000 0.008
#> SRR1085039     4  0.1082     0.8208 0.008 0.000 0.000 0.964 0.028
#> SRR1069303     1  0.2881     0.6906 0.876 0.024 0.092 0.000 0.008
#> SRR1091500     4  0.4304     0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1075198     2  0.6715     0.3676 0.028 0.500 0.340 0.000 0.132
#> SRR1086915     4  0.0510     0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1499503     2  0.4465     0.5593 0.000 0.736 0.000 0.204 0.060
#> SRR1094312     2  0.3336     0.5306 0.000 0.772 0.000 0.228 0.000
#> SRR1352437     4  0.1059     0.8278 0.008 0.020 0.000 0.968 0.004
#> SRR1436323     3  0.4447     0.4689 0.172 0.028 0.768 0.000 0.032
#> SRR1073507     4  0.0992     0.8215 0.008 0.000 0.000 0.968 0.024
#> SRR1401972     1  0.2704     0.6991 0.896 0.028 0.004 0.064 0.008
#> SRR1415510     2  0.6388     0.3200 0.048 0.524 0.364 0.000 0.064
#> SRR1327279     4  0.3835     0.6011 0.008 0.000 0.000 0.732 0.260
#> SRR1086983     4  0.0898     0.8222 0.008 0.000 0.000 0.972 0.020
#> SRR1105174     4  0.0992     0.8215 0.008 0.000 0.000 0.968 0.024
#> SRR1468893     1  0.4201     0.0834 0.592 0.000 0.408 0.000 0.000
#> SRR1362555     3  0.1965     0.5117 0.000 0.000 0.904 0.000 0.096
#> SRR1074526     4  0.4015     0.4734 0.000 0.348 0.000 0.652 0.000
#> SRR1326225     2  0.3983     0.3237 0.000 0.660 0.000 0.340 0.000
#> SRR1401933     1  0.6761     0.3738 0.568 0.208 0.184 0.000 0.040
#> SRR1324062     1  0.2881     0.6906 0.876 0.024 0.092 0.000 0.008
#> SRR1102296     4  0.4844     0.3430 0.012 0.416 0.000 0.564 0.008
#> SRR1085087     4  0.0898     0.8222 0.008 0.000 0.000 0.972 0.020
#> SRR1079046     3  0.7400     0.0428 0.304 0.228 0.428 0.000 0.040
#> SRR1328339     3  0.4798    -0.0839 0.020 0.000 0.540 0.000 0.440
#> SRR1079782     2  0.6588     0.4180 0.072 0.624 0.232 0.044 0.028
#> SRR1092257     4  0.3003     0.6916 0.000 0.188 0.000 0.812 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.3695     0.5370 0.000 0.624 0.000 0.376 0.000 0.000
#> SRR1429287     6  0.3043     0.7209 0.008 0.020 0.000 0.000 0.140 0.832
#> SRR1359238     6  0.2449     0.6510 0.080 0.000 0.012 0.000 0.020 0.888
#> SRR1309597     5  0.0858     0.6893 0.004 0.000 0.000 0.000 0.968 0.028
#> SRR1441398     5  0.3499     0.5483 0.320 0.000 0.000 0.000 0.680 0.000
#> SRR1084055     2  0.3698     0.5523 0.004 0.812 0.124 0.044 0.012 0.004
#> SRR1417566     5  0.1636     0.6929 0.024 0.000 0.004 0.000 0.936 0.036
#> SRR1351857     4  0.1297     0.8948 0.000 0.012 0.040 0.948 0.000 0.000
#> SRR1487485     5  0.7098     0.0725 0.008 0.288 0.192 0.000 0.436 0.076
#> SRR1335875     1  0.3686     0.6395 0.828 0.028 0.008 0.000 0.072 0.064
#> SRR1073947     1  0.2615     0.6571 0.896 0.024 0.052 0.008 0.016 0.004
#> SRR1443483     3  0.1327     0.5909 0.000 0.000 0.936 0.000 0.064 0.000
#> SRR1346794     1  0.5655     0.3725 0.520 0.004 0.012 0.000 0.100 0.364
#> SRR1405245     5  0.3515     0.5444 0.324 0.000 0.000 0.000 0.676 0.000
#> SRR1409677     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1095549     4  0.3601     0.5523 0.004 0.000 0.312 0.684 0.000 0.000
#> SRR1323788     1  0.5329     0.2959 0.560 0.004 0.348 0.000 0.008 0.080
#> SRR1314054     2  0.3695     0.5370 0.000 0.624 0.000 0.376 0.000 0.000
#> SRR1077944     1  0.4450     0.5994 0.688 0.004 0.016 0.000 0.028 0.264
#> SRR1480587     5  0.0865     0.6884 0.000 0.000 0.000 0.000 0.964 0.036
#> SRR1311205     5  0.3515     0.5444 0.324 0.000 0.000 0.000 0.676 0.000
#> SRR1076369     3  0.5013     0.1733 0.008 0.012 0.488 0.000 0.464 0.028
#> SRR1453549     6  0.4012     0.3909 0.276 0.004 0.012 0.008 0.000 0.700
#> SRR1345782     3  0.5165     0.3554 0.256 0.004 0.656 0.004 0.032 0.048
#> SRR1447850     2  0.1584     0.5575 0.000 0.928 0.000 0.008 0.000 0.064
#> SRR1391553     5  0.5123     0.5135 0.188 0.000 0.000 0.000 0.628 0.184
#> SRR1444156     2  0.3647     0.5520 0.000 0.640 0.000 0.360 0.000 0.000
#> SRR1471731     5  0.4619     0.5078 0.088 0.000 0.000 0.000 0.668 0.244
#> SRR1120987     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1477363     1  0.2805     0.6526 0.828 0.000 0.012 0.000 0.000 0.160
#> SRR1391961     5  0.4617    -0.1731 0.008 0.004 0.464 0.000 0.508 0.016
#> SRR1373879     4  0.2002     0.8737 0.004 0.012 0.076 0.908 0.000 0.000
#> SRR1318732     5  0.2088     0.6894 0.028 0.000 0.000 0.000 0.904 0.068
#> SRR1091404     4  0.1913     0.8856 0.004 0.012 0.060 0.920 0.000 0.004
#> SRR1402109     3  0.1196     0.5804 0.008 0.000 0.952 0.040 0.000 0.000
#> SRR1407336     3  0.4374    -0.1014 0.004 0.016 0.532 0.448 0.000 0.000
#> SRR1097417     3  0.5012     0.1833 0.008 0.012 0.492 0.000 0.460 0.028
#> SRR1396227     1  0.2820     0.6628 0.884 0.032 0.008 0.000 0.032 0.044
#> SRR1400775     2  0.1010     0.6084 0.000 0.960 0.000 0.036 0.000 0.004
#> SRR1392861     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1472929     5  0.1663     0.6480 0.000 0.000 0.088 0.000 0.912 0.000
#> SRR1436740     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1477057     6  0.3643     0.6883 0.024 0.008 0.000 0.000 0.200 0.768
#> SRR1311980     5  0.3499     0.5473 0.320 0.000 0.000 0.000 0.680 0.000
#> SRR1069400     3  0.1615     0.5899 0.000 0.004 0.928 0.000 0.064 0.004
#> SRR1351016     5  0.3961     0.3389 0.440 0.000 0.000 0.000 0.556 0.004
#> SRR1096291     4  0.1320     0.9017 0.000 0.036 0.016 0.948 0.000 0.000
#> SRR1418145     4  0.4428     0.5056 0.004 0.052 0.000 0.676 0.000 0.268
#> SRR1488111     6  0.2691     0.7173 0.032 0.008 0.000 0.000 0.088 0.872
#> SRR1370495     5  0.1010     0.6894 0.004 0.000 0.000 0.000 0.960 0.036
#> SRR1352639     3  0.5751     0.0688 0.412 0.016 0.480 0.084 0.000 0.008
#> SRR1348911     5  0.1745     0.6705 0.020 0.000 0.056 0.000 0.924 0.000
#> SRR1467386     4  0.0603     0.8958 0.004 0.000 0.016 0.980 0.000 0.000
#> SRR1415956     5  0.3899     0.4174 0.404 0.000 0.000 0.000 0.592 0.004
#> SRR1500495     5  0.3819     0.4738 0.372 0.000 0.000 0.000 0.624 0.004
#> SRR1405099     5  0.3982     0.2963 0.460 0.000 0.000 0.000 0.536 0.004
#> SRR1345585     5  0.3818     0.5939 0.004 0.000 0.084 0.000 0.784 0.128
#> SRR1093196     2  0.6380     0.0182 0.000 0.444 0.396 0.096 0.004 0.060
#> SRR1466006     5  0.4428     0.5206 0.008 0.012 0.116 0.000 0.756 0.108
#> SRR1351557     6  0.4910     0.5935 0.008 0.304 0.000 0.000 0.068 0.620
#> SRR1382687     1  0.3729     0.5445 0.692 0.000 0.012 0.000 0.000 0.296
#> SRR1375549     6  0.2680     0.7163 0.032 0.000 0.000 0.000 0.108 0.860
#> SRR1101765     4  0.1141     0.8912 0.000 0.052 0.000 0.948 0.000 0.000
#> SRR1334461     5  0.1863     0.6386 0.000 0.000 0.104 0.000 0.896 0.000
#> SRR1094073     2  0.3647     0.5520 0.000 0.640 0.000 0.360 0.000 0.000
#> SRR1077549     4  0.1753     0.8610 0.004 0.000 0.084 0.912 0.000 0.000
#> SRR1440332     3  0.6177     0.1738 0.316 0.000 0.532 0.080 0.004 0.068
#> SRR1454177     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1082447     4  0.1285     0.8840 0.004 0.000 0.052 0.944 0.000 0.000
#> SRR1420043     1  0.4521     0.5919 0.680 0.004 0.012 0.000 0.036 0.268
#> SRR1432500     1  0.6242     0.3222 0.512 0.004 0.020 0.256 0.000 0.208
#> SRR1378045     2  0.3076     0.4967 0.000 0.760 0.240 0.000 0.000 0.000
#> SRR1334200     5  0.1863     0.6700 0.004 0.000 0.016 0.000 0.920 0.060
#> SRR1069539     4  0.1480     0.9001 0.000 0.040 0.020 0.940 0.000 0.000
#> SRR1343031     3  0.1196     0.5804 0.008 0.000 0.952 0.040 0.000 0.000
#> SRR1319690     5  0.6388    -0.0547 0.332 0.000 0.012 0.000 0.372 0.284
#> SRR1310604     2  0.7493    -0.0123 0.008 0.448 0.156 0.004 0.208 0.176
#> SRR1327747     6  0.4467     0.5619 0.044 0.004 0.012 0.000 0.236 0.704
#> SRR1072456     5  0.3742     0.5061 0.008 0.004 0.176 0.000 0.780 0.032
#> SRR1367896     3  0.4534     0.1784 0.008 0.004 0.516 0.000 0.460 0.012
#> SRR1480107     1  0.4067    -0.0980 0.548 0.000 0.000 0.000 0.444 0.008
#> SRR1377756     1  0.3341     0.6298 0.776 0.004 0.012 0.000 0.000 0.208
#> SRR1435272     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1089230     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1389522     3  0.2558     0.5687 0.000 0.004 0.840 0.000 0.156 0.000
#> SRR1080600     2  0.6815     0.1384 0.008 0.524 0.160 0.000 0.216 0.092
#> SRR1086935     4  0.0937     0.8994 0.000 0.040 0.000 0.960 0.000 0.000
#> SRR1344060     5  0.2051     0.6378 0.004 0.000 0.096 0.000 0.896 0.004
#> SRR1467922     2  0.2300     0.6536 0.000 0.856 0.000 0.144 0.000 0.000
#> SRR1090984     5  0.1196     0.6905 0.008 0.000 0.000 0.000 0.952 0.040
#> SRR1456991     5  0.3819     0.4738 0.372 0.000 0.000 0.000 0.624 0.004
#> SRR1085039     4  0.1285     0.8840 0.004 0.000 0.052 0.944 0.000 0.000
#> SRR1069303     1  0.2956     0.6624 0.876 0.028 0.008 0.000 0.044 0.044
#> SRR1091500     2  0.3659     0.5463 0.000 0.636 0.000 0.364 0.000 0.000
#> SRR1075198     6  0.5791     0.5137 0.004 0.352 0.032 0.000 0.080 0.532
#> SRR1086915     4  0.0865     0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1499503     2  0.1461     0.6141 0.000 0.940 0.016 0.044 0.000 0.000
#> SRR1094312     2  0.1010     0.6084 0.000 0.960 0.000 0.036 0.000 0.004
#> SRR1352437     4  0.0632     0.9010 0.000 0.024 0.000 0.976 0.000 0.000
#> SRR1436323     6  0.4666     0.2797 0.048 0.000 0.000 0.000 0.388 0.564
#> SRR1073507     4  0.0935     0.8917 0.004 0.000 0.032 0.964 0.000 0.000
#> SRR1401972     1  0.2893     0.6522 0.880 0.032 0.008 0.036 0.000 0.044
#> SRR1415510     6  0.4663     0.6772 0.012 0.160 0.008 0.000 0.092 0.728
#> SRR1327279     4  0.4086     0.2032 0.008 0.000 0.464 0.528 0.000 0.000
#> SRR1086983     4  0.0000     0.8992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1105174     4  0.1285     0.8840 0.004 0.000 0.052 0.944 0.000 0.000
#> SRR1468893     1  0.4136    -0.0486 0.560 0.000 0.000 0.000 0.428 0.012
#> SRR1362555     5  0.1285     0.6878 0.004 0.000 0.000 0.000 0.944 0.052
#> SRR1074526     2  0.4218     0.4017 0.000 0.556 0.016 0.428 0.000 0.000
#> SRR1326225     2  0.2912     0.6565 0.000 0.784 0.000 0.216 0.000 0.000
#> SRR1401933     6  0.4403     0.5573 0.280 0.020 0.000 0.000 0.024 0.676
#> SRR1324062     1  0.2956     0.6624 0.876 0.028 0.008 0.000 0.044 0.044
#> SRR1102296     2  0.5630     0.4596 0.096 0.524 0.008 0.364 0.000 0.008
#> SRR1085087     4  0.0748     0.8950 0.004 0.004 0.016 0.976 0.000 0.000
#> SRR1079046     6  0.3710     0.6920 0.120 0.016 0.000 0.000 0.060 0.804
#> SRR1328339     5  0.3683     0.5439 0.044 0.000 0.192 0.000 0.764 0.000
#> SRR1079782     6  0.5782     0.6263 0.108 0.236 0.000 0.020 0.020 0.616
#> SRR1092257     4  0.2260     0.7852 0.000 0.140 0.000 0.860 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.564           0.773       0.894         0.4522 0.560   0.560
#> 3 3 0.900           0.904       0.962         0.4266 0.728   0.544
#> 4 4 0.801           0.851       0.922         0.1564 0.857   0.623
#> 5 5 0.732           0.747       0.869         0.0541 0.946   0.794
#> 6 6 0.763           0.716       0.825         0.0342 0.956   0.805

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     1  0.0000     0.8422 1.000 0.000
#> SRR1429287     1  0.9710     0.5232 0.600 0.400
#> SRR1359238     1  0.9286     0.5960 0.656 0.344
#> SRR1309597     2  0.0000     0.9350 0.000 1.000
#> SRR1441398     2  0.0000     0.9350 0.000 1.000
#> SRR1084055     1  0.0000     0.8422 1.000 0.000
#> SRR1417566     2  0.9896    -0.0564 0.440 0.560
#> SRR1351857     1  0.0000     0.8422 1.000 0.000
#> SRR1487485     1  0.6712     0.7560 0.824 0.176
#> SRR1335875     1  0.9710     0.5232 0.600 0.400
#> SRR1073947     2  0.6438     0.7335 0.164 0.836
#> SRR1443483     2  0.0938     0.9237 0.012 0.988
#> SRR1346794     1  0.9710     0.5232 0.600 0.400
#> SRR1405245     2  0.0000     0.9350 0.000 1.000
#> SRR1409677     1  0.0000     0.8422 1.000 0.000
#> SRR1095549     1  0.0000     0.8422 1.000 0.000
#> SRR1323788     1  0.9710     0.5232 0.600 0.400
#> SRR1314054     1  0.0000     0.8422 1.000 0.000
#> SRR1077944     1  0.9710     0.5232 0.600 0.400
#> SRR1480587     2  0.0000     0.9350 0.000 1.000
#> SRR1311205     2  0.0000     0.9350 0.000 1.000
#> SRR1076369     2  0.0000     0.9350 0.000 1.000
#> SRR1453549     1  0.6712     0.7560 0.824 0.176
#> SRR1345782     2  0.9775     0.0676 0.412 0.588
#> SRR1447850     1  0.0000     0.8422 1.000 0.000
#> SRR1391553     1  0.9833     0.4716 0.576 0.424
#> SRR1444156     1  0.0000     0.8422 1.000 0.000
#> SRR1471731     2  0.0000     0.9350 0.000 1.000
#> SRR1120987     1  0.0000     0.8422 1.000 0.000
#> SRR1477363     1  0.9710     0.5232 0.600 0.400
#> SRR1391961     2  0.4298     0.8392 0.088 0.912
#> SRR1373879     1  0.0000     0.8422 1.000 0.000
#> SRR1318732     2  0.0000     0.9350 0.000 1.000
#> SRR1091404     1  0.1843     0.8335 0.972 0.028
#> SRR1402109     1  0.6712     0.7560 0.824 0.176
#> SRR1407336     1  0.0000     0.8422 1.000 0.000
#> SRR1097417     2  0.8813     0.5107 0.300 0.700
#> SRR1396227     1  0.9710     0.5232 0.600 0.400
#> SRR1400775     1  0.0000     0.8422 1.000 0.000
#> SRR1392861     1  0.0000     0.8422 1.000 0.000
#> SRR1472929     2  0.0000     0.9350 0.000 1.000
#> SRR1436740     1  0.0000     0.8422 1.000 0.000
#> SRR1477057     1  0.9710     0.5232 0.600 0.400
#> SRR1311980     2  0.0000     0.9350 0.000 1.000
#> SRR1069400     1  0.7299     0.7353 0.796 0.204
#> SRR1351016     2  0.0000     0.9350 0.000 1.000
#> SRR1096291     1  0.0000     0.8422 1.000 0.000
#> SRR1418145     1  0.0000     0.8422 1.000 0.000
#> SRR1488111     1  0.9710     0.5232 0.600 0.400
#> SRR1370495     2  0.0000     0.9350 0.000 1.000
#> SRR1352639     1  0.2236     0.8310 0.964 0.036
#> SRR1348911     2  0.0000     0.9350 0.000 1.000
#> SRR1467386     1  0.0000     0.8422 1.000 0.000
#> SRR1415956     2  0.0000     0.9350 0.000 1.000
#> SRR1500495     2  0.0000     0.9350 0.000 1.000
#> SRR1405099     2  0.0000     0.9350 0.000 1.000
#> SRR1345585     2  0.9970    -0.1801 0.468 0.532
#> SRR1093196     1  0.1843     0.8335 0.972 0.028
#> SRR1466006     2  0.0000     0.9350 0.000 1.000
#> SRR1351557     1  0.9710     0.5232 0.600 0.400
#> SRR1382687     1  0.9710     0.5232 0.600 0.400
#> SRR1375549     1  0.9710     0.5232 0.600 0.400
#> SRR1101765     1  0.0000     0.8422 1.000 0.000
#> SRR1334461     2  0.0000     0.9350 0.000 1.000
#> SRR1094073     1  0.0000     0.8422 1.000 0.000
#> SRR1077549     1  0.0000     0.8422 1.000 0.000
#> SRR1440332     1  0.6712     0.7560 0.824 0.176
#> SRR1454177     1  0.0000     0.8422 1.000 0.000
#> SRR1082447     1  0.0000     0.8422 1.000 0.000
#> SRR1420043     1  0.9710     0.5232 0.600 0.400
#> SRR1432500     1  0.2236     0.8305 0.964 0.036
#> SRR1378045     1  0.5059     0.7936 0.888 0.112
#> SRR1334200     2  0.0000     0.9350 0.000 1.000
#> SRR1069539     1  0.0000     0.8422 1.000 0.000
#> SRR1343031     1  0.6801     0.7537 0.820 0.180
#> SRR1319690     1  0.9710     0.5232 0.600 0.400
#> SRR1310604     1  0.1414     0.8362 0.980 0.020
#> SRR1327747     1  0.9710     0.5232 0.600 0.400
#> SRR1072456     2  0.0000     0.9350 0.000 1.000
#> SRR1367896     2  0.0000     0.9350 0.000 1.000
#> SRR1480107     2  0.0000     0.9350 0.000 1.000
#> SRR1377756     1  0.9710     0.5232 0.600 0.400
#> SRR1435272     1  0.0000     0.8422 1.000 0.000
#> SRR1089230     1  0.0000     0.8422 1.000 0.000
#> SRR1389522     2  0.1414     0.9155 0.020 0.980
#> SRR1080600     1  0.0672     0.8399 0.992 0.008
#> SRR1086935     1  0.0000     0.8422 1.000 0.000
#> SRR1344060     2  0.0000     0.9350 0.000 1.000
#> SRR1467922     1  0.0000     0.8422 1.000 0.000
#> SRR1090984     2  0.0000     0.9350 0.000 1.000
#> SRR1456991     2  0.0000     0.9350 0.000 1.000
#> SRR1085039     1  0.0000     0.8422 1.000 0.000
#> SRR1069303     2  0.0000     0.9350 0.000 1.000
#> SRR1091500     1  0.0000     0.8422 1.000 0.000
#> SRR1075198     1  0.9000     0.6277 0.684 0.316
#> SRR1086915     1  0.0000     0.8422 1.000 0.000
#> SRR1499503     1  0.0000     0.8422 1.000 0.000
#> SRR1094312     1  0.0000     0.8422 1.000 0.000
#> SRR1352437     1  0.0000     0.8422 1.000 0.000
#> SRR1436323     1  0.9710     0.5232 0.600 0.400
#> SRR1073507     1  0.0000     0.8422 1.000 0.000
#> SRR1401972     1  0.7674     0.7186 0.776 0.224
#> SRR1415510     1  0.9491     0.5664 0.632 0.368
#> SRR1327279     1  0.0000     0.8422 1.000 0.000
#> SRR1086983     1  0.0000     0.8422 1.000 0.000
#> SRR1105174     1  0.0000     0.8422 1.000 0.000
#> SRR1468893     2  0.0000     0.9350 0.000 1.000
#> SRR1362555     2  0.0000     0.9350 0.000 1.000
#> SRR1074526     1  0.0000     0.8422 1.000 0.000
#> SRR1326225     1  0.0000     0.8422 1.000 0.000
#> SRR1401933     1  0.9710     0.5232 0.600 0.400
#> SRR1324062     2  0.0000     0.9350 0.000 1.000
#> SRR1102296     1  0.0000     0.8422 1.000 0.000
#> SRR1085087     1  0.0000     0.8422 1.000 0.000
#> SRR1079046     1  0.9710     0.5232 0.600 0.400
#> SRR1328339     2  0.0000     0.9350 0.000 1.000
#> SRR1079782     1  0.0000     0.8422 1.000 0.000
#> SRR1092257     1  0.0000     0.8422 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1429287     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1359238     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1309597     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1441398     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1084055     1  0.5905     0.4701 0.648 0.000 0.352
#> SRR1417566     1  0.5926     0.4791 0.644 0.356 0.000
#> SRR1351857     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1487485     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1335875     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1073947     1  0.6252     0.2439 0.556 0.444 0.000
#> SRR1443483     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1346794     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1405245     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1409677     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1095549     1  0.0237     0.9325 0.996 0.000 0.004
#> SRR1323788     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1314054     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1077944     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1480587     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1311205     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1076369     2  0.0592     0.9684 0.012 0.988 0.000
#> SRR1453549     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1345782     1  0.4399     0.7546 0.812 0.188 0.000
#> SRR1447850     1  0.0237     0.9324 0.996 0.000 0.004
#> SRR1391553     1  0.6045     0.4056 0.620 0.380 0.000
#> SRR1444156     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1471731     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1120987     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1477363     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1391961     2  0.6307    -0.0503 0.488 0.512 0.000
#> SRR1373879     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1318732     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1091404     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1402109     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1407336     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1097417     1  0.6154     0.3454 0.592 0.408 0.000
#> SRR1396227     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1400775     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1392861     3  0.5882     0.4699 0.348 0.000 0.652
#> SRR1472929     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1436740     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1477057     1  0.0237     0.9324 0.996 0.004 0.000
#> SRR1311980     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1069400     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1351016     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1096291     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1418145     1  0.5216     0.6469 0.740 0.000 0.260
#> SRR1488111     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1370495     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1352639     1  0.0237     0.9325 0.996 0.004 0.000
#> SRR1348911     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1467386     1  0.1964     0.8908 0.944 0.000 0.056
#> SRR1415956     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1500495     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1405099     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1345585     1  0.6286     0.1648 0.536 0.464 0.000
#> SRR1093196     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1466006     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1351557     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1382687     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1375549     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1101765     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1334461     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1094073     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1077549     3  0.2165     0.9154 0.064 0.000 0.936
#> SRR1440332     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1454177     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1082447     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1420043     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1432500     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1378045     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1334200     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1069539     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1343031     1  0.0237     0.9325 0.996 0.004 0.000
#> SRR1319690     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1310604     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1327747     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1072456     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1367896     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1480107     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1377756     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1435272     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1089230     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1389522     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1080600     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1086935     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1344060     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1467922     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1090984     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1456991     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1085039     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1069303     2  0.0237     0.9769 0.004 0.996 0.000
#> SRR1091500     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1075198     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1086915     3  0.0424     0.9695 0.008 0.000 0.992
#> SRR1499503     1  0.0237     0.9325 0.996 0.000 0.004
#> SRR1094312     1  0.0237     0.9324 0.996 0.000 0.004
#> SRR1352437     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1436323     1  0.4062     0.7788 0.836 0.164 0.000
#> SRR1073507     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1401972     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1415510     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1327279     1  0.3340     0.8299 0.880 0.000 0.120
#> SRR1086983     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1105174     3  0.3686     0.8275 0.140 0.000 0.860
#> SRR1468893     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1362555     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1074526     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1326225     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1401933     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1324062     2  0.0000     0.9809 0.000 1.000 0.000
#> SRR1102296     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1085087     3  0.0000     0.9766 0.000 0.000 1.000
#> SRR1079046     1  0.0000     0.9348 1.000 0.000 0.000
#> SRR1328339     2  0.0237     0.9770 0.004 0.996 0.000
#> SRR1079782     1  0.4750     0.7132 0.784 0.000 0.216
#> SRR1092257     3  0.0000     0.9766 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1429287     2  0.0817     0.8859 0.000 0.976 0.024 0.000
#> SRR1359238     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1309597     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1441398     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1084055     3  0.0707     0.8593 0.000 0.020 0.980 0.000
#> SRR1417566     2  0.3649     0.7197 0.204 0.796 0.000 0.000
#> SRR1351857     4  0.0188     0.9542 0.000 0.000 0.004 0.996
#> SRR1487485     2  0.1716     0.8758 0.000 0.936 0.064 0.000
#> SRR1335875     2  0.0779     0.8980 0.004 0.980 0.016 0.000
#> SRR1073947     3  0.7146     0.5401 0.228 0.212 0.560 0.000
#> SRR1443483     3  0.3688     0.7212 0.208 0.000 0.792 0.000
#> SRR1346794     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1405245     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1409677     4  0.1389     0.9324 0.000 0.000 0.048 0.952
#> SRR1095549     3  0.0817     0.8816 0.000 0.024 0.976 0.000
#> SRR1323788     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1314054     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1077944     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1480587     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1311205     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1076369     3  0.4094     0.8425 0.056 0.116 0.828 0.000
#> SRR1453549     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1345782     3  0.3610     0.7938 0.000 0.200 0.800 0.000
#> SRR1447850     2  0.4234     0.7909 0.000 0.816 0.132 0.052
#> SRR1391553     2  0.4304     0.6179 0.284 0.716 0.000 0.000
#> SRR1444156     4  0.0188     0.9546 0.000 0.004 0.000 0.996
#> SRR1471731     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1120987     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1477363     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1391961     3  0.3610     0.7938 0.000 0.200 0.800 0.000
#> SRR1373879     3  0.0707     0.8740 0.000 0.020 0.980 0.000
#> SRR1318732     1  0.0188     0.9353 0.996 0.004 0.000 0.000
#> SRR1091404     2  0.2345     0.8562 0.000 0.900 0.100 0.000
#> SRR1402109     3  0.0817     0.8816 0.000 0.024 0.976 0.000
#> SRR1407336     3  0.0817     0.8816 0.000 0.024 0.976 0.000
#> SRR1097417     3  0.2704     0.8545 0.000 0.124 0.876 0.000
#> SRR1396227     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1400775     2  0.3801     0.7481 0.000 0.780 0.220 0.000
#> SRR1392861     4  0.6946     0.4578 0.000 0.252 0.168 0.580
#> SRR1472929     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1436740     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1477057     2  0.0817     0.8859 0.000 0.976 0.024 0.000
#> SRR1311980     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1069400     3  0.2647     0.8557 0.000 0.120 0.880 0.000
#> SRR1351016     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1096291     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1418145     2  0.4567     0.6084 0.000 0.716 0.008 0.276
#> SRR1488111     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1370495     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1352639     3  0.2868     0.8468 0.000 0.136 0.864 0.000
#> SRR1348911     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1467386     2  0.5102     0.7406 0.000 0.764 0.100 0.136
#> SRR1415956     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1500495     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1405099     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1345585     2  0.5155     0.1895 0.468 0.528 0.004 0.000
#> SRR1093196     3  0.3123     0.8073 0.000 0.156 0.844 0.000
#> SRR1466006     1  0.0376     0.9321 0.992 0.004 0.004 0.000
#> SRR1351557     2  0.1022     0.8841 0.000 0.968 0.032 0.000
#> SRR1382687     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1375549     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1101765     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1334461     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1094073     4  0.0188     0.9546 0.000 0.004 0.000 0.996
#> SRR1077549     3  0.1151     0.8797 0.000 0.024 0.968 0.008
#> SRR1440332     2  0.3074     0.8036 0.000 0.848 0.152 0.000
#> SRR1454177     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1082447     3  0.1867     0.8679 0.000 0.072 0.928 0.000
#> SRR1420043     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1432500     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1378045     3  0.4933     0.1518 0.000 0.432 0.568 0.000
#> SRR1334200     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1069539     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1343031     3  0.1022     0.8819 0.000 0.032 0.968 0.000
#> SRR1319690     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1310604     2  0.3649     0.7540 0.000 0.796 0.204 0.000
#> SRR1327747     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1072456     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1367896     1  0.4898     0.2275 0.584 0.000 0.416 0.000
#> SRR1480107     1  0.3400     0.7548 0.820 0.180 0.000 0.000
#> SRR1377756     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1435272     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1089230     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1389522     3  0.3972     0.7266 0.204 0.008 0.788 0.000
#> SRR1080600     3  0.2469     0.8576 0.000 0.108 0.892 0.000
#> SRR1086935     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1344060     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1467922     4  0.2635     0.9048 0.000 0.020 0.076 0.904
#> SRR1090984     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1456991     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1085039     3  0.0817     0.8816 0.000 0.024 0.976 0.000
#> SRR1069303     1  0.3569     0.7357 0.804 0.196 0.000 0.000
#> SRR1091500     4  0.0376     0.9529 0.000 0.004 0.004 0.992
#> SRR1075198     2  0.2469     0.8516 0.000 0.892 0.108 0.000
#> SRR1086915     4  0.1211     0.9372 0.000 0.000 0.040 0.960
#> SRR1499503     3  0.1557     0.8579 0.000 0.056 0.944 0.000
#> SRR1094312     2  0.3801     0.7481 0.000 0.780 0.220 0.000
#> SRR1352437     4  0.1557     0.9270 0.000 0.000 0.056 0.944
#> SRR1436323     2  0.1059     0.8935 0.016 0.972 0.012 0.000
#> SRR1073507     4  0.2149     0.9021 0.000 0.000 0.088 0.912
#> SRR1401972     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1415510     2  0.0817     0.8859 0.000 0.976 0.024 0.000
#> SRR1327279     3  0.0817     0.8816 0.000 0.024 0.976 0.000
#> SRR1086983     4  0.0000     0.9557 0.000 0.000 0.000 1.000
#> SRR1105174     3  0.1151     0.8797 0.000 0.024 0.968 0.008
#> SRR1468893     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1362555     1  0.0000     0.9384 1.000 0.000 0.000 0.000
#> SRR1074526     4  0.3688     0.7210 0.000 0.000 0.208 0.792
#> SRR1326225     4  0.0937     0.9443 0.000 0.012 0.012 0.976
#> SRR1401933     2  0.0707     0.8992 0.000 0.980 0.020 0.000
#> SRR1324062     1  0.3569     0.7357 0.804 0.196 0.000 0.000
#> SRR1102296     2  0.3172     0.8075 0.000 0.840 0.160 0.000
#> SRR1085087     4  0.2216     0.8992 0.000 0.000 0.092 0.908
#> SRR1079046     2  0.0817     0.8859 0.000 0.976 0.024 0.000
#> SRR1328339     1  0.7535     0.0313 0.464 0.200 0.336 0.000
#> SRR1079782     2  0.4692     0.6843 0.000 0.756 0.032 0.212
#> SRR1092257     4  0.0000     0.9557 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     4  0.4219     0.0169 0.000 0.416 0.000 0.584 0.000
#> SRR1429287     1  0.0566     0.8660 0.984 0.000 0.012 0.000 0.004
#> SRR1359238     1  0.0510     0.8650 0.984 0.000 0.016 0.000 0.000
#> SRR1309597     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1441398     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1084055     2  0.2690     0.6690 0.000 0.844 0.156 0.000 0.000
#> SRR1417566     1  0.2813     0.7286 0.832 0.000 0.000 0.000 0.168
#> SRR1351857     4  0.0162     0.8469 0.000 0.000 0.004 0.996 0.000
#> SRR1487485     1  0.3477     0.7968 0.832 0.112 0.056 0.000 0.000
#> SRR1335875     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1073947     3  0.8106     0.2875 0.284 0.000 0.376 0.108 0.232
#> SRR1443483     3  0.1341     0.8266 0.000 0.000 0.944 0.000 0.056
#> SRR1346794     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1405245     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1409677     4  0.0794     0.8345 0.000 0.000 0.028 0.972 0.000
#> SRR1095549     3  0.0566     0.8333 0.004 0.000 0.984 0.012 0.000
#> SRR1323788     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1314054     4  0.4294    -0.1743 0.000 0.468 0.000 0.532 0.000
#> SRR1077944     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1480587     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1311205     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1076369     3  0.2516     0.7820 0.000 0.000 0.860 0.000 0.140
#> SRR1453549     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1345782     3  0.2690     0.7498 0.156 0.000 0.844 0.000 0.000
#> SRR1447850     2  0.3646     0.6695 0.040 0.848 0.072 0.040 0.000
#> SRR1391553     1  0.3857     0.6091 0.688 0.000 0.000 0.000 0.312
#> SRR1444156     2  0.4171     0.4853 0.000 0.604 0.000 0.396 0.000
#> SRR1471731     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1120987     4  0.0000     0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1477363     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1391961     3  0.2516     0.7820 0.000 0.000 0.860 0.000 0.140
#> SRR1373879     3  0.3595     0.7646 0.004 0.048 0.828 0.120 0.000
#> SRR1318732     5  0.0162     0.8913 0.004 0.000 0.000 0.000 0.996
#> SRR1091404     1  0.1478     0.8457 0.936 0.000 0.064 0.000 0.000
#> SRR1402109     3  0.0162     0.8323 0.004 0.000 0.996 0.000 0.000
#> SRR1407336     3  0.0162     0.8323 0.004 0.000 0.996 0.000 0.000
#> SRR1097417     3  0.2516     0.7820 0.000 0.000 0.860 0.000 0.140
#> SRR1396227     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1400775     1  0.5841     0.5490 0.596 0.256 0.148 0.000 0.000
#> SRR1392861     4  0.5500     0.4062 0.212 0.000 0.140 0.648 0.000
#> SRR1472929     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1436740     4  0.0000     0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1477057     1  0.3106     0.7760 0.840 0.020 0.000 0.000 0.140
#> SRR1311980     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1069400     3  0.1043     0.8254 0.040 0.000 0.960 0.000 0.000
#> SRR1351016     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1096291     4  0.0404     0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1418145     1  0.3437     0.7632 0.832 0.048 0.000 0.120 0.000
#> SRR1488111     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1370495     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1352639     3  0.1908     0.8067 0.092 0.000 0.908 0.000 0.000
#> SRR1348911     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1467386     4  0.4935     0.3124 0.344 0.000 0.040 0.616 0.000
#> SRR1415956     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1500495     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1405099     5  0.2516     0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1345585     1  0.4297     0.2504 0.528 0.000 0.000 0.000 0.472
#> SRR1093196     3  0.3016     0.7343 0.132 0.020 0.848 0.000 0.000
#> SRR1466006     5  0.0162     0.8915 0.000 0.000 0.004 0.000 0.996
#> SRR1351557     1  0.3534     0.7156 0.744 0.256 0.000 0.000 0.000
#> SRR1382687     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1375549     1  0.0324     0.8672 0.992 0.000 0.004 0.000 0.004
#> SRR1101765     4  0.0000     0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1334461     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1094073     2  0.4171     0.4853 0.000 0.604 0.000 0.396 0.000
#> SRR1077549     3  0.2439     0.7920 0.004 0.000 0.876 0.120 0.000
#> SRR1440332     1  0.3508     0.6674 0.748 0.000 0.252 0.000 0.000
#> SRR1454177     4  0.0404     0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1082447     3  0.3437     0.7762 0.048 0.000 0.832 0.120 0.000
#> SRR1420043     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1432500     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1378045     2  0.5915     0.2700 0.108 0.508 0.384 0.000 0.000
#> SRR1334200     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1069539     4  0.2127     0.7498 0.000 0.108 0.000 0.892 0.000
#> SRR1343031     3  0.0162     0.8323 0.004 0.000 0.996 0.000 0.000
#> SRR1319690     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1310604     1  0.5087     0.6722 0.700 0.148 0.152 0.000 0.000
#> SRR1327747     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1072456     5  0.0162     0.8915 0.000 0.000 0.004 0.000 0.996
#> SRR1367896     5  0.4227     0.1420 0.000 0.000 0.420 0.000 0.580
#> SRR1480107     5  0.1732     0.8469 0.080 0.000 0.000 0.000 0.920
#> SRR1377756     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1435272     4  0.0404     0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1089230     4  0.0404     0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1389522     3  0.2886     0.7773 0.008 0.000 0.844 0.000 0.148
#> SRR1080600     2  0.4503     0.5220 0.040 0.704 0.256 0.000 0.000
#> SRR1086935     4  0.2280     0.7338 0.000 0.120 0.000 0.880 0.000
#> SRR1344060     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1467922     2  0.3412     0.6489 0.000 0.820 0.028 0.152 0.000
#> SRR1090984     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1456991     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1085039     3  0.2439     0.7920 0.004 0.000 0.876 0.120 0.000
#> SRR1069303     5  0.3774     0.6186 0.296 0.000 0.000 0.000 0.704
#> SRR1091500     2  0.4161     0.4908 0.000 0.608 0.000 0.392 0.000
#> SRR1075198     1  0.5447     0.6092 0.640 0.248 0.112 0.000 0.000
#> SRR1086915     4  0.0771     0.8398 0.004 0.000 0.020 0.976 0.000
#> SRR1499503     2  0.2648     0.6694 0.000 0.848 0.152 0.000 0.000
#> SRR1094312     2  0.2763     0.6701 0.004 0.848 0.148 0.000 0.000
#> SRR1352437     4  0.0794     0.8345 0.000 0.000 0.028 0.972 0.000
#> SRR1436323     1  0.2516     0.7803 0.860 0.000 0.000 0.000 0.140
#> SRR1073507     4  0.1043     0.8236 0.000 0.000 0.040 0.960 0.000
#> SRR1401972     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1415510     1  0.2519     0.8233 0.884 0.100 0.016 0.000 0.000
#> SRR1327279     3  0.0566     0.8333 0.004 0.000 0.984 0.012 0.000
#> SRR1086983     4  0.0000     0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1105174     3  0.3430     0.6908 0.004 0.000 0.776 0.220 0.000
#> SRR1468893     5  0.0000     0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1362555     5  0.0510     0.8907 0.000 0.016 0.000 0.000 0.984
#> SRR1074526     2  0.4171     0.4853 0.000 0.604 0.000 0.396 0.000
#> SRR1326225     2  0.4150     0.4955 0.000 0.612 0.000 0.388 0.000
#> SRR1401933     1  0.0000     0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1324062     5  0.3796     0.6134 0.300 0.000 0.000 0.000 0.700
#> SRR1102296     1  0.7198     0.4480 0.532 0.256 0.092 0.120 0.000
#> SRR1085087     4  0.2077     0.7872 0.000 0.040 0.040 0.920 0.000
#> SRR1079046     1  0.2806     0.7975 0.844 0.152 0.000 0.000 0.004
#> SRR1328339     5  0.4682     0.3196 0.024 0.000 0.356 0.000 0.620
#> SRR1079782     1  0.5449     0.5975 0.636 0.256 0.000 0.108 0.000
#> SRR1092257     4  0.0000     0.8480 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     4  0.3727     0.5397 0.000 0.388 0.000 0.612 0.000 0.000
#> SRR1429287     1  0.0146     0.8459 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1359238     1  0.0865     0.8334 0.964 0.000 0.036 0.000 0.000 0.000
#> SRR1309597     5  0.2793     0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1441398     5  0.2793     0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1084055     2  0.5173     0.6355 0.000 0.616 0.160 0.000 0.000 0.224
#> SRR1417566     1  0.2454     0.7111 0.840 0.000 0.000 0.000 0.160 0.000
#> SRR1351857     6  0.4199     0.8306 0.000 0.016 0.000 0.416 0.000 0.568
#> SRR1487485     1  0.4627     0.6631 0.696 0.004 0.196 0.000 0.000 0.104
#> SRR1335875     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1073947     6  0.5751     0.3945 0.280 0.000 0.128 0.024 0.000 0.568
#> SRR1443483     3  0.2454     0.7725 0.000 0.000 0.840 0.000 0.160 0.000
#> SRR1346794     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405245     5  0.2793     0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1409677     4  0.0000     0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1095549     3  0.2527     0.7086 0.000 0.000 0.832 0.168 0.000 0.000
#> SRR1323788     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1314054     2  0.3515     0.1142 0.000 0.676 0.000 0.324 0.000 0.000
#> SRR1077944     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1480587     5  0.2793     0.8228 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1311205     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1076369     3  0.2697     0.7526 0.000 0.000 0.812 0.000 0.188 0.000
#> SRR1453549     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345782     3  0.2454     0.7392 0.160 0.000 0.840 0.000 0.000 0.000
#> SRR1447850     2  0.5195     0.6336 0.000 0.612 0.160 0.000 0.000 0.228
#> SRR1391553     1  0.3563     0.5645 0.664 0.000 0.000 0.000 0.336 0.000
#> SRR1444156     2  0.0937     0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1471731     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1120987     4  0.0458     0.6652 0.000 0.016 0.000 0.984 0.000 0.000
#> SRR1477363     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1391961     3  0.2838     0.7508 0.000 0.000 0.808 0.000 0.188 0.004
#> SRR1373879     6  0.4951     0.8390 0.000 0.040 0.016 0.384 0.000 0.560
#> SRR1318732     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1091404     1  0.1007     0.8309 0.956 0.000 0.044 0.000 0.000 0.000
#> SRR1402109     3  0.0000     0.7588 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1407336     3  0.0000     0.7588 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097417     3  0.2442     0.7767 0.000 0.000 0.852 0.000 0.144 0.004
#> SRR1396227     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1400775     1  0.6020     0.5158 0.572 0.040 0.160 0.000 0.000 0.228
#> SRR1392861     4  0.3126     0.3091 0.248 0.000 0.000 0.752 0.000 0.000
#> SRR1472929     5  0.2823     0.8205 0.000 0.000 0.000 0.000 0.796 0.204
#> SRR1436740     4  0.0000     0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1477057     1  0.3555     0.7082 0.776 0.000 0.000 0.000 0.184 0.040
#> SRR1311980     5  0.2793     0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1069400     3  0.2092     0.7604 0.124 0.000 0.876 0.000 0.000 0.000
#> SRR1351016     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1096291     4  0.3578     0.5949 0.000 0.340 0.000 0.660 0.000 0.000
#> SRR1418145     1  0.5891     0.4408 0.576 0.040 0.124 0.260 0.000 0.000
#> SRR1488111     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1370495     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1352639     3  0.1367     0.7646 0.044 0.000 0.944 0.000 0.000 0.012
#> SRR1348911     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1467386     6  0.3944     0.8450 0.004 0.000 0.000 0.428 0.000 0.568
#> SRR1415956     5  0.2793     0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1500495     5  0.2697     0.8252 0.000 0.000 0.000 0.000 0.812 0.188
#> SRR1405099     5  0.2793     0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1345585     1  0.3866     0.2342 0.516 0.000 0.000 0.000 0.484 0.000
#> SRR1093196     3  0.2404     0.6778 0.112 0.016 0.872 0.000 0.000 0.000
#> SRR1466006     5  0.0146     0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1351557     1  0.5733     0.5535 0.608 0.040 0.124 0.000 0.000 0.228
#> SRR1382687     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1375549     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1101765     4  0.0000     0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1334461     5  0.0146     0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1094073     2  0.0937     0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1077549     6  0.4658     0.8475 0.000 0.000 0.048 0.384 0.000 0.568
#> SRR1440332     1  0.2793     0.6944 0.800 0.000 0.200 0.000 0.000 0.000
#> SRR1454177     4  0.4636     0.5579 0.000 0.160 0.000 0.692 0.000 0.148
#> SRR1082447     6  0.4735     0.8488 0.000 0.004 0.044 0.384 0.000 0.568
#> SRR1420043     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1432500     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1378045     3  0.7347    -0.3249 0.116 0.304 0.352 0.000 0.000 0.228
#> SRR1334200     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1069539     4  0.3717     0.5455 0.000 0.384 0.000 0.616 0.000 0.000
#> SRR1343031     3  0.2135     0.7593 0.128 0.000 0.872 0.000 0.000 0.000
#> SRR1319690     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310604     1  0.5077     0.6563 0.696 0.040 0.160 0.000 0.000 0.104
#> SRR1327747     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1072456     5  0.0146     0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1367896     5  0.3930     0.0938 0.000 0.000 0.420 0.000 0.576 0.004
#> SRR1480107     5  0.1075     0.8534 0.048 0.000 0.000 0.000 0.952 0.000
#> SRR1377756     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1435272     4  0.2454     0.7097 0.000 0.160 0.000 0.840 0.000 0.000
#> SRR1089230     4  0.2527     0.7105 0.000 0.168 0.000 0.832 0.000 0.000
#> SRR1389522     3  0.2558     0.7749 0.004 0.000 0.840 0.000 0.156 0.000
#> SRR1080600     2  0.5870     0.4714 0.000 0.476 0.292 0.000 0.000 0.232
#> SRR1086935     4  0.3717     0.5455 0.000 0.384 0.000 0.616 0.000 0.000
#> SRR1344060     5  0.0146     0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1467922     2  0.1297     0.6823 0.000 0.948 0.000 0.040 0.000 0.012
#> SRR1090984     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1456991     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1085039     6  0.4658     0.8475 0.000 0.000 0.048 0.384 0.000 0.568
#> SRR1069303     5  0.3428     0.6062 0.304 0.000 0.000 0.000 0.696 0.000
#> SRR1091500     2  0.0937     0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1075198     1  0.5999     0.5216 0.576 0.040 0.160 0.000 0.000 0.224
#> SRR1086915     4  0.0000     0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1499503     2  0.5173     0.6355 0.000 0.616 0.160 0.000 0.000 0.224
#> SRR1094312     2  0.5195     0.6336 0.000 0.612 0.160 0.000 0.000 0.228
#> SRR1352437     6  0.3817     0.8437 0.000 0.000 0.000 0.432 0.000 0.568
#> SRR1436323     1  0.2697     0.7189 0.812 0.000 0.000 0.000 0.188 0.000
#> SRR1073507     6  0.3817     0.8437 0.000 0.000 0.000 0.432 0.000 0.568
#> SRR1401972     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1415510     1  0.2848     0.7840 0.856 0.004 0.036 0.000 0.000 0.104
#> SRR1327279     3  0.2454     0.7164 0.000 0.000 0.840 0.160 0.000 0.000
#> SRR1086983     6  0.3817     0.8437 0.000 0.000 0.000 0.432 0.000 0.568
#> SRR1105174     6  0.4610     0.8495 0.000 0.000 0.044 0.388 0.000 0.568
#> SRR1468893     5  0.0000     0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1362555     5  0.0632     0.8692 0.000 0.000 0.000 0.000 0.976 0.024
#> SRR1074526     2  0.0937     0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1326225     2  0.0937     0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1401933     1  0.0000     0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324062     5  0.3428     0.6062 0.304 0.000 0.000 0.000 0.696 0.000
#> SRR1102296     6  0.3968     0.3782 0.004 0.040 0.124 0.036 0.000 0.796
#> SRR1085087     6  0.4395     0.8457 0.000 0.028 0.000 0.404 0.000 0.568
#> SRR1079046     1  0.3282     0.7477 0.808 0.012 0.016 0.000 0.000 0.164
#> SRR1328339     5  0.3835     0.4009 0.012 0.000 0.320 0.000 0.668 0.000
#> SRR1079782     1  0.7941     0.1826 0.392 0.040 0.124 0.216 0.000 0.228
#> SRR1092257     4  0.3796     0.5975 0.000 0.060 0.000 0.764 0.000 0.176

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.209           0.736       0.800         0.4400 0.498   0.498
#> 3 3 0.251           0.341       0.657         0.3576 0.692   0.496
#> 4 4 0.288           0.454       0.638         0.1344 0.705   0.405
#> 5 5 0.482           0.401       0.726         0.0779 0.795   0.462
#> 6 6 0.535           0.427       0.682         0.0600 0.919   0.721

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.1414      0.827 0.020 0.980
#> SRR1429287     2  0.5294      0.865 0.120 0.880
#> SRR1359238     1  0.9129      0.672 0.672 0.328
#> SRR1309597     2  0.5408      0.865 0.124 0.876
#> SRR1441398     1  0.8861      0.703 0.696 0.304
#> SRR1084055     2  0.0938      0.819 0.012 0.988
#> SRR1417566     2  1.0000     -0.152 0.500 0.500
#> SRR1351857     2  0.1414      0.824 0.020 0.980
#> SRR1487485     2  0.5408      0.865 0.124 0.876
#> SRR1335875     1  0.1414      0.749 0.980 0.020
#> SRR1073947     1  0.6148      0.787 0.848 0.152
#> SRR1443483     2  0.5294      0.864 0.120 0.880
#> SRR1346794     1  0.1414      0.748 0.980 0.020
#> SRR1405245     1  0.8499      0.728 0.724 0.276
#> SRR1409677     1  0.9087      0.761 0.676 0.324
#> SRR1095549     2  0.1414      0.824 0.020 0.980
#> SRR1323788     1  0.7056      0.782 0.808 0.192
#> SRR1314054     2  0.1414      0.827 0.020 0.980
#> SRR1077944     1  0.0938      0.746 0.988 0.012
#> SRR1480587     2  0.5408      0.865 0.124 0.876
#> SRR1311205     1  0.7674      0.771 0.776 0.224
#> SRR1076369     2  0.5408      0.865 0.124 0.876
#> SRR1453549     1  0.5737      0.786 0.864 0.136
#> SRR1345782     1  0.7453      0.776 0.788 0.212
#> SRR1447850     2  0.5059      0.808 0.112 0.888
#> SRR1391553     1  0.5737      0.786 0.864 0.136
#> SRR1444156     2  0.1414      0.827 0.020 0.980
#> SRR1471731     1  0.9170      0.668 0.668 0.332
#> SRR1120987     1  0.9866      0.654 0.568 0.432
#> SRR1477363     1  0.0672      0.741 0.992 0.008
#> SRR1391961     2  0.5178      0.863 0.116 0.884
#> SRR1373879     1  0.9933      0.615 0.548 0.452
#> SRR1318732     2  0.9850      0.180 0.428 0.572
#> SRR1091404     2  0.9909      0.103 0.444 0.556
#> SRR1402109     2  0.9815      0.228 0.420 0.580
#> SRR1407336     2  0.1843      0.828 0.028 0.972
#> SRR1097417     2  0.5059      0.861 0.112 0.888
#> SRR1396227     1  0.0376      0.742 0.996 0.004
#> SRR1400775     2  0.3733      0.853 0.072 0.928
#> SRR1392861     1  0.9522      0.723 0.628 0.372
#> SRR1472929     2  0.5294      0.864 0.120 0.880
#> SRR1436740     1  0.9044      0.764 0.680 0.320
#> SRR1477057     2  0.9087      0.526 0.324 0.676
#> SRR1311980     1  0.9044      0.684 0.680 0.320
#> SRR1069400     2  0.5519      0.864 0.128 0.872
#> SRR1351016     1  0.0376      0.744 0.996 0.004
#> SRR1096291     2  0.1633      0.825 0.024 0.976
#> SRR1418145     1  0.9286      0.707 0.656 0.344
#> SRR1488111     1  0.9209      0.668 0.664 0.336
#> SRR1370495     2  0.5408      0.865 0.124 0.876
#> SRR1352639     1  0.5629      0.787 0.868 0.132
#> SRR1348911     2  0.5519      0.864 0.128 0.872
#> SRR1467386     1  0.8555      0.770 0.720 0.280
#> SRR1415956     1  0.2603      0.760 0.956 0.044
#> SRR1500495     1  0.0376      0.744 0.996 0.004
#> SRR1405099     1  0.2423      0.759 0.960 0.040
#> SRR1345585     2  0.5408      0.865 0.124 0.876
#> SRR1093196     1  0.9983      0.262 0.524 0.476
#> SRR1466006     2  0.5059      0.863 0.112 0.888
#> SRR1351557     2  0.5294      0.865 0.120 0.880
#> SRR1382687     1  0.0672      0.741 0.992 0.008
#> SRR1375549     1  0.9129      0.678 0.672 0.328
#> SRR1101765     2  0.8499      0.372 0.276 0.724
#> SRR1334461     2  0.5519      0.864 0.128 0.872
#> SRR1094073     2  0.1414      0.827 0.020 0.980
#> SRR1077549     1  0.9170      0.756 0.668 0.332
#> SRR1440332     1  0.6973      0.783 0.812 0.188
#> SRR1454177     1  0.9754      0.683 0.592 0.408
#> SRR1082447     1  0.9000      0.764 0.684 0.316
#> SRR1420043     1  0.0000      0.741 1.000 0.000
#> SRR1432500     1  0.0376      0.744 0.996 0.004
#> SRR1378045     2  0.5519      0.865 0.128 0.872
#> SRR1334200     2  0.5408      0.865 0.124 0.876
#> SRR1069539     2  0.1414      0.824 0.020 0.980
#> SRR1343031     2  0.5519      0.864 0.128 0.872
#> SRR1319690     1  0.7745      0.754 0.772 0.228
#> SRR1310604     2  0.5294      0.865 0.120 0.880
#> SRR1327747     1  0.9170      0.668 0.668 0.332
#> SRR1072456     2  0.5059      0.863 0.112 0.888
#> SRR1367896     2  0.5059      0.861 0.112 0.888
#> SRR1480107     1  0.0672      0.743 0.992 0.008
#> SRR1377756     1  0.0672      0.741 0.992 0.008
#> SRR1435272     1  0.9393      0.736 0.644 0.356
#> SRR1089230     1  0.9954      0.592 0.540 0.460
#> SRR1389522     2  0.5294      0.864 0.120 0.880
#> SRR1080600     2  0.5059      0.863 0.112 0.888
#> SRR1086935     2  0.9954     -0.410 0.460 0.540
#> SRR1344060     2  0.5519      0.864 0.128 0.872
#> SRR1467922     2  0.1414      0.827 0.020 0.980
#> SRR1090984     2  0.9608      0.354 0.384 0.616
#> SRR1456991     1  0.5294      0.784 0.880 0.120
#> SRR1085039     1  0.8713      0.769 0.708 0.292
#> SRR1069303     1  0.0000      0.741 1.000 0.000
#> SRR1091500     2  0.1414      0.827 0.020 0.980
#> SRR1075198     2  0.5408      0.865 0.124 0.876
#> SRR1086915     1  0.9044      0.763 0.680 0.320
#> SRR1499503     2  0.0938      0.824 0.012 0.988
#> SRR1094312     2  0.2603      0.840 0.044 0.956
#> SRR1352437     1  0.8555      0.771 0.720 0.280
#> SRR1436323     1  0.8955      0.695 0.688 0.312
#> SRR1073507     1  0.8555      0.770 0.720 0.280
#> SRR1401972     1  0.0376      0.742 0.996 0.004
#> SRR1415510     2  0.5408      0.865 0.124 0.876
#> SRR1327279     1  0.9286      0.750 0.656 0.344
#> SRR1086983     1  0.8608      0.770 0.716 0.284
#> SRR1105174     1  0.8661      0.770 0.712 0.288
#> SRR1468893     1  0.0938      0.744 0.988 0.012
#> SRR1362555     2  0.5408      0.865 0.124 0.876
#> SRR1074526     2  0.0938      0.819 0.012 0.988
#> SRR1326225     2  0.1184      0.826 0.016 0.984
#> SRR1401933     1  0.7815      0.768 0.768 0.232
#> SRR1324062     1  0.0000      0.741 1.000 0.000
#> SRR1102296     1  0.7815      0.784 0.768 0.232
#> SRR1085087     1  0.8499      0.771 0.724 0.276
#> SRR1079046     1  0.9460      0.614 0.636 0.364
#> SRR1328339     2  0.5842      0.858 0.140 0.860
#> SRR1079782     1  0.9209      0.668 0.664 0.336
#> SRR1092257     1  0.9998      0.532 0.508 0.492

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.7163     0.2550 0.332 0.628 0.040
#> SRR1429287     2  0.2066     0.5270 0.000 0.940 0.060
#> SRR1359238     1  0.6280     0.4823 0.540 0.460 0.000
#> SRR1309597     2  0.6553     0.2660 0.020 0.656 0.324
#> SRR1441398     1  0.8763     0.4335 0.552 0.136 0.312
#> SRR1084055     3  0.8636     0.4129 0.104 0.396 0.500
#> SRR1417566     1  0.6308     0.4365 0.508 0.492 0.000
#> SRR1351857     3  0.9180     0.5346 0.376 0.152 0.472
#> SRR1487485     2  0.0592     0.5246 0.000 0.988 0.012
#> SRR1335875     1  0.8109     0.5804 0.568 0.352 0.080
#> SRR1073947     1  0.9914     0.2162 0.392 0.328 0.280
#> SRR1443483     2  0.6678    -0.2727 0.008 0.512 0.480
#> SRR1346794     1  0.7085     0.5862 0.612 0.356 0.032
#> SRR1405245     1  0.8452     0.4466 0.556 0.104 0.340
#> SRR1409677     1  0.0829     0.4706 0.984 0.012 0.004
#> SRR1095549     3  0.9280     0.5416 0.388 0.160 0.452
#> SRR1323788     1  0.9596     0.3602 0.452 0.336 0.212
#> SRR1314054     2  0.7163     0.2550 0.332 0.628 0.040
#> SRR1077944     1  0.6627     0.5920 0.644 0.336 0.020
#> SRR1480587     2  0.5706     0.2777 0.000 0.680 0.320
#> SRR1311205     1  0.8554     0.4506 0.560 0.116 0.324
#> SRR1076369     2  0.6307    -0.2915 0.000 0.512 0.488
#> SRR1453549     1  0.5968     0.5777 0.636 0.364 0.000
#> SRR1345782     2  0.9941    -0.2044 0.292 0.384 0.324
#> SRR1447850     2  0.3141     0.5268 0.020 0.912 0.068
#> SRR1391553     2  0.5634     0.4294 0.144 0.800 0.056
#> SRR1444156     2  0.7251     0.2583 0.348 0.612 0.040
#> SRR1471731     2  0.3722     0.5195 0.088 0.888 0.024
#> SRR1120987     1  0.4591     0.3810 0.848 0.120 0.032
#> SRR1477363     1  0.7828     0.5894 0.592 0.340 0.068
#> SRR1391961     2  0.6680    -0.2801 0.008 0.508 0.484
#> SRR1373879     1  0.9731    -0.2435 0.444 0.248 0.308
#> SRR1318732     2  0.4465     0.4190 0.176 0.820 0.004
#> SRR1091404     2  0.9514    -0.2279 0.328 0.468 0.204
#> SRR1402109     2  0.8501    -0.2018 0.092 0.488 0.420
#> SRR1407336     2  0.8783    -0.2328 0.112 0.468 0.420
#> SRR1097417     3  0.6307     0.2470 0.000 0.488 0.512
#> SRR1396227     1  0.7705     0.5916 0.604 0.332 0.064
#> SRR1400775     2  0.2096     0.5299 0.052 0.944 0.004
#> SRR1392861     1  0.1399     0.4692 0.968 0.028 0.004
#> SRR1472929     3  0.4654     0.5522 0.000 0.208 0.792
#> SRR1436740     1  0.0592     0.4740 0.988 0.012 0.000
#> SRR1477057     2  0.2947     0.5308 0.020 0.920 0.060
#> SRR1311980     1  0.8771     0.4338 0.556 0.140 0.304
#> SRR1069400     2  0.6816    -0.2594 0.012 0.516 0.472
#> SRR1351016     1  0.8230     0.5803 0.564 0.348 0.088
#> SRR1096291     1  0.9077    -0.4005 0.508 0.152 0.340
#> SRR1418145     2  0.3619     0.5045 0.136 0.864 0.000
#> SRR1488111     2  0.3888     0.5259 0.048 0.888 0.064
#> SRR1370495     2  0.6396     0.2862 0.016 0.664 0.320
#> SRR1352639     1  0.5810     0.5892 0.664 0.336 0.000
#> SRR1348911     1  0.9391     0.3533 0.496 0.200 0.304
#> SRR1467386     1  0.1163     0.4934 0.972 0.028 0.000
#> SRR1415956     1  0.7533     0.4521 0.564 0.044 0.392
#> SRR1500495     1  0.7533     0.4521 0.564 0.044 0.392
#> SRR1405099     1  0.7533     0.4521 0.564 0.044 0.392
#> SRR1345585     2  0.0829     0.5259 0.004 0.984 0.012
#> SRR1093196     2  0.6286    -0.3516 0.464 0.536 0.000
#> SRR1466006     2  0.5785     0.2764 0.000 0.668 0.332
#> SRR1351557     2  0.2301     0.5283 0.004 0.936 0.060
#> SRR1382687     1  0.7448     0.5926 0.616 0.332 0.052
#> SRR1375549     2  0.3889     0.5206 0.084 0.884 0.032
#> SRR1101765     1  0.6730     0.1109 0.680 0.284 0.036
#> SRR1334461     3  0.5678     0.5451 0.032 0.192 0.776
#> SRR1094073     2  0.7208     0.2572 0.340 0.620 0.040
#> SRR1077549     1  0.6570    -0.1316 0.668 0.024 0.308
#> SRR1440332     1  0.5835     0.5883 0.660 0.340 0.000
#> SRR1454177     1  0.2918     0.4365 0.924 0.044 0.032
#> SRR1082447     1  0.9987     0.0956 0.348 0.344 0.308
#> SRR1420043     1  0.8194     0.5853 0.572 0.340 0.088
#> SRR1432500     1  0.5785     0.5898 0.668 0.332 0.000
#> SRR1378045     2  0.1289     0.5293 0.032 0.968 0.000
#> SRR1334200     2  0.5678     0.2810 0.000 0.684 0.316
#> SRR1069539     3  0.9189     0.5472 0.336 0.164 0.500
#> SRR1343031     2  0.8203    -0.2201 0.072 0.484 0.444
#> SRR1319690     1  0.6267     0.4928 0.548 0.452 0.000
#> SRR1310604     2  0.1129     0.5227 0.004 0.976 0.020
#> SRR1327747     2  0.6309    -0.4351 0.496 0.504 0.000
#> SRR1072456     2  0.5178     0.3555 0.000 0.744 0.256
#> SRR1367896     3  0.4654     0.5522 0.000 0.208 0.792
#> SRR1480107     1  0.9189     0.5475 0.500 0.336 0.164
#> SRR1377756     1  0.8034     0.5883 0.584 0.336 0.080
#> SRR1435272     1  0.1399     0.4491 0.968 0.004 0.028
#> SRR1089230     1  0.4799     0.3637 0.836 0.132 0.032
#> SRR1389522     2  0.6816    -0.2594 0.012 0.516 0.472
#> SRR1080600     2  0.1163     0.5212 0.000 0.972 0.028
#> SRR1086935     2  0.7236     0.2507 0.392 0.576 0.032
#> SRR1344060     3  0.5024     0.5526 0.004 0.220 0.776
#> SRR1467922     2  0.6955     0.2576 0.332 0.636 0.032
#> SRR1090984     2  0.8059    -0.3462 0.444 0.492 0.064
#> SRR1456991     1  0.8280     0.5797 0.564 0.344 0.092
#> SRR1085039     1  0.9974     0.1114 0.368 0.324 0.308
#> SRR1069303     1  0.8194     0.5853 0.572 0.340 0.088
#> SRR1091500     2  0.7251     0.2583 0.348 0.612 0.040
#> SRR1075198     2  0.0475     0.5276 0.004 0.992 0.004
#> SRR1086915     1  0.1289     0.4851 0.968 0.032 0.000
#> SRR1499503     2  0.6855     0.2640 0.316 0.652 0.032
#> SRR1094312     2  0.2269     0.5185 0.040 0.944 0.016
#> SRR1352437     1  0.0592     0.4807 0.988 0.012 0.000
#> SRR1436323     2  0.3573     0.5012 0.120 0.876 0.004
#> SRR1073507     1  0.5986    -0.0375 0.704 0.012 0.284
#> SRR1401972     1  0.7262     0.5928 0.624 0.332 0.044
#> SRR1415510     2  0.0475     0.5282 0.004 0.992 0.004
#> SRR1327279     3  0.9967    -0.0205 0.296 0.340 0.364
#> SRR1086983     1  0.1950     0.4412 0.952 0.008 0.040
#> SRR1105174     1  0.6570    -0.0911 0.668 0.024 0.308
#> SRR1468893     1  0.8698     0.5258 0.564 0.136 0.300
#> SRR1362555     2  0.7084     0.3011 0.044 0.652 0.304
#> SRR1074526     3  0.9215     0.5457 0.332 0.168 0.500
#> SRR1326225     2  0.7163     0.2550 0.332 0.628 0.040
#> SRR1401933     2  0.3618     0.5110 0.104 0.884 0.012
#> SRR1324062     1  0.8194     0.5853 0.572 0.340 0.088
#> SRR1102296     1  0.5706     0.5903 0.680 0.320 0.000
#> SRR1085087     1  0.0892     0.4873 0.980 0.020 0.000
#> SRR1079046     2  0.3983     0.5247 0.048 0.884 0.068
#> SRR1328339     1  0.6521     0.4291 0.504 0.492 0.004
#> SRR1079782     2  0.4281     0.5233 0.072 0.872 0.056
#> SRR1092257     2  0.7129     0.2546 0.392 0.580 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     4  0.4175    0.69726 0.000 0.200 0.016 0.784
#> SRR1429287     2  0.0376    0.61676 0.004 0.992 0.000 0.004
#> SRR1359238     1  0.5113    0.62955 0.684 0.292 0.024 0.000
#> SRR1309597     1  0.6299   -0.42481 0.496 0.456 0.040 0.008
#> SRR1441398     1  0.3074    0.35925 0.848 0.000 0.152 0.000
#> SRR1084055     3  0.5397    0.34567 0.000 0.068 0.720 0.212
#> SRR1417566     1  0.5830    0.56600 0.620 0.332 0.048 0.000
#> SRR1351857     3  0.5632    0.36670 0.012 0.008 0.560 0.420
#> SRR1487485     2  0.5007    0.54265 0.208 0.752 0.028 0.012
#> SRR1335875     1  0.4560    0.63850 0.700 0.296 0.004 0.000
#> SRR1073947     3  0.9328    0.42222 0.176 0.288 0.408 0.128
#> SRR1443483     3  0.3873    0.50279 0.000 0.228 0.772 0.000
#> SRR1346794     1  0.4560    0.63850 0.700 0.296 0.004 0.000
#> SRR1405245     1  0.0188    0.51381 0.996 0.000 0.004 0.000
#> SRR1409677     1  0.7122    0.30583 0.560 0.000 0.192 0.248
#> SRR1095549     3  0.4993    0.48085 0.020 0.008 0.728 0.244
#> SRR1323788     3  0.9285    0.43999 0.164 0.288 0.416 0.132
#> SRR1314054     4  0.4175    0.69726 0.000 0.200 0.016 0.784
#> SRR1077944     1  0.4770    0.64013 0.700 0.288 0.012 0.000
#> SRR1480587     2  0.5402    0.24671 0.288 0.680 0.024 0.008
#> SRR1311205     1  0.0188    0.51395 0.996 0.004 0.000 0.000
#> SRR1076369     3  0.7911    0.12084 0.208 0.308 0.472 0.012
#> SRR1453549     1  0.4770    0.64013 0.700 0.288 0.012 0.000
#> SRR1345782     3  0.9268    0.44394 0.160 0.292 0.416 0.132
#> SRR1447850     2  0.3216    0.49431 0.004 0.864 0.124 0.008
#> SRR1391553     2  0.4713    0.27753 0.360 0.640 0.000 0.000
#> SRR1444156     4  0.4175    0.69726 0.000 0.200 0.016 0.784
#> SRR1471731     2  0.4158    0.54799 0.224 0.768 0.008 0.000
#> SRR1120987     1  0.5696   -0.01543 0.492 0.000 0.024 0.484
#> SRR1477363     1  0.4560    0.63850 0.700 0.296 0.004 0.000
#> SRR1391961     3  0.5349    0.48934 0.008 0.212 0.732 0.048
#> SRR1373879     3  0.6373    0.51262 0.092 0.012 0.664 0.232
#> SRR1318732     2  0.5352    0.12428 0.388 0.596 0.016 0.000
#> SRR1091404     3  0.9442    0.23425 0.260 0.248 0.380 0.112
#> SRR1402109     3  0.8105    0.51094 0.052 0.300 0.516 0.132
#> SRR1407336     3  0.6145    0.56514 0.020 0.128 0.716 0.136
#> SRR1097417     3  0.5998    0.46424 0.000 0.212 0.680 0.108
#> SRR1396227     1  0.4770    0.64013 0.700 0.288 0.012 0.000
#> SRR1400775     2  0.5436    0.46301 0.008 0.756 0.128 0.108
#> SRR1392861     1  0.7210    0.27465 0.540 0.000 0.276 0.184
#> SRR1472929     1  0.6806   -0.21915 0.516 0.012 0.404 0.068
#> SRR1436740     1  0.6295    0.27263 0.580 0.000 0.072 0.348
#> SRR1477057     2  0.0376    0.61676 0.004 0.992 0.000 0.004
#> SRR1311980     1  0.3402    0.28251 0.832 0.164 0.004 0.000
#> SRR1069400     3  0.4454    0.46402 0.000 0.308 0.692 0.000
#> SRR1351016     1  0.4535    0.63853 0.704 0.292 0.004 0.000
#> SRR1096291     3  0.6805    0.39415 0.076 0.008 0.512 0.404
#> SRR1418145     2  0.7555    0.38970 0.288 0.552 0.136 0.024
#> SRR1488111     2  0.2654    0.63270 0.108 0.888 0.000 0.004
#> SRR1370495     2  0.5427    0.29327 0.416 0.568 0.016 0.000
#> SRR1352639     1  0.5815    0.61484 0.652 0.288 0.060 0.000
#> SRR1348911     1  0.4685    0.39490 0.784 0.060 0.156 0.000
#> SRR1467386     3  0.7179    0.48169 0.208 0.004 0.576 0.212
#> SRR1415956     1  0.0336    0.51297 0.992 0.000 0.008 0.000
#> SRR1500495     1  0.0188    0.51381 0.996 0.000 0.004 0.000
#> SRR1405099     1  0.1302    0.49846 0.956 0.000 0.044 0.000
#> SRR1345585     2  0.5251    0.47777 0.252 0.712 0.028 0.008
#> SRR1093196     1  0.6522    0.54428 0.600 0.328 0.052 0.020
#> SRR1466006     2  0.6949    0.37923 0.064 0.680 0.116 0.140
#> SRR1351557     2  0.0376    0.61676 0.004 0.992 0.000 0.004
#> SRR1382687     1  0.4770    0.64013 0.700 0.288 0.012 0.000
#> SRR1375549     2  0.3074    0.59854 0.152 0.848 0.000 0.000
#> SRR1101765     4  0.6897    0.37364 0.332 0.124 0.000 0.544
#> SRR1334461     3  0.5269    0.33862 0.364 0.016 0.620 0.000
#> SRR1094073     4  0.4175    0.69726 0.000 0.200 0.016 0.784
#> SRR1077549     3  0.6784    0.49870 0.156 0.000 0.600 0.244
#> SRR1440332     1  0.6920    0.55926 0.588 0.288 0.116 0.008
#> SRR1454177     4  0.7176   -0.10282 0.196 0.000 0.252 0.552
#> SRR1082447     3  0.8210    0.55195 0.164 0.120 0.580 0.136
#> SRR1420043     1  0.4382    0.63793 0.704 0.296 0.000 0.000
#> SRR1432500     1  0.4963    0.64058 0.696 0.284 0.020 0.000
#> SRR1378045     2  0.8080    0.48334 0.152 0.584 0.176 0.088
#> SRR1334200     2  0.6005    0.29467 0.356 0.600 0.036 0.008
#> SRR1069539     3  0.5236    0.33479 0.000 0.008 0.560 0.432
#> SRR1343031     3  0.7476    0.51296 0.020 0.300 0.548 0.132
#> SRR1319690     1  0.4697    0.63731 0.696 0.296 0.008 0.000
#> SRR1310604     2  0.6994    0.51449 0.124 0.648 0.032 0.196
#> SRR1327747     1  0.4980    0.62215 0.680 0.304 0.016 0.000
#> SRR1072456     2  0.9030    0.43397 0.184 0.484 0.132 0.200
#> SRR1367896     3  0.5623    0.36841 0.196 0.012 0.728 0.064
#> SRR1480107     1  0.9181    0.20646 0.412 0.296 0.192 0.100
#> SRR1377756     1  0.4673    0.63988 0.700 0.292 0.008 0.000
#> SRR1435272     1  0.7273   -0.03163 0.452 0.000 0.148 0.400
#> SRR1089230     4  0.7538   -0.00994 0.260 0.000 0.248 0.492
#> SRR1389522     3  0.3873    0.50279 0.000 0.228 0.772 0.000
#> SRR1080600     2  0.6426    0.38209 0.000 0.620 0.108 0.272
#> SRR1086935     4  0.7147    0.49454 0.128 0.308 0.008 0.556
#> SRR1344060     3  0.6363    0.22676 0.400 0.048 0.544 0.008
#> SRR1467922     4  0.5510    0.39043 0.000 0.480 0.016 0.504
#> SRR1090984     1  0.5517    0.46473 0.568 0.412 0.020 0.000
#> SRR1456991     1  0.7553    0.47000 0.536 0.296 0.152 0.016
#> SRR1085039     3  0.8019    0.55049 0.164 0.104 0.596 0.136
#> SRR1069303     1  0.4382    0.63793 0.704 0.296 0.000 0.000
#> SRR1091500     4  0.3837    0.68660 0.000 0.224 0.000 0.776
#> SRR1075198     2  0.3824    0.62073 0.048 0.868 0.028 0.056
#> SRR1086915     1  0.6996    0.34425 0.580 0.000 0.192 0.228
#> SRR1499503     4  0.7084    0.46592 0.000 0.284 0.164 0.552
#> SRR1094312     2  0.5771    0.39918 0.000 0.712 0.144 0.144
#> SRR1352437     1  0.6885    0.37403 0.596 0.000 0.196 0.208
#> SRR1436323     2  0.5273   -0.08538 0.456 0.536 0.008 0.000
#> SRR1073507     3  0.6860    0.49723 0.164 0.000 0.592 0.244
#> SRR1401972     1  0.4770    0.64013 0.700 0.288 0.012 0.000
#> SRR1415510     2  0.2846    0.61059 0.012 0.908 0.028 0.052
#> SRR1327279     3  0.7910    0.55204 0.156 0.092 0.604 0.148
#> SRR1086983     3  0.6922    0.49256 0.168 0.000 0.584 0.248
#> SRR1105174     3  0.6860    0.49723 0.164 0.000 0.592 0.244
#> SRR1468893     1  0.2011    0.56330 0.920 0.080 0.000 0.000
#> SRR1362555     2  0.5536    0.31286 0.384 0.592 0.024 0.000
#> SRR1074526     3  0.5070    0.19480 0.000 0.004 0.580 0.416
#> SRR1326225     4  0.4059    0.69593 0.000 0.200 0.012 0.788
#> SRR1401933     2  0.3710    0.57830 0.192 0.804 0.000 0.004
#> SRR1324062     1  0.4535    0.63975 0.704 0.292 0.004 0.000
#> SRR1102296     1  0.6125    0.58479 0.692 0.144 0.160 0.004
#> SRR1085087     1  0.6303    0.45229 0.660 0.004 0.228 0.108
#> SRR1079046     2  0.2466    0.63382 0.096 0.900 0.000 0.004
#> SRR1328339     1  0.7016    0.53356 0.560 0.308 0.128 0.004
#> SRR1079782     2  0.2922    0.63232 0.104 0.884 0.008 0.004
#> SRR1092257     4  0.7149    0.48978 0.108 0.336 0.012 0.544

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.0703   0.561785 0.000 0.976 0.000 0.000 0.024
#> SRR1429287     5  0.4362   0.639743 0.360 0.004 0.000 0.004 0.632
#> SRR1359238     1  0.1363   0.601370 0.956 0.004 0.032 0.004 0.004
#> SRR1309597     5  0.7251   0.188339 0.240 0.128 0.084 0.004 0.544
#> SRR1441398     1  0.4538   0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1084055     3  0.4657   0.531822 0.000 0.108 0.740 0.152 0.000
#> SRR1417566     1  0.0727   0.608491 0.980 0.004 0.012 0.004 0.000
#> SRR1351857     4  0.2377   0.610786 0.000 0.128 0.000 0.872 0.000
#> SRR1487485     1  0.7514  -0.148494 0.536 0.176 0.088 0.008 0.192
#> SRR1335875     1  0.0162   0.610859 0.996 0.000 0.004 0.000 0.000
#> SRR1073947     4  0.4510   0.297098 0.432 0.000 0.008 0.560 0.000
#> SRR1443483     3  0.3209   0.625634 0.008 0.000 0.812 0.180 0.000
#> SRR1346794     1  0.0000   0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1405245     1  0.4538   0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1409677     1  0.7603  -0.130175 0.368 0.228 0.040 0.360 0.004
#> SRR1095549     4  0.0162   0.692698 0.004 0.000 0.000 0.996 0.000
#> SRR1323788     4  0.4088   0.383921 0.368 0.000 0.000 0.632 0.000
#> SRR1314054     2  0.1818   0.559209 0.000 0.932 0.044 0.000 0.024
#> SRR1077944     1  0.0579   0.611054 0.984 0.000 0.008 0.008 0.000
#> SRR1480587     5  0.3257   0.207070 0.004 0.124 0.028 0.000 0.844
#> SRR1311205     1  0.4525   0.343839 0.624 0.000 0.016 0.000 0.360
#> SRR1076369     3  0.4260   0.523495 0.256 0.004 0.720 0.020 0.000
#> SRR1453549     1  0.0932   0.607045 0.972 0.000 0.020 0.004 0.004
#> SRR1345782     4  0.4101   0.379208 0.372 0.000 0.000 0.628 0.000
#> SRR1447850     5  0.4869   0.634140 0.340 0.004 0.008 0.016 0.632
#> SRR1391553     1  0.3333   0.339593 0.788 0.000 0.004 0.000 0.208
#> SRR1444156     2  0.1965   0.557952 0.000 0.924 0.052 0.000 0.024
#> SRR1471731     1  0.4644  -0.149551 0.604 0.000 0.012 0.004 0.380
#> SRR1120987     2  0.7093   0.294000 0.312 0.452 0.016 0.216 0.004
#> SRR1477363     1  0.0000   0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1391961     3  0.3684   0.630748 0.024 0.004 0.800 0.172 0.000
#> SRR1373879     4  0.0794   0.702099 0.028 0.000 0.000 0.972 0.000
#> SRR1318732     1  0.3732   0.382017 0.796 0.004 0.016 0.004 0.180
#> SRR1091404     1  0.5001   0.196982 0.620 0.004 0.036 0.340 0.000
#> SRR1402109     4  0.4211   0.381594 0.360 0.000 0.004 0.636 0.000
#> SRR1407336     4  0.0324   0.692412 0.004 0.000 0.004 0.992 0.000
#> SRR1097417     3  0.3002   0.601472 0.008 0.048 0.876 0.068 0.000
#> SRR1396227     1  0.0000   0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1400775     2  0.7860  -0.367172 0.344 0.348 0.040 0.012 0.256
#> SRR1392861     4  0.5320   0.211239 0.384 0.040 0.008 0.568 0.000
#> SRR1472929     3  0.6374   0.369644 0.132 0.004 0.500 0.004 0.360
#> SRR1436740     1  0.7239  -0.108416 0.388 0.236 0.024 0.352 0.000
#> SRR1477057     5  0.4362   0.639743 0.360 0.004 0.000 0.004 0.632
#> SRR1311980     1  0.4538   0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1069400     3  0.6194   0.340336 0.156 0.000 0.516 0.328 0.000
#> SRR1351016     1  0.0671   0.608926 0.980 0.000 0.016 0.000 0.004
#> SRR1096291     4  0.1410   0.666321 0.000 0.060 0.000 0.940 0.000
#> SRR1418145     1  0.7240  -0.102471 0.536 0.148 0.036 0.020 0.260
#> SRR1488111     5  0.4211   0.639243 0.360 0.000 0.000 0.004 0.636
#> SRR1370495     5  0.4944   0.256122 0.156 0.116 0.004 0.000 0.724
#> SRR1352639     1  0.2193   0.560320 0.900 0.000 0.008 0.092 0.000
#> SRR1348911     1  0.4843   0.363383 0.648 0.004 0.024 0.004 0.320
#> SRR1467386     4  0.3209   0.574222 0.180 0.000 0.008 0.812 0.000
#> SRR1415956     1  0.4538   0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1500495     1  0.4538   0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1405099     1  0.4538   0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1345585     1  0.6773   0.001219 0.612 0.140 0.072 0.004 0.172
#> SRR1093196     1  0.2601   0.575385 0.908 0.036 0.036 0.008 0.012
#> SRR1466006     3  0.6689   0.172861 0.004 0.200 0.416 0.000 0.380
#> SRR1351557     5  0.4464   0.638701 0.356 0.004 0.000 0.008 0.632
#> SRR1382687     1  0.0000   0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1375549     5  0.4438   0.606668 0.384 0.000 0.004 0.004 0.608
#> SRR1101765     2  0.6112   0.367338 0.300 0.572 0.012 0.116 0.000
#> SRR1334461     3  0.6427   0.439400 0.160 0.004 0.556 0.008 0.272
#> SRR1094073     2  0.1965   0.557952 0.000 0.924 0.052 0.000 0.024
#> SRR1077549     4  0.0404   0.697201 0.012 0.000 0.000 0.988 0.000
#> SRR1440332     1  0.3210   0.446155 0.788 0.000 0.000 0.212 0.000
#> SRR1454177     2  0.7065   0.201933 0.096 0.476 0.060 0.364 0.004
#> SRR1082447     4  0.0671   0.699902 0.016 0.000 0.004 0.980 0.000
#> SRR1420043     1  0.0510   0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1432500     1  0.0162   0.611421 0.996 0.000 0.004 0.000 0.000
#> SRR1378045     1  0.7972  -0.126106 0.492 0.188 0.012 0.192 0.116
#> SRR1334200     5  0.6922   0.214472 0.180 0.144 0.076 0.004 0.596
#> SRR1069539     4  0.5193   0.250787 0.000 0.364 0.052 0.584 0.000
#> SRR1343031     4  0.4060   0.383536 0.360 0.000 0.000 0.640 0.000
#> SRR1319690     1  0.0771   0.607175 0.976 0.000 0.020 0.000 0.004
#> SRR1310604     1  0.6788  -0.138733 0.496 0.360 0.084 0.000 0.060
#> SRR1327747     1  0.1116   0.603345 0.964 0.004 0.028 0.004 0.000
#> SRR1072456     3  0.7797   0.214521 0.172 0.268 0.452 0.000 0.108
#> SRR1367896     3  0.3209   0.622886 0.000 0.000 0.812 0.180 0.008
#> SRR1480107     1  0.4290   0.265559 0.680 0.000 0.016 0.304 0.000
#> SRR1377756     1  0.0510   0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1435272     2  0.7621   0.133456 0.320 0.328 0.032 0.316 0.004
#> SRR1089230     2  0.7377   0.363113 0.200 0.516 0.060 0.220 0.004
#> SRR1389522     3  0.3550   0.626220 0.020 0.000 0.796 0.184 0.000
#> SRR1080600     2  0.6391  -0.054755 0.020 0.472 0.408 0.000 0.100
#> SRR1086935     2  0.4644   0.484849 0.004 0.720 0.052 0.000 0.224
#> SRR1344060     3  0.4734   0.497732 0.268 0.004 0.692 0.004 0.032
#> SRR1467922     2  0.1671   0.545082 0.000 0.924 0.000 0.000 0.076
#> SRR1090984     1  0.1121   0.606826 0.968 0.004 0.016 0.004 0.008
#> SRR1456991     1  0.1372   0.602643 0.956 0.000 0.016 0.024 0.004
#> SRR1085039     4  0.1341   0.697464 0.056 0.000 0.000 0.944 0.000
#> SRR1069303     1  0.0510   0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1091500     2  0.0703   0.561785 0.000 0.976 0.000 0.000 0.024
#> SRR1075198     1  0.7700  -0.284672 0.480 0.180 0.072 0.008 0.260
#> SRR1086915     1  0.7326  -0.006253 0.424 0.176 0.036 0.360 0.004
#> SRR1499503     2  0.4313   0.469280 0.000 0.800 0.076 0.100 0.024
#> SRR1094312     2  0.7732  -0.332473 0.336 0.380 0.024 0.020 0.240
#> SRR1352437     1  0.6492  -0.000174 0.452 0.120 0.016 0.412 0.000
#> SRR1436323     1  0.3078   0.467928 0.848 0.000 0.016 0.004 0.132
#> SRR1073507     4  0.1410   0.694924 0.060 0.000 0.000 0.940 0.000
#> SRR1401972     1  0.0162   0.611421 0.996 0.000 0.004 0.000 0.000
#> SRR1415510     1  0.7848  -0.399493 0.408 0.236 0.064 0.004 0.288
#> SRR1327279     4  0.0404   0.697201 0.012 0.000 0.000 0.988 0.000
#> SRR1086983     4  0.1197   0.701261 0.048 0.000 0.000 0.952 0.000
#> SRR1105174     4  0.1197   0.701261 0.048 0.000 0.000 0.952 0.000
#> SRR1468893     1  0.3011   0.533234 0.844 0.000 0.016 0.000 0.140
#> SRR1362555     5  0.5104   0.282436 0.224 0.036 0.028 0.004 0.708
#> SRR1074526     2  0.6468  -0.005217 0.000 0.452 0.360 0.188 0.000
#> SRR1326225     2  0.0703   0.561785 0.000 0.976 0.000 0.000 0.024
#> SRR1401933     1  0.4900  -0.380632 0.512 0.000 0.024 0.000 0.464
#> SRR1324062     1  0.0510   0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1102296     1  0.2612   0.553332 0.868 0.000 0.008 0.124 0.000
#> SRR1085087     1  0.4718   0.118443 0.540 0.000 0.016 0.444 0.000
#> SRR1079046     5  0.4211   0.639243 0.360 0.000 0.000 0.004 0.636
#> SRR1328339     1  0.2813   0.501223 0.832 0.000 0.000 0.168 0.000
#> SRR1079782     5  0.4347   0.640024 0.356 0.000 0.004 0.004 0.636
#> SRR1092257     2  0.6453   0.409296 0.004 0.540 0.012 0.132 0.312

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.0363    0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1429287     6  0.2969    0.63186 0.224 0.000 0.000 0.000 0.000 0.776
#> SRR1359238     1  0.1346    0.61386 0.952 0.000 0.016 0.008 0.024 0.000
#> SRR1309597     5  0.5663    0.31837 0.168 0.000 0.012 0.000 0.576 0.244
#> SRR1441398     5  0.3867   -0.05135 0.488 0.000 0.000 0.000 0.512 0.000
#> SRR1084055     3  0.4895    0.53721 0.000 0.040 0.716 0.040 0.016 0.188
#> SRR1417566     1  0.2527    0.54962 0.868 0.000 0.000 0.000 0.108 0.024
#> SRR1351857     4  0.3393    0.57400 0.000 0.192 0.004 0.784 0.000 0.020
#> SRR1487485     1  0.7097   -0.39011 0.408 0.008 0.060 0.000 0.232 0.292
#> SRR1335875     1  0.0632    0.61311 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1073947     4  0.3899    0.41860 0.404 0.000 0.000 0.592 0.004 0.000
#> SRR1443483     3  0.2744    0.69696 0.000 0.000 0.840 0.144 0.016 0.000
#> SRR1346794     1  0.0508    0.61794 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1405245     1  0.3860    0.00283 0.528 0.000 0.000 0.000 0.472 0.000
#> SRR1409677     1  0.8194   -0.13399 0.312 0.096 0.016 0.236 0.308 0.032
#> SRR1095549     4  0.0000    0.73052 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1323788     4  0.3351    0.53340 0.288 0.000 0.000 0.712 0.000 0.000
#> SRR1314054     2  0.0458    0.70069 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1077944     1  0.0508    0.61734 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1480587     5  0.4325    0.09398 0.008 0.000 0.008 0.000 0.504 0.480
#> SRR1311205     1  0.3804    0.07500 0.576 0.000 0.000 0.000 0.424 0.000
#> SRR1076369     3  0.5072    0.60960 0.152 0.000 0.700 0.044 0.104 0.000
#> SRR1453549     1  0.0508    0.61753 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1345782     4  0.3198    0.55553 0.260 0.000 0.000 0.740 0.000 0.000
#> SRR1447850     6  0.2664    0.60446 0.184 0.000 0.000 0.000 0.000 0.816
#> SRR1391553     1  0.3970    0.22760 0.692 0.000 0.000 0.000 0.028 0.280
#> SRR1444156     2  0.0458    0.70069 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1471731     6  0.5400    0.45959 0.376 0.000 0.000 0.000 0.120 0.504
#> SRR1120987     2  0.8100    0.36850 0.204 0.372 0.028 0.072 0.292 0.032
#> SRR1477363     1  0.0405    0.61782 0.988 0.000 0.000 0.008 0.004 0.000
#> SRR1391961     3  0.3300    0.70064 0.012 0.000 0.816 0.148 0.024 0.000
#> SRR1373879     4  0.0622    0.73687 0.012 0.000 0.000 0.980 0.008 0.000
#> SRR1318732     1  0.4653    0.30159 0.684 0.000 0.000 0.000 0.120 0.196
#> SRR1091404     1  0.4708   -0.02264 0.528 0.000 0.020 0.436 0.016 0.000
#> SRR1402109     4  0.3748    0.56456 0.224 0.000 0.016 0.748 0.012 0.000
#> SRR1407336     4  0.0363    0.72224 0.000 0.000 0.000 0.988 0.012 0.000
#> SRR1097417     3  0.1124    0.66645 0.000 0.000 0.956 0.036 0.008 0.000
#> SRR1396227     1  0.0363    0.61766 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1400775     6  0.6981    0.45957 0.220 0.260 0.028 0.000 0.032 0.460
#> SRR1392861     4  0.7063    0.03905 0.300 0.016 0.000 0.356 0.296 0.032
#> SRR1472929     3  0.4801    0.38812 0.036 0.000 0.520 0.000 0.436 0.008
#> SRR1436740     1  0.8194   -0.13399 0.312 0.096 0.016 0.236 0.308 0.032
#> SRR1477057     6  0.3126    0.63710 0.248 0.000 0.000 0.000 0.000 0.752
#> SRR1311980     5  0.4757   -0.00216 0.468 0.000 0.000 0.000 0.484 0.048
#> SRR1069400     3  0.5989    0.31945 0.172 0.000 0.484 0.332 0.012 0.000
#> SRR1351016     1  0.0865    0.60924 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1096291     4  0.1732    0.70476 0.000 0.072 0.004 0.920 0.000 0.004
#> SRR1418145     1  0.5852   -0.19276 0.540 0.044 0.020 0.016 0.016 0.364
#> SRR1488111     6  0.3175    0.63515 0.256 0.000 0.000 0.000 0.000 0.744
#> SRR1370495     5  0.5575    0.22996 0.140 0.000 0.000 0.000 0.460 0.400
#> SRR1352639     1  0.1219    0.60687 0.948 0.000 0.000 0.048 0.004 0.000
#> SRR1348911     1  0.5840    0.03838 0.520 0.000 0.156 0.000 0.312 0.012
#> SRR1467386     4  0.3107    0.68904 0.136 0.000 0.000 0.832 0.016 0.016
#> SRR1415956     1  0.3843    0.04676 0.548 0.000 0.000 0.000 0.452 0.000
#> SRR1500495     1  0.3843    0.04676 0.548 0.000 0.000 0.000 0.452 0.000
#> SRR1405099     1  0.3843    0.04676 0.548 0.000 0.000 0.000 0.452 0.000
#> SRR1345585     1  0.6721   -0.26967 0.464 0.000 0.036 0.008 0.236 0.256
#> SRR1093196     1  0.3738    0.53167 0.824 0.012 0.024 0.000 0.088 0.052
#> SRR1466006     6  0.6185    0.15108 0.000 0.028 0.348 0.000 0.152 0.472
#> SRR1351557     6  0.2793    0.61821 0.200 0.000 0.000 0.000 0.000 0.800
#> SRR1382687     1  0.0363    0.61766 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1375549     6  0.3446    0.60367 0.308 0.000 0.000 0.000 0.000 0.692
#> SRR1101765     2  0.7451    0.49023 0.172 0.504 0.028 0.048 0.216 0.032
#> SRR1334461     3  0.4270    0.62600 0.072 0.000 0.736 0.000 0.184 0.008
#> SRR1094073     2  0.0458    0.70069 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1077549     4  0.0146    0.73306 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1440332     1  0.2402    0.55113 0.856 0.000 0.000 0.140 0.004 0.000
#> SRR1454177     2  0.8092    0.28458 0.084 0.336 0.016 0.228 0.304 0.032
#> SRR1082447     4  0.0632    0.73911 0.024 0.000 0.000 0.976 0.000 0.000
#> SRR1420043     1  0.0000    0.61694 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1432500     1  0.0820    0.61473 0.972 0.000 0.000 0.012 0.016 0.000
#> SRR1378045     1  0.8348   -0.37924 0.352 0.044 0.016 0.196 0.116 0.276
#> SRR1334200     5  0.5166    0.19464 0.060 0.000 0.012 0.000 0.528 0.400
#> SRR1069539     4  0.3672    0.44285 0.000 0.304 0.008 0.688 0.000 0.000
#> SRR1343031     4  0.3136    0.58273 0.228 0.000 0.004 0.768 0.000 0.000
#> SRR1319690     1  0.1007    0.60813 0.956 0.000 0.000 0.000 0.044 0.000
#> SRR1310604     6  0.8751    0.20288 0.200 0.232 0.108 0.000 0.184 0.276
#> SRR1327747     1  0.2651    0.54586 0.860 0.000 0.000 0.000 0.112 0.028
#> SRR1072456     3  0.7563    0.10782 0.144 0.040 0.484 0.000 0.160 0.172
#> SRR1367896     3  0.2886    0.69739 0.000 0.000 0.836 0.144 0.016 0.004
#> SRR1480107     1  0.3168    0.48842 0.804 0.000 0.000 0.172 0.024 0.000
#> SRR1377756     1  0.0000    0.61694 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1435272     5  0.8055   -0.36098 0.284 0.288 0.012 0.080 0.304 0.032
#> SRR1089230     2  0.7834    0.47866 0.112 0.432 0.016 0.128 0.280 0.032
#> SRR1389522     3  0.3018    0.69184 0.004 0.000 0.816 0.168 0.012 0.000
#> SRR1080600     6  0.7909   -0.06629 0.024 0.304 0.192 0.000 0.148 0.332
#> SRR1086935     2  0.3407    0.66236 0.000 0.800 0.016 0.000 0.168 0.016
#> SRR1344060     3  0.5193    0.51783 0.172 0.000 0.644 0.000 0.176 0.008
#> SRR1467922     2  0.0363    0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1090984     1  0.4183    0.44753 0.752 0.000 0.004 0.000 0.128 0.116
#> SRR1456991     1  0.2300    0.54682 0.856 0.000 0.000 0.000 0.144 0.000
#> SRR1085039     4  0.2112    0.72654 0.088 0.000 0.000 0.896 0.016 0.000
#> SRR1069303     1  0.0632    0.61311 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1091500     2  0.0363    0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1075198     6  0.6836    0.45150 0.288 0.008 0.040 0.000 0.228 0.436
#> SRR1086915     1  0.8191   -0.12667 0.312 0.084 0.020 0.248 0.304 0.032
#> SRR1499503     2  0.6644    0.31639 0.000 0.544 0.140 0.004 0.104 0.208
#> SRR1094312     6  0.6325    0.29921 0.132 0.384 0.028 0.000 0.008 0.448
#> SRR1352437     1  0.7799   -0.06855 0.332 0.052 0.012 0.264 0.308 0.032
#> SRR1436323     1  0.4594    0.26564 0.676 0.000 0.000 0.000 0.092 0.232
#> SRR1073507     4  0.2554    0.72358 0.088 0.000 0.000 0.880 0.012 0.020
#> SRR1401972     1  0.0508    0.61754 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1415510     6  0.6804    0.45030 0.260 0.008 0.040 0.000 0.240 0.452
#> SRR1327279     4  0.0000    0.73052 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1086983     4  0.2790    0.71944 0.088 0.000 0.000 0.868 0.012 0.032
#> SRR1105174     4  0.2019    0.72760 0.088 0.000 0.000 0.900 0.012 0.000
#> SRR1468893     1  0.3464    0.30674 0.688 0.000 0.000 0.000 0.312 0.000
#> SRR1362555     5  0.5082    0.19881 0.080 0.000 0.000 0.000 0.512 0.408
#> SRR1074526     2  0.6029    0.03469 0.000 0.412 0.332 0.256 0.000 0.000
#> SRR1326225     2  0.0363    0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1401933     6  0.4516    0.48144 0.420 0.000 0.000 0.008 0.020 0.552
#> SRR1324062     1  0.0458    0.61475 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1102296     1  0.3626    0.44483 0.776 0.000 0.008 0.188 0.028 0.000
#> SRR1085087     1  0.7103   -0.04079 0.364 0.012 0.012 0.304 0.288 0.020
#> SRR1079046     6  0.3151    0.63633 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1328339     1  0.2950    0.53189 0.828 0.000 0.000 0.148 0.024 0.000
#> SRR1079782     6  0.3126    0.63710 0.248 0.000 0.000 0.000 0.000 0.752
#> SRR1092257     2  0.5351    0.63426 0.000 0.712 0.028 0.052 0.132 0.076

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 17611 rows and 118 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.488           0.818       0.898         0.4020 0.618   0.618
#> 3 3 0.374           0.708       0.816         0.4873 0.733   0.590
#> 4 4 0.445           0.486       0.725         0.2041 0.728   0.438
#> 5 5 0.482           0.435       0.645         0.0853 0.722   0.285
#> 6 6 0.574           0.542       0.720         0.0491 0.833   0.407

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1396765     2  0.7674      0.771 0.224 0.776
#> SRR1429287     1  0.0000      0.884 1.000 0.000
#> SRR1359238     1  0.0672      0.883 0.992 0.008
#> SRR1309597     1  0.0000      0.884 1.000 0.000
#> SRR1441398     1  0.1184      0.882 0.984 0.016
#> SRR1084055     1  0.8327      0.493 0.736 0.264
#> SRR1417566     1  0.0000      0.884 1.000 0.000
#> SRR1351857     2  0.2043      0.841 0.032 0.968
#> SRR1487485     1  0.0000      0.884 1.000 0.000
#> SRR1335875     1  0.7299      0.812 0.796 0.204
#> SRR1073947     1  0.7745      0.793 0.772 0.228
#> SRR1443483     1  0.0000      0.884 1.000 0.000
#> SRR1346794     1  0.6623      0.829 0.828 0.172
#> SRR1405245     1  0.2948      0.874 0.948 0.052
#> SRR1409677     2  0.0000      0.846 0.000 1.000
#> SRR1095549     2  0.9358      0.389 0.352 0.648
#> SRR1323788     1  0.7602      0.800 0.780 0.220
#> SRR1314054     2  0.7674      0.771 0.224 0.776
#> SRR1077944     1  0.7602      0.800 0.780 0.220
#> SRR1480587     1  0.0000      0.884 1.000 0.000
#> SRR1311205     1  0.3584      0.870 0.932 0.068
#> SRR1076369     1  0.0000      0.884 1.000 0.000
#> SRR1453549     1  0.7453      0.806 0.788 0.212
#> SRR1345782     1  0.7376      0.809 0.792 0.208
#> SRR1447850     1  0.0000      0.884 1.000 0.000
#> SRR1391553     1  0.3584      0.870 0.932 0.068
#> SRR1444156     2  0.7602      0.773 0.220 0.780
#> SRR1471731     1  0.0000      0.884 1.000 0.000
#> SRR1120987     2  0.0000      0.846 0.000 1.000
#> SRR1477363     1  0.7602      0.800 0.780 0.220
#> SRR1391961     1  0.0000      0.884 1.000 0.000
#> SRR1373879     1  0.5519      0.848 0.872 0.128
#> SRR1318732     1  0.0000      0.884 1.000 0.000
#> SRR1091404     1  0.8016      0.635 0.756 0.244
#> SRR1402109     1  0.0376      0.884 0.996 0.004
#> SRR1407336     1  0.0376      0.884 0.996 0.004
#> SRR1097417     1  0.0000      0.884 1.000 0.000
#> SRR1396227     1  0.7602      0.800 0.780 0.220
#> SRR1400775     1  0.0000      0.884 1.000 0.000
#> SRR1392861     2  0.2423      0.829 0.040 0.960
#> SRR1472929     1  0.0000      0.884 1.000 0.000
#> SRR1436740     2  0.0376      0.845 0.004 0.996
#> SRR1477057     1  0.0000      0.884 1.000 0.000
#> SRR1311980     1  0.0000      0.884 1.000 0.000
#> SRR1069400     1  0.0000      0.884 1.000 0.000
#> SRR1351016     1  0.7299      0.812 0.796 0.204
#> SRR1096291     2  0.6887      0.790 0.184 0.816
#> SRR1418145     2  0.8499      0.603 0.276 0.724
#> SRR1488111     1  0.0938      0.883 0.988 0.012
#> SRR1370495     1  0.0000      0.884 1.000 0.000
#> SRR1352639     1  0.7139      0.816 0.804 0.196
#> SRR1348911     1  0.0000      0.884 1.000 0.000
#> SRR1467386     2  0.4022      0.802 0.080 0.920
#> SRR1415956     1  0.7299      0.812 0.796 0.204
#> SRR1500495     1  0.7219      0.814 0.800 0.200
#> SRR1405099     1  0.7299      0.812 0.796 0.204
#> SRR1345585     1  0.0000      0.884 1.000 0.000
#> SRR1093196     1  0.0000      0.884 1.000 0.000
#> SRR1466006     1  0.0000      0.884 1.000 0.000
#> SRR1351557     1  0.0000      0.884 1.000 0.000
#> SRR1382687     1  0.7745      0.793 0.772 0.228
#> SRR1375549     1  0.1414      0.882 0.980 0.020
#> SRR1101765     2  0.7219      0.782 0.200 0.800
#> SRR1334461     1  0.0000      0.884 1.000 0.000
#> SRR1094073     2  0.7602      0.773 0.220 0.780
#> SRR1077549     2  0.8955      0.448 0.312 0.688
#> SRR1440332     1  0.7453      0.806 0.788 0.212
#> SRR1454177     2  0.0000      0.846 0.000 1.000
#> SRR1082447     1  0.9170      0.657 0.668 0.332
#> SRR1420043     1  0.7602      0.800 0.780 0.220
#> SRR1432500     1  0.8144      0.769 0.748 0.252
#> SRR1378045     1  0.0000      0.884 1.000 0.000
#> SRR1334200     1  0.0000      0.884 1.000 0.000
#> SRR1069539     2  0.7528      0.775 0.216 0.784
#> SRR1343031     1  0.4815      0.857 0.896 0.104
#> SRR1319690     1  0.0938      0.883 0.988 0.012
#> SRR1310604     1  0.8661      0.427 0.712 0.288
#> SRR1327747     1  0.0000      0.884 1.000 0.000
#> SRR1072456     1  0.0000      0.884 1.000 0.000
#> SRR1367896     1  0.0000      0.884 1.000 0.000
#> SRR1480107     1  0.7376      0.809 0.792 0.208
#> SRR1377756     1  0.7745      0.793 0.772 0.228
#> SRR1435272     2  0.0000      0.846 0.000 1.000
#> SRR1089230     2  0.0000      0.846 0.000 1.000
#> SRR1389522     1  0.0000      0.884 1.000 0.000
#> SRR1080600     1  0.3733      0.824 0.928 0.072
#> SRR1086935     2  0.0000      0.846 0.000 1.000
#> SRR1344060     1  0.0000      0.884 1.000 0.000
#> SRR1467922     1  0.0376      0.882 0.996 0.004
#> SRR1090984     1  0.0000      0.884 1.000 0.000
#> SRR1456991     1  0.6973      0.821 0.812 0.188
#> SRR1085039     2  0.9427      0.315 0.360 0.640
#> SRR1069303     1  0.7602      0.800 0.780 0.220
#> SRR1091500     2  0.7674      0.771 0.224 0.776
#> SRR1075198     1  0.0000      0.884 1.000 0.000
#> SRR1086915     2  0.0000      0.846 0.000 1.000
#> SRR1499503     1  0.0376      0.882 0.996 0.004
#> SRR1094312     1  0.0000      0.884 1.000 0.000
#> SRR1352437     2  0.0376      0.845 0.004 0.996
#> SRR1436323     1  0.0376      0.883 0.996 0.004
#> SRR1073507     2  0.0376      0.845 0.004 0.996
#> SRR1401972     1  0.7745      0.793 0.772 0.228
#> SRR1415510     1  0.0000      0.884 1.000 0.000
#> SRR1327279     1  0.7602      0.800 0.780 0.220
#> SRR1086983     2  0.0000      0.846 0.000 1.000
#> SRR1105174     2  0.0000      0.846 0.000 1.000
#> SRR1468893     1  0.7602      0.800 0.780 0.220
#> SRR1362555     1  0.0000      0.884 1.000 0.000
#> SRR1074526     2  0.7815      0.765 0.232 0.768
#> SRR1326225     2  0.9775      0.533 0.412 0.588
#> SRR1401933     1  0.7453      0.806 0.788 0.212
#> SRR1324062     1  0.7602      0.800 0.780 0.220
#> SRR1102296     1  0.7602      0.800 0.780 0.220
#> SRR1085087     1  0.8955      0.689 0.688 0.312
#> SRR1079046     1  0.6247      0.836 0.844 0.156
#> SRR1328339     1  0.0376      0.884 0.996 0.004
#> SRR1079782     1  0.2948      0.874 0.948 0.052
#> SRR1092257     2  0.0000      0.846 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1396765     2  0.1860      0.757 0.000 0.948 0.052
#> SRR1429287     1  0.6617      0.419 0.556 0.436 0.008
#> SRR1359238     1  0.6208      0.780 0.768 0.164 0.068
#> SRR1309597     1  0.4654      0.752 0.792 0.208 0.000
#> SRR1441398     1  0.0848      0.781 0.984 0.008 0.008
#> SRR1084055     2  0.2448      0.792 0.076 0.924 0.000
#> SRR1417566     1  0.1753      0.772 0.952 0.048 0.000
#> SRR1351857     3  0.7504      0.599 0.200 0.112 0.688
#> SRR1487485     1  0.5529      0.665 0.704 0.296 0.000
#> SRR1335875     1  0.5167      0.783 0.792 0.016 0.192
#> SRR1073947     1  0.4931      0.745 0.768 0.000 0.232
#> SRR1443483     1  0.1964      0.760 0.944 0.056 0.000
#> SRR1346794     1  0.4235      0.786 0.824 0.000 0.176
#> SRR1405245     1  0.2879      0.802 0.924 0.024 0.052
#> SRR1409677     3  0.1031      0.820 0.024 0.000 0.976
#> SRR1095549     2  0.9431      0.352 0.292 0.496 0.212
#> SRR1323788     1  0.1753      0.783 0.952 0.000 0.048
#> SRR1314054     2  0.2703      0.761 0.016 0.928 0.056
#> SRR1077944     1  0.4452      0.770 0.808 0.000 0.192
#> SRR1480587     1  0.5760      0.650 0.672 0.328 0.000
#> SRR1311205     1  0.0475      0.780 0.992 0.004 0.004
#> SRR1076369     2  0.6307      0.348 0.488 0.512 0.000
#> SRR1453549     1  0.4796      0.768 0.780 0.000 0.220
#> SRR1345782     1  0.1163      0.781 0.972 0.000 0.028
#> SRR1447850     1  0.6129      0.696 0.700 0.284 0.016
#> SRR1391553     1  0.5737      0.800 0.804 0.104 0.092
#> SRR1444156     2  0.2711      0.734 0.000 0.912 0.088
#> SRR1471731     1  0.4605      0.769 0.796 0.204 0.000
#> SRR1120987     3  0.1529      0.801 0.000 0.040 0.960
#> SRR1477363     1  0.4887      0.761 0.772 0.000 0.228
#> SRR1391961     2  0.4974      0.726 0.236 0.764 0.000
#> SRR1373879     1  0.3038      0.735 0.896 0.000 0.104
#> SRR1318732     1  0.3038      0.779 0.896 0.104 0.000
#> SRR1091404     3  0.9100      0.417 0.248 0.204 0.548
#> SRR1402109     1  0.0892      0.775 0.980 0.020 0.000
#> SRR1407336     1  0.6295     -0.315 0.528 0.472 0.000
#> SRR1097417     2  0.4399      0.741 0.188 0.812 0.000
#> SRR1396227     1  0.4796      0.764 0.780 0.000 0.220
#> SRR1400775     2  0.6102      0.418 0.320 0.672 0.008
#> SRR1392861     3  0.4750      0.745 0.216 0.000 0.784
#> SRR1472929     1  0.4750      0.662 0.784 0.216 0.000
#> SRR1436740     3  0.1860      0.819 0.052 0.000 0.948
#> SRR1477057     1  0.5461      0.758 0.768 0.216 0.016
#> SRR1311980     1  0.4682      0.775 0.804 0.192 0.004
#> SRR1069400     2  0.6267      0.482 0.452 0.548 0.000
#> SRR1351016     1  0.4555      0.777 0.800 0.000 0.200
#> SRR1096291     3  0.8763      0.448 0.196 0.216 0.588
#> SRR1418145     3  0.6031      0.752 0.116 0.096 0.788
#> SRR1488111     1  0.5618      0.784 0.796 0.156 0.048
#> SRR1370495     1  0.5420      0.743 0.752 0.240 0.008
#> SRR1352639     1  0.2066      0.792 0.940 0.000 0.060
#> SRR1348911     1  0.2261      0.757 0.932 0.068 0.000
#> SRR1467386     3  0.3192      0.798 0.112 0.000 0.888
#> SRR1415956     1  0.4399      0.781 0.812 0.000 0.188
#> SRR1500495     1  0.4346      0.784 0.816 0.000 0.184
#> SRR1405099     1  0.4654      0.772 0.792 0.000 0.208
#> SRR1345585     1  0.4504      0.684 0.804 0.196 0.000
#> SRR1093196     1  0.4291      0.763 0.820 0.180 0.000
#> SRR1466006     2  0.1964      0.790 0.056 0.944 0.000
#> SRR1351557     2  0.5502      0.593 0.248 0.744 0.008
#> SRR1382687     1  0.5291      0.721 0.732 0.000 0.268
#> SRR1375549     1  0.5659      0.785 0.796 0.152 0.052
#> SRR1101765     3  0.5327      0.565 0.000 0.272 0.728
#> SRR1334461     1  0.3192      0.739 0.888 0.112 0.000
#> SRR1094073     2  0.5343      0.727 0.132 0.816 0.052
#> SRR1077549     3  0.5431      0.731 0.284 0.000 0.716
#> SRR1440332     1  0.2261      0.787 0.932 0.000 0.068
#> SRR1454177     3  0.0424      0.817 0.008 0.000 0.992
#> SRR1082447     3  0.6180      0.590 0.416 0.000 0.584
#> SRR1420043     1  0.4796      0.762 0.780 0.000 0.220
#> SRR1432500     3  0.5363      0.591 0.276 0.000 0.724
#> SRR1378045     1  0.4346      0.632 0.816 0.184 0.000
#> SRR1334200     1  0.6260      0.369 0.552 0.448 0.000
#> SRR1069539     2  0.8008      0.571 0.192 0.656 0.152
#> SRR1343031     1  0.0424      0.778 0.992 0.008 0.000
#> SRR1319690     1  0.5618      0.786 0.796 0.156 0.048
#> SRR1310604     2  0.1860      0.797 0.052 0.948 0.000
#> SRR1327747     1  0.3941      0.776 0.844 0.156 0.000
#> SRR1072456     2  0.3551      0.781 0.132 0.868 0.000
#> SRR1367896     1  0.5882      0.199 0.652 0.348 0.000
#> SRR1480107     1  0.4452      0.774 0.808 0.000 0.192
#> SRR1377756     1  0.5397      0.700 0.720 0.000 0.280
#> SRR1435272     3  0.0424      0.817 0.008 0.000 0.992
#> SRR1089230     3  0.3134      0.797 0.052 0.032 0.916
#> SRR1389522     1  0.3619      0.687 0.864 0.136 0.000
#> SRR1080600     2  0.1860      0.797 0.052 0.948 0.000
#> SRR1086935     3  0.1529      0.801 0.000 0.040 0.960
#> SRR1344060     1  0.6280     -0.066 0.540 0.460 0.000
#> SRR1467922     2  0.1163      0.790 0.028 0.972 0.000
#> SRR1090984     1  0.4504      0.767 0.804 0.196 0.000
#> SRR1456991     1  0.4121      0.789 0.832 0.000 0.168
#> SRR1085039     3  0.4974      0.767 0.236 0.000 0.764
#> SRR1069303     1  0.4931      0.758 0.768 0.000 0.232
#> SRR1091500     2  0.2537      0.740 0.000 0.920 0.080
#> SRR1075198     2  0.4452      0.718 0.192 0.808 0.000
#> SRR1086915     3  0.0237      0.816 0.004 0.000 0.996
#> SRR1499503     2  0.2165      0.797 0.064 0.936 0.000
#> SRR1094312     2  0.5070      0.638 0.224 0.772 0.004
#> SRR1352437     3  0.2711      0.810 0.088 0.000 0.912
#> SRR1436323     1  0.5072      0.770 0.792 0.196 0.012
#> SRR1073507     3  0.2448      0.820 0.076 0.000 0.924
#> SRR1401972     1  0.5968      0.559 0.636 0.000 0.364
#> SRR1415510     2  0.1643      0.792 0.044 0.956 0.000
#> SRR1327279     1  0.2066      0.776 0.940 0.000 0.060
#> SRR1086983     3  0.1289      0.818 0.032 0.000 0.968
#> SRR1105174     3  0.2711      0.821 0.088 0.000 0.912
#> SRR1468893     1  0.4887      0.765 0.772 0.000 0.228
#> SRR1362555     1  0.4931      0.753 0.768 0.232 0.000
#> SRR1074526     2  0.5689      0.693 0.184 0.780 0.036
#> SRR1326225     2  0.0424      0.785 0.008 0.992 0.000
#> SRR1401933     1  0.5743      0.785 0.784 0.044 0.172
#> SRR1324062     1  0.4796      0.764 0.780 0.000 0.220
#> SRR1102296     1  0.4796      0.764 0.780 0.000 0.220
#> SRR1085087     3  0.4605      0.717 0.204 0.000 0.796
#> SRR1079046     1  0.6144      0.790 0.780 0.132 0.088
#> SRR1328339     1  0.1163      0.772 0.972 0.028 0.000
#> SRR1079782     1  0.5875      0.783 0.784 0.160 0.056
#> SRR1092257     3  0.3116      0.756 0.000 0.108 0.892

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1396765     2  0.2831     0.6122 0.000 0.876 0.004 0.120
#> SRR1429287     3  0.4857     0.4333 0.000 0.284 0.700 0.016
#> SRR1359238     3  0.6494     0.5151 0.040 0.044 0.648 0.268
#> SRR1309597     3  0.2053     0.6909 0.072 0.004 0.924 0.000
#> SRR1441398     1  0.4855     0.3626 0.600 0.000 0.400 0.000
#> SRR1084055     2  0.4250     0.5521 0.276 0.724 0.000 0.000
#> SRR1417566     3  0.4877     0.0850 0.408 0.000 0.592 0.000
#> SRR1351857     2  0.7870     0.1942 0.300 0.392 0.000 0.308
#> SRR1487485     3  0.2032     0.6961 0.036 0.028 0.936 0.000
#> SRR1335875     3  0.4231     0.6548 0.096 0.000 0.824 0.080
#> SRR1073947     1  0.7088     0.4393 0.568 0.000 0.228 0.204
#> SRR1443483     1  0.5314     0.5774 0.748 0.108 0.144 0.000
#> SRR1346794     3  0.3636     0.6171 0.172 0.000 0.820 0.008
#> SRR1405245     3  0.5060     0.1525 0.412 0.000 0.584 0.004
#> SRR1409677     4  0.0336     0.7709 0.008 0.000 0.000 0.992
#> SRR1095549     1  0.3402     0.4433 0.832 0.164 0.000 0.004
#> SRR1323788     1  0.5074     0.5353 0.724 0.000 0.236 0.040
#> SRR1314054     2  0.2704     0.6091 0.000 0.876 0.000 0.124
#> SRR1077944     1  0.6084     0.4963 0.656 0.000 0.252 0.092
#> SRR1480587     3  0.1576     0.6911 0.004 0.048 0.948 0.000
#> SRR1311205     1  0.4679     0.4364 0.648 0.000 0.352 0.000
#> SRR1076369     1  0.5471     0.2445 0.684 0.268 0.048 0.000
#> SRR1453549     3  0.5594     0.5811 0.112 0.000 0.724 0.164
#> SRR1345782     1  0.2676     0.6130 0.896 0.000 0.092 0.012
#> SRR1447850     3  0.4910     0.4405 0.000 0.276 0.704 0.020
#> SRR1391553     3  0.1209     0.6976 0.032 0.000 0.964 0.004
#> SRR1444156     2  0.3787     0.6078 0.000 0.840 0.036 0.124
#> SRR1471731     3  0.1109     0.6987 0.028 0.004 0.968 0.000
#> SRR1120987     4  0.1059     0.7529 0.000 0.016 0.012 0.972
#> SRR1477363     3  0.6407     0.4848 0.204 0.000 0.648 0.148
#> SRR1391961     1  0.4996    -0.1721 0.516 0.484 0.000 0.000
#> SRR1373879     1  0.1697     0.5653 0.952 0.016 0.004 0.028
#> SRR1318732     3  0.2216     0.6733 0.092 0.000 0.908 0.000
#> SRR1091404     1  0.6995    -0.0335 0.496 0.384 0.000 0.120
#> SRR1402109     1  0.4257     0.6099 0.812 0.048 0.140 0.000
#> SRR1407336     1  0.4050     0.4415 0.808 0.168 0.024 0.000
#> SRR1097417     2  0.5016     0.3996 0.396 0.600 0.004 0.000
#> SRR1396227     3  0.6273     0.4298 0.264 0.000 0.636 0.100
#> SRR1400775     3  0.4560     0.4099 0.000 0.296 0.700 0.004
#> SRR1392861     4  0.4675     0.6635 0.244 0.000 0.020 0.736
#> SRR1472929     1  0.6725     0.4203 0.548 0.104 0.348 0.000
#> SRR1436740     4  0.2222     0.7800 0.060 0.000 0.016 0.924
#> SRR1477057     3  0.3706     0.6568 0.000 0.112 0.848 0.040
#> SRR1311980     3  0.2334     0.6777 0.088 0.000 0.908 0.004
#> SRR1069400     1  0.4590     0.4046 0.772 0.192 0.036 0.000
#> SRR1351016     3  0.6407     0.3034 0.332 0.000 0.584 0.084
#> SRR1096291     1  0.8046    -0.2208 0.376 0.324 0.004 0.296
#> SRR1418145     4  0.7279     0.2577 0.004 0.144 0.336 0.516
#> SRR1488111     3  0.3144     0.6809 0.000 0.072 0.884 0.044
#> SRR1370495     3  0.1822     0.6993 0.008 0.044 0.944 0.004
#> SRR1352639     1  0.4999     0.4521 0.660 0.000 0.328 0.012
#> SRR1348911     1  0.6055     0.4221 0.576 0.052 0.372 0.000
#> SRR1467386     4  0.3208     0.7612 0.148 0.000 0.004 0.848
#> SRR1415956     1  0.5399     0.1447 0.520 0.000 0.468 0.012
#> SRR1500495     1  0.5488     0.1898 0.532 0.000 0.452 0.016
#> SRR1405099     1  0.6555     0.1099 0.480 0.000 0.444 0.076
#> SRR1345585     3  0.4079     0.5869 0.180 0.020 0.800 0.000
#> SRR1093196     3  0.1635     0.6952 0.044 0.008 0.948 0.000
#> SRR1466006     2  0.5212     0.2888 0.008 0.572 0.420 0.000
#> SRR1351557     3  0.4456     0.4286 0.000 0.280 0.716 0.004
#> SRR1382687     3  0.6883     0.4316 0.156 0.000 0.584 0.260
#> SRR1375549     3  0.3383     0.6892 0.000 0.052 0.872 0.076
#> SRR1101765     4  0.4744     0.4547 0.000 0.284 0.012 0.704
#> SRR1334461     1  0.5250     0.3208 0.660 0.316 0.024 0.000
#> SRR1094073     2  0.4723     0.6237 0.036 0.816 0.040 0.108
#> SRR1077549     1  0.4175     0.4592 0.776 0.012 0.000 0.212
#> SRR1440332     1  0.5219     0.5292 0.712 0.000 0.244 0.044
#> SRR1454177     4  0.0592     0.7720 0.016 0.000 0.000 0.984
#> SRR1082447     1  0.4100     0.5067 0.816 0.036 0.000 0.148
#> SRR1420043     3  0.6277    -0.0642 0.468 0.000 0.476 0.056
#> SRR1432500     4  0.4500     0.7005 0.192 0.000 0.032 0.776
#> SRR1378045     3  0.6419    -0.1301 0.420 0.068 0.512 0.000
#> SRR1334200     3  0.2988     0.6564 0.012 0.112 0.876 0.000
#> SRR1069539     2  0.5848     0.4196 0.376 0.584 0.000 0.040
#> SRR1343031     1  0.2101     0.5400 0.928 0.060 0.012 0.000
#> SRR1319690     3  0.6005     0.6142 0.144 0.036 0.736 0.084
#> SRR1310604     2  0.4914     0.6105 0.208 0.748 0.044 0.000
#> SRR1327747     3  0.1637     0.6927 0.060 0.000 0.940 0.000
#> SRR1072456     2  0.7344     0.4901 0.268 0.524 0.208 0.000
#> SRR1367896     1  0.4225     0.4102 0.792 0.184 0.024 0.000
#> SRR1480107     1  0.6084     0.5037 0.660 0.000 0.244 0.096
#> SRR1377756     3  0.7706     0.1806 0.268 0.000 0.452 0.280
#> SRR1435272     4  0.0895     0.7709 0.020 0.004 0.000 0.976
#> SRR1089230     4  0.3048     0.6950 0.016 0.108 0.000 0.876
#> SRR1389522     1  0.3142     0.4761 0.860 0.132 0.008 0.000
#> SRR1080600     2  0.3877     0.6582 0.048 0.840 0.112 0.000
#> SRR1086935     4  0.1637     0.7390 0.000 0.060 0.000 0.940
#> SRR1344060     1  0.6412     0.1091 0.592 0.320 0.088 0.000
#> SRR1467922     2  0.4866     0.3265 0.000 0.596 0.404 0.000
#> SRR1090984     3  0.2399     0.6997 0.048 0.032 0.920 0.000
#> SRR1456991     1  0.6004     0.4817 0.648 0.000 0.276 0.076
#> SRR1085039     1  0.5678    -0.0333 0.532 0.012 0.008 0.448
#> SRR1069303     1  0.7661     0.1074 0.412 0.000 0.376 0.212
#> SRR1091500     2  0.4633     0.5683 0.000 0.780 0.048 0.172
#> SRR1075198     3  0.5161     0.3906 0.024 0.300 0.676 0.000
#> SRR1086915     4  0.0000     0.7669 0.000 0.000 0.000 1.000
#> SRR1499503     2  0.4467     0.6318 0.172 0.788 0.040 0.000
#> SRR1094312     3  0.4632     0.3920 0.000 0.308 0.688 0.004
#> SRR1352437     4  0.2976     0.7746 0.120 0.000 0.008 0.872
#> SRR1436323     3  0.1209     0.6976 0.032 0.000 0.964 0.004
#> SRR1073507     4  0.3831     0.7248 0.204 0.000 0.004 0.792
#> SRR1401972     4  0.7140     0.3437 0.204 0.000 0.236 0.560
#> SRR1415510     2  0.4998     0.1105 0.000 0.512 0.488 0.000
#> SRR1327279     1  0.1510     0.5847 0.956 0.000 0.028 0.016
#> SRR1086983     4  0.2868     0.7725 0.136 0.000 0.000 0.864
#> SRR1105174     4  0.4917     0.5502 0.328 0.004 0.004 0.664
#> SRR1468893     3  0.6785     0.4388 0.208 0.000 0.608 0.184
#> SRR1362555     3  0.0672     0.6993 0.008 0.008 0.984 0.000
#> SRR1074526     2  0.4382     0.5306 0.296 0.704 0.000 0.000
#> SRR1326225     2  0.2281     0.6516 0.000 0.904 0.096 0.000
#> SRR1401933     3  0.1675     0.7011 0.004 0.004 0.948 0.044
#> SRR1324062     3  0.6037     0.3867 0.304 0.000 0.628 0.068
#> SRR1102296     3  0.6953     0.0132 0.412 0.000 0.476 0.112
#> SRR1085087     4  0.4418     0.7108 0.184 0.000 0.032 0.784
#> SRR1079046     3  0.5940     0.5417 0.000 0.188 0.692 0.120
#> SRR1328339     1  0.5010     0.5285 0.700 0.024 0.276 0.000
#> SRR1079782     3  0.4175     0.5278 0.000 0.212 0.776 0.012
#> SRR1092257     4  0.5359     0.4167 0.000 0.288 0.036 0.676

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1396765     2  0.5716    0.23957 0.000 0.616 0.000 0.144 0.240
#> SRR1429287     2  0.5496    0.28273 0.340 0.592 0.008 0.000 0.060
#> SRR1359238     1  0.7603    0.39561 0.488 0.184 0.024 0.268 0.036
#> SRR1309597     3  0.6082    0.34438 0.148 0.312 0.540 0.000 0.000
#> SRR1441398     3  0.4297    0.57751 0.124 0.064 0.796 0.004 0.012
#> SRR1084055     5  0.2206    0.69341 0.004 0.068 0.016 0.000 0.912
#> SRR1417566     3  0.4497    0.52024 0.060 0.208 0.732 0.000 0.000
#> SRR1351857     5  0.6170    0.33146 0.000 0.016 0.104 0.324 0.556
#> SRR1487485     3  0.5717    0.38138 0.104 0.324 0.572 0.000 0.000
#> SRR1335875     1  0.3844    0.61179 0.792 0.176 0.024 0.008 0.000
#> SRR1073947     1  0.5885    0.39215 0.676 0.000 0.132 0.152 0.040
#> SRR1443483     3  0.1818    0.57861 0.000 0.024 0.932 0.000 0.044
#> SRR1346794     3  0.6324    0.35312 0.164 0.304 0.528 0.004 0.000
#> SRR1405245     3  0.6240    0.14691 0.360 0.152 0.488 0.000 0.000
#> SRR1409677     4  0.2773    0.68827 0.164 0.000 0.000 0.836 0.000
#> SRR1095549     3  0.5748    0.28501 0.020 0.000 0.648 0.096 0.236
#> SRR1323788     3  0.4280    0.54276 0.120 0.000 0.800 0.048 0.032
#> SRR1314054     2  0.5974    0.24372 0.000 0.604 0.004 0.168 0.224
#> SRR1077944     3  0.7315   -0.15276 0.232 0.012 0.408 0.336 0.012
#> SRR1480587     2  0.6740    0.04739 0.304 0.412 0.284 0.000 0.000
#> SRR1311205     3  0.3216    0.59067 0.096 0.044 0.856 0.004 0.000
#> SRR1076369     3  0.5595    0.27377 0.000 0.084 0.560 0.000 0.356
#> SRR1453549     1  0.7666    0.42527 0.492 0.232 0.148 0.128 0.000
#> SRR1345782     3  0.4630    0.50255 0.072 0.000 0.776 0.028 0.124
#> SRR1447850     2  0.4763    0.32227 0.336 0.632 0.000 0.000 0.032
#> SRR1391553     3  0.6262    0.31654 0.164 0.332 0.504 0.000 0.000
#> SRR1444156     2  0.5999    0.26123 0.008 0.612 0.000 0.160 0.220
#> SRR1471731     3  0.6252    0.31323 0.164 0.328 0.508 0.000 0.000
#> SRR1120987     4  0.1579    0.67354 0.024 0.032 0.000 0.944 0.000
#> SRR1477363     1  0.4490    0.66389 0.792 0.108 0.040 0.060 0.000
#> SRR1391961     5  0.2172    0.71376 0.076 0.000 0.016 0.000 0.908
#> SRR1373879     3  0.7639   -0.10263 0.108 0.000 0.396 0.120 0.376
#> SRR1318732     3  0.5355    0.43571 0.084 0.292 0.624 0.000 0.000
#> SRR1091404     5  0.4018    0.68760 0.136 0.012 0.012 0.028 0.812
#> SRR1402109     3  0.2540    0.55189 0.024 0.000 0.888 0.000 0.088
#> SRR1407336     3  0.2388    0.56337 0.000 0.028 0.900 0.000 0.072
#> SRR1097417     5  0.2792    0.70615 0.004 0.040 0.072 0.000 0.884
#> SRR1396227     1  0.3980    0.66575 0.816 0.080 0.092 0.012 0.000
#> SRR1400775     2  0.4555    0.52547 0.200 0.732 0.000 0.000 0.068
#> SRR1392861     4  0.3933    0.61950 0.020 0.008 0.196 0.776 0.000
#> SRR1472929     3  0.6272    0.51335 0.052 0.160 0.644 0.000 0.144
#> SRR1436740     4  0.3129    0.68511 0.156 0.008 0.004 0.832 0.000
#> SRR1477057     1  0.5176    0.42940 0.636 0.312 0.012 0.000 0.040
#> SRR1311980     3  0.6783    0.11414 0.328 0.288 0.384 0.000 0.000
#> SRR1069400     3  0.3375    0.55015 0.000 0.056 0.840 0.000 0.104
#> SRR1351016     1  0.3142    0.67674 0.868 0.056 0.068 0.008 0.000
#> SRR1096291     4  0.6002    0.47040 0.000 0.152 0.144 0.664 0.040
#> SRR1418145     4  0.6220   -0.06492 0.140 0.428 0.000 0.432 0.000
#> SRR1488111     1  0.5832    0.35850 0.568 0.356 0.056 0.016 0.004
#> SRR1370495     1  0.5370    0.43702 0.640 0.296 0.040 0.000 0.024
#> SRR1352639     3  0.3477    0.56300 0.152 0.012 0.824 0.008 0.004
#> SRR1348911     3  0.3790    0.60180 0.084 0.068 0.832 0.000 0.016
#> SRR1467386     4  0.4702    0.62345 0.256 0.000 0.036 0.700 0.008
#> SRR1415956     1  0.4842    0.55975 0.716 0.024 0.232 0.004 0.024
#> SRR1500495     1  0.5064    0.54703 0.684 0.048 0.256 0.008 0.004
#> SRR1405099     1  0.2822    0.64891 0.888 0.000 0.064 0.012 0.036
#> SRR1345585     3  0.4640    0.48787 0.048 0.256 0.696 0.000 0.000
#> SRR1093196     3  0.5187    0.45796 0.084 0.260 0.656 0.000 0.000
#> SRR1466006     2  0.6162    0.49566 0.096 0.672 0.112 0.000 0.120
#> SRR1351557     2  0.3484    0.51509 0.144 0.824 0.028 0.004 0.000
#> SRR1382687     1  0.6550    0.57889 0.600 0.124 0.052 0.224 0.000
#> SRR1375549     1  0.5325    0.57433 0.712 0.208 0.028 0.032 0.020
#> SRR1101765     5  0.5799    0.55860 0.048 0.184 0.000 0.088 0.680
#> SRR1334461     5  0.3670    0.65929 0.180 0.004 0.020 0.000 0.796
#> SRR1094073     2  0.6589    0.27764 0.008 0.604 0.028 0.184 0.176
#> SRR1077549     3  0.7152   -0.22080 0.076 0.000 0.416 0.412 0.096
#> SRR1440332     3  0.4394    0.52258 0.084 0.000 0.788 0.112 0.016
#> SRR1454177     4  0.1410    0.69731 0.060 0.000 0.000 0.940 0.000
#> SRR1082447     5  0.8004    0.19259 0.212 0.000 0.192 0.148 0.448
#> SRR1420043     3  0.7882    0.13496 0.244 0.112 0.448 0.196 0.000
#> SRR1432500     4  0.5006    0.37564 0.408 0.000 0.020 0.564 0.008
#> SRR1378045     3  0.3488    0.55151 0.024 0.168 0.808 0.000 0.000
#> SRR1334200     2  0.7446    0.24514 0.256 0.496 0.168 0.000 0.080
#> SRR1069539     4  0.7823   -0.03807 0.000 0.184 0.096 0.428 0.292
#> SRR1343031     3  0.3811    0.50027 0.036 0.000 0.808 0.008 0.148
#> SRR1319690     1  0.4439    0.62343 0.804 0.096 0.020 0.012 0.068
#> SRR1310604     5  0.4927    0.50696 0.004 0.276 0.040 0.004 0.676
#> SRR1327747     3  0.6380    0.31098 0.144 0.336 0.512 0.008 0.000
#> SRR1072456     3  0.7384    0.05385 0.036 0.220 0.376 0.000 0.368
#> SRR1367896     3  0.4040    0.41532 0.000 0.016 0.724 0.000 0.260
#> SRR1480107     1  0.5380    0.46696 0.688 0.000 0.224 0.052 0.036
#> SRR1377756     1  0.6819    0.41084 0.548 0.052 0.124 0.276 0.000
#> SRR1435272     4  0.0955    0.68807 0.028 0.004 0.000 0.968 0.000
#> SRR1089230     4  0.2012    0.63483 0.000 0.060 0.000 0.920 0.020
#> SRR1389522     3  0.3544    0.46739 0.008 0.004 0.788 0.000 0.200
#> SRR1080600     2  0.4521    0.39112 0.000 0.748 0.088 0.000 0.164
#> SRR1086935     4  0.2471    0.58733 0.000 0.136 0.000 0.864 0.000
#> SRR1344060     5  0.3497    0.70246 0.024 0.040 0.084 0.000 0.852
#> SRR1467922     2  0.3892    0.48612 0.024 0.844 0.036 0.020 0.076
#> SRR1090984     1  0.6641    0.31677 0.540 0.304 0.120 0.000 0.036
#> SRR1456991     1  0.5052    0.52942 0.732 0.004 0.188 0.040 0.036
#> SRR1085039     4  0.8446    0.15145 0.284 0.000 0.156 0.296 0.264
#> SRR1069303     1  0.3232    0.59594 0.864 0.000 0.016 0.084 0.036
#> SRR1091500     5  0.6019    0.20452 0.096 0.368 0.000 0.008 0.528
#> SRR1075198     2  0.4608    0.34407 0.036 0.700 0.260 0.004 0.000
#> SRR1086915     4  0.1774    0.69323 0.052 0.016 0.000 0.932 0.000
#> SRR1499503     2  0.5619    0.00977 0.000 0.516 0.064 0.004 0.416
#> SRR1094312     2  0.5754    0.46882 0.260 0.604 0.000 0.000 0.136
#> SRR1352437     4  0.4473    0.53586 0.324 0.000 0.020 0.656 0.000
#> SRR1436323     3  0.6752    0.10901 0.264 0.352 0.384 0.000 0.000
#> SRR1073507     4  0.5809    0.58805 0.240 0.000 0.092 0.644 0.024
#> SRR1401972     1  0.4230    0.48499 0.764 0.000 0.016 0.196 0.024
#> SRR1415510     2  0.3056    0.53296 0.040 0.884 0.052 0.004 0.020
#> SRR1327279     3  0.6165    0.36987 0.100 0.000 0.648 0.056 0.196
#> SRR1086983     4  0.3033    0.69616 0.084 0.000 0.052 0.864 0.000
#> SRR1105174     4  0.6384    0.55800 0.216 0.000 0.156 0.600 0.028
#> SRR1468893     1  0.2418    0.67245 0.912 0.024 0.020 0.044 0.000
#> SRR1362555     2  0.6783    0.00208 0.316 0.388 0.296 0.000 0.000
#> SRR1074526     5  0.1282    0.70538 0.000 0.044 0.004 0.000 0.952
#> SRR1326225     2  0.4487    0.22947 0.004 0.660 0.008 0.004 0.324
#> SRR1401933     1  0.5780    0.43332 0.616 0.284 0.084 0.016 0.000
#> SRR1324062     1  0.3297    0.67617 0.860 0.048 0.080 0.012 0.000
#> SRR1102296     1  0.4257    0.63235 0.800 0.012 0.140 0.020 0.028
#> SRR1085087     1  0.5517   -0.11303 0.536 0.000 0.032 0.412 0.020
#> SRR1079046     1  0.4615    0.59837 0.784 0.100 0.000 0.036 0.080
#> SRR1328339     3  0.3009    0.58831 0.080 0.016 0.876 0.000 0.028
#> SRR1079782     2  0.5503    0.27923 0.328 0.596 0.072 0.004 0.000
#> SRR1092257     2  0.5942    0.15857 0.056 0.524 0.000 0.396 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1396765     2  0.4196     0.6729 0.000 0.784 0.000 0.076 0.092 0.048
#> SRR1429287     6  0.2781     0.6624 0.044 0.036 0.000 0.000 0.040 0.880
#> SRR1359238     6  0.3284     0.5902 0.004 0.004 0.000 0.172 0.016 0.804
#> SRR1309597     6  0.3410     0.6167 0.000 0.008 0.216 0.000 0.008 0.768
#> SRR1441398     3  0.4407     0.5284 0.264 0.000 0.680 0.004 0.000 0.052
#> SRR1084055     5  0.2713     0.6387 0.004 0.040 0.036 0.000 0.888 0.032
#> SRR1417566     3  0.4194     0.5419 0.032 0.048 0.764 0.000 0.000 0.156
#> SRR1351857     5  0.6017     0.4862 0.012 0.048 0.116 0.212 0.612 0.000
#> SRR1487485     6  0.5213     0.2757 0.044 0.024 0.420 0.000 0.000 0.512
#> SRR1335875     1  0.2886     0.7204 0.876 0.060 0.028 0.004 0.000 0.032
#> SRR1073947     1  0.3664     0.7388 0.824 0.000 0.052 0.072 0.052 0.000
#> SRR1443483     3  0.1176     0.6264 0.000 0.024 0.956 0.000 0.000 0.020
#> SRR1346794     6  0.5023     0.4397 0.036 0.016 0.344 0.008 0.000 0.596
#> SRR1405245     3  0.6323     0.1901 0.296 0.004 0.444 0.004 0.004 0.248
#> SRR1409677     4  0.1644     0.7717 0.076 0.000 0.000 0.920 0.000 0.004
#> SRR1095549     3  0.2870     0.6007 0.032 0.004 0.860 0.004 0.100 0.000
#> SRR1323788     3  0.4418     0.6067 0.168 0.000 0.752 0.032 0.008 0.040
#> SRR1314054     2  0.2968     0.6941 0.000 0.852 0.004 0.092 0.052 0.000
#> SRR1077944     4  0.6181     0.6255 0.088 0.004 0.152 0.628 0.008 0.120
#> SRR1480587     6  0.4752     0.6556 0.100 0.116 0.048 0.000 0.000 0.736
#> SRR1311205     3  0.3570     0.5845 0.228 0.004 0.752 0.000 0.000 0.016
#> SRR1076369     5  0.6104     0.1920 0.000 0.016 0.408 0.000 0.412 0.164
#> SRR1453549     6  0.3349     0.6401 0.016 0.004 0.016 0.132 0.004 0.828
#> SRR1345782     3  0.3649     0.6303 0.140 0.000 0.808 0.012 0.012 0.028
#> SRR1447850     6  0.6024     0.1002 0.248 0.348 0.000 0.000 0.000 0.404
#> SRR1391553     6  0.5906     0.3847 0.076 0.044 0.344 0.004 0.000 0.532
#> SRR1444156     2  0.2474     0.7032 0.000 0.880 0.000 0.080 0.040 0.000
#> SRR1471731     6  0.6243     0.5050 0.104 0.084 0.256 0.000 0.000 0.556
#> SRR1120987     4  0.0665     0.7628 0.004 0.008 0.000 0.980 0.000 0.008
#> SRR1477363     1  0.6070     0.3935 0.516 0.008 0.016 0.104 0.008 0.348
#> SRR1391961     5  0.1036     0.6303 0.024 0.008 0.004 0.000 0.964 0.000
#> SRR1373879     3  0.6305     0.3867 0.236 0.000 0.532 0.020 0.200 0.012
#> SRR1318732     3  0.5730     0.0490 0.048 0.064 0.528 0.000 0.000 0.360
#> SRR1091404     5  0.3116     0.6198 0.012 0.004 0.000 0.016 0.836 0.132
#> SRR1402109     3  0.1901     0.6538 0.076 0.000 0.912 0.000 0.008 0.004
#> SRR1407336     3  0.2078     0.6077 0.000 0.012 0.916 0.000 0.032 0.040
#> SRR1097417     5  0.2475     0.6481 0.000 0.012 0.060 0.000 0.892 0.036
#> SRR1396227     1  0.2375     0.7465 0.896 0.036 0.060 0.008 0.000 0.000
#> SRR1400775     2  0.3311     0.6508 0.204 0.780 0.004 0.000 0.000 0.012
#> SRR1392861     4  0.3421     0.7110 0.004 0.004 0.160 0.804 0.000 0.028
#> SRR1472929     3  0.6019     0.1020 0.004 0.016 0.496 0.000 0.140 0.344
#> SRR1436740     4  0.2355     0.7626 0.112 0.004 0.000 0.876 0.000 0.008
#> SRR1477057     6  0.5381     0.4041 0.328 0.052 0.000 0.000 0.040 0.580
#> SRR1311980     6  0.6324     0.3919 0.164 0.044 0.280 0.000 0.000 0.512
#> SRR1069400     3  0.4599     0.4701 0.004 0.012 0.732 0.000 0.140 0.112
#> SRR1351016     1  0.5215     0.7025 0.708 0.004 0.072 0.040 0.012 0.164
#> SRR1096291     4  0.5011     0.5679 0.000 0.140 0.168 0.680 0.008 0.004
#> SRR1418145     4  0.5913     0.5555 0.140 0.124 0.000 0.632 0.000 0.104
#> SRR1488111     6  0.2401     0.6750 0.060 0.016 0.000 0.020 0.004 0.900
#> SRR1370495     6  0.5050     0.5941 0.216 0.072 0.000 0.000 0.036 0.676
#> SRR1352639     3  0.4905     0.2550 0.420 0.052 0.524 0.000 0.000 0.004
#> SRR1348911     3  0.4307     0.6020 0.200 0.008 0.740 0.000 0.020 0.032
#> SRR1467386     4  0.3575     0.7346 0.136 0.004 0.024 0.816 0.012 0.008
#> SRR1415956     1  0.3655     0.6218 0.756 0.004 0.220 0.000 0.004 0.016
#> SRR1500495     1  0.4622     0.5730 0.692 0.000 0.244 0.012 0.008 0.044
#> SRR1405099     1  0.2152     0.7683 0.920 0.000 0.028 0.016 0.024 0.012
#> SRR1345585     3  0.4650    -0.1699 0.000 0.040 0.488 0.000 0.000 0.472
#> SRR1093196     3  0.6497    -0.2283 0.088 0.092 0.424 0.000 0.000 0.396
#> SRR1466006     6  0.5331     0.6269 0.028 0.096 0.112 0.000 0.048 0.716
#> SRR1351557     2  0.4787     0.4126 0.108 0.656 0.000 0.000 0.000 0.236
#> SRR1382687     4  0.6214     0.4481 0.148 0.008 0.020 0.536 0.004 0.284
#> SRR1375549     6  0.3220     0.6442 0.084 0.004 0.000 0.028 0.032 0.852
#> SRR1101765     5  0.5662     0.4348 0.004 0.016 0.000 0.236 0.600 0.144
#> SRR1334461     5  0.2190     0.6242 0.044 0.000 0.008 0.000 0.908 0.040
#> SRR1094073     2  0.2637     0.6988 0.000 0.876 0.012 0.088 0.024 0.000
#> SRR1077549     3  0.5684     0.0330 0.140 0.000 0.476 0.380 0.000 0.004
#> SRR1440332     3  0.4972     0.5946 0.108 0.000 0.720 0.128 0.004 0.040
#> SRR1454177     4  0.0937     0.7725 0.040 0.000 0.000 0.960 0.000 0.000
#> SRR1082447     1  0.6090     0.1130 0.404 0.000 0.224 0.004 0.368 0.000
#> SRR1420043     6  0.5700     0.3308 0.016 0.004 0.088 0.308 0.008 0.576
#> SRR1432500     4  0.4753     0.7263 0.104 0.004 0.032 0.756 0.012 0.092
#> SRR1378045     3  0.3657     0.5884 0.044 0.060 0.824 0.000 0.000 0.072
#> SRR1334200     6  0.1401     0.6731 0.004 0.000 0.020 0.000 0.028 0.948
#> SRR1069539     2  0.7378    -0.1124 0.000 0.324 0.112 0.256 0.308 0.000
#> SRR1343031     3  0.2586     0.6455 0.100 0.000 0.868 0.000 0.032 0.000
#> SRR1319690     6  0.2718     0.6527 0.076 0.004 0.000 0.020 0.020 0.880
#> SRR1310604     5  0.5404     0.4995 0.000 0.048 0.060 0.000 0.616 0.276
#> SRR1327747     6  0.2933     0.6619 0.000 0.004 0.124 0.016 0.008 0.848
#> SRR1072456     5  0.7540     0.0752 0.024 0.064 0.300 0.000 0.316 0.296
#> SRR1367896     3  0.3498     0.5525 0.020 0.020 0.812 0.000 0.144 0.004
#> SRR1480107     1  0.4438     0.6803 0.768 0.000 0.140 0.040 0.032 0.020
#> SRR1377756     4  0.6539     0.5281 0.152 0.004 0.060 0.560 0.008 0.216
#> SRR1435272     4  0.0146     0.7610 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1089230     4  0.2006     0.7041 0.000 0.104 0.000 0.892 0.004 0.000
#> SRR1389522     3  0.2854     0.6122 0.036 0.008 0.868 0.000 0.084 0.004
#> SRR1080600     6  0.7707    -0.0055 0.008 0.244 0.152 0.000 0.244 0.352
#> SRR1086935     4  0.2219     0.6818 0.000 0.136 0.000 0.864 0.000 0.000
#> SRR1344060     5  0.2265     0.6426 0.004 0.008 0.084 0.000 0.896 0.008
#> SRR1467922     2  0.2189     0.6978 0.032 0.912 0.008 0.000 0.004 0.044
#> SRR1090984     6  0.1251     0.6776 0.024 0.000 0.008 0.000 0.012 0.956
#> SRR1456991     1  0.4898     0.6906 0.744 0.000 0.132 0.040 0.028 0.056
#> SRR1085039     5  0.6786     0.0692 0.304 0.000 0.088 0.148 0.460 0.000
#> SRR1069303     1  0.1409     0.7612 0.948 0.012 0.000 0.032 0.008 0.000
#> SRR1091500     2  0.5241     0.5347 0.104 0.600 0.000 0.000 0.288 0.008
#> SRR1075198     6  0.6242     0.5027 0.044 0.144 0.260 0.004 0.000 0.548
#> SRR1086915     4  0.0909     0.7690 0.012 0.000 0.000 0.968 0.000 0.020
#> SRR1499503     5  0.7088     0.2592 0.004 0.292 0.112 0.000 0.444 0.148
#> SRR1094312     2  0.4289     0.6219 0.228 0.720 0.004 0.000 0.012 0.036
#> SRR1352437     1  0.3330     0.5589 0.716 0.000 0.000 0.284 0.000 0.000
#> SRR1436323     6  0.2244     0.6818 0.004 0.004 0.100 0.004 0.000 0.888
#> SRR1073507     4  0.4813     0.4649 0.324 0.000 0.048 0.616 0.012 0.000
#> SRR1401972     1  0.1973     0.7603 0.916 0.012 0.000 0.064 0.004 0.004
#> SRR1415510     6  0.2382     0.6731 0.000 0.020 0.072 0.004 0.008 0.896
#> SRR1327279     3  0.4072     0.4693 0.292 0.000 0.684 0.004 0.016 0.004
#> SRR1086983     4  0.1720     0.7745 0.040 0.000 0.032 0.928 0.000 0.000
#> SRR1105174     4  0.5440     0.3989 0.316 0.000 0.096 0.572 0.016 0.000
#> SRR1468893     1  0.3743     0.7219 0.804 0.004 0.008 0.072 0.000 0.112
#> SRR1362555     6  0.4700     0.6636 0.112 0.084 0.060 0.000 0.000 0.744
#> SRR1074526     5  0.1480     0.6326 0.000 0.040 0.020 0.000 0.940 0.000
#> SRR1326225     2  0.4341     0.6213 0.004 0.736 0.000 0.000 0.124 0.136
#> SRR1401933     6  0.5032     0.5373 0.288 0.084 0.000 0.008 0.000 0.620
#> SRR1324062     1  0.2258     0.7375 0.896 0.044 0.060 0.000 0.000 0.000
#> SRR1102296     1  0.2591     0.7345 0.880 0.052 0.064 0.004 0.000 0.000
#> SRR1085087     1  0.2846     0.7206 0.840 0.000 0.016 0.140 0.004 0.000
#> SRR1079046     1  0.5788     0.4564 0.620 0.020 0.000 0.032 0.084 0.244
#> SRR1328339     3  0.3430     0.5921 0.208 0.000 0.772 0.000 0.004 0.016
#> SRR1079782     6  0.5879     0.4795 0.272 0.176 0.008 0.004 0.000 0.540
#> SRR1092257     2  0.3493     0.6900 0.136 0.800 0.000 0.064 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0