cola Report for recount2:GTEx_spleen
Date: 2019-12-25 22:49:43 CET, cola version: 1.3.2
Document is loading... 
Summary
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 17611 118
Density distribution
The density distribution for each sample is visualized as in one column in the
following heatmap. The clustering is based on the distance which is the
Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)

Suggest the best k
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette
explains the definition of the metrics used for determining the best
number of partitions.
suggest_best_k(res_list)
**: 1-PAC > 0.95, *: 1-PAC > 0.9
CDF of consensus matrices
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)

Consensus heatmap
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

Membership heatmap
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

Signature heatmap
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

Statistics table
The statistics used for measuring the stability of consensus partitioning.
(How are they
defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 0.896 0.919 0.967 0.411 0.594 0.594
#> CV:NMF 2 0.739 0.885 0.949 0.451 0.554 0.554
#> MAD:NMF 2 0.895 0.928 0.971 0.411 0.594 0.594
#> ATC:NMF 2 0.488 0.818 0.898 0.402 0.618 0.618
#> SD:skmeans 2 0.820 0.898 0.958 0.496 0.503 0.503
#> CV:skmeans 2 0.653 0.827 0.921 0.494 0.501 0.501
#> MAD:skmeans 2 0.787 0.898 0.957 0.496 0.503 0.503
#> ATC:skmeans 2 1.000 0.986 0.994 0.502 0.499 0.499
#> SD:mclust 2 1.000 0.975 0.988 0.408 0.586 0.586
#> CV:mclust 2 0.512 0.861 0.895 0.427 0.572 0.572
#> MAD:mclust 2 1.000 0.978 0.990 0.402 0.594 0.594
#> ATC:mclust 2 0.209 0.736 0.800 0.440 0.498 0.498
#> SD:kmeans 2 0.740 0.845 0.940 0.437 0.566 0.566
#> CV:kmeans 2 0.569 0.764 0.901 0.442 0.560 0.560
#> MAD:kmeans 2 0.658 0.823 0.929 0.440 0.579 0.579
#> ATC:kmeans 2 1.000 0.971 0.988 0.472 0.533 0.533
#> SD:pam 2 0.825 0.908 0.956 0.393 0.618 0.618
#> CV:pam 2 0.492 0.857 0.890 0.381 0.644 0.644
#> MAD:pam 2 0.852 0.897 0.956 0.391 0.618 0.618
#> ATC:pam 2 0.564 0.773 0.894 0.452 0.560 0.560
#> SD:hclust 2 0.206 0.488 0.756 0.310 0.609 0.609
#> CV:hclust 2 0.272 0.790 0.849 0.212 0.950 0.950
#> MAD:hclust 2 0.190 0.676 0.777 0.359 0.524 0.524
#> ATC:hclust 2 0.350 0.833 0.884 0.414 0.566 0.566
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 0.5549 0.774 0.870 0.540 0.700 0.526
#> CV:NMF 3 0.6686 0.816 0.909 0.341 0.797 0.653
#> MAD:NMF 3 0.4720 0.656 0.818 0.585 0.682 0.497
#> ATC:NMF 3 0.3742 0.708 0.816 0.487 0.733 0.590
#> SD:skmeans 3 0.6128 0.701 0.863 0.339 0.788 0.603
#> CV:skmeans 3 0.5175 0.504 0.730 0.342 0.689 0.455
#> MAD:skmeans 3 0.5859 0.659 0.845 0.340 0.770 0.574
#> ATC:skmeans 3 0.7428 0.899 0.915 0.300 0.794 0.606
#> SD:mclust 3 0.5598 0.505 0.752 0.529 0.794 0.651
#> CV:mclust 3 0.3588 0.669 0.807 0.414 0.787 0.632
#> MAD:mclust 3 0.5758 0.809 0.874 0.606 0.740 0.562
#> ATC:mclust 3 0.2511 0.341 0.657 0.358 0.692 0.496
#> SD:kmeans 3 0.4484 0.644 0.789 0.434 0.702 0.511
#> CV:kmeans 3 0.3760 0.476 0.728 0.401 0.829 0.705
#> MAD:kmeans 3 0.4599 0.651 0.810 0.444 0.714 0.529
#> ATC:kmeans 3 0.6052 0.802 0.884 0.336 0.746 0.560
#> SD:pam 3 0.4632 0.684 0.808 0.634 0.656 0.476
#> CV:pam 3 0.6390 0.824 0.913 0.593 0.720 0.582
#> MAD:pam 3 0.4410 0.647 0.832 0.639 0.684 0.511
#> ATC:pam 3 0.9003 0.904 0.962 0.427 0.728 0.544
#> SD:hclust 3 0.2186 0.607 0.774 0.709 0.638 0.490
#> CV:hclust 3 0.0803 0.517 0.709 1.458 0.544 0.520
#> MAD:hclust 3 0.2124 0.588 0.706 0.541 0.767 0.614
#> ATC:hclust 3 0.4245 0.711 0.828 0.486 0.780 0.616
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.549 0.635 0.791 0.1701 0.803 0.519
#> CV:NMF 4 0.488 0.448 0.705 0.1935 0.862 0.681
#> MAD:NMF 4 0.576 0.707 0.827 0.1415 0.825 0.549
#> ATC:NMF 4 0.445 0.486 0.725 0.2041 0.728 0.438
#> SD:skmeans 4 0.763 0.816 0.905 0.1303 0.828 0.556
#> CV:skmeans 4 0.515 0.596 0.762 0.1291 0.822 0.530
#> MAD:skmeans 4 0.742 0.811 0.903 0.1292 0.829 0.552
#> ATC:skmeans 4 0.579 0.572 0.784 0.1195 0.874 0.659
#> SD:mclust 4 0.496 0.596 0.739 0.1055 0.833 0.595
#> CV:mclust 4 0.434 0.651 0.745 0.1211 0.935 0.839
#> MAD:mclust 4 0.484 0.519 0.711 0.0824 0.864 0.642
#> ATC:mclust 4 0.288 0.454 0.638 0.1344 0.705 0.405
#> SD:kmeans 4 0.511 0.484 0.678 0.1472 0.748 0.416
#> CV:kmeans 4 0.428 0.466 0.681 0.1568 0.802 0.578
#> MAD:kmeans 4 0.549 0.595 0.753 0.1443 0.868 0.648
#> ATC:kmeans 4 0.585 0.597 0.789 0.1566 0.862 0.644
#> SD:pam 4 0.504 0.560 0.793 0.1467 0.771 0.457
#> CV:pam 4 0.628 0.716 0.833 0.1730 0.848 0.645
#> MAD:pam 4 0.595 0.673 0.817 0.1506 0.812 0.535
#> ATC:pam 4 0.801 0.851 0.922 0.1564 0.857 0.623
#> SD:hclust 4 0.287 0.622 0.717 0.2241 0.817 0.613
#> CV:hclust 4 0.125 0.433 0.662 0.1563 0.920 0.843
#> MAD:hclust 4 0.264 0.442 0.640 0.1822 0.873 0.725
#> ATC:hclust 4 0.490 0.477 0.702 0.1617 0.856 0.630
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.586 0.556 0.766 0.0616 0.843 0.485
#> CV:NMF 5 0.534 0.556 0.734 0.0862 0.762 0.382
#> MAD:NMF 5 0.600 0.529 0.767 0.0574 0.819 0.428
#> ATC:NMF 5 0.482 0.435 0.645 0.0853 0.722 0.285
#> SD:skmeans 5 0.704 0.635 0.803 0.0588 0.864 0.541
#> CV:skmeans 5 0.550 0.509 0.702 0.0659 0.934 0.748
#> MAD:skmeans 5 0.701 0.642 0.799 0.0602 0.887 0.595
#> ATC:skmeans 5 0.630 0.495 0.745 0.0634 0.845 0.533
#> SD:mclust 5 0.514 0.557 0.732 0.0891 0.867 0.582
#> CV:mclust 5 0.572 0.734 0.791 0.0663 0.927 0.809
#> MAD:mclust 5 0.523 0.420 0.649 0.0657 0.826 0.499
#> ATC:mclust 5 0.482 0.401 0.726 0.0779 0.795 0.462
#> SD:kmeans 5 0.645 0.648 0.801 0.0774 0.845 0.526
#> CV:kmeans 5 0.506 0.520 0.700 0.0755 0.867 0.607
#> MAD:kmeans 5 0.639 0.653 0.786 0.0647 0.932 0.766
#> ATC:kmeans 5 0.595 0.558 0.738 0.0736 0.887 0.623
#> SD:pam 5 0.572 0.495 0.736 0.0634 0.917 0.714
#> CV:pam 5 0.725 0.770 0.865 0.0981 0.879 0.614
#> MAD:pam 5 0.583 0.498 0.734 0.0651 0.948 0.810
#> ATC:pam 5 0.732 0.747 0.869 0.0541 0.946 0.794
#> SD:hclust 5 0.346 0.587 0.706 0.0785 0.972 0.909
#> CV:hclust 5 0.204 0.443 0.617 0.1178 0.873 0.724
#> MAD:hclust 5 0.355 0.581 0.689 0.0894 0.864 0.643
#> ATC:hclust 5 0.496 0.400 0.621 0.0515 0.921 0.747
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.581 0.405 0.651 0.0429 0.859 0.472
#> CV:NMF 6 0.601 0.505 0.711 0.0511 0.875 0.509
#> MAD:NMF 6 0.579 0.427 0.692 0.0423 0.882 0.536
#> ATC:NMF 6 0.574 0.542 0.720 0.0491 0.833 0.407
#> SD:skmeans 6 0.695 0.590 0.768 0.0403 0.932 0.707
#> CV:skmeans 6 0.619 0.477 0.683 0.0423 0.915 0.639
#> MAD:skmeans 6 0.702 0.627 0.777 0.0398 0.926 0.678
#> ATC:skmeans 6 0.703 0.571 0.765 0.0458 0.888 0.576
#> SD:mclust 6 0.558 0.554 0.704 0.0408 0.897 0.636
#> CV:mclust 6 0.619 0.606 0.767 0.0460 0.996 0.989
#> MAD:mclust 6 0.565 0.417 0.660 0.0483 0.832 0.451
#> ATC:mclust 6 0.535 0.427 0.682 0.0600 0.919 0.721
#> SD:kmeans 6 0.658 0.553 0.694 0.0481 0.888 0.595
#> CV:kmeans 6 0.578 0.509 0.691 0.0493 0.951 0.795
#> MAD:kmeans 6 0.662 0.551 0.704 0.0494 0.896 0.605
#> ATC:kmeans 6 0.647 0.476 0.667 0.0470 0.930 0.703
#> SD:pam 6 0.653 0.576 0.761 0.0330 0.945 0.774
#> CV:pam 6 0.694 0.624 0.794 0.0277 0.951 0.783
#> MAD:pam 6 0.662 0.483 0.739 0.0364 0.917 0.676
#> ATC:pam 6 0.763 0.716 0.825 0.0342 0.956 0.805
#> SD:hclust 6 0.425 0.597 0.720 0.0565 0.947 0.824
#> CV:hclust 6 0.308 0.335 0.588 0.0772 0.920 0.780
#> MAD:hclust 6 0.426 0.580 0.698 0.0364 0.989 0.961
#> ATC:hclust 6 0.518 0.482 0.595 0.0445 0.869 0.554
Following heatmap plots the partition for each combination of methods and the
lightness correspond to the silhouette scores for samples in each method. On
top the consensus subgroup is inferred from all methods by taking the mean
silhouette scores as weight.
collect_stats(res_list, k = 2)

collect_stats(res_list, k = 3)

collect_stats(res_list, k = 4)

collect_stats(res_list, k = 5)

collect_stats(res_list, k = 6)

Partition from all methods
Collect partitions from all methods:
collect_classes(res_list, k = 2)

collect_classes(res_list, k = 3)

collect_classes(res_list, k = 4)

collect_classes(res_list, k = 5)

collect_classes(res_list, k = 6)

Top rows overlap
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")

top_rows_overlap(res_list, top_n = 2000, method = "euler")

top_rows_overlap(res_list, top_n = 3000, method = "euler")

top_rows_overlap(res_list, top_n = 4000, method = "euler")

top_rows_overlap(res_list, top_n = 5000, method = "euler")

Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)

top_rows_heatmap(res_list, top_n = 2000)

top_rows_heatmap(res_list, top_n = 3000)

top_rows_heatmap(res_list, top_n = 4000)

top_rows_heatmap(res_list, top_n = 5000)

Results for each method
SD:hclust
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["SD", "hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.206 0.488 0.756 0.3103 0.609 0.609
#> 3 3 0.219 0.607 0.774 0.7089 0.638 0.490
#> 4 4 0.287 0.622 0.717 0.2241 0.817 0.613
#> 5 5 0.346 0.587 0.706 0.0785 0.972 0.909
#> 6 6 0.425 0.597 0.720 0.0565 0.947 0.824
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 1 0.0000 0.7010 1.000 0.000
#> SRR1429287 1 0.1633 0.6999 0.976 0.024
#> SRR1359238 1 0.9170 0.2065 0.668 0.332
#> SRR1309597 1 0.5059 0.6914 0.888 0.112
#> SRR1441398 2 0.9983 0.6616 0.476 0.524
#> SRR1084055 1 0.0000 0.7010 1.000 0.000
#> SRR1417566 1 0.7376 0.5754 0.792 0.208
#> SRR1351857 1 0.8813 0.1602 0.700 0.300
#> SRR1487485 1 0.4939 0.6929 0.892 0.108
#> SRR1335875 1 0.6148 0.6683 0.848 0.152
#> SRR1073947 2 0.9988 0.6785 0.480 0.520
#> SRR1443483 1 0.5629 0.6824 0.868 0.132
#> SRR1346794 1 0.9209 0.2388 0.664 0.336
#> SRR1405245 2 0.9996 0.6523 0.488 0.512
#> SRR1409677 1 0.2948 0.7016 0.948 0.052
#> SRR1095549 1 0.9635 -0.1068 0.612 0.388
#> SRR1323788 1 0.9710 -0.1522 0.600 0.400
#> SRR1314054 1 0.0000 0.7010 1.000 0.000
#> SRR1077944 1 0.9998 -0.5928 0.508 0.492
#> SRR1480587 1 0.2043 0.7067 0.968 0.032
#> SRR1311205 2 0.9988 0.6735 0.480 0.520
#> SRR1076369 1 0.9896 -0.2526 0.560 0.440
#> SRR1453549 1 0.3431 0.7107 0.936 0.064
#> SRR1345782 2 0.9963 0.6878 0.464 0.536
#> SRR1447850 1 0.0938 0.7007 0.988 0.012
#> SRR1391553 1 0.6048 0.6731 0.852 0.148
#> SRR1444156 1 0.0672 0.6959 0.992 0.008
#> SRR1471731 1 0.5294 0.6918 0.880 0.120
#> SRR1120987 1 0.3879 0.7037 0.924 0.076
#> SRR1477363 2 0.9993 0.6540 0.484 0.516
#> SRR1391961 2 0.1414 0.3594 0.020 0.980
#> SRR1373879 1 0.5178 0.6918 0.884 0.116
#> SRR1318732 1 0.5629 0.6918 0.868 0.132
#> SRR1091404 2 0.9977 0.6839 0.472 0.528
#> SRR1402109 1 0.5178 0.6918 0.884 0.116
#> SRR1407336 1 0.6343 0.6661 0.840 0.160
#> SRR1097417 1 0.5842 0.6790 0.860 0.140
#> SRR1396227 1 0.9775 -0.3139 0.588 0.412
#> SRR1400775 1 0.0000 0.7010 1.000 0.000
#> SRR1392861 1 0.1843 0.7039 0.972 0.028
#> SRR1472929 2 0.1184 0.3493 0.016 0.984
#> SRR1436740 1 0.1843 0.7039 0.972 0.028
#> SRR1477057 1 0.8713 0.3039 0.708 0.292
#> SRR1311980 1 0.6048 0.6731 0.852 0.148
#> SRR1069400 1 0.6343 0.6661 0.840 0.160
#> SRR1351016 2 0.9988 0.6735 0.480 0.520
#> SRR1096291 1 0.4690 0.7033 0.900 0.100
#> SRR1418145 1 0.4298 0.6985 0.912 0.088
#> SRR1488111 1 0.3879 0.7037 0.924 0.076
#> SRR1370495 1 0.9460 -0.0188 0.636 0.364
#> SRR1352639 1 0.6531 0.6592 0.832 0.168
#> SRR1348911 1 0.5737 0.6828 0.864 0.136
#> SRR1467386 1 0.9983 -0.5753 0.524 0.476
#> SRR1415956 2 0.9933 0.6822 0.452 0.548
#> SRR1500495 2 0.9983 0.6616 0.476 0.524
#> SRR1405099 2 0.9933 0.6822 0.452 0.548
#> SRR1345585 1 0.5059 0.6989 0.888 0.112
#> SRR1093196 1 0.5294 0.6918 0.880 0.120
#> SRR1466006 1 0.8144 0.4487 0.748 0.252
#> SRR1351557 1 0.0000 0.7010 1.000 0.000
#> SRR1382687 1 0.9933 -0.4713 0.548 0.452
#> SRR1375549 1 0.9775 -0.2381 0.588 0.412
#> SRR1101765 1 0.9896 -0.2526 0.560 0.440
#> SRR1334461 2 0.0672 0.3530 0.008 0.992
#> SRR1094073 1 0.0000 0.7010 1.000 0.000
#> SRR1077549 2 0.9993 0.6718 0.484 0.516
#> SRR1440332 1 0.9970 -0.5166 0.532 0.468
#> SRR1454177 1 0.1843 0.7039 0.972 0.028
#> SRR1082447 2 0.9988 0.6662 0.480 0.520
#> SRR1420043 1 0.3431 0.7107 0.936 0.064
#> SRR1432500 2 1.0000 0.6296 0.500 0.500
#> SRR1378045 1 0.0672 0.6959 0.992 0.008
#> SRR1334200 2 0.6801 0.3493 0.180 0.820
#> SRR1069539 1 0.4690 0.7033 0.900 0.100
#> SRR1343031 1 0.6343 0.6661 0.840 0.160
#> SRR1319690 1 0.9996 -0.5798 0.512 0.488
#> SRR1310604 1 0.0376 0.6994 0.996 0.004
#> SRR1327747 1 0.9000 0.3303 0.684 0.316
#> SRR1072456 1 0.0376 0.6994 0.996 0.004
#> SRR1367896 1 0.5842 0.6790 0.860 0.140
#> SRR1480107 2 0.9963 0.6878 0.464 0.536
#> SRR1377756 1 0.9996 -0.6112 0.512 0.488
#> SRR1435272 1 0.4298 0.6777 0.912 0.088
#> SRR1089230 1 0.2423 0.7061 0.960 0.040
#> SRR1389522 1 0.6048 0.6748 0.852 0.148
#> SRR1080600 1 0.8144 0.4487 0.748 0.252
#> SRR1086935 1 0.1184 0.6991 0.984 0.016
#> SRR1344060 2 0.6531 0.3564 0.168 0.832
#> SRR1467922 1 0.0672 0.6959 0.992 0.008
#> SRR1090984 1 0.7883 0.5295 0.764 0.236
#> SRR1456991 2 0.9963 0.6878 0.464 0.536
#> SRR1085039 2 0.9977 0.6807 0.472 0.528
#> SRR1069303 2 0.9993 0.6748 0.484 0.516
#> SRR1091500 1 0.1633 0.7060 0.976 0.024
#> SRR1075198 1 0.4022 0.7038 0.920 0.080
#> SRR1086915 1 0.5946 0.6063 0.856 0.144
#> SRR1499503 1 0.0376 0.6994 0.996 0.004
#> SRR1094312 1 0.0000 0.7010 1.000 0.000
#> SRR1352437 2 0.9993 0.6748 0.484 0.516
#> SRR1436323 1 0.5294 0.6918 0.880 0.120
#> SRR1073507 2 0.9993 0.6718 0.484 0.516
#> SRR1401972 2 0.9993 0.6748 0.484 0.516
#> SRR1415510 1 0.0376 0.6994 0.996 0.004
#> SRR1327279 2 0.9988 0.6785 0.480 0.520
#> SRR1086983 1 0.8813 0.1602 0.700 0.300
#> SRR1105174 2 0.9933 0.6822 0.452 0.548
#> SRR1468893 2 0.9977 0.6853 0.472 0.528
#> SRR1362555 1 0.4022 0.7038 0.920 0.080
#> SRR1074526 2 0.3879 0.3624 0.076 0.924
#> SRR1326225 1 0.0000 0.7010 1.000 0.000
#> SRR1401933 1 0.9795 -0.3275 0.584 0.416
#> SRR1324062 1 0.9944 -0.5068 0.544 0.456
#> SRR1102296 1 0.9922 -0.4452 0.552 0.448
#> SRR1085087 2 0.9993 0.6718 0.484 0.516
#> SRR1079046 1 0.9775 -0.2461 0.588 0.412
#> SRR1328339 1 0.7674 0.5562 0.776 0.224
#> SRR1079782 1 0.4022 0.7038 0.920 0.080
#> SRR1092257 1 0.3879 0.7037 0.924 0.076
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 3 0.3998 0.6164 0.056 0.060 0.884
#> SRR1429287 3 0.4636 0.6574 0.116 0.036 0.848
#> SRR1359238 1 0.5384 0.6544 0.788 0.024 0.188
#> SRR1309597 3 0.6835 0.5885 0.284 0.040 0.676
#> SRR1441398 1 0.2879 0.8094 0.924 0.052 0.024
#> SRR1084055 3 0.4194 0.6214 0.064 0.060 0.876
#> SRR1417566 1 0.7059 -0.1573 0.520 0.020 0.460
#> SRR1351857 1 0.5894 0.6423 0.752 0.028 0.220
#> SRR1487485 3 0.6735 0.6101 0.260 0.044 0.696
#> SRR1335875 3 0.7065 0.5322 0.352 0.032 0.616
#> SRR1073947 1 0.0661 0.8138 0.988 0.008 0.004
#> SRR1443483 3 0.7246 0.5914 0.276 0.060 0.664
#> SRR1346794 1 0.6546 0.5927 0.716 0.044 0.240
#> SRR1405245 1 0.2414 0.8118 0.940 0.040 0.020
#> SRR1409677 3 0.7283 0.2714 0.460 0.028 0.512
#> SRR1095549 1 0.4615 0.7179 0.836 0.020 0.144
#> SRR1323788 1 0.5058 0.7182 0.820 0.032 0.148
#> SRR1314054 3 0.5004 0.6311 0.088 0.072 0.840
#> SRR1077944 1 0.2773 0.8097 0.928 0.024 0.048
#> SRR1480587 3 0.4745 0.6193 0.068 0.080 0.852
#> SRR1311205 1 0.0848 0.8155 0.984 0.008 0.008
#> SRR1076369 1 0.7337 0.6500 0.708 0.140 0.152
#> SRR1453549 3 0.7411 0.4151 0.416 0.036 0.548
#> SRR1345782 1 0.0892 0.8110 0.980 0.020 0.000
#> SRR1447850 3 0.5608 0.6445 0.120 0.072 0.808
#> SRR1391553 3 0.7279 0.4852 0.376 0.036 0.588
#> SRR1444156 3 0.2711 0.5617 0.000 0.088 0.912
#> SRR1471731 3 0.7480 0.3274 0.456 0.036 0.508
#> SRR1120987 3 0.5012 0.6487 0.204 0.008 0.788
#> SRR1477363 1 0.2187 0.8118 0.948 0.024 0.028
#> SRR1391961 2 0.4291 0.9081 0.152 0.840 0.008
#> SRR1373879 3 0.7395 0.4787 0.380 0.040 0.580
#> SRR1318732 3 0.7878 0.4389 0.392 0.060 0.548
#> SRR1091404 1 0.1170 0.8155 0.976 0.016 0.008
#> SRR1402109 3 0.7395 0.4787 0.380 0.040 0.580
#> SRR1407336 3 0.7974 0.3627 0.436 0.060 0.504
#> SRR1097417 3 0.7259 0.6044 0.248 0.072 0.680
#> SRR1396227 1 0.3682 0.7710 0.876 0.008 0.116
#> SRR1400775 3 0.4737 0.6276 0.084 0.064 0.852
#> SRR1392861 3 0.7295 0.1986 0.480 0.028 0.492
#> SRR1472929 2 0.4059 0.9017 0.128 0.860 0.012
#> SRR1436740 3 0.7295 0.1986 0.480 0.028 0.492
#> SRR1477057 3 0.7013 0.3164 0.432 0.020 0.548
#> SRR1311980 3 0.7311 0.4700 0.384 0.036 0.580
#> SRR1069400 3 0.7742 0.5215 0.356 0.060 0.584
#> SRR1351016 1 0.0848 0.8155 0.984 0.008 0.008
#> SRR1096291 3 0.7357 0.5677 0.332 0.048 0.620
#> SRR1418145 3 0.6448 0.5185 0.352 0.012 0.636
#> SRR1488111 3 0.5012 0.6487 0.204 0.008 0.788
#> SRR1370495 1 0.6512 0.4626 0.676 0.024 0.300
#> SRR1352639 3 0.6313 0.5907 0.308 0.016 0.676
#> SRR1348911 3 0.6744 0.5866 0.300 0.032 0.668
#> SRR1467386 1 0.1860 0.8128 0.948 0.000 0.052
#> SRR1415956 1 0.1289 0.8065 0.968 0.032 0.000
#> SRR1500495 1 0.2879 0.8094 0.924 0.052 0.024
#> SRR1405099 1 0.1289 0.8065 0.968 0.032 0.000
#> SRR1345585 3 0.7285 0.5795 0.320 0.048 0.632
#> SRR1093196 3 0.7476 0.3390 0.452 0.036 0.512
#> SRR1466006 3 0.6016 0.4207 0.020 0.256 0.724
#> SRR1351557 3 0.4469 0.6150 0.060 0.076 0.864
#> SRR1382687 1 0.4063 0.7809 0.868 0.020 0.112
#> SRR1375549 1 0.5618 0.7285 0.796 0.048 0.156
#> SRR1101765 1 0.7337 0.6500 0.708 0.140 0.152
#> SRR1334461 2 0.3983 0.9063 0.144 0.852 0.004
#> SRR1094073 3 0.4469 0.6150 0.060 0.076 0.864
#> SRR1077549 1 0.0848 0.8154 0.984 0.008 0.008
#> SRR1440332 1 0.2845 0.7977 0.920 0.012 0.068
#> SRR1454177 3 0.7295 0.1986 0.480 0.028 0.492
#> SRR1082447 1 0.1919 0.8169 0.956 0.020 0.024
#> SRR1420043 3 0.7411 0.4151 0.416 0.036 0.548
#> SRR1432500 1 0.1267 0.8163 0.972 0.004 0.024
#> SRR1378045 3 0.3832 0.6053 0.036 0.076 0.888
#> SRR1334200 2 0.6865 0.8478 0.104 0.736 0.160
#> SRR1069539 3 0.7334 0.5731 0.328 0.048 0.624
#> SRR1343031 3 0.7878 0.4624 0.392 0.060 0.548
#> SRR1319690 1 0.3554 0.8017 0.900 0.036 0.064
#> SRR1310604 3 0.4095 0.6155 0.056 0.064 0.880
#> SRR1327747 1 0.6781 0.5533 0.704 0.052 0.244
#> SRR1072456 3 0.4095 0.6155 0.056 0.064 0.880
#> SRR1367896 3 0.7259 0.6044 0.248 0.072 0.680
#> SRR1480107 1 0.0892 0.8110 0.980 0.020 0.000
#> SRR1377756 1 0.2636 0.8110 0.932 0.020 0.048
#> SRR1435272 1 0.7248 0.0176 0.536 0.028 0.436
#> SRR1089230 1 0.7295 -0.1792 0.492 0.028 0.480
#> SRR1389522 3 0.7451 0.5757 0.304 0.060 0.636
#> SRR1080600 3 0.6016 0.4207 0.020 0.256 0.724
#> SRR1086935 3 0.7319 0.3614 0.420 0.032 0.548
#> SRR1344060 2 0.6693 0.8601 0.104 0.748 0.148
#> SRR1467922 3 0.2711 0.5617 0.000 0.088 0.912
#> SRR1090984 1 0.7152 -0.0948 0.532 0.024 0.444
#> SRR1456991 1 0.0892 0.8110 0.980 0.020 0.000
#> SRR1085039 1 0.1482 0.8156 0.968 0.020 0.012
#> SRR1069303 1 0.0848 0.8147 0.984 0.008 0.008
#> SRR1091500 3 0.6031 0.6337 0.116 0.096 0.788
#> SRR1075198 3 0.5414 0.6458 0.212 0.016 0.772
#> SRR1086915 1 0.7067 0.2638 0.596 0.028 0.376
#> SRR1499503 3 0.4095 0.6155 0.056 0.064 0.880
#> SRR1094312 3 0.4737 0.6276 0.084 0.064 0.852
#> SRR1352437 1 0.0848 0.8147 0.984 0.008 0.008
#> SRR1436323 1 0.7493 -0.2629 0.484 0.036 0.480
#> SRR1073507 1 0.0848 0.8154 0.984 0.008 0.008
#> SRR1401972 1 0.0848 0.8147 0.984 0.008 0.008
#> SRR1415510 3 0.4290 0.6231 0.064 0.064 0.872
#> SRR1327279 1 0.1015 0.8153 0.980 0.008 0.012
#> SRR1086983 1 0.5894 0.6423 0.752 0.028 0.220
#> SRR1105174 1 0.1163 0.8078 0.972 0.028 0.000
#> SRR1468893 1 0.1129 0.8162 0.976 0.020 0.004
#> SRR1362555 3 0.5414 0.6458 0.212 0.016 0.772
#> SRR1074526 2 0.5235 0.9091 0.152 0.812 0.036
#> SRR1326225 3 0.4194 0.6214 0.064 0.060 0.876
#> SRR1401933 1 0.3845 0.7722 0.872 0.012 0.116
#> SRR1324062 1 0.3349 0.7819 0.888 0.004 0.108
#> SRR1102296 1 0.5597 0.5890 0.764 0.020 0.216
#> SRR1085087 1 0.1170 0.8162 0.976 0.008 0.016
#> SRR1079046 1 0.6990 0.6386 0.728 0.108 0.164
#> SRR1328339 3 0.7063 0.3248 0.464 0.020 0.516
#> SRR1079782 3 0.5414 0.6458 0.212 0.016 0.772
#> SRR1092257 3 0.5012 0.6487 0.204 0.008 0.788
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.3808 0.6986 0.012 0.812 0.176 0.000
#> SRR1429287 2 0.5881 0.4905 0.028 0.656 0.296 0.020
#> SRR1359238 1 0.5618 0.5326 0.672 0.028 0.288 0.012
#> SRR1309597 3 0.4238 0.6023 0.108 0.060 0.828 0.004
#> SRR1441398 1 0.2611 0.8059 0.896 0.000 0.096 0.008
#> SRR1084055 2 0.3808 0.7005 0.012 0.824 0.160 0.004
#> SRR1417566 3 0.6123 0.4618 0.372 0.056 0.572 0.000
#> SRR1351857 1 0.7651 0.3068 0.552 0.180 0.248 0.020
#> SRR1487485 3 0.4965 0.5824 0.112 0.100 0.784 0.004
#> SRR1335875 3 0.5434 0.6174 0.188 0.084 0.728 0.000
#> SRR1073947 1 0.1661 0.8149 0.944 0.000 0.052 0.004
#> SRR1443483 3 0.4504 0.5746 0.088 0.064 0.828 0.020
#> SRR1346794 1 0.6017 0.5179 0.664 0.040 0.276 0.020
#> SRR1405245 1 0.2593 0.8114 0.892 0.000 0.104 0.004
#> SRR1409677 3 0.8210 0.4674 0.264 0.260 0.456 0.020
#> SRR1095549 1 0.4963 0.6774 0.740 0.024 0.228 0.008
#> SRR1323788 1 0.4931 0.6904 0.760 0.028 0.200 0.012
#> SRR1314054 2 0.3774 0.6915 0.008 0.820 0.168 0.004
#> SRR1077944 1 0.2384 0.8131 0.916 0.008 0.072 0.004
#> SRR1480587 2 0.4434 0.6846 0.016 0.772 0.208 0.004
#> SRR1311205 1 0.2401 0.8083 0.904 0.000 0.092 0.004
#> SRR1076369 1 0.6887 0.5984 0.676 0.048 0.156 0.120
#> SRR1453549 3 0.7681 0.4976 0.188 0.260 0.536 0.016
#> SRR1345782 1 0.1109 0.8125 0.968 0.000 0.028 0.004
#> SRR1447850 2 0.4869 0.6187 0.028 0.780 0.172 0.020
#> SRR1391553 3 0.5464 0.6436 0.212 0.072 0.716 0.000
#> SRR1444156 2 0.5231 0.5683 0.000 0.676 0.296 0.028
#> SRR1471731 3 0.5646 0.6521 0.272 0.056 0.672 0.000
#> SRR1120987 2 0.6982 0.4474 0.108 0.584 0.296 0.012
#> SRR1477363 1 0.2635 0.8169 0.908 0.004 0.072 0.016
#> SRR1391961 4 0.2748 0.8817 0.072 0.004 0.020 0.904
#> SRR1373879 3 0.4974 0.6659 0.224 0.040 0.736 0.000
#> SRR1318732 3 0.6216 0.6204 0.272 0.080 0.644 0.004
#> SRR1091404 1 0.1209 0.8165 0.964 0.004 0.032 0.000
#> SRR1402109 3 0.4974 0.6659 0.224 0.040 0.736 0.000
#> SRR1407336 3 0.5636 0.6613 0.248 0.036 0.700 0.016
#> SRR1097417 3 0.4744 0.5305 0.056 0.088 0.820 0.036
#> SRR1396227 1 0.4625 0.7531 0.804 0.044 0.140 0.012
#> SRR1400775 2 0.3400 0.6970 0.012 0.856 0.128 0.004
#> SRR1392861 3 0.8120 0.4546 0.240 0.264 0.476 0.020
#> SRR1472929 4 0.2810 0.8564 0.008 0.008 0.088 0.896
#> SRR1436740 3 0.8120 0.4546 0.240 0.264 0.476 0.020
#> SRR1477057 2 0.7666 0.0949 0.392 0.448 0.148 0.012
#> SRR1311980 3 0.5363 0.6472 0.216 0.064 0.720 0.000
#> SRR1069400 3 0.5044 0.6359 0.156 0.044 0.780 0.020
#> SRR1351016 1 0.2401 0.8083 0.904 0.000 0.092 0.004
#> SRR1096291 3 0.7596 0.4929 0.168 0.240 0.568 0.024
#> SRR1418145 2 0.8140 0.0404 0.228 0.440 0.316 0.016
#> SRR1488111 2 0.6982 0.4474 0.108 0.584 0.296 0.012
#> SRR1370495 1 0.7084 0.4585 0.616 0.216 0.152 0.016
#> SRR1352639 2 0.7916 0.2709 0.232 0.484 0.272 0.012
#> SRR1348911 3 0.4998 0.5892 0.128 0.088 0.780 0.004
#> SRR1467386 1 0.3350 0.8013 0.864 0.016 0.116 0.004
#> SRR1415956 1 0.1174 0.8055 0.968 0.000 0.020 0.012
#> SRR1500495 1 0.2611 0.8059 0.896 0.000 0.096 0.008
#> SRR1405099 1 0.0804 0.8090 0.980 0.000 0.008 0.012
#> SRR1345585 3 0.5437 0.6367 0.144 0.104 0.748 0.004
#> SRR1093196 3 0.5592 0.6549 0.264 0.056 0.680 0.000
#> SRR1466006 2 0.7392 0.3219 0.000 0.472 0.356 0.172
#> SRR1351557 2 0.3863 0.6921 0.008 0.812 0.176 0.004
#> SRR1382687 1 0.4132 0.7636 0.804 0.008 0.176 0.012
#> SRR1375549 1 0.5345 0.7088 0.776 0.076 0.124 0.024
#> SRR1101765 1 0.6844 0.6042 0.680 0.048 0.152 0.120
#> SRR1334461 4 0.2521 0.8780 0.060 0.004 0.020 0.916
#> SRR1094073 2 0.3907 0.6908 0.008 0.808 0.180 0.004
#> SRR1077549 1 0.1661 0.8179 0.944 0.000 0.052 0.004
#> SRR1440332 1 0.3632 0.7626 0.832 0.008 0.156 0.004
#> SRR1454177 3 0.8120 0.4546 0.240 0.264 0.476 0.020
#> SRR1082447 1 0.1489 0.8204 0.952 0.004 0.044 0.000
#> SRR1420043 3 0.7681 0.4976 0.188 0.260 0.536 0.016
#> SRR1432500 1 0.3006 0.8060 0.888 0.012 0.092 0.008
#> SRR1378045 3 0.5842 -0.3128 0.000 0.448 0.520 0.032
#> SRR1334200 4 0.5748 0.8208 0.024 0.176 0.064 0.736
#> SRR1069539 3 0.7620 0.4868 0.168 0.244 0.564 0.024
#> SRR1343031 3 0.5460 0.6549 0.204 0.040 0.736 0.020
#> SRR1319690 1 0.3623 0.7947 0.856 0.016 0.116 0.012
#> SRR1310604 2 0.3990 0.6993 0.012 0.808 0.176 0.004
#> SRR1327747 1 0.6068 0.4441 0.648 0.032 0.296 0.024
#> SRR1072456 2 0.4088 0.6982 0.012 0.808 0.172 0.008
#> SRR1367896 3 0.4744 0.5305 0.056 0.088 0.820 0.036
#> SRR1480107 1 0.1109 0.8125 0.968 0.000 0.028 0.004
#> SRR1377756 1 0.2989 0.8117 0.884 0.004 0.100 0.012
#> SRR1435272 3 0.8295 0.4183 0.300 0.252 0.428 0.020
#> SRR1089230 3 0.8142 0.4570 0.256 0.252 0.472 0.020
#> SRR1389522 3 0.4959 0.6015 0.124 0.060 0.796 0.020
#> SRR1080600 2 0.7392 0.3219 0.000 0.472 0.356 0.172
#> SRR1086935 3 0.8001 0.4266 0.184 0.296 0.496 0.024
#> SRR1344060 4 0.5561 0.8302 0.024 0.172 0.056 0.748
#> SRR1467922 2 0.5231 0.5683 0.000 0.676 0.296 0.028
#> SRR1090984 3 0.6449 0.4206 0.380 0.056 0.556 0.008
#> SRR1456991 1 0.1109 0.8125 0.968 0.000 0.028 0.004
#> SRR1085039 1 0.1305 0.8193 0.960 0.004 0.036 0.000
#> SRR1069303 1 0.1994 0.8140 0.936 0.008 0.052 0.004
#> SRR1091500 2 0.4592 0.6297 0.028 0.812 0.132 0.028
#> SRR1075198 2 0.7325 0.4231 0.112 0.552 0.316 0.020
#> SRR1086915 1 0.8320 -0.2041 0.404 0.240 0.336 0.020
#> SRR1499503 2 0.4088 0.6982 0.012 0.808 0.172 0.008
#> SRR1094312 2 0.3400 0.6970 0.012 0.856 0.128 0.004
#> SRR1352437 1 0.1994 0.8140 0.936 0.008 0.052 0.004
#> SRR1436323 3 0.5546 0.6247 0.292 0.044 0.664 0.000
#> SRR1073507 1 0.1661 0.8179 0.944 0.000 0.052 0.004
#> SRR1401972 1 0.1994 0.8140 0.936 0.008 0.052 0.004
#> SRR1415510 2 0.4279 0.6871 0.012 0.780 0.204 0.004
#> SRR1327279 1 0.1902 0.8140 0.932 0.000 0.064 0.004
#> SRR1086983 1 0.7651 0.3068 0.552 0.180 0.248 0.020
#> SRR1105174 1 0.0937 0.8102 0.976 0.000 0.012 0.012
#> SRR1468893 1 0.1798 0.8190 0.944 0.000 0.040 0.016
#> SRR1362555 2 0.7325 0.4231 0.112 0.552 0.316 0.020
#> SRR1074526 4 0.5239 0.8751 0.084 0.088 0.036 0.792
#> SRR1326225 2 0.3808 0.7005 0.012 0.824 0.160 0.004
#> SRR1401933 1 0.4574 0.7511 0.808 0.044 0.136 0.012
#> SRR1324062 1 0.4121 0.7516 0.796 0.020 0.184 0.000
#> SRR1102296 1 0.5720 0.4945 0.652 0.052 0.296 0.000
#> SRR1085087 1 0.2125 0.8182 0.932 0.012 0.052 0.004
#> SRR1079046 1 0.6396 0.6220 0.720 0.136 0.072 0.072
#> SRR1328339 3 0.6404 0.5648 0.296 0.096 0.608 0.000
#> SRR1079782 2 0.7325 0.4231 0.112 0.552 0.316 0.020
#> SRR1092257 2 0.6982 0.4474 0.108 0.584 0.296 0.012
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.2700 0.6837 0.004 0.884 0.088 0.024 0.000
#> SRR1429287 2 0.6438 0.4803 0.020 0.568 0.152 0.260 0.000
#> SRR1359238 1 0.5691 0.5154 0.648 0.008 0.212 0.132 0.000
#> SRR1309597 3 0.2012 0.6168 0.060 0.020 0.920 0.000 0.000
#> SRR1441398 1 0.3193 0.7624 0.840 0.000 0.132 0.028 0.000
#> SRR1084055 2 0.2052 0.6865 0.004 0.912 0.080 0.004 0.000
#> SRR1417566 3 0.6489 0.3481 0.332 0.044 0.540 0.084 0.000
#> SRR1351857 1 0.7129 -0.1091 0.528 0.104 0.092 0.276 0.000
#> SRR1487485 3 0.3518 0.6140 0.064 0.044 0.856 0.036 0.000
#> SRR1335875 3 0.4598 0.6076 0.152 0.056 0.768 0.024 0.000
#> SRR1073947 1 0.1725 0.7916 0.936 0.000 0.044 0.020 0.000
#> SRR1443483 3 0.2165 0.5978 0.036 0.024 0.924 0.000 0.016
#> SRR1346794 1 0.6052 0.5273 0.644 0.028 0.184 0.144 0.000
#> SRR1405245 1 0.2864 0.7761 0.852 0.000 0.136 0.012 0.000
#> SRR1409677 4 0.8275 0.7881 0.232 0.152 0.232 0.384 0.000
#> SRR1095549 1 0.5045 0.6575 0.720 0.008 0.164 0.108 0.000
#> SRR1323788 1 0.4704 0.6843 0.748 0.008 0.160 0.084 0.000
#> SRR1314054 2 0.3526 0.6684 0.000 0.832 0.072 0.096 0.000
#> SRR1077944 1 0.2166 0.7950 0.912 0.004 0.072 0.012 0.000
#> SRR1480587 2 0.3452 0.6757 0.008 0.840 0.124 0.024 0.004
#> SRR1311205 1 0.2482 0.7844 0.892 0.000 0.084 0.024 0.000
#> SRR1076369 1 0.6182 0.5467 0.656 0.016 0.100 0.200 0.028
#> SRR1453549 3 0.8126 -0.4467 0.168 0.148 0.396 0.288 0.000
#> SRR1345782 1 0.0880 0.7918 0.968 0.000 0.032 0.000 0.000
#> SRR1447850 2 0.5115 0.5531 0.020 0.696 0.052 0.232 0.000
#> SRR1391553 3 0.5006 0.6005 0.168 0.048 0.740 0.044 0.000
#> SRR1444156 2 0.5122 0.4985 0.000 0.688 0.200 0.112 0.000
#> SRR1471731 3 0.6542 0.3853 0.216 0.028 0.580 0.176 0.000
#> SRR1120987 2 0.7144 0.5031 0.096 0.564 0.180 0.160 0.000
#> SRR1477363 1 0.2536 0.7910 0.900 0.004 0.052 0.044 0.000
#> SRR1391961 5 0.2787 0.8231 0.028 0.000 0.004 0.088 0.880
#> SRR1373879 3 0.4702 0.6027 0.172 0.020 0.752 0.056 0.000
#> SRR1318732 3 0.6267 0.4683 0.240 0.064 0.628 0.064 0.004
#> SRR1091404 1 0.1251 0.7950 0.956 0.000 0.036 0.008 0.000
#> SRR1402109 3 0.4702 0.6027 0.172 0.020 0.752 0.056 0.000
#> SRR1407336 3 0.5925 0.5278 0.188 0.020 0.676 0.100 0.016
#> SRR1097417 3 0.3005 0.5829 0.028 0.048 0.884 0.000 0.040
#> SRR1396227 1 0.4314 0.7169 0.796 0.024 0.060 0.120 0.000
#> SRR1400775 2 0.2529 0.6825 0.004 0.900 0.056 0.040 0.000
#> SRR1392861 4 0.8128 0.9140 0.208 0.164 0.200 0.428 0.000
#> SRR1472929 5 0.1990 0.7912 0.000 0.008 0.068 0.004 0.920
#> SRR1436740 4 0.8128 0.9140 0.208 0.164 0.200 0.428 0.000
#> SRR1477057 2 0.7340 0.0241 0.392 0.400 0.056 0.152 0.000
#> SRR1311980 3 0.5042 0.5973 0.172 0.044 0.736 0.048 0.000
#> SRR1069400 3 0.4499 0.6059 0.108 0.012 0.796 0.068 0.016
#> SRR1351016 1 0.2482 0.7844 0.892 0.000 0.084 0.024 0.000
#> SRR1096291 3 0.8404 0.0321 0.148 0.180 0.436 0.220 0.016
#> SRR1418145 2 0.8214 0.1207 0.208 0.432 0.204 0.152 0.004
#> SRR1488111 2 0.7144 0.5031 0.096 0.564 0.180 0.160 0.000
#> SRR1370495 1 0.6833 0.4026 0.608 0.164 0.076 0.148 0.004
#> SRR1352639 2 0.7790 0.3793 0.212 0.492 0.180 0.112 0.004
#> SRR1348911 3 0.3019 0.6165 0.088 0.048 0.864 0.000 0.000
#> SRR1467386 1 0.3354 0.7668 0.844 0.000 0.068 0.088 0.000
#> SRR1415956 1 0.1579 0.7768 0.944 0.000 0.024 0.032 0.000
#> SRR1500495 1 0.3193 0.7624 0.840 0.000 0.132 0.028 0.000
#> SRR1405099 1 0.1300 0.7803 0.956 0.000 0.016 0.028 0.000
#> SRR1345585 3 0.5433 0.5894 0.120 0.068 0.736 0.072 0.004
#> SRR1093196 3 0.6521 0.3943 0.208 0.028 0.584 0.180 0.000
#> SRR1466006 2 0.7563 0.2731 0.000 0.428 0.252 0.268 0.052
#> SRR1351557 2 0.2654 0.6757 0.000 0.884 0.084 0.032 0.000
#> SRR1382687 1 0.4088 0.7442 0.792 0.004 0.140 0.064 0.000
#> SRR1375549 1 0.4989 0.6705 0.752 0.044 0.064 0.140 0.000
#> SRR1101765 1 0.6211 0.5452 0.652 0.016 0.100 0.204 0.028
#> SRR1334461 5 0.0865 0.8098 0.024 0.000 0.000 0.004 0.972
#> SRR1094073 2 0.2769 0.6737 0.000 0.876 0.092 0.032 0.000
#> SRR1077549 1 0.1661 0.7919 0.940 0.000 0.036 0.024 0.000
#> SRR1440332 1 0.3871 0.7359 0.808 0.004 0.132 0.056 0.000
#> SRR1454177 4 0.8128 0.9140 0.208 0.164 0.200 0.428 0.000
#> SRR1082447 1 0.1893 0.7981 0.928 0.000 0.048 0.024 0.000
#> SRR1420043 3 0.8126 -0.4467 0.168 0.148 0.396 0.288 0.000
#> SRR1432500 1 0.3073 0.7708 0.872 0.008 0.068 0.052 0.000
#> SRR1378045 3 0.5911 -0.1244 0.000 0.408 0.488 0.104 0.000
#> SRR1334200 5 0.7062 0.7511 0.004 0.140 0.044 0.296 0.516
#> SRR1069539 3 0.8426 0.0377 0.148 0.184 0.432 0.220 0.016
#> SRR1343031 3 0.5064 0.5843 0.148 0.012 0.748 0.076 0.016
#> SRR1319690 1 0.3689 0.7655 0.820 0.004 0.128 0.048 0.000
#> SRR1310604 2 0.2946 0.6844 0.004 0.876 0.088 0.028 0.004
#> SRR1327747 1 0.6101 0.4715 0.624 0.020 0.208 0.148 0.000
#> SRR1072456 2 0.2767 0.6821 0.004 0.884 0.088 0.020 0.004
#> SRR1367896 3 0.3005 0.5829 0.028 0.048 0.884 0.000 0.040
#> SRR1480107 1 0.0880 0.7918 0.968 0.000 0.032 0.000 0.000
#> SRR1377756 1 0.2940 0.7880 0.876 0.004 0.072 0.048 0.000
#> SRR1435272 4 0.8189 0.8271 0.276 0.156 0.176 0.392 0.000
#> SRR1089230 4 0.8073 0.8972 0.228 0.148 0.192 0.432 0.000
#> SRR1389522 3 0.2959 0.6151 0.072 0.024 0.884 0.004 0.016
#> SRR1080600 2 0.7563 0.2731 0.000 0.428 0.252 0.268 0.052
#> SRR1086935 4 0.7902 0.8288 0.152 0.176 0.204 0.468 0.000
#> SRR1344060 5 0.6607 0.7708 0.004 0.136 0.028 0.260 0.572
#> SRR1467922 2 0.5122 0.4985 0.000 0.688 0.200 0.112 0.000
#> SRR1090984 3 0.6425 0.3102 0.356 0.036 0.524 0.084 0.000
#> SRR1456991 1 0.0880 0.7918 0.968 0.000 0.032 0.000 0.000
#> SRR1085039 1 0.1741 0.7962 0.936 0.000 0.040 0.024 0.000
#> SRR1069303 1 0.1907 0.7867 0.928 0.000 0.028 0.044 0.000
#> SRR1091500 2 0.4078 0.6009 0.020 0.792 0.028 0.160 0.000
#> SRR1075198 2 0.7269 0.4909 0.092 0.556 0.208 0.140 0.004
#> SRR1086915 1 0.8006 -0.6589 0.380 0.144 0.140 0.336 0.000
#> SRR1499503 2 0.2767 0.6821 0.004 0.884 0.088 0.020 0.004
#> SRR1094312 2 0.2529 0.6825 0.004 0.900 0.056 0.040 0.000
#> SRR1352437 1 0.1907 0.7867 0.928 0.000 0.028 0.044 0.000
#> SRR1436323 3 0.6521 0.3341 0.240 0.020 0.564 0.176 0.000
#> SRR1073507 1 0.1661 0.7919 0.940 0.000 0.036 0.024 0.000
#> SRR1401972 1 0.1907 0.7867 0.928 0.000 0.028 0.044 0.000
#> SRR1415510 2 0.3280 0.6750 0.004 0.848 0.120 0.024 0.004
#> SRR1327279 1 0.2193 0.7883 0.912 0.000 0.060 0.028 0.000
#> SRR1086983 1 0.7129 -0.1091 0.528 0.104 0.092 0.276 0.000
#> SRR1105174 1 0.1399 0.7815 0.952 0.000 0.020 0.028 0.000
#> SRR1468893 1 0.1915 0.7962 0.928 0.000 0.032 0.040 0.000
#> SRR1362555 2 0.7269 0.4909 0.092 0.556 0.208 0.140 0.004
#> SRR1074526 5 0.6165 0.8017 0.036 0.028 0.020 0.360 0.556
#> SRR1326225 2 0.2052 0.6865 0.004 0.912 0.080 0.004 0.000
#> SRR1401933 1 0.4406 0.7159 0.788 0.024 0.060 0.128 0.000
#> SRR1324062 1 0.4514 0.7016 0.756 0.016 0.184 0.044 0.000
#> SRR1102296 1 0.5180 0.4796 0.628 0.032 0.324 0.016 0.000
#> SRR1085087 1 0.2251 0.7945 0.916 0.008 0.052 0.024 0.000
#> SRR1079046 1 0.5808 0.5441 0.692 0.084 0.032 0.180 0.012
#> SRR1328339 3 0.6017 0.4717 0.264 0.060 0.624 0.052 0.000
#> SRR1079782 2 0.7269 0.4909 0.092 0.556 0.208 0.140 0.004
#> SRR1092257 2 0.7144 0.5031 0.096 0.564 0.180 0.160 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.167 0.6538 0.000 0.928 0.060 0.004 0.000 0.008
#> SRR1429287 2 0.697 0.4735 0.004 0.484 0.108 0.248 0.000 0.156
#> SRR1359238 1 0.591 0.3951 0.548 0.000 0.204 0.232 0.000 0.016
#> SRR1309597 3 0.115 0.6736 0.028 0.004 0.960 0.004 0.000 0.004
#> SRR1441398 1 0.345 0.6981 0.792 0.000 0.164 0.044 0.000 0.000
#> SRR1084055 2 0.186 0.6587 0.000 0.920 0.060 0.016 0.000 0.004
#> SRR1417566 3 0.583 0.4103 0.304 0.020 0.560 0.108 0.000 0.008
#> SRR1351857 4 0.525 0.2916 0.440 0.032 0.036 0.492 0.000 0.000
#> SRR1487485 3 0.296 0.6718 0.028 0.036 0.872 0.060 0.000 0.004
#> SRR1335875 3 0.393 0.6651 0.108 0.036 0.808 0.036 0.000 0.012
#> SRR1073947 1 0.256 0.7467 0.868 0.000 0.028 0.104 0.000 0.000
#> SRR1443483 3 0.176 0.6596 0.016 0.008 0.936 0.008 0.000 0.032
#> SRR1346794 1 0.594 0.4968 0.616 0.012 0.180 0.160 0.000 0.032
#> SRR1405245 1 0.325 0.7250 0.808 0.000 0.156 0.036 0.000 0.000
#> SRR1409677 4 0.587 0.6681 0.176 0.052 0.120 0.640 0.000 0.012
#> SRR1095549 1 0.541 0.5913 0.632 0.000 0.140 0.208 0.000 0.020
#> SRR1323788 1 0.467 0.6555 0.724 0.000 0.144 0.112 0.000 0.020
#> SRR1314054 2 0.380 0.6343 0.000 0.808 0.052 0.104 0.000 0.036
#> SRR1077944 1 0.229 0.7634 0.892 0.000 0.072 0.036 0.000 0.000
#> SRR1480587 2 0.254 0.6463 0.000 0.880 0.088 0.008 0.000 0.024
#> SRR1311205 1 0.321 0.7368 0.828 0.000 0.072 0.100 0.000 0.000
#> SRR1076369 1 0.595 0.5185 0.640 0.008 0.068 0.096 0.004 0.184
#> SRR1453549 4 0.661 0.3264 0.128 0.048 0.344 0.468 0.000 0.012
#> SRR1345782 1 0.126 0.7612 0.952 0.000 0.028 0.020 0.000 0.000
#> SRR1447850 2 0.557 0.5328 0.004 0.624 0.048 0.252 0.000 0.072
#> SRR1391553 3 0.429 0.6620 0.104 0.020 0.780 0.084 0.000 0.012
#> SRR1444156 2 0.504 0.4382 0.000 0.716 0.116 0.096 0.000 0.072
#> SRR1471731 3 0.551 0.4068 0.112 0.008 0.532 0.348 0.000 0.000
#> SRR1120987 2 0.764 0.5185 0.080 0.504 0.132 0.140 0.000 0.144
#> SRR1477363 1 0.285 0.7560 0.868 0.000 0.048 0.072 0.000 0.012
#> SRR1391961 5 0.228 0.7494 0.000 0.000 0.004 0.000 0.868 0.128
#> SRR1373879 3 0.433 0.6596 0.108 0.008 0.760 0.116 0.000 0.008
#> SRR1318732 3 0.604 0.5455 0.216 0.048 0.620 0.092 0.000 0.024
#> SRR1091404 1 0.142 0.7641 0.944 0.000 0.032 0.024 0.000 0.000
#> SRR1402109 3 0.433 0.6596 0.108 0.008 0.760 0.116 0.000 0.008
#> SRR1407336 3 0.570 0.5529 0.100 0.008 0.632 0.220 0.000 0.040
#> SRR1097417 3 0.277 0.6435 0.008 0.032 0.892 0.008 0.020 0.040
#> SRR1396227 1 0.475 0.6605 0.708 0.016 0.036 0.216 0.000 0.024
#> SRR1400775 2 0.283 0.6550 0.000 0.876 0.048 0.048 0.000 0.028
#> SRR1392861 4 0.438 0.7246 0.112 0.052 0.068 0.768 0.000 0.000
#> SRR1472929 5 0.233 0.7529 0.000 0.008 0.048 0.004 0.904 0.036
#> SRR1436740 4 0.438 0.7246 0.112 0.052 0.068 0.768 0.000 0.000
#> SRR1477057 1 0.752 -0.0315 0.384 0.356 0.048 0.136 0.000 0.076
#> SRR1311980 3 0.435 0.6577 0.104 0.016 0.772 0.096 0.000 0.012
#> SRR1069400 3 0.448 0.6544 0.068 0.008 0.768 0.116 0.000 0.040
#> SRR1351016 1 0.321 0.7368 0.828 0.000 0.072 0.100 0.000 0.000
#> SRR1096291 3 0.788 0.0606 0.096 0.140 0.352 0.348 0.000 0.064
#> SRR1418145 2 0.844 0.3203 0.144 0.388 0.140 0.180 0.000 0.148
#> SRR1488111 2 0.764 0.5185 0.080 0.504 0.132 0.140 0.000 0.144
#> SRR1370495 1 0.709 0.4021 0.548 0.124 0.052 0.188 0.000 0.088
#> SRR1352639 2 0.806 0.4124 0.204 0.440 0.124 0.112 0.000 0.120
#> SRR1348911 3 0.234 0.6730 0.056 0.036 0.900 0.004 0.000 0.004
#> SRR1467386 1 0.382 0.6975 0.760 0.000 0.044 0.192 0.000 0.004
#> SRR1415956 1 0.168 0.7350 0.928 0.000 0.020 0.052 0.000 0.000
#> SRR1500495 1 0.345 0.6981 0.792 0.000 0.164 0.044 0.000 0.000
#> SRR1405099 1 0.143 0.7389 0.940 0.000 0.012 0.048 0.000 0.000
#> SRR1345585 3 0.529 0.6569 0.088 0.048 0.716 0.124 0.000 0.024
#> SRR1093196 3 0.551 0.4061 0.112 0.008 0.532 0.348 0.000 0.000
#> SRR1466006 2 0.660 0.1280 0.000 0.416 0.132 0.068 0.000 0.384
#> SRR1351557 2 0.208 0.6472 0.000 0.912 0.060 0.016 0.000 0.012
#> SRR1382687 1 0.421 0.7095 0.764 0.000 0.128 0.092 0.000 0.016
#> SRR1375549 1 0.504 0.6391 0.732 0.024 0.048 0.136 0.000 0.060
#> SRR1101765 1 0.603 0.5146 0.632 0.008 0.068 0.104 0.004 0.184
#> SRR1334461 5 0.026 0.8133 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR1094073 2 0.219 0.6448 0.000 0.904 0.068 0.016 0.000 0.012
#> SRR1077549 1 0.253 0.7449 0.868 0.000 0.024 0.108 0.000 0.000
#> SRR1440332 1 0.415 0.6738 0.744 0.000 0.112 0.144 0.000 0.000
#> SRR1454177 4 0.438 0.7246 0.112 0.052 0.068 0.768 0.000 0.000
#> SRR1082447 1 0.163 0.7659 0.932 0.000 0.044 0.024 0.000 0.000
#> SRR1420043 4 0.661 0.3264 0.128 0.048 0.344 0.468 0.000 0.012
#> SRR1432500 1 0.357 0.7081 0.796 0.004 0.052 0.148 0.000 0.000
#> SRR1378045 2 0.636 0.0929 0.000 0.424 0.412 0.088 0.000 0.076
#> SRR1334200 6 0.503 0.7679 0.000 0.116 0.012 0.004 0.188 0.680
#> SRR1069539 3 0.789 0.0660 0.096 0.144 0.352 0.344 0.000 0.064
#> SRR1343031 3 0.506 0.6264 0.096 0.008 0.716 0.140 0.000 0.040
#> SRR1319690 1 0.376 0.7182 0.792 0.000 0.140 0.056 0.000 0.012
#> SRR1310604 2 0.191 0.6547 0.000 0.920 0.060 0.004 0.004 0.012
#> SRR1327747 1 0.578 0.4382 0.596 0.000 0.208 0.168 0.000 0.028
#> SRR1072456 2 0.170 0.6528 0.000 0.928 0.060 0.004 0.004 0.004
#> SRR1367896 3 0.277 0.6435 0.008 0.032 0.892 0.008 0.020 0.040
#> SRR1480107 1 0.126 0.7612 0.952 0.000 0.028 0.020 0.000 0.000
#> SRR1377756 1 0.313 0.7554 0.852 0.000 0.060 0.072 0.000 0.016
#> SRR1435272 4 0.486 0.7190 0.184 0.052 0.056 0.708 0.000 0.000
#> SRR1089230 4 0.435 0.7287 0.132 0.048 0.056 0.764 0.000 0.000
#> SRR1389522 3 0.250 0.6728 0.044 0.012 0.900 0.012 0.000 0.032
#> SRR1080600 2 0.660 0.1280 0.000 0.416 0.132 0.068 0.000 0.384
#> SRR1086935 4 0.382 0.6576 0.056 0.056 0.064 0.820 0.000 0.004
#> SRR1344060 6 0.527 0.7587 0.000 0.112 0.012 0.000 0.256 0.620
#> SRR1467922 2 0.504 0.4382 0.000 0.716 0.116 0.096 0.000 0.072
#> SRR1090984 3 0.600 0.3764 0.316 0.016 0.540 0.112 0.000 0.016
#> SRR1456991 1 0.126 0.7612 0.952 0.000 0.028 0.020 0.000 0.000
#> SRR1085039 1 0.149 0.7640 0.940 0.000 0.036 0.024 0.000 0.000
#> SRR1069303 1 0.258 0.7314 0.848 0.000 0.004 0.144 0.000 0.004
#> SRR1091500 2 0.476 0.5833 0.004 0.732 0.032 0.144 0.000 0.088
#> SRR1075198 2 0.761 0.5101 0.072 0.504 0.152 0.124 0.000 0.148
#> SRR1086915 4 0.520 0.6419 0.296 0.052 0.036 0.616 0.000 0.000
#> SRR1499503 2 0.170 0.6528 0.000 0.928 0.060 0.004 0.004 0.004
#> SRR1094312 2 0.283 0.6550 0.000 0.876 0.048 0.048 0.000 0.028
#> SRR1352437 1 0.258 0.7314 0.848 0.000 0.004 0.144 0.000 0.004
#> SRR1436323 3 0.561 0.3614 0.124 0.008 0.520 0.348 0.000 0.000
#> SRR1073507 1 0.253 0.7449 0.868 0.000 0.024 0.108 0.000 0.000
#> SRR1401972 1 0.258 0.7314 0.848 0.000 0.004 0.144 0.000 0.004
#> SRR1415510 2 0.226 0.6451 0.000 0.892 0.092 0.004 0.004 0.008
#> SRR1327279 1 0.293 0.7378 0.844 0.000 0.044 0.112 0.000 0.000
#> SRR1086983 4 0.525 0.2916 0.440 0.032 0.036 0.492 0.000 0.000
#> SRR1105174 1 0.146 0.7401 0.940 0.000 0.016 0.044 0.000 0.000
#> SRR1468893 1 0.245 0.7666 0.888 0.000 0.020 0.080 0.000 0.012
#> SRR1362555 2 0.761 0.5101 0.072 0.504 0.152 0.124 0.000 0.148
#> SRR1074526 6 0.334 0.5749 0.000 0.000 0.004 0.000 0.260 0.736
#> SRR1326225 2 0.186 0.6587 0.000 0.920 0.060 0.016 0.000 0.004
#> SRR1401933 1 0.466 0.6821 0.732 0.016 0.040 0.184 0.000 0.028
#> SRR1324062 1 0.499 0.6351 0.676 0.000 0.180 0.132 0.000 0.012
#> SRR1102296 1 0.509 0.4942 0.604 0.028 0.328 0.036 0.000 0.004
#> SRR1085087 1 0.298 0.7458 0.844 0.004 0.036 0.116 0.000 0.000
#> SRR1079046 1 0.589 0.5232 0.660 0.052 0.028 0.152 0.000 0.108
#> SRR1328339 3 0.539 0.5259 0.224 0.036 0.656 0.076 0.000 0.008
#> SRR1079782 2 0.761 0.5101 0.072 0.504 0.152 0.124 0.000 0.148
#> SRR1092257 2 0.764 0.5185 0.080 0.504 0.132 0.140 0.000 0.144
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
SD:kmeans
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["SD", "kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.740 0.845 0.940 0.4372 0.566 0.566
#> 3 3 0.448 0.644 0.789 0.4338 0.702 0.511
#> 4 4 0.511 0.484 0.678 0.1472 0.748 0.416
#> 5 5 0.645 0.648 0.801 0.0774 0.845 0.526
#> 6 6 0.658 0.553 0.694 0.0481 0.888 0.595
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.9067 0.000 1.000
#> SRR1429287 2 0.0000 0.9067 0.000 1.000
#> SRR1359238 1 0.0000 0.9419 1.000 0.000
#> SRR1309597 1 0.8861 0.5735 0.696 0.304
#> SRR1441398 1 0.0000 0.9419 1.000 0.000
#> SRR1084055 2 0.0000 0.9067 0.000 1.000
#> SRR1417566 1 0.6531 0.7824 0.832 0.168
#> SRR1351857 1 0.0000 0.9419 1.000 0.000
#> SRR1487485 2 0.9998 -0.0164 0.492 0.508
#> SRR1335875 1 0.6343 0.7916 0.840 0.160
#> SRR1073947 1 0.0000 0.9419 1.000 0.000
#> SRR1443483 1 0.8861 0.5735 0.696 0.304
#> SRR1346794 1 0.0000 0.9419 1.000 0.000
#> SRR1405245 1 0.0000 0.9419 1.000 0.000
#> SRR1409677 1 0.0000 0.9419 1.000 0.000
#> SRR1095549 1 0.0000 0.9419 1.000 0.000
#> SRR1323788 1 0.0000 0.9419 1.000 0.000
#> SRR1314054 2 0.0000 0.9067 0.000 1.000
#> SRR1077944 1 0.0000 0.9419 1.000 0.000
#> SRR1480587 2 0.0000 0.9067 0.000 1.000
#> SRR1311205 1 0.0000 0.9419 1.000 0.000
#> SRR1076369 1 0.0000 0.9419 1.000 0.000
#> SRR1453549 1 0.0000 0.9419 1.000 0.000
#> SRR1345782 1 0.0000 0.9419 1.000 0.000
#> SRR1447850 2 0.0000 0.9067 0.000 1.000
#> SRR1391553 2 0.9977 0.0601 0.472 0.528
#> SRR1444156 2 0.0000 0.9067 0.000 1.000
#> SRR1471731 1 0.6531 0.7824 0.832 0.168
#> SRR1120987 1 0.0000 0.9419 1.000 0.000
#> SRR1477363 1 0.0000 0.9419 1.000 0.000
#> SRR1391961 2 0.9963 0.2047 0.464 0.536
#> SRR1373879 1 0.0000 0.9419 1.000 0.000
#> SRR1318732 1 0.7883 0.6903 0.764 0.236
#> SRR1091404 1 0.0000 0.9419 1.000 0.000
#> SRR1402109 1 0.0000 0.9419 1.000 0.000
#> SRR1407336 1 0.1414 0.9265 0.980 0.020
#> SRR1097417 2 0.2236 0.8821 0.036 0.964
#> SRR1396227 1 0.0000 0.9419 1.000 0.000
#> SRR1400775 2 0.0000 0.9067 0.000 1.000
#> SRR1392861 1 0.0000 0.9419 1.000 0.000
#> SRR1472929 2 0.1414 0.8943 0.020 0.980
#> SRR1436740 1 0.0000 0.9419 1.000 0.000
#> SRR1477057 2 0.0000 0.9067 0.000 1.000
#> SRR1311980 1 0.6343 0.7916 0.840 0.160
#> SRR1069400 1 0.8813 0.5812 0.700 0.300
#> SRR1351016 1 0.0000 0.9419 1.000 0.000
#> SRR1096291 1 0.0000 0.9419 1.000 0.000
#> SRR1418145 1 0.0000 0.9419 1.000 0.000
#> SRR1488111 2 0.8861 0.5334 0.304 0.696
#> SRR1370495 1 0.0000 0.9419 1.000 0.000
#> SRR1352639 1 0.0000 0.9419 1.000 0.000
#> SRR1348911 1 0.9000 0.5497 0.684 0.316
#> SRR1467386 1 0.0000 0.9419 1.000 0.000
#> SRR1415956 1 0.0000 0.9419 1.000 0.000
#> SRR1500495 1 0.0000 0.9419 1.000 0.000
#> SRR1405099 1 0.0000 0.9419 1.000 0.000
#> SRR1345585 2 0.9998 -0.0164 0.492 0.508
#> SRR1093196 1 0.6531 0.7824 0.832 0.168
#> SRR1466006 2 0.0000 0.9067 0.000 1.000
#> SRR1351557 2 0.0000 0.9067 0.000 1.000
#> SRR1382687 1 0.0000 0.9419 1.000 0.000
#> SRR1375549 1 0.0000 0.9419 1.000 0.000
#> SRR1101765 1 0.0000 0.9419 1.000 0.000
#> SRR1334461 2 0.9996 0.1322 0.488 0.512
#> SRR1094073 2 0.0000 0.9067 0.000 1.000
#> SRR1077549 1 0.0000 0.9419 1.000 0.000
#> SRR1440332 1 0.0000 0.9419 1.000 0.000
#> SRR1454177 1 0.0000 0.9419 1.000 0.000
#> SRR1082447 1 0.0000 0.9419 1.000 0.000
#> SRR1420043 1 0.0000 0.9419 1.000 0.000
#> SRR1432500 1 0.0000 0.9419 1.000 0.000
#> SRR1378045 2 0.0000 0.9067 0.000 1.000
#> SRR1334200 2 0.1184 0.8971 0.016 0.984
#> SRR1069539 1 0.9922 0.1947 0.552 0.448
#> SRR1343031 1 0.0000 0.9419 1.000 0.000
#> SRR1319690 1 0.0000 0.9419 1.000 0.000
#> SRR1310604 2 0.0000 0.9067 0.000 1.000
#> SRR1327747 1 0.0000 0.9419 1.000 0.000
#> SRR1072456 2 0.0000 0.9067 0.000 1.000
#> SRR1367896 1 0.9000 0.5497 0.684 0.316
#> SRR1480107 1 0.0000 0.9419 1.000 0.000
#> SRR1377756 1 0.0000 0.9419 1.000 0.000
#> SRR1435272 1 0.0000 0.9419 1.000 0.000
#> SRR1089230 1 0.0000 0.9419 1.000 0.000
#> SRR1389522 1 0.2603 0.9064 0.956 0.044
#> SRR1080600 2 0.0000 0.9067 0.000 1.000
#> SRR1086935 1 0.8555 0.6159 0.720 0.280
#> SRR1344060 2 0.2948 0.8710 0.052 0.948
#> SRR1467922 2 0.0000 0.9067 0.000 1.000
#> SRR1090984 1 0.0000 0.9419 1.000 0.000
#> SRR1456991 1 0.0000 0.9419 1.000 0.000
#> SRR1085039 1 0.0000 0.9419 1.000 0.000
#> SRR1069303 1 0.0000 0.9419 1.000 0.000
#> SRR1091500 2 0.0000 0.9067 0.000 1.000
#> SRR1075198 2 0.0000 0.9067 0.000 1.000
#> SRR1086915 1 0.0000 0.9419 1.000 0.000
#> SRR1499503 2 0.0000 0.9067 0.000 1.000
#> SRR1094312 2 0.0000 0.9067 0.000 1.000
#> SRR1352437 1 0.0000 0.9419 1.000 0.000
#> SRR1436323 1 0.0000 0.9419 1.000 0.000
#> SRR1073507 1 0.0000 0.9419 1.000 0.000
#> SRR1401972 1 0.0000 0.9419 1.000 0.000
#> SRR1415510 2 0.0000 0.9067 0.000 1.000
#> SRR1327279 1 0.0000 0.9419 1.000 0.000
#> SRR1086983 1 0.0000 0.9419 1.000 0.000
#> SRR1105174 1 0.0000 0.9419 1.000 0.000
#> SRR1468893 1 0.0000 0.9419 1.000 0.000
#> SRR1362555 2 0.0376 0.9045 0.004 0.996
#> SRR1074526 2 0.7299 0.7090 0.204 0.796
#> SRR1326225 2 0.0000 0.9067 0.000 1.000
#> SRR1401933 1 0.0000 0.9419 1.000 0.000
#> SRR1324062 1 0.0000 0.9419 1.000 0.000
#> SRR1102296 1 0.0000 0.9419 1.000 0.000
#> SRR1085087 1 0.0000 0.9419 1.000 0.000
#> SRR1079046 1 0.9996 -0.0859 0.512 0.488
#> SRR1328339 1 0.7139 0.7479 0.804 0.196
#> SRR1079782 2 0.0000 0.9067 0.000 1.000
#> SRR1092257 2 0.0000 0.9067 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0424 0.9368 0.000 0.992 0.008
#> SRR1429287 2 0.2165 0.9217 0.000 0.936 0.064
#> SRR1359238 1 0.6307 -0.2875 0.512 0.000 0.488
#> SRR1309597 3 0.7536 0.6221 0.304 0.064 0.632
#> SRR1441398 1 0.3941 0.6262 0.844 0.000 0.156
#> SRR1084055 2 0.1411 0.9289 0.000 0.964 0.036
#> SRR1417566 1 0.7389 -0.2084 0.504 0.032 0.464
#> SRR1351857 1 0.5291 0.4986 0.732 0.000 0.268
#> SRR1487485 3 0.6981 0.6173 0.068 0.228 0.704
#> SRR1335875 3 0.6772 0.6744 0.304 0.032 0.664
#> SRR1073947 1 0.3412 0.6772 0.876 0.000 0.124
#> SRR1443483 3 0.7015 0.6941 0.240 0.064 0.696
#> SRR1346794 1 0.4605 0.5922 0.796 0.000 0.204
#> SRR1405245 1 0.4121 0.6126 0.832 0.000 0.168
#> SRR1409677 3 0.6215 0.4761 0.428 0.000 0.572
#> SRR1095549 1 0.4887 0.5440 0.772 0.000 0.228
#> SRR1323788 1 0.3686 0.6406 0.860 0.000 0.140
#> SRR1314054 2 0.0237 0.9373 0.000 0.996 0.004
#> SRR1077944 1 0.0892 0.7137 0.980 0.000 0.020
#> SRR1480587 2 0.0424 0.9368 0.000 0.992 0.008
#> SRR1311205 1 0.2537 0.6916 0.920 0.000 0.080
#> SRR1076369 1 0.6081 0.4329 0.652 0.004 0.344
#> SRR1453549 3 0.4796 0.7370 0.220 0.000 0.780
#> SRR1345782 1 0.2165 0.7042 0.936 0.000 0.064
#> SRR1447850 2 0.1860 0.9161 0.000 0.948 0.052
#> SRR1391553 3 0.6096 0.5405 0.016 0.280 0.704
#> SRR1444156 2 0.0592 0.9370 0.000 0.988 0.012
#> SRR1471731 3 0.5503 0.7400 0.208 0.020 0.772
#> SRR1120987 1 0.6664 -0.0254 0.528 0.008 0.464
#> SRR1477363 1 0.1031 0.7147 0.976 0.000 0.024
#> SRR1391961 1 0.8608 0.3955 0.604 0.192 0.204
#> SRR1373879 3 0.4887 0.7358 0.228 0.000 0.772
#> SRR1318732 1 0.8070 -0.3021 0.468 0.064 0.468
#> SRR1091404 1 0.0892 0.7148 0.980 0.000 0.020
#> SRR1402109 3 0.5016 0.7347 0.240 0.000 0.760
#> SRR1407336 3 0.5202 0.7401 0.220 0.008 0.772
#> SRR1097417 3 0.6254 0.4703 0.056 0.188 0.756
#> SRR1396227 1 0.2356 0.7058 0.928 0.000 0.072
#> SRR1400775 2 0.0237 0.9373 0.000 0.996 0.004
#> SRR1392861 3 0.5058 0.7287 0.244 0.000 0.756
#> SRR1472929 2 0.7801 0.6719 0.088 0.636 0.276
#> SRR1436740 3 0.6192 0.4877 0.420 0.000 0.580
#> SRR1477057 2 0.2165 0.9222 0.000 0.936 0.064
#> SRR1311980 3 0.5643 0.7363 0.220 0.020 0.760
#> SRR1069400 3 0.6764 0.7079 0.224 0.060 0.716
#> SRR1351016 1 0.3116 0.6934 0.892 0.000 0.108
#> SRR1096291 3 0.6033 0.6386 0.336 0.004 0.660
#> SRR1418145 1 0.6483 0.0215 0.544 0.004 0.452
#> SRR1488111 3 0.6952 0.3345 0.024 0.376 0.600
#> SRR1370495 1 0.2774 0.6880 0.920 0.008 0.072
#> SRR1352639 1 0.2301 0.7156 0.936 0.004 0.060
#> SRR1348911 3 0.7053 0.6844 0.244 0.064 0.692
#> SRR1467386 1 0.4062 0.6454 0.836 0.000 0.164
#> SRR1415956 1 0.2165 0.6996 0.936 0.000 0.064
#> SRR1500495 1 0.3879 0.6307 0.848 0.000 0.152
#> SRR1405099 1 0.0747 0.7142 0.984 0.000 0.016
#> SRR1345585 3 0.7263 0.6183 0.084 0.224 0.692
#> SRR1093196 3 0.5597 0.7411 0.216 0.020 0.764
#> SRR1466006 2 0.0747 0.9372 0.000 0.984 0.016
#> SRR1351557 2 0.0424 0.9373 0.000 0.992 0.008
#> SRR1382687 1 0.4346 0.6341 0.816 0.000 0.184
#> SRR1375549 1 0.2066 0.7004 0.940 0.000 0.060
#> SRR1101765 1 0.3038 0.6738 0.896 0.000 0.104
#> SRR1334461 1 0.8608 0.3955 0.604 0.192 0.204
#> SRR1094073 2 0.0592 0.9370 0.000 0.988 0.012
#> SRR1077549 3 0.6307 0.3149 0.488 0.000 0.512
#> SRR1440332 3 0.6126 0.5271 0.400 0.000 0.600
#> SRR1454177 3 0.5926 0.6058 0.356 0.000 0.644
#> SRR1082447 1 0.0424 0.7152 0.992 0.000 0.008
#> SRR1420043 3 0.5016 0.7332 0.240 0.000 0.760
#> SRR1432500 1 0.5363 0.4735 0.724 0.000 0.276
#> SRR1378045 2 0.4887 0.6935 0.000 0.772 0.228
#> SRR1334200 2 0.7613 0.7155 0.116 0.680 0.204
#> SRR1069539 3 0.6910 0.6844 0.144 0.120 0.736
#> SRR1343031 3 0.4974 0.7329 0.236 0.000 0.764
#> SRR1319690 1 0.6140 0.0242 0.596 0.000 0.404
#> SRR1310604 2 0.1411 0.9327 0.000 0.964 0.036
#> SRR1327747 3 0.6359 0.5235 0.404 0.004 0.592
#> SRR1072456 2 0.0592 0.9372 0.000 0.988 0.012
#> SRR1367896 3 0.6542 0.7006 0.204 0.060 0.736
#> SRR1480107 1 0.0424 0.7153 0.992 0.000 0.008
#> SRR1377756 1 0.2537 0.6973 0.920 0.000 0.080
#> SRR1435272 3 0.6008 0.5897 0.372 0.000 0.628
#> SRR1089230 3 0.6307 0.2988 0.488 0.000 0.512
#> SRR1389522 3 0.6818 0.6030 0.348 0.024 0.628
#> SRR1080600 2 0.1643 0.9322 0.000 0.956 0.044
#> SRR1086935 3 0.7878 0.6457 0.160 0.172 0.668
#> SRR1344060 2 0.8981 0.5476 0.228 0.564 0.208
#> SRR1467922 2 0.0592 0.9370 0.000 0.988 0.012
#> SRR1090984 1 0.4605 0.5770 0.796 0.000 0.204
#> SRR1456991 1 0.0892 0.7148 0.980 0.000 0.020
#> SRR1085039 1 0.0592 0.7156 0.988 0.000 0.012
#> SRR1069303 1 0.3941 0.6583 0.844 0.000 0.156
#> SRR1091500 2 0.1163 0.9323 0.000 0.972 0.028
#> SRR1075198 2 0.1529 0.9317 0.000 0.960 0.040
#> SRR1086915 1 0.5905 0.3108 0.648 0.000 0.352
#> SRR1499503 2 0.0424 0.9368 0.000 0.992 0.008
#> SRR1094312 2 0.0237 0.9373 0.000 0.996 0.004
#> SRR1352437 1 0.4796 0.5930 0.780 0.000 0.220
#> SRR1436323 3 0.5016 0.7336 0.240 0.000 0.760
#> SRR1073507 1 0.4062 0.6454 0.836 0.000 0.164
#> SRR1401972 1 0.3941 0.6583 0.844 0.000 0.156
#> SRR1415510 2 0.0424 0.9368 0.000 0.992 0.008
#> SRR1327279 1 0.5835 0.3346 0.660 0.000 0.340
#> SRR1086983 1 0.5706 0.3876 0.680 0.000 0.320
#> SRR1105174 1 0.0892 0.7148 0.980 0.000 0.020
#> SRR1468893 1 0.0747 0.7147 0.984 0.000 0.016
#> SRR1362555 2 0.2982 0.9100 0.024 0.920 0.056
#> SRR1074526 1 0.9442 0.1918 0.496 0.288 0.216
#> SRR1326225 2 0.0592 0.9370 0.000 0.988 0.012
#> SRR1401933 1 0.3619 0.6747 0.864 0.000 0.136
#> SRR1324062 1 0.5733 0.3803 0.676 0.000 0.324
#> SRR1102296 1 0.1411 0.7157 0.964 0.000 0.036
#> SRR1085087 1 0.4346 0.6302 0.816 0.000 0.184
#> SRR1079046 1 0.5348 0.5705 0.796 0.028 0.176
#> SRR1328339 1 0.5899 0.4934 0.736 0.020 0.244
#> SRR1079782 2 0.1964 0.9239 0.000 0.944 0.056
#> SRR1092257 2 0.2261 0.9179 0.000 0.932 0.068
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0188 0.9664 0.004 0.996 0.000 0.000
#> SRR1429287 2 0.3272 0.9240 0.080 0.884 0.024 0.012
#> SRR1359238 4 0.3547 0.5463 0.016 0.000 0.144 0.840
#> SRR1309597 3 0.2716 0.7280 0.052 0.008 0.912 0.028
#> SRR1441398 1 0.7812 0.4097 0.396 0.000 0.256 0.348
#> SRR1084055 2 0.0672 0.9644 0.008 0.984 0.008 0.000
#> SRR1417566 3 0.5574 0.5134 0.124 0.000 0.728 0.148
#> SRR1351857 4 0.3037 0.5471 0.020 0.000 0.100 0.880
#> SRR1487485 3 0.4068 0.7144 0.004 0.092 0.840 0.064
#> SRR1335875 3 0.3117 0.7049 0.028 0.000 0.880 0.092
#> SRR1073947 4 0.5496 0.1976 0.232 0.000 0.064 0.704
#> SRR1443483 3 0.2433 0.7363 0.012 0.008 0.920 0.060
#> SRR1346794 1 0.7795 0.4058 0.420 0.000 0.268 0.312
#> SRR1405245 1 0.7916 0.3721 0.352 0.000 0.336 0.312
#> SRR1409677 4 0.5136 0.4142 0.048 0.000 0.224 0.728
#> SRR1095549 1 0.7919 0.3115 0.352 0.000 0.324 0.324
#> SRR1323788 1 0.7782 0.4006 0.396 0.000 0.244 0.360
#> SRR1314054 2 0.0524 0.9640 0.004 0.988 0.008 0.000
#> SRR1077944 4 0.6452 -0.3845 0.464 0.000 0.068 0.468
#> SRR1480587 2 0.0188 0.9664 0.004 0.996 0.000 0.000
#> SRR1311205 4 0.7314 -0.4077 0.424 0.000 0.152 0.424
#> SRR1076369 1 0.6973 0.3406 0.556 0.000 0.300 0.144
#> SRR1453549 3 0.3528 0.6942 0.000 0.000 0.808 0.192
#> SRR1345782 4 0.7154 -0.4019 0.432 0.000 0.132 0.436
#> SRR1447850 2 0.2700 0.9266 0.044 0.916 0.020 0.020
#> SRR1391553 3 0.4165 0.6762 0.012 0.140 0.824 0.024
#> SRR1444156 2 0.0188 0.9657 0.004 0.996 0.000 0.000
#> SRR1471731 3 0.4677 0.5902 0.004 0.000 0.680 0.316
#> SRR1120987 4 0.4872 0.4976 0.076 0.000 0.148 0.776
#> SRR1477363 4 0.6332 -0.3520 0.452 0.000 0.060 0.488
#> SRR1391961 1 0.5270 0.3346 0.788 0.108 0.036 0.068
#> SRR1373879 3 0.2408 0.7281 0.000 0.000 0.896 0.104
#> SRR1318732 3 0.5953 0.5447 0.172 0.012 0.716 0.100
#> SRR1091404 1 0.6268 0.3887 0.496 0.000 0.056 0.448
#> SRR1402109 3 0.3688 0.6825 0.000 0.000 0.792 0.208
#> SRR1407336 3 0.4356 0.6142 0.000 0.000 0.708 0.292
#> SRR1097417 3 0.4462 0.6069 0.164 0.044 0.792 0.000
#> SRR1396227 4 0.5805 -0.1645 0.388 0.000 0.036 0.576
#> SRR1400775 2 0.0336 0.9650 0.000 0.992 0.008 0.000
#> SRR1392861 4 0.5869 0.0843 0.044 0.000 0.360 0.596
#> SRR1472929 1 0.6398 -0.1349 0.576 0.344 0.080 0.000
#> SRR1436740 4 0.4998 0.4398 0.052 0.000 0.200 0.748
#> SRR1477057 2 0.2945 0.9362 0.056 0.904 0.024 0.016
#> SRR1311980 3 0.2984 0.7264 0.028 0.000 0.888 0.084
#> SRR1069400 3 0.2053 0.7345 0.004 0.000 0.924 0.072
#> SRR1351016 4 0.6407 -0.1232 0.332 0.000 0.084 0.584
#> SRR1096291 4 0.5810 0.3251 0.064 0.000 0.276 0.660
#> SRR1418145 4 0.4938 0.4952 0.080 0.000 0.148 0.772
#> SRR1488111 4 0.8835 0.0774 0.076 0.216 0.240 0.468
#> SRR1370495 1 0.5957 0.3949 0.588 0.000 0.048 0.364
#> SRR1352639 4 0.6417 -0.1617 0.388 0.000 0.072 0.540
#> SRR1348911 3 0.2790 0.7239 0.012 0.012 0.904 0.072
#> SRR1467386 4 0.2412 0.4890 0.084 0.000 0.008 0.908
#> SRR1415956 1 0.6919 0.4249 0.500 0.000 0.112 0.388
#> SRR1500495 1 0.7803 0.4098 0.396 0.000 0.252 0.352
#> SRR1405099 1 0.6265 0.3896 0.500 0.000 0.056 0.444
#> SRR1345585 3 0.3400 0.7257 0.008 0.068 0.880 0.044
#> SRR1093196 3 0.4406 0.6088 0.000 0.000 0.700 0.300
#> SRR1466006 2 0.0188 0.9664 0.004 0.996 0.000 0.000
#> SRR1351557 2 0.0188 0.9664 0.004 0.996 0.000 0.000
#> SRR1382687 4 0.3485 0.4424 0.116 0.000 0.028 0.856
#> SRR1375549 1 0.5597 0.3346 0.516 0.000 0.020 0.464
#> SRR1101765 1 0.5213 0.3936 0.652 0.000 0.020 0.328
#> SRR1334461 1 0.5270 0.3346 0.788 0.108 0.036 0.068
#> SRR1094073 2 0.0000 0.9661 0.000 1.000 0.000 0.000
#> SRR1077549 4 0.3591 0.5316 0.008 0.000 0.168 0.824
#> SRR1440332 4 0.5213 0.3544 0.020 0.000 0.328 0.652
#> SRR1454177 4 0.5472 0.3025 0.044 0.000 0.280 0.676
#> SRR1082447 1 0.6268 0.3887 0.496 0.000 0.056 0.448
#> SRR1420043 3 0.4356 0.6132 0.000 0.000 0.708 0.292
#> SRR1432500 4 0.3312 0.5224 0.072 0.000 0.052 0.876
#> SRR1378045 3 0.4936 0.3373 0.004 0.372 0.624 0.000
#> SRR1334200 1 0.6069 -0.1536 0.600 0.352 0.040 0.008
#> SRR1069539 3 0.7257 0.2655 0.068 0.032 0.500 0.400
#> SRR1343031 3 0.3726 0.6796 0.000 0.000 0.788 0.212
#> SRR1319690 3 0.6835 0.2662 0.252 0.000 0.592 0.156
#> SRR1310604 2 0.2021 0.9473 0.040 0.936 0.024 0.000
#> SRR1327747 3 0.6523 0.5725 0.156 0.000 0.636 0.208
#> SRR1072456 2 0.0188 0.9664 0.004 0.996 0.000 0.000
#> SRR1367896 3 0.2099 0.7335 0.012 0.008 0.936 0.044
#> SRR1480107 1 0.6277 0.3605 0.476 0.000 0.056 0.468
#> SRR1377756 4 0.4546 0.2339 0.256 0.000 0.012 0.732
#> SRR1435272 4 0.5235 0.3901 0.048 0.000 0.236 0.716
#> SRR1089230 4 0.4544 0.4881 0.048 0.000 0.164 0.788
#> SRR1389522 3 0.2660 0.7195 0.056 0.000 0.908 0.036
#> SRR1080600 2 0.2521 0.9339 0.064 0.912 0.024 0.000
#> SRR1086935 4 0.6895 0.1693 0.056 0.040 0.300 0.604
#> SRR1344060 1 0.5988 -0.0697 0.628 0.324 0.036 0.012
#> SRR1467922 2 0.0188 0.9657 0.004 0.996 0.000 0.000
#> SRR1090984 3 0.7646 -0.2171 0.292 0.000 0.464 0.244
#> SRR1456991 1 0.6337 0.3606 0.476 0.000 0.060 0.464
#> SRR1085039 4 0.6229 -0.2836 0.416 0.000 0.056 0.528
#> SRR1069303 4 0.4199 0.3889 0.164 0.000 0.032 0.804
#> SRR1091500 2 0.0804 0.9634 0.012 0.980 0.008 0.000
#> SRR1075198 2 0.2075 0.9472 0.044 0.936 0.016 0.004
#> SRR1086915 4 0.3634 0.5428 0.048 0.000 0.096 0.856
#> SRR1499503 2 0.0188 0.9664 0.004 0.996 0.000 0.000
#> SRR1094312 2 0.0336 0.9650 0.000 0.992 0.008 0.000
#> SRR1352437 4 0.3383 0.4972 0.076 0.000 0.052 0.872
#> SRR1436323 3 0.4905 0.5189 0.004 0.000 0.632 0.364
#> SRR1073507 4 0.2611 0.4793 0.096 0.000 0.008 0.896
#> SRR1401972 4 0.4199 0.3889 0.164 0.000 0.032 0.804
#> SRR1415510 2 0.0188 0.9664 0.004 0.996 0.000 0.000
#> SRR1327279 4 0.4890 0.4982 0.080 0.000 0.144 0.776
#> SRR1086983 4 0.2805 0.5474 0.012 0.000 0.100 0.888
#> SRR1105174 1 0.6268 0.3887 0.496 0.000 0.056 0.448
#> SRR1468893 4 0.5503 -0.3103 0.468 0.000 0.016 0.516
#> SRR1362555 2 0.3143 0.9207 0.080 0.888 0.024 0.008
#> SRR1074526 1 0.5412 0.3169 0.768 0.140 0.068 0.024
#> SRR1326225 2 0.0336 0.9650 0.000 0.992 0.008 0.000
#> SRR1401933 4 0.4281 0.3835 0.180 0.000 0.028 0.792
#> SRR1324062 4 0.3754 0.5197 0.064 0.000 0.084 0.852
#> SRR1102296 4 0.6906 -0.3305 0.408 0.000 0.108 0.484
#> SRR1085087 4 0.1867 0.4956 0.072 0.000 0.000 0.928
#> SRR1079046 1 0.4606 0.4165 0.724 0.000 0.012 0.264
#> SRR1328339 3 0.7486 -0.1156 0.272 0.000 0.500 0.228
#> SRR1079782 2 0.3398 0.9163 0.080 0.880 0.020 0.020
#> SRR1092257 2 0.4008 0.8991 0.092 0.852 0.024 0.032
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0162 0.90426 0.000 0.996 0.000 0.000 0.004
#> SRR1429287 2 0.4747 0.77085 0.000 0.744 0.004 0.128 0.124
#> SRR1359238 4 0.4080 0.65032 0.212 0.000 0.012 0.760 0.016
#> SRR1309597 3 0.2253 0.75255 0.028 0.000 0.920 0.036 0.016
#> SRR1441398 1 0.3830 0.65512 0.820 0.000 0.124 0.016 0.040
#> SRR1084055 2 0.0955 0.90406 0.000 0.968 0.004 0.000 0.028
#> SRR1417566 3 0.4967 0.57999 0.204 0.000 0.716 0.012 0.068
#> SRR1351857 4 0.3446 0.74143 0.144 0.000 0.016 0.828 0.012
#> SRR1487485 3 0.2270 0.75234 0.000 0.012 0.916 0.052 0.020
#> SRR1335875 3 0.1787 0.74250 0.032 0.000 0.940 0.012 0.016
#> SRR1073947 1 0.5377 0.49246 0.664 0.000 0.024 0.260 0.052
#> SRR1443483 3 0.2228 0.75360 0.008 0.000 0.916 0.056 0.020
#> SRR1346794 1 0.5371 0.56402 0.700 0.000 0.200 0.032 0.068
#> SRR1405245 1 0.4054 0.64620 0.800 0.000 0.144 0.016 0.040
#> SRR1409677 4 0.2308 0.80606 0.048 0.000 0.036 0.912 0.004
#> SRR1095549 1 0.5720 0.54750 0.672 0.000 0.212 0.076 0.040
#> SRR1323788 1 0.4233 0.66501 0.804 0.000 0.108 0.024 0.064
#> SRR1314054 2 0.0955 0.90038 0.000 0.968 0.004 0.000 0.028
#> SRR1077944 1 0.0854 0.71054 0.976 0.000 0.004 0.008 0.012
#> SRR1480587 2 0.0703 0.90302 0.000 0.976 0.000 0.000 0.024
#> SRR1311205 1 0.2677 0.70604 0.896 0.000 0.064 0.020 0.020
#> SRR1076369 1 0.7318 0.11581 0.436 0.000 0.200 0.040 0.324
#> SRR1453549 3 0.3475 0.70323 0.004 0.000 0.804 0.180 0.012
#> SRR1345782 1 0.2204 0.70940 0.920 0.000 0.048 0.016 0.016
#> SRR1447850 2 0.4051 0.79235 0.000 0.816 0.020 0.096 0.068
#> SRR1391553 3 0.2555 0.72876 0.004 0.024 0.908 0.016 0.048
#> SRR1444156 2 0.0566 0.90321 0.000 0.984 0.004 0.000 0.012
#> SRR1471731 3 0.5010 0.44180 0.008 0.000 0.592 0.376 0.024
#> SRR1120987 4 0.1948 0.78282 0.024 0.000 0.008 0.932 0.036
#> SRR1477363 1 0.1412 0.71003 0.952 0.000 0.004 0.008 0.036
#> SRR1391961 5 0.4619 0.88659 0.148 0.068 0.012 0.004 0.768
#> SRR1373879 3 0.2517 0.75010 0.004 0.000 0.884 0.104 0.008
#> SRR1318732 3 0.5330 0.53857 0.248 0.000 0.668 0.012 0.072
#> SRR1091404 1 0.1483 0.70586 0.952 0.000 0.012 0.008 0.028
#> SRR1402109 3 0.4159 0.62235 0.008 0.000 0.716 0.268 0.008
#> SRR1407336 3 0.4813 0.45677 0.004 0.000 0.600 0.376 0.020
#> SRR1097417 3 0.3236 0.66684 0.004 0.004 0.844 0.016 0.132
#> SRR1396227 1 0.4254 0.69100 0.808 0.000 0.032 0.068 0.092
#> SRR1400775 2 0.0451 0.90358 0.000 0.988 0.004 0.000 0.008
#> SRR1392861 4 0.2352 0.76841 0.004 0.000 0.092 0.896 0.008
#> SRR1472929 5 0.4360 0.86139 0.024 0.148 0.036 0.004 0.788
#> SRR1436740 4 0.2347 0.80371 0.056 0.000 0.016 0.912 0.016
#> SRR1477057 2 0.4390 0.81445 0.008 0.792 0.016 0.048 0.136
#> SRR1311980 3 0.2273 0.74289 0.024 0.000 0.920 0.032 0.024
#> SRR1069400 3 0.2228 0.75360 0.008 0.000 0.916 0.056 0.020
#> SRR1351016 1 0.4160 0.65542 0.804 0.000 0.024 0.124 0.048
#> SRR1096291 4 0.2625 0.77003 0.012 0.000 0.048 0.900 0.040
#> SRR1418145 4 0.2456 0.76583 0.024 0.000 0.008 0.904 0.064
#> SRR1488111 4 0.5203 0.58212 0.004 0.112 0.052 0.752 0.080
#> SRR1370495 1 0.4584 0.54113 0.716 0.000 0.000 0.056 0.228
#> SRR1352639 1 0.3812 0.66836 0.824 0.000 0.008 0.076 0.092
#> SRR1348911 3 0.0854 0.74770 0.012 0.000 0.976 0.008 0.004
#> SRR1467386 1 0.4890 0.19884 0.524 0.000 0.000 0.452 0.024
#> SRR1415956 1 0.1808 0.70237 0.936 0.000 0.012 0.008 0.044
#> SRR1500495 1 0.3531 0.67093 0.844 0.000 0.100 0.016 0.040
#> SRR1405099 1 0.1124 0.70604 0.960 0.000 0.004 0.000 0.036
#> SRR1345585 3 0.1893 0.74694 0.000 0.012 0.936 0.024 0.028
#> SRR1093196 3 0.4824 0.43392 0.004 0.000 0.596 0.380 0.020
#> SRR1466006 2 0.1410 0.89319 0.000 0.940 0.000 0.000 0.060
#> SRR1351557 2 0.0000 0.90465 0.000 1.000 0.000 0.000 0.000
#> SRR1382687 1 0.4636 0.65175 0.756 0.000 0.016 0.168 0.060
#> SRR1375549 1 0.2429 0.69931 0.900 0.000 0.004 0.020 0.076
#> SRR1101765 1 0.6065 0.24688 0.560 0.000 0.004 0.132 0.304
#> SRR1334461 5 0.4619 0.88659 0.148 0.068 0.012 0.004 0.768
#> SRR1094073 2 0.0451 0.90397 0.000 0.988 0.004 0.000 0.008
#> SRR1077549 4 0.4121 0.64116 0.208 0.000 0.008 0.760 0.024
#> SRR1440332 1 0.6796 0.06530 0.428 0.000 0.140 0.408 0.024
#> SRR1454177 4 0.2054 0.80030 0.028 0.000 0.052 0.920 0.000
#> SRR1082447 1 0.1644 0.70615 0.940 0.000 0.004 0.008 0.048
#> SRR1420043 3 0.4541 0.46096 0.004 0.000 0.608 0.380 0.008
#> SRR1432500 1 0.4999 0.10740 0.504 0.000 0.008 0.472 0.016
#> SRR1378045 3 0.4007 0.55219 0.000 0.220 0.756 0.004 0.020
#> SRR1334200 5 0.3864 0.87501 0.028 0.132 0.008 0.012 0.820
#> SRR1069539 4 0.5025 0.48741 0.004 0.000 0.212 0.700 0.084
#> SRR1343031 3 0.4420 0.62624 0.012 0.000 0.712 0.260 0.016
#> SRR1319690 3 0.5937 0.21600 0.408 0.000 0.512 0.020 0.060
#> SRR1310604 2 0.2959 0.85283 0.000 0.864 0.000 0.036 0.100
#> SRR1327747 3 0.7612 0.41960 0.264 0.000 0.444 0.228 0.064
#> SRR1072456 2 0.0963 0.90028 0.000 0.964 0.000 0.000 0.036
#> SRR1367896 3 0.1646 0.74998 0.004 0.000 0.944 0.032 0.020
#> SRR1480107 1 0.1405 0.70740 0.956 0.000 0.008 0.016 0.020
#> SRR1377756 1 0.3670 0.70742 0.832 0.000 0.008 0.100 0.060
#> SRR1435272 4 0.1997 0.80486 0.036 0.000 0.040 0.924 0.000
#> SRR1089230 4 0.2095 0.80256 0.060 0.000 0.012 0.920 0.008
#> SRR1389522 3 0.2263 0.74768 0.036 0.000 0.920 0.024 0.020
#> SRR1080600 2 0.3506 0.83125 0.000 0.824 0.000 0.044 0.132
#> SRR1086935 4 0.2663 0.78657 0.012 0.008 0.064 0.900 0.016
#> SRR1344060 5 0.3875 0.88748 0.048 0.120 0.008 0.004 0.820
#> SRR1467922 2 0.0566 0.90321 0.000 0.984 0.004 0.000 0.012
#> SRR1090984 1 0.5809 0.00443 0.468 0.000 0.456 0.008 0.068
#> SRR1456991 1 0.1314 0.70853 0.960 0.000 0.016 0.012 0.012
#> SRR1085039 1 0.2027 0.71107 0.928 0.000 0.008 0.040 0.024
#> SRR1069303 1 0.6056 0.34134 0.560 0.000 0.028 0.344 0.068
#> SRR1091500 2 0.0865 0.89997 0.000 0.972 0.004 0.000 0.024
#> SRR1075198 2 0.3934 0.81566 0.000 0.800 0.000 0.076 0.124
#> SRR1086915 4 0.2050 0.80046 0.064 0.000 0.008 0.920 0.008
#> SRR1499503 2 0.0671 0.90258 0.000 0.980 0.004 0.000 0.016
#> SRR1094312 2 0.0324 0.90403 0.000 0.992 0.004 0.000 0.004
#> SRR1352437 1 0.6200 0.17868 0.488 0.000 0.028 0.416 0.068
#> SRR1436323 4 0.5368 -0.21638 0.008 0.000 0.476 0.480 0.036
#> SRR1073507 1 0.5040 0.17067 0.516 0.000 0.004 0.456 0.024
#> SRR1401972 1 0.6056 0.34134 0.560 0.000 0.028 0.344 0.068
#> SRR1415510 2 0.0771 0.90261 0.000 0.976 0.004 0.000 0.020
#> SRR1327279 1 0.5903 0.16464 0.500 0.000 0.056 0.424 0.020
#> SRR1086983 4 0.3449 0.71056 0.164 0.000 0.000 0.812 0.024
#> SRR1105174 1 0.1682 0.70461 0.940 0.000 0.012 0.004 0.044
#> SRR1468893 1 0.2046 0.70945 0.916 0.000 0.000 0.016 0.068
#> SRR1362555 2 0.4138 0.79911 0.000 0.780 0.000 0.072 0.148
#> SRR1074526 5 0.4339 0.88376 0.116 0.052 0.016 0.012 0.804
#> SRR1326225 2 0.0579 0.90373 0.000 0.984 0.008 0.000 0.008
#> SRR1401933 1 0.6239 0.37445 0.536 0.000 0.028 0.356 0.080
#> SRR1324062 1 0.6169 0.13567 0.464 0.000 0.028 0.444 0.064
#> SRR1102296 1 0.3160 0.69485 0.876 0.000 0.040 0.032 0.052
#> SRR1085087 4 0.5549 -0.14698 0.472 0.000 0.008 0.472 0.048
#> SRR1079046 1 0.4570 0.36477 0.648 0.000 0.004 0.016 0.332
#> SRR1328339 3 0.5289 0.25506 0.400 0.000 0.556 0.008 0.036
#> SRR1079782 2 0.4478 0.77134 0.004 0.764 0.000 0.144 0.088
#> SRR1092257 2 0.5358 0.68464 0.004 0.692 0.008 0.200 0.096
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0748 0.8017 0.000 0.976 0.000 0.016 0.004 0.004
#> SRR1429287 2 0.5451 0.4803 0.000 0.464 0.000 0.452 0.056 0.028
#> SRR1359238 6 0.5696 0.0973 0.116 0.000 0.032 0.260 0.000 0.592
#> SRR1309597 3 0.1553 0.7795 0.008 0.000 0.944 0.032 0.012 0.004
#> SRR1441398 1 0.2344 0.5957 0.896 0.000 0.068 0.000 0.008 0.028
#> SRR1084055 2 0.1275 0.8039 0.000 0.956 0.000 0.016 0.012 0.016
#> SRR1417566 3 0.6731 0.0768 0.380 0.000 0.444 0.044 0.032 0.100
#> SRR1351857 6 0.4873 -0.3436 0.036 0.000 0.016 0.376 0.000 0.572
#> SRR1487485 3 0.1636 0.7825 0.000 0.004 0.936 0.036 0.000 0.024
#> SRR1335875 3 0.3414 0.7291 0.052 0.000 0.852 0.020 0.024 0.052
#> SRR1073947 6 0.4687 0.2909 0.440 0.000 0.004 0.012 0.016 0.528
#> SRR1443483 3 0.1230 0.7801 0.000 0.000 0.956 0.028 0.008 0.008
#> SRR1346794 1 0.4772 0.5377 0.748 0.000 0.128 0.048 0.012 0.064
#> SRR1405245 1 0.3025 0.5930 0.860 0.000 0.068 0.004 0.008 0.060
#> SRR1409677 4 0.4771 0.6542 0.004 0.000 0.032 0.524 0.004 0.436
#> SRR1095549 1 0.6191 0.4359 0.568 0.000 0.168 0.028 0.012 0.224
#> SRR1323788 1 0.3060 0.5821 0.868 0.000 0.060 0.016 0.012 0.044
#> SRR1314054 2 0.1890 0.7866 0.000 0.916 0.000 0.060 0.024 0.000
#> SRR1077944 1 0.2504 0.5659 0.856 0.000 0.000 0.004 0.004 0.136
#> SRR1480587 2 0.1173 0.8013 0.000 0.960 0.000 0.016 0.008 0.016
#> SRR1311205 1 0.4234 0.4359 0.708 0.000 0.024 0.008 0.008 0.252
#> SRR1076369 1 0.7401 0.3973 0.528 0.000 0.172 0.108 0.116 0.076
#> SRR1453549 3 0.4195 0.7486 0.024 0.000 0.776 0.132 0.004 0.064
#> SRR1345782 1 0.4301 0.4353 0.696 0.000 0.024 0.008 0.008 0.264
#> SRR1447850 2 0.4608 0.6543 0.000 0.712 0.000 0.208 0.036 0.044
#> SRR1391553 3 0.4679 0.7047 0.044 0.008 0.776 0.048 0.024 0.100
#> SRR1444156 2 0.0458 0.8022 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1471731 3 0.6051 0.5286 0.020 0.000 0.552 0.232 0.004 0.192
#> SRR1120987 4 0.3967 0.5910 0.000 0.000 0.008 0.668 0.008 0.316
#> SRR1477363 1 0.2504 0.5503 0.856 0.000 0.000 0.004 0.004 0.136
#> SRR1391961 5 0.1798 0.9382 0.020 0.020 0.000 0.000 0.932 0.028
#> SRR1373879 3 0.2492 0.7752 0.000 0.000 0.888 0.068 0.008 0.036
#> SRR1318732 1 0.6189 0.0231 0.464 0.004 0.416 0.048 0.016 0.052
#> SRR1091404 1 0.3122 0.5281 0.804 0.000 0.000 0.000 0.020 0.176
#> SRR1402109 3 0.3912 0.7163 0.000 0.000 0.776 0.148 0.008 0.068
#> SRR1407336 3 0.5016 0.6091 0.000 0.000 0.664 0.192 0.008 0.136
#> SRR1097417 3 0.3246 0.6571 0.000 0.000 0.812 0.012 0.160 0.016
#> SRR1396227 1 0.4937 0.2247 0.564 0.000 0.008 0.024 0.016 0.388
#> SRR1400775 2 0.1349 0.7943 0.000 0.940 0.000 0.056 0.004 0.000
#> SRR1392861 4 0.5013 0.6400 0.000 0.000 0.060 0.508 0.004 0.428
#> SRR1472929 5 0.2395 0.9100 0.000 0.072 0.004 0.012 0.896 0.016
#> SRR1436740 4 0.4666 0.6264 0.004 0.000 0.024 0.492 0.004 0.476
#> SRR1477057 2 0.6259 0.4965 0.000 0.488 0.000 0.340 0.048 0.124
#> SRR1311980 3 0.3969 0.7243 0.044 0.000 0.816 0.032 0.024 0.084
#> SRR1069400 3 0.1483 0.7806 0.000 0.000 0.944 0.036 0.008 0.012
#> SRR1351016 1 0.4477 0.0992 0.564 0.000 0.004 0.012 0.008 0.412
#> SRR1096291 4 0.4723 0.5941 0.000 0.000 0.064 0.636 0.004 0.296
#> SRR1418145 4 0.3455 0.5254 0.000 0.000 0.004 0.776 0.020 0.200
#> SRR1488111 4 0.4259 0.4420 0.000 0.060 0.016 0.788 0.028 0.108
#> SRR1370495 1 0.7220 0.1736 0.384 0.000 0.008 0.332 0.080 0.196
#> SRR1352639 1 0.6728 0.1614 0.460 0.000 0.008 0.268 0.036 0.228
#> SRR1348911 3 0.2162 0.7535 0.016 0.000 0.920 0.020 0.016 0.028
#> SRR1467386 6 0.4884 0.5868 0.324 0.000 0.008 0.060 0.000 0.608
#> SRR1415956 1 0.1124 0.5985 0.956 0.000 0.000 0.000 0.008 0.036
#> SRR1500495 1 0.2848 0.5941 0.872 0.000 0.060 0.004 0.008 0.056
#> SRR1405099 1 0.2346 0.5611 0.868 0.000 0.000 0.000 0.008 0.124
#> SRR1345585 3 0.2151 0.7680 0.012 0.004 0.916 0.032 0.000 0.036
#> SRR1093196 3 0.5167 0.5868 0.000 0.000 0.632 0.216 0.004 0.148
#> SRR1466006 2 0.1861 0.7941 0.000 0.928 0.000 0.036 0.020 0.016
#> SRR1351557 2 0.0458 0.8046 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1382687 1 0.3570 0.4410 0.752 0.000 0.004 0.016 0.000 0.228
#> SRR1375549 1 0.4660 0.5312 0.736 0.000 0.000 0.124 0.032 0.108
#> SRR1101765 1 0.6185 0.3971 0.572 0.000 0.000 0.208 0.160 0.060
#> SRR1334461 5 0.1874 0.9332 0.028 0.016 0.000 0.000 0.928 0.028
#> SRR1094073 2 0.0260 0.8024 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1077549 6 0.5065 0.2288 0.080 0.000 0.036 0.184 0.004 0.696
#> SRR1440332 6 0.7009 0.2143 0.340 0.000 0.172 0.092 0.000 0.396
#> SRR1454177 4 0.4958 0.6425 0.004 0.000 0.044 0.496 0.004 0.452
#> SRR1082447 1 0.2737 0.5846 0.868 0.000 0.000 0.012 0.024 0.096
#> SRR1420043 3 0.4919 0.6063 0.000 0.000 0.664 0.204 0.004 0.128
#> SRR1432500 6 0.5490 0.5239 0.364 0.000 0.016 0.088 0.000 0.532
#> SRR1378045 2 0.6368 -0.0890 0.016 0.440 0.436 0.052 0.020 0.036
#> SRR1334200 5 0.2512 0.9309 0.008 0.048 0.000 0.040 0.896 0.008
#> SRR1069539 4 0.5065 0.4942 0.000 0.000 0.168 0.680 0.020 0.132
#> SRR1343031 3 0.3852 0.7230 0.000 0.000 0.784 0.136 0.008 0.072
#> SRR1319690 1 0.4971 0.4743 0.676 0.000 0.244 0.020 0.016 0.044
#> SRR1310604 2 0.4667 0.6392 0.000 0.664 0.004 0.280 0.036 0.016
#> SRR1327747 1 0.6968 0.1156 0.456 0.000 0.320 0.088 0.012 0.124
#> SRR1072456 2 0.1173 0.8013 0.000 0.960 0.000 0.016 0.008 0.016
#> SRR1367896 3 0.0717 0.7749 0.000 0.000 0.976 0.000 0.016 0.008
#> SRR1480107 1 0.4063 0.4028 0.692 0.000 0.000 0.008 0.020 0.280
#> SRR1377756 1 0.2699 0.5798 0.856 0.000 0.000 0.008 0.012 0.124
#> SRR1435272 4 0.4842 0.6487 0.004 0.000 0.036 0.508 0.004 0.448
#> SRR1089230 4 0.4694 0.6361 0.008 0.000 0.020 0.496 0.004 0.472
#> SRR1389522 3 0.1140 0.7762 0.008 0.000 0.964 0.008 0.012 0.008
#> SRR1080600 2 0.4854 0.6184 0.000 0.636 0.004 0.304 0.036 0.020
#> SRR1086935 4 0.4912 0.6499 0.004 0.008 0.020 0.512 0.008 0.448
#> SRR1344060 5 0.1836 0.9388 0.008 0.048 0.000 0.012 0.928 0.004
#> SRR1467922 2 0.0458 0.8022 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1090984 1 0.5974 0.4018 0.592 0.000 0.276 0.040 0.028 0.064
#> SRR1456991 1 0.3829 0.4280 0.720 0.000 0.004 0.008 0.008 0.260
#> SRR1085039 1 0.4008 0.3368 0.672 0.000 0.000 0.004 0.016 0.308
#> SRR1069303 6 0.4604 0.5867 0.232 0.000 0.008 0.028 0.028 0.704
#> SRR1091500 2 0.1867 0.7851 0.000 0.916 0.000 0.064 0.020 0.000
#> SRR1075198 2 0.4897 0.5930 0.000 0.600 0.004 0.344 0.040 0.012
#> SRR1086915 4 0.4412 0.6218 0.008 0.000 0.012 0.500 0.000 0.480
#> SRR1499503 2 0.0862 0.8011 0.000 0.972 0.000 0.016 0.004 0.008
#> SRR1094312 2 0.1141 0.7968 0.000 0.948 0.000 0.052 0.000 0.000
#> SRR1352437 6 0.4322 0.6117 0.204 0.000 0.008 0.036 0.016 0.736
#> SRR1436323 3 0.6806 0.3234 0.048 0.000 0.448 0.232 0.004 0.268
#> SRR1073507 6 0.4703 0.6174 0.280 0.000 0.008 0.060 0.000 0.652
#> SRR1401972 6 0.4604 0.5867 0.232 0.000 0.008 0.028 0.028 0.704
#> SRR1415510 2 0.1078 0.8012 0.000 0.964 0.000 0.016 0.008 0.012
#> SRR1327279 6 0.5994 0.4966 0.332 0.000 0.068 0.060 0.004 0.536
#> SRR1086983 6 0.4529 -0.2694 0.028 0.000 0.012 0.332 0.000 0.628
#> SRR1105174 1 0.2263 0.5746 0.884 0.000 0.000 0.000 0.016 0.100
#> SRR1468893 1 0.2920 0.5840 0.844 0.000 0.000 0.008 0.020 0.128
#> SRR1362555 2 0.5546 0.5437 0.004 0.536 0.004 0.380 0.044 0.032
#> SRR1074526 5 0.2214 0.9235 0.012 0.012 0.000 0.028 0.916 0.032
#> SRR1326225 2 0.0547 0.8019 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1401933 1 0.5959 0.1220 0.472 0.000 0.012 0.108 0.012 0.396
#> SRR1324062 6 0.4623 0.5998 0.240 0.000 0.008 0.040 0.016 0.696
#> SRR1102296 1 0.5588 0.2196 0.532 0.000 0.028 0.020 0.036 0.384
#> SRR1085087 6 0.3782 0.6268 0.224 0.000 0.000 0.036 0.000 0.740
#> SRR1079046 1 0.5980 0.4530 0.616 0.000 0.000 0.136 0.168 0.080
#> SRR1328339 1 0.6168 0.2177 0.504 0.000 0.368 0.036 0.024 0.068
#> SRR1079782 2 0.5256 0.4978 0.000 0.492 0.004 0.444 0.032 0.028
#> SRR1092257 4 0.5456 -0.4150 0.000 0.416 0.000 0.500 0.044 0.040
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
SD:skmeans
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["SD", "skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.820 0.898 0.958 0.4960 0.503 0.503
#> 3 3 0.613 0.701 0.863 0.3388 0.788 0.603
#> 4 4 0.763 0.816 0.905 0.1303 0.828 0.556
#> 5 5 0.704 0.635 0.803 0.0588 0.864 0.541
#> 6 6 0.695 0.590 0.768 0.0403 0.932 0.707
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.943 0.000 1.000
#> SRR1429287 2 0.0000 0.943 0.000 1.000
#> SRR1359238 1 0.0000 0.964 1.000 0.000
#> SRR1309597 2 0.5294 0.843 0.120 0.880
#> SRR1441398 1 0.0000 0.964 1.000 0.000
#> SRR1084055 2 0.0000 0.943 0.000 1.000
#> SRR1417566 2 0.0672 0.938 0.008 0.992
#> SRR1351857 1 0.0000 0.964 1.000 0.000
#> SRR1487485 2 0.0376 0.941 0.004 0.996
#> SRR1335875 2 0.0000 0.943 0.000 1.000
#> SRR1073947 1 0.0000 0.964 1.000 0.000
#> SRR1443483 2 0.4690 0.863 0.100 0.900
#> SRR1346794 1 0.0000 0.964 1.000 0.000
#> SRR1405245 1 0.0000 0.964 1.000 0.000
#> SRR1409677 1 0.0000 0.964 1.000 0.000
#> SRR1095549 1 0.0000 0.964 1.000 0.000
#> SRR1323788 1 0.0000 0.964 1.000 0.000
#> SRR1314054 2 0.0000 0.943 0.000 1.000
#> SRR1077944 1 0.0000 0.964 1.000 0.000
#> SRR1480587 2 0.0000 0.943 0.000 1.000
#> SRR1311205 1 0.0000 0.964 1.000 0.000
#> SRR1076369 1 0.9815 0.187 0.580 0.420
#> SRR1453549 1 0.1184 0.950 0.984 0.016
#> SRR1345782 1 0.0000 0.964 1.000 0.000
#> SRR1447850 2 0.0000 0.943 0.000 1.000
#> SRR1391553 2 0.0000 0.943 0.000 1.000
#> SRR1444156 2 0.0000 0.943 0.000 1.000
#> SRR1471731 2 0.9732 0.383 0.404 0.596
#> SRR1120987 1 0.3114 0.913 0.944 0.056
#> SRR1477363 1 0.0000 0.964 1.000 0.000
#> SRR1391961 1 0.9833 0.281 0.576 0.424
#> SRR1373879 1 0.2948 0.916 0.948 0.052
#> SRR1318732 2 0.7139 0.754 0.196 0.804
#> SRR1091404 1 0.0000 0.964 1.000 0.000
#> SRR1402109 1 0.0000 0.964 1.000 0.000
#> SRR1407336 2 0.9732 0.383 0.404 0.596
#> SRR1097417 2 0.0000 0.943 0.000 1.000
#> SRR1396227 1 0.0000 0.964 1.000 0.000
#> SRR1400775 2 0.0000 0.943 0.000 1.000
#> SRR1392861 1 0.3274 0.908 0.940 0.060
#> SRR1472929 2 0.0000 0.943 0.000 1.000
#> SRR1436740 1 0.0000 0.964 1.000 0.000
#> SRR1477057 2 0.0000 0.943 0.000 1.000
#> SRR1311980 2 0.0938 0.936 0.012 0.988
#> SRR1069400 2 0.5629 0.830 0.132 0.868
#> SRR1351016 1 0.0000 0.964 1.000 0.000
#> SRR1096291 2 0.9909 0.274 0.444 0.556
#> SRR1418145 1 0.0000 0.964 1.000 0.000
#> SRR1488111 2 0.0000 0.943 0.000 1.000
#> SRR1370495 1 0.1184 0.951 0.984 0.016
#> SRR1352639 1 0.7376 0.726 0.792 0.208
#> SRR1348911 2 0.0000 0.943 0.000 1.000
#> SRR1467386 1 0.0000 0.964 1.000 0.000
#> SRR1415956 1 0.0000 0.964 1.000 0.000
#> SRR1500495 1 0.0000 0.964 1.000 0.000
#> SRR1405099 1 0.0000 0.964 1.000 0.000
#> SRR1345585 2 0.0000 0.943 0.000 1.000
#> SRR1093196 2 0.9732 0.383 0.404 0.596
#> SRR1466006 2 0.0000 0.943 0.000 1.000
#> SRR1351557 2 0.0000 0.943 0.000 1.000
#> SRR1382687 1 0.0000 0.964 1.000 0.000
#> SRR1375549 1 0.0000 0.964 1.000 0.000
#> SRR1101765 1 0.0000 0.964 1.000 0.000
#> SRR1334461 1 0.9732 0.336 0.596 0.404
#> SRR1094073 2 0.0000 0.943 0.000 1.000
#> SRR1077549 1 0.0000 0.964 1.000 0.000
#> SRR1440332 1 0.0000 0.964 1.000 0.000
#> SRR1454177 1 0.0000 0.964 1.000 0.000
#> SRR1082447 1 0.0000 0.964 1.000 0.000
#> SRR1420043 1 0.0000 0.964 1.000 0.000
#> SRR1432500 1 0.0000 0.964 1.000 0.000
#> SRR1378045 2 0.0000 0.943 0.000 1.000
#> SRR1334200 2 0.0000 0.943 0.000 1.000
#> SRR1069539 2 0.0000 0.943 0.000 1.000
#> SRR1343031 1 0.0000 0.964 1.000 0.000
#> SRR1319690 1 0.0000 0.964 1.000 0.000
#> SRR1310604 2 0.0000 0.943 0.000 1.000
#> SRR1327747 1 0.0000 0.964 1.000 0.000
#> SRR1072456 2 0.0000 0.943 0.000 1.000
#> SRR1367896 2 0.0000 0.943 0.000 1.000
#> SRR1480107 1 0.0000 0.964 1.000 0.000
#> SRR1377756 1 0.0000 0.964 1.000 0.000
#> SRR1435272 1 0.0000 0.964 1.000 0.000
#> SRR1089230 1 0.0000 0.964 1.000 0.000
#> SRR1389522 2 0.4161 0.877 0.084 0.916
#> SRR1080600 2 0.0000 0.943 0.000 1.000
#> SRR1086935 2 0.9732 0.383 0.404 0.596
#> SRR1344060 2 0.0000 0.943 0.000 1.000
#> SRR1467922 2 0.0000 0.943 0.000 1.000
#> SRR1090984 1 0.0672 0.957 0.992 0.008
#> SRR1456991 1 0.0000 0.964 1.000 0.000
#> SRR1085039 1 0.0000 0.964 1.000 0.000
#> SRR1069303 1 0.0000 0.964 1.000 0.000
#> SRR1091500 2 0.0000 0.943 0.000 1.000
#> SRR1075198 2 0.0000 0.943 0.000 1.000
#> SRR1086915 1 0.0000 0.964 1.000 0.000
#> SRR1499503 2 0.0000 0.943 0.000 1.000
#> SRR1094312 2 0.0000 0.943 0.000 1.000
#> SRR1352437 1 0.0000 0.964 1.000 0.000
#> SRR1436323 1 0.0000 0.964 1.000 0.000
#> SRR1073507 1 0.0000 0.964 1.000 0.000
#> SRR1401972 1 0.0000 0.964 1.000 0.000
#> SRR1415510 2 0.0000 0.943 0.000 1.000
#> SRR1327279 1 0.0000 0.964 1.000 0.000
#> SRR1086983 1 0.0000 0.964 1.000 0.000
#> SRR1105174 1 0.0000 0.964 1.000 0.000
#> SRR1468893 1 0.0000 0.964 1.000 0.000
#> SRR1362555 2 0.0000 0.943 0.000 1.000
#> SRR1074526 2 0.0672 0.938 0.008 0.992
#> SRR1326225 2 0.0000 0.943 0.000 1.000
#> SRR1401933 1 0.0000 0.964 1.000 0.000
#> SRR1324062 1 0.0000 0.964 1.000 0.000
#> SRR1102296 1 0.5737 0.823 0.864 0.136
#> SRR1085087 1 0.0000 0.964 1.000 0.000
#> SRR1079046 1 0.9552 0.406 0.624 0.376
#> SRR1328339 2 0.0000 0.943 0.000 1.000
#> SRR1079782 2 0.0000 0.943 0.000 1.000
#> SRR1092257 2 0.0000 0.943 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1429287 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1359238 1 0.5363 0.6503 0.724 0.000 0.276
#> SRR1309597 3 0.3213 0.7890 0.060 0.028 0.912
#> SRR1441398 1 0.6204 0.0720 0.576 0.000 0.424
#> SRR1084055 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1417566 3 0.7146 0.6065 0.264 0.060 0.676
#> SRR1351857 1 0.5178 0.6665 0.744 0.000 0.256
#> SRR1487485 3 0.1964 0.7971 0.000 0.056 0.944
#> SRR1335875 3 0.5860 0.6850 0.024 0.228 0.748
#> SRR1073947 1 0.2261 0.7585 0.932 0.000 0.068
#> SRR1443483 3 0.1774 0.8008 0.016 0.024 0.960
#> SRR1346794 1 0.6225 0.0462 0.568 0.000 0.432
#> SRR1405245 1 0.6309 -0.1653 0.504 0.000 0.496
#> SRR1409677 1 0.6204 0.4553 0.576 0.000 0.424
#> SRR1095549 1 0.6235 0.0704 0.564 0.000 0.436
#> SRR1323788 1 0.6126 0.1404 0.600 0.000 0.400
#> SRR1314054 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1077944 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1480587 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1311205 1 0.1529 0.7417 0.960 0.000 0.040
#> SRR1076369 1 0.6309 -0.1421 0.504 0.000 0.496
#> SRR1453549 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1345782 1 0.0892 0.7520 0.980 0.000 0.020
#> SRR1447850 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1391553 3 0.5465 0.6195 0.000 0.288 0.712
#> SRR1444156 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1471731 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1120987 1 0.9557 0.4078 0.484 0.248 0.268
#> SRR1477363 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1391961 1 0.6295 0.1885 0.528 0.472 0.000
#> SRR1373879 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1318732 3 0.6402 0.6458 0.236 0.040 0.724
#> SRR1091404 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1402109 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1407336 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1097417 3 0.5621 0.5928 0.000 0.308 0.692
#> SRR1396227 1 0.0424 0.7602 0.992 0.000 0.008
#> SRR1400775 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1392861 3 0.0592 0.7911 0.012 0.000 0.988
#> SRR1472929 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1436740 1 0.6168 0.4756 0.588 0.000 0.412
#> SRR1477057 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1311980 3 0.0983 0.7975 0.016 0.004 0.980
#> SRR1069400 3 0.0424 0.8003 0.000 0.008 0.992
#> SRR1351016 1 0.2165 0.7592 0.936 0.000 0.064
#> SRR1096291 2 0.8496 0.3104 0.112 0.564 0.324
#> SRR1418145 1 0.9364 0.4463 0.512 0.220 0.268
#> SRR1488111 2 0.1031 0.9495 0.000 0.976 0.024
#> SRR1370495 1 0.5216 0.5868 0.740 0.260 0.000
#> SRR1352639 1 0.6111 0.3729 0.604 0.396 0.000
#> SRR1348911 3 0.4931 0.6888 0.000 0.232 0.768
#> SRR1467386 1 0.2959 0.7504 0.900 0.000 0.100
#> SRR1415956 1 0.1411 0.7440 0.964 0.000 0.036
#> SRR1500495 1 0.6192 0.0847 0.580 0.000 0.420
#> SRR1405099 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1345585 3 0.3752 0.7613 0.000 0.144 0.856
#> SRR1093196 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1466006 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1351557 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1382687 1 0.1289 0.7607 0.968 0.000 0.032
#> SRR1375549 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1101765 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1334461 1 0.6045 0.4173 0.620 0.380 0.000
#> SRR1094073 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1077549 1 0.5465 0.6390 0.712 0.000 0.288
#> SRR1440332 1 0.6204 0.4809 0.576 0.000 0.424
#> SRR1454177 3 0.6291 -0.2572 0.468 0.000 0.532
#> SRR1082447 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1420043 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1432500 1 0.4974 0.6798 0.764 0.000 0.236
#> SRR1378045 3 0.5621 0.5926 0.000 0.308 0.692
#> SRR1334200 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1069539 2 0.5138 0.6274 0.000 0.748 0.252
#> SRR1343031 3 0.0000 0.7990 0.000 0.000 1.000
#> SRR1319690 3 0.5397 0.6039 0.280 0.000 0.720
#> SRR1310604 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1327747 3 0.3482 0.7526 0.128 0.000 0.872
#> SRR1072456 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1367896 3 0.1860 0.7973 0.000 0.052 0.948
#> SRR1480107 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1377756 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1435272 1 0.6295 0.3628 0.528 0.000 0.472
#> SRR1089230 1 0.5591 0.6228 0.696 0.000 0.304
#> SRR1389522 3 0.3030 0.7744 0.092 0.004 0.904
#> SRR1080600 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1086935 3 0.7471 0.0292 0.036 0.448 0.516
#> SRR1344060 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1467922 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1090984 3 0.6260 0.2849 0.448 0.000 0.552
#> SRR1456991 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1085039 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1069303 1 0.2261 0.7584 0.932 0.000 0.068
#> SRR1091500 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1075198 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1086915 1 0.5178 0.6665 0.744 0.000 0.256
#> SRR1499503 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1094312 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1352437 1 0.3116 0.7480 0.892 0.000 0.108
#> SRR1436323 3 0.0424 0.7971 0.008 0.000 0.992
#> SRR1073507 1 0.3038 0.7493 0.896 0.000 0.104
#> SRR1401972 1 0.2261 0.7584 0.932 0.000 0.068
#> SRR1415510 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1327279 1 0.5254 0.6604 0.736 0.000 0.264
#> SRR1086983 1 0.5178 0.6665 0.744 0.000 0.256
#> SRR1105174 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1468893 1 0.0000 0.7594 1.000 0.000 0.000
#> SRR1362555 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1074526 2 0.0237 0.9693 0.004 0.996 0.000
#> SRR1326225 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1401933 1 0.2165 0.7596 0.936 0.000 0.064
#> SRR1324062 1 0.4702 0.6964 0.788 0.000 0.212
#> SRR1102296 1 0.0592 0.7589 0.988 0.012 0.000
#> SRR1085087 1 0.3116 0.7480 0.892 0.000 0.108
#> SRR1079046 1 0.3879 0.6705 0.848 0.152 0.000
#> SRR1328339 3 0.7250 0.3885 0.396 0.032 0.572
#> SRR1079782 2 0.0000 0.9737 0.000 1.000 0.000
#> SRR1092257 2 0.0000 0.9737 0.000 1.000 0.000
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1429287 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1359238 4 0.0336 0.8591 0.008 0.000 0.000 0.992
#> SRR1309597 3 0.0376 0.8882 0.004 0.000 0.992 0.004
#> SRR1441398 1 0.1557 0.8510 0.944 0.000 0.056 0.000
#> SRR1084055 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1417566 3 0.4539 0.5992 0.272 0.008 0.720 0.000
#> SRR1351857 4 0.0188 0.8596 0.004 0.000 0.000 0.996
#> SRR1487485 3 0.0376 0.8883 0.000 0.004 0.992 0.004
#> SRR1335875 3 0.0376 0.8871 0.004 0.004 0.992 0.000
#> SRR1073947 1 0.5155 -0.1347 0.528 0.000 0.004 0.468
#> SRR1443483 3 0.0469 0.8886 0.000 0.000 0.988 0.012
#> SRR1346794 1 0.2796 0.8267 0.892 0.000 0.092 0.016
#> SRR1405245 1 0.2081 0.8393 0.916 0.000 0.084 0.000
#> SRR1409677 4 0.0336 0.8554 0.000 0.000 0.008 0.992
#> SRR1095549 1 0.4379 0.7329 0.792 0.000 0.172 0.036
#> SRR1323788 1 0.1474 0.8528 0.948 0.000 0.052 0.000
#> SRR1314054 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1077944 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1480587 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1311205 1 0.0469 0.8615 0.988 0.000 0.000 0.012
#> SRR1076369 1 0.4579 0.6994 0.768 0.000 0.200 0.032
#> SRR1453549 3 0.1940 0.8700 0.000 0.000 0.924 0.076
#> SRR1345782 1 0.0188 0.8636 0.996 0.000 0.000 0.004
#> SRR1447850 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1391553 3 0.0336 0.8861 0.000 0.008 0.992 0.000
#> SRR1444156 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1471731 3 0.3942 0.7466 0.000 0.000 0.764 0.236
#> SRR1120987 4 0.0657 0.8579 0.004 0.012 0.000 0.984
#> SRR1477363 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1391961 1 0.4762 0.5609 0.692 0.300 0.004 0.004
#> SRR1373879 3 0.1637 0.8769 0.000 0.000 0.940 0.060
#> SRR1318732 3 0.4522 0.6197 0.264 0.004 0.728 0.004
#> SRR1091404 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1402109 3 0.2704 0.8492 0.000 0.000 0.876 0.124
#> SRR1407336 3 0.3649 0.7913 0.000 0.000 0.796 0.204
#> SRR1097417 3 0.0336 0.8884 0.000 0.000 0.992 0.008
#> SRR1396227 1 0.2401 0.8011 0.904 0.000 0.004 0.092
#> SRR1400775 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1392861 4 0.1022 0.8405 0.000 0.000 0.032 0.968
#> SRR1472929 2 0.1706 0.9231 0.016 0.948 0.036 0.000
#> SRR1436740 4 0.0000 0.8580 0.000 0.000 0.000 1.000
#> SRR1477057 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1311980 3 0.0188 0.8875 0.000 0.004 0.996 0.000
#> SRR1069400 3 0.0469 0.8886 0.000 0.000 0.988 0.012
#> SRR1351016 1 0.4252 0.5553 0.744 0.000 0.004 0.252
#> SRR1096291 4 0.0188 0.8570 0.000 0.000 0.004 0.996
#> SRR1418145 4 0.0524 0.8589 0.004 0.008 0.000 0.988
#> SRR1488111 2 0.1867 0.9006 0.000 0.928 0.000 0.072
#> SRR1370495 1 0.4720 0.6192 0.720 0.264 0.000 0.016
#> SRR1352639 2 0.7634 0.0314 0.352 0.436 0.000 0.212
#> SRR1348911 3 0.0000 0.8874 0.000 0.000 1.000 0.000
#> SRR1467386 4 0.3801 0.7791 0.220 0.000 0.000 0.780
#> SRR1415956 1 0.0188 0.8640 0.996 0.000 0.004 0.000
#> SRR1500495 1 0.1389 0.8543 0.952 0.000 0.048 0.000
#> SRR1405099 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1345585 3 0.0188 0.8873 0.000 0.004 0.996 0.000
#> SRR1093196 3 0.3726 0.7833 0.000 0.000 0.788 0.212
#> SRR1466006 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1351557 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1382687 4 0.5150 0.5114 0.396 0.000 0.008 0.596
#> SRR1375549 1 0.0336 0.8636 0.992 0.000 0.000 0.008
#> SRR1101765 1 0.2345 0.8181 0.900 0.000 0.000 0.100
#> SRR1334461 1 0.4687 0.5827 0.704 0.288 0.004 0.004
#> SRR1094073 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1077549 4 0.0469 0.8591 0.012 0.000 0.000 0.988
#> SRR1440332 4 0.4297 0.7827 0.096 0.000 0.084 0.820
#> SRR1454177 4 0.0469 0.8540 0.000 0.000 0.012 0.988
#> SRR1082447 1 0.0188 0.8639 0.996 0.000 0.000 0.004
#> SRR1420043 3 0.3569 0.7969 0.000 0.000 0.804 0.196
#> SRR1432500 4 0.3266 0.8181 0.168 0.000 0.000 0.832
#> SRR1378045 3 0.1389 0.8638 0.000 0.048 0.952 0.000
#> SRR1334200 2 0.0524 0.9551 0.000 0.988 0.008 0.004
#> SRR1069539 2 0.6444 0.4980 0.000 0.612 0.104 0.284
#> SRR1343031 3 0.2814 0.8442 0.000 0.000 0.868 0.132
#> SRR1319690 1 0.4978 0.3760 0.612 0.000 0.384 0.004
#> SRR1310604 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1327747 3 0.6752 0.5609 0.280 0.000 0.588 0.132
#> SRR1072456 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1367896 3 0.0336 0.8884 0.000 0.000 0.992 0.008
#> SRR1480107 1 0.0336 0.8627 0.992 0.000 0.000 0.008
#> SRR1377756 4 0.4977 0.3591 0.460 0.000 0.000 0.540
#> SRR1435272 4 0.0336 0.8554 0.000 0.000 0.008 0.992
#> SRR1089230 4 0.0000 0.8580 0.000 0.000 0.000 1.000
#> SRR1389522 3 0.0524 0.8885 0.004 0.000 0.988 0.008
#> SRR1080600 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1086935 4 0.0657 0.8552 0.000 0.004 0.012 0.984
#> SRR1344060 2 0.0524 0.9551 0.000 0.988 0.008 0.004
#> SRR1467922 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1090984 1 0.3266 0.7723 0.832 0.000 0.168 0.000
#> SRR1456991 1 0.0336 0.8627 0.992 0.000 0.000 0.008
#> SRR1085039 1 0.3123 0.7240 0.844 0.000 0.000 0.156
#> SRR1069303 4 0.4535 0.6868 0.292 0.000 0.004 0.704
#> SRR1091500 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1075198 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1086915 4 0.0336 0.8602 0.008 0.000 0.000 0.992
#> SRR1499503 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1094312 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1352437 4 0.3490 0.8198 0.156 0.004 0.004 0.836
#> SRR1436323 3 0.4866 0.4595 0.000 0.000 0.596 0.404
#> SRR1073507 4 0.3356 0.8118 0.176 0.000 0.000 0.824
#> SRR1401972 4 0.4535 0.6868 0.292 0.000 0.004 0.704
#> SRR1415510 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1327279 4 0.4417 0.8093 0.160 0.000 0.044 0.796
#> SRR1086983 4 0.0336 0.8602 0.008 0.000 0.000 0.992
#> SRR1105174 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1468893 1 0.0592 0.8624 0.984 0.000 0.000 0.016
#> SRR1362555 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1074526 2 0.3380 0.8049 0.136 0.852 0.008 0.004
#> SRR1326225 2 0.0188 0.9590 0.000 0.996 0.004 0.000
#> SRR1401933 4 0.5055 0.4696 0.368 0.000 0.008 0.624
#> SRR1324062 4 0.4126 0.7775 0.216 0.004 0.004 0.776
#> SRR1102296 1 0.1229 0.8598 0.968 0.004 0.020 0.008
#> SRR1085087 4 0.3402 0.8181 0.164 0.004 0.000 0.832
#> SRR1079046 1 0.0672 0.8628 0.984 0.008 0.000 0.008
#> SRR1328339 1 0.3801 0.7167 0.780 0.000 0.220 0.000
#> SRR1079782 2 0.0000 0.9585 0.000 1.000 0.000 0.000
#> SRR1092257 2 0.0188 0.9565 0.000 0.996 0.000 0.004
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0162 0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1429287 2 0.1121 0.94523 0.000 0.956 0.000 0.000 0.044
#> SRR1359238 4 0.1764 0.76614 0.064 0.000 0.008 0.928 0.000
#> SRR1309597 3 0.0162 0.78472 0.000 0.000 0.996 0.000 0.004
#> SRR1441398 1 0.3612 0.61643 0.800 0.000 0.028 0.000 0.172
#> SRR1084055 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1417566 3 0.6107 0.48379 0.116 0.020 0.604 0.000 0.260
#> SRR1351857 4 0.1282 0.77825 0.044 0.000 0.000 0.952 0.004
#> SRR1487485 3 0.0566 0.78482 0.000 0.000 0.984 0.004 0.012
#> SRR1335875 3 0.2266 0.76771 0.008 0.016 0.912 0.000 0.064
#> SRR1073947 1 0.3794 0.59846 0.800 0.000 0.000 0.152 0.048
#> SRR1443483 3 0.0451 0.78489 0.000 0.000 0.988 0.004 0.008
#> SRR1346794 5 0.5291 0.15805 0.348 0.000 0.052 0.004 0.596
#> SRR1405245 1 0.4096 0.60392 0.772 0.000 0.052 0.000 0.176
#> SRR1409677 4 0.0898 0.78606 0.000 0.000 0.020 0.972 0.008
#> SRR1095549 1 0.6635 0.06637 0.444 0.000 0.064 0.060 0.432
#> SRR1323788 1 0.4181 0.58490 0.732 0.000 0.020 0.004 0.244
#> SRR1314054 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1077944 1 0.1792 0.65865 0.916 0.000 0.000 0.000 0.084
#> SRR1480587 2 0.0162 0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1311205 1 0.0613 0.66416 0.984 0.000 0.004 0.004 0.008
#> SRR1076369 5 0.2848 0.57091 0.104 0.000 0.028 0.000 0.868
#> SRR1453549 3 0.2616 0.77222 0.000 0.000 0.880 0.100 0.020
#> SRR1345782 1 0.0451 0.66286 0.988 0.000 0.004 0.000 0.008
#> SRR1447850 2 0.0510 0.95497 0.000 0.984 0.000 0.016 0.000
#> SRR1391553 3 0.3181 0.73957 0.000 0.072 0.856 0.000 0.072
#> SRR1444156 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1471731 3 0.4909 0.48060 0.000 0.000 0.588 0.380 0.032
#> SRR1120987 4 0.0794 0.78775 0.000 0.000 0.000 0.972 0.028
#> SRR1477363 1 0.2424 0.64132 0.868 0.000 0.000 0.000 0.132
#> SRR1391961 5 0.5384 0.64520 0.140 0.196 0.000 0.000 0.664
#> SRR1373879 3 0.2017 0.77405 0.000 0.000 0.912 0.080 0.008
#> SRR1318732 3 0.5798 0.45400 0.156 0.000 0.608 0.000 0.236
#> SRR1091404 1 0.4138 0.26418 0.616 0.000 0.000 0.000 0.384
#> SRR1402109 3 0.3551 0.68416 0.000 0.000 0.772 0.220 0.008
#> SRR1407336 3 0.4551 0.50087 0.000 0.000 0.616 0.368 0.016
#> SRR1097417 3 0.2470 0.73519 0.000 0.012 0.884 0.000 0.104
#> SRR1396227 1 0.5110 0.57985 0.680 0.000 0.000 0.096 0.224
#> SRR1400775 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1392861 4 0.0794 0.78276 0.000 0.000 0.028 0.972 0.000
#> SRR1472929 5 0.4863 0.44639 0.008 0.384 0.016 0.000 0.592
#> SRR1436740 4 0.0000 0.79153 0.000 0.000 0.000 1.000 0.000
#> SRR1477057 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1311980 3 0.1638 0.77407 0.000 0.004 0.932 0.000 0.064
#> SRR1069400 3 0.0671 0.78381 0.000 0.000 0.980 0.004 0.016
#> SRR1351016 1 0.2588 0.64424 0.892 0.000 0.000 0.060 0.048
#> SRR1096291 4 0.2142 0.75924 0.000 0.004 0.028 0.920 0.048
#> SRR1418145 4 0.0794 0.78622 0.000 0.000 0.000 0.972 0.028
#> SRR1488111 2 0.3495 0.75978 0.000 0.812 0.000 0.160 0.028
#> SRR1370495 5 0.5167 0.61451 0.200 0.116 0.000 0.000 0.684
#> SRR1352639 1 0.6188 0.31573 0.620 0.248 0.000 0.048 0.084
#> SRR1348911 3 0.0992 0.78022 0.000 0.008 0.968 0.000 0.024
#> SRR1467386 1 0.4415 0.14578 0.552 0.000 0.000 0.444 0.004
#> SRR1415956 1 0.3424 0.59004 0.760 0.000 0.000 0.000 0.240
#> SRR1500495 1 0.3242 0.62391 0.816 0.000 0.012 0.000 0.172
#> SRR1405099 1 0.2561 0.63858 0.856 0.000 0.000 0.000 0.144
#> SRR1345585 3 0.0703 0.78269 0.000 0.000 0.976 0.000 0.024
#> SRR1093196 3 0.4341 0.51247 0.000 0.000 0.628 0.364 0.008
#> SRR1466006 2 0.0404 0.96315 0.000 0.988 0.000 0.000 0.012
#> SRR1351557 2 0.0162 0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1382687 1 0.5572 0.61060 0.644 0.000 0.000 0.164 0.192
#> SRR1375549 5 0.3210 0.51834 0.212 0.000 0.000 0.000 0.788
#> SRR1101765 5 0.3283 0.56577 0.140 0.000 0.000 0.028 0.832
#> SRR1334461 5 0.5440 0.64026 0.156 0.184 0.000 0.000 0.660
#> SRR1094073 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1077549 4 0.3047 0.67608 0.160 0.000 0.004 0.832 0.004
#> SRR1440332 1 0.5615 0.38164 0.628 0.000 0.080 0.280 0.012
#> SRR1454177 4 0.0290 0.79150 0.000 0.000 0.008 0.992 0.000
#> SRR1082447 1 0.4287 0.22540 0.540 0.000 0.000 0.000 0.460
#> SRR1420043 3 0.4380 0.48774 0.000 0.000 0.616 0.376 0.008
#> SRR1432500 1 0.4375 0.20228 0.576 0.000 0.000 0.420 0.004
#> SRR1378045 3 0.3242 0.71099 0.000 0.116 0.844 0.000 0.040
#> SRR1334200 5 0.4045 0.50152 0.000 0.356 0.000 0.000 0.644
#> SRR1069539 4 0.6219 0.38063 0.000 0.248 0.064 0.620 0.068
#> SRR1343031 3 0.4173 0.67097 0.012 0.000 0.748 0.224 0.016
#> SRR1319690 3 0.6651 0.13751 0.312 0.000 0.440 0.000 0.248
#> SRR1310604 2 0.0794 0.95512 0.000 0.972 0.000 0.000 0.028
#> SRR1327747 3 0.8194 0.31304 0.164 0.000 0.412 0.200 0.224
#> SRR1072456 2 0.0162 0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1367896 3 0.0510 0.78331 0.000 0.000 0.984 0.000 0.016
#> SRR1480107 1 0.0807 0.66147 0.976 0.000 0.000 0.012 0.012
#> SRR1377756 1 0.5440 0.61115 0.660 0.000 0.000 0.156 0.184
#> SRR1435272 4 0.0162 0.79182 0.000 0.000 0.004 0.996 0.000
#> SRR1089230 4 0.0162 0.79172 0.000 0.000 0.000 0.996 0.004
#> SRR1389522 3 0.0609 0.78342 0.000 0.000 0.980 0.000 0.020
#> SRR1080600 2 0.2773 0.80816 0.000 0.836 0.000 0.000 0.164
#> SRR1086935 4 0.0693 0.78861 0.000 0.012 0.000 0.980 0.008
#> SRR1344060 5 0.4045 0.50151 0.000 0.356 0.000 0.000 0.644
#> SRR1467922 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1090984 5 0.6458 0.07423 0.292 0.000 0.216 0.000 0.492
#> SRR1456991 1 0.0404 0.66167 0.988 0.000 0.000 0.000 0.012
#> SRR1085039 1 0.3536 0.65556 0.832 0.000 0.000 0.084 0.084
#> SRR1069303 1 0.5844 0.25678 0.528 0.000 0.000 0.368 0.104
#> SRR1091500 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1075198 2 0.1408 0.94183 0.000 0.948 0.000 0.008 0.044
#> SRR1086915 4 0.0000 0.79153 0.000 0.000 0.000 1.000 0.000
#> SRR1499503 2 0.0162 0.96629 0.000 0.996 0.000 0.000 0.004
#> SRR1094312 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1352437 4 0.5599 -0.00975 0.444 0.000 0.000 0.484 0.072
#> SRR1436323 4 0.5491 -0.23941 0.004 0.000 0.452 0.492 0.052
#> SRR1073507 4 0.4452 -0.03642 0.496 0.000 0.000 0.500 0.004
#> SRR1401972 1 0.5844 0.25678 0.528 0.000 0.000 0.368 0.104
#> SRR1415510 2 0.0290 0.96502 0.000 0.992 0.000 0.000 0.008
#> SRR1327279 1 0.5436 0.37502 0.636 0.000 0.056 0.292 0.016
#> SRR1086983 4 0.1410 0.76810 0.060 0.000 0.000 0.940 0.000
#> SRR1105174 1 0.2732 0.63188 0.840 0.000 0.000 0.000 0.160
#> SRR1468893 1 0.4233 0.62115 0.748 0.000 0.000 0.044 0.208
#> SRR1362555 2 0.2127 0.88484 0.000 0.892 0.000 0.000 0.108
#> SRR1074526 5 0.4275 0.60748 0.020 0.284 0.000 0.000 0.696
#> SRR1326225 2 0.0000 0.96669 0.000 1.000 0.000 0.000 0.000
#> SRR1401933 4 0.6846 0.04424 0.224 0.000 0.008 0.436 0.332
#> SRR1324062 1 0.5352 0.20867 0.536 0.000 0.000 0.408 0.056
#> SRR1102296 1 0.3036 0.63951 0.868 0.012 0.008 0.008 0.104
#> SRR1085087 4 0.4818 0.04120 0.460 0.000 0.000 0.520 0.020
#> SRR1079046 5 0.2852 0.56214 0.172 0.000 0.000 0.000 0.828
#> SRR1328339 1 0.7057 -0.05472 0.344 0.008 0.316 0.000 0.332
#> SRR1079782 2 0.1661 0.93491 0.000 0.940 0.000 0.024 0.036
#> SRR1092257 2 0.1579 0.93349 0.000 0.944 0.000 0.032 0.024
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0458 0.8865 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1429287 2 0.3526 0.8027 0.000 0.820 0.000 0.012 0.080 0.088
#> SRR1359238 4 0.3529 0.6921 0.176 0.000 0.028 0.788 0.000 0.008
#> SRR1309597 3 0.0547 0.7641 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1441398 1 0.4410 0.0902 0.560 0.000 0.028 0.000 0.000 0.412
#> SRR1084055 2 0.0405 0.8864 0.000 0.988 0.000 0.000 0.008 0.004
#> SRR1417566 6 0.4651 0.5124 0.036 0.024 0.140 0.000 0.044 0.756
#> SRR1351857 4 0.2515 0.7721 0.104 0.000 0.008 0.876 0.004 0.008
#> SRR1487485 3 0.2261 0.7447 0.000 0.000 0.884 0.004 0.008 0.104
#> SRR1335875 3 0.5104 0.5631 0.024 0.012 0.640 0.000 0.040 0.284
#> SRR1073947 1 0.2433 0.5318 0.884 0.000 0.000 0.072 0.000 0.044
#> SRR1443483 3 0.0000 0.7636 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1346794 6 0.5211 0.5066 0.180 0.000 0.016 0.004 0.132 0.668
#> SRR1405245 1 0.4453 0.1071 0.568 0.000 0.032 0.000 0.000 0.400
#> SRR1409677 4 0.1320 0.8157 0.000 0.000 0.036 0.948 0.000 0.016
#> SRR1095549 6 0.7476 0.3136 0.308 0.000 0.116 0.068 0.068 0.440
#> SRR1323788 6 0.4507 0.1183 0.432 0.000 0.008 0.004 0.012 0.544
#> SRR1314054 2 0.0291 0.8870 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1077944 1 0.2823 0.4327 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR1480587 2 0.0458 0.8865 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1311205 1 0.1738 0.5231 0.928 0.000 0.016 0.004 0.000 0.052
#> SRR1076369 5 0.4623 0.5534 0.048 0.000 0.004 0.004 0.652 0.292
#> SRR1453549 3 0.4154 0.7331 0.004 0.000 0.772 0.080 0.012 0.132
#> SRR1345782 1 0.1682 0.5203 0.928 0.000 0.020 0.000 0.000 0.052
#> SRR1447850 2 0.1777 0.8664 0.000 0.932 0.000 0.024 0.032 0.012
#> SRR1391553 3 0.6584 0.2701 0.000 0.180 0.408 0.000 0.044 0.368
#> SRR1444156 2 0.0000 0.8873 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731 3 0.6259 0.2641 0.000 0.000 0.380 0.360 0.008 0.252
#> SRR1120987 4 0.3489 0.7531 0.012 0.004 0.000 0.828 0.060 0.096
#> SRR1477363 1 0.3101 0.3986 0.756 0.000 0.000 0.000 0.000 0.244
#> SRR1391961 5 0.2775 0.8028 0.040 0.104 0.000 0.000 0.856 0.000
#> SRR1373879 3 0.1075 0.7618 0.000 0.000 0.952 0.048 0.000 0.000
#> SRR1318732 6 0.4838 0.5452 0.072 0.008 0.216 0.000 0.012 0.692
#> SRR1091404 1 0.5202 0.2431 0.612 0.000 0.000 0.000 0.224 0.164
#> SRR1402109 3 0.2416 0.7147 0.000 0.000 0.844 0.156 0.000 0.000
#> SRR1407336 3 0.3445 0.6345 0.000 0.000 0.744 0.244 0.000 0.012
#> SRR1097417 3 0.3351 0.7098 0.000 0.016 0.832 0.000 0.104 0.048
#> SRR1396227 1 0.6057 0.1693 0.480 0.000 0.000 0.092 0.048 0.380
#> SRR1400775 2 0.0146 0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1392861 4 0.0858 0.8168 0.000 0.000 0.028 0.968 0.004 0.000
#> SRR1472929 5 0.2909 0.7757 0.004 0.156 0.012 0.000 0.828 0.000
#> SRR1436740 4 0.0405 0.8214 0.000 0.000 0.004 0.988 0.000 0.008
#> SRR1477057 2 0.1549 0.8694 0.000 0.936 0.000 0.000 0.020 0.044
#> SRR1311980 3 0.4390 0.6085 0.000 0.004 0.668 0.000 0.044 0.284
#> SRR1069400 3 0.0260 0.7634 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR1351016 1 0.2333 0.5321 0.896 0.000 0.004 0.040 0.000 0.060
#> SRR1096291 4 0.4901 0.6901 0.004 0.004 0.104 0.744 0.068 0.076
#> SRR1418145 4 0.3410 0.7432 0.004 0.000 0.000 0.820 0.076 0.100
#> SRR1488111 2 0.5701 0.6179 0.000 0.644 0.000 0.176 0.080 0.100
#> SRR1370495 5 0.2834 0.7374 0.060 0.008 0.000 0.008 0.876 0.048
#> SRR1352639 1 0.6507 0.3061 0.604 0.108 0.000 0.024 0.152 0.112
#> SRR1348911 3 0.3737 0.6804 0.000 0.008 0.772 0.000 0.036 0.184
#> SRR1467386 1 0.4199 0.4219 0.640 0.000 0.000 0.336 0.004 0.020
#> SRR1415956 1 0.4057 0.0982 0.556 0.000 0.000 0.000 0.008 0.436
#> SRR1500495 1 0.4362 0.1435 0.584 0.000 0.028 0.000 0.000 0.388
#> SRR1405099 1 0.3426 0.3693 0.720 0.000 0.000 0.000 0.004 0.276
#> SRR1345585 3 0.3376 0.6699 0.000 0.000 0.764 0.000 0.016 0.220
#> SRR1093196 3 0.4755 0.5329 0.000 0.000 0.632 0.304 0.008 0.056
#> SRR1466006 2 0.0790 0.8833 0.000 0.968 0.000 0.000 0.032 0.000
#> SRR1351557 2 0.0363 0.8870 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1382687 6 0.5830 -0.1603 0.416 0.000 0.000 0.160 0.004 0.420
#> SRR1375549 5 0.4986 0.5206 0.096 0.000 0.000 0.004 0.628 0.272
#> SRR1101765 5 0.4379 0.6166 0.052 0.000 0.000 0.008 0.700 0.240
#> SRR1334461 5 0.2837 0.7979 0.056 0.088 0.000 0.000 0.856 0.000
#> SRR1094073 2 0.0146 0.8875 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1077549 4 0.4737 0.4246 0.308 0.000 0.044 0.636 0.004 0.008
#> SRR1440332 1 0.5504 0.3396 0.624 0.000 0.216 0.136 0.000 0.024
#> SRR1454177 4 0.0146 0.8216 0.000 0.000 0.004 0.996 0.000 0.000
#> SRR1082447 1 0.5565 0.0934 0.508 0.000 0.000 0.000 0.152 0.340
#> SRR1420043 3 0.3198 0.6292 0.000 0.000 0.740 0.260 0.000 0.000
#> SRR1432500 1 0.3411 0.4912 0.756 0.000 0.008 0.232 0.000 0.004
#> SRR1378045 2 0.6819 -0.2978 0.000 0.336 0.320 0.000 0.040 0.304
#> SRR1334200 5 0.2048 0.7981 0.000 0.120 0.000 0.000 0.880 0.000
#> SRR1069539 4 0.6913 0.4788 0.000 0.060 0.184 0.572 0.096 0.088
#> SRR1343031 3 0.2070 0.7400 0.012 0.000 0.896 0.092 0.000 0.000
#> SRR1319690 6 0.5537 0.5334 0.212 0.000 0.188 0.000 0.008 0.592
#> SRR1310604 2 0.1956 0.8607 0.000 0.908 0.000 0.004 0.080 0.008
#> SRR1327747 6 0.6699 0.3774 0.060 0.000 0.268 0.148 0.012 0.512
#> SRR1072456 2 0.0632 0.8845 0.000 0.976 0.000 0.000 0.024 0.000
#> SRR1367896 3 0.0806 0.7636 0.000 0.000 0.972 0.000 0.008 0.020
#> SRR1480107 1 0.0291 0.5340 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1377756 1 0.5750 0.2409 0.512 0.000 0.000 0.132 0.012 0.344
#> SRR1435272 4 0.0146 0.8216 0.000 0.000 0.004 0.996 0.000 0.000
#> SRR1089230 4 0.0837 0.8173 0.000 0.000 0.004 0.972 0.004 0.020
#> SRR1389522 3 0.0000 0.7636 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1080600 2 0.4049 0.6766 0.000 0.708 0.000 0.004 0.256 0.032
#> SRR1086935 4 0.1413 0.8113 0.000 0.008 0.004 0.948 0.004 0.036
#> SRR1344060 5 0.2178 0.7949 0.000 0.132 0.000 0.000 0.868 0.000
#> SRR1467922 2 0.0000 0.8873 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984 6 0.4656 0.5764 0.112 0.000 0.064 0.000 0.076 0.748
#> SRR1456991 1 0.0692 0.5307 0.976 0.000 0.004 0.000 0.000 0.020
#> SRR1085039 1 0.3544 0.5178 0.820 0.000 0.000 0.064 0.016 0.100
#> SRR1069303 1 0.6186 0.3791 0.532 0.000 0.000 0.272 0.040 0.156
#> SRR1091500 2 0.0146 0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1075198 2 0.3699 0.7938 0.000 0.796 0.000 0.004 0.112 0.088
#> SRR1086915 4 0.0405 0.8201 0.008 0.000 0.000 0.988 0.000 0.004
#> SRR1499503 2 0.0547 0.8856 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1094312 2 0.0146 0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1352437 1 0.6113 0.2779 0.480 0.000 0.000 0.344 0.024 0.152
#> SRR1436323 4 0.6597 -0.0395 0.012 0.000 0.280 0.444 0.016 0.248
#> SRR1073507 1 0.3847 0.4004 0.644 0.000 0.000 0.348 0.000 0.008
#> SRR1401972 1 0.6171 0.3815 0.536 0.000 0.000 0.268 0.040 0.156
#> SRR1415510 2 0.0547 0.8856 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1327279 1 0.4622 0.4472 0.712 0.000 0.160 0.120 0.000 0.008
#> SRR1086983 4 0.2454 0.7622 0.104 0.000 0.000 0.876 0.004 0.016
#> SRR1105174 1 0.3766 0.3234 0.684 0.000 0.000 0.000 0.012 0.304
#> SRR1468893 1 0.5210 0.2596 0.576 0.000 0.000 0.040 0.036 0.348
#> SRR1362555 2 0.4905 0.6158 0.000 0.640 0.000 0.004 0.264 0.092
#> SRR1074526 5 0.2389 0.7978 0.000 0.128 0.000 0.000 0.864 0.008
#> SRR1326225 2 0.0146 0.8869 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1401933 6 0.5808 0.2373 0.060 0.000 0.000 0.348 0.060 0.532
#> SRR1324062 1 0.6013 0.3807 0.516 0.000 0.000 0.300 0.020 0.164
#> SRR1102296 1 0.4190 0.4103 0.692 0.000 0.000 0.000 0.048 0.260
#> SRR1085087 1 0.5105 0.2726 0.540 0.000 0.000 0.388 0.008 0.064
#> SRR1079046 5 0.3381 0.7126 0.044 0.000 0.000 0.000 0.800 0.156
#> SRR1328339 6 0.5734 0.5567 0.128 0.012 0.124 0.000 0.068 0.668
#> SRR1079782 2 0.4247 0.7754 0.000 0.776 0.000 0.036 0.096 0.092
#> SRR1092257 2 0.4571 0.7506 0.000 0.756 0.000 0.072 0.068 0.104
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
SD:pam
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["SD", "pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.825 0.908 0.956 0.3928 0.618 0.618
#> 3 3 0.463 0.684 0.808 0.6335 0.656 0.476
#> 4 4 0.504 0.560 0.793 0.1467 0.771 0.457
#> 5 5 0.572 0.495 0.736 0.0634 0.917 0.714
#> 6 6 0.653 0.576 0.761 0.0330 0.945 0.774
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.9382 0.000 1.000
#> SRR1429287 2 0.0376 0.9374 0.004 0.996
#> SRR1359238 1 0.0376 0.9577 0.996 0.004
#> SRR1309597 1 0.1633 0.9560 0.976 0.024
#> SRR1441398 1 0.0000 0.9575 1.000 0.000
#> SRR1084055 2 0.0000 0.9382 0.000 1.000
#> SRR1417566 1 0.1633 0.9560 0.976 0.024
#> SRR1351857 1 0.1633 0.9560 0.976 0.024
#> SRR1487485 1 0.6712 0.7922 0.824 0.176
#> SRR1335875 1 0.1633 0.9560 0.976 0.024
#> SRR1073947 1 0.0000 0.9575 1.000 0.000
#> SRR1443483 1 0.1633 0.9560 0.976 0.024
#> SRR1346794 1 0.1633 0.9560 0.976 0.024
#> SRR1405245 1 0.0000 0.9575 1.000 0.000
#> SRR1409677 1 0.1633 0.9560 0.976 0.024
#> SRR1095549 1 0.1414 0.9567 0.980 0.020
#> SRR1323788 1 0.1633 0.9560 0.976 0.024
#> SRR1314054 2 0.0938 0.9347 0.012 0.988
#> SRR1077944 1 0.0000 0.9575 1.000 0.000
#> SRR1480587 2 0.0000 0.9382 0.000 1.000
#> SRR1311205 1 0.0000 0.9575 1.000 0.000
#> SRR1076369 1 0.0000 0.9575 1.000 0.000
#> SRR1453549 1 0.1633 0.9560 0.976 0.024
#> SRR1345782 1 0.0000 0.9575 1.000 0.000
#> SRR1447850 2 0.4161 0.8880 0.084 0.916
#> SRR1391553 2 0.5059 0.8666 0.112 0.888
#> SRR1444156 2 0.0000 0.9382 0.000 1.000
#> SRR1471731 1 0.1633 0.9560 0.976 0.024
#> SRR1120987 1 0.8555 0.6111 0.720 0.280
#> SRR1477363 1 0.0000 0.9575 1.000 0.000
#> SRR1391961 1 0.3584 0.9078 0.932 0.068
#> SRR1373879 1 0.1633 0.9560 0.976 0.024
#> SRR1318732 1 0.2603 0.9440 0.956 0.044
#> SRR1091404 1 0.0376 0.9562 0.996 0.004
#> SRR1402109 1 0.1633 0.9560 0.976 0.024
#> SRR1407336 1 0.1633 0.9560 0.976 0.024
#> SRR1097417 2 0.9833 0.2820 0.424 0.576
#> SRR1396227 1 0.0000 0.9575 1.000 0.000
#> SRR1400775 2 0.0000 0.9382 0.000 1.000
#> SRR1392861 1 0.1633 0.9560 0.976 0.024
#> SRR1472929 1 0.9129 0.5038 0.672 0.328
#> SRR1436740 1 0.1633 0.9560 0.976 0.024
#> SRR1477057 2 0.6247 0.8401 0.156 0.844
#> SRR1311980 1 0.0000 0.9575 1.000 0.000
#> SRR1069400 1 0.1633 0.9560 0.976 0.024
#> SRR1351016 1 0.0000 0.9575 1.000 0.000
#> SRR1096291 1 0.1633 0.9560 0.976 0.024
#> SRR1418145 1 0.1414 0.9567 0.980 0.020
#> SRR1488111 2 0.8327 0.6732 0.264 0.736
#> SRR1370495 1 0.0672 0.9545 0.992 0.008
#> SRR1352639 1 0.0938 0.9525 0.988 0.012
#> SRR1348911 1 0.0672 0.9576 0.992 0.008
#> SRR1467386 1 0.0000 0.9575 1.000 0.000
#> SRR1415956 1 0.0000 0.9575 1.000 0.000
#> SRR1500495 1 0.0000 0.9575 1.000 0.000
#> SRR1405099 1 0.0000 0.9575 1.000 0.000
#> SRR1345585 1 0.2423 0.9459 0.960 0.040
#> SRR1093196 1 0.1633 0.9560 0.976 0.024
#> SRR1466006 2 0.0000 0.9382 0.000 1.000
#> SRR1351557 2 0.0000 0.9382 0.000 1.000
#> SRR1382687 1 0.1414 0.9567 0.980 0.020
#> SRR1375549 1 0.0672 0.9545 0.992 0.008
#> SRR1101765 1 0.1633 0.9560 0.976 0.024
#> SRR1334461 1 0.4815 0.8663 0.896 0.104
#> SRR1094073 2 0.0000 0.9382 0.000 1.000
#> SRR1077549 1 0.0000 0.9575 1.000 0.000
#> SRR1440332 1 0.0000 0.9575 1.000 0.000
#> SRR1454177 1 0.1633 0.9560 0.976 0.024
#> SRR1082447 1 0.0000 0.9575 1.000 0.000
#> SRR1420043 1 0.1633 0.9560 0.976 0.024
#> SRR1432500 1 0.0000 0.9575 1.000 0.000
#> SRR1378045 2 0.1184 0.9330 0.016 0.984
#> SRR1334200 1 0.9552 0.4271 0.624 0.376
#> SRR1069539 1 0.1843 0.9547 0.972 0.028
#> SRR1343031 1 0.0376 0.9576 0.996 0.004
#> SRR1319690 1 0.1633 0.9560 0.976 0.024
#> SRR1310604 2 0.0000 0.9382 0.000 1.000
#> SRR1327747 1 0.1633 0.9560 0.976 0.024
#> SRR1072456 2 0.1633 0.9239 0.024 0.976
#> SRR1367896 1 0.0672 0.9576 0.992 0.008
#> SRR1480107 1 0.0000 0.9575 1.000 0.000
#> SRR1377756 1 0.1414 0.9567 0.980 0.020
#> SRR1435272 1 0.1633 0.9560 0.976 0.024
#> SRR1089230 1 0.1633 0.9560 0.976 0.024
#> SRR1389522 1 0.0672 0.9545 0.992 0.008
#> SRR1080600 2 0.5737 0.8326 0.136 0.864
#> SRR1086935 2 0.8327 0.6715 0.264 0.736
#> SRR1344060 1 1.0000 -0.0631 0.500 0.500
#> SRR1467922 2 0.0000 0.9382 0.000 1.000
#> SRR1090984 1 0.0000 0.9575 1.000 0.000
#> SRR1456991 1 0.0000 0.9575 1.000 0.000
#> SRR1085039 1 0.0000 0.9575 1.000 0.000
#> SRR1069303 1 0.0000 0.9575 1.000 0.000
#> SRR1091500 2 0.0938 0.9319 0.012 0.988
#> SRR1075198 2 0.0000 0.9382 0.000 1.000
#> SRR1086915 1 0.1633 0.9560 0.976 0.024
#> SRR1499503 2 0.0000 0.9382 0.000 1.000
#> SRR1094312 2 0.0000 0.9382 0.000 1.000
#> SRR1352437 1 0.7883 0.6631 0.764 0.236
#> SRR1436323 1 0.1633 0.9560 0.976 0.024
#> SRR1073507 1 0.0000 0.9575 1.000 0.000
#> SRR1401972 1 0.0000 0.9575 1.000 0.000
#> SRR1415510 2 0.0672 0.9362 0.008 0.992
#> SRR1327279 1 0.0000 0.9575 1.000 0.000
#> SRR1086983 1 0.1633 0.9560 0.976 0.024
#> SRR1105174 1 0.0000 0.9575 1.000 0.000
#> SRR1468893 1 0.0000 0.9575 1.000 0.000
#> SRR1362555 1 0.8016 0.6720 0.756 0.244
#> SRR1074526 2 0.7139 0.7971 0.196 0.804
#> SRR1326225 2 0.0000 0.9382 0.000 1.000
#> SRR1401933 1 0.0000 0.9575 1.000 0.000
#> SRR1324062 1 0.0000 0.9575 1.000 0.000
#> SRR1102296 1 0.3584 0.9042 0.932 0.068
#> SRR1085087 1 0.0000 0.9575 1.000 0.000
#> SRR1079046 1 0.5946 0.8242 0.856 0.144
#> SRR1328339 1 0.0000 0.9575 1.000 0.000
#> SRR1079782 2 0.0000 0.9382 0.000 1.000
#> SRR1092257 2 0.1184 0.9327 0.016 0.984
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1429287 2 0.4654 0.7594 0.000 0.792 0.208
#> SRR1359238 1 0.6215 0.2724 0.572 0.000 0.428
#> SRR1309597 1 0.6168 0.3425 0.588 0.000 0.412
#> SRR1441398 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1084055 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1417566 3 0.4887 0.7214 0.228 0.000 0.772
#> SRR1351857 3 0.6309 -0.2764 0.496 0.000 0.504
#> SRR1487485 3 0.2356 0.7657 0.072 0.000 0.928
#> SRR1335875 3 0.5785 0.6351 0.332 0.000 0.668
#> SRR1073947 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1443483 1 0.6252 0.2675 0.556 0.000 0.444
#> SRR1346794 1 0.5465 0.5353 0.712 0.000 0.288
#> SRR1405245 1 0.4750 0.6654 0.784 0.000 0.216
#> SRR1409677 3 0.1753 0.7585 0.048 0.000 0.952
#> SRR1095549 1 0.3879 0.7105 0.848 0.000 0.152
#> SRR1323788 3 0.4974 0.7148 0.236 0.000 0.764
#> SRR1314054 2 0.3412 0.8058 0.000 0.876 0.124
#> SRR1077944 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1480587 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1311205 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1076369 1 0.3686 0.7179 0.860 0.000 0.140
#> SRR1453549 3 0.5431 0.6781 0.284 0.000 0.716
#> SRR1345782 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1447850 2 0.4605 0.7232 0.000 0.796 0.204
#> SRR1391553 3 0.7274 0.4830 0.052 0.304 0.644
#> SRR1444156 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1471731 3 0.2356 0.7657 0.072 0.000 0.928
#> SRR1120987 3 0.5327 0.6353 0.272 0.000 0.728
#> SRR1477363 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1391961 1 0.1643 0.7977 0.956 0.044 0.000
#> SRR1373879 3 0.2356 0.7657 0.072 0.000 0.928
#> SRR1318732 3 0.3686 0.7461 0.140 0.000 0.860
#> SRR1091404 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1402109 3 0.3267 0.7539 0.116 0.000 0.884
#> SRR1407336 3 0.2356 0.7657 0.072 0.000 0.928
#> SRR1097417 3 0.3764 0.7616 0.068 0.040 0.892
#> SRR1396227 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1400775 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1392861 3 0.0000 0.7550 0.000 0.000 1.000
#> SRR1472929 1 0.6111 0.3542 0.604 0.396 0.000
#> SRR1436740 3 0.0000 0.7550 0.000 0.000 1.000
#> SRR1477057 2 0.6887 0.6047 0.060 0.704 0.236
#> SRR1311980 3 0.6235 0.4700 0.436 0.000 0.564
#> SRR1069400 3 0.4555 0.6874 0.200 0.000 0.800
#> SRR1351016 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1096291 3 0.4750 0.6209 0.216 0.000 0.784
#> SRR1418145 1 0.5465 0.6277 0.712 0.000 0.288
#> SRR1488111 3 0.7273 0.6894 0.156 0.132 0.712
#> SRR1370495 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1352639 1 0.3619 0.7372 0.864 0.000 0.136
#> SRR1348911 3 0.5926 0.6048 0.356 0.000 0.644
#> SRR1467386 1 0.5785 0.3537 0.668 0.000 0.332
#> SRR1415956 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1500495 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1405099 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1345585 3 0.2537 0.7663 0.080 0.000 0.920
#> SRR1093196 3 0.2356 0.7657 0.072 0.000 0.928
#> SRR1466006 2 0.0237 0.8932 0.000 0.996 0.004
#> SRR1351557 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1382687 3 0.5810 0.6306 0.336 0.000 0.664
#> SRR1375549 1 0.2356 0.7850 0.928 0.000 0.072
#> SRR1101765 1 0.6309 -0.0526 0.504 0.000 0.496
#> SRR1334461 1 0.1964 0.7926 0.944 0.056 0.000
#> SRR1094073 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1077549 3 0.5835 0.6273 0.340 0.000 0.660
#> SRR1440332 1 0.3816 0.7093 0.852 0.000 0.148
#> SRR1454177 3 0.0000 0.7550 0.000 0.000 1.000
#> SRR1082447 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1420043 3 0.1163 0.7627 0.028 0.000 0.972
#> SRR1432500 1 0.4796 0.6926 0.780 0.000 0.220
#> SRR1378045 2 0.5948 0.4180 0.000 0.640 0.360
#> SRR1334200 3 0.9156 0.5422 0.256 0.204 0.540
#> SRR1069539 3 0.0000 0.7550 0.000 0.000 1.000
#> SRR1343031 3 0.5988 0.3766 0.368 0.000 0.632
#> SRR1319690 3 0.5431 0.6816 0.284 0.000 0.716
#> SRR1310604 2 0.2711 0.8506 0.000 0.912 0.088
#> SRR1327747 3 0.5678 0.4046 0.316 0.000 0.684
#> SRR1072456 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1367896 3 0.4399 0.7089 0.188 0.000 0.812
#> SRR1480107 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1377756 1 0.5178 0.6577 0.744 0.000 0.256
#> SRR1435272 3 0.0000 0.7550 0.000 0.000 1.000
#> SRR1089230 3 0.0000 0.7550 0.000 0.000 1.000
#> SRR1389522 1 0.4887 0.6206 0.772 0.000 0.228
#> SRR1080600 3 0.8518 -0.0886 0.092 0.436 0.472
#> SRR1086935 3 0.0000 0.7550 0.000 0.000 1.000
#> SRR1344060 2 0.5905 0.4025 0.352 0.648 0.000
#> SRR1467922 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1090984 3 0.6062 0.5700 0.384 0.000 0.616
#> SRR1456991 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1085039 1 0.2356 0.7850 0.928 0.000 0.072
#> SRR1069303 1 0.1860 0.7960 0.948 0.000 0.052
#> SRR1091500 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1075198 2 0.3340 0.8202 0.000 0.880 0.120
#> SRR1086915 3 0.3941 0.7253 0.156 0.000 0.844
#> SRR1499503 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1094312 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1352437 3 0.7424 0.6136 0.300 0.060 0.640
#> SRR1436323 3 0.2356 0.7657 0.072 0.000 0.928
#> SRR1073507 1 0.2356 0.7850 0.928 0.000 0.072
#> SRR1401972 1 0.3412 0.7313 0.876 0.000 0.124
#> SRR1415510 2 0.5431 0.5727 0.000 0.716 0.284
#> SRR1327279 1 0.3816 0.7093 0.852 0.000 0.148
#> SRR1086983 3 0.5216 0.6469 0.260 0.000 0.740
#> SRR1105174 1 0.2356 0.7850 0.928 0.000 0.072
#> SRR1468893 1 0.0424 0.8132 0.992 0.000 0.008
#> SRR1362555 1 0.6225 0.2649 0.568 0.432 0.000
#> SRR1074526 1 0.9767 -0.2368 0.404 0.232 0.364
#> SRR1326225 2 0.0000 0.8946 0.000 1.000 0.000
#> SRR1401933 1 0.5560 0.4377 0.700 0.000 0.300
#> SRR1324062 3 0.6215 0.4842 0.428 0.000 0.572
#> SRR1102296 1 0.5207 0.7166 0.824 0.052 0.124
#> SRR1085087 1 0.2448 0.7850 0.924 0.000 0.076
#> SRR1079046 1 0.4569 0.7554 0.860 0.068 0.072
#> SRR1328339 1 0.0000 0.8140 1.000 0.000 0.000
#> SRR1079782 2 0.2959 0.8464 0.000 0.900 0.100
#> SRR1092257 2 0.2165 0.8637 0.000 0.936 0.064
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0592 0.8555 0.000 0.984 0.000 0.016
#> SRR1429287 4 0.5877 0.4834 0.000 0.276 0.068 0.656
#> SRR1359238 4 0.6049 0.6784 0.184 0.000 0.132 0.684
#> SRR1309597 3 0.6910 0.2977 0.324 0.000 0.548 0.128
#> SRR1441398 1 0.1022 0.7192 0.968 0.000 0.000 0.032
#> SRR1084055 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1417566 3 0.5039 0.1044 0.404 0.000 0.592 0.004
#> SRR1351857 4 0.3333 0.7188 0.088 0.000 0.040 0.872
#> SRR1487485 3 0.0000 0.6832 0.000 0.000 1.000 0.000
#> SRR1335875 3 0.5000 -0.1495 0.500 0.000 0.500 0.000
#> SRR1073947 1 0.0000 0.7244 1.000 0.000 0.000 0.000
#> SRR1443483 3 0.6950 0.3150 0.272 0.000 0.572 0.156
#> SRR1346794 1 0.7545 -0.0488 0.440 0.000 0.368 0.192
#> SRR1405245 1 0.4737 0.5442 0.728 0.000 0.252 0.020
#> SRR1409677 4 0.3401 0.7035 0.008 0.000 0.152 0.840
#> SRR1095549 1 0.3324 0.6402 0.852 0.000 0.136 0.012
#> SRR1323788 3 0.4877 0.3127 0.328 0.000 0.664 0.008
#> SRR1314054 2 0.2973 0.7540 0.000 0.856 0.144 0.000
#> SRR1077944 1 0.0188 0.7244 0.996 0.000 0.000 0.004
#> SRR1480587 2 0.0592 0.8555 0.000 0.984 0.000 0.016
#> SRR1311205 1 0.0188 0.7242 0.996 0.000 0.000 0.004
#> SRR1076369 1 0.7818 0.0672 0.416 0.000 0.292 0.292
#> SRR1453549 3 0.4977 -0.0482 0.460 0.000 0.540 0.000
#> SRR1345782 1 0.0000 0.7244 1.000 0.000 0.000 0.000
#> SRR1447850 2 0.3837 0.6643 0.000 0.776 0.224 0.000
#> SRR1391553 3 0.6079 -0.0460 0.044 0.464 0.492 0.000
#> SRR1444156 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1471731 3 0.0000 0.6832 0.000 0.000 1.000 0.000
#> SRR1120987 4 0.1635 0.7170 0.044 0.000 0.008 0.948
#> SRR1477363 1 0.0817 0.7208 0.976 0.000 0.000 0.024
#> SRR1391961 1 0.2610 0.6905 0.900 0.012 0.000 0.088
#> SRR1373879 3 0.0000 0.6832 0.000 0.000 1.000 0.000
#> SRR1318732 3 0.3768 0.5587 0.008 0.000 0.808 0.184
#> SRR1091404 1 0.0188 0.7244 0.996 0.000 0.000 0.004
#> SRR1402109 3 0.1302 0.6768 0.044 0.000 0.956 0.000
#> SRR1407336 3 0.3024 0.5712 0.000 0.000 0.852 0.148
#> SRR1097417 3 0.1042 0.6773 0.000 0.020 0.972 0.008
#> SRR1396227 1 0.0188 0.7242 0.996 0.000 0.000 0.004
#> SRR1400775 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1392861 3 0.0000 0.6832 0.000 0.000 1.000 0.000
#> SRR1472929 1 0.6974 0.1070 0.488 0.396 0.000 0.116
#> SRR1436740 4 0.4431 0.5865 0.000 0.000 0.304 0.696
#> SRR1477057 2 0.7004 0.5027 0.160 0.628 0.196 0.016
#> SRR1311980 1 0.4888 0.2838 0.588 0.000 0.412 0.000
#> SRR1069400 3 0.2342 0.6606 0.080 0.000 0.912 0.008
#> SRR1351016 1 0.0000 0.7244 1.000 0.000 0.000 0.000
#> SRR1096291 4 0.5010 0.6807 0.108 0.000 0.120 0.772
#> SRR1418145 4 0.1610 0.7165 0.016 0.000 0.032 0.952
#> SRR1488111 3 0.7521 0.1410 0.352 0.096 0.520 0.032
#> SRR1370495 1 0.2469 0.6877 0.892 0.000 0.000 0.108
#> SRR1352639 1 0.7872 -0.1076 0.376 0.000 0.344 0.280
#> SRR1348911 1 0.5000 0.0966 0.500 0.000 0.500 0.000
#> SRR1467386 1 0.4401 0.5346 0.724 0.000 0.272 0.004
#> SRR1415956 1 0.0817 0.7208 0.976 0.000 0.000 0.024
#> SRR1500495 1 0.1209 0.7184 0.964 0.000 0.004 0.032
#> SRR1405099 1 0.0817 0.7208 0.976 0.000 0.000 0.024
#> SRR1345585 3 0.0895 0.6807 0.004 0.000 0.976 0.020
#> SRR1093196 3 0.0336 0.6818 0.000 0.000 0.992 0.008
#> SRR1466006 2 0.0657 0.8556 0.000 0.984 0.004 0.012
#> SRR1351557 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1382687 1 0.4977 0.2029 0.540 0.000 0.460 0.000
#> SRR1375549 4 0.3528 0.6804 0.192 0.000 0.000 0.808
#> SRR1101765 4 0.3577 0.6927 0.156 0.000 0.012 0.832
#> SRR1334461 1 0.3307 0.6761 0.868 0.028 0.000 0.104
#> SRR1094073 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1077549 1 0.5161 0.1763 0.520 0.000 0.476 0.004
#> SRR1440332 1 0.3554 0.6615 0.844 0.000 0.020 0.136
#> SRR1454177 3 0.4967 -0.1684 0.000 0.000 0.548 0.452
#> SRR1082447 1 0.0921 0.7216 0.972 0.000 0.000 0.028
#> SRR1420043 3 0.0000 0.6832 0.000 0.000 1.000 0.000
#> SRR1432500 4 0.6031 0.6570 0.168 0.000 0.144 0.688
#> SRR1378045 2 0.4406 0.5410 0.000 0.700 0.300 0.000
#> SRR1334200 4 0.9135 -0.0832 0.296 0.072 0.256 0.376
#> SRR1069539 4 0.3975 0.6322 0.000 0.000 0.240 0.760
#> SRR1343031 3 0.3172 0.6017 0.160 0.000 0.840 0.000
#> SRR1319690 3 0.4406 0.5839 0.192 0.000 0.780 0.028
#> SRR1310604 2 0.5140 0.7234 0.000 0.760 0.096 0.144
#> SRR1327747 4 0.6474 0.5157 0.120 0.000 0.256 0.624
#> SRR1072456 2 0.0592 0.8555 0.000 0.984 0.000 0.016
#> SRR1367896 3 0.2149 0.6557 0.088 0.000 0.912 0.000
#> SRR1480107 1 0.0188 0.7244 0.996 0.000 0.000 0.004
#> SRR1377756 4 0.3873 0.7182 0.096 0.000 0.060 0.844
#> SRR1435272 4 0.4454 0.5831 0.000 0.000 0.308 0.692
#> SRR1089230 4 0.1716 0.7167 0.000 0.000 0.064 0.936
#> SRR1389522 1 0.5931 -0.0271 0.504 0.000 0.460 0.036
#> SRR1080600 3 0.7824 0.0707 0.004 0.216 0.424 0.356
#> SRR1086935 4 0.5000 0.1820 0.000 0.000 0.500 0.500
#> SRR1344060 2 0.7301 0.4549 0.236 0.536 0.000 0.228
#> SRR1467922 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1090984 1 0.4985 0.1794 0.532 0.000 0.468 0.000
#> SRR1456991 1 0.0188 0.7244 0.996 0.000 0.000 0.004
#> SRR1085039 1 0.3610 0.5798 0.800 0.000 0.000 0.200
#> SRR1069303 1 0.3123 0.6371 0.844 0.000 0.000 0.156
#> SRR1091500 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1075198 2 0.6269 0.5856 0.000 0.632 0.096 0.272
#> SRR1086915 4 0.2888 0.7086 0.004 0.000 0.124 0.872
#> SRR1499503 2 0.0592 0.8555 0.000 0.984 0.000 0.016
#> SRR1094312 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1352437 1 0.5236 0.2586 0.560 0.008 0.432 0.000
#> SRR1436323 3 0.0336 0.6822 0.000 0.000 0.992 0.008
#> SRR1073507 1 0.4250 0.4613 0.724 0.000 0.000 0.276
#> SRR1401972 1 0.3052 0.6538 0.860 0.000 0.136 0.004
#> SRR1415510 2 0.3443 0.7654 0.000 0.848 0.136 0.016
#> SRR1327279 1 0.3495 0.6583 0.844 0.000 0.016 0.140
#> SRR1086983 4 0.4781 0.6521 0.036 0.000 0.212 0.752
#> SRR1105174 4 0.4356 0.6215 0.292 0.000 0.000 0.708
#> SRR1468893 4 0.4941 0.3815 0.436 0.000 0.000 0.564
#> SRR1362555 2 0.7377 0.3939 0.216 0.520 0.000 0.264
#> SRR1074526 1 0.7824 0.4739 0.608 0.184 0.108 0.100
#> SRR1326225 2 0.0000 0.8578 0.000 1.000 0.000 0.000
#> SRR1401933 1 0.5772 0.5770 0.708 0.000 0.116 0.176
#> SRR1324062 1 0.4866 0.3067 0.596 0.000 0.404 0.000
#> SRR1102296 1 0.4057 0.6332 0.816 0.032 0.152 0.000
#> SRR1085087 1 0.4790 0.3868 0.620 0.000 0.000 0.380
#> SRR1079046 4 0.3626 0.6817 0.184 0.004 0.000 0.812
#> SRR1328339 1 0.0188 0.7244 0.996 0.000 0.000 0.004
#> SRR1079782 4 0.3074 0.6073 0.000 0.152 0.000 0.848
#> SRR1092257 2 0.4134 0.6530 0.000 0.740 0.000 0.260
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.2852 0.70127 0.000 0.828 0.000 0.000 0.172
#> SRR1429287 4 0.6963 0.21602 0.000 0.288 0.028 0.496 0.188
#> SRR1359238 4 0.3047 0.74819 0.044 0.000 0.084 0.868 0.004
#> SRR1309597 5 0.7291 0.03698 0.340 0.000 0.152 0.056 0.452
#> SRR1441398 1 0.4349 0.51763 0.756 0.000 0.000 0.068 0.176
#> SRR1084055 2 0.0794 0.77487 0.000 0.972 0.000 0.000 0.028
#> SRR1417566 3 0.3047 0.60556 0.160 0.000 0.832 0.004 0.004
#> SRR1351857 4 0.1478 0.75513 0.000 0.000 0.064 0.936 0.000
#> SRR1487485 3 0.0000 0.66588 0.000 0.000 1.000 0.000 0.000
#> SRR1335875 3 0.3967 0.51813 0.264 0.000 0.724 0.000 0.012
#> SRR1073947 1 0.0000 0.63995 1.000 0.000 0.000 0.000 0.000
#> SRR1443483 3 0.7688 -0.20292 0.324 0.000 0.332 0.048 0.296
#> SRR1346794 1 0.7646 0.01657 0.432 0.000 0.312 0.076 0.180
#> SRR1405245 1 0.6553 0.36462 0.592 0.000 0.200 0.036 0.172
#> SRR1409677 4 0.3058 0.74917 0.000 0.000 0.096 0.860 0.044
#> SRR1095549 1 0.6179 0.36727 0.664 0.000 0.108 0.076 0.152
#> SRR1323788 3 0.4928 0.59373 0.072 0.000 0.768 0.064 0.096
#> SRR1314054 2 0.2548 0.69232 0.000 0.876 0.116 0.004 0.004
#> SRR1077944 1 0.0771 0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1480587 2 0.1478 0.76377 0.000 0.936 0.000 0.000 0.064
#> SRR1311205 1 0.0290 0.63988 0.992 0.000 0.000 0.008 0.000
#> SRR1076369 1 0.7657 -0.08047 0.456 0.000 0.128 0.116 0.300
#> SRR1453549 3 0.3039 0.58589 0.192 0.000 0.808 0.000 0.000
#> SRR1345782 1 0.0000 0.63995 1.000 0.000 0.000 0.000 0.000
#> SRR1447850 2 0.2921 0.65977 0.000 0.844 0.148 0.004 0.004
#> SRR1391553 3 0.4143 0.47222 0.008 0.260 0.724 0.004 0.004
#> SRR1444156 2 0.0000 0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1471731 3 0.0324 0.66597 0.000 0.000 0.992 0.004 0.004
#> SRR1120987 4 0.3248 0.74275 0.064 0.000 0.020 0.868 0.048
#> SRR1477363 1 0.4162 0.52704 0.768 0.000 0.000 0.056 0.176
#> SRR1391961 1 0.4211 0.29586 0.636 0.000 0.000 0.004 0.360
#> SRR1373879 3 0.0404 0.66465 0.000 0.000 0.988 0.000 0.012
#> SRR1318732 3 0.5187 0.51048 0.020 0.000 0.700 0.064 0.216
#> SRR1091404 1 0.0771 0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1402109 3 0.3732 0.56521 0.032 0.000 0.792 0.000 0.176
#> SRR1407336 3 0.4797 0.45158 0.004 0.000 0.676 0.040 0.280
#> SRR1097417 3 0.5036 0.43509 0.000 0.052 0.628 0.000 0.320
#> SRR1396227 1 0.1410 0.62953 0.940 0.000 0.000 0.060 0.000
#> SRR1400775 2 0.0000 0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1392861 3 0.0000 0.66588 0.000 0.000 1.000 0.000 0.000
#> SRR1472929 5 0.3495 0.41899 0.028 0.160 0.000 0.000 0.812
#> SRR1436740 4 0.2329 0.74149 0.000 0.000 0.124 0.876 0.000
#> SRR1477057 2 0.6101 0.41515 0.128 0.660 0.176 0.008 0.028
#> SRR1311980 1 0.4273 0.08967 0.552 0.000 0.448 0.000 0.000
#> SRR1069400 3 0.5000 0.46139 0.068 0.000 0.688 0.004 0.240
#> SRR1351016 1 0.0000 0.63995 1.000 0.000 0.000 0.000 0.000
#> SRR1096291 4 0.4904 0.67808 0.044 0.000 0.132 0.760 0.064
#> SRR1418145 4 0.2972 0.74283 0.004 0.000 0.040 0.872 0.084
#> SRR1488111 3 0.5444 0.53355 0.112 0.016 0.720 0.012 0.140
#> SRR1370495 1 0.3343 0.52739 0.812 0.000 0.000 0.016 0.172
#> SRR1352639 1 0.7220 0.12257 0.496 0.000 0.048 0.192 0.264
#> SRR1348911 3 0.4201 0.27335 0.408 0.000 0.592 0.000 0.000
#> SRR1467386 1 0.3752 0.57451 0.812 0.000 0.124 0.064 0.000
#> SRR1415956 1 0.4226 0.52410 0.764 0.000 0.000 0.060 0.176
#> SRR1500495 1 0.4349 0.51763 0.756 0.000 0.000 0.068 0.176
#> SRR1405099 1 0.4162 0.52704 0.768 0.000 0.000 0.056 0.176
#> SRR1345585 3 0.1525 0.65785 0.004 0.000 0.948 0.036 0.012
#> SRR1093196 3 0.0693 0.66505 0.000 0.000 0.980 0.008 0.012
#> SRR1466006 2 0.2848 0.71301 0.000 0.840 0.004 0.000 0.156
#> SRR1351557 2 0.0290 0.77854 0.000 0.992 0.000 0.000 0.008
#> SRR1382687 3 0.4350 0.28025 0.408 0.000 0.588 0.004 0.000
#> SRR1375549 4 0.3075 0.70937 0.092 0.000 0.000 0.860 0.048
#> SRR1101765 4 0.2595 0.71665 0.080 0.000 0.000 0.888 0.032
#> SRR1334461 1 0.5868 -0.00911 0.472 0.052 0.000 0.020 0.456
#> SRR1094073 2 0.0000 0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1077549 1 0.5625 0.21485 0.564 0.000 0.368 0.056 0.012
#> SRR1440332 1 0.2162 0.62601 0.916 0.000 0.012 0.064 0.008
#> SRR1454177 4 0.4171 0.43918 0.000 0.000 0.396 0.604 0.000
#> SRR1082447 1 0.2068 0.61987 0.904 0.000 0.000 0.092 0.004
#> SRR1420043 3 0.0000 0.66588 0.000 0.000 1.000 0.000 0.000
#> SRR1432500 4 0.3675 0.67090 0.188 0.000 0.024 0.788 0.000
#> SRR1378045 2 0.4196 0.35537 0.000 0.640 0.356 0.000 0.004
#> SRR1334200 5 0.7372 0.38122 0.060 0.072 0.208 0.072 0.588
#> SRR1069539 4 0.6374 0.30755 0.000 0.000 0.196 0.504 0.300
#> SRR1343031 3 0.5949 0.28998 0.172 0.000 0.588 0.000 0.240
#> SRR1319690 3 0.5379 0.51006 0.056 0.000 0.712 0.052 0.180
#> SRR1310604 2 0.5932 0.12329 0.000 0.496 0.072 0.012 0.420
#> SRR1327747 3 0.7420 0.14742 0.120 0.000 0.488 0.292 0.100
#> SRR1072456 2 0.2852 0.70127 0.000 0.828 0.000 0.000 0.172
#> SRR1367896 3 0.4602 0.48574 0.052 0.000 0.708 0.000 0.240
#> SRR1480107 1 0.0771 0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1377756 4 0.3375 0.75428 0.020 0.000 0.072 0.860 0.048
#> SRR1435272 4 0.2966 0.71493 0.000 0.000 0.184 0.816 0.000
#> SRR1089230 4 0.1478 0.75513 0.000 0.000 0.064 0.936 0.000
#> SRR1389522 1 0.7309 -0.17436 0.412 0.000 0.176 0.044 0.368
#> SRR1080600 5 0.6514 0.36859 0.000 0.160 0.128 0.080 0.632
#> SRR1086935 3 0.3876 0.43235 0.000 0.000 0.684 0.316 0.000
#> SRR1344060 5 0.5816 -0.12130 0.040 0.420 0.000 0.028 0.512
#> SRR1467922 2 0.0162 0.77990 0.000 0.996 0.000 0.000 0.004
#> SRR1090984 1 0.4268 0.10603 0.556 0.000 0.444 0.000 0.000
#> SRR1456991 1 0.0771 0.63847 0.976 0.000 0.000 0.020 0.004
#> SRR1085039 1 0.4339 0.36837 0.652 0.000 0.000 0.336 0.012
#> SRR1069303 1 0.4138 0.32292 0.616 0.000 0.000 0.384 0.000
#> SRR1091500 2 0.0000 0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1075198 2 0.6803 0.34884 0.000 0.544 0.104 0.060 0.292
#> SRR1086915 4 0.2867 0.75176 0.004 0.000 0.072 0.880 0.044
#> SRR1499503 2 0.2852 0.70127 0.000 0.828 0.000 0.000 0.172
#> SRR1094312 2 0.0000 0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1352437 1 0.4497 0.14766 0.568 0.008 0.424 0.000 0.000
#> SRR1436323 3 0.1638 0.64546 0.000 0.000 0.932 0.064 0.004
#> SRR1073507 4 0.4307 -0.07122 0.500 0.000 0.000 0.500 0.000
#> SRR1401972 1 0.2079 0.62625 0.916 0.000 0.020 0.064 0.000
#> SRR1415510 2 0.6352 0.18153 0.000 0.488 0.336 0.000 0.176
#> SRR1327279 1 0.2433 0.62053 0.908 0.000 0.024 0.012 0.056
#> SRR1086983 4 0.2569 0.73568 0.068 0.000 0.040 0.892 0.000
#> SRR1105174 4 0.5339 0.52186 0.152 0.000 0.000 0.672 0.176
#> SRR1468893 4 0.3953 0.59088 0.168 0.000 0.000 0.784 0.048
#> SRR1362555 1 0.8024 -0.28427 0.356 0.328 0.000 0.096 0.220
#> SRR1074526 5 0.6728 0.04831 0.396 0.024 0.084 0.016 0.480
#> SRR1326225 2 0.0000 0.78035 0.000 1.000 0.000 0.000 0.000
#> SRR1401933 1 0.4359 0.56364 0.776 0.000 0.092 0.128 0.004
#> SRR1324062 1 0.4249 0.13999 0.568 0.000 0.432 0.000 0.000
#> SRR1102296 1 0.2331 0.61311 0.900 0.020 0.080 0.000 0.000
#> SRR1085087 1 0.4262 0.20577 0.560 0.000 0.000 0.440 0.000
#> SRR1079046 4 0.3455 0.69950 0.084 0.004 0.000 0.844 0.068
#> SRR1328339 1 0.0566 0.63951 0.984 0.000 0.000 0.012 0.004
#> SRR1079782 4 0.5789 0.43178 0.000 0.124 0.004 0.612 0.260
#> SRR1092257 2 0.4683 0.52759 0.000 0.732 0.000 0.176 0.092
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.2165 0.7833 0.000 0.884 0.000 0.000 0.108 0.008
#> SRR1429287 4 0.7106 0.3157 0.000 0.228 0.008 0.484 0.164 0.116
#> SRR1359238 4 0.2237 0.7765 0.036 0.000 0.068 0.896 0.000 0.000
#> SRR1309597 6 0.3618 0.4043 0.176 0.000 0.000 0.048 0.000 0.776
#> SRR1441398 1 0.4000 0.5468 0.724 0.000 0.000 0.048 0.000 0.228
#> SRR1084055 2 0.0692 0.8175 0.000 0.976 0.000 0.000 0.020 0.004
#> SRR1417566 3 0.2704 0.6851 0.140 0.000 0.844 0.000 0.000 0.016
#> SRR1351857 4 0.1349 0.7801 0.000 0.000 0.056 0.940 0.000 0.004
#> SRR1487485 3 0.0790 0.7123 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1335875 3 0.2902 0.6511 0.196 0.000 0.800 0.000 0.000 0.004
#> SRR1073947 1 0.0146 0.6926 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1443483 6 0.5512 0.5672 0.152 0.000 0.208 0.020 0.000 0.620
#> SRR1346794 1 0.6696 0.2224 0.476 0.000 0.240 0.060 0.000 0.224
#> SRR1405245 1 0.5897 0.4251 0.576 0.000 0.116 0.044 0.000 0.264
#> SRR1409677 4 0.2685 0.7735 0.000 0.000 0.072 0.868 0.000 0.060
#> SRR1095549 1 0.4969 0.4914 0.712 0.000 0.064 0.068 0.000 0.156
#> SRR1323788 3 0.3671 0.6936 0.036 0.000 0.820 0.056 0.000 0.088
#> SRR1314054 2 0.1908 0.7655 0.000 0.900 0.096 0.004 0.000 0.000
#> SRR1077944 1 0.0000 0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1480587 2 0.1682 0.8086 0.000 0.928 0.000 0.000 0.052 0.020
#> SRR1311205 1 0.0405 0.6928 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1076369 6 0.6260 0.4476 0.272 0.000 0.072 0.080 0.012 0.564
#> SRR1453549 3 0.2048 0.7041 0.120 0.000 0.880 0.000 0.000 0.000
#> SRR1345782 1 0.0000 0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1447850 2 0.2445 0.7453 0.000 0.868 0.120 0.004 0.000 0.008
#> SRR1391553 3 0.3263 0.6386 0.020 0.176 0.800 0.004 0.000 0.000
#> SRR1444156 2 0.0291 0.8186 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1471731 3 0.0458 0.7109 0.000 0.000 0.984 0.000 0.000 0.016
#> SRR1120987 4 0.2604 0.7702 0.056 0.000 0.032 0.888 0.000 0.024
#> SRR1477363 1 0.3938 0.5496 0.728 0.000 0.000 0.044 0.000 0.228
#> SRR1391961 5 0.2882 0.7258 0.180 0.000 0.000 0.008 0.812 0.000
#> SRR1373879 3 0.0790 0.7123 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1318732 3 0.4651 0.5632 0.016 0.000 0.676 0.052 0.000 0.256
#> SRR1091404 1 0.0000 0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1402109 3 0.3647 -0.0389 0.000 0.000 0.640 0.000 0.000 0.360
#> SRR1407336 6 0.4489 0.5592 0.008 0.000 0.404 0.020 0.000 0.568
#> SRR1097417 6 0.5790 0.4819 0.000 0.048 0.396 0.000 0.064 0.492
#> SRR1396227 1 0.1719 0.6795 0.924 0.000 0.000 0.060 0.000 0.016
#> SRR1400775 2 0.0000 0.8183 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1392861 3 0.0000 0.7156 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1472929 5 0.4354 0.5636 0.000 0.080 0.000 0.000 0.704 0.216
#> SRR1436740 4 0.1958 0.7725 0.000 0.000 0.100 0.896 0.000 0.004
#> SRR1477057 2 0.4927 0.5309 0.188 0.700 0.092 0.008 0.008 0.004
#> SRR1311980 1 0.3868 -0.0207 0.508 0.000 0.492 0.000 0.000 0.000
#> SRR1069400 6 0.4315 0.5234 0.008 0.000 0.460 0.008 0.000 0.524
#> SRR1351016 1 0.0146 0.6926 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1096291 4 0.4289 0.7115 0.028 0.000 0.100 0.768 0.000 0.104
#> SRR1418145 4 0.2414 0.7623 0.000 0.000 0.012 0.896 0.036 0.056
#> SRR1488111 3 0.4460 0.6671 0.048 0.016 0.796 0.016 0.080 0.044
#> SRR1370495 1 0.2605 0.6383 0.876 0.000 0.000 0.020 0.092 0.012
#> SRR1352639 1 0.7082 0.3064 0.536 0.000 0.032 0.192 0.132 0.108
#> SRR1348911 3 0.3515 0.4822 0.324 0.000 0.676 0.000 0.000 0.000
#> SRR1467386 1 0.3953 0.5589 0.744 0.000 0.196 0.060 0.000 0.000
#> SRR1415956 1 0.3938 0.5496 0.728 0.000 0.000 0.044 0.000 0.228
#> SRR1500495 1 0.4138 0.5439 0.720 0.000 0.004 0.048 0.000 0.228
#> SRR1405099 1 0.3938 0.5496 0.728 0.000 0.000 0.044 0.000 0.228
#> SRR1345585 3 0.1794 0.7085 0.000 0.000 0.924 0.036 0.000 0.040
#> SRR1093196 3 0.1411 0.6936 0.000 0.000 0.936 0.004 0.000 0.060
#> SRR1466006 2 0.4175 0.6801 0.000 0.740 0.000 0.000 0.104 0.156
#> SRR1351557 2 0.1524 0.8018 0.000 0.932 0.000 0.000 0.008 0.060
#> SRR1382687 3 0.4141 0.3464 0.388 0.000 0.596 0.000 0.000 0.016
#> SRR1375549 4 0.2339 0.7525 0.072 0.000 0.000 0.896 0.012 0.020
#> SRR1101765 4 0.1719 0.7576 0.060 0.000 0.000 0.924 0.000 0.016
#> SRR1334461 5 0.2742 0.7708 0.076 0.044 0.000 0.008 0.872 0.000
#> SRR1094073 2 0.0260 0.8186 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1077549 1 0.5159 0.1046 0.524 0.000 0.408 0.052 0.000 0.016
#> SRR1440332 1 0.1461 0.6849 0.940 0.000 0.000 0.044 0.000 0.016
#> SRR1454177 4 0.4224 0.5161 0.000 0.000 0.340 0.632 0.000 0.028
#> SRR1082447 1 0.1387 0.6722 0.932 0.000 0.000 0.068 0.000 0.000
#> SRR1420043 3 0.0790 0.7123 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1432500 4 0.3558 0.7126 0.168 0.000 0.012 0.792 0.000 0.028
#> SRR1378045 2 0.4245 0.3605 0.000 0.604 0.376 0.000 0.016 0.004
#> SRR1334200 5 0.5554 0.6141 0.008 0.052 0.184 0.012 0.680 0.064
#> SRR1069539 6 0.5005 0.4866 0.000 0.000 0.136 0.156 0.020 0.688
#> SRR1343031 6 0.4147 0.5398 0.012 0.000 0.436 0.000 0.000 0.552
#> SRR1319690 3 0.4772 0.5585 0.024 0.000 0.668 0.048 0.000 0.260
#> SRR1310604 6 0.5328 0.2909 0.000 0.184 0.016 0.012 0.120 0.668
#> SRR1327747 3 0.6884 0.2439 0.140 0.000 0.496 0.224 0.000 0.140
#> SRR1072456 2 0.2165 0.7833 0.000 0.884 0.000 0.000 0.108 0.008
#> SRR1367896 6 0.3838 0.5209 0.000 0.000 0.448 0.000 0.000 0.552
#> SRR1480107 1 0.0000 0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1377756 4 0.2918 0.7799 0.020 0.000 0.064 0.868 0.000 0.048
#> SRR1435272 4 0.2482 0.7605 0.000 0.000 0.148 0.848 0.000 0.004
#> SRR1089230 4 0.1204 0.7796 0.000 0.000 0.056 0.944 0.000 0.000
#> SRR1389522 6 0.5152 0.4640 0.192 0.000 0.072 0.044 0.004 0.688
#> SRR1080600 6 0.5140 0.3894 0.000 0.032 0.044 0.040 0.172 0.712
#> SRR1086935 3 0.3198 0.5345 0.000 0.000 0.740 0.260 0.000 0.000
#> SRR1344060 5 0.2213 0.7428 0.000 0.100 0.000 0.008 0.888 0.004
#> SRR1467922 2 0.0603 0.8179 0.000 0.980 0.000 0.000 0.016 0.004
#> SRR1090984 1 0.3868 -0.0325 0.508 0.000 0.492 0.000 0.000 0.000
#> SRR1456991 1 0.0000 0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1085039 1 0.3737 0.2094 0.608 0.000 0.000 0.392 0.000 0.000
#> SRR1069303 1 0.4184 0.2593 0.576 0.000 0.000 0.408 0.000 0.016
#> SRR1091500 2 0.0000 0.8183 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1075198 2 0.7333 0.2992 0.000 0.444 0.056 0.040 0.176 0.284
#> SRR1086915 4 0.2433 0.7777 0.000 0.000 0.072 0.884 0.000 0.044
#> SRR1499503 2 0.2266 0.7828 0.000 0.880 0.000 0.000 0.108 0.012
#> SRR1094312 2 0.0260 0.8186 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1352437 1 0.4384 0.0475 0.520 0.000 0.460 0.004 0.000 0.016
#> SRR1436323 3 0.1387 0.7041 0.000 0.000 0.932 0.068 0.000 0.000
#> SRR1073507 4 0.3860 0.0171 0.472 0.000 0.000 0.528 0.000 0.000
#> SRR1401972 1 0.1779 0.6790 0.920 0.000 0.000 0.064 0.000 0.016
#> SRR1415510 2 0.5743 0.1009 0.000 0.456 0.420 0.000 0.108 0.016
#> SRR1327279 1 0.1267 0.6845 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1086983 4 0.1719 0.7651 0.060 0.000 0.016 0.924 0.000 0.000
#> SRR1105174 4 0.4979 0.5207 0.136 0.000 0.000 0.640 0.000 0.224
#> SRR1468893 4 0.3909 0.5157 0.244 0.000 0.000 0.720 0.000 0.036
#> SRR1362555 1 0.8559 -0.2054 0.308 0.180 0.000 0.080 0.236 0.196
#> SRR1074526 5 0.3377 0.7354 0.148 0.000 0.028 0.012 0.812 0.000
#> SRR1326225 2 0.0146 0.8180 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1401933 1 0.4269 0.5595 0.724 0.000 0.184 0.092 0.000 0.000
#> SRR1324062 1 0.4124 0.0289 0.516 0.000 0.476 0.004 0.000 0.004
#> SRR1102296 1 0.1970 0.6745 0.912 0.028 0.060 0.000 0.000 0.000
#> SRR1085087 1 0.3998 0.0401 0.504 0.000 0.000 0.492 0.000 0.004
#> SRR1079046 4 0.3453 0.7075 0.064 0.000 0.000 0.824 0.012 0.100
#> SRR1328339 1 0.0000 0.6926 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1079782 4 0.6733 0.3730 0.000 0.092 0.004 0.528 0.176 0.200
#> SRR1092257 2 0.4914 0.6317 0.000 0.728 0.000 0.112 0.080 0.080
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
SD:mclust**
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["SD", "mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.975 0.988 0.4075 0.586 0.586
#> 3 3 0.560 0.505 0.752 0.5286 0.794 0.651
#> 4 4 0.496 0.596 0.739 0.1055 0.833 0.595
#> 5 5 0.514 0.557 0.732 0.0891 0.867 0.582
#> 6 6 0.558 0.554 0.704 0.0408 0.897 0.636
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.966 0.000 1.000
#> SRR1429287 2 0.0000 0.966 0.000 1.000
#> SRR1359238 1 0.0000 0.996 1.000 0.000
#> SRR1309597 1 0.0376 0.995 0.996 0.004
#> SRR1441398 1 0.0000 0.996 1.000 0.000
#> SRR1084055 2 0.0000 0.966 0.000 1.000
#> SRR1417566 1 0.0376 0.995 0.996 0.004
#> SRR1351857 1 0.0000 0.996 1.000 0.000
#> SRR1487485 1 0.0376 0.995 0.996 0.004
#> SRR1335875 1 0.0376 0.995 0.996 0.004
#> SRR1073947 1 0.0000 0.996 1.000 0.000
#> SRR1443483 1 0.0376 0.995 0.996 0.004
#> SRR1346794 1 0.0000 0.996 1.000 0.000
#> SRR1405245 1 0.0000 0.996 1.000 0.000
#> SRR1409677 1 0.0000 0.996 1.000 0.000
#> SRR1095549 1 0.0000 0.996 1.000 0.000
#> SRR1323788 1 0.0000 0.996 1.000 0.000
#> SRR1314054 2 0.0000 0.966 0.000 1.000
#> SRR1077944 1 0.0000 0.996 1.000 0.000
#> SRR1480587 2 0.0000 0.966 0.000 1.000
#> SRR1311205 1 0.0000 0.996 1.000 0.000
#> SRR1076369 1 0.0376 0.995 0.996 0.004
#> SRR1453549 1 0.0376 0.995 0.996 0.004
#> SRR1345782 1 0.0000 0.996 1.000 0.000
#> SRR1447850 2 0.0000 0.966 0.000 1.000
#> SRR1391553 1 0.0672 0.992 0.992 0.008
#> SRR1444156 2 0.0000 0.966 0.000 1.000
#> SRR1471731 1 0.0000 0.996 1.000 0.000
#> SRR1120987 1 0.0376 0.995 0.996 0.004
#> SRR1477363 1 0.0000 0.996 1.000 0.000
#> SRR1391961 2 0.0376 0.963 0.004 0.996
#> SRR1373879 1 0.0376 0.995 0.996 0.004
#> SRR1318732 1 0.0376 0.995 0.996 0.004
#> SRR1091404 1 0.0000 0.996 1.000 0.000
#> SRR1402109 1 0.0000 0.996 1.000 0.000
#> SRR1407336 1 0.0376 0.995 0.996 0.004
#> SRR1097417 2 0.9686 0.371 0.396 0.604
#> SRR1396227 1 0.0000 0.996 1.000 0.000
#> SRR1400775 2 0.0000 0.966 0.000 1.000
#> SRR1392861 1 0.0000 0.996 1.000 0.000
#> SRR1472929 2 0.0000 0.966 0.000 1.000
#> SRR1436740 1 0.0000 0.996 1.000 0.000
#> SRR1477057 2 0.0000 0.966 0.000 1.000
#> SRR1311980 1 0.0376 0.995 0.996 0.004
#> SRR1069400 1 0.0376 0.995 0.996 0.004
#> SRR1351016 1 0.0000 0.996 1.000 0.000
#> SRR1096291 1 0.0376 0.995 0.996 0.004
#> SRR1418145 1 0.0376 0.995 0.996 0.004
#> SRR1488111 1 0.2778 0.950 0.952 0.048
#> SRR1370495 1 0.0376 0.995 0.996 0.004
#> SRR1352639 1 0.0376 0.995 0.996 0.004
#> SRR1348911 1 0.0376 0.995 0.996 0.004
#> SRR1467386 1 0.0000 0.996 1.000 0.000
#> SRR1415956 1 0.0000 0.996 1.000 0.000
#> SRR1500495 1 0.0000 0.996 1.000 0.000
#> SRR1405099 1 0.0000 0.996 1.000 0.000
#> SRR1345585 1 0.0376 0.995 0.996 0.004
#> SRR1093196 1 0.0000 0.996 1.000 0.000
#> SRR1466006 2 0.0000 0.966 0.000 1.000
#> SRR1351557 2 0.0000 0.966 0.000 1.000
#> SRR1382687 1 0.0000 0.996 1.000 0.000
#> SRR1375549 1 0.0376 0.995 0.996 0.004
#> SRR1101765 1 0.5059 0.869 0.888 0.112
#> SRR1334461 2 0.0000 0.966 0.000 1.000
#> SRR1094073 2 0.0000 0.966 0.000 1.000
#> SRR1077549 1 0.0000 0.996 1.000 0.000
#> SRR1440332 1 0.0000 0.996 1.000 0.000
#> SRR1454177 1 0.0000 0.996 1.000 0.000
#> SRR1082447 1 0.0000 0.996 1.000 0.000
#> SRR1420043 1 0.0000 0.996 1.000 0.000
#> SRR1432500 1 0.0000 0.996 1.000 0.000
#> SRR1378045 2 0.8144 0.681 0.252 0.748
#> SRR1334200 2 0.0000 0.966 0.000 1.000
#> SRR1069539 1 0.0376 0.995 0.996 0.004
#> SRR1343031 1 0.0000 0.996 1.000 0.000
#> SRR1319690 1 0.0000 0.996 1.000 0.000
#> SRR1310604 2 0.0000 0.966 0.000 1.000
#> SRR1327747 1 0.0000 0.996 1.000 0.000
#> SRR1072456 2 0.0000 0.966 0.000 1.000
#> SRR1367896 1 0.0376 0.995 0.996 0.004
#> SRR1480107 1 0.0000 0.996 1.000 0.000
#> SRR1377756 1 0.0000 0.996 1.000 0.000
#> SRR1435272 1 0.0000 0.996 1.000 0.000
#> SRR1089230 1 0.0000 0.996 1.000 0.000
#> SRR1389522 1 0.0376 0.995 0.996 0.004
#> SRR1080600 2 0.0000 0.966 0.000 1.000
#> SRR1086935 1 0.0376 0.995 0.996 0.004
#> SRR1344060 2 0.0000 0.966 0.000 1.000
#> SRR1467922 2 0.0000 0.966 0.000 1.000
#> SRR1090984 1 0.0376 0.995 0.996 0.004
#> SRR1456991 1 0.0000 0.996 1.000 0.000
#> SRR1085039 1 0.0000 0.996 1.000 0.000
#> SRR1069303 1 0.0000 0.996 1.000 0.000
#> SRR1091500 2 0.0000 0.966 0.000 1.000
#> SRR1075198 2 0.0000 0.966 0.000 1.000
#> SRR1086915 1 0.0000 0.996 1.000 0.000
#> SRR1499503 2 0.0000 0.966 0.000 1.000
#> SRR1094312 2 0.0000 0.966 0.000 1.000
#> SRR1352437 1 0.0000 0.996 1.000 0.000
#> SRR1436323 1 0.0000 0.996 1.000 0.000
#> SRR1073507 1 0.0376 0.995 0.996 0.004
#> SRR1401972 1 0.0000 0.996 1.000 0.000
#> SRR1415510 2 0.0000 0.966 0.000 1.000
#> SRR1327279 1 0.0000 0.996 1.000 0.000
#> SRR1086983 1 0.0000 0.996 1.000 0.000
#> SRR1105174 1 0.0000 0.996 1.000 0.000
#> SRR1468893 1 0.0000 0.996 1.000 0.000
#> SRR1362555 2 0.0000 0.966 0.000 1.000
#> SRR1074526 2 0.3733 0.906 0.072 0.928
#> SRR1326225 2 0.0000 0.966 0.000 1.000
#> SRR1401933 1 0.0000 0.996 1.000 0.000
#> SRR1324062 1 0.0000 0.996 1.000 0.000
#> SRR1102296 1 0.0376 0.995 0.996 0.004
#> SRR1085087 1 0.0000 0.996 1.000 0.000
#> SRR1079046 2 0.5946 0.832 0.144 0.856
#> SRR1328339 1 0.0376 0.995 0.996 0.004
#> SRR1079782 2 0.7815 0.713 0.232 0.768
#> SRR1092257 2 0.0000 0.966 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1429287 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1359238 1 0.2959 0.505684 0.900 0.000 0.100
#> SRR1309597 3 0.5760 0.651089 0.328 0.000 0.672
#> SRR1441398 1 0.6302 -0.408739 0.520 0.000 0.480
#> SRR1084055 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1417566 3 0.5926 0.000765 0.356 0.000 0.644
#> SRR1351857 1 0.0237 0.582982 0.996 0.000 0.004
#> SRR1487485 3 0.5785 0.651901 0.332 0.000 0.668
#> SRR1335875 3 0.6308 0.468732 0.492 0.000 0.508
#> SRR1073947 1 0.0237 0.583241 0.996 0.000 0.004
#> SRR1443483 3 0.5785 0.651901 0.332 0.000 0.668
#> SRR1346794 1 0.6126 -0.191606 0.600 0.000 0.400
#> SRR1405245 1 0.6299 -0.397380 0.524 0.000 0.476
#> SRR1409677 1 0.1529 0.559225 0.960 0.000 0.040
#> SRR1095549 1 0.6111 -0.191722 0.604 0.000 0.396
#> SRR1323788 1 0.6204 -0.276213 0.576 0.000 0.424
#> SRR1314054 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1077944 1 0.2261 0.551146 0.932 0.000 0.068
#> SRR1480587 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1311205 1 0.6140 -0.205492 0.596 0.000 0.404
#> SRR1076369 3 0.6008 0.056314 0.372 0.000 0.628
#> SRR1453549 1 0.6154 -0.238951 0.592 0.000 0.408
#> SRR1345782 1 0.6215 -0.272172 0.572 0.000 0.428
#> SRR1447850 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1391553 3 0.5696 0.322199 0.148 0.056 0.796
#> SRR1444156 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1471731 3 0.6305 0.495714 0.484 0.000 0.516
#> SRR1120987 1 0.6102 0.411806 0.672 0.008 0.320
#> SRR1477363 1 0.2165 0.554668 0.936 0.000 0.064
#> SRR1391961 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1373879 3 0.6126 0.615039 0.400 0.000 0.600
#> SRR1318732 3 0.5760 0.650112 0.328 0.000 0.672
#> SRR1091404 1 0.5706 0.424174 0.680 0.000 0.320
#> SRR1402109 3 0.6299 0.509135 0.476 0.000 0.524
#> SRR1407336 3 0.6244 0.572209 0.440 0.000 0.560
#> SRR1097417 2 0.7178 0.364200 0.024 0.512 0.464
#> SRR1396227 1 0.3816 0.513692 0.852 0.000 0.148
#> SRR1400775 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1392861 1 0.1643 0.560361 0.956 0.000 0.044
#> SRR1472929 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1436740 1 0.0000 0.583334 1.000 0.000 0.000
#> SRR1477057 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1311980 1 0.6260 -0.353046 0.552 0.000 0.448
#> SRR1069400 3 0.5785 0.651901 0.332 0.000 0.668
#> SRR1351016 1 0.2625 0.529173 0.916 0.000 0.084
#> SRR1096291 1 0.6168 0.342147 0.588 0.000 0.412
#> SRR1418145 1 0.5760 0.413384 0.672 0.000 0.328
#> SRR1488111 1 0.8827 0.227756 0.496 0.120 0.384
#> SRR1370495 1 0.8486 0.315606 0.548 0.104 0.348
#> SRR1352639 1 0.5926 0.398968 0.644 0.000 0.356
#> SRR1348911 3 0.5706 0.639334 0.320 0.000 0.680
#> SRR1467386 1 0.1753 0.558765 0.952 0.000 0.048
#> SRR1415956 1 0.6079 -0.163747 0.612 0.000 0.388
#> SRR1500495 1 0.6295 -0.389467 0.528 0.000 0.472
#> SRR1405099 1 0.2537 0.539866 0.920 0.000 0.080
#> SRR1345585 3 0.5785 0.651901 0.332 0.000 0.668
#> SRR1093196 3 0.6126 0.613515 0.400 0.000 0.600
#> SRR1466006 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1351557 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1382687 1 0.3340 0.477812 0.880 0.000 0.120
#> SRR1375549 1 0.5733 0.418287 0.676 0.000 0.324
#> SRR1101765 1 0.9484 0.224859 0.472 0.200 0.328
#> SRR1334461 2 0.0237 0.969666 0.000 0.996 0.004
#> SRR1094073 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1077549 1 0.1964 0.551535 0.944 0.000 0.056
#> SRR1440332 1 0.6154 -0.242964 0.592 0.000 0.408
#> SRR1454177 1 0.0000 0.583334 1.000 0.000 0.000
#> SRR1082447 1 0.3116 0.542370 0.892 0.000 0.108
#> SRR1420043 3 0.6307 0.487532 0.488 0.000 0.512
#> SRR1432500 1 0.1031 0.574519 0.976 0.000 0.024
#> SRR1378045 3 0.6291 -0.310704 0.000 0.468 0.532
#> SRR1334200 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1069539 3 0.6308 -0.263710 0.492 0.000 0.508
#> SRR1343031 1 0.6295 -0.413336 0.528 0.000 0.472
#> SRR1319690 3 0.6280 0.518600 0.460 0.000 0.540
#> SRR1310604 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1327747 1 0.6252 -0.319657 0.556 0.000 0.444
#> SRR1072456 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1367896 3 0.5785 0.651901 0.332 0.000 0.668
#> SRR1480107 1 0.0592 0.582225 0.988 0.000 0.012
#> SRR1377756 1 0.0237 0.583241 0.996 0.000 0.004
#> SRR1435272 1 0.0592 0.578758 0.988 0.000 0.012
#> SRR1089230 1 0.0000 0.583334 1.000 0.000 0.000
#> SRR1389522 3 0.5733 0.649186 0.324 0.000 0.676
#> SRR1080600 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1086935 1 0.7190 0.388561 0.636 0.044 0.320
#> SRR1344060 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1467922 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1090984 1 0.6252 0.011638 0.556 0.000 0.444
#> SRR1456991 1 0.5138 0.230119 0.748 0.000 0.252
#> SRR1085039 1 0.0424 0.582951 0.992 0.000 0.008
#> SRR1069303 1 0.5650 0.421249 0.688 0.000 0.312
#> SRR1091500 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1075198 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1086915 1 0.0000 0.583334 1.000 0.000 0.000
#> SRR1499503 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1094312 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1352437 1 0.5621 0.423872 0.692 0.000 0.308
#> SRR1436323 1 0.6111 -0.206613 0.604 0.000 0.396
#> SRR1073507 1 0.0000 0.583334 1.000 0.000 0.000
#> SRR1401972 1 0.5650 0.421249 0.688 0.000 0.312
#> SRR1415510 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1327279 1 0.3816 0.431393 0.852 0.000 0.148
#> SRR1086983 1 0.0000 0.583334 1.000 0.000 0.000
#> SRR1105174 1 0.0892 0.580297 0.980 0.000 0.020
#> SRR1468893 1 0.0424 0.582346 0.992 0.000 0.008
#> SRR1362555 2 0.0000 0.971503 0.000 1.000 0.000
#> SRR1074526 2 0.0592 0.961985 0.012 0.988 0.000
#> SRR1326225 2 0.0592 0.970076 0.000 0.988 0.012
#> SRR1401933 1 0.0237 0.582982 0.996 0.000 0.004
#> SRR1324062 1 0.0000 0.583334 1.000 0.000 0.000
#> SRR1102296 1 0.5810 0.408748 0.664 0.000 0.336
#> SRR1085087 1 0.5397 0.438928 0.720 0.000 0.280
#> SRR1079046 2 0.4531 0.729364 0.168 0.824 0.008
#> SRR1328339 3 0.6737 0.130496 0.272 0.040 0.688
#> SRR1079782 2 0.3889 0.870231 0.032 0.884 0.084
#> SRR1092257 2 0.0000 0.971503 0.000 1.000 0.000
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1429287 2 0.2101 0.8809 0.060 0.928 0.012 0.000
#> SRR1359238 4 0.3498 0.6263 0.008 0.000 0.160 0.832
#> SRR1309597 3 0.3105 0.6495 0.004 0.000 0.856 0.140
#> SRR1441398 3 0.5543 0.5205 0.020 0.000 0.556 0.424
#> SRR1084055 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1417566 1 0.7402 0.6156 0.500 0.000 0.308 0.192
#> SRR1351857 4 0.1388 0.6860 0.012 0.000 0.028 0.960
#> SRR1487485 3 0.3351 0.6569 0.008 0.000 0.844 0.148
#> SRR1335875 3 0.5800 0.4774 0.032 0.000 0.548 0.420
#> SRR1073947 4 0.0937 0.6749 0.012 0.000 0.012 0.976
#> SRR1443483 3 0.3105 0.6495 0.004 0.000 0.856 0.140
#> SRR1346794 4 0.5358 0.3967 0.048 0.000 0.252 0.700
#> SRR1405245 3 0.5581 0.4793 0.020 0.000 0.532 0.448
#> SRR1409677 4 0.2796 0.6782 0.016 0.000 0.092 0.892
#> SRR1095549 4 0.5511 0.1492 0.028 0.000 0.352 0.620
#> SRR1323788 4 0.5597 -0.3060 0.020 0.000 0.464 0.516
#> SRR1314054 2 0.1635 0.8869 0.044 0.948 0.008 0.000
#> SRR1077944 4 0.1833 0.6736 0.024 0.000 0.032 0.944
#> SRR1480587 2 0.0469 0.8875 0.012 0.988 0.000 0.000
#> SRR1311205 4 0.5428 0.0138 0.020 0.000 0.380 0.600
#> SRR1076369 1 0.7309 0.6989 0.504 0.000 0.172 0.324
#> SRR1453549 4 0.5132 -0.2103 0.004 0.000 0.448 0.548
#> SRR1345782 4 0.5543 -0.1567 0.020 0.000 0.424 0.556
#> SRR1447850 2 0.4397 0.8396 0.168 0.800 0.020 0.012
#> SRR1391553 3 0.6793 -0.3156 0.428 0.020 0.500 0.052
#> SRR1444156 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1471731 3 0.5417 0.5529 0.016 0.000 0.572 0.412
#> SRR1120987 1 0.6340 0.7908 0.620 0.000 0.096 0.284
#> SRR1477363 4 0.2089 0.6782 0.020 0.000 0.048 0.932
#> SRR1391961 2 0.6871 0.6856 0.316 0.580 0.092 0.012
#> SRR1373879 3 0.4950 0.6111 0.004 0.000 0.620 0.376
#> SRR1318732 3 0.4776 0.6569 0.024 0.000 0.732 0.244
#> SRR1091404 1 0.5933 0.6949 0.552 0.000 0.040 0.408
#> SRR1402109 3 0.5203 0.5541 0.008 0.000 0.576 0.416
#> SRR1407336 3 0.5016 0.5964 0.004 0.000 0.600 0.396
#> SRR1097417 1 0.8352 0.4952 0.520 0.276 0.120 0.084
#> SRR1396227 4 0.3900 0.4935 0.164 0.000 0.020 0.816
#> SRR1400775 2 0.1854 0.8823 0.048 0.940 0.012 0.000
#> SRR1392861 4 0.6005 0.2316 0.060 0.000 0.324 0.616
#> SRR1472929 2 0.5528 0.7771 0.144 0.732 0.124 0.000
#> SRR1436740 4 0.4245 0.6309 0.064 0.000 0.116 0.820
#> SRR1477057 2 0.4210 0.8521 0.152 0.816 0.012 0.020
#> SRR1311980 3 0.5793 0.5876 0.040 0.000 0.600 0.360
#> SRR1069400 3 0.3448 0.6631 0.004 0.000 0.828 0.168
#> SRR1351016 4 0.1767 0.6831 0.012 0.000 0.044 0.944
#> SRR1096291 1 0.7152 0.7882 0.544 0.000 0.172 0.284
#> SRR1418145 1 0.6585 0.7955 0.584 0.000 0.104 0.312
#> SRR1488111 1 0.7741 0.7694 0.592 0.060 0.124 0.224
#> SRR1370495 1 0.6920 0.7993 0.596 0.012 0.108 0.284
#> SRR1352639 1 0.6739 0.7970 0.576 0.000 0.120 0.304
#> SRR1348911 3 0.6705 0.5219 0.148 0.000 0.608 0.244
#> SRR1467386 4 0.3105 0.6574 0.004 0.000 0.140 0.856
#> SRR1415956 4 0.4163 0.5178 0.020 0.000 0.188 0.792
#> SRR1500495 3 0.5594 0.4479 0.020 0.000 0.520 0.460
#> SRR1405099 4 0.1929 0.6738 0.024 0.000 0.036 0.940
#> SRR1345585 3 0.3743 0.6532 0.016 0.000 0.824 0.160
#> SRR1093196 3 0.4920 0.6109 0.004 0.000 0.628 0.368
#> SRR1466006 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1351557 2 0.0657 0.8870 0.004 0.984 0.012 0.000
#> SRR1382687 4 0.4194 0.5194 0.008 0.000 0.228 0.764
#> SRR1375549 1 0.5666 0.7678 0.616 0.000 0.036 0.348
#> SRR1101765 1 0.6149 0.7627 0.596 0.016 0.032 0.356
#> SRR1334461 2 0.6889 0.6815 0.320 0.576 0.092 0.012
#> SRR1094073 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1077549 4 0.4194 0.6136 0.028 0.000 0.172 0.800
#> SRR1440332 4 0.5257 -0.2220 0.008 0.000 0.444 0.548
#> SRR1454177 4 0.5218 0.5344 0.064 0.000 0.200 0.736
#> SRR1082447 4 0.3047 0.6149 0.116 0.000 0.012 0.872
#> SRR1420043 3 0.5724 0.5041 0.028 0.000 0.548 0.424
#> SRR1432500 4 0.3032 0.6589 0.008 0.000 0.124 0.868
#> SRR1378045 1 0.7149 0.3878 0.552 0.264 0.184 0.000
#> SRR1334200 2 0.2402 0.8811 0.076 0.912 0.012 0.000
#> SRR1069539 1 0.6915 0.7590 0.592 0.000 0.212 0.196
#> SRR1343031 3 0.4972 0.4880 0.000 0.000 0.544 0.456
#> SRR1319690 3 0.5526 0.5379 0.020 0.000 0.564 0.416
#> SRR1310604 2 0.1677 0.8841 0.040 0.948 0.012 0.000
#> SRR1327747 4 0.5506 -0.3164 0.016 0.000 0.472 0.512
#> SRR1072456 2 0.1256 0.8860 0.028 0.964 0.008 0.000
#> SRR1367896 3 0.3708 0.6518 0.020 0.000 0.832 0.148
#> SRR1480107 4 0.1297 0.6739 0.020 0.000 0.016 0.964
#> SRR1377756 4 0.1576 0.6881 0.004 0.000 0.048 0.948
#> SRR1435272 4 0.5213 0.5191 0.052 0.000 0.224 0.724
#> SRR1089230 4 0.3128 0.6734 0.040 0.000 0.076 0.884
#> SRR1389522 3 0.3791 0.6634 0.004 0.000 0.796 0.200
#> SRR1080600 2 0.1677 0.8841 0.040 0.948 0.012 0.000
#> SRR1086935 1 0.6914 0.7566 0.624 0.028 0.088 0.260
#> SRR1344060 2 0.6107 0.7391 0.264 0.648 0.088 0.000
#> SRR1467922 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1090984 4 0.7544 -0.3846 0.352 0.000 0.196 0.452
#> SRR1456991 4 0.2521 0.6643 0.024 0.000 0.064 0.912
#> SRR1085039 4 0.0779 0.6765 0.016 0.000 0.004 0.980
#> SRR1069303 4 0.5295 -0.5553 0.488 0.000 0.008 0.504
#> SRR1091500 2 0.3217 0.8600 0.128 0.860 0.012 0.000
#> SRR1075198 2 0.3047 0.8551 0.116 0.872 0.012 0.000
#> SRR1086915 4 0.2256 0.6826 0.020 0.000 0.056 0.924
#> SRR1499503 2 0.0469 0.8875 0.012 0.988 0.000 0.000
#> SRR1094312 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1352437 1 0.5294 0.5417 0.508 0.000 0.008 0.484
#> SRR1436323 4 0.5268 -0.2301 0.008 0.000 0.452 0.540
#> SRR1073507 4 0.2048 0.6854 0.008 0.000 0.064 0.928
#> SRR1401972 1 0.5277 0.6014 0.532 0.000 0.008 0.460
#> SRR1415510 2 0.1677 0.8841 0.040 0.948 0.012 0.000
#> SRR1327279 4 0.3810 0.5917 0.008 0.000 0.188 0.804
#> SRR1086983 4 0.3439 0.6683 0.048 0.000 0.084 0.868
#> SRR1105174 4 0.1724 0.6767 0.020 0.000 0.032 0.948
#> SRR1468893 4 0.0779 0.6763 0.016 0.000 0.004 0.980
#> SRR1362555 2 0.3276 0.8649 0.064 0.888 0.012 0.036
#> SRR1074526 2 0.6957 0.6907 0.312 0.576 0.100 0.012
#> SRR1326225 2 0.0937 0.8863 0.012 0.976 0.012 0.000
#> SRR1401933 4 0.2131 0.6857 0.032 0.000 0.036 0.932
#> SRR1324062 4 0.3245 0.6721 0.056 0.000 0.064 0.880
#> SRR1102296 1 0.6383 0.7997 0.612 0.000 0.096 0.292
#> SRR1085087 4 0.5007 -0.1308 0.356 0.000 0.008 0.636
#> SRR1079046 2 0.8059 0.5948 0.336 0.500 0.104 0.060
#> SRR1328339 1 0.7147 0.7566 0.560 0.000 0.216 0.224
#> SRR1079782 2 0.6671 0.3183 0.372 0.552 0.012 0.064
#> SRR1092257 2 0.3662 0.8632 0.148 0.836 0.012 0.004
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0404 0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1429287 2 0.3682 0.7540 0.000 0.820 0.000 0.072 0.108
#> SRR1359238 1 0.4568 0.6772 0.788 0.000 0.088 0.036 0.088
#> SRR1309597 3 0.2267 0.6794 0.048 0.000 0.916 0.028 0.008
#> SRR1441398 1 0.3659 0.5588 0.768 0.000 0.220 0.000 0.012
#> SRR1084055 2 0.0510 0.8017 0.000 0.984 0.000 0.000 0.016
#> SRR1417566 4 0.6465 0.1143 0.140 0.000 0.412 0.440 0.008
#> SRR1351857 1 0.5212 0.6725 0.748 0.000 0.068 0.096 0.088
#> SRR1487485 3 0.1780 0.6805 0.024 0.000 0.940 0.028 0.008
#> SRR1335875 3 0.5850 0.4903 0.272 0.004 0.600 0.124 0.000
#> SRR1073947 1 0.3231 0.6506 0.800 0.000 0.000 0.196 0.004
#> SRR1443483 3 0.2228 0.6819 0.040 0.000 0.920 0.028 0.012
#> SRR1346794 1 0.3579 0.5104 0.756 0.000 0.240 0.004 0.000
#> SRR1405245 1 0.4088 0.3999 0.688 0.000 0.304 0.000 0.008
#> SRR1409677 1 0.7055 0.1949 0.440 0.000 0.280 0.264 0.016
#> SRR1095549 1 0.3923 0.6733 0.812 0.000 0.132 0.016 0.040
#> SRR1323788 1 0.5385 0.6121 0.692 0.000 0.208 0.024 0.076
#> SRR1314054 2 0.3620 0.7568 0.000 0.824 0.000 0.068 0.108
#> SRR1077944 1 0.1282 0.6748 0.952 0.000 0.044 0.004 0.000
#> SRR1480587 2 0.1043 0.8036 0.000 0.960 0.000 0.000 0.040
#> SRR1311205 1 0.2074 0.6628 0.896 0.000 0.104 0.000 0.000
#> SRR1076369 4 0.6571 0.3631 0.392 0.000 0.204 0.404 0.000
#> SRR1453549 3 0.4588 0.6824 0.220 0.000 0.720 0.060 0.000
#> SRR1345782 1 0.2179 0.6627 0.888 0.000 0.112 0.000 0.000
#> SRR1447850 2 0.5136 0.6245 0.000 0.688 0.000 0.196 0.116
#> SRR1391553 3 0.6342 0.1084 0.012 0.088 0.564 0.320 0.016
#> SRR1444156 2 0.0404 0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1471731 3 0.4400 0.6656 0.108 0.000 0.788 0.088 0.016
#> SRR1120987 4 0.2625 0.5056 0.108 0.000 0.016 0.876 0.000
#> SRR1477363 1 0.2074 0.6725 0.920 0.000 0.036 0.044 0.000
#> SRR1391961 5 0.3010 0.9276 0.004 0.172 0.000 0.000 0.824
#> SRR1373879 3 0.3822 0.7001 0.152 0.000 0.808 0.020 0.020
#> SRR1318732 3 0.2548 0.6758 0.072 0.000 0.896 0.028 0.004
#> SRR1091404 1 0.5036 -0.1129 0.560 0.000 0.036 0.404 0.000
#> SRR1402109 3 0.4159 0.6922 0.160 0.000 0.788 0.032 0.020
#> SRR1407336 3 0.4023 0.6975 0.164 0.000 0.792 0.028 0.016
#> SRR1097417 4 0.8573 0.1149 0.060 0.180 0.328 0.372 0.060
#> SRR1396227 1 0.4181 0.5002 0.676 0.000 0.004 0.316 0.004
#> SRR1400775 2 0.0609 0.8070 0.000 0.980 0.000 0.000 0.020
#> SRR1392861 3 0.6530 0.1867 0.196 0.000 0.424 0.380 0.000
#> SRR1472929 5 0.5008 0.7208 0.024 0.344 0.012 0.000 0.620
#> SRR1436740 4 0.6642 -0.0532 0.232 0.000 0.340 0.428 0.000
#> SRR1477057 2 0.5672 0.6025 0.016 0.672 0.000 0.156 0.156
#> SRR1311980 3 0.5083 0.6614 0.160 0.000 0.700 0.140 0.000
#> SRR1069400 3 0.2692 0.6896 0.092 0.000 0.884 0.016 0.008
#> SRR1351016 1 0.3584 0.6997 0.848 0.000 0.040 0.084 0.028
#> SRR1096291 4 0.6521 0.3978 0.244 0.000 0.272 0.484 0.000
#> SRR1418145 4 0.3106 0.5093 0.132 0.000 0.024 0.844 0.000
#> SRR1488111 4 0.5060 0.3706 0.072 0.100 0.040 0.772 0.016
#> SRR1370495 4 0.5359 0.3762 0.412 0.000 0.056 0.532 0.000
#> SRR1352639 4 0.6697 0.4077 0.364 0.048 0.068 0.512 0.008
#> SRR1348911 3 0.5597 0.4326 0.160 0.000 0.640 0.200 0.000
#> SRR1467386 1 0.4656 0.6547 0.740 0.000 0.076 0.180 0.004
#> SRR1415956 1 0.1704 0.6641 0.928 0.000 0.068 0.004 0.000
#> SRR1500495 1 0.3246 0.6043 0.808 0.000 0.184 0.000 0.008
#> SRR1405099 1 0.2221 0.6719 0.912 0.000 0.036 0.052 0.000
#> SRR1345585 3 0.2308 0.6637 0.036 0.000 0.912 0.048 0.004
#> SRR1093196 3 0.3911 0.6807 0.100 0.000 0.824 0.056 0.020
#> SRR1466006 2 0.0404 0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1351557 2 0.0290 0.8060 0.000 0.992 0.000 0.000 0.008
#> SRR1382687 1 0.6280 0.4923 0.600 0.000 0.268 0.044 0.088
#> SRR1375549 4 0.5148 0.3516 0.432 0.000 0.040 0.528 0.000
#> SRR1101765 4 0.5910 0.3366 0.452 0.000 0.040 0.476 0.032
#> SRR1334461 5 0.3318 0.9158 0.008 0.192 0.000 0.000 0.800
#> SRR1094073 2 0.0404 0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1077549 1 0.5307 0.5721 0.676 0.000 0.168 0.156 0.000
#> SRR1440332 1 0.5680 0.5935 0.672 0.000 0.212 0.032 0.084
#> SRR1454177 4 0.6682 -0.1223 0.236 0.000 0.368 0.396 0.000
#> SRR1082447 1 0.2983 0.6561 0.864 0.000 0.040 0.096 0.000
#> SRR1420043 3 0.4305 0.6886 0.152 0.000 0.784 0.044 0.020
#> SRR1432500 1 0.5059 0.6760 0.760 0.000 0.072 0.084 0.084
#> SRR1378045 2 0.7998 -0.0991 0.004 0.364 0.200 0.348 0.084
#> SRR1334200 2 0.4367 0.3805 0.000 0.620 0.000 0.008 0.372
#> SRR1069539 4 0.5788 0.1091 0.076 0.004 0.440 0.480 0.000
#> SRR1343031 3 0.5070 0.5498 0.316 0.000 0.640 0.028 0.016
#> SRR1319690 3 0.4249 0.4181 0.432 0.000 0.568 0.000 0.000
#> SRR1310604 2 0.2249 0.7886 0.000 0.896 0.000 0.008 0.096
#> SRR1327747 3 0.4210 0.4477 0.412 0.000 0.588 0.000 0.000
#> SRR1072456 2 0.1430 0.8008 0.000 0.944 0.000 0.004 0.052
#> SRR1367896 3 0.2193 0.6659 0.028 0.000 0.920 0.044 0.008
#> SRR1480107 1 0.1774 0.6813 0.932 0.000 0.016 0.052 0.000
#> SRR1377756 1 0.4378 0.6907 0.800 0.000 0.032 0.088 0.080
#> SRR1435272 4 0.6718 -0.1477 0.248 0.000 0.368 0.384 0.000
#> SRR1089230 1 0.6467 0.2072 0.432 0.000 0.140 0.420 0.008
#> SRR1389522 3 0.4647 0.4918 0.352 0.000 0.628 0.016 0.004
#> SRR1080600 2 0.2124 0.7895 0.000 0.900 0.000 0.004 0.096
#> SRR1086935 4 0.4343 0.4290 0.072 0.056 0.064 0.808 0.000
#> SRR1344060 5 0.3160 0.9223 0.000 0.188 0.000 0.004 0.808
#> SRR1467922 2 0.0404 0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1090984 1 0.6016 -0.0661 0.548 0.000 0.140 0.312 0.000
#> SRR1456991 1 0.2074 0.6743 0.920 0.000 0.036 0.044 0.000
#> SRR1085039 1 0.2644 0.6868 0.888 0.000 0.012 0.088 0.012
#> SRR1069303 4 0.4359 0.2553 0.412 0.000 0.000 0.584 0.004
#> SRR1091500 2 0.2873 0.7270 0.000 0.856 0.000 0.016 0.128
#> SRR1075198 2 0.3112 0.7738 0.000 0.856 0.000 0.044 0.100
#> SRR1086915 1 0.6529 0.5145 0.592 0.000 0.076 0.256 0.076
#> SRR1499503 2 0.1043 0.8062 0.000 0.960 0.000 0.000 0.040
#> SRR1094312 2 0.0000 0.8055 0.000 1.000 0.000 0.000 0.000
#> SRR1352437 4 0.3491 0.4396 0.228 0.000 0.000 0.768 0.004
#> SRR1436323 3 0.5589 0.6040 0.188 0.000 0.676 0.120 0.016
#> SRR1073507 1 0.4444 0.6536 0.748 0.000 0.072 0.180 0.000
#> SRR1401972 4 0.4288 0.3149 0.384 0.000 0.000 0.612 0.004
#> SRR1415510 2 0.2124 0.7895 0.000 0.900 0.000 0.004 0.096
#> SRR1327279 1 0.4458 0.6790 0.796 0.000 0.084 0.036 0.084
#> SRR1086983 1 0.4732 0.6306 0.716 0.000 0.076 0.208 0.000
#> SRR1105174 1 0.2304 0.6737 0.908 0.000 0.044 0.048 0.000
#> SRR1468893 1 0.1764 0.6899 0.928 0.000 0.008 0.064 0.000
#> SRR1362555 2 0.6262 0.4473 0.156 0.652 0.000 0.064 0.128
#> SRR1074526 5 0.3047 0.9219 0.004 0.160 0.004 0.000 0.832
#> SRR1326225 2 0.0404 0.8030 0.000 0.988 0.000 0.000 0.012
#> SRR1401933 1 0.5232 0.6723 0.744 0.000 0.060 0.112 0.084
#> SRR1324062 1 0.4985 0.5734 0.680 0.000 0.076 0.244 0.000
#> SRR1102296 4 0.5578 0.4338 0.308 0.008 0.056 0.620 0.008
#> SRR1085087 4 0.4586 0.0623 0.468 0.000 0.004 0.524 0.004
#> SRR1079046 5 0.3600 0.9122 0.008 0.152 0.008 0.012 0.820
#> SRR1328339 4 0.7230 0.2761 0.212 0.004 0.312 0.448 0.024
#> SRR1079782 2 0.6180 0.1789 0.008 0.456 0.000 0.432 0.104
#> SRR1092257 2 0.6001 0.4492 0.000 0.580 0.000 0.244 0.176
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0000 0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429287 2 0.5856 0.64160 0.000 0.636 0.040 0.224 0.060 0.040
#> SRR1359238 1 0.4840 0.63763 0.732 0.000 0.004 0.060 0.060 0.144
#> SRR1309597 3 0.1950 0.66980 0.032 0.000 0.924 0.016 0.000 0.028
#> SRR1441398 1 0.2371 0.60974 0.900 0.000 0.032 0.052 0.016 0.000
#> SRR1084055 2 0.1556 0.75719 0.000 0.920 0.000 0.000 0.080 0.000
#> SRR1417566 6 0.6109 0.36969 0.284 0.004 0.204 0.004 0.004 0.500
#> SRR1351857 1 0.5888 0.58775 0.560 0.000 0.004 0.064 0.060 0.312
#> SRR1487485 3 0.1861 0.66412 0.020 0.000 0.928 0.016 0.000 0.036
#> SRR1335875 1 0.6672 -0.17654 0.416 0.016 0.376 0.028 0.000 0.164
#> SRR1073947 1 0.4467 0.55787 0.564 0.000 0.004 0.024 0.000 0.408
#> SRR1443483 3 0.1806 0.64925 0.044 0.000 0.928 0.020 0.000 0.008
#> SRR1346794 1 0.3096 0.60125 0.868 0.000 0.052 0.016 0.016 0.048
#> SRR1405245 1 0.2384 0.60634 0.900 0.000 0.044 0.040 0.016 0.000
#> SRR1409677 1 0.6994 0.30685 0.456 0.000 0.096 0.220 0.000 0.228
#> SRR1095549 1 0.1793 0.64130 0.932 0.000 0.004 0.040 0.016 0.008
#> SRR1323788 1 0.4587 0.59593 0.780 0.000 0.044 0.084 0.052 0.040
#> SRR1314054 2 0.5043 0.67921 0.000 0.688 0.040 0.208 0.060 0.004
#> SRR1077944 1 0.1232 0.64366 0.956 0.000 0.004 0.016 0.000 0.024
#> SRR1480587 2 0.1168 0.80233 0.000 0.956 0.000 0.016 0.028 0.000
#> SRR1311205 1 0.1218 0.63233 0.956 0.000 0.012 0.028 0.000 0.004
#> SRR1076369 6 0.5859 0.48031 0.408 0.000 0.088 0.008 0.020 0.476
#> SRR1453549 1 0.6510 0.11802 0.540 0.000 0.224 0.144 0.000 0.092
#> SRR1345782 1 0.1218 0.62944 0.956 0.000 0.012 0.028 0.004 0.000
#> SRR1447850 2 0.6539 0.55801 0.000 0.572 0.040 0.240 0.056 0.092
#> SRR1391553 3 0.6487 0.34818 0.036 0.068 0.568 0.048 0.008 0.272
#> SRR1444156 2 0.0000 0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731 4 0.6401 0.61767 0.176 0.000 0.240 0.528 0.000 0.056
#> SRR1120987 6 0.3078 0.50245 0.032 0.000 0.028 0.084 0.000 0.856
#> SRR1477363 1 0.2592 0.65010 0.864 0.000 0.004 0.016 0.000 0.116
#> SRR1391961 5 0.1700 0.90621 0.004 0.080 0.000 0.000 0.916 0.000
#> SRR1373879 1 0.6857 -0.45798 0.348 0.000 0.308 0.300 0.000 0.044
#> SRR1318732 3 0.2644 0.67662 0.060 0.000 0.880 0.000 0.008 0.052
#> SRR1091404 6 0.5164 0.45695 0.416 0.000 0.024 0.032 0.004 0.524
#> SRR1402109 4 0.6953 0.44838 0.300 0.000 0.276 0.368 0.000 0.056
#> SRR1407336 3 0.6773 -0.36581 0.320 0.000 0.404 0.228 0.000 0.048
#> SRR1097417 6 0.7919 0.11048 0.048 0.224 0.268 0.024 0.040 0.396
#> SRR1396227 1 0.4446 0.52171 0.532 0.000 0.004 0.020 0.000 0.444
#> SRR1400775 2 0.1074 0.80640 0.000 0.960 0.000 0.012 0.028 0.000
#> SRR1392861 4 0.5680 0.66595 0.048 0.000 0.088 0.600 0.000 0.264
#> SRR1472929 5 0.4379 0.61356 0.024 0.336 0.000 0.008 0.632 0.000
#> SRR1436740 4 0.5604 0.64281 0.048 0.000 0.072 0.592 0.000 0.288
#> SRR1477057 2 0.6520 0.58172 0.000 0.576 0.036 0.224 0.116 0.048
#> SRR1311980 1 0.6911 -0.19853 0.404 0.000 0.360 0.120 0.000 0.116
#> SRR1069400 3 0.2476 0.66794 0.072 0.000 0.888 0.008 0.000 0.032
#> SRR1351016 1 0.2734 0.66276 0.860 0.000 0.004 0.016 0.004 0.116
#> SRR1096291 6 0.6391 0.45459 0.228 0.000 0.188 0.044 0.004 0.536
#> SRR1418145 6 0.3590 0.51341 0.052 0.000 0.044 0.076 0.000 0.828
#> SRR1488111 6 0.6617 0.46198 0.036 0.072 0.060 0.220 0.016 0.596
#> SRR1370495 6 0.5681 0.57851 0.200 0.008 0.068 0.064 0.004 0.656
#> SRR1352639 6 0.5993 0.59099 0.204 0.048 0.076 0.028 0.004 0.640
#> SRR1348911 3 0.5144 0.41278 0.100 0.004 0.624 0.004 0.000 0.268
#> SRR1467386 1 0.5498 0.57236 0.556 0.000 0.004 0.116 0.004 0.320
#> SRR1415956 1 0.1642 0.62754 0.936 0.000 0.004 0.032 0.000 0.028
#> SRR1500495 1 0.2084 0.61727 0.916 0.000 0.024 0.044 0.016 0.000
#> SRR1405099 1 0.3203 0.61955 0.812 0.000 0.004 0.024 0.000 0.160
#> SRR1345585 3 0.2201 0.67922 0.036 0.000 0.904 0.004 0.000 0.056
#> SRR1093196 4 0.6273 0.61553 0.164 0.000 0.240 0.544 0.000 0.052
#> SRR1466006 2 0.0146 0.80833 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1351557 2 0.0458 0.80923 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1382687 1 0.6655 0.58067 0.592 0.000 0.056 0.108 0.060 0.184
#> SRR1375549 6 0.5164 0.58750 0.216 0.000 0.052 0.052 0.004 0.676
#> SRR1101765 6 0.6393 0.57187 0.256 0.016 0.040 0.072 0.028 0.588
#> SRR1334461 5 0.1908 0.90123 0.004 0.096 0.000 0.000 0.900 0.000
#> SRR1094073 2 0.0000 0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549 1 0.6137 0.49180 0.524 0.000 0.052 0.092 0.004 0.328
#> SRR1440332 1 0.5335 0.57285 0.728 0.000 0.052 0.092 0.060 0.068
#> SRR1454177 4 0.5457 0.66066 0.036 0.000 0.084 0.616 0.000 0.264
#> SRR1082447 1 0.3780 0.57607 0.744 0.000 0.004 0.028 0.000 0.224
#> SRR1420043 4 0.6315 0.61284 0.176 0.000 0.212 0.552 0.000 0.060
#> SRR1432500 1 0.6081 0.59315 0.584 0.000 0.004 0.108 0.060 0.244
#> SRR1378045 3 0.7721 0.04422 0.004 0.232 0.388 0.028 0.080 0.268
#> SRR1334200 2 0.4486 0.45650 0.000 0.584 0.004 0.028 0.384 0.000
#> SRR1069539 6 0.6187 0.41793 0.092 0.000 0.232 0.088 0.004 0.584
#> SRR1343031 1 0.6022 0.28479 0.588 0.000 0.208 0.152 0.000 0.052
#> SRR1319690 1 0.4148 0.48206 0.748 0.000 0.188 0.048 0.016 0.000
#> SRR1310604 2 0.4129 0.74190 0.000 0.780 0.032 0.028 0.148 0.012
#> SRR1327747 1 0.3781 0.49671 0.772 0.000 0.184 0.028 0.016 0.000
#> SRR1072456 2 0.1391 0.80070 0.000 0.944 0.000 0.016 0.040 0.000
#> SRR1367896 3 0.2007 0.67990 0.036 0.000 0.916 0.004 0.000 0.044
#> SRR1480107 1 0.3541 0.59956 0.748 0.000 0.000 0.020 0.000 0.232
#> SRR1377756 1 0.5261 0.61845 0.652 0.000 0.004 0.040 0.060 0.244
#> SRR1435272 4 0.5534 0.66182 0.044 0.000 0.080 0.612 0.000 0.264
#> SRR1089230 1 0.6615 0.36286 0.444 0.000 0.040 0.156 0.008 0.352
#> SRR1389522 3 0.4676 0.28616 0.384 0.000 0.572 0.004 0.000 0.040
#> SRR1080600 2 0.2425 0.78733 0.000 0.884 0.004 0.024 0.088 0.000
#> SRR1086935 6 0.4416 0.34326 0.076 0.000 0.000 0.212 0.004 0.708
#> SRR1344060 5 0.2100 0.89960 0.000 0.112 0.000 0.000 0.884 0.004
#> SRR1467922 2 0.0000 0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984 6 0.5161 0.46109 0.452 0.000 0.072 0.000 0.004 0.472
#> SRR1456991 1 0.2492 0.61139 0.876 0.000 0.004 0.020 0.000 0.100
#> SRR1085039 1 0.3965 0.61119 0.716 0.000 0.004 0.020 0.004 0.256
#> SRR1069303 6 0.3236 0.36837 0.180 0.000 0.000 0.024 0.000 0.796
#> SRR1091500 2 0.4444 0.55393 0.000 0.676 0.000 0.068 0.256 0.000
#> SRR1075198 2 0.5955 0.66999 0.000 0.660 0.032 0.116 0.136 0.056
#> SRR1086915 1 0.6089 0.55569 0.560 0.000 0.012 0.096 0.040 0.292
#> SRR1499503 2 0.1074 0.80328 0.000 0.960 0.000 0.012 0.028 0.000
#> SRR1094312 2 0.0146 0.80870 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1352437 6 0.3408 0.40049 0.152 0.000 0.000 0.048 0.000 0.800
#> SRR1436323 4 0.7295 0.55066 0.276 0.000 0.232 0.380 0.000 0.112
#> SRR1073507 1 0.5175 0.56268 0.572 0.000 0.000 0.092 0.004 0.332
#> SRR1401972 6 0.2624 0.43952 0.124 0.000 0.000 0.020 0.000 0.856
#> SRR1415510 2 0.3171 0.77048 0.000 0.844 0.028 0.024 0.104 0.000
#> SRR1327279 1 0.4608 0.63674 0.752 0.000 0.000 0.080 0.060 0.108
#> SRR1086983 1 0.5399 0.51360 0.528 0.000 0.000 0.108 0.004 0.360
#> SRR1105174 1 0.3409 0.59946 0.788 0.000 0.004 0.024 0.000 0.184
#> SRR1468893 1 0.3930 0.63998 0.728 0.000 0.004 0.032 0.000 0.236
#> SRR1362555 2 0.6535 0.56066 0.012 0.588 0.028 0.076 0.236 0.060
#> SRR1074526 5 0.2306 0.90712 0.004 0.096 0.004 0.008 0.888 0.000
#> SRR1326225 2 0.0000 0.80831 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1401933 1 0.5724 0.62242 0.652 0.000 0.012 0.084 0.060 0.192
#> SRR1324062 1 0.5958 0.49137 0.516 0.000 0.040 0.100 0.000 0.344
#> SRR1102296 6 0.5116 0.59217 0.120 0.020 0.052 0.060 0.008 0.740
#> SRR1085087 6 0.3950 0.09324 0.276 0.000 0.000 0.028 0.000 0.696
#> SRR1079046 5 0.3029 0.88990 0.004 0.076 0.032 0.008 0.868 0.012
#> SRR1328339 6 0.6216 0.45460 0.212 0.012 0.208 0.008 0.008 0.552
#> SRR1079782 6 0.7723 0.00211 0.000 0.256 0.032 0.256 0.084 0.372
#> SRR1092257 2 0.6333 0.58724 0.000 0.592 0.036 0.228 0.100 0.044
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
SD:NMF
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["SD", "NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.896 0.919 0.967 0.4108 0.594 0.594
#> 3 3 0.555 0.774 0.870 0.5404 0.700 0.526
#> 4 4 0.549 0.635 0.791 0.1701 0.803 0.519
#> 5 5 0.586 0.556 0.766 0.0616 0.843 0.485
#> 6 6 0.581 0.405 0.651 0.0429 0.859 0.472
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.94718 0.000 1.000
#> SRR1429287 2 0.0000 0.94718 0.000 1.000
#> SRR1359238 1 0.0000 0.97136 1.000 0.000
#> SRR1309597 1 0.0000 0.97136 1.000 0.000
#> SRR1441398 1 0.0000 0.97136 1.000 0.000
#> SRR1084055 2 0.0000 0.94718 0.000 1.000
#> SRR1417566 1 0.4161 0.89448 0.916 0.084
#> SRR1351857 1 0.0000 0.97136 1.000 0.000
#> SRR1487485 2 0.7299 0.73689 0.204 0.796
#> SRR1335875 1 0.2778 0.92899 0.952 0.048
#> SRR1073947 1 0.0000 0.97136 1.000 0.000
#> SRR1443483 1 0.0000 0.97136 1.000 0.000
#> SRR1346794 1 0.0000 0.97136 1.000 0.000
#> SRR1405245 1 0.0000 0.97136 1.000 0.000
#> SRR1409677 1 0.0000 0.97136 1.000 0.000
#> SRR1095549 1 0.0000 0.97136 1.000 0.000
#> SRR1323788 1 0.0000 0.97136 1.000 0.000
#> SRR1314054 2 0.0000 0.94718 0.000 1.000
#> SRR1077944 1 0.0000 0.97136 1.000 0.000
#> SRR1480587 2 0.0000 0.94718 0.000 1.000
#> SRR1311205 1 0.0000 0.97136 1.000 0.000
#> SRR1076369 1 0.0000 0.97136 1.000 0.000
#> SRR1453549 1 0.0000 0.97136 1.000 0.000
#> SRR1345782 1 0.0000 0.97136 1.000 0.000
#> SRR1447850 2 0.0000 0.94718 0.000 1.000
#> SRR1391553 2 0.0000 0.94718 0.000 1.000
#> SRR1444156 2 0.0000 0.94718 0.000 1.000
#> SRR1471731 1 0.0938 0.96166 0.988 0.012
#> SRR1120987 1 0.4431 0.88338 0.908 0.092
#> SRR1477363 1 0.0000 0.97136 1.000 0.000
#> SRR1391961 1 0.6801 0.77318 0.820 0.180
#> SRR1373879 1 0.0000 0.97136 1.000 0.000
#> SRR1318732 1 0.1633 0.95135 0.976 0.024
#> SRR1091404 1 0.0000 0.97136 1.000 0.000
#> SRR1402109 1 0.0000 0.97136 1.000 0.000
#> SRR1407336 1 0.0000 0.97136 1.000 0.000
#> SRR1097417 2 0.0000 0.94718 0.000 1.000
#> SRR1396227 1 0.0000 0.97136 1.000 0.000
#> SRR1400775 2 0.0000 0.94718 0.000 1.000
#> SRR1392861 1 0.0000 0.97136 1.000 0.000
#> SRR1472929 2 0.0376 0.94407 0.004 0.996
#> SRR1436740 1 0.0000 0.97136 1.000 0.000
#> SRR1477057 2 0.0000 0.94718 0.000 1.000
#> SRR1311980 1 0.6148 0.81248 0.848 0.152
#> SRR1069400 1 0.0000 0.97136 1.000 0.000
#> SRR1351016 1 0.0000 0.97136 1.000 0.000
#> SRR1096291 1 0.0000 0.97136 1.000 0.000
#> SRR1418145 1 0.0000 0.97136 1.000 0.000
#> SRR1488111 2 0.8955 0.54664 0.312 0.688
#> SRR1370495 1 0.0000 0.97136 1.000 0.000
#> SRR1352639 1 0.0000 0.97136 1.000 0.000
#> SRR1348911 1 0.1843 0.94829 0.972 0.028
#> SRR1467386 1 0.0000 0.97136 1.000 0.000
#> SRR1415956 1 0.0000 0.97136 1.000 0.000
#> SRR1500495 1 0.0000 0.97136 1.000 0.000
#> SRR1405099 1 0.0000 0.97136 1.000 0.000
#> SRR1345585 2 0.8813 0.58598 0.300 0.700
#> SRR1093196 1 0.0000 0.97136 1.000 0.000
#> SRR1466006 2 0.0000 0.94718 0.000 1.000
#> SRR1351557 2 0.0000 0.94718 0.000 1.000
#> SRR1382687 1 0.0000 0.97136 1.000 0.000
#> SRR1375549 1 0.0000 0.97136 1.000 0.000
#> SRR1101765 1 0.0000 0.97136 1.000 0.000
#> SRR1334461 1 0.0672 0.96501 0.992 0.008
#> SRR1094073 2 0.0000 0.94718 0.000 1.000
#> SRR1077549 1 0.0000 0.97136 1.000 0.000
#> SRR1440332 1 0.0000 0.97136 1.000 0.000
#> SRR1454177 1 0.0000 0.97136 1.000 0.000
#> SRR1082447 1 0.0000 0.97136 1.000 0.000
#> SRR1420043 1 0.0000 0.97136 1.000 0.000
#> SRR1432500 1 0.0000 0.97136 1.000 0.000
#> SRR1378045 2 0.0000 0.94718 0.000 1.000
#> SRR1334200 1 0.9686 0.33913 0.604 0.396
#> SRR1069539 1 0.8763 0.56461 0.704 0.296
#> SRR1343031 1 0.0000 0.97136 1.000 0.000
#> SRR1319690 1 0.0000 0.97136 1.000 0.000
#> SRR1310604 2 0.0000 0.94718 0.000 1.000
#> SRR1327747 1 0.0000 0.97136 1.000 0.000
#> SRR1072456 2 0.0000 0.94718 0.000 1.000
#> SRR1367896 1 0.7745 0.70754 0.772 0.228
#> SRR1480107 1 0.0000 0.97136 1.000 0.000
#> SRR1377756 1 0.0000 0.97136 1.000 0.000
#> SRR1435272 1 0.0000 0.97136 1.000 0.000
#> SRR1089230 1 0.0000 0.97136 1.000 0.000
#> SRR1389522 1 0.0000 0.97136 1.000 0.000
#> SRR1080600 2 0.0000 0.94718 0.000 1.000
#> SRR1086935 2 0.9993 0.10059 0.484 0.516
#> SRR1344060 1 1.0000 -0.00414 0.504 0.496
#> SRR1467922 2 0.0000 0.94718 0.000 1.000
#> SRR1090984 1 0.0000 0.97136 1.000 0.000
#> SRR1456991 1 0.0000 0.97136 1.000 0.000
#> SRR1085039 1 0.0000 0.97136 1.000 0.000
#> SRR1069303 1 0.0000 0.97136 1.000 0.000
#> SRR1091500 2 0.0000 0.94718 0.000 1.000
#> SRR1075198 2 0.0000 0.94718 0.000 1.000
#> SRR1086915 1 0.0000 0.97136 1.000 0.000
#> SRR1499503 2 0.0000 0.94718 0.000 1.000
#> SRR1094312 2 0.0000 0.94718 0.000 1.000
#> SRR1352437 1 0.0000 0.97136 1.000 0.000
#> SRR1436323 1 0.0000 0.97136 1.000 0.000
#> SRR1073507 1 0.0000 0.97136 1.000 0.000
#> SRR1401972 1 0.0000 0.97136 1.000 0.000
#> SRR1415510 2 0.0000 0.94718 0.000 1.000
#> SRR1327279 1 0.0000 0.97136 1.000 0.000
#> SRR1086983 1 0.0000 0.97136 1.000 0.000
#> SRR1105174 1 0.0000 0.97136 1.000 0.000
#> SRR1468893 1 0.0000 0.97136 1.000 0.000
#> SRR1362555 2 0.8909 0.55422 0.308 0.692
#> SRR1074526 1 0.7674 0.70836 0.776 0.224
#> SRR1326225 2 0.0000 0.94718 0.000 1.000
#> SRR1401933 1 0.0000 0.97136 1.000 0.000
#> SRR1324062 1 0.0000 0.97136 1.000 0.000
#> SRR1102296 1 0.0000 0.97136 1.000 0.000
#> SRR1085087 1 0.0000 0.97136 1.000 0.000
#> SRR1079046 1 0.0000 0.97136 1.000 0.000
#> SRR1328339 1 0.0000 0.97136 1.000 0.000
#> SRR1079782 2 0.0000 0.94718 0.000 1.000
#> SRR1092257 2 0.0000 0.94718 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.1163 0.921 0.028 0.972 0.000
#> SRR1429287 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1359238 3 0.2066 0.837 0.060 0.000 0.940
#> SRR1309597 3 0.3752 0.793 0.144 0.000 0.856
#> SRR1441398 3 0.5560 0.634 0.300 0.000 0.700
#> SRR1084055 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1417566 2 0.7164 0.468 0.044 0.640 0.316
#> SRR1351857 3 0.3412 0.808 0.124 0.000 0.876
#> SRR1487485 3 0.6373 0.281 0.004 0.408 0.588
#> SRR1335875 3 0.4281 0.805 0.072 0.056 0.872
#> SRR1073947 1 0.5948 0.481 0.640 0.000 0.360
#> SRR1443483 3 0.2959 0.808 0.100 0.000 0.900
#> SRR1346794 3 0.5810 0.568 0.336 0.000 0.664
#> SRR1405245 3 0.5138 0.701 0.252 0.000 0.748
#> SRR1409677 3 0.2066 0.834 0.060 0.000 0.940
#> SRR1095549 3 0.4504 0.759 0.196 0.000 0.804
#> SRR1323788 3 0.3038 0.823 0.104 0.000 0.896
#> SRR1314054 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1077944 3 0.6168 0.460 0.412 0.000 0.588
#> SRR1480587 2 0.1643 0.914 0.044 0.956 0.000
#> SRR1311205 3 0.4842 0.733 0.224 0.000 0.776
#> SRR1076369 1 0.2356 0.801 0.928 0.000 0.072
#> SRR1453549 3 0.0747 0.836 0.016 0.000 0.984
#> SRR1345782 3 0.5529 0.641 0.296 0.000 0.704
#> SRR1447850 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1391553 2 0.1753 0.902 0.000 0.952 0.048
#> SRR1444156 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1471731 3 0.1031 0.831 0.000 0.024 0.976
#> SRR1120987 3 0.6756 0.608 0.232 0.056 0.712
#> SRR1477363 3 0.5785 0.603 0.332 0.000 0.668
#> SRR1391961 1 0.0829 0.823 0.984 0.004 0.012
#> SRR1373879 3 0.0747 0.832 0.016 0.000 0.984
#> SRR1318732 3 0.6143 0.676 0.256 0.024 0.720
#> SRR1091404 1 0.0424 0.824 0.992 0.000 0.008
#> SRR1402109 3 0.0892 0.832 0.020 0.000 0.980
#> SRR1407336 3 0.1031 0.831 0.024 0.000 0.976
#> SRR1097417 2 0.6027 0.724 0.164 0.776 0.060
#> SRR1396227 3 0.6045 0.457 0.380 0.000 0.620
#> SRR1400775 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1392861 3 0.2066 0.834 0.060 0.000 0.940
#> SRR1472929 1 0.3213 0.788 0.912 0.028 0.060
#> SRR1436740 3 0.2165 0.833 0.064 0.000 0.936
#> SRR1477057 2 0.0424 0.927 0.008 0.992 0.000
#> SRR1311980 3 0.2681 0.825 0.040 0.028 0.932
#> SRR1069400 3 0.3192 0.803 0.112 0.000 0.888
#> SRR1351016 3 0.4887 0.772 0.228 0.000 0.772
#> SRR1096291 3 0.1964 0.835 0.056 0.000 0.944
#> SRR1418145 3 0.4346 0.738 0.184 0.000 0.816
#> SRR1488111 2 0.3539 0.841 0.012 0.888 0.100
#> SRR1370495 1 0.0592 0.824 0.988 0.000 0.012
#> SRR1352639 1 0.4346 0.736 0.816 0.000 0.184
#> SRR1348911 3 0.6039 0.735 0.104 0.108 0.788
#> SRR1467386 3 0.2448 0.833 0.076 0.000 0.924
#> SRR1415956 1 0.2261 0.809 0.932 0.000 0.068
#> SRR1500495 3 0.5706 0.601 0.320 0.000 0.680
#> SRR1405099 1 0.1753 0.825 0.952 0.000 0.048
#> SRR1345585 3 0.6379 0.586 0.032 0.256 0.712
#> SRR1093196 3 0.0747 0.832 0.016 0.000 0.984
#> SRR1466006 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1351557 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1382687 3 0.2356 0.835 0.072 0.000 0.928
#> SRR1375549 1 0.2625 0.802 0.916 0.000 0.084
#> SRR1101765 1 0.2261 0.812 0.932 0.000 0.068
#> SRR1334461 1 0.0592 0.824 0.988 0.000 0.012
#> SRR1094073 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1077549 3 0.2066 0.834 0.060 0.000 0.940
#> SRR1440332 3 0.1411 0.836 0.036 0.000 0.964
#> SRR1454177 3 0.2066 0.834 0.060 0.000 0.940
#> SRR1082447 1 0.3551 0.778 0.868 0.000 0.132
#> SRR1420043 3 0.0424 0.834 0.008 0.000 0.992
#> SRR1432500 3 0.2356 0.833 0.072 0.000 0.928
#> SRR1378045 2 0.2280 0.894 0.008 0.940 0.052
#> SRR1334200 1 0.3918 0.727 0.856 0.140 0.004
#> SRR1069539 2 0.6264 0.387 0.004 0.616 0.380
#> SRR1343031 3 0.2959 0.808 0.100 0.000 0.900
#> SRR1319690 3 0.4887 0.728 0.228 0.000 0.772
#> SRR1310604 2 0.2878 0.884 0.096 0.904 0.000
#> SRR1327747 3 0.2959 0.815 0.100 0.000 0.900
#> SRR1072456 2 0.2261 0.903 0.068 0.932 0.000
#> SRR1367896 3 0.6653 0.692 0.112 0.136 0.752
#> SRR1480107 1 0.2537 0.812 0.920 0.000 0.080
#> SRR1377756 3 0.3038 0.829 0.104 0.000 0.896
#> SRR1435272 3 0.2066 0.834 0.060 0.000 0.940
#> SRR1089230 3 0.2165 0.833 0.064 0.000 0.936
#> SRR1389522 3 0.5138 0.704 0.252 0.000 0.748
#> SRR1080600 2 0.3412 0.856 0.124 0.876 0.000
#> SRR1086935 3 0.4920 0.774 0.052 0.108 0.840
#> SRR1344060 1 0.4062 0.698 0.836 0.164 0.000
#> SRR1467922 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1090984 1 0.5948 0.416 0.640 0.000 0.360
#> SRR1456991 1 0.2356 0.807 0.928 0.000 0.072
#> SRR1085039 1 0.6192 0.291 0.580 0.000 0.420
#> SRR1069303 1 0.6079 0.447 0.612 0.000 0.388
#> SRR1091500 2 0.2625 0.876 0.084 0.916 0.000
#> SRR1075198 2 0.1031 0.923 0.024 0.976 0.000
#> SRR1086915 3 0.2356 0.833 0.072 0.000 0.928
#> SRR1499503 2 0.1163 0.921 0.028 0.972 0.000
#> SRR1094312 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1352437 3 0.3340 0.804 0.120 0.000 0.880
#> SRR1436323 3 0.0237 0.834 0.004 0.000 0.996
#> SRR1073507 3 0.3192 0.823 0.112 0.000 0.888
#> SRR1401972 1 0.6252 0.306 0.556 0.000 0.444
#> SRR1415510 2 0.3192 0.865 0.112 0.888 0.000
#> SRR1327279 3 0.2796 0.839 0.092 0.000 0.908
#> SRR1086983 3 0.2165 0.833 0.064 0.000 0.936
#> SRR1105174 1 0.1411 0.824 0.964 0.000 0.036
#> SRR1468893 1 0.6225 0.245 0.568 0.000 0.432
#> SRR1362555 1 0.4399 0.664 0.812 0.188 0.000
#> SRR1074526 1 0.3995 0.759 0.868 0.116 0.016
#> SRR1326225 2 0.0000 0.928 0.000 1.000 0.000
#> SRR1401933 3 0.2625 0.832 0.084 0.000 0.916
#> SRR1324062 3 0.2165 0.833 0.064 0.000 0.936
#> SRR1102296 1 0.3539 0.804 0.888 0.012 0.100
#> SRR1085087 3 0.4235 0.768 0.176 0.000 0.824
#> SRR1079046 1 0.1163 0.822 0.972 0.000 0.028
#> SRR1328339 1 0.2261 0.803 0.932 0.000 0.068
#> SRR1079782 2 0.0237 0.927 0.000 0.996 0.004
#> SRR1092257 2 0.1711 0.908 0.008 0.960 0.032
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0524 0.8650 0.008 0.988 0.004 0.000
#> SRR1429287 2 0.0657 0.8656 0.004 0.984 0.000 0.012
#> SRR1359238 4 0.3486 0.6419 0.000 0.000 0.188 0.812
#> SRR1309597 3 0.3448 0.7199 0.004 0.000 0.828 0.168
#> SRR1441398 3 0.4638 0.7299 0.152 0.000 0.788 0.060
#> SRR1084055 2 0.1004 0.8715 0.004 0.972 0.024 0.000
#> SRR1417566 2 0.7473 0.1538 0.132 0.496 0.360 0.012
#> SRR1351857 4 0.2699 0.7560 0.068 0.000 0.028 0.904
#> SRR1487485 3 0.5590 0.6611 0.000 0.064 0.692 0.244
#> SRR1335875 3 0.3893 0.6459 0.008 0.000 0.796 0.196
#> SRR1073947 1 0.2089 0.7480 0.932 0.000 0.020 0.048
#> SRR1443483 3 0.3311 0.7173 0.000 0.000 0.828 0.172
#> SRR1346794 3 0.5894 0.6931 0.200 0.000 0.692 0.108
#> SRR1405245 3 0.4688 0.7437 0.128 0.000 0.792 0.080
#> SRR1409677 4 0.0336 0.7666 0.000 0.000 0.008 0.992
#> SRR1095549 3 0.6155 0.6956 0.176 0.000 0.676 0.148
#> SRR1323788 3 0.7252 0.1966 0.144 0.000 0.436 0.420
#> SRR1314054 2 0.3591 0.8592 0.000 0.824 0.168 0.008
#> SRR1077944 1 0.7601 0.0698 0.472 0.000 0.296 0.232
#> SRR1480587 2 0.1722 0.8542 0.008 0.944 0.048 0.000
#> SRR1311205 3 0.6078 0.6977 0.152 0.000 0.684 0.164
#> SRR1076369 3 0.6127 0.5723 0.180 0.116 0.696 0.008
#> SRR1453549 4 0.3907 0.5804 0.000 0.000 0.232 0.768
#> SRR1345782 3 0.5050 0.7349 0.152 0.000 0.764 0.084
#> SRR1447850 2 0.5582 0.7978 0.000 0.724 0.168 0.108
#> SRR1391553 2 0.4284 0.8276 0.000 0.764 0.224 0.012
#> SRR1444156 2 0.3266 0.8603 0.000 0.832 0.168 0.000
#> SRR1471731 4 0.1302 0.7601 0.000 0.000 0.044 0.956
#> SRR1120987 4 0.2559 0.7390 0.016 0.048 0.016 0.920
#> SRR1477363 4 0.7836 0.0571 0.348 0.000 0.264 0.388
#> SRR1391961 1 0.1867 0.7454 0.928 0.072 0.000 0.000
#> SRR1373879 3 0.4955 0.3626 0.000 0.000 0.556 0.444
#> SRR1318732 3 0.4057 0.7185 0.152 0.000 0.816 0.032
#> SRR1091404 1 0.0921 0.7500 0.972 0.000 0.028 0.000
#> SRR1402109 3 0.4925 0.4162 0.000 0.000 0.572 0.428
#> SRR1407336 4 0.4967 -0.1204 0.000 0.000 0.452 0.548
#> SRR1097417 3 0.3626 0.4445 0.004 0.184 0.812 0.000
#> SRR1396227 4 0.5060 0.2780 0.412 0.000 0.004 0.584
#> SRR1400775 2 0.3219 0.8618 0.000 0.836 0.164 0.000
#> SRR1392861 4 0.0336 0.7662 0.000 0.000 0.008 0.992
#> SRR1472929 1 0.7681 0.1709 0.404 0.216 0.380 0.000
#> SRR1436740 4 0.0188 0.7657 0.000 0.000 0.004 0.996
#> SRR1477057 2 0.3805 0.8670 0.008 0.832 0.148 0.012
#> SRR1311980 3 0.5459 0.1194 0.000 0.016 0.552 0.432
#> SRR1069400 3 0.3356 0.7149 0.000 0.000 0.824 0.176
#> SRR1351016 1 0.7741 0.0434 0.440 0.000 0.264 0.296
#> SRR1096291 4 0.1743 0.7549 0.000 0.004 0.056 0.940
#> SRR1418145 4 0.1890 0.7525 0.008 0.056 0.000 0.936
#> SRR1488111 4 0.5688 -0.0588 0.000 0.464 0.024 0.512
#> SRR1370495 1 0.3266 0.7010 0.832 0.168 0.000 0.000
#> SRR1352639 1 0.6475 0.6445 0.668 0.168 0.008 0.156
#> SRR1348911 3 0.1452 0.7002 0.000 0.008 0.956 0.036
#> SRR1467386 4 0.4378 0.6866 0.164 0.000 0.040 0.796
#> SRR1415956 1 0.3528 0.6126 0.808 0.000 0.192 0.000
#> SRR1500495 3 0.4499 0.7231 0.160 0.000 0.792 0.048
#> SRR1405099 1 0.2048 0.7352 0.928 0.000 0.064 0.008
#> SRR1345585 3 0.4308 0.7348 0.032 0.012 0.820 0.136
#> SRR1093196 4 0.4164 0.4927 0.000 0.000 0.264 0.736
#> SRR1466006 2 0.0672 0.8639 0.008 0.984 0.008 0.000
#> SRR1351557 2 0.0524 0.8680 0.004 0.988 0.008 0.000
#> SRR1382687 4 0.5102 0.6505 0.100 0.000 0.136 0.764
#> SRR1375549 1 0.1488 0.7577 0.956 0.012 0.000 0.032
#> SRR1101765 1 0.0817 0.7553 0.976 0.024 0.000 0.000
#> SRR1334461 1 0.2868 0.7187 0.864 0.136 0.000 0.000
#> SRR1094073 2 0.2760 0.8712 0.000 0.872 0.128 0.000
#> SRR1077549 4 0.0707 0.7664 0.000 0.000 0.020 0.980
#> SRR1440332 4 0.5396 -0.1348 0.012 0.000 0.464 0.524
#> SRR1454177 4 0.0188 0.7666 0.000 0.000 0.004 0.996
#> SRR1082447 1 0.1059 0.7535 0.972 0.000 0.012 0.016
#> SRR1420043 4 0.4164 0.5127 0.000 0.000 0.264 0.736
#> SRR1432500 4 0.2760 0.7079 0.000 0.000 0.128 0.872
#> SRR1378045 3 0.4804 -0.1350 0.000 0.384 0.616 0.000
#> SRR1334200 1 0.3831 0.6698 0.792 0.204 0.004 0.000
#> SRR1069539 4 0.7890 -0.0316 0.004 0.372 0.228 0.396
#> SRR1343031 3 0.4522 0.6125 0.000 0.000 0.680 0.320
#> SRR1319690 3 0.4764 0.7457 0.124 0.000 0.788 0.088
#> SRR1310604 2 0.3501 0.7916 0.020 0.848 0.132 0.000
#> SRR1327747 3 0.4993 0.6735 0.028 0.000 0.712 0.260
#> SRR1072456 2 0.1890 0.8554 0.008 0.936 0.056 0.000
#> SRR1367896 3 0.3300 0.7231 0.000 0.008 0.848 0.144
#> SRR1480107 1 0.0804 0.7532 0.980 0.000 0.012 0.008
#> SRR1377756 4 0.3355 0.7078 0.160 0.000 0.004 0.836
#> SRR1435272 4 0.0000 0.7660 0.000 0.000 0.000 1.000
#> SRR1089230 4 0.0188 0.7668 0.004 0.000 0.000 0.996
#> SRR1389522 3 0.4626 0.7395 0.064 0.036 0.828 0.072
#> SRR1080600 2 0.4345 0.7300 0.020 0.788 0.188 0.004
#> SRR1086935 4 0.2500 0.7336 0.000 0.044 0.040 0.916
#> SRR1344060 1 0.3726 0.6650 0.788 0.212 0.000 0.000
#> SRR1467922 2 0.3219 0.8618 0.000 0.836 0.164 0.000
#> SRR1090984 3 0.5792 0.2462 0.456 0.008 0.520 0.016
#> SRR1456991 1 0.4356 0.4414 0.708 0.000 0.292 0.000
#> SRR1085039 1 0.3959 0.6947 0.840 0.000 0.068 0.092
#> SRR1069303 1 0.5143 0.1536 0.540 0.000 0.004 0.456
#> SRR1091500 2 0.4517 0.8538 0.036 0.792 0.168 0.004
#> SRR1075198 2 0.1059 0.8611 0.012 0.972 0.016 0.000
#> SRR1086915 4 0.0779 0.7681 0.016 0.000 0.004 0.980
#> SRR1499503 2 0.1792 0.8522 0.000 0.932 0.068 0.000
#> SRR1094312 2 0.2589 0.8730 0.000 0.884 0.116 0.000
#> SRR1352437 4 0.5006 0.6718 0.136 0.016 0.060 0.788
#> SRR1436323 4 0.1022 0.7626 0.000 0.000 0.032 0.968
#> SRR1073507 4 0.3486 0.7019 0.188 0.000 0.000 0.812
#> SRR1401972 1 0.5155 0.1150 0.528 0.000 0.004 0.468
#> SRR1415510 2 0.2271 0.8583 0.008 0.916 0.076 0.000
#> SRR1327279 4 0.5453 0.4099 0.036 0.000 0.304 0.660
#> SRR1086983 4 0.0592 0.7686 0.016 0.000 0.000 0.984
#> SRR1105174 1 0.1792 0.7328 0.932 0.000 0.068 0.000
#> SRR1468893 1 0.4277 0.5210 0.720 0.000 0.000 0.280
#> SRR1362555 1 0.4720 0.5994 0.720 0.264 0.016 0.000
#> SRR1074526 1 0.2976 0.7097 0.872 0.008 0.120 0.000
#> SRR1326225 2 0.3123 0.8646 0.000 0.844 0.156 0.000
#> SRR1401933 4 0.2714 0.7410 0.112 0.000 0.004 0.884
#> SRR1324062 4 0.1833 0.7621 0.024 0.000 0.032 0.944
#> SRR1102296 1 0.1739 0.7556 0.952 0.008 0.024 0.016
#> SRR1085087 4 0.4072 0.5949 0.252 0.000 0.000 0.748
#> SRR1079046 1 0.1022 0.7540 0.968 0.032 0.000 0.000
#> SRR1328339 3 0.5630 0.4390 0.360 0.032 0.608 0.000
#> SRR1079782 2 0.1909 0.8485 0.008 0.940 0.004 0.048
#> SRR1092257 2 0.5857 0.7985 0.008 0.720 0.164 0.108
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 5 0.4046 0.51145 0.000 0.296 0.008 0.000 0.696
#> SRR1429287 5 0.3928 0.62453 0.004 0.156 0.004 0.036 0.800
#> SRR1359238 4 0.1502 0.80077 0.000 0.000 0.056 0.940 0.004
#> SRR1309597 3 0.0912 0.64854 0.000 0.000 0.972 0.016 0.012
#> SRR1441398 3 0.4354 0.45576 0.368 0.000 0.624 0.008 0.000
#> SRR1084055 5 0.3246 0.60436 0.000 0.184 0.008 0.000 0.808
#> SRR1417566 3 0.6483 0.34200 0.160 0.396 0.440 0.004 0.000
#> SRR1351857 4 0.2470 0.78407 0.012 0.000 0.000 0.884 0.104
#> SRR1487485 3 0.3063 0.64828 0.000 0.020 0.864 0.104 0.012
#> SRR1335875 3 0.6271 0.52357 0.276 0.084 0.596 0.044 0.000
#> SRR1073947 1 0.1329 0.70759 0.956 0.000 0.032 0.004 0.008
#> SRR1443483 3 0.1493 0.64476 0.000 0.000 0.948 0.028 0.024
#> SRR1346794 3 0.5526 0.34956 0.404 0.000 0.540 0.012 0.044
#> SRR1405245 3 0.4642 0.52308 0.308 0.000 0.660 0.032 0.000
#> SRR1409677 4 0.0880 0.81026 0.000 0.000 0.000 0.968 0.032
#> SRR1095549 3 0.5299 0.50146 0.296 0.000 0.640 0.052 0.012
#> SRR1323788 3 0.5501 0.30009 0.444 0.000 0.492 0.064 0.000
#> SRR1314054 2 0.0833 0.77341 0.004 0.976 0.000 0.004 0.016
#> SRR1077944 1 0.3196 0.59658 0.804 0.000 0.192 0.004 0.000
#> SRR1480587 5 0.6080 0.34613 0.000 0.344 0.136 0.000 0.520
#> SRR1311205 3 0.5043 0.45663 0.356 0.000 0.600 0.044 0.000
#> SRR1076369 5 0.5531 0.54587 0.168 0.000 0.164 0.004 0.664
#> SRR1453549 3 0.5579 0.42444 0.064 0.004 0.540 0.392 0.000
#> SRR1345782 3 0.3949 0.53119 0.300 0.000 0.696 0.000 0.004
#> SRR1447850 2 0.0486 0.77011 0.004 0.988 0.000 0.004 0.004
#> SRR1391553 2 0.0510 0.76237 0.000 0.984 0.016 0.000 0.000
#> SRR1444156 2 0.0290 0.77158 0.000 0.992 0.000 0.000 0.008
#> SRR1471731 4 0.2233 0.76657 0.000 0.004 0.104 0.892 0.000
#> SRR1120987 4 0.2011 0.78922 0.004 0.000 0.000 0.908 0.088
#> SRR1477363 1 0.4372 0.48913 0.712 0.000 0.260 0.024 0.004
#> SRR1391961 1 0.4640 0.26443 0.584 0.000 0.016 0.000 0.400
#> SRR1373879 3 0.4663 0.44793 0.020 0.000 0.604 0.376 0.000
#> SRR1318732 3 0.2780 0.64983 0.112 0.004 0.872 0.008 0.004
#> SRR1091404 1 0.3883 0.63032 0.780 0.000 0.036 0.000 0.184
#> SRR1402109 3 0.4480 0.37895 0.004 0.000 0.592 0.400 0.004
#> SRR1407336 4 0.2522 0.76465 0.000 0.000 0.108 0.880 0.012
#> SRR1097417 3 0.3991 0.50097 0.000 0.048 0.780 0.000 0.172
#> SRR1396227 1 0.2053 0.69530 0.924 0.000 0.048 0.024 0.004
#> SRR1400775 2 0.0566 0.77327 0.004 0.984 0.000 0.000 0.012
#> SRR1392861 4 0.0404 0.81191 0.000 0.000 0.012 0.988 0.000
#> SRR1472929 5 0.4430 0.60933 0.036 0.000 0.256 0.000 0.708
#> SRR1436740 4 0.0162 0.81335 0.000 0.000 0.000 0.996 0.004
#> SRR1477057 2 0.5000 0.55897 0.068 0.688 0.000 0.004 0.240
#> SRR1311980 3 0.7581 0.39335 0.204 0.348 0.392 0.056 0.000
#> SRR1069400 3 0.2569 0.60603 0.000 0.000 0.892 0.040 0.068
#> SRR1351016 1 0.4142 0.42278 0.684 0.000 0.308 0.004 0.004
#> SRR1096291 4 0.2864 0.75942 0.000 0.000 0.012 0.852 0.136
#> SRR1418145 4 0.3700 0.62699 0.008 0.000 0.000 0.752 0.240
#> SRR1488111 4 0.5086 0.53434 0.004 0.096 0.000 0.700 0.200
#> SRR1370495 5 0.2011 0.63532 0.088 0.000 0.000 0.004 0.908
#> SRR1352639 5 0.5460 0.32936 0.364 0.000 0.016 0.040 0.580
#> SRR1348911 3 0.4690 0.62671 0.108 0.140 0.748 0.004 0.000
#> SRR1467386 4 0.5088 0.16776 0.436 0.000 0.036 0.528 0.000
#> SRR1415956 1 0.3424 0.54011 0.760 0.000 0.240 0.000 0.000
#> SRR1500495 3 0.4354 0.45195 0.368 0.000 0.624 0.008 0.000
#> SRR1405099 1 0.2179 0.67150 0.888 0.000 0.112 0.000 0.000
#> SRR1345585 3 0.1074 0.64855 0.000 0.004 0.968 0.016 0.012
#> SRR1093196 4 0.2338 0.75491 0.000 0.000 0.112 0.884 0.004
#> SRR1466006 5 0.4879 0.57846 0.000 0.228 0.076 0.000 0.696
#> SRR1351557 2 0.4443 0.00421 0.004 0.524 0.000 0.000 0.472
#> SRR1382687 3 0.6534 0.24923 0.388 0.000 0.416 0.196 0.000
#> SRR1375549 1 0.3484 0.65582 0.824 0.000 0.004 0.028 0.144
#> SRR1101765 5 0.6121 0.06223 0.376 0.000 0.004 0.116 0.504
#> SRR1334461 1 0.4746 0.05662 0.504 0.000 0.016 0.000 0.480
#> SRR1094073 2 0.3837 0.48099 0.000 0.692 0.000 0.000 0.308
#> SRR1077549 4 0.0771 0.81143 0.004 0.000 0.020 0.976 0.000
#> SRR1440332 3 0.5211 0.33960 0.044 0.000 0.524 0.432 0.000
#> SRR1454177 4 0.0162 0.81318 0.000 0.000 0.004 0.996 0.000
#> SRR1082447 1 0.0898 0.70644 0.972 0.000 0.008 0.000 0.020
#> SRR1420043 4 0.3123 0.65354 0.000 0.000 0.184 0.812 0.004
#> SRR1432500 4 0.1282 0.80549 0.004 0.000 0.044 0.952 0.000
#> SRR1378045 2 0.3966 0.39312 0.000 0.664 0.336 0.000 0.000
#> SRR1334200 5 0.1764 0.64163 0.064 0.000 0.000 0.008 0.928
#> SRR1069539 5 0.4302 0.52069 0.000 0.000 0.032 0.248 0.720
#> SRR1343031 3 0.4430 0.21209 0.000 0.000 0.540 0.456 0.004
#> SRR1319690 3 0.2984 0.65143 0.108 0.000 0.860 0.032 0.000
#> SRR1310604 5 0.2522 0.66425 0.000 0.012 0.108 0.000 0.880
#> SRR1327747 3 0.4903 0.56927 0.028 0.000 0.712 0.228 0.032
#> SRR1072456 5 0.6130 0.47499 0.000 0.264 0.180 0.000 0.556
#> SRR1367896 3 0.1475 0.64635 0.004 0.012 0.956 0.012 0.016
#> SRR1480107 1 0.0992 0.70725 0.968 0.000 0.024 0.000 0.008
#> SRR1377756 1 0.5055 0.16011 0.544 0.000 0.016 0.428 0.012
#> SRR1435272 4 0.0162 0.81318 0.000 0.000 0.004 0.996 0.000
#> SRR1089230 4 0.1943 0.80315 0.020 0.000 0.000 0.924 0.056
#> SRR1389522 3 0.1012 0.64897 0.020 0.000 0.968 0.000 0.012
#> SRR1080600 5 0.3163 0.65728 0.000 0.012 0.164 0.000 0.824
#> SRR1086935 4 0.1596 0.80943 0.012 0.012 0.000 0.948 0.028
#> SRR1344060 5 0.2719 0.60173 0.144 0.000 0.004 0.000 0.852
#> SRR1467922 2 0.0794 0.77308 0.000 0.972 0.000 0.000 0.028
#> SRR1090984 1 0.4430 -0.06826 0.540 0.004 0.456 0.000 0.000
#> SRR1456991 1 0.3949 0.44640 0.696 0.000 0.300 0.000 0.004
#> SRR1085039 1 0.3012 0.70108 0.872 0.000 0.072 0.004 0.052
#> SRR1069303 1 0.1915 0.69883 0.928 0.000 0.000 0.040 0.032
#> SRR1091500 2 0.1892 0.73920 0.004 0.916 0.000 0.000 0.080
#> SRR1075198 5 0.4535 0.64838 0.000 0.124 0.084 0.016 0.776
#> SRR1086915 4 0.1331 0.80859 0.008 0.000 0.000 0.952 0.040
#> SRR1499503 5 0.6066 0.51378 0.000 0.240 0.188 0.000 0.572
#> SRR1094312 2 0.3231 0.66235 0.004 0.800 0.000 0.000 0.196
#> SRR1352437 1 0.5153 0.55051 0.684 0.112 0.000 0.204 0.000
#> SRR1436323 4 0.1591 0.80405 0.004 0.000 0.052 0.940 0.004
#> SRR1073507 4 0.4067 0.53426 0.300 0.000 0.008 0.692 0.000
#> SRR1401972 1 0.1588 0.70454 0.948 0.008 0.000 0.028 0.016
#> SRR1415510 5 0.6303 0.49914 0.004 0.212 0.228 0.000 0.556
#> SRR1327279 4 0.6191 -0.29136 0.136 0.000 0.424 0.440 0.000
#> SRR1086983 4 0.1251 0.80938 0.036 0.000 0.008 0.956 0.000
#> SRR1105174 1 0.2669 0.68317 0.876 0.000 0.104 0.000 0.020
#> SRR1468893 1 0.1612 0.70605 0.948 0.000 0.012 0.024 0.016
#> SRR1362555 5 0.1569 0.65881 0.044 0.000 0.004 0.008 0.944
#> SRR1074526 1 0.4531 0.20223 0.568 0.004 0.000 0.004 0.424
#> SRR1326225 2 0.1908 0.74856 0.000 0.908 0.000 0.000 0.092
#> SRR1401933 4 0.5121 0.22659 0.416 0.000 0.012 0.552 0.020
#> SRR1324062 4 0.5251 0.27174 0.372 0.012 0.032 0.584 0.000
#> SRR1102296 1 0.2331 0.69910 0.912 0.060 0.020 0.004 0.004
#> SRR1085087 1 0.4644 0.32550 0.604 0.000 0.012 0.380 0.004
#> SRR1079046 1 0.2536 0.66720 0.868 0.000 0.004 0.000 0.128
#> SRR1328339 1 0.4425 -0.03099 0.544 0.004 0.452 0.000 0.000
#> SRR1079782 5 0.6032 0.44057 0.004 0.256 0.004 0.136 0.600
#> SRR1092257 2 0.5745 0.37027 0.004 0.592 0.000 0.100 0.304
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.4832 0.5090 0.000 0.672 0.224 0.000 0.096 0.008
#> SRR1429287 2 0.1969 0.6459 0.000 0.920 0.004 0.020 0.004 0.052
#> SRR1359238 4 0.2540 0.6815 0.104 0.004 0.000 0.872 0.000 0.020
#> SRR1309597 1 0.4420 0.4324 0.624 0.008 0.000 0.012 0.008 0.348
#> SRR1441398 1 0.1950 0.4453 0.912 0.000 0.000 0.000 0.024 0.064
#> SRR1084055 2 0.5978 0.4411 0.000 0.532 0.152 0.000 0.292 0.024
#> SRR1417566 1 0.4512 0.2210 0.676 0.000 0.028 0.000 0.024 0.272
#> SRR1351857 4 0.5081 0.5480 0.000 0.020 0.000 0.676 0.180 0.124
#> SRR1487485 1 0.5708 0.4082 0.548 0.008 0.004 0.112 0.004 0.324
#> SRR1335875 1 0.2846 0.4725 0.872 0.000 0.080 0.004 0.016 0.028
#> SRR1073947 5 0.4372 0.4521 0.184 0.000 0.000 0.008 0.728 0.080
#> SRR1443483 1 0.5355 0.4224 0.580 0.028 0.000 0.032 0.016 0.344
#> SRR1346794 6 0.5374 0.4518 0.372 0.052 0.000 0.000 0.032 0.544
#> SRR1405245 1 0.1668 0.4564 0.928 0.000 0.000 0.004 0.008 0.060
#> SRR1409677 4 0.2687 0.6718 0.008 0.044 0.000 0.876 0.000 0.072
#> SRR1095549 1 0.7055 0.0490 0.356 0.000 0.000 0.080 0.208 0.356
#> SRR1323788 1 0.4684 -0.0753 0.604 0.000 0.000 0.008 0.040 0.348
#> SRR1314054 3 0.1769 0.7691 0.000 0.060 0.924 0.012 0.004 0.000
#> SRR1077944 1 0.5569 -0.0346 0.540 0.000 0.000 0.000 0.280 0.180
#> SRR1480587 2 0.5281 0.5510 0.016 0.616 0.080 0.000 0.004 0.284
#> SRR1311205 1 0.3331 0.4045 0.816 0.000 0.000 0.004 0.136 0.044
#> SRR1076369 6 0.4537 0.1507 0.012 0.316 0.000 0.000 0.032 0.640
#> SRR1453549 4 0.4524 0.3121 0.452 0.000 0.000 0.520 0.004 0.024
#> SRR1345782 1 0.4344 0.4477 0.748 0.000 0.000 0.028 0.168 0.056
#> SRR1447850 3 0.1010 0.7513 0.000 0.000 0.960 0.036 0.004 0.000
#> SRR1391553 3 0.0858 0.7514 0.028 0.000 0.968 0.000 0.004 0.000
#> SRR1444156 3 0.0146 0.7564 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1471731 4 0.3826 0.6390 0.124 0.004 0.000 0.784 0.000 0.088
#> SRR1120987 4 0.3786 0.5424 0.000 0.240 0.004 0.736 0.004 0.016
#> SRR1477363 1 0.5437 0.0839 0.596 0.000 0.000 0.004 0.204 0.196
#> SRR1391961 5 0.2179 0.4230 0.000 0.064 0.000 0.000 0.900 0.036
#> SRR1373879 4 0.5069 0.2352 0.472 0.004 0.000 0.476 0.020 0.028
#> SRR1318732 1 0.4428 0.1912 0.528 0.012 0.004 0.000 0.004 0.452
#> SRR1091404 5 0.4437 0.4090 0.120 0.016 0.000 0.000 0.744 0.120
#> SRR1402109 4 0.5164 0.2906 0.444 0.004 0.000 0.496 0.016 0.040
#> SRR1407336 4 0.2980 0.6759 0.116 0.004 0.000 0.848 0.004 0.028
#> SRR1097417 1 0.7059 0.1981 0.456 0.036 0.048 0.008 0.348 0.104
#> SRR1396227 6 0.6118 0.2382 0.380 0.000 0.000 0.004 0.232 0.384
#> SRR1400775 3 0.1700 0.7660 0.000 0.080 0.916 0.000 0.004 0.000
#> SRR1392861 4 0.0582 0.6827 0.000 0.004 0.004 0.984 0.004 0.004
#> SRR1472929 2 0.5310 0.4438 0.004 0.480 0.000 0.000 0.428 0.088
#> SRR1436740 4 0.1536 0.6741 0.000 0.040 0.004 0.940 0.000 0.016
#> SRR1477057 3 0.6991 0.2810 0.008 0.280 0.460 0.004 0.192 0.056
#> SRR1311980 1 0.4946 0.3985 0.700 0.000 0.200 0.064 0.008 0.028
#> SRR1069400 1 0.6537 0.3829 0.524 0.052 0.000 0.076 0.036 0.312
#> SRR1351016 1 0.5293 -0.2470 0.484 0.000 0.000 0.008 0.432 0.076
#> SRR1096291 4 0.3374 0.5824 0.000 0.208 0.000 0.772 0.000 0.020
#> SRR1418145 2 0.4654 0.1026 0.000 0.544 0.000 0.412 0.000 0.044
#> SRR1488111 4 0.4924 0.3097 0.000 0.368 0.016 0.580 0.004 0.032
#> SRR1370495 2 0.2191 0.6571 0.000 0.876 0.000 0.000 0.120 0.004
#> SRR1352639 2 0.6156 0.3952 0.132 0.616 0.000 0.008 0.164 0.080
#> SRR1348911 1 0.5637 0.2934 0.608 0.000 0.288 0.032 0.040 0.032
#> SRR1467386 4 0.5855 0.4178 0.084 0.000 0.000 0.632 0.164 0.120
#> SRR1415956 1 0.5134 0.0780 0.620 0.000 0.000 0.000 0.152 0.228
#> SRR1500495 1 0.1926 0.4482 0.912 0.000 0.000 0.000 0.020 0.068
#> SRR1405099 1 0.5837 -0.1898 0.452 0.000 0.000 0.000 0.352 0.196
#> SRR1345585 1 0.4528 0.4006 0.564 0.028 0.000 0.000 0.004 0.404
#> SRR1093196 4 0.1464 0.6906 0.036 0.004 0.000 0.944 0.000 0.016
#> SRR1466006 2 0.3273 0.6440 0.000 0.776 0.008 0.000 0.004 0.212
#> SRR1351557 2 0.3733 0.4509 0.000 0.700 0.288 0.000 0.008 0.004
#> SRR1382687 1 0.4928 0.0295 0.628 0.000 0.000 0.028 0.040 0.304
#> SRR1375549 6 0.6707 0.4364 0.084 0.284 0.000 0.012 0.108 0.512
#> SRR1101765 6 0.6151 0.3196 0.000 0.340 0.000 0.040 0.124 0.496
#> SRR1334461 5 0.2060 0.4226 0.000 0.084 0.000 0.000 0.900 0.016
#> SRR1094073 3 0.3841 0.3583 0.000 0.380 0.616 0.000 0.004 0.000
#> SRR1077549 4 0.1649 0.6870 0.040 0.000 0.000 0.936 0.008 0.016
#> SRR1440332 4 0.4698 0.3243 0.436 0.000 0.000 0.528 0.012 0.024
#> SRR1454177 4 0.0653 0.6848 0.012 0.000 0.000 0.980 0.004 0.004
#> SRR1082447 6 0.5871 0.3857 0.320 0.000 0.000 0.000 0.216 0.464
#> SRR1420043 4 0.3333 0.6293 0.192 0.000 0.000 0.784 0.000 0.024
#> SRR1432500 4 0.3410 0.6670 0.128 0.004 0.000 0.824 0.016 0.028
#> SRR1378045 3 0.5646 0.2508 0.296 0.004 0.552 0.000 0.004 0.144
#> SRR1334200 2 0.5420 0.3492 0.000 0.572 0.000 0.000 0.172 0.256
#> SRR1069539 2 0.3041 0.6263 0.000 0.832 0.000 0.128 0.000 0.040
#> SRR1343031 4 0.5280 0.4635 0.320 0.004 0.000 0.596 0.024 0.056
#> SRR1319690 1 0.2762 0.4453 0.804 0.000 0.000 0.000 0.000 0.196
#> SRR1310604 2 0.4634 0.6192 0.000 0.688 0.000 0.000 0.188 0.124
#> SRR1327747 6 0.5740 -0.0184 0.288 0.108 0.000 0.032 0.000 0.572
#> SRR1072456 2 0.5792 0.5482 0.008 0.600 0.112 0.000 0.028 0.252
#> SRR1367896 1 0.5866 0.4207 0.580 0.020 0.000 0.064 0.036 0.300
#> SRR1480107 5 0.5156 0.3292 0.272 0.000 0.000 0.000 0.600 0.128
#> SRR1377756 6 0.6230 0.4747 0.344 0.016 0.000 0.076 0.048 0.516
#> SRR1435272 4 0.0291 0.6828 0.000 0.004 0.000 0.992 0.000 0.004
#> SRR1089230 4 0.5933 0.1131 0.000 0.220 0.000 0.432 0.000 0.348
#> SRR1389522 1 0.5427 0.4342 0.604 0.016 0.000 0.040 0.032 0.308
#> SRR1080600 2 0.2730 0.6480 0.000 0.808 0.000 0.000 0.000 0.192
#> SRR1086935 4 0.5535 0.4493 0.000 0.124 0.016 0.612 0.004 0.244
#> SRR1344060 5 0.4852 -0.3695 0.000 0.452 0.000 0.000 0.492 0.056
#> SRR1467922 3 0.1987 0.7637 0.004 0.080 0.908 0.000 0.004 0.004
#> SRR1090984 1 0.4186 0.2955 0.756 0.000 0.016 0.000 0.064 0.164
#> SRR1456991 5 0.5116 0.2275 0.444 0.000 0.000 0.004 0.484 0.068
#> SRR1085039 5 0.4418 0.4156 0.140 0.000 0.000 0.012 0.740 0.108
#> SRR1069303 5 0.7120 0.0838 0.284 0.012 0.008 0.036 0.420 0.240
#> SRR1091500 3 0.1700 0.7507 0.000 0.024 0.928 0.000 0.048 0.000
#> SRR1075198 2 0.0935 0.6636 0.000 0.964 0.000 0.004 0.000 0.032
#> SRR1086915 4 0.4344 0.5585 0.000 0.188 0.000 0.716 0.000 0.096
#> SRR1499503 2 0.6190 0.5168 0.012 0.588 0.160 0.000 0.040 0.200
#> SRR1094312 3 0.3756 0.6183 0.000 0.240 0.736 0.000 0.016 0.008
#> SRR1352437 5 0.8327 0.1990 0.128 0.000 0.144 0.264 0.364 0.100
#> SRR1436323 4 0.5404 0.4165 0.100 0.020 0.000 0.604 0.000 0.276
#> SRR1073507 4 0.3648 0.6332 0.024 0.000 0.000 0.808 0.128 0.040
#> SRR1401972 5 0.6933 -0.1020 0.316 0.004 0.008 0.024 0.352 0.296
#> SRR1415510 2 0.5015 0.5448 0.016 0.600 0.044 0.000 0.004 0.336
#> SRR1327279 4 0.6504 0.3423 0.292 0.000 0.000 0.468 0.200 0.040
#> SRR1086983 4 0.1515 0.6798 0.000 0.020 0.000 0.944 0.008 0.028
#> SRR1105174 1 0.5819 -0.3779 0.420 0.000 0.000 0.000 0.184 0.396
#> SRR1468893 6 0.5639 0.4314 0.348 0.004 0.000 0.004 0.124 0.520
#> SRR1362555 2 0.1152 0.6624 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1074526 5 0.5400 0.1857 0.000 0.092 0.032 0.000 0.628 0.248
#> SRR1326225 3 0.2730 0.6848 0.000 0.192 0.808 0.000 0.000 0.000
#> SRR1401933 6 0.7033 0.4891 0.236 0.100 0.000 0.108 0.032 0.524
#> SRR1324062 4 0.6047 0.1440 0.316 0.000 0.012 0.544 0.032 0.096
#> SRR1102296 5 0.5781 0.2612 0.324 0.000 0.016 0.000 0.528 0.132
#> SRR1085087 4 0.7406 -0.0845 0.180 0.016 0.000 0.420 0.284 0.100
#> SRR1079046 6 0.6885 0.4143 0.136 0.188 0.000 0.000 0.172 0.504
#> SRR1328339 1 0.3301 0.4027 0.828 0.000 0.004 0.000 0.100 0.068
#> SRR1079782 2 0.2544 0.6438 0.000 0.896 0.036 0.044 0.004 0.020
#> SRR1092257 2 0.6616 0.2044 0.000 0.520 0.304 0.092 0.052 0.032
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
CV:hclust
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["CV", "hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.2719 0.790 0.849 0.2116 0.950 0.950
#> 3 3 0.0803 0.517 0.709 1.4581 0.544 0.520
#> 4 4 0.1253 0.433 0.662 0.1563 0.920 0.843
#> 5 5 0.2040 0.443 0.617 0.1178 0.873 0.724
#> 6 6 0.3083 0.335 0.588 0.0772 0.920 0.780
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 1 0.7674 0.799 0.776 0.224
#> SRR1429287 1 0.7219 0.811 0.800 0.200
#> SRR1359238 1 0.2236 0.818 0.964 0.036
#> SRR1309597 1 0.0672 0.808 0.992 0.008
#> SRR1441398 1 0.3274 0.767 0.940 0.060
#> SRR1084055 1 0.8207 0.777 0.744 0.256
#> SRR1417566 1 0.8763 0.745 0.704 0.296
#> SRR1351857 1 0.3733 0.827 0.928 0.072
#> SRR1487485 1 0.8763 0.750 0.704 0.296
#> SRR1335875 1 0.9044 0.727 0.680 0.320
#> SRR1073947 1 0.8813 0.741 0.700 0.300
#> SRR1443483 1 0.1414 0.808 0.980 0.020
#> SRR1346794 1 0.0672 0.809 0.992 0.008
#> SRR1405245 1 0.1633 0.813 0.976 0.024
#> SRR1409677 1 0.1633 0.814 0.976 0.024
#> SRR1095549 1 0.4161 0.829 0.916 0.084
#> SRR1323788 1 0.1633 0.813 0.976 0.024
#> SRR1314054 1 0.8267 0.775 0.740 0.260
#> SRR1077944 1 0.3733 0.829 0.928 0.072
#> SRR1480587 1 0.7376 0.805 0.792 0.208
#> SRR1311205 1 0.1184 0.804 0.984 0.016
#> SRR1076369 1 0.0938 0.806 0.988 0.012
#> SRR1453549 1 0.5946 0.820 0.856 0.144
#> SRR1345782 1 0.0672 0.808 0.992 0.008
#> SRR1447850 1 0.9608 0.655 0.616 0.384
#> SRR1391553 1 0.9170 0.715 0.668 0.332
#> SRR1444156 1 0.8016 0.784 0.756 0.244
#> SRR1471731 1 0.7376 0.807 0.792 0.208
#> SRR1120987 1 0.5519 0.828 0.872 0.128
#> SRR1477363 1 0.0938 0.806 0.988 0.012
#> SRR1391961 2 0.9710 0.939 0.400 0.600
#> SRR1373879 1 0.3584 0.826 0.932 0.068
#> SRR1318732 1 0.1843 0.815 0.972 0.028
#> SRR1091404 1 0.3584 0.829 0.932 0.068
#> SRR1402109 1 0.2778 0.818 0.952 0.048
#> SRR1407336 1 0.1184 0.809 0.984 0.016
#> SRR1097417 1 0.8955 0.735 0.688 0.312
#> SRR1396227 1 0.8713 0.750 0.708 0.292
#> SRR1400775 1 0.9087 0.729 0.676 0.324
#> SRR1392861 1 0.7745 0.799 0.772 0.228
#> SRR1472929 2 0.9608 0.971 0.384 0.616
#> SRR1436740 1 0.7376 0.806 0.792 0.208
#> SRR1477057 1 0.9710 0.618 0.600 0.400
#> SRR1311980 1 0.9170 0.715 0.668 0.332
#> SRR1069400 1 0.0938 0.806 0.988 0.012
#> SRR1351016 1 0.3584 0.829 0.932 0.068
#> SRR1096291 1 0.3584 0.827 0.932 0.068
#> SRR1418145 1 0.3584 0.821 0.932 0.068
#> SRR1488111 1 0.7376 0.808 0.792 0.208
#> SRR1370495 1 0.5408 0.701 0.876 0.124
#> SRR1352639 1 0.3431 0.815 0.936 0.064
#> SRR1348911 1 0.8713 0.751 0.708 0.292
#> SRR1467386 1 0.4161 0.829 0.916 0.084
#> SRR1415956 1 0.3274 0.767 0.940 0.060
#> SRR1500495 1 0.1184 0.804 0.984 0.016
#> SRR1405099 1 0.3274 0.767 0.940 0.060
#> SRR1345585 1 0.6531 0.817 0.832 0.168
#> SRR1093196 1 0.6887 0.815 0.816 0.184
#> SRR1466006 1 0.7376 0.804 0.792 0.208
#> SRR1351557 1 0.7299 0.806 0.796 0.204
#> SRR1382687 1 0.1843 0.815 0.972 0.028
#> SRR1375549 1 0.4161 0.736 0.916 0.084
#> SRR1101765 1 0.0938 0.806 0.988 0.012
#> SRR1334461 2 0.9608 0.971 0.384 0.616
#> SRR1094073 1 0.8608 0.759 0.716 0.284
#> SRR1077549 1 0.5178 0.830 0.884 0.116
#> SRR1440332 1 0.0938 0.806 0.988 0.012
#> SRR1454177 1 0.7745 0.799 0.772 0.228
#> SRR1082447 1 0.4431 0.830 0.908 0.092
#> SRR1420043 1 0.3733 0.830 0.928 0.072
#> SRR1432500 1 0.0938 0.806 0.988 0.012
#> SRR1378045 1 0.9000 0.731 0.684 0.316
#> SRR1334200 1 0.4161 0.821 0.916 0.084
#> SRR1069539 1 0.3584 0.827 0.932 0.068
#> SRR1343031 1 0.0938 0.806 0.988 0.012
#> SRR1319690 1 0.0672 0.807 0.992 0.008
#> SRR1310604 1 0.7056 0.809 0.808 0.192
#> SRR1327747 1 0.1184 0.810 0.984 0.016
#> SRR1072456 1 0.7674 0.794 0.776 0.224
#> SRR1367896 1 0.9044 0.730 0.680 0.320
#> SRR1480107 1 0.0672 0.808 0.992 0.008
#> SRR1377756 1 0.1633 0.813 0.976 0.024
#> SRR1435272 1 0.7745 0.799 0.772 0.228
#> SRR1089230 1 0.2043 0.815 0.968 0.032
#> SRR1389522 1 0.1414 0.801 0.980 0.020
#> SRR1080600 1 0.2603 0.820 0.956 0.044
#> SRR1086935 1 0.9286 0.705 0.656 0.344
#> SRR1344060 1 0.8713 0.352 0.708 0.292
#> SRR1467922 1 0.8713 0.753 0.708 0.292
#> SRR1090984 1 0.8713 0.749 0.708 0.292
#> SRR1456991 1 0.0672 0.808 0.992 0.008
#> SRR1085039 1 0.2778 0.815 0.952 0.048
#> SRR1069303 1 0.9170 0.712 0.668 0.332
#> SRR1091500 1 0.8267 0.775 0.740 0.260
#> SRR1075198 1 0.3733 0.820 0.928 0.072
#> SRR1086915 1 0.3274 0.825 0.940 0.060
#> SRR1499503 1 0.7056 0.809 0.808 0.192
#> SRR1094312 1 0.8267 0.775 0.740 0.260
#> SRR1352437 1 0.9209 0.710 0.664 0.336
#> SRR1436323 1 0.7139 0.811 0.804 0.196
#> SRR1073507 1 0.4298 0.830 0.912 0.088
#> SRR1401972 1 0.9170 0.712 0.668 0.332
#> SRR1415510 1 0.7056 0.809 0.808 0.192
#> SRR1327279 1 0.1843 0.812 0.972 0.028
#> SRR1086983 1 0.6887 0.818 0.816 0.184
#> SRR1105174 1 0.0672 0.807 0.992 0.008
#> SRR1468893 1 0.1633 0.813 0.976 0.024
#> SRR1362555 1 0.3733 0.817 0.928 0.072
#> SRR1074526 1 0.7674 0.792 0.776 0.224
#> SRR1326225 1 0.8207 0.777 0.744 0.256
#> SRR1401933 1 0.1633 0.813 0.976 0.024
#> SRR1324062 1 0.9044 0.727 0.680 0.320
#> SRR1102296 1 0.9129 0.720 0.672 0.328
#> SRR1085087 1 0.2236 0.816 0.964 0.036
#> SRR1079046 1 0.4690 0.721 0.900 0.100
#> SRR1328339 1 0.8861 0.740 0.696 0.304
#> SRR1079782 1 0.3879 0.818 0.924 0.076
#> SRR1092257 1 0.7674 0.800 0.776 0.224
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.5117 0.609272 0.108 0.832 0.060
#> SRR1429287 2 0.4821 0.541847 0.064 0.848 0.088
#> SRR1359238 1 0.6562 0.572816 0.700 0.264 0.036
#> SRR1309597 1 0.4465 0.673426 0.820 0.176 0.004
#> SRR1441398 1 0.2200 0.634612 0.940 0.004 0.056
#> SRR1084055 2 0.4556 0.615526 0.080 0.860 0.060
#> SRR1417566 2 0.9105 0.319598 0.348 0.500 0.152
#> SRR1351857 1 0.6446 0.640910 0.736 0.212 0.052
#> SRR1487485 2 0.8105 0.549258 0.196 0.648 0.156
#> SRR1335875 2 0.9361 0.218488 0.396 0.436 0.168
#> SRR1073947 1 0.8067 0.409466 0.652 0.160 0.188
#> SRR1443483 1 0.4915 0.666769 0.804 0.184 0.012
#> SRR1346794 1 0.6090 0.566420 0.716 0.264 0.020
#> SRR1405245 1 0.3583 0.664222 0.900 0.056 0.044
#> SRR1409677 1 0.6570 0.499979 0.668 0.308 0.024
#> SRR1095549 1 0.4768 0.695212 0.848 0.100 0.052
#> SRR1323788 1 0.3583 0.664222 0.900 0.056 0.044
#> SRR1314054 2 0.2663 0.586944 0.024 0.932 0.044
#> SRR1077944 1 0.3797 0.669669 0.892 0.052 0.056
#> SRR1480587 2 0.5905 0.623145 0.184 0.772 0.044
#> SRR1311205 1 0.2152 0.678595 0.948 0.036 0.016
#> SRR1076369 1 0.6984 0.261104 0.560 0.420 0.020
#> SRR1453549 1 0.6936 0.586050 0.704 0.232 0.064
#> SRR1345782 1 0.0592 0.656765 0.988 0.000 0.012
#> SRR1447850 2 0.6723 0.523567 0.048 0.704 0.248
#> SRR1391553 2 0.8938 0.420972 0.284 0.552 0.164
#> SRR1444156 2 0.1399 0.569498 0.004 0.968 0.028
#> SRR1471731 1 0.8685 0.377230 0.548 0.328 0.124
#> SRR1120987 2 0.7770 0.308631 0.384 0.560 0.056
#> SRR1477363 1 0.1585 0.670402 0.964 0.028 0.008
#> SRR1391961 3 0.7402 0.942018 0.324 0.052 0.624
#> SRR1373879 1 0.5852 0.677856 0.776 0.180 0.044
#> SRR1318732 1 0.4818 0.671317 0.844 0.108 0.048
#> SRR1091404 1 0.3375 0.666149 0.908 0.044 0.048
#> SRR1402109 1 0.5467 0.682630 0.792 0.176 0.032
#> SRR1407336 1 0.4755 0.668891 0.808 0.184 0.008
#> SRR1097417 2 0.8743 0.459133 0.268 0.576 0.156
#> SRR1396227 1 0.7975 0.420288 0.660 0.160 0.180
#> SRR1400775 2 0.7265 0.592908 0.160 0.712 0.128
#> SRR1392861 2 0.9028 -0.055388 0.432 0.436 0.132
#> SRR1472929 3 0.6769 0.971967 0.320 0.028 0.652
#> SRR1436740 1 0.8925 0.111081 0.464 0.412 0.124
#> SRR1477057 1 0.9686 -0.000224 0.452 0.308 0.240
#> SRR1311980 2 0.9174 0.361879 0.332 0.504 0.164
#> SRR1069400 1 0.4700 0.668773 0.812 0.180 0.008
#> SRR1351016 1 0.3375 0.666149 0.908 0.044 0.048
#> SRR1096291 1 0.7480 0.133204 0.508 0.456 0.036
#> SRR1418145 2 0.7555 0.219472 0.440 0.520 0.040
#> SRR1488111 2 0.6937 0.545780 0.272 0.680 0.048
#> SRR1370495 1 0.8287 0.373191 0.616 0.256 0.128
#> SRR1352639 1 0.7208 0.338341 0.620 0.340 0.040
#> SRR1348911 2 0.9199 0.377743 0.328 0.504 0.168
#> SRR1467386 1 0.4768 0.695212 0.848 0.100 0.052
#> SRR1415956 1 0.2301 0.635637 0.936 0.004 0.060
#> SRR1500495 1 0.1999 0.678410 0.952 0.036 0.012
#> SRR1405099 1 0.2200 0.634612 0.940 0.004 0.056
#> SRR1345585 1 0.7724 0.469996 0.620 0.308 0.072
#> SRR1093196 1 0.8543 0.448389 0.580 0.292 0.128
#> SRR1466006 2 0.5875 0.508565 0.072 0.792 0.136
#> SRR1351557 2 0.5637 0.626895 0.172 0.788 0.040
#> SRR1382687 1 0.3983 0.665401 0.884 0.068 0.048
#> SRR1375549 1 0.7227 0.507202 0.704 0.200 0.096
#> SRR1101765 1 0.6994 0.249917 0.556 0.424 0.020
#> SRR1334461 3 0.6769 0.971967 0.320 0.028 0.652
#> SRR1094073 2 0.3030 0.544061 0.004 0.904 0.092
#> SRR1077549 1 0.5407 0.661690 0.820 0.104 0.076
#> SRR1440332 1 0.4353 0.681594 0.836 0.156 0.008
#> SRR1454177 2 0.9028 -0.055388 0.432 0.436 0.132
#> SRR1082447 1 0.5093 0.683423 0.836 0.088 0.076
#> SRR1420043 1 0.6188 0.645974 0.744 0.216 0.040
#> SRR1432500 1 0.3532 0.699724 0.884 0.108 0.008
#> SRR1378045 2 0.7672 0.573703 0.156 0.684 0.160
#> SRR1334200 2 0.6662 0.465404 0.192 0.736 0.072
#> SRR1069539 1 0.7480 0.133204 0.508 0.456 0.036
#> SRR1343031 1 0.4531 0.675869 0.824 0.168 0.008
#> SRR1319690 1 0.4755 0.661204 0.808 0.184 0.008
#> SRR1310604 2 0.5951 0.617194 0.196 0.764 0.040
#> SRR1327747 1 0.4968 0.675720 0.800 0.188 0.012
#> SRR1072456 2 0.6710 0.607435 0.196 0.732 0.072
#> SRR1367896 2 0.8958 0.424704 0.280 0.552 0.168
#> SRR1480107 1 0.0829 0.658387 0.984 0.004 0.012
#> SRR1377756 1 0.3583 0.664222 0.900 0.056 0.044
#> SRR1435272 1 0.9028 0.032433 0.436 0.432 0.132
#> SRR1089230 1 0.7379 0.358292 0.584 0.376 0.040
#> SRR1389522 1 0.4663 0.681013 0.828 0.156 0.016
#> SRR1080600 2 0.6662 0.432379 0.252 0.704 0.044
#> SRR1086935 2 0.7666 0.569811 0.128 0.680 0.192
#> SRR1344060 2 0.9198 0.120023 0.192 0.528 0.280
#> SRR1467922 2 0.3644 0.529572 0.004 0.872 0.124
#> SRR1090984 2 0.9129 0.284942 0.372 0.480 0.148
#> SRR1456991 1 0.0829 0.658387 0.984 0.004 0.012
#> SRR1085039 1 0.3742 0.699866 0.892 0.072 0.036
#> SRR1069303 1 0.8437 0.334753 0.620 0.200 0.180
#> SRR1091500 2 0.2663 0.586944 0.024 0.932 0.044
#> SRR1075198 2 0.7610 0.265202 0.420 0.536 0.044
#> SRR1086915 1 0.7600 0.477047 0.612 0.328 0.060
#> SRR1499503 2 0.5951 0.617194 0.196 0.764 0.040
#> SRR1094312 2 0.3267 0.592826 0.044 0.912 0.044
#> SRR1352437 1 0.8442 0.340751 0.620 0.188 0.192
#> SRR1436323 1 0.8614 0.424301 0.568 0.304 0.128
#> SRR1073507 1 0.4749 0.680138 0.852 0.072 0.076
#> SRR1401972 1 0.8437 0.334753 0.620 0.200 0.180
#> SRR1415510 2 0.5407 0.623890 0.156 0.804 0.040
#> SRR1327279 1 0.3933 0.701152 0.880 0.092 0.028
#> SRR1086983 1 0.7548 0.564611 0.684 0.204 0.112
#> SRR1105174 1 0.4589 0.669775 0.820 0.172 0.008
#> SRR1468893 1 0.3583 0.664222 0.900 0.056 0.044
#> SRR1362555 2 0.7708 0.259638 0.424 0.528 0.048
#> SRR1074526 2 0.7564 0.523163 0.156 0.692 0.152
#> SRR1326225 2 0.3083 0.581807 0.024 0.916 0.060
#> SRR1401933 1 0.3875 0.670986 0.888 0.068 0.044
#> SRR1324062 2 0.9299 0.197624 0.408 0.432 0.160
#> SRR1102296 1 0.9358 0.135742 0.496 0.312 0.192
#> SRR1085087 1 0.4056 0.706254 0.876 0.092 0.032
#> SRR1079046 1 0.7635 0.482129 0.676 0.212 0.112
#> SRR1328339 2 0.9243 0.286043 0.368 0.472 0.160
#> SRR1079782 2 0.7690 0.274069 0.416 0.536 0.048
#> SRR1092257 2 0.6982 0.596164 0.220 0.708 0.072
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.725 0.2180 0.088 0.628 0.056 0.228
#> SRR1429287 4 0.630 0.4689 0.016 0.408 0.032 0.544
#> SRR1359238 1 0.639 0.5711 0.652 0.160 0.000 0.188
#> SRR1309597 1 0.395 0.6266 0.780 0.216 0.004 0.000
#> SRR1441398 1 0.277 0.6630 0.908 0.024 0.060 0.008
#> SRR1084055 2 0.622 0.2210 0.056 0.664 0.020 0.260
#> SRR1417566 2 0.554 0.3780 0.280 0.680 0.008 0.032
#> SRR1351857 1 0.599 0.6272 0.692 0.164 0.000 0.144
#> SRR1487485 2 0.471 0.4224 0.144 0.796 0.008 0.052
#> SRR1335875 2 0.608 0.3296 0.320 0.628 0.016 0.036
#> SRR1073947 1 0.685 0.3782 0.608 0.296 0.032 0.064
#> SRR1443483 1 0.461 0.6207 0.764 0.212 0.008 0.016
#> SRR1346794 1 0.693 0.5240 0.616 0.132 0.012 0.240
#> SRR1405245 1 0.507 0.6360 0.780 0.028 0.036 0.156
#> SRR1409677 1 0.720 0.4719 0.568 0.180 0.004 0.248
#> SRR1095549 1 0.436 0.6679 0.812 0.124 0.000 0.064
#> SRR1323788 1 0.474 0.6445 0.796 0.028 0.024 0.152
#> SRR1314054 2 0.463 0.1486 0.000 0.720 0.012 0.268
#> SRR1077944 1 0.377 0.6652 0.864 0.084 0.020 0.032
#> SRR1480587 2 0.783 0.3210 0.156 0.596 0.064 0.184
#> SRR1311205 1 0.232 0.6802 0.928 0.048 0.012 0.012
#> SRR1076369 1 0.746 0.2222 0.460 0.136 0.008 0.396
#> SRR1453549 1 0.578 0.5621 0.676 0.272 0.012 0.040
#> SRR1345782 1 0.114 0.6736 0.972 0.008 0.012 0.008
#> SRR1447850 2 0.665 -0.0988 0.004 0.616 0.116 0.264
#> SRR1391553 2 0.515 0.4410 0.208 0.744 0.008 0.040
#> SRR1444156 2 0.469 0.1538 0.000 0.724 0.016 0.260
#> SRR1471731 1 0.718 0.3054 0.488 0.412 0.020 0.080
#> SRR1120987 2 0.796 0.2479 0.316 0.460 0.012 0.212
#> SRR1477363 1 0.196 0.6809 0.944 0.020 0.008 0.028
#> SRR1391961 3 0.558 0.9335 0.152 0.028 0.756 0.064
#> SRR1373879 1 0.514 0.6362 0.740 0.216 0.008 0.036
#> SRR1318732 1 0.627 0.6179 0.712 0.084 0.036 0.168
#> SRR1091404 1 0.326 0.6667 0.888 0.072 0.020 0.020
#> SRR1402109 1 0.485 0.6448 0.760 0.200 0.004 0.036
#> SRR1407336 1 0.443 0.6241 0.764 0.220 0.004 0.012
#> SRR1097417 2 0.587 0.4266 0.196 0.716 0.016 0.072
#> SRR1396227 1 0.721 0.3491 0.580 0.304 0.036 0.080
#> SRR1400775 2 0.669 0.2907 0.120 0.668 0.024 0.188
#> SRR1392861 2 0.786 -0.0498 0.368 0.428 0.008 0.196
#> SRR1472929 3 0.458 0.9677 0.156 0.016 0.800 0.028
#> SRR1436740 2 0.816 -0.1204 0.388 0.396 0.020 0.196
#> SRR1477057 1 0.891 -0.1032 0.384 0.376 0.088 0.152
#> SRR1311980 2 0.560 0.4366 0.252 0.696 0.008 0.044
#> SRR1069400 1 0.439 0.6246 0.768 0.216 0.004 0.012
#> SRR1351016 1 0.326 0.6667 0.888 0.072 0.020 0.020
#> SRR1096291 1 0.789 0.1021 0.444 0.372 0.016 0.168
#> SRR1418145 2 0.860 0.1691 0.380 0.388 0.048 0.184
#> SRR1488111 2 0.769 0.3102 0.232 0.528 0.012 0.228
#> SRR1370495 1 0.862 0.2877 0.524 0.116 0.136 0.224
#> SRR1352639 1 0.761 0.2717 0.564 0.288 0.044 0.104
#> SRR1348911 2 0.531 0.4388 0.256 0.708 0.012 0.024
#> SRR1467386 1 0.436 0.6679 0.812 0.124 0.000 0.064
#> SRR1415956 1 0.280 0.6650 0.908 0.020 0.060 0.012
#> SRR1500495 1 0.219 0.6789 0.932 0.048 0.008 0.012
#> SRR1405099 1 0.267 0.6641 0.912 0.020 0.060 0.008
#> SRR1345585 1 0.568 0.4097 0.580 0.396 0.016 0.008
#> SRR1093196 1 0.714 0.3768 0.512 0.384 0.016 0.088
#> SRR1466006 4 0.615 0.6046 0.012 0.296 0.052 0.640
#> SRR1351557 2 0.765 0.3134 0.144 0.612 0.060 0.184
#> SRR1382687 1 0.552 0.6287 0.756 0.044 0.036 0.164
#> SRR1375549 1 0.757 0.4534 0.616 0.084 0.088 0.212
#> SRR1101765 1 0.734 0.2171 0.460 0.136 0.004 0.400
#> SRR1334461 3 0.458 0.9677 0.156 0.016 0.800 0.028
#> SRR1094073 2 0.578 0.0305 0.000 0.664 0.064 0.272
#> SRR1077549 1 0.477 0.6469 0.800 0.136 0.016 0.048
#> SRR1440332 1 0.408 0.6419 0.800 0.184 0.004 0.012
#> SRR1454177 2 0.786 -0.0498 0.368 0.428 0.008 0.196
#> SRR1082447 1 0.485 0.6621 0.800 0.124 0.016 0.060
#> SRR1420043 1 0.519 0.6045 0.712 0.256 0.008 0.024
#> SRR1432500 1 0.373 0.6765 0.856 0.096 0.004 0.044
#> SRR1378045 2 0.418 0.4060 0.116 0.832 0.008 0.044
#> SRR1334200 4 0.643 0.6357 0.096 0.184 0.028 0.692
#> SRR1069539 1 0.789 0.1021 0.444 0.372 0.016 0.168
#> SRR1343031 1 0.428 0.6354 0.788 0.192 0.004 0.016
#> SRR1319690 1 0.512 0.6362 0.756 0.080 0.000 0.164
#> SRR1310604 2 0.781 0.3210 0.164 0.596 0.060 0.180
#> SRR1327747 1 0.538 0.6446 0.748 0.160 0.004 0.088
#> SRR1072456 2 0.825 0.2924 0.164 0.568 0.092 0.176
#> SRR1367896 2 0.534 0.4328 0.212 0.736 0.016 0.036
#> SRR1480107 1 0.127 0.6750 0.968 0.012 0.012 0.008
#> SRR1377756 1 0.517 0.6341 0.772 0.028 0.036 0.164
#> SRR1435272 2 0.782 -0.0619 0.376 0.428 0.008 0.188
#> SRR1089230 1 0.761 0.3704 0.488 0.168 0.008 0.336
#> SRR1389522 1 0.430 0.6368 0.788 0.192 0.008 0.012
#> SRR1080600 4 0.740 0.5635 0.180 0.260 0.008 0.552
#> SRR1086935 2 0.605 0.2499 0.068 0.692 0.016 0.224
#> SRR1344060 4 0.851 0.4298 0.100 0.136 0.236 0.528
#> SRR1467922 2 0.624 -0.0319 0.000 0.636 0.096 0.268
#> SRR1090984 2 0.539 0.3674 0.300 0.672 0.012 0.016
#> SRR1456991 1 0.127 0.6750 0.968 0.012 0.012 0.008
#> SRR1085039 1 0.362 0.6845 0.864 0.084 0.004 0.048
#> SRR1069303 1 0.709 0.2540 0.548 0.344 0.016 0.092
#> SRR1091500 2 0.454 0.1470 0.000 0.720 0.008 0.272
#> SRR1075198 2 0.865 0.1573 0.360 0.404 0.052 0.184
#> SRR1086915 1 0.742 0.4718 0.540 0.232 0.004 0.224
#> SRR1499503 2 0.781 0.3210 0.164 0.596 0.060 0.180
#> SRR1094312 2 0.533 0.1701 0.024 0.692 0.008 0.276
#> SRR1352437 1 0.723 0.2583 0.540 0.352 0.028 0.080
#> SRR1436323 1 0.726 0.3505 0.500 0.392 0.020 0.088
#> SRR1073507 1 0.441 0.6638 0.828 0.104 0.016 0.052
#> SRR1401972 1 0.709 0.2540 0.548 0.344 0.016 0.092
#> SRR1415510 2 0.745 0.2846 0.120 0.628 0.060 0.192
#> SRR1327279 1 0.392 0.6775 0.840 0.124 0.008 0.028
#> SRR1086983 1 0.652 0.5364 0.644 0.252 0.012 0.092
#> SRR1105174 1 0.490 0.6445 0.772 0.072 0.000 0.156
#> SRR1468893 1 0.512 0.6363 0.776 0.028 0.036 0.160
#> SRR1362555 2 0.868 0.1396 0.364 0.396 0.052 0.188
#> SRR1074526 4 0.693 0.4377 0.076 0.180 0.072 0.672
#> SRR1326225 2 0.491 0.1217 0.000 0.704 0.020 0.276
#> SRR1401933 1 0.525 0.6339 0.764 0.028 0.036 0.172
#> SRR1324062 2 0.636 0.3066 0.340 0.596 0.012 0.052
#> SRR1102296 2 0.697 -0.0015 0.416 0.504 0.032 0.048
#> SRR1085087 1 0.425 0.6834 0.832 0.116 0.016 0.036
#> SRR1079046 1 0.808 0.3627 0.564 0.088 0.108 0.240
#> SRR1328339 2 0.522 0.3781 0.292 0.684 0.008 0.016
#> SRR1079782 2 0.867 0.1531 0.356 0.404 0.052 0.188
#> SRR1092257 2 0.798 0.2437 0.180 0.528 0.032 0.260
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.415 0.56444 0.080 0.828 0.024 0.016 0.052
#> SRR1429287 4 0.597 0.37154 0.004 0.424 0.036 0.504 0.032
#> SRR1359238 1 0.664 0.50953 0.628 0.104 0.176 0.088 0.004
#> SRR1309597 1 0.493 0.54160 0.744 0.108 0.132 0.016 0.000
#> SRR1441398 1 0.365 0.57984 0.836 0.000 0.100 0.012 0.052
#> SRR1084055 2 0.479 0.52689 0.048 0.796 0.076 0.060 0.020
#> SRR1417566 3 0.714 0.44643 0.216 0.336 0.428 0.004 0.016
#> SRR1351857 1 0.605 0.51377 0.656 0.068 0.216 0.056 0.004
#> SRR1487485 2 0.663 -0.21131 0.144 0.500 0.340 0.004 0.012
#> SRR1335875 3 0.700 0.51497 0.236 0.312 0.440 0.004 0.008
#> SRR1073947 3 0.560 0.27537 0.464 0.052 0.476 0.008 0.000
#> SRR1443483 1 0.468 0.53904 0.756 0.104 0.132 0.008 0.000
#> SRR1346794 1 0.757 0.46515 0.552 0.096 0.180 0.156 0.016
#> SRR1405245 1 0.592 0.49667 0.656 0.008 0.236 0.060 0.040
#> SRR1409677 1 0.785 0.42446 0.516 0.128 0.180 0.164 0.012
#> SRR1095549 1 0.407 0.52652 0.748 0.020 0.228 0.004 0.000
#> SRR1323788 1 0.538 0.52840 0.704 0.008 0.208 0.052 0.028
#> SRR1314054 2 0.308 0.49204 0.000 0.872 0.064 0.056 0.008
#> SRR1077944 1 0.334 0.53941 0.812 0.016 0.172 0.000 0.000
#> SRR1480587 2 0.505 0.57716 0.132 0.760 0.056 0.008 0.044
#> SRR1311205 1 0.203 0.60817 0.924 0.020 0.052 0.004 0.000
#> SRR1076369 1 0.823 0.25042 0.420 0.108 0.184 0.276 0.012
#> SRR1453549 1 0.559 0.39215 0.652 0.136 0.208 0.004 0.000
#> SRR1345782 1 0.183 0.59289 0.920 0.000 0.076 0.004 0.000
#> SRR1447850 2 0.752 0.11087 0.000 0.524 0.188 0.152 0.136
#> SRR1391553 3 0.689 0.39577 0.140 0.396 0.440 0.008 0.016
#> SRR1444156 2 0.136 0.52559 0.004 0.960 0.016 0.012 0.008
#> SRR1471731 1 0.715 -0.07672 0.432 0.172 0.368 0.020 0.008
#> SRR1120987 2 0.836 0.21526 0.272 0.420 0.156 0.136 0.016
#> SRR1477363 1 0.227 0.61457 0.912 0.012 0.064 0.012 0.000
#> SRR1391961 5 0.509 0.92618 0.120 0.044 0.020 0.048 0.768
#> SRR1373879 1 0.541 0.52810 0.696 0.096 0.192 0.008 0.008
#> SRR1318732 1 0.682 0.45543 0.600 0.048 0.252 0.056 0.044
#> SRR1091404 1 0.300 0.55309 0.840 0.012 0.148 0.000 0.000
#> SRR1402109 1 0.501 0.55111 0.724 0.096 0.172 0.004 0.004
#> SRR1407336 1 0.455 0.54204 0.760 0.100 0.136 0.004 0.000
#> SRR1097417 3 0.765 0.36844 0.144 0.384 0.408 0.040 0.024
#> SRR1396227 3 0.561 0.32650 0.416 0.048 0.524 0.012 0.000
#> SRR1400775 2 0.633 0.36017 0.060 0.632 0.244 0.044 0.020
#> SRR1392861 3 0.782 0.30139 0.308 0.188 0.424 0.076 0.004
#> SRR1472929 5 0.394 0.96391 0.132 0.036 0.000 0.020 0.812
#> SRR1436740 3 0.784 0.25403 0.324 0.164 0.420 0.088 0.004
#> SRR1477057 3 0.848 0.35781 0.264 0.180 0.432 0.048 0.076
#> SRR1311980 3 0.710 0.46490 0.180 0.356 0.440 0.008 0.016
#> SRR1069400 1 0.451 0.54368 0.764 0.100 0.132 0.004 0.000
#> SRR1351016 1 0.300 0.55309 0.840 0.012 0.148 0.000 0.000
#> SRR1096291 1 0.783 0.14809 0.420 0.348 0.124 0.100 0.008
#> SRR1418145 2 0.794 0.28186 0.344 0.436 0.056 0.124 0.040
#> SRR1488111 2 0.776 0.39995 0.200 0.540 0.120 0.116 0.024
#> SRR1370495 1 0.902 0.21174 0.448 0.132 0.128 0.156 0.136
#> SRR1352639 1 0.729 0.27971 0.532 0.292 0.060 0.092 0.024
#> SRR1348911 3 0.703 0.45289 0.204 0.364 0.416 0.004 0.012
#> SRR1467386 1 0.407 0.52652 0.748 0.020 0.228 0.004 0.000
#> SRR1415956 1 0.354 0.58224 0.844 0.000 0.092 0.012 0.052
#> SRR1500495 1 0.189 0.60856 0.932 0.020 0.044 0.004 0.000
#> SRR1405099 1 0.348 0.58236 0.848 0.000 0.088 0.012 0.052
#> SRR1345585 1 0.637 0.21183 0.564 0.192 0.236 0.004 0.004
#> SRR1093196 1 0.714 0.04658 0.452 0.156 0.356 0.032 0.004
#> SRR1466006 4 0.547 0.51701 0.000 0.332 0.008 0.600 0.060
#> SRR1351557 2 0.483 0.57960 0.124 0.776 0.052 0.008 0.040
#> SRR1382687 1 0.611 0.49373 0.656 0.016 0.224 0.060 0.044
#> SRR1375549 1 0.833 0.37305 0.512 0.072 0.152 0.172 0.092
#> SRR1101765 1 0.822 0.24691 0.420 0.108 0.180 0.280 0.012
#> SRR1334461 5 0.394 0.96391 0.132 0.036 0.000 0.020 0.812
#> SRR1094073 2 0.300 0.47318 0.004 0.884 0.016 0.032 0.064
#> SRR1077549 1 0.460 0.49626 0.748 0.040 0.196 0.012 0.004
#> SRR1440332 1 0.426 0.56510 0.784 0.088 0.124 0.004 0.000
#> SRR1454177 3 0.786 0.29932 0.308 0.188 0.420 0.080 0.004
#> SRR1082447 1 0.447 0.52645 0.748 0.028 0.208 0.012 0.004
#> SRR1420043 1 0.532 0.47300 0.680 0.116 0.200 0.004 0.000
#> SRR1432500 1 0.345 0.60394 0.840 0.048 0.108 0.004 0.000
#> SRR1378045 2 0.631 -0.13452 0.116 0.528 0.344 0.004 0.008
#> SRR1334200 4 0.425 0.52182 0.056 0.096 0.020 0.816 0.012
#> SRR1069539 1 0.783 0.14809 0.420 0.348 0.124 0.100 0.008
#> SRR1343031 1 0.426 0.55724 0.784 0.088 0.124 0.004 0.000
#> SRR1319690 1 0.536 0.58617 0.744 0.052 0.120 0.076 0.008
#> SRR1310604 2 0.502 0.57562 0.140 0.756 0.056 0.004 0.044
#> SRR1327747 1 0.545 0.58010 0.732 0.088 0.124 0.052 0.004
#> SRR1072456 2 0.546 0.56122 0.140 0.728 0.052 0.004 0.076
#> SRR1367896 3 0.706 0.41285 0.156 0.384 0.432 0.008 0.020
#> SRR1480107 1 0.196 0.59286 0.916 0.000 0.076 0.008 0.000
#> SRR1377756 1 0.582 0.50407 0.672 0.008 0.220 0.060 0.040
#> SRR1435272 3 0.779 0.29924 0.316 0.188 0.420 0.072 0.004
#> SRR1089230 1 0.826 0.34831 0.432 0.112 0.228 0.216 0.012
#> SRR1389522 1 0.460 0.54621 0.760 0.088 0.144 0.008 0.000
#> SRR1080600 4 0.690 0.43449 0.152 0.264 0.036 0.544 0.004
#> SRR1086935 3 0.711 0.14222 0.048 0.400 0.448 0.092 0.012
#> SRR1344060 4 0.670 0.34331 0.060 0.080 0.020 0.620 0.220
#> SRR1467922 2 0.348 0.43791 0.004 0.852 0.016 0.032 0.096
#> SRR1090984 3 0.717 0.48596 0.248 0.328 0.408 0.008 0.008
#> SRR1456991 1 0.196 0.59286 0.916 0.000 0.076 0.008 0.000
#> SRR1085039 1 0.342 0.60648 0.844 0.020 0.120 0.012 0.004
#> SRR1069303 3 0.644 0.41766 0.384 0.100 0.496 0.012 0.008
#> SRR1091500 2 0.315 0.49158 0.000 0.868 0.064 0.060 0.008
#> SRR1075198 2 0.781 0.29922 0.328 0.460 0.048 0.124 0.040
#> SRR1086915 1 0.787 0.39562 0.500 0.164 0.200 0.128 0.008
#> SRR1499503 2 0.502 0.57562 0.140 0.756 0.056 0.004 0.044
#> SRR1094312 2 0.351 0.51351 0.016 0.860 0.056 0.060 0.008
#> SRR1352437 3 0.581 0.42128 0.376 0.076 0.540 0.008 0.000
#> SRR1436323 1 0.715 -0.00514 0.440 0.156 0.368 0.032 0.004
#> SRR1073507 1 0.407 0.53028 0.776 0.016 0.192 0.012 0.004
#> SRR1401972 3 0.644 0.41766 0.384 0.100 0.496 0.012 0.008
#> SRR1415510 2 0.458 0.57553 0.112 0.796 0.036 0.012 0.044
#> SRR1327279 1 0.365 0.59419 0.816 0.036 0.144 0.004 0.000
#> SRR1086983 1 0.612 0.25046 0.576 0.080 0.320 0.020 0.004
#> SRR1105174 1 0.509 0.59284 0.764 0.048 0.108 0.072 0.008
#> SRR1468893 1 0.579 0.50695 0.676 0.008 0.216 0.060 0.040
#> SRR1362555 2 0.782 0.28953 0.336 0.452 0.048 0.124 0.040
#> SRR1074526 4 0.549 0.31749 0.040 0.016 0.184 0.716 0.044
#> SRR1326225 2 0.346 0.48387 0.000 0.856 0.060 0.064 0.020
#> SRR1401933 1 0.606 0.48815 0.644 0.008 0.240 0.068 0.040
#> SRR1324062 3 0.729 0.52248 0.284 0.300 0.396 0.004 0.016
#> SRR1102296 3 0.633 0.54627 0.276 0.164 0.552 0.008 0.000
#> SRR1085087 1 0.405 0.58706 0.788 0.040 0.164 0.008 0.000
#> SRR1079046 1 0.875 0.26604 0.460 0.076 0.156 0.196 0.112
#> SRR1328339 3 0.688 0.48969 0.224 0.332 0.436 0.004 0.004
#> SRR1079782 2 0.783 0.29908 0.324 0.460 0.048 0.128 0.040
#> SRR1092257 2 0.725 0.45831 0.148 0.612 0.076 0.124 0.040
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.469 0.5762 0.064 0.776 0.060 0.044 0.056 0.000
#> SRR1429287 6 0.664 0.3882 0.000 0.336 0.044 0.120 0.020 0.480
#> SRR1359238 1 0.599 -0.1571 0.596 0.024 0.076 0.264 0.000 0.040
#> SRR1309597 1 0.421 0.4235 0.740 0.024 0.200 0.036 0.000 0.000
#> SRR1441398 1 0.395 0.4480 0.804 0.000 0.060 0.080 0.056 0.000
#> SRR1084055 2 0.475 0.5291 0.020 0.776 0.092 0.060 0.020 0.032
#> SRR1417566 3 0.629 0.4627 0.188 0.204 0.552 0.056 0.000 0.000
#> SRR1351857 1 0.593 0.1380 0.620 0.020 0.128 0.204 0.000 0.028
#> SRR1487485 3 0.599 0.2887 0.140 0.348 0.496 0.004 0.008 0.004
#> SRR1335875 3 0.621 0.5061 0.200 0.180 0.580 0.024 0.008 0.008
#> SRR1073947 3 0.612 0.3242 0.300 0.008 0.484 0.204 0.004 0.000
#> SRR1443483 1 0.392 0.4330 0.756 0.016 0.204 0.020 0.000 0.004
#> SRR1346794 1 0.583 -0.4481 0.528 0.028 0.036 0.372 0.000 0.036
#> SRR1405245 1 0.551 0.2011 0.592 0.000 0.052 0.300 0.056 0.000
#> SRR1409677 1 0.660 -0.5341 0.488 0.044 0.072 0.352 0.000 0.044
#> SRR1095549 1 0.467 0.3673 0.696 0.004 0.180 0.120 0.000 0.000
#> SRR1323788 1 0.486 0.2261 0.644 0.000 0.028 0.288 0.040 0.000
#> SRR1314054 2 0.324 0.5098 0.004 0.856 0.084 0.024 0.008 0.024
#> SRR1077944 1 0.470 0.4235 0.716 0.000 0.144 0.128 0.008 0.004
#> SRR1480587 2 0.573 0.5778 0.084 0.696 0.076 0.096 0.048 0.000
#> SRR1311205 1 0.234 0.4908 0.896 0.000 0.048 0.052 0.004 0.000
#> SRR1076369 4 0.687 0.7504 0.392 0.060 0.024 0.416 0.000 0.108
#> SRR1453549 1 0.551 0.3495 0.656 0.088 0.188 0.068 0.000 0.000
#> SRR1345782 1 0.337 0.4627 0.824 0.000 0.080 0.092 0.004 0.000
#> SRR1447850 2 0.788 0.0502 0.000 0.468 0.192 0.120 0.100 0.120
#> SRR1391553 3 0.553 0.4457 0.112 0.212 0.644 0.024 0.004 0.004
#> SRR1444156 2 0.151 0.5408 0.012 0.944 0.036 0.004 0.004 0.000
#> SRR1471731 3 0.654 0.0907 0.384 0.060 0.420 0.136 0.000 0.000
#> SRR1120987 2 0.813 0.0683 0.240 0.340 0.148 0.240 0.004 0.028
#> SRR1477363 1 0.198 0.4719 0.912 0.000 0.016 0.068 0.004 0.000
#> SRR1391961 5 0.445 0.9274 0.112 0.032 0.004 0.040 0.784 0.028
#> SRR1373879 1 0.463 0.4320 0.700 0.016 0.240 0.032 0.004 0.008
#> SRR1318732 1 0.647 0.1281 0.540 0.020 0.100 0.284 0.056 0.000
#> SRR1091404 1 0.442 0.4422 0.744 0.000 0.136 0.108 0.008 0.004
#> SRR1402109 1 0.423 0.4465 0.728 0.012 0.224 0.028 0.000 0.008
#> SRR1407336 1 0.377 0.4349 0.760 0.012 0.204 0.024 0.000 0.000
#> SRR1097417 3 0.649 0.4332 0.132 0.204 0.584 0.016 0.004 0.060
#> SRR1396227 3 0.602 0.3427 0.228 0.004 0.500 0.264 0.004 0.000
#> SRR1400775 2 0.625 0.3841 0.024 0.576 0.260 0.112 0.008 0.020
#> SRR1392861 3 0.781 0.1760 0.268 0.092 0.380 0.228 0.004 0.028
#> SRR1472929 5 0.347 0.9646 0.124 0.032 0.000 0.024 0.820 0.000
#> SRR1436740 3 0.773 0.1284 0.280 0.072 0.360 0.256 0.004 0.028
#> SRR1477057 3 0.857 0.2258 0.144 0.108 0.416 0.220 0.072 0.040
#> SRR1311980 3 0.598 0.4780 0.144 0.196 0.612 0.040 0.004 0.004
#> SRR1069400 1 0.374 0.4351 0.764 0.012 0.200 0.024 0.000 0.000
#> SRR1351016 1 0.442 0.4422 0.744 0.000 0.136 0.108 0.008 0.004
#> SRR1096291 1 0.754 -0.2983 0.392 0.232 0.112 0.252 0.000 0.012
#> SRR1418145 2 0.800 0.0189 0.272 0.340 0.076 0.268 0.032 0.012
#> SRR1488111 2 0.803 0.3597 0.148 0.436 0.172 0.196 0.012 0.036
#> SRR1370495 1 0.788 -0.5243 0.376 0.072 0.028 0.360 0.124 0.040
#> SRR1352639 1 0.725 -0.2225 0.468 0.220 0.060 0.228 0.016 0.008
#> SRR1348911 3 0.612 0.4637 0.184 0.228 0.560 0.020 0.004 0.004
#> SRR1467386 1 0.467 0.3673 0.696 0.004 0.180 0.120 0.000 0.000
#> SRR1415956 1 0.401 0.4444 0.796 0.000 0.048 0.100 0.056 0.000
#> SRR1500495 1 0.187 0.4879 0.924 0.000 0.036 0.036 0.004 0.000
#> SRR1405099 1 0.395 0.4434 0.800 0.000 0.044 0.100 0.056 0.000
#> SRR1345585 1 0.569 0.2660 0.572 0.100 0.296 0.032 0.000 0.000
#> SRR1093196 3 0.655 -0.0241 0.400 0.032 0.408 0.152 0.004 0.004
#> SRR1466006 6 0.665 0.5043 0.000 0.244 0.008 0.168 0.060 0.520
#> SRR1351557 2 0.545 0.5813 0.076 0.720 0.072 0.084 0.048 0.000
#> SRR1382687 1 0.553 0.1804 0.596 0.008 0.036 0.304 0.056 0.000
#> SRR1375549 1 0.670 -0.5443 0.436 0.016 0.024 0.412 0.072 0.040
#> SRR1101765 4 0.690 0.7500 0.392 0.060 0.024 0.412 0.000 0.112
#> SRR1334461 5 0.347 0.9646 0.124 0.032 0.000 0.024 0.820 0.000
#> SRR1094073 2 0.286 0.5025 0.012 0.884 0.024 0.008 0.060 0.012
#> SRR1077549 1 0.524 0.3878 0.664 0.004 0.180 0.140 0.004 0.008
#> SRR1440332 1 0.363 0.4552 0.796 0.012 0.160 0.028 0.004 0.000
#> SRR1454177 3 0.782 0.1738 0.268 0.092 0.376 0.232 0.004 0.028
#> SRR1082447 1 0.516 0.3985 0.676 0.004 0.156 0.152 0.004 0.008
#> SRR1420043 1 0.486 0.4176 0.676 0.032 0.240 0.052 0.000 0.000
#> SRR1432500 1 0.314 0.4557 0.848 0.012 0.084 0.056 0.000 0.000
#> SRR1378045 3 0.568 0.2184 0.108 0.392 0.488 0.008 0.000 0.004
#> SRR1334200 6 0.323 0.5053 0.012 0.004 0.004 0.176 0.000 0.804
#> SRR1069539 1 0.754 -0.2983 0.392 0.232 0.112 0.252 0.000 0.012
#> SRR1343031 1 0.358 0.4464 0.784 0.012 0.180 0.024 0.000 0.000
#> SRR1319690 1 0.419 0.2052 0.740 0.016 0.016 0.212 0.000 0.016
#> SRR1310604 2 0.578 0.5767 0.092 0.692 0.076 0.092 0.048 0.000
#> SRR1327747 1 0.485 0.3540 0.720 0.012 0.124 0.132 0.000 0.012
#> SRR1072456 2 0.610 0.5640 0.096 0.668 0.068 0.092 0.076 0.000
#> SRR1367896 3 0.576 0.4584 0.148 0.204 0.620 0.012 0.004 0.012
#> SRR1480107 1 0.341 0.4632 0.820 0.000 0.080 0.096 0.004 0.000
#> SRR1377756 1 0.516 0.1993 0.612 0.000 0.028 0.304 0.056 0.000
#> SRR1435272 3 0.775 0.1829 0.276 0.092 0.380 0.224 0.004 0.024
#> SRR1089230 4 0.689 0.6363 0.404 0.048 0.060 0.416 0.000 0.072
#> SRR1389522 1 0.401 0.4494 0.756 0.016 0.196 0.028 0.004 0.000
#> SRR1080600 6 0.746 0.3455 0.136 0.176 0.008 0.232 0.004 0.444
#> SRR1086935 3 0.773 0.2016 0.048 0.296 0.392 0.208 0.008 0.048
#> SRR1344060 6 0.552 0.3504 0.016 0.000 0.000 0.164 0.208 0.612
#> SRR1467922 2 0.346 0.4758 0.012 0.848 0.028 0.012 0.084 0.016
#> SRR1090984 3 0.613 0.4866 0.212 0.200 0.552 0.036 0.000 0.000
#> SRR1456991 1 0.341 0.4632 0.820 0.000 0.080 0.096 0.004 0.000
#> SRR1085039 1 0.333 0.4846 0.840 0.004 0.088 0.056 0.000 0.012
#> SRR1069303 3 0.640 0.3619 0.196 0.040 0.528 0.232 0.004 0.000
#> SRR1091500 2 0.332 0.5082 0.004 0.852 0.084 0.024 0.008 0.028
#> SRR1075198 2 0.791 0.0860 0.260 0.356 0.068 0.272 0.032 0.012
#> SRR1086915 1 0.711 -0.3828 0.464 0.072 0.096 0.324 0.000 0.044
#> SRR1499503 2 0.578 0.5767 0.092 0.692 0.076 0.092 0.048 0.000
#> SRR1094312 2 0.382 0.5302 0.016 0.828 0.088 0.032 0.008 0.028
#> SRR1352437 3 0.604 0.3792 0.200 0.020 0.556 0.220 0.004 0.000
#> SRR1436323 3 0.664 0.0118 0.392 0.036 0.404 0.160 0.004 0.004
#> SRR1073507 1 0.492 0.4076 0.692 0.000 0.152 0.144 0.004 0.008
#> SRR1401972 3 0.640 0.3619 0.196 0.040 0.528 0.232 0.004 0.000
#> SRR1415510 2 0.528 0.5797 0.088 0.732 0.076 0.056 0.048 0.000
#> SRR1327279 1 0.348 0.4919 0.808 0.000 0.132 0.056 0.004 0.000
#> SRR1086983 1 0.641 0.2097 0.524 0.036 0.276 0.156 0.004 0.004
#> SRR1105174 1 0.391 0.2410 0.760 0.016 0.008 0.200 0.000 0.016
#> SRR1468893 1 0.514 0.2082 0.616 0.000 0.028 0.300 0.056 0.000
#> SRR1362555 2 0.790 0.0783 0.268 0.356 0.064 0.268 0.028 0.016
#> SRR1074526 6 0.476 0.3117 0.008 0.012 0.060 0.180 0.012 0.728
#> SRR1326225 2 0.367 0.5023 0.004 0.836 0.084 0.024 0.020 0.032
#> SRR1401933 1 0.543 0.1427 0.576 0.000 0.040 0.328 0.056 0.000
#> SRR1324062 3 0.651 0.5128 0.268 0.144 0.528 0.052 0.004 0.004
#> SRR1102296 3 0.571 0.5018 0.192 0.052 0.640 0.112 0.004 0.000
#> SRR1085087 1 0.441 0.4595 0.752 0.016 0.144 0.084 0.004 0.000
#> SRR1079046 4 0.724 0.4521 0.392 0.016 0.024 0.404 0.092 0.072
#> SRR1328339 3 0.586 0.4894 0.188 0.200 0.584 0.028 0.000 0.000
#> SRR1079782 2 0.798 0.0962 0.256 0.356 0.068 0.272 0.032 0.016
#> SRR1092257 2 0.777 0.4192 0.116 0.512 0.124 0.176 0.024 0.048
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
CV:kmeans
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["CV", "kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.569 0.764 0.901 0.4422 0.560 0.560
#> 3 3 0.376 0.476 0.728 0.4011 0.829 0.705
#> 4 4 0.428 0.466 0.681 0.1568 0.802 0.578
#> 5 5 0.506 0.520 0.700 0.0755 0.867 0.607
#> 6 6 0.578 0.509 0.691 0.0493 0.951 0.795
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.82493 0.000 1.000
#> SRR1429287 2 0.0000 0.82493 0.000 1.000
#> SRR1359238 1 0.0000 0.90002 1.000 0.000
#> SRR1309597 1 0.1414 0.89156 0.980 0.020
#> SRR1441398 1 0.0000 0.90002 1.000 0.000
#> SRR1084055 2 0.0000 0.82493 0.000 1.000
#> SRR1417566 1 0.8713 0.58299 0.708 0.292
#> SRR1351857 1 0.0000 0.90002 1.000 0.000
#> SRR1487485 2 0.9775 0.25205 0.412 0.588
#> SRR1335875 1 0.8661 0.58978 0.712 0.288
#> SRR1073947 1 0.0000 0.90002 1.000 0.000
#> SRR1443483 1 0.1414 0.89156 0.980 0.020
#> SRR1346794 1 0.0000 0.90002 1.000 0.000
#> SRR1405245 1 0.0000 0.90002 1.000 0.000
#> SRR1409677 1 0.3733 0.85407 0.928 0.072
#> SRR1095549 1 0.0000 0.90002 1.000 0.000
#> SRR1323788 1 0.0000 0.90002 1.000 0.000
#> SRR1314054 2 0.0000 0.82493 0.000 1.000
#> SRR1077944 1 0.0000 0.90002 1.000 0.000
#> SRR1480587 2 0.0000 0.82493 0.000 1.000
#> SRR1311205 1 0.0000 0.90002 1.000 0.000
#> SRR1076369 1 0.2603 0.87644 0.956 0.044
#> SRR1453549 1 0.3114 0.87168 0.944 0.056
#> SRR1345782 1 0.0000 0.90002 1.000 0.000
#> SRR1447850 2 0.0000 0.82493 0.000 1.000
#> SRR1391553 2 0.9170 0.45544 0.332 0.668
#> SRR1444156 2 0.0000 0.82493 0.000 1.000
#> SRR1471731 1 0.1414 0.89156 0.980 0.020
#> SRR1120987 2 0.8713 0.62711 0.292 0.708
#> SRR1477363 1 0.0000 0.90002 1.000 0.000
#> SRR1391961 2 0.8861 0.54901 0.304 0.696
#> SRR1373879 1 0.1414 0.89156 0.980 0.020
#> SRR1318732 1 0.0938 0.89528 0.988 0.012
#> SRR1091404 1 0.0000 0.90002 1.000 0.000
#> SRR1402109 1 0.0000 0.90002 1.000 0.000
#> SRR1407336 1 0.1414 0.89156 0.980 0.020
#> SRR1097417 2 0.9732 0.32681 0.404 0.596
#> SRR1396227 1 0.0000 0.90002 1.000 0.000
#> SRR1400775 2 0.0000 0.82493 0.000 1.000
#> SRR1392861 1 0.8499 0.62518 0.724 0.276
#> SRR1472929 2 1.0000 0.20811 0.500 0.500
#> SRR1436740 1 0.0672 0.89670 0.992 0.008
#> SRR1477057 2 0.3431 0.79391 0.064 0.936
#> SRR1311980 1 0.8386 0.60955 0.732 0.268
#> SRR1069400 1 0.1414 0.89156 0.980 0.020
#> SRR1351016 1 0.0000 0.90002 1.000 0.000
#> SRR1096291 1 0.3879 0.85112 0.924 0.076
#> SRR1418145 2 0.8267 0.65504 0.260 0.740
#> SRR1488111 2 0.0000 0.82493 0.000 1.000
#> SRR1370495 1 0.9710 0.11754 0.600 0.400
#> SRR1352639 1 0.0000 0.90002 1.000 0.000
#> SRR1348911 1 0.8713 0.58299 0.708 0.292
#> SRR1467386 1 0.0000 0.90002 1.000 0.000
#> SRR1415956 1 0.0000 0.90002 1.000 0.000
#> SRR1500495 1 0.0000 0.90002 1.000 0.000
#> SRR1405099 1 0.0000 0.90002 1.000 0.000
#> SRR1345585 1 0.4562 0.83138 0.904 0.096
#> SRR1093196 1 0.2948 0.87128 0.948 0.052
#> SRR1466006 2 0.0000 0.82493 0.000 1.000
#> SRR1351557 2 0.0000 0.82493 0.000 1.000
#> SRR1382687 1 0.0000 0.90002 1.000 0.000
#> SRR1375549 1 0.6048 0.73971 0.852 0.148
#> SRR1101765 1 0.3733 0.85407 0.928 0.072
#> SRR1334461 1 0.9896 -0.02614 0.560 0.440
#> SRR1094073 2 0.0000 0.82493 0.000 1.000
#> SRR1077549 1 0.0000 0.90002 1.000 0.000
#> SRR1440332 1 0.0000 0.90002 1.000 0.000
#> SRR1454177 1 0.3879 0.85112 0.924 0.076
#> SRR1082447 1 0.0000 0.90002 1.000 0.000
#> SRR1420043 1 0.0000 0.90002 1.000 0.000
#> SRR1432500 1 0.0000 0.90002 1.000 0.000
#> SRR1378045 2 0.9358 0.41102 0.352 0.648
#> SRR1334200 2 0.9850 0.37183 0.428 0.572
#> SRR1069539 1 0.9933 -0.00699 0.548 0.452
#> SRR1343031 1 0.0000 0.90002 1.000 0.000
#> SRR1319690 1 0.0000 0.90002 1.000 0.000
#> SRR1310604 2 0.7883 0.67879 0.236 0.764
#> SRR1327747 1 0.0000 0.90002 1.000 0.000
#> SRR1072456 2 0.0000 0.82493 0.000 1.000
#> SRR1367896 1 0.8661 0.58978 0.712 0.288
#> SRR1480107 1 0.0000 0.90002 1.000 0.000
#> SRR1377756 1 0.0000 0.90002 1.000 0.000
#> SRR1435272 1 0.3879 0.85112 0.924 0.076
#> SRR1089230 1 0.3733 0.85407 0.928 0.072
#> SRR1389522 1 0.0000 0.90002 1.000 0.000
#> SRR1080600 2 0.8081 0.66654 0.248 0.752
#> SRR1086935 2 0.9815 0.22902 0.420 0.580
#> SRR1344060 2 0.9552 0.48541 0.376 0.624
#> SRR1467922 2 0.0000 0.82493 0.000 1.000
#> SRR1090984 1 0.8267 0.62177 0.740 0.260
#> SRR1456991 1 0.0000 0.90002 1.000 0.000
#> SRR1085039 1 0.0000 0.90002 1.000 0.000
#> SRR1069303 1 0.8267 0.62177 0.740 0.260
#> SRR1091500 2 0.0000 0.82493 0.000 1.000
#> SRR1075198 2 0.8016 0.67099 0.244 0.756
#> SRR1086915 1 0.3584 0.85757 0.932 0.068
#> SRR1499503 2 0.0000 0.82493 0.000 1.000
#> SRR1094312 2 0.0000 0.82493 0.000 1.000
#> SRR1352437 1 0.8267 0.62177 0.740 0.260
#> SRR1436323 1 0.0000 0.90002 1.000 0.000
#> SRR1073507 1 0.0000 0.90002 1.000 0.000
#> SRR1401972 1 0.8267 0.62177 0.740 0.260
#> SRR1415510 2 0.0000 0.82493 0.000 1.000
#> SRR1327279 1 0.0000 0.90002 1.000 0.000
#> SRR1086983 1 0.0000 0.90002 1.000 0.000
#> SRR1105174 1 0.0000 0.90002 1.000 0.000
#> SRR1468893 1 0.0000 0.90002 1.000 0.000
#> SRR1362555 2 0.8016 0.67099 0.244 0.756
#> SRR1074526 2 0.6973 0.69425 0.188 0.812
#> SRR1326225 2 0.0000 0.82493 0.000 1.000
#> SRR1401933 1 0.0000 0.90002 1.000 0.000
#> SRR1324062 1 0.7745 0.66598 0.772 0.228
#> SRR1102296 1 0.8267 0.62177 0.740 0.260
#> SRR1085087 1 0.0000 0.90002 1.000 0.000
#> SRR1079046 1 0.9954 -0.09854 0.540 0.460
#> SRR1328339 1 0.5737 0.78538 0.864 0.136
#> SRR1079782 2 0.6801 0.72718 0.180 0.820
#> SRR1092257 2 0.0000 0.82493 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.3116 0.74223 0.000 0.892 0.108
#> SRR1429287 2 0.4346 0.71013 0.000 0.816 0.184
#> SRR1359238 1 0.0592 0.66877 0.988 0.000 0.012
#> SRR1309597 1 0.1860 0.66653 0.948 0.000 0.052
#> SRR1441398 1 0.6204 0.29122 0.576 0.000 0.424
#> SRR1084055 2 0.2796 0.73573 0.000 0.908 0.092
#> SRR1417566 1 0.9865 -0.16418 0.404 0.264 0.332
#> SRR1351857 1 0.1643 0.66457 0.956 0.000 0.044
#> SRR1487485 2 0.9266 -0.05427 0.420 0.424 0.156
#> SRR1335875 1 0.9815 -0.15194 0.420 0.256 0.324
#> SRR1073947 1 0.6192 0.28817 0.580 0.000 0.420
#> SRR1443483 1 0.1529 0.66782 0.960 0.000 0.040
#> SRR1346794 1 0.2711 0.65814 0.912 0.000 0.088
#> SRR1405245 1 0.5926 0.46364 0.644 0.000 0.356
#> SRR1409677 1 0.3472 0.63648 0.904 0.040 0.056
#> SRR1095549 1 0.1411 0.67062 0.964 0.000 0.036
#> SRR1323788 1 0.2959 0.66191 0.900 0.000 0.100
#> SRR1314054 2 0.1031 0.73232 0.000 0.976 0.024
#> SRR1077944 1 0.5968 0.37570 0.636 0.000 0.364
#> SRR1480587 2 0.3752 0.73420 0.000 0.856 0.144
#> SRR1311205 1 0.6045 0.34041 0.620 0.000 0.380
#> SRR1076369 1 0.5992 0.45151 0.716 0.016 0.268
#> SRR1453549 1 0.3573 0.60559 0.876 0.004 0.120
#> SRR1345782 1 0.5560 0.45960 0.700 0.000 0.300
#> SRR1447850 2 0.3038 0.65872 0.000 0.896 0.104
#> SRR1391553 2 0.8649 0.21725 0.232 0.596 0.172
#> SRR1444156 2 0.0592 0.74794 0.000 0.988 0.012
#> SRR1471731 1 0.4521 0.56897 0.816 0.004 0.180
#> SRR1120987 2 0.8521 -0.00928 0.440 0.468 0.092
#> SRR1477363 1 0.3038 0.65878 0.896 0.000 0.104
#> SRR1391961 3 0.6337 0.30686 0.028 0.264 0.708
#> SRR1373879 1 0.1529 0.66679 0.960 0.000 0.040
#> SRR1318732 1 0.5244 0.59127 0.756 0.004 0.240
#> SRR1091404 1 0.6215 0.28486 0.572 0.000 0.428
#> SRR1402109 1 0.1289 0.66823 0.968 0.000 0.032
#> SRR1407336 1 0.0747 0.66717 0.984 0.000 0.016
#> SRR1097417 3 0.9952 0.23547 0.332 0.292 0.376
#> SRR1396227 3 0.6260 -0.06680 0.448 0.000 0.552
#> SRR1400775 2 0.1411 0.74062 0.000 0.964 0.036
#> SRR1392861 1 0.8105 0.28860 0.648 0.196 0.156
#> SRR1472929 3 0.5970 0.40394 0.060 0.160 0.780
#> SRR1436740 1 0.3502 0.65376 0.896 0.020 0.084
#> SRR1477057 2 0.6192 0.19165 0.000 0.580 0.420
#> SRR1311980 3 0.9657 0.33186 0.300 0.240 0.460
#> SRR1069400 1 0.1411 0.66820 0.964 0.000 0.036
#> SRR1351016 1 0.6126 0.31729 0.600 0.000 0.400
#> SRR1096291 1 0.4206 0.61616 0.872 0.040 0.088
#> SRR1418145 2 0.8957 0.44348 0.192 0.564 0.244
#> SRR1488111 2 0.1170 0.74681 0.008 0.976 0.016
#> SRR1370495 3 0.6438 0.43770 0.100 0.136 0.764
#> SRR1352639 3 0.6286 -0.09714 0.464 0.000 0.536
#> SRR1348911 1 0.9934 -0.19960 0.388 0.292 0.320
#> SRR1467386 1 0.4796 0.55646 0.780 0.000 0.220
#> SRR1415956 1 0.6252 0.26268 0.556 0.000 0.444
#> SRR1500495 1 0.5591 0.47219 0.696 0.000 0.304
#> SRR1405099 1 0.6215 0.28121 0.572 0.000 0.428
#> SRR1345585 1 0.4035 0.62662 0.880 0.040 0.080
#> SRR1093196 1 0.2269 0.66217 0.944 0.016 0.040
#> SRR1466006 2 0.5678 0.63032 0.000 0.684 0.316
#> SRR1351557 2 0.2448 0.74766 0.000 0.924 0.076
#> SRR1382687 1 0.4452 0.62130 0.808 0.000 0.192
#> SRR1375549 3 0.5365 0.37035 0.252 0.004 0.744
#> SRR1101765 1 0.6867 0.37179 0.672 0.040 0.288
#> SRR1334461 3 0.6313 0.42659 0.084 0.148 0.768
#> SRR1094073 2 0.0592 0.74794 0.000 0.988 0.012
#> SRR1077549 1 0.2356 0.66186 0.928 0.000 0.072
#> SRR1440332 1 0.0747 0.67023 0.984 0.000 0.016
#> SRR1454177 1 0.4289 0.62058 0.868 0.040 0.092
#> SRR1082447 1 0.6192 0.31385 0.580 0.000 0.420
#> SRR1420043 1 0.1031 0.66677 0.976 0.000 0.024
#> SRR1432500 1 0.0892 0.66971 0.980 0.000 0.020
#> SRR1378045 2 0.8576 0.22473 0.240 0.600 0.160
#> SRR1334200 3 0.9183 0.17365 0.324 0.168 0.508
#> SRR1069539 1 0.8423 0.19656 0.616 0.156 0.228
#> SRR1343031 1 0.0747 0.66934 0.984 0.000 0.016
#> SRR1319690 1 0.2711 0.66109 0.912 0.000 0.088
#> SRR1310604 2 0.7338 0.59857 0.060 0.652 0.288
#> SRR1327747 1 0.1964 0.66212 0.944 0.000 0.056
#> SRR1072456 2 0.4062 0.72662 0.000 0.836 0.164
#> SRR1367896 1 0.9736 -0.12400 0.436 0.240 0.324
#> SRR1480107 1 0.6204 0.28697 0.576 0.000 0.424
#> SRR1377756 1 0.4178 0.62826 0.828 0.000 0.172
#> SRR1435272 1 0.2926 0.64859 0.924 0.040 0.036
#> SRR1089230 1 0.4449 0.61389 0.860 0.040 0.100
#> SRR1389522 1 0.4931 0.53698 0.768 0.000 0.232
#> SRR1080600 2 0.7334 0.56253 0.048 0.624 0.328
#> SRR1086935 1 0.9494 -0.10206 0.412 0.404 0.184
#> SRR1344060 3 0.5678 0.35965 0.032 0.192 0.776
#> SRR1467922 2 0.0592 0.74794 0.000 0.988 0.012
#> SRR1090984 1 0.9651 -0.16057 0.400 0.208 0.392
#> SRR1456991 1 0.6154 0.29653 0.592 0.000 0.408
#> SRR1085039 1 0.2711 0.65922 0.912 0.000 0.088
#> SRR1069303 3 0.8659 0.44977 0.176 0.228 0.596
#> SRR1091500 2 0.1289 0.74219 0.000 0.968 0.032
#> SRR1075198 2 0.7091 0.61179 0.064 0.688 0.248
#> SRR1086915 1 0.4449 0.61389 0.860 0.040 0.100
#> SRR1499503 2 0.3551 0.73839 0.000 0.868 0.132
#> SRR1094312 2 0.1163 0.74317 0.000 0.972 0.028
#> SRR1352437 3 0.9489 0.37075 0.280 0.228 0.492
#> SRR1436323 1 0.2066 0.66509 0.940 0.000 0.060
#> SRR1073507 1 0.5948 0.38140 0.640 0.000 0.360
#> SRR1401972 3 0.9151 0.41493 0.228 0.228 0.544
#> SRR1415510 2 0.2959 0.74594 0.000 0.900 0.100
#> SRR1327279 1 0.2356 0.66353 0.928 0.000 0.072
#> SRR1086983 1 0.2356 0.66614 0.928 0.000 0.072
#> SRR1105174 1 0.4842 0.59557 0.776 0.000 0.224
#> SRR1468893 1 0.6291 0.25509 0.532 0.000 0.468
#> SRR1362555 2 0.7660 0.55977 0.064 0.612 0.324
#> SRR1074526 3 0.9887 0.11347 0.268 0.336 0.396
#> SRR1326225 2 0.0237 0.74318 0.000 0.996 0.004
#> SRR1401933 1 0.6008 0.41832 0.628 0.000 0.372
#> SRR1324062 1 0.8398 0.24738 0.624 0.184 0.192
#> SRR1102296 3 0.9263 0.39115 0.252 0.220 0.528
#> SRR1085087 1 0.6168 0.30355 0.588 0.000 0.412
#> SRR1079046 3 0.5603 0.42509 0.060 0.136 0.804
#> SRR1328339 3 0.8025 0.05093 0.420 0.064 0.516
#> SRR1079782 2 0.7015 0.61639 0.064 0.696 0.240
#> SRR1092257 2 0.0237 0.74318 0.000 0.996 0.004
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0336 0.83968 0.008 0.992 0.000 0.000
#> SRR1429287 2 0.4553 0.74936 0.180 0.780 0.040 0.000
#> SRR1359238 4 0.1059 0.62514 0.012 0.000 0.016 0.972
#> SRR1309597 4 0.3862 0.57595 0.024 0.000 0.152 0.824
#> SRR1441398 4 0.7879 -0.07429 0.288 0.000 0.332 0.380
#> SRR1084055 2 0.1624 0.83897 0.020 0.952 0.028 0.000
#> SRR1417566 3 0.4326 0.57113 0.036 0.036 0.840 0.088
#> SRR1351857 4 0.1302 0.62072 0.044 0.000 0.000 0.956
#> SRR1487485 4 0.8072 -0.08067 0.024 0.168 0.372 0.436
#> SRR1335875 3 0.5146 0.56158 0.004 0.076 0.764 0.156
#> SRR1073947 3 0.7773 -0.05969 0.284 0.000 0.432 0.284
#> SRR1443483 4 0.3271 0.58491 0.012 0.000 0.132 0.856
#> SRR1346794 4 0.5383 0.56281 0.160 0.000 0.100 0.740
#> SRR1405245 3 0.7883 -0.00751 0.316 0.000 0.384 0.300
#> SRR1409677 4 0.2708 0.60211 0.076 0.016 0.004 0.904
#> SRR1095549 4 0.4127 0.60638 0.052 0.000 0.124 0.824
#> SRR1323788 4 0.6883 0.45841 0.212 0.000 0.192 0.596
#> SRR1314054 2 0.1792 0.82390 0.000 0.932 0.068 0.000
#> SRR1077944 4 0.7792 -0.00537 0.260 0.000 0.324 0.416
#> SRR1480587 2 0.1118 0.83493 0.036 0.964 0.000 0.000
#> SRR1311205 4 0.7792 0.01741 0.260 0.000 0.324 0.416
#> SRR1076369 4 0.5483 0.18630 0.448 0.000 0.016 0.536
#> SRR1453549 4 0.4252 0.45522 0.004 0.000 0.252 0.744
#> SRR1345782 4 0.7438 0.20955 0.188 0.000 0.328 0.484
#> SRR1447850 2 0.2976 0.78183 0.008 0.872 0.120 0.000
#> SRR1391553 3 0.6216 0.40335 0.004 0.272 0.644 0.080
#> SRR1444156 2 0.0895 0.83986 0.004 0.976 0.020 0.000
#> SRR1471731 3 0.5495 0.30902 0.028 0.000 0.624 0.348
#> SRR1120987 4 0.8312 0.30109 0.112 0.192 0.132 0.564
#> SRR1477363 4 0.5947 0.48413 0.112 0.000 0.200 0.688
#> SRR1391961 1 0.6178 0.47230 0.688 0.208 0.092 0.012
#> SRR1373879 4 0.2704 0.59771 0.000 0.000 0.124 0.876
#> SRR1318732 3 0.8054 0.11467 0.300 0.008 0.424 0.268
#> SRR1091404 4 0.7917 -0.16046 0.340 0.000 0.312 0.348
#> SRR1402109 4 0.2530 0.60319 0.000 0.000 0.112 0.888
#> SRR1407336 4 0.1635 0.62107 0.008 0.000 0.044 0.948
#> SRR1097417 3 0.7144 0.49597 0.068 0.092 0.656 0.184
#> SRR1396227 3 0.5859 0.25715 0.284 0.000 0.652 0.064
#> SRR1400775 2 0.2142 0.82957 0.016 0.928 0.056 0.000
#> SRR1392861 4 0.5382 0.34886 0.016 0.016 0.280 0.688
#> SRR1472929 1 0.5862 0.54140 0.752 0.124 0.080 0.044
#> SRR1436740 4 0.5874 0.48774 0.064 0.008 0.240 0.688
#> SRR1477057 2 0.7379 0.15289 0.364 0.468 0.168 0.000
#> SRR1311980 3 0.2546 0.56096 0.008 0.028 0.920 0.044
#> SRR1069400 4 0.2125 0.61326 0.004 0.000 0.076 0.920
#> SRR1351016 3 0.7874 -0.13359 0.284 0.000 0.380 0.336
#> SRR1096291 4 0.3494 0.58267 0.116 0.016 0.008 0.860
#> SRR1418145 2 0.7812 0.24003 0.244 0.460 0.004 0.292
#> SRR1488111 2 0.2421 0.83296 0.020 0.924 0.048 0.008
#> SRR1370495 1 0.6190 0.55398 0.736 0.060 0.088 0.116
#> SRR1352639 1 0.7583 0.26121 0.480 0.000 0.280 0.240
#> SRR1348911 3 0.6022 0.54512 0.012 0.132 0.716 0.140
#> SRR1467386 4 0.6248 0.42055 0.100 0.000 0.260 0.640
#> SRR1415956 3 0.7908 -0.19499 0.336 0.000 0.360 0.304
#> SRR1500495 4 0.7357 0.22364 0.180 0.000 0.320 0.500
#> SRR1405099 1 0.7923 0.12131 0.344 0.000 0.328 0.328
#> SRR1345585 4 0.5243 0.42474 0.012 0.016 0.276 0.696
#> SRR1093196 4 0.3791 0.60131 0.032 0.008 0.108 0.852
#> SRR1466006 2 0.4262 0.71801 0.236 0.756 0.008 0.000
#> SRR1351557 2 0.0336 0.83968 0.008 0.992 0.000 0.000
#> SRR1382687 4 0.7577 0.22163 0.216 0.000 0.316 0.468
#> SRR1375549 1 0.4411 0.55151 0.824 0.012 0.052 0.112
#> SRR1101765 4 0.5895 0.21880 0.392 0.016 0.016 0.576
#> SRR1334461 1 0.6374 0.55200 0.728 0.084 0.092 0.096
#> SRR1094073 2 0.0895 0.83986 0.004 0.976 0.020 0.000
#> SRR1077549 4 0.5148 0.52649 0.056 0.000 0.208 0.736
#> SRR1440332 4 0.1520 0.62707 0.020 0.000 0.024 0.956
#> SRR1454177 4 0.4217 0.53673 0.016 0.016 0.152 0.816
#> SRR1082447 1 0.7836 0.15402 0.408 0.000 0.288 0.304
#> SRR1420043 4 0.1661 0.61900 0.004 0.000 0.052 0.944
#> SRR1432500 4 0.1284 0.62571 0.012 0.000 0.024 0.964
#> SRR1378045 3 0.6258 0.31617 0.000 0.324 0.600 0.076
#> SRR1334200 1 0.5206 0.41357 0.752 0.044 0.012 0.192
#> SRR1069539 4 0.5327 0.45026 0.208 0.056 0.004 0.732
#> SRR1343031 4 0.1452 0.62344 0.008 0.000 0.036 0.956
#> SRR1319690 4 0.4297 0.60216 0.084 0.000 0.096 0.820
#> SRR1310604 2 0.5964 0.63706 0.244 0.676 0.004 0.076
#> SRR1327747 4 0.2385 0.62154 0.052 0.000 0.028 0.920
#> SRR1072456 2 0.1398 0.83265 0.040 0.956 0.004 0.000
#> SRR1367896 3 0.4709 0.55143 0.008 0.024 0.768 0.200
#> SRR1480107 4 0.7919 -0.15290 0.324 0.000 0.324 0.352
#> SRR1377756 4 0.6921 0.41525 0.260 0.000 0.160 0.580
#> SRR1435272 4 0.2310 0.61401 0.020 0.016 0.032 0.932
#> SRR1089230 4 0.3873 0.56785 0.144 0.016 0.008 0.832
#> SRR1389522 4 0.6701 0.33281 0.120 0.000 0.296 0.584
#> SRR1080600 2 0.7062 0.42164 0.360 0.528 0.008 0.104
#> SRR1086935 4 0.7566 -0.03532 0.028 0.100 0.388 0.484
#> SRR1344060 1 0.3899 0.52312 0.840 0.108 0.052 0.000
#> SRR1467922 2 0.0895 0.83986 0.004 0.976 0.020 0.000
#> SRR1090984 3 0.4241 0.56108 0.056 0.016 0.840 0.088
#> SRR1456991 4 0.7916 -0.15049 0.312 0.000 0.336 0.352
#> SRR1085039 4 0.4514 0.56410 0.056 0.000 0.148 0.796
#> SRR1069303 3 0.4834 0.40955 0.200 0.024 0.764 0.012
#> SRR1091500 2 0.1488 0.83905 0.012 0.956 0.032 0.000
#> SRR1075198 2 0.6116 0.61442 0.248 0.664 0.004 0.084
#> SRR1086915 4 0.3717 0.57593 0.132 0.016 0.008 0.844
#> SRR1499503 2 0.0592 0.83877 0.016 0.984 0.000 0.000
#> SRR1094312 2 0.1356 0.83948 0.008 0.960 0.032 0.000
#> SRR1352437 3 0.4877 0.48791 0.096 0.012 0.800 0.092
#> SRR1436323 4 0.4462 0.59071 0.044 0.000 0.164 0.792
#> SRR1073507 4 0.7747 0.04072 0.252 0.000 0.316 0.432
#> SRR1401972 3 0.4968 0.46202 0.148 0.024 0.788 0.040
#> SRR1415510 2 0.0336 0.83968 0.008 0.992 0.000 0.000
#> SRR1327279 4 0.3863 0.58201 0.028 0.000 0.144 0.828
#> SRR1086983 4 0.5710 0.53939 0.100 0.000 0.192 0.708
#> SRR1105174 4 0.6881 0.34887 0.236 0.000 0.172 0.592
#> SRR1468893 1 0.7347 0.25062 0.528 0.000 0.244 0.228
#> SRR1362555 2 0.6391 0.56590 0.292 0.620 0.004 0.084
#> SRR1074526 1 0.8424 0.25663 0.544 0.128 0.108 0.220
#> SRR1326225 2 0.1389 0.83449 0.000 0.952 0.048 0.000
#> SRR1401933 1 0.7536 0.22412 0.492 0.000 0.244 0.264
#> SRR1324062 3 0.4785 0.55425 0.008 0.024 0.760 0.208
#> SRR1102296 3 0.4129 0.48738 0.104 0.012 0.840 0.044
#> SRR1085087 4 0.7641 0.01483 0.208 0.000 0.376 0.416
#> SRR1079046 1 0.4300 0.55664 0.844 0.076 0.036 0.044
#> SRR1328339 3 0.3421 0.53621 0.044 0.000 0.868 0.088
#> SRR1079782 2 0.5798 0.65328 0.208 0.704 0.004 0.084
#> SRR1092257 2 0.1389 0.83449 0.000 0.952 0.048 0.000
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.1965 0.7930 0.024 0.924 0.000 0.000 0.052
#> SRR1429287 2 0.6093 0.4777 0.016 0.604 0.088 0.008 0.284
#> SRR1359238 4 0.1544 0.6127 0.068 0.000 0.000 0.932 0.000
#> SRR1309597 4 0.6082 0.4277 0.116 0.000 0.216 0.636 0.032
#> SRR1441398 1 0.7199 0.5680 0.508 0.000 0.108 0.296 0.088
#> SRR1084055 2 0.1739 0.7935 0.004 0.940 0.024 0.000 0.032
#> SRR1417566 3 0.3529 0.6869 0.072 0.028 0.860 0.032 0.008
#> SRR1351857 4 0.1885 0.6219 0.032 0.000 0.012 0.936 0.020
#> SRR1487485 3 0.6715 0.0307 0.032 0.068 0.448 0.436 0.016
#> SRR1335875 3 0.5005 0.6926 0.096 0.040 0.756 0.108 0.000
#> SRR1073947 1 0.4435 0.6406 0.768 0.000 0.056 0.164 0.012
#> SRR1443483 4 0.4712 0.5344 0.080 0.000 0.180 0.736 0.004
#> SRR1346794 4 0.6510 0.3240 0.204 0.000 0.080 0.620 0.096
#> SRR1405245 1 0.7946 0.2489 0.400 0.000 0.320 0.160 0.120
#> SRR1409677 4 0.2354 0.6194 0.008 0.012 0.012 0.916 0.052
#> SRR1095549 4 0.4262 0.4575 0.252 0.000 0.016 0.724 0.008
#> SRR1323788 4 0.7851 0.0570 0.320 0.000 0.160 0.412 0.108
#> SRR1314054 2 0.1117 0.7953 0.000 0.964 0.020 0.000 0.016
#> SRR1077944 1 0.4054 0.6632 0.744 0.000 0.008 0.236 0.012
#> SRR1480587 2 0.2325 0.7901 0.028 0.904 0.000 0.000 0.068
#> SRR1311205 1 0.5340 0.6438 0.648 0.000 0.028 0.288 0.036
#> SRR1076369 4 0.7567 0.0666 0.088 0.000 0.136 0.416 0.360
#> SRR1453549 4 0.4681 0.5071 0.040 0.000 0.260 0.696 0.004
#> SRR1345782 1 0.5207 0.5860 0.620 0.000 0.044 0.328 0.008
#> SRR1447850 2 0.2351 0.7558 0.000 0.896 0.088 0.000 0.016
#> SRR1391553 3 0.4055 0.6124 0.008 0.192 0.776 0.020 0.004
#> SRR1444156 2 0.0865 0.7996 0.024 0.972 0.000 0.000 0.004
#> SRR1471731 3 0.4579 0.5943 0.048 0.004 0.740 0.204 0.004
#> SRR1120987 4 0.8003 0.3259 0.116 0.136 0.048 0.544 0.156
#> SRR1477363 4 0.6207 -0.1929 0.388 0.000 0.056 0.516 0.040
#> SRR1391961 5 0.5750 0.6775 0.244 0.080 0.020 0.004 0.652
#> SRR1373879 4 0.4269 0.5822 0.076 0.000 0.140 0.780 0.004
#> SRR1318732 3 0.8477 0.0494 0.264 0.016 0.400 0.192 0.128
#> SRR1091404 1 0.4116 0.6867 0.756 0.000 0.004 0.212 0.028
#> SRR1402109 4 0.3839 0.5900 0.072 0.000 0.108 0.816 0.004
#> SRR1407336 4 0.2074 0.6256 0.036 0.000 0.044 0.920 0.000
#> SRR1097417 3 0.5715 0.6773 0.064 0.068 0.736 0.104 0.028
#> SRR1396227 1 0.4846 0.0178 0.644 0.000 0.324 0.012 0.020
#> SRR1400775 2 0.1310 0.7959 0.000 0.956 0.024 0.000 0.020
#> SRR1392861 4 0.5053 0.4355 0.008 0.032 0.264 0.684 0.012
#> SRR1472929 5 0.4466 0.7139 0.200 0.016 0.016 0.012 0.756
#> SRR1436740 4 0.6039 0.3938 0.244 0.004 0.112 0.624 0.016
#> SRR1477057 2 0.7992 -0.1988 0.244 0.372 0.088 0.000 0.296
#> SRR1311980 3 0.3795 0.6773 0.184 0.024 0.788 0.004 0.000
#> SRR1069400 4 0.3449 0.6007 0.064 0.000 0.088 0.844 0.004
#> SRR1351016 1 0.4446 0.6715 0.752 0.000 0.040 0.196 0.012
#> SRR1096291 4 0.3716 0.6002 0.032 0.016 0.024 0.852 0.076
#> SRR1418145 5 0.7144 0.1020 0.000 0.316 0.012 0.328 0.344
#> SRR1488111 2 0.3160 0.7653 0.000 0.876 0.032 0.040 0.052
#> SRR1370495 5 0.4798 0.7063 0.212 0.008 0.016 0.032 0.732
#> SRR1352639 1 0.5582 0.3570 0.624 0.000 0.008 0.084 0.284
#> SRR1348911 3 0.5664 0.6891 0.112 0.068 0.720 0.096 0.004
#> SRR1467386 1 0.4637 0.4270 0.568 0.000 0.004 0.420 0.008
#> SRR1415956 1 0.6334 0.6668 0.636 0.000 0.076 0.200 0.088
#> SRR1500495 1 0.7065 0.4300 0.444 0.000 0.128 0.380 0.048
#> SRR1405099 1 0.6108 0.6695 0.648 0.000 0.056 0.208 0.088
#> SRR1345585 4 0.5026 0.4107 0.024 0.008 0.336 0.628 0.004
#> SRR1093196 4 0.3971 0.6161 0.068 0.008 0.092 0.824 0.008
#> SRR1466006 2 0.6157 0.4150 0.036 0.552 0.064 0.000 0.348
#> SRR1351557 2 0.1893 0.7944 0.024 0.928 0.000 0.000 0.048
#> SRR1382687 4 0.8035 0.1139 0.244 0.000 0.264 0.392 0.100
#> SRR1375549 5 0.5225 0.5876 0.288 0.000 0.016 0.044 0.652
#> SRR1101765 4 0.6759 0.0500 0.036 0.008 0.084 0.468 0.404
#> SRR1334461 5 0.4904 0.7043 0.216 0.008 0.016 0.036 0.724
#> SRR1094073 2 0.0992 0.7996 0.024 0.968 0.000 0.000 0.008
#> SRR1077549 4 0.5119 0.2637 0.360 0.000 0.048 0.592 0.000
#> SRR1440332 4 0.2463 0.6011 0.100 0.000 0.008 0.888 0.004
#> SRR1454177 4 0.4229 0.5822 0.012 0.016 0.184 0.776 0.012
#> SRR1082447 1 0.5959 0.6170 0.664 0.000 0.072 0.200 0.064
#> SRR1420043 4 0.2664 0.6142 0.064 0.000 0.040 0.892 0.004
#> SRR1432500 4 0.2911 0.5675 0.136 0.000 0.004 0.852 0.008
#> SRR1378045 3 0.4323 0.5790 0.000 0.240 0.728 0.028 0.004
#> SRR1334200 5 0.4127 0.6409 0.052 0.008 0.076 0.036 0.828
#> SRR1069539 4 0.4765 0.4585 0.008 0.016 0.016 0.704 0.256
#> SRR1343031 4 0.3081 0.6039 0.072 0.000 0.056 0.868 0.004
#> SRR1319690 4 0.5889 0.4669 0.132 0.000 0.120 0.688 0.060
#> SRR1310604 2 0.5854 0.3868 0.012 0.556 0.016 0.040 0.376
#> SRR1327747 4 0.2777 0.6178 0.040 0.000 0.036 0.896 0.028
#> SRR1072456 2 0.3317 0.7623 0.032 0.848 0.008 0.000 0.112
#> SRR1367896 3 0.4882 0.6861 0.100 0.024 0.756 0.120 0.000
#> SRR1480107 1 0.4110 0.6800 0.776 0.000 0.012 0.184 0.028
#> SRR1377756 4 0.7794 0.1538 0.272 0.000 0.144 0.456 0.128
#> SRR1435272 4 0.1877 0.6279 0.004 0.016 0.024 0.940 0.016
#> SRR1089230 4 0.4207 0.5919 0.044 0.016 0.028 0.824 0.088
#> SRR1389522 4 0.6908 -0.1197 0.328 0.000 0.200 0.456 0.016
#> SRR1080600 5 0.7001 0.0942 0.008 0.336 0.072 0.072 0.512
#> SRR1086935 4 0.6156 0.1145 0.012 0.052 0.392 0.524 0.020
#> SRR1344060 5 0.3716 0.7203 0.176 0.008 0.012 0.004 0.800
#> SRR1467922 2 0.0992 0.7996 0.024 0.968 0.000 0.000 0.008
#> SRR1090984 3 0.4587 0.6504 0.088 0.020 0.800 0.072 0.020
#> SRR1456991 1 0.4446 0.6800 0.752 0.000 0.012 0.196 0.040
#> SRR1085039 4 0.4774 0.1672 0.328 0.000 0.012 0.644 0.016
#> SRR1069303 3 0.5563 0.3896 0.452 0.024 0.500 0.004 0.020
#> SRR1091500 2 0.1211 0.7971 0.000 0.960 0.016 0.000 0.024
#> SRR1075198 2 0.5455 0.3873 0.000 0.572 0.012 0.044 0.372
#> SRR1086915 4 0.3933 0.5970 0.044 0.012 0.028 0.840 0.076
#> SRR1499503 2 0.2104 0.7925 0.024 0.916 0.000 0.000 0.060
#> SRR1094312 2 0.1117 0.7976 0.000 0.964 0.016 0.000 0.020
#> SRR1352437 3 0.5579 0.4332 0.420 0.016 0.524 0.040 0.000
#> SRR1436323 4 0.4288 0.5825 0.136 0.000 0.072 0.784 0.008
#> SRR1073507 1 0.4083 0.6586 0.728 0.000 0.008 0.256 0.008
#> SRR1401972 3 0.5282 0.4242 0.440 0.024 0.524 0.004 0.008
#> SRR1415510 2 0.2264 0.7919 0.024 0.912 0.000 0.004 0.060
#> SRR1327279 4 0.4754 0.4133 0.232 0.000 0.048 0.712 0.008
#> SRR1086983 4 0.5179 0.4305 0.252 0.000 0.048 0.680 0.020
#> SRR1105174 1 0.7078 0.2979 0.428 0.000 0.084 0.408 0.080
#> SRR1468893 1 0.7409 0.4570 0.536 0.000 0.116 0.168 0.180
#> SRR1362555 2 0.6187 0.1865 0.016 0.476 0.020 0.044 0.444
#> SRR1074526 5 0.7403 0.4971 0.036 0.152 0.128 0.088 0.596
#> SRR1326225 2 0.1012 0.7962 0.000 0.968 0.020 0.000 0.012
#> SRR1401933 1 0.7633 0.3493 0.504 0.000 0.144 0.212 0.140
#> SRR1324062 3 0.5025 0.6829 0.132 0.020 0.740 0.108 0.000
#> SRR1102296 3 0.5143 0.4076 0.456 0.012 0.516 0.012 0.004
#> SRR1085087 1 0.5374 0.6069 0.652 0.000 0.076 0.264 0.008
#> SRR1079046 5 0.4078 0.7114 0.152 0.000 0.020 0.032 0.796
#> SRR1328339 3 0.4352 0.6337 0.244 0.000 0.720 0.036 0.000
#> SRR1079782 2 0.5355 0.4441 0.000 0.604 0.012 0.044 0.340
#> SRR1092257 2 0.1211 0.7940 0.000 0.960 0.024 0.000 0.016
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.272 0.7416 0.008 0.884 0.012 0.000 0.032 0.064
#> SRR1429287 2 0.679 0.1388 0.012 0.440 0.032 0.000 0.216 0.300
#> SRR1359238 4 0.249 0.6268 0.100 0.000 0.000 0.876 0.004 0.020
#> SRR1309597 4 0.658 0.4013 0.140 0.000 0.196 0.556 0.004 0.104
#> SRR1441398 1 0.668 0.4881 0.564 0.000 0.060 0.196 0.028 0.152
#> SRR1084055 2 0.143 0.7490 0.000 0.948 0.024 0.000 0.008 0.020
#> SRR1417566 3 0.311 0.6689 0.052 0.000 0.832 0.000 0.000 0.116
#> SRR1351857 4 0.212 0.6163 0.024 0.000 0.004 0.912 0.004 0.056
#> SRR1487485 3 0.627 -0.0998 0.012 0.044 0.436 0.424 0.000 0.084
#> SRR1335875 3 0.365 0.6912 0.064 0.024 0.832 0.068 0.000 0.012
#> SRR1073947 1 0.366 0.6036 0.832 0.000 0.072 0.060 0.016 0.020
#> SRR1443483 4 0.508 0.5704 0.092 0.000 0.160 0.704 0.004 0.040
#> SRR1346794 4 0.716 -0.2493 0.324 0.000 0.008 0.352 0.056 0.260
#> SRR1405245 6 0.682 0.4108 0.316 0.000 0.148 0.076 0.004 0.456
#> SRR1409677 4 0.308 0.6021 0.028 0.000 0.000 0.860 0.056 0.056
#> SRR1095549 4 0.530 0.1786 0.364 0.000 0.020 0.552 0.000 0.064
#> SRR1323788 6 0.666 0.5114 0.248 0.000 0.064 0.200 0.000 0.488
#> SRR1314054 2 0.201 0.7386 0.000 0.908 0.068 0.000 0.000 0.024
#> SRR1077944 1 0.327 0.6376 0.832 0.000 0.008 0.108 0.000 0.052
#> SRR1480587 2 0.322 0.7329 0.008 0.848 0.008 0.000 0.048 0.088
#> SRR1311205 1 0.460 0.6534 0.716 0.000 0.020 0.216 0.016 0.032
#> SRR1076369 6 0.717 -0.0236 0.064 0.000 0.020 0.204 0.256 0.456
#> SRR1453549 4 0.412 0.5566 0.024 0.000 0.244 0.716 0.000 0.016
#> SRR1345782 1 0.475 0.6273 0.680 0.000 0.028 0.252 0.004 0.036
#> SRR1447850 2 0.315 0.7167 0.012 0.848 0.080 0.000 0.000 0.060
#> SRR1391553 3 0.284 0.6776 0.004 0.064 0.876 0.016 0.000 0.040
#> SRR1444156 2 0.246 0.7427 0.008 0.892 0.048 0.000 0.000 0.052
#> SRR1471731 3 0.416 0.6166 0.016 0.000 0.756 0.168 0.000 0.060
#> SRR1120987 4 0.750 0.3287 0.100 0.104 0.048 0.580 0.084 0.084
#> SRR1477363 1 0.621 0.3825 0.496 0.000 0.020 0.328 0.008 0.148
#> SRR1391961 5 0.413 0.6511 0.124 0.048 0.008 0.004 0.792 0.024
#> SRR1373879 4 0.461 0.5912 0.060 0.000 0.176 0.728 0.000 0.036
#> SRR1318732 6 0.663 0.5349 0.180 0.000 0.224 0.068 0.004 0.524
#> SRR1091404 1 0.319 0.6747 0.840 0.000 0.000 0.112 0.024 0.024
#> SRR1402109 4 0.438 0.6053 0.072 0.000 0.132 0.760 0.000 0.036
#> SRR1407336 4 0.200 0.6422 0.028 0.000 0.044 0.920 0.004 0.004
#> SRR1097417 3 0.416 0.6756 0.040 0.036 0.808 0.088 0.004 0.024
#> SRR1396227 1 0.528 0.1123 0.620 0.000 0.292 0.008 0.024 0.056
#> SRR1400775 2 0.155 0.7454 0.000 0.940 0.036 0.000 0.004 0.020
#> SRR1392861 4 0.374 0.5363 0.008 0.000 0.184 0.772 0.000 0.036
#> SRR1472929 5 0.295 0.6777 0.104 0.016 0.004 0.004 0.860 0.012
#> SRR1436740 4 0.575 0.3866 0.256 0.000 0.076 0.608 0.004 0.056
#> SRR1477057 2 0.816 -0.1425 0.188 0.348 0.088 0.000 0.292 0.084
#> SRR1311980 3 0.331 0.6885 0.128 0.000 0.820 0.004 0.000 0.048
#> SRR1069400 4 0.433 0.6130 0.080 0.000 0.104 0.776 0.004 0.036
#> SRR1351016 1 0.359 0.6427 0.832 0.000 0.048 0.088 0.012 0.020
#> SRR1096291 4 0.345 0.5718 0.032 0.000 0.000 0.836 0.072 0.060
#> SRR1418145 5 0.803 0.2127 0.012 0.212 0.012 0.284 0.336 0.144
#> SRR1488111 2 0.559 0.6188 0.004 0.716 0.076 0.080 0.048 0.076
#> SRR1370495 5 0.427 0.6664 0.116 0.036 0.004 0.004 0.784 0.056
#> SRR1352639 1 0.546 0.4229 0.672 0.012 0.008 0.040 0.212 0.056
#> SRR1348911 3 0.389 0.6878 0.068 0.032 0.820 0.064 0.000 0.016
#> SRR1467386 1 0.405 0.5792 0.664 0.000 0.000 0.312 0.000 0.024
#> SRR1415956 1 0.584 0.5919 0.668 0.000 0.044 0.140 0.036 0.112
#> SRR1500495 1 0.665 0.4467 0.528 0.000 0.060 0.264 0.016 0.132
#> SRR1405099 1 0.547 0.6036 0.692 0.000 0.024 0.136 0.036 0.112
#> SRR1345585 4 0.557 0.3891 0.028 0.000 0.344 0.556 0.004 0.068
#> SRR1093196 4 0.309 0.6339 0.032 0.000 0.060 0.860 0.000 0.048
#> SRR1466006 2 0.682 0.1290 0.012 0.388 0.024 0.000 0.248 0.328
#> SRR1351557 2 0.289 0.7399 0.008 0.872 0.012 0.000 0.032 0.076
#> SRR1382687 6 0.696 0.5778 0.176 0.000 0.128 0.184 0.004 0.508
#> SRR1375549 5 0.550 0.5286 0.224 0.000 0.008 0.020 0.636 0.112
#> SRR1101765 6 0.722 -0.1888 0.040 0.000 0.020 0.272 0.324 0.344
#> SRR1334461 5 0.292 0.6754 0.120 0.016 0.004 0.004 0.852 0.004
#> SRR1094073 2 0.246 0.7427 0.008 0.892 0.048 0.000 0.000 0.052
#> SRR1077549 4 0.480 0.2597 0.400 0.000 0.020 0.556 0.000 0.024
#> SRR1440332 4 0.372 0.6110 0.128 0.000 0.024 0.808 0.004 0.036
#> SRR1454177 4 0.321 0.5880 0.016 0.000 0.116 0.836 0.000 0.032
#> SRR1082447 1 0.447 0.4796 0.740 0.000 0.012 0.068 0.008 0.172
#> SRR1420043 4 0.261 0.6404 0.036 0.000 0.052 0.888 0.000 0.024
#> SRR1432500 4 0.388 0.5491 0.200 0.000 0.012 0.760 0.004 0.024
#> SRR1378045 3 0.410 0.6076 0.008 0.140 0.780 0.016 0.000 0.056
#> SRR1334200 5 0.472 0.5497 0.020 0.000 0.020 0.012 0.656 0.292
#> SRR1069539 4 0.529 0.4054 0.012 0.012 0.004 0.672 0.200 0.100
#> SRR1343031 4 0.404 0.6196 0.096 0.000 0.076 0.796 0.004 0.028
#> SRR1319690 4 0.685 0.2319 0.204 0.000 0.080 0.512 0.008 0.196
#> SRR1310604 2 0.574 0.2564 0.008 0.496 0.008 0.004 0.396 0.088
#> SRR1327747 4 0.398 0.5739 0.068 0.000 0.008 0.792 0.012 0.120
#> SRR1072456 2 0.381 0.7089 0.004 0.800 0.008 0.000 0.100 0.088
#> SRR1367896 3 0.371 0.6728 0.060 0.004 0.816 0.100 0.000 0.020
#> SRR1480107 1 0.294 0.6704 0.848 0.000 0.004 0.112 0.036 0.000
#> SRR1377756 6 0.660 0.5515 0.200 0.000 0.052 0.236 0.004 0.508
#> SRR1435272 4 0.172 0.6264 0.004 0.000 0.032 0.932 0.000 0.032
#> SRR1089230 4 0.483 0.4989 0.052 0.000 0.004 0.736 0.076 0.132
#> SRR1389522 4 0.688 -0.1267 0.360 0.000 0.188 0.396 0.008 0.048
#> SRR1080600 5 0.701 0.2824 0.008 0.212 0.020 0.020 0.408 0.332
#> SRR1086935 4 0.625 0.0747 0.020 0.024 0.388 0.468 0.000 0.100
#> SRR1344060 5 0.239 0.6832 0.064 0.004 0.004 0.000 0.896 0.032
#> SRR1467922 2 0.246 0.7427 0.008 0.892 0.048 0.000 0.000 0.052
#> SRR1090984 3 0.445 0.5509 0.084 0.000 0.728 0.012 0.000 0.176
#> SRR1456991 1 0.376 0.6747 0.808 0.000 0.024 0.128 0.032 0.008
#> SRR1085039 4 0.517 -0.1461 0.448 0.000 0.016 0.492 0.004 0.040
#> SRR1069303 3 0.541 0.4886 0.364 0.000 0.552 0.004 0.024 0.056
#> SRR1091500 2 0.148 0.7458 0.000 0.940 0.040 0.000 0.000 0.020
#> SRR1075198 2 0.622 0.2076 0.008 0.460 0.012 0.008 0.388 0.124
#> SRR1086915 4 0.418 0.5377 0.044 0.000 0.000 0.784 0.076 0.096
#> SRR1499503 2 0.256 0.7412 0.008 0.888 0.004 0.000 0.032 0.068
#> SRR1094312 2 0.109 0.7489 0.000 0.960 0.020 0.000 0.000 0.020
#> SRR1352437 3 0.530 0.5080 0.360 0.000 0.560 0.040 0.000 0.040
#> SRR1436323 4 0.473 0.5662 0.160 0.000 0.052 0.728 0.000 0.060
#> SRR1073507 1 0.345 0.6423 0.800 0.000 0.012 0.164 0.000 0.024
#> SRR1401972 3 0.532 0.5021 0.356 0.000 0.564 0.004 0.020 0.056
#> SRR1415510 2 0.361 0.7343 0.012 0.836 0.040 0.000 0.036 0.076
#> SRR1327279 4 0.471 0.3927 0.284 0.000 0.028 0.656 0.000 0.032
#> SRR1086983 4 0.496 0.4740 0.156 0.000 0.028 0.700 0.000 0.116
#> SRR1105174 1 0.632 0.3234 0.500 0.000 0.016 0.260 0.008 0.216
#> SRR1468893 6 0.600 0.3604 0.388 0.000 0.032 0.056 0.024 0.500
#> SRR1362555 2 0.594 0.1318 0.008 0.436 0.008 0.004 0.436 0.108
#> SRR1074526 5 0.722 0.4460 0.020 0.108 0.060 0.028 0.496 0.288
#> SRR1326225 2 0.166 0.7436 0.000 0.928 0.056 0.000 0.000 0.016
#> SRR1401933 6 0.630 0.4911 0.324 0.000 0.048 0.096 0.012 0.520
#> SRR1324062 3 0.420 0.6830 0.084 0.000 0.784 0.084 0.000 0.048
#> SRR1102296 3 0.467 0.4612 0.412 0.000 0.548 0.004 0.000 0.036
#> SRR1085087 1 0.558 0.5522 0.648 0.000 0.108 0.204 0.012 0.028
#> SRR1079046 5 0.348 0.6673 0.056 0.004 0.012 0.000 0.828 0.100
#> SRR1328339 3 0.334 0.6696 0.208 0.000 0.776 0.004 0.000 0.012
#> SRR1079782 2 0.603 0.3026 0.008 0.508 0.012 0.004 0.348 0.120
#> SRR1092257 2 0.191 0.7443 0.000 0.924 0.044 0.000 0.012 0.020
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
CV:skmeans
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["CV", "skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.653 0.827 0.921 0.4937 0.501 0.501
#> 3 3 0.518 0.504 0.730 0.3423 0.689 0.455
#> 4 4 0.515 0.596 0.762 0.1291 0.822 0.530
#> 5 5 0.550 0.509 0.702 0.0659 0.934 0.748
#> 6 6 0.619 0.477 0.683 0.0423 0.915 0.639
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.8754 0.000 1.000
#> SRR1429287 2 0.0000 0.8754 0.000 1.000
#> SRR1359238 1 0.0000 0.9373 1.000 0.000
#> SRR1309597 1 0.1184 0.9298 0.984 0.016
#> SRR1441398 1 0.0000 0.9373 1.000 0.000
#> SRR1084055 2 0.0000 0.8754 0.000 1.000
#> SRR1417566 2 0.2043 0.8663 0.032 0.968
#> SRR1351857 1 0.0000 0.9373 1.000 0.000
#> SRR1487485 2 0.0000 0.8754 0.000 1.000
#> SRR1335875 2 0.8555 0.6488 0.280 0.720
#> SRR1073947 1 0.0000 0.9373 1.000 0.000
#> SRR1443483 1 0.1414 0.9278 0.980 0.020
#> SRR1346794 1 0.0000 0.9373 1.000 0.000
#> SRR1405245 1 0.0000 0.9373 1.000 0.000
#> SRR1409677 1 0.3274 0.9025 0.940 0.060
#> SRR1095549 1 0.0000 0.9373 1.000 0.000
#> SRR1323788 1 0.0000 0.9373 1.000 0.000
#> SRR1314054 2 0.0000 0.8754 0.000 1.000
#> SRR1077944 1 0.0000 0.9373 1.000 0.000
#> SRR1480587 2 0.0000 0.8754 0.000 1.000
#> SRR1311205 1 0.0000 0.9373 1.000 0.000
#> SRR1076369 1 0.8555 0.5974 0.720 0.280
#> SRR1453549 1 0.8016 0.6716 0.756 0.244
#> SRR1345782 1 0.0000 0.9373 1.000 0.000
#> SRR1447850 2 0.0000 0.8754 0.000 1.000
#> SRR1391553 2 0.0000 0.8754 0.000 1.000
#> SRR1444156 2 0.0000 0.8754 0.000 1.000
#> SRR1471731 1 0.4815 0.8650 0.896 0.104
#> SRR1120987 2 0.1184 0.8709 0.016 0.984
#> SRR1477363 1 0.0000 0.9373 1.000 0.000
#> SRR1391961 2 0.3274 0.8521 0.060 0.940
#> SRR1373879 1 0.2236 0.9188 0.964 0.036
#> SRR1318732 1 0.9686 0.3266 0.604 0.396
#> SRR1091404 1 0.0000 0.9373 1.000 0.000
#> SRR1402109 1 0.0000 0.9373 1.000 0.000
#> SRR1407336 1 0.3274 0.9025 0.940 0.060
#> SRR1097417 2 0.1184 0.8711 0.016 0.984
#> SRR1396227 1 0.3733 0.8759 0.928 0.072
#> SRR1400775 2 0.0000 0.8754 0.000 1.000
#> SRR1392861 1 0.8327 0.6453 0.736 0.264
#> SRR1472929 2 0.5408 0.8262 0.124 0.876
#> SRR1436740 1 0.2778 0.9105 0.952 0.048
#> SRR1477057 2 0.1184 0.8709 0.016 0.984
#> SRR1311980 2 0.8861 0.6197 0.304 0.696
#> SRR1069400 1 0.2603 0.9137 0.956 0.044
#> SRR1351016 1 0.0000 0.9373 1.000 0.000
#> SRR1096291 1 0.3584 0.8965 0.932 0.068
#> SRR1418145 2 0.7056 0.7391 0.192 0.808
#> SRR1488111 2 0.0000 0.8754 0.000 1.000
#> SRR1370495 2 0.8499 0.6700 0.276 0.724
#> SRR1352639 1 0.0376 0.9354 0.996 0.004
#> SRR1348911 2 0.7815 0.7098 0.232 0.768
#> SRR1467386 1 0.0000 0.9373 1.000 0.000
#> SRR1415956 1 0.0000 0.9373 1.000 0.000
#> SRR1500495 1 0.0000 0.9373 1.000 0.000
#> SRR1405099 1 0.0000 0.9373 1.000 0.000
#> SRR1345585 1 0.9988 0.0808 0.520 0.480
#> SRR1093196 1 0.3274 0.9025 0.940 0.060
#> SRR1466006 2 0.0000 0.8754 0.000 1.000
#> SRR1351557 2 0.0000 0.8754 0.000 1.000
#> SRR1382687 1 0.0376 0.9351 0.996 0.004
#> SRR1375549 1 0.7950 0.6348 0.760 0.240
#> SRR1101765 1 0.8661 0.5818 0.712 0.288
#> SRR1334461 2 0.8386 0.6843 0.268 0.732
#> SRR1094073 2 0.0000 0.8754 0.000 1.000
#> SRR1077549 1 0.0000 0.9373 1.000 0.000
#> SRR1440332 1 0.0000 0.9373 1.000 0.000
#> SRR1454177 1 0.3431 0.9007 0.936 0.064
#> SRR1082447 1 0.0000 0.9373 1.000 0.000
#> SRR1420043 1 0.0000 0.9373 1.000 0.000
#> SRR1432500 1 0.0000 0.9373 1.000 0.000
#> SRR1378045 2 0.0000 0.8754 0.000 1.000
#> SRR1334200 2 0.3274 0.8498 0.060 0.940
#> SRR1069539 2 0.9896 0.2226 0.440 0.560
#> SRR1343031 1 0.0000 0.9373 1.000 0.000
#> SRR1319690 1 0.0000 0.9373 1.000 0.000
#> SRR1310604 2 0.4022 0.8380 0.080 0.920
#> SRR1327747 1 0.0376 0.9356 0.996 0.004
#> SRR1072456 2 0.0000 0.8754 0.000 1.000
#> SRR1367896 2 0.8555 0.6488 0.280 0.720
#> SRR1480107 1 0.0000 0.9373 1.000 0.000
#> SRR1377756 1 0.0000 0.9373 1.000 0.000
#> SRR1435272 1 0.3274 0.9025 0.940 0.060
#> SRR1089230 1 0.3274 0.9025 0.940 0.060
#> SRR1389522 1 0.0000 0.9373 1.000 0.000
#> SRR1080600 2 0.7139 0.7344 0.196 0.804
#> SRR1086935 2 0.0000 0.8754 0.000 1.000
#> SRR1344060 2 0.3274 0.8521 0.060 0.940
#> SRR1467922 2 0.0000 0.8754 0.000 1.000
#> SRR1090984 2 0.9248 0.5615 0.340 0.660
#> SRR1456991 1 0.0000 0.9373 1.000 0.000
#> SRR1085039 1 0.0000 0.9373 1.000 0.000
#> SRR1069303 2 0.9850 0.3737 0.428 0.572
#> SRR1091500 2 0.0000 0.8754 0.000 1.000
#> SRR1075198 2 0.6801 0.7522 0.180 0.820
#> SRR1086915 1 0.3274 0.9025 0.940 0.060
#> SRR1499503 2 0.0000 0.8754 0.000 1.000
#> SRR1094312 2 0.0000 0.8754 0.000 1.000
#> SRR1352437 2 0.9896 0.3412 0.440 0.560
#> SRR1436323 1 0.0000 0.9373 1.000 0.000
#> SRR1073507 1 0.0000 0.9373 1.000 0.000
#> SRR1401972 2 0.9850 0.3737 0.428 0.572
#> SRR1415510 2 0.0000 0.8754 0.000 1.000
#> SRR1327279 1 0.0000 0.9373 1.000 0.000
#> SRR1086983 1 0.0000 0.9373 1.000 0.000
#> SRR1105174 1 0.0000 0.9373 1.000 0.000
#> SRR1468893 1 0.0000 0.9373 1.000 0.000
#> SRR1362555 2 0.7139 0.7344 0.196 0.804
#> SRR1074526 2 0.0000 0.8754 0.000 1.000
#> SRR1326225 2 0.0000 0.8754 0.000 1.000
#> SRR1401933 1 0.0000 0.9373 1.000 0.000
#> SRR1324062 1 0.9775 0.1802 0.588 0.412
#> SRR1102296 2 0.9795 0.4040 0.416 0.584
#> SRR1085087 1 0.2043 0.9143 0.968 0.032
#> SRR1079046 2 0.3274 0.8521 0.060 0.940
#> SRR1328339 2 0.9732 0.4327 0.404 0.596
#> SRR1079782 2 0.3733 0.8430 0.072 0.928
#> SRR1092257 2 0.0000 0.8754 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0000 0.8453 0.000 1.000 0.000
#> SRR1429287 2 0.0000 0.8453 0.000 1.000 0.000
#> SRR1359238 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1309597 3 0.6460 0.5878 0.440 0.004 0.556
#> SRR1441398 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1084055 2 0.0424 0.8455 0.000 0.992 0.008
#> SRR1417566 2 0.9805 0.1439 0.240 0.396 0.364
#> SRR1351857 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1487485 3 0.6305 -0.2537 0.000 0.484 0.516
#> SRR1335875 3 0.9836 -0.1929 0.252 0.344 0.404
#> SRR1073947 1 0.3752 0.5631 0.856 0.000 0.144
#> SRR1443483 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1346794 1 0.6180 -0.3740 0.584 0.000 0.416
#> SRR1405245 1 0.3879 0.5657 0.848 0.000 0.152
#> SRR1409677 3 0.6045 0.5766 0.380 0.000 0.620
#> SRR1095549 3 0.6309 0.5260 0.500 0.000 0.500
#> SRR1323788 1 0.6302 -0.5172 0.520 0.000 0.480
#> SRR1314054 2 0.1643 0.8319 0.000 0.956 0.044
#> SRR1077944 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1480587 2 0.0000 0.8453 0.000 1.000 0.000
#> SRR1311205 1 0.0424 0.6115 0.992 0.000 0.008
#> SRR1076369 3 0.6587 0.5608 0.352 0.016 0.632
#> SRR1453549 3 0.2448 0.3990 0.000 0.076 0.924
#> SRR1345782 1 0.1031 0.5996 0.976 0.000 0.024
#> SRR1447850 2 0.5178 0.6566 0.000 0.744 0.256
#> SRR1391553 2 0.6209 0.5252 0.004 0.628 0.368
#> SRR1444156 2 0.0747 0.8444 0.000 0.984 0.016
#> SRR1471731 3 0.3618 0.4296 0.104 0.012 0.884
#> SRR1120987 2 0.5529 0.5833 0.000 0.704 0.296
#> SRR1477363 1 0.5058 0.1779 0.756 0.000 0.244
#> SRR1391961 2 0.6280 0.1926 0.460 0.540 0.000
#> SRR1373879 3 0.6062 0.5840 0.384 0.000 0.616
#> SRR1318732 3 0.9268 -0.0322 0.348 0.168 0.484
#> SRR1091404 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1402109 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1407336 3 0.6204 0.5918 0.424 0.000 0.576
#> SRR1097417 2 0.6008 0.5262 0.000 0.628 0.372
#> SRR1396227 1 0.5926 0.4340 0.644 0.000 0.356
#> SRR1400775 2 0.0747 0.8444 0.000 0.984 0.016
#> SRR1392861 3 0.2448 0.3990 0.000 0.076 0.924
#> SRR1472929 2 0.8249 0.2267 0.424 0.500 0.076
#> SRR1436740 3 0.4452 0.4354 0.192 0.000 0.808
#> SRR1477057 2 0.5461 0.6551 0.216 0.768 0.016
#> SRR1311980 1 0.8784 0.3627 0.512 0.120 0.368
#> SRR1069400 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1351016 1 0.0892 0.6132 0.980 0.000 0.020
#> SRR1096291 3 0.5968 0.5701 0.364 0.000 0.636
#> SRR1418145 2 0.2625 0.8147 0.000 0.916 0.084
#> SRR1488111 2 0.0592 0.8453 0.000 0.988 0.012
#> SRR1370495 1 0.8273 -0.1282 0.476 0.448 0.076
#> SRR1352639 1 0.4658 0.5627 0.856 0.068 0.076
#> SRR1348911 3 0.9811 -0.2403 0.240 0.376 0.384
#> SRR1467386 1 0.4974 0.1753 0.764 0.000 0.236
#> SRR1415956 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1500495 1 0.1860 0.5761 0.948 0.000 0.052
#> SRR1405099 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1345585 3 0.7495 0.3220 0.120 0.188 0.692
#> SRR1093196 3 0.4605 0.5138 0.204 0.000 0.796
#> SRR1466006 2 0.2448 0.8180 0.000 0.924 0.076
#> SRR1351557 2 0.0237 0.8456 0.000 0.996 0.004
#> SRR1382687 3 0.4750 0.4394 0.216 0.000 0.784
#> SRR1375549 1 0.6324 0.4942 0.764 0.160 0.076
#> SRR1101765 3 0.6696 0.5605 0.348 0.020 0.632
#> SRR1334461 1 0.8249 -0.0628 0.500 0.424 0.076
#> SRR1094073 2 0.0747 0.8444 0.000 0.984 0.016
#> SRR1077549 3 0.6274 0.4109 0.456 0.000 0.544
#> SRR1440332 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1454177 3 0.3267 0.4657 0.116 0.000 0.884
#> SRR1082447 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1420043 3 0.6204 0.5910 0.424 0.000 0.576
#> SRR1432500 3 0.6252 0.5852 0.444 0.000 0.556
#> SRR1378045 2 0.6247 0.5149 0.004 0.620 0.376
#> SRR1334200 2 0.2860 0.8138 0.004 0.912 0.084
#> SRR1069539 3 0.6345 0.1618 0.004 0.400 0.596
#> SRR1343031 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1319690 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1310604 2 0.2448 0.8180 0.000 0.924 0.076
#> SRR1327747 3 0.6244 0.5884 0.440 0.000 0.560
#> SRR1072456 2 0.0000 0.8453 0.000 1.000 0.000
#> SRR1367896 3 0.9808 -0.1553 0.280 0.288 0.432
#> SRR1480107 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1377756 3 0.6168 0.4895 0.412 0.000 0.588
#> SRR1435272 3 0.6215 0.5911 0.428 0.000 0.572
#> SRR1089230 3 0.5968 0.5701 0.364 0.000 0.636
#> SRR1389522 1 0.2066 0.5704 0.940 0.000 0.060
#> SRR1080600 2 0.2448 0.8180 0.000 0.924 0.076
#> SRR1086935 3 0.3272 0.3795 0.004 0.104 0.892
#> SRR1344060 2 0.8102 0.3553 0.368 0.556 0.076
#> SRR1467922 2 0.0747 0.8444 0.000 0.984 0.016
#> SRR1090984 1 0.8087 0.4052 0.560 0.076 0.364
#> SRR1456991 1 0.0000 0.6157 1.000 0.000 0.000
#> SRR1085039 1 0.5785 -0.1154 0.668 0.000 0.332
#> SRR1069303 1 0.8087 0.4052 0.560 0.076 0.364
#> SRR1091500 2 0.0592 0.8453 0.000 0.988 0.012
#> SRR1075198 2 0.2448 0.8180 0.000 0.924 0.076
#> SRR1086915 3 0.5968 0.5701 0.364 0.000 0.636
#> SRR1499503 2 0.0000 0.8453 0.000 1.000 0.000
#> SRR1094312 2 0.0592 0.8453 0.000 0.988 0.012
#> SRR1352437 1 0.8087 0.4052 0.560 0.076 0.364
#> SRR1436323 3 0.4931 0.4850 0.232 0.000 0.768
#> SRR1073507 1 0.0747 0.6047 0.984 0.000 0.016
#> SRR1401972 1 0.8087 0.4052 0.560 0.076 0.364
#> SRR1415510 2 0.0237 0.8456 0.000 0.996 0.004
#> SRR1327279 1 0.6140 -0.3176 0.596 0.000 0.404
#> SRR1086983 3 0.6307 0.5269 0.488 0.000 0.512
#> SRR1105174 1 0.4346 0.3427 0.816 0.000 0.184
#> SRR1468893 1 0.2796 0.5818 0.908 0.000 0.092
#> SRR1362555 2 0.2448 0.8180 0.000 0.924 0.076
#> SRR1074526 2 0.2486 0.8257 0.008 0.932 0.060
#> SRR1326225 2 0.0592 0.8453 0.000 0.988 0.012
#> SRR1401933 1 0.4346 0.4703 0.816 0.000 0.184
#> SRR1324062 3 0.7970 -0.0810 0.300 0.088 0.612
#> SRR1102296 1 0.8087 0.4052 0.560 0.076 0.364
#> SRR1085087 1 0.4994 0.5449 0.816 0.024 0.160
#> SRR1079046 2 0.8273 0.1651 0.448 0.476 0.076
#> SRR1328339 1 0.7693 0.4132 0.580 0.056 0.364
#> SRR1079782 2 0.2448 0.8180 0.000 0.924 0.076
#> SRR1092257 2 0.0592 0.8453 0.000 0.988 0.012
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.1211 0.872 0.000 0.960 0.040 0.000
#> SRR1429287 2 0.0707 0.866 0.000 0.980 0.020 0.000
#> SRR1359238 4 0.1398 0.723 0.040 0.000 0.004 0.956
#> SRR1309597 4 0.6524 0.530 0.120 0.000 0.264 0.616
#> SRR1441398 1 0.5361 0.619 0.724 0.000 0.068 0.208
#> SRR1084055 2 0.1940 0.872 0.000 0.924 0.076 0.000
#> SRR1417566 3 0.2586 0.710 0.012 0.068 0.912 0.008
#> SRR1351857 4 0.1488 0.722 0.032 0.000 0.012 0.956
#> SRR1487485 3 0.7188 0.416 0.000 0.244 0.552 0.204
#> SRR1335875 3 0.2895 0.713 0.032 0.044 0.908 0.016
#> SRR1073947 1 0.5376 0.542 0.736 0.000 0.176 0.088
#> SRR1443483 4 0.5056 0.638 0.044 0.000 0.224 0.732
#> SRR1346794 4 0.7102 -0.177 0.448 0.020 0.072 0.460
#> SRR1405245 1 0.6750 0.125 0.540 0.000 0.356 0.104
#> SRR1409677 4 0.2521 0.719 0.060 0.004 0.020 0.916
#> SRR1095549 4 0.5519 0.481 0.264 0.000 0.052 0.684
#> SRR1323788 1 0.7500 -0.171 0.416 0.000 0.180 0.404
#> SRR1314054 2 0.2921 0.831 0.000 0.860 0.140 0.000
#> SRR1077944 1 0.3557 0.640 0.856 0.000 0.036 0.108
#> SRR1480587 2 0.1211 0.872 0.000 0.960 0.040 0.000
#> SRR1311205 1 0.4764 0.632 0.748 0.000 0.032 0.220
#> SRR1076369 4 0.6537 0.531 0.264 0.036 0.052 0.648
#> SRR1453549 4 0.5595 0.355 0.012 0.008 0.404 0.576
#> SRR1345782 1 0.5648 0.595 0.684 0.000 0.064 0.252
#> SRR1447850 2 0.4477 0.586 0.000 0.688 0.312 0.000
#> SRR1391553 3 0.2760 0.689 0.000 0.128 0.872 0.000
#> SRR1444156 2 0.2149 0.867 0.000 0.912 0.088 0.000
#> SRR1471731 3 0.4456 0.624 0.044 0.004 0.804 0.148
#> SRR1120987 2 0.7493 0.518 0.092 0.608 0.064 0.236
#> SRR1477363 1 0.6189 0.431 0.568 0.000 0.060 0.372
#> SRR1391961 1 0.6177 0.140 0.488 0.468 0.040 0.004
#> SRR1373879 4 0.4839 0.674 0.052 0.000 0.184 0.764
#> SRR1318732 3 0.7196 0.355 0.308 0.020 0.568 0.104
#> SRR1091404 1 0.4054 0.648 0.796 0.000 0.016 0.188
#> SRR1402109 4 0.4462 0.688 0.044 0.000 0.164 0.792
#> SRR1407336 4 0.2385 0.727 0.028 0.000 0.052 0.920
#> SRR1097417 3 0.3533 0.695 0.008 0.104 0.864 0.024
#> SRR1396227 1 0.5173 0.330 0.660 0.000 0.320 0.020
#> SRR1400775 2 0.2408 0.860 0.000 0.896 0.104 0.000
#> SRR1392861 4 0.4769 0.473 0.000 0.008 0.308 0.684
#> SRR1472929 1 0.6007 0.125 0.520 0.444 0.032 0.004
#> SRR1436740 4 0.6187 0.584 0.144 0.000 0.184 0.672
#> SRR1477057 2 0.5110 0.733 0.132 0.764 0.104 0.000
#> SRR1311980 3 0.2053 0.704 0.072 0.004 0.924 0.000
#> SRR1069400 4 0.3877 0.713 0.048 0.000 0.112 0.840
#> SRR1351016 1 0.5091 0.635 0.752 0.000 0.068 0.180
#> SRR1096291 4 0.4232 0.668 0.168 0.004 0.024 0.804
#> SRR1418145 2 0.2830 0.825 0.060 0.904 0.004 0.032
#> SRR1488111 2 0.2081 0.869 0.000 0.916 0.084 0.000
#> SRR1370495 1 0.6850 0.320 0.560 0.360 0.036 0.044
#> SRR1352639 1 0.2636 0.602 0.916 0.052 0.012 0.020
#> SRR1348911 3 0.3215 0.707 0.020 0.076 0.888 0.016
#> SRR1467386 1 0.5427 0.356 0.568 0.000 0.016 0.416
#> SRR1415956 1 0.4035 0.652 0.804 0.000 0.020 0.176
#> SRR1500495 1 0.6100 0.553 0.644 0.000 0.084 0.272
#> SRR1405099 1 0.3969 0.651 0.804 0.000 0.016 0.180
#> SRR1345585 3 0.6500 0.231 0.016 0.048 0.568 0.368
#> SRR1093196 4 0.4050 0.709 0.036 0.000 0.144 0.820
#> SRR1466006 2 0.0804 0.861 0.008 0.980 0.012 0.000
#> SRR1351557 2 0.1302 0.872 0.000 0.956 0.044 0.000
#> SRR1382687 3 0.7824 0.222 0.244 0.004 0.456 0.296
#> SRR1375549 1 0.5515 0.584 0.776 0.092 0.040 0.092
#> SRR1101765 4 0.5975 0.596 0.192 0.044 0.044 0.720
#> SRR1334461 1 0.6118 0.358 0.604 0.348 0.032 0.016
#> SRR1094073 2 0.2149 0.867 0.000 0.912 0.088 0.000
#> SRR1077549 4 0.5962 0.540 0.260 0.000 0.080 0.660
#> SRR1440332 4 0.3279 0.709 0.096 0.000 0.032 0.872
#> SRR1454177 4 0.4194 0.602 0.008 0.000 0.228 0.764
#> SRR1082447 1 0.3634 0.607 0.856 0.000 0.048 0.096
#> SRR1420043 4 0.3128 0.725 0.040 0.000 0.076 0.884
#> SRR1432500 4 0.3266 0.694 0.108 0.000 0.024 0.868
#> SRR1378045 3 0.3172 0.674 0.000 0.160 0.840 0.000
#> SRR1334200 2 0.6428 0.611 0.208 0.688 0.056 0.048
#> SRR1069539 4 0.6904 0.449 0.148 0.248 0.004 0.600
#> SRR1343031 4 0.3716 0.713 0.052 0.000 0.096 0.852
#> SRR1319690 4 0.5990 0.607 0.164 0.000 0.144 0.692
#> SRR1310604 2 0.1674 0.848 0.032 0.952 0.004 0.012
#> SRR1327747 4 0.2739 0.715 0.060 0.000 0.036 0.904
#> SRR1072456 2 0.1474 0.871 0.000 0.948 0.052 0.000
#> SRR1367896 3 0.2643 0.711 0.024 0.028 0.920 0.028
#> SRR1480107 1 0.4245 0.642 0.784 0.000 0.020 0.196
#> SRR1377756 1 0.7641 -0.107 0.416 0.000 0.208 0.376
#> SRR1435272 4 0.1305 0.729 0.004 0.000 0.036 0.960
#> SRR1089230 4 0.4260 0.652 0.180 0.004 0.020 0.796
#> SRR1389522 1 0.7728 0.232 0.424 0.000 0.236 0.340
#> SRR1080600 2 0.3702 0.795 0.100 0.860 0.012 0.028
#> SRR1086935 3 0.5564 0.165 0.000 0.020 0.544 0.436
#> SRR1344060 2 0.5997 0.128 0.436 0.528 0.032 0.004
#> SRR1467922 2 0.2149 0.867 0.000 0.912 0.088 0.000
#> SRR1090984 3 0.3389 0.678 0.104 0.004 0.868 0.024
#> SRR1456991 1 0.4464 0.639 0.768 0.000 0.024 0.208
#> SRR1085039 4 0.5943 0.203 0.360 0.000 0.048 0.592
#> SRR1069303 3 0.5080 0.308 0.420 0.000 0.576 0.004
#> SRR1091500 2 0.2216 0.866 0.000 0.908 0.092 0.000
#> SRR1075198 2 0.2365 0.832 0.064 0.920 0.004 0.012
#> SRR1086915 4 0.3990 0.657 0.176 0.004 0.012 0.808
#> SRR1499503 2 0.1211 0.872 0.000 0.960 0.040 0.000
#> SRR1094312 2 0.2216 0.866 0.000 0.908 0.092 0.000
#> SRR1352437 3 0.5596 0.466 0.332 0.000 0.632 0.036
#> SRR1436323 4 0.5859 0.635 0.156 0.000 0.140 0.704
#> SRR1073507 1 0.4095 0.635 0.804 0.000 0.024 0.172
#> SRR1401972 3 0.4905 0.425 0.364 0.000 0.632 0.004
#> SRR1415510 2 0.1302 0.872 0.000 0.956 0.044 0.000
#> SRR1327279 4 0.5118 0.620 0.176 0.000 0.072 0.752
#> SRR1086983 4 0.6238 0.496 0.296 0.000 0.084 0.620
#> SRR1105174 1 0.5339 0.493 0.688 0.000 0.040 0.272
#> SRR1468893 1 0.4055 0.574 0.832 0.000 0.060 0.108
#> SRR1362555 2 0.2781 0.823 0.072 0.904 0.008 0.016
#> SRR1074526 2 0.7313 0.580 0.064 0.640 0.192 0.104
#> SRR1326225 2 0.2345 0.863 0.000 0.900 0.100 0.000
#> SRR1401933 1 0.4906 0.532 0.776 0.000 0.084 0.140
#> SRR1324062 3 0.3547 0.696 0.064 0.000 0.864 0.072
#> SRR1102296 3 0.4936 0.423 0.372 0.000 0.624 0.004
#> SRR1085087 1 0.6442 0.601 0.676 0.016 0.108 0.200
#> SRR1079046 1 0.6440 0.276 0.568 0.372 0.044 0.016
#> SRR1328339 3 0.4533 0.600 0.232 0.004 0.752 0.012
#> SRR1079782 2 0.2040 0.841 0.048 0.936 0.004 0.012
#> SRR1092257 2 0.2281 0.864 0.000 0.904 0.096 0.000
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0955 0.8229 0.000 0.968 0.004 0.000 0.028
#> SRR1429287 2 0.3098 0.7667 0.000 0.836 0.016 0.000 0.148
#> SRR1359238 4 0.2819 0.6431 0.060 0.000 0.004 0.884 0.052
#> SRR1309597 4 0.6992 0.3852 0.140 0.000 0.176 0.584 0.100
#> SRR1441398 1 0.6625 0.5372 0.596 0.000 0.052 0.212 0.140
#> SRR1084055 2 0.1485 0.8223 0.000 0.948 0.020 0.000 0.032
#> SRR1417566 3 0.3385 0.6628 0.016 0.084 0.856 0.000 0.044
#> SRR1351857 4 0.3730 0.6284 0.036 0.000 0.004 0.808 0.152
#> SRR1487485 3 0.7369 0.3111 0.004 0.288 0.420 0.264 0.024
#> SRR1335875 3 0.3796 0.6666 0.016 0.088 0.840 0.048 0.008
#> SRR1073947 1 0.4348 0.5190 0.768 0.000 0.180 0.032 0.020
#> SRR1443483 4 0.4112 0.5925 0.048 0.000 0.136 0.800 0.016
#> SRR1346794 5 0.7194 -0.1008 0.292 0.000 0.032 0.216 0.460
#> SRR1405245 1 0.7180 0.2743 0.500 0.000 0.204 0.044 0.252
#> SRR1409677 4 0.3754 0.6140 0.020 0.000 0.008 0.796 0.176
#> SRR1095549 4 0.6846 -0.0735 0.404 0.000 0.048 0.448 0.100
#> SRR1323788 1 0.7857 0.2071 0.432 0.000 0.148 0.124 0.296
#> SRR1314054 2 0.1341 0.8106 0.000 0.944 0.056 0.000 0.000
#> SRR1077944 1 0.2790 0.5390 0.892 0.000 0.028 0.020 0.060
#> SRR1480587 2 0.0963 0.8212 0.000 0.964 0.000 0.000 0.036
#> SRR1311205 1 0.4670 0.6083 0.748 0.000 0.032 0.188 0.032
#> SRR1076369 5 0.5456 0.3018 0.120 0.000 0.016 0.172 0.692
#> SRR1453549 4 0.5059 0.3899 0.008 0.008 0.316 0.644 0.024
#> SRR1345782 1 0.5140 0.5524 0.668 0.000 0.044 0.272 0.016
#> SRR1447850 2 0.2753 0.7296 0.000 0.856 0.136 0.000 0.008
#> SRR1391553 3 0.2583 0.6571 0.000 0.132 0.864 0.000 0.004
#> SRR1444156 2 0.0609 0.8252 0.000 0.980 0.020 0.000 0.000
#> SRR1471731 3 0.3981 0.6314 0.044 0.000 0.820 0.108 0.028
#> SRR1120987 2 0.8498 0.0779 0.052 0.436 0.072 0.248 0.192
#> SRR1477363 1 0.6476 0.4586 0.544 0.000 0.024 0.308 0.124
#> SRR1391961 5 0.6835 0.4464 0.292 0.276 0.004 0.000 0.428
#> SRR1373879 4 0.3602 0.6075 0.036 0.000 0.140 0.820 0.004
#> SRR1318732 3 0.7354 0.1090 0.260 0.008 0.408 0.016 0.308
#> SRR1091404 1 0.4480 0.6011 0.776 0.000 0.016 0.140 0.068
#> SRR1402109 4 0.3299 0.6178 0.040 0.000 0.108 0.848 0.004
#> SRR1407336 4 0.1597 0.6491 0.008 0.000 0.020 0.948 0.024
#> SRR1097417 3 0.5425 0.6228 0.008 0.140 0.732 0.080 0.040
#> SRR1396227 1 0.5264 0.2471 0.604 0.000 0.340 0.004 0.052
#> SRR1400775 2 0.0963 0.8218 0.000 0.964 0.036 0.000 0.000
#> SRR1392861 4 0.5583 0.4820 0.004 0.016 0.224 0.672 0.084
#> SRR1472929 5 0.6000 0.5251 0.268 0.160 0.000 0.000 0.572
#> SRR1436740 4 0.7624 0.4000 0.208 0.000 0.180 0.500 0.112
#> SRR1477057 2 0.6236 0.4841 0.120 0.656 0.068 0.000 0.156
#> SRR1311980 3 0.1893 0.6700 0.048 0.024 0.928 0.000 0.000
#> SRR1069400 4 0.2792 0.6271 0.040 0.000 0.072 0.884 0.004
#> SRR1351016 1 0.4503 0.5726 0.780 0.000 0.112 0.092 0.016
#> SRR1096291 4 0.5436 0.5271 0.084 0.004 0.008 0.672 0.232
#> SRR1418145 2 0.4691 0.5435 0.000 0.636 0.004 0.020 0.340
#> SRR1488111 2 0.1364 0.8261 0.000 0.952 0.036 0.000 0.012
#> SRR1370495 5 0.5903 0.5154 0.292 0.120 0.000 0.004 0.584
#> SRR1352639 1 0.5075 0.2133 0.620 0.012 0.020 0.004 0.344
#> SRR1348911 3 0.4177 0.6481 0.004 0.148 0.796 0.036 0.016
#> SRR1467386 1 0.5593 0.4713 0.628 0.000 0.032 0.296 0.044
#> SRR1415956 1 0.5236 0.5981 0.720 0.000 0.020 0.148 0.112
#> SRR1500495 1 0.6461 0.5127 0.584 0.000 0.044 0.268 0.104
#> SRR1405099 1 0.5170 0.5944 0.724 0.000 0.020 0.156 0.100
#> SRR1345585 3 0.6736 0.0834 0.024 0.048 0.464 0.424 0.040
#> SRR1093196 4 0.5306 0.5924 0.072 0.000 0.160 0.724 0.044
#> SRR1466006 2 0.3143 0.7204 0.000 0.796 0.000 0.000 0.204
#> SRR1351557 2 0.0865 0.8236 0.000 0.972 0.004 0.000 0.024
#> SRR1382687 3 0.7920 0.0713 0.288 0.000 0.348 0.072 0.292
#> SRR1375549 5 0.4474 0.4071 0.332 0.004 0.000 0.012 0.652
#> SRR1101765 5 0.4746 0.2199 0.032 0.000 0.008 0.276 0.684
#> SRR1334461 5 0.6011 0.4882 0.320 0.120 0.000 0.004 0.556
#> SRR1094073 2 0.0609 0.8252 0.000 0.980 0.020 0.000 0.000
#> SRR1077549 4 0.7127 0.2198 0.368 0.000 0.112 0.456 0.064
#> SRR1440332 4 0.3784 0.5861 0.140 0.000 0.024 0.816 0.020
#> SRR1454177 4 0.5232 0.5571 0.024 0.000 0.164 0.720 0.092
#> SRR1082447 1 0.4268 0.3841 0.708 0.000 0.016 0.004 0.272
#> SRR1420043 4 0.1695 0.6472 0.008 0.000 0.044 0.940 0.008
#> SRR1432500 4 0.3728 0.5688 0.164 0.000 0.008 0.804 0.024
#> SRR1378045 3 0.3933 0.6194 0.000 0.196 0.776 0.008 0.020
#> SRR1334200 5 0.3584 0.5331 0.020 0.148 0.000 0.012 0.820
#> SRR1069539 4 0.6427 0.2402 0.008 0.112 0.008 0.508 0.364
#> SRR1343031 4 0.2673 0.6281 0.044 0.000 0.060 0.892 0.004
#> SRR1319690 4 0.7307 0.1837 0.200 0.000 0.052 0.488 0.260
#> SRR1310604 2 0.3752 0.6287 0.000 0.708 0.000 0.000 0.292
#> SRR1327747 4 0.4940 0.5679 0.052 0.000 0.020 0.720 0.208
#> SRR1072456 2 0.1908 0.7994 0.000 0.908 0.000 0.000 0.092
#> SRR1367896 3 0.4357 0.6496 0.016 0.056 0.804 0.112 0.012
#> SRR1480107 1 0.3862 0.5999 0.816 0.000 0.032 0.132 0.020
#> SRR1377756 5 0.7797 -0.1437 0.368 0.000 0.168 0.092 0.372
#> SRR1435272 4 0.2992 0.6427 0.012 0.000 0.024 0.872 0.092
#> SRR1089230 4 0.6006 0.4272 0.096 0.000 0.012 0.564 0.328
#> SRR1389522 4 0.7428 -0.1921 0.384 0.000 0.144 0.404 0.068
#> SRR1080600 2 0.4440 0.3105 0.000 0.528 0.000 0.004 0.468
#> SRR1086935 3 0.8133 0.1824 0.024 0.096 0.440 0.304 0.136
#> SRR1344060 5 0.6083 0.5381 0.204 0.224 0.000 0.000 0.572
#> SRR1467922 2 0.0865 0.8229 0.000 0.972 0.024 0.000 0.004
#> SRR1090984 3 0.4602 0.6147 0.100 0.020 0.776 0.000 0.104
#> SRR1456991 1 0.4411 0.5985 0.780 0.000 0.036 0.152 0.032
#> SRR1085039 4 0.6017 -0.1202 0.436 0.000 0.020 0.480 0.064
#> SRR1069303 3 0.5334 0.3902 0.328 0.008 0.612 0.000 0.052
#> SRR1091500 2 0.1082 0.8246 0.000 0.964 0.028 0.000 0.008
#> SRR1075198 2 0.3895 0.5876 0.000 0.680 0.000 0.000 0.320
#> SRR1086915 4 0.5699 0.4774 0.092 0.000 0.008 0.612 0.288
#> SRR1499503 2 0.0794 0.8226 0.000 0.972 0.000 0.000 0.028
#> SRR1094312 2 0.0794 0.8246 0.000 0.972 0.028 0.000 0.000
#> SRR1352437 3 0.5398 0.4970 0.260 0.004 0.668 0.044 0.024
#> SRR1436323 4 0.6852 0.4437 0.212 0.000 0.140 0.580 0.068
#> SRR1073507 1 0.3636 0.5700 0.848 0.000 0.032 0.072 0.048
#> SRR1401972 3 0.5110 0.4783 0.272 0.012 0.668 0.000 0.048
#> SRR1415510 2 0.1012 0.8241 0.000 0.968 0.012 0.000 0.020
#> SRR1327279 4 0.5091 0.4815 0.208 0.000 0.056 0.712 0.024
#> SRR1086983 4 0.7840 0.2749 0.320 0.000 0.088 0.400 0.192
#> SRR1105174 1 0.6683 0.3979 0.532 0.000 0.020 0.180 0.268
#> SRR1468893 1 0.5769 0.1962 0.524 0.000 0.048 0.020 0.408
#> SRR1362555 2 0.4251 0.5114 0.000 0.624 0.000 0.004 0.372
#> SRR1074526 5 0.6387 0.3465 0.020 0.296 0.060 0.032 0.592
#> SRR1326225 2 0.0880 0.8239 0.000 0.968 0.032 0.000 0.000
#> SRR1401933 1 0.6237 0.1032 0.460 0.000 0.100 0.012 0.428
#> SRR1324062 3 0.3587 0.6619 0.048 0.020 0.864 0.044 0.024
#> SRR1102296 3 0.4670 0.4506 0.328 0.008 0.648 0.000 0.016
#> SRR1085087 1 0.6757 0.4719 0.608 0.004 0.200 0.112 0.076
#> SRR1079046 5 0.5375 0.5484 0.196 0.124 0.004 0.000 0.676
#> SRR1328339 3 0.4375 0.5956 0.200 0.008 0.756 0.004 0.032
#> SRR1079782 2 0.3814 0.6406 0.000 0.720 0.004 0.000 0.276
#> SRR1092257 2 0.1041 0.8248 0.000 0.964 0.032 0.000 0.004
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0858 0.8302 0.000 0.968 0.000 0.000 0.028 0.004
#> SRR1429287 2 0.3121 0.6983 0.000 0.796 0.008 0.000 0.192 0.004
#> SRR1359238 4 0.4522 0.5181 0.140 0.000 0.012 0.760 0.036 0.052
#> SRR1309597 4 0.8160 0.2416 0.136 0.000 0.200 0.360 0.052 0.252
#> SRR1441398 1 0.6890 0.1890 0.456 0.000 0.016 0.120 0.072 0.336
#> SRR1084055 2 0.1219 0.8226 0.000 0.948 0.004 0.000 0.048 0.000
#> SRR1417566 3 0.3408 0.6411 0.000 0.048 0.800 0.000 0.000 0.152
#> SRR1351857 4 0.4398 0.4904 0.056 0.000 0.004 0.776 0.068 0.096
#> SRR1487485 3 0.7627 0.2452 0.012 0.276 0.452 0.140 0.032 0.088
#> SRR1335875 3 0.2543 0.6638 0.020 0.036 0.904 0.020 0.016 0.004
#> SRR1073947 1 0.3596 0.5128 0.828 0.000 0.104 0.012 0.032 0.024
#> SRR1443483 4 0.7539 0.4162 0.132 0.000 0.200 0.492 0.052 0.124
#> SRR1346794 6 0.7591 0.3364 0.204 0.000 0.020 0.136 0.204 0.436
#> SRR1405245 6 0.4755 0.5620 0.184 0.000 0.064 0.008 0.024 0.720
#> SRR1409677 4 0.4106 0.4930 0.028 0.000 0.004 0.788 0.116 0.064
#> SRR1095549 1 0.6991 0.2711 0.492 0.000 0.044 0.252 0.032 0.180
#> SRR1323788 6 0.3415 0.6127 0.120 0.000 0.024 0.024 0.004 0.828
#> SRR1314054 2 0.0547 0.8268 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR1077944 1 0.3354 0.4703 0.792 0.000 0.000 0.008 0.016 0.184
#> SRR1480587 2 0.1531 0.8154 0.000 0.928 0.000 0.000 0.068 0.004
#> SRR1311205 1 0.4885 0.5204 0.744 0.000 0.012 0.108 0.052 0.084
#> SRR1076369 6 0.5819 0.1431 0.000 0.000 0.008 0.148 0.368 0.476
#> SRR1453549 4 0.5685 0.2815 0.032 0.000 0.380 0.528 0.016 0.044
#> SRR1345782 1 0.5288 0.4962 0.716 0.000 0.040 0.132 0.032 0.080
#> SRR1447850 2 0.2214 0.7626 0.000 0.892 0.092 0.000 0.004 0.012
#> SRR1391553 3 0.3406 0.6526 0.000 0.136 0.816 0.004 0.004 0.040
#> SRR1444156 2 0.0146 0.8320 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1471731 3 0.5390 0.5933 0.040 0.000 0.688 0.108 0.012 0.152
#> SRR1120987 4 0.7615 0.0703 0.028 0.352 0.028 0.412 0.104 0.076
#> SRR1477363 1 0.6525 0.1022 0.428 0.000 0.016 0.148 0.024 0.384
#> SRR1391961 5 0.4813 0.6365 0.144 0.156 0.008 0.000 0.692 0.000
#> SRR1373879 4 0.6999 0.4596 0.108 0.000 0.212 0.544 0.040 0.096
#> SRR1318732 6 0.3240 0.5972 0.028 0.008 0.144 0.000 0.000 0.820
#> SRR1091404 1 0.3481 0.5566 0.836 0.000 0.000 0.044 0.052 0.068
#> SRR1402109 4 0.6712 0.4725 0.096 0.000 0.168 0.592 0.044 0.100
#> SRR1407336 4 0.4397 0.5463 0.056 0.000 0.076 0.792 0.028 0.048
#> SRR1097417 3 0.4989 0.5952 0.012 0.088 0.760 0.028 0.072 0.040
#> SRR1396227 1 0.6140 0.0911 0.556 0.000 0.272 0.000 0.072 0.100
#> SRR1400775 2 0.0520 0.8318 0.000 0.984 0.008 0.000 0.008 0.000
#> SRR1392861 4 0.4144 0.4767 0.008 0.004 0.172 0.768 0.016 0.032
#> SRR1472929 5 0.3667 0.6859 0.124 0.040 0.004 0.000 0.812 0.020
#> SRR1436740 4 0.6764 0.2335 0.296 0.000 0.068 0.504 0.020 0.112
#> SRR1477057 2 0.6171 0.1051 0.120 0.516 0.048 0.000 0.316 0.000
#> SRR1311980 3 0.3075 0.6741 0.096 0.004 0.852 0.008 0.000 0.040
#> SRR1069400 4 0.6946 0.4677 0.116 0.000 0.148 0.576 0.052 0.108
#> SRR1351016 1 0.2689 0.5440 0.888 0.000 0.056 0.008 0.032 0.016
#> SRR1096291 4 0.5159 0.4195 0.008 0.000 0.016 0.676 0.104 0.196
#> SRR1418145 2 0.6179 0.0731 0.004 0.460 0.012 0.092 0.408 0.024
#> SRR1488111 2 0.1490 0.8248 0.000 0.948 0.016 0.008 0.024 0.004
#> SRR1370495 5 0.2806 0.6801 0.136 0.016 0.000 0.004 0.844 0.000
#> SRR1352639 1 0.6315 0.1622 0.472 0.004 0.012 0.008 0.340 0.164
#> SRR1348911 3 0.3288 0.6534 0.016 0.076 0.860 0.012 0.020 0.016
#> SRR1467386 1 0.3827 0.5175 0.776 0.000 0.000 0.164 0.008 0.052
#> SRR1415956 1 0.6723 0.3538 0.556 0.000 0.036 0.084 0.084 0.240
#> SRR1500495 1 0.6925 0.1930 0.452 0.000 0.024 0.156 0.044 0.324
#> SRR1405099 1 0.6058 0.3954 0.604 0.000 0.016 0.072 0.068 0.240
#> SRR1345585 3 0.7766 0.1591 0.056 0.040 0.476 0.224 0.032 0.172
#> SRR1093196 4 0.6290 0.4559 0.112 0.000 0.096 0.628 0.024 0.140
#> SRR1466006 2 0.3910 0.4985 0.000 0.660 0.004 0.000 0.328 0.008
#> SRR1351557 2 0.0692 0.8308 0.000 0.976 0.000 0.000 0.020 0.004
#> SRR1382687 6 0.3649 0.6083 0.032 0.000 0.108 0.044 0.000 0.816
#> SRR1375549 5 0.4373 0.5789 0.192 0.000 0.000 0.004 0.720 0.084
#> SRR1101765 5 0.6203 0.1743 0.008 0.004 0.008 0.292 0.508 0.180
#> SRR1334461 5 0.3109 0.6658 0.168 0.016 0.000 0.004 0.812 0.000
#> SRR1094073 2 0.0146 0.8320 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1077549 1 0.5265 0.1471 0.568 0.000 0.020 0.360 0.008 0.044
#> SRR1440332 4 0.6966 0.3572 0.252 0.000 0.076 0.528 0.044 0.100
#> SRR1454177 4 0.4145 0.5080 0.036 0.000 0.104 0.800 0.024 0.036
#> SRR1082447 1 0.4746 0.0135 0.508 0.000 0.000 0.000 0.048 0.444
#> SRR1420043 4 0.5420 0.5261 0.072 0.000 0.124 0.712 0.036 0.056
#> SRR1432500 4 0.5798 0.3339 0.296 0.000 0.036 0.592 0.036 0.040
#> SRR1378045 3 0.3746 0.6120 0.000 0.192 0.760 0.000 0.000 0.048
#> SRR1334200 5 0.3783 0.6056 0.000 0.048 0.004 0.012 0.796 0.140
#> SRR1069539 4 0.6131 0.2717 0.000 0.048 0.016 0.552 0.308 0.076
#> SRR1343031 4 0.6686 0.4641 0.148 0.000 0.132 0.596 0.044 0.080
#> SRR1319690 6 0.7561 0.1157 0.144 0.000 0.068 0.280 0.064 0.444
#> SRR1310604 2 0.4070 0.3197 0.000 0.568 0.000 0.004 0.424 0.004
#> SRR1327747 4 0.6157 0.3587 0.064 0.000 0.012 0.580 0.084 0.260
#> SRR1072456 2 0.2558 0.7530 0.000 0.840 0.000 0.000 0.156 0.004
#> SRR1367896 3 0.4262 0.5841 0.040 0.008 0.812 0.052 0.036 0.052
#> SRR1480107 1 0.2172 0.5601 0.912 0.000 0.000 0.020 0.044 0.024
#> SRR1377756 6 0.3756 0.6212 0.064 0.000 0.032 0.080 0.004 0.820
#> SRR1435272 4 0.2420 0.5253 0.008 0.000 0.016 0.904 0.028 0.044
#> SRR1089230 4 0.5526 0.3344 0.012 0.000 0.004 0.604 0.128 0.252
#> SRR1389522 1 0.8256 0.0448 0.360 0.000 0.220 0.224 0.064 0.132
#> SRR1080600 5 0.5298 0.3097 0.000 0.332 0.012 0.028 0.592 0.036
#> SRR1086935 4 0.7420 0.0552 0.008 0.068 0.320 0.436 0.032 0.136
#> SRR1344060 5 0.4515 0.6821 0.092 0.076 0.004 0.000 0.768 0.060
#> SRR1467922 2 0.0146 0.8320 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1090984 3 0.4563 0.4501 0.024 0.004 0.636 0.000 0.012 0.324
#> SRR1456991 1 0.2756 0.5648 0.880 0.000 0.012 0.044 0.060 0.004
#> SRR1085039 1 0.7040 0.2680 0.468 0.000 0.032 0.296 0.048 0.156
#> SRR1069303 3 0.6167 0.4235 0.332 0.000 0.520 0.004 0.084 0.060
#> SRR1091500 2 0.0146 0.8324 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1075198 2 0.4783 0.2192 0.000 0.528 0.012 0.016 0.436 0.008
#> SRR1086915 4 0.5339 0.3690 0.012 0.000 0.008 0.640 0.108 0.232
#> SRR1499503 2 0.0858 0.8302 0.000 0.968 0.000 0.000 0.028 0.004
#> SRR1094312 2 0.0146 0.8324 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1352437 3 0.5684 0.4674 0.344 0.000 0.560 0.036 0.020 0.040
#> SRR1436323 4 0.7428 0.1837 0.272 0.000 0.088 0.408 0.016 0.216
#> SRR1073507 1 0.2883 0.5412 0.864 0.000 0.000 0.032 0.016 0.088
#> SRR1401972 3 0.5875 0.4663 0.324 0.000 0.552 0.004 0.056 0.064
#> SRR1415510 2 0.1592 0.8209 0.000 0.940 0.020 0.000 0.032 0.008
#> SRR1327279 4 0.7075 0.1605 0.368 0.000 0.120 0.420 0.036 0.056
#> SRR1086983 4 0.6518 0.0743 0.180 0.000 0.008 0.428 0.024 0.360
#> SRR1105174 6 0.6154 0.1705 0.340 0.000 0.008 0.076 0.056 0.520
#> SRR1468893 6 0.4419 0.5875 0.140 0.000 0.004 0.016 0.088 0.752
#> SRR1362555 5 0.4591 0.0446 0.000 0.420 0.012 0.008 0.552 0.008
#> SRR1074526 5 0.7000 0.4227 0.016 0.268 0.040 0.068 0.536 0.072
#> SRR1326225 2 0.0260 0.8309 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1401933 6 0.4861 0.5799 0.120 0.000 0.020 0.032 0.084 0.744
#> SRR1324062 3 0.4981 0.6446 0.080 0.004 0.744 0.076 0.008 0.088
#> SRR1102296 3 0.5232 0.4263 0.384 0.000 0.548 0.004 0.024 0.040
#> SRR1085087 1 0.5042 0.4396 0.740 0.004 0.132 0.036 0.056 0.032
#> SRR1079046 5 0.3620 0.6727 0.072 0.032 0.000 0.000 0.824 0.072
#> SRR1328339 3 0.4377 0.6127 0.204 0.004 0.728 0.000 0.012 0.052
#> SRR1079782 2 0.4365 0.4591 0.000 0.640 0.012 0.008 0.332 0.008
#> SRR1092257 2 0.0862 0.8296 0.000 0.972 0.016 0.000 0.008 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
CV:pam
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["CV", "pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.492 0.857 0.890 0.3808 0.644 0.644
#> 3 3 0.639 0.824 0.913 0.5927 0.720 0.582
#> 4 4 0.628 0.716 0.833 0.1730 0.848 0.645
#> 5 5 0.725 0.770 0.865 0.0981 0.879 0.614
#> 6 6 0.694 0.624 0.794 0.0277 0.951 0.783
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0376 0.913 0.004 0.996
#> SRR1429287 2 0.0376 0.913 0.004 0.996
#> SRR1359238 1 0.4815 0.876 0.896 0.104
#> SRR1309597 1 0.0000 0.851 1.000 0.000
#> SRR1441398 1 0.0000 0.851 1.000 0.000
#> SRR1084055 2 0.0000 0.915 0.000 1.000
#> SRR1417566 1 0.7219 0.887 0.800 0.200
#> SRR1351857 1 0.4431 0.874 0.908 0.092
#> SRR1487485 1 0.7219 0.887 0.800 0.200
#> SRR1335875 1 0.7219 0.887 0.800 0.200
#> SRR1073947 1 0.7219 0.887 0.800 0.200
#> SRR1443483 1 0.0000 0.851 1.000 0.000
#> SRR1346794 1 0.0000 0.851 1.000 0.000
#> SRR1405245 1 0.1414 0.857 0.980 0.020
#> SRR1409677 1 0.0000 0.851 1.000 0.000
#> SRR1095549 1 0.0000 0.851 1.000 0.000
#> SRR1323788 1 0.7219 0.887 0.800 0.200
#> SRR1314054 1 0.7299 0.885 0.796 0.204
#> SRR1077944 1 0.0000 0.851 1.000 0.000
#> SRR1480587 2 0.1414 0.908 0.020 0.980
#> SRR1311205 1 0.0000 0.851 1.000 0.000
#> SRR1076369 1 0.0000 0.851 1.000 0.000
#> SRR1453549 1 0.7219 0.887 0.800 0.200
#> SRR1345782 1 0.0672 0.853 0.992 0.008
#> SRR1447850 1 0.8081 0.845 0.752 0.248
#> SRR1391553 1 0.7299 0.885 0.796 0.204
#> SRR1444156 2 0.0000 0.915 0.000 1.000
#> SRR1471731 1 0.7219 0.887 0.800 0.200
#> SRR1120987 1 0.7219 0.887 0.800 0.200
#> SRR1477363 1 0.0000 0.851 1.000 0.000
#> SRR1391961 2 0.9710 0.052 0.400 0.600
#> SRR1373879 1 0.7219 0.887 0.800 0.200
#> SRR1318732 1 0.3274 0.867 0.940 0.060
#> SRR1091404 1 0.0000 0.851 1.000 0.000
#> SRR1402109 1 0.7219 0.887 0.800 0.200
#> SRR1407336 1 0.7219 0.887 0.800 0.200
#> SRR1097417 1 0.7950 0.853 0.760 0.240
#> SRR1396227 1 0.7299 0.885 0.796 0.204
#> SRR1400775 2 0.0000 0.915 0.000 1.000
#> SRR1392861 1 0.7219 0.887 0.800 0.200
#> SRR1472929 2 0.7219 0.794 0.200 0.800
#> SRR1436740 1 0.7219 0.887 0.800 0.200
#> SRR1477057 2 0.0000 0.915 0.000 1.000
#> SRR1311980 1 0.7299 0.885 0.796 0.204
#> SRR1069400 1 0.6887 0.886 0.816 0.184
#> SRR1351016 1 0.7219 0.887 0.800 0.200
#> SRR1096291 1 0.7219 0.887 0.800 0.200
#> SRR1418145 1 0.6973 0.887 0.812 0.188
#> SRR1488111 1 0.7219 0.887 0.800 0.200
#> SRR1370495 2 0.8763 0.731 0.296 0.704
#> SRR1352639 1 0.0000 0.851 1.000 0.000
#> SRR1348911 1 0.7219 0.887 0.800 0.200
#> SRR1467386 1 0.0000 0.851 1.000 0.000
#> SRR1415956 1 0.0000 0.851 1.000 0.000
#> SRR1500495 1 0.0000 0.851 1.000 0.000
#> SRR1405099 1 0.0000 0.851 1.000 0.000
#> SRR1345585 1 0.7219 0.887 0.800 0.200
#> SRR1093196 1 0.7219 0.887 0.800 0.200
#> SRR1466006 2 0.0000 0.915 0.000 1.000
#> SRR1351557 2 0.0000 0.915 0.000 1.000
#> SRR1382687 1 0.7219 0.887 0.800 0.200
#> SRR1375549 1 0.9881 -0.166 0.564 0.436
#> SRR1101765 1 0.0000 0.851 1.000 0.000
#> SRR1334461 2 0.7453 0.791 0.212 0.788
#> SRR1094073 2 0.0000 0.915 0.000 1.000
#> SRR1077549 1 0.7219 0.887 0.800 0.200
#> SRR1440332 1 0.0000 0.851 1.000 0.000
#> SRR1454177 1 0.7219 0.887 0.800 0.200
#> SRR1082447 1 0.4431 0.874 0.908 0.092
#> SRR1420043 1 0.7219 0.887 0.800 0.200
#> SRR1432500 1 0.0000 0.851 1.000 0.000
#> SRR1378045 1 0.7219 0.887 0.800 0.200
#> SRR1334200 1 0.7453 0.879 0.788 0.212
#> SRR1069539 1 0.7219 0.887 0.800 0.200
#> SRR1343031 1 0.5946 0.882 0.856 0.144
#> SRR1319690 1 0.0000 0.851 1.000 0.000
#> SRR1310604 2 0.2423 0.900 0.040 0.960
#> SRR1327747 1 0.0000 0.851 1.000 0.000
#> SRR1072456 2 0.0376 0.914 0.004 0.996
#> SRR1367896 1 0.7219 0.887 0.800 0.200
#> SRR1480107 1 0.0000 0.851 1.000 0.000
#> SRR1377756 1 0.7219 0.887 0.800 0.200
#> SRR1435272 1 0.7219 0.887 0.800 0.200
#> SRR1089230 1 0.0672 0.853 0.992 0.008
#> SRR1389522 1 0.0000 0.851 1.000 0.000
#> SRR1080600 2 0.7299 0.793 0.204 0.796
#> SRR1086935 1 0.7219 0.887 0.800 0.200
#> SRR1344060 2 0.0000 0.915 0.000 1.000
#> SRR1467922 2 0.0000 0.915 0.000 1.000
#> SRR1090984 1 0.7219 0.887 0.800 0.200
#> SRR1456991 1 0.0000 0.851 1.000 0.000
#> SRR1085039 1 0.0000 0.851 1.000 0.000
#> SRR1069303 1 0.7299 0.885 0.796 0.204
#> SRR1091500 2 0.0000 0.915 0.000 1.000
#> SRR1075198 2 0.5178 0.854 0.116 0.884
#> SRR1086915 1 0.5737 0.881 0.864 0.136
#> SRR1499503 2 0.0000 0.915 0.000 1.000
#> SRR1094312 2 0.0000 0.915 0.000 1.000
#> SRR1352437 1 0.7219 0.887 0.800 0.200
#> SRR1436323 1 0.7219 0.887 0.800 0.200
#> SRR1073507 1 0.0000 0.851 1.000 0.000
#> SRR1401972 1 0.7219 0.887 0.800 0.200
#> SRR1415510 2 0.1184 0.904 0.016 0.984
#> SRR1327279 1 0.0000 0.851 1.000 0.000
#> SRR1086983 1 0.7219 0.887 0.800 0.200
#> SRR1105174 1 0.0000 0.851 1.000 0.000
#> SRR1468893 1 0.0000 0.851 1.000 0.000
#> SRR1362555 2 0.7219 0.794 0.200 0.800
#> SRR1074526 1 0.7376 0.882 0.792 0.208
#> SRR1326225 2 0.0000 0.915 0.000 1.000
#> SRR1401933 1 0.0000 0.851 1.000 0.000
#> SRR1324062 1 0.7219 0.887 0.800 0.200
#> SRR1102296 1 0.7219 0.887 0.800 0.200
#> SRR1085087 1 0.0938 0.855 0.988 0.012
#> SRR1079046 1 0.2603 0.816 0.956 0.044
#> SRR1328339 1 0.7219 0.887 0.800 0.200
#> SRR1079782 2 0.7602 0.796 0.220 0.780
#> SRR1092257 1 0.7299 0.885 0.796 0.204
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0237 0.9401 0.000 0.996 0.004
#> SRR1429287 2 0.3038 0.8894 0.000 0.896 0.104
#> SRR1359238 3 0.2878 0.8429 0.096 0.000 0.904
#> SRR1309597 1 0.0237 0.9010 0.996 0.000 0.004
#> SRR1441398 1 0.0000 0.9003 1.000 0.000 0.000
#> SRR1084055 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1417566 3 0.1289 0.8782 0.032 0.000 0.968
#> SRR1351857 3 0.4346 0.7877 0.184 0.000 0.816
#> SRR1487485 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1335875 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1073947 3 0.4750 0.6887 0.216 0.000 0.784
#> SRR1443483 1 0.2796 0.8501 0.908 0.000 0.092
#> SRR1346794 1 0.0237 0.9010 0.996 0.000 0.004
#> SRR1405245 1 0.1031 0.8933 0.976 0.000 0.024
#> SRR1409677 3 0.6295 0.2829 0.472 0.000 0.528
#> SRR1095549 3 0.4555 0.7486 0.200 0.000 0.800
#> SRR1323788 3 0.2959 0.8425 0.100 0.000 0.900
#> SRR1314054 3 0.3412 0.8257 0.000 0.124 0.876
#> SRR1077944 3 0.5431 0.6498 0.284 0.000 0.716
#> SRR1480587 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1311205 1 0.0237 0.9007 0.996 0.000 0.004
#> SRR1076369 1 0.4002 0.7669 0.840 0.000 0.160
#> SRR1453549 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1345782 3 0.6026 0.5314 0.376 0.000 0.624
#> SRR1447850 3 0.4235 0.7809 0.000 0.176 0.824
#> SRR1391553 3 0.0237 0.8866 0.000 0.004 0.996
#> SRR1444156 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1471731 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1120987 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1477363 1 0.0237 0.9010 0.996 0.000 0.004
#> SRR1391961 3 0.8976 0.0393 0.128 0.416 0.456
#> SRR1373879 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1318732 1 0.4925 0.8076 0.844 0.076 0.080
#> SRR1091404 1 0.2448 0.8522 0.924 0.000 0.076
#> SRR1402109 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1407336 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1097417 3 0.1529 0.8690 0.000 0.040 0.960
#> SRR1396227 3 0.2860 0.8550 0.084 0.004 0.912
#> SRR1400775 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1392861 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1472929 1 0.5178 0.6322 0.744 0.256 0.000
#> SRR1436740 3 0.0237 0.8867 0.004 0.000 0.996
#> SRR1477057 2 0.3851 0.8537 0.004 0.860 0.136
#> SRR1311980 3 0.0475 0.8859 0.004 0.004 0.992
#> SRR1069400 3 0.0747 0.8840 0.016 0.000 0.984
#> SRR1351016 3 0.0424 0.8866 0.008 0.000 0.992
#> SRR1096291 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1418145 3 0.3532 0.8367 0.108 0.008 0.884
#> SRR1488111 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1370495 1 0.1289 0.8854 0.968 0.032 0.000
#> SRR1352639 1 0.0237 0.9010 0.996 0.000 0.004
#> SRR1348911 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1467386 3 0.5465 0.6651 0.288 0.000 0.712
#> SRR1415956 1 0.0000 0.9003 1.000 0.000 0.000
#> SRR1500495 1 0.0237 0.9010 0.996 0.000 0.004
#> SRR1405099 1 0.0000 0.9003 1.000 0.000 0.000
#> SRR1345585 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1093196 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1466006 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1351557 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1382687 3 0.2796 0.8477 0.092 0.000 0.908
#> SRR1375549 1 0.0237 0.8997 0.996 0.004 0.000
#> SRR1101765 3 0.5621 0.6458 0.308 0.000 0.692
#> SRR1334461 1 0.2959 0.8298 0.900 0.100 0.000
#> SRR1094073 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1077549 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1440332 1 0.3941 0.8018 0.844 0.000 0.156
#> SRR1454177 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1082447 1 0.5363 0.6416 0.724 0.000 0.276
#> SRR1420043 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1432500 3 0.6008 0.5147 0.372 0.000 0.628
#> SRR1378045 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1334200 3 0.3539 0.8383 0.100 0.012 0.888
#> SRR1069539 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1343031 3 0.1964 0.8678 0.056 0.000 0.944
#> SRR1319690 1 0.3340 0.8308 0.880 0.000 0.120
#> SRR1310604 2 0.4094 0.8808 0.028 0.872 0.100
#> SRR1327747 3 0.6308 0.0837 0.492 0.000 0.508
#> SRR1072456 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1367896 3 0.1643 0.8687 0.044 0.000 0.956
#> SRR1480107 1 0.0000 0.9003 1.000 0.000 0.000
#> SRR1377756 3 0.2959 0.8425 0.100 0.000 0.900
#> SRR1435272 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1089230 3 0.4452 0.7575 0.192 0.000 0.808
#> SRR1389522 1 0.2448 0.8636 0.924 0.000 0.076
#> SRR1080600 2 0.3644 0.8352 0.124 0.872 0.004
#> SRR1086935 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1344060 2 0.1751 0.9314 0.012 0.960 0.028
#> SRR1467922 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1090984 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1456991 1 0.0000 0.9003 1.000 0.000 0.000
#> SRR1085039 3 0.5178 0.7048 0.256 0.000 0.744
#> SRR1069303 3 0.5378 0.7094 0.236 0.008 0.756
#> SRR1091500 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1075198 2 0.4087 0.8840 0.068 0.880 0.052
#> SRR1086915 3 0.2165 0.8635 0.064 0.000 0.936
#> SRR1499503 2 0.1964 0.9214 0.000 0.944 0.056
#> SRR1094312 2 0.0000 0.9412 0.000 1.000 0.000
#> SRR1352437 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1436323 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1073507 3 0.6095 0.5003 0.392 0.000 0.608
#> SRR1401972 3 0.0237 0.8867 0.004 0.000 0.996
#> SRR1415510 2 0.3686 0.8530 0.000 0.860 0.140
#> SRR1327279 3 0.5905 0.5761 0.352 0.000 0.648
#> SRR1086983 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1105174 1 0.0237 0.9010 0.996 0.000 0.004
#> SRR1468893 1 0.0000 0.9003 1.000 0.000 0.000
#> SRR1362555 1 0.5621 0.5264 0.692 0.308 0.000
#> SRR1074526 3 0.0892 0.8822 0.000 0.020 0.980
#> SRR1326225 2 0.2448 0.9090 0.000 0.924 0.076
#> SRR1401933 1 0.6045 0.2585 0.620 0.000 0.380
#> SRR1324062 3 0.0747 0.8840 0.016 0.000 0.984
#> SRR1102296 3 0.0000 0.8876 0.000 0.000 1.000
#> SRR1085087 3 0.5859 0.5944 0.344 0.000 0.656
#> SRR1079046 1 0.0475 0.8997 0.992 0.004 0.004
#> SRR1328339 3 0.0237 0.8867 0.004 0.000 0.996
#> SRR1079782 2 0.4423 0.8513 0.088 0.864 0.048
#> SRR1092257 3 0.3686 0.8157 0.000 0.140 0.860
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0657 0.8860 0.012 0.984 0.000 0.004
#> SRR1429287 2 0.2737 0.8223 0.104 0.888 0.000 0.008
#> SRR1359238 4 0.0672 0.6269 0.008 0.000 0.008 0.984
#> SRR1309597 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1441398 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1084055 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1417566 4 0.4955 0.8008 0.344 0.000 0.008 0.648
#> SRR1351857 4 0.1042 0.6182 0.008 0.000 0.020 0.972
#> SRR1487485 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1335875 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1073947 1 0.1722 0.6494 0.944 0.000 0.008 0.048
#> SRR1443483 3 0.0804 0.8726 0.008 0.000 0.980 0.012
#> SRR1346794 3 0.0336 0.8778 0.008 0.000 0.992 0.000
#> SRR1405245 3 0.2227 0.8453 0.036 0.000 0.928 0.036
#> SRR1409677 4 0.3355 0.4754 0.004 0.000 0.160 0.836
#> SRR1095549 4 0.6497 0.6527 0.160 0.000 0.200 0.640
#> SRR1323788 4 0.5339 0.7945 0.356 0.000 0.020 0.624
#> SRR1314054 4 0.6346 0.7013 0.152 0.192 0.000 0.656
#> SRR1077944 1 0.4502 0.6351 0.748 0.000 0.236 0.016
#> SRR1480587 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1311205 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1076369 3 0.5295 0.3220 0.008 0.000 0.504 0.488
#> SRR1453549 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1345782 1 0.5279 0.6313 0.704 0.000 0.252 0.044
#> SRR1447850 4 0.6845 0.6410 0.168 0.236 0.000 0.596
#> SRR1391553 4 0.4761 0.8044 0.332 0.004 0.000 0.664
#> SRR1444156 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1471731 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1120987 4 0.0000 0.6373 0.000 0.000 0.000 1.000
#> SRR1477363 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1391961 1 0.2730 0.6582 0.896 0.088 0.016 0.000
#> SRR1373879 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1318732 3 0.4617 0.6822 0.032 0.000 0.764 0.204
#> SRR1091404 1 0.4804 0.4599 0.616 0.000 0.384 0.000
#> SRR1402109 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1407336 4 0.4643 0.8044 0.344 0.000 0.000 0.656
#> SRR1097417 4 0.5677 0.7838 0.332 0.040 0.000 0.628
#> SRR1396227 1 0.1674 0.6559 0.952 0.004 0.012 0.032
#> SRR1400775 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1392861 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1472929 3 0.3392 0.7771 0.020 0.124 0.856 0.000
#> SRR1436740 1 0.4585 0.5910 0.668 0.000 0.000 0.332
#> SRR1477057 1 0.4482 0.4822 0.728 0.264 0.000 0.008
#> SRR1311980 1 0.2944 0.5376 0.868 0.004 0.000 0.128
#> SRR1069400 4 0.5069 0.8024 0.320 0.000 0.016 0.664
#> SRR1351016 1 0.1489 0.6463 0.952 0.000 0.004 0.044
#> SRR1096291 4 0.0000 0.6373 0.000 0.000 0.000 1.000
#> SRR1418145 4 0.1229 0.6148 0.008 0.004 0.020 0.968
#> SRR1488111 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1370495 3 0.0707 0.8740 0.020 0.000 0.980 0.000
#> SRR1352639 3 0.1305 0.8640 0.004 0.000 0.960 0.036
#> SRR1348911 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1467386 1 0.6080 0.6164 0.664 0.000 0.236 0.100
#> SRR1415956 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1500495 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1405099 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1345585 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1093196 4 0.4643 0.8040 0.344 0.000 0.000 0.656
#> SRR1466006 2 0.0895 0.8837 0.004 0.976 0.000 0.020
#> SRR1351557 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1382687 4 0.4284 0.7305 0.200 0.000 0.020 0.780
#> SRR1375549 1 0.5538 0.5297 0.644 0.000 0.036 0.320
#> SRR1101765 4 0.1706 0.5953 0.016 0.000 0.036 0.948
#> SRR1334461 3 0.1042 0.8719 0.020 0.008 0.972 0.000
#> SRR1094073 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1077549 4 0.4999 0.6185 0.492 0.000 0.000 0.508
#> SRR1440332 3 0.2048 0.8237 0.008 0.000 0.928 0.064
#> SRR1454177 4 0.4477 0.8032 0.312 0.000 0.000 0.688
#> SRR1082447 1 0.5938 0.1864 0.488 0.000 0.476 0.036
#> SRR1420043 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1432500 4 0.6412 0.4663 0.080 0.000 0.348 0.572
#> SRR1378045 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1334200 4 0.1762 0.6086 0.016 0.012 0.020 0.952
#> SRR1069539 4 0.0000 0.6373 0.000 0.000 0.000 1.000
#> SRR1343031 4 0.5697 0.7828 0.280 0.000 0.056 0.664
#> SRR1319690 3 0.1209 0.8588 0.004 0.000 0.964 0.032
#> SRR1310604 2 0.4695 0.7732 0.140 0.804 0.028 0.028
#> SRR1327747 4 0.5244 0.0424 0.008 0.000 0.436 0.556
#> SRR1072456 2 0.0188 0.8899 0.004 0.996 0.000 0.000
#> SRR1367896 4 0.5755 0.7813 0.332 0.000 0.044 0.624
#> SRR1480107 1 0.4804 0.4599 0.616 0.000 0.384 0.000
#> SRR1377756 4 0.1411 0.6090 0.020 0.000 0.020 0.960
#> SRR1435272 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1089230 4 0.1042 0.6173 0.008 0.000 0.020 0.972
#> SRR1389522 3 0.0336 0.8770 0.000 0.000 0.992 0.008
#> SRR1080600 2 0.5173 0.6386 0.020 0.660 0.000 0.320
#> SRR1086935 4 0.4477 0.8033 0.312 0.000 0.000 0.688
#> SRR1344060 2 0.5565 0.6978 0.068 0.700 0.000 0.232
#> SRR1467922 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1090984 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1456991 1 0.4761 0.4620 0.628 0.000 0.372 0.000
#> SRR1085039 4 0.6555 0.6424 0.156 0.000 0.212 0.632
#> SRR1069303 1 0.1962 0.6631 0.944 0.008 0.024 0.024
#> SRR1091500 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1075198 2 0.3895 0.7785 0.012 0.804 0.000 0.184
#> SRR1086915 4 0.0188 0.6350 0.000 0.000 0.004 0.996
#> SRR1499503 2 0.1867 0.8536 0.072 0.928 0.000 0.000
#> SRR1094312 2 0.0000 0.8908 0.000 1.000 0.000 0.000
#> SRR1352437 4 0.4776 0.7775 0.376 0.000 0.000 0.624
#> SRR1436323 4 0.4776 0.7820 0.376 0.000 0.000 0.624
#> SRR1073507 1 0.6675 0.5491 0.616 0.000 0.228 0.156
#> SRR1401972 1 0.1389 0.6425 0.952 0.000 0.000 0.048
#> SRR1415510 2 0.4095 0.7033 0.192 0.792 0.000 0.016
#> SRR1327279 1 0.7834 0.0120 0.372 0.000 0.260 0.368
#> SRR1086983 4 0.0000 0.6373 0.000 0.000 0.000 1.000
#> SRR1105174 3 0.0000 0.8794 0.000 0.000 1.000 0.000
#> SRR1468893 3 0.5311 0.5451 0.024 0.000 0.648 0.328
#> SRR1362555 3 0.6192 0.3436 0.020 0.364 0.588 0.028
#> SRR1074526 4 0.4910 0.7908 0.276 0.020 0.000 0.704
#> SRR1326225 2 0.2345 0.8313 0.100 0.900 0.000 0.000
#> SRR1401933 1 0.5038 0.5220 0.652 0.000 0.012 0.336
#> SRR1324062 4 0.4781 0.8044 0.336 0.000 0.004 0.660
#> SRR1102296 4 0.4605 0.8049 0.336 0.000 0.000 0.664
#> SRR1085087 1 0.4900 0.6374 0.732 0.000 0.236 0.032
#> SRR1079046 3 0.3737 0.7796 0.020 0.004 0.840 0.136
#> SRR1328339 1 0.2760 0.5324 0.872 0.000 0.000 0.128
#> SRR1079782 2 0.5364 0.5819 0.008 0.616 0.008 0.368
#> SRR1092257 4 0.6275 0.6887 0.136 0.204 0.000 0.660
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.1498 0.9230 0.024 0.952 0.016 0.008 0.000
#> SRR1429287 2 0.3398 0.8917 0.044 0.864 0.044 0.048 0.000
#> SRR1359238 4 0.2775 0.8046 0.000 0.004 0.100 0.876 0.020
#> SRR1309597 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1441398 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1084055 2 0.0609 0.9253 0.020 0.980 0.000 0.000 0.000
#> SRR1417566 3 0.0451 0.8785 0.008 0.000 0.988 0.004 0.000
#> SRR1351857 4 0.2712 0.8073 0.000 0.000 0.088 0.880 0.032
#> SRR1487485 3 0.0000 0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1335875 3 0.0162 0.8800 0.000 0.000 0.996 0.000 0.004
#> SRR1073947 1 0.3274 0.7497 0.780 0.000 0.220 0.000 0.000
#> SRR1443483 5 0.0771 0.8904 0.000 0.000 0.004 0.020 0.976
#> SRR1346794 5 0.0290 0.8934 0.000 0.000 0.000 0.008 0.992
#> SRR1405245 5 0.3355 0.7960 0.132 0.000 0.000 0.036 0.832
#> SRR1409677 4 0.2416 0.7839 0.000 0.000 0.012 0.888 0.100
#> SRR1095549 3 0.3109 0.7035 0.000 0.000 0.800 0.000 0.200
#> SRR1323788 3 0.2989 0.7932 0.132 0.000 0.852 0.008 0.008
#> SRR1314054 3 0.3319 0.7595 0.020 0.160 0.820 0.000 0.000
#> SRR1077944 1 0.3840 0.7600 0.780 0.000 0.016 0.008 0.196
#> SRR1480587 2 0.0000 0.9283 0.000 1.000 0.000 0.000 0.000
#> SRR1311205 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1076369 4 0.1270 0.7936 0.000 0.000 0.000 0.948 0.052
#> SRR1453549 3 0.0000 0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1345782 1 0.4495 0.7575 0.736 0.000 0.064 0.000 0.200
#> SRR1447850 3 0.4985 0.6614 0.088 0.200 0.708 0.004 0.000
#> SRR1391553 3 0.0404 0.8786 0.012 0.000 0.988 0.000 0.000
#> SRR1444156 2 0.0290 0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1471731 3 0.0000 0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1120987 4 0.2020 0.8049 0.000 0.000 0.100 0.900 0.000
#> SRR1477363 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1391961 1 0.4196 0.7299 0.828 0.068 0.048 0.044 0.012
#> SRR1373879 3 0.0000 0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1318732 5 0.4760 0.7239 0.132 0.004 0.004 0.108 0.752
#> SRR1091404 1 0.3274 0.7465 0.780 0.000 0.000 0.000 0.220
#> SRR1402109 3 0.0000 0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1407336 3 0.0693 0.8774 0.008 0.000 0.980 0.012 0.000
#> SRR1097417 3 0.0963 0.8651 0.000 0.036 0.964 0.000 0.000
#> SRR1396227 1 0.3109 0.7550 0.800 0.000 0.200 0.000 0.000
#> SRR1400775 2 0.0609 0.9253 0.020 0.980 0.000 0.000 0.000
#> SRR1392861 3 0.0162 0.8797 0.000 0.000 0.996 0.004 0.000
#> SRR1472929 5 0.5000 0.7161 0.048 0.160 0.000 0.048 0.744
#> SRR1436740 4 0.5275 0.4922 0.276 0.000 0.084 0.640 0.000
#> SRR1477057 1 0.4130 0.7297 0.804 0.108 0.076 0.012 0.000
#> SRR1311980 1 0.4150 0.5103 0.612 0.000 0.388 0.000 0.000
#> SRR1069400 3 0.0671 0.8755 0.000 0.000 0.980 0.004 0.016
#> SRR1351016 1 0.3398 0.7523 0.780 0.000 0.216 0.000 0.004
#> SRR1096291 4 0.2020 0.8053 0.000 0.000 0.100 0.900 0.000
#> SRR1418145 4 0.2073 0.8033 0.016 0.004 0.044 0.928 0.008
#> SRR1488111 3 0.1095 0.8697 0.012 0.008 0.968 0.012 0.000
#> SRR1370495 5 0.2589 0.8508 0.048 0.008 0.000 0.044 0.900
#> SRR1352639 5 0.1928 0.8683 0.004 0.000 0.004 0.072 0.920
#> SRR1348911 3 0.0162 0.8794 0.004 0.000 0.996 0.000 0.000
#> SRR1467386 1 0.5166 0.7211 0.680 0.000 0.108 0.000 0.212
#> SRR1415956 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1500495 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1405099 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1345585 3 0.0162 0.8800 0.000 0.000 0.996 0.000 0.004
#> SRR1093196 3 0.0693 0.8774 0.008 0.000 0.980 0.012 0.000
#> SRR1466006 2 0.1106 0.9229 0.012 0.964 0.000 0.024 0.000
#> SRR1351557 2 0.0290 0.9278 0.008 0.992 0.000 0.000 0.000
#> SRR1382687 3 0.4471 0.7268 0.132 0.000 0.772 0.088 0.008
#> SRR1375549 4 0.4817 0.2043 0.404 0.000 0.000 0.572 0.024
#> SRR1101765 4 0.0771 0.7955 0.000 0.000 0.004 0.976 0.020
#> SRR1334461 5 0.2804 0.8475 0.048 0.016 0.000 0.044 0.892
#> SRR1094073 2 0.0290 0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1077549 3 0.3561 0.5557 0.260 0.000 0.740 0.000 0.000
#> SRR1440332 5 0.1557 0.8529 0.000 0.000 0.052 0.008 0.940
#> SRR1454177 3 0.3561 0.5943 0.000 0.000 0.740 0.260 0.000
#> SRR1082447 1 0.6141 0.3138 0.460 0.000 0.112 0.004 0.424
#> SRR1420043 3 0.0000 0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1432500 3 0.4135 0.5181 0.000 0.000 0.656 0.004 0.340
#> SRR1378045 3 0.0162 0.8797 0.000 0.004 0.996 0.000 0.000
#> SRR1334200 4 0.1883 0.7934 0.048 0.000 0.012 0.932 0.008
#> SRR1069539 4 0.2020 0.8049 0.000 0.000 0.100 0.900 0.000
#> SRR1343031 3 0.1430 0.8530 0.000 0.000 0.944 0.004 0.052
#> SRR1319690 5 0.0703 0.8839 0.000 0.000 0.024 0.000 0.976
#> SRR1310604 2 0.3964 0.8670 0.044 0.844 0.052 0.044 0.016
#> SRR1327747 4 0.5441 0.5400 0.000 0.000 0.096 0.624 0.280
#> SRR1072456 2 0.1469 0.9183 0.036 0.948 0.000 0.016 0.000
#> SRR1367896 3 0.1043 0.8636 0.000 0.000 0.960 0.000 0.040
#> SRR1480107 1 0.3398 0.7479 0.780 0.000 0.000 0.004 0.216
#> SRR1377756 4 0.4059 0.7705 0.132 0.000 0.060 0.800 0.008
#> SRR1435272 3 0.0162 0.8797 0.000 0.000 0.996 0.004 0.000
#> SRR1089230 4 0.1408 0.7978 0.000 0.000 0.008 0.948 0.044
#> SRR1389522 5 0.0404 0.8920 0.000 0.000 0.012 0.000 0.988
#> SRR1080600 4 0.4848 0.0216 0.024 0.420 0.000 0.556 0.000
#> SRR1086935 3 0.4088 0.3471 0.000 0.000 0.632 0.368 0.000
#> SRR1344060 2 0.5166 0.7013 0.100 0.692 0.004 0.204 0.000
#> SRR1467922 2 0.0290 0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1090984 3 0.0162 0.8800 0.000 0.000 0.996 0.000 0.004
#> SRR1456991 1 0.3274 0.7454 0.780 0.000 0.000 0.000 0.220
#> SRR1085039 3 0.3388 0.6986 0.000 0.000 0.792 0.008 0.200
#> SRR1069303 1 0.3210 0.7514 0.788 0.000 0.212 0.000 0.000
#> SRR1091500 2 0.0609 0.9253 0.020 0.980 0.000 0.000 0.000
#> SRR1075198 2 0.4065 0.7909 0.048 0.772 0.000 0.180 0.000
#> SRR1086915 4 0.2540 0.8090 0.000 0.000 0.088 0.888 0.024
#> SRR1499503 2 0.2234 0.9099 0.032 0.920 0.036 0.012 0.000
#> SRR1094312 2 0.0290 0.9279 0.008 0.992 0.000 0.000 0.000
#> SRR1352437 3 0.1410 0.8526 0.060 0.000 0.940 0.000 0.000
#> SRR1436323 3 0.1502 0.8484 0.056 0.000 0.940 0.004 0.000
#> SRR1073507 1 0.3690 0.7521 0.780 0.000 0.000 0.020 0.200
#> SRR1401972 1 0.3177 0.7530 0.792 0.000 0.208 0.000 0.000
#> SRR1415510 2 0.3498 0.8179 0.024 0.832 0.132 0.012 0.000
#> SRR1327279 3 0.6780 0.0297 0.284 0.000 0.472 0.008 0.236
#> SRR1086983 4 0.2329 0.7923 0.000 0.000 0.124 0.876 0.000
#> SRR1105174 5 0.0000 0.8956 0.000 0.000 0.000 0.000 1.000
#> SRR1468893 4 0.5816 0.4461 0.132 0.000 0.000 0.588 0.280
#> SRR1362555 5 0.6859 0.2189 0.048 0.356 0.000 0.108 0.488
#> SRR1074526 4 0.5061 0.2273 0.016 0.012 0.432 0.540 0.000
#> SRR1326225 2 0.2367 0.8873 0.020 0.904 0.072 0.004 0.000
#> SRR1401933 1 0.3143 0.5977 0.796 0.000 0.000 0.204 0.000
#> SRR1324062 3 0.0000 0.8799 0.000 0.000 1.000 0.000 0.000
#> SRR1102296 3 0.0162 0.8794 0.004 0.000 0.996 0.000 0.000
#> SRR1085087 1 0.3849 0.7688 0.800 0.000 0.020 0.016 0.164
#> SRR1079046 5 0.4488 0.6276 0.020 0.004 0.004 0.268 0.704
#> SRR1328339 1 0.4171 0.5062 0.604 0.000 0.396 0.000 0.000
#> SRR1079782 4 0.3019 0.7432 0.048 0.088 0.000 0.864 0.000
#> SRR1092257 3 0.6149 0.5246 0.020 0.160 0.620 0.200 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.3244 0.64145 0.000 0.732 0.000 0.000 0.268 0.000
#> SRR1429287 2 0.4618 0.62296 0.000 0.684 0.032 0.032 0.252 0.000
#> SRR1359238 4 0.2643 0.72123 0.000 0.000 0.128 0.856 0.008 0.008
#> SRR1309597 1 0.0146 0.88336 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1441398 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1084055 2 0.1444 0.70593 0.000 0.928 0.000 0.000 0.072 0.000
#> SRR1417566 3 0.1728 0.80646 0.000 0.000 0.924 0.004 0.064 0.008
#> SRR1351857 4 0.2752 0.73412 0.012 0.000 0.104 0.864 0.000 0.020
#> SRR1487485 3 0.0000 0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1335875 3 0.0146 0.83839 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1073947 6 0.4946 0.60460 0.100 0.000 0.284 0.000 0.000 0.616
#> SRR1443483 1 0.0922 0.86426 0.968 0.000 0.004 0.024 0.004 0.000
#> SRR1346794 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405245 1 0.4792 0.56407 0.720 0.000 0.000 0.028 0.124 0.128
#> SRR1409677 4 0.2282 0.70599 0.088 0.000 0.024 0.888 0.000 0.000
#> SRR1095549 3 0.3296 0.66710 0.180 0.000 0.796 0.000 0.004 0.020
#> SRR1323788 3 0.4978 0.59454 0.000 0.000 0.700 0.028 0.144 0.128
#> SRR1314054 3 0.5020 0.30527 0.000 0.372 0.548 0.000 0.080 0.000
#> SRR1077944 6 0.5202 0.60780 0.188 0.000 0.196 0.000 0.000 0.616
#> SRR1480587 2 0.1910 0.72354 0.000 0.892 0.000 0.000 0.108 0.000
#> SRR1311205 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1076369 4 0.0790 0.71362 0.032 0.000 0.000 0.968 0.000 0.000
#> SRR1453549 3 0.0000 0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1345782 6 0.5461 0.59185 0.164 0.000 0.248 0.000 0.004 0.584
#> SRR1447850 2 0.7554 0.04815 0.000 0.384 0.156 0.004 0.224 0.232
#> SRR1391553 3 0.0632 0.83551 0.000 0.000 0.976 0.000 0.024 0.000
#> SRR1444156 2 0.0713 0.71061 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1471731 3 0.1015 0.83422 0.000 0.004 0.968 0.004 0.012 0.012
#> SRR1120987 4 0.1814 0.73809 0.000 0.000 0.100 0.900 0.000 0.000
#> SRR1477363 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1391961 5 0.4612 0.41668 0.000 0.052 0.004 0.000 0.636 0.308
#> SRR1373879 3 0.0000 0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1318732 1 0.5630 0.48785 0.656 0.000 0.004 0.052 0.160 0.128
#> SRR1091404 6 0.4596 0.51907 0.340 0.000 0.036 0.008 0.000 0.616
#> SRR1402109 3 0.0146 0.83789 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1407336 3 0.1442 0.82433 0.000 0.000 0.944 0.012 0.004 0.040
#> SRR1097417 3 0.1010 0.82461 0.000 0.036 0.960 0.000 0.004 0.000
#> SRR1396227 6 0.2234 0.57582 0.000 0.000 0.124 0.004 0.000 0.872
#> SRR1400775 2 0.1267 0.70046 0.000 0.940 0.000 0.000 0.060 0.000
#> SRR1392861 3 0.0146 0.83816 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1472929 5 0.4596 0.63853 0.204 0.096 0.000 0.004 0.696 0.000
#> SRR1436740 4 0.4167 0.34661 0.000 0.000 0.020 0.612 0.000 0.368
#> SRR1477057 5 0.7024 0.20475 0.000 0.268 0.056 0.004 0.396 0.276
#> SRR1311980 6 0.3727 0.36173 0.000 0.000 0.388 0.000 0.000 0.612
#> SRR1069400 3 0.0717 0.83540 0.016 0.000 0.976 0.000 0.008 0.000
#> SRR1351016 6 0.3659 0.52248 0.000 0.000 0.364 0.000 0.000 0.636
#> SRR1096291 4 0.2020 0.73869 0.000 0.000 0.096 0.896 0.008 0.000
#> SRR1418145 4 0.3189 0.71944 0.000 0.004 0.060 0.848 0.080 0.008
#> SRR1488111 3 0.1007 0.82549 0.000 0.000 0.956 0.000 0.044 0.000
#> SRR1370495 5 0.3695 0.54754 0.376 0.000 0.000 0.000 0.624 0.000
#> SRR1352639 1 0.2034 0.80415 0.912 0.000 0.004 0.060 0.024 0.000
#> SRR1348911 3 0.0146 0.83781 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1467386 6 0.5506 0.56913 0.180 0.000 0.264 0.000 0.000 0.556
#> SRR1415956 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1500495 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405099 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345585 3 0.0146 0.83839 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1093196 3 0.0951 0.83438 0.000 0.000 0.968 0.008 0.004 0.020
#> SRR1466006 2 0.2527 0.70140 0.000 0.832 0.000 0.000 0.168 0.000
#> SRR1351557 2 0.2135 0.72179 0.000 0.872 0.000 0.000 0.128 0.000
#> SRR1382687 3 0.5436 0.55264 0.000 0.000 0.664 0.048 0.160 0.128
#> SRR1375549 4 0.6157 -0.16975 0.012 0.000 0.000 0.400 0.396 0.192
#> SRR1101765 4 0.1003 0.71141 0.016 0.000 0.000 0.964 0.020 0.000
#> SRR1334461 5 0.3515 0.60300 0.324 0.000 0.000 0.000 0.676 0.000
#> SRR1094073 2 0.0937 0.71797 0.000 0.960 0.000 0.000 0.040 0.000
#> SRR1077549 3 0.3409 0.44435 0.000 0.000 0.700 0.000 0.000 0.300
#> SRR1440332 1 0.1364 0.82239 0.944 0.000 0.048 0.004 0.004 0.000
#> SRR1454177 3 0.3360 0.56177 0.000 0.000 0.732 0.264 0.000 0.004
#> SRR1082447 1 0.5297 -0.18870 0.496 0.000 0.088 0.004 0.000 0.412
#> SRR1420043 3 0.0000 0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1432500 3 0.3699 0.46141 0.336 0.000 0.660 0.004 0.000 0.000
#> SRR1378045 3 0.0146 0.83830 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1334200 4 0.3296 0.65703 0.000 0.000 0.008 0.828 0.116 0.048
#> SRR1069539 4 0.1908 0.73891 0.000 0.000 0.096 0.900 0.004 0.000
#> SRR1343031 3 0.1349 0.81075 0.056 0.000 0.940 0.000 0.004 0.000
#> SRR1319690 1 0.0458 0.87163 0.984 0.000 0.016 0.000 0.000 0.000
#> SRR1310604 2 0.4174 0.54904 0.004 0.628 0.016 0.000 0.352 0.000
#> SRR1327747 4 0.5042 0.44462 0.288 0.000 0.108 0.604 0.000 0.000
#> SRR1072456 2 0.3482 0.60395 0.000 0.684 0.000 0.000 0.316 0.000
#> SRR1367896 3 0.1082 0.82383 0.040 0.000 0.956 0.000 0.004 0.000
#> SRR1480107 6 0.3795 0.47192 0.364 0.000 0.000 0.000 0.004 0.632
#> SRR1377756 4 0.5041 0.58945 0.000 0.000 0.024 0.688 0.160 0.128
#> SRR1435272 3 0.0146 0.83816 0.000 0.000 0.996 0.004 0.000 0.000
#> SRR1089230 4 0.0976 0.71902 0.016 0.000 0.008 0.968 0.000 0.008
#> SRR1389522 1 0.0146 0.88306 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1080600 4 0.5595 -0.12542 0.000 0.392 0.000 0.464 0.144 0.000
#> SRR1086935 3 0.4289 0.29731 0.000 0.000 0.612 0.360 0.028 0.000
#> SRR1344060 5 0.4301 0.46500 0.000 0.144 0.004 0.100 0.748 0.004
#> SRR1467922 2 0.1556 0.72230 0.000 0.920 0.000 0.000 0.080 0.000
#> SRR1090984 3 0.0858 0.83049 0.004 0.000 0.968 0.000 0.028 0.000
#> SRR1456991 6 0.3930 0.39233 0.420 0.000 0.000 0.000 0.004 0.576
#> SRR1085039 3 0.3183 0.65150 0.200 0.000 0.788 0.008 0.004 0.000
#> SRR1069303 6 0.2762 0.57259 0.000 0.000 0.196 0.000 0.000 0.804
#> SRR1091500 2 0.1411 0.69857 0.000 0.936 0.004 0.000 0.060 0.000
#> SRR1075198 2 0.5179 0.42262 0.000 0.516 0.000 0.092 0.392 0.000
#> SRR1086915 4 0.2121 0.73891 0.012 0.000 0.096 0.892 0.000 0.000
#> SRR1499503 2 0.4152 0.59964 0.000 0.664 0.032 0.000 0.304 0.000
#> SRR1094312 2 0.1075 0.70395 0.000 0.952 0.000 0.000 0.048 0.000
#> SRR1352437 3 0.3266 0.55792 0.000 0.000 0.728 0.000 0.000 0.272
#> SRR1436323 3 0.2191 0.76477 0.000 0.000 0.876 0.004 0.000 0.120
#> SRR1073507 6 0.5036 0.48354 0.140 0.000 0.000 0.228 0.000 0.632
#> SRR1401972 6 0.2871 0.57293 0.000 0.000 0.192 0.004 0.000 0.804
#> SRR1415510 2 0.5150 0.51048 0.000 0.624 0.188 0.000 0.188 0.000
#> SRR1327279 3 0.5975 0.13683 0.232 0.000 0.532 0.008 0.004 0.224
#> SRR1086983 4 0.2575 0.73521 0.000 0.000 0.100 0.872 0.024 0.004
#> SRR1105174 1 0.0000 0.88531 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1468893 4 0.6954 0.27899 0.236 0.000 0.000 0.480 0.156 0.128
#> SRR1362555 5 0.5058 0.61218 0.172 0.088 0.000 0.044 0.696 0.000
#> SRR1074526 4 0.4967 0.30440 0.000 0.016 0.392 0.552 0.040 0.000
#> SRR1326225 2 0.3544 0.68473 0.000 0.800 0.080 0.000 0.120 0.000
#> SRR1401933 6 0.5277 0.16046 0.000 0.000 0.000 0.364 0.108 0.528
#> SRR1324062 3 0.0000 0.83828 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1102296 3 0.0146 0.83826 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1085087 6 0.2958 0.54241 0.096 0.000 0.012 0.004 0.028 0.860
#> SRR1079046 5 0.6044 0.41990 0.348 0.000 0.004 0.216 0.432 0.000
#> SRR1328339 3 0.3833 -0.04084 0.000 0.000 0.556 0.000 0.000 0.444
#> SRR1079782 4 0.5351 0.39009 0.000 0.200 0.000 0.592 0.208 0.000
#> SRR1092257 2 0.6922 -0.00786 0.000 0.376 0.368 0.180 0.076 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
CV:mclust
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["CV", "mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.512 0.861 0.895 0.4268 0.572 0.572
#> 3 3 0.359 0.669 0.807 0.4144 0.787 0.632
#> 4 4 0.434 0.651 0.745 0.1211 0.935 0.839
#> 5 5 0.572 0.734 0.791 0.0663 0.927 0.809
#> 6 6 0.619 0.606 0.767 0.0460 0.996 0.989
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.9630 0.000 1.000
#> SRR1429287 2 0.0000 0.9630 0.000 1.000
#> SRR1359238 1 0.0000 0.8413 1.000 0.000
#> SRR1309597 1 0.1414 0.8479 0.980 0.020
#> SRR1441398 1 0.2423 0.8506 0.960 0.040
#> SRR1084055 2 0.0000 0.9630 0.000 1.000
#> SRR1417566 1 0.8386 0.8248 0.732 0.268
#> SRR1351857 1 0.0000 0.8413 1.000 0.000
#> SRR1487485 1 0.8207 0.8334 0.744 0.256
#> SRR1335875 1 0.8386 0.8248 0.732 0.268
#> SRR1073947 1 0.8327 0.8280 0.736 0.264
#> SRR1443483 1 0.0672 0.8448 0.992 0.008
#> SRR1346794 1 0.0672 0.8448 0.992 0.008
#> SRR1405245 1 0.7376 0.8492 0.792 0.208
#> SRR1409677 1 0.1184 0.8472 0.984 0.016
#> SRR1095549 1 0.0000 0.8413 1.000 0.000
#> SRR1323788 1 0.7219 0.8490 0.800 0.200
#> SRR1314054 2 0.0000 0.9630 0.000 1.000
#> SRR1077944 1 0.0938 0.8467 0.988 0.012
#> SRR1480587 2 0.0000 0.9630 0.000 1.000
#> SRR1311205 1 0.0672 0.8448 0.992 0.008
#> SRR1076369 1 0.8144 0.8361 0.748 0.252
#> SRR1453549 1 0.7376 0.8485 0.792 0.208
#> SRR1345782 1 0.0672 0.8448 0.992 0.008
#> SRR1447850 2 0.0000 0.9630 0.000 1.000
#> SRR1391553 1 0.8386 0.8248 0.732 0.268
#> SRR1444156 2 0.0000 0.9630 0.000 1.000
#> SRR1471731 1 0.8016 0.8377 0.756 0.244
#> SRR1120987 1 0.8386 0.8248 0.732 0.268
#> SRR1477363 1 0.0000 0.8413 1.000 0.000
#> SRR1391961 2 0.0000 0.9630 0.000 1.000
#> SRR1373879 1 0.3114 0.8567 0.944 0.056
#> SRR1318732 1 0.8081 0.8376 0.752 0.248
#> SRR1091404 1 0.1843 0.8496 0.972 0.028
#> SRR1402109 1 0.0000 0.8413 1.000 0.000
#> SRR1407336 1 0.0000 0.8413 1.000 0.000
#> SRR1097417 2 0.9850 -0.0922 0.428 0.572
#> SRR1396227 1 0.8386 0.8248 0.732 0.268
#> SRR1400775 2 0.0000 0.9630 0.000 1.000
#> SRR1392861 1 0.8081 0.8376 0.752 0.248
#> SRR1472929 2 0.0000 0.9630 0.000 1.000
#> SRR1436740 1 0.8144 0.8357 0.748 0.252
#> SRR1477057 2 0.0000 0.9630 0.000 1.000
#> SRR1311980 1 0.8386 0.8248 0.732 0.268
#> SRR1069400 1 0.0938 0.8461 0.988 0.012
#> SRR1351016 1 0.2778 0.8506 0.952 0.048
#> SRR1096291 1 0.6531 0.8579 0.832 0.168
#> SRR1418145 1 0.9427 0.6960 0.640 0.360
#> SRR1488111 2 0.5946 0.7755 0.144 0.856
#> SRR1370495 2 0.0000 0.9630 0.000 1.000
#> SRR1352639 1 0.8207 0.8334 0.744 0.256
#> SRR1348911 1 0.8386 0.8248 0.732 0.268
#> SRR1467386 1 0.0672 0.8448 0.992 0.008
#> SRR1415956 1 0.3114 0.8501 0.944 0.056
#> SRR1500495 1 0.0672 0.8448 0.992 0.008
#> SRR1405099 1 0.2948 0.8505 0.948 0.052
#> SRR1345585 1 0.6247 0.8592 0.844 0.156
#> SRR1093196 1 0.0938 0.8461 0.988 0.012
#> SRR1466006 2 0.0000 0.9630 0.000 1.000
#> SRR1351557 2 0.0000 0.9630 0.000 1.000
#> SRR1382687 1 0.7376 0.8485 0.792 0.208
#> SRR1375549 2 0.8267 0.5408 0.260 0.740
#> SRR1101765 1 0.8016 0.8378 0.756 0.244
#> SRR1334461 2 0.0000 0.9630 0.000 1.000
#> SRR1094073 2 0.0000 0.9630 0.000 1.000
#> SRR1077549 1 0.7376 0.8502 0.792 0.208
#> SRR1440332 1 0.0000 0.8413 1.000 0.000
#> SRR1454177 1 0.8081 0.8376 0.752 0.248
#> SRR1082447 1 0.7376 0.8492 0.792 0.208
#> SRR1420043 1 0.2603 0.8553 0.956 0.044
#> SRR1432500 1 0.0000 0.8413 1.000 0.000
#> SRR1378045 1 0.8386 0.8248 0.732 0.268
#> SRR1334200 2 0.0376 0.9590 0.004 0.996
#> SRR1069539 1 0.8081 0.8376 0.752 0.248
#> SRR1343031 1 0.0000 0.8413 1.000 0.000
#> SRR1319690 1 0.0672 0.8448 0.992 0.008
#> SRR1310604 2 0.0000 0.9630 0.000 1.000
#> SRR1327747 1 0.0672 0.8448 0.992 0.008
#> SRR1072456 2 0.0000 0.9630 0.000 1.000
#> SRR1367896 1 0.8267 0.8308 0.740 0.260
#> SRR1480107 1 0.2603 0.8510 0.956 0.044
#> SRR1377756 1 0.7219 0.8490 0.800 0.200
#> SRR1435272 1 0.2778 0.8510 0.952 0.048
#> SRR1089230 1 0.7602 0.8469 0.780 0.220
#> SRR1389522 1 0.1633 0.8490 0.976 0.024
#> SRR1080600 2 0.0000 0.9630 0.000 1.000
#> SRR1086935 1 0.8386 0.8248 0.732 0.268
#> SRR1344060 2 0.0000 0.9630 0.000 1.000
#> SRR1467922 2 0.0000 0.9630 0.000 1.000
#> SRR1090984 1 0.8267 0.8308 0.740 0.260
#> SRR1456991 1 0.3114 0.8500 0.944 0.056
#> SRR1085039 1 0.0000 0.8413 1.000 0.000
#> SRR1069303 1 0.8813 0.7878 0.700 0.300
#> SRR1091500 2 0.0000 0.9630 0.000 1.000
#> SRR1075198 2 0.0000 0.9630 0.000 1.000
#> SRR1086915 1 0.5842 0.8581 0.860 0.140
#> SRR1499503 2 0.0000 0.9630 0.000 1.000
#> SRR1094312 2 0.0000 0.9630 0.000 1.000
#> SRR1352437 1 0.8386 0.8248 0.732 0.268
#> SRR1436323 1 0.0000 0.8413 1.000 0.000
#> SRR1073507 1 0.3114 0.8573 0.944 0.056
#> SRR1401972 1 0.8386 0.8248 0.732 0.268
#> SRR1415510 2 0.0000 0.9630 0.000 1.000
#> SRR1327279 1 0.0000 0.8413 1.000 0.000
#> SRR1086983 1 0.6623 0.8564 0.828 0.172
#> SRR1105174 1 0.3431 0.8579 0.936 0.064
#> SRR1468893 1 0.7376 0.8492 0.792 0.208
#> SRR1362555 2 0.0000 0.9630 0.000 1.000
#> SRR1074526 2 0.6712 0.7191 0.176 0.824
#> SRR1326225 2 0.0000 0.9630 0.000 1.000
#> SRR1401933 1 0.7376 0.8492 0.792 0.208
#> SRR1324062 1 0.8327 0.8279 0.736 0.264
#> SRR1102296 1 0.8386 0.8248 0.732 0.268
#> SRR1085087 1 0.7219 0.8520 0.800 0.200
#> SRR1079046 2 0.0000 0.9630 0.000 1.000
#> SRR1328339 1 0.8267 0.8308 0.740 0.260
#> SRR1079782 2 0.0000 0.9630 0.000 1.000
#> SRR1092257 2 0.0000 0.9630 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0892 0.8838 0.020 0.980 0.000
#> SRR1429287 2 0.0892 0.8845 0.020 0.980 0.000
#> SRR1359238 3 0.1529 0.7727 0.040 0.000 0.960
#> SRR1309597 3 0.1529 0.7690 0.040 0.000 0.960
#> SRR1441398 3 0.4504 0.6594 0.196 0.000 0.804
#> SRR1084055 2 0.0892 0.8758 0.020 0.980 0.000
#> SRR1417566 1 0.8965 0.6915 0.564 0.240 0.196
#> SRR1351857 3 0.1529 0.7727 0.040 0.000 0.960
#> SRR1487485 3 0.9780 -0.3896 0.344 0.240 0.416
#> SRR1335875 1 0.6922 0.7432 0.720 0.080 0.200
#> SRR1073947 1 0.5576 0.6977 0.812 0.084 0.104
#> SRR1443483 3 0.0237 0.7766 0.004 0.000 0.996
#> SRR1346794 3 0.0892 0.7773 0.020 0.000 0.980
#> SRR1405245 3 0.6297 0.6408 0.060 0.184 0.756
#> SRR1409677 3 0.1989 0.7736 0.048 0.004 0.948
#> SRR1095549 3 0.0237 0.7777 0.004 0.000 0.996
#> SRR1323788 3 0.5277 0.6530 0.024 0.180 0.796
#> SRR1314054 2 0.0424 0.8840 0.008 0.992 0.000
#> SRR1077944 3 0.3267 0.7559 0.116 0.000 0.884
#> SRR1480587 2 0.0424 0.8850 0.008 0.992 0.000
#> SRR1311205 3 0.2711 0.7528 0.088 0.000 0.912
#> SRR1076369 3 0.7413 0.5260 0.092 0.224 0.684
#> SRR1453549 3 0.6062 0.6496 0.160 0.064 0.776
#> SRR1345782 3 0.2356 0.7601 0.072 0.000 0.928
#> SRR1447850 2 0.0592 0.8851 0.012 0.988 0.000
#> SRR1391553 1 0.6827 0.7436 0.728 0.080 0.192
#> SRR1444156 2 0.0747 0.8760 0.016 0.984 0.000
#> SRR1471731 3 0.7557 0.4564 0.264 0.080 0.656
#> SRR1120987 1 0.9631 0.5642 0.468 0.244 0.288
#> SRR1477363 3 0.0237 0.7777 0.004 0.000 0.996
#> SRR1391961 2 0.3941 0.8360 0.156 0.844 0.000
#> SRR1373879 3 0.0848 0.7788 0.008 0.008 0.984
#> SRR1318732 1 0.9715 0.4595 0.400 0.220 0.380
#> SRR1091404 3 0.6079 0.2579 0.388 0.000 0.612
#> SRR1402109 3 0.0237 0.7766 0.004 0.000 0.996
#> SRR1407336 3 0.0000 0.7772 0.000 0.000 1.000
#> SRR1097417 1 0.9046 0.5282 0.516 0.332 0.152
#> SRR1396227 1 0.4925 0.6994 0.844 0.080 0.076
#> SRR1400775 2 0.0592 0.8786 0.012 0.988 0.000
#> SRR1392861 3 0.7058 0.5983 0.212 0.080 0.708
#> SRR1472929 2 0.4062 0.8339 0.164 0.836 0.000
#> SRR1436740 3 0.7501 0.5790 0.212 0.104 0.684
#> SRR1477057 2 0.3573 0.8444 0.120 0.876 0.004
#> SRR1311980 1 0.6827 0.7436 0.728 0.080 0.192
#> SRR1069400 3 0.0424 0.7762 0.008 0.000 0.992
#> SRR1351016 3 0.6527 0.1998 0.404 0.008 0.588
#> SRR1096291 3 0.4217 0.7366 0.032 0.100 0.868
#> SRR1418145 1 0.9496 0.4730 0.440 0.372 0.188
#> SRR1488111 2 0.8684 -0.1532 0.392 0.500 0.108
#> SRR1370495 2 0.4399 0.8191 0.188 0.812 0.000
#> SRR1352639 1 0.9680 0.6032 0.456 0.244 0.300
#> SRR1348911 1 0.8303 0.7413 0.632 0.172 0.196
#> SRR1467386 3 0.3038 0.7593 0.104 0.000 0.896
#> SRR1415956 1 0.6309 0.0795 0.504 0.000 0.496
#> SRR1500495 3 0.1529 0.7719 0.040 0.000 0.960
#> SRR1405099 3 0.6280 0.0453 0.460 0.000 0.540
#> SRR1345585 3 0.6962 0.2196 0.316 0.036 0.648
#> SRR1093196 3 0.0237 0.7785 0.004 0.000 0.996
#> SRR1466006 2 0.0747 0.8847 0.016 0.984 0.000
#> SRR1351557 2 0.0000 0.8839 0.000 1.000 0.000
#> SRR1382687 3 0.5842 0.6366 0.036 0.196 0.768
#> SRR1375549 1 0.7674 -0.0622 0.480 0.476 0.044
#> SRR1101765 3 0.8005 0.5152 0.128 0.224 0.648
#> SRR1334461 2 0.4062 0.8339 0.164 0.836 0.000
#> SRR1094073 2 0.0237 0.8825 0.004 0.996 0.000
#> SRR1077549 3 0.6446 0.6430 0.212 0.052 0.736
#> SRR1440332 3 0.0237 0.7766 0.004 0.000 0.996
#> SRR1454177 3 0.7058 0.5983 0.212 0.080 0.708
#> SRR1082447 3 0.7382 0.6282 0.116 0.184 0.700
#> SRR1420043 3 0.0661 0.7786 0.008 0.004 0.988
#> SRR1432500 3 0.1529 0.7727 0.040 0.000 0.960
#> SRR1378045 1 0.8876 0.7203 0.576 0.204 0.220
#> SRR1334200 2 0.7703 0.4324 0.232 0.664 0.104
#> SRR1069539 3 0.9624 -0.1039 0.292 0.240 0.468
#> SRR1343031 3 0.0237 0.7766 0.004 0.000 0.996
#> SRR1319690 3 0.0592 0.7756 0.012 0.000 0.988
#> SRR1310604 2 0.5339 0.7607 0.096 0.824 0.080
#> SRR1327747 3 0.0237 0.7771 0.004 0.000 0.996
#> SRR1072456 2 0.0592 0.8853 0.012 0.988 0.000
#> SRR1367896 1 0.7101 0.7394 0.704 0.080 0.216
#> SRR1480107 3 0.5254 0.6178 0.264 0.000 0.736
#> SRR1377756 3 0.6203 0.6454 0.056 0.184 0.760
#> SRR1435272 3 0.2116 0.7749 0.040 0.012 0.948
#> SRR1089230 3 0.6229 0.6580 0.064 0.172 0.764
#> SRR1389522 3 0.6330 0.0267 0.396 0.004 0.600
#> SRR1080600 2 0.3340 0.8445 0.120 0.880 0.000
#> SRR1086935 3 0.9040 0.2528 0.204 0.240 0.556
#> SRR1344060 2 0.4002 0.8345 0.160 0.840 0.000
#> SRR1467922 2 0.0424 0.8850 0.008 0.992 0.000
#> SRR1090984 1 0.9351 0.6779 0.516 0.228 0.256
#> SRR1456991 1 0.6244 0.2567 0.560 0.000 0.440
#> SRR1085039 3 0.1529 0.7727 0.040 0.000 0.960
#> SRR1069303 1 0.4636 0.6550 0.852 0.104 0.044
#> SRR1091500 2 0.0747 0.8785 0.016 0.984 0.000
#> SRR1075198 2 0.3038 0.8564 0.104 0.896 0.000
#> SRR1086915 3 0.4642 0.7424 0.060 0.084 0.856
#> SRR1499503 2 0.0424 0.8850 0.008 0.992 0.000
#> SRR1094312 2 0.0747 0.8760 0.016 0.984 0.000
#> SRR1352437 1 0.6291 0.7388 0.768 0.080 0.152
#> SRR1436323 3 0.0661 0.7802 0.008 0.004 0.988
#> SRR1073507 3 0.3715 0.7531 0.128 0.004 0.868
#> SRR1401972 1 0.6372 0.7408 0.764 0.084 0.152
#> SRR1415510 2 0.2796 0.8563 0.092 0.908 0.000
#> SRR1327279 3 0.1163 0.7762 0.028 0.000 0.972
#> SRR1086983 3 0.4995 0.7378 0.068 0.092 0.840
#> SRR1105174 3 0.3083 0.7758 0.060 0.024 0.916
#> SRR1468893 3 0.7179 0.6338 0.104 0.184 0.712
#> SRR1362555 2 0.5243 0.7449 0.072 0.828 0.100
#> SRR1074526 2 0.8378 0.2087 0.284 0.596 0.120
#> SRR1326225 2 0.0747 0.8760 0.016 0.984 0.000
#> SRR1401933 3 0.7036 0.6366 0.096 0.184 0.720
#> SRR1324062 1 0.7876 0.5843 0.612 0.080 0.308
#> SRR1102296 1 0.6349 0.7389 0.764 0.080 0.156
#> SRR1085087 1 0.8134 0.6193 0.584 0.088 0.328
#> SRR1079046 2 0.4291 0.8236 0.180 0.820 0.000
#> SRR1328339 1 0.7222 0.7389 0.696 0.084 0.220
#> SRR1079782 2 0.3038 0.8564 0.104 0.896 0.000
#> SRR1092257 2 0.0892 0.8758 0.020 0.980 0.000
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.4511 0.7589 0.000 0.724 0.008 NA
#> SRR1429287 2 0.4621 0.7592 0.000 0.708 0.008 NA
#> SRR1359238 1 0.0937 0.7737 0.976 0.000 0.012 NA
#> SRR1309597 1 0.4440 0.7350 0.804 0.000 0.060 NA
#> SRR1441398 1 0.6989 0.5219 0.600 0.004 0.184 NA
#> SRR1084055 2 0.5125 0.7380 0.000 0.604 0.008 NA
#> SRR1417566 3 0.4965 0.7527 0.112 0.100 0.784 NA
#> SRR1351857 1 0.1584 0.7733 0.952 0.000 0.012 NA
#> SRR1487485 3 0.8359 0.5448 0.248 0.200 0.504 NA
#> SRR1335875 3 0.3488 0.7708 0.108 0.020 0.864 NA
#> SRR1073947 3 0.5911 0.3906 0.304 0.016 0.648 NA
#> SRR1443483 1 0.3198 0.7656 0.880 0.000 0.040 NA
#> SRR1346794 1 0.3945 0.7504 0.828 0.004 0.024 NA
#> SRR1405245 1 0.6603 0.6824 0.708 0.128 0.068 NA
#> SRR1409677 1 0.3109 0.7645 0.880 0.004 0.016 NA
#> SRR1095549 1 0.1824 0.7727 0.936 0.000 0.004 NA
#> SRR1323788 1 0.5943 0.6940 0.736 0.124 0.024 NA
#> SRR1314054 2 0.5326 0.7383 0.000 0.604 0.016 NA
#> SRR1077944 1 0.2660 0.7648 0.908 0.000 0.036 NA
#> SRR1480587 2 0.4955 0.7498 0.000 0.648 0.008 NA
#> SRR1311205 1 0.3617 0.7541 0.860 0.000 0.064 NA
#> SRR1076369 1 0.8311 0.4844 0.568 0.176 0.116 NA
#> SRR1453549 1 0.6099 0.6143 0.688 0.012 0.220 NA
#> SRR1345782 1 0.3156 0.7640 0.884 0.000 0.048 NA
#> SRR1447850 2 0.4908 0.7545 0.000 0.692 0.016 NA
#> SRR1391553 3 0.3853 0.7679 0.100 0.040 0.852 NA
#> SRR1444156 2 0.5125 0.7380 0.000 0.604 0.008 NA
#> SRR1471731 1 0.5838 0.3027 0.560 0.012 0.412 NA
#> SRR1120987 3 0.7948 0.6105 0.228 0.200 0.540 NA
#> SRR1477363 1 0.2179 0.7732 0.924 0.000 0.012 NA
#> SRR1391961 2 0.3934 0.6641 0.000 0.836 0.048 NA
#> SRR1373879 1 0.2473 0.7709 0.908 0.000 0.012 NA
#> SRR1318732 3 0.8868 0.5214 0.248 0.144 0.488 NA
#> SRR1091404 1 0.6786 0.4636 0.608 0.004 0.256 NA
#> SRR1402109 1 0.1584 0.7732 0.952 0.000 0.012 NA
#> SRR1407336 1 0.2255 0.7730 0.920 0.000 0.012 NA
#> SRR1097417 3 0.6636 0.5773 0.108 0.256 0.628 NA
#> SRR1396227 3 0.3215 0.7308 0.076 0.016 0.888 NA
#> SRR1400775 2 0.5125 0.7380 0.000 0.604 0.008 NA
#> SRR1392861 1 0.6000 0.5831 0.688 0.020 0.240 NA
#> SRR1472929 2 0.3523 0.6596 0.000 0.856 0.032 NA
#> SRR1436740 1 0.5849 0.5894 0.692 0.032 0.248 NA
#> SRR1477057 2 0.7211 0.7093 0.008 0.540 0.128 NA
#> SRR1311980 3 0.2465 0.7406 0.044 0.020 0.924 NA
#> SRR1069400 1 0.3907 0.7511 0.836 0.000 0.044 NA
#> SRR1351016 1 0.6704 0.3728 0.568 0.004 0.336 NA
#> SRR1096291 1 0.5734 0.7066 0.744 0.116 0.016 NA
#> SRR1418145 3 0.7530 0.3864 0.112 0.392 0.476 NA
#> SRR1488111 2 0.7138 0.0650 0.056 0.516 0.392 NA
#> SRR1370495 2 0.3674 0.6496 0.000 0.848 0.036 NA
#> SRR1352639 3 0.7913 0.6029 0.236 0.200 0.536 NA
#> SRR1348911 3 0.3976 0.7717 0.112 0.044 0.840 NA
#> SRR1467386 1 0.3194 0.7584 0.888 0.004 0.056 NA
#> SRR1415956 1 0.7636 0.3481 0.500 0.004 0.268 NA
#> SRR1500495 1 0.3181 0.7654 0.888 0.004 0.064 NA
#> SRR1405099 1 0.7654 0.3476 0.496 0.004 0.272 NA
#> SRR1345585 3 0.6993 0.2865 0.440 0.032 0.480 NA
#> SRR1093196 1 0.2542 0.7713 0.904 0.000 0.012 NA
#> SRR1466006 2 0.4661 0.7535 0.000 0.728 0.016 NA
#> SRR1351557 2 0.5055 0.7443 0.000 0.624 0.008 NA
#> SRR1382687 1 0.6047 0.6813 0.724 0.128 0.020 NA
#> SRR1375549 2 0.7930 -0.0821 0.100 0.496 0.352 NA
#> SRR1101765 1 0.8111 0.5266 0.588 0.164 0.108 NA
#> SRR1334461 2 0.3523 0.6596 0.000 0.856 0.032 NA
#> SRR1094073 2 0.5125 0.7380 0.000 0.604 0.008 NA
#> SRR1077549 1 0.4647 0.7045 0.796 0.012 0.156 NA
#> SRR1440332 1 0.1938 0.7728 0.936 0.000 0.012 NA
#> SRR1454177 1 0.6030 0.5849 0.684 0.020 0.244 NA
#> SRR1082447 1 0.6570 0.6808 0.712 0.124 0.080 NA
#> SRR1420043 1 0.1909 0.7762 0.940 0.004 0.008 NA
#> SRR1432500 1 0.1406 0.7720 0.960 0.000 0.016 NA
#> SRR1378045 3 0.5429 0.6518 0.048 0.184 0.748 NA
#> SRR1334200 2 0.6001 0.4235 0.096 0.728 0.152 NA
#> SRR1069539 1 0.9398 -0.3472 0.340 0.212 0.340 NA
#> SRR1343031 1 0.1302 0.7732 0.956 0.000 0.000 NA
#> SRR1319690 1 0.3428 0.7574 0.844 0.000 0.012 NA
#> SRR1310604 2 0.2218 0.6767 0.036 0.932 0.028 NA
#> SRR1327747 1 0.3105 0.7615 0.856 0.000 0.004 NA
#> SRR1072456 2 0.5088 0.7582 0.000 0.688 0.024 NA
#> SRR1367896 3 0.3166 0.7702 0.116 0.016 0.868 NA
#> SRR1480107 1 0.7059 0.4835 0.592 0.004 0.200 NA
#> SRR1377756 1 0.5510 0.6903 0.760 0.124 0.016 NA
#> SRR1435272 1 0.2352 0.7731 0.928 0.012 0.016 NA
#> SRR1089230 1 0.6212 0.6846 0.724 0.132 0.036 NA
#> SRR1389522 1 0.5564 0.4525 0.656 0.012 0.312 NA
#> SRR1080600 2 0.2125 0.6913 0.004 0.932 0.052 NA
#> SRR1086935 3 0.8125 0.3544 0.364 0.104 0.472 NA
#> SRR1344060 2 0.4060 0.6555 0.004 0.836 0.048 NA
#> SRR1467922 2 0.4831 0.7552 0.000 0.704 0.016 NA
#> SRR1090984 3 0.4362 0.7698 0.136 0.040 0.816 NA
#> SRR1456991 1 0.7508 0.3034 0.496 0.004 0.324 NA
#> SRR1085039 1 0.1059 0.7729 0.972 0.000 0.016 NA
#> SRR1069303 3 0.3069 0.6918 0.008 0.060 0.896 NA
#> SRR1091500 2 0.5125 0.7380 0.000 0.604 0.008 NA
#> SRR1075198 2 0.1022 0.7010 0.000 0.968 0.032 NA
#> SRR1086915 1 0.5715 0.7116 0.756 0.108 0.028 NA
#> SRR1499503 2 0.4511 0.7583 0.000 0.724 0.008 NA
#> SRR1094312 2 0.5125 0.7380 0.000 0.604 0.008 NA
#> SRR1352437 3 0.2718 0.7296 0.056 0.020 0.912 NA
#> SRR1436323 1 0.1661 0.7745 0.944 0.000 0.004 NA
#> SRR1073507 1 0.4544 0.7518 0.832 0.036 0.076 NA
#> SRR1401972 3 0.2718 0.7296 0.056 0.020 0.912 NA
#> SRR1415510 2 0.2214 0.7127 0.000 0.928 0.044 NA
#> SRR1327279 1 0.2060 0.7734 0.932 0.000 0.016 NA
#> SRR1086983 1 0.3911 0.7477 0.856 0.092 0.028 NA
#> SRR1105174 1 0.4478 0.7528 0.832 0.088 0.028 NA
#> SRR1468893 1 0.6685 0.6699 0.700 0.128 0.060 NA
#> SRR1362555 2 0.2797 0.6527 0.056 0.908 0.028 NA
#> SRR1074526 2 0.6797 0.2392 0.100 0.608 0.280 NA
#> SRR1326225 2 0.5125 0.7380 0.000 0.604 0.008 NA
#> SRR1401933 1 0.6023 0.6848 0.736 0.124 0.032 NA
#> SRR1324062 3 0.4768 0.7297 0.192 0.016 0.772 NA
#> SRR1102296 3 0.3166 0.7458 0.080 0.020 0.888 NA
#> SRR1085087 3 0.5565 0.6054 0.308 0.032 0.656 NA
#> SRR1079046 2 0.3822 0.6464 0.004 0.844 0.032 NA
#> SRR1328339 3 0.3607 0.7677 0.124 0.016 0.852 NA
#> SRR1079782 2 0.1109 0.7036 0.000 0.968 0.028 NA
#> SRR1092257 2 0.5125 0.7380 0.000 0.604 0.008 NA
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.4216 0.71127 0.000 0.780 0.000 NA 0.100
#> SRR1429287 2 0.3752 0.75049 0.000 0.812 0.000 NA 0.064
#> SRR1359238 1 0.1282 0.83218 0.952 0.000 0.000 NA 0.004
#> SRR1309597 1 0.4377 0.78434 0.760 0.000 0.048 NA 0.008
#> SRR1441398 1 0.3701 0.80749 0.836 0.000 0.044 NA 0.020
#> SRR1084055 2 0.0162 0.90398 0.000 0.996 0.000 NA 0.004
#> SRR1417566 3 0.1699 0.75207 0.036 0.004 0.944 NA 0.008
#> SRR1351857 1 0.1043 0.83208 0.960 0.000 0.000 NA 0.000
#> SRR1487485 3 0.6761 0.60008 0.068 0.044 0.652 NA 0.160
#> SRR1335875 3 0.1186 0.74830 0.020 0.000 0.964 NA 0.008
#> SRR1073947 1 0.6617 0.64803 0.616 0.000 0.176 NA 0.072
#> SRR1443483 1 0.3063 0.82265 0.864 0.000 0.036 NA 0.004
#> SRR1346794 1 0.3597 0.79884 0.800 0.000 0.012 NA 0.008
#> SRR1405245 1 0.4529 0.73203 0.732 0.000 0.040 NA 0.008
#> SRR1409677 1 0.4145 0.77329 0.736 0.004 0.004 NA 0.012
#> SRR1095549 1 0.0932 0.83085 0.972 0.000 0.004 NA 0.004
#> SRR1323788 1 0.2777 0.82050 0.864 0.000 0.016 NA 0.000
#> SRR1314054 2 0.0000 0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1077944 1 0.2208 0.82709 0.908 0.000 0.020 NA 0.000
#> SRR1480587 2 0.1270 0.88049 0.000 0.948 0.000 NA 0.052
#> SRR1311205 1 0.2102 0.82752 0.916 0.000 0.012 NA 0.004
#> SRR1076369 1 0.7262 0.38410 0.456 0.052 0.056 NA 0.040
#> SRR1453549 1 0.5686 0.64228 0.656 0.000 0.208 NA 0.012
#> SRR1345782 1 0.1892 0.82464 0.916 0.000 0.004 NA 0.000
#> SRR1447850 2 0.0794 0.89449 0.000 0.972 0.000 NA 0.000
#> SRR1391553 3 0.1805 0.74845 0.020 0.008 0.944 NA 0.016
#> SRR1444156 2 0.0000 0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1471731 1 0.5757 0.21951 0.496 0.000 0.416 NA 0.000
#> SRR1120987 3 0.4759 0.73367 0.064 0.036 0.792 NA 0.016
#> SRR1477363 1 0.1082 0.83120 0.964 0.000 0.000 NA 0.008
#> SRR1391961 5 0.3928 0.77118 0.000 0.176 0.008 NA 0.788
#> SRR1373879 1 0.2805 0.81713 0.872 0.000 0.012 NA 0.008
#> SRR1318732 3 0.6429 0.49376 0.108 0.004 0.480 NA 0.012
#> SRR1091404 1 0.4659 0.79120 0.744 0.000 0.084 NA 0.004
#> SRR1402109 1 0.1630 0.82972 0.944 0.000 0.016 NA 0.004
#> SRR1407336 1 0.2644 0.82102 0.888 0.000 0.012 NA 0.012
#> SRR1097417 3 0.5135 0.64110 0.044 0.072 0.752 NA 0.128
#> SRR1396227 3 0.5801 0.67068 0.096 0.000 0.700 NA 0.076
#> SRR1400775 2 0.0162 0.90398 0.000 0.996 0.000 NA 0.004
#> SRR1392861 1 0.6318 0.53967 0.576 0.000 0.260 NA 0.016
#> SRR1472929 5 0.4230 0.77391 0.000 0.192 0.008 NA 0.764
#> SRR1436740 1 0.5682 0.68916 0.664 0.000 0.168 NA 0.012
#> SRR1477057 2 0.4077 0.70867 0.000 0.800 0.128 NA 0.064
#> SRR1311980 3 0.3086 0.73311 0.020 0.000 0.876 NA 0.068
#> SRR1069400 1 0.4195 0.78699 0.768 0.000 0.036 NA 0.008
#> SRR1351016 1 0.4225 0.81070 0.784 0.000 0.076 NA 0.004
#> SRR1096291 1 0.4598 0.75597 0.716 0.000 0.008 NA 0.036
#> SRR1418145 3 0.8337 0.19569 0.040 0.076 0.448 NA 0.256
#> SRR1488111 3 0.8084 0.06962 0.008 0.188 0.464 NA 0.212
#> SRR1370495 5 0.3304 0.78135 0.000 0.168 0.016 NA 0.816
#> SRR1352639 3 0.6497 0.56415 0.284 0.008 0.588 NA 0.064
#> SRR1348911 3 0.1243 0.75160 0.028 0.008 0.960 NA 0.004
#> SRR1467386 1 0.2825 0.81417 0.860 0.000 0.016 NA 0.000
#> SRR1415956 1 0.4565 0.78856 0.788 0.000 0.068 NA 0.040
#> SRR1500495 1 0.2522 0.82681 0.896 0.000 0.024 NA 0.004
#> SRR1405099 1 0.4539 0.78707 0.788 0.000 0.060 NA 0.040
#> SRR1345585 3 0.6832 0.44788 0.300 0.000 0.472 NA 0.012
#> SRR1093196 1 0.3272 0.81255 0.848 0.000 0.016 NA 0.016
#> SRR1466006 2 0.4334 0.71348 0.000 0.764 0.000 NA 0.080
#> SRR1351557 2 0.0162 0.90426 0.000 0.996 0.000 NA 0.004
#> SRR1382687 1 0.4624 0.70416 0.676 0.000 0.016 NA 0.012
#> SRR1375549 5 0.8203 0.00125 0.208 0.052 0.280 NA 0.424
#> SRR1101765 1 0.7356 0.46985 0.512 0.060 0.056 NA 0.048
#> SRR1334461 5 0.3813 0.77263 0.000 0.164 0.008 NA 0.800
#> SRR1094073 2 0.0000 0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1077549 1 0.2609 0.83028 0.896 0.000 0.048 NA 0.004
#> SRR1440332 1 0.1697 0.82800 0.932 0.000 0.008 NA 0.000
#> SRR1454177 1 0.5696 0.67536 0.668 0.000 0.176 NA 0.016
#> SRR1082447 1 0.3224 0.82063 0.824 0.000 0.016 NA 0.000
#> SRR1420043 1 0.1854 0.83313 0.936 0.000 0.020 NA 0.008
#> SRR1432500 1 0.1704 0.82805 0.928 0.000 0.004 NA 0.000
#> SRR1378045 3 0.2956 0.72506 0.008 0.064 0.888 NA 0.024
#> SRR1334200 5 0.7441 0.72784 0.032 0.188 0.048 NA 0.560
#> SRR1069539 3 0.9224 0.15900 0.168 0.048 0.300 NA 0.196
#> SRR1343031 1 0.0867 0.83006 0.976 0.000 0.008 NA 0.008
#> SRR1319690 1 0.3387 0.80679 0.828 0.000 0.012 NA 0.012
#> SRR1310604 5 0.5760 0.76474 0.000 0.240 0.024 NA 0.648
#> SRR1327747 1 0.2957 0.81467 0.860 0.000 0.008 NA 0.012
#> SRR1072456 2 0.2536 0.80443 0.000 0.868 0.000 NA 0.128
#> SRR1367896 3 0.2264 0.75479 0.060 0.000 0.912 NA 0.004
#> SRR1480107 1 0.4361 0.78857 0.788 0.000 0.040 NA 0.032
#> SRR1377756 1 0.3790 0.73413 0.724 0.000 0.004 NA 0.000
#> SRR1435272 1 0.3173 0.82442 0.856 0.000 0.016 NA 0.016
#> SRR1089230 1 0.4851 0.76014 0.704 0.004 0.008 NA 0.040
#> SRR1389522 1 0.5527 0.62214 0.656 0.000 0.232 NA 0.008
#> SRR1080600 5 0.6349 0.75161 0.004 0.240 0.024 NA 0.604
#> SRR1086935 3 0.4633 0.71396 0.140 0.008 0.776 NA 0.016
#> SRR1344060 5 0.4260 0.76663 0.000 0.164 0.008 NA 0.776
#> SRR1467922 2 0.0703 0.89672 0.000 0.976 0.000 NA 0.000
#> SRR1090984 3 0.2729 0.75348 0.084 0.000 0.884 NA 0.004
#> SRR1456991 1 0.5651 0.75466 0.692 0.000 0.104 NA 0.036
#> SRR1085039 1 0.1082 0.83150 0.964 0.000 0.008 NA 0.000
#> SRR1069303 3 0.3850 0.70643 0.008 0.008 0.828 NA 0.108
#> SRR1091500 2 0.0703 0.89087 0.000 0.976 0.000 NA 0.024
#> SRR1075198 5 0.6260 0.74749 0.000 0.244 0.024 NA 0.600
#> SRR1086915 1 0.4605 0.76210 0.708 0.000 0.004 NA 0.040
#> SRR1499503 2 0.4361 0.69359 0.000 0.768 0.000 NA 0.108
#> SRR1094312 2 0.0162 0.90398 0.000 0.996 0.000 NA 0.004
#> SRR1352437 3 0.3976 0.72334 0.024 0.000 0.824 NA 0.068
#> SRR1436323 1 0.2526 0.82283 0.896 0.000 0.012 NA 0.012
#> SRR1073507 1 0.3012 0.81393 0.852 0.000 0.024 NA 0.000
#> SRR1401972 3 0.3794 0.71716 0.016 0.000 0.832 NA 0.072
#> SRR1415510 5 0.6528 0.69532 0.000 0.292 0.028 NA 0.552
#> SRR1327279 1 0.0992 0.83035 0.968 0.000 0.008 NA 0.000
#> SRR1086983 1 0.1934 0.83421 0.928 0.000 0.016 NA 0.004
#> SRR1105174 1 0.1952 0.82597 0.912 0.000 0.000 NA 0.004
#> SRR1468893 1 0.4442 0.70087 0.676 0.000 0.016 NA 0.004
#> SRR1362555 5 0.4783 0.77464 0.008 0.232 0.024 NA 0.720
#> SRR1074526 5 0.8898 0.29310 0.032 0.196 0.300 NA 0.332
#> SRR1326225 2 0.0000 0.90446 0.000 1.000 0.000 NA 0.000
#> SRR1401933 1 0.4156 0.73362 0.700 0.000 0.004 NA 0.008
#> SRR1324062 3 0.4367 0.72583 0.128 0.000 0.784 NA 0.012
#> SRR1102296 3 0.3365 0.73356 0.028 0.000 0.864 NA 0.052
#> SRR1085087 3 0.4910 0.59504 0.276 0.000 0.672 NA 0.004
#> SRR1079046 5 0.3443 0.77879 0.000 0.164 0.008 NA 0.816
#> SRR1328339 3 0.2966 0.73116 0.136 0.000 0.848 NA 0.000
#> SRR1079782 5 0.6297 0.74537 0.000 0.244 0.024 NA 0.596
#> SRR1092257 2 0.0404 0.90195 0.000 0.988 0.000 NA 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.2491 0.8529 0.000 0.836 0.000 0.000 0.164 NA
#> SRR1429287 2 0.2883 0.7890 0.000 0.788 0.000 0.000 0.212 NA
#> SRR1359238 1 0.0820 0.7633 0.972 0.000 0.012 0.016 0.000 NA
#> SRR1309597 1 0.3399 0.6957 0.816 0.000 0.024 0.140 0.000 NA
#> SRR1441398 1 0.3850 0.7125 0.716 0.000 0.020 0.260 0.000 NA
#> SRR1084055 2 0.0260 0.9136 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1417566 3 0.1338 0.5669 0.032 0.000 0.952 0.004 0.008 NA
#> SRR1351857 1 0.2019 0.7670 0.900 0.000 0.012 0.088 0.000 NA
#> SRR1487485 3 0.6833 0.0574 0.080 0.012 0.616 0.120 0.108 NA
#> SRR1335875 3 0.1616 0.5761 0.020 0.000 0.932 0.000 0.000 NA
#> SRR1073947 1 0.6171 0.5359 0.580 0.000 0.168 0.188 0.000 NA
#> SRR1443483 1 0.2294 0.7643 0.896 0.000 0.020 0.076 0.000 NA
#> SRR1346794 1 0.2215 0.7486 0.900 0.000 0.012 0.076 0.000 NA
#> SRR1405245 1 0.4182 0.6587 0.660 0.000 0.024 0.312 0.000 NA
#> SRR1409677 1 0.2999 0.7275 0.852 0.000 0.004 0.072 0.000 NA
#> SRR1095549 1 0.1765 0.7651 0.904 0.000 0.000 0.096 0.000 NA
#> SRR1323788 1 0.3844 0.6846 0.676 0.000 0.008 0.312 0.000 NA
#> SRR1314054 2 0.0547 0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1077944 1 0.2631 0.7627 0.856 0.000 0.012 0.128 0.000 NA
#> SRR1480587 2 0.1556 0.8961 0.000 0.920 0.000 0.000 0.080 NA
#> SRR1311205 1 0.3253 0.7445 0.788 0.000 0.020 0.192 0.000 NA
#> SRR1076369 1 0.6482 0.1093 0.476 0.000 0.040 0.376 0.040 NA
#> SRR1453549 1 0.5504 0.4424 0.640 0.000 0.224 0.072 0.000 NA
#> SRR1345782 1 0.3240 0.7250 0.752 0.000 0.004 0.244 0.000 NA
#> SRR1447850 2 0.3664 0.8373 0.000 0.812 0.000 0.108 0.020 NA
#> SRR1391553 3 0.2245 0.5706 0.016 0.000 0.908 0.000 0.036 NA
#> SRR1444156 2 0.0547 0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1471731 1 0.6480 -0.1419 0.444 0.000 0.372 0.068 0.000 NA
#> SRR1120987 3 0.4839 0.4549 0.032 0.000 0.744 0.100 0.016 NA
#> SRR1477363 1 0.1814 0.7669 0.900 0.000 0.000 0.100 0.000 NA
#> SRR1391961 5 0.3603 0.7278 0.000 0.056 0.000 0.012 0.808 NA
#> SRR1373879 1 0.1942 0.7412 0.916 0.000 0.012 0.064 0.000 NA
#> SRR1318732 3 0.6536 -0.3898 0.096 0.000 0.444 0.380 0.004 NA
#> SRR1091404 1 0.3699 0.7450 0.780 0.000 0.032 0.176 0.000 NA
#> SRR1402109 1 0.0862 0.7581 0.972 0.000 0.008 0.016 0.000 NA
#> SRR1407336 1 0.1578 0.7459 0.936 0.000 0.012 0.048 0.000 NA
#> SRR1097417 3 0.4136 0.3663 0.036 0.000 0.720 0.004 0.236 NA
#> SRR1396227 3 0.5728 0.4089 0.056 0.000 0.580 0.072 0.000 NA
#> SRR1400775 2 0.0146 0.9130 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1392861 1 0.6816 0.2117 0.504 0.000 0.216 0.112 0.000 NA
#> SRR1472929 5 0.3227 0.7360 0.000 0.028 0.000 0.016 0.832 NA
#> SRR1436740 1 0.6049 0.4541 0.612 0.000 0.172 0.104 0.000 NA
#> SRR1477057 2 0.3691 0.7544 0.000 0.788 0.148 0.000 0.060 NA
#> SRR1311980 3 0.3483 0.5207 0.016 0.000 0.748 0.000 0.000 NA
#> SRR1069400 1 0.2257 0.7410 0.904 0.000 0.016 0.060 0.000 NA
#> SRR1351016 1 0.3516 0.7448 0.792 0.000 0.024 0.172 0.000 NA
#> SRR1096291 1 0.4473 0.6349 0.732 0.000 0.012 0.100 0.000 NA
#> SRR1418145 3 0.7446 -0.3526 0.036 0.008 0.440 0.140 0.312 NA
#> SRR1488111 3 0.6882 -0.0952 0.016 0.132 0.504 0.040 0.292 NA
#> SRR1370495 5 0.2325 0.7596 0.000 0.020 0.008 0.004 0.900 NA
#> SRR1352639 3 0.7626 -0.4118 0.100 0.000 0.452 0.200 0.040 NA
#> SRR1348911 3 0.1148 0.5735 0.020 0.000 0.960 0.004 0.000 NA
#> SRR1467386 1 0.3740 0.7200 0.728 0.000 0.012 0.252 0.000 NA
#> SRR1415956 1 0.3957 0.7108 0.712 0.000 0.020 0.260 0.000 NA
#> SRR1500495 1 0.3141 0.7469 0.788 0.000 0.012 0.200 0.000 NA
#> SRR1405099 1 0.4035 0.6892 0.680 0.000 0.020 0.296 0.000 NA
#> SRR1345585 3 0.6926 -0.3507 0.284 0.000 0.464 0.176 0.008 NA
#> SRR1093196 1 0.2015 0.7440 0.916 0.000 0.012 0.056 0.000 NA
#> SRR1466006 2 0.3583 0.8383 0.000 0.820 0.000 0.108 0.040 NA
#> SRR1351557 2 0.0865 0.9148 0.000 0.964 0.000 0.000 0.036 NA
#> SRR1382687 1 0.3756 0.6339 0.736 0.000 0.008 0.240 0.000 NA
#> SRR1375549 5 0.8075 -0.3612 0.044 0.000 0.292 0.136 0.344 NA
#> SRR1101765 1 0.7259 0.0460 0.468 0.000 0.048 0.300 0.084 NA
#> SRR1334461 5 0.2976 0.7354 0.000 0.020 0.000 0.012 0.844 NA
#> SRR1094073 2 0.0547 0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1077549 1 0.3962 0.7167 0.764 0.000 0.116 0.120 0.000 NA
#> SRR1440332 1 0.2562 0.7528 0.828 0.000 0.000 0.172 0.000 NA
#> SRR1454177 1 0.6221 0.4141 0.592 0.000 0.176 0.104 0.000 NA
#> SRR1082447 1 0.3708 0.7227 0.752 0.000 0.020 0.220 0.000 NA
#> SRR1420043 1 0.2825 0.7617 0.844 0.000 0.008 0.136 0.000 NA
#> SRR1432500 1 0.3078 0.7480 0.796 0.000 0.012 0.192 0.000 NA
#> SRR1378045 3 0.2987 0.5429 0.028 0.024 0.876 0.004 0.060 NA
#> SRR1334200 5 0.4646 0.6216 0.012 0.012 0.044 0.172 0.744 NA
#> SRR1069539 4 0.8637 0.0000 0.152 0.000 0.264 0.284 0.200 NA
#> SRR1343031 1 0.1524 0.7649 0.932 0.000 0.008 0.060 0.000 NA
#> SRR1319690 1 0.2222 0.7601 0.896 0.000 0.008 0.084 0.000 NA
#> SRR1310604 5 0.1649 0.7697 0.000 0.036 0.032 0.000 0.932 NA
#> SRR1327747 1 0.1655 0.7585 0.932 0.000 0.008 0.052 0.000 NA
#> SRR1072456 2 0.2553 0.8523 0.000 0.848 0.000 0.000 0.144 NA
#> SRR1367896 3 0.2307 0.5570 0.044 0.000 0.908 0.016 0.004 NA
#> SRR1480107 1 0.4311 0.6811 0.668 0.000 0.024 0.296 0.000 NA
#> SRR1377756 1 0.3240 0.6490 0.752 0.000 0.000 0.244 0.000 NA
#> SRR1435272 1 0.2506 0.7548 0.880 0.000 0.000 0.068 0.000 NA
#> SRR1089230 1 0.4280 0.6541 0.736 0.000 0.004 0.092 0.000 NA
#> SRR1389522 1 0.6165 0.1673 0.556 0.000 0.176 0.224 0.000 NA
#> SRR1080600 5 0.2415 0.7634 0.000 0.036 0.032 0.024 0.904 NA
#> SRR1086935 3 0.5037 0.4326 0.036 0.000 0.728 0.112 0.016 NA
#> SRR1344060 5 0.4394 0.6778 0.000 0.020 0.000 0.120 0.752 NA
#> SRR1467922 2 0.3171 0.8581 0.000 0.844 0.000 0.104 0.024 NA
#> SRR1090984 3 0.3050 0.5216 0.048 0.000 0.864 0.040 0.000 NA
#> SRR1456991 1 0.4021 0.7188 0.748 0.000 0.024 0.204 0.000 NA
#> SRR1085039 1 0.1434 0.7670 0.940 0.000 0.012 0.048 0.000 NA
#> SRR1069303 3 0.4130 0.4948 0.000 0.000 0.696 0.000 0.044 NA
#> SRR1091500 2 0.0260 0.9120 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1075198 5 0.1649 0.7697 0.000 0.036 0.032 0.000 0.932 NA
#> SRR1086915 1 0.4169 0.6558 0.744 0.000 0.004 0.080 0.000 NA
#> SRR1499503 2 0.2300 0.8716 0.000 0.856 0.000 0.000 0.144 NA
#> SRR1094312 2 0.0146 0.9130 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1352437 3 0.4074 0.5014 0.012 0.000 0.704 0.020 0.000 NA
#> SRR1436323 1 0.1370 0.7522 0.948 0.000 0.012 0.036 0.000 NA
#> SRR1073507 1 0.3724 0.7127 0.716 0.000 0.012 0.268 0.000 NA
#> SRR1401972 3 0.4014 0.5011 0.012 0.000 0.704 0.016 0.000 NA
#> SRR1415510 5 0.2798 0.7147 0.000 0.112 0.036 0.000 0.852 NA
#> SRR1327279 1 0.2513 0.7606 0.852 0.000 0.008 0.140 0.000 NA
#> SRR1086983 1 0.3485 0.7532 0.784 0.000 0.028 0.184 0.000 NA
#> SRR1105174 1 0.3201 0.7452 0.780 0.000 0.012 0.208 0.000 NA
#> SRR1468893 1 0.4415 0.5905 0.556 0.000 0.020 0.420 0.000 NA
#> SRR1362555 5 0.1575 0.7697 0.000 0.032 0.032 0.000 0.936 NA
#> SRR1074526 5 0.6648 0.1173 0.012 0.040 0.284 0.116 0.532 NA
#> SRR1326225 2 0.0547 0.9154 0.000 0.980 0.000 0.000 0.020 NA
#> SRR1401933 1 0.3954 0.6513 0.684 0.000 0.016 0.296 0.000 NA
#> SRR1324062 3 0.5495 0.4386 0.132 0.000 0.644 0.036 0.000 NA
#> SRR1102296 3 0.3730 0.5214 0.008 0.000 0.740 0.016 0.000 NA
#> SRR1085087 3 0.5331 0.2009 0.200 0.000 0.660 0.040 0.000 NA
#> SRR1079046 5 0.2876 0.7537 0.000 0.020 0.004 0.020 0.868 NA
#> SRR1328339 3 0.2886 0.5270 0.060 0.000 0.872 0.028 0.000 NA
#> SRR1079782 5 0.1649 0.7697 0.000 0.036 0.032 0.000 0.932 NA
#> SRR1092257 2 0.0547 0.9154 0.000 0.980 0.000 0.000 0.020 NA
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
CV:NMF
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["CV", "NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.739 0.885 0.949 0.4512 0.554 0.554
#> 3 3 0.669 0.816 0.909 0.3415 0.797 0.653
#> 4 4 0.488 0.448 0.705 0.1935 0.862 0.681
#> 5 5 0.534 0.556 0.734 0.0862 0.762 0.382
#> 6 6 0.601 0.505 0.711 0.0511 0.875 0.509
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.933 0.000 1.000
#> SRR1429287 2 0.0000 0.933 0.000 1.000
#> SRR1359238 1 0.0000 0.949 1.000 0.000
#> SRR1309597 1 0.0000 0.949 1.000 0.000
#> SRR1441398 1 0.0000 0.949 1.000 0.000
#> SRR1084055 2 0.0000 0.933 0.000 1.000
#> SRR1417566 2 0.2603 0.905 0.044 0.956
#> SRR1351857 1 0.0000 0.949 1.000 0.000
#> SRR1487485 2 0.0000 0.933 0.000 1.000
#> SRR1335875 2 0.9686 0.345 0.396 0.604
#> SRR1073947 1 0.0000 0.949 1.000 0.000
#> SRR1443483 1 0.0000 0.949 1.000 0.000
#> SRR1346794 1 0.0000 0.949 1.000 0.000
#> SRR1405245 1 0.0000 0.949 1.000 0.000
#> SRR1409677 1 0.0000 0.949 1.000 0.000
#> SRR1095549 1 0.0000 0.949 1.000 0.000
#> SRR1323788 1 0.0000 0.949 1.000 0.000
#> SRR1314054 2 0.0000 0.933 0.000 1.000
#> SRR1077944 1 0.0000 0.949 1.000 0.000
#> SRR1480587 2 0.0000 0.933 0.000 1.000
#> SRR1311205 1 0.0000 0.949 1.000 0.000
#> SRR1076369 1 0.0000 0.949 1.000 0.000
#> SRR1453549 1 0.6887 0.764 0.816 0.184
#> SRR1345782 1 0.0000 0.949 1.000 0.000
#> SRR1447850 2 0.0000 0.933 0.000 1.000
#> SRR1391553 2 0.0000 0.933 0.000 1.000
#> SRR1444156 2 0.0000 0.933 0.000 1.000
#> SRR1471731 1 0.0000 0.949 1.000 0.000
#> SRR1120987 2 0.5519 0.830 0.128 0.872
#> SRR1477363 1 0.0000 0.949 1.000 0.000
#> SRR1391961 1 0.9552 0.421 0.624 0.376
#> SRR1373879 1 0.0000 0.949 1.000 0.000
#> SRR1318732 1 0.1414 0.933 0.980 0.020
#> SRR1091404 1 0.0000 0.949 1.000 0.000
#> SRR1402109 1 0.0000 0.949 1.000 0.000
#> SRR1407336 1 0.0000 0.949 1.000 0.000
#> SRR1097417 2 0.0376 0.931 0.004 0.996
#> SRR1396227 1 0.0000 0.949 1.000 0.000
#> SRR1400775 2 0.0000 0.933 0.000 1.000
#> SRR1392861 1 0.9000 0.560 0.684 0.316
#> SRR1472929 1 0.4690 0.864 0.900 0.100
#> SRR1436740 1 0.0000 0.949 1.000 0.000
#> SRR1477057 2 0.0000 0.933 0.000 1.000
#> SRR1311980 2 0.9358 0.463 0.352 0.648
#> SRR1069400 1 0.0000 0.949 1.000 0.000
#> SRR1351016 1 0.0000 0.949 1.000 0.000
#> SRR1096291 1 0.0000 0.949 1.000 0.000
#> SRR1418145 2 0.7602 0.727 0.220 0.780
#> SRR1488111 2 0.0000 0.933 0.000 1.000
#> SRR1370495 1 0.0000 0.949 1.000 0.000
#> SRR1352639 1 0.0000 0.949 1.000 0.000
#> SRR1348911 2 0.7883 0.690 0.236 0.764
#> SRR1467386 1 0.0000 0.949 1.000 0.000
#> SRR1415956 1 0.0000 0.949 1.000 0.000
#> SRR1500495 1 0.0000 0.949 1.000 0.000
#> SRR1405099 1 0.0000 0.949 1.000 0.000
#> SRR1345585 1 0.6148 0.794 0.848 0.152
#> SRR1093196 1 0.0000 0.949 1.000 0.000
#> SRR1466006 2 0.0000 0.933 0.000 1.000
#> SRR1351557 2 0.0000 0.933 0.000 1.000
#> SRR1382687 1 0.0000 0.949 1.000 0.000
#> SRR1375549 1 0.0000 0.949 1.000 0.000
#> SRR1101765 1 0.0000 0.949 1.000 0.000
#> SRR1334461 1 0.0000 0.949 1.000 0.000
#> SRR1094073 2 0.0000 0.933 0.000 1.000
#> SRR1077549 1 0.0000 0.949 1.000 0.000
#> SRR1440332 1 0.0000 0.949 1.000 0.000
#> SRR1454177 1 0.0000 0.949 1.000 0.000
#> SRR1082447 1 0.0000 0.949 1.000 0.000
#> SRR1420043 1 0.0000 0.949 1.000 0.000
#> SRR1432500 1 0.0000 0.949 1.000 0.000
#> SRR1378045 2 0.0000 0.933 0.000 1.000
#> SRR1334200 1 0.4690 0.855 0.900 0.100
#> SRR1069539 1 0.9286 0.458 0.656 0.344
#> SRR1343031 1 0.0000 0.949 1.000 0.000
#> SRR1319690 1 0.0000 0.949 1.000 0.000
#> SRR1310604 2 0.0000 0.933 0.000 1.000
#> SRR1327747 1 0.0000 0.949 1.000 0.000
#> SRR1072456 2 0.0000 0.933 0.000 1.000
#> SRR1367896 1 0.8499 0.633 0.724 0.276
#> SRR1480107 1 0.0000 0.949 1.000 0.000
#> SRR1377756 1 0.0000 0.949 1.000 0.000
#> SRR1435272 1 0.0000 0.949 1.000 0.000
#> SRR1089230 1 0.0000 0.949 1.000 0.000
#> SRR1389522 1 0.0000 0.949 1.000 0.000
#> SRR1080600 2 0.7528 0.724 0.216 0.784
#> SRR1086935 2 0.0000 0.933 0.000 1.000
#> SRR1344060 2 0.9087 0.539 0.324 0.676
#> SRR1467922 2 0.0000 0.933 0.000 1.000
#> SRR1090984 1 0.7674 0.712 0.776 0.224
#> SRR1456991 1 0.0000 0.949 1.000 0.000
#> SRR1085039 1 0.0000 0.949 1.000 0.000
#> SRR1069303 1 0.8207 0.665 0.744 0.256
#> SRR1091500 2 0.0000 0.933 0.000 1.000
#> SRR1075198 2 0.4161 0.871 0.084 0.916
#> SRR1086915 1 0.0000 0.949 1.000 0.000
#> SRR1499503 2 0.0000 0.933 0.000 1.000
#> SRR1094312 2 0.0000 0.933 0.000 1.000
#> SRR1352437 1 0.9358 0.480 0.648 0.352
#> SRR1436323 1 0.0000 0.949 1.000 0.000
#> SRR1073507 1 0.0000 0.949 1.000 0.000
#> SRR1401972 1 0.8909 0.574 0.692 0.308
#> SRR1415510 2 0.0000 0.933 0.000 1.000
#> SRR1327279 1 0.0000 0.949 1.000 0.000
#> SRR1086983 1 0.0000 0.949 1.000 0.000
#> SRR1105174 1 0.0000 0.949 1.000 0.000
#> SRR1468893 1 0.0000 0.949 1.000 0.000
#> SRR1362555 2 0.8207 0.667 0.256 0.744
#> SRR1074526 2 0.4022 0.876 0.080 0.920
#> SRR1326225 2 0.0000 0.933 0.000 1.000
#> SRR1401933 1 0.0000 0.949 1.000 0.000
#> SRR1324062 1 0.8081 0.677 0.752 0.248
#> SRR1102296 1 0.9000 0.559 0.684 0.316
#> SRR1085087 1 0.0000 0.949 1.000 0.000
#> SRR1079046 1 0.3114 0.904 0.944 0.056
#> SRR1328339 1 0.0376 0.946 0.996 0.004
#> SRR1079782 2 0.0000 0.933 0.000 1.000
#> SRR1092257 2 0.0000 0.933 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.5706 0.6366 0.000 0.680 0.320
#> SRR1429287 2 0.5431 0.6868 0.000 0.716 0.284
#> SRR1359238 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1309597 1 0.5785 0.6082 0.668 0.332 0.000
#> SRR1441398 1 0.4555 0.7927 0.800 0.200 0.000
#> SRR1084055 2 0.4974 0.7470 0.000 0.764 0.236
#> SRR1417566 3 0.3340 0.7603 0.120 0.000 0.880
#> SRR1351857 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1487485 3 0.0592 0.8486 0.012 0.000 0.988
#> SRR1335875 3 0.5201 0.6237 0.236 0.004 0.760
#> SRR1073947 1 0.0892 0.9110 0.980 0.020 0.000
#> SRR1443483 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1346794 1 0.4121 0.8246 0.832 0.168 0.000
#> SRR1405245 1 0.1753 0.9037 0.952 0.048 0.000
#> SRR1409677 1 0.1753 0.8976 0.952 0.048 0.000
#> SRR1095549 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1323788 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1314054 3 0.0000 0.8501 0.000 0.000 1.000
#> SRR1077944 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1480587 2 0.2878 0.8384 0.000 0.904 0.096
#> SRR1311205 1 0.2878 0.8753 0.904 0.096 0.000
#> SRR1076369 2 0.0237 0.8629 0.004 0.996 0.000
#> SRR1453549 1 0.1529 0.8969 0.960 0.000 0.040
#> SRR1345782 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1447850 3 0.0000 0.8501 0.000 0.000 1.000
#> SRR1391553 3 0.0000 0.8501 0.000 0.000 1.000
#> SRR1444156 3 0.0237 0.8503 0.000 0.004 0.996
#> SRR1471731 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1120987 3 0.4725 0.7720 0.088 0.060 0.852
#> SRR1477363 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1391961 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1373879 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1318732 1 0.5174 0.8127 0.832 0.092 0.076
#> SRR1091404 1 0.6168 0.4427 0.588 0.412 0.000
#> SRR1402109 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1407336 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1097417 3 0.4887 0.6218 0.000 0.228 0.772
#> SRR1396227 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1400775 3 0.0592 0.8493 0.000 0.012 0.988
#> SRR1392861 3 0.6305 0.0936 0.484 0.000 0.516
#> SRR1472929 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1436740 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1477057 2 0.2165 0.8500 0.000 0.936 0.064
#> SRR1311980 3 0.6267 0.1837 0.452 0.000 0.548
#> SRR1069400 1 0.1163 0.9092 0.972 0.028 0.000
#> SRR1351016 1 0.0237 0.9151 0.996 0.004 0.000
#> SRR1096291 1 0.2796 0.8674 0.908 0.092 0.000
#> SRR1418145 2 0.4121 0.7966 0.000 0.832 0.168
#> SRR1488111 3 0.2356 0.8017 0.000 0.072 0.928
#> SRR1370495 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1352639 2 0.0237 0.8629 0.004 0.996 0.000
#> SRR1348911 3 0.2537 0.8003 0.080 0.000 0.920
#> SRR1467386 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1415956 1 0.3941 0.8333 0.844 0.156 0.000
#> SRR1500495 1 0.4121 0.8229 0.832 0.168 0.000
#> SRR1405099 1 0.4702 0.7809 0.788 0.212 0.000
#> SRR1345585 1 0.5016 0.6853 0.760 0.000 0.240
#> SRR1093196 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1466006 2 0.5098 0.7275 0.000 0.752 0.248
#> SRR1351557 3 0.5733 0.3355 0.000 0.324 0.676
#> SRR1382687 1 0.0237 0.9148 0.996 0.004 0.000
#> SRR1375549 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1101765 2 0.0237 0.8629 0.004 0.996 0.000
#> SRR1334461 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1094073 3 0.0424 0.8499 0.000 0.008 0.992
#> SRR1077549 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1440332 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1454177 1 0.0237 0.9145 0.996 0.000 0.004
#> SRR1082447 1 0.0237 0.9150 0.996 0.004 0.000
#> SRR1420043 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1432500 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1378045 3 0.0000 0.8501 0.000 0.000 1.000
#> SRR1334200 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1069539 2 0.7398 0.6654 0.120 0.700 0.180
#> SRR1343031 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1319690 1 0.4178 0.8200 0.828 0.172 0.000
#> SRR1310604 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1327747 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1072456 2 0.0237 0.8645 0.000 0.996 0.004
#> SRR1367896 1 0.4982 0.8139 0.828 0.036 0.136
#> SRR1480107 1 0.2261 0.8906 0.932 0.068 0.000
#> SRR1377756 1 0.1031 0.9085 0.976 0.024 0.000
#> SRR1435272 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1089230 1 0.2066 0.8901 0.940 0.060 0.000
#> SRR1389522 1 0.6095 0.4898 0.608 0.392 0.000
#> SRR1080600 2 0.1860 0.8544 0.000 0.948 0.052
#> SRR1086935 3 0.0892 0.8436 0.020 0.000 0.980
#> SRR1344060 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1467922 3 0.2066 0.8128 0.000 0.060 0.940
#> SRR1090984 1 0.4379 0.8637 0.868 0.072 0.060
#> SRR1456991 1 0.5835 0.5966 0.660 0.340 0.000
#> SRR1085039 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1069303 1 0.6644 0.7413 0.748 0.092 0.160
#> SRR1091500 3 0.0747 0.8481 0.000 0.016 0.984
#> SRR1075198 2 0.3686 0.8151 0.000 0.860 0.140
#> SRR1086915 1 0.1411 0.9033 0.964 0.036 0.000
#> SRR1499503 2 0.4605 0.7711 0.000 0.796 0.204
#> SRR1094312 3 0.0592 0.8493 0.000 0.012 0.988
#> SRR1352437 1 0.5591 0.5475 0.696 0.000 0.304
#> SRR1436323 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1073507 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1401972 1 0.4346 0.7561 0.816 0.000 0.184
#> SRR1415510 2 0.6062 0.5308 0.000 0.616 0.384
#> SRR1327279 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1086983 1 0.0000 0.9157 1.000 0.000 0.000
#> SRR1105174 1 0.3038 0.8725 0.896 0.104 0.000
#> SRR1468893 1 0.2165 0.8988 0.936 0.064 0.000
#> SRR1362555 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1074526 2 0.5882 0.4184 0.000 0.652 0.348
#> SRR1326225 3 0.0592 0.8488 0.000 0.012 0.988
#> SRR1401933 1 0.0424 0.9138 0.992 0.008 0.000
#> SRR1324062 1 0.3816 0.8019 0.852 0.000 0.148
#> SRR1102296 1 0.5726 0.7027 0.760 0.024 0.216
#> SRR1085087 1 0.0237 0.9151 0.996 0.004 0.000
#> SRR1079046 2 0.0000 0.8656 0.000 1.000 0.000
#> SRR1328339 1 0.3686 0.8454 0.860 0.140 0.000
#> SRR1079782 2 0.5785 0.6179 0.000 0.668 0.332
#> SRR1092257 3 0.0237 0.8503 0.000 0.004 0.996
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.3810 0.7070 0.008 0.804 0.188 0.000
#> SRR1429287 2 0.2021 0.7857 0.012 0.932 0.056 0.000
#> SRR1359238 4 0.3123 0.5394 0.156 0.000 0.000 0.844
#> SRR1309597 4 0.5851 0.1472 0.084 0.236 0.000 0.680
#> SRR1441398 4 0.5311 -0.0943 0.328 0.024 0.000 0.648
#> SRR1084055 2 0.4103 0.6255 0.000 0.744 0.256 0.000
#> SRR1417566 3 0.5110 0.4970 0.012 0.008 0.688 0.292
#> SRR1351857 4 0.4916 0.4347 0.424 0.000 0.000 0.576
#> SRR1487485 3 0.6421 0.4949 0.012 0.080 0.644 0.264
#> SRR1335875 3 0.6970 0.3336 0.168 0.000 0.576 0.256
#> SRR1073947 1 0.5461 0.4286 0.508 0.008 0.004 0.480
#> SRR1443483 4 0.4083 0.3928 0.068 0.100 0.000 0.832
#> SRR1346794 4 0.6810 0.3475 0.248 0.156 0.000 0.596
#> SRR1405245 4 0.5268 0.3993 0.396 0.012 0.000 0.592
#> SRR1409677 4 0.5273 0.4077 0.456 0.008 0.000 0.536
#> SRR1095549 4 0.1557 0.5292 0.056 0.000 0.000 0.944
#> SRR1323788 4 0.4713 0.4426 0.360 0.000 0.000 0.640
#> SRR1314054 3 0.0188 0.7265 0.004 0.000 0.996 0.000
#> SRR1077944 4 0.4008 0.5333 0.244 0.000 0.000 0.756
#> SRR1480587 2 0.2222 0.7796 0.016 0.924 0.060 0.000
#> SRR1311205 4 0.4730 -0.1714 0.364 0.000 0.000 0.636
#> SRR1076369 2 0.5339 0.4198 0.384 0.600 0.000 0.016
#> SRR1453549 4 0.2111 0.4945 0.044 0.000 0.024 0.932
#> SRR1345782 4 0.3024 0.3821 0.148 0.000 0.000 0.852
#> SRR1447850 3 0.0188 0.7265 0.004 0.000 0.996 0.000
#> SRR1391553 3 0.0188 0.7265 0.004 0.000 0.996 0.000
#> SRR1444156 3 0.0188 0.7265 0.004 0.000 0.996 0.000
#> SRR1471731 4 0.2411 0.5304 0.040 0.000 0.040 0.920
#> SRR1120987 3 0.7620 0.3164 0.324 0.004 0.480 0.192
#> SRR1477363 4 0.2589 0.4202 0.116 0.000 0.000 0.884
#> SRR1391961 2 0.5151 0.4285 0.464 0.532 0.000 0.004
#> SRR1373879 4 0.2281 0.4487 0.096 0.000 0.000 0.904
#> SRR1318732 1 0.7627 -0.2665 0.436 0.176 0.004 0.384
#> SRR1091404 1 0.6770 0.4581 0.496 0.096 0.000 0.408
#> SRR1402109 4 0.1211 0.4983 0.040 0.000 0.000 0.960
#> SRR1407336 4 0.2149 0.5352 0.088 0.000 0.000 0.912
#> SRR1097417 3 0.5645 0.6040 0.060 0.028 0.748 0.164
#> SRR1396227 4 0.4713 0.2182 0.360 0.000 0.000 0.640
#> SRR1400775 3 0.1902 0.7011 0.004 0.064 0.932 0.000
#> SRR1392861 4 0.6843 0.2615 0.112 0.000 0.356 0.532
#> SRR1472929 2 0.2704 0.7741 0.124 0.876 0.000 0.000
#> SRR1436740 4 0.3907 0.5277 0.232 0.000 0.000 0.768
#> SRR1477057 2 0.5558 0.5735 0.364 0.608 0.028 0.000
#> SRR1311980 3 0.5025 0.5743 0.032 0.000 0.716 0.252
#> SRR1069400 4 0.4072 0.3820 0.052 0.120 0.000 0.828
#> SRR1351016 4 0.4819 -0.0932 0.344 0.004 0.000 0.652
#> SRR1096291 4 0.4972 0.4130 0.456 0.000 0.000 0.544
#> SRR1418145 2 0.1520 0.7905 0.020 0.956 0.024 0.000
#> SRR1488111 3 0.5158 -0.1172 0.004 0.472 0.524 0.000
#> SRR1370495 2 0.4454 0.6428 0.308 0.692 0.000 0.000
#> SRR1352639 2 0.5838 0.4242 0.444 0.524 0.000 0.032
#> SRR1348911 3 0.6423 0.4544 0.092 0.008 0.644 0.256
#> SRR1467386 4 0.2973 0.5045 0.144 0.000 0.000 0.856
#> SRR1415956 4 0.5407 -0.4655 0.484 0.012 0.000 0.504
#> SRR1500495 4 0.5353 -0.3603 0.432 0.012 0.000 0.556
#> SRR1405099 1 0.5165 0.4432 0.512 0.004 0.000 0.484
#> SRR1345585 4 0.5474 0.2896 0.056 0.164 0.024 0.756
#> SRR1093196 4 0.3907 0.5285 0.232 0.000 0.000 0.768
#> SRR1466006 2 0.2032 0.7839 0.036 0.936 0.028 0.000
#> SRR1351557 2 0.5119 0.3092 0.004 0.556 0.440 0.000
#> SRR1382687 4 0.4977 0.4112 0.460 0.000 0.000 0.540
#> SRR1375549 2 0.3873 0.7297 0.228 0.772 0.000 0.000
#> SRR1101765 2 0.5329 0.3942 0.420 0.568 0.000 0.012
#> SRR1334461 2 0.4967 0.4576 0.452 0.548 0.000 0.000
#> SRR1094073 3 0.0376 0.7257 0.004 0.004 0.992 0.000
#> SRR1077549 4 0.3157 0.5364 0.144 0.000 0.004 0.852
#> SRR1440332 4 0.0336 0.5173 0.008 0.000 0.000 0.992
#> SRR1454177 4 0.3972 0.5333 0.204 0.000 0.008 0.788
#> SRR1082447 1 0.5290 -0.4295 0.516 0.008 0.000 0.476
#> SRR1420043 4 0.1211 0.5269 0.040 0.000 0.000 0.960
#> SRR1432500 4 0.3444 0.3818 0.184 0.000 0.000 0.816
#> SRR1378045 3 0.0188 0.7265 0.004 0.000 0.996 0.000
#> SRR1334200 2 0.2149 0.7696 0.088 0.912 0.000 0.000
#> SRR1069539 2 0.4442 0.7203 0.092 0.832 0.024 0.052
#> SRR1343031 4 0.1022 0.5030 0.032 0.000 0.000 0.968
#> SRR1319690 4 0.5198 0.4444 0.252 0.040 0.000 0.708
#> SRR1310604 2 0.1151 0.7909 0.024 0.968 0.008 0.000
#> SRR1327747 4 0.5599 0.4721 0.316 0.040 0.000 0.644
#> SRR1072456 2 0.2563 0.7908 0.072 0.908 0.020 0.000
#> SRR1367896 4 0.5916 0.2594 0.144 0.032 0.084 0.740
#> SRR1480107 4 0.5409 -0.4331 0.492 0.012 0.000 0.496
#> SRR1377756 4 0.4985 0.4043 0.468 0.000 0.000 0.532
#> SRR1435272 4 0.3975 0.5281 0.240 0.000 0.000 0.760
#> SRR1089230 4 0.5402 0.3915 0.472 0.012 0.000 0.516
#> SRR1389522 4 0.6790 -0.1832 0.296 0.128 0.000 0.576
#> SRR1080600 2 0.1677 0.7839 0.040 0.948 0.012 0.000
#> SRR1086935 3 0.7711 0.1894 0.340 0.000 0.428 0.232
#> SRR1344060 2 0.2216 0.7824 0.092 0.908 0.000 0.000
#> SRR1467922 3 0.0188 0.7265 0.004 0.000 0.996 0.000
#> SRR1090984 4 0.7620 0.1417 0.324 0.000 0.220 0.456
#> SRR1456991 1 0.5600 0.4496 0.512 0.020 0.000 0.468
#> SRR1085039 4 0.4220 0.2478 0.248 0.004 0.000 0.748
#> SRR1069303 1 0.7485 0.3612 0.560 0.012 0.212 0.216
#> SRR1091500 3 0.2714 0.6720 0.004 0.112 0.884 0.000
#> SRR1075198 2 0.0707 0.7872 0.000 0.980 0.020 0.000
#> SRR1086915 4 0.5155 0.4018 0.468 0.004 0.000 0.528
#> SRR1499503 2 0.1743 0.7822 0.004 0.940 0.056 0.000
#> SRR1094312 3 0.2401 0.6813 0.004 0.092 0.904 0.000
#> SRR1352437 3 0.5927 0.5003 0.076 0.000 0.660 0.264
#> SRR1436323 4 0.3024 0.5389 0.148 0.000 0.000 0.852
#> SRR1073507 4 0.4222 0.5197 0.272 0.000 0.000 0.728
#> SRR1401972 3 0.6742 0.4753 0.232 0.000 0.608 0.160
#> SRR1415510 2 0.2799 0.7523 0.008 0.884 0.108 0.000
#> SRR1327279 4 0.2589 0.4204 0.116 0.000 0.000 0.884
#> SRR1086983 4 0.4855 0.4486 0.400 0.000 0.000 0.600
#> SRR1105174 4 0.4978 0.4080 0.384 0.004 0.000 0.612
#> SRR1468893 4 0.5285 0.3933 0.468 0.008 0.000 0.524
#> SRR1362555 2 0.0895 0.7897 0.020 0.976 0.004 0.000
#> SRR1074526 1 0.6712 -0.2707 0.576 0.332 0.084 0.008
#> SRR1326225 3 0.3710 0.5700 0.004 0.192 0.804 0.000
#> SRR1401933 4 0.5281 0.4018 0.464 0.008 0.000 0.528
#> SRR1324062 3 0.6276 0.2960 0.064 0.000 0.556 0.380
#> SRR1102296 1 0.7729 0.4158 0.496 0.008 0.208 0.288
#> SRR1085087 1 0.5167 0.3478 0.508 0.004 0.000 0.488
#> SRR1079046 2 0.4790 0.6001 0.380 0.620 0.000 0.000
#> SRR1328339 1 0.4999 0.4348 0.508 0.000 0.000 0.492
#> SRR1079782 2 0.1637 0.7826 0.000 0.940 0.060 0.000
#> SRR1092257 3 0.0188 0.7265 0.004 0.000 0.996 0.000
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 5 0.1493 0.853812 0.024 0.028 0.000 0.000 0.948
#> SRR1429287 5 0.2696 0.838420 0.012 0.052 0.000 0.040 0.896
#> SRR1359238 4 0.6114 0.331586 0.128 0.000 0.400 0.472 0.000
#> SRR1309597 3 0.3334 0.691040 0.080 0.000 0.852 0.004 0.064
#> SRR1441398 3 0.2621 0.693666 0.112 0.000 0.876 0.004 0.008
#> SRR1084055 5 0.2409 0.833754 0.032 0.068 0.000 0.000 0.900
#> SRR1417566 3 0.6489 -0.000367 0.100 0.440 0.440 0.008 0.012
#> SRR1351857 4 0.3750 0.632580 0.060 0.000 0.116 0.820 0.004
#> SRR1487485 3 0.5748 0.609464 0.124 0.120 0.708 0.008 0.040
#> SRR1335875 3 0.5376 0.277917 0.056 0.424 0.520 0.000 0.000
#> SRR1073947 1 0.3196 0.606440 0.804 0.000 0.192 0.004 0.000
#> SRR1443483 3 0.2142 0.722439 0.048 0.000 0.920 0.004 0.028
#> SRR1346794 4 0.7451 0.196318 0.124 0.000 0.372 0.420 0.084
#> SRR1405245 3 0.4974 0.412243 0.040 0.000 0.640 0.316 0.004
#> SRR1409677 4 0.3585 0.628656 0.052 0.000 0.088 0.844 0.016
#> SRR1095549 3 0.3368 0.666605 0.024 0.000 0.820 0.156 0.000
#> SRR1323788 4 0.5048 -0.041408 0.032 0.000 0.476 0.492 0.000
#> SRR1314054 2 0.0162 0.755330 0.004 0.996 0.000 0.000 0.000
#> SRR1077944 4 0.6349 0.449721 0.232 0.000 0.244 0.524 0.000
#> SRR1480587 5 0.2484 0.833487 0.068 0.004 0.028 0.000 0.900
#> SRR1311205 3 0.2852 0.664056 0.172 0.000 0.828 0.000 0.000
#> SRR1076369 4 0.5883 0.059116 0.056 0.000 0.024 0.552 0.368
#> SRR1453549 3 0.4398 0.685649 0.068 0.052 0.804 0.076 0.000
#> SRR1345782 3 0.1725 0.725696 0.044 0.000 0.936 0.020 0.000
#> SRR1447850 2 0.0000 0.756122 0.000 1.000 0.000 0.000 0.000
#> SRR1391553 2 0.0000 0.756122 0.000 1.000 0.000 0.000 0.000
#> SRR1444156 2 0.1704 0.750921 0.068 0.928 0.000 0.000 0.004
#> SRR1471731 3 0.4254 0.673449 0.096 0.012 0.796 0.096 0.000
#> SRR1120987 4 0.6383 0.554400 0.168 0.104 0.032 0.664 0.032
#> SRR1477363 3 0.2719 0.718814 0.068 0.000 0.884 0.048 0.000
#> SRR1391961 1 0.4570 0.392119 0.632 0.000 0.020 0.000 0.348
#> SRR1373879 3 0.2077 0.730033 0.040 0.000 0.920 0.040 0.000
#> SRR1318732 4 0.6944 0.185597 0.056 0.000 0.328 0.504 0.112
#> SRR1091404 1 0.4369 0.599776 0.720 0.000 0.252 0.012 0.016
#> SRR1402109 3 0.3119 0.700213 0.072 0.000 0.860 0.068 0.000
#> SRR1407336 3 0.5759 0.139606 0.108 0.000 0.568 0.324 0.000
#> SRR1097417 3 0.5070 0.490422 0.016 0.316 0.640 0.000 0.028
#> SRR1396227 1 0.5816 0.382703 0.608 0.000 0.164 0.228 0.000
#> SRR1400775 2 0.2074 0.746339 0.000 0.896 0.000 0.000 0.104
#> SRR1392861 4 0.8000 0.423340 0.116 0.252 0.208 0.424 0.000
#> SRR1472929 5 0.2654 0.822452 0.064 0.000 0.048 0.000 0.888
#> SRR1436740 4 0.6218 0.572390 0.200 0.064 0.092 0.644 0.000
#> SRR1477057 1 0.5126 0.158478 0.536 0.024 0.000 0.008 0.432
#> SRR1311980 2 0.4443 -0.156905 0.000 0.524 0.472 0.004 0.000
#> SRR1069400 3 0.3175 0.723582 0.064 0.000 0.872 0.020 0.044
#> SRR1351016 1 0.4341 0.292686 0.592 0.000 0.404 0.004 0.000
#> SRR1096291 4 0.4752 0.625601 0.084 0.000 0.144 0.756 0.016
#> SRR1418145 5 0.2233 0.815588 0.004 0.000 0.000 0.104 0.892
#> SRR1488111 5 0.3318 0.753666 0.008 0.192 0.000 0.000 0.800
#> SRR1370495 5 0.4030 0.416105 0.352 0.000 0.000 0.000 0.648
#> SRR1352639 1 0.4796 0.101948 0.516 0.000 0.012 0.004 0.468
#> SRR1348911 3 0.4797 0.609027 0.104 0.172 0.724 0.000 0.000
#> SRR1467386 4 0.6664 0.287737 0.232 0.000 0.360 0.408 0.000
#> SRR1415956 3 0.3452 0.578239 0.244 0.000 0.756 0.000 0.000
#> SRR1500495 3 0.2179 0.692017 0.112 0.000 0.888 0.000 0.000
#> SRR1405099 1 0.4201 0.358471 0.592 0.000 0.408 0.000 0.000
#> SRR1345585 3 0.3893 0.690192 0.076 0.004 0.832 0.016 0.072
#> SRR1093196 4 0.6200 0.452038 0.160 0.000 0.320 0.520 0.000
#> SRR1466006 5 0.2142 0.836949 0.048 0.000 0.004 0.028 0.920
#> SRR1351557 5 0.4289 0.722286 0.064 0.176 0.000 0.000 0.760
#> SRR1382687 4 0.2597 0.612153 0.024 0.000 0.092 0.884 0.000
#> SRR1375549 5 0.6785 0.271745 0.228 0.000 0.012 0.268 0.492
#> SRR1101765 4 0.3621 0.446517 0.020 0.000 0.000 0.788 0.192
#> SRR1334461 1 0.4101 0.348831 0.628 0.000 0.000 0.000 0.372
#> SRR1094073 2 0.3517 0.727627 0.068 0.832 0.000 0.000 0.100
#> SRR1077549 4 0.6878 0.466718 0.220 0.016 0.280 0.484 0.000
#> SRR1440332 3 0.3647 0.662839 0.052 0.000 0.816 0.132 0.000
#> SRR1454177 4 0.7240 0.478847 0.136 0.076 0.276 0.512 0.000
#> SRR1082447 4 0.3387 0.548274 0.128 0.000 0.032 0.836 0.004
#> SRR1420043 3 0.4711 0.580181 0.116 0.000 0.736 0.148 0.000
#> SRR1432500 3 0.5038 0.551916 0.132 0.000 0.704 0.164 0.000
#> SRR1378045 2 0.1942 0.748281 0.068 0.920 0.012 0.000 0.000
#> SRR1334200 5 0.3759 0.691964 0.016 0.000 0.000 0.220 0.764
#> SRR1069539 5 0.3073 0.825014 0.052 0.000 0.008 0.068 0.872
#> SRR1343031 3 0.4022 0.654645 0.100 0.000 0.796 0.104 0.000
#> SRR1319690 3 0.3073 0.691801 0.024 0.000 0.856 0.116 0.004
#> SRR1310604 5 0.0963 0.848609 0.036 0.000 0.000 0.000 0.964
#> SRR1327747 4 0.5631 0.525510 0.072 0.000 0.268 0.640 0.020
#> SRR1072456 5 0.2172 0.845886 0.076 0.000 0.016 0.000 0.908
#> SRR1367896 3 0.2790 0.723133 0.028 0.060 0.892 0.000 0.020
#> SRR1480107 1 0.3970 0.604532 0.752 0.000 0.224 0.024 0.000
#> SRR1377756 4 0.1725 0.602458 0.020 0.000 0.044 0.936 0.000
#> SRR1435272 4 0.6886 0.443848 0.136 0.040 0.316 0.508 0.000
#> SRR1089230 4 0.0693 0.600048 0.000 0.000 0.008 0.980 0.012
#> SRR1389522 3 0.2139 0.712235 0.052 0.000 0.916 0.000 0.032
#> SRR1080600 5 0.2228 0.838787 0.048 0.000 0.000 0.040 0.912
#> SRR1086935 4 0.3710 0.552098 0.024 0.192 0.000 0.784 0.000
#> SRR1344060 5 0.2124 0.835453 0.056 0.000 0.000 0.028 0.916
#> SRR1467922 2 0.2110 0.751167 0.072 0.912 0.000 0.000 0.016
#> SRR1090984 3 0.8290 0.118190 0.144 0.272 0.364 0.220 0.000
#> SRR1456991 1 0.4161 0.401069 0.608 0.000 0.392 0.000 0.000
#> SRR1085039 3 0.4589 0.548257 0.248 0.000 0.704 0.048 0.000
#> SRR1069303 1 0.4744 0.540444 0.764 0.156 0.028 0.048 0.004
#> SRR1091500 2 0.2964 0.723674 0.024 0.856 0.000 0.000 0.120
#> SRR1075198 5 0.0671 0.853150 0.016 0.000 0.004 0.000 0.980
#> SRR1086915 4 0.1605 0.612223 0.040 0.000 0.012 0.944 0.004
#> SRR1499503 5 0.0579 0.854612 0.000 0.008 0.008 0.000 0.984
#> SRR1094312 2 0.3630 0.662134 0.016 0.780 0.000 0.000 0.204
#> SRR1352437 2 0.7135 0.215199 0.228 0.512 0.044 0.216 0.000
#> SRR1436323 4 0.6304 0.349849 0.156 0.000 0.384 0.460 0.000
#> SRR1073507 4 0.5714 0.488377 0.292 0.000 0.116 0.592 0.000
#> SRR1401972 1 0.6769 0.161927 0.444 0.308 0.004 0.244 0.000
#> SRR1415510 5 0.5081 0.716388 0.104 0.080 0.060 0.000 0.756
#> SRR1327279 3 0.3058 0.697799 0.044 0.000 0.860 0.096 0.000
#> SRR1086983 4 0.4454 0.621735 0.112 0.000 0.128 0.760 0.000
#> SRR1105174 4 0.6475 0.161492 0.212 0.000 0.304 0.484 0.000
#> SRR1468893 4 0.1901 0.582240 0.040 0.000 0.024 0.932 0.004
#> SRR1362555 5 0.0324 0.853351 0.004 0.000 0.004 0.000 0.992
#> SRR1074526 4 0.7903 0.084323 0.212 0.140 0.000 0.464 0.184
#> SRR1326225 2 0.4126 0.311804 0.000 0.620 0.000 0.000 0.380
#> SRR1401933 4 0.1822 0.591881 0.036 0.000 0.024 0.936 0.004
#> SRR1324062 2 0.7328 0.255041 0.120 0.528 0.240 0.112 0.000
#> SRR1102296 1 0.5083 0.599154 0.700 0.140 0.160 0.000 0.000
#> SRR1085087 1 0.4797 0.587317 0.736 0.000 0.176 0.080 0.008
#> SRR1079046 1 0.6202 0.380278 0.564 0.000 0.008 0.144 0.284
#> SRR1328339 3 0.4088 0.319491 0.368 0.000 0.632 0.000 0.000
#> SRR1079782 5 0.0693 0.854886 0.008 0.012 0.000 0.000 0.980
#> SRR1092257 2 0.2179 0.744640 0.004 0.896 0.000 0.000 0.100
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0972 0.81190 0.000 0.964 0.008 0.000 0.028 0.000
#> SRR1429287 2 0.2835 0.79308 0.008 0.876 0.004 0.036 0.004 0.072
#> SRR1359238 4 0.2805 0.58756 0.012 0.000 0.160 0.828 0.000 0.000
#> SRR1309597 3 0.3098 0.63416 0.060 0.032 0.868 0.028 0.000 0.012
#> SRR1441398 3 0.2680 0.64532 0.108 0.000 0.860 0.000 0.000 0.032
#> SRR1084055 2 0.1774 0.80611 0.024 0.936 0.004 0.004 0.028 0.004
#> SRR1417566 3 0.5607 0.20711 0.004 0.000 0.524 0.004 0.348 0.120
#> SRR1351857 4 0.4332 0.41259 0.000 0.000 0.048 0.664 0.000 0.288
#> SRR1487485 3 0.5171 0.59801 0.028 0.008 0.728 0.076 0.136 0.024
#> SRR1335875 3 0.6767 0.39722 0.128 0.000 0.488 0.112 0.272 0.000
#> SRR1073947 1 0.2373 0.62899 0.888 0.004 0.084 0.024 0.000 0.000
#> SRR1443483 3 0.3145 0.62914 0.012 0.012 0.828 0.144 0.000 0.004
#> SRR1346794 6 0.6637 0.39804 0.164 0.036 0.320 0.012 0.000 0.468
#> SRR1405245 3 0.4426 0.13817 0.020 0.000 0.596 0.008 0.000 0.376
#> SRR1409677 4 0.4480 0.56514 0.004 0.040 0.056 0.756 0.000 0.144
#> SRR1095549 3 0.5209 0.57421 0.044 0.000 0.688 0.132 0.000 0.136
#> SRR1323788 6 0.4227 0.41733 0.004 0.000 0.344 0.020 0.000 0.632
#> SRR1314054 5 0.2278 0.74812 0.000 0.004 0.000 0.128 0.868 0.000
#> SRR1077944 1 0.6763 0.21026 0.436 0.000 0.052 0.236 0.000 0.276
#> SRR1480587 2 0.3366 0.74838 0.000 0.824 0.080 0.000 0.092 0.004
#> SRR1311205 3 0.4234 0.51369 0.324 0.000 0.644 0.032 0.000 0.000
#> SRR1076369 6 0.2251 0.62745 0.000 0.052 0.036 0.008 0.000 0.904
#> SRR1453549 4 0.4095 -0.03242 0.008 0.000 0.480 0.512 0.000 0.000
#> SRR1345782 3 0.3834 0.51923 0.024 0.000 0.708 0.268 0.000 0.000
#> SRR1447850 5 0.2092 0.74724 0.000 0.000 0.000 0.124 0.876 0.000
#> SRR1391553 5 0.2333 0.74908 0.000 0.000 0.004 0.120 0.872 0.004
#> SRR1444156 5 0.0405 0.73983 0.000 0.004 0.008 0.000 0.988 0.000
#> SRR1471731 3 0.6019 0.43824 0.056 0.004 0.656 0.144 0.024 0.116
#> SRR1120987 4 0.4342 0.44008 0.028 0.052 0.000 0.772 0.012 0.136
#> SRR1477363 3 0.3863 0.64096 0.164 0.000 0.776 0.048 0.000 0.012
#> SRR1391961 1 0.5552 0.17412 0.552 0.360 0.028 0.012 0.000 0.048
#> SRR1373879 3 0.3728 0.40243 0.004 0.000 0.652 0.344 0.000 0.000
#> SRR1318732 6 0.4316 0.33766 0.004 0.008 0.432 0.004 0.000 0.552
#> SRR1091404 1 0.2309 0.62343 0.888 0.000 0.084 0.000 0.000 0.028
#> SRR1402109 3 0.3854 0.11042 0.000 0.000 0.536 0.464 0.000 0.000
#> SRR1407336 4 0.3320 0.55305 0.016 0.000 0.212 0.772 0.000 0.000
#> SRR1097417 3 0.6578 0.44566 0.024 0.024 0.512 0.328 0.096 0.016
#> SRR1396227 1 0.5187 0.45949 0.672 0.000 0.036 0.072 0.004 0.216
#> SRR1400775 5 0.4204 0.73255 0.040 0.124 0.000 0.060 0.776 0.000
#> SRR1392861 4 0.1245 0.59696 0.000 0.000 0.016 0.952 0.032 0.000
#> SRR1472929 2 0.3341 0.74831 0.116 0.816 0.068 0.000 0.000 0.000
#> SRR1436740 4 0.5421 0.35455 0.132 0.000 0.008 0.640 0.012 0.208
#> SRR1477057 2 0.4999 0.22494 0.456 0.496 0.000 0.024 0.020 0.004
#> SRR1311980 5 0.5517 0.24741 0.000 0.000 0.352 0.124 0.520 0.004
#> SRR1069400 3 0.4455 0.37868 0.016 0.016 0.616 0.352 0.000 0.000
#> SRR1351016 1 0.2702 0.62972 0.868 0.000 0.092 0.036 0.000 0.004
#> SRR1096291 4 0.3248 0.50971 0.004 0.004 0.000 0.768 0.000 0.224
#> SRR1418145 2 0.1565 0.80825 0.004 0.940 0.000 0.028 0.000 0.028
#> SRR1488111 2 0.2678 0.76263 0.004 0.860 0.000 0.116 0.020 0.000
#> SRR1370495 2 0.3309 0.62165 0.280 0.720 0.000 0.000 0.000 0.000
#> SRR1352639 2 0.4471 0.17186 0.472 0.500 0.028 0.000 0.000 0.000
#> SRR1348911 3 0.4681 0.47885 0.032 0.000 0.620 0.016 0.332 0.000
#> SRR1467386 1 0.6740 0.12065 0.416 0.000 0.096 0.372 0.000 0.116
#> SRR1415956 3 0.3898 0.52763 0.296 0.000 0.684 0.000 0.000 0.020
#> SRR1500495 3 0.3053 0.64221 0.168 0.000 0.812 0.020 0.000 0.000
#> SRR1405099 1 0.3620 0.31744 0.648 0.000 0.352 0.000 0.000 0.000
#> SRR1345585 3 0.2922 0.63173 0.008 0.028 0.876 0.028 0.000 0.060
#> SRR1093196 4 0.4575 0.59104 0.064 0.000 0.100 0.756 0.000 0.080
#> SRR1466006 2 0.2065 0.79882 0.004 0.912 0.052 0.000 0.000 0.032
#> SRR1351557 2 0.3271 0.67303 0.000 0.760 0.008 0.000 0.232 0.000
#> SRR1382687 6 0.3277 0.64140 0.000 0.000 0.084 0.092 0.000 0.824
#> SRR1375549 6 0.5624 0.10102 0.388 0.084 0.004 0.016 0.000 0.508
#> SRR1101765 6 0.3414 0.57146 0.008 0.140 0.000 0.040 0.000 0.812
#> SRR1334461 1 0.4275 0.29256 0.644 0.328 0.020 0.008 0.000 0.000
#> SRR1094073 5 0.3634 0.49326 0.000 0.296 0.008 0.000 0.696 0.000
#> SRR1077549 4 0.3220 0.57506 0.128 0.000 0.028 0.832 0.004 0.008
#> SRR1440332 4 0.3998 -0.03697 0.004 0.000 0.492 0.504 0.000 0.000
#> SRR1454177 4 0.0870 0.60749 0.004 0.000 0.012 0.972 0.000 0.012
#> SRR1082447 6 0.3056 0.55787 0.160 0.000 0.008 0.012 0.000 0.820
#> SRR1420043 4 0.3409 0.45537 0.000 0.000 0.300 0.700 0.000 0.000
#> SRR1432500 4 0.3853 0.45090 0.016 0.000 0.304 0.680 0.000 0.000
#> SRR1378045 5 0.2945 0.63131 0.000 0.000 0.156 0.000 0.824 0.020
#> SRR1334200 2 0.4435 0.35763 0.004 0.576 0.004 0.016 0.000 0.400
#> SRR1069539 2 0.3264 0.68137 0.008 0.796 0.000 0.184 0.000 0.012
#> SRR1343031 4 0.4084 0.22284 0.012 0.000 0.400 0.588 0.000 0.000
#> SRR1319690 3 0.2419 0.65200 0.016 0.000 0.896 0.060 0.000 0.028
#> SRR1310604 2 0.1003 0.81068 0.028 0.964 0.004 0.004 0.000 0.000
#> SRR1327747 6 0.5975 0.47394 0.016 0.020 0.308 0.104 0.000 0.552
#> SRR1072456 2 0.2375 0.79866 0.020 0.896 0.016 0.000 0.068 0.000
#> SRR1367896 3 0.3499 0.59927 0.012 0.004 0.780 0.196 0.008 0.000
#> SRR1480107 1 0.2032 0.62235 0.920 0.000 0.036 0.024 0.000 0.020
#> SRR1377756 6 0.2373 0.64215 0.004 0.000 0.024 0.084 0.000 0.888
#> SRR1435272 4 0.2320 0.60254 0.000 0.000 0.132 0.864 0.000 0.004
#> SRR1089230 6 0.3081 0.56251 0.000 0.004 0.000 0.220 0.000 0.776
#> SRR1389522 3 0.3392 0.63413 0.040 0.012 0.820 0.128 0.000 0.000
#> SRR1080600 2 0.1562 0.80763 0.004 0.940 0.032 0.000 0.000 0.024
#> SRR1086935 6 0.5767 0.34631 0.000 0.000 0.004 0.300 0.180 0.516
#> SRR1344060 2 0.2747 0.78148 0.028 0.868 0.004 0.004 0.000 0.096
#> SRR1467922 5 0.0862 0.73754 0.000 0.008 0.016 0.000 0.972 0.004
#> SRR1090984 6 0.7255 0.29388 0.116 0.000 0.256 0.000 0.224 0.404
#> SRR1456991 1 0.3398 0.44636 0.740 0.008 0.252 0.000 0.000 0.000
#> SRR1085039 3 0.6274 0.27471 0.156 0.000 0.488 0.320 0.000 0.036
#> SRR1069303 1 0.4629 0.57567 0.760 0.000 0.012 0.120 0.064 0.044
#> SRR1091500 5 0.5410 0.69252 0.020 0.160 0.004 0.116 0.684 0.016
#> SRR1075198 2 0.0603 0.81165 0.004 0.980 0.016 0.000 0.000 0.000
#> SRR1086915 6 0.3872 0.28898 0.000 0.004 0.000 0.392 0.000 0.604
#> SRR1499503 2 0.0436 0.81241 0.004 0.988 0.004 0.000 0.004 0.000
#> SRR1094312 5 0.4155 0.51491 0.012 0.316 0.000 0.012 0.660 0.000
#> SRR1352437 4 0.6398 -0.02245 0.280 0.000 0.004 0.436 0.268 0.012
#> SRR1436323 4 0.7581 -0.00376 0.188 0.000 0.216 0.348 0.000 0.248
#> SRR1073507 1 0.6695 0.10942 0.372 0.000 0.040 0.364 0.000 0.224
#> SRR1401972 1 0.7225 0.34778 0.464 0.000 0.004 0.184 0.148 0.200
#> SRR1415510 2 0.4213 0.67392 0.004 0.744 0.092 0.000 0.160 0.000
#> SRR1327279 4 0.4141 0.17117 0.012 0.000 0.432 0.556 0.000 0.000
#> SRR1086983 4 0.4524 0.33876 0.000 0.000 0.048 0.616 0.000 0.336
#> SRR1105174 6 0.4783 0.47211 0.204 0.000 0.128 0.000 0.000 0.668
#> SRR1468893 6 0.1838 0.64013 0.020 0.000 0.012 0.040 0.000 0.928
#> SRR1362555 2 0.0291 0.81133 0.004 0.992 0.004 0.000 0.000 0.000
#> SRR1074526 6 0.7326 0.36745 0.088 0.136 0.004 0.152 0.072 0.548
#> SRR1326225 2 0.4775 0.42161 0.000 0.632 0.000 0.084 0.284 0.000
#> SRR1401933 6 0.1909 0.64142 0.024 0.000 0.004 0.052 0.000 0.920
#> SRR1324062 4 0.5626 -0.03363 0.048 0.000 0.032 0.544 0.364 0.012
#> SRR1102296 1 0.2806 0.62530 0.872 0.000 0.060 0.012 0.056 0.000
#> SRR1085087 1 0.4164 0.56698 0.756 0.004 0.032 0.188 0.004 0.016
#> SRR1079046 1 0.6580 0.24348 0.488 0.184 0.012 0.016 0.008 0.292
#> SRR1328339 3 0.4789 0.39588 0.364 0.000 0.584 0.000 0.044 0.008
#> SRR1079782 2 0.0363 0.81147 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1092257 5 0.4996 0.65960 0.004 0.216 0.000 0.128 0.652 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
MAD:hclust
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["MAD", "hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.190 0.676 0.777 0.3586 0.524 0.524
#> 3 3 0.212 0.588 0.706 0.5408 0.767 0.614
#> 4 4 0.264 0.442 0.640 0.1822 0.873 0.725
#> 5 5 0.355 0.581 0.689 0.0894 0.864 0.643
#> 6 6 0.426 0.580 0.698 0.0364 0.989 0.961
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0376 0.8066 0.004 0.996
#> SRR1429287 2 0.2043 0.8055 0.032 0.968
#> SRR1359238 2 0.9795 -0.2519 0.416 0.584
#> SRR1309597 2 0.4939 0.7790 0.108 0.892
#> SRR1441398 1 0.9580 0.7654 0.620 0.380
#> SRR1084055 2 0.0376 0.8066 0.004 0.996
#> SRR1417566 2 0.8443 0.4623 0.272 0.728
#> SRR1351857 2 0.9358 -0.0449 0.352 0.648
#> SRR1487485 2 0.4815 0.7814 0.104 0.896
#> SRR1335875 2 0.5519 0.7693 0.128 0.872
#> SRR1073947 1 0.9635 0.7781 0.612 0.388
#> SRR1443483 2 0.4939 0.7790 0.108 0.892
#> SRR1346794 2 0.9754 -0.0405 0.408 0.592
#> SRR1405245 1 0.9815 0.7422 0.580 0.420
#> SRR1409677 2 0.3274 0.8012 0.060 0.940
#> SRR1095549 2 0.9944 -0.3958 0.456 0.544
#> SRR1323788 2 0.9988 -0.4786 0.480 0.520
#> SRR1314054 2 0.0376 0.8058 0.004 0.996
#> SRR1077944 1 0.9608 0.7805 0.616 0.384
#> SRR1480587 2 0.0938 0.8097 0.012 0.988
#> SRR1311205 1 0.9710 0.7743 0.600 0.400
#> SRR1076369 1 0.9044 0.6997 0.680 0.320
#> SRR1453549 2 0.3274 0.8115 0.060 0.940
#> SRR1345782 1 0.9393 0.7938 0.644 0.356
#> SRR1447850 2 0.0938 0.8074 0.012 0.988
#> SRR1391553 2 0.5294 0.7734 0.120 0.880
#> SRR1444156 2 0.0000 0.8048 0.000 1.000
#> SRR1471731 2 0.5178 0.7796 0.116 0.884
#> SRR1120987 2 0.3114 0.8053 0.056 0.944
#> SRR1477363 1 0.9393 0.7956 0.644 0.356
#> SRR1391961 1 0.3733 0.5704 0.928 0.072
#> SRR1373879 2 0.5059 0.7792 0.112 0.888
#> SRR1318732 2 0.7815 0.5921 0.232 0.768
#> SRR1091404 1 0.9044 0.7914 0.680 0.320
#> SRR1402109 2 0.5059 0.7792 0.112 0.888
#> SRR1407336 2 0.5629 0.7640 0.132 0.868
#> SRR1097417 2 0.5629 0.7665 0.132 0.868
#> SRR1396227 1 0.9977 0.6609 0.528 0.472
#> SRR1400775 2 0.0376 0.8066 0.004 0.996
#> SRR1392861 2 0.2948 0.8029 0.052 0.948
#> SRR1472929 1 0.0672 0.5044 0.992 0.008
#> SRR1436740 2 0.2948 0.8029 0.052 0.948
#> SRR1477057 2 0.9732 -0.2877 0.404 0.596
#> SRR1311980 2 0.5629 0.7644 0.132 0.868
#> SRR1069400 2 0.5519 0.7690 0.128 0.872
#> SRR1351016 1 0.9710 0.7743 0.600 0.400
#> SRR1096291 2 0.3274 0.8094 0.060 0.940
#> SRR1418145 2 0.3733 0.8003 0.072 0.928
#> SRR1488111 2 0.3114 0.8053 0.056 0.944
#> SRR1370495 1 0.9993 0.6302 0.516 0.484
#> SRR1352639 2 0.6343 0.7431 0.160 0.840
#> SRR1348911 2 0.5294 0.7758 0.120 0.880
#> SRR1467386 1 0.9909 0.7193 0.556 0.444
#> SRR1415956 1 0.8555 0.7682 0.720 0.280
#> SRR1500495 1 0.9580 0.7654 0.620 0.380
#> SRR1405099 1 0.8555 0.7682 0.720 0.280
#> SRR1345585 2 0.5946 0.7473 0.144 0.856
#> SRR1093196 2 0.4939 0.7840 0.108 0.892
#> SRR1466006 2 0.4161 0.7704 0.084 0.916
#> SRR1351557 2 0.0376 0.8066 0.004 0.996
#> SRR1382687 1 0.9686 0.7769 0.604 0.396
#> SRR1375549 1 0.9686 0.7314 0.604 0.396
#> SRR1101765 1 0.9087 0.6964 0.676 0.324
#> SRR1334461 1 0.0000 0.5058 1.000 0.000
#> SRR1094073 2 0.0376 0.8066 0.004 0.996
#> SRR1077549 1 0.9866 0.7391 0.568 0.432
#> SRR1440332 1 0.9998 0.5967 0.508 0.492
#> SRR1454177 2 0.2948 0.8029 0.052 0.948
#> SRR1082447 1 0.9129 0.7944 0.672 0.328
#> SRR1420043 2 0.3274 0.8115 0.060 0.940
#> SRR1432500 1 0.9996 0.6328 0.512 0.488
#> SRR1378045 2 0.0000 0.8048 0.000 1.000
#> SRR1334200 1 0.7528 0.5728 0.784 0.216
#> SRR1069539 2 0.3274 0.8094 0.060 0.940
#> SRR1343031 2 0.5629 0.7664 0.132 0.868
#> SRR1319690 1 0.9963 0.5920 0.536 0.464
#> SRR1310604 2 0.0376 0.8066 0.004 0.996
#> SRR1327747 2 0.9775 -0.0942 0.412 0.588
#> SRR1072456 2 0.0376 0.8066 0.004 0.996
#> SRR1367896 2 0.5178 0.7747 0.116 0.884
#> SRR1480107 1 0.9044 0.7914 0.680 0.320
#> SRR1377756 1 0.9427 0.7953 0.640 0.360
#> SRR1435272 2 0.4939 0.7524 0.108 0.892
#> SRR1089230 2 0.3114 0.8018 0.056 0.944
#> SRR1389522 2 0.5737 0.7617 0.136 0.864
#> SRR1080600 2 0.4161 0.7704 0.084 0.916
#> SRR1086935 2 0.0672 0.8063 0.008 0.992
#> SRR1344060 1 0.7376 0.5764 0.792 0.208
#> SRR1467922 2 0.0000 0.8048 0.000 1.000
#> SRR1090984 2 0.8909 0.3608 0.308 0.692
#> SRR1456991 1 0.9129 0.7936 0.672 0.328
#> SRR1085039 1 0.9044 0.7915 0.680 0.320
#> SRR1069303 1 0.9686 0.7726 0.604 0.396
#> SRR1091500 2 0.1633 0.8086 0.024 0.976
#> SRR1075198 2 0.3431 0.8001 0.064 0.936
#> SRR1086915 2 0.7056 0.6065 0.192 0.808
#> SRR1499503 2 0.0376 0.8066 0.004 0.996
#> SRR1094312 2 0.0376 0.8066 0.004 0.996
#> SRR1352437 1 0.9686 0.7726 0.604 0.396
#> SRR1436323 2 0.5178 0.7796 0.116 0.884
#> SRR1073507 1 0.9866 0.7391 0.568 0.432
#> SRR1401972 1 0.9686 0.7726 0.604 0.396
#> SRR1415510 2 0.0376 0.8066 0.004 0.996
#> SRR1327279 1 0.9754 0.7632 0.592 0.408
#> SRR1086983 2 0.9358 -0.0449 0.352 0.648
#> SRR1105174 1 0.8555 0.7682 0.720 0.280
#> SRR1468893 1 0.9286 0.7956 0.656 0.344
#> SRR1362555 2 0.3431 0.8001 0.064 0.936
#> SRR1074526 1 0.5629 0.5876 0.868 0.132
#> SRR1326225 2 0.0376 0.8066 0.004 0.996
#> SRR1401933 1 0.9933 0.6981 0.548 0.452
#> SRR1324062 1 0.9795 0.7541 0.584 0.416
#> SRR1102296 2 0.9795 -0.2144 0.416 0.584
#> SRR1085087 1 0.9661 0.7755 0.608 0.392
#> SRR1079046 1 0.9710 0.7036 0.600 0.400
#> SRR1328339 2 0.8144 0.5168 0.252 0.748
#> SRR1079782 2 0.3431 0.8001 0.064 0.936
#> SRR1092257 2 0.3114 0.8053 0.056 0.944
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 3 0.2584 0.6314 0.008 0.064 0.928
#> SRR1429287 3 0.4821 0.6641 0.064 0.088 0.848
#> SRR1359238 1 0.6109 0.6147 0.760 0.048 0.192
#> SRR1309597 3 0.7400 0.5989 0.264 0.072 0.664
#> SRR1441398 1 0.5722 0.7113 0.800 0.132 0.068
#> SRR1084055 3 0.2584 0.6314 0.008 0.064 0.928
#> SRR1417566 1 0.8033 -0.0220 0.512 0.064 0.424
#> SRR1351857 1 0.6882 0.5818 0.732 0.096 0.172
#> SRR1487485 3 0.7184 0.6118 0.240 0.072 0.688
#> SRR1335875 3 0.7828 0.5371 0.340 0.068 0.592
#> SRR1073947 1 0.0237 0.7400 0.996 0.004 0.000
#> SRR1443483 3 0.7400 0.5989 0.264 0.072 0.664
#> SRR1346794 1 0.8949 0.3556 0.532 0.148 0.320
#> SRR1405245 1 0.5085 0.7262 0.836 0.092 0.072
#> SRR1409677 3 0.8880 0.3272 0.416 0.120 0.464
#> SRR1095549 1 0.5988 0.6641 0.776 0.056 0.168
#> SRR1323788 1 0.6264 0.6746 0.764 0.068 0.168
#> SRR1314054 3 0.4665 0.6436 0.048 0.100 0.852
#> SRR1077944 1 0.4628 0.7414 0.856 0.088 0.056
#> SRR1480587 3 0.2845 0.6330 0.012 0.068 0.920
#> SRR1311205 1 0.2050 0.7499 0.952 0.020 0.028
#> SRR1076369 1 0.8637 0.2014 0.564 0.308 0.128
#> SRR1453549 3 0.8586 0.4474 0.376 0.104 0.520
#> SRR1345782 1 0.3722 0.7364 0.888 0.088 0.024
#> SRR1447850 3 0.5304 0.6528 0.068 0.108 0.824
#> SRR1391553 3 0.7981 0.5281 0.340 0.076 0.584
#> SRR1444156 3 0.2796 0.6128 0.000 0.092 0.908
#> SRR1471731 3 0.8180 0.4530 0.392 0.076 0.532
#> SRR1120987 3 0.5618 0.6675 0.156 0.048 0.796
#> SRR1477363 1 0.2651 0.7380 0.928 0.060 0.012
#> SRR1391961 2 0.6684 0.8501 0.292 0.676 0.032
#> SRR1373879 3 0.8157 0.4711 0.384 0.076 0.540
#> SRR1318732 3 0.8463 0.1925 0.444 0.088 0.468
#> SRR1091404 1 0.2356 0.7135 0.928 0.072 0.000
#> SRR1402109 3 0.8157 0.4711 0.384 0.076 0.540
#> SRR1407336 3 0.8227 0.4643 0.384 0.080 0.536
#> SRR1097417 3 0.7639 0.6042 0.256 0.088 0.656
#> SRR1396227 1 0.4232 0.7330 0.872 0.044 0.084
#> SRR1400775 3 0.4137 0.6352 0.032 0.096 0.872
#> SRR1392861 3 0.8876 0.3328 0.412 0.120 0.468
#> SRR1472929 2 0.5109 0.8406 0.212 0.780 0.008
#> SRR1436740 3 0.8876 0.3328 0.412 0.120 0.468
#> SRR1477057 1 0.7283 0.0608 0.512 0.028 0.460
#> SRR1311980 3 0.7996 0.4799 0.380 0.068 0.552
#> SRR1069400 3 0.8037 0.5159 0.352 0.076 0.572
#> SRR1351016 1 0.2050 0.7499 0.952 0.020 0.028
#> SRR1096291 3 0.6703 0.6235 0.268 0.040 0.692
#> SRR1418145 3 0.6796 0.6329 0.236 0.056 0.708
#> SRR1488111 3 0.5618 0.6675 0.156 0.048 0.796
#> SRR1370495 1 0.6400 0.6104 0.740 0.052 0.208
#> SRR1352639 3 0.6964 0.6011 0.264 0.052 0.684
#> SRR1348911 3 0.7283 0.6067 0.260 0.068 0.672
#> SRR1467386 1 0.3780 0.7440 0.892 0.044 0.064
#> SRR1415956 1 0.3267 0.6806 0.884 0.116 0.000
#> SRR1500495 1 0.5722 0.7113 0.800 0.132 0.068
#> SRR1405099 1 0.3267 0.6806 0.884 0.116 0.000
#> SRR1345585 3 0.7903 0.4942 0.356 0.068 0.576
#> SRR1093196 3 0.8143 0.5054 0.360 0.080 0.560
#> SRR1466006 3 0.3532 0.6225 0.008 0.108 0.884
#> SRR1351557 3 0.3846 0.6196 0.016 0.108 0.876
#> SRR1382687 1 0.4379 0.7341 0.868 0.060 0.072
#> SRR1375549 1 0.6728 0.6550 0.748 0.128 0.124
#> SRR1101765 1 0.8668 0.1903 0.564 0.304 0.132
#> SRR1334461 2 0.5138 0.8427 0.252 0.748 0.000
#> SRR1094073 3 0.3846 0.6196 0.016 0.108 0.876
#> SRR1077549 1 0.1832 0.7459 0.956 0.008 0.036
#> SRR1440332 1 0.4217 0.7258 0.868 0.032 0.100
#> SRR1454177 3 0.8876 0.3328 0.412 0.120 0.468
#> SRR1082447 1 0.2774 0.7204 0.920 0.072 0.008
#> SRR1420043 3 0.8586 0.4474 0.376 0.104 0.520
#> SRR1432500 1 0.3587 0.7325 0.892 0.020 0.088
#> SRR1378045 3 0.4015 0.6326 0.028 0.096 0.876
#> SRR1334200 2 0.8685 0.8001 0.212 0.596 0.192
#> SRR1069539 3 0.6703 0.6235 0.268 0.040 0.692
#> SRR1343031 3 0.8144 0.4801 0.380 0.076 0.544
#> SRR1319690 1 0.7256 0.6627 0.712 0.124 0.164
#> SRR1310604 3 0.2584 0.6314 0.008 0.064 0.928
#> SRR1327747 1 0.8863 0.3846 0.544 0.144 0.312
#> SRR1072456 3 0.2584 0.6314 0.008 0.064 0.928
#> SRR1367896 3 0.7446 0.6011 0.260 0.076 0.664
#> SRR1480107 1 0.2261 0.7158 0.932 0.068 0.000
#> SRR1377756 1 0.2550 0.7403 0.932 0.056 0.012
#> SRR1435272 1 0.8814 -0.1541 0.480 0.116 0.404
#> SRR1089230 3 0.8932 0.3021 0.420 0.124 0.456
#> SRR1389522 3 0.7666 0.5811 0.288 0.076 0.636
#> SRR1080600 3 0.3532 0.6225 0.008 0.108 0.884
#> SRR1086935 3 0.8630 0.4902 0.328 0.120 0.552
#> SRR1344060 2 0.8614 0.8205 0.228 0.600 0.172
#> SRR1467922 3 0.2796 0.6128 0.000 0.092 0.908
#> SRR1090984 1 0.8215 0.1441 0.540 0.080 0.380
#> SRR1456991 1 0.2261 0.7189 0.932 0.068 0.000
#> SRR1085039 1 0.2356 0.7129 0.928 0.072 0.000
#> SRR1069303 1 0.0661 0.7411 0.988 0.008 0.004
#> SRR1091500 3 0.5237 0.6273 0.056 0.120 0.824
#> SRR1075198 3 0.5538 0.6644 0.132 0.060 0.808
#> SRR1086915 1 0.8491 0.1986 0.572 0.116 0.312
#> SRR1499503 3 0.2584 0.6314 0.008 0.064 0.928
#> SRR1094312 3 0.4137 0.6352 0.032 0.096 0.872
#> SRR1352437 1 0.0661 0.7411 0.988 0.008 0.004
#> SRR1436323 3 0.8211 0.4290 0.404 0.076 0.520
#> SRR1073507 1 0.1832 0.7459 0.956 0.008 0.036
#> SRR1401972 1 0.0661 0.7411 0.988 0.008 0.004
#> SRR1415510 3 0.2749 0.6334 0.012 0.064 0.924
#> SRR1327279 1 0.1170 0.7454 0.976 0.008 0.016
#> SRR1086983 1 0.6882 0.5818 0.732 0.096 0.172
#> SRR1105174 1 0.3192 0.6786 0.888 0.112 0.000
#> SRR1468893 1 0.2496 0.7314 0.928 0.068 0.004
#> SRR1362555 3 0.5538 0.6644 0.132 0.060 0.808
#> SRR1074526 2 0.7666 0.8497 0.288 0.636 0.076
#> SRR1326225 3 0.2584 0.6314 0.008 0.064 0.928
#> SRR1401933 1 0.4914 0.7322 0.844 0.068 0.088
#> SRR1324062 1 0.1905 0.7509 0.956 0.016 0.028
#> SRR1102296 1 0.6781 0.5209 0.704 0.052 0.244
#> SRR1085087 1 0.0592 0.7418 0.988 0.012 0.000
#> SRR1079046 1 0.7221 0.5575 0.716 0.148 0.136
#> SRR1328339 1 0.7993 -0.1809 0.484 0.060 0.456
#> SRR1079782 3 0.5538 0.6644 0.132 0.060 0.808
#> SRR1092257 3 0.5558 0.6678 0.152 0.048 0.800
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.467 0.39338 0.000 0.700 0.292 0.008
#> SRR1429287 2 0.439 0.32959 0.024 0.816 0.140 0.020
#> SRR1359238 1 0.624 0.53833 0.668 0.168 0.164 0.000
#> SRR1309597 3 0.705 0.74656 0.124 0.392 0.484 0.000
#> SRR1441398 1 0.617 0.65082 0.712 0.068 0.184 0.036
#> SRR1084055 2 0.467 0.39338 0.000 0.700 0.292 0.008
#> SRR1417566 1 0.787 -0.34068 0.388 0.328 0.284 0.000
#> SRR1351857 1 0.725 0.51029 0.620 0.196 0.156 0.028
#> SRR1487485 3 0.675 0.70367 0.092 0.440 0.468 0.000
#> SRR1335875 3 0.747 0.72303 0.180 0.368 0.452 0.000
#> SRR1073947 1 0.204 0.76022 0.936 0.012 0.048 0.004
#> SRR1443483 3 0.701 0.74410 0.120 0.392 0.488 0.000
#> SRR1346794 1 0.865 0.17900 0.460 0.280 0.204 0.056
#> SRR1405245 1 0.532 0.68083 0.768 0.072 0.144 0.016
#> SRR1409677 2 0.841 -0.00362 0.276 0.440 0.256 0.028
#> SRR1095549 1 0.613 0.60004 0.692 0.148 0.156 0.004
#> SRR1323788 1 0.604 0.59768 0.708 0.148 0.136 0.008
#> SRR1314054 2 0.523 0.40577 0.012 0.684 0.292 0.012
#> SRR1077944 1 0.426 0.75308 0.848 0.060 0.052 0.040
#> SRR1480587 2 0.475 0.38689 0.000 0.688 0.304 0.008
#> SRR1311205 1 0.258 0.75877 0.912 0.036 0.052 0.000
#> SRR1076369 1 0.827 0.37925 0.544 0.112 0.096 0.248
#> SRR1453549 2 0.815 -0.29200 0.216 0.416 0.352 0.016
#> SRR1345782 1 0.340 0.75816 0.888 0.028 0.044 0.040
#> SRR1447850 2 0.557 0.40178 0.028 0.692 0.264 0.016
#> SRR1391553 3 0.740 0.73339 0.168 0.376 0.456 0.000
#> SRR1444156 2 0.574 0.31878 0.000 0.540 0.432 0.028
#> SRR1471731 2 0.777 -0.60552 0.240 0.384 0.376 0.000
#> SRR1120987 2 0.446 0.29360 0.100 0.824 0.064 0.012
#> SRR1477363 1 0.263 0.75986 0.920 0.024 0.036 0.020
#> SRR1391961 4 0.404 0.86256 0.116 0.012 0.032 0.840
#> SRR1373879 3 0.773 0.68067 0.232 0.356 0.412 0.000
#> SRR1318732 2 0.792 -0.47093 0.324 0.344 0.332 0.000
#> SRR1091404 1 0.204 0.75471 0.936 0.012 0.004 0.048
#> SRR1402109 3 0.773 0.68067 0.232 0.356 0.412 0.000
#> SRR1407336 3 0.777 0.65283 0.240 0.376 0.384 0.000
#> SRR1097417 3 0.773 0.71143 0.108 0.384 0.476 0.032
#> SRR1396227 1 0.466 0.73017 0.804 0.108 0.084 0.004
#> SRR1400775 2 0.487 0.41194 0.004 0.720 0.260 0.016
#> SRR1392861 2 0.843 0.03617 0.256 0.432 0.284 0.028
#> SRR1472929 4 0.194 0.83386 0.012 0.000 0.052 0.936
#> SRR1436740 2 0.843 0.03617 0.256 0.432 0.284 0.028
#> SRR1477057 1 0.685 0.15726 0.472 0.448 0.068 0.012
#> SRR1311980 3 0.765 0.70807 0.220 0.336 0.444 0.000
#> SRR1069400 3 0.764 0.72815 0.208 0.376 0.416 0.000
#> SRR1351016 1 0.266 0.75882 0.908 0.036 0.056 0.000
#> SRR1096291 2 0.636 -0.03402 0.160 0.656 0.184 0.000
#> SRR1418145 2 0.514 0.21082 0.180 0.764 0.036 0.020
#> SRR1488111 2 0.446 0.29360 0.100 0.824 0.064 0.012
#> SRR1370495 1 0.600 0.64095 0.700 0.224 0.044 0.032
#> SRR1352639 2 0.484 0.20277 0.224 0.748 0.012 0.016
#> SRR1348911 3 0.703 0.68353 0.120 0.408 0.472 0.000
#> SRR1467386 1 0.427 0.74337 0.828 0.068 0.100 0.004
#> SRR1415956 1 0.316 0.72311 0.884 0.000 0.052 0.064
#> SRR1500495 1 0.617 0.65082 0.712 0.068 0.184 0.036
#> SRR1405099 1 0.316 0.72311 0.884 0.000 0.052 0.064
#> SRR1345585 2 0.769 -0.65008 0.220 0.416 0.364 0.000
#> SRR1093196 2 0.767 -0.63811 0.216 0.416 0.368 0.000
#> SRR1466006 2 0.553 0.23325 0.000 0.704 0.228 0.068
#> SRR1351557 2 0.469 0.40916 0.000 0.724 0.260 0.016
#> SRR1382687 1 0.462 0.72406 0.812 0.048 0.124 0.016
#> SRR1375549 1 0.604 0.69947 0.736 0.148 0.048 0.068
#> SRR1101765 1 0.822 0.37385 0.548 0.112 0.092 0.248
#> SRR1334461 4 0.164 0.85317 0.060 0.000 0.000 0.940
#> SRR1094073 2 0.469 0.40916 0.000 0.724 0.260 0.016
#> SRR1077549 1 0.258 0.75714 0.912 0.036 0.052 0.000
#> SRR1440332 1 0.521 0.67166 0.756 0.104 0.140 0.000
#> SRR1454177 2 0.843 0.03617 0.256 0.432 0.284 0.028
#> SRR1082447 1 0.214 0.75706 0.936 0.012 0.012 0.040
#> SRR1420043 2 0.815 -0.29200 0.216 0.416 0.352 0.016
#> SRR1432500 1 0.461 0.71556 0.808 0.100 0.088 0.004
#> SRR1378045 3 0.577 -0.29287 0.000 0.464 0.508 0.028
#> SRR1334200 4 0.689 0.80719 0.064 0.144 0.108 0.684
#> SRR1069539 2 0.636 -0.03402 0.160 0.656 0.184 0.000
#> SRR1343031 3 0.774 0.70305 0.232 0.360 0.408 0.000
#> SRR1319690 1 0.732 0.55454 0.628 0.144 0.188 0.040
#> SRR1310604 2 0.467 0.39338 0.000 0.700 0.292 0.008
#> SRR1327747 1 0.851 0.21957 0.476 0.264 0.212 0.048
#> SRR1072456 2 0.467 0.39338 0.000 0.700 0.292 0.008
#> SRR1367896 3 0.722 0.73471 0.112 0.392 0.488 0.008
#> SRR1480107 1 0.182 0.75411 0.944 0.008 0.004 0.044
#> SRR1377756 1 0.263 0.76233 0.920 0.024 0.036 0.020
#> SRR1435272 2 0.856 0.02467 0.324 0.376 0.272 0.028
#> SRR1089230 2 0.847 0.03106 0.256 0.420 0.296 0.028
#> SRR1389522 3 0.747 0.74598 0.140 0.376 0.476 0.008
#> SRR1080600 2 0.553 0.23325 0.000 0.704 0.228 0.068
#> SRR1086935 2 0.806 0.05028 0.168 0.480 0.324 0.028
#> SRR1344060 4 0.686 0.83021 0.080 0.120 0.108 0.692
#> SRR1467922 2 0.574 0.31878 0.000 0.540 0.432 0.028
#> SRR1090984 1 0.779 -0.23870 0.424 0.280 0.296 0.000
#> SRR1456991 1 0.188 0.75575 0.944 0.008 0.008 0.040
#> SRR1085039 1 0.186 0.75236 0.944 0.004 0.012 0.040
#> SRR1069303 1 0.216 0.75713 0.928 0.008 0.060 0.004
#> SRR1091500 2 0.565 0.40778 0.020 0.700 0.248 0.032
#> SRR1075198 2 0.342 0.31378 0.088 0.876 0.016 0.020
#> SRR1086915 1 0.820 0.17819 0.460 0.324 0.188 0.028
#> SRR1499503 2 0.467 0.39338 0.000 0.700 0.292 0.008
#> SRR1094312 2 0.487 0.41194 0.004 0.720 0.260 0.016
#> SRR1352437 1 0.216 0.75713 0.928 0.008 0.060 0.004
#> SRR1436323 2 0.780 -0.59220 0.248 0.376 0.376 0.000
#> SRR1073507 1 0.258 0.75714 0.912 0.036 0.052 0.000
#> SRR1401972 1 0.216 0.75713 0.928 0.008 0.060 0.004
#> SRR1415510 2 0.485 0.39103 0.004 0.696 0.292 0.008
#> SRR1327279 1 0.260 0.75763 0.908 0.024 0.068 0.000
#> SRR1086983 1 0.722 0.51414 0.624 0.192 0.156 0.028
#> SRR1105174 1 0.300 0.72255 0.896 0.004 0.036 0.064
#> SRR1468893 1 0.219 0.75364 0.932 0.004 0.044 0.020
#> SRR1362555 2 0.341 0.31305 0.088 0.876 0.012 0.024
#> SRR1074526 4 0.589 0.85053 0.128 0.020 0.116 0.736
#> SRR1326225 2 0.467 0.39338 0.000 0.700 0.292 0.008
#> SRR1401933 1 0.444 0.73650 0.816 0.112 0.068 0.004
#> SRR1324062 1 0.294 0.76061 0.900 0.044 0.052 0.004
#> SRR1102296 1 0.712 0.38161 0.584 0.200 0.212 0.004
#> SRR1085087 1 0.228 0.75978 0.928 0.020 0.048 0.004
#> SRR1079046 1 0.660 0.62299 0.712 0.108 0.080 0.100
#> SRR1328339 2 0.792 -0.46361 0.340 0.348 0.312 0.000
#> SRR1079782 2 0.341 0.31305 0.088 0.876 0.012 0.024
#> SRR1092257 2 0.439 0.29794 0.100 0.828 0.060 0.012
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.239 0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1429287 2 0.745 0.4459 0.008 0.456 0.228 0.276 0.032
#> SRR1359238 1 0.658 0.3895 0.548 0.028 0.288 0.136 0.000
#> SRR1309597 3 0.204 0.6728 0.036 0.028 0.928 0.008 0.000
#> SRR1441398 1 0.458 0.5819 0.696 0.000 0.272 0.012 0.020
#> SRR1084055 2 0.239 0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1417566 3 0.622 0.4174 0.336 0.056 0.564 0.040 0.004
#> SRR1351857 1 0.657 0.0431 0.524 0.060 0.068 0.348 0.000
#> SRR1487485 3 0.322 0.6608 0.028 0.076 0.868 0.028 0.000
#> SRR1335875 3 0.476 0.6766 0.104 0.076 0.776 0.044 0.000
#> SRR1073947 1 0.271 0.7093 0.876 0.000 0.024 0.100 0.000
#> SRR1443483 3 0.195 0.6703 0.032 0.028 0.932 0.008 0.000
#> SRR1346794 1 0.733 0.0743 0.472 0.028 0.364 0.092 0.044
#> SRR1405245 1 0.384 0.6241 0.736 0.000 0.256 0.004 0.004
#> SRR1409677 4 0.745 0.7925 0.160 0.108 0.208 0.524 0.000
#> SRR1095549 1 0.571 0.5148 0.632 0.008 0.248 0.112 0.000
#> SRR1323788 1 0.477 0.5530 0.680 0.008 0.280 0.032 0.000
#> SRR1314054 2 0.449 0.6265 0.004 0.760 0.080 0.156 0.000
#> SRR1077944 1 0.378 0.7121 0.828 0.008 0.120 0.036 0.008
#> SRR1480587 2 0.274 0.6847 0.000 0.860 0.132 0.004 0.004
#> SRR1311205 1 0.362 0.7065 0.824 0.000 0.108 0.068 0.000
#> SRR1076369 1 0.674 0.3616 0.568 0.004 0.040 0.128 0.260
#> SRR1453549 3 0.721 0.0291 0.104 0.084 0.484 0.328 0.000
#> SRR1345782 1 0.286 0.7226 0.872 0.000 0.104 0.016 0.008
#> SRR1447850 2 0.563 0.5512 0.012 0.652 0.104 0.232 0.000
#> SRR1391553 3 0.465 0.6873 0.096 0.076 0.784 0.044 0.000
#> SRR1444156 2 0.406 0.5193 0.000 0.800 0.112 0.084 0.004
#> SRR1471731 3 0.597 0.5894 0.108 0.040 0.660 0.192 0.000
#> SRR1120987 2 0.773 0.3871 0.068 0.420 0.272 0.240 0.000
#> SRR1477363 1 0.207 0.7262 0.920 0.000 0.060 0.016 0.004
#> SRR1391961 5 0.536 0.8048 0.072 0.016 0.008 0.200 0.704
#> SRR1373879 3 0.487 0.6614 0.100 0.028 0.760 0.112 0.000
#> SRR1318732 3 0.595 0.5191 0.276 0.056 0.628 0.032 0.008
#> SRR1091404 1 0.188 0.7228 0.936 0.000 0.032 0.020 0.012
#> SRR1402109 3 0.487 0.6614 0.100 0.028 0.760 0.112 0.000
#> SRR1407336 3 0.535 0.6492 0.112 0.036 0.724 0.128 0.000
#> SRR1097417 3 0.256 0.6482 0.024 0.032 0.912 0.008 0.024
#> SRR1396227 1 0.477 0.6310 0.748 0.020 0.060 0.172 0.000
#> SRR1400775 2 0.309 0.6533 0.000 0.856 0.040 0.104 0.000
#> SRR1392861 4 0.699 0.8622 0.144 0.108 0.160 0.588 0.000
#> SRR1472929 5 0.492 0.7782 0.004 0.004 0.072 0.200 0.720
#> SRR1436740 4 0.699 0.8622 0.144 0.108 0.160 0.588 0.000
#> SRR1477057 1 0.726 0.0846 0.456 0.344 0.060 0.140 0.000
#> SRR1311980 3 0.517 0.6780 0.116 0.060 0.748 0.076 0.000
#> SRR1069400 3 0.366 0.6865 0.096 0.012 0.836 0.056 0.000
#> SRR1351016 1 0.363 0.7066 0.824 0.000 0.104 0.072 0.000
#> SRR1096291 3 0.797 -0.1108 0.084 0.276 0.376 0.264 0.000
#> SRR1418145 2 0.842 0.1999 0.120 0.356 0.292 0.224 0.008
#> SRR1488111 2 0.773 0.3871 0.068 0.420 0.272 0.240 0.000
#> SRR1370495 1 0.657 0.5320 0.656 0.080 0.100 0.148 0.016
#> SRR1352639 2 0.852 0.2684 0.200 0.380 0.268 0.140 0.012
#> SRR1348911 3 0.350 0.6465 0.056 0.092 0.844 0.008 0.000
#> SRR1467386 1 0.433 0.6582 0.776 0.012 0.052 0.160 0.000
#> SRR1415956 1 0.240 0.7012 0.912 0.000 0.040 0.012 0.036
#> SRR1500495 1 0.458 0.5819 0.696 0.000 0.272 0.012 0.020
#> SRR1405099 1 0.240 0.7012 0.912 0.000 0.040 0.012 0.036
#> SRR1345585 3 0.523 0.6562 0.132 0.060 0.740 0.068 0.000
#> SRR1093196 3 0.577 0.6179 0.100 0.052 0.692 0.156 0.000
#> SRR1466006 2 0.709 0.5394 0.000 0.532 0.276 0.092 0.100
#> SRR1351557 2 0.287 0.6729 0.000 0.880 0.072 0.044 0.004
#> SRR1382687 1 0.388 0.6868 0.800 0.004 0.164 0.024 0.008
#> SRR1375549 1 0.511 0.6280 0.764 0.020 0.060 0.124 0.032
#> SRR1101765 1 0.663 0.3565 0.572 0.004 0.032 0.128 0.264
#> SRR1334461 5 0.389 0.7894 0.008 0.004 0.008 0.208 0.772
#> SRR1094073 2 0.287 0.6729 0.000 0.880 0.072 0.044 0.004
#> SRR1077549 1 0.365 0.6935 0.828 0.008 0.044 0.120 0.000
#> SRR1440332 1 0.568 0.5752 0.644 0.008 0.228 0.120 0.000
#> SRR1454177 4 0.699 0.8622 0.144 0.108 0.160 0.588 0.000
#> SRR1082447 1 0.157 0.7265 0.948 0.000 0.032 0.012 0.008
#> SRR1420043 3 0.721 0.0291 0.104 0.084 0.484 0.328 0.000
#> SRR1432500 1 0.528 0.5921 0.704 0.016 0.096 0.184 0.000
#> SRR1378045 2 0.519 0.3859 0.000 0.672 0.244 0.080 0.004
#> SRR1334200 5 0.544 0.7492 0.048 0.116 0.044 0.040 0.752
#> SRR1069539 3 0.797 -0.1108 0.084 0.276 0.376 0.264 0.000
#> SRR1343031 3 0.418 0.6767 0.112 0.012 0.800 0.076 0.000
#> SRR1319690 1 0.545 0.4739 0.628 0.012 0.316 0.024 0.020
#> SRR1310604 2 0.239 0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1327747 1 0.738 0.1010 0.468 0.036 0.368 0.084 0.044
#> SRR1072456 2 0.239 0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1367896 3 0.220 0.6655 0.032 0.032 0.924 0.008 0.004
#> SRR1480107 1 0.187 0.7227 0.936 0.000 0.036 0.016 0.012
#> SRR1377756 1 0.207 0.7270 0.920 0.000 0.060 0.016 0.004
#> SRR1435272 4 0.727 0.8014 0.216 0.092 0.152 0.540 0.000
#> SRR1089230 4 0.680 0.8522 0.148 0.100 0.144 0.608 0.000
#> SRR1389522 3 0.263 0.6762 0.052 0.024 0.904 0.016 0.004
#> SRR1080600 2 0.709 0.5394 0.000 0.532 0.276 0.092 0.100
#> SRR1086935 4 0.670 0.7233 0.068 0.148 0.180 0.604 0.000
#> SRR1344060 5 0.550 0.7685 0.068 0.100 0.040 0.040 0.752
#> SRR1467922 2 0.406 0.5193 0.000 0.800 0.112 0.084 0.004
#> SRR1090984 3 0.569 0.3517 0.372 0.032 0.568 0.020 0.008
#> SRR1456991 1 0.184 0.7235 0.936 0.000 0.040 0.016 0.008
#> SRR1085039 1 0.139 0.7234 0.956 0.000 0.024 0.012 0.008
#> SRR1069303 1 0.263 0.6969 0.860 0.000 0.004 0.136 0.000
#> SRR1091500 2 0.405 0.5991 0.008 0.788 0.016 0.176 0.012
#> SRR1075198 2 0.780 0.4589 0.064 0.460 0.276 0.188 0.012
#> SRR1086915 4 0.727 0.5160 0.360 0.088 0.100 0.452 0.000
#> SRR1499503 2 0.239 0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1094312 2 0.309 0.6533 0.000 0.856 0.040 0.104 0.000
#> SRR1352437 1 0.263 0.6969 0.860 0.000 0.004 0.136 0.000
#> SRR1436323 3 0.607 0.5767 0.112 0.040 0.648 0.200 0.000
#> SRR1073507 1 0.365 0.6935 0.828 0.008 0.044 0.120 0.000
#> SRR1401972 1 0.263 0.6969 0.860 0.000 0.004 0.136 0.000
#> SRR1415510 2 0.296 0.6834 0.000 0.848 0.140 0.004 0.008
#> SRR1327279 1 0.370 0.7032 0.820 0.000 0.096 0.084 0.000
#> SRR1086983 1 0.653 0.0455 0.524 0.060 0.064 0.352 0.000
#> SRR1105174 1 0.187 0.6977 0.936 0.000 0.012 0.016 0.036
#> SRR1468893 1 0.234 0.7188 0.908 0.000 0.012 0.068 0.012
#> SRR1362555 2 0.785 0.4513 0.064 0.452 0.276 0.196 0.012
#> SRR1074526 5 0.425 0.7827 0.112 0.016 0.004 0.064 0.804
#> SRR1326225 2 0.239 0.6902 0.000 0.880 0.116 0.004 0.000
#> SRR1401933 1 0.482 0.6484 0.764 0.024 0.068 0.140 0.004
#> SRR1324062 1 0.382 0.7108 0.824 0.008 0.084 0.084 0.000
#> SRR1102296 1 0.640 0.2690 0.524 0.056 0.364 0.056 0.000
#> SRR1085087 1 0.302 0.7082 0.864 0.000 0.048 0.088 0.000
#> SRR1079046 1 0.540 0.5840 0.748 0.052 0.016 0.116 0.068
#> SRR1328339 3 0.584 0.5145 0.268 0.060 0.632 0.040 0.000
#> SRR1079782 2 0.785 0.4513 0.064 0.452 0.276 0.196 0.012
#> SRR1092257 2 0.772 0.3951 0.068 0.424 0.268 0.240 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.1858 0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1429287 2 0.7427 0.4603 0.000 0.400 0.188 0.220 0.000 0.192
#> SRR1359238 1 0.6117 0.4236 0.524 0.012 0.272 0.184 0.000 0.008
#> SRR1309597 3 0.0993 0.7014 0.024 0.012 0.964 0.000 0.000 0.000
#> SRR1441398 1 0.4397 0.5521 0.672 0.000 0.284 0.032 0.000 0.012
#> SRR1084055 2 0.1858 0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1417566 3 0.6007 0.4392 0.312 0.036 0.548 0.096 0.000 0.008
#> SRR1351857 1 0.5096 0.1078 0.496 0.024 0.020 0.452 0.000 0.008
#> SRR1487485 3 0.2978 0.6910 0.012 0.056 0.860 0.072 0.000 0.000
#> SRR1335875 3 0.4203 0.7061 0.092 0.056 0.796 0.044 0.000 0.012
#> SRR1073947 1 0.2581 0.7082 0.860 0.000 0.020 0.120 0.000 0.000
#> SRR1443483 3 0.1053 0.6978 0.020 0.012 0.964 0.000 0.004 0.000
#> SRR1346794 1 0.6808 0.0735 0.464 0.020 0.324 0.148 0.000 0.044
#> SRR1405245 1 0.3812 0.5979 0.712 0.000 0.268 0.016 0.000 0.004
#> SRR1409677 4 0.5149 0.6960 0.136 0.048 0.096 0.712 0.000 0.008
#> SRR1095549 1 0.5575 0.5344 0.600 0.008 0.224 0.164 0.000 0.004
#> SRR1323788 1 0.4786 0.5414 0.660 0.008 0.256 0.076 0.000 0.000
#> SRR1314054 2 0.5405 0.5719 0.000 0.684 0.056 0.140 0.004 0.116
#> SRR1077944 1 0.2979 0.7123 0.840 0.000 0.116 0.044 0.000 0.000
#> SRR1480587 2 0.2261 0.6473 0.000 0.884 0.104 0.004 0.000 0.008
#> SRR1311205 1 0.3468 0.7075 0.816 0.000 0.088 0.092 0.000 0.004
#> SRR1076369 1 0.5989 0.3451 0.564 0.004 0.032 0.080 0.012 0.308
#> SRR1453549 3 0.6102 0.1540 0.100 0.028 0.452 0.412 0.000 0.008
#> SRR1345782 1 0.2263 0.7224 0.884 0.000 0.100 0.016 0.000 0.000
#> SRR1447850 2 0.6095 0.5300 0.000 0.580 0.064 0.228 0.000 0.128
#> SRR1391553 3 0.4251 0.7170 0.084 0.056 0.792 0.060 0.000 0.008
#> SRR1444156 2 0.4090 0.4547 0.000 0.792 0.048 0.092 0.000 0.068
#> SRR1471731 3 0.5317 0.6133 0.088 0.024 0.620 0.268 0.000 0.000
#> SRR1120987 2 0.8235 0.4225 0.060 0.376 0.216 0.184 0.000 0.164
#> SRR1477363 1 0.2118 0.7248 0.916 0.004 0.048 0.020 0.000 0.012
#> SRR1391961 5 0.3098 0.7536 0.040 0.000 0.000 0.004 0.836 0.120
#> SRR1373879 3 0.4435 0.6980 0.076 0.012 0.748 0.156 0.000 0.008
#> SRR1318732 3 0.5785 0.5505 0.256 0.036 0.604 0.096 0.000 0.008
#> SRR1091404 1 0.1321 0.7221 0.952 0.000 0.024 0.020 0.004 0.000
#> SRR1402109 3 0.4435 0.6980 0.076 0.012 0.748 0.156 0.000 0.008
#> SRR1407336 3 0.4761 0.6811 0.088 0.012 0.704 0.192 0.004 0.000
#> SRR1097417 3 0.2074 0.6747 0.016 0.016 0.924 0.000 0.028 0.016
#> SRR1396227 1 0.4423 0.6391 0.720 0.020 0.012 0.224 0.000 0.024
#> SRR1400775 2 0.4008 0.6148 0.000 0.796 0.040 0.068 0.000 0.096
#> SRR1392861 4 0.3829 0.7462 0.112 0.048 0.036 0.804 0.000 0.000
#> SRR1472929 5 0.1528 0.7974 0.000 0.000 0.048 0.000 0.936 0.016
#> SRR1436740 4 0.3829 0.7462 0.112 0.048 0.036 0.804 0.000 0.000
#> SRR1477057 1 0.7074 0.1337 0.448 0.320 0.016 0.128 0.000 0.088
#> SRR1311980 3 0.4609 0.7112 0.100 0.040 0.764 0.084 0.000 0.012
#> SRR1069400 3 0.3565 0.7169 0.076 0.000 0.820 0.092 0.004 0.008
#> SRR1351016 1 0.3466 0.7076 0.816 0.000 0.084 0.096 0.000 0.004
#> SRR1096291 4 0.8286 0.1295 0.080 0.248 0.292 0.308 0.008 0.064
#> SRR1418145 2 0.8635 0.2795 0.100 0.328 0.240 0.196 0.004 0.132
#> SRR1488111 2 0.8235 0.4225 0.060 0.376 0.216 0.184 0.000 0.164
#> SRR1370495 1 0.6369 0.5409 0.636 0.072 0.040 0.148 0.004 0.100
#> SRR1352639 2 0.8648 0.2970 0.192 0.344 0.216 0.132 0.004 0.112
#> SRR1348911 3 0.2842 0.6749 0.044 0.076 0.868 0.012 0.000 0.000
#> SRR1467386 1 0.4044 0.6533 0.740 0.004 0.040 0.212 0.000 0.004
#> SRR1415956 1 0.2244 0.7010 0.912 0.000 0.036 0.032 0.004 0.016
#> SRR1500495 1 0.4397 0.5521 0.672 0.000 0.284 0.032 0.000 0.012
#> SRR1405099 1 0.2244 0.7010 0.912 0.000 0.036 0.032 0.004 0.016
#> SRR1345585 3 0.5060 0.6847 0.112 0.036 0.708 0.140 0.000 0.004
#> SRR1093196 3 0.5178 0.6439 0.084 0.028 0.652 0.236 0.000 0.000
#> SRR1466006 2 0.6693 0.4463 0.000 0.516 0.232 0.060 0.008 0.184
#> SRR1351557 2 0.3066 0.6331 0.000 0.860 0.056 0.024 0.000 0.060
#> SRR1382687 1 0.3892 0.6875 0.792 0.008 0.144 0.040 0.000 0.016
#> SRR1375549 1 0.4571 0.6279 0.760 0.024 0.016 0.124 0.000 0.076
#> SRR1101765 1 0.5868 0.3398 0.568 0.004 0.024 0.080 0.012 0.312
#> SRR1334461 5 0.0547 0.8306 0.000 0.000 0.000 0.000 0.980 0.020
#> SRR1094073 2 0.3066 0.6331 0.000 0.860 0.056 0.024 0.000 0.060
#> SRR1077549 1 0.3388 0.6887 0.804 0.004 0.036 0.156 0.000 0.000
#> SRR1440332 1 0.5207 0.5821 0.628 0.000 0.212 0.156 0.000 0.004
#> SRR1454177 4 0.3829 0.7462 0.112 0.048 0.036 0.804 0.000 0.000
#> SRR1082447 1 0.1092 0.7253 0.960 0.000 0.020 0.020 0.000 0.000
#> SRR1420043 3 0.6102 0.1540 0.100 0.028 0.452 0.412 0.000 0.008
#> SRR1432500 1 0.4738 0.5998 0.684 0.004 0.072 0.232 0.000 0.008
#> SRR1378045 2 0.5504 0.3028 0.000 0.656 0.188 0.092 0.000 0.064
#> SRR1334200 6 0.4959 0.8005 0.008 0.076 0.028 0.012 0.140 0.736
#> SRR1069539 4 0.8286 0.1295 0.080 0.248 0.292 0.308 0.008 0.064
#> SRR1343031 3 0.3997 0.7087 0.092 0.000 0.784 0.112 0.004 0.008
#> SRR1319690 1 0.5257 0.4556 0.612 0.008 0.296 0.072 0.000 0.012
#> SRR1310604 2 0.1858 0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1327747 1 0.6669 0.1059 0.460 0.012 0.332 0.156 0.000 0.040
#> SRR1072456 2 0.1858 0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1367896 3 0.1369 0.6901 0.016 0.016 0.952 0.000 0.016 0.000
#> SRR1480107 1 0.1313 0.7219 0.952 0.000 0.028 0.016 0.004 0.000
#> SRR1377756 1 0.2183 0.7266 0.912 0.004 0.052 0.020 0.000 0.012
#> SRR1435272 4 0.4646 0.7031 0.188 0.040 0.036 0.728 0.000 0.008
#> SRR1089230 4 0.4056 0.7341 0.116 0.044 0.028 0.800 0.004 0.008
#> SRR1389522 3 0.1914 0.7052 0.040 0.012 0.928 0.008 0.012 0.000
#> SRR1080600 2 0.6693 0.4463 0.000 0.516 0.232 0.060 0.008 0.184
#> SRR1086935 4 0.3715 0.6383 0.036 0.084 0.044 0.828 0.004 0.004
#> SRR1344060 6 0.4855 0.8220 0.016 0.064 0.028 0.004 0.148 0.740
#> SRR1467922 2 0.4090 0.4547 0.000 0.792 0.048 0.092 0.000 0.068
#> SRR1090984 3 0.5600 0.3590 0.352 0.020 0.548 0.072 0.000 0.008
#> SRR1456991 1 0.1245 0.7226 0.952 0.000 0.032 0.016 0.000 0.000
#> SRR1085039 1 0.0909 0.7221 0.968 0.000 0.012 0.020 0.000 0.000
#> SRR1069303 1 0.2491 0.6956 0.836 0.000 0.000 0.164 0.000 0.000
#> SRR1091500 2 0.4564 0.5592 0.000 0.720 0.008 0.132 0.000 0.140
#> SRR1075198 2 0.8107 0.4670 0.056 0.416 0.224 0.152 0.004 0.148
#> SRR1086915 4 0.5335 0.4211 0.332 0.040 0.032 0.588 0.000 0.008
#> SRR1499503 2 0.1858 0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1094312 2 0.4008 0.6148 0.000 0.796 0.040 0.068 0.000 0.096
#> SRR1352437 1 0.2491 0.6956 0.836 0.000 0.000 0.164 0.000 0.000
#> SRR1436323 3 0.5396 0.6011 0.092 0.024 0.608 0.276 0.000 0.000
#> SRR1073507 1 0.3388 0.6887 0.804 0.004 0.036 0.156 0.000 0.000
#> SRR1401972 1 0.2491 0.6956 0.836 0.000 0.000 0.164 0.000 0.000
#> SRR1415510 2 0.2488 0.6411 0.000 0.864 0.124 0.008 0.000 0.004
#> SRR1327279 1 0.3554 0.7014 0.808 0.000 0.080 0.108 0.000 0.004
#> SRR1086983 1 0.4871 0.1101 0.496 0.024 0.020 0.460 0.000 0.000
#> SRR1105174 1 0.1722 0.6970 0.936 0.000 0.008 0.036 0.004 0.016
#> SRR1468893 1 0.2290 0.7177 0.892 0.000 0.004 0.084 0.000 0.020
#> SRR1362555 2 0.8152 0.4615 0.056 0.408 0.224 0.156 0.004 0.152
#> SRR1074526 6 0.4023 0.6555 0.052 0.000 0.000 0.008 0.188 0.752
#> SRR1326225 2 0.1858 0.6534 0.000 0.904 0.092 0.004 0.000 0.000
#> SRR1401933 1 0.4391 0.6512 0.740 0.020 0.016 0.196 0.000 0.028
#> SRR1324062 1 0.3759 0.7085 0.808 0.004 0.076 0.100 0.000 0.012
#> SRR1102296 1 0.5932 0.2298 0.512 0.056 0.368 0.060 0.000 0.004
#> SRR1085087 1 0.3005 0.7069 0.848 0.000 0.036 0.108 0.000 0.008
#> SRR1079046 1 0.5026 0.5908 0.728 0.036 0.008 0.100 0.004 0.124
#> SRR1328339 3 0.5496 0.5541 0.252 0.052 0.624 0.072 0.000 0.000
#> SRR1079782 2 0.8152 0.4615 0.056 0.408 0.224 0.156 0.004 0.152
#> SRR1092257 2 0.8219 0.4289 0.060 0.380 0.216 0.180 0.000 0.164
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
MAD:kmeans
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["MAD", "kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.658 0.823 0.929 0.4400 0.579 0.579
#> 3 3 0.460 0.651 0.810 0.4444 0.714 0.529
#> 4 4 0.549 0.595 0.753 0.1443 0.868 0.648
#> 5 5 0.639 0.653 0.786 0.0647 0.932 0.766
#> 6 6 0.662 0.551 0.704 0.0494 0.896 0.605
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.9225 0.000 1.000
#> SRR1429287 2 0.0000 0.9225 0.000 1.000
#> SRR1359238 1 0.0000 0.9153 1.000 0.000
#> SRR1309597 1 0.9580 0.4109 0.620 0.380
#> SRR1441398 1 0.0000 0.9153 1.000 0.000
#> SRR1084055 2 0.0000 0.9225 0.000 1.000
#> SRR1417566 1 0.8386 0.6320 0.732 0.268
#> SRR1351857 1 0.0000 0.9153 1.000 0.000
#> SRR1487485 2 0.9686 0.3152 0.396 0.604
#> SRR1335875 1 0.7674 0.6949 0.776 0.224
#> SRR1073947 1 0.0000 0.9153 1.000 0.000
#> SRR1443483 1 0.9580 0.4109 0.620 0.380
#> SRR1346794 1 0.0000 0.9153 1.000 0.000
#> SRR1405245 1 0.0000 0.9153 1.000 0.000
#> SRR1409677 1 0.0000 0.9153 1.000 0.000
#> SRR1095549 1 0.0000 0.9153 1.000 0.000
#> SRR1323788 1 0.0000 0.9153 1.000 0.000
#> SRR1314054 2 0.0000 0.9225 0.000 1.000
#> SRR1077944 1 0.0000 0.9153 1.000 0.000
#> SRR1480587 2 0.0000 0.9225 0.000 1.000
#> SRR1311205 1 0.0000 0.9153 1.000 0.000
#> SRR1076369 1 0.0376 0.9125 0.996 0.004
#> SRR1453549 1 0.0000 0.9153 1.000 0.000
#> SRR1345782 1 0.0000 0.9153 1.000 0.000
#> SRR1447850 2 0.0000 0.9225 0.000 1.000
#> SRR1391553 2 0.9686 0.3152 0.396 0.604
#> SRR1444156 2 0.0000 0.9225 0.000 1.000
#> SRR1471731 1 0.8499 0.6192 0.724 0.276
#> SRR1120987 1 0.0000 0.9153 1.000 0.000
#> SRR1477363 1 0.0000 0.9153 1.000 0.000
#> SRR1391961 1 0.9710 0.2965 0.600 0.400
#> SRR1373879 1 0.0000 0.9153 1.000 0.000
#> SRR1318732 1 0.9393 0.4672 0.644 0.356
#> SRR1091404 1 0.0000 0.9153 1.000 0.000
#> SRR1402109 1 0.0000 0.9153 1.000 0.000
#> SRR1407336 1 0.7299 0.7220 0.796 0.204
#> SRR1097417 2 0.8016 0.6450 0.244 0.756
#> SRR1396227 1 0.0000 0.9153 1.000 0.000
#> SRR1400775 2 0.0000 0.9225 0.000 1.000
#> SRR1392861 1 0.0000 0.9153 1.000 0.000
#> SRR1472929 2 0.0938 0.9137 0.012 0.988
#> SRR1436740 1 0.0000 0.9153 1.000 0.000
#> SRR1477057 2 0.0000 0.9225 0.000 1.000
#> SRR1311980 1 0.7745 0.6895 0.772 0.228
#> SRR1069400 1 0.9358 0.4761 0.648 0.352
#> SRR1351016 1 0.0000 0.9153 1.000 0.000
#> SRR1096291 1 0.1414 0.9006 0.980 0.020
#> SRR1418145 1 0.0000 0.9153 1.000 0.000
#> SRR1488111 2 0.7745 0.6694 0.228 0.772
#> SRR1370495 1 0.0000 0.9153 1.000 0.000
#> SRR1352639 1 0.0672 0.9092 0.992 0.008
#> SRR1348911 1 0.9608 0.4013 0.616 0.384
#> SRR1467386 1 0.0000 0.9153 1.000 0.000
#> SRR1415956 1 0.0000 0.9153 1.000 0.000
#> SRR1500495 1 0.0000 0.9153 1.000 0.000
#> SRR1405099 1 0.0000 0.9153 1.000 0.000
#> SRR1345585 2 0.9686 0.3152 0.396 0.604
#> SRR1093196 1 0.8499 0.6192 0.724 0.276
#> SRR1466006 2 0.0000 0.9225 0.000 1.000
#> SRR1351557 2 0.0000 0.9225 0.000 1.000
#> SRR1382687 1 0.0000 0.9153 1.000 0.000
#> SRR1375549 1 0.0000 0.9153 1.000 0.000
#> SRR1101765 1 0.0000 0.9153 1.000 0.000
#> SRR1334461 1 0.9710 0.2965 0.600 0.400
#> SRR1094073 2 0.0000 0.9225 0.000 1.000
#> SRR1077549 1 0.0000 0.9153 1.000 0.000
#> SRR1440332 1 0.0000 0.9153 1.000 0.000
#> SRR1454177 1 0.0000 0.9153 1.000 0.000
#> SRR1082447 1 0.0000 0.9153 1.000 0.000
#> SRR1420043 1 0.0000 0.9153 1.000 0.000
#> SRR1432500 1 0.0000 0.9153 1.000 0.000
#> SRR1378045 2 0.0000 0.9225 0.000 1.000
#> SRR1334200 2 0.0938 0.9137 0.012 0.988
#> SRR1069539 2 0.9963 0.0919 0.464 0.536
#> SRR1343031 1 0.0000 0.9153 1.000 0.000
#> SRR1319690 1 0.0000 0.9153 1.000 0.000
#> SRR1310604 2 0.0000 0.9225 0.000 1.000
#> SRR1327747 1 0.0000 0.9153 1.000 0.000
#> SRR1072456 2 0.0000 0.9225 0.000 1.000
#> SRR1367896 1 0.9608 0.4013 0.616 0.384
#> SRR1480107 1 0.0000 0.9153 1.000 0.000
#> SRR1377756 1 0.0000 0.9153 1.000 0.000
#> SRR1435272 1 0.0000 0.9153 1.000 0.000
#> SRR1089230 1 0.0000 0.9153 1.000 0.000
#> SRR1389522 1 0.5519 0.8047 0.872 0.128
#> SRR1080600 2 0.0000 0.9225 0.000 1.000
#> SRR1086935 1 0.8713 0.5917 0.708 0.292
#> SRR1344060 2 0.5408 0.8080 0.124 0.876
#> SRR1467922 2 0.0000 0.9225 0.000 1.000
#> SRR1090984 1 0.0000 0.9153 1.000 0.000
#> SRR1456991 1 0.0000 0.9153 1.000 0.000
#> SRR1085039 1 0.0000 0.9153 1.000 0.000
#> SRR1069303 1 0.0000 0.9153 1.000 0.000
#> SRR1091500 2 0.0000 0.9225 0.000 1.000
#> SRR1075198 2 0.0000 0.9225 0.000 1.000
#> SRR1086915 1 0.0000 0.9153 1.000 0.000
#> SRR1499503 2 0.0000 0.9225 0.000 1.000
#> SRR1094312 2 0.0000 0.9225 0.000 1.000
#> SRR1352437 1 0.0000 0.9153 1.000 0.000
#> SRR1436323 1 0.0000 0.9153 1.000 0.000
#> SRR1073507 1 0.0000 0.9153 1.000 0.000
#> SRR1401972 1 0.0000 0.9153 1.000 0.000
#> SRR1415510 2 0.0000 0.9225 0.000 1.000
#> SRR1327279 1 0.0000 0.9153 1.000 0.000
#> SRR1086983 1 0.0000 0.9153 1.000 0.000
#> SRR1105174 1 0.0000 0.9153 1.000 0.000
#> SRR1468893 1 0.0000 0.9153 1.000 0.000
#> SRR1362555 2 0.0000 0.9225 0.000 1.000
#> SRR1074526 1 0.9977 0.0809 0.528 0.472
#> SRR1326225 2 0.0000 0.9225 0.000 1.000
#> SRR1401933 1 0.0000 0.9153 1.000 0.000
#> SRR1324062 1 0.0000 0.9153 1.000 0.000
#> SRR1102296 1 0.0000 0.9153 1.000 0.000
#> SRR1085087 1 0.0000 0.9153 1.000 0.000
#> SRR1079046 1 0.9491 0.3767 0.632 0.368
#> SRR1328339 1 0.8327 0.6393 0.736 0.264
#> SRR1079782 2 0.0000 0.9225 0.000 1.000
#> SRR1092257 2 0.0000 0.9225 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0237 0.9317 0.000 0.996 0.004
#> SRR1429287 2 0.2165 0.9144 0.000 0.936 0.064
#> SRR1359238 3 0.6308 0.2360 0.492 0.000 0.508
#> SRR1309597 3 0.7085 0.6487 0.188 0.096 0.716
#> SRR1441398 1 0.4887 0.5248 0.772 0.000 0.228
#> SRR1084055 2 0.1643 0.9243 0.000 0.956 0.044
#> SRR1417566 3 0.7759 0.2165 0.476 0.048 0.476
#> SRR1351857 1 0.5678 0.4275 0.684 0.000 0.316
#> SRR1487485 3 0.6295 0.6100 0.036 0.236 0.728
#> SRR1335875 3 0.7065 0.6361 0.288 0.048 0.664
#> SRR1073947 1 0.2448 0.7278 0.924 0.000 0.076
#> SRR1443483 3 0.6605 0.6728 0.152 0.096 0.752
#> SRR1346794 1 0.5216 0.4826 0.740 0.000 0.260
#> SRR1405245 1 0.5098 0.4910 0.752 0.000 0.248
#> SRR1409677 3 0.6468 0.3466 0.444 0.004 0.552
#> SRR1095549 1 0.5327 0.4512 0.728 0.000 0.272
#> SRR1323788 1 0.4291 0.5946 0.820 0.000 0.180
#> SRR1314054 2 0.0424 0.9306 0.000 0.992 0.008
#> SRR1077944 1 0.0000 0.7418 1.000 0.000 0.000
#> SRR1480587 2 0.0424 0.9313 0.000 0.992 0.008
#> SRR1311205 1 0.2796 0.6896 0.908 0.000 0.092
#> SRR1076369 1 0.6460 0.0981 0.556 0.004 0.440
#> SRR1453549 3 0.4291 0.6997 0.180 0.000 0.820
#> SRR1345782 1 0.1529 0.7277 0.960 0.000 0.040
#> SRR1447850 2 0.1643 0.9137 0.000 0.956 0.044
#> SRR1391553 3 0.5977 0.5884 0.020 0.252 0.728
#> SRR1444156 2 0.0592 0.9304 0.000 0.988 0.012
#> SRR1471731 3 0.5222 0.7089 0.144 0.040 0.816
#> SRR1120987 1 0.6617 0.1470 0.556 0.008 0.436
#> SRR1477363 1 0.0000 0.7418 1.000 0.000 0.000
#> SRR1391961 1 0.5688 0.6015 0.788 0.044 0.168
#> SRR1373879 3 0.4452 0.7012 0.192 0.000 0.808
#> SRR1318732 3 0.8559 0.3772 0.388 0.100 0.512
#> SRR1091404 1 0.0592 0.7400 0.988 0.000 0.012
#> SRR1402109 3 0.4452 0.6980 0.192 0.000 0.808
#> SRR1407336 3 0.4390 0.7079 0.148 0.012 0.840
#> SRR1097417 3 0.6254 0.6211 0.116 0.108 0.776
#> SRR1396227 1 0.2165 0.7315 0.936 0.000 0.064
#> SRR1400775 2 0.0000 0.9317 0.000 1.000 0.000
#> SRR1392861 3 0.4834 0.6876 0.204 0.004 0.792
#> SRR1472929 2 0.7564 0.6342 0.068 0.636 0.296
#> SRR1436740 3 0.6451 0.3663 0.436 0.004 0.560
#> SRR1477057 2 0.2066 0.9157 0.000 0.940 0.060
#> SRR1311980 3 0.5508 0.7045 0.188 0.028 0.784
#> SRR1069400 3 0.6151 0.6858 0.160 0.068 0.772
#> SRR1351016 1 0.2356 0.7294 0.928 0.000 0.072
#> SRR1096291 3 0.5905 0.5124 0.352 0.000 0.648
#> SRR1418145 1 0.6617 0.1470 0.556 0.008 0.436
#> SRR1488111 3 0.7030 0.2937 0.024 0.396 0.580
#> SRR1370495 1 0.2955 0.7070 0.912 0.008 0.080
#> SRR1352639 1 0.2056 0.7369 0.952 0.024 0.024
#> SRR1348911 3 0.7227 0.6538 0.200 0.096 0.704
#> SRR1467386 1 0.4002 0.6720 0.840 0.000 0.160
#> SRR1415956 1 0.2796 0.6922 0.908 0.000 0.092
#> SRR1500495 1 0.4887 0.5248 0.772 0.000 0.228
#> SRR1405099 1 0.0237 0.7410 0.996 0.000 0.004
#> SRR1345585 3 0.6977 0.6196 0.076 0.212 0.712
#> SRR1093196 3 0.5173 0.7089 0.148 0.036 0.816
#> SRR1466006 2 0.0424 0.9319 0.000 0.992 0.008
#> SRR1351557 2 0.0237 0.9312 0.000 0.996 0.004
#> SRR1382687 1 0.4504 0.6382 0.804 0.000 0.196
#> SRR1375549 1 0.2096 0.7282 0.944 0.004 0.052
#> SRR1101765 1 0.2682 0.7213 0.920 0.004 0.076
#> SRR1334461 1 0.5688 0.6015 0.788 0.044 0.168
#> SRR1094073 2 0.0424 0.9312 0.000 0.992 0.008
#> SRR1077549 3 0.6305 0.2467 0.484 0.000 0.516
#> SRR1440332 3 0.6008 0.4997 0.372 0.000 0.628
#> SRR1454177 3 0.6314 0.4586 0.392 0.004 0.604
#> SRR1082447 1 0.0000 0.7418 1.000 0.000 0.000
#> SRR1420043 3 0.4399 0.6966 0.188 0.000 0.812
#> SRR1432500 1 0.5529 0.4632 0.704 0.000 0.296
#> SRR1378045 2 0.6019 0.5576 0.012 0.700 0.288
#> SRR1334200 2 0.6652 0.7688 0.084 0.744 0.172
#> SRR1069539 3 0.6854 0.6063 0.068 0.216 0.716
#> SRR1343031 3 0.4504 0.7007 0.196 0.000 0.804
#> SRR1319690 1 0.6280 -0.1391 0.540 0.000 0.460
#> SRR1310604 2 0.2066 0.9183 0.000 0.940 0.060
#> SRR1327747 3 0.5733 0.6159 0.324 0.000 0.676
#> SRR1072456 2 0.1289 0.9262 0.000 0.968 0.032
#> SRR1367896 3 0.6605 0.6718 0.152 0.096 0.752
#> SRR1480107 1 0.0000 0.7418 1.000 0.000 0.000
#> SRR1377756 1 0.2796 0.7185 0.908 0.000 0.092
#> SRR1435272 3 0.6359 0.4359 0.404 0.004 0.592
#> SRR1089230 3 0.6274 0.3196 0.456 0.000 0.544
#> SRR1389522 3 0.6337 0.6410 0.264 0.028 0.708
#> SRR1080600 2 0.1753 0.9239 0.000 0.952 0.048
#> SRR1086935 3 0.8374 0.5706 0.144 0.240 0.616
#> SRR1344060 2 0.9149 0.3997 0.316 0.516 0.168
#> SRR1467922 2 0.0592 0.9304 0.000 0.988 0.012
#> SRR1090984 1 0.5254 0.4641 0.736 0.000 0.264
#> SRR1456991 1 0.0000 0.7418 1.000 0.000 0.000
#> SRR1085039 1 0.0000 0.7418 1.000 0.000 0.000
#> SRR1069303 1 0.3192 0.7089 0.888 0.000 0.112
#> SRR1091500 2 0.1643 0.9207 0.000 0.956 0.044
#> SRR1075198 2 0.1163 0.9307 0.000 0.972 0.028
#> SRR1086915 1 0.5859 0.3785 0.656 0.000 0.344
#> SRR1499503 2 0.0424 0.9313 0.000 0.992 0.008
#> SRR1094312 2 0.0000 0.9317 0.000 1.000 0.000
#> SRR1352437 1 0.5158 0.5854 0.764 0.004 0.232
#> SRR1436323 3 0.4399 0.6969 0.188 0.000 0.812
#> SRR1073507 1 0.4002 0.6720 0.840 0.000 0.160
#> SRR1401972 1 0.3192 0.7089 0.888 0.000 0.112
#> SRR1415510 2 0.0592 0.9313 0.000 0.988 0.012
#> SRR1327279 1 0.5650 0.4127 0.688 0.000 0.312
#> SRR1086983 1 0.5810 0.3901 0.664 0.000 0.336
#> SRR1105174 1 0.0000 0.7418 1.000 0.000 0.000
#> SRR1468893 1 0.1163 0.7398 0.972 0.000 0.028
#> SRR1362555 2 0.2866 0.9062 0.008 0.916 0.076
#> SRR1074526 1 0.6138 0.5819 0.768 0.060 0.172
#> SRR1326225 2 0.0424 0.9313 0.000 0.992 0.008
#> SRR1401933 1 0.3816 0.6880 0.852 0.000 0.148
#> SRR1324062 1 0.5690 0.4867 0.708 0.004 0.288
#> SRR1102296 1 0.0237 0.7410 0.996 0.000 0.004
#> SRR1085087 1 0.5070 0.5961 0.772 0.004 0.224
#> SRR1079046 1 0.4418 0.6499 0.848 0.020 0.132
#> SRR1328339 1 0.6823 0.3660 0.668 0.036 0.296
#> SRR1079782 2 0.1411 0.9246 0.000 0.964 0.036
#> SRR1092257 2 0.2356 0.9088 0.000 0.928 0.072
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0188 0.9240 0.000 0.996 0.004 0.000
#> SRR1429287 2 0.2909 0.8919 0.000 0.888 0.020 0.092
#> SRR1359238 4 0.5358 0.7550 0.252 0.000 0.048 0.700
#> SRR1309597 3 0.4610 0.7783 0.084 0.016 0.820 0.080
#> SRR1441398 1 0.4454 0.4189 0.692 0.000 0.308 0.000
#> SRR1084055 2 0.1297 0.9170 0.000 0.964 0.016 0.020
#> SRR1417566 3 0.4855 0.5794 0.268 0.000 0.712 0.020
#> SRR1351857 4 0.4621 0.7167 0.284 0.000 0.008 0.708
#> SRR1487485 3 0.4830 0.7676 0.016 0.068 0.804 0.112
#> SRR1335875 3 0.4088 0.7489 0.140 0.000 0.820 0.040
#> SRR1073947 1 0.4642 0.4130 0.740 0.000 0.020 0.240
#> SRR1443483 3 0.4641 0.7822 0.064 0.016 0.816 0.104
#> SRR1346794 1 0.5311 0.3634 0.648 0.000 0.328 0.024
#> SRR1405245 1 0.4817 0.2783 0.612 0.000 0.388 0.000
#> SRR1409677 4 0.5664 0.7941 0.156 0.000 0.124 0.720
#> SRR1095549 1 0.6356 0.3160 0.604 0.000 0.308 0.088
#> SRR1323788 1 0.4690 0.4690 0.712 0.000 0.276 0.012
#> SRR1314054 2 0.0779 0.9215 0.000 0.980 0.004 0.016
#> SRR1077944 1 0.1297 0.6387 0.964 0.000 0.020 0.016
#> SRR1480587 2 0.0188 0.9240 0.000 0.996 0.004 0.000
#> SRR1311205 1 0.3108 0.6223 0.872 0.000 0.112 0.016
#> SRR1076369 1 0.6813 0.1682 0.516 0.000 0.380 0.104
#> SRR1453549 3 0.4767 0.7169 0.020 0.000 0.724 0.256
#> SRR1345782 1 0.2522 0.6327 0.908 0.000 0.076 0.016
#> SRR1447850 2 0.1722 0.9098 0.000 0.944 0.008 0.048
#> SRR1391553 3 0.4553 0.7528 0.012 0.092 0.820 0.076
#> SRR1444156 2 0.0188 0.9233 0.000 0.996 0.004 0.000
#> SRR1471731 3 0.5070 0.4936 0.004 0.000 0.580 0.416
#> SRR1120987 4 0.4644 0.7796 0.164 0.004 0.044 0.788
#> SRR1477363 1 0.1520 0.6370 0.956 0.000 0.020 0.024
#> SRR1391961 1 0.7471 0.4309 0.568 0.016 0.176 0.240
#> SRR1373879 3 0.4379 0.7679 0.036 0.000 0.792 0.172
#> SRR1318732 3 0.5478 0.6512 0.228 0.016 0.720 0.036
#> SRR1091404 1 0.0657 0.6409 0.984 0.000 0.012 0.004
#> SRR1402109 3 0.5050 0.7025 0.028 0.000 0.704 0.268
#> SRR1407336 3 0.4936 0.5683 0.004 0.000 0.624 0.372
#> SRR1097417 3 0.4867 0.7150 0.064 0.020 0.804 0.112
#> SRR1396227 1 0.3485 0.5826 0.856 0.000 0.028 0.116
#> SRR1400775 2 0.0188 0.9240 0.000 0.996 0.004 0.000
#> SRR1392861 4 0.5279 0.6971 0.072 0.000 0.192 0.736
#> SRR1472929 2 0.9833 0.1666 0.172 0.304 0.292 0.232
#> SRR1436740 4 0.5339 0.8020 0.156 0.000 0.100 0.744
#> SRR1477057 2 0.3084 0.8980 0.012 0.896 0.028 0.064
#> SRR1311980 3 0.4424 0.7679 0.088 0.000 0.812 0.100
#> SRR1069400 3 0.4498 0.7786 0.044 0.008 0.808 0.140
#> SRR1351016 1 0.3803 0.5562 0.836 0.000 0.032 0.132
#> SRR1096291 4 0.5119 0.7731 0.112 0.000 0.124 0.764
#> SRR1418145 4 0.4598 0.7783 0.160 0.004 0.044 0.792
#> SRR1488111 4 0.6099 0.5265 0.008 0.172 0.120 0.700
#> SRR1370495 1 0.4219 0.5967 0.832 0.004 0.076 0.088
#> SRR1352639 1 0.4825 0.5678 0.792 0.020 0.036 0.152
#> SRR1348911 3 0.4443 0.7612 0.120 0.012 0.820 0.048
#> SRR1467386 1 0.5165 -0.2257 0.512 0.000 0.004 0.484
#> SRR1415956 1 0.2334 0.6280 0.908 0.000 0.088 0.004
#> SRR1500495 1 0.4406 0.4334 0.700 0.000 0.300 0.000
#> SRR1405099 1 0.0592 0.6405 0.984 0.000 0.016 0.000
#> SRR1345585 3 0.4694 0.7769 0.044 0.048 0.824 0.084
#> SRR1093196 3 0.4950 0.5624 0.004 0.000 0.620 0.376
#> SRR1466006 2 0.0000 0.9239 0.000 1.000 0.000 0.000
#> SRR1351557 2 0.0000 0.9239 0.000 1.000 0.000 0.000
#> SRR1382687 1 0.5510 -0.2356 0.504 0.000 0.016 0.480
#> SRR1375549 1 0.2408 0.6293 0.920 0.000 0.036 0.044
#> SRR1101765 1 0.4735 0.5688 0.784 0.000 0.068 0.148
#> SRR1334461 1 0.7402 0.4338 0.576 0.016 0.168 0.240
#> SRR1094073 2 0.0188 0.9233 0.000 0.996 0.004 0.000
#> SRR1077549 4 0.5404 0.7601 0.248 0.000 0.052 0.700
#> SRR1440332 4 0.7396 0.4424 0.216 0.000 0.268 0.516
#> SRR1454177 4 0.5432 0.7769 0.124 0.000 0.136 0.740
#> SRR1082447 1 0.0937 0.6396 0.976 0.000 0.012 0.012
#> SRR1420043 3 0.5050 0.4927 0.004 0.000 0.588 0.408
#> SRR1432500 4 0.5137 0.3702 0.452 0.000 0.004 0.544
#> SRR1378045 3 0.4964 0.3747 0.004 0.380 0.616 0.000
#> SRR1334200 2 0.9668 0.2725 0.204 0.368 0.164 0.264
#> SRR1069539 4 0.5895 0.4287 0.024 0.032 0.268 0.676
#> SRR1343031 3 0.5309 0.7134 0.044 0.000 0.700 0.256
#> SRR1319690 3 0.4781 0.4793 0.336 0.000 0.660 0.004
#> SRR1310604 2 0.2699 0.9006 0.000 0.904 0.028 0.068
#> SRR1327747 3 0.7088 0.6166 0.204 0.000 0.568 0.228
#> SRR1072456 2 0.1174 0.9176 0.000 0.968 0.012 0.020
#> SRR1367896 3 0.4422 0.7810 0.044 0.016 0.824 0.116
#> SRR1480107 1 0.0895 0.6373 0.976 0.000 0.004 0.020
#> SRR1377756 1 0.5057 0.2392 0.648 0.000 0.012 0.340
#> SRR1435272 4 0.5428 0.7920 0.140 0.000 0.120 0.740
#> SRR1089230 4 0.5265 0.8022 0.160 0.000 0.092 0.748
#> SRR1389522 3 0.4359 0.7763 0.100 0.000 0.816 0.084
#> SRR1080600 2 0.2965 0.8939 0.000 0.892 0.036 0.072
#> SRR1086935 4 0.5998 0.7228 0.064 0.052 0.144 0.740
#> SRR1344060 1 0.9823 -0.0914 0.304 0.284 0.164 0.248
#> SRR1467922 2 0.0188 0.9233 0.000 0.996 0.004 0.000
#> SRR1090984 1 0.5151 0.0944 0.532 0.000 0.464 0.004
#> SRR1456991 1 0.1174 0.6396 0.968 0.000 0.012 0.020
#> SRR1085039 1 0.2197 0.6108 0.916 0.000 0.004 0.080
#> SRR1069303 1 0.5323 0.1917 0.628 0.000 0.020 0.352
#> SRR1091500 2 0.0895 0.9215 0.000 0.976 0.020 0.004
#> SRR1075198 2 0.2124 0.9062 0.000 0.924 0.008 0.068
#> SRR1086915 4 0.4360 0.7477 0.248 0.000 0.008 0.744
#> SRR1499503 2 0.0336 0.9235 0.000 0.992 0.008 0.000
#> SRR1094312 2 0.0188 0.9240 0.000 0.996 0.004 0.000
#> SRR1352437 1 0.5688 -0.1768 0.512 0.000 0.024 0.464
#> SRR1436323 3 0.5126 0.4321 0.004 0.000 0.552 0.444
#> SRR1073507 1 0.5165 -0.2265 0.512 0.000 0.004 0.484
#> SRR1401972 1 0.5323 0.1917 0.628 0.000 0.020 0.352
#> SRR1415510 2 0.0336 0.9235 0.000 0.992 0.008 0.000
#> SRR1327279 1 0.6559 -0.3701 0.468 0.000 0.076 0.456
#> SRR1086983 4 0.4647 0.7100 0.288 0.000 0.008 0.704
#> SRR1105174 1 0.0707 0.6405 0.980 0.000 0.020 0.000
#> SRR1468893 1 0.2222 0.6197 0.924 0.000 0.016 0.060
#> SRR1362555 2 0.3851 0.8754 0.004 0.852 0.056 0.088
#> SRR1074526 1 0.7678 0.4196 0.556 0.024 0.172 0.248
#> SRR1326225 2 0.0188 0.9233 0.000 0.996 0.004 0.000
#> SRR1401933 1 0.5856 -0.2079 0.504 0.000 0.032 0.464
#> SRR1324062 4 0.6074 0.3133 0.456 0.000 0.044 0.500
#> SRR1102296 1 0.1733 0.6362 0.948 0.000 0.024 0.028
#> SRR1085087 1 0.5503 -0.1893 0.516 0.000 0.016 0.468
#> SRR1079046 1 0.4901 0.5653 0.780 0.000 0.108 0.112
#> SRR1328339 1 0.5165 0.0115 0.512 0.000 0.484 0.004
#> SRR1079782 2 0.2480 0.8977 0.000 0.904 0.008 0.088
#> SRR1092257 2 0.3224 0.8747 0.000 0.864 0.016 0.120
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0566 0.8890 0.000 0.984 0.000 0.012 0.004
#> SRR1429287 2 0.5377 0.7471 0.000 0.712 0.024 0.140 0.124
#> SRR1359238 4 0.4054 0.6515 0.236 0.000 0.008 0.744 0.012
#> SRR1309597 3 0.2104 0.7527 0.044 0.000 0.924 0.024 0.008
#> SRR1441398 1 0.3649 0.6039 0.808 0.000 0.152 0.000 0.040
#> SRR1084055 2 0.1205 0.8870 0.000 0.956 0.000 0.004 0.040
#> SRR1417566 3 0.5170 0.5682 0.232 0.000 0.688 0.012 0.068
#> SRR1351857 4 0.3242 0.7422 0.172 0.000 0.000 0.816 0.012
#> SRR1487485 3 0.1960 0.7503 0.000 0.020 0.928 0.048 0.004
#> SRR1335875 3 0.1740 0.7401 0.056 0.000 0.932 0.000 0.012
#> SRR1073947 1 0.5094 0.5487 0.704 0.000 0.020 0.220 0.056
#> SRR1443483 3 0.2116 0.7543 0.028 0.000 0.924 0.040 0.008
#> SRR1346794 1 0.5898 0.3924 0.624 0.000 0.264 0.024 0.088
#> SRR1405245 1 0.3885 0.5838 0.784 0.000 0.176 0.000 0.040
#> SRR1409677 4 0.2438 0.8179 0.040 0.000 0.060 0.900 0.000
#> SRR1095549 1 0.6425 0.3544 0.592 0.000 0.268 0.080 0.060
#> SRR1323788 1 0.4190 0.6122 0.792 0.000 0.140 0.012 0.056
#> SRR1314054 2 0.1116 0.8875 0.000 0.964 0.004 0.004 0.028
#> SRR1077944 1 0.1461 0.6994 0.952 0.000 0.004 0.016 0.028
#> SRR1480587 2 0.1503 0.8864 0.000 0.952 0.008 0.020 0.020
#> SRR1311205 1 0.1195 0.6952 0.960 0.000 0.028 0.000 0.012
#> SRR1076369 1 0.7039 0.1116 0.464 0.000 0.308 0.024 0.204
#> SRR1453549 3 0.3476 0.7341 0.020 0.000 0.816 0.160 0.004
#> SRR1345782 1 0.1074 0.6979 0.968 0.000 0.012 0.004 0.016
#> SRR1447850 2 0.3730 0.8051 0.000 0.828 0.012 0.112 0.048
#> SRR1391553 3 0.2162 0.7395 0.020 0.020 0.928 0.004 0.028
#> SRR1444156 2 0.0324 0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1471731 3 0.4822 0.5476 0.012 0.000 0.632 0.340 0.016
#> SRR1120987 4 0.2507 0.7918 0.028 0.000 0.020 0.908 0.044
#> SRR1477363 1 0.1012 0.7003 0.968 0.000 0.000 0.012 0.020
#> SRR1391961 5 0.3280 0.8334 0.160 0.004 0.012 0.000 0.824
#> SRR1373879 3 0.2349 0.7514 0.012 0.000 0.900 0.084 0.004
#> SRR1318732 3 0.5331 0.5957 0.228 0.008 0.692 0.016 0.056
#> SRR1091404 1 0.1484 0.6941 0.944 0.000 0.000 0.008 0.048
#> SRR1402109 3 0.3578 0.7042 0.008 0.000 0.784 0.204 0.004
#> SRR1407336 3 0.3928 0.6121 0.000 0.000 0.700 0.296 0.004
#> SRR1097417 3 0.3504 0.6337 0.016 0.000 0.816 0.008 0.160
#> SRR1396227 1 0.4532 0.6777 0.792 0.000 0.040 0.080 0.088
#> SRR1400775 2 0.0566 0.8884 0.000 0.984 0.004 0.000 0.012
#> SRR1392861 4 0.2069 0.8024 0.012 0.000 0.076 0.912 0.000
#> SRR1472929 5 0.4178 0.8005 0.024 0.140 0.016 0.016 0.804
#> SRR1436740 4 0.1990 0.8250 0.040 0.000 0.028 0.928 0.004
#> SRR1477057 2 0.5139 0.7776 0.008 0.748 0.036 0.060 0.148
#> SRR1311980 3 0.2217 0.7427 0.044 0.000 0.920 0.012 0.024
#> SRR1069400 3 0.2086 0.7543 0.020 0.000 0.924 0.048 0.008
#> SRR1351016 1 0.3907 0.6693 0.828 0.000 0.032 0.096 0.044
#> SRR1096291 4 0.2747 0.7819 0.020 0.000 0.036 0.896 0.048
#> SRR1418145 4 0.3135 0.7467 0.020 0.000 0.024 0.868 0.088
#> SRR1488111 4 0.4717 0.6441 0.000 0.048 0.072 0.780 0.100
#> SRR1370495 1 0.5149 0.5262 0.692 0.000 0.016 0.060 0.232
#> SRR1352639 1 0.4874 0.6043 0.768 0.012 0.016 0.084 0.120
#> SRR1348911 3 0.1682 0.7426 0.044 0.000 0.940 0.004 0.012
#> SRR1467386 1 0.4731 0.1437 0.528 0.000 0.000 0.456 0.016
#> SRR1415956 1 0.2321 0.6794 0.912 0.000 0.024 0.008 0.056
#> SRR1500495 1 0.3141 0.6402 0.852 0.000 0.108 0.000 0.040
#> SRR1405099 1 0.1043 0.6934 0.960 0.000 0.000 0.000 0.040
#> SRR1345585 3 0.1918 0.7509 0.012 0.016 0.940 0.020 0.012
#> SRR1093196 3 0.3816 0.6052 0.000 0.000 0.696 0.304 0.000
#> SRR1466006 2 0.1772 0.8838 0.000 0.940 0.008 0.020 0.032
#> SRR1351557 2 0.0566 0.8915 0.000 0.984 0.000 0.012 0.004
#> SRR1382687 1 0.4544 0.6232 0.740 0.000 0.012 0.208 0.040
#> SRR1375549 1 0.3646 0.6674 0.828 0.000 0.008 0.044 0.120
#> SRR1101765 1 0.6502 0.2838 0.536 0.000 0.008 0.216 0.240
#> SRR1334461 5 0.3205 0.8258 0.176 0.004 0.004 0.000 0.816
#> SRR1094073 2 0.0324 0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1077549 4 0.3947 0.6546 0.236 0.000 0.008 0.748 0.008
#> SRR1440332 1 0.6923 0.1256 0.448 0.000 0.200 0.336 0.016
#> SRR1454177 4 0.1981 0.8204 0.028 0.000 0.048 0.924 0.000
#> SRR1082447 1 0.2390 0.6884 0.896 0.000 0.000 0.020 0.084
#> SRR1420043 3 0.4122 0.6043 0.004 0.000 0.688 0.304 0.004
#> SRR1432500 4 0.4802 -0.0161 0.480 0.000 0.004 0.504 0.012
#> SRR1378045 3 0.4269 0.4706 0.000 0.300 0.684 0.000 0.016
#> SRR1334200 5 0.3151 0.8336 0.024 0.092 0.004 0.012 0.868
#> SRR1069539 4 0.4651 0.5875 0.000 0.004 0.156 0.748 0.092
#> SRR1343031 3 0.3751 0.6977 0.012 0.000 0.772 0.212 0.004
#> SRR1319690 3 0.5455 0.2938 0.416 0.000 0.528 0.004 0.052
#> SRR1310604 2 0.4202 0.8218 0.000 0.804 0.024 0.056 0.116
#> SRR1327747 3 0.7106 0.5057 0.260 0.000 0.520 0.168 0.052
#> SRR1072456 2 0.1686 0.8848 0.000 0.944 0.008 0.020 0.028
#> SRR1367896 3 0.1989 0.7517 0.020 0.000 0.932 0.032 0.016
#> SRR1480107 1 0.1331 0.6942 0.952 0.000 0.000 0.008 0.040
#> SRR1377756 1 0.3573 0.6795 0.812 0.000 0.000 0.152 0.036
#> SRR1435272 4 0.1750 0.8231 0.028 0.000 0.036 0.936 0.000
#> SRR1089230 4 0.1557 0.8200 0.052 0.000 0.000 0.940 0.008
#> SRR1389522 3 0.2178 0.7518 0.048 0.000 0.920 0.024 0.008
#> SRR1080600 2 0.4662 0.7929 0.000 0.764 0.024 0.060 0.152
#> SRR1086935 4 0.2150 0.8171 0.016 0.020 0.032 0.928 0.004
#> SRR1344060 5 0.3038 0.8449 0.032 0.080 0.004 0.008 0.876
#> SRR1467922 2 0.0324 0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1090984 3 0.5901 0.0598 0.456 0.000 0.460 0.008 0.076
#> SRR1456991 1 0.0865 0.6974 0.972 0.000 0.004 0.000 0.024
#> SRR1085039 1 0.1965 0.6951 0.924 0.000 0.000 0.052 0.024
#> SRR1069303 1 0.6371 0.3668 0.544 0.000 0.036 0.336 0.084
#> SRR1091500 2 0.0671 0.8880 0.000 0.980 0.004 0.000 0.016
#> SRR1075198 2 0.4779 0.8001 0.000 0.764 0.024 0.092 0.120
#> SRR1086915 4 0.1671 0.8179 0.076 0.000 0.000 0.924 0.000
#> SRR1499503 2 0.0968 0.8873 0.000 0.972 0.004 0.012 0.012
#> SRR1094312 2 0.0566 0.8884 0.000 0.984 0.004 0.000 0.012
#> SRR1352437 1 0.6495 0.1593 0.464 0.000 0.040 0.420 0.076
#> SRR1436323 3 0.5012 0.4960 0.016 0.000 0.600 0.368 0.016
#> SRR1073507 1 0.4747 0.0380 0.500 0.000 0.000 0.484 0.016
#> SRR1401972 1 0.6371 0.3668 0.544 0.000 0.036 0.336 0.084
#> SRR1415510 2 0.1721 0.8846 0.000 0.944 0.016 0.020 0.020
#> SRR1327279 1 0.5995 0.0974 0.512 0.000 0.072 0.400 0.016
#> SRR1086983 4 0.3355 0.7294 0.184 0.000 0.000 0.804 0.012
#> SRR1105174 1 0.1557 0.6929 0.940 0.000 0.000 0.008 0.052
#> SRR1468893 1 0.2291 0.6993 0.908 0.000 0.000 0.036 0.056
#> SRR1362555 2 0.5392 0.7681 0.008 0.724 0.024 0.092 0.152
#> SRR1074526 5 0.3465 0.8389 0.116 0.004 0.012 0.024 0.844
#> SRR1326225 2 0.0324 0.8879 0.000 0.992 0.004 0.000 0.004
#> SRR1401933 1 0.6195 0.4126 0.552 0.000 0.028 0.340 0.080
#> SRR1324062 1 0.6147 0.2410 0.524 0.000 0.048 0.384 0.044
#> SRR1102296 1 0.2792 0.6854 0.884 0.000 0.040 0.004 0.072
#> SRR1085087 1 0.5949 0.1309 0.492 0.000 0.028 0.432 0.048
#> SRR1079046 1 0.4922 0.4109 0.636 0.000 0.008 0.028 0.328
#> SRR1328339 3 0.5790 0.1856 0.424 0.000 0.500 0.008 0.068
#> SRR1079782 2 0.5400 0.7448 0.000 0.708 0.024 0.156 0.112
#> SRR1092257 2 0.5663 0.6660 0.000 0.664 0.020 0.216 0.100
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0405 0.7754 0.000 0.988 0.000 0.008 0.004 0.000
#> SRR1429287 2 0.6939 0.5218 0.004 0.492 0.000 0.220 0.096 0.188
#> SRR1359238 4 0.5588 0.5723 0.404 0.000 0.060 0.500 0.000 0.036
#> SRR1309597 3 0.1375 0.8106 0.004 0.000 0.952 0.008 0.008 0.028
#> SRR1441398 6 0.5175 0.3698 0.308 0.000 0.100 0.000 0.004 0.588
#> SRR1084055 2 0.1148 0.7766 0.000 0.960 0.000 0.004 0.020 0.016
#> SRR1417566 6 0.5841 0.2763 0.044 0.000 0.384 0.028 0.028 0.516
#> SRR1351857 4 0.4062 0.7271 0.344 0.000 0.004 0.640 0.000 0.012
#> SRR1487485 3 0.1708 0.8128 0.000 0.000 0.932 0.024 0.004 0.040
#> SRR1335875 3 0.3370 0.7726 0.032 0.000 0.852 0.020 0.024 0.072
#> SRR1073947 1 0.1338 0.5322 0.952 0.000 0.004 0.008 0.004 0.032
#> SRR1443483 3 0.0912 0.8111 0.004 0.000 0.972 0.008 0.012 0.004
#> SRR1346794 6 0.4743 0.5220 0.088 0.000 0.144 0.020 0.012 0.736
#> SRR1405245 6 0.5486 0.3435 0.316 0.000 0.132 0.000 0.004 0.548
#> SRR1409677 4 0.4028 0.7901 0.192 0.000 0.044 0.752 0.000 0.012
#> SRR1095549 6 0.6308 0.4360 0.208 0.000 0.184 0.040 0.008 0.560
#> SRR1323788 6 0.4779 0.4332 0.264 0.000 0.072 0.008 0.000 0.656
#> SRR1314054 2 0.1173 0.7745 0.000 0.960 0.000 0.016 0.016 0.008
#> SRR1077944 6 0.4107 0.0700 0.452 0.000 0.000 0.004 0.004 0.540
#> SRR1480587 2 0.2157 0.7696 0.000 0.916 0.008 0.008 0.028 0.040
#> SRR1311205 1 0.4487 0.3219 0.608 0.000 0.024 0.004 0.004 0.360
#> SRR1076369 6 0.5212 0.5137 0.024 0.000 0.196 0.020 0.072 0.688
#> SRR1453549 3 0.3830 0.7876 0.008 0.000 0.796 0.120 0.004 0.072
#> SRR1345782 1 0.4622 0.3272 0.608 0.000 0.036 0.000 0.008 0.348
#> SRR1447850 2 0.3692 0.7020 0.000 0.816 0.008 0.116 0.020 0.040
#> SRR1391553 3 0.3966 0.7540 0.028 0.004 0.812 0.024 0.024 0.108
#> SRR1444156 2 0.0862 0.7697 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1471731 3 0.6448 0.4486 0.080 0.000 0.500 0.324 0.004 0.092
#> SRR1120987 4 0.3820 0.7145 0.128 0.000 0.000 0.796 0.020 0.056
#> SRR1477363 1 0.3986 0.1570 0.532 0.000 0.000 0.000 0.004 0.464
#> SRR1391961 5 0.2685 0.8952 0.080 0.000 0.004 0.000 0.872 0.044
#> SRR1373879 3 0.1152 0.8142 0.000 0.000 0.952 0.044 0.004 0.000
#> SRR1318732 6 0.4447 0.2723 0.000 0.000 0.420 0.012 0.012 0.556
#> SRR1091404 1 0.4279 0.1406 0.548 0.000 0.000 0.004 0.012 0.436
#> SRR1402109 3 0.2872 0.7695 0.012 0.000 0.832 0.152 0.004 0.000
#> SRR1407336 3 0.4127 0.6359 0.012 0.000 0.692 0.280 0.004 0.012
#> SRR1097417 3 0.2822 0.7228 0.004 0.000 0.852 0.016 0.124 0.004
#> SRR1396227 1 0.4578 0.1531 0.548 0.000 0.004 0.008 0.016 0.424
#> SRR1400775 2 0.0881 0.7748 0.000 0.972 0.000 0.012 0.008 0.008
#> SRR1392861 4 0.3755 0.7945 0.192 0.000 0.028 0.768 0.000 0.012
#> SRR1472929 5 0.2186 0.8858 0.000 0.056 0.012 0.000 0.908 0.024
#> SRR1436740 4 0.3642 0.7988 0.236 0.000 0.008 0.744 0.000 0.012
#> SRR1477057 2 0.7448 0.5213 0.052 0.508 0.008 0.152 0.068 0.212
#> SRR1311980 3 0.3398 0.7744 0.040 0.000 0.852 0.020 0.024 0.064
#> SRR1069400 3 0.1015 0.8114 0.004 0.000 0.968 0.012 0.012 0.004
#> SRR1351016 1 0.3166 0.4842 0.800 0.000 0.008 0.008 0.000 0.184
#> SRR1096291 4 0.3783 0.6694 0.060 0.000 0.032 0.832 0.028 0.048
#> SRR1418145 4 0.4525 0.5521 0.060 0.000 0.000 0.748 0.048 0.144
#> SRR1488111 4 0.5507 0.4376 0.016 0.028 0.024 0.696 0.064 0.172
#> SRR1370495 6 0.7253 -0.0765 0.304 0.000 0.000 0.184 0.124 0.388
#> SRR1352639 1 0.6852 0.2216 0.472 0.000 0.000 0.196 0.084 0.248
#> SRR1348911 3 0.2608 0.7900 0.012 0.000 0.896 0.020 0.028 0.044
#> SRR1467386 1 0.2714 0.4859 0.848 0.000 0.004 0.136 0.000 0.012
#> SRR1415956 6 0.3847 0.2169 0.348 0.000 0.000 0.000 0.008 0.644
#> SRR1500495 6 0.5177 0.2617 0.364 0.000 0.084 0.000 0.004 0.548
#> SRR1405099 1 0.4184 0.1188 0.504 0.000 0.000 0.000 0.012 0.484
#> SRR1345585 3 0.2306 0.7908 0.000 0.000 0.888 0.016 0.004 0.092
#> SRR1093196 3 0.4620 0.5952 0.012 0.000 0.636 0.320 0.004 0.028
#> SRR1466006 2 0.2442 0.7655 0.000 0.900 0.008 0.008 0.036 0.048
#> SRR1351557 2 0.0891 0.7785 0.000 0.968 0.000 0.008 0.000 0.024
#> SRR1382687 1 0.4867 0.1783 0.536 0.000 0.004 0.040 0.004 0.416
#> SRR1375549 6 0.3841 0.3339 0.244 0.000 0.000 0.000 0.032 0.724
#> SRR1101765 6 0.5644 0.3575 0.128 0.000 0.000 0.120 0.092 0.660
#> SRR1334461 5 0.2758 0.9025 0.080 0.012 0.000 0.000 0.872 0.036
#> SRR1094073 2 0.0622 0.7717 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1077549 4 0.4908 0.5281 0.468 0.000 0.036 0.484 0.000 0.012
#> SRR1440332 1 0.7393 0.1146 0.440 0.000 0.228 0.180 0.008 0.144
#> SRR1454177 4 0.3748 0.7989 0.212 0.000 0.020 0.756 0.000 0.012
#> SRR1082447 6 0.4310 0.1752 0.404 0.000 0.000 0.004 0.016 0.576
#> SRR1420043 3 0.4190 0.6024 0.012 0.000 0.668 0.304 0.000 0.016
#> SRR1432500 1 0.3477 0.4714 0.804 0.000 0.016 0.160 0.004 0.016
#> SRR1378045 2 0.6164 -0.0837 0.000 0.460 0.416 0.032 0.024 0.068
#> SRR1334200 5 0.1956 0.9048 0.008 0.040 0.004 0.008 0.928 0.012
#> SRR1069539 4 0.4406 0.5603 0.008 0.000 0.088 0.780 0.052 0.072
#> SRR1343031 3 0.3252 0.7781 0.032 0.000 0.832 0.124 0.008 0.004
#> SRR1319690 6 0.4524 0.5070 0.036 0.000 0.312 0.004 0.004 0.644
#> SRR1310604 2 0.6736 0.5681 0.000 0.556 0.012 0.176 0.104 0.152
#> SRR1327747 6 0.5593 0.3824 0.008 0.000 0.272 0.136 0.004 0.580
#> SRR1072456 2 0.2233 0.7683 0.000 0.912 0.008 0.008 0.032 0.040
#> SRR1367896 3 0.0665 0.8103 0.000 0.000 0.980 0.008 0.008 0.004
#> SRR1480107 1 0.3802 0.3752 0.676 0.000 0.000 0.000 0.012 0.312
#> SRR1377756 1 0.4563 0.1379 0.504 0.000 0.000 0.020 0.008 0.468
#> SRR1435272 4 0.3381 0.8006 0.212 0.000 0.008 0.772 0.000 0.008
#> SRR1089230 4 0.3921 0.7956 0.224 0.000 0.004 0.736 0.000 0.036
#> SRR1389522 3 0.1026 0.8100 0.004 0.000 0.968 0.008 0.012 0.008
#> SRR1080600 2 0.6783 0.5622 0.000 0.552 0.012 0.172 0.112 0.152
#> SRR1086935 4 0.3963 0.7901 0.208 0.000 0.016 0.748 0.000 0.028
#> SRR1344060 5 0.1749 0.9070 0.016 0.044 0.004 0.004 0.932 0.000
#> SRR1467922 2 0.0862 0.7697 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1090984 6 0.5774 0.5011 0.092 0.000 0.268 0.016 0.024 0.600
#> SRR1456991 1 0.3955 0.3530 0.648 0.000 0.004 0.000 0.008 0.340
#> SRR1085039 1 0.3152 0.4794 0.792 0.000 0.000 0.008 0.004 0.196
#> SRR1069303 1 0.3421 0.4983 0.840 0.000 0.008 0.052 0.016 0.084
#> SRR1091500 2 0.1180 0.7730 0.000 0.960 0.000 0.012 0.012 0.016
#> SRR1075198 2 0.6813 0.5455 0.000 0.524 0.004 0.192 0.108 0.172
#> SRR1086915 4 0.3584 0.7961 0.244 0.000 0.004 0.740 0.000 0.012
#> SRR1499503 2 0.1086 0.7715 0.000 0.964 0.000 0.012 0.012 0.012
#> SRR1094312 2 0.0779 0.7752 0.000 0.976 0.000 0.008 0.008 0.008
#> SRR1352437 1 0.3921 0.4544 0.800 0.000 0.008 0.100 0.012 0.080
#> SRR1436323 3 0.7085 0.2352 0.100 0.000 0.396 0.352 0.004 0.148
#> SRR1073507 1 0.2848 0.4495 0.828 0.000 0.004 0.160 0.000 0.008
#> SRR1401972 1 0.3421 0.4983 0.840 0.000 0.008 0.052 0.016 0.084
#> SRR1415510 2 0.2373 0.7687 0.000 0.908 0.016 0.012 0.024 0.040
#> SRR1327279 1 0.4570 0.4668 0.744 0.000 0.104 0.128 0.004 0.020
#> SRR1086983 4 0.3965 0.6974 0.376 0.000 0.004 0.616 0.004 0.000
#> SRR1105174 1 0.4303 0.1055 0.524 0.000 0.000 0.004 0.012 0.460
#> SRR1468893 6 0.4264 -0.1230 0.484 0.000 0.000 0.000 0.016 0.500
#> SRR1362555 2 0.7198 0.5054 0.004 0.480 0.004 0.192 0.120 0.200
#> SRR1074526 5 0.2999 0.8921 0.060 0.004 0.004 0.004 0.864 0.064
#> SRR1326225 2 0.0717 0.7707 0.000 0.976 0.000 0.008 0.000 0.016
#> SRR1401933 6 0.6489 0.1192 0.264 0.000 0.024 0.200 0.012 0.500
#> SRR1324062 1 0.3925 0.4984 0.800 0.000 0.008 0.096 0.012 0.084
#> SRR1102296 1 0.4837 0.3749 0.652 0.000 0.012 0.016 0.032 0.288
#> SRR1085087 1 0.3770 0.4360 0.800 0.000 0.004 0.136 0.016 0.044
#> SRR1079046 6 0.4823 0.3253 0.216 0.000 0.000 0.000 0.124 0.660
#> SRR1328339 6 0.5899 0.4785 0.084 0.000 0.324 0.016 0.024 0.552
#> SRR1079782 2 0.6916 0.5188 0.004 0.488 0.000 0.232 0.088 0.188
#> SRR1092257 2 0.6990 0.4369 0.008 0.440 0.000 0.312 0.072 0.168
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
MAD:skmeans
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["MAD", "skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.787 0.898 0.957 0.4959 0.503 0.503
#> 3 3 0.586 0.659 0.845 0.3404 0.770 0.574
#> 4 4 0.742 0.811 0.903 0.1292 0.829 0.552
#> 5 5 0.701 0.642 0.799 0.0602 0.887 0.595
#> 6 6 0.702 0.627 0.777 0.0398 0.926 0.678
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.942 0.000 1.000
#> SRR1429287 2 0.0000 0.942 0.000 1.000
#> SRR1359238 1 0.0000 0.962 1.000 0.000
#> SRR1309597 2 0.4431 0.871 0.092 0.908
#> SRR1441398 1 0.0000 0.962 1.000 0.000
#> SRR1084055 2 0.0000 0.942 0.000 1.000
#> SRR1417566 2 0.0000 0.942 0.000 1.000
#> SRR1351857 1 0.0000 0.962 1.000 0.000
#> SRR1487485 2 0.0000 0.942 0.000 1.000
#> SRR1335875 2 0.0000 0.942 0.000 1.000
#> SRR1073947 1 0.0000 0.962 1.000 0.000
#> SRR1443483 2 0.4431 0.871 0.092 0.908
#> SRR1346794 1 0.0000 0.962 1.000 0.000
#> SRR1405245 1 0.0000 0.962 1.000 0.000
#> SRR1409677 1 0.0000 0.962 1.000 0.000
#> SRR1095549 1 0.0000 0.962 1.000 0.000
#> SRR1323788 1 0.0000 0.962 1.000 0.000
#> SRR1314054 2 0.0000 0.942 0.000 1.000
#> SRR1077944 1 0.0000 0.962 1.000 0.000
#> SRR1480587 2 0.0000 0.942 0.000 1.000
#> SRR1311205 1 0.0000 0.962 1.000 0.000
#> SRR1076369 1 0.9754 0.228 0.592 0.408
#> SRR1453549 1 0.2948 0.916 0.948 0.052
#> SRR1345782 1 0.0000 0.962 1.000 0.000
#> SRR1447850 2 0.0000 0.942 0.000 1.000
#> SRR1391553 2 0.0000 0.942 0.000 1.000
#> SRR1444156 2 0.0000 0.942 0.000 1.000
#> SRR1471731 2 0.9710 0.390 0.400 0.600
#> SRR1120987 1 0.0000 0.962 1.000 0.000
#> SRR1477363 1 0.0000 0.962 1.000 0.000
#> SRR1391961 1 0.9710 0.340 0.600 0.400
#> SRR1373879 1 0.6247 0.794 0.844 0.156
#> SRR1318732 2 0.1184 0.931 0.016 0.984
#> SRR1091404 1 0.0000 0.962 1.000 0.000
#> SRR1402109 1 0.1184 0.949 0.984 0.016
#> SRR1407336 2 0.9710 0.390 0.400 0.600
#> SRR1097417 2 0.0000 0.942 0.000 1.000
#> SRR1396227 1 0.0000 0.962 1.000 0.000
#> SRR1400775 2 0.0000 0.942 0.000 1.000
#> SRR1392861 1 0.6438 0.783 0.836 0.164
#> SRR1472929 2 0.0000 0.942 0.000 1.000
#> SRR1436740 1 0.0000 0.962 1.000 0.000
#> SRR1477057 2 0.0000 0.942 0.000 1.000
#> SRR1311980 2 0.5178 0.847 0.116 0.884
#> SRR1069400 2 0.7219 0.748 0.200 0.800
#> SRR1351016 1 0.0000 0.962 1.000 0.000
#> SRR1096291 2 0.9710 0.390 0.400 0.600
#> SRR1418145 1 0.0000 0.962 1.000 0.000
#> SRR1488111 2 0.0000 0.942 0.000 1.000
#> SRR1370495 1 0.2423 0.928 0.960 0.040
#> SRR1352639 1 0.7219 0.740 0.800 0.200
#> SRR1348911 2 0.0000 0.942 0.000 1.000
#> SRR1467386 1 0.0000 0.962 1.000 0.000
#> SRR1415956 1 0.0000 0.962 1.000 0.000
#> SRR1500495 1 0.0000 0.962 1.000 0.000
#> SRR1405099 1 0.0000 0.962 1.000 0.000
#> SRR1345585 2 0.0000 0.942 0.000 1.000
#> SRR1093196 2 0.9710 0.390 0.400 0.600
#> SRR1466006 2 0.0000 0.942 0.000 1.000
#> SRR1351557 2 0.0000 0.942 0.000 1.000
#> SRR1382687 1 0.0000 0.962 1.000 0.000
#> SRR1375549 1 0.0000 0.962 1.000 0.000
#> SRR1101765 1 0.0000 0.962 1.000 0.000
#> SRR1334461 1 0.9710 0.340 0.600 0.400
#> SRR1094073 2 0.0000 0.942 0.000 1.000
#> SRR1077549 1 0.0000 0.962 1.000 0.000
#> SRR1440332 1 0.0000 0.962 1.000 0.000
#> SRR1454177 1 0.0000 0.962 1.000 0.000
#> SRR1082447 1 0.0000 0.962 1.000 0.000
#> SRR1420043 1 0.0000 0.962 1.000 0.000
#> SRR1432500 1 0.0000 0.962 1.000 0.000
#> SRR1378045 2 0.0000 0.942 0.000 1.000
#> SRR1334200 2 0.0000 0.942 0.000 1.000
#> SRR1069539 2 0.0000 0.942 0.000 1.000
#> SRR1343031 1 0.0000 0.962 1.000 0.000
#> SRR1319690 1 0.0000 0.962 1.000 0.000
#> SRR1310604 2 0.0000 0.942 0.000 1.000
#> SRR1327747 1 0.0938 0.953 0.988 0.012
#> SRR1072456 2 0.0000 0.942 0.000 1.000
#> SRR1367896 2 0.0000 0.942 0.000 1.000
#> SRR1480107 1 0.0000 0.962 1.000 0.000
#> SRR1377756 1 0.0000 0.962 1.000 0.000
#> SRR1435272 1 0.0000 0.962 1.000 0.000
#> SRR1089230 1 0.0000 0.962 1.000 0.000
#> SRR1389522 2 0.4431 0.871 0.092 0.908
#> SRR1080600 2 0.0000 0.942 0.000 1.000
#> SRR1086935 2 0.9710 0.390 0.400 0.600
#> SRR1344060 2 0.1184 0.930 0.016 0.984
#> SRR1467922 2 0.0000 0.942 0.000 1.000
#> SRR1090984 1 0.0000 0.962 1.000 0.000
#> SRR1456991 1 0.0000 0.962 1.000 0.000
#> SRR1085039 1 0.0000 0.962 1.000 0.000
#> SRR1069303 1 0.0000 0.962 1.000 0.000
#> SRR1091500 2 0.0000 0.942 0.000 1.000
#> SRR1075198 2 0.0000 0.942 0.000 1.000
#> SRR1086915 1 0.0000 0.962 1.000 0.000
#> SRR1499503 2 0.0000 0.942 0.000 1.000
#> SRR1094312 2 0.0000 0.942 0.000 1.000
#> SRR1352437 1 0.0000 0.962 1.000 0.000
#> SRR1436323 1 0.2043 0.936 0.968 0.032
#> SRR1073507 1 0.0000 0.962 1.000 0.000
#> SRR1401972 1 0.0000 0.962 1.000 0.000
#> SRR1415510 2 0.0000 0.942 0.000 1.000
#> SRR1327279 1 0.0000 0.962 1.000 0.000
#> SRR1086983 1 0.0000 0.962 1.000 0.000
#> SRR1105174 1 0.0000 0.962 1.000 0.000
#> SRR1468893 1 0.0000 0.962 1.000 0.000
#> SRR1362555 2 0.0000 0.942 0.000 1.000
#> SRR1074526 2 0.6247 0.790 0.156 0.844
#> SRR1326225 2 0.0000 0.942 0.000 1.000
#> SRR1401933 1 0.0000 0.962 1.000 0.000
#> SRR1324062 1 0.0000 0.962 1.000 0.000
#> SRR1102296 1 0.4939 0.857 0.892 0.108
#> SRR1085087 1 0.0000 0.962 1.000 0.000
#> SRR1079046 1 0.8327 0.637 0.736 0.264
#> SRR1328339 2 0.0000 0.942 0.000 1.000
#> SRR1079782 2 0.0000 0.942 0.000 1.000
#> SRR1092257 2 0.0000 0.942 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1429287 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1359238 1 0.5785 0.60085 0.668 0.000 0.332
#> SRR1309597 3 0.4891 0.70279 0.124 0.040 0.836
#> SRR1441398 1 0.6291 -0.16001 0.532 0.000 0.468
#> SRR1084055 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1417566 3 0.7523 0.58852 0.260 0.080 0.660
#> SRR1351857 1 0.5560 0.63192 0.700 0.000 0.300
#> SRR1487485 3 0.2711 0.72697 0.000 0.088 0.912
#> SRR1335875 3 0.6803 0.59247 0.040 0.280 0.680
#> SRR1073947 1 0.3412 0.72939 0.876 0.000 0.124
#> SRR1443483 3 0.2492 0.73347 0.016 0.048 0.936
#> SRR1346794 1 0.6295 -0.17179 0.528 0.000 0.472
#> SRR1405245 1 0.6307 -0.21380 0.512 0.000 0.488
#> SRR1409677 1 0.6302 0.37515 0.520 0.000 0.480
#> SRR1095549 1 0.6267 -0.09245 0.548 0.000 0.452
#> SRR1323788 1 0.6168 -0.00440 0.588 0.000 0.412
#> SRR1314054 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1077944 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1480587 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1311205 1 0.2796 0.66699 0.908 0.000 0.092
#> SRR1076369 3 0.6509 0.25995 0.472 0.004 0.524
#> SRR1453549 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1345782 1 0.1163 0.71798 0.972 0.000 0.028
#> SRR1447850 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1391553 3 0.5785 0.53499 0.000 0.332 0.668
#> SRR1444156 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1471731 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1120987 1 0.9405 0.40506 0.484 0.192 0.324
#> SRR1477363 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1391961 1 0.5621 0.52129 0.692 0.308 0.000
#> SRR1373879 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1318732 3 0.7610 0.61923 0.216 0.108 0.676
#> SRR1091404 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1402109 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1407336 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1097417 3 0.5760 0.54065 0.000 0.328 0.672
#> SRR1396227 1 0.0237 0.73254 0.996 0.000 0.004
#> SRR1400775 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1392861 3 0.1289 0.70378 0.032 0.000 0.968
#> SRR1472929 2 0.0892 0.94542 0.000 0.980 0.020
#> SRR1436740 1 0.6299 0.38270 0.524 0.000 0.476
#> SRR1477057 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1311980 3 0.1315 0.72713 0.020 0.008 0.972
#> SRR1069400 3 0.0237 0.73020 0.000 0.004 0.996
#> SRR1351016 1 0.3340 0.73013 0.880 0.000 0.120
#> SRR1096291 2 0.7905 0.34243 0.072 0.588 0.340
#> SRR1418145 1 0.9335 0.41609 0.492 0.184 0.324
#> SRR1488111 2 0.2625 0.87733 0.000 0.916 0.084
#> SRR1370495 1 0.4291 0.63408 0.820 0.180 0.000
#> SRR1352639 1 0.6111 0.36345 0.604 0.396 0.000
#> SRR1348911 3 0.5988 0.57247 0.008 0.304 0.688
#> SRR1467386 1 0.4178 0.71394 0.828 0.000 0.172
#> SRR1415956 1 0.2356 0.68605 0.928 0.000 0.072
#> SRR1500495 1 0.6286 -0.14955 0.536 0.000 0.464
#> SRR1405099 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1345585 3 0.5618 0.62196 0.008 0.260 0.732
#> SRR1093196 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1466006 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1351557 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1382687 1 0.2711 0.73403 0.912 0.000 0.088
#> SRR1375549 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1101765 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1334461 1 0.5216 0.56881 0.740 0.260 0.000
#> SRR1094073 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1077549 1 0.5882 0.58350 0.652 0.000 0.348
#> SRR1440332 3 0.6305 -0.33114 0.484 0.000 0.516
#> SRR1454177 3 0.6305 -0.33348 0.484 0.000 0.516
#> SRR1082447 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1420043 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1432500 1 0.5327 0.65286 0.728 0.000 0.272
#> SRR1378045 3 0.5810 0.52886 0.000 0.336 0.664
#> SRR1334200 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1069539 2 0.5178 0.62282 0.000 0.744 0.256
#> SRR1343031 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1319690 3 0.5760 0.53035 0.328 0.000 0.672
#> SRR1310604 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1327747 3 0.4178 0.67625 0.172 0.000 0.828
#> SRR1072456 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1367896 3 0.2165 0.73119 0.000 0.064 0.936
#> SRR1480107 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1377756 1 0.1411 0.73474 0.964 0.000 0.036
#> SRR1435272 1 0.6309 0.34261 0.504 0.000 0.496
#> SRR1089230 1 0.5926 0.57419 0.644 0.000 0.356
#> SRR1389522 3 0.4514 0.68691 0.156 0.012 0.832
#> SRR1080600 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1086935 3 0.7895 0.00788 0.056 0.436 0.508
#> SRR1344060 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1467922 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1090984 3 0.6309 0.21631 0.496 0.000 0.504
#> SRR1456991 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1085039 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1069303 1 0.3412 0.72939 0.876 0.000 0.124
#> SRR1091500 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1075198 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1086915 1 0.5678 0.61657 0.684 0.000 0.316
#> SRR1499503 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1094312 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1352437 1 0.4235 0.71233 0.824 0.000 0.176
#> SRR1436323 3 0.0000 0.72950 0.000 0.000 1.000
#> SRR1073507 1 0.4291 0.71065 0.820 0.000 0.180
#> SRR1401972 1 0.3412 0.72939 0.876 0.000 0.124
#> SRR1415510 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1327279 1 0.5560 0.63159 0.700 0.000 0.300
#> SRR1086983 1 0.5560 0.63192 0.700 0.000 0.300
#> SRR1105174 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1468893 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1362555 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1074526 2 0.2878 0.85364 0.096 0.904 0.000
#> SRR1326225 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1401933 1 0.3551 0.72759 0.868 0.000 0.132
#> SRR1324062 1 0.4750 0.69138 0.784 0.000 0.216
#> SRR1102296 1 0.0000 0.73199 1.000 0.000 0.000
#> SRR1085087 1 0.4291 0.71065 0.820 0.000 0.180
#> SRR1079046 1 0.2625 0.68766 0.916 0.084 0.000
#> SRR1328339 3 0.7283 0.28632 0.460 0.028 0.512
#> SRR1079782 2 0.0000 0.96640 0.000 1.000 0.000
#> SRR1092257 2 0.0000 0.96640 0.000 1.000 0.000
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1429287 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1359238 4 0.0000 0.846 0.000 0.000 0.000 1.000
#> SRR1309597 3 0.0188 0.882 0.004 0.000 0.996 0.000
#> SRR1441398 1 0.2266 0.835 0.912 0.000 0.084 0.004
#> SRR1084055 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1417566 3 0.4008 0.664 0.244 0.000 0.756 0.000
#> SRR1351857 4 0.0000 0.846 0.000 0.000 0.000 1.000
#> SRR1487485 3 0.0000 0.882 0.000 0.000 1.000 0.000
#> SRR1335875 3 0.0336 0.882 0.008 0.000 0.992 0.000
#> SRR1073947 1 0.4866 0.108 0.596 0.000 0.000 0.404
#> SRR1443483 3 0.0000 0.882 0.000 0.000 1.000 0.000
#> SRR1346794 1 0.3852 0.738 0.808 0.000 0.180 0.012
#> SRR1405245 1 0.2944 0.808 0.868 0.000 0.128 0.004
#> SRR1409677 4 0.0707 0.837 0.000 0.000 0.020 0.980
#> SRR1095549 1 0.5188 0.611 0.716 0.000 0.240 0.044
#> SRR1323788 1 0.2714 0.817 0.884 0.000 0.112 0.004
#> SRR1314054 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1077944 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1480587 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1311205 1 0.0188 0.865 0.996 0.000 0.000 0.004
#> SRR1076369 1 0.5105 0.571 0.696 0.000 0.276 0.028
#> SRR1453549 3 0.1716 0.864 0.000 0.000 0.936 0.064
#> SRR1345782 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1447850 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1391553 3 0.0376 0.881 0.004 0.004 0.992 0.000
#> SRR1444156 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1471731 3 0.4220 0.711 0.004 0.000 0.748 0.248
#> SRR1120987 4 0.0188 0.845 0.000 0.004 0.000 0.996
#> SRR1477363 1 0.0469 0.864 0.988 0.000 0.000 0.012
#> SRR1391961 1 0.3751 0.701 0.800 0.196 0.000 0.004
#> SRR1373879 3 0.1302 0.870 0.000 0.000 0.956 0.044
#> SRR1318732 3 0.3649 0.719 0.204 0.000 0.796 0.000
#> SRR1091404 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1402109 3 0.2530 0.841 0.000 0.000 0.888 0.112
#> SRR1407336 3 0.3444 0.790 0.000 0.000 0.816 0.184
#> SRR1097417 3 0.0000 0.882 0.000 0.000 1.000 0.000
#> SRR1396227 1 0.1211 0.848 0.960 0.000 0.000 0.040
#> SRR1400775 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1392861 4 0.0707 0.836 0.000 0.000 0.020 0.980
#> SRR1472929 2 0.2494 0.888 0.036 0.916 0.048 0.000
#> SRR1436740 4 0.0000 0.846 0.000 0.000 0.000 1.000
#> SRR1477057 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1311980 3 0.0336 0.882 0.008 0.000 0.992 0.000
#> SRR1069400 3 0.0000 0.882 0.000 0.000 1.000 0.000
#> SRR1351016 1 0.3649 0.647 0.796 0.000 0.000 0.204
#> SRR1096291 4 0.0524 0.841 0.000 0.004 0.008 0.988
#> SRR1418145 4 0.0188 0.845 0.000 0.004 0.000 0.996
#> SRR1488111 2 0.1389 0.918 0.000 0.952 0.000 0.048
#> SRR1370495 1 0.3768 0.710 0.808 0.184 0.000 0.008
#> SRR1352639 2 0.6764 0.104 0.404 0.500 0.000 0.096
#> SRR1348911 3 0.0336 0.882 0.008 0.000 0.992 0.000
#> SRR1467386 4 0.3610 0.784 0.200 0.000 0.000 0.800
#> SRR1415956 1 0.0000 0.865 1.000 0.000 0.000 0.000
#> SRR1500495 1 0.1824 0.847 0.936 0.000 0.060 0.004
#> SRR1405099 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1345585 3 0.0188 0.882 0.004 0.000 0.996 0.000
#> SRR1093196 3 0.3444 0.790 0.000 0.000 0.816 0.184
#> SRR1466006 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1351557 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1382687 4 0.4843 0.542 0.396 0.000 0.000 0.604
#> SRR1375549 1 0.0592 0.863 0.984 0.000 0.000 0.016
#> SRR1101765 1 0.3569 0.726 0.804 0.000 0.000 0.196
#> SRR1334461 1 0.3626 0.713 0.812 0.184 0.000 0.004
#> SRR1094073 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1077549 4 0.0188 0.845 0.000 0.000 0.004 0.996
#> SRR1440332 4 0.5330 0.727 0.120 0.000 0.132 0.748
#> SRR1454177 4 0.0336 0.843 0.000 0.000 0.008 0.992
#> SRR1082447 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1420043 3 0.3649 0.768 0.000 0.000 0.796 0.204
#> SRR1432500 4 0.3311 0.798 0.172 0.000 0.000 0.828
#> SRR1378045 3 0.2654 0.812 0.004 0.108 0.888 0.000
#> SRR1334200 2 0.0336 0.950 0.008 0.992 0.000 0.000
#> SRR1069539 2 0.6536 0.427 0.000 0.580 0.096 0.324
#> SRR1343031 3 0.2704 0.833 0.000 0.000 0.876 0.124
#> SRR1319690 3 0.4907 0.265 0.420 0.000 0.580 0.000
#> SRR1310604 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1327747 3 0.5964 0.670 0.228 0.000 0.676 0.096
#> SRR1072456 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1367896 3 0.0000 0.882 0.000 0.000 1.000 0.000
#> SRR1480107 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1377756 4 0.4916 0.469 0.424 0.000 0.000 0.576
#> SRR1435272 4 0.0188 0.845 0.000 0.000 0.004 0.996
#> SRR1089230 4 0.0188 0.845 0.004 0.000 0.000 0.996
#> SRR1389522 3 0.0000 0.882 0.000 0.000 1.000 0.000
#> SRR1080600 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1086935 4 0.0469 0.840 0.000 0.012 0.000 0.988
#> SRR1344060 2 0.0707 0.941 0.020 0.980 0.000 0.000
#> SRR1467922 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1090984 1 0.4008 0.673 0.756 0.000 0.244 0.000
#> SRR1456991 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1085039 1 0.3172 0.726 0.840 0.000 0.000 0.160
#> SRR1069303 4 0.4643 0.624 0.344 0.000 0.000 0.656
#> SRR1091500 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1075198 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1086915 4 0.0000 0.846 0.000 0.000 0.000 1.000
#> SRR1499503 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1094312 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1352437 4 0.3649 0.780 0.204 0.000 0.000 0.796
#> SRR1436323 3 0.4920 0.518 0.004 0.000 0.628 0.368
#> SRR1073507 4 0.3610 0.782 0.200 0.000 0.000 0.800
#> SRR1401972 4 0.4643 0.624 0.344 0.000 0.000 0.656
#> SRR1415510 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1327279 4 0.5410 0.758 0.192 0.000 0.080 0.728
#> SRR1086983 4 0.0000 0.846 0.000 0.000 0.000 1.000
#> SRR1105174 1 0.0469 0.864 0.988 0.000 0.000 0.012
#> SRR1468893 1 0.1211 0.851 0.960 0.000 0.000 0.040
#> SRR1362555 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1074526 2 0.4546 0.611 0.256 0.732 0.000 0.012
#> SRR1326225 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1401933 4 0.4661 0.560 0.348 0.000 0.000 0.652
#> SRR1324062 4 0.4406 0.687 0.300 0.000 0.000 0.700
#> SRR1102296 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1085087 4 0.3801 0.768 0.220 0.000 0.000 0.780
#> SRR1079046 1 0.0336 0.865 0.992 0.000 0.000 0.008
#> SRR1328339 1 0.4164 0.638 0.736 0.000 0.264 0.000
#> SRR1079782 2 0.0000 0.956 0.000 1.000 0.000 0.000
#> SRR1092257 2 0.0188 0.953 0.000 0.996 0.000 0.004
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0162 0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1429287 2 0.0865 0.9625 0.000 0.972 0.000 0.004 0.024
#> SRR1359238 4 0.1764 0.7689 0.064 0.000 0.008 0.928 0.000
#> SRR1309597 3 0.0609 0.7854 0.000 0.000 0.980 0.000 0.020
#> SRR1441398 1 0.4719 0.5359 0.696 0.000 0.056 0.000 0.248
#> SRR1084055 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1417566 3 0.5908 0.3564 0.108 0.000 0.512 0.000 0.380
#> SRR1351857 4 0.0955 0.7835 0.028 0.000 0.004 0.968 0.000
#> SRR1487485 3 0.0963 0.7851 0.000 0.000 0.964 0.000 0.036
#> SRR1335875 3 0.2922 0.7555 0.056 0.000 0.872 0.000 0.072
#> SRR1073947 1 0.3283 0.6044 0.832 0.000 0.000 0.140 0.028
#> SRR1443483 3 0.0290 0.7849 0.000 0.000 0.992 0.000 0.008
#> SRR1346794 5 0.4902 0.2892 0.304 0.000 0.048 0.000 0.648
#> SRR1405245 1 0.4850 0.5345 0.700 0.000 0.076 0.000 0.224
#> SRR1409677 4 0.0880 0.7751 0.000 0.000 0.032 0.968 0.000
#> SRR1095549 5 0.6138 0.2149 0.376 0.000 0.068 0.028 0.528
#> SRR1323788 1 0.4848 0.4859 0.644 0.000 0.032 0.004 0.320
#> SRR1314054 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1077944 1 0.2690 0.6395 0.844 0.000 0.000 0.000 0.156
#> SRR1480587 2 0.0162 0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1311205 1 0.1386 0.6657 0.952 0.000 0.016 0.000 0.032
#> SRR1076369 5 0.3304 0.5204 0.128 0.000 0.028 0.004 0.840
#> SRR1453549 3 0.2632 0.7841 0.000 0.000 0.888 0.072 0.040
#> SRR1345782 1 0.1907 0.6616 0.928 0.000 0.028 0.000 0.044
#> SRR1447850 2 0.1121 0.9367 0.000 0.956 0.000 0.044 0.000
#> SRR1391553 3 0.3857 0.7295 0.000 0.084 0.808 0.000 0.108
#> SRR1444156 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1471731 3 0.5314 0.6154 0.004 0.000 0.632 0.296 0.068
#> SRR1120987 4 0.0671 0.7857 0.004 0.000 0.000 0.980 0.016
#> SRR1477363 1 0.2377 0.6468 0.872 0.000 0.000 0.000 0.128
#> SRR1391961 5 0.5808 0.5223 0.232 0.160 0.000 0.000 0.608
#> SRR1373879 3 0.1251 0.7832 0.000 0.000 0.956 0.036 0.008
#> SRR1318732 3 0.5952 0.3903 0.128 0.000 0.548 0.000 0.324
#> SRR1091404 1 0.4182 0.1089 0.600 0.000 0.000 0.000 0.400
#> SRR1402109 3 0.2929 0.7477 0.000 0.000 0.840 0.152 0.008
#> SRR1407336 3 0.3967 0.6625 0.000 0.000 0.724 0.264 0.012
#> SRR1097417 3 0.2329 0.7398 0.000 0.000 0.876 0.000 0.124
#> SRR1396227 1 0.4649 0.5744 0.720 0.000 0.000 0.068 0.212
#> SRR1400775 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1392861 4 0.0404 0.7857 0.000 0.000 0.012 0.988 0.000
#> SRR1472929 5 0.5312 0.3550 0.016 0.388 0.028 0.000 0.568
#> SRR1436740 4 0.0000 0.7884 0.000 0.000 0.000 1.000 0.000
#> SRR1477057 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1311980 3 0.2172 0.7746 0.016 0.000 0.908 0.000 0.076
#> SRR1069400 3 0.0609 0.7833 0.000 0.000 0.980 0.000 0.020
#> SRR1351016 1 0.2616 0.6357 0.888 0.000 0.000 0.076 0.036
#> SRR1096291 4 0.2149 0.7477 0.000 0.000 0.036 0.916 0.048
#> SRR1418145 4 0.0771 0.7841 0.004 0.000 0.000 0.976 0.020
#> SRR1488111 2 0.3141 0.7862 0.000 0.832 0.000 0.152 0.016
#> SRR1370495 5 0.5391 0.4884 0.300 0.084 0.000 0.000 0.616
#> SRR1352639 1 0.5792 0.3852 0.680 0.188 0.000 0.052 0.080
#> SRR1348911 3 0.1357 0.7815 0.004 0.000 0.948 0.000 0.048
#> SRR1467386 4 0.4278 0.2538 0.452 0.000 0.000 0.548 0.000
#> SRR1415956 1 0.3534 0.5718 0.744 0.000 0.000 0.000 0.256
#> SRR1500495 1 0.4453 0.5617 0.724 0.000 0.048 0.000 0.228
#> SRR1405099 1 0.2377 0.6408 0.872 0.000 0.000 0.000 0.128
#> SRR1345585 3 0.1608 0.7793 0.000 0.000 0.928 0.000 0.072
#> SRR1093196 3 0.4026 0.6850 0.000 0.000 0.736 0.244 0.020
#> SRR1466006 2 0.0290 0.9719 0.000 0.992 0.000 0.000 0.008
#> SRR1351557 2 0.0162 0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1382687 1 0.5659 0.5712 0.632 0.000 0.000 0.164 0.204
#> SRR1375549 5 0.3636 0.4587 0.272 0.000 0.000 0.000 0.728
#> SRR1101765 5 0.4177 0.5186 0.164 0.000 0.000 0.064 0.772
#> SRR1334461 5 0.5699 0.5078 0.264 0.128 0.000 0.000 0.608
#> SRR1094073 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1077549 4 0.2997 0.7077 0.148 0.000 0.012 0.840 0.000
#> SRR1440332 1 0.6443 0.2852 0.552 0.000 0.152 0.280 0.016
#> SRR1454177 4 0.0000 0.7884 0.000 0.000 0.000 1.000 0.000
#> SRR1082447 1 0.4297 0.0406 0.528 0.000 0.000 0.000 0.472
#> SRR1420043 3 0.3857 0.6022 0.000 0.000 0.688 0.312 0.000
#> SRR1432500 4 0.4451 0.1308 0.492 0.000 0.004 0.504 0.000
#> SRR1378045 3 0.4698 0.6402 0.000 0.172 0.732 0.000 0.096
#> SRR1334200 5 0.4359 0.3070 0.004 0.412 0.000 0.000 0.584
#> SRR1069539 4 0.6303 0.4078 0.000 0.204 0.092 0.636 0.068
#> SRR1343031 3 0.3154 0.7434 0.004 0.000 0.836 0.148 0.012
#> SRR1319690 3 0.6581 0.1768 0.224 0.000 0.452 0.000 0.324
#> SRR1310604 2 0.0880 0.9603 0.000 0.968 0.000 0.000 0.032
#> SRR1327747 3 0.7853 0.3079 0.132 0.000 0.428 0.136 0.304
#> SRR1072456 2 0.0162 0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1367896 3 0.0510 0.7834 0.000 0.000 0.984 0.000 0.016
#> SRR1480107 1 0.0510 0.6603 0.984 0.000 0.000 0.000 0.016
#> SRR1377756 1 0.5775 0.5584 0.608 0.000 0.000 0.244 0.148
#> SRR1435272 4 0.0000 0.7884 0.000 0.000 0.000 1.000 0.000
#> SRR1089230 4 0.0290 0.7877 0.000 0.000 0.000 0.992 0.008
#> SRR1389522 3 0.0609 0.7833 0.000 0.000 0.980 0.000 0.020
#> SRR1080600 2 0.1965 0.9033 0.000 0.904 0.000 0.000 0.096
#> SRR1086935 4 0.0566 0.7866 0.004 0.000 0.000 0.984 0.012
#> SRR1344060 5 0.4940 0.3535 0.032 0.392 0.000 0.000 0.576
#> SRR1467922 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1090984 5 0.5827 0.2499 0.260 0.000 0.144 0.000 0.596
#> SRR1456991 1 0.0703 0.6607 0.976 0.000 0.000 0.000 0.024
#> SRR1085039 1 0.3164 0.6388 0.852 0.000 0.000 0.104 0.044
#> SRR1069303 1 0.4987 0.2818 0.616 0.000 0.000 0.340 0.044
#> SRR1091500 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1075198 2 0.1121 0.9528 0.000 0.956 0.000 0.000 0.044
#> SRR1086915 4 0.0162 0.7884 0.004 0.000 0.000 0.996 0.000
#> SRR1499503 2 0.0162 0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1094312 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1352437 4 0.5165 0.2070 0.448 0.000 0.000 0.512 0.040
#> SRR1436323 3 0.5990 0.4937 0.008 0.000 0.540 0.356 0.096
#> SRR1073507 4 0.4242 0.3103 0.428 0.000 0.000 0.572 0.000
#> SRR1401972 1 0.4987 0.2818 0.616 0.000 0.000 0.340 0.044
#> SRR1415510 2 0.0162 0.9734 0.000 0.996 0.000 0.000 0.004
#> SRR1327279 1 0.5865 0.2017 0.568 0.000 0.104 0.324 0.004
#> SRR1086983 4 0.1571 0.7712 0.060 0.000 0.000 0.936 0.004
#> SRR1105174 1 0.3003 0.6127 0.812 0.000 0.000 0.000 0.188
#> SRR1468893 1 0.3438 0.6313 0.808 0.000 0.000 0.020 0.172
#> SRR1362555 2 0.1732 0.9207 0.000 0.920 0.000 0.000 0.080
#> SRR1074526 5 0.4800 0.5502 0.052 0.272 0.000 0.000 0.676
#> SRR1326225 2 0.0000 0.9737 0.000 1.000 0.000 0.000 0.000
#> SRR1401933 4 0.7068 -0.0421 0.256 0.000 0.012 0.372 0.360
#> SRR1324062 1 0.4898 0.2297 0.592 0.000 0.000 0.376 0.032
#> SRR1102296 1 0.1894 0.6478 0.920 0.008 0.000 0.000 0.072
#> SRR1085087 4 0.4743 0.1759 0.472 0.000 0.000 0.512 0.016
#> SRR1079046 5 0.3508 0.4913 0.252 0.000 0.000 0.000 0.748
#> SRR1328339 5 0.6411 0.1471 0.312 0.000 0.196 0.000 0.492
#> SRR1079782 2 0.1281 0.9553 0.000 0.956 0.000 0.012 0.032
#> SRR1092257 2 0.1211 0.9517 0.000 0.960 0.000 0.024 0.016
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1429287 2 0.3375 0.8429 0.000 0.828 0.000 0.008 0.088 0.076
#> SRR1359238 4 0.3755 0.7371 0.112 0.000 0.052 0.812 0.016 0.008
#> SRR1309597 3 0.1075 0.7558 0.000 0.000 0.952 0.000 0.000 0.048
#> SRR1441398 1 0.5406 0.2625 0.556 0.000 0.040 0.000 0.048 0.356
#> SRR1084055 2 0.0458 0.9222 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1417566 6 0.3759 0.5566 0.020 0.024 0.132 0.000 0.016 0.808
#> SRR1351857 4 0.2267 0.7988 0.064 0.000 0.008 0.904 0.020 0.004
#> SRR1487485 3 0.2520 0.7175 0.000 0.000 0.844 0.004 0.000 0.152
#> SRR1335875 3 0.4768 0.4703 0.044 0.008 0.628 0.000 0.004 0.316
#> SRR1073947 1 0.2188 0.5963 0.912 0.000 0.000 0.032 0.020 0.036
#> SRR1443483 3 0.0146 0.7626 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1346794 6 0.5058 0.4622 0.124 0.000 0.016 0.000 0.188 0.672
#> SRR1405245 1 0.5223 0.3139 0.588 0.000 0.040 0.000 0.040 0.332
#> SRR1409677 4 0.1364 0.8190 0.004 0.000 0.048 0.944 0.000 0.004
#> SRR1095549 6 0.7702 0.3429 0.244 0.000 0.144 0.044 0.124 0.444
#> SRR1323788 6 0.5677 -0.0151 0.416 0.000 0.024 0.004 0.072 0.484
#> SRR1314054 2 0.0458 0.9229 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1077944 1 0.3746 0.5315 0.760 0.000 0.000 0.000 0.048 0.192
#> SRR1480587 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1311205 1 0.1983 0.5904 0.916 0.000 0.012 0.000 0.012 0.060
#> SRR1076369 5 0.4695 0.5066 0.032 0.000 0.024 0.000 0.648 0.296
#> SRR1453549 3 0.4314 0.7109 0.004 0.000 0.736 0.104 0.000 0.156
#> SRR1345782 1 0.2743 0.5869 0.880 0.000 0.032 0.000 0.028 0.060
#> SRR1447850 2 0.1498 0.9016 0.000 0.940 0.000 0.032 0.028 0.000
#> SRR1391553 6 0.5934 -0.0607 0.000 0.184 0.376 0.000 0.004 0.436
#> SRR1444156 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731 3 0.6105 0.2079 0.000 0.000 0.380 0.308 0.000 0.312
#> SRR1120987 4 0.2532 0.7928 0.008 0.000 0.000 0.884 0.032 0.076
#> SRR1477363 1 0.3663 0.5259 0.776 0.000 0.004 0.000 0.040 0.180
#> SRR1391961 5 0.3031 0.7841 0.048 0.072 0.000 0.000 0.860 0.020
#> SRR1373879 3 0.1007 0.7621 0.000 0.000 0.956 0.044 0.000 0.000
#> SRR1318732 6 0.4663 0.5434 0.040 0.004 0.196 0.000 0.040 0.720
#> SRR1091404 1 0.5333 0.3696 0.576 0.000 0.004 0.000 0.300 0.120
#> SRR1402109 3 0.1957 0.7388 0.000 0.000 0.888 0.112 0.000 0.000
#> SRR1407336 3 0.3529 0.6577 0.000 0.000 0.764 0.208 0.000 0.028
#> SRR1097417 3 0.2618 0.7127 0.000 0.000 0.872 0.000 0.076 0.052
#> SRR1396227 1 0.6337 0.2374 0.444 0.000 0.000 0.096 0.068 0.392
#> SRR1400775 2 0.0146 0.9257 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1392861 4 0.0363 0.8362 0.000 0.000 0.012 0.988 0.000 0.000
#> SRR1472929 5 0.3372 0.7344 0.008 0.176 0.020 0.000 0.796 0.000
#> SRR1436740 4 0.0260 0.8373 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1477057 2 0.1225 0.9121 0.000 0.952 0.000 0.000 0.036 0.012
#> SRR1311980 3 0.4134 0.5203 0.028 0.000 0.656 0.000 0.000 0.316
#> SRR1069400 3 0.0260 0.7639 0.000 0.000 0.992 0.008 0.000 0.000
#> SRR1351016 1 0.2137 0.5975 0.912 0.000 0.000 0.028 0.012 0.048
#> SRR1096291 4 0.4339 0.7168 0.000 0.000 0.076 0.776 0.068 0.080
#> SRR1418145 4 0.3368 0.7496 0.004 0.000 0.000 0.824 0.084 0.088
#> SRR1488111 2 0.5765 0.5915 0.000 0.624 0.000 0.212 0.076 0.088
#> SRR1370495 5 0.2731 0.7339 0.068 0.012 0.000 0.000 0.876 0.044
#> SRR1352639 1 0.5948 0.4540 0.656 0.076 0.004 0.012 0.148 0.104
#> SRR1348911 3 0.3722 0.5848 0.008 0.004 0.724 0.000 0.004 0.260
#> SRR1467386 1 0.4788 0.3165 0.564 0.000 0.000 0.392 0.024 0.020
#> SRR1415956 1 0.4988 0.2877 0.552 0.000 0.004 0.000 0.064 0.380
#> SRR1500495 1 0.5149 0.3265 0.596 0.000 0.036 0.000 0.040 0.328
#> SRR1405099 1 0.3905 0.5022 0.744 0.000 0.004 0.000 0.040 0.212
#> SRR1345585 3 0.3266 0.6033 0.000 0.000 0.728 0.000 0.000 0.272
#> SRR1093196 3 0.4633 0.6084 0.000 0.000 0.676 0.224 0.000 0.100
#> SRR1466006 2 0.0458 0.9236 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1351557 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1382687 1 0.6086 0.3809 0.488 0.000 0.000 0.164 0.020 0.328
#> SRR1375549 5 0.3950 0.6059 0.040 0.000 0.000 0.000 0.720 0.240
#> SRR1101765 5 0.4035 0.6321 0.032 0.000 0.000 0.016 0.744 0.208
#> SRR1334461 5 0.2830 0.7766 0.068 0.064 0.000 0.000 0.864 0.004
#> SRR1094073 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549 4 0.4832 0.4948 0.268 0.000 0.056 0.660 0.008 0.008
#> SRR1440332 1 0.5581 0.4214 0.628 0.000 0.188 0.160 0.004 0.020
#> SRR1454177 4 0.0000 0.8381 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1082447 1 0.6044 0.1497 0.416 0.000 0.000 0.000 0.308 0.276
#> SRR1420043 3 0.3420 0.6422 0.000 0.000 0.748 0.240 0.000 0.012
#> SRR1432500 1 0.3811 0.5377 0.732 0.000 0.004 0.244 0.016 0.004
#> SRR1378045 6 0.6163 0.1166 0.000 0.304 0.276 0.000 0.004 0.416
#> SRR1334200 5 0.2558 0.7486 0.000 0.156 0.000 0.000 0.840 0.004
#> SRR1069539 4 0.6415 0.5526 0.000 0.048 0.160 0.624 0.084 0.084
#> SRR1343031 3 0.2163 0.7390 0.008 0.000 0.892 0.096 0.000 0.004
#> SRR1319690 6 0.6178 0.5298 0.156 0.000 0.212 0.000 0.060 0.572
#> SRR1310604 2 0.1657 0.9002 0.000 0.928 0.000 0.000 0.056 0.016
#> SRR1327747 6 0.6786 0.3621 0.040 0.000 0.296 0.100 0.052 0.512
#> SRR1072456 2 0.0458 0.9222 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1367896 3 0.0146 0.7629 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1480107 1 0.1461 0.5980 0.940 0.000 0.000 0.000 0.044 0.016
#> SRR1377756 1 0.6124 0.4801 0.564 0.000 0.000 0.176 0.044 0.216
#> SRR1435272 4 0.0000 0.8381 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1089230 4 0.0405 0.8368 0.000 0.000 0.000 0.988 0.004 0.008
#> SRR1389522 3 0.0146 0.7626 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1080600 2 0.3695 0.7798 0.000 0.776 0.000 0.000 0.164 0.060
#> SRR1086935 4 0.0405 0.8368 0.000 0.000 0.000 0.988 0.004 0.008
#> SRR1344060 5 0.2520 0.7543 0.000 0.152 0.000 0.000 0.844 0.004
#> SRR1467922 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984 6 0.4492 0.5754 0.076 0.000 0.088 0.000 0.072 0.764
#> SRR1456991 1 0.1716 0.5952 0.932 0.000 0.004 0.000 0.036 0.028
#> SRR1085039 1 0.3181 0.5999 0.852 0.000 0.000 0.028 0.076 0.044
#> SRR1069303 1 0.6279 0.4384 0.532 0.000 0.000 0.260 0.048 0.160
#> SRR1091500 2 0.0260 0.9255 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1075198 2 0.3175 0.8414 0.000 0.832 0.000 0.000 0.088 0.080
#> SRR1086915 4 0.0146 0.8377 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1499503 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1094312 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1352437 1 0.6412 0.3047 0.472 0.000 0.000 0.332 0.048 0.148
#> SRR1436323 4 0.6315 -0.2098 0.000 0.000 0.288 0.368 0.008 0.336
#> SRR1073507 1 0.4688 0.3168 0.572 0.000 0.000 0.388 0.028 0.012
#> SRR1401972 1 0.6305 0.4360 0.528 0.000 0.000 0.260 0.048 0.164
#> SRR1415510 2 0.0291 0.9247 0.000 0.992 0.000 0.000 0.004 0.004
#> SRR1327279 1 0.4254 0.5459 0.772 0.000 0.104 0.104 0.008 0.012
#> SRR1086983 4 0.2402 0.7782 0.084 0.000 0.000 0.888 0.008 0.020
#> SRR1105174 1 0.4556 0.5010 0.704 0.000 0.004 0.000 0.100 0.192
#> SRR1468893 1 0.5594 0.4863 0.612 0.000 0.000 0.060 0.068 0.260
#> SRR1362555 2 0.4215 0.7271 0.000 0.724 0.000 0.000 0.196 0.080
#> SRR1074526 5 0.2554 0.7814 0.000 0.076 0.000 0.000 0.876 0.048
#> SRR1326225 2 0.0000 0.9266 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1401933 6 0.5847 0.2026 0.060 0.000 0.000 0.344 0.064 0.532
#> SRR1324062 1 0.5776 0.4432 0.544 0.000 0.000 0.284 0.012 0.160
#> SRR1102296 1 0.4203 0.5044 0.704 0.004 0.004 0.004 0.024 0.260
#> SRR1085087 1 0.5630 0.2791 0.516 0.000 0.000 0.380 0.032 0.072
#> SRR1079046 5 0.2358 0.7375 0.016 0.000 0.000 0.000 0.876 0.108
#> SRR1328339 6 0.5120 0.5430 0.116 0.004 0.116 0.000 0.052 0.712
#> SRR1079782 2 0.3859 0.8215 0.000 0.804 0.000 0.028 0.088 0.080
#> SRR1092257 2 0.4109 0.8102 0.000 0.792 0.000 0.060 0.060 0.088
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
MAD:pam
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["MAD", "pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.852 0.897 0.956 0.3910 0.618 0.618
#> 3 3 0.441 0.647 0.832 0.6391 0.684 0.511
#> 4 4 0.595 0.673 0.817 0.1506 0.812 0.535
#> 5 5 0.583 0.498 0.734 0.0651 0.948 0.810
#> 6 6 0.662 0.483 0.739 0.0364 0.917 0.676
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.9284 0.000 1.000
#> SRR1429287 2 0.0000 0.9284 0.000 1.000
#> SRR1359238 1 0.0938 0.9588 0.988 0.012
#> SRR1309597 1 0.0938 0.9588 0.988 0.012
#> SRR1441398 1 0.0000 0.9590 1.000 0.000
#> SRR1084055 2 0.0938 0.9220 0.012 0.988
#> SRR1417566 1 0.0938 0.9588 0.988 0.012
#> SRR1351857 1 0.0938 0.9588 0.988 0.012
#> SRR1487485 1 0.9635 0.3519 0.612 0.388
#> SRR1335875 1 0.0938 0.9588 0.988 0.012
#> SRR1073947 1 0.0000 0.9590 1.000 0.000
#> SRR1443483 1 0.0938 0.9588 0.988 0.012
#> SRR1346794 1 0.0938 0.9588 0.988 0.012
#> SRR1405245 1 0.0000 0.9590 1.000 0.000
#> SRR1409677 1 0.0938 0.9588 0.988 0.012
#> SRR1095549 1 0.0938 0.9588 0.988 0.012
#> SRR1323788 1 0.0938 0.9588 0.988 0.012
#> SRR1314054 2 0.0376 0.9270 0.004 0.996
#> SRR1077944 1 0.0000 0.9590 1.000 0.000
#> SRR1480587 2 0.0000 0.9284 0.000 1.000
#> SRR1311205 1 0.0000 0.9590 1.000 0.000
#> SRR1076369 1 0.0000 0.9590 1.000 0.000
#> SRR1453549 1 0.0938 0.9588 0.988 0.012
#> SRR1345782 1 0.0000 0.9590 1.000 0.000
#> SRR1447850 2 0.1414 0.9185 0.020 0.980
#> SRR1391553 2 0.6973 0.7693 0.188 0.812
#> SRR1444156 2 0.0000 0.9284 0.000 1.000
#> SRR1471731 1 0.0938 0.9588 0.988 0.012
#> SRR1120987 1 0.9358 0.4252 0.648 0.352
#> SRR1477363 1 0.0000 0.9590 1.000 0.000
#> SRR1391961 1 0.2778 0.9222 0.952 0.048
#> SRR1373879 1 0.0938 0.9588 0.988 0.012
#> SRR1318732 1 0.3114 0.9238 0.944 0.056
#> SRR1091404 1 0.0000 0.9590 1.000 0.000
#> SRR1402109 1 0.0938 0.9588 0.988 0.012
#> SRR1407336 1 0.0938 0.9588 0.988 0.012
#> SRR1097417 1 0.9970 0.0916 0.532 0.468
#> SRR1396227 1 0.0000 0.9590 1.000 0.000
#> SRR1400775 2 0.0000 0.9284 0.000 1.000
#> SRR1392861 1 0.0938 0.9588 0.988 0.012
#> SRR1472929 1 0.7602 0.7040 0.780 0.220
#> SRR1436740 1 0.0938 0.9588 0.988 0.012
#> SRR1477057 2 0.8386 0.6694 0.268 0.732
#> SRR1311980 1 0.0000 0.9590 1.000 0.000
#> SRR1069400 1 0.0938 0.9588 0.988 0.012
#> SRR1351016 1 0.0000 0.9590 1.000 0.000
#> SRR1096291 1 0.0938 0.9588 0.988 0.012
#> SRR1418145 1 0.0938 0.9588 0.988 0.012
#> SRR1488111 2 0.9608 0.4107 0.384 0.616
#> SRR1370495 1 0.0000 0.9590 1.000 0.000
#> SRR1352639 1 0.0376 0.9573 0.996 0.004
#> SRR1348911 1 0.0000 0.9590 1.000 0.000
#> SRR1467386 1 0.0938 0.9588 0.988 0.012
#> SRR1415956 1 0.0000 0.9590 1.000 0.000
#> SRR1500495 1 0.0000 0.9590 1.000 0.000
#> SRR1405099 1 0.0000 0.9590 1.000 0.000
#> SRR1345585 1 0.4298 0.8892 0.912 0.088
#> SRR1093196 1 0.0938 0.9588 0.988 0.012
#> SRR1466006 2 0.0000 0.9284 0.000 1.000
#> SRR1351557 2 0.0000 0.9284 0.000 1.000
#> SRR1382687 1 0.0938 0.9588 0.988 0.012
#> SRR1375549 1 0.0000 0.9590 1.000 0.000
#> SRR1101765 1 0.0938 0.9588 0.988 0.012
#> SRR1334461 1 0.2423 0.9292 0.960 0.040
#> SRR1094073 2 0.0000 0.9284 0.000 1.000
#> SRR1077549 1 0.0000 0.9590 1.000 0.000
#> SRR1440332 1 0.0000 0.9590 1.000 0.000
#> SRR1454177 1 0.0938 0.9588 0.988 0.012
#> SRR1082447 1 0.0000 0.9590 1.000 0.000
#> SRR1420043 1 0.0938 0.9588 0.988 0.012
#> SRR1432500 1 0.0000 0.9590 1.000 0.000
#> SRR1378045 2 0.1184 0.9208 0.016 0.984
#> SRR1334200 2 0.9998 0.0241 0.492 0.508
#> SRR1069539 1 0.1184 0.9567 0.984 0.016
#> SRR1343031 1 0.0000 0.9590 1.000 0.000
#> SRR1319690 1 0.0938 0.9588 0.988 0.012
#> SRR1310604 2 0.0000 0.9284 0.000 1.000
#> SRR1327747 1 0.0938 0.9588 0.988 0.012
#> SRR1072456 2 0.0938 0.9220 0.012 0.988
#> SRR1367896 1 0.0376 0.9574 0.996 0.004
#> SRR1480107 1 0.0000 0.9590 1.000 0.000
#> SRR1377756 1 0.0938 0.9588 0.988 0.012
#> SRR1435272 1 0.0938 0.9588 0.988 0.012
#> SRR1089230 1 0.0938 0.9588 0.988 0.012
#> SRR1389522 1 0.0000 0.9590 1.000 0.000
#> SRR1080600 2 0.0000 0.9284 0.000 1.000
#> SRR1086935 2 0.8555 0.6344 0.280 0.720
#> SRR1344060 1 0.9044 0.5100 0.680 0.320
#> SRR1467922 2 0.0000 0.9284 0.000 1.000
#> SRR1090984 1 0.0376 0.9591 0.996 0.004
#> SRR1456991 1 0.0000 0.9590 1.000 0.000
#> SRR1085039 1 0.0000 0.9590 1.000 0.000
#> SRR1069303 1 0.0000 0.9590 1.000 0.000
#> SRR1091500 2 0.0938 0.9220 0.012 0.988
#> SRR1075198 2 0.0000 0.9284 0.000 1.000
#> SRR1086915 1 0.0938 0.9588 0.988 0.012
#> SRR1499503 2 0.0000 0.9284 0.000 1.000
#> SRR1094312 2 0.0000 0.9284 0.000 1.000
#> SRR1352437 1 0.8763 0.5377 0.704 0.296
#> SRR1436323 1 0.0938 0.9588 0.988 0.012
#> SRR1073507 1 0.0000 0.9590 1.000 0.000
#> SRR1401972 1 0.0000 0.9590 1.000 0.000
#> SRR1415510 2 0.0376 0.9270 0.004 0.996
#> SRR1327279 1 0.0000 0.9590 1.000 0.000
#> SRR1086983 1 0.0938 0.9588 0.988 0.012
#> SRR1105174 1 0.0000 0.9590 1.000 0.000
#> SRR1468893 1 0.0000 0.9590 1.000 0.000
#> SRR1362555 1 0.8499 0.6053 0.724 0.276
#> SRR1074526 2 0.8016 0.7084 0.244 0.756
#> SRR1326225 2 0.0000 0.9284 0.000 1.000
#> SRR1401933 1 0.0672 0.9590 0.992 0.008
#> SRR1324062 1 0.0000 0.9590 1.000 0.000
#> SRR1102296 1 0.4562 0.8672 0.904 0.096
#> SRR1085087 1 0.0000 0.9590 1.000 0.000
#> SRR1079046 1 0.6712 0.7690 0.824 0.176
#> SRR1328339 1 0.0000 0.9590 1.000 0.000
#> SRR1079782 2 0.0000 0.9284 0.000 1.000
#> SRR1092257 2 0.2603 0.9010 0.044 0.956
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1429287 2 0.4178 0.7509 0.000 0.828 0.172
#> SRR1359238 1 0.6062 0.5077 0.616 0.000 0.384
#> SRR1309597 3 0.6225 0.4557 0.432 0.000 0.568
#> SRR1441398 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1084055 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1417566 3 0.6180 0.3933 0.416 0.000 0.584
#> SRR1351857 3 0.4555 0.5906 0.200 0.000 0.800
#> SRR1487485 3 0.4351 0.7486 0.168 0.004 0.828
#> SRR1335875 1 0.5327 0.5593 0.728 0.000 0.272
#> SRR1073947 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1443483 3 0.5988 0.5613 0.368 0.000 0.632
#> SRR1346794 3 0.6180 0.5005 0.416 0.000 0.584
#> SRR1405245 1 0.5254 0.5044 0.736 0.000 0.264
#> SRR1409677 3 0.4178 0.5739 0.172 0.000 0.828
#> SRR1095549 1 0.5810 0.1872 0.664 0.000 0.336
#> SRR1323788 1 0.6235 0.2012 0.564 0.000 0.436
#> SRR1314054 2 0.1289 0.8651 0.000 0.968 0.032
#> SRR1077944 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1480587 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1311205 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1076369 1 0.5968 0.0845 0.636 0.000 0.364
#> SRR1453549 1 0.6111 0.3217 0.604 0.000 0.396
#> SRR1345782 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1447850 2 0.3340 0.8016 0.000 0.880 0.120
#> SRR1391553 2 0.8163 0.4864 0.124 0.628 0.248
#> SRR1444156 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1471731 3 0.4235 0.7472 0.176 0.000 0.824
#> SRR1120987 1 0.6745 0.4475 0.560 0.012 0.428
#> SRR1477363 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1391961 1 0.1399 0.7547 0.968 0.028 0.004
#> SRR1373879 3 0.4178 0.7480 0.172 0.000 0.828
#> SRR1318732 3 0.4291 0.7477 0.180 0.000 0.820
#> SRR1091404 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1402109 3 0.4452 0.7425 0.192 0.000 0.808
#> SRR1407336 3 0.4178 0.7480 0.172 0.000 0.828
#> SRR1097417 3 0.5947 0.7302 0.172 0.052 0.776
#> SRR1396227 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1400775 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1392861 3 0.0000 0.7238 0.000 0.000 1.000
#> SRR1472929 1 0.6225 0.1528 0.568 0.432 0.000
#> SRR1436740 3 0.0000 0.7238 0.000 0.000 1.000
#> SRR1477057 2 0.7572 0.5923 0.184 0.688 0.128
#> SRR1311980 1 0.5058 0.5972 0.756 0.000 0.244
#> SRR1069400 3 0.4605 0.7398 0.204 0.000 0.796
#> SRR1351016 1 0.0424 0.7602 0.992 0.000 0.008
#> SRR1096291 3 0.4235 0.6216 0.176 0.000 0.824
#> SRR1418145 1 0.6235 0.3743 0.564 0.000 0.436
#> SRR1488111 3 0.9458 0.1773 0.184 0.368 0.448
#> SRR1370495 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1352639 1 0.4452 0.5916 0.808 0.000 0.192
#> SRR1348911 1 0.5517 0.5616 0.728 0.004 0.268
#> SRR1467386 1 0.3941 0.6893 0.844 0.000 0.156
#> SRR1415956 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1500495 1 0.0237 0.7609 0.996 0.000 0.004
#> SRR1405099 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1345585 3 0.4291 0.7465 0.180 0.000 0.820
#> SRR1093196 3 0.4178 0.7480 0.172 0.000 0.828
#> SRR1466006 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1351557 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1382687 1 0.5178 0.5830 0.744 0.000 0.256
#> SRR1375549 1 0.4178 0.6735 0.828 0.000 0.172
#> SRR1101765 3 0.6299 -0.1789 0.476 0.000 0.524
#> SRR1334461 1 0.1031 0.7555 0.976 0.024 0.000
#> SRR1094073 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1077549 1 0.6154 0.2191 0.592 0.000 0.408
#> SRR1440332 1 0.1643 0.7509 0.956 0.000 0.044
#> SRR1454177 3 0.0000 0.7238 0.000 0.000 1.000
#> SRR1082447 1 0.2878 0.7278 0.904 0.000 0.096
#> SRR1420043 3 0.0424 0.7269 0.008 0.000 0.992
#> SRR1432500 1 0.4750 0.6668 0.784 0.000 0.216
#> SRR1378045 2 0.2625 0.8343 0.000 0.916 0.084
#> SRR1334200 3 0.9591 0.3538 0.296 0.232 0.472
#> SRR1069539 3 0.0000 0.7238 0.000 0.000 1.000
#> SRR1343031 3 0.4931 0.7176 0.232 0.000 0.768
#> SRR1319690 1 0.6302 0.0082 0.520 0.000 0.480
#> SRR1310604 2 0.3482 0.7964 0.000 0.872 0.128
#> SRR1327747 3 0.3038 0.6853 0.104 0.000 0.896
#> SRR1072456 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1367896 3 0.4605 0.7366 0.204 0.000 0.796
#> SRR1480107 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1377756 1 0.6180 0.4181 0.584 0.000 0.416
#> SRR1435272 3 0.0000 0.7238 0.000 0.000 1.000
#> SRR1089230 3 0.0000 0.7238 0.000 0.000 1.000
#> SRR1389522 3 0.6267 0.4273 0.452 0.000 0.548
#> SRR1080600 2 0.6244 0.2475 0.000 0.560 0.440
#> SRR1086935 3 0.0237 0.7228 0.000 0.004 0.996
#> SRR1344060 2 0.6126 0.3653 0.400 0.600 0.000
#> SRR1467922 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1090984 1 0.4842 0.6156 0.776 0.000 0.224
#> SRR1456991 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1085039 1 0.4291 0.6719 0.820 0.000 0.180
#> SRR1069303 1 0.3192 0.7302 0.888 0.000 0.112
#> SRR1091500 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1075198 2 0.5678 0.5136 0.000 0.684 0.316
#> SRR1086915 3 0.5397 0.3399 0.280 0.000 0.720
#> SRR1499503 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1094312 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1352437 1 0.8374 0.5043 0.616 0.144 0.240
#> SRR1436323 3 0.4178 0.7480 0.172 0.000 0.828
#> SRR1073507 1 0.4235 0.6736 0.824 0.000 0.176
#> SRR1401972 1 0.1860 0.7499 0.948 0.000 0.052
#> SRR1415510 2 0.2165 0.8483 0.000 0.936 0.064
#> SRR1327279 1 0.1643 0.7509 0.956 0.000 0.044
#> SRR1086983 1 0.6252 0.4317 0.556 0.000 0.444
#> SRR1105174 1 0.4178 0.6735 0.828 0.000 0.172
#> SRR1468893 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1362555 2 0.5968 0.4422 0.364 0.636 0.000
#> SRR1074526 1 0.8896 0.4467 0.564 0.172 0.264
#> SRR1326225 2 0.0000 0.8777 0.000 1.000 0.000
#> SRR1401933 1 0.3412 0.7193 0.876 0.000 0.124
#> SRR1324062 1 0.4796 0.6261 0.780 0.000 0.220
#> SRR1102296 1 0.3141 0.7399 0.912 0.068 0.020
#> SRR1085087 1 0.4346 0.6736 0.816 0.000 0.184
#> SRR1079046 1 0.7165 0.6033 0.716 0.112 0.172
#> SRR1328339 1 0.0000 0.7612 1.000 0.000 0.000
#> SRR1079782 2 0.0747 0.8736 0.000 0.984 0.016
#> SRR1092257 2 0.2496 0.8425 0.004 0.928 0.068
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1429287 4 0.4994 0.1022 0.000 0.480 0.000 0.520
#> SRR1359238 4 0.5280 0.7067 0.124 0.000 0.124 0.752
#> SRR1309597 3 0.6134 0.5575 0.236 0.000 0.660 0.104
#> SRR1441398 1 0.2345 0.8008 0.900 0.000 0.000 0.100
#> SRR1084055 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1417566 3 0.4998 -0.1529 0.488 0.000 0.512 0.000
#> SRR1351857 4 0.2345 0.7410 0.000 0.000 0.100 0.900
#> SRR1487485 3 0.0000 0.7972 0.000 0.000 1.000 0.000
#> SRR1335875 1 0.3610 0.7476 0.800 0.000 0.200 0.000
#> SRR1073947 1 0.0000 0.8263 1.000 0.000 0.000 0.000
#> SRR1443483 3 0.2928 0.7389 0.052 0.000 0.896 0.052
#> SRR1346794 4 0.7327 0.2330 0.176 0.000 0.320 0.504
#> SRR1405245 1 0.5786 0.5511 0.640 0.000 0.308 0.052
#> SRR1409677 4 0.2760 0.7379 0.000 0.000 0.128 0.872
#> SRR1095549 1 0.4781 0.3662 0.660 0.000 0.336 0.004
#> SRR1323788 1 0.4998 0.2463 0.512 0.000 0.488 0.000
#> SRR1314054 2 0.1389 0.8223 0.000 0.952 0.048 0.000
#> SRR1077944 1 0.1389 0.8213 0.952 0.000 0.000 0.048
#> SRR1480587 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1311205 1 0.0336 0.8272 0.992 0.000 0.000 0.008
#> SRR1076369 3 0.7145 0.4527 0.252 0.000 0.556 0.192
#> SRR1453549 1 0.4406 0.6525 0.700 0.000 0.300 0.000
#> SRR1345782 1 0.0000 0.8263 1.000 0.000 0.000 0.000
#> SRR1447850 2 0.1940 0.8041 0.000 0.924 0.076 0.000
#> SRR1391553 2 0.6650 0.5009 0.176 0.624 0.200 0.000
#> SRR1444156 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1471731 3 0.0188 0.7967 0.004 0.000 0.996 0.000
#> SRR1120987 4 0.2345 0.7256 0.100 0.000 0.000 0.900
#> SRR1477363 1 0.2345 0.8008 0.900 0.000 0.000 0.100
#> SRR1391961 1 0.0188 0.8267 0.996 0.004 0.000 0.000
#> SRR1373879 3 0.0000 0.7972 0.000 0.000 1.000 0.000
#> SRR1318732 3 0.3307 0.7466 0.028 0.000 0.868 0.104
#> SRR1091404 1 0.1389 0.8213 0.952 0.000 0.000 0.048
#> SRR1402109 3 0.0000 0.7972 0.000 0.000 1.000 0.000
#> SRR1407336 3 0.1557 0.7640 0.000 0.000 0.944 0.056
#> SRR1097417 3 0.1792 0.7589 0.000 0.068 0.932 0.000
#> SRR1396227 1 0.0000 0.8263 1.000 0.000 0.000 0.000
#> SRR1400775 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1392861 3 0.0000 0.7972 0.000 0.000 1.000 0.000
#> SRR1472929 1 0.6476 0.4840 0.616 0.272 0.000 0.112
#> SRR1436740 4 0.3311 0.7263 0.000 0.000 0.172 0.828
#> SRR1477057 2 0.6808 0.3678 0.320 0.560 0.120 0.000
#> SRR1311980 1 0.3528 0.7551 0.808 0.000 0.192 0.000
#> SRR1069400 3 0.0336 0.7953 0.000 0.000 0.992 0.008
#> SRR1351016 1 0.0592 0.8275 0.984 0.000 0.016 0.000
#> SRR1096291 4 0.6351 0.3884 0.080 0.000 0.332 0.588
#> SRR1418145 4 0.2610 0.7429 0.012 0.000 0.088 0.900
#> SRR1488111 2 0.8383 -0.0656 0.336 0.340 0.308 0.016
#> SRR1370495 1 0.1637 0.8225 0.940 0.000 0.000 0.060
#> SRR1352639 3 0.8037 0.1021 0.312 0.004 0.384 0.300
#> SRR1348911 1 0.3610 0.7476 0.800 0.000 0.200 0.000
#> SRR1467386 1 0.3052 0.7906 0.860 0.000 0.136 0.004
#> SRR1415956 1 0.2345 0.8008 0.900 0.000 0.000 0.100
#> SRR1500495 1 0.2530 0.8003 0.896 0.000 0.004 0.100
#> SRR1405099 1 0.2345 0.8008 0.900 0.000 0.000 0.100
#> SRR1345585 3 0.1489 0.7791 0.004 0.000 0.952 0.044
#> SRR1093196 3 0.0188 0.7962 0.000 0.000 0.996 0.004
#> SRR1466006 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1351557 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1382687 1 0.3402 0.7753 0.832 0.000 0.164 0.004
#> SRR1375549 4 0.2704 0.7051 0.124 0.000 0.000 0.876
#> SRR1101765 4 0.2345 0.7080 0.100 0.000 0.000 0.900
#> SRR1334461 1 0.2081 0.8088 0.916 0.000 0.000 0.084
#> SRR1094073 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1077549 1 0.5105 0.3082 0.564 0.000 0.432 0.004
#> SRR1440332 1 0.2844 0.8109 0.900 0.000 0.048 0.052
#> SRR1454177 4 0.4992 0.3161 0.000 0.000 0.476 0.524
#> SRR1082447 1 0.1716 0.8211 0.936 0.000 0.000 0.064
#> SRR1420043 3 0.0000 0.7972 0.000 0.000 1.000 0.000
#> SRR1432500 4 0.4072 0.7199 0.120 0.000 0.052 0.828
#> SRR1378045 2 0.1474 0.8209 0.000 0.948 0.052 0.000
#> SRR1334200 1 0.9969 -0.1068 0.288 0.244 0.224 0.244
#> SRR1069539 4 0.4972 0.2635 0.000 0.000 0.456 0.544
#> SRR1343031 3 0.0592 0.7933 0.016 0.000 0.984 0.000
#> SRR1319690 3 0.5990 0.3306 0.336 0.000 0.608 0.056
#> SRR1310604 2 0.4538 0.6236 0.000 0.760 0.216 0.024
#> SRR1327747 4 0.4790 0.3180 0.000 0.000 0.380 0.620
#> SRR1072456 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1367896 3 0.0000 0.7972 0.000 0.000 1.000 0.000
#> SRR1480107 1 0.1389 0.8213 0.952 0.000 0.000 0.048
#> SRR1377756 4 0.2799 0.7437 0.008 0.000 0.108 0.884
#> SRR1435272 4 0.3311 0.7263 0.000 0.000 0.172 0.828
#> SRR1089230 4 0.2345 0.7410 0.000 0.000 0.100 0.900
#> SRR1389522 3 0.5417 0.5804 0.240 0.000 0.704 0.056
#> SRR1080600 3 0.6443 0.1954 0.000 0.400 0.528 0.072
#> SRR1086935 4 0.4382 0.6096 0.000 0.000 0.296 0.704
#> SRR1344060 2 0.6538 0.4773 0.292 0.600 0.000 0.108
#> SRR1467922 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1090984 1 0.3311 0.7711 0.828 0.000 0.172 0.000
#> SRR1456991 1 0.1302 0.8222 0.956 0.000 0.000 0.044
#> SRR1085039 1 0.2704 0.7947 0.876 0.000 0.000 0.124
#> SRR1069303 1 0.3032 0.7823 0.868 0.000 0.008 0.124
#> SRR1091500 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1075198 2 0.6180 0.4231 0.000 0.624 0.296 0.080
#> SRR1086915 4 0.2345 0.7410 0.000 0.000 0.100 0.900
#> SRR1499503 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1094312 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1352437 1 0.3757 0.7768 0.828 0.020 0.152 0.000
#> SRR1436323 3 0.0188 0.7960 0.000 0.000 0.996 0.004
#> SRR1073507 4 0.4999 0.0982 0.492 0.000 0.000 0.508
#> SRR1401972 1 0.2216 0.8102 0.908 0.000 0.092 0.000
#> SRR1415510 2 0.0188 0.8447 0.000 0.996 0.004 0.000
#> SRR1327279 1 0.2844 0.8109 0.900 0.000 0.048 0.052
#> SRR1086983 4 0.3778 0.7260 0.100 0.000 0.052 0.848
#> SRR1105174 4 0.2760 0.7033 0.128 0.000 0.000 0.872
#> SRR1468893 4 0.4193 0.5507 0.268 0.000 0.000 0.732
#> SRR1362555 2 0.5875 0.5941 0.092 0.684 0.000 0.224
#> SRR1074526 1 0.7312 0.5958 0.660 0.112 0.124 0.104
#> SRR1326225 2 0.0000 0.8464 0.000 1.000 0.000 0.000
#> SRR1401933 1 0.3160 0.7975 0.872 0.000 0.020 0.108
#> SRR1324062 1 0.3172 0.7798 0.840 0.000 0.160 0.000
#> SRR1102296 1 0.2530 0.8065 0.896 0.004 0.100 0.000
#> SRR1085087 1 0.3688 0.7217 0.792 0.000 0.000 0.208
#> SRR1079046 4 0.2704 0.7051 0.124 0.000 0.000 0.876
#> SRR1328339 1 0.1389 0.8213 0.952 0.000 0.000 0.048
#> SRR1079782 2 0.4304 0.5959 0.000 0.716 0.000 0.284
#> SRR1092257 2 0.4454 0.5553 0.000 0.692 0.000 0.308
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.2953 0.7155 0.000 0.844 0.000 0.012 0.144
#> SRR1429287 4 0.6241 0.1219 0.000 0.324 0.000 0.512 0.164
#> SRR1359238 4 0.6637 0.5481 0.116 0.000 0.124 0.628 0.132
#> SRR1309597 3 0.5375 0.0755 0.076 0.000 0.604 0.000 0.320
#> SRR1441398 1 0.4045 0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1084055 2 0.1043 0.7584 0.000 0.960 0.000 0.000 0.040
#> SRR1417566 1 0.6786 -0.1584 0.384 0.000 0.292 0.000 0.324
#> SRR1351857 4 0.2806 0.6904 0.004 0.000 0.152 0.844 0.000
#> SRR1487485 3 0.3895 0.3726 0.000 0.000 0.680 0.000 0.320
#> SRR1335875 1 0.5878 0.2728 0.556 0.000 0.120 0.000 0.324
#> SRR1073947 1 0.0000 0.7315 1.000 0.000 0.000 0.000 0.000
#> SRR1443483 3 0.2166 0.4533 0.072 0.000 0.912 0.004 0.012
#> SRR1346794 5 0.6340 0.2475 0.196 0.000 0.128 0.048 0.628
#> SRR1405245 1 0.6507 0.0685 0.472 0.000 0.212 0.000 0.316
#> SRR1409677 4 0.2891 0.6851 0.000 0.000 0.176 0.824 0.000
#> SRR1095549 1 0.5517 0.1224 0.520 0.000 0.420 0.004 0.056
#> SRR1323788 5 0.6489 0.0969 0.192 0.000 0.360 0.000 0.448
#> SRR1314054 2 0.0880 0.7513 0.000 0.968 0.032 0.000 0.000
#> SRR1077944 1 0.1608 0.7216 0.928 0.000 0.000 0.000 0.072
#> SRR1480587 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1311205 1 0.0324 0.7325 0.992 0.000 0.000 0.004 0.004
#> SRR1076369 3 0.7066 0.0408 0.200 0.000 0.548 0.060 0.192
#> SRR1453549 1 0.6748 -0.1012 0.404 0.000 0.276 0.000 0.320
#> SRR1345782 1 0.0162 0.7317 0.996 0.000 0.000 0.000 0.004
#> SRR1447850 2 0.1648 0.7455 0.000 0.940 0.040 0.020 0.000
#> SRR1391553 2 0.7824 -0.1585 0.136 0.420 0.124 0.000 0.320
#> SRR1444156 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1471731 3 0.4251 0.3274 0.004 0.000 0.624 0.000 0.372
#> SRR1120987 4 0.2719 0.6523 0.144 0.000 0.004 0.852 0.000
#> SRR1477363 1 0.4045 0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1391961 1 0.2899 0.7127 0.872 0.000 0.008 0.020 0.100
#> SRR1373879 3 0.3305 0.4439 0.000 0.000 0.776 0.000 0.224
#> SRR1318732 5 0.4183 0.1786 0.008 0.000 0.324 0.000 0.668
#> SRR1091404 1 0.1544 0.7215 0.932 0.000 0.000 0.000 0.068
#> SRR1402109 3 0.0703 0.5226 0.000 0.000 0.976 0.000 0.024
#> SRR1407336 3 0.0290 0.5216 0.000 0.000 0.992 0.008 0.000
#> SRR1097417 3 0.4252 0.3014 0.000 0.072 0.780 0.004 0.144
#> SRR1396227 1 0.0162 0.7319 0.996 0.000 0.000 0.000 0.004
#> SRR1400775 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1392861 3 0.4165 0.3663 0.000 0.000 0.672 0.008 0.320
#> SRR1472929 5 0.8696 0.1503 0.136 0.056 0.232 0.132 0.444
#> SRR1436740 4 0.2891 0.6851 0.000 0.000 0.176 0.824 0.000
#> SRR1477057 2 0.5587 0.3945 0.256 0.644 0.088 0.012 0.000
#> SRR1311980 1 0.2723 0.7011 0.864 0.000 0.124 0.000 0.012
#> SRR1069400 3 0.0162 0.5233 0.004 0.000 0.996 0.000 0.000
#> SRR1351016 1 0.0162 0.7319 0.996 0.000 0.004 0.000 0.000
#> SRR1096291 4 0.4484 0.5292 0.044 0.000 0.192 0.752 0.012
#> SRR1418145 4 0.0566 0.6481 0.000 0.000 0.012 0.984 0.004
#> SRR1488111 5 0.8762 0.2083 0.084 0.108 0.176 0.168 0.464
#> SRR1370495 1 0.4010 0.6373 0.792 0.000 0.000 0.072 0.136
#> SRR1352639 4 0.8083 -0.1582 0.292 0.000 0.116 0.388 0.204
#> SRR1348911 1 0.4479 0.6282 0.744 0.000 0.184 0.000 0.072
#> SRR1467386 1 0.4352 0.6330 0.772 0.000 0.076 0.004 0.148
#> SRR1415956 1 0.4045 0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1500495 1 0.4045 0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1405099 1 0.4045 0.4718 0.644 0.000 0.000 0.000 0.356
#> SRR1345585 3 0.4517 0.2187 0.008 0.000 0.556 0.000 0.436
#> SRR1093196 3 0.3521 0.4413 0.000 0.000 0.764 0.004 0.232
#> SRR1466006 2 0.4835 0.6625 0.000 0.724 0.000 0.120 0.156
#> SRR1351557 2 0.1106 0.7589 0.000 0.964 0.000 0.024 0.012
#> SRR1382687 1 0.5195 0.5116 0.676 0.000 0.108 0.000 0.216
#> SRR1375549 4 0.4101 0.6298 0.048 0.000 0.000 0.768 0.184
#> SRR1101765 4 0.3238 0.6492 0.028 0.000 0.000 0.836 0.136
#> SRR1334461 1 0.4603 0.5507 0.668 0.000 0.000 0.032 0.300
#> SRR1094073 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1077549 1 0.3521 0.6500 0.764 0.000 0.232 0.004 0.000
#> SRR1440332 1 0.2286 0.7155 0.888 0.000 0.108 0.004 0.000
#> SRR1454177 4 0.4310 0.4610 0.000 0.000 0.392 0.604 0.004
#> SRR1082447 1 0.2989 0.7176 0.868 0.000 0.000 0.060 0.072
#> SRR1420043 3 0.3895 0.3726 0.000 0.000 0.680 0.000 0.320
#> SRR1432500 4 0.3093 0.6414 0.168 0.000 0.008 0.824 0.000
#> SRR1378045 2 0.1725 0.7340 0.000 0.936 0.020 0.000 0.044
#> SRR1334200 5 0.8425 0.1283 0.032 0.116 0.224 0.172 0.456
#> SRR1069539 4 0.5047 0.1284 0.000 0.000 0.472 0.496 0.032
#> SRR1343031 3 0.0703 0.5119 0.024 0.000 0.976 0.000 0.000
#> SRR1319690 5 0.4270 0.1596 0.004 0.000 0.336 0.004 0.656
#> SRR1310604 2 0.8308 0.1869 0.000 0.368 0.248 0.148 0.236
#> SRR1327747 5 0.6728 0.0652 0.004 0.000 0.268 0.264 0.464
#> SRR1072456 2 0.2953 0.7155 0.000 0.844 0.000 0.012 0.144
#> SRR1367896 3 0.0000 0.5233 0.000 0.000 1.000 0.000 0.000
#> SRR1480107 1 0.1544 0.7215 0.932 0.000 0.000 0.000 0.068
#> SRR1377756 4 0.3047 0.6896 0.004 0.000 0.160 0.832 0.004
#> SRR1435272 4 0.2891 0.6851 0.000 0.000 0.176 0.824 0.000
#> SRR1089230 4 0.2806 0.6899 0.000 0.000 0.152 0.844 0.004
#> SRR1389522 3 0.5027 0.2283 0.112 0.000 0.700 0.000 0.188
#> SRR1080600 3 0.8055 -0.0686 0.000 0.156 0.436 0.176 0.232
#> SRR1086935 4 0.5935 0.3561 0.000 0.000 0.268 0.580 0.152
#> SRR1344060 2 0.8076 0.3575 0.188 0.456 0.008 0.116 0.232
#> SRR1467922 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1090984 1 0.4312 0.6361 0.772 0.000 0.104 0.000 0.124
#> SRR1456991 1 0.1478 0.7228 0.936 0.000 0.000 0.000 0.064
#> SRR1085039 1 0.5003 0.6867 0.764 0.000 0.080 0.084 0.072
#> SRR1069303 1 0.2629 0.6897 0.860 0.000 0.000 0.136 0.004
#> SRR1091500 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1075198 2 0.8219 0.2763 0.000 0.408 0.188 0.176 0.228
#> SRR1086915 4 0.2690 0.6894 0.000 0.000 0.156 0.844 0.000
#> SRR1499503 2 0.2953 0.7155 0.000 0.844 0.000 0.012 0.144
#> SRR1094312 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1352437 1 0.3971 0.6594 0.800 0.000 0.100 0.000 0.100
#> SRR1436323 3 0.4251 0.3286 0.000 0.000 0.624 0.004 0.372
#> SRR1073507 4 0.4307 0.0322 0.496 0.000 0.000 0.504 0.000
#> SRR1401972 1 0.1041 0.7300 0.964 0.000 0.032 0.000 0.004
#> SRR1415510 2 0.4658 0.2385 0.000 0.504 0.000 0.012 0.484
#> SRR1327279 1 0.2424 0.7051 0.868 0.000 0.132 0.000 0.000
#> SRR1086983 4 0.2964 0.6477 0.152 0.000 0.004 0.840 0.004
#> SRR1105174 4 0.4977 0.4661 0.040 0.000 0.000 0.604 0.356
#> SRR1468893 4 0.5862 0.4363 0.220 0.000 0.000 0.604 0.176
#> SRR1362555 2 0.8302 0.2944 0.164 0.384 0.000 0.224 0.228
#> SRR1074526 1 0.7764 0.4018 0.536 0.044 0.208 0.056 0.156
#> SRR1326225 2 0.0000 0.7643 0.000 1.000 0.000 0.000 0.000
#> SRR1401933 1 0.4564 0.6495 0.772 0.000 0.040 0.036 0.152
#> SRR1324062 1 0.2439 0.7086 0.876 0.000 0.120 0.000 0.004
#> SRR1102296 1 0.1915 0.7266 0.928 0.040 0.032 0.000 0.000
#> SRR1085087 1 0.3336 0.6134 0.772 0.000 0.000 0.228 0.000
#> SRR1079046 4 0.3687 0.6329 0.028 0.000 0.000 0.792 0.180
#> SRR1328339 1 0.1544 0.7215 0.932 0.000 0.000 0.000 0.068
#> SRR1079782 2 0.6235 0.4542 0.000 0.500 0.000 0.344 0.156
#> SRR1092257 2 0.4637 0.5589 0.000 0.672 0.000 0.292 0.036
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.3190 0.69771 0.000 0.772 0.000 0.000 0.008 0.220
#> SRR1429287 4 0.6238 0.12344 0.000 0.272 0.000 0.452 0.012 0.264
#> SRR1359238 4 0.4437 0.67593 0.068 0.000 0.044 0.768 0.004 0.116
#> SRR1309597 3 0.7625 0.02974 0.076 0.000 0.420 0.048 0.284 0.172
#> SRR1441398 1 0.6492 0.17907 0.472 0.000 0.000 0.048 0.312 0.168
#> SRR1084055 2 0.0993 0.83957 0.000 0.964 0.000 0.000 0.012 0.024
#> SRR1417566 6 0.6159 -0.08455 0.252 0.000 0.348 0.004 0.000 0.396
#> SRR1351857 4 0.1075 0.79829 0.000 0.000 0.048 0.952 0.000 0.000
#> SRR1487485 3 0.3828 0.33832 0.000 0.000 0.560 0.000 0.000 0.440
#> SRR1335875 1 0.4751 0.11685 0.500 0.000 0.048 0.000 0.000 0.452
#> SRR1073947 1 0.0000 0.66602 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1443483 3 0.1168 0.52507 0.028 0.000 0.956 0.000 0.016 0.000
#> SRR1346794 6 0.6948 0.06914 0.268 0.000 0.000 0.056 0.308 0.368
#> SRR1405245 1 0.7153 0.11231 0.448 0.000 0.032 0.044 0.284 0.192
#> SRR1409677 4 0.2454 0.74773 0.000 0.000 0.160 0.840 0.000 0.000
#> SRR1095549 3 0.4712 0.06959 0.452 0.000 0.512 0.000 0.024 0.012
#> SRR1323788 6 0.5994 0.09857 0.156 0.000 0.220 0.008 0.028 0.588
#> SRR1314054 2 0.0363 0.84378 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1077944 1 0.1075 0.66118 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR1480587 2 0.0458 0.84621 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR1311205 1 0.0146 0.66637 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1076369 3 0.5079 0.38117 0.088 0.000 0.720 0.052 0.132 0.008
#> SRR1453549 6 0.5932 0.09745 0.336 0.000 0.224 0.000 0.000 0.440
#> SRR1345782 1 0.0146 0.66625 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1447850 2 0.1377 0.83115 0.000 0.952 0.024 0.004 0.004 0.016
#> SRR1391553 6 0.6415 0.20317 0.132 0.372 0.052 0.000 0.000 0.444
#> SRR1444156 2 0.0146 0.84795 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1471731 3 0.4218 0.36444 0.004 0.000 0.584 0.012 0.000 0.400
#> SRR1120987 4 0.1267 0.77787 0.060 0.000 0.000 0.940 0.000 0.000
#> SRR1477363 1 0.6404 0.18310 0.472 0.000 0.000 0.040 0.320 0.168
#> SRR1391961 5 0.3867 0.49249 0.328 0.000 0.000 0.000 0.660 0.012
#> SRR1373879 3 0.3515 0.42364 0.000 0.000 0.676 0.000 0.000 0.324
#> SRR1318732 6 0.5504 0.17884 0.004 0.000 0.048 0.056 0.280 0.612
#> SRR1091404 1 0.1075 0.66118 0.952 0.000 0.000 0.000 0.048 0.000
#> SRR1402109 3 0.1141 0.53947 0.000 0.000 0.948 0.000 0.000 0.052
#> SRR1407336 3 0.0000 0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097417 3 0.3992 0.36921 0.004 0.064 0.756 0.000 0.000 0.176
#> SRR1396227 1 0.0363 0.66596 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1400775 2 0.0000 0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1392861 3 0.3817 0.34549 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1472929 5 0.7571 0.47521 0.120 0.032 0.132 0.000 0.420 0.296
#> SRR1436740 4 0.1610 0.79127 0.000 0.000 0.084 0.916 0.000 0.000
#> SRR1477057 2 0.4283 0.37232 0.288 0.672 0.004 0.000 0.000 0.036
#> SRR1311980 1 0.2954 0.62020 0.844 0.000 0.048 0.000 0.000 0.108
#> SRR1069400 3 0.0000 0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1351016 1 0.0000 0.66602 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1096291 4 0.4868 0.39373 0.016 0.000 0.332 0.608 0.000 0.044
#> SRR1418145 4 0.1204 0.77991 0.000 0.000 0.000 0.944 0.000 0.056
#> SRR1488111 6 0.4390 0.18082 0.088 0.048 0.084 0.004 0.000 0.776
#> SRR1370495 1 0.4062 0.43133 0.744 0.000 0.000 0.060 0.004 0.192
#> SRR1352639 6 0.6767 -0.15739 0.368 0.000 0.044 0.172 0.008 0.408
#> SRR1348911 1 0.4746 0.48231 0.668 0.000 0.116 0.000 0.000 0.216
#> SRR1467386 1 0.3309 0.50886 0.720 0.000 0.000 0.000 0.000 0.280
#> SRR1415956 1 0.6404 0.18310 0.472 0.000 0.000 0.040 0.320 0.168
#> SRR1500495 1 0.6515 0.17274 0.468 0.000 0.000 0.048 0.312 0.172
#> SRR1405099 1 0.6404 0.18310 0.472 0.000 0.000 0.040 0.320 0.168
#> SRR1345585 3 0.5947 0.27981 0.004 0.000 0.480 0.040 0.076 0.400
#> SRR1093196 3 0.3288 0.45150 0.000 0.000 0.724 0.000 0.000 0.276
#> SRR1466006 2 0.3746 0.66522 0.000 0.712 0.000 0.004 0.012 0.272
#> SRR1351557 2 0.0865 0.83682 0.000 0.964 0.000 0.000 0.000 0.036
#> SRR1382687 1 0.4466 0.35443 0.612 0.000 0.032 0.004 0.000 0.352
#> SRR1375549 4 0.1152 0.77638 0.000 0.000 0.000 0.952 0.044 0.004
#> SRR1101765 4 0.1285 0.77827 0.000 0.000 0.004 0.944 0.052 0.000
#> SRR1334461 5 0.4012 0.59564 0.076 0.000 0.000 0.000 0.748 0.176
#> SRR1094073 2 0.0000 0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549 1 0.4475 0.49939 0.692 0.000 0.220 0.000 0.000 0.088
#> SRR1440332 1 0.1765 0.63930 0.904 0.000 0.096 0.000 0.000 0.000
#> SRR1454177 4 0.3774 0.55235 0.000 0.000 0.328 0.664 0.000 0.008
#> SRR1082447 1 0.3185 0.61830 0.832 0.000 0.000 0.116 0.048 0.004
#> SRR1420043 3 0.3828 0.33832 0.000 0.000 0.560 0.000 0.000 0.440
#> SRR1432500 4 0.1349 0.78104 0.056 0.000 0.004 0.940 0.000 0.000
#> SRR1378045 2 0.2095 0.76944 0.000 0.904 0.016 0.000 0.004 0.076
#> SRR1334200 5 0.6823 0.39981 0.000 0.064 0.156 0.004 0.388 0.388
#> SRR1069539 3 0.4886 0.33271 0.000 0.000 0.652 0.244 0.004 0.100
#> SRR1343031 3 0.0000 0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1319690 6 0.5467 0.17541 0.004 0.000 0.052 0.048 0.284 0.612
#> SRR1310604 6 0.6539 -0.15485 0.000 0.292 0.336 0.000 0.020 0.352
#> SRR1327747 6 0.6322 -0.12342 0.000 0.000 0.260 0.316 0.012 0.412
#> SRR1072456 2 0.3190 0.69771 0.000 0.772 0.000 0.000 0.008 0.220
#> SRR1367896 3 0.0000 0.54502 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1480107 1 0.0865 0.66139 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1377756 4 0.1204 0.79733 0.000 0.000 0.056 0.944 0.000 0.000
#> SRR1435272 4 0.1267 0.79685 0.000 0.000 0.060 0.940 0.000 0.000
#> SRR1089230 4 0.1075 0.79816 0.000 0.000 0.048 0.952 0.000 0.000
#> SRR1389522 3 0.6355 0.23465 0.044 0.000 0.592 0.040 0.228 0.096
#> SRR1080600 3 0.5608 -0.05202 0.000 0.100 0.500 0.004 0.008 0.388
#> SRR1086935 4 0.4633 0.50988 0.000 0.000 0.100 0.676 0.000 0.224
#> SRR1344060 5 0.4734 0.54536 0.000 0.120 0.000 0.000 0.672 0.208
#> SRR1467922 2 0.0146 0.84795 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1090984 1 0.4115 0.49140 0.696 0.000 0.032 0.004 0.000 0.268
#> SRR1456991 1 0.0865 0.66139 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1085039 1 0.5119 0.51838 0.692 0.000 0.088 0.172 0.048 0.000
#> SRR1069303 1 0.2912 0.58337 0.816 0.000 0.000 0.172 0.012 0.000
#> SRR1091500 2 0.0000 0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1075198 6 0.6334 -0.20142 0.000 0.368 0.232 0.004 0.008 0.388
#> SRR1086915 4 0.1075 0.79829 0.000 0.000 0.048 0.952 0.000 0.000
#> SRR1499503 2 0.3230 0.70259 0.000 0.776 0.000 0.000 0.012 0.212
#> SRR1094312 2 0.0000 0.84833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1352437 1 0.3876 0.53044 0.728 0.000 0.016 0.000 0.012 0.244
#> SRR1436323 3 0.4517 0.31461 0.000 0.000 0.524 0.032 0.000 0.444
#> SRR1073507 1 0.3868 0.05061 0.508 0.000 0.000 0.492 0.000 0.000
#> SRR1401972 1 0.0508 0.66596 0.984 0.000 0.004 0.000 0.012 0.000
#> SRR1415510 6 0.4218 0.00609 0.000 0.400 0.000 0.004 0.012 0.584
#> SRR1327279 1 0.2003 0.62763 0.884 0.000 0.116 0.000 0.000 0.000
#> SRR1086983 4 0.1204 0.77959 0.056 0.000 0.000 0.944 0.000 0.000
#> SRR1105174 4 0.6119 0.24325 0.020 0.000 0.000 0.480 0.332 0.168
#> SRR1468893 4 0.3337 0.49058 0.260 0.000 0.000 0.736 0.004 0.000
#> SRR1362555 6 0.7584 -0.23977 0.244 0.244 0.000 0.012 0.116 0.384
#> SRR1074526 5 0.4211 0.51533 0.276 0.004 0.020 0.004 0.692 0.004
#> SRR1326225 2 0.0146 0.84795 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1401933 1 0.5166 0.48794 0.672 0.000 0.064 0.052 0.000 0.212
#> SRR1324062 1 0.2258 0.64771 0.896 0.000 0.044 0.000 0.000 0.060
#> SRR1102296 1 0.1471 0.64671 0.932 0.064 0.004 0.000 0.000 0.000
#> SRR1085087 1 0.3690 0.45950 0.700 0.000 0.000 0.288 0.012 0.000
#> SRR1079046 4 0.2915 0.67835 0.000 0.000 0.000 0.808 0.184 0.008
#> SRR1328339 1 0.1010 0.66129 0.960 0.000 0.000 0.000 0.036 0.004
#> SRR1079782 2 0.5686 0.31203 0.000 0.456 0.000 0.160 0.000 0.384
#> SRR1092257 2 0.4734 0.56377 0.000 0.680 0.000 0.152 0.000 0.168
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
MAD:mclust**
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["MAD", "mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.978 0.990 0.4017 0.594 0.594
#> 3 3 0.576 0.809 0.874 0.6055 0.740 0.562
#> 4 4 0.484 0.519 0.711 0.0824 0.864 0.642
#> 5 5 0.523 0.420 0.649 0.0657 0.826 0.499
#> 6 6 0.565 0.417 0.660 0.0483 0.832 0.451
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.000 0.970 0.000 1.000
#> SRR1429287 2 0.000 0.970 0.000 1.000
#> SRR1359238 1 0.000 0.997 1.000 0.000
#> SRR1309597 1 0.000 0.997 1.000 0.000
#> SRR1441398 1 0.000 0.997 1.000 0.000
#> SRR1084055 2 0.000 0.970 0.000 1.000
#> SRR1417566 1 0.000 0.997 1.000 0.000
#> SRR1351857 1 0.000 0.997 1.000 0.000
#> SRR1487485 1 0.000 0.997 1.000 0.000
#> SRR1335875 1 0.000 0.997 1.000 0.000
#> SRR1073947 1 0.000 0.997 1.000 0.000
#> SRR1443483 1 0.000 0.997 1.000 0.000
#> SRR1346794 1 0.000 0.997 1.000 0.000
#> SRR1405245 1 0.000 0.997 1.000 0.000
#> SRR1409677 1 0.000 0.997 1.000 0.000
#> SRR1095549 1 0.000 0.997 1.000 0.000
#> SRR1323788 1 0.000 0.997 1.000 0.000
#> SRR1314054 2 0.000 0.970 0.000 1.000
#> SRR1077944 1 0.000 0.997 1.000 0.000
#> SRR1480587 2 0.000 0.970 0.000 1.000
#> SRR1311205 1 0.000 0.997 1.000 0.000
#> SRR1076369 1 0.000 0.997 1.000 0.000
#> SRR1453549 1 0.000 0.997 1.000 0.000
#> SRR1345782 1 0.000 0.997 1.000 0.000
#> SRR1447850 2 0.000 0.970 0.000 1.000
#> SRR1391553 1 0.000 0.997 1.000 0.000
#> SRR1444156 2 0.000 0.970 0.000 1.000
#> SRR1471731 1 0.000 0.997 1.000 0.000
#> SRR1120987 1 0.000 0.997 1.000 0.000
#> SRR1477363 1 0.000 0.997 1.000 0.000
#> SRR1391961 2 0.518 0.875 0.116 0.884
#> SRR1373879 1 0.000 0.997 1.000 0.000
#> SRR1318732 1 0.000 0.997 1.000 0.000
#> SRR1091404 1 0.000 0.997 1.000 0.000
#> SRR1402109 1 0.000 0.997 1.000 0.000
#> SRR1407336 1 0.000 0.997 1.000 0.000
#> SRR1097417 1 0.808 0.657 0.752 0.248
#> SRR1396227 1 0.000 0.997 1.000 0.000
#> SRR1400775 2 0.000 0.970 0.000 1.000
#> SRR1392861 1 0.000 0.997 1.000 0.000
#> SRR1472929 2 0.000 0.970 0.000 1.000
#> SRR1436740 1 0.000 0.997 1.000 0.000
#> SRR1477057 2 0.000 0.970 0.000 1.000
#> SRR1311980 1 0.000 0.997 1.000 0.000
#> SRR1069400 1 0.000 0.997 1.000 0.000
#> SRR1351016 1 0.000 0.997 1.000 0.000
#> SRR1096291 1 0.000 0.997 1.000 0.000
#> SRR1418145 1 0.000 0.997 1.000 0.000
#> SRR1488111 1 0.000 0.997 1.000 0.000
#> SRR1370495 1 0.000 0.997 1.000 0.000
#> SRR1352639 1 0.000 0.997 1.000 0.000
#> SRR1348911 1 0.000 0.997 1.000 0.000
#> SRR1467386 1 0.000 0.997 1.000 0.000
#> SRR1415956 1 0.000 0.997 1.000 0.000
#> SRR1500495 1 0.000 0.997 1.000 0.000
#> SRR1405099 1 0.000 0.997 1.000 0.000
#> SRR1345585 1 0.000 0.997 1.000 0.000
#> SRR1093196 1 0.000 0.997 1.000 0.000
#> SRR1466006 2 0.000 0.970 0.000 1.000
#> SRR1351557 2 0.000 0.970 0.000 1.000
#> SRR1382687 1 0.000 0.997 1.000 0.000
#> SRR1375549 1 0.000 0.997 1.000 0.000
#> SRR1101765 1 0.184 0.968 0.972 0.028
#> SRR1334461 2 0.388 0.912 0.076 0.924
#> SRR1094073 2 0.000 0.970 0.000 1.000
#> SRR1077549 1 0.000 0.997 1.000 0.000
#> SRR1440332 1 0.000 0.997 1.000 0.000
#> SRR1454177 1 0.000 0.997 1.000 0.000
#> SRR1082447 1 0.000 0.997 1.000 0.000
#> SRR1420043 1 0.000 0.997 1.000 0.000
#> SRR1432500 1 0.000 0.997 1.000 0.000
#> SRR1378045 2 0.946 0.447 0.364 0.636
#> SRR1334200 2 0.000 0.970 0.000 1.000
#> SRR1069539 1 0.000 0.997 1.000 0.000
#> SRR1343031 1 0.000 0.997 1.000 0.000
#> SRR1319690 1 0.000 0.997 1.000 0.000
#> SRR1310604 2 0.000 0.970 0.000 1.000
#> SRR1327747 1 0.000 0.997 1.000 0.000
#> SRR1072456 2 0.000 0.970 0.000 1.000
#> SRR1367896 1 0.000 0.997 1.000 0.000
#> SRR1480107 1 0.000 0.997 1.000 0.000
#> SRR1377756 1 0.000 0.997 1.000 0.000
#> SRR1435272 1 0.000 0.997 1.000 0.000
#> SRR1089230 1 0.000 0.997 1.000 0.000
#> SRR1389522 1 0.000 0.997 1.000 0.000
#> SRR1080600 2 0.000 0.970 0.000 1.000
#> SRR1086935 1 0.000 0.997 1.000 0.000
#> SRR1344060 2 0.000 0.970 0.000 1.000
#> SRR1467922 2 0.000 0.970 0.000 1.000
#> SRR1090984 1 0.000 0.997 1.000 0.000
#> SRR1456991 1 0.000 0.997 1.000 0.000
#> SRR1085039 1 0.000 0.997 1.000 0.000
#> SRR1069303 1 0.000 0.997 1.000 0.000
#> SRR1091500 2 0.000 0.970 0.000 1.000
#> SRR1075198 2 0.000 0.970 0.000 1.000
#> SRR1086915 1 0.000 0.997 1.000 0.000
#> SRR1499503 2 0.000 0.970 0.000 1.000
#> SRR1094312 2 0.000 0.970 0.000 1.000
#> SRR1352437 1 0.000 0.997 1.000 0.000
#> SRR1436323 1 0.000 0.997 1.000 0.000
#> SRR1073507 1 0.000 0.997 1.000 0.000
#> SRR1401972 1 0.000 0.997 1.000 0.000
#> SRR1415510 2 0.000 0.970 0.000 1.000
#> SRR1327279 1 0.000 0.997 1.000 0.000
#> SRR1086983 1 0.000 0.997 1.000 0.000
#> SRR1105174 1 0.000 0.997 1.000 0.000
#> SRR1468893 1 0.000 0.997 1.000 0.000
#> SRR1362555 2 0.000 0.970 0.000 1.000
#> SRR1074526 2 0.529 0.871 0.120 0.880
#> SRR1326225 2 0.000 0.970 0.000 1.000
#> SRR1401933 1 0.000 0.997 1.000 0.000
#> SRR1324062 1 0.000 0.997 1.000 0.000
#> SRR1102296 1 0.000 0.997 1.000 0.000
#> SRR1085087 1 0.000 0.997 1.000 0.000
#> SRR1079046 2 0.529 0.871 0.120 0.880
#> SRR1328339 1 0.000 0.997 1.000 0.000
#> SRR1079782 2 0.595 0.839 0.144 0.856
#> SRR1092257 2 0.000 0.970 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1429287 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1359238 1 0.6126 0.506 0.600 0.000 0.400
#> SRR1309597 3 0.0592 0.835 0.012 0.000 0.988
#> SRR1441398 3 0.3619 0.814 0.136 0.000 0.864
#> SRR1084055 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1417566 3 0.6309 0.310 0.500 0.000 0.500
#> SRR1351857 1 0.4399 0.842 0.812 0.000 0.188
#> SRR1487485 3 0.0747 0.834 0.016 0.000 0.984
#> SRR1335875 3 0.2448 0.834 0.076 0.000 0.924
#> SRR1073947 1 0.4062 0.840 0.836 0.000 0.164
#> SRR1443483 3 0.0747 0.834 0.016 0.000 0.984
#> SRR1346794 3 0.5016 0.719 0.240 0.000 0.760
#> SRR1405245 3 0.2537 0.834 0.080 0.000 0.920
#> SRR1409677 1 0.5178 0.794 0.744 0.000 0.256
#> SRR1095549 3 0.4842 0.744 0.224 0.000 0.776
#> SRR1323788 3 0.3941 0.794 0.156 0.000 0.844
#> SRR1314054 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1077944 1 0.5363 0.740 0.724 0.000 0.276
#> SRR1480587 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1311205 3 0.4842 0.739 0.224 0.000 0.776
#> SRR1076369 3 0.5810 0.643 0.336 0.000 0.664
#> SRR1453549 3 0.3412 0.817 0.124 0.000 0.876
#> SRR1345782 3 0.4291 0.782 0.180 0.000 0.820
#> SRR1447850 2 0.1774 0.931 0.016 0.960 0.024
#> SRR1391553 3 0.6018 0.611 0.308 0.008 0.684
#> SRR1444156 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1471731 3 0.2261 0.837 0.068 0.000 0.932
#> SRR1120987 1 0.1525 0.797 0.964 0.004 0.032
#> SRR1477363 1 0.4702 0.816 0.788 0.000 0.212
#> SRR1391961 2 0.3918 0.844 0.120 0.868 0.012
#> SRR1373879 3 0.0747 0.834 0.016 0.000 0.984
#> SRR1318732 3 0.1411 0.830 0.036 0.000 0.964
#> SRR1091404 1 0.1289 0.797 0.968 0.000 0.032
#> SRR1402109 3 0.1289 0.838 0.032 0.000 0.968
#> SRR1407336 3 0.1031 0.837 0.024 0.000 0.976
#> SRR1097417 3 0.8556 0.459 0.164 0.232 0.604
#> SRR1396227 1 0.3116 0.837 0.892 0.000 0.108
#> SRR1400775 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1392861 1 0.5291 0.788 0.732 0.000 0.268
#> SRR1472929 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1436740 1 0.4346 0.841 0.816 0.000 0.184
#> SRR1477057 2 0.0592 0.957 0.012 0.988 0.000
#> SRR1311980 3 0.3752 0.805 0.144 0.000 0.856
#> SRR1069400 3 0.0747 0.834 0.016 0.000 0.984
#> SRR1351016 1 0.5497 0.720 0.708 0.000 0.292
#> SRR1096291 1 0.3340 0.759 0.880 0.000 0.120
#> SRR1418145 1 0.1860 0.797 0.948 0.000 0.052
#> SRR1488111 1 0.5207 0.691 0.824 0.052 0.124
#> SRR1370495 1 0.5180 0.654 0.812 0.156 0.032
#> SRR1352639 1 0.1643 0.796 0.956 0.000 0.044
#> SRR1348911 3 0.1529 0.830 0.040 0.000 0.960
#> SRR1467386 1 0.4887 0.815 0.772 0.000 0.228
#> SRR1415956 3 0.5497 0.634 0.292 0.000 0.708
#> SRR1500495 3 0.3551 0.816 0.132 0.000 0.868
#> SRR1405099 1 0.5016 0.787 0.760 0.000 0.240
#> SRR1345585 3 0.0747 0.834 0.016 0.000 0.984
#> SRR1093196 3 0.0747 0.834 0.016 0.000 0.984
#> SRR1466006 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1351557 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1382687 1 0.5926 0.620 0.644 0.000 0.356
#> SRR1375549 1 0.0892 0.792 0.980 0.000 0.020
#> SRR1101765 1 0.5348 0.630 0.796 0.176 0.028
#> SRR1334461 2 0.3120 0.889 0.080 0.908 0.012
#> SRR1094073 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1077549 1 0.5058 0.798 0.756 0.000 0.244
#> SRR1440332 3 0.3941 0.799 0.156 0.000 0.844
#> SRR1454177 1 0.4399 0.840 0.812 0.000 0.188
#> SRR1082447 1 0.3192 0.834 0.888 0.000 0.112
#> SRR1420043 3 0.1163 0.837 0.028 0.000 0.972
#> SRR1432500 1 0.4702 0.831 0.788 0.000 0.212
#> SRR1378045 2 0.8955 0.238 0.144 0.524 0.332
#> SRR1334200 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1069539 1 0.7011 0.590 0.720 0.092 0.188
#> SRR1343031 3 0.1643 0.839 0.044 0.000 0.956
#> SRR1319690 3 0.1289 0.830 0.032 0.000 0.968
#> SRR1310604 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1327747 3 0.2261 0.839 0.068 0.000 0.932
#> SRR1072456 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1367896 3 0.0747 0.834 0.016 0.000 0.984
#> SRR1480107 1 0.4178 0.837 0.828 0.000 0.172
#> SRR1377756 1 0.4291 0.842 0.820 0.000 0.180
#> SRR1435272 1 0.4750 0.828 0.784 0.000 0.216
#> SRR1089230 1 0.4346 0.841 0.816 0.000 0.184
#> SRR1389522 3 0.1163 0.831 0.028 0.000 0.972
#> SRR1080600 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1086935 1 0.3583 0.771 0.900 0.056 0.044
#> SRR1344060 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1467922 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1090984 3 0.6180 0.473 0.416 0.000 0.584
#> SRR1456991 3 0.6267 0.163 0.452 0.000 0.548
#> SRR1085039 1 0.4235 0.837 0.824 0.000 0.176
#> SRR1069303 1 0.1031 0.801 0.976 0.000 0.024
#> SRR1091500 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1075198 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1086915 1 0.4291 0.842 0.820 0.000 0.180
#> SRR1499503 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1094312 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1352437 1 0.1289 0.801 0.968 0.000 0.032
#> SRR1436323 3 0.3879 0.800 0.152 0.000 0.848
#> SRR1073507 1 0.4178 0.843 0.828 0.000 0.172
#> SRR1401972 1 0.1031 0.802 0.976 0.000 0.024
#> SRR1415510 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1327279 1 0.5948 0.612 0.640 0.000 0.360
#> SRR1086983 1 0.4346 0.841 0.816 0.000 0.184
#> SRR1105174 1 0.4452 0.831 0.808 0.000 0.192
#> SRR1468893 1 0.4178 0.837 0.828 0.000 0.172
#> SRR1362555 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1074526 2 0.4861 0.764 0.180 0.808 0.012
#> SRR1326225 2 0.0000 0.963 0.000 1.000 0.000
#> SRR1401933 1 0.4399 0.842 0.812 0.000 0.188
#> SRR1324062 1 0.4291 0.842 0.820 0.000 0.180
#> SRR1102296 1 0.0892 0.792 0.980 0.000 0.020
#> SRR1085087 1 0.1163 0.802 0.972 0.000 0.028
#> SRR1079046 2 0.4805 0.770 0.176 0.812 0.012
#> SRR1328339 3 0.8119 0.419 0.432 0.068 0.500
#> SRR1079782 2 0.0592 0.955 0.012 0.988 0.000
#> SRR1092257 2 0.0000 0.963 0.000 1.000 0.000
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1429287 2 0.0817 0.8903 0.024 0.976 0.000 0.000
#> SRR1359238 4 0.3249 0.6302 0.008 0.000 0.140 0.852
#> SRR1309597 3 0.2868 0.7100 0.000 0.000 0.864 0.136
#> SRR1441398 3 0.5812 0.5953 0.048 0.000 0.624 0.328
#> SRR1084055 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1417566 3 0.6350 0.2063 0.252 0.000 0.636 0.112
#> SRR1351857 4 0.0707 0.6870 0.000 0.000 0.020 0.980
#> SRR1487485 3 0.2589 0.7048 0.000 0.000 0.884 0.116
#> SRR1335875 3 0.4807 0.6253 0.024 0.000 0.728 0.248
#> SRR1073947 4 0.0927 0.6849 0.016 0.000 0.008 0.976
#> SRR1443483 3 0.2868 0.7100 0.000 0.000 0.864 0.136
#> SRR1346794 4 0.6395 -0.2873 0.064 0.000 0.464 0.472
#> SRR1405245 3 0.5712 0.6306 0.048 0.000 0.644 0.308
#> SRR1409677 4 0.2799 0.6517 0.008 0.000 0.108 0.884
#> SRR1095549 4 0.6031 -0.2014 0.044 0.000 0.420 0.536
#> SRR1323788 3 0.5775 0.5052 0.032 0.000 0.560 0.408
#> SRR1314054 2 0.0592 0.8928 0.016 0.984 0.000 0.000
#> SRR1077944 4 0.2830 0.6732 0.060 0.000 0.040 0.900
#> SRR1480587 2 0.0336 0.8954 0.008 0.992 0.000 0.000
#> SRR1311205 4 0.6229 -0.1846 0.056 0.000 0.416 0.528
#> SRR1076369 3 0.7792 -0.0343 0.256 0.000 0.412 0.332
#> SRR1453549 3 0.5217 0.5840 0.012 0.000 0.608 0.380
#> SRR1345782 4 0.6275 -0.3090 0.056 0.000 0.460 0.484
#> SRR1447850 2 0.3400 0.7889 0.180 0.820 0.000 0.000
#> SRR1391553 3 0.4839 0.4063 0.184 0.000 0.764 0.052
#> SRR1444156 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1471731 3 0.4456 0.6890 0.004 0.000 0.716 0.280
#> SRR1120987 4 0.7768 -0.3471 0.384 0.004 0.200 0.412
#> SRR1477363 4 0.2335 0.6754 0.060 0.000 0.020 0.920
#> SRR1391961 1 0.5288 -0.3825 0.520 0.472 0.000 0.008
#> SRR1373879 3 0.3908 0.7124 0.004 0.000 0.784 0.212
#> SRR1318732 3 0.3402 0.6974 0.004 0.000 0.832 0.164
#> SRR1091404 4 0.7220 -0.2360 0.384 0.000 0.144 0.472
#> SRR1402109 3 0.4539 0.6823 0.008 0.000 0.720 0.272
#> SRR1407336 3 0.4088 0.7093 0.004 0.000 0.764 0.232
#> SRR1097417 3 0.8531 -0.1421 0.264 0.156 0.504 0.076
#> SRR1396227 4 0.3521 0.5850 0.084 0.000 0.052 0.864
#> SRR1400775 2 0.2011 0.8912 0.080 0.920 0.000 0.000
#> SRR1392861 4 0.5323 0.1390 0.020 0.000 0.352 0.628
#> SRR1472929 2 0.3975 0.7144 0.240 0.760 0.000 0.000
#> SRR1436740 4 0.2882 0.6606 0.024 0.000 0.084 0.892
#> SRR1477057 2 0.3893 0.7766 0.196 0.796 0.000 0.008
#> SRR1311980 3 0.4546 0.6960 0.012 0.000 0.732 0.256
#> SRR1069400 3 0.2868 0.7100 0.000 0.000 0.864 0.136
#> SRR1351016 4 0.2408 0.6856 0.036 0.000 0.044 0.920
#> SRR1096291 4 0.7924 -0.4156 0.336 0.000 0.328 0.336
#> SRR1418145 4 0.7830 -0.3809 0.356 0.000 0.260 0.384
#> SRR1488111 1 0.7908 0.3482 0.360 0.000 0.304 0.336
#> SRR1370495 1 0.7968 0.3856 0.424 0.008 0.224 0.344
#> SRR1352639 1 0.7800 0.3503 0.380 0.000 0.248 0.372
#> SRR1348911 3 0.4990 0.6280 0.060 0.000 0.756 0.184
#> SRR1467386 4 0.2329 0.6839 0.012 0.000 0.072 0.916
#> SRR1415956 4 0.6058 0.0719 0.060 0.000 0.336 0.604
#> SRR1500495 3 0.6147 0.5177 0.056 0.000 0.564 0.380
#> SRR1405099 4 0.2489 0.6740 0.068 0.000 0.020 0.912
#> SRR1345585 3 0.2216 0.6875 0.000 0.000 0.908 0.092
#> SRR1093196 3 0.3982 0.7096 0.004 0.000 0.776 0.220
#> SRR1466006 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1351557 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1382687 4 0.3681 0.5877 0.008 0.000 0.176 0.816
#> SRR1375549 1 0.7314 0.2720 0.428 0.000 0.152 0.420
#> SRR1101765 1 0.7508 0.2508 0.428 0.008 0.140 0.424
#> SRR1334461 1 0.5288 -0.3825 0.520 0.472 0.000 0.008
#> SRR1094073 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1077549 4 0.2610 0.6691 0.012 0.000 0.088 0.900
#> SRR1440332 3 0.5657 0.4520 0.024 0.000 0.540 0.436
#> SRR1454177 4 0.3853 0.5877 0.020 0.000 0.160 0.820
#> SRR1082447 4 0.3497 0.6336 0.104 0.000 0.036 0.860
#> SRR1420043 3 0.4769 0.6549 0.008 0.000 0.684 0.308
#> SRR1432500 4 0.1890 0.6891 0.008 0.000 0.056 0.936
#> SRR1378045 3 0.8129 -0.0929 0.268 0.352 0.372 0.008
#> SRR1334200 2 0.0817 0.8909 0.024 0.976 0.000 0.000
#> SRR1069539 1 0.8121 0.3707 0.372 0.008 0.356 0.264
#> SRR1343031 3 0.4483 0.6732 0.004 0.000 0.712 0.284
#> SRR1319690 3 0.4420 0.7036 0.012 0.000 0.748 0.240
#> SRR1310604 2 0.0188 0.8935 0.004 0.996 0.000 0.000
#> SRR1327747 3 0.4844 0.6729 0.012 0.000 0.688 0.300
#> SRR1072456 2 0.0188 0.8949 0.004 0.996 0.000 0.000
#> SRR1367896 3 0.2760 0.7082 0.000 0.000 0.872 0.128
#> SRR1480107 4 0.2179 0.6733 0.064 0.000 0.012 0.924
#> SRR1377756 4 0.0779 0.6872 0.004 0.000 0.016 0.980
#> SRR1435272 4 0.3790 0.5865 0.016 0.000 0.164 0.820
#> SRR1089230 4 0.1356 0.6811 0.008 0.000 0.032 0.960
#> SRR1389522 3 0.3311 0.7121 0.000 0.000 0.828 0.172
#> SRR1080600 2 0.0000 0.8943 0.000 1.000 0.000 0.000
#> SRR1086935 4 0.8171 -0.3001 0.368 0.024 0.184 0.424
#> SRR1344060 2 0.4977 0.4398 0.460 0.540 0.000 0.000
#> SRR1467922 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1090984 4 0.7269 0.1745 0.156 0.000 0.356 0.488
#> SRR1456991 4 0.4318 0.5988 0.068 0.000 0.116 0.816
#> SRR1085039 4 0.1970 0.6738 0.060 0.000 0.008 0.932
#> SRR1069303 4 0.6506 0.1291 0.240 0.000 0.132 0.628
#> SRR1091500 2 0.3569 0.8331 0.196 0.804 0.000 0.000
#> SRR1075198 2 0.1637 0.8725 0.060 0.940 0.000 0.000
#> SRR1086915 4 0.0804 0.6840 0.008 0.000 0.012 0.980
#> SRR1499503 2 0.0469 0.8957 0.012 0.988 0.000 0.000
#> SRR1094312 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1352437 4 0.6578 0.1139 0.244 0.000 0.136 0.620
#> SRR1436323 3 0.5055 0.5981 0.008 0.000 0.624 0.368
#> SRR1073507 4 0.0804 0.6826 0.008 0.000 0.012 0.980
#> SRR1401972 4 0.6630 0.0861 0.252 0.000 0.136 0.612
#> SRR1415510 2 0.0000 0.8943 0.000 1.000 0.000 0.000
#> SRR1327279 4 0.2924 0.6594 0.016 0.000 0.100 0.884
#> SRR1086983 4 0.1388 0.6836 0.012 0.000 0.028 0.960
#> SRR1105174 4 0.2413 0.6743 0.064 0.000 0.020 0.916
#> SRR1468893 4 0.1722 0.6767 0.048 0.000 0.008 0.944
#> SRR1362555 2 0.1629 0.8792 0.024 0.952 0.000 0.024
#> SRR1074526 2 0.5296 0.3348 0.496 0.496 0.000 0.008
#> SRR1326225 2 0.1716 0.8926 0.064 0.936 0.000 0.000
#> SRR1401933 4 0.1109 0.6833 0.004 0.000 0.028 0.968
#> SRR1324062 4 0.1059 0.6857 0.012 0.000 0.016 0.972
#> SRR1102296 1 0.7463 0.3689 0.456 0.000 0.180 0.364
#> SRR1085087 4 0.6147 0.2289 0.200 0.000 0.128 0.672
#> SRR1079046 1 0.5500 -0.3728 0.520 0.464 0.000 0.016
#> SRR1328339 3 0.7762 -0.2467 0.356 0.004 0.436 0.204
#> SRR1079782 2 0.4704 0.6737 0.204 0.764 0.004 0.028
#> SRR1092257 2 0.2859 0.8494 0.112 0.880 0.000 0.008
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0000 0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1429287 2 0.3547 0.82129 0.000 0.836 0.004 0.060 0.100
#> SRR1359238 1 0.5791 -0.05084 0.472 0.000 0.076 0.448 0.004
#> SRR1309597 3 0.0898 0.69485 0.000 0.000 0.972 0.020 0.008
#> SRR1441398 4 0.6278 0.36224 0.180 0.000 0.264 0.552 0.004
#> SRR1084055 2 0.0290 0.85554 0.000 0.992 0.000 0.000 0.008
#> SRR1417566 3 0.6508 0.48877 0.316 0.004 0.512 0.164 0.004
#> SRR1351857 1 0.5091 0.20117 0.624 0.000 0.044 0.328 0.004
#> SRR1487485 3 0.0833 0.69399 0.004 0.000 0.976 0.016 0.004
#> SRR1335875 3 0.5772 0.52936 0.104 0.004 0.592 0.300 0.000
#> SRR1073947 1 0.4015 0.21613 0.652 0.000 0.000 0.348 0.000
#> SRR1443483 3 0.1153 0.69721 0.004 0.000 0.964 0.024 0.008
#> SRR1346794 4 0.6227 0.31609 0.184 0.000 0.280 0.536 0.000
#> SRR1405245 4 0.6265 0.34949 0.160 0.000 0.296 0.540 0.004
#> SRR1409677 4 0.6666 0.01380 0.356 0.000 0.200 0.440 0.004
#> SRR1095549 4 0.6521 0.33000 0.308 0.000 0.192 0.496 0.004
#> SRR1323788 4 0.6717 0.32720 0.324 0.000 0.200 0.468 0.008
#> SRR1314054 2 0.3359 0.82826 0.000 0.848 0.004 0.052 0.096
#> SRR1077944 4 0.4630 0.09616 0.396 0.000 0.016 0.588 0.000
#> SRR1480587 2 0.1341 0.85701 0.000 0.944 0.000 0.000 0.056
#> SRR1311205 4 0.5940 0.32149 0.292 0.000 0.140 0.568 0.000
#> SRR1076369 1 0.6979 -0.06738 0.408 0.000 0.288 0.296 0.008
#> SRR1453549 3 0.4927 0.62307 0.052 0.000 0.692 0.248 0.008
#> SRR1345782 4 0.5974 0.33039 0.284 0.000 0.148 0.568 0.000
#> SRR1447850 2 0.5374 0.69196 0.000 0.696 0.012 0.164 0.128
#> SRR1391553 3 0.4329 0.57791 0.236 0.008 0.736 0.012 0.008
#> SRR1444156 2 0.0000 0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1471731 3 0.5077 0.62898 0.084 0.000 0.728 0.168 0.020
#> SRR1120987 1 0.4770 0.18955 0.716 0.000 0.024 0.232 0.028
#> SRR1477363 4 0.4655 -0.03856 0.476 0.000 0.012 0.512 0.000
#> SRR1391961 5 0.1981 0.87459 0.000 0.048 0.000 0.028 0.924
#> SRR1373879 3 0.3690 0.68824 0.020 0.000 0.780 0.200 0.000
#> SRR1318732 3 0.2339 0.69630 0.028 0.000 0.912 0.052 0.008
#> SRR1091404 1 0.4577 0.22471 0.716 0.000 0.028 0.244 0.012
#> SRR1402109 3 0.5083 0.62344 0.084 0.000 0.692 0.220 0.004
#> SRR1407336 3 0.3901 0.68714 0.024 0.000 0.776 0.196 0.004
#> SRR1097417 3 0.7289 0.39756 0.296 0.144 0.508 0.024 0.028
#> SRR1396227 1 0.4183 0.19950 0.668 0.000 0.008 0.324 0.000
#> SRR1400775 2 0.0693 0.85951 0.000 0.980 0.000 0.008 0.012
#> SRR1392861 4 0.7091 -0.03389 0.224 0.000 0.292 0.460 0.024
#> SRR1472929 5 0.4403 0.26510 0.000 0.436 0.000 0.004 0.560
#> SRR1436740 4 0.6942 0.11825 0.260 0.000 0.216 0.500 0.024
#> SRR1477057 2 0.5586 0.57395 0.016 0.640 0.004 0.060 0.280
#> SRR1311980 3 0.3613 0.70484 0.016 0.000 0.812 0.160 0.012
#> SRR1069400 3 0.2411 0.70754 0.000 0.000 0.884 0.108 0.008
#> SRR1351016 1 0.4659 0.01221 0.496 0.000 0.012 0.492 0.000
#> SRR1096291 1 0.6354 -0.03834 0.528 0.000 0.316 0.148 0.008
#> SRR1418145 1 0.5345 0.19740 0.696 0.000 0.096 0.192 0.016
#> SRR1488111 1 0.7375 0.00698 0.476 0.008 0.192 0.288 0.036
#> SRR1370495 1 0.5185 0.25567 0.756 0.012 0.108 0.092 0.032
#> SRR1352639 1 0.5076 0.24294 0.744 0.000 0.140 0.080 0.036
#> SRR1348911 3 0.5805 0.58991 0.160 0.000 0.640 0.192 0.008
#> SRR1467386 1 0.5102 0.14794 0.580 0.000 0.044 0.376 0.000
#> SRR1415956 4 0.5409 0.25423 0.316 0.000 0.080 0.604 0.000
#> SRR1500495 4 0.6325 0.36552 0.212 0.000 0.232 0.552 0.004
#> SRR1405099 4 0.4562 -0.06057 0.492 0.000 0.008 0.500 0.000
#> SRR1345585 3 0.1836 0.67539 0.040 0.000 0.936 0.016 0.008
#> SRR1093196 3 0.3648 0.68275 0.024 0.000 0.812 0.156 0.008
#> SRR1466006 2 0.0000 0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1351557 2 0.0324 0.85914 0.000 0.992 0.000 0.004 0.004
#> SRR1382687 1 0.6105 -0.09730 0.464 0.000 0.108 0.424 0.004
#> SRR1375549 1 0.4032 0.26447 0.792 0.000 0.020 0.164 0.024
#> SRR1101765 1 0.4495 0.25821 0.772 0.012 0.020 0.172 0.024
#> SRR1334461 5 0.1981 0.87459 0.000 0.048 0.000 0.028 0.924
#> SRR1094073 2 0.0000 0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1077549 1 0.5701 0.05568 0.568 0.000 0.100 0.332 0.000
#> SRR1440332 4 0.6630 0.32678 0.316 0.000 0.208 0.472 0.004
#> SRR1454177 4 0.7056 0.11023 0.260 0.000 0.240 0.476 0.024
#> SRR1082447 1 0.4818 0.04128 0.520 0.000 0.020 0.460 0.000
#> SRR1420043 3 0.5094 0.62412 0.084 0.000 0.712 0.192 0.012
#> SRR1432500 1 0.5113 0.19110 0.604 0.000 0.040 0.352 0.004
#> SRR1378045 2 0.8068 -0.05713 0.224 0.364 0.336 0.012 0.064
#> SRR1334200 2 0.3435 0.80594 0.000 0.820 0.004 0.020 0.156
#> SRR1069539 3 0.7046 0.33954 0.416 0.032 0.440 0.092 0.020
#> SRR1343031 3 0.5719 0.45976 0.120 0.000 0.596 0.284 0.000
#> SRR1319690 3 0.5290 0.38951 0.044 0.000 0.560 0.392 0.004
#> SRR1310604 2 0.2112 0.84942 0.000 0.908 0.004 0.004 0.084
#> SRR1327747 3 0.5615 0.39643 0.064 0.000 0.568 0.360 0.008
#> SRR1072456 2 0.1571 0.85549 0.000 0.936 0.004 0.000 0.060
#> SRR1367896 3 0.1357 0.70494 0.000 0.000 0.948 0.048 0.004
#> SRR1480107 1 0.4306 0.01988 0.508 0.000 0.000 0.492 0.000
#> SRR1377756 1 0.5281 0.12624 0.564 0.000 0.044 0.388 0.004
#> SRR1435272 4 0.6972 0.12521 0.248 0.000 0.232 0.496 0.024
#> SRR1089230 4 0.6145 -0.04706 0.440 0.000 0.112 0.444 0.004
#> SRR1389522 3 0.4088 0.53315 0.000 0.000 0.688 0.304 0.008
#> SRR1080600 2 0.1638 0.85461 0.000 0.932 0.004 0.000 0.064
#> SRR1086935 1 0.6173 0.11153 0.572 0.040 0.020 0.340 0.028
#> SRR1344060 5 0.2233 0.84562 0.000 0.104 0.004 0.000 0.892
#> SRR1467922 2 0.0000 0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1090984 4 0.6534 0.15427 0.388 0.000 0.196 0.416 0.000
#> SRR1456991 4 0.4653 -0.02786 0.472 0.000 0.012 0.516 0.000
#> SRR1085039 1 0.4331 0.16516 0.596 0.000 0.004 0.400 0.000
#> SRR1069303 1 0.1764 0.30702 0.928 0.000 0.008 0.064 0.000
#> SRR1091500 2 0.3264 0.73105 0.000 0.820 0.000 0.016 0.164
#> SRR1075198 2 0.3037 0.83549 0.000 0.864 0.004 0.032 0.100
#> SRR1086915 1 0.5363 0.17371 0.572 0.000 0.052 0.372 0.004
#> SRR1499503 2 0.0963 0.85958 0.000 0.964 0.000 0.000 0.036
#> SRR1094312 2 0.0162 0.85810 0.000 0.996 0.000 0.004 0.000
#> SRR1352437 1 0.2707 0.26385 0.860 0.000 0.008 0.132 0.000
#> SRR1436323 3 0.5648 0.54604 0.164 0.000 0.660 0.168 0.008
#> SRR1073507 1 0.4714 0.21327 0.644 0.000 0.032 0.324 0.000
#> SRR1401972 1 0.0898 0.30807 0.972 0.000 0.008 0.020 0.000
#> SRR1415510 2 0.1638 0.85461 0.000 0.932 0.004 0.000 0.064
#> SRR1327279 1 0.5597 -0.00245 0.488 0.000 0.060 0.448 0.004
#> SRR1086983 1 0.4697 0.21499 0.660 0.000 0.036 0.304 0.000
#> SRR1105174 4 0.4562 -0.06561 0.496 0.000 0.008 0.496 0.000
#> SRR1468893 1 0.4150 0.18633 0.612 0.000 0.000 0.388 0.000
#> SRR1362555 2 0.5030 0.74368 0.064 0.756 0.004 0.040 0.136
#> SRR1074526 5 0.3108 0.86492 0.028 0.064 0.004 0.024 0.880
#> SRR1326225 2 0.0000 0.85774 0.000 1.000 0.000 0.000 0.000
#> SRR1401933 1 0.5396 0.07950 0.532 0.000 0.048 0.416 0.004
#> SRR1324062 1 0.5176 0.11877 0.572 0.000 0.048 0.380 0.000
#> SRR1102296 1 0.4205 0.27939 0.804 0.000 0.020 0.068 0.108
#> SRR1085087 1 0.2358 0.30078 0.888 0.000 0.008 0.104 0.000
#> SRR1079046 5 0.2333 0.86505 0.016 0.040 0.000 0.028 0.916
#> SRR1328339 1 0.7999 -0.27521 0.408 0.016 0.344 0.152 0.080
#> SRR1079782 2 0.6658 0.59443 0.116 0.636 0.004 0.136 0.108
#> SRR1092257 2 0.5426 0.67453 0.000 0.676 0.004 0.160 0.160
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0508 0.83093 0.000 0.984 0.000 0.004 0.012 0.000
#> SRR1429287 2 0.5117 0.72402 0.000 0.692 0.028 0.208 0.048 0.024
#> SRR1359238 1 0.4426 0.34655 0.684 0.000 0.004 0.036 0.008 0.268
#> SRR1309597 3 0.1364 0.55405 0.020 0.000 0.952 0.012 0.000 0.016
#> SRR1441398 6 0.5332 0.10772 0.392 0.000 0.064 0.012 0.004 0.528
#> SRR1084055 2 0.0937 0.81779 0.000 0.960 0.000 0.000 0.040 0.000
#> SRR1417566 6 0.4974 0.09204 0.084 0.004 0.248 0.008 0.000 0.656
#> SRR1351857 1 0.2165 0.55643 0.912 0.000 0.004 0.024 0.008 0.052
#> SRR1487485 3 0.1377 0.55003 0.016 0.004 0.952 0.004 0.000 0.024
#> SRR1335875 6 0.6166 -0.12476 0.184 0.004 0.400 0.008 0.000 0.404
#> SRR1073947 1 0.1349 0.54858 0.940 0.000 0.000 0.004 0.000 0.056
#> SRR1443483 3 0.1251 0.55134 0.024 0.000 0.956 0.012 0.000 0.008
#> SRR1346794 6 0.5016 0.13464 0.392 0.000 0.076 0.000 0.000 0.532
#> SRR1405245 6 0.5342 0.10839 0.396 0.000 0.076 0.012 0.000 0.516
#> SRR1409677 1 0.5242 0.29377 0.668 0.000 0.084 0.204 0.000 0.044
#> SRR1095549 1 0.4097 -0.01525 0.504 0.000 0.008 0.000 0.000 0.488
#> SRR1323788 1 0.5251 0.01554 0.500 0.000 0.032 0.028 0.004 0.436
#> SRR1314054 2 0.5169 0.71053 0.000 0.684 0.028 0.216 0.048 0.024
#> SRR1077944 1 0.4126 0.01315 0.512 0.000 0.004 0.004 0.000 0.480
#> SRR1480587 2 0.1049 0.83059 0.000 0.960 0.000 0.008 0.032 0.000
#> SRR1311205 6 0.4253 0.03353 0.460 0.000 0.016 0.000 0.000 0.524
#> SRR1076369 6 0.4423 0.35034 0.136 0.000 0.112 0.012 0.000 0.740
#> SRR1453549 6 0.7410 -0.00145 0.296 0.000 0.268 0.116 0.000 0.320
#> SRR1345782 6 0.4482 0.04539 0.448 0.000 0.012 0.012 0.000 0.528
#> SRR1447850 2 0.6552 0.53529 0.000 0.528 0.032 0.304 0.060 0.076
#> SRR1391553 3 0.5313 0.48301 0.036 0.016 0.668 0.056 0.000 0.224
#> SRR1444156 2 0.0000 0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1471731 4 0.6844 -0.10476 0.096 0.000 0.368 0.404 0.000 0.132
#> SRR1120987 6 0.5855 -0.13984 0.396 0.000 0.000 0.192 0.000 0.412
#> SRR1477363 1 0.3383 0.39115 0.728 0.000 0.000 0.004 0.000 0.268
#> SRR1391961 5 0.1257 0.84563 0.000 0.020 0.000 0.000 0.952 0.028
#> SRR1373879 3 0.7155 0.35841 0.120 0.000 0.420 0.176 0.000 0.284
#> SRR1318732 3 0.2074 0.56302 0.036 0.000 0.912 0.004 0.000 0.048
#> SRR1091404 6 0.4788 0.08289 0.396 0.000 0.016 0.028 0.000 0.560
#> SRR1402109 3 0.7134 0.27655 0.096 0.000 0.416 0.244 0.000 0.244
#> SRR1407336 3 0.7145 0.33587 0.132 0.000 0.448 0.188 0.000 0.232
#> SRR1097417 3 0.6382 0.32302 0.012 0.152 0.488 0.016 0.004 0.328
#> SRR1396227 1 0.2544 0.52345 0.864 0.000 0.012 0.004 0.000 0.120
#> SRR1400775 2 0.1572 0.82972 0.000 0.936 0.000 0.028 0.036 0.000
#> SRR1392861 4 0.4273 0.81842 0.260 0.000 0.032 0.696 0.000 0.012
#> SRR1472929 5 0.4453 0.27119 0.000 0.424 0.000 0.012 0.552 0.012
#> SRR1436740 4 0.4383 0.80166 0.276 0.000 0.024 0.680 0.000 0.020
#> SRR1477057 2 0.5905 0.66255 0.000 0.624 0.028 0.212 0.112 0.024
#> SRR1311980 3 0.6227 0.40399 0.084 0.000 0.536 0.088 0.000 0.292
#> SRR1069400 3 0.3624 0.55220 0.060 0.000 0.784 0.000 0.000 0.156
#> SRR1351016 1 0.3565 0.32631 0.692 0.000 0.000 0.004 0.000 0.304
#> SRR1096291 6 0.5141 0.14731 0.080 0.000 0.196 0.044 0.000 0.680
#> SRR1418145 1 0.6089 -0.05760 0.436 0.000 0.028 0.128 0.000 0.408
#> SRR1488111 6 0.6158 0.08878 0.040 0.016 0.100 0.248 0.004 0.592
#> SRR1370495 6 0.5777 0.25639 0.260 0.000 0.060 0.072 0.004 0.604
#> SRR1352639 6 0.6129 0.24181 0.284 0.008 0.084 0.032 0.016 0.576
#> SRR1348911 3 0.5106 0.38958 0.044 0.004 0.568 0.016 0.000 0.368
#> SRR1467386 1 0.1921 0.55549 0.916 0.000 0.000 0.052 0.000 0.032
#> SRR1415956 6 0.3991 -0.00573 0.472 0.000 0.000 0.004 0.000 0.524
#> SRR1500495 6 0.5003 0.08811 0.420 0.000 0.036 0.012 0.004 0.528
#> SRR1405099 1 0.3628 0.39063 0.720 0.000 0.000 0.004 0.008 0.268
#> SRR1345585 3 0.1196 0.55269 0.008 0.000 0.952 0.000 0.000 0.040
#> SRR1093196 3 0.6603 -0.02835 0.068 0.000 0.404 0.396 0.000 0.132
#> SRR1466006 2 0.0260 0.83230 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1351557 2 0.0603 0.83503 0.000 0.980 0.000 0.016 0.004 0.000
#> SRR1382687 1 0.4018 0.45341 0.768 0.000 0.012 0.036 0.008 0.176
#> SRR1375549 6 0.4917 0.18864 0.320 0.000 0.020 0.036 0.004 0.620
#> SRR1101765 6 0.5467 0.20177 0.316 0.028 0.020 0.040 0.000 0.596
#> SRR1334461 5 0.1257 0.84563 0.000 0.020 0.000 0.000 0.952 0.028
#> SRR1094073 2 0.0000 0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1077549 1 0.3944 0.47024 0.768 0.000 0.008 0.060 0.000 0.164
#> SRR1440332 1 0.5885 0.05544 0.512 0.000 0.064 0.048 0.004 0.372
#> SRR1454177 4 0.4152 0.81947 0.264 0.000 0.024 0.700 0.000 0.012
#> SRR1082447 1 0.3788 0.40667 0.704 0.000 0.012 0.004 0.000 0.280
#> SRR1420043 3 0.6704 -0.05373 0.076 0.000 0.396 0.392 0.000 0.136
#> SRR1432500 1 0.2445 0.56004 0.896 0.000 0.004 0.060 0.008 0.032
#> SRR1378045 3 0.7807 0.02488 0.032 0.324 0.388 0.032 0.044 0.180
#> SRR1334200 2 0.4595 0.71099 0.000 0.696 0.012 0.068 0.224 0.000
#> SRR1069539 6 0.5739 -0.00796 0.024 0.024 0.256 0.080 0.000 0.616
#> SRR1343031 1 0.7253 -0.15071 0.352 0.000 0.228 0.100 0.000 0.320
#> SRR1319690 6 0.6205 0.18007 0.328 0.000 0.200 0.016 0.000 0.456
#> SRR1310604 2 0.3354 0.79671 0.000 0.824 0.020 0.028 0.128 0.000
#> SRR1327747 6 0.6118 0.17975 0.340 0.000 0.240 0.004 0.000 0.416
#> SRR1072456 2 0.1391 0.82881 0.000 0.944 0.000 0.016 0.040 0.000
#> SRR1367896 3 0.3207 0.57242 0.052 0.004 0.840 0.004 0.000 0.100
#> SRR1480107 1 0.3463 0.44760 0.748 0.000 0.000 0.004 0.008 0.240
#> SRR1377756 1 0.1036 0.56342 0.964 0.000 0.000 0.008 0.004 0.024
#> SRR1435272 4 0.4203 0.81863 0.260 0.000 0.028 0.700 0.000 0.012
#> SRR1089230 1 0.4663 0.24431 0.680 0.000 0.012 0.244 0.000 0.064
#> SRR1389522 3 0.5304 0.33274 0.200 0.000 0.600 0.000 0.000 0.200
#> SRR1080600 2 0.1801 0.82577 0.000 0.924 0.004 0.016 0.056 0.000
#> SRR1086935 6 0.6250 -0.35024 0.236 0.004 0.004 0.364 0.000 0.392
#> SRR1344060 5 0.1958 0.80022 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1467922 2 0.0000 0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1090984 6 0.4421 0.27265 0.256 0.000 0.056 0.004 0.000 0.684
#> SRR1456991 1 0.3807 0.22846 0.628 0.000 0.000 0.004 0.000 0.368
#> SRR1085039 1 0.2234 0.53840 0.872 0.000 0.000 0.004 0.000 0.124
#> SRR1069303 1 0.3699 0.25679 0.660 0.000 0.000 0.004 0.000 0.336
#> SRR1091500 2 0.5165 0.45260 0.000 0.600 0.000 0.072 0.312 0.016
#> SRR1075198 2 0.4858 0.75963 0.000 0.724 0.028 0.156 0.084 0.008
#> SRR1086915 1 0.2052 0.54839 0.912 0.000 0.000 0.028 0.004 0.056
#> SRR1499503 2 0.0891 0.83097 0.000 0.968 0.000 0.008 0.024 0.000
#> SRR1094312 2 0.0291 0.83421 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1352437 1 0.4131 0.16984 0.600 0.000 0.000 0.016 0.000 0.384
#> SRR1436323 3 0.7210 0.03555 0.160 0.000 0.420 0.276 0.000 0.144
#> SRR1073507 1 0.1367 0.55386 0.944 0.000 0.000 0.044 0.000 0.012
#> SRR1401972 1 0.3872 0.16653 0.604 0.000 0.000 0.004 0.000 0.392
#> SRR1415510 2 0.2257 0.82154 0.000 0.904 0.020 0.016 0.060 0.000
#> SRR1327279 1 0.3920 0.47922 0.772 0.000 0.008 0.036 0.008 0.176
#> SRR1086983 1 0.1845 0.54395 0.920 0.000 0.000 0.052 0.000 0.028
#> SRR1105174 1 0.3827 0.37793 0.680 0.000 0.000 0.004 0.008 0.308
#> SRR1468893 1 0.1152 0.55909 0.952 0.000 0.000 0.004 0.000 0.044
#> SRR1362555 2 0.5014 0.71269 0.008 0.684 0.012 0.096 0.200 0.000
#> SRR1074526 5 0.2681 0.80529 0.048 0.020 0.000 0.004 0.888 0.040
#> SRR1326225 2 0.0000 0.83277 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1401933 1 0.3756 0.44265 0.736 0.000 0.000 0.016 0.008 0.240
#> SRR1324062 1 0.3394 0.48752 0.804 0.000 0.000 0.052 0.000 0.144
#> SRR1102296 6 0.6255 0.17291 0.336 0.000 0.020 0.056 0.064 0.524
#> SRR1085087 1 0.3707 0.28963 0.680 0.000 0.000 0.008 0.000 0.312
#> SRR1079046 5 0.1772 0.84343 0.000 0.020 0.008 0.008 0.936 0.028
#> SRR1328339 6 0.5755 0.13790 0.060 0.008 0.200 0.016 0.056 0.660
#> SRR1079782 2 0.6576 0.56732 0.000 0.564 0.032 0.208 0.040 0.156
#> SRR1092257 2 0.5488 0.68803 0.000 0.652 0.028 0.232 0.064 0.024
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
MAD:NMF
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["MAD", "NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.895 0.928 0.971 0.4112 0.594 0.594
#> 3 3 0.472 0.656 0.818 0.5852 0.682 0.497
#> 4 4 0.576 0.707 0.827 0.1415 0.825 0.549
#> 5 5 0.600 0.529 0.767 0.0574 0.819 0.428
#> 6 6 0.579 0.427 0.692 0.0423 0.882 0.536
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.9546 0.000 1.000
#> SRR1429287 2 0.0000 0.9546 0.000 1.000
#> SRR1359238 1 0.0000 0.9739 1.000 0.000
#> SRR1309597 1 0.0000 0.9739 1.000 0.000
#> SRR1441398 1 0.0000 0.9739 1.000 0.000
#> SRR1084055 2 0.0000 0.9546 0.000 1.000
#> SRR1417566 1 0.3584 0.9102 0.932 0.068
#> SRR1351857 1 0.0000 0.9739 1.000 0.000
#> SRR1487485 2 0.5629 0.8329 0.132 0.868
#> SRR1335875 1 0.0376 0.9707 0.996 0.004
#> SRR1073947 1 0.0000 0.9739 1.000 0.000
#> SRR1443483 1 0.0000 0.9739 1.000 0.000
#> SRR1346794 1 0.0000 0.9739 1.000 0.000
#> SRR1405245 1 0.0000 0.9739 1.000 0.000
#> SRR1409677 1 0.0000 0.9739 1.000 0.000
#> SRR1095549 1 0.0000 0.9739 1.000 0.000
#> SRR1323788 1 0.0000 0.9739 1.000 0.000
#> SRR1314054 2 0.0000 0.9546 0.000 1.000
#> SRR1077944 1 0.0000 0.9739 1.000 0.000
#> SRR1480587 2 0.0000 0.9546 0.000 1.000
#> SRR1311205 1 0.0000 0.9739 1.000 0.000
#> SRR1076369 1 0.0000 0.9739 1.000 0.000
#> SRR1453549 1 0.0000 0.9739 1.000 0.000
#> SRR1345782 1 0.0000 0.9739 1.000 0.000
#> SRR1447850 2 0.0000 0.9546 0.000 1.000
#> SRR1391553 2 0.0000 0.9546 0.000 1.000
#> SRR1444156 2 0.0000 0.9546 0.000 1.000
#> SRR1471731 1 0.5946 0.8185 0.856 0.144
#> SRR1120987 1 0.1843 0.9498 0.972 0.028
#> SRR1477363 1 0.0000 0.9739 1.000 0.000
#> SRR1391961 1 0.5946 0.8190 0.856 0.144
#> SRR1373879 1 0.0000 0.9739 1.000 0.000
#> SRR1318732 1 0.7056 0.7515 0.808 0.192
#> SRR1091404 1 0.0000 0.9739 1.000 0.000
#> SRR1402109 1 0.0000 0.9739 1.000 0.000
#> SRR1407336 1 0.0000 0.9739 1.000 0.000
#> SRR1097417 2 0.0376 0.9523 0.004 0.996
#> SRR1396227 1 0.0000 0.9739 1.000 0.000
#> SRR1400775 2 0.0000 0.9546 0.000 1.000
#> SRR1392861 1 0.0000 0.9739 1.000 0.000
#> SRR1472929 2 0.1414 0.9408 0.020 0.980
#> SRR1436740 1 0.0000 0.9739 1.000 0.000
#> SRR1477057 2 0.0672 0.9497 0.008 0.992
#> SRR1311980 1 0.0672 0.9675 0.992 0.008
#> SRR1069400 1 0.0000 0.9739 1.000 0.000
#> SRR1351016 1 0.0000 0.9739 1.000 0.000
#> SRR1096291 1 0.0000 0.9739 1.000 0.000
#> SRR1418145 1 0.0000 0.9739 1.000 0.000
#> SRR1488111 2 0.7950 0.6907 0.240 0.760
#> SRR1370495 1 0.0000 0.9739 1.000 0.000
#> SRR1352639 1 0.0000 0.9739 1.000 0.000
#> SRR1348911 1 0.2043 0.9464 0.968 0.032
#> SRR1467386 1 0.0000 0.9739 1.000 0.000
#> SRR1415956 1 0.0000 0.9739 1.000 0.000
#> SRR1500495 1 0.0000 0.9739 1.000 0.000
#> SRR1405099 1 0.0000 0.9739 1.000 0.000
#> SRR1345585 2 0.8555 0.6215 0.280 0.720
#> SRR1093196 1 0.0672 0.9673 0.992 0.008
#> SRR1466006 2 0.0000 0.9546 0.000 1.000
#> SRR1351557 2 0.0000 0.9546 0.000 1.000
#> SRR1382687 1 0.0000 0.9739 1.000 0.000
#> SRR1375549 1 0.0000 0.9739 1.000 0.000
#> SRR1101765 1 0.0000 0.9739 1.000 0.000
#> SRR1334461 1 0.0000 0.9739 1.000 0.000
#> SRR1094073 2 0.0000 0.9546 0.000 1.000
#> SRR1077549 1 0.0000 0.9739 1.000 0.000
#> SRR1440332 1 0.0000 0.9739 1.000 0.000
#> SRR1454177 1 0.0000 0.9739 1.000 0.000
#> SRR1082447 1 0.0000 0.9739 1.000 0.000
#> SRR1420043 1 0.0000 0.9739 1.000 0.000
#> SRR1432500 1 0.0000 0.9739 1.000 0.000
#> SRR1378045 2 0.0000 0.9546 0.000 1.000
#> SRR1334200 1 0.8081 0.6614 0.752 0.248
#> SRR1069539 1 0.9993 0.0188 0.516 0.484
#> SRR1343031 1 0.0000 0.9739 1.000 0.000
#> SRR1319690 1 0.0000 0.9739 1.000 0.000
#> SRR1310604 2 0.0000 0.9546 0.000 1.000
#> SRR1327747 1 0.0000 0.9739 1.000 0.000
#> SRR1072456 2 0.0000 0.9546 0.000 1.000
#> SRR1367896 1 0.8861 0.5535 0.696 0.304
#> SRR1480107 1 0.0000 0.9739 1.000 0.000
#> SRR1377756 1 0.0000 0.9739 1.000 0.000
#> SRR1435272 1 0.0000 0.9739 1.000 0.000
#> SRR1089230 1 0.0000 0.9739 1.000 0.000
#> SRR1389522 1 0.0000 0.9739 1.000 0.000
#> SRR1080600 2 0.0000 0.9546 0.000 1.000
#> SRR1086935 2 0.9963 0.1577 0.464 0.536
#> SRR1344060 1 0.9732 0.3008 0.596 0.404
#> SRR1467922 2 0.0000 0.9546 0.000 1.000
#> SRR1090984 1 0.0000 0.9739 1.000 0.000
#> SRR1456991 1 0.0000 0.9739 1.000 0.000
#> SRR1085039 1 0.0000 0.9739 1.000 0.000
#> SRR1069303 1 0.0000 0.9739 1.000 0.000
#> SRR1091500 2 0.0000 0.9546 0.000 1.000
#> SRR1075198 2 0.0000 0.9546 0.000 1.000
#> SRR1086915 1 0.0000 0.9739 1.000 0.000
#> SRR1499503 2 0.0000 0.9546 0.000 1.000
#> SRR1094312 2 0.0000 0.9546 0.000 1.000
#> SRR1352437 1 0.0000 0.9739 1.000 0.000
#> SRR1436323 1 0.0000 0.9739 1.000 0.000
#> SRR1073507 1 0.0000 0.9739 1.000 0.000
#> SRR1401972 1 0.0000 0.9739 1.000 0.000
#> SRR1415510 2 0.0000 0.9546 0.000 1.000
#> SRR1327279 1 0.0000 0.9739 1.000 0.000
#> SRR1086983 1 0.0000 0.9739 1.000 0.000
#> SRR1105174 1 0.0000 0.9739 1.000 0.000
#> SRR1468893 1 0.0000 0.9739 1.000 0.000
#> SRR1362555 2 0.7883 0.6963 0.236 0.764
#> SRR1074526 1 0.0000 0.9739 1.000 0.000
#> SRR1326225 2 0.0000 0.9546 0.000 1.000
#> SRR1401933 1 0.0000 0.9739 1.000 0.000
#> SRR1324062 1 0.0000 0.9739 1.000 0.000
#> SRR1102296 1 0.0000 0.9739 1.000 0.000
#> SRR1085087 1 0.0000 0.9739 1.000 0.000
#> SRR1079046 1 0.0000 0.9739 1.000 0.000
#> SRR1328339 1 0.0000 0.9739 1.000 0.000
#> SRR1079782 2 0.0000 0.9546 0.000 1.000
#> SRR1092257 2 0.0938 0.9470 0.012 0.988
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.0237 0.9261 0.004 0.996 0.000
#> SRR1429287 2 0.0237 0.9255 0.000 0.996 0.004
#> SRR1359238 3 0.4399 0.6861 0.188 0.000 0.812
#> SRR1309597 3 0.5138 0.5344 0.252 0.000 0.748
#> SRR1441398 3 0.6095 0.2895 0.392 0.000 0.608
#> SRR1084055 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1417566 2 0.8345 0.4292 0.116 0.596 0.288
#> SRR1351857 3 0.5363 0.6077 0.276 0.000 0.724
#> SRR1487485 3 0.5327 0.5139 0.000 0.272 0.728
#> SRR1335875 3 0.7232 0.5185 0.116 0.172 0.712
#> SRR1073947 1 0.2537 0.7369 0.920 0.000 0.080
#> SRR1443483 3 0.2682 0.6732 0.076 0.004 0.920
#> SRR1346794 3 0.6095 0.2911 0.392 0.000 0.608
#> SRR1405245 3 0.5968 0.3510 0.364 0.000 0.636
#> SRR1409677 3 0.4555 0.6765 0.200 0.000 0.800
#> SRR1095549 3 0.5465 0.4800 0.288 0.000 0.712
#> SRR1323788 3 0.4291 0.6187 0.180 0.000 0.820
#> SRR1314054 2 0.0237 0.9255 0.000 0.996 0.004
#> SRR1077944 1 0.4931 0.5922 0.768 0.000 0.232
#> SRR1480587 2 0.0237 0.9261 0.004 0.996 0.000
#> SRR1311205 3 0.5905 0.3846 0.352 0.000 0.648
#> SRR1076369 1 0.5988 0.4095 0.632 0.000 0.368
#> SRR1453549 3 0.2165 0.7005 0.064 0.000 0.936
#> SRR1345782 3 0.6126 0.2713 0.400 0.000 0.600
#> SRR1447850 2 0.0424 0.9242 0.000 0.992 0.008
#> SRR1391553 2 0.2356 0.8782 0.000 0.928 0.072
#> SRR1444156 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1471731 3 0.2261 0.6821 0.000 0.068 0.932
#> SRR1120987 3 0.6483 0.2420 0.452 0.004 0.544
#> SRR1477363 1 0.5216 0.4939 0.740 0.000 0.260
#> SRR1391961 1 0.2400 0.7548 0.932 0.004 0.064
#> SRR1373879 3 0.0424 0.6939 0.008 0.000 0.992
#> SRR1318732 3 0.7189 0.4253 0.292 0.052 0.656
#> SRR1091404 1 0.1289 0.7647 0.968 0.000 0.032
#> SRR1402109 3 0.1031 0.6903 0.024 0.000 0.976
#> SRR1407336 3 0.0237 0.6928 0.004 0.000 0.996
#> SRR1097417 2 0.7323 0.6153 0.104 0.700 0.196
#> SRR1396227 1 0.5058 0.5420 0.756 0.000 0.244
#> SRR1400775 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1392861 3 0.4399 0.6819 0.188 0.000 0.812
#> SRR1472929 1 0.6007 0.6308 0.764 0.044 0.192
#> SRR1436740 3 0.4555 0.6765 0.200 0.000 0.800
#> SRR1477057 2 0.0424 0.9236 0.008 0.992 0.000
#> SRR1311980 3 0.1860 0.6828 0.052 0.000 0.948
#> SRR1069400 3 0.3116 0.6591 0.108 0.000 0.892
#> SRR1351016 1 0.6225 0.0162 0.568 0.000 0.432
#> SRR1096291 3 0.4504 0.6786 0.196 0.000 0.804
#> SRR1418145 3 0.6180 0.3399 0.416 0.000 0.584
#> SRR1488111 2 0.4586 0.8092 0.048 0.856 0.096
#> SRR1370495 1 0.2537 0.7460 0.920 0.000 0.080
#> SRR1352639 1 0.1753 0.7549 0.952 0.000 0.048
#> SRR1348911 3 0.7569 0.4578 0.088 0.248 0.664
#> SRR1467386 3 0.5016 0.6646 0.240 0.000 0.760
#> SRR1415956 1 0.4346 0.6701 0.816 0.000 0.184
#> SRR1500495 3 0.6168 0.2416 0.412 0.000 0.588
#> SRR1405099 1 0.1753 0.7614 0.952 0.000 0.048
#> SRR1345585 3 0.5536 0.5366 0.012 0.236 0.752
#> SRR1093196 3 0.0661 0.6940 0.004 0.008 0.988
#> SRR1466006 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1351557 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1382687 3 0.4796 0.6781 0.220 0.000 0.780
#> SRR1375549 1 0.1529 0.7518 0.960 0.000 0.040
#> SRR1101765 1 0.2165 0.7384 0.936 0.000 0.064
#> SRR1334461 1 0.1753 0.7611 0.952 0.000 0.048
#> SRR1094073 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1077549 3 0.4452 0.6806 0.192 0.000 0.808
#> SRR1440332 3 0.2356 0.6828 0.072 0.000 0.928
#> SRR1454177 3 0.4452 0.6806 0.192 0.000 0.808
#> SRR1082447 1 0.0892 0.7639 0.980 0.000 0.020
#> SRR1420043 3 0.1031 0.6971 0.024 0.000 0.976
#> SRR1432500 3 0.4842 0.6736 0.224 0.000 0.776
#> SRR1378045 2 0.3340 0.8312 0.000 0.880 0.120
#> SRR1334200 1 0.6067 0.5904 0.736 0.236 0.028
#> SRR1069539 2 0.6460 0.2070 0.004 0.556 0.440
#> SRR1343031 3 0.2261 0.6769 0.068 0.000 0.932
#> SRR1319690 3 0.5678 0.4368 0.316 0.000 0.684
#> SRR1310604 2 0.0892 0.9183 0.020 0.980 0.000
#> SRR1327747 3 0.3752 0.6417 0.144 0.000 0.856
#> SRR1072456 2 0.0424 0.9247 0.008 0.992 0.000
#> SRR1367896 3 0.5764 0.6033 0.076 0.124 0.800
#> SRR1480107 1 0.1163 0.7669 0.972 0.000 0.028
#> SRR1377756 3 0.5465 0.6225 0.288 0.000 0.712
#> SRR1435272 3 0.4452 0.6806 0.192 0.000 0.808
#> SRR1089230 3 0.4654 0.6721 0.208 0.000 0.792
#> SRR1389522 3 0.6008 0.3384 0.372 0.000 0.628
#> SRR1080600 2 0.0237 0.9261 0.004 0.996 0.000
#> SRR1086935 3 0.6807 0.6327 0.172 0.092 0.736
#> SRR1344060 1 0.6562 0.5448 0.700 0.264 0.036
#> SRR1467922 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1090984 1 0.5327 0.5913 0.728 0.000 0.272
#> SRR1456991 1 0.4121 0.6801 0.832 0.000 0.168
#> SRR1085039 1 0.3038 0.7217 0.896 0.000 0.104
#> SRR1069303 1 0.5254 0.5010 0.736 0.000 0.264
#> SRR1091500 2 0.3983 0.7990 0.144 0.852 0.004
#> SRR1075198 2 0.0237 0.9261 0.004 0.996 0.000
#> SRR1086915 3 0.4842 0.6601 0.224 0.000 0.776
#> SRR1499503 2 0.0237 0.9261 0.004 0.996 0.000
#> SRR1094312 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1352437 3 0.6252 0.2664 0.444 0.000 0.556
#> SRR1436323 3 0.0892 0.6971 0.020 0.000 0.980
#> SRR1073507 3 0.5926 0.5151 0.356 0.000 0.644
#> SRR1401972 1 0.5621 0.4132 0.692 0.000 0.308
#> SRR1415510 2 0.0892 0.9182 0.020 0.980 0.000
#> SRR1327279 3 0.5098 0.6735 0.248 0.000 0.752
#> SRR1086983 3 0.4750 0.6664 0.216 0.000 0.784
#> SRR1105174 1 0.0592 0.7663 0.988 0.000 0.012
#> SRR1468893 1 0.3816 0.6799 0.852 0.000 0.148
#> SRR1362555 1 0.6274 0.1023 0.544 0.456 0.000
#> SRR1074526 1 0.0237 0.7647 0.996 0.000 0.004
#> SRR1326225 2 0.0000 0.9263 0.000 1.000 0.000
#> SRR1401933 3 0.4842 0.6653 0.224 0.000 0.776
#> SRR1324062 3 0.4702 0.6694 0.212 0.000 0.788
#> SRR1102296 1 0.0592 0.7645 0.988 0.000 0.012
#> SRR1085087 1 0.6267 0.0199 0.548 0.000 0.452
#> SRR1079046 1 0.0237 0.7647 0.996 0.000 0.004
#> SRR1328339 1 0.4555 0.6439 0.800 0.000 0.200
#> SRR1079782 2 0.0892 0.9169 0.000 0.980 0.020
#> SRR1092257 2 0.5473 0.7455 0.140 0.808 0.052
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.0592 0.8759 0.000 0.984 0.016 0.000
#> SRR1429287 2 0.0779 0.8780 0.004 0.980 0.000 0.016
#> SRR1359238 4 0.2973 0.7582 0.000 0.000 0.144 0.856
#> SRR1309597 3 0.3432 0.7363 0.008 0.004 0.848 0.140
#> SRR1441398 3 0.3764 0.7439 0.172 0.000 0.816 0.012
#> SRR1084055 2 0.0779 0.8772 0.004 0.980 0.016 0.000
#> SRR1417566 3 0.7409 0.2567 0.144 0.404 0.448 0.004
#> SRR1351857 4 0.1488 0.8174 0.032 0.000 0.012 0.956
#> SRR1487485 3 0.4964 0.6526 0.000 0.032 0.724 0.244
#> SRR1335875 3 0.3854 0.6864 0.012 0.008 0.828 0.152
#> SRR1073947 1 0.1042 0.8249 0.972 0.000 0.008 0.020
#> SRR1443483 3 0.3351 0.7298 0.000 0.008 0.844 0.148
#> SRR1346794 3 0.5123 0.7046 0.232 0.000 0.724 0.044
#> SRR1405245 3 0.3708 0.7546 0.148 0.000 0.832 0.020
#> SRR1409677 4 0.0188 0.8177 0.000 0.000 0.004 0.996
#> SRR1095549 3 0.6353 0.6910 0.208 0.000 0.652 0.140
#> SRR1323788 4 0.7279 -0.0597 0.148 0.000 0.408 0.444
#> SRR1314054 2 0.3495 0.8654 0.000 0.844 0.140 0.016
#> SRR1077944 1 0.6071 0.5712 0.684 0.000 0.172 0.144
#> SRR1480587 2 0.2216 0.8548 0.000 0.908 0.092 0.000
#> SRR1311205 3 0.5766 0.7174 0.192 0.000 0.704 0.104
#> SRR1076369 3 0.4149 0.7325 0.168 0.028 0.804 0.000
#> SRR1453549 4 0.3074 0.7436 0.000 0.000 0.152 0.848
#> SRR1345782 3 0.4245 0.7323 0.196 0.000 0.784 0.020
#> SRR1447850 2 0.4841 0.8327 0.000 0.780 0.140 0.080
#> SRR1391553 2 0.4746 0.6111 0.000 0.632 0.368 0.000
#> SRR1444156 2 0.2921 0.8676 0.000 0.860 0.140 0.000
#> SRR1471731 4 0.1940 0.7959 0.000 0.000 0.076 0.924
#> SRR1120987 4 0.2412 0.7767 0.008 0.084 0.000 0.908
#> SRR1477363 1 0.6566 0.5248 0.624 0.000 0.140 0.236
#> SRR1391961 1 0.1209 0.8145 0.964 0.032 0.004 0.000
#> SRR1373879 4 0.4985 0.0366 0.000 0.000 0.468 0.532
#> SRR1318732 3 0.3428 0.7530 0.144 0.000 0.844 0.012
#> SRR1091404 1 0.0592 0.8211 0.984 0.000 0.016 0.000
#> SRR1402109 3 0.4992 0.1659 0.000 0.000 0.524 0.476
#> SRR1407336 4 0.4522 0.4511 0.000 0.000 0.320 0.680
#> SRR1097417 3 0.2198 0.6684 0.008 0.072 0.920 0.000
#> SRR1396227 1 0.5388 0.1320 0.532 0.000 0.012 0.456
#> SRR1400775 2 0.2921 0.8676 0.000 0.860 0.140 0.000
#> SRR1392861 4 0.0000 0.8172 0.000 0.000 0.000 1.000
#> SRR1472929 3 0.7220 0.3308 0.260 0.196 0.544 0.000
#> SRR1436740 4 0.0188 0.8169 0.004 0.000 0.000 0.996
#> SRR1477057 2 0.3046 0.8786 0.004 0.884 0.096 0.016
#> SRR1311980 3 0.5097 0.1741 0.000 0.004 0.568 0.428
#> SRR1069400 3 0.3123 0.7267 0.000 0.000 0.844 0.156
#> SRR1351016 1 0.4389 0.7373 0.812 0.000 0.116 0.072
#> SRR1096291 4 0.0469 0.8178 0.000 0.000 0.012 0.988
#> SRR1418145 4 0.2610 0.7750 0.012 0.088 0.000 0.900
#> SRR1488111 2 0.5060 0.3634 0.004 0.584 0.000 0.412
#> SRR1370495 1 0.3495 0.7419 0.844 0.140 0.016 0.000
#> SRR1352639 1 0.5530 0.7387 0.760 0.144 0.024 0.072
#> SRR1348911 3 0.0927 0.7324 0.000 0.008 0.976 0.016
#> SRR1467386 4 0.4050 0.7217 0.168 0.000 0.024 0.808
#> SRR1415956 1 0.3726 0.6308 0.788 0.000 0.212 0.000
#> SRR1500495 3 0.3852 0.7402 0.180 0.000 0.808 0.012
#> SRR1405099 1 0.1510 0.8203 0.956 0.000 0.028 0.016
#> SRR1345585 3 0.4185 0.7498 0.036 0.012 0.832 0.120
#> SRR1093196 4 0.3266 0.7192 0.000 0.000 0.168 0.832
#> SRR1466006 2 0.0817 0.8757 0.000 0.976 0.024 0.000
#> SRR1351557 2 0.1118 0.8832 0.000 0.964 0.036 0.000
#> SRR1382687 4 0.4586 0.7083 0.136 0.000 0.068 0.796
#> SRR1375549 1 0.1398 0.8226 0.956 0.004 0.000 0.040
#> SRR1101765 1 0.0188 0.8231 0.996 0.004 0.000 0.000
#> SRR1334461 1 0.2654 0.7725 0.888 0.108 0.004 0.000
#> SRR1094073 2 0.2647 0.8746 0.000 0.880 0.120 0.000
#> SRR1077549 4 0.0469 0.8170 0.000 0.000 0.012 0.988
#> SRR1440332 4 0.5172 0.2633 0.008 0.000 0.404 0.588
#> SRR1454177 4 0.0000 0.8172 0.000 0.000 0.000 1.000
#> SRR1082447 1 0.0895 0.8248 0.976 0.000 0.004 0.020
#> SRR1420043 4 0.3266 0.7258 0.000 0.000 0.168 0.832
#> SRR1432500 4 0.2466 0.7922 0.004 0.000 0.096 0.900
#> SRR1378045 3 0.3649 0.5038 0.000 0.204 0.796 0.000
#> SRR1334200 1 0.3946 0.7212 0.812 0.168 0.020 0.000
#> SRR1069539 4 0.7228 0.2643 0.004 0.332 0.140 0.524
#> SRR1343031 3 0.4564 0.5360 0.000 0.000 0.672 0.328
#> SRR1319690 3 0.3999 0.7590 0.140 0.000 0.824 0.036
#> SRR1310604 2 0.3142 0.8176 0.008 0.860 0.132 0.000
#> SRR1327747 3 0.4951 0.6915 0.044 0.000 0.744 0.212
#> SRR1072456 2 0.2266 0.8587 0.004 0.912 0.084 0.000
#> SRR1367896 3 0.3208 0.7300 0.000 0.004 0.848 0.148
#> SRR1480107 1 0.0376 0.8236 0.992 0.000 0.004 0.004
#> SRR1377756 4 0.3494 0.7326 0.172 0.000 0.004 0.824
#> SRR1435272 4 0.0000 0.8172 0.000 0.000 0.000 1.000
#> SRR1089230 4 0.0336 0.8173 0.008 0.000 0.000 0.992
#> SRR1389522 3 0.4150 0.7575 0.076 0.056 0.848 0.020
#> SRR1080600 2 0.3528 0.7596 0.000 0.808 0.192 0.000
#> SRR1086935 4 0.1398 0.8032 0.000 0.040 0.004 0.956
#> SRR1344060 1 0.4175 0.6969 0.784 0.200 0.016 0.000
#> SRR1467922 2 0.3024 0.8672 0.000 0.852 0.148 0.000
#> SRR1090984 3 0.5447 0.2901 0.460 0.008 0.528 0.004
#> SRR1456991 1 0.3873 0.6069 0.772 0.000 0.228 0.000
#> SRR1085039 1 0.1820 0.8200 0.944 0.000 0.020 0.036
#> SRR1069303 1 0.4040 0.6701 0.752 0.000 0.000 0.248
#> SRR1091500 2 0.4746 0.8492 0.064 0.792 0.140 0.004
#> SRR1075198 2 0.0707 0.8755 0.000 0.980 0.020 0.000
#> SRR1086915 4 0.0469 0.8174 0.012 0.000 0.000 0.988
#> SRR1499503 2 0.2216 0.8531 0.000 0.908 0.092 0.000
#> SRR1094312 2 0.2011 0.8820 0.000 0.920 0.080 0.000
#> SRR1352437 4 0.4821 0.6961 0.160 0.008 0.048 0.784
#> SRR1436323 4 0.1716 0.8021 0.000 0.000 0.064 0.936
#> SRR1073507 4 0.3801 0.6854 0.220 0.000 0.000 0.780
#> SRR1401972 1 0.4482 0.6416 0.728 0.008 0.000 0.264
#> SRR1415510 2 0.2589 0.8653 0.000 0.884 0.116 0.000
#> SRR1327279 4 0.4937 0.6963 0.064 0.000 0.172 0.764
#> SRR1086983 4 0.0707 0.8165 0.020 0.000 0.000 0.980
#> SRR1105174 1 0.1209 0.8172 0.964 0.000 0.032 0.004
#> SRR1468893 1 0.3088 0.7721 0.864 0.000 0.008 0.128
#> SRR1362555 1 0.5339 0.4487 0.624 0.356 0.020 0.000
#> SRR1074526 1 0.0188 0.8231 0.996 0.004 0.000 0.000
#> SRR1326225 2 0.2973 0.8677 0.000 0.856 0.144 0.000
#> SRR1401933 4 0.2081 0.7963 0.084 0.000 0.000 0.916
#> SRR1324062 4 0.0524 0.8188 0.008 0.000 0.004 0.988
#> SRR1102296 1 0.0592 0.8251 0.984 0.000 0.000 0.016
#> SRR1085087 4 0.5125 0.3055 0.388 0.008 0.000 0.604
#> SRR1079046 1 0.0188 0.8231 0.996 0.004 0.000 0.000
#> SRR1328339 3 0.5172 0.4251 0.404 0.008 0.588 0.000
#> SRR1079782 2 0.1584 0.8715 0.000 0.952 0.012 0.036
#> SRR1092257 2 0.4346 0.8396 0.004 0.824 0.076 0.096
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 5 0.3999 0.31705 0.000 0.344 0.000 0.000 0.656
#> SRR1429287 5 0.4636 0.35485 0.000 0.308 0.004 0.024 0.664
#> SRR1359238 4 0.1792 0.80427 0.000 0.000 0.084 0.916 0.000
#> SRR1309597 3 0.0486 0.67190 0.004 0.000 0.988 0.004 0.004
#> SRR1441398 3 0.4196 0.49208 0.356 0.000 0.640 0.004 0.000
#> SRR1084055 5 0.2864 0.52607 0.000 0.136 0.012 0.000 0.852
#> SRR1417566 3 0.6478 0.50250 0.152 0.300 0.536 0.004 0.008
#> SRR1351857 4 0.3607 0.66203 0.004 0.000 0.000 0.752 0.244
#> SRR1487485 3 0.1845 0.67168 0.000 0.016 0.928 0.056 0.000
#> SRR1335875 3 0.5793 0.45950 0.352 0.068 0.568 0.008 0.004
#> SRR1073947 1 0.0703 0.71949 0.976 0.000 0.000 0.000 0.024
#> SRR1443483 3 0.0865 0.66077 0.000 0.000 0.972 0.004 0.024
#> SRR1346794 3 0.5064 0.35003 0.416 0.000 0.552 0.004 0.028
#> SRR1405245 3 0.4196 0.49093 0.356 0.000 0.640 0.004 0.000
#> SRR1409677 4 0.0703 0.82869 0.000 0.000 0.000 0.976 0.024
#> SRR1095549 3 0.6308 0.42965 0.284 0.000 0.588 0.044 0.084
#> SRR1323788 3 0.5925 0.39081 0.384 0.000 0.528 0.076 0.012
#> SRR1314054 2 0.1341 0.75557 0.000 0.944 0.000 0.000 0.056
#> SRR1077944 1 0.2127 0.67474 0.892 0.000 0.108 0.000 0.000
#> SRR1480587 2 0.5597 0.06937 0.000 0.488 0.072 0.000 0.440
#> SRR1311205 3 0.4397 0.35465 0.432 0.000 0.564 0.004 0.000
#> SRR1076369 5 0.5882 0.43054 0.148 0.000 0.264 0.000 0.588
#> SRR1453549 3 0.5403 0.20424 0.056 0.000 0.488 0.456 0.000
#> SRR1345782 3 0.3752 0.56463 0.292 0.000 0.708 0.000 0.000
#> SRR1447850 2 0.0963 0.73868 0.000 0.964 0.000 0.036 0.000
#> SRR1391553 2 0.1408 0.71245 0.008 0.948 0.044 0.000 0.000
#> SRR1444156 2 0.0000 0.74757 0.000 1.000 0.000 0.000 0.000
#> SRR1471731 4 0.2886 0.75190 0.008 0.000 0.148 0.844 0.000
#> SRR1120987 4 0.2011 0.80029 0.004 0.000 0.000 0.908 0.088
#> SRR1477363 1 0.3274 0.55291 0.780 0.000 0.220 0.000 0.000
#> SRR1391961 1 0.4283 0.17284 0.544 0.000 0.000 0.000 0.456
#> SRR1373879 3 0.4621 0.29119 0.008 0.000 0.576 0.412 0.004
#> SRR1318732 3 0.2393 0.67514 0.080 0.000 0.900 0.004 0.016
#> SRR1091404 1 0.3957 0.50623 0.712 0.000 0.008 0.000 0.280
#> SRR1402109 3 0.4545 0.18157 0.004 0.000 0.560 0.432 0.004
#> SRR1407336 4 0.2519 0.79548 0.000 0.000 0.100 0.884 0.016
#> SRR1097417 3 0.3636 0.48710 0.000 0.000 0.728 0.000 0.272
#> SRR1396227 1 0.1153 0.71556 0.964 0.000 0.024 0.004 0.008
#> SRR1400775 2 0.0794 0.75763 0.000 0.972 0.000 0.000 0.028
#> SRR1392861 4 0.0162 0.82900 0.000 0.000 0.004 0.996 0.000
#> SRR1472929 5 0.3918 0.52326 0.008 0.008 0.232 0.000 0.752
#> SRR1436740 4 0.0324 0.82933 0.004 0.000 0.000 0.992 0.004
#> SRR1477057 2 0.5013 0.57313 0.080 0.680 0.000 0.000 0.240
#> SRR1311980 3 0.6689 0.54413 0.264 0.116 0.568 0.052 0.000
#> SRR1069400 3 0.1704 0.63391 0.000 0.000 0.928 0.004 0.068
#> SRR1351016 1 0.3231 0.58508 0.800 0.000 0.196 0.000 0.004
#> SRR1096291 4 0.3366 0.70195 0.000 0.000 0.004 0.784 0.212
#> SRR1418145 4 0.3816 0.54533 0.000 0.000 0.000 0.696 0.304
#> SRR1488111 4 0.5754 0.33132 0.000 0.260 0.000 0.604 0.136
#> SRR1370495 5 0.2929 0.53278 0.180 0.000 0.000 0.000 0.820
#> SRR1352639 5 0.4504 0.26436 0.428 0.000 0.000 0.008 0.564
#> SRR1348911 3 0.4237 0.64662 0.152 0.076 0.772 0.000 0.000
#> SRR1467386 1 0.4740 0.08322 0.516 0.000 0.016 0.468 0.000
#> SRR1415956 1 0.3160 0.59127 0.808 0.000 0.188 0.000 0.004
#> SRR1500495 3 0.4182 0.42205 0.400 0.000 0.600 0.000 0.000
#> SRR1405099 1 0.1270 0.70531 0.948 0.000 0.052 0.000 0.000
#> SRR1345585 3 0.0609 0.66556 0.000 0.000 0.980 0.000 0.020
#> SRR1093196 4 0.2471 0.76647 0.000 0.000 0.136 0.864 0.000
#> SRR1466006 5 0.5320 0.22255 0.000 0.368 0.060 0.000 0.572
#> SRR1351557 2 0.4101 0.41226 0.000 0.628 0.000 0.000 0.372
#> SRR1382687 1 0.6019 0.04711 0.528 0.000 0.368 0.096 0.008
#> SRR1375549 1 0.2411 0.69908 0.884 0.000 0.000 0.008 0.108
#> SRR1101765 5 0.5558 0.11067 0.360 0.000 0.000 0.080 0.560
#> SRR1334461 5 0.4307 -0.10549 0.496 0.000 0.000 0.000 0.504
#> SRR1094073 2 0.3730 0.57189 0.000 0.712 0.000 0.000 0.288
#> SRR1077549 4 0.0671 0.82847 0.004 0.000 0.016 0.980 0.000
#> SRR1440332 3 0.5071 0.26999 0.036 0.000 0.540 0.424 0.000
#> SRR1454177 4 0.0000 0.82957 0.000 0.000 0.000 1.000 0.000
#> SRR1082447 1 0.1043 0.71738 0.960 0.000 0.000 0.000 0.040
#> SRR1420043 4 0.2561 0.74788 0.000 0.000 0.144 0.856 0.000
#> SRR1432500 4 0.1205 0.82497 0.004 0.000 0.040 0.956 0.000
#> SRR1378045 3 0.4446 0.11741 0.000 0.476 0.520 0.000 0.004
#> SRR1334200 5 0.1205 0.55438 0.040 0.000 0.000 0.004 0.956
#> SRR1069539 5 0.4067 0.45500 0.000 0.004 0.020 0.228 0.748
#> SRR1343031 4 0.5114 -0.00557 0.000 0.000 0.476 0.488 0.036
#> SRR1319690 3 0.2731 0.67069 0.104 0.000 0.876 0.016 0.004
#> SRR1310604 5 0.2233 0.56013 0.000 0.016 0.080 0.000 0.904
#> SRR1327747 3 0.3142 0.65620 0.004 0.000 0.856 0.108 0.032
#> SRR1072456 5 0.6264 0.20894 0.000 0.344 0.160 0.000 0.496
#> SRR1367896 3 0.1365 0.65724 0.004 0.000 0.952 0.004 0.040
#> SRR1480107 1 0.1041 0.71847 0.964 0.000 0.004 0.000 0.032
#> SRR1377756 1 0.4401 0.53205 0.684 0.000 0.004 0.296 0.016
#> SRR1435272 4 0.0000 0.82957 0.000 0.000 0.000 1.000 0.000
#> SRR1089230 4 0.1557 0.82096 0.008 0.000 0.000 0.940 0.052
#> SRR1389522 3 0.1168 0.66425 0.008 0.000 0.960 0.000 0.032
#> SRR1080600 5 0.3696 0.53337 0.000 0.016 0.212 0.000 0.772
#> SRR1086935 4 0.0671 0.82935 0.004 0.000 0.000 0.980 0.016
#> SRR1344060 5 0.2069 0.54792 0.076 0.012 0.000 0.000 0.912
#> SRR1467922 2 0.0000 0.74757 0.000 1.000 0.000 0.000 0.000
#> SRR1090984 1 0.4684 -0.09910 0.536 0.004 0.452 0.000 0.008
#> SRR1456991 1 0.3333 0.56147 0.788 0.000 0.208 0.000 0.004
#> SRR1085039 1 0.3284 0.66643 0.828 0.000 0.024 0.000 0.148
#> SRR1069303 1 0.1117 0.71997 0.964 0.000 0.000 0.016 0.020
#> SRR1091500 2 0.1197 0.73583 0.000 0.952 0.000 0.000 0.048
#> SRR1075198 5 0.5120 0.42558 0.000 0.252 0.056 0.012 0.680
#> SRR1086915 4 0.1124 0.82663 0.004 0.000 0.000 0.960 0.036
#> SRR1499503 5 0.6148 0.29960 0.000 0.304 0.160 0.000 0.536
#> SRR1094312 2 0.2966 0.69079 0.000 0.816 0.000 0.000 0.184
#> SRR1352437 1 0.3589 0.67183 0.824 0.040 0.004 0.132 0.000
#> SRR1436323 4 0.2295 0.80446 0.004 0.000 0.088 0.900 0.008
#> SRR1073507 4 0.4151 0.40496 0.344 0.000 0.004 0.652 0.000
#> SRR1401972 1 0.0671 0.72102 0.980 0.000 0.000 0.016 0.004
#> SRR1415510 5 0.6512 0.15886 0.000 0.348 0.200 0.000 0.452
#> SRR1327279 4 0.6357 0.07641 0.128 0.000 0.340 0.520 0.012
#> SRR1086983 4 0.1638 0.80660 0.064 0.000 0.004 0.932 0.000
#> SRR1105174 1 0.2278 0.70898 0.908 0.000 0.060 0.000 0.032
#> SRR1468893 1 0.0727 0.71933 0.980 0.000 0.012 0.004 0.004
#> SRR1362555 5 0.3888 0.52570 0.176 0.032 0.000 0.004 0.788
#> SRR1074526 1 0.4304 0.10980 0.516 0.000 0.000 0.000 0.484
#> SRR1326225 2 0.1792 0.75024 0.000 0.916 0.000 0.000 0.084
#> SRR1401933 1 0.4945 0.24404 0.536 0.000 0.004 0.440 0.020
#> SRR1324062 1 0.4904 0.17144 0.504 0.000 0.024 0.472 0.000
#> SRR1102296 1 0.0854 0.71816 0.976 0.008 0.012 0.000 0.004
#> SRR1085087 1 0.3538 0.65027 0.804 0.000 0.004 0.176 0.016
#> SRR1079046 1 0.1851 0.70106 0.912 0.000 0.000 0.000 0.088
#> SRR1328339 1 0.4430 -0.10046 0.540 0.004 0.456 0.000 0.000
#> SRR1079782 5 0.5495 0.10231 0.000 0.408 0.008 0.048 0.536
#> SRR1092257 2 0.5523 0.38604 0.008 0.584 0.000 0.060 0.348
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.5155 0.4125 0.000 0.596 0.000 0.000 0.124 0.280
#> SRR1429287 2 0.2095 0.6202 0.008 0.920 0.000 0.040 0.012 0.020
#> SRR1359238 4 0.2070 0.6716 0.000 0.000 0.092 0.896 0.012 0.000
#> SRR1309597 3 0.0653 0.6090 0.004 0.012 0.980 0.000 0.004 0.000
#> SRR1441398 3 0.4325 0.2356 0.456 0.000 0.524 0.000 0.020 0.000
#> SRR1084055 2 0.5635 0.2766 0.000 0.492 0.008 0.000 0.380 0.120
#> SRR1417566 1 0.5146 0.1111 0.576 0.020 0.360 0.000 0.036 0.008
#> SRR1351857 4 0.4384 0.4775 0.036 0.012 0.000 0.684 0.268 0.000
#> SRR1487485 3 0.3338 0.5929 0.016 0.012 0.860 0.068 0.028 0.016
#> SRR1335875 3 0.6069 0.3975 0.312 0.000 0.536 0.000 0.064 0.088
#> SRR1073947 5 0.4747 0.1678 0.308 0.004 0.052 0.000 0.632 0.004
#> SRR1443483 3 0.1237 0.6055 0.000 0.020 0.956 0.004 0.020 0.000
#> SRR1346794 1 0.5707 0.3482 0.648 0.148 0.148 0.004 0.052 0.000
#> SRR1405245 3 0.4212 0.3001 0.424 0.000 0.560 0.000 0.016 0.000
#> SRR1409677 4 0.1226 0.6656 0.004 0.040 0.000 0.952 0.004 0.000
#> SRR1095549 1 0.7100 0.0495 0.440 0.012 0.276 0.064 0.208 0.000
#> SRR1323788 1 0.4479 0.2783 0.672 0.000 0.280 0.024 0.024 0.000
#> SRR1314054 6 0.1918 0.7594 0.000 0.088 0.000 0.008 0.000 0.904
#> SRR1077944 1 0.3893 0.5414 0.768 0.000 0.140 0.000 0.092 0.000
#> SRR1480587 2 0.5801 0.4844 0.000 0.580 0.260 0.000 0.032 0.128
#> SRR1311205 3 0.5316 0.1876 0.416 0.000 0.480 0.000 0.104 0.000
#> SRR1076369 2 0.7184 0.1016 0.348 0.364 0.200 0.004 0.084 0.000
#> SRR1453549 4 0.4695 0.1869 0.008 0.000 0.476 0.492 0.020 0.004
#> SRR1345782 3 0.5495 0.4961 0.156 0.000 0.604 0.012 0.228 0.000
#> SRR1447850 6 0.1152 0.7505 0.000 0.004 0.000 0.044 0.000 0.952
#> SRR1391553 6 0.2002 0.7140 0.012 0.004 0.076 0.000 0.000 0.908
#> SRR1444156 6 0.0146 0.7559 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1471731 4 0.4887 0.5890 0.092 0.020 0.136 0.732 0.020 0.000
#> SRR1120987 4 0.4118 0.4342 0.000 0.312 0.000 0.660 0.028 0.000
#> SRR1477363 1 0.4990 0.4182 0.644 0.000 0.204 0.000 0.152 0.000
#> SRR1391961 5 0.2747 0.5693 0.096 0.044 0.000 0.000 0.860 0.000
#> SRR1373879 4 0.4403 0.2238 0.000 0.000 0.468 0.508 0.024 0.000
#> SRR1318732 3 0.5644 0.3026 0.344 0.048 0.548 0.000 0.060 0.000
#> SRR1091404 5 0.3872 0.2035 0.392 0.004 0.000 0.000 0.604 0.000
#> SRR1402109 4 0.4253 0.2569 0.000 0.000 0.460 0.524 0.016 0.000
#> SRR1407336 4 0.2623 0.6557 0.000 0.000 0.132 0.852 0.016 0.000
#> SRR1097417 3 0.4752 0.2403 0.000 0.024 0.516 0.004 0.448 0.008
#> SRR1396227 1 0.1701 0.5488 0.920 0.000 0.008 0.000 0.072 0.000
#> SRR1400775 6 0.2020 0.7549 0.000 0.096 0.000 0.000 0.008 0.896
#> SRR1392861 4 0.0405 0.6742 0.000 0.000 0.008 0.988 0.004 0.000
#> SRR1472929 5 0.5226 -0.2454 0.000 0.448 0.092 0.000 0.460 0.000
#> SRR1436740 4 0.0291 0.6712 0.000 0.004 0.000 0.992 0.004 0.000
#> SRR1477057 6 0.6845 0.2965 0.084 0.236 0.000 0.000 0.204 0.476
#> SRR1311980 3 0.6364 0.4785 0.232 0.000 0.584 0.092 0.020 0.072
#> SRR1069400 3 0.3133 0.5665 0.000 0.040 0.856 0.032 0.072 0.000
#> SRR1351016 1 0.5897 0.2520 0.456 0.000 0.180 0.004 0.360 0.000
#> SRR1096291 4 0.4049 0.3915 0.000 0.332 0.000 0.648 0.020 0.000
#> SRR1418145 2 0.4270 0.3687 0.024 0.660 0.000 0.308 0.008 0.000
#> SRR1488111 4 0.6135 0.0324 0.008 0.396 0.000 0.472 0.044 0.080
#> SRR1370495 2 0.3103 0.5818 0.064 0.836 0.000 0.000 0.100 0.000
#> SRR1352639 2 0.5739 0.1499 0.284 0.528 0.000 0.000 0.184 0.004
#> SRR1348911 3 0.6019 0.3842 0.044 0.000 0.552 0.012 0.076 0.316
#> SRR1467386 4 0.5066 0.3702 0.308 0.000 0.012 0.608 0.072 0.000
#> SRR1415956 1 0.3542 0.5178 0.788 0.000 0.160 0.000 0.052 0.000
#> SRR1500495 3 0.4256 0.2180 0.464 0.000 0.520 0.000 0.016 0.000
#> SRR1405099 1 0.3938 0.4919 0.728 0.000 0.044 0.000 0.228 0.000
#> SRR1345585 3 0.2954 0.5656 0.028 0.060 0.868 0.000 0.044 0.000
#> SRR1093196 4 0.1327 0.6801 0.000 0.000 0.064 0.936 0.000 0.000
#> SRR1466006 2 0.4268 0.5930 0.000 0.748 0.180 0.000 0.040 0.032
#> SRR1351557 2 0.3986 0.2782 0.004 0.608 0.000 0.000 0.004 0.384
#> SRR1382687 1 0.3739 0.4613 0.776 0.000 0.176 0.040 0.008 0.000
#> SRR1375549 1 0.4851 0.2454 0.636 0.292 0.000 0.012 0.060 0.000
#> SRR1101765 1 0.6699 -0.0268 0.428 0.360 0.000 0.080 0.132 0.000
#> SRR1334461 5 0.2888 0.5691 0.092 0.056 0.000 0.000 0.852 0.000
#> SRR1094073 6 0.3531 0.4362 0.000 0.328 0.000 0.000 0.000 0.672
#> SRR1077549 4 0.2250 0.6698 0.000 0.000 0.092 0.888 0.020 0.000
#> SRR1440332 4 0.4653 0.1889 0.012 0.000 0.476 0.492 0.020 0.000
#> SRR1454177 4 0.0405 0.6747 0.000 0.000 0.008 0.988 0.004 0.000
#> SRR1082447 1 0.2234 0.5152 0.872 0.000 0.004 0.000 0.124 0.000
#> SRR1420043 4 0.3104 0.6211 0.000 0.000 0.184 0.800 0.016 0.000
#> SRR1432500 4 0.3867 0.6382 0.004 0.004 0.124 0.788 0.080 0.000
#> SRR1378045 6 0.5382 -0.0129 0.032 0.012 0.464 0.000 0.024 0.468
#> SRR1334200 2 0.4059 0.5190 0.088 0.760 0.000 0.004 0.148 0.000
#> SRR1069539 2 0.3592 0.5896 0.000 0.812 0.020 0.124 0.044 0.000
#> SRR1343031 4 0.5110 0.3118 0.000 0.004 0.396 0.528 0.072 0.000
#> SRR1319690 3 0.4063 0.4898 0.280 0.008 0.692 0.000 0.020 0.000
#> SRR1310604 2 0.5011 0.4425 0.000 0.616 0.112 0.000 0.272 0.000
#> SRR1327747 3 0.7200 0.1561 0.288 0.160 0.460 0.036 0.056 0.000
#> SRR1072456 2 0.6114 0.4843 0.000 0.576 0.204 0.000 0.052 0.168
#> SRR1367896 3 0.2784 0.5884 0.000 0.020 0.868 0.020 0.092 0.000
#> SRR1480107 1 0.3975 0.2924 0.600 0.000 0.008 0.000 0.392 0.000
#> SRR1377756 1 0.3259 0.5064 0.844 0.032 0.004 0.100 0.020 0.000
#> SRR1435272 4 0.0291 0.6730 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR1089230 4 0.6495 0.2544 0.260 0.268 0.000 0.444 0.028 0.000
#> SRR1389522 3 0.2518 0.5990 0.004 0.012 0.884 0.012 0.088 0.000
#> SRR1080600 2 0.2307 0.6233 0.004 0.896 0.068 0.000 0.032 0.000
#> SRR1086935 4 0.5689 0.4658 0.196 0.176 0.000 0.608 0.012 0.008
#> SRR1344060 5 0.4325 -0.1525 0.020 0.456 0.000 0.000 0.524 0.000
#> SRR1467922 6 0.0692 0.7633 0.000 0.020 0.000 0.000 0.004 0.976
#> SRR1090984 1 0.4115 0.1514 0.624 0.000 0.360 0.000 0.004 0.012
#> SRR1456991 1 0.5667 0.2514 0.472 0.000 0.160 0.000 0.368 0.000
#> SRR1085039 5 0.4428 0.3985 0.244 0.000 0.072 0.000 0.684 0.000
#> SRR1069303 1 0.3371 0.4917 0.780 0.000 0.000 0.016 0.200 0.004
#> SRR1091500 6 0.1257 0.7578 0.000 0.028 0.000 0.000 0.020 0.952
#> SRR1075198 2 0.0665 0.6268 0.000 0.980 0.008 0.008 0.000 0.004
#> SRR1086915 4 0.5305 0.4172 0.120 0.268 0.000 0.604 0.008 0.000
#> SRR1499503 2 0.6347 0.4191 0.000 0.544 0.144 0.000 0.068 0.244
#> SRR1094312 6 0.3387 0.6891 0.000 0.164 0.000 0.000 0.040 0.796
#> SRR1352437 1 0.7170 0.1250 0.424 0.000 0.000 0.136 0.280 0.160
#> SRR1436323 4 0.5697 0.3739 0.320 0.012 0.088 0.564 0.016 0.000
#> SRR1073507 4 0.3837 0.5994 0.068 0.000 0.008 0.784 0.140 0.000
#> SRR1401972 1 0.3073 0.5132 0.816 0.000 0.000 0.016 0.164 0.004
#> SRR1415510 2 0.5643 0.4701 0.016 0.568 0.336 0.000 0.044 0.036
#> SRR1327279 4 0.6370 0.2465 0.008 0.004 0.256 0.404 0.328 0.000
#> SRR1086983 4 0.1845 0.6613 0.072 0.008 0.000 0.916 0.004 0.000
#> SRR1105174 1 0.2997 0.5577 0.844 0.000 0.060 0.000 0.096 0.000
#> SRR1468893 1 0.1493 0.5399 0.936 0.004 0.000 0.004 0.056 0.000
#> SRR1362555 2 0.2201 0.6195 0.024 0.912 0.012 0.000 0.048 0.004
#> SRR1074526 5 0.4597 0.4377 0.276 0.072 0.000 0.000 0.652 0.000
#> SRR1326225 6 0.2597 0.6965 0.000 0.176 0.000 0.000 0.000 0.824
#> SRR1401933 1 0.5098 0.3953 0.700 0.112 0.004 0.152 0.032 0.000
#> SRR1324062 1 0.5573 0.1768 0.476 0.004 0.020 0.444 0.048 0.008
#> SRR1102296 1 0.4302 0.3744 0.628 0.000 0.004 0.000 0.344 0.024
#> SRR1085087 1 0.6506 0.1968 0.436 0.024 0.000 0.208 0.328 0.004
#> SRR1079046 1 0.3707 0.4261 0.784 0.136 0.000 0.000 0.080 0.000
#> SRR1328339 1 0.4591 -0.1574 0.500 0.000 0.464 0.000 0.036 0.000
#> SRR1079782 2 0.3462 0.6175 0.008 0.848 0.004 0.060 0.024 0.056
#> SRR1092257 2 0.6335 0.3591 0.028 0.572 0.000 0.048 0.092 0.260
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
ATC:hclust
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["ATC", "hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.350 0.833 0.884 0.4138 0.566 0.566
#> 3 3 0.424 0.711 0.828 0.4862 0.780 0.616
#> 4 4 0.490 0.477 0.702 0.1617 0.856 0.630
#> 5 5 0.496 0.400 0.621 0.0515 0.921 0.747
#> 6 6 0.518 0.482 0.595 0.0445 0.869 0.554
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.884 0.000 1.000
#> SRR1429287 1 0.6801 0.872 0.820 0.180
#> SRR1359238 1 0.5629 0.891 0.868 0.132
#> SRR1309597 1 0.0000 0.850 1.000 0.000
#> SRR1441398 1 0.0000 0.850 1.000 0.000
#> SRR1084055 1 0.9209 0.647 0.664 0.336
#> SRR1417566 1 0.5519 0.891 0.872 0.128
#> SRR1351857 2 0.0000 0.884 0.000 1.000
#> SRR1487485 1 0.7219 0.862 0.800 0.200
#> SRR1335875 1 0.5842 0.891 0.860 0.140
#> SRR1073947 1 0.6247 0.887 0.844 0.156
#> SRR1443483 1 0.5178 0.890 0.884 0.116
#> SRR1346794 1 0.5629 0.891 0.868 0.132
#> SRR1405245 1 0.0000 0.850 1.000 0.000
#> SRR1409677 2 0.3114 0.868 0.056 0.944
#> SRR1095549 2 0.7674 0.721 0.224 0.776
#> SRR1323788 1 0.7815 0.826 0.768 0.232
#> SRR1314054 2 0.0000 0.884 0.000 1.000
#> SRR1077944 1 0.5842 0.891 0.860 0.140
#> SRR1480587 1 0.0000 0.850 1.000 0.000
#> SRR1311205 1 0.0000 0.850 1.000 0.000
#> SRR1076369 1 0.5842 0.889 0.860 0.140
#> SRR1453549 1 0.5629 0.891 0.868 0.132
#> SRR1345782 1 0.7815 0.826 0.768 0.232
#> SRR1447850 1 0.8443 0.787 0.728 0.272
#> SRR1391553 1 0.6531 0.879 0.832 0.168
#> SRR1444156 2 0.0000 0.884 0.000 1.000
#> SRR1471731 1 0.6531 0.879 0.832 0.168
#> SRR1120987 2 0.0672 0.884 0.008 0.992
#> SRR1477363 1 0.5737 0.890 0.864 0.136
#> SRR1391961 1 0.0000 0.850 1.000 0.000
#> SRR1373879 2 0.7883 0.702 0.236 0.764
#> SRR1318732 1 0.6531 0.879 0.832 0.168
#> SRR1091404 2 0.9552 0.358 0.376 0.624
#> SRR1402109 1 0.8555 0.755 0.720 0.280
#> SRR1407336 2 0.8081 0.682 0.248 0.752
#> SRR1097417 1 0.2236 0.859 0.964 0.036
#> SRR1396227 1 0.5737 0.891 0.864 0.136
#> SRR1400775 1 0.9491 0.620 0.632 0.368
#> SRR1392861 2 0.0672 0.884 0.008 0.992
#> SRR1472929 1 0.0000 0.850 1.000 0.000
#> SRR1436740 2 0.0000 0.884 0.000 1.000
#> SRR1477057 1 0.6048 0.888 0.852 0.148
#> SRR1311980 1 0.0000 0.850 1.000 0.000
#> SRR1069400 1 0.5946 0.888 0.856 0.144
#> SRR1351016 1 0.0672 0.853 0.992 0.008
#> SRR1096291 2 0.0000 0.884 0.000 1.000
#> SRR1418145 1 0.9491 0.632 0.632 0.368
#> SRR1488111 1 0.6048 0.888 0.852 0.148
#> SRR1370495 1 0.0000 0.850 1.000 0.000
#> SRR1352639 1 0.8386 0.785 0.732 0.268
#> SRR1348911 1 0.0000 0.850 1.000 0.000
#> SRR1467386 2 0.5519 0.827 0.128 0.872
#> SRR1415956 1 0.0000 0.850 1.000 0.000
#> SRR1500495 1 0.0000 0.850 1.000 0.000
#> SRR1405099 1 0.0000 0.850 1.000 0.000
#> SRR1345585 1 0.6531 0.879 0.832 0.168
#> SRR1093196 1 0.7453 0.850 0.788 0.212
#> SRR1466006 1 0.0000 0.850 1.000 0.000
#> SRR1351557 1 0.6973 0.867 0.812 0.188
#> SRR1382687 1 0.5737 0.890 0.864 0.136
#> SRR1375549 1 0.6048 0.888 0.852 0.148
#> SRR1101765 2 0.0000 0.884 0.000 1.000
#> SRR1334461 1 0.0000 0.850 1.000 0.000
#> SRR1094073 2 0.0000 0.884 0.000 1.000
#> SRR1077549 2 0.7674 0.721 0.224 0.776
#> SRR1440332 1 0.7528 0.846 0.784 0.216
#> SRR1454177 2 0.0000 0.884 0.000 1.000
#> SRR1082447 2 0.8909 0.557 0.308 0.692
#> SRR1420043 1 0.5629 0.891 0.868 0.132
#> SRR1432500 1 0.5946 0.889 0.856 0.144
#> SRR1378045 1 0.9209 0.682 0.664 0.336
#> SRR1334200 1 0.0000 0.850 1.000 0.000
#> SRR1069539 2 0.0000 0.884 0.000 1.000
#> SRR1343031 1 0.8555 0.755 0.720 0.280
#> SRR1319690 1 0.5629 0.891 0.868 0.132
#> SRR1310604 1 0.6712 0.871 0.824 0.176
#> SRR1327747 1 0.5519 0.891 0.872 0.128
#> SRR1072456 1 0.0000 0.850 1.000 0.000
#> SRR1367896 1 0.0000 0.850 1.000 0.000
#> SRR1480107 1 0.0672 0.853 0.992 0.008
#> SRR1377756 1 0.5629 0.891 0.868 0.132
#> SRR1435272 2 0.0000 0.884 0.000 1.000
#> SRR1089230 2 0.0000 0.884 0.000 1.000
#> SRR1389522 1 0.5178 0.890 0.884 0.116
#> SRR1080600 1 0.6801 0.868 0.820 0.180
#> SRR1086935 2 0.0000 0.884 0.000 1.000
#> SRR1344060 1 0.0000 0.850 1.000 0.000
#> SRR1467922 2 0.0000 0.884 0.000 1.000
#> SRR1090984 1 0.0000 0.850 1.000 0.000
#> SRR1456991 1 0.0672 0.853 0.992 0.008
#> SRR1085039 2 0.8909 0.557 0.308 0.692
#> SRR1069303 1 0.5519 0.891 0.872 0.128
#> SRR1091500 2 0.0000 0.884 0.000 1.000
#> SRR1075198 1 0.7139 0.861 0.804 0.196
#> SRR1086915 2 0.0672 0.884 0.008 0.992
#> SRR1499503 2 0.9522 0.251 0.372 0.628
#> SRR1094312 1 0.9491 0.620 0.632 0.368
#> SRR1352437 2 0.4022 0.858 0.080 0.920
#> SRR1436323 1 0.6048 0.888 0.852 0.148
#> SRR1073507 2 0.5519 0.827 0.128 0.872
#> SRR1401972 1 0.5519 0.891 0.872 0.128
#> SRR1415510 1 0.6048 0.888 0.852 0.148
#> SRR1327279 2 0.7674 0.721 0.224 0.776
#> SRR1086983 2 0.5519 0.827 0.128 0.872
#> SRR1105174 2 0.5737 0.820 0.136 0.864
#> SRR1468893 1 0.0376 0.852 0.996 0.004
#> SRR1362555 1 0.0000 0.850 1.000 0.000
#> SRR1074526 2 0.0000 0.884 0.000 1.000
#> SRR1326225 2 0.0938 0.882 0.012 0.988
#> SRR1401933 1 0.6343 0.884 0.840 0.160
#> SRR1324062 1 0.5842 0.891 0.860 0.140
#> SRR1102296 1 0.9635 0.555 0.612 0.388
#> SRR1085087 2 0.4022 0.858 0.080 0.920
#> SRR1079046 1 0.6801 0.872 0.820 0.180
#> SRR1328339 1 0.5519 0.891 0.872 0.128
#> SRR1079782 1 0.7056 0.864 0.808 0.192
#> SRR1092257 2 0.1414 0.881 0.020 0.980
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1429287 1 0.0592 0.809 0.988 0.012 0.000
#> SRR1359238 1 0.3192 0.801 0.888 0.112 0.000
#> SRR1309597 2 0.0892 0.763 0.020 0.980 0.000
#> SRR1441398 2 0.5216 0.728 0.260 0.740 0.000
#> SRR1084055 1 0.9474 0.320 0.496 0.272 0.232
#> SRR1417566 1 0.4172 0.789 0.840 0.156 0.004
#> SRR1351857 3 0.0592 0.825 0.012 0.000 0.988
#> SRR1487485 1 0.2434 0.812 0.940 0.036 0.024
#> SRR1335875 1 0.2878 0.808 0.904 0.096 0.000
#> SRR1073947 1 0.3607 0.807 0.880 0.112 0.008
#> SRR1443483 1 0.6286 0.271 0.536 0.464 0.000
#> SRR1346794 1 0.3340 0.799 0.880 0.120 0.000
#> SRR1405245 2 0.5216 0.728 0.260 0.740 0.000
#> SRR1409677 3 0.2448 0.809 0.076 0.000 0.924
#> SRR1095549 3 0.7067 0.539 0.376 0.028 0.596
#> SRR1323788 1 0.4966 0.790 0.840 0.100 0.060
#> SRR1314054 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1077944 1 0.3644 0.795 0.872 0.124 0.004
#> SRR1480587 2 0.0892 0.763 0.020 0.980 0.000
#> SRR1311205 2 0.5810 0.673 0.336 0.664 0.000
#> SRR1076369 1 0.6505 0.200 0.528 0.468 0.004
#> SRR1453549 1 0.3192 0.801 0.888 0.112 0.000
#> SRR1345782 1 0.4966 0.790 0.840 0.100 0.060
#> SRR1447850 1 0.3349 0.760 0.888 0.004 0.108
#> SRR1391553 1 0.2066 0.810 0.940 0.060 0.000
#> SRR1444156 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1471731 1 0.2066 0.810 0.940 0.060 0.000
#> SRR1120987 3 0.1163 0.825 0.028 0.000 0.972
#> SRR1477363 1 0.3116 0.802 0.892 0.108 0.000
#> SRR1391961 2 0.1860 0.769 0.052 0.948 0.000
#> SRR1373879 3 0.7114 0.515 0.388 0.028 0.584
#> SRR1318732 1 0.2066 0.810 0.940 0.060 0.000
#> SRR1091404 1 0.7268 -0.133 0.524 0.028 0.448
#> SRR1402109 1 0.6100 0.719 0.784 0.096 0.120
#> SRR1407336 3 0.7156 0.489 0.400 0.028 0.572
#> SRR1097417 2 0.4784 0.636 0.200 0.796 0.004
#> SRR1396227 1 0.2796 0.810 0.908 0.092 0.000
#> SRR1400775 1 0.5366 0.666 0.776 0.016 0.208
#> SRR1392861 3 0.2165 0.815 0.064 0.000 0.936
#> SRR1472929 2 0.0747 0.760 0.016 0.984 0.000
#> SRR1436740 3 0.0592 0.824 0.012 0.000 0.988
#> SRR1477057 1 0.1860 0.815 0.948 0.052 0.000
#> SRR1311980 2 0.5216 0.728 0.260 0.740 0.000
#> SRR1069400 1 0.6057 0.499 0.656 0.340 0.004
#> SRR1351016 2 0.6235 0.497 0.436 0.564 0.000
#> SRR1096291 3 0.0592 0.825 0.012 0.000 0.988
#> SRR1418145 1 0.4861 0.681 0.800 0.008 0.192
#> SRR1488111 1 0.1860 0.815 0.948 0.052 0.000
#> SRR1370495 2 0.0892 0.763 0.020 0.980 0.000
#> SRR1352639 1 0.4709 0.776 0.852 0.056 0.092
#> SRR1348911 2 0.5706 0.680 0.320 0.680 0.000
#> SRR1467386 3 0.5623 0.680 0.280 0.004 0.716
#> SRR1415956 2 0.5529 0.710 0.296 0.704 0.000
#> SRR1500495 2 0.5810 0.673 0.336 0.664 0.000
#> SRR1405099 2 0.5529 0.710 0.296 0.704 0.000
#> SRR1345585 1 0.2066 0.810 0.940 0.060 0.000
#> SRR1093196 1 0.2031 0.807 0.952 0.016 0.032
#> SRR1466006 2 0.2625 0.762 0.084 0.916 0.000
#> SRR1351557 1 0.1170 0.809 0.976 0.016 0.008
#> SRR1382687 1 0.3116 0.802 0.892 0.108 0.000
#> SRR1375549 1 0.1860 0.815 0.948 0.052 0.000
#> SRR1101765 3 0.1289 0.824 0.032 0.000 0.968
#> SRR1334461 2 0.1860 0.769 0.052 0.948 0.000
#> SRR1094073 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1077549 3 0.7067 0.539 0.376 0.028 0.596
#> SRR1440332 1 0.4253 0.805 0.872 0.080 0.048
#> SRR1454177 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1082447 3 0.7278 0.336 0.456 0.028 0.516
#> SRR1420043 1 0.3619 0.787 0.864 0.136 0.000
#> SRR1432500 1 0.3112 0.807 0.900 0.096 0.004
#> SRR1378045 1 0.5236 0.712 0.804 0.028 0.168
#> SRR1334200 2 0.1643 0.766 0.044 0.956 0.000
#> SRR1069539 3 0.0592 0.825 0.012 0.000 0.988
#> SRR1343031 1 0.6100 0.719 0.784 0.096 0.120
#> SRR1319690 1 0.3267 0.802 0.884 0.116 0.000
#> SRR1310604 1 0.6881 0.500 0.648 0.320 0.032
#> SRR1327747 1 0.3482 0.796 0.872 0.128 0.000
#> SRR1072456 2 0.2625 0.762 0.084 0.916 0.000
#> SRR1367896 2 0.2537 0.752 0.080 0.920 0.000
#> SRR1480107 2 0.6235 0.497 0.436 0.564 0.000
#> SRR1377756 1 0.3619 0.787 0.864 0.136 0.000
#> SRR1435272 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1089230 3 0.0592 0.825 0.012 0.000 0.988
#> SRR1389522 1 0.6168 0.406 0.588 0.412 0.000
#> SRR1080600 1 0.6988 0.496 0.644 0.320 0.036
#> SRR1086935 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1344060 2 0.1643 0.766 0.044 0.956 0.000
#> SRR1467922 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1090984 2 0.5968 0.611 0.364 0.636 0.000
#> SRR1456991 2 0.6204 0.521 0.424 0.576 0.000
#> SRR1085039 3 0.7278 0.336 0.456 0.028 0.516
#> SRR1069303 1 0.3551 0.790 0.868 0.132 0.000
#> SRR1091500 3 0.0237 0.823 0.004 0.000 0.996
#> SRR1075198 1 0.1491 0.809 0.968 0.016 0.016
#> SRR1086915 3 0.1289 0.825 0.032 0.000 0.968
#> SRR1499503 3 0.6505 0.108 0.468 0.004 0.528
#> SRR1094312 1 0.5366 0.666 0.776 0.016 0.208
#> SRR1352437 3 0.4351 0.769 0.168 0.004 0.828
#> SRR1436323 1 0.2537 0.813 0.920 0.080 0.000
#> SRR1073507 3 0.5623 0.680 0.280 0.004 0.716
#> SRR1401972 1 0.3551 0.790 0.868 0.132 0.000
#> SRR1415510 1 0.5929 0.528 0.676 0.320 0.004
#> SRR1327279 3 0.7067 0.539 0.376 0.028 0.596
#> SRR1086983 3 0.5623 0.680 0.280 0.004 0.716
#> SRR1105174 3 0.5722 0.667 0.292 0.004 0.704
#> SRR1468893 2 0.5785 0.677 0.332 0.668 0.000
#> SRR1362555 2 0.0892 0.763 0.020 0.980 0.000
#> SRR1074526 3 0.0237 0.819 0.000 0.004 0.996
#> SRR1326225 3 0.1399 0.820 0.028 0.004 0.968
#> SRR1401933 1 0.1411 0.814 0.964 0.036 0.000
#> SRR1324062 1 0.2959 0.807 0.900 0.100 0.000
#> SRR1102296 1 0.5455 0.655 0.776 0.020 0.204
#> SRR1085087 3 0.4409 0.767 0.172 0.004 0.824
#> SRR1079046 1 0.0592 0.809 0.988 0.012 0.000
#> SRR1328339 1 0.4233 0.784 0.836 0.160 0.004
#> SRR1079782 1 0.0848 0.807 0.984 0.008 0.008
#> SRR1092257 3 0.1643 0.823 0.044 0.000 0.956
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 4 0.0779 0.7819 0.000 0.016 0.004 0.980
#> SRR1429287 2 0.4999 -0.1114 0.492 0.508 0.000 0.000
#> SRR1359238 1 0.1256 0.6162 0.964 0.028 0.008 0.000
#> SRR1309597 3 0.0336 0.6661 0.008 0.000 0.992 0.000
#> SRR1441398 3 0.5898 0.5849 0.316 0.056 0.628 0.000
#> SRR1084055 2 0.9094 0.3095 0.096 0.444 0.244 0.216
#> SRR1417566 1 0.3970 0.5721 0.836 0.124 0.036 0.004
#> SRR1351857 4 0.0779 0.7862 0.004 0.016 0.000 0.980
#> SRR1487485 1 0.5789 0.3010 0.600 0.368 0.008 0.024
#> SRR1335875 1 0.2867 0.6048 0.884 0.104 0.012 0.000
#> SRR1073947 1 0.2926 0.5956 0.888 0.096 0.012 0.004
#> SRR1443483 3 0.7840 -0.1650 0.268 0.340 0.392 0.000
#> SRR1346794 1 0.1629 0.6169 0.952 0.024 0.024 0.000
#> SRR1405245 3 0.5898 0.5849 0.316 0.056 0.628 0.000
#> SRR1409677 4 0.2271 0.7685 0.008 0.076 0.000 0.916
#> SRR1095549 4 0.7086 0.4858 0.160 0.292 0.000 0.548
#> SRR1323788 1 0.5443 0.3976 0.720 0.232 0.024 0.024
#> SRR1314054 4 0.0779 0.7819 0.000 0.016 0.004 0.980
#> SRR1077944 1 0.2007 0.6176 0.940 0.036 0.020 0.004
#> SRR1480587 3 0.0336 0.6661 0.008 0.000 0.992 0.000
#> SRR1311205 3 0.6471 0.4739 0.416 0.072 0.512 0.000
#> SRR1076369 2 0.7561 0.1939 0.192 0.424 0.384 0.000
#> SRR1453549 1 0.1042 0.6162 0.972 0.020 0.008 0.000
#> SRR1345782 1 0.5443 0.3976 0.720 0.232 0.024 0.024
#> SRR1447850 2 0.6845 0.0669 0.448 0.452 0.000 0.100
#> SRR1391553 1 0.5420 0.3696 0.624 0.352 0.024 0.000
#> SRR1444156 4 0.1209 0.7776 0.000 0.032 0.004 0.964
#> SRR1471731 1 0.5420 0.3696 0.624 0.352 0.024 0.000
#> SRR1120987 4 0.1114 0.7864 0.008 0.016 0.004 0.972
#> SRR1477363 1 0.0804 0.6173 0.980 0.012 0.008 0.000
#> SRR1391961 3 0.3082 0.6500 0.032 0.084 0.884 0.000
#> SRR1373879 4 0.7188 0.4629 0.172 0.292 0.000 0.536
#> SRR1318732 1 0.5420 0.3696 0.624 0.352 0.024 0.000
#> SRR1091404 4 0.7844 0.1038 0.308 0.288 0.000 0.404
#> SRR1402109 2 0.7802 0.2403 0.384 0.480 0.052 0.084
#> SRR1407336 4 0.7238 0.4409 0.172 0.304 0.000 0.524
#> SRR1097417 3 0.5198 0.4805 0.040 0.252 0.708 0.000
#> SRR1396227 1 0.2928 0.6024 0.880 0.108 0.012 0.000
#> SRR1400775 2 0.7416 0.3056 0.312 0.496 0.000 0.192
#> SRR1392861 4 0.2300 0.7756 0.028 0.048 0.000 0.924
#> SRR1472929 3 0.0188 0.6641 0.004 0.000 0.996 0.000
#> SRR1436740 4 0.0779 0.7847 0.004 0.016 0.000 0.980
#> SRR1477057 1 0.4697 0.3266 0.644 0.356 0.000 0.000
#> SRR1311980 3 0.5898 0.5849 0.316 0.056 0.628 0.000
#> SRR1069400 2 0.7796 0.3877 0.288 0.424 0.288 0.000
#> SRR1351016 1 0.6792 -0.2592 0.476 0.096 0.428 0.000
#> SRR1096291 4 0.0779 0.7862 0.004 0.016 0.000 0.980
#> SRR1418145 1 0.7510 -0.1463 0.436 0.380 0.000 0.184
#> SRR1488111 1 0.4697 0.3266 0.644 0.356 0.000 0.000
#> SRR1370495 3 0.0336 0.6661 0.008 0.000 0.992 0.000
#> SRR1352639 1 0.5986 0.2040 0.620 0.320 0.000 0.060
#> SRR1348911 3 0.6206 0.4850 0.404 0.056 0.540 0.000
#> SRR1467386 4 0.6167 0.6255 0.124 0.208 0.000 0.668
#> SRR1415956 3 0.6228 0.5373 0.364 0.064 0.572 0.000
#> SRR1500495 3 0.6471 0.4739 0.416 0.072 0.512 0.000
#> SRR1405099 3 0.6228 0.5373 0.364 0.064 0.572 0.000
#> SRR1345585 1 0.5420 0.3696 0.624 0.352 0.024 0.000
#> SRR1093196 1 0.5833 0.0780 0.532 0.440 0.004 0.024
#> SRR1466006 3 0.3427 0.6334 0.028 0.112 0.860 0.000
#> SRR1351557 2 0.5296 -0.1445 0.496 0.496 0.008 0.000
#> SRR1382687 1 0.0804 0.6173 0.980 0.012 0.008 0.000
#> SRR1375549 1 0.4679 0.3334 0.648 0.352 0.000 0.000
#> SRR1101765 4 0.1042 0.7871 0.008 0.020 0.000 0.972
#> SRR1334461 3 0.3082 0.6500 0.032 0.084 0.884 0.000
#> SRR1094073 4 0.1209 0.7776 0.000 0.032 0.004 0.964
#> SRR1077549 4 0.7086 0.4858 0.160 0.292 0.000 0.548
#> SRR1440332 1 0.4671 0.4330 0.752 0.220 0.000 0.028
#> SRR1454177 4 0.0921 0.7805 0.000 0.028 0.000 0.972
#> SRR1082447 4 0.7643 0.3021 0.256 0.276 0.000 0.468
#> SRR1420043 1 0.1151 0.6119 0.968 0.008 0.024 0.000
#> SRR1432500 1 0.1585 0.6157 0.952 0.040 0.004 0.004
#> SRR1378045 2 0.7273 0.2543 0.400 0.452 0.000 0.148
#> SRR1334200 3 0.1677 0.6609 0.012 0.040 0.948 0.000
#> SRR1069539 4 0.0779 0.7862 0.004 0.016 0.000 0.980
#> SRR1343031 2 0.7802 0.2403 0.384 0.480 0.052 0.084
#> SRR1319690 1 0.2101 0.6110 0.928 0.060 0.012 0.000
#> SRR1310604 2 0.7541 0.4052 0.148 0.552 0.280 0.020
#> SRR1327747 1 0.2222 0.6064 0.924 0.060 0.016 0.000
#> SRR1072456 3 0.3427 0.6334 0.028 0.112 0.860 0.000
#> SRR1367896 3 0.3554 0.6184 0.020 0.136 0.844 0.000
#> SRR1480107 1 0.6792 -0.2592 0.476 0.096 0.428 0.000
#> SRR1377756 1 0.1151 0.6119 0.968 0.008 0.024 0.000
#> SRR1435272 4 0.0921 0.7805 0.000 0.028 0.000 0.972
#> SRR1089230 4 0.0895 0.7855 0.004 0.020 0.000 0.976
#> SRR1389522 3 0.7905 -0.2706 0.312 0.320 0.368 0.000
#> SRR1080600 2 0.7251 0.3766 0.112 0.584 0.280 0.024
#> SRR1086935 4 0.1209 0.7776 0.000 0.032 0.004 0.964
#> SRR1344060 3 0.1677 0.6609 0.012 0.040 0.948 0.000
#> SRR1467922 4 0.0779 0.7819 0.000 0.016 0.004 0.980
#> SRR1090984 3 0.6327 0.4015 0.444 0.060 0.496 0.000
#> SRR1456991 1 0.6884 -0.2859 0.464 0.104 0.432 0.000
#> SRR1085039 4 0.7643 0.3021 0.256 0.276 0.000 0.468
#> SRR1069303 1 0.1411 0.6087 0.960 0.020 0.020 0.000
#> SRR1091500 4 0.1209 0.7776 0.000 0.032 0.004 0.964
#> SRR1075198 1 0.5451 0.1687 0.524 0.464 0.008 0.004
#> SRR1086915 4 0.1059 0.7857 0.012 0.016 0.000 0.972
#> SRR1499503 4 0.7005 0.1437 0.104 0.392 0.004 0.500
#> SRR1094312 2 0.7416 0.3056 0.312 0.496 0.000 0.192
#> SRR1352437 4 0.4469 0.7196 0.080 0.112 0.000 0.808
#> SRR1436323 1 0.4307 0.5315 0.784 0.192 0.024 0.000
#> SRR1073507 4 0.6167 0.6255 0.124 0.208 0.000 0.668
#> SRR1401972 1 0.1411 0.6087 0.960 0.020 0.020 0.000
#> SRR1415510 2 0.7851 0.3477 0.324 0.396 0.280 0.000
#> SRR1327279 4 0.7086 0.4858 0.160 0.292 0.000 0.548
#> SRR1086983 4 0.6167 0.6255 0.124 0.208 0.000 0.668
#> SRR1105174 4 0.6265 0.6148 0.124 0.220 0.000 0.656
#> SRR1468893 3 0.6024 0.4693 0.416 0.044 0.540 0.000
#> SRR1362555 3 0.0336 0.6661 0.008 0.000 0.992 0.000
#> SRR1074526 4 0.1824 0.7795 0.000 0.060 0.004 0.936
#> SRR1326225 4 0.1771 0.7790 0.012 0.036 0.004 0.948
#> SRR1401933 1 0.4713 0.3176 0.640 0.360 0.000 0.000
#> SRR1324062 1 0.2676 0.6063 0.896 0.092 0.012 0.000
#> SRR1102296 1 0.7260 -0.0485 0.532 0.280 0.000 0.188
#> SRR1085087 4 0.4535 0.7175 0.084 0.112 0.000 0.804
#> SRR1079046 2 0.4999 -0.1114 0.492 0.508 0.000 0.000
#> SRR1328339 1 0.3241 0.5764 0.884 0.072 0.040 0.004
#> SRR1079782 1 0.5000 0.0669 0.504 0.496 0.000 0.000
#> SRR1092257 4 0.1920 0.7828 0.024 0.028 0.004 0.944
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 4 0.3093 0.7213 0.000 0.008 NA 0.824 0.000
#> SRR1429287 2 0.4457 0.2224 0.368 0.620 NA 0.000 0.000
#> SRR1359238 1 0.1205 0.5572 0.956 0.040 NA 0.000 0.000
#> SRR1309597 5 0.0000 0.5740 0.000 0.000 NA 0.000 1.000
#> SRR1441398 5 0.6544 0.2982 0.308 0.004 NA 0.000 0.492
#> SRR1084055 2 0.8754 0.1436 0.048 0.424 NA 0.168 0.236
#> SRR1417566 1 0.3828 0.5029 0.828 0.100 NA 0.004 0.008
#> SRR1351857 4 0.1560 0.7423 0.004 0.028 NA 0.948 0.000
#> SRR1487485 1 0.5416 -0.0501 0.488 0.468 NA 0.028 0.000
#> SRR1335875 1 0.2727 0.5307 0.868 0.116 NA 0.000 0.000
#> SRR1073947 1 0.2608 0.5304 0.888 0.088 NA 0.004 0.000
#> SRR1443483 5 0.8440 -0.0470 0.252 0.204 NA 0.000 0.348
#> SRR1346794 1 0.1356 0.5594 0.956 0.028 NA 0.000 0.004
#> SRR1405245 5 0.6544 0.2982 0.308 0.004 NA 0.000 0.492
#> SRR1409677 4 0.2228 0.7395 0.008 0.068 NA 0.912 0.000
#> SRR1095549 4 0.7058 0.5032 0.152 0.240 NA 0.544 0.000
#> SRR1323788 1 0.5208 0.3177 0.720 0.176 NA 0.028 0.000
#> SRR1314054 4 0.3093 0.7213 0.000 0.008 NA 0.824 0.000
#> SRR1077944 1 0.1708 0.5580 0.944 0.032 NA 0.004 0.004
#> SRR1480587 5 0.0000 0.5740 0.000 0.000 NA 0.000 1.000
#> SRR1311205 1 0.6912 -0.1725 0.408 0.008 NA 0.000 0.348
#> SRR1076369 2 0.8474 0.0879 0.168 0.308 NA 0.000 0.272
#> SRR1453549 1 0.0955 0.5586 0.968 0.028 NA 0.000 0.000
#> SRR1345782 1 0.5208 0.3177 0.720 0.176 NA 0.028 0.000
#> SRR1447850 2 0.6008 0.3270 0.316 0.572 NA 0.100 0.000
#> SRR1391553 1 0.5296 0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1444156 4 0.4168 0.6977 0.000 0.044 NA 0.756 0.000
#> SRR1471731 1 0.5296 0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1120987 4 0.1498 0.7487 0.008 0.016 NA 0.952 0.000
#> SRR1477363 1 0.0510 0.5591 0.984 0.016 NA 0.000 0.000
#> SRR1391961 5 0.5119 0.4817 0.028 0.008 NA 0.000 0.576
#> SRR1373879 4 0.7140 0.4855 0.160 0.244 NA 0.532 0.000
#> SRR1318732 1 0.5296 0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1091404 4 0.7672 0.1651 0.292 0.252 NA 0.400 0.000
#> SRR1402109 1 0.8349 -0.2444 0.364 0.364 NA 0.084 0.032
#> SRR1407336 4 0.7239 0.4633 0.164 0.248 NA 0.520 0.000
#> SRR1097417 5 0.6725 0.3568 0.016 0.160 NA 0.000 0.468
#> SRR1396227 1 0.2920 0.5181 0.852 0.132 NA 0.000 0.000
#> SRR1400775 2 0.7030 0.4000 0.240 0.528 NA 0.188 0.000
#> SRR1392861 4 0.2855 0.7434 0.028 0.040 NA 0.892 0.000
#> SRR1472929 5 0.0162 0.5741 0.000 0.000 NA 0.000 0.996
#> SRR1436740 4 0.1412 0.7437 0.004 0.008 NA 0.952 0.000
#> SRR1477057 1 0.4610 0.0971 0.556 0.432 NA 0.000 0.000
#> SRR1311980 5 0.6544 0.2982 0.308 0.004 NA 0.000 0.492
#> SRR1069400 2 0.8354 0.2364 0.264 0.332 NA 0.000 0.264
#> SRR1351016 1 0.7368 0.0843 0.468 0.048 NA 0.000 0.264
#> SRR1096291 4 0.1560 0.7423 0.004 0.028 NA 0.948 0.000
#> SRR1418145 2 0.6584 0.2930 0.344 0.464 NA 0.188 0.000
#> SRR1488111 1 0.4610 0.0971 0.556 0.432 NA 0.000 0.000
#> SRR1370495 5 0.0000 0.5740 0.000 0.000 NA 0.000 1.000
#> SRR1352639 1 0.6227 0.1225 0.588 0.296 NA 0.064 0.000
#> SRR1348911 1 0.6950 -0.1690 0.396 0.008 NA 0.000 0.348
#> SRR1467386 4 0.5970 0.6203 0.120 0.176 NA 0.664 0.000
#> SRR1415956 5 0.6861 0.2218 0.356 0.008 NA 0.000 0.416
#> SRR1500495 1 0.6912 -0.1725 0.408 0.008 NA 0.000 0.348
#> SRR1405099 5 0.6861 0.2218 0.356 0.008 NA 0.000 0.416
#> SRR1345585 1 0.5296 0.0456 0.508 0.456 NA 0.004 0.008
#> SRR1093196 2 0.5720 0.1912 0.400 0.536 NA 0.028 0.000
#> SRR1466006 5 0.5470 0.4663 0.020 0.032 NA 0.000 0.560
#> SRR1351557 2 0.4703 0.2502 0.352 0.628 NA 0.004 0.004
#> SRR1382687 1 0.0510 0.5591 0.984 0.016 NA 0.000 0.000
#> SRR1375549 1 0.4597 0.1128 0.564 0.424 NA 0.000 0.000
#> SRR1101765 4 0.0992 0.7485 0.008 0.024 NA 0.968 0.000
#> SRR1334461 5 0.5119 0.4817 0.028 0.008 NA 0.000 0.576
#> SRR1094073 4 0.4168 0.6977 0.000 0.044 NA 0.756 0.000
#> SRR1077549 4 0.7058 0.5032 0.152 0.240 NA 0.544 0.000
#> SRR1440332 1 0.4862 0.3569 0.724 0.212 NA 0.028 0.000
#> SRR1454177 4 0.2124 0.7308 0.000 0.028 NA 0.916 0.000
#> SRR1082447 4 0.7473 0.3379 0.244 0.236 NA 0.464 0.000
#> SRR1420043 1 0.0833 0.5590 0.976 0.004 NA 0.000 0.004
#> SRR1432500 1 0.1282 0.5528 0.952 0.044 NA 0.004 0.000
#> SRR1378045 2 0.7579 0.2946 0.328 0.440 NA 0.144 0.000
#> SRR1334200 5 0.3552 0.5535 0.012 0.012 NA 0.000 0.812
#> SRR1069539 4 0.1560 0.7423 0.004 0.028 NA 0.948 0.000
#> SRR1343031 2 0.8349 0.1830 0.364 0.364 NA 0.084 0.032
#> SRR1319690 1 0.1809 0.5496 0.928 0.060 NA 0.000 0.000
#> SRR1310604 2 0.7783 0.2294 0.096 0.500 NA 0.020 0.268
#> SRR1327747 1 0.1942 0.5443 0.920 0.068 NA 0.000 0.000
#> SRR1072456 5 0.5470 0.4663 0.020 0.032 NA 0.000 0.560
#> SRR1367896 5 0.5556 0.4648 0.012 0.048 NA 0.000 0.552
#> SRR1480107 1 0.7368 0.0843 0.468 0.048 NA 0.000 0.264
#> SRR1377756 1 0.0833 0.5590 0.976 0.004 NA 0.000 0.004
#> SRR1435272 4 0.2124 0.7308 0.000 0.028 NA 0.916 0.000
#> SRR1089230 4 0.1646 0.7412 0.004 0.032 NA 0.944 0.000
#> SRR1389522 5 0.8375 -0.1305 0.288 0.220 NA 0.000 0.336
#> SRR1080600 2 0.7474 0.1967 0.060 0.528 NA 0.024 0.268
#> SRR1086935 4 0.2824 0.7192 0.000 0.032 NA 0.872 0.000
#> SRR1344060 5 0.3592 0.5529 0.012 0.012 NA 0.000 0.808
#> SRR1467922 4 0.3456 0.7128 0.000 0.016 NA 0.800 0.000
#> SRR1090984 1 0.6912 -0.0861 0.436 0.012 NA 0.000 0.336
#> SRR1456991 1 0.7421 0.0625 0.456 0.048 NA 0.000 0.264
#> SRR1085039 4 0.7473 0.3379 0.244 0.236 NA 0.464 0.000
#> SRR1069303 1 0.1403 0.5561 0.952 0.024 NA 0.000 0.000
#> SRR1091500 4 0.4134 0.7002 0.000 0.044 NA 0.760 0.000
#> SRR1075198 2 0.4908 0.1836 0.380 0.596 NA 0.008 0.004
#> SRR1086915 4 0.1012 0.7458 0.012 0.020 NA 0.968 0.000
#> SRR1499503 2 0.7534 -0.0043 0.052 0.420 NA 0.312 0.000
#> SRR1094312 2 0.7030 0.4000 0.240 0.528 NA 0.188 0.000
#> SRR1352437 4 0.4138 0.7012 0.080 0.104 NA 0.804 0.000
#> SRR1436323 1 0.4338 0.3662 0.712 0.264 NA 0.000 0.008
#> SRR1073507 4 0.5970 0.6203 0.120 0.176 NA 0.664 0.000
#> SRR1401972 1 0.1403 0.5561 0.952 0.024 NA 0.000 0.000
#> SRR1415510 2 0.8144 0.3378 0.284 0.352 NA 0.000 0.260
#> SRR1327279 4 0.7058 0.5032 0.152 0.240 NA 0.544 0.000
#> SRR1086983 4 0.5970 0.6203 0.120 0.176 NA 0.664 0.000
#> SRR1105174 4 0.6103 0.6113 0.120 0.184 NA 0.652 0.000
#> SRR1468893 5 0.6938 0.1489 0.396 0.020 NA 0.000 0.408
#> SRR1362555 5 0.0290 0.5740 0.000 0.000 NA 0.000 0.992
#> SRR1074526 4 0.5010 0.6787 0.000 0.076 NA 0.676 0.000
#> SRR1326225 4 0.4382 0.6979 0.004 0.060 NA 0.760 0.000
#> SRR1401933 1 0.4538 0.0424 0.540 0.452 NA 0.000 0.000
#> SRR1324062 1 0.2573 0.5336 0.880 0.104 NA 0.000 0.000
#> SRR1102296 1 0.7032 -0.1198 0.492 0.288 NA 0.188 0.000
#> SRR1085087 4 0.4194 0.6996 0.084 0.104 NA 0.800 0.000
#> SRR1079046 2 0.4457 0.2224 0.368 0.620 NA 0.000 0.000
#> SRR1328339 1 0.3012 0.5246 0.880 0.040 NA 0.004 0.008
#> SRR1079782 2 0.4362 0.2439 0.360 0.632 NA 0.004 0.000
#> SRR1092257 4 0.2444 0.7484 0.024 0.028 NA 0.912 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.509 0.595032 0.000 0.568 0.004 0.348 0.000 0.080
#> SRR1429287 3 0.709 0.041224 0.348 0.008 0.424 0.096 0.004 0.120
#> SRR1359238 1 0.153 0.631310 0.944 0.004 0.032 0.016 0.000 0.004
#> SRR1309597 5 0.419 0.640037 0.000 0.008 0.000 0.004 0.548 0.440
#> SRR1441398 6 0.451 0.771320 0.300 0.008 0.000 0.004 0.032 0.656
#> SRR1084055 3 0.637 0.166990 0.008 0.140 0.620 0.080 0.140 0.012
#> SRR1417566 1 0.408 0.610204 0.812 0.004 0.056 0.076 0.012 0.040
#> SRR1351857 2 0.413 0.582875 0.004 0.600 0.004 0.388 0.000 0.004
#> SRR1487485 1 0.731 0.199766 0.476 0.020 0.228 0.164 0.000 0.112
#> SRR1335875 1 0.331 0.641345 0.852 0.004 0.044 0.060 0.000 0.040
#> SRR1073947 1 0.293 0.626544 0.856 0.000 0.020 0.104 0.000 0.020
#> SRR1443483 3 0.761 0.192201 0.208 0.004 0.428 0.020 0.240 0.100
#> SRR1346794 1 0.202 0.632174 0.928 0.008 0.028 0.020 0.004 0.012
#> SRR1405245 6 0.451 0.771320 0.300 0.008 0.000 0.004 0.032 0.656
#> SRR1409677 4 0.327 0.340419 0.000 0.248 0.000 0.748 0.000 0.004
#> SRR1095549 4 0.352 0.645707 0.112 0.004 0.064 0.816 0.000 0.004
#> SRR1323788 1 0.477 0.461034 0.692 0.004 0.064 0.224 0.000 0.016
#> SRR1314054 2 0.508 0.601322 0.000 0.572 0.004 0.344 0.000 0.080
#> SRR1077944 1 0.216 0.632540 0.916 0.008 0.012 0.052 0.004 0.008
#> SRR1480587 5 0.433 0.640536 0.000 0.008 0.004 0.004 0.544 0.440
#> SRR1311205 6 0.443 0.844456 0.400 0.004 0.004 0.000 0.016 0.576
#> SRR1076369 3 0.570 0.174443 0.104 0.004 0.544 0.016 0.332 0.000
#> SRR1453549 1 0.120 0.629557 0.960 0.004 0.016 0.016 0.000 0.004
#> SRR1345782 1 0.477 0.461034 0.692 0.004 0.064 0.224 0.000 0.016
#> SRR1447850 3 0.799 0.154887 0.292 0.060 0.396 0.144 0.004 0.104
#> SRR1391553 1 0.730 0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1444156 2 0.343 0.680191 0.000 0.824 0.008 0.084 0.000 0.084
#> SRR1471731 1 0.730 0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1120987 4 0.387 0.018143 0.004 0.392 0.000 0.604 0.000 0.000
#> SRR1477363 1 0.112 0.630855 0.960 0.004 0.008 0.028 0.000 0.000
#> SRR1391961 5 0.143 0.680085 0.020 0.000 0.008 0.000 0.948 0.024
#> SRR1373879 4 0.367 0.641053 0.120 0.004 0.068 0.804 0.000 0.004
#> SRR1318732 1 0.730 0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1091404 4 0.485 0.426398 0.252 0.004 0.072 0.664 0.000 0.008
#> SRR1402109 3 0.747 0.215042 0.316 0.004 0.328 0.284 0.036 0.032
#> SRR1407336 4 0.372 0.632930 0.128 0.000 0.076 0.792 0.000 0.004
#> SRR1097417 5 0.459 0.400455 0.004 0.008 0.312 0.008 0.648 0.020
#> SRR1396227 1 0.350 0.630709 0.836 0.000 0.056 0.056 0.000 0.052
#> SRR1400775 3 0.789 0.304130 0.208 0.100 0.400 0.244 0.000 0.048
#> SRR1392861 4 0.397 0.228880 0.016 0.300 0.000 0.680 0.000 0.004
#> SRR1472929 5 0.419 0.644610 0.000 0.008 0.000 0.004 0.552 0.436
#> SRR1436740 4 0.396 -0.162445 0.000 0.440 0.000 0.556 0.000 0.004
#> SRR1477057 1 0.620 0.267233 0.552 0.008 0.300 0.052 0.004 0.084
#> SRR1311980 6 0.451 0.771320 0.300 0.008 0.000 0.004 0.032 0.656
#> SRR1069400 3 0.599 0.352111 0.216 0.004 0.564 0.020 0.196 0.000
#> SRR1351016 6 0.512 0.734406 0.460 0.004 0.008 0.032 0.008 0.488
#> SRR1096291 2 0.413 0.582875 0.004 0.600 0.004 0.388 0.000 0.004
#> SRR1418145 1 0.813 -0.172632 0.332 0.116 0.324 0.160 0.000 0.068
#> SRR1488111 1 0.620 0.267233 0.552 0.008 0.300 0.052 0.004 0.084
#> SRR1370495 5 0.433 0.640536 0.000 0.008 0.004 0.004 0.544 0.440
#> SRR1352639 1 0.607 0.274878 0.548 0.004 0.164 0.260 0.000 0.024
#> SRR1348911 6 0.548 0.803536 0.396 0.004 0.004 0.000 0.096 0.500
#> SRR1467386 4 0.226 0.646378 0.080 0.028 0.000 0.892 0.000 0.000
#> SRR1415956 6 0.374 0.826025 0.348 0.000 0.000 0.000 0.004 0.648
#> SRR1500495 6 0.443 0.844456 0.400 0.004 0.004 0.000 0.016 0.576
#> SRR1405099 6 0.374 0.826025 0.348 0.000 0.000 0.000 0.004 0.648
#> SRR1345585 1 0.730 0.280498 0.504 0.008 0.188 0.160 0.012 0.128
#> SRR1093196 3 0.723 0.099323 0.344 0.012 0.400 0.144 0.000 0.100
#> SRR1466006 5 0.137 0.670360 0.004 0.000 0.040 0.004 0.948 0.004
#> SRR1351557 3 0.763 0.032083 0.336 0.008 0.356 0.176 0.008 0.116
#> SRR1382687 1 0.112 0.630855 0.960 0.004 0.008 0.028 0.000 0.000
#> SRR1375549 1 0.618 0.281582 0.560 0.008 0.292 0.052 0.004 0.084
#> SRR1101765 4 0.444 -0.088006 0.004 0.392 0.008 0.584 0.000 0.012
#> SRR1334461 5 0.143 0.680085 0.020 0.000 0.008 0.000 0.948 0.024
#> SRR1094073 2 0.343 0.680191 0.000 0.824 0.008 0.084 0.000 0.084
#> SRR1077549 4 0.352 0.645707 0.112 0.004 0.064 0.816 0.000 0.004
#> SRR1440332 1 0.488 0.458010 0.688 0.004 0.160 0.144 0.000 0.004
#> SRR1454177 2 0.345 0.670310 0.000 0.716 0.000 0.280 0.000 0.004
#> SRR1082447 4 0.420 0.549513 0.204 0.000 0.056 0.732 0.000 0.008
#> SRR1420043 1 0.147 0.614505 0.952 0.008 0.008 0.020 0.004 0.008
#> SRR1432500 1 0.177 0.642934 0.924 0.004 0.012 0.060 0.000 0.000
#> SRR1378045 3 0.758 0.311048 0.272 0.088 0.424 0.188 0.004 0.024
#> SRR1334200 5 0.391 0.708262 0.004 0.000 0.016 0.004 0.716 0.260
#> SRR1069539 2 0.413 0.582875 0.004 0.600 0.004 0.388 0.000 0.004
#> SRR1343031 3 0.747 0.215042 0.316 0.004 0.328 0.284 0.036 0.032
#> SRR1319690 1 0.189 0.631468 0.928 0.004 0.044 0.016 0.004 0.004
#> SRR1310604 3 0.444 0.272855 0.040 0.008 0.744 0.028 0.180 0.000
#> SRR1327747 1 0.201 0.620846 0.924 0.008 0.036 0.024 0.000 0.008
#> SRR1072456 5 0.137 0.670360 0.004 0.000 0.040 0.004 0.948 0.004
#> SRR1367896 5 0.452 0.535835 0.004 0.000 0.200 0.000 0.704 0.092
#> SRR1480107 6 0.512 0.734406 0.460 0.004 0.008 0.032 0.008 0.488
#> SRR1377756 1 0.147 0.614505 0.952 0.008 0.008 0.020 0.004 0.008
#> SRR1435272 2 0.345 0.670310 0.000 0.716 0.000 0.280 0.000 0.004
#> SRR1089230 2 0.409 0.601645 0.004 0.616 0.004 0.372 0.000 0.004
#> SRR1389522 3 0.755 0.265941 0.248 0.004 0.440 0.024 0.196 0.088
#> SRR1080600 3 0.400 0.230935 0.008 0.016 0.768 0.028 0.180 0.000
#> SRR1086935 2 0.266 0.693886 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1344060 5 0.388 0.709023 0.004 0.000 0.016 0.004 0.720 0.256
#> SRR1467922 2 0.470 0.625483 0.000 0.684 0.008 0.224 0.000 0.084
#> SRR1090984 6 0.543 0.785124 0.440 0.004 0.012 0.000 0.068 0.476
#> SRR1456991 6 0.537 0.744591 0.448 0.004 0.012 0.032 0.016 0.488
#> SRR1085039 4 0.420 0.549513 0.204 0.000 0.056 0.732 0.000 0.008
#> SRR1069303 1 0.179 0.608038 0.932 0.000 0.016 0.020 0.000 0.032
#> SRR1091500 2 0.337 0.683502 0.000 0.824 0.004 0.088 0.000 0.084
#> SRR1075198 1 0.757 -0.041150 0.360 0.004 0.328 0.184 0.008 0.116
#> SRR1086915 4 0.368 0.226881 0.004 0.300 0.000 0.692 0.000 0.004
#> SRR1499503 3 0.688 -0.000832 0.012 0.320 0.468 0.104 0.000 0.096
#> SRR1094312 3 0.789 0.304130 0.208 0.100 0.400 0.244 0.000 0.048
#> SRR1352437 4 0.397 0.516478 0.060 0.180 0.000 0.756 0.000 0.004
#> SRR1436323 1 0.535 0.509259 0.708 0.008 0.132 0.072 0.004 0.076
#> SRR1073507 4 0.226 0.646378 0.080 0.028 0.000 0.892 0.000 0.000
#> SRR1401972 1 0.179 0.608038 0.932 0.000 0.016 0.020 0.000 0.032
#> SRR1415510 3 0.705 0.366047 0.264 0.016 0.488 0.036 0.180 0.016
#> SRR1327279 4 0.352 0.645707 0.112 0.004 0.064 0.816 0.000 0.004
#> SRR1086983 4 0.226 0.646378 0.080 0.028 0.000 0.892 0.000 0.000
#> SRR1105174 4 0.201 0.647770 0.080 0.016 0.000 0.904 0.000 0.000
#> SRR1468893 6 0.400 0.822789 0.388 0.000 0.004 0.000 0.004 0.604
#> SRR1362555 5 0.432 0.647377 0.000 0.008 0.004 0.004 0.552 0.432
#> SRR1074526 2 0.558 0.558321 0.000 0.632 0.032 0.172 0.000 0.164
#> SRR1326225 2 0.568 0.572681 0.004 0.608 0.036 0.256 0.000 0.096
#> SRR1401933 1 0.619 0.236609 0.532 0.008 0.320 0.060 0.000 0.080
#> SRR1324062 1 0.303 0.641842 0.864 0.000 0.036 0.060 0.000 0.040
#> SRR1102296 1 0.696 0.060803 0.440 0.040 0.144 0.344 0.000 0.032
#> SRR1085087 4 0.396 0.524881 0.064 0.172 0.000 0.760 0.000 0.004
#> SRR1079046 3 0.709 0.041224 0.348 0.008 0.424 0.096 0.004 0.120
#> SRR1328339 1 0.329 0.577489 0.864 0.004 0.048 0.028 0.016 0.040
#> SRR1079782 3 0.740 0.026795 0.340 0.008 0.364 0.172 0.000 0.116
#> SRR1092257 4 0.440 0.001731 0.020 0.412 0.004 0.564 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
ATC:kmeans**
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["ATC", "kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.971 0.988 0.4718 0.533 0.533
#> 3 3 0.605 0.802 0.884 0.3357 0.746 0.560
#> 4 4 0.585 0.597 0.789 0.1566 0.862 0.644
#> 5 5 0.595 0.558 0.738 0.0736 0.887 0.623
#> 6 6 0.647 0.476 0.667 0.0470 0.930 0.703
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.995 0.000 1.000
#> SRR1429287 1 0.0000 0.984 1.000 0.000
#> SRR1359238 1 0.0000 0.984 1.000 0.000
#> SRR1309597 1 0.0000 0.984 1.000 0.000
#> SRR1441398 1 0.0000 0.984 1.000 0.000
#> SRR1084055 2 0.0000 0.995 0.000 1.000
#> SRR1417566 1 0.0000 0.984 1.000 0.000
#> SRR1351857 2 0.0000 0.995 0.000 1.000
#> SRR1487485 1 0.0000 0.984 1.000 0.000
#> SRR1335875 1 0.0000 0.984 1.000 0.000
#> SRR1073947 1 0.0000 0.984 1.000 0.000
#> SRR1443483 1 0.0000 0.984 1.000 0.000
#> SRR1346794 1 0.0000 0.984 1.000 0.000
#> SRR1405245 1 0.0000 0.984 1.000 0.000
#> SRR1409677 2 0.0000 0.995 0.000 1.000
#> SRR1095549 2 0.0000 0.995 0.000 1.000
#> SRR1323788 1 0.0000 0.984 1.000 0.000
#> SRR1314054 2 0.0000 0.995 0.000 1.000
#> SRR1077944 1 0.0000 0.984 1.000 0.000
#> SRR1480587 1 0.0000 0.984 1.000 0.000
#> SRR1311205 1 0.0000 0.984 1.000 0.000
#> SRR1076369 1 0.0000 0.984 1.000 0.000
#> SRR1453549 1 0.0376 0.981 0.996 0.004
#> SRR1345782 1 0.0000 0.984 1.000 0.000
#> SRR1447850 2 0.0000 0.995 0.000 1.000
#> SRR1391553 1 0.0000 0.984 1.000 0.000
#> SRR1444156 2 0.0000 0.995 0.000 1.000
#> SRR1471731 1 0.0000 0.984 1.000 0.000
#> SRR1120987 2 0.0000 0.995 0.000 1.000
#> SRR1477363 1 0.0000 0.984 1.000 0.000
#> SRR1391961 1 0.0000 0.984 1.000 0.000
#> SRR1373879 2 0.0000 0.995 0.000 1.000
#> SRR1318732 1 0.0000 0.984 1.000 0.000
#> SRR1091404 1 0.9866 0.262 0.568 0.432
#> SRR1402109 1 0.0376 0.981 0.996 0.004
#> SRR1407336 2 0.0000 0.995 0.000 1.000
#> SRR1097417 1 0.0000 0.984 1.000 0.000
#> SRR1396227 1 0.0000 0.984 1.000 0.000
#> SRR1400775 2 0.0000 0.995 0.000 1.000
#> SRR1392861 2 0.0000 0.995 0.000 1.000
#> SRR1472929 1 0.0000 0.984 1.000 0.000
#> SRR1436740 2 0.0000 0.995 0.000 1.000
#> SRR1477057 1 0.0000 0.984 1.000 0.000
#> SRR1311980 1 0.0000 0.984 1.000 0.000
#> SRR1069400 1 0.0000 0.984 1.000 0.000
#> SRR1351016 1 0.0000 0.984 1.000 0.000
#> SRR1096291 2 0.0000 0.995 0.000 1.000
#> SRR1418145 2 0.0672 0.987 0.008 0.992
#> SRR1488111 1 0.0000 0.984 1.000 0.000
#> SRR1370495 1 0.0000 0.984 1.000 0.000
#> SRR1352639 1 0.0376 0.981 0.996 0.004
#> SRR1348911 1 0.0000 0.984 1.000 0.000
#> SRR1467386 2 0.0000 0.995 0.000 1.000
#> SRR1415956 1 0.0000 0.984 1.000 0.000
#> SRR1500495 1 0.0000 0.984 1.000 0.000
#> SRR1405099 1 0.0000 0.984 1.000 0.000
#> SRR1345585 1 0.0000 0.984 1.000 0.000
#> SRR1093196 1 0.9710 0.352 0.600 0.400
#> SRR1466006 1 0.0000 0.984 1.000 0.000
#> SRR1351557 1 0.0000 0.984 1.000 0.000
#> SRR1382687 1 0.0000 0.984 1.000 0.000
#> SRR1375549 1 0.0000 0.984 1.000 0.000
#> SRR1101765 2 0.0000 0.995 0.000 1.000
#> SRR1334461 1 0.0000 0.984 1.000 0.000
#> SRR1094073 2 0.0000 0.995 0.000 1.000
#> SRR1077549 2 0.0000 0.995 0.000 1.000
#> SRR1440332 1 0.0376 0.981 0.996 0.004
#> SRR1454177 2 0.0000 0.995 0.000 1.000
#> SRR1082447 2 0.0000 0.995 0.000 1.000
#> SRR1420043 1 0.0000 0.984 1.000 0.000
#> SRR1432500 1 0.0376 0.981 0.996 0.004
#> SRR1378045 2 0.7139 0.753 0.196 0.804
#> SRR1334200 1 0.0000 0.984 1.000 0.000
#> SRR1069539 2 0.0000 0.995 0.000 1.000
#> SRR1343031 1 0.0376 0.981 0.996 0.004
#> SRR1319690 1 0.0000 0.984 1.000 0.000
#> SRR1310604 1 0.4161 0.902 0.916 0.084
#> SRR1327747 1 0.0000 0.984 1.000 0.000
#> SRR1072456 1 0.0000 0.984 1.000 0.000
#> SRR1367896 1 0.0000 0.984 1.000 0.000
#> SRR1480107 1 0.0000 0.984 1.000 0.000
#> SRR1377756 1 0.0000 0.984 1.000 0.000
#> SRR1435272 2 0.0000 0.995 0.000 1.000
#> SRR1089230 2 0.0000 0.995 0.000 1.000
#> SRR1389522 1 0.0000 0.984 1.000 0.000
#> SRR1080600 1 0.3274 0.928 0.940 0.060
#> SRR1086935 2 0.0000 0.995 0.000 1.000
#> SRR1344060 1 0.0000 0.984 1.000 0.000
#> SRR1467922 2 0.0000 0.995 0.000 1.000
#> SRR1090984 1 0.0000 0.984 1.000 0.000
#> SRR1456991 1 0.0000 0.984 1.000 0.000
#> SRR1085039 2 0.0000 0.995 0.000 1.000
#> SRR1069303 1 0.0000 0.984 1.000 0.000
#> SRR1091500 2 0.0000 0.995 0.000 1.000
#> SRR1075198 1 0.0376 0.981 0.996 0.004
#> SRR1086915 2 0.0000 0.995 0.000 1.000
#> SRR1499503 2 0.0000 0.995 0.000 1.000
#> SRR1094312 2 0.0000 0.995 0.000 1.000
#> SRR1352437 2 0.0000 0.995 0.000 1.000
#> SRR1436323 1 0.0000 0.984 1.000 0.000
#> SRR1073507 2 0.0000 0.995 0.000 1.000
#> SRR1401972 1 0.0376 0.981 0.996 0.004
#> SRR1415510 1 0.0000 0.984 1.000 0.000
#> SRR1327279 2 0.0000 0.995 0.000 1.000
#> SRR1086983 2 0.0000 0.995 0.000 1.000
#> SRR1105174 2 0.0000 0.995 0.000 1.000
#> SRR1468893 1 0.0000 0.984 1.000 0.000
#> SRR1362555 1 0.0000 0.984 1.000 0.000
#> SRR1074526 2 0.0000 0.995 0.000 1.000
#> SRR1326225 2 0.0000 0.995 0.000 1.000
#> SRR1401933 1 0.0000 0.984 1.000 0.000
#> SRR1324062 1 0.0000 0.984 1.000 0.000
#> SRR1102296 2 0.0000 0.995 0.000 1.000
#> SRR1085087 2 0.0000 0.995 0.000 1.000
#> SRR1079046 1 0.0000 0.984 1.000 0.000
#> SRR1328339 1 0.0000 0.984 1.000 0.000
#> SRR1079782 1 0.6623 0.793 0.828 0.172
#> SRR1092257 2 0.0000 0.995 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1429287 1 0.2796 0.842 0.908 0.092 0.000
#> SRR1359238 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1309597 2 0.2261 0.880 0.068 0.932 0.000
#> SRR1441398 2 0.4346 0.862 0.184 0.816 0.000
#> SRR1084055 3 0.5635 0.777 0.036 0.180 0.784
#> SRR1417566 1 0.2537 0.846 0.920 0.080 0.000
#> SRR1351857 3 0.0000 0.905 0.000 0.000 1.000
#> SRR1487485 1 0.2878 0.843 0.904 0.096 0.000
#> SRR1335875 1 0.1411 0.859 0.964 0.036 0.000
#> SRR1073947 1 0.2339 0.844 0.940 0.012 0.048
#> SRR1443483 1 0.5497 0.643 0.708 0.292 0.000
#> SRR1346794 1 0.0892 0.861 0.980 0.020 0.000
#> SRR1405245 2 0.4346 0.862 0.184 0.816 0.000
#> SRR1409677 3 0.1411 0.902 0.036 0.000 0.964
#> SRR1095549 3 0.2448 0.889 0.076 0.000 0.924
#> SRR1323788 1 0.0661 0.861 0.988 0.008 0.004
#> SRR1314054 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1077944 1 0.0592 0.861 0.988 0.012 0.000
#> SRR1480587 2 0.2261 0.880 0.068 0.932 0.000
#> SRR1311205 2 0.4346 0.862 0.184 0.816 0.000
#> SRR1076369 1 0.4555 0.771 0.800 0.200 0.000
#> SRR1453549 1 0.0592 0.858 0.988 0.000 0.012
#> SRR1345782 1 0.1411 0.859 0.964 0.036 0.000
#> SRR1447850 1 0.7213 0.567 0.668 0.060 0.272
#> SRR1391553 1 0.2711 0.841 0.912 0.088 0.000
#> SRR1444156 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1471731 1 0.6192 0.118 0.580 0.420 0.000
#> SRR1120987 3 0.0000 0.905 0.000 0.000 1.000
#> SRR1477363 1 0.0892 0.861 0.980 0.020 0.000
#> SRR1391961 2 0.6274 0.115 0.456 0.544 0.000
#> SRR1373879 3 0.2448 0.889 0.076 0.000 0.924
#> SRR1318732 1 0.5216 0.599 0.740 0.260 0.000
#> SRR1091404 1 0.3590 0.821 0.896 0.028 0.076
#> SRR1402109 1 0.3237 0.835 0.912 0.032 0.056
#> SRR1407336 3 0.6659 0.171 0.460 0.008 0.532
#> SRR1097417 2 0.6267 0.124 0.452 0.548 0.000
#> SRR1396227 1 0.0983 0.861 0.980 0.016 0.004
#> SRR1400775 1 0.7199 0.579 0.676 0.064 0.260
#> SRR1392861 3 0.1964 0.898 0.056 0.000 0.944
#> SRR1472929 2 0.2165 0.879 0.064 0.936 0.000
#> SRR1436740 3 0.1411 0.902 0.036 0.000 0.964
#> SRR1477057 1 0.2625 0.843 0.916 0.084 0.000
#> SRR1311980 2 0.4346 0.862 0.184 0.816 0.000
#> SRR1069400 1 0.4178 0.787 0.828 0.172 0.000
#> SRR1351016 1 0.5706 0.455 0.680 0.320 0.000
#> SRR1096291 3 0.0000 0.905 0.000 0.000 1.000
#> SRR1418145 1 0.2959 0.812 0.900 0.000 0.100
#> SRR1488111 1 0.2625 0.843 0.916 0.084 0.000
#> SRR1370495 2 0.2261 0.880 0.068 0.932 0.000
#> SRR1352639 1 0.2280 0.841 0.940 0.008 0.052
#> SRR1348911 2 0.2165 0.879 0.064 0.936 0.000
#> SRR1467386 3 0.2261 0.893 0.068 0.000 0.932
#> SRR1415956 2 0.4399 0.859 0.188 0.812 0.000
#> SRR1500495 2 0.4399 0.859 0.188 0.812 0.000
#> SRR1405099 2 0.4399 0.859 0.188 0.812 0.000
#> SRR1345585 1 0.3267 0.836 0.884 0.116 0.000
#> SRR1093196 1 0.2680 0.832 0.924 0.008 0.068
#> SRR1466006 2 0.2356 0.871 0.072 0.928 0.000
#> SRR1351557 1 0.2448 0.851 0.924 0.076 0.000
#> SRR1382687 1 0.0892 0.861 0.980 0.020 0.000
#> SRR1375549 1 0.2625 0.843 0.916 0.084 0.000
#> SRR1101765 3 0.0747 0.903 0.000 0.016 0.984
#> SRR1334461 2 0.2165 0.879 0.064 0.936 0.000
#> SRR1094073 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1077549 3 0.2261 0.893 0.068 0.000 0.932
#> SRR1440332 1 0.2280 0.841 0.940 0.008 0.052
#> SRR1454177 3 0.0000 0.905 0.000 0.000 1.000
#> SRR1082447 3 0.6274 0.191 0.456 0.000 0.544
#> SRR1420043 1 0.1411 0.859 0.964 0.036 0.000
#> SRR1432500 1 0.2651 0.837 0.928 0.012 0.060
#> SRR1378045 1 0.6318 0.691 0.760 0.068 0.172
#> SRR1334200 2 0.2165 0.879 0.064 0.936 0.000
#> SRR1069539 3 0.1031 0.901 0.000 0.024 0.976
#> SRR1343031 1 0.3237 0.835 0.912 0.032 0.056
#> SRR1319690 1 0.2711 0.841 0.912 0.088 0.000
#> SRR1310604 1 0.4121 0.788 0.832 0.168 0.000
#> SRR1327747 1 0.2711 0.841 0.912 0.088 0.000
#> SRR1072456 2 0.2356 0.870 0.072 0.928 0.000
#> SRR1367896 2 0.2448 0.867 0.076 0.924 0.000
#> SRR1480107 1 0.2711 0.841 0.912 0.088 0.000
#> SRR1377756 1 0.0892 0.861 0.980 0.020 0.000
#> SRR1435272 3 0.0000 0.905 0.000 0.000 1.000
#> SRR1089230 3 0.0000 0.905 0.000 0.000 1.000
#> SRR1389522 1 0.6225 0.304 0.568 0.432 0.000
#> SRR1080600 1 0.5016 0.755 0.760 0.240 0.000
#> SRR1086935 3 0.1529 0.897 0.000 0.040 0.960
#> SRR1344060 2 0.2165 0.879 0.064 0.936 0.000
#> SRR1467922 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1090984 2 0.4178 0.865 0.172 0.828 0.000
#> SRR1456991 2 0.4399 0.859 0.188 0.812 0.000
#> SRR1085039 3 0.6079 0.399 0.388 0.000 0.612
#> SRR1069303 1 0.1411 0.859 0.964 0.036 0.000
#> SRR1091500 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1075198 1 0.2625 0.848 0.916 0.084 0.000
#> SRR1086915 3 0.1860 0.899 0.052 0.000 0.948
#> SRR1499503 3 0.3649 0.880 0.036 0.068 0.896
#> SRR1094312 1 0.7363 0.540 0.656 0.064 0.280
#> SRR1352437 3 0.1753 0.899 0.048 0.000 0.952
#> SRR1436323 1 0.2711 0.841 0.912 0.088 0.000
#> SRR1073507 3 0.1860 0.898 0.052 0.000 0.948
#> SRR1401972 1 0.2804 0.838 0.924 0.016 0.060
#> SRR1415510 1 0.4235 0.784 0.824 0.176 0.000
#> SRR1327279 3 0.5138 0.685 0.252 0.000 0.748
#> SRR1086983 3 0.1529 0.901 0.040 0.000 0.960
#> SRR1105174 3 0.2261 0.893 0.068 0.000 0.932
#> SRR1468893 2 0.5733 0.666 0.324 0.676 0.000
#> SRR1362555 2 0.2711 0.878 0.088 0.912 0.000
#> SRR1074526 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1326225 3 0.2066 0.890 0.000 0.060 0.940
#> SRR1401933 1 0.0747 0.861 0.984 0.016 0.000
#> SRR1324062 1 0.1411 0.859 0.964 0.036 0.000
#> SRR1102296 1 0.5465 0.586 0.712 0.000 0.288
#> SRR1085087 3 0.2261 0.893 0.068 0.000 0.932
#> SRR1079046 1 0.2066 0.854 0.940 0.060 0.000
#> SRR1328339 1 0.2959 0.843 0.900 0.100 0.000
#> SRR1079782 1 0.2096 0.841 0.944 0.004 0.052
#> SRR1092257 3 0.0747 0.903 0.000 0.016 0.984
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 4 0.3219 0.749881 0.000 0.000 0.164 0.836
#> SRR1429287 1 0.3497 0.687183 0.860 0.036 0.104 0.000
#> SRR1359238 1 0.1902 0.732350 0.932 0.004 0.064 0.000
#> SRR1309597 2 0.0592 0.879369 0.016 0.984 0.000 0.000
#> SRR1441398 2 0.1824 0.875143 0.060 0.936 0.004 0.000
#> SRR1084055 3 0.4282 0.409419 0.008 0.024 0.808 0.160
#> SRR1417566 1 0.1452 0.732840 0.956 0.008 0.036 0.000
#> SRR1351857 4 0.0592 0.807689 0.000 0.000 0.016 0.984
#> SRR1487485 1 0.5510 0.241230 0.600 0.024 0.376 0.000
#> SRR1335875 1 0.2124 0.730685 0.924 0.008 0.068 0.000
#> SRR1073947 1 0.3681 0.667375 0.816 0.008 0.176 0.000
#> SRR1443483 3 0.7391 0.141980 0.396 0.164 0.440 0.000
#> SRR1346794 1 0.0524 0.737002 0.988 0.004 0.008 0.000
#> SRR1405245 2 0.1978 0.873358 0.068 0.928 0.004 0.000
#> SRR1409677 4 0.2342 0.782589 0.008 0.000 0.080 0.912
#> SRR1095549 3 0.5151 -0.045771 0.004 0.000 0.532 0.464
#> SRR1323788 1 0.3831 0.628951 0.792 0.004 0.204 0.000
#> SRR1314054 4 0.3219 0.749881 0.000 0.000 0.164 0.836
#> SRR1077944 1 0.2675 0.715746 0.892 0.008 0.100 0.000
#> SRR1480587 2 0.0592 0.879369 0.016 0.984 0.000 0.000
#> SRR1311205 2 0.2125 0.870440 0.076 0.920 0.004 0.000
#> SRR1076369 1 0.6443 0.032161 0.528 0.072 0.400 0.000
#> SRR1453549 1 0.1940 0.728923 0.924 0.000 0.076 0.000
#> SRR1345782 1 0.4741 0.445516 0.668 0.004 0.328 0.000
#> SRR1447850 1 0.6178 -0.000987 0.480 0.004 0.476 0.040
#> SRR1391553 1 0.1042 0.734593 0.972 0.020 0.008 0.000
#> SRR1444156 4 0.3219 0.749881 0.000 0.000 0.164 0.836
#> SRR1471731 1 0.2271 0.711418 0.916 0.076 0.008 0.000
#> SRR1120987 4 0.0188 0.809992 0.000 0.000 0.004 0.996
#> SRR1477363 1 0.2675 0.718213 0.892 0.008 0.100 0.000
#> SRR1391961 3 0.7869 0.223629 0.312 0.296 0.392 0.000
#> SRR1373879 3 0.5392 -0.039957 0.012 0.000 0.528 0.460
#> SRR1318732 1 0.1545 0.730092 0.952 0.040 0.008 0.000
#> SRR1091404 3 0.5827 0.204096 0.396 0.000 0.568 0.036
#> SRR1402109 3 0.5062 0.411550 0.284 0.000 0.692 0.024
#> SRR1407336 3 0.5346 0.494180 0.076 0.000 0.732 0.192
#> SRR1097417 3 0.7854 0.225326 0.304 0.296 0.400 0.000
#> SRR1396227 1 0.2799 0.714132 0.884 0.008 0.108 0.000
#> SRR1400775 3 0.5460 0.397407 0.276 0.004 0.684 0.036
#> SRR1392861 4 0.4452 0.634578 0.008 0.000 0.260 0.732
#> SRR1472929 2 0.0657 0.873273 0.004 0.984 0.012 0.000
#> SRR1436740 4 0.2124 0.786659 0.008 0.000 0.068 0.924
#> SRR1477057 1 0.2882 0.707761 0.892 0.024 0.084 0.000
#> SRR1311980 2 0.1978 0.873358 0.068 0.928 0.004 0.000
#> SRR1069400 1 0.6337 -0.043999 0.476 0.060 0.464 0.000
#> SRR1351016 1 0.2944 0.680066 0.868 0.128 0.004 0.000
#> SRR1096291 4 0.0188 0.809539 0.000 0.000 0.004 0.996
#> SRR1418145 1 0.6057 0.271573 0.588 0.004 0.364 0.044
#> SRR1488111 1 0.2742 0.712569 0.900 0.024 0.076 0.000
#> SRR1370495 2 0.0592 0.879369 0.016 0.984 0.000 0.000
#> SRR1352639 1 0.5165 0.060030 0.512 0.004 0.484 0.000
#> SRR1348911 2 0.0657 0.878463 0.012 0.984 0.004 0.000
#> SRR1467386 4 0.5090 0.545824 0.016 0.000 0.324 0.660
#> SRR1415956 2 0.2125 0.870440 0.076 0.920 0.004 0.000
#> SRR1500495 2 0.2125 0.870440 0.076 0.920 0.004 0.000
#> SRR1405099 2 0.2125 0.870440 0.076 0.920 0.004 0.000
#> SRR1345585 1 0.4932 0.481825 0.728 0.032 0.240 0.000
#> SRR1093196 3 0.5976 0.160425 0.452 0.008 0.516 0.024
#> SRR1466006 2 0.5875 0.583160 0.092 0.684 0.224 0.000
#> SRR1351557 1 0.3842 0.675659 0.836 0.036 0.128 0.000
#> SRR1382687 1 0.2048 0.733730 0.928 0.008 0.064 0.000
#> SRR1375549 1 0.2742 0.712569 0.900 0.024 0.076 0.000
#> SRR1101765 4 0.0000 0.809769 0.000 0.000 0.000 1.000
#> SRR1334461 2 0.0657 0.873273 0.004 0.984 0.012 0.000
#> SRR1094073 4 0.3219 0.749881 0.000 0.000 0.164 0.836
#> SRR1077549 4 0.5075 0.520214 0.012 0.000 0.344 0.644
#> SRR1440332 1 0.5151 0.120497 0.532 0.004 0.464 0.000
#> SRR1454177 4 0.0000 0.809769 0.000 0.000 0.000 1.000
#> SRR1082447 3 0.6714 0.264481 0.100 0.000 0.540 0.360
#> SRR1420043 1 0.2480 0.719306 0.904 0.008 0.088 0.000
#> SRR1432500 1 0.5427 0.383761 0.640 0.004 0.336 0.020
#> SRR1378045 3 0.4567 0.489417 0.236 0.004 0.748 0.012
#> SRR1334200 2 0.0657 0.877227 0.012 0.984 0.004 0.000
#> SRR1069539 4 0.0921 0.805817 0.000 0.000 0.028 0.972
#> SRR1343031 3 0.5105 0.421111 0.276 0.000 0.696 0.028
#> SRR1319690 1 0.1297 0.736220 0.964 0.020 0.016 0.000
#> SRR1310604 3 0.5883 0.357993 0.300 0.060 0.640 0.000
#> SRR1327747 1 0.1411 0.732714 0.960 0.020 0.020 0.000
#> SRR1072456 2 0.4464 0.687306 0.024 0.768 0.208 0.000
#> SRR1367896 2 0.3908 0.700928 0.004 0.784 0.212 0.000
#> SRR1480107 1 0.3398 0.706679 0.872 0.068 0.060 0.000
#> SRR1377756 1 0.2546 0.718303 0.900 0.008 0.092 0.000
#> SRR1435272 4 0.0336 0.809303 0.000 0.000 0.008 0.992
#> SRR1089230 4 0.0000 0.809769 0.000 0.000 0.000 1.000
#> SRR1389522 3 0.7463 0.160705 0.384 0.176 0.440 0.000
#> SRR1080600 3 0.5062 0.463564 0.184 0.064 0.752 0.000
#> SRR1086935 4 0.0817 0.805670 0.000 0.000 0.024 0.976
#> SRR1344060 2 0.0804 0.871110 0.008 0.980 0.012 0.000
#> SRR1467922 4 0.3583 0.733645 0.000 0.004 0.180 0.816
#> SRR1090984 2 0.4220 0.675830 0.248 0.748 0.004 0.000
#> SRR1456991 2 0.4632 0.595287 0.308 0.688 0.004 0.000
#> SRR1085039 3 0.6677 0.255610 0.096 0.000 0.540 0.364
#> SRR1069303 1 0.2675 0.717502 0.892 0.008 0.100 0.000
#> SRR1091500 4 0.3219 0.749881 0.000 0.000 0.164 0.836
#> SRR1075198 1 0.5792 0.212092 0.552 0.032 0.416 0.000
#> SRR1086915 4 0.4690 0.628112 0.016 0.000 0.260 0.724
#> SRR1499503 3 0.4034 0.395306 0.012 0.004 0.804 0.180
#> SRR1094312 3 0.5284 0.437306 0.240 0.004 0.716 0.040
#> SRR1352437 4 0.4606 0.626993 0.012 0.000 0.264 0.724
#> SRR1436323 1 0.1284 0.733320 0.964 0.024 0.012 0.000
#> SRR1073507 4 0.5090 0.545824 0.016 0.000 0.324 0.660
#> SRR1401972 1 0.4897 0.425556 0.668 0.004 0.324 0.004
#> SRR1415510 1 0.5148 0.574372 0.736 0.056 0.208 0.000
#> SRR1327279 3 0.6500 0.226444 0.080 0.000 0.544 0.376
#> SRR1086983 4 0.2662 0.774246 0.016 0.000 0.084 0.900
#> SRR1105174 4 0.5130 0.534958 0.016 0.000 0.332 0.652
#> SRR1468893 2 0.4372 0.636210 0.268 0.728 0.004 0.000
#> SRR1362555 2 0.0592 0.879369 0.016 0.984 0.000 0.000
#> SRR1074526 4 0.3311 0.747883 0.000 0.000 0.172 0.828
#> SRR1326225 4 0.3494 0.740600 0.000 0.004 0.172 0.824
#> SRR1401933 1 0.1722 0.732849 0.944 0.008 0.048 0.000
#> SRR1324062 1 0.2737 0.716130 0.888 0.008 0.104 0.000
#> SRR1102296 3 0.6458 0.187808 0.408 0.000 0.520 0.072
#> SRR1085087 4 0.5110 0.539094 0.016 0.000 0.328 0.656
#> SRR1079046 1 0.2775 0.709603 0.896 0.020 0.084 0.000
#> SRR1328339 1 0.5231 0.274154 0.604 0.012 0.384 0.000
#> SRR1079782 1 0.4946 0.430883 0.680 0.008 0.308 0.004
#> SRR1092257 4 0.0188 0.809992 0.000 0.000 0.004 0.996
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0324 0.7005 0.000 0.992 0.004 0.004 0.000
#> SRR1429287 1 0.5329 0.5893 0.692 0.000 0.212 0.076 0.020
#> SRR1359238 1 0.2439 0.7267 0.876 0.000 0.120 0.004 0.000
#> SRR1309597 5 0.1197 0.8509 0.000 0.000 0.048 0.000 0.952
#> SRR1441398 5 0.1041 0.8533 0.032 0.000 0.000 0.004 0.964
#> SRR1084055 3 0.6200 0.4469 0.000 0.256 0.548 0.196 0.000
#> SRR1417566 1 0.3652 0.6487 0.784 0.000 0.200 0.012 0.004
#> SRR1351857 2 0.4088 0.6117 0.000 0.632 0.000 0.368 0.000
#> SRR1487485 3 0.5363 0.1705 0.372 0.000 0.572 0.052 0.004
#> SRR1335875 1 0.1267 0.7384 0.960 0.000 0.004 0.024 0.012
#> SRR1073947 1 0.5392 0.4780 0.668 0.000 0.056 0.252 0.024
#> SRR1443483 3 0.5679 0.5282 0.188 0.000 0.672 0.120 0.020
#> SRR1346794 1 0.1365 0.7382 0.952 0.000 0.040 0.004 0.004
#> SRR1405245 5 0.1205 0.8527 0.040 0.000 0.000 0.004 0.956
#> SRR1409677 4 0.4227 0.0327 0.000 0.420 0.000 0.580 0.000
#> SRR1095549 4 0.3859 0.6216 0.004 0.084 0.096 0.816 0.000
#> SRR1323788 1 0.4988 0.5345 0.716 0.000 0.084 0.192 0.008
#> SRR1314054 2 0.0324 0.7005 0.000 0.992 0.004 0.004 0.000
#> SRR1077944 1 0.1399 0.7332 0.952 0.000 0.020 0.028 0.000
#> SRR1480587 5 0.1197 0.8509 0.000 0.000 0.048 0.000 0.952
#> SRR1311205 5 0.1764 0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1076369 3 0.4788 0.5433 0.144 0.000 0.760 0.068 0.028
#> SRR1453549 1 0.1701 0.7385 0.936 0.000 0.048 0.016 0.000
#> SRR1345782 1 0.6413 0.2472 0.552 0.000 0.232 0.208 0.008
#> SRR1447850 3 0.8591 0.2489 0.248 0.268 0.268 0.216 0.000
#> SRR1391553 1 0.2228 0.7319 0.908 0.000 0.076 0.012 0.004
#> SRR1444156 2 0.0404 0.6983 0.000 0.988 0.012 0.000 0.000
#> SRR1471731 1 0.3584 0.7088 0.836 0.000 0.112 0.012 0.040
#> SRR1120987 2 0.3966 0.6742 0.000 0.664 0.000 0.336 0.000
#> SRR1477363 1 0.0404 0.7380 0.988 0.000 0.000 0.012 0.000
#> SRR1391961 3 0.5360 0.5221 0.088 0.000 0.736 0.068 0.108
#> SRR1373879 4 0.4059 0.6154 0.012 0.068 0.112 0.808 0.000
#> SRR1318732 1 0.4097 0.6367 0.756 0.000 0.216 0.008 0.020
#> SRR1091404 4 0.6649 -0.1311 0.268 0.000 0.284 0.448 0.000
#> SRR1402109 3 0.6644 0.2956 0.192 0.000 0.432 0.372 0.004
#> SRR1407336 4 0.5347 -0.0631 0.040 0.008 0.396 0.556 0.000
#> SRR1097417 3 0.4832 0.5307 0.060 0.000 0.772 0.060 0.108
#> SRR1396227 1 0.1836 0.7304 0.936 0.000 0.016 0.040 0.008
#> SRR1400775 3 0.8352 0.3670 0.136 0.272 0.320 0.272 0.000
#> SRR1392861 4 0.3612 0.5087 0.000 0.268 0.000 0.732 0.000
#> SRR1472929 5 0.1732 0.8394 0.000 0.000 0.080 0.000 0.920
#> SRR1436740 4 0.4448 -0.2300 0.000 0.480 0.004 0.516 0.000
#> SRR1477057 1 0.4272 0.6737 0.780 0.000 0.152 0.060 0.008
#> SRR1311980 5 0.1205 0.8527 0.040 0.000 0.000 0.004 0.956
#> SRR1069400 3 0.5523 0.5224 0.200 0.000 0.668 0.124 0.008
#> SRR1351016 1 0.3474 0.6701 0.832 0.000 0.028 0.008 0.132
#> SRR1096291 2 0.3966 0.6742 0.000 0.664 0.000 0.336 0.000
#> SRR1418145 1 0.6767 0.1542 0.428 0.008 0.196 0.368 0.000
#> SRR1488111 1 0.3871 0.6870 0.808 0.000 0.132 0.056 0.004
#> SRR1370495 5 0.1197 0.8509 0.000 0.000 0.048 0.000 0.952
#> SRR1352639 1 0.6529 0.0685 0.436 0.000 0.168 0.392 0.004
#> SRR1348911 5 0.2583 0.8141 0.000 0.000 0.132 0.004 0.864
#> SRR1467386 4 0.3562 0.6050 0.016 0.196 0.000 0.788 0.000
#> SRR1415956 5 0.1764 0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1500495 5 0.1764 0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1405099 5 0.1764 0.8441 0.064 0.000 0.000 0.008 0.928
#> SRR1345585 1 0.5233 0.0672 0.488 0.000 0.476 0.008 0.028
#> SRR1093196 3 0.6569 0.2930 0.304 0.000 0.464 0.232 0.000
#> SRR1466006 3 0.4151 0.1558 0.004 0.000 0.652 0.000 0.344
#> SRR1351557 1 0.6000 0.4606 0.596 0.000 0.292 0.092 0.020
#> SRR1382687 1 0.0579 0.7390 0.984 0.000 0.008 0.008 0.000
#> SRR1375549 1 0.3543 0.6991 0.832 0.000 0.124 0.036 0.008
#> SRR1101765 2 0.3949 0.6788 0.000 0.668 0.000 0.332 0.000
#> SRR1334461 5 0.2763 0.8025 0.000 0.000 0.148 0.004 0.848
#> SRR1094073 2 0.0404 0.6983 0.000 0.988 0.012 0.000 0.000
#> SRR1077549 4 0.3773 0.6225 0.004 0.164 0.032 0.800 0.000
#> SRR1440332 1 0.6252 0.1895 0.508 0.000 0.164 0.328 0.000
#> SRR1454177 2 0.4084 0.6808 0.000 0.668 0.004 0.328 0.000
#> SRR1082447 4 0.4539 0.5804 0.068 0.036 0.108 0.788 0.000
#> SRR1420043 1 0.1012 0.7372 0.968 0.000 0.020 0.012 0.000
#> SRR1432500 1 0.4297 0.4987 0.692 0.000 0.020 0.288 0.000
#> SRR1378045 3 0.7892 0.4870 0.144 0.168 0.464 0.224 0.000
#> SRR1334200 5 0.2286 0.8311 0.000 0.000 0.108 0.004 0.888
#> SRR1069539 2 0.3752 0.6930 0.000 0.708 0.000 0.292 0.000
#> SRR1343031 3 0.6585 0.2940 0.180 0.000 0.440 0.376 0.004
#> SRR1319690 1 0.1644 0.7390 0.940 0.000 0.048 0.008 0.004
#> SRR1310604 3 0.4723 0.5627 0.064 0.000 0.768 0.136 0.032
#> SRR1327747 1 0.2463 0.7259 0.888 0.000 0.100 0.004 0.008
#> SRR1072456 3 0.4321 0.0495 0.004 0.000 0.600 0.000 0.396
#> SRR1367896 3 0.4968 -0.1274 0.000 0.000 0.516 0.028 0.456
#> SRR1480107 1 0.3542 0.6725 0.840 0.000 0.028 0.020 0.112
#> SRR1377756 1 0.0693 0.7369 0.980 0.000 0.008 0.012 0.000
#> SRR1435272 2 0.4101 0.6772 0.000 0.664 0.004 0.332 0.000
#> SRR1089230 2 0.4084 0.6808 0.000 0.668 0.004 0.328 0.000
#> SRR1389522 3 0.5509 0.5463 0.164 0.000 0.700 0.108 0.028
#> SRR1080600 3 0.4790 0.5618 0.032 0.024 0.780 0.132 0.032
#> SRR1086935 2 0.3838 0.6951 0.000 0.716 0.004 0.280 0.000
#> SRR1344060 5 0.3366 0.7428 0.000 0.000 0.212 0.004 0.784
#> SRR1467922 2 0.1568 0.6468 0.000 0.944 0.036 0.020 0.000
#> SRR1090984 5 0.5407 0.6317 0.180 0.000 0.128 0.008 0.684
#> SRR1456991 5 0.5262 0.3264 0.388 0.000 0.036 0.008 0.568
#> SRR1085039 4 0.4462 0.5985 0.060 0.044 0.100 0.796 0.000
#> SRR1069303 1 0.2420 0.7206 0.912 0.000 0.016 0.036 0.036
#> SRR1091500 2 0.0404 0.6983 0.000 0.988 0.012 0.000 0.000
#> SRR1075198 3 0.6882 0.0787 0.356 0.000 0.460 0.160 0.024
#> SRR1086915 4 0.3586 0.5165 0.000 0.264 0.000 0.736 0.000
#> SRR1499503 3 0.6630 0.3615 0.000 0.376 0.404 0.220 0.000
#> SRR1094312 3 0.8252 0.3640 0.116 0.292 0.320 0.272 0.000
#> SRR1352437 4 0.3521 0.5636 0.004 0.232 0.000 0.764 0.000
#> SRR1436323 1 0.2284 0.7271 0.896 0.000 0.096 0.004 0.004
#> SRR1073507 4 0.3496 0.6024 0.012 0.200 0.000 0.788 0.000
#> SRR1401972 1 0.3828 0.6321 0.788 0.000 0.020 0.184 0.008
#> SRR1415510 1 0.6376 0.1342 0.448 0.000 0.444 0.076 0.032
#> SRR1327279 4 0.4460 0.5844 0.048 0.044 0.116 0.792 0.000
#> SRR1086983 4 0.4074 0.2546 0.000 0.364 0.000 0.636 0.000
#> SRR1105174 4 0.3511 0.6142 0.012 0.184 0.004 0.800 0.000
#> SRR1468893 5 0.3756 0.6239 0.248 0.000 0.000 0.008 0.744
#> SRR1362555 5 0.1341 0.8502 0.000 0.000 0.056 0.000 0.944
#> SRR1074526 2 0.0290 0.6979 0.000 0.992 0.008 0.000 0.000
#> SRR1326225 2 0.0671 0.6881 0.000 0.980 0.016 0.004 0.000
#> SRR1401933 1 0.3384 0.7058 0.848 0.000 0.088 0.060 0.004
#> SRR1324062 1 0.2417 0.7244 0.912 0.000 0.016 0.040 0.032
#> SRR1102296 4 0.5847 0.1316 0.312 0.008 0.096 0.584 0.000
#> SRR1085087 4 0.3586 0.6082 0.020 0.188 0.000 0.792 0.000
#> SRR1079046 1 0.4059 0.6768 0.800 0.000 0.132 0.060 0.008
#> SRR1328339 1 0.5673 0.1486 0.544 0.000 0.388 0.056 0.012
#> SRR1079782 1 0.6170 0.4224 0.576 0.000 0.232 0.188 0.004
#> SRR1092257 2 0.3949 0.6787 0.000 0.668 0.000 0.332 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0520 0.66932 0.000 0.984 0.008 0.008 0.000 0.000
#> SRR1429287 6 0.4724 0.10073 0.468 0.004 0.020 0.004 0.004 0.500
#> SRR1359238 1 0.3485 0.54271 0.784 0.000 0.028 0.004 0.000 0.184
#> SRR1309597 5 0.2866 0.77600 0.000 0.004 0.052 0.000 0.860 0.084
#> SRR1441398 5 0.0146 0.77749 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1084055 3 0.7403 0.05615 0.000 0.268 0.364 0.128 0.000 0.240
#> SRR1417566 1 0.5386 0.36361 0.588 0.000 0.264 0.000 0.004 0.144
#> SRR1351857 2 0.4897 0.54759 0.000 0.556 0.004 0.384 0.000 0.056
#> SRR1487485 3 0.6425 -0.16387 0.244 0.000 0.408 0.012 0.004 0.332
#> SRR1335875 1 0.1841 0.62888 0.920 0.000 0.000 0.008 0.008 0.064
#> SRR1073947 1 0.5027 0.42097 0.672 0.000 0.064 0.236 0.008 0.020
#> SRR1443483 3 0.3610 0.46255 0.092 0.000 0.820 0.072 0.004 0.012
#> SRR1346794 1 0.2837 0.60952 0.856 0.000 0.056 0.000 0.000 0.088
#> SRR1405245 5 0.0146 0.77749 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1409677 4 0.3996 0.47780 0.000 0.180 0.012 0.760 0.000 0.048
#> SRR1095549 4 0.3705 0.64512 0.000 0.008 0.180 0.776 0.000 0.036
#> SRR1323788 1 0.5496 0.33688 0.592 0.000 0.240 0.160 0.000 0.008
#> SRR1314054 2 0.0260 0.67026 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1077944 1 0.2314 0.63523 0.900 0.000 0.056 0.036 0.000 0.008
#> SRR1480587 5 0.3096 0.77553 0.004 0.004 0.048 0.000 0.848 0.096
#> SRR1311205 5 0.1442 0.76437 0.040 0.000 0.004 0.000 0.944 0.012
#> SRR1076369 3 0.3271 0.46044 0.028 0.000 0.848 0.032 0.004 0.088
#> SRR1453549 1 0.2265 0.62157 0.900 0.000 0.024 0.008 0.000 0.068
#> SRR1345782 1 0.5962 0.16167 0.500 0.000 0.328 0.156 0.000 0.016
#> SRR1447850 6 0.6686 0.46248 0.144 0.224 0.020 0.064 0.000 0.548
#> SRR1391553 1 0.4214 0.53591 0.736 0.000 0.076 0.000 0.004 0.184
#> SRR1444156 2 0.0951 0.66861 0.000 0.968 0.004 0.008 0.000 0.020
#> SRR1471731 1 0.5375 0.46049 0.648 0.000 0.112 0.000 0.032 0.208
#> SRR1120987 2 0.5080 0.57635 0.000 0.552 0.012 0.380 0.000 0.056
#> SRR1477363 1 0.1148 0.63586 0.960 0.000 0.000 0.020 0.004 0.016
#> SRR1391961 3 0.4094 0.44339 0.012 0.004 0.752 0.004 0.028 0.200
#> SRR1373879 4 0.3090 0.67558 0.000 0.004 0.140 0.828 0.000 0.028
#> SRR1318732 1 0.5513 0.39761 0.596 0.000 0.188 0.000 0.008 0.208
#> SRR1091404 4 0.7242 0.05862 0.196 0.000 0.260 0.416 0.000 0.128
#> SRR1402109 3 0.6535 0.29645 0.164 0.000 0.512 0.256 0.000 0.068
#> SRR1407336 4 0.5479 0.16607 0.012 0.000 0.380 0.516 0.000 0.092
#> SRR1097417 3 0.3937 0.44627 0.008 0.004 0.764 0.004 0.028 0.192
#> SRR1396227 1 0.2128 0.62614 0.908 0.000 0.000 0.032 0.004 0.056
#> SRR1400775 6 0.7196 0.36758 0.056 0.244 0.076 0.112 0.000 0.512
#> SRR1392861 4 0.3088 0.59821 0.000 0.120 0.000 0.832 0.000 0.048
#> SRR1472929 5 0.4125 0.73327 0.000 0.004 0.100 0.000 0.756 0.140
#> SRR1436740 4 0.4724 0.20253 0.000 0.276 0.012 0.656 0.000 0.056
#> SRR1477057 1 0.4421 0.09255 0.552 0.000 0.020 0.004 0.000 0.424
#> SRR1311980 5 0.0146 0.77749 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1069400 3 0.4676 0.42258 0.104 0.000 0.748 0.072 0.000 0.076
#> SRR1351016 1 0.3980 0.58201 0.784 0.000 0.056 0.000 0.136 0.024
#> SRR1096291 2 0.4840 0.58583 0.000 0.580 0.004 0.360 0.000 0.056
#> SRR1418145 6 0.5742 0.46932 0.292 0.000 0.004 0.180 0.000 0.524
#> SRR1488111 1 0.4223 0.24766 0.612 0.000 0.016 0.004 0.000 0.368
#> SRR1370495 5 0.3096 0.77553 0.004 0.004 0.048 0.000 0.848 0.096
#> SRR1352639 1 0.7072 0.00451 0.412 0.000 0.200 0.296 0.000 0.092
#> SRR1348911 5 0.5317 0.62747 0.000 0.004 0.236 0.004 0.620 0.136
#> SRR1467386 4 0.1285 0.69423 0.004 0.052 0.000 0.944 0.000 0.000
#> SRR1415956 5 0.1410 0.76216 0.044 0.000 0.004 0.000 0.944 0.008
#> SRR1500495 5 0.1410 0.76216 0.044 0.000 0.004 0.000 0.944 0.008
#> SRR1405099 5 0.1410 0.76216 0.044 0.000 0.004 0.000 0.944 0.008
#> SRR1345585 3 0.6243 -0.08286 0.376 0.000 0.408 0.008 0.004 0.204
#> SRR1093196 6 0.7295 0.17743 0.184 0.000 0.284 0.136 0.000 0.396
#> SRR1466006 3 0.5991 0.19713 0.004 0.008 0.512 0.004 0.148 0.324
#> SRR1351557 6 0.3864 0.43199 0.344 0.000 0.000 0.004 0.004 0.648
#> SRR1382687 1 0.1138 0.63641 0.960 0.000 0.000 0.012 0.004 0.024
#> SRR1375549 1 0.4213 0.30029 0.636 0.000 0.020 0.004 0.000 0.340
#> SRR1101765 2 0.4934 0.58960 0.000 0.568 0.016 0.376 0.000 0.040
#> SRR1334461 5 0.5909 0.53851 0.000 0.004 0.264 0.004 0.524 0.204
#> SRR1094073 2 0.0862 0.66907 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1077549 4 0.2492 0.70287 0.000 0.036 0.068 0.888 0.000 0.008
#> SRR1440332 1 0.6648 0.12131 0.472 0.000 0.232 0.244 0.000 0.052
#> SRR1454177 2 0.4879 0.60452 0.000 0.584 0.008 0.356 0.000 0.052
#> SRR1082447 4 0.3765 0.66711 0.040 0.000 0.132 0.800 0.000 0.028
#> SRR1420043 1 0.1945 0.63708 0.920 0.000 0.056 0.016 0.004 0.004
#> SRR1432500 1 0.3828 0.46099 0.724 0.000 0.008 0.252 0.000 0.016
#> SRR1378045 3 0.8216 0.03662 0.100 0.176 0.376 0.092 0.000 0.256
#> SRR1334200 5 0.5717 0.61008 0.004 0.004 0.168 0.004 0.580 0.240
#> SRR1069539 2 0.4505 0.63333 0.000 0.668 0.004 0.272 0.000 0.056
#> SRR1343031 3 0.6565 0.29038 0.164 0.000 0.504 0.264 0.000 0.068
#> SRR1319690 1 0.2532 0.62934 0.884 0.000 0.060 0.000 0.004 0.052
#> SRR1310604 3 0.5698 -0.01756 0.036 0.004 0.456 0.056 0.000 0.448
#> SRR1327747 1 0.4275 0.52590 0.728 0.000 0.076 0.000 0.004 0.192
#> SRR1072456 3 0.5720 0.14799 0.000 0.004 0.560 0.004 0.180 0.252
#> SRR1367896 3 0.5337 0.19128 0.000 0.004 0.628 0.004 0.188 0.176
#> SRR1480107 1 0.3816 0.59186 0.808 0.000 0.056 0.008 0.112 0.016
#> SRR1377756 1 0.1053 0.64067 0.964 0.000 0.012 0.020 0.004 0.000
#> SRR1435272 2 0.4929 0.58651 0.000 0.564 0.008 0.376 0.000 0.052
#> SRR1089230 2 0.4879 0.60443 0.000 0.584 0.008 0.356 0.000 0.052
#> SRR1389522 3 0.2853 0.47379 0.068 0.000 0.868 0.056 0.004 0.004
#> SRR1080600 6 0.5405 -0.15709 0.016 0.004 0.456 0.048 0.004 0.472
#> SRR1086935 2 0.4513 0.63952 0.000 0.676 0.008 0.264 0.000 0.052
#> SRR1344060 5 0.6188 0.41023 0.000 0.004 0.328 0.004 0.436 0.228
#> SRR1467922 2 0.1801 0.63014 0.000 0.924 0.016 0.004 0.000 0.056
#> SRR1090984 5 0.7211 0.31623 0.204 0.000 0.164 0.000 0.448 0.184
#> SRR1456991 1 0.5359 0.13109 0.484 0.000 0.060 0.000 0.436 0.020
#> SRR1085039 4 0.3573 0.67906 0.036 0.000 0.120 0.816 0.000 0.028
#> SRR1069303 1 0.2701 0.62021 0.884 0.000 0.000 0.028 0.044 0.044
#> SRR1091500 2 0.1167 0.66747 0.000 0.960 0.012 0.008 0.000 0.020
#> SRR1075198 6 0.5866 0.47549 0.180 0.004 0.168 0.028 0.004 0.616
#> SRR1086915 4 0.3049 0.61550 0.000 0.104 0.004 0.844 0.000 0.048
#> SRR1499503 2 0.7379 -0.29622 0.000 0.364 0.232 0.124 0.000 0.280
#> SRR1094312 6 0.7145 0.33391 0.040 0.276 0.080 0.112 0.000 0.492
#> SRR1352437 4 0.2854 0.63420 0.004 0.088 0.000 0.860 0.000 0.048
#> SRR1436323 1 0.4313 0.52937 0.728 0.000 0.084 0.000 0.004 0.184
#> SRR1073507 4 0.1285 0.69423 0.004 0.052 0.000 0.944 0.000 0.000
#> SRR1401972 1 0.3254 0.56813 0.820 0.000 0.000 0.124 0.000 0.056
#> SRR1415510 6 0.5433 0.49614 0.260 0.004 0.120 0.004 0.004 0.608
#> SRR1327279 4 0.3488 0.65005 0.012 0.000 0.160 0.800 0.000 0.028
#> SRR1086983 4 0.3490 0.51000 0.000 0.176 0.000 0.784 0.000 0.040
#> SRR1105174 4 0.1862 0.70090 0.004 0.044 0.016 0.928 0.000 0.008
#> SRR1468893 5 0.3301 0.58159 0.216 0.000 0.004 0.000 0.772 0.008
#> SRR1362555 5 0.3218 0.77273 0.004 0.004 0.044 0.000 0.836 0.112
#> SRR1074526 2 0.0862 0.66785 0.000 0.972 0.004 0.008 0.000 0.016
#> SRR1326225 2 0.1511 0.64339 0.000 0.940 0.012 0.004 0.000 0.044
#> SRR1401933 1 0.3547 0.34296 0.668 0.000 0.000 0.000 0.000 0.332
#> SRR1324062 1 0.2755 0.61964 0.880 0.000 0.000 0.028 0.036 0.056
#> SRR1102296 4 0.6074 0.33300 0.264 0.000 0.092 0.568 0.000 0.076
#> SRR1085087 4 0.1477 0.69328 0.004 0.048 0.000 0.940 0.000 0.008
#> SRR1079046 1 0.4387 0.15467 0.572 0.000 0.020 0.004 0.000 0.404
#> SRR1328339 3 0.4622 -0.09148 0.484 0.000 0.488 0.004 0.008 0.016
#> SRR1079782 6 0.4362 0.39141 0.388 0.000 0.000 0.028 0.000 0.584
#> SRR1092257 2 0.5080 0.57635 0.000 0.552 0.012 0.380 0.000 0.056
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
ATC:skmeans**
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["ATC", "skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.986 0.994 0.5019 0.499 0.499
#> 3 3 0.743 0.899 0.915 0.3000 0.794 0.606
#> 4 4 0.579 0.572 0.784 0.1195 0.874 0.659
#> 5 5 0.630 0.495 0.745 0.0634 0.845 0.533
#> 6 6 0.703 0.571 0.765 0.0458 0.888 0.576
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.0000 0.999 0.000 1.000
#> SRR1429287 1 0.0000 0.990 1.000 0.000
#> SRR1359238 1 0.0000 0.990 1.000 0.000
#> SRR1309597 1 0.0000 0.990 1.000 0.000
#> SRR1441398 1 0.0000 0.990 1.000 0.000
#> SRR1084055 2 0.0000 0.999 0.000 1.000
#> SRR1417566 1 0.0000 0.990 1.000 0.000
#> SRR1351857 2 0.0000 0.999 0.000 1.000
#> SRR1487485 1 0.0000 0.990 1.000 0.000
#> SRR1335875 1 0.0000 0.990 1.000 0.000
#> SRR1073947 1 0.0000 0.990 1.000 0.000
#> SRR1443483 1 0.0000 0.990 1.000 0.000
#> SRR1346794 1 0.0000 0.990 1.000 0.000
#> SRR1405245 1 0.0000 0.990 1.000 0.000
#> SRR1409677 2 0.0000 0.999 0.000 1.000
#> SRR1095549 2 0.0000 0.999 0.000 1.000
#> SRR1323788 1 0.0000 0.990 1.000 0.000
#> SRR1314054 2 0.0000 0.999 0.000 1.000
#> SRR1077944 1 0.0000 0.990 1.000 0.000
#> SRR1480587 1 0.0000 0.990 1.000 0.000
#> SRR1311205 1 0.0000 0.990 1.000 0.000
#> SRR1076369 1 0.0000 0.990 1.000 0.000
#> SRR1453549 1 0.8267 0.650 0.740 0.260
#> SRR1345782 1 0.0000 0.990 1.000 0.000
#> SRR1447850 2 0.0000 0.999 0.000 1.000
#> SRR1391553 1 0.0000 0.990 1.000 0.000
#> SRR1444156 2 0.0000 0.999 0.000 1.000
#> SRR1471731 1 0.0000 0.990 1.000 0.000
#> SRR1120987 2 0.0000 0.999 0.000 1.000
#> SRR1477363 1 0.0000 0.990 1.000 0.000
#> SRR1391961 1 0.0000 0.990 1.000 0.000
#> SRR1373879 2 0.0000 0.999 0.000 1.000
#> SRR1318732 1 0.0000 0.990 1.000 0.000
#> SRR1091404 2 0.0000 0.999 0.000 1.000
#> SRR1402109 2 0.0000 0.999 0.000 1.000
#> SRR1407336 2 0.0000 0.999 0.000 1.000
#> SRR1097417 1 0.0000 0.990 1.000 0.000
#> SRR1396227 1 0.0000 0.990 1.000 0.000
#> SRR1400775 2 0.0000 0.999 0.000 1.000
#> SRR1392861 2 0.0000 0.999 0.000 1.000
#> SRR1472929 1 0.0000 0.990 1.000 0.000
#> SRR1436740 2 0.0000 0.999 0.000 1.000
#> SRR1477057 1 0.0000 0.990 1.000 0.000
#> SRR1311980 1 0.0000 0.990 1.000 0.000
#> SRR1069400 1 0.0376 0.986 0.996 0.004
#> SRR1351016 1 0.0000 0.990 1.000 0.000
#> SRR1096291 2 0.0000 0.999 0.000 1.000
#> SRR1418145 2 0.0000 0.999 0.000 1.000
#> SRR1488111 1 0.0000 0.990 1.000 0.000
#> SRR1370495 1 0.0000 0.990 1.000 0.000
#> SRR1352639 2 0.0000 0.999 0.000 1.000
#> SRR1348911 1 0.0000 0.990 1.000 0.000
#> SRR1467386 2 0.0000 0.999 0.000 1.000
#> SRR1415956 1 0.0000 0.990 1.000 0.000
#> SRR1500495 1 0.0000 0.990 1.000 0.000
#> SRR1405099 1 0.0000 0.990 1.000 0.000
#> SRR1345585 1 0.0000 0.990 1.000 0.000
#> SRR1093196 2 0.0000 0.999 0.000 1.000
#> SRR1466006 1 0.0000 0.990 1.000 0.000
#> SRR1351557 1 0.0000 0.990 1.000 0.000
#> SRR1382687 1 0.0000 0.990 1.000 0.000
#> SRR1375549 1 0.0000 0.990 1.000 0.000
#> SRR1101765 2 0.0000 0.999 0.000 1.000
#> SRR1334461 1 0.0000 0.990 1.000 0.000
#> SRR1094073 2 0.0000 0.999 0.000 1.000
#> SRR1077549 2 0.0000 0.999 0.000 1.000
#> SRR1440332 2 0.2043 0.966 0.032 0.968
#> SRR1454177 2 0.0000 0.999 0.000 1.000
#> SRR1082447 2 0.0000 0.999 0.000 1.000
#> SRR1420043 1 0.0000 0.990 1.000 0.000
#> SRR1432500 2 0.0000 0.999 0.000 1.000
#> SRR1378045 2 0.0000 0.999 0.000 1.000
#> SRR1334200 1 0.0000 0.990 1.000 0.000
#> SRR1069539 2 0.0000 0.999 0.000 1.000
#> SRR1343031 2 0.0000 0.999 0.000 1.000
#> SRR1319690 1 0.0000 0.990 1.000 0.000
#> SRR1310604 2 0.0000 0.999 0.000 1.000
#> SRR1327747 1 0.0000 0.990 1.000 0.000
#> SRR1072456 1 0.0000 0.990 1.000 0.000
#> SRR1367896 1 0.0000 0.990 1.000 0.000
#> SRR1480107 1 0.0000 0.990 1.000 0.000
#> SRR1377756 1 0.0000 0.990 1.000 0.000
#> SRR1435272 2 0.0000 0.999 0.000 1.000
#> SRR1089230 2 0.0000 0.999 0.000 1.000
#> SRR1389522 1 0.0000 0.990 1.000 0.000
#> SRR1080600 2 0.0000 0.999 0.000 1.000
#> SRR1086935 2 0.0000 0.999 0.000 1.000
#> SRR1344060 1 0.0000 0.990 1.000 0.000
#> SRR1467922 2 0.0000 0.999 0.000 1.000
#> SRR1090984 1 0.0000 0.990 1.000 0.000
#> SRR1456991 1 0.0000 0.990 1.000 0.000
#> SRR1085039 2 0.0000 0.999 0.000 1.000
#> SRR1069303 1 0.0000 0.990 1.000 0.000
#> SRR1091500 2 0.0000 0.999 0.000 1.000
#> SRR1075198 1 0.9635 0.374 0.612 0.388
#> SRR1086915 2 0.0000 0.999 0.000 1.000
#> SRR1499503 2 0.0000 0.999 0.000 1.000
#> SRR1094312 2 0.0000 0.999 0.000 1.000
#> SRR1352437 2 0.0000 0.999 0.000 1.000
#> SRR1436323 1 0.0000 0.990 1.000 0.000
#> SRR1073507 2 0.0000 0.999 0.000 1.000
#> SRR1401972 2 0.0000 0.999 0.000 1.000
#> SRR1415510 1 0.0000 0.990 1.000 0.000
#> SRR1327279 2 0.0000 0.999 0.000 1.000
#> SRR1086983 2 0.0000 0.999 0.000 1.000
#> SRR1105174 2 0.0000 0.999 0.000 1.000
#> SRR1468893 1 0.0000 0.990 1.000 0.000
#> SRR1362555 1 0.0000 0.990 1.000 0.000
#> SRR1074526 2 0.0000 0.999 0.000 1.000
#> SRR1326225 2 0.0000 0.999 0.000 1.000
#> SRR1401933 1 0.0000 0.990 1.000 0.000
#> SRR1324062 1 0.0000 0.990 1.000 0.000
#> SRR1102296 2 0.0000 0.999 0.000 1.000
#> SRR1085087 2 0.0000 0.999 0.000 1.000
#> SRR1079046 1 0.0000 0.990 1.000 0.000
#> SRR1328339 1 0.0000 0.990 1.000 0.000
#> SRR1079782 2 0.0000 0.999 0.000 1.000
#> SRR1092257 2 0.0000 0.999 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1429287 2 0.5216 0.790 0.260 0.740 0.000
#> SRR1359238 1 0.0424 0.880 0.992 0.008 0.000
#> SRR1309597 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1441398 1 0.4178 0.861 0.828 0.172 0.000
#> SRR1084055 3 0.5431 0.625 0.000 0.284 0.716
#> SRR1417566 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1351857 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1487485 2 0.0237 0.894 0.004 0.996 0.000
#> SRR1335875 1 0.0592 0.883 0.988 0.012 0.000
#> SRR1073947 1 0.1267 0.884 0.972 0.024 0.004
#> SRR1443483 2 0.0237 0.894 0.004 0.996 0.000
#> SRR1346794 1 0.3038 0.892 0.896 0.104 0.000
#> SRR1405245 1 0.4178 0.861 0.828 0.172 0.000
#> SRR1409677 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1095549 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1323788 1 0.3267 0.891 0.884 0.116 0.000
#> SRR1314054 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1077944 1 0.3116 0.892 0.892 0.108 0.000
#> SRR1480587 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1311205 1 0.4178 0.861 0.828 0.172 0.000
#> SRR1076369 2 0.0237 0.894 0.004 0.996 0.000
#> SRR1453549 1 0.2261 0.823 0.932 0.000 0.068
#> SRR1345782 1 0.3879 0.872 0.848 0.152 0.000
#> SRR1447850 3 0.0983 0.969 0.016 0.004 0.980
#> SRR1391553 1 0.3619 0.884 0.864 0.136 0.000
#> SRR1444156 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1471731 1 0.4291 0.852 0.820 0.180 0.000
#> SRR1120987 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1477363 1 0.0592 0.883 0.988 0.012 0.000
#> SRR1391961 2 0.0237 0.894 0.004 0.996 0.000
#> SRR1373879 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1318732 2 0.3752 0.868 0.144 0.856 0.000
#> SRR1091404 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1402109 3 0.4178 0.821 0.000 0.172 0.828
#> SRR1407336 3 0.0424 0.976 0.000 0.008 0.992
#> SRR1097417 2 0.0000 0.892 0.000 1.000 0.000
#> SRR1396227 1 0.0592 0.883 0.988 0.012 0.000
#> SRR1400775 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1392861 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1472929 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1436740 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1477057 1 0.2356 0.867 0.928 0.072 0.000
#> SRR1311980 1 0.4178 0.861 0.828 0.172 0.000
#> SRR1069400 2 0.0000 0.892 0.000 1.000 0.000
#> SRR1351016 1 0.3340 0.890 0.880 0.120 0.000
#> SRR1096291 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1418145 3 0.0237 0.978 0.004 0.000 0.996
#> SRR1488111 1 0.0592 0.881 0.988 0.012 0.000
#> SRR1370495 2 0.3879 0.860 0.152 0.848 0.000
#> SRR1352639 3 0.0661 0.973 0.008 0.004 0.988
#> SRR1348911 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1467386 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1415956 1 0.3686 0.883 0.860 0.140 0.000
#> SRR1500495 1 0.3686 0.883 0.860 0.140 0.000
#> SRR1405099 1 0.3686 0.883 0.860 0.140 0.000
#> SRR1345585 2 0.0424 0.895 0.008 0.992 0.000
#> SRR1093196 3 0.0592 0.975 0.000 0.012 0.988
#> SRR1466006 2 0.0237 0.894 0.004 0.996 0.000
#> SRR1351557 2 0.5178 0.794 0.256 0.744 0.000
#> SRR1382687 1 0.0000 0.877 1.000 0.000 0.000
#> SRR1375549 1 0.0592 0.881 0.988 0.012 0.000
#> SRR1101765 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1334461 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1094073 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1077549 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1440332 1 0.6169 0.462 0.636 0.004 0.360
#> SRR1454177 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1082447 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1420043 1 0.3038 0.892 0.896 0.104 0.000
#> SRR1432500 1 0.3752 0.747 0.856 0.000 0.144
#> SRR1378045 3 0.3482 0.871 0.000 0.128 0.872
#> SRR1334200 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1069539 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1343031 3 0.4172 0.836 0.004 0.156 0.840
#> SRR1319690 1 0.3340 0.890 0.880 0.120 0.000
#> SRR1310604 2 0.4390 0.755 0.012 0.840 0.148
#> SRR1327747 1 0.6215 0.335 0.572 0.428 0.000
#> SRR1072456 2 0.0424 0.895 0.008 0.992 0.000
#> SRR1367896 2 0.0237 0.894 0.004 0.996 0.000
#> SRR1480107 1 0.3267 0.890 0.884 0.116 0.000
#> SRR1377756 1 0.0747 0.884 0.984 0.016 0.000
#> SRR1435272 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1089230 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1389522 2 0.0237 0.894 0.004 0.996 0.000
#> SRR1080600 2 0.4059 0.772 0.012 0.860 0.128
#> SRR1086935 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1344060 2 0.3482 0.881 0.128 0.872 0.000
#> SRR1467922 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1090984 2 0.3941 0.856 0.156 0.844 0.000
#> SRR1456991 1 0.3686 0.883 0.860 0.140 0.000
#> SRR1085039 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1069303 1 0.0747 0.884 0.984 0.016 0.000
#> SRR1091500 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1075198 2 0.4136 0.780 0.020 0.864 0.116
#> SRR1086915 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1499503 3 0.0892 0.969 0.000 0.020 0.980
#> SRR1094312 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1352437 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1436323 1 0.4121 0.863 0.832 0.168 0.000
#> SRR1073507 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1401972 1 0.3551 0.760 0.868 0.000 0.132
#> SRR1415510 2 0.1411 0.890 0.036 0.964 0.000
#> SRR1327279 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1086983 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1105174 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1468893 1 0.3192 0.892 0.888 0.112 0.000
#> SRR1362555 2 0.3879 0.860 0.152 0.848 0.000
#> SRR1074526 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1326225 3 0.0237 0.979 0.000 0.004 0.996
#> SRR1401933 1 0.0000 0.877 1.000 0.000 0.000
#> SRR1324062 1 0.0747 0.884 0.984 0.016 0.000
#> SRR1102296 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1085087 3 0.0000 0.980 0.000 0.000 1.000
#> SRR1079046 1 0.0592 0.881 0.988 0.012 0.000
#> SRR1328339 2 0.2261 0.892 0.068 0.932 0.000
#> SRR1079782 3 0.3644 0.866 0.124 0.004 0.872
#> SRR1092257 3 0.0000 0.980 0.000 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 4 0.4713 0.0910 0.000 0.360 0.000 0.640
#> SRR1429287 3 0.7416 0.1942 0.312 0.192 0.496 0.000
#> SRR1359238 1 0.4614 0.7079 0.792 0.064 0.144 0.000
#> SRR1309597 3 0.1022 0.7411 0.032 0.000 0.968 0.000
#> SRR1441398 3 0.4916 -0.1353 0.424 0.000 0.576 0.000
#> SRR1084055 2 0.5231 0.5893 0.000 0.676 0.028 0.296
#> SRR1417566 3 0.0707 0.7461 0.020 0.000 0.980 0.000
#> SRR1351857 4 0.2345 0.7502 0.000 0.100 0.000 0.900
#> SRR1487485 3 0.5028 0.4004 0.004 0.400 0.596 0.000
#> SRR1335875 1 0.1940 0.7519 0.924 0.000 0.076 0.000
#> SRR1073947 1 0.4105 0.6730 0.840 0.100 0.052 0.008
#> SRR1443483 3 0.4477 0.5751 0.000 0.312 0.688 0.000
#> SRR1346794 1 0.3074 0.7391 0.848 0.000 0.152 0.000
#> SRR1405245 1 0.5000 0.3451 0.500 0.000 0.500 0.000
#> SRR1409677 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1095549 4 0.2814 0.7354 0.000 0.132 0.000 0.868
#> SRR1323788 1 0.5752 0.6325 0.732 0.132 0.128 0.008
#> SRR1314054 4 0.4713 0.0910 0.000 0.360 0.000 0.640
#> SRR1077944 1 0.2773 0.7387 0.880 0.004 0.116 0.000
#> SRR1480587 3 0.1118 0.7389 0.036 0.000 0.964 0.000
#> SRR1311205 3 0.4925 -0.1500 0.428 0.000 0.572 0.000
#> SRR1076369 3 0.3649 0.6810 0.000 0.204 0.796 0.000
#> SRR1453549 1 0.1284 0.7200 0.964 0.012 0.000 0.024
#> SRR1345782 3 0.7068 0.3270 0.296 0.156 0.548 0.000
#> SRR1447850 2 0.5699 0.5455 0.032 0.588 0.000 0.380
#> SRR1391553 1 0.4925 0.5363 0.572 0.000 0.428 0.000
#> SRR1444156 4 0.4713 0.0910 0.000 0.360 0.000 0.640
#> SRR1471731 3 0.5155 -0.3428 0.468 0.004 0.528 0.000
#> SRR1120987 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1477363 1 0.0336 0.7311 0.992 0.000 0.008 0.000
#> SRR1391961 3 0.3448 0.7132 0.004 0.168 0.828 0.000
#> SRR1373879 4 0.2530 0.7462 0.000 0.112 0.000 0.888
#> SRR1318732 3 0.2281 0.6854 0.096 0.000 0.904 0.000
#> SRR1091404 4 0.2814 0.7343 0.000 0.132 0.000 0.868
#> SRR1402109 4 0.6974 0.2444 0.008 0.412 0.088 0.492
#> SRR1407336 4 0.4072 0.6155 0.000 0.252 0.000 0.748
#> SRR1097417 3 0.3726 0.6772 0.000 0.212 0.788 0.000
#> SRR1396227 1 0.1211 0.7430 0.960 0.000 0.040 0.000
#> SRR1400775 2 0.4989 0.4433 0.000 0.528 0.000 0.472
#> SRR1392861 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1472929 3 0.1510 0.7523 0.016 0.028 0.956 0.000
#> SRR1436740 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1477057 1 0.5432 0.6729 0.716 0.068 0.216 0.000
#> SRR1311980 1 0.5000 0.3451 0.500 0.000 0.500 0.000
#> SRR1069400 3 0.4477 0.5751 0.000 0.312 0.688 0.000
#> SRR1351016 1 0.4522 0.6604 0.680 0.000 0.320 0.000
#> SRR1096291 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1418145 4 0.3883 0.5867 0.012 0.144 0.012 0.832
#> SRR1488111 1 0.5172 0.6906 0.744 0.068 0.188 0.000
#> SRR1370495 3 0.1637 0.7221 0.060 0.000 0.940 0.000
#> SRR1352639 4 0.6565 0.4737 0.148 0.224 0.000 0.628
#> SRR1348911 3 0.1510 0.7523 0.016 0.028 0.956 0.000
#> SRR1467386 4 0.2345 0.7498 0.000 0.100 0.000 0.900
#> SRR1415956 1 0.4855 0.5498 0.600 0.000 0.400 0.000
#> SRR1500495 1 0.4898 0.5282 0.584 0.000 0.416 0.000
#> SRR1405099 1 0.4605 0.6418 0.664 0.000 0.336 0.000
#> SRR1345585 3 0.2329 0.7496 0.012 0.072 0.916 0.000
#> SRR1093196 2 0.4936 0.5111 0.000 0.624 0.004 0.372
#> SRR1466006 3 0.2179 0.7509 0.012 0.064 0.924 0.000
#> SRR1351557 2 0.6603 0.3156 0.104 0.580 0.316 0.000
#> SRR1382687 1 0.0000 0.7279 1.000 0.000 0.000 0.000
#> SRR1375549 1 0.5172 0.6906 0.744 0.068 0.188 0.000
#> SRR1101765 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1334461 3 0.1510 0.7523 0.016 0.028 0.956 0.000
#> SRR1094073 4 0.4713 0.0910 0.000 0.360 0.000 0.640
#> SRR1077549 4 0.2589 0.7444 0.000 0.116 0.000 0.884
#> SRR1440332 4 0.7660 0.3292 0.244 0.212 0.012 0.532
#> SRR1454177 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1082447 4 0.2530 0.7462 0.000 0.112 0.000 0.888
#> SRR1420043 1 0.2589 0.7397 0.884 0.000 0.116 0.000
#> SRR1432500 1 0.6269 0.2683 0.632 0.096 0.000 0.272
#> SRR1378045 2 0.3933 0.5864 0.000 0.792 0.008 0.200
#> SRR1334200 3 0.0592 0.7475 0.016 0.000 0.984 0.000
#> SRR1069539 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1343031 4 0.6871 0.2584 0.008 0.412 0.080 0.500
#> SRR1319690 1 0.4250 0.6993 0.724 0.000 0.276 0.000
#> SRR1310604 2 0.6603 0.3178 0.000 0.580 0.316 0.104
#> SRR1327747 3 0.5110 0.1161 0.352 0.012 0.636 0.000
#> SRR1072456 3 0.3108 0.7449 0.016 0.112 0.872 0.000
#> SRR1367896 3 0.3688 0.6808 0.000 0.208 0.792 0.000
#> SRR1480107 1 0.4103 0.7043 0.744 0.000 0.256 0.000
#> SRR1377756 1 0.1022 0.7387 0.968 0.000 0.032 0.000
#> SRR1435272 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1089230 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1389522 3 0.3873 0.6688 0.000 0.228 0.772 0.000
#> SRR1080600 2 0.4608 0.2264 0.000 0.692 0.304 0.004
#> SRR1086935 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1344060 3 0.1510 0.7523 0.016 0.028 0.956 0.000
#> SRR1467922 2 0.4994 0.4257 0.000 0.520 0.000 0.480
#> SRR1090984 3 0.1867 0.7113 0.072 0.000 0.928 0.000
#> SRR1456991 1 0.4994 0.3854 0.520 0.000 0.480 0.000
#> SRR1085039 4 0.2530 0.7462 0.000 0.112 0.000 0.888
#> SRR1069303 1 0.1792 0.7499 0.932 0.000 0.068 0.000
#> SRR1091500 4 0.4713 0.0910 0.000 0.360 0.000 0.640
#> SRR1075198 2 0.4673 0.3051 0.008 0.700 0.292 0.000
#> SRR1086915 4 0.0000 0.7551 0.000 0.000 0.000 1.000
#> SRR1499503 2 0.4898 0.5155 0.000 0.584 0.000 0.416
#> SRR1094312 2 0.4989 0.4433 0.000 0.528 0.000 0.472
#> SRR1352437 4 0.0188 0.7551 0.000 0.004 0.000 0.996
#> SRR1436323 1 0.5329 0.5438 0.568 0.012 0.420 0.000
#> SRR1073507 4 0.2345 0.7498 0.000 0.100 0.000 0.900
#> SRR1401972 1 0.2053 0.6839 0.924 0.004 0.000 0.072
#> SRR1415510 3 0.5987 0.0899 0.040 0.440 0.520 0.000
#> SRR1327279 4 0.3219 0.7110 0.000 0.164 0.000 0.836
#> SRR1086983 4 0.2345 0.7498 0.000 0.100 0.000 0.900
#> SRR1105174 4 0.2469 0.7474 0.000 0.108 0.000 0.892
#> SRR1468893 1 0.4040 0.7162 0.752 0.000 0.248 0.000
#> SRR1362555 3 0.1557 0.7252 0.056 0.000 0.944 0.000
#> SRR1074526 4 0.1389 0.7330 0.000 0.048 0.000 0.952
#> SRR1326225 4 0.4998 -0.3968 0.000 0.488 0.000 0.512
#> SRR1401933 1 0.3239 0.7165 0.880 0.068 0.052 0.000
#> SRR1324062 1 0.1716 0.7490 0.936 0.000 0.064 0.000
#> SRR1102296 4 0.3801 0.4798 0.000 0.220 0.000 0.780
#> SRR1085087 4 0.2345 0.7498 0.000 0.100 0.000 0.900
#> SRR1079046 1 0.5007 0.6966 0.760 0.068 0.172 0.000
#> SRR1328339 3 0.1970 0.7502 0.008 0.060 0.932 0.000
#> SRR1079782 2 0.7413 0.5693 0.120 0.576 0.028 0.276
#> SRR1092257 4 0.4304 0.3224 0.000 0.284 0.000 0.716
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 4 0.4304 0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1429287 3 0.6591 0.1253 0.108 0.304 0.548 0.000 0.040
#> SRR1359238 3 0.7444 -0.0173 0.344 0.224 0.392 0.000 0.040
#> SRR1309597 3 0.2074 0.5082 0.000 0.000 0.896 0.000 0.104
#> SRR1441398 3 0.4327 0.4022 0.360 0.000 0.632 0.000 0.008
#> SRR1084055 2 0.5786 0.5435 0.000 0.632 0.004 0.196 0.168
#> SRR1417566 3 0.3183 0.4820 0.016 0.000 0.828 0.000 0.156
#> SRR1351857 4 0.0771 0.8256 0.000 0.004 0.000 0.976 0.020
#> SRR1487485 3 0.6693 -0.1735 0.000 0.364 0.396 0.000 0.240
#> SRR1335875 1 0.3339 0.6572 0.836 0.040 0.124 0.000 0.000
#> SRR1073947 1 0.3462 0.6902 0.860 0.012 0.028 0.016 0.084
#> SRR1443483 5 0.1608 0.6373 0.000 0.000 0.072 0.000 0.928
#> SRR1346794 1 0.3631 0.6185 0.788 0.008 0.196 0.000 0.008
#> SRR1405245 3 0.4341 0.3993 0.364 0.000 0.628 0.000 0.008
#> SRR1409677 4 0.0609 0.8280 0.000 0.020 0.000 0.980 0.000
#> SRR1095549 4 0.2798 0.7430 0.008 0.000 0.000 0.852 0.140
#> SRR1323788 1 0.4870 0.5179 0.680 0.000 0.028 0.016 0.276
#> SRR1314054 4 0.4304 0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1077944 1 0.1981 0.7001 0.920 0.000 0.064 0.000 0.016
#> SRR1480587 3 0.1965 0.5117 0.000 0.000 0.904 0.000 0.096
#> SRR1311205 3 0.4341 0.3993 0.364 0.000 0.628 0.000 0.008
#> SRR1076369 5 0.4327 0.5236 0.000 0.008 0.360 0.000 0.632
#> SRR1453549 1 0.4821 0.5826 0.776 0.064 0.120 0.008 0.032
#> SRR1345782 5 0.5281 0.1910 0.348 0.000 0.044 0.008 0.600
#> SRR1447850 2 0.1430 0.5696 0.000 0.944 0.000 0.052 0.004
#> SRR1391553 3 0.4443 0.4223 0.300 0.012 0.680 0.000 0.008
#> SRR1444156 4 0.4304 0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1471731 3 0.3073 0.5217 0.116 0.024 0.856 0.000 0.004
#> SRR1120987 4 0.0794 0.8259 0.000 0.028 0.000 0.972 0.000
#> SRR1477363 1 0.0404 0.7106 0.988 0.000 0.012 0.000 0.000
#> SRR1391961 5 0.4331 0.4519 0.000 0.004 0.400 0.000 0.596
#> SRR1373879 4 0.1121 0.8189 0.000 0.000 0.000 0.956 0.044
#> SRR1318732 3 0.2653 0.5202 0.024 0.000 0.880 0.000 0.096
#> SRR1091404 4 0.1124 0.8228 0.000 0.004 0.000 0.960 0.036
#> SRR1402109 5 0.2561 0.4864 0.000 0.000 0.000 0.144 0.856
#> SRR1407336 4 0.4682 0.4370 0.000 0.024 0.000 0.620 0.356
#> SRR1097417 5 0.4327 0.5236 0.000 0.008 0.360 0.000 0.632
#> SRR1396227 1 0.2427 0.7078 0.912 0.028 0.048 0.004 0.008
#> SRR1400775 2 0.3305 0.5351 0.000 0.776 0.000 0.224 0.000
#> SRR1392861 4 0.0510 0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1472929 3 0.3684 0.3410 0.000 0.000 0.720 0.000 0.280
#> SRR1436740 4 0.0703 0.8272 0.000 0.024 0.000 0.976 0.000
#> SRR1477057 3 0.6793 0.2565 0.172 0.228 0.560 0.000 0.040
#> SRR1311980 3 0.4327 0.4037 0.360 0.000 0.632 0.000 0.008
#> SRR1069400 5 0.1671 0.6367 0.000 0.000 0.076 0.000 0.924
#> SRR1351016 3 0.4434 0.2372 0.460 0.000 0.536 0.000 0.004
#> SRR1096291 4 0.0671 0.8288 0.000 0.016 0.000 0.980 0.004
#> SRR1418145 4 0.4890 0.6330 0.016 0.092 0.104 0.772 0.016
#> SRR1488111 3 0.7318 0.1102 0.268 0.232 0.460 0.000 0.040
#> SRR1370495 3 0.2020 0.5110 0.000 0.000 0.900 0.000 0.100
#> SRR1352639 1 0.7435 0.1435 0.360 0.032 0.000 0.264 0.344
#> SRR1348911 3 0.3814 0.3523 0.004 0.000 0.720 0.000 0.276
#> SRR1467386 4 0.0992 0.8215 0.008 0.000 0.000 0.968 0.024
#> SRR1415956 3 0.4367 0.3211 0.416 0.000 0.580 0.000 0.004
#> SRR1500495 3 0.4331 0.3486 0.400 0.000 0.596 0.000 0.004
#> SRR1405099 3 0.4434 0.2303 0.460 0.000 0.536 0.000 0.004
#> SRR1345585 3 0.3333 0.3965 0.000 0.004 0.788 0.000 0.208
#> SRR1093196 2 0.7162 0.4066 0.000 0.484 0.040 0.188 0.288
#> SRR1466006 3 0.3829 0.3953 0.000 0.028 0.776 0.000 0.196
#> SRR1351557 2 0.5881 0.3404 0.048 0.564 0.356 0.000 0.032
#> SRR1382687 1 0.1970 0.6840 0.924 0.012 0.060 0.000 0.004
#> SRR1375549 3 0.7301 0.1131 0.268 0.228 0.464 0.000 0.040
#> SRR1101765 4 0.0794 0.8258 0.000 0.028 0.000 0.972 0.000
#> SRR1334461 3 0.3816 0.3101 0.000 0.000 0.696 0.000 0.304
#> SRR1094073 4 0.4304 0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1077549 4 0.1484 0.8127 0.008 0.000 0.000 0.944 0.048
#> SRR1440332 1 0.6682 0.1261 0.396 0.000 0.000 0.236 0.368
#> SRR1454177 4 0.0510 0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1082447 4 0.1082 0.8208 0.008 0.000 0.000 0.964 0.028
#> SRR1420043 1 0.1952 0.6881 0.912 0.000 0.084 0.000 0.004
#> SRR1432500 1 0.4556 0.4483 0.680 0.000 0.004 0.292 0.024
#> SRR1378045 2 0.4546 0.4548 0.000 0.668 0.000 0.028 0.304
#> SRR1334200 3 0.2074 0.5064 0.000 0.000 0.896 0.000 0.104
#> SRR1069539 4 0.0865 0.8275 0.000 0.024 0.000 0.972 0.004
#> SRR1343031 5 0.2561 0.4864 0.000 0.000 0.000 0.144 0.856
#> SRR1319690 3 0.4889 0.1871 0.476 0.004 0.504 0.000 0.016
#> SRR1310604 2 0.7691 0.2904 0.000 0.448 0.200 0.080 0.272
#> SRR1327747 3 0.3932 0.4703 0.116 0.032 0.820 0.000 0.032
#> SRR1072456 3 0.4331 0.0673 0.000 0.004 0.596 0.000 0.400
#> SRR1367896 5 0.4101 0.4957 0.000 0.000 0.372 0.000 0.628
#> SRR1480107 1 0.4410 -0.0186 0.556 0.000 0.440 0.000 0.004
#> SRR1377756 1 0.0671 0.7085 0.980 0.000 0.016 0.000 0.004
#> SRR1435272 4 0.0510 0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1089230 4 0.0510 0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1389522 5 0.2690 0.6550 0.000 0.000 0.156 0.000 0.844
#> SRR1080600 2 0.6374 0.2599 0.000 0.504 0.196 0.000 0.300
#> SRR1086935 4 0.0794 0.8259 0.000 0.028 0.000 0.972 0.000
#> SRR1344060 3 0.3752 0.3225 0.000 0.000 0.708 0.000 0.292
#> SRR1467922 2 0.3816 0.4072 0.000 0.696 0.000 0.304 0.000
#> SRR1090984 3 0.2179 0.5136 0.004 0.000 0.896 0.000 0.100
#> SRR1456991 3 0.4436 0.3540 0.396 0.000 0.596 0.000 0.008
#> SRR1085039 4 0.1082 0.8208 0.008 0.000 0.000 0.964 0.028
#> SRR1069303 1 0.2881 0.6906 0.876 0.024 0.092 0.000 0.008
#> SRR1091500 4 0.4304 0.2041 0.000 0.484 0.000 0.516 0.000
#> SRR1075198 2 0.6715 0.3676 0.028 0.500 0.340 0.000 0.132
#> SRR1086915 4 0.0510 0.8287 0.000 0.016 0.000 0.984 0.000
#> SRR1499503 2 0.4465 0.5593 0.000 0.736 0.000 0.204 0.060
#> SRR1094312 2 0.3336 0.5306 0.000 0.772 0.000 0.228 0.000
#> SRR1352437 4 0.1059 0.8278 0.008 0.020 0.000 0.968 0.004
#> SRR1436323 3 0.4447 0.4689 0.172 0.028 0.768 0.000 0.032
#> SRR1073507 4 0.0992 0.8215 0.008 0.000 0.000 0.968 0.024
#> SRR1401972 1 0.2704 0.6991 0.896 0.028 0.004 0.064 0.008
#> SRR1415510 2 0.6388 0.3200 0.048 0.524 0.364 0.000 0.064
#> SRR1327279 4 0.3835 0.6011 0.008 0.000 0.000 0.732 0.260
#> SRR1086983 4 0.0898 0.8222 0.008 0.000 0.000 0.972 0.020
#> SRR1105174 4 0.0992 0.8215 0.008 0.000 0.000 0.968 0.024
#> SRR1468893 1 0.4201 0.0834 0.592 0.000 0.408 0.000 0.000
#> SRR1362555 3 0.1965 0.5117 0.000 0.000 0.904 0.000 0.096
#> SRR1074526 4 0.4015 0.4734 0.000 0.348 0.000 0.652 0.000
#> SRR1326225 2 0.3983 0.3237 0.000 0.660 0.000 0.340 0.000
#> SRR1401933 1 0.6761 0.3738 0.568 0.208 0.184 0.000 0.040
#> SRR1324062 1 0.2881 0.6906 0.876 0.024 0.092 0.000 0.008
#> SRR1102296 4 0.4844 0.3430 0.012 0.416 0.000 0.564 0.008
#> SRR1085087 4 0.0898 0.8222 0.008 0.000 0.000 0.972 0.020
#> SRR1079046 3 0.7400 0.0428 0.304 0.228 0.428 0.000 0.040
#> SRR1328339 3 0.4798 -0.0839 0.020 0.000 0.540 0.000 0.440
#> SRR1079782 2 0.6588 0.4180 0.072 0.624 0.232 0.044 0.028
#> SRR1092257 4 0.3003 0.6916 0.000 0.188 0.000 0.812 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.3695 0.5370 0.000 0.624 0.000 0.376 0.000 0.000
#> SRR1429287 6 0.3043 0.7209 0.008 0.020 0.000 0.000 0.140 0.832
#> SRR1359238 6 0.2449 0.6510 0.080 0.000 0.012 0.000 0.020 0.888
#> SRR1309597 5 0.0858 0.6893 0.004 0.000 0.000 0.000 0.968 0.028
#> SRR1441398 5 0.3499 0.5483 0.320 0.000 0.000 0.000 0.680 0.000
#> SRR1084055 2 0.3698 0.5523 0.004 0.812 0.124 0.044 0.012 0.004
#> SRR1417566 5 0.1636 0.6929 0.024 0.000 0.004 0.000 0.936 0.036
#> SRR1351857 4 0.1297 0.8948 0.000 0.012 0.040 0.948 0.000 0.000
#> SRR1487485 5 0.7098 0.0725 0.008 0.288 0.192 0.000 0.436 0.076
#> SRR1335875 1 0.3686 0.6395 0.828 0.028 0.008 0.000 0.072 0.064
#> SRR1073947 1 0.2615 0.6571 0.896 0.024 0.052 0.008 0.016 0.004
#> SRR1443483 3 0.1327 0.5909 0.000 0.000 0.936 0.000 0.064 0.000
#> SRR1346794 1 0.5655 0.3725 0.520 0.004 0.012 0.000 0.100 0.364
#> SRR1405245 5 0.3515 0.5444 0.324 0.000 0.000 0.000 0.676 0.000
#> SRR1409677 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1095549 4 0.3601 0.5523 0.004 0.000 0.312 0.684 0.000 0.000
#> SRR1323788 1 0.5329 0.2959 0.560 0.004 0.348 0.000 0.008 0.080
#> SRR1314054 2 0.3695 0.5370 0.000 0.624 0.000 0.376 0.000 0.000
#> SRR1077944 1 0.4450 0.5994 0.688 0.004 0.016 0.000 0.028 0.264
#> SRR1480587 5 0.0865 0.6884 0.000 0.000 0.000 0.000 0.964 0.036
#> SRR1311205 5 0.3515 0.5444 0.324 0.000 0.000 0.000 0.676 0.000
#> SRR1076369 3 0.5013 0.1733 0.008 0.012 0.488 0.000 0.464 0.028
#> SRR1453549 6 0.4012 0.3909 0.276 0.004 0.012 0.008 0.000 0.700
#> SRR1345782 3 0.5165 0.3554 0.256 0.004 0.656 0.004 0.032 0.048
#> SRR1447850 2 0.1584 0.5575 0.000 0.928 0.000 0.008 0.000 0.064
#> SRR1391553 5 0.5123 0.5135 0.188 0.000 0.000 0.000 0.628 0.184
#> SRR1444156 2 0.3647 0.5520 0.000 0.640 0.000 0.360 0.000 0.000
#> SRR1471731 5 0.4619 0.5078 0.088 0.000 0.000 0.000 0.668 0.244
#> SRR1120987 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1477363 1 0.2805 0.6526 0.828 0.000 0.012 0.000 0.000 0.160
#> SRR1391961 5 0.4617 -0.1731 0.008 0.004 0.464 0.000 0.508 0.016
#> SRR1373879 4 0.2002 0.8737 0.004 0.012 0.076 0.908 0.000 0.000
#> SRR1318732 5 0.2088 0.6894 0.028 0.000 0.000 0.000 0.904 0.068
#> SRR1091404 4 0.1913 0.8856 0.004 0.012 0.060 0.920 0.000 0.004
#> SRR1402109 3 0.1196 0.5804 0.008 0.000 0.952 0.040 0.000 0.000
#> SRR1407336 3 0.4374 -0.1014 0.004 0.016 0.532 0.448 0.000 0.000
#> SRR1097417 3 0.5012 0.1833 0.008 0.012 0.492 0.000 0.460 0.028
#> SRR1396227 1 0.2820 0.6628 0.884 0.032 0.008 0.000 0.032 0.044
#> SRR1400775 2 0.1010 0.6084 0.000 0.960 0.000 0.036 0.000 0.004
#> SRR1392861 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1472929 5 0.1663 0.6480 0.000 0.000 0.088 0.000 0.912 0.000
#> SRR1436740 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1477057 6 0.3643 0.6883 0.024 0.008 0.000 0.000 0.200 0.768
#> SRR1311980 5 0.3499 0.5473 0.320 0.000 0.000 0.000 0.680 0.000
#> SRR1069400 3 0.1615 0.5899 0.000 0.004 0.928 0.000 0.064 0.004
#> SRR1351016 5 0.3961 0.3389 0.440 0.000 0.000 0.000 0.556 0.004
#> SRR1096291 4 0.1320 0.9017 0.000 0.036 0.016 0.948 0.000 0.000
#> SRR1418145 4 0.4428 0.5056 0.004 0.052 0.000 0.676 0.000 0.268
#> SRR1488111 6 0.2691 0.7173 0.032 0.008 0.000 0.000 0.088 0.872
#> SRR1370495 5 0.1010 0.6894 0.004 0.000 0.000 0.000 0.960 0.036
#> SRR1352639 3 0.5751 0.0688 0.412 0.016 0.480 0.084 0.000 0.008
#> SRR1348911 5 0.1745 0.6705 0.020 0.000 0.056 0.000 0.924 0.000
#> SRR1467386 4 0.0603 0.8958 0.004 0.000 0.016 0.980 0.000 0.000
#> SRR1415956 5 0.3899 0.4174 0.404 0.000 0.000 0.000 0.592 0.004
#> SRR1500495 5 0.3819 0.4738 0.372 0.000 0.000 0.000 0.624 0.004
#> SRR1405099 5 0.3982 0.2963 0.460 0.000 0.000 0.000 0.536 0.004
#> SRR1345585 5 0.3818 0.5939 0.004 0.000 0.084 0.000 0.784 0.128
#> SRR1093196 2 0.6380 0.0182 0.000 0.444 0.396 0.096 0.004 0.060
#> SRR1466006 5 0.4428 0.5206 0.008 0.012 0.116 0.000 0.756 0.108
#> SRR1351557 6 0.4910 0.5935 0.008 0.304 0.000 0.000 0.068 0.620
#> SRR1382687 1 0.3729 0.5445 0.692 0.000 0.012 0.000 0.000 0.296
#> SRR1375549 6 0.2680 0.7163 0.032 0.000 0.000 0.000 0.108 0.860
#> SRR1101765 4 0.1141 0.8912 0.000 0.052 0.000 0.948 0.000 0.000
#> SRR1334461 5 0.1863 0.6386 0.000 0.000 0.104 0.000 0.896 0.000
#> SRR1094073 2 0.3647 0.5520 0.000 0.640 0.000 0.360 0.000 0.000
#> SRR1077549 4 0.1753 0.8610 0.004 0.000 0.084 0.912 0.000 0.000
#> SRR1440332 3 0.6177 0.1738 0.316 0.000 0.532 0.080 0.004 0.068
#> SRR1454177 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1082447 4 0.1285 0.8840 0.004 0.000 0.052 0.944 0.000 0.000
#> SRR1420043 1 0.4521 0.5919 0.680 0.004 0.012 0.000 0.036 0.268
#> SRR1432500 1 0.6242 0.3222 0.512 0.004 0.020 0.256 0.000 0.208
#> SRR1378045 2 0.3076 0.4967 0.000 0.760 0.240 0.000 0.000 0.000
#> SRR1334200 5 0.1863 0.6700 0.004 0.000 0.016 0.000 0.920 0.060
#> SRR1069539 4 0.1480 0.9001 0.000 0.040 0.020 0.940 0.000 0.000
#> SRR1343031 3 0.1196 0.5804 0.008 0.000 0.952 0.040 0.000 0.000
#> SRR1319690 5 0.6388 -0.0547 0.332 0.000 0.012 0.000 0.372 0.284
#> SRR1310604 2 0.7493 -0.0123 0.008 0.448 0.156 0.004 0.208 0.176
#> SRR1327747 6 0.4467 0.5619 0.044 0.004 0.012 0.000 0.236 0.704
#> SRR1072456 5 0.3742 0.5061 0.008 0.004 0.176 0.000 0.780 0.032
#> SRR1367896 3 0.4534 0.1784 0.008 0.004 0.516 0.000 0.460 0.012
#> SRR1480107 1 0.4067 -0.0980 0.548 0.000 0.000 0.000 0.444 0.008
#> SRR1377756 1 0.3341 0.6298 0.776 0.004 0.012 0.000 0.000 0.208
#> SRR1435272 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1089230 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1389522 3 0.2558 0.5687 0.000 0.004 0.840 0.000 0.156 0.000
#> SRR1080600 2 0.6815 0.1384 0.008 0.524 0.160 0.000 0.216 0.092
#> SRR1086935 4 0.0937 0.8994 0.000 0.040 0.000 0.960 0.000 0.000
#> SRR1344060 5 0.2051 0.6378 0.004 0.000 0.096 0.000 0.896 0.004
#> SRR1467922 2 0.2300 0.6536 0.000 0.856 0.000 0.144 0.000 0.000
#> SRR1090984 5 0.1196 0.6905 0.008 0.000 0.000 0.000 0.952 0.040
#> SRR1456991 5 0.3819 0.4738 0.372 0.000 0.000 0.000 0.624 0.004
#> SRR1085039 4 0.1285 0.8840 0.004 0.000 0.052 0.944 0.000 0.000
#> SRR1069303 1 0.2956 0.6624 0.876 0.028 0.008 0.000 0.044 0.044
#> SRR1091500 2 0.3659 0.5463 0.000 0.636 0.000 0.364 0.000 0.000
#> SRR1075198 6 0.5791 0.5137 0.004 0.352 0.032 0.000 0.080 0.532
#> SRR1086915 4 0.0865 0.9018 0.000 0.036 0.000 0.964 0.000 0.000
#> SRR1499503 2 0.1461 0.6141 0.000 0.940 0.016 0.044 0.000 0.000
#> SRR1094312 2 0.1010 0.6084 0.000 0.960 0.000 0.036 0.000 0.004
#> SRR1352437 4 0.0632 0.9010 0.000 0.024 0.000 0.976 0.000 0.000
#> SRR1436323 6 0.4666 0.2797 0.048 0.000 0.000 0.000 0.388 0.564
#> SRR1073507 4 0.0935 0.8917 0.004 0.000 0.032 0.964 0.000 0.000
#> SRR1401972 1 0.2893 0.6522 0.880 0.032 0.008 0.036 0.000 0.044
#> SRR1415510 6 0.4663 0.6772 0.012 0.160 0.008 0.000 0.092 0.728
#> SRR1327279 4 0.4086 0.2032 0.008 0.000 0.464 0.528 0.000 0.000
#> SRR1086983 4 0.0000 0.8992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1105174 4 0.1285 0.8840 0.004 0.000 0.052 0.944 0.000 0.000
#> SRR1468893 1 0.4136 -0.0486 0.560 0.000 0.000 0.000 0.428 0.012
#> SRR1362555 5 0.1285 0.6878 0.004 0.000 0.000 0.000 0.944 0.052
#> SRR1074526 2 0.4218 0.4017 0.000 0.556 0.016 0.428 0.000 0.000
#> SRR1326225 2 0.2912 0.6565 0.000 0.784 0.000 0.216 0.000 0.000
#> SRR1401933 6 0.4403 0.5573 0.280 0.020 0.000 0.000 0.024 0.676
#> SRR1324062 1 0.2956 0.6624 0.876 0.028 0.008 0.000 0.044 0.044
#> SRR1102296 2 0.5630 0.4596 0.096 0.524 0.008 0.364 0.000 0.008
#> SRR1085087 4 0.0748 0.8950 0.004 0.004 0.016 0.976 0.000 0.000
#> SRR1079046 6 0.3710 0.6920 0.120 0.016 0.000 0.000 0.060 0.804
#> SRR1328339 5 0.3683 0.5439 0.044 0.000 0.192 0.000 0.764 0.000
#> SRR1079782 6 0.5782 0.6263 0.108 0.236 0.000 0.020 0.020 0.616
#> SRR1092257 4 0.2260 0.7852 0.000 0.140 0.000 0.860 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
ATC:pam*
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["ATC", "pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.564 0.773 0.894 0.4522 0.560 0.560
#> 3 3 0.900 0.904 0.962 0.4266 0.728 0.544
#> 4 4 0.801 0.851 0.922 0.1564 0.857 0.623
#> 5 5 0.732 0.747 0.869 0.0541 0.946 0.794
#> 6 6 0.763 0.716 0.825 0.0342 0.956 0.805
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 1 0.0000 0.8422 1.000 0.000
#> SRR1429287 1 0.9710 0.5232 0.600 0.400
#> SRR1359238 1 0.9286 0.5960 0.656 0.344
#> SRR1309597 2 0.0000 0.9350 0.000 1.000
#> SRR1441398 2 0.0000 0.9350 0.000 1.000
#> SRR1084055 1 0.0000 0.8422 1.000 0.000
#> SRR1417566 2 0.9896 -0.0564 0.440 0.560
#> SRR1351857 1 0.0000 0.8422 1.000 0.000
#> SRR1487485 1 0.6712 0.7560 0.824 0.176
#> SRR1335875 1 0.9710 0.5232 0.600 0.400
#> SRR1073947 2 0.6438 0.7335 0.164 0.836
#> SRR1443483 2 0.0938 0.9237 0.012 0.988
#> SRR1346794 1 0.9710 0.5232 0.600 0.400
#> SRR1405245 2 0.0000 0.9350 0.000 1.000
#> SRR1409677 1 0.0000 0.8422 1.000 0.000
#> SRR1095549 1 0.0000 0.8422 1.000 0.000
#> SRR1323788 1 0.9710 0.5232 0.600 0.400
#> SRR1314054 1 0.0000 0.8422 1.000 0.000
#> SRR1077944 1 0.9710 0.5232 0.600 0.400
#> SRR1480587 2 0.0000 0.9350 0.000 1.000
#> SRR1311205 2 0.0000 0.9350 0.000 1.000
#> SRR1076369 2 0.0000 0.9350 0.000 1.000
#> SRR1453549 1 0.6712 0.7560 0.824 0.176
#> SRR1345782 2 0.9775 0.0676 0.412 0.588
#> SRR1447850 1 0.0000 0.8422 1.000 0.000
#> SRR1391553 1 0.9833 0.4716 0.576 0.424
#> SRR1444156 1 0.0000 0.8422 1.000 0.000
#> SRR1471731 2 0.0000 0.9350 0.000 1.000
#> SRR1120987 1 0.0000 0.8422 1.000 0.000
#> SRR1477363 1 0.9710 0.5232 0.600 0.400
#> SRR1391961 2 0.4298 0.8392 0.088 0.912
#> SRR1373879 1 0.0000 0.8422 1.000 0.000
#> SRR1318732 2 0.0000 0.9350 0.000 1.000
#> SRR1091404 1 0.1843 0.8335 0.972 0.028
#> SRR1402109 1 0.6712 0.7560 0.824 0.176
#> SRR1407336 1 0.0000 0.8422 1.000 0.000
#> SRR1097417 2 0.8813 0.5107 0.300 0.700
#> SRR1396227 1 0.9710 0.5232 0.600 0.400
#> SRR1400775 1 0.0000 0.8422 1.000 0.000
#> SRR1392861 1 0.0000 0.8422 1.000 0.000
#> SRR1472929 2 0.0000 0.9350 0.000 1.000
#> SRR1436740 1 0.0000 0.8422 1.000 0.000
#> SRR1477057 1 0.9710 0.5232 0.600 0.400
#> SRR1311980 2 0.0000 0.9350 0.000 1.000
#> SRR1069400 1 0.7299 0.7353 0.796 0.204
#> SRR1351016 2 0.0000 0.9350 0.000 1.000
#> SRR1096291 1 0.0000 0.8422 1.000 0.000
#> SRR1418145 1 0.0000 0.8422 1.000 0.000
#> SRR1488111 1 0.9710 0.5232 0.600 0.400
#> SRR1370495 2 0.0000 0.9350 0.000 1.000
#> SRR1352639 1 0.2236 0.8310 0.964 0.036
#> SRR1348911 2 0.0000 0.9350 0.000 1.000
#> SRR1467386 1 0.0000 0.8422 1.000 0.000
#> SRR1415956 2 0.0000 0.9350 0.000 1.000
#> SRR1500495 2 0.0000 0.9350 0.000 1.000
#> SRR1405099 2 0.0000 0.9350 0.000 1.000
#> SRR1345585 2 0.9970 -0.1801 0.468 0.532
#> SRR1093196 1 0.1843 0.8335 0.972 0.028
#> SRR1466006 2 0.0000 0.9350 0.000 1.000
#> SRR1351557 1 0.9710 0.5232 0.600 0.400
#> SRR1382687 1 0.9710 0.5232 0.600 0.400
#> SRR1375549 1 0.9710 0.5232 0.600 0.400
#> SRR1101765 1 0.0000 0.8422 1.000 0.000
#> SRR1334461 2 0.0000 0.9350 0.000 1.000
#> SRR1094073 1 0.0000 0.8422 1.000 0.000
#> SRR1077549 1 0.0000 0.8422 1.000 0.000
#> SRR1440332 1 0.6712 0.7560 0.824 0.176
#> SRR1454177 1 0.0000 0.8422 1.000 0.000
#> SRR1082447 1 0.0000 0.8422 1.000 0.000
#> SRR1420043 1 0.9710 0.5232 0.600 0.400
#> SRR1432500 1 0.2236 0.8305 0.964 0.036
#> SRR1378045 1 0.5059 0.7936 0.888 0.112
#> SRR1334200 2 0.0000 0.9350 0.000 1.000
#> SRR1069539 1 0.0000 0.8422 1.000 0.000
#> SRR1343031 1 0.6801 0.7537 0.820 0.180
#> SRR1319690 1 0.9710 0.5232 0.600 0.400
#> SRR1310604 1 0.1414 0.8362 0.980 0.020
#> SRR1327747 1 0.9710 0.5232 0.600 0.400
#> SRR1072456 2 0.0000 0.9350 0.000 1.000
#> SRR1367896 2 0.0000 0.9350 0.000 1.000
#> SRR1480107 2 0.0000 0.9350 0.000 1.000
#> SRR1377756 1 0.9710 0.5232 0.600 0.400
#> SRR1435272 1 0.0000 0.8422 1.000 0.000
#> SRR1089230 1 0.0000 0.8422 1.000 0.000
#> SRR1389522 2 0.1414 0.9155 0.020 0.980
#> SRR1080600 1 0.0672 0.8399 0.992 0.008
#> SRR1086935 1 0.0000 0.8422 1.000 0.000
#> SRR1344060 2 0.0000 0.9350 0.000 1.000
#> SRR1467922 1 0.0000 0.8422 1.000 0.000
#> SRR1090984 2 0.0000 0.9350 0.000 1.000
#> SRR1456991 2 0.0000 0.9350 0.000 1.000
#> SRR1085039 1 0.0000 0.8422 1.000 0.000
#> SRR1069303 2 0.0000 0.9350 0.000 1.000
#> SRR1091500 1 0.0000 0.8422 1.000 0.000
#> SRR1075198 1 0.9000 0.6277 0.684 0.316
#> SRR1086915 1 0.0000 0.8422 1.000 0.000
#> SRR1499503 1 0.0000 0.8422 1.000 0.000
#> SRR1094312 1 0.0000 0.8422 1.000 0.000
#> SRR1352437 1 0.0000 0.8422 1.000 0.000
#> SRR1436323 1 0.9710 0.5232 0.600 0.400
#> SRR1073507 1 0.0000 0.8422 1.000 0.000
#> SRR1401972 1 0.7674 0.7186 0.776 0.224
#> SRR1415510 1 0.9491 0.5664 0.632 0.368
#> SRR1327279 1 0.0000 0.8422 1.000 0.000
#> SRR1086983 1 0.0000 0.8422 1.000 0.000
#> SRR1105174 1 0.0000 0.8422 1.000 0.000
#> SRR1468893 2 0.0000 0.9350 0.000 1.000
#> SRR1362555 2 0.0000 0.9350 0.000 1.000
#> SRR1074526 1 0.0000 0.8422 1.000 0.000
#> SRR1326225 1 0.0000 0.8422 1.000 0.000
#> SRR1401933 1 0.9710 0.5232 0.600 0.400
#> SRR1324062 2 0.0000 0.9350 0.000 1.000
#> SRR1102296 1 0.0000 0.8422 1.000 0.000
#> SRR1085087 1 0.0000 0.8422 1.000 0.000
#> SRR1079046 1 0.9710 0.5232 0.600 0.400
#> SRR1328339 2 0.0000 0.9350 0.000 1.000
#> SRR1079782 1 0.0000 0.8422 1.000 0.000
#> SRR1092257 1 0.0000 0.8422 1.000 0.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1429287 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1359238 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1309597 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1441398 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1084055 1 0.5905 0.4701 0.648 0.000 0.352
#> SRR1417566 1 0.5926 0.4791 0.644 0.356 0.000
#> SRR1351857 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1487485 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1335875 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1073947 1 0.6252 0.2439 0.556 0.444 0.000
#> SRR1443483 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1346794 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1405245 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1409677 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1095549 1 0.0237 0.9325 0.996 0.000 0.004
#> SRR1323788 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1314054 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1077944 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1480587 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1311205 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1076369 2 0.0592 0.9684 0.012 0.988 0.000
#> SRR1453549 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1345782 1 0.4399 0.7546 0.812 0.188 0.000
#> SRR1447850 1 0.0237 0.9324 0.996 0.000 0.004
#> SRR1391553 1 0.6045 0.4056 0.620 0.380 0.000
#> SRR1444156 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1471731 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1120987 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1477363 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1391961 2 0.6307 -0.0503 0.488 0.512 0.000
#> SRR1373879 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1318732 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1091404 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1402109 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1407336 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1097417 1 0.6154 0.3454 0.592 0.408 0.000
#> SRR1396227 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1400775 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1392861 3 0.5882 0.4699 0.348 0.000 0.652
#> SRR1472929 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1436740 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1477057 1 0.0237 0.9324 0.996 0.004 0.000
#> SRR1311980 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1069400 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1351016 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1096291 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1418145 1 0.5216 0.6469 0.740 0.000 0.260
#> SRR1488111 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1370495 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1352639 1 0.0237 0.9325 0.996 0.004 0.000
#> SRR1348911 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1467386 1 0.1964 0.8908 0.944 0.000 0.056
#> SRR1415956 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1500495 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1405099 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1345585 1 0.6286 0.1648 0.536 0.464 0.000
#> SRR1093196 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1466006 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1351557 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1382687 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1375549 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1101765 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1334461 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1094073 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1077549 3 0.2165 0.9154 0.064 0.000 0.936
#> SRR1440332 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1454177 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1082447 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1420043 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1432500 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1378045 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1334200 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1069539 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1343031 1 0.0237 0.9325 0.996 0.004 0.000
#> SRR1319690 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1310604 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1327747 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1072456 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1367896 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1480107 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1377756 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1435272 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1089230 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1389522 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1080600 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1086935 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1344060 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1467922 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1090984 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1456991 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1085039 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1069303 2 0.0237 0.9769 0.004 0.996 0.000
#> SRR1091500 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1075198 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1086915 3 0.0424 0.9695 0.008 0.000 0.992
#> SRR1499503 1 0.0237 0.9325 0.996 0.000 0.004
#> SRR1094312 1 0.0237 0.9324 0.996 0.000 0.004
#> SRR1352437 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1436323 1 0.4062 0.7788 0.836 0.164 0.000
#> SRR1073507 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1401972 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1415510 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1327279 1 0.3340 0.8299 0.880 0.000 0.120
#> SRR1086983 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1105174 3 0.3686 0.8275 0.140 0.000 0.860
#> SRR1468893 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1362555 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1074526 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1326225 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1401933 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1324062 2 0.0000 0.9809 0.000 1.000 0.000
#> SRR1102296 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1085087 3 0.0000 0.9766 0.000 0.000 1.000
#> SRR1079046 1 0.0000 0.9348 1.000 0.000 0.000
#> SRR1328339 2 0.0237 0.9770 0.004 0.996 0.000
#> SRR1079782 1 0.4750 0.7132 0.784 0.000 0.216
#> SRR1092257 3 0.0000 0.9766 0.000 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1429287 2 0.0817 0.8859 0.000 0.976 0.024 0.000
#> SRR1359238 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1309597 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1441398 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1084055 3 0.0707 0.8593 0.000 0.020 0.980 0.000
#> SRR1417566 2 0.3649 0.7197 0.204 0.796 0.000 0.000
#> SRR1351857 4 0.0188 0.9542 0.000 0.000 0.004 0.996
#> SRR1487485 2 0.1716 0.8758 0.000 0.936 0.064 0.000
#> SRR1335875 2 0.0779 0.8980 0.004 0.980 0.016 0.000
#> SRR1073947 3 0.7146 0.5401 0.228 0.212 0.560 0.000
#> SRR1443483 3 0.3688 0.7212 0.208 0.000 0.792 0.000
#> SRR1346794 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1405245 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1409677 4 0.1389 0.9324 0.000 0.000 0.048 0.952
#> SRR1095549 3 0.0817 0.8816 0.000 0.024 0.976 0.000
#> SRR1323788 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1314054 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1077944 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1480587 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1311205 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1076369 3 0.4094 0.8425 0.056 0.116 0.828 0.000
#> SRR1453549 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1345782 3 0.3610 0.7938 0.000 0.200 0.800 0.000
#> SRR1447850 2 0.4234 0.7909 0.000 0.816 0.132 0.052
#> SRR1391553 2 0.4304 0.6179 0.284 0.716 0.000 0.000
#> SRR1444156 4 0.0188 0.9546 0.000 0.004 0.000 0.996
#> SRR1471731 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1120987 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1477363 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1391961 3 0.3610 0.7938 0.000 0.200 0.800 0.000
#> SRR1373879 3 0.0707 0.8740 0.000 0.020 0.980 0.000
#> SRR1318732 1 0.0188 0.9353 0.996 0.004 0.000 0.000
#> SRR1091404 2 0.2345 0.8562 0.000 0.900 0.100 0.000
#> SRR1402109 3 0.0817 0.8816 0.000 0.024 0.976 0.000
#> SRR1407336 3 0.0817 0.8816 0.000 0.024 0.976 0.000
#> SRR1097417 3 0.2704 0.8545 0.000 0.124 0.876 0.000
#> SRR1396227 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1400775 2 0.3801 0.7481 0.000 0.780 0.220 0.000
#> SRR1392861 4 0.6946 0.4578 0.000 0.252 0.168 0.580
#> SRR1472929 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1436740 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1477057 2 0.0817 0.8859 0.000 0.976 0.024 0.000
#> SRR1311980 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1069400 3 0.2647 0.8557 0.000 0.120 0.880 0.000
#> SRR1351016 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1096291 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1418145 2 0.4567 0.6084 0.000 0.716 0.008 0.276
#> SRR1488111 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1370495 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1352639 3 0.2868 0.8468 0.000 0.136 0.864 0.000
#> SRR1348911 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1467386 2 0.5102 0.7406 0.000 0.764 0.100 0.136
#> SRR1415956 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1500495 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1405099 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1345585 2 0.5155 0.1895 0.468 0.528 0.004 0.000
#> SRR1093196 3 0.3123 0.8073 0.000 0.156 0.844 0.000
#> SRR1466006 1 0.0376 0.9321 0.992 0.004 0.004 0.000
#> SRR1351557 2 0.1022 0.8841 0.000 0.968 0.032 0.000
#> SRR1382687 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1375549 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1101765 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1334461 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1094073 4 0.0188 0.9546 0.000 0.004 0.000 0.996
#> SRR1077549 3 0.1151 0.8797 0.000 0.024 0.968 0.008
#> SRR1440332 2 0.3074 0.8036 0.000 0.848 0.152 0.000
#> SRR1454177 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1082447 3 0.1867 0.8679 0.000 0.072 0.928 0.000
#> SRR1420043 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1432500 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1378045 3 0.4933 0.1518 0.000 0.432 0.568 0.000
#> SRR1334200 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1069539 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1343031 3 0.1022 0.8819 0.000 0.032 0.968 0.000
#> SRR1319690 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1310604 2 0.3649 0.7540 0.000 0.796 0.204 0.000
#> SRR1327747 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1072456 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1367896 1 0.4898 0.2275 0.584 0.000 0.416 0.000
#> SRR1480107 1 0.3400 0.7548 0.820 0.180 0.000 0.000
#> SRR1377756 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1435272 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1089230 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1389522 3 0.3972 0.7266 0.204 0.008 0.788 0.000
#> SRR1080600 3 0.2469 0.8576 0.000 0.108 0.892 0.000
#> SRR1086935 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1344060 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1467922 4 0.2635 0.9048 0.000 0.020 0.076 0.904
#> SRR1090984 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1456991 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1085039 3 0.0817 0.8816 0.000 0.024 0.976 0.000
#> SRR1069303 1 0.3569 0.7357 0.804 0.196 0.000 0.000
#> SRR1091500 4 0.0376 0.9529 0.000 0.004 0.004 0.992
#> SRR1075198 2 0.2469 0.8516 0.000 0.892 0.108 0.000
#> SRR1086915 4 0.1211 0.9372 0.000 0.000 0.040 0.960
#> SRR1499503 3 0.1557 0.8579 0.000 0.056 0.944 0.000
#> SRR1094312 2 0.3801 0.7481 0.000 0.780 0.220 0.000
#> SRR1352437 4 0.1557 0.9270 0.000 0.000 0.056 0.944
#> SRR1436323 2 0.1059 0.8935 0.016 0.972 0.012 0.000
#> SRR1073507 4 0.2149 0.9021 0.000 0.000 0.088 0.912
#> SRR1401972 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1415510 2 0.0817 0.8859 0.000 0.976 0.024 0.000
#> SRR1327279 3 0.0817 0.8816 0.000 0.024 0.976 0.000
#> SRR1086983 4 0.0000 0.9557 0.000 0.000 0.000 1.000
#> SRR1105174 3 0.1151 0.8797 0.000 0.024 0.968 0.008
#> SRR1468893 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1362555 1 0.0000 0.9384 1.000 0.000 0.000 0.000
#> SRR1074526 4 0.3688 0.7210 0.000 0.000 0.208 0.792
#> SRR1326225 4 0.0937 0.9443 0.000 0.012 0.012 0.976
#> SRR1401933 2 0.0707 0.8992 0.000 0.980 0.020 0.000
#> SRR1324062 1 0.3569 0.7357 0.804 0.196 0.000 0.000
#> SRR1102296 2 0.3172 0.8075 0.000 0.840 0.160 0.000
#> SRR1085087 4 0.2216 0.8992 0.000 0.000 0.092 0.908
#> SRR1079046 2 0.0817 0.8859 0.000 0.976 0.024 0.000
#> SRR1328339 1 0.7535 0.0313 0.464 0.200 0.336 0.000
#> SRR1079782 2 0.4692 0.6843 0.000 0.756 0.032 0.212
#> SRR1092257 4 0.0000 0.9557 0.000 0.000 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 4 0.4219 0.0169 0.000 0.416 0.000 0.584 0.000
#> SRR1429287 1 0.0566 0.8660 0.984 0.000 0.012 0.000 0.004
#> SRR1359238 1 0.0510 0.8650 0.984 0.000 0.016 0.000 0.000
#> SRR1309597 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1441398 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1084055 2 0.2690 0.6690 0.000 0.844 0.156 0.000 0.000
#> SRR1417566 1 0.2813 0.7286 0.832 0.000 0.000 0.000 0.168
#> SRR1351857 4 0.0162 0.8469 0.000 0.000 0.004 0.996 0.000
#> SRR1487485 1 0.3477 0.7968 0.832 0.112 0.056 0.000 0.000
#> SRR1335875 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1073947 3 0.8106 0.2875 0.284 0.000 0.376 0.108 0.232
#> SRR1443483 3 0.1341 0.8266 0.000 0.000 0.944 0.000 0.056
#> SRR1346794 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1405245 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1409677 4 0.0794 0.8345 0.000 0.000 0.028 0.972 0.000
#> SRR1095549 3 0.0566 0.8333 0.004 0.000 0.984 0.012 0.000
#> SRR1323788 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1314054 4 0.4294 -0.1743 0.000 0.468 0.000 0.532 0.000
#> SRR1077944 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1480587 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1311205 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1076369 3 0.2516 0.7820 0.000 0.000 0.860 0.000 0.140
#> SRR1453549 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1345782 3 0.2690 0.7498 0.156 0.000 0.844 0.000 0.000
#> SRR1447850 2 0.3646 0.6695 0.040 0.848 0.072 0.040 0.000
#> SRR1391553 1 0.3857 0.6091 0.688 0.000 0.000 0.000 0.312
#> SRR1444156 2 0.4171 0.4853 0.000 0.604 0.000 0.396 0.000
#> SRR1471731 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1120987 4 0.0000 0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1477363 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1391961 3 0.2516 0.7820 0.000 0.000 0.860 0.000 0.140
#> SRR1373879 3 0.3595 0.7646 0.004 0.048 0.828 0.120 0.000
#> SRR1318732 5 0.0162 0.8913 0.004 0.000 0.000 0.000 0.996
#> SRR1091404 1 0.1478 0.8457 0.936 0.000 0.064 0.000 0.000
#> SRR1402109 3 0.0162 0.8323 0.004 0.000 0.996 0.000 0.000
#> SRR1407336 3 0.0162 0.8323 0.004 0.000 0.996 0.000 0.000
#> SRR1097417 3 0.2516 0.7820 0.000 0.000 0.860 0.000 0.140
#> SRR1396227 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1400775 1 0.5841 0.5490 0.596 0.256 0.148 0.000 0.000
#> SRR1392861 4 0.5500 0.4062 0.212 0.000 0.140 0.648 0.000
#> SRR1472929 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1436740 4 0.0000 0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1477057 1 0.3106 0.7760 0.840 0.020 0.000 0.000 0.140
#> SRR1311980 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1069400 3 0.1043 0.8254 0.040 0.000 0.960 0.000 0.000
#> SRR1351016 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1096291 4 0.0404 0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1418145 1 0.3437 0.7632 0.832 0.048 0.000 0.120 0.000
#> SRR1488111 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1370495 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1352639 3 0.1908 0.8067 0.092 0.000 0.908 0.000 0.000
#> SRR1348911 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1467386 4 0.4935 0.3124 0.344 0.000 0.040 0.616 0.000
#> SRR1415956 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1500495 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1405099 5 0.2516 0.8590 0.000 0.140 0.000 0.000 0.860
#> SRR1345585 1 0.4297 0.2504 0.528 0.000 0.000 0.000 0.472
#> SRR1093196 3 0.3016 0.7343 0.132 0.020 0.848 0.000 0.000
#> SRR1466006 5 0.0162 0.8915 0.000 0.000 0.004 0.000 0.996
#> SRR1351557 1 0.3534 0.7156 0.744 0.256 0.000 0.000 0.000
#> SRR1382687 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1375549 1 0.0324 0.8672 0.992 0.000 0.004 0.000 0.004
#> SRR1101765 4 0.0000 0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1334461 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1094073 2 0.4171 0.4853 0.000 0.604 0.000 0.396 0.000
#> SRR1077549 3 0.2439 0.7920 0.004 0.000 0.876 0.120 0.000
#> SRR1440332 1 0.3508 0.6674 0.748 0.000 0.252 0.000 0.000
#> SRR1454177 4 0.0404 0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1082447 3 0.3437 0.7762 0.048 0.000 0.832 0.120 0.000
#> SRR1420043 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1432500 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1378045 2 0.5915 0.2700 0.108 0.508 0.384 0.000 0.000
#> SRR1334200 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1069539 4 0.2127 0.7498 0.000 0.108 0.000 0.892 0.000
#> SRR1343031 3 0.0162 0.8323 0.004 0.000 0.996 0.000 0.000
#> SRR1319690 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1310604 1 0.5087 0.6722 0.700 0.148 0.152 0.000 0.000
#> SRR1327747 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1072456 5 0.0162 0.8915 0.000 0.000 0.004 0.000 0.996
#> SRR1367896 5 0.4227 0.1420 0.000 0.000 0.420 0.000 0.580
#> SRR1480107 5 0.1732 0.8469 0.080 0.000 0.000 0.000 0.920
#> SRR1377756 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1435272 4 0.0404 0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1089230 4 0.0404 0.8450 0.000 0.012 0.000 0.988 0.000
#> SRR1389522 3 0.2886 0.7773 0.008 0.000 0.844 0.000 0.148
#> SRR1080600 2 0.4503 0.5220 0.040 0.704 0.256 0.000 0.000
#> SRR1086935 4 0.2280 0.7338 0.000 0.120 0.000 0.880 0.000
#> SRR1344060 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1467922 2 0.3412 0.6489 0.000 0.820 0.028 0.152 0.000
#> SRR1090984 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1456991 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1085039 3 0.2439 0.7920 0.004 0.000 0.876 0.120 0.000
#> SRR1069303 5 0.3774 0.6186 0.296 0.000 0.000 0.000 0.704
#> SRR1091500 2 0.4161 0.4908 0.000 0.608 0.000 0.392 0.000
#> SRR1075198 1 0.5447 0.6092 0.640 0.248 0.112 0.000 0.000
#> SRR1086915 4 0.0771 0.8398 0.004 0.000 0.020 0.976 0.000
#> SRR1499503 2 0.2648 0.6694 0.000 0.848 0.152 0.000 0.000
#> SRR1094312 2 0.2763 0.6701 0.004 0.848 0.148 0.000 0.000
#> SRR1352437 4 0.0794 0.8345 0.000 0.000 0.028 0.972 0.000
#> SRR1436323 1 0.2516 0.7803 0.860 0.000 0.000 0.000 0.140
#> SRR1073507 4 0.1043 0.8236 0.000 0.000 0.040 0.960 0.000
#> SRR1401972 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1415510 1 0.2519 0.8233 0.884 0.100 0.016 0.000 0.000
#> SRR1327279 3 0.0566 0.8333 0.004 0.000 0.984 0.012 0.000
#> SRR1086983 4 0.0000 0.8480 0.000 0.000 0.000 1.000 0.000
#> SRR1105174 3 0.3430 0.6908 0.004 0.000 0.776 0.220 0.000
#> SRR1468893 5 0.0000 0.8928 0.000 0.000 0.000 0.000 1.000
#> SRR1362555 5 0.0510 0.8907 0.000 0.016 0.000 0.000 0.984
#> SRR1074526 2 0.4171 0.4853 0.000 0.604 0.000 0.396 0.000
#> SRR1326225 2 0.4150 0.4955 0.000 0.612 0.000 0.388 0.000
#> SRR1401933 1 0.0000 0.8694 1.000 0.000 0.000 0.000 0.000
#> SRR1324062 5 0.3796 0.6134 0.300 0.000 0.000 0.000 0.700
#> SRR1102296 1 0.7198 0.4480 0.532 0.256 0.092 0.120 0.000
#> SRR1085087 4 0.2077 0.7872 0.000 0.040 0.040 0.920 0.000
#> SRR1079046 1 0.2806 0.7975 0.844 0.152 0.000 0.000 0.004
#> SRR1328339 5 0.4682 0.3196 0.024 0.000 0.356 0.000 0.620
#> SRR1079782 1 0.5449 0.5975 0.636 0.256 0.000 0.108 0.000
#> SRR1092257 4 0.0000 0.8480 0.000 0.000 0.000 1.000 0.000
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 4 0.3727 0.5397 0.000 0.388 0.000 0.612 0.000 0.000
#> SRR1429287 1 0.0146 0.8459 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1359238 1 0.0865 0.8334 0.964 0.000 0.036 0.000 0.000 0.000
#> SRR1309597 5 0.2793 0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1441398 5 0.2793 0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1084055 2 0.5173 0.6355 0.000 0.616 0.160 0.000 0.000 0.224
#> SRR1417566 1 0.2454 0.7111 0.840 0.000 0.000 0.000 0.160 0.000
#> SRR1351857 6 0.4199 0.8306 0.000 0.016 0.000 0.416 0.000 0.568
#> SRR1487485 1 0.4627 0.6631 0.696 0.004 0.196 0.000 0.000 0.104
#> SRR1335875 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1073947 6 0.5751 0.3945 0.280 0.000 0.128 0.024 0.000 0.568
#> SRR1443483 3 0.2454 0.7725 0.000 0.000 0.840 0.000 0.160 0.000
#> SRR1346794 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1405245 5 0.2793 0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1409677 4 0.0000 0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1095549 3 0.2527 0.7086 0.000 0.000 0.832 0.168 0.000 0.000
#> SRR1323788 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1314054 2 0.3515 0.1142 0.000 0.676 0.000 0.324 0.000 0.000
#> SRR1077944 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1480587 5 0.2793 0.8228 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1311205 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1076369 3 0.2697 0.7526 0.000 0.000 0.812 0.000 0.188 0.000
#> SRR1453549 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1345782 3 0.2454 0.7392 0.160 0.000 0.840 0.000 0.000 0.000
#> SRR1447850 2 0.5195 0.6336 0.000 0.612 0.160 0.000 0.000 0.228
#> SRR1391553 1 0.3563 0.5645 0.664 0.000 0.000 0.000 0.336 0.000
#> SRR1444156 2 0.0937 0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1471731 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1120987 4 0.0458 0.6652 0.000 0.016 0.000 0.984 0.000 0.000
#> SRR1477363 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1391961 3 0.2838 0.7508 0.000 0.000 0.808 0.000 0.188 0.004
#> SRR1373879 6 0.4951 0.8390 0.000 0.040 0.016 0.384 0.000 0.560
#> SRR1318732 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1091404 1 0.1007 0.8309 0.956 0.000 0.044 0.000 0.000 0.000
#> SRR1402109 3 0.0000 0.7588 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1407336 3 0.0000 0.7588 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1097417 3 0.2442 0.7767 0.000 0.000 0.852 0.000 0.144 0.004
#> SRR1396227 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1400775 1 0.6020 0.5158 0.572 0.040 0.160 0.000 0.000 0.228
#> SRR1392861 4 0.3126 0.3091 0.248 0.000 0.000 0.752 0.000 0.000
#> SRR1472929 5 0.2823 0.8205 0.000 0.000 0.000 0.000 0.796 0.204
#> SRR1436740 4 0.0000 0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1477057 1 0.3555 0.7082 0.776 0.000 0.000 0.000 0.184 0.040
#> SRR1311980 5 0.2793 0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1069400 3 0.2092 0.7604 0.124 0.000 0.876 0.000 0.000 0.000
#> SRR1351016 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1096291 4 0.3578 0.5949 0.000 0.340 0.000 0.660 0.000 0.000
#> SRR1418145 1 0.5891 0.4408 0.576 0.040 0.124 0.260 0.000 0.000
#> SRR1488111 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1370495 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1352639 3 0.1367 0.7646 0.044 0.000 0.944 0.000 0.000 0.012
#> SRR1348911 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1467386 6 0.3944 0.8450 0.004 0.000 0.000 0.428 0.000 0.568
#> SRR1415956 5 0.2793 0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1500495 5 0.2697 0.8252 0.000 0.000 0.000 0.000 0.812 0.188
#> SRR1405099 5 0.2793 0.8215 0.000 0.000 0.000 0.000 0.800 0.200
#> SRR1345585 1 0.3866 0.2342 0.516 0.000 0.000 0.000 0.484 0.000
#> SRR1093196 3 0.2404 0.6778 0.112 0.016 0.872 0.000 0.000 0.000
#> SRR1466006 5 0.0146 0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1351557 1 0.5733 0.5535 0.608 0.040 0.124 0.000 0.000 0.228
#> SRR1382687 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1375549 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1101765 4 0.0000 0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1334461 5 0.0146 0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1094073 2 0.0937 0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1077549 6 0.4658 0.8475 0.000 0.000 0.048 0.384 0.000 0.568
#> SRR1440332 1 0.2793 0.6944 0.800 0.000 0.200 0.000 0.000 0.000
#> SRR1454177 4 0.4636 0.5579 0.000 0.160 0.000 0.692 0.000 0.148
#> SRR1082447 6 0.4735 0.8488 0.000 0.004 0.044 0.384 0.000 0.568
#> SRR1420043 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1432500 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1378045 3 0.7347 -0.3249 0.116 0.304 0.352 0.000 0.000 0.228
#> SRR1334200 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1069539 4 0.3717 0.5455 0.000 0.384 0.000 0.616 0.000 0.000
#> SRR1343031 3 0.2135 0.7593 0.128 0.000 0.872 0.000 0.000 0.000
#> SRR1319690 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1310604 1 0.5077 0.6563 0.696 0.040 0.160 0.000 0.000 0.104
#> SRR1327747 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1072456 5 0.0146 0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1367896 5 0.3930 0.0938 0.000 0.000 0.420 0.000 0.576 0.004
#> SRR1480107 5 0.1075 0.8534 0.048 0.000 0.000 0.000 0.952 0.000
#> SRR1377756 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1435272 4 0.2454 0.7097 0.000 0.160 0.000 0.840 0.000 0.000
#> SRR1089230 4 0.2527 0.7105 0.000 0.168 0.000 0.832 0.000 0.000
#> SRR1389522 3 0.2558 0.7749 0.004 0.000 0.840 0.000 0.156 0.000
#> SRR1080600 2 0.5870 0.4714 0.000 0.476 0.292 0.000 0.000 0.232
#> SRR1086935 4 0.3717 0.5455 0.000 0.384 0.000 0.616 0.000 0.000
#> SRR1344060 5 0.0146 0.8712 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1467922 2 0.1297 0.6823 0.000 0.948 0.000 0.040 0.000 0.012
#> SRR1090984 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1456991 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1085039 6 0.4658 0.8475 0.000 0.000 0.048 0.384 0.000 0.568
#> SRR1069303 5 0.3428 0.6062 0.304 0.000 0.000 0.000 0.696 0.000
#> SRR1091500 2 0.0937 0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1075198 1 0.5999 0.5216 0.576 0.040 0.160 0.000 0.000 0.224
#> SRR1086915 4 0.0000 0.6547 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1499503 2 0.5173 0.6355 0.000 0.616 0.160 0.000 0.000 0.224
#> SRR1094312 2 0.5195 0.6336 0.000 0.612 0.160 0.000 0.000 0.228
#> SRR1352437 6 0.3817 0.8437 0.000 0.000 0.000 0.432 0.000 0.568
#> SRR1436323 1 0.2697 0.7189 0.812 0.000 0.000 0.000 0.188 0.000
#> SRR1073507 6 0.3817 0.8437 0.000 0.000 0.000 0.432 0.000 0.568
#> SRR1401972 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1415510 1 0.2848 0.7840 0.856 0.004 0.036 0.000 0.000 0.104
#> SRR1327279 3 0.2454 0.7164 0.000 0.000 0.840 0.160 0.000 0.000
#> SRR1086983 6 0.3817 0.8437 0.000 0.000 0.000 0.432 0.000 0.568
#> SRR1105174 6 0.4610 0.8495 0.000 0.000 0.044 0.388 0.000 0.568
#> SRR1468893 5 0.0000 0.8721 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1362555 5 0.0632 0.8692 0.000 0.000 0.000 0.000 0.976 0.024
#> SRR1074526 2 0.0937 0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1326225 2 0.0937 0.6823 0.000 0.960 0.000 0.040 0.000 0.000
#> SRR1401933 1 0.0000 0.8473 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1324062 5 0.3428 0.6062 0.304 0.000 0.000 0.000 0.696 0.000
#> SRR1102296 6 0.3968 0.3782 0.004 0.040 0.124 0.036 0.000 0.796
#> SRR1085087 6 0.4395 0.8457 0.000 0.028 0.000 0.404 0.000 0.568
#> SRR1079046 1 0.3282 0.7477 0.808 0.012 0.016 0.000 0.000 0.164
#> SRR1328339 5 0.3835 0.4009 0.012 0.000 0.320 0.000 0.668 0.000
#> SRR1079782 1 0.7941 0.1826 0.392 0.040 0.124 0.216 0.000 0.228
#> SRR1092257 4 0.3796 0.5975 0.000 0.060 0.000 0.764 0.000 0.176
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
ATC:mclust
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["ATC", "mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.209 0.736 0.800 0.4400 0.498 0.498
#> 3 3 0.251 0.341 0.657 0.3576 0.692 0.496
#> 4 4 0.288 0.454 0.638 0.1344 0.705 0.405
#> 5 5 0.482 0.401 0.726 0.0779 0.795 0.462
#> 6 6 0.535 0.427 0.682 0.0600 0.919 0.721
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.1414 0.827 0.020 0.980
#> SRR1429287 2 0.5294 0.865 0.120 0.880
#> SRR1359238 1 0.9129 0.672 0.672 0.328
#> SRR1309597 2 0.5408 0.865 0.124 0.876
#> SRR1441398 1 0.8861 0.703 0.696 0.304
#> SRR1084055 2 0.0938 0.819 0.012 0.988
#> SRR1417566 2 1.0000 -0.152 0.500 0.500
#> SRR1351857 2 0.1414 0.824 0.020 0.980
#> SRR1487485 2 0.5408 0.865 0.124 0.876
#> SRR1335875 1 0.1414 0.749 0.980 0.020
#> SRR1073947 1 0.6148 0.787 0.848 0.152
#> SRR1443483 2 0.5294 0.864 0.120 0.880
#> SRR1346794 1 0.1414 0.748 0.980 0.020
#> SRR1405245 1 0.8499 0.728 0.724 0.276
#> SRR1409677 1 0.9087 0.761 0.676 0.324
#> SRR1095549 2 0.1414 0.824 0.020 0.980
#> SRR1323788 1 0.7056 0.782 0.808 0.192
#> SRR1314054 2 0.1414 0.827 0.020 0.980
#> SRR1077944 1 0.0938 0.746 0.988 0.012
#> SRR1480587 2 0.5408 0.865 0.124 0.876
#> SRR1311205 1 0.7674 0.771 0.776 0.224
#> SRR1076369 2 0.5408 0.865 0.124 0.876
#> SRR1453549 1 0.5737 0.786 0.864 0.136
#> SRR1345782 1 0.7453 0.776 0.788 0.212
#> SRR1447850 2 0.5059 0.808 0.112 0.888
#> SRR1391553 1 0.5737 0.786 0.864 0.136
#> SRR1444156 2 0.1414 0.827 0.020 0.980
#> SRR1471731 1 0.9170 0.668 0.668 0.332
#> SRR1120987 1 0.9866 0.654 0.568 0.432
#> SRR1477363 1 0.0672 0.741 0.992 0.008
#> SRR1391961 2 0.5178 0.863 0.116 0.884
#> SRR1373879 1 0.9933 0.615 0.548 0.452
#> SRR1318732 2 0.9850 0.180 0.428 0.572
#> SRR1091404 2 0.9909 0.103 0.444 0.556
#> SRR1402109 2 0.9815 0.228 0.420 0.580
#> SRR1407336 2 0.1843 0.828 0.028 0.972
#> SRR1097417 2 0.5059 0.861 0.112 0.888
#> SRR1396227 1 0.0376 0.742 0.996 0.004
#> SRR1400775 2 0.3733 0.853 0.072 0.928
#> SRR1392861 1 0.9522 0.723 0.628 0.372
#> SRR1472929 2 0.5294 0.864 0.120 0.880
#> SRR1436740 1 0.9044 0.764 0.680 0.320
#> SRR1477057 2 0.9087 0.526 0.324 0.676
#> SRR1311980 1 0.9044 0.684 0.680 0.320
#> SRR1069400 2 0.5519 0.864 0.128 0.872
#> SRR1351016 1 0.0376 0.744 0.996 0.004
#> SRR1096291 2 0.1633 0.825 0.024 0.976
#> SRR1418145 1 0.9286 0.707 0.656 0.344
#> SRR1488111 1 0.9209 0.668 0.664 0.336
#> SRR1370495 2 0.5408 0.865 0.124 0.876
#> SRR1352639 1 0.5629 0.787 0.868 0.132
#> SRR1348911 2 0.5519 0.864 0.128 0.872
#> SRR1467386 1 0.8555 0.770 0.720 0.280
#> SRR1415956 1 0.2603 0.760 0.956 0.044
#> SRR1500495 1 0.0376 0.744 0.996 0.004
#> SRR1405099 1 0.2423 0.759 0.960 0.040
#> SRR1345585 2 0.5408 0.865 0.124 0.876
#> SRR1093196 1 0.9983 0.262 0.524 0.476
#> SRR1466006 2 0.5059 0.863 0.112 0.888
#> SRR1351557 2 0.5294 0.865 0.120 0.880
#> SRR1382687 1 0.0672 0.741 0.992 0.008
#> SRR1375549 1 0.9129 0.678 0.672 0.328
#> SRR1101765 2 0.8499 0.372 0.276 0.724
#> SRR1334461 2 0.5519 0.864 0.128 0.872
#> SRR1094073 2 0.1414 0.827 0.020 0.980
#> SRR1077549 1 0.9170 0.756 0.668 0.332
#> SRR1440332 1 0.6973 0.783 0.812 0.188
#> SRR1454177 1 0.9754 0.683 0.592 0.408
#> SRR1082447 1 0.9000 0.764 0.684 0.316
#> SRR1420043 1 0.0000 0.741 1.000 0.000
#> SRR1432500 1 0.0376 0.744 0.996 0.004
#> SRR1378045 2 0.5519 0.865 0.128 0.872
#> SRR1334200 2 0.5408 0.865 0.124 0.876
#> SRR1069539 2 0.1414 0.824 0.020 0.980
#> SRR1343031 2 0.5519 0.864 0.128 0.872
#> SRR1319690 1 0.7745 0.754 0.772 0.228
#> SRR1310604 2 0.5294 0.865 0.120 0.880
#> SRR1327747 1 0.9170 0.668 0.668 0.332
#> SRR1072456 2 0.5059 0.863 0.112 0.888
#> SRR1367896 2 0.5059 0.861 0.112 0.888
#> SRR1480107 1 0.0672 0.743 0.992 0.008
#> SRR1377756 1 0.0672 0.741 0.992 0.008
#> SRR1435272 1 0.9393 0.736 0.644 0.356
#> SRR1089230 1 0.9954 0.592 0.540 0.460
#> SRR1389522 2 0.5294 0.864 0.120 0.880
#> SRR1080600 2 0.5059 0.863 0.112 0.888
#> SRR1086935 2 0.9954 -0.410 0.460 0.540
#> SRR1344060 2 0.5519 0.864 0.128 0.872
#> SRR1467922 2 0.1414 0.827 0.020 0.980
#> SRR1090984 2 0.9608 0.354 0.384 0.616
#> SRR1456991 1 0.5294 0.784 0.880 0.120
#> SRR1085039 1 0.8713 0.769 0.708 0.292
#> SRR1069303 1 0.0000 0.741 1.000 0.000
#> SRR1091500 2 0.1414 0.827 0.020 0.980
#> SRR1075198 2 0.5408 0.865 0.124 0.876
#> SRR1086915 1 0.9044 0.763 0.680 0.320
#> SRR1499503 2 0.0938 0.824 0.012 0.988
#> SRR1094312 2 0.2603 0.840 0.044 0.956
#> SRR1352437 1 0.8555 0.771 0.720 0.280
#> SRR1436323 1 0.8955 0.695 0.688 0.312
#> SRR1073507 1 0.8555 0.770 0.720 0.280
#> SRR1401972 1 0.0376 0.742 0.996 0.004
#> SRR1415510 2 0.5408 0.865 0.124 0.876
#> SRR1327279 1 0.9286 0.750 0.656 0.344
#> SRR1086983 1 0.8608 0.770 0.716 0.284
#> SRR1105174 1 0.8661 0.770 0.712 0.288
#> SRR1468893 1 0.0938 0.744 0.988 0.012
#> SRR1362555 2 0.5408 0.865 0.124 0.876
#> SRR1074526 2 0.0938 0.819 0.012 0.988
#> SRR1326225 2 0.1184 0.826 0.016 0.984
#> SRR1401933 1 0.7815 0.768 0.768 0.232
#> SRR1324062 1 0.0000 0.741 1.000 0.000
#> SRR1102296 1 0.7815 0.784 0.768 0.232
#> SRR1085087 1 0.8499 0.771 0.724 0.276
#> SRR1079046 1 0.9460 0.614 0.636 0.364
#> SRR1328339 2 0.5842 0.858 0.140 0.860
#> SRR1079782 1 0.9209 0.668 0.664 0.336
#> SRR1092257 1 0.9998 0.532 0.508 0.492
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.7163 0.2550 0.332 0.628 0.040
#> SRR1429287 2 0.2066 0.5270 0.000 0.940 0.060
#> SRR1359238 1 0.6280 0.4823 0.540 0.460 0.000
#> SRR1309597 2 0.6553 0.2660 0.020 0.656 0.324
#> SRR1441398 1 0.8763 0.4335 0.552 0.136 0.312
#> SRR1084055 3 0.8636 0.4129 0.104 0.396 0.500
#> SRR1417566 1 0.6308 0.4365 0.508 0.492 0.000
#> SRR1351857 3 0.9180 0.5346 0.376 0.152 0.472
#> SRR1487485 2 0.0592 0.5246 0.000 0.988 0.012
#> SRR1335875 1 0.8109 0.5804 0.568 0.352 0.080
#> SRR1073947 1 0.9914 0.2162 0.392 0.328 0.280
#> SRR1443483 2 0.6678 -0.2727 0.008 0.512 0.480
#> SRR1346794 1 0.7085 0.5862 0.612 0.356 0.032
#> SRR1405245 1 0.8452 0.4466 0.556 0.104 0.340
#> SRR1409677 1 0.0829 0.4706 0.984 0.012 0.004
#> SRR1095549 3 0.9280 0.5416 0.388 0.160 0.452
#> SRR1323788 1 0.9596 0.3602 0.452 0.336 0.212
#> SRR1314054 2 0.7163 0.2550 0.332 0.628 0.040
#> SRR1077944 1 0.6627 0.5920 0.644 0.336 0.020
#> SRR1480587 2 0.5706 0.2777 0.000 0.680 0.320
#> SRR1311205 1 0.8554 0.4506 0.560 0.116 0.324
#> SRR1076369 2 0.6307 -0.2915 0.000 0.512 0.488
#> SRR1453549 1 0.5968 0.5777 0.636 0.364 0.000
#> SRR1345782 2 0.9941 -0.2044 0.292 0.384 0.324
#> SRR1447850 2 0.3141 0.5268 0.020 0.912 0.068
#> SRR1391553 2 0.5634 0.4294 0.144 0.800 0.056
#> SRR1444156 2 0.7251 0.2583 0.348 0.612 0.040
#> SRR1471731 2 0.3722 0.5195 0.088 0.888 0.024
#> SRR1120987 1 0.4591 0.3810 0.848 0.120 0.032
#> SRR1477363 1 0.7828 0.5894 0.592 0.340 0.068
#> SRR1391961 2 0.6680 -0.2801 0.008 0.508 0.484
#> SRR1373879 1 0.9731 -0.2435 0.444 0.248 0.308
#> SRR1318732 2 0.4465 0.4190 0.176 0.820 0.004
#> SRR1091404 2 0.9514 -0.2279 0.328 0.468 0.204
#> SRR1402109 2 0.8501 -0.2018 0.092 0.488 0.420
#> SRR1407336 2 0.8783 -0.2328 0.112 0.468 0.420
#> SRR1097417 3 0.6307 0.2470 0.000 0.488 0.512
#> SRR1396227 1 0.7705 0.5916 0.604 0.332 0.064
#> SRR1400775 2 0.2096 0.5299 0.052 0.944 0.004
#> SRR1392861 1 0.1399 0.4692 0.968 0.028 0.004
#> SRR1472929 3 0.4654 0.5522 0.000 0.208 0.792
#> SRR1436740 1 0.0592 0.4740 0.988 0.012 0.000
#> SRR1477057 2 0.2947 0.5308 0.020 0.920 0.060
#> SRR1311980 1 0.8771 0.4338 0.556 0.140 0.304
#> SRR1069400 2 0.6816 -0.2594 0.012 0.516 0.472
#> SRR1351016 1 0.8230 0.5803 0.564 0.348 0.088
#> SRR1096291 1 0.9077 -0.4005 0.508 0.152 0.340
#> SRR1418145 2 0.3619 0.5045 0.136 0.864 0.000
#> SRR1488111 2 0.3888 0.5259 0.048 0.888 0.064
#> SRR1370495 2 0.6396 0.2862 0.016 0.664 0.320
#> SRR1352639 1 0.5810 0.5892 0.664 0.336 0.000
#> SRR1348911 1 0.9391 0.3533 0.496 0.200 0.304
#> SRR1467386 1 0.1163 0.4934 0.972 0.028 0.000
#> SRR1415956 1 0.7533 0.4521 0.564 0.044 0.392
#> SRR1500495 1 0.7533 0.4521 0.564 0.044 0.392
#> SRR1405099 1 0.7533 0.4521 0.564 0.044 0.392
#> SRR1345585 2 0.0829 0.5259 0.004 0.984 0.012
#> SRR1093196 2 0.6286 -0.3516 0.464 0.536 0.000
#> SRR1466006 2 0.5785 0.2764 0.000 0.668 0.332
#> SRR1351557 2 0.2301 0.5283 0.004 0.936 0.060
#> SRR1382687 1 0.7448 0.5926 0.616 0.332 0.052
#> SRR1375549 2 0.3889 0.5206 0.084 0.884 0.032
#> SRR1101765 1 0.6730 0.1109 0.680 0.284 0.036
#> SRR1334461 3 0.5678 0.5451 0.032 0.192 0.776
#> SRR1094073 2 0.7208 0.2572 0.340 0.620 0.040
#> SRR1077549 1 0.6570 -0.1316 0.668 0.024 0.308
#> SRR1440332 1 0.5835 0.5883 0.660 0.340 0.000
#> SRR1454177 1 0.2918 0.4365 0.924 0.044 0.032
#> SRR1082447 1 0.9987 0.0956 0.348 0.344 0.308
#> SRR1420043 1 0.8194 0.5853 0.572 0.340 0.088
#> SRR1432500 1 0.5785 0.5898 0.668 0.332 0.000
#> SRR1378045 2 0.1289 0.5293 0.032 0.968 0.000
#> SRR1334200 2 0.5678 0.2810 0.000 0.684 0.316
#> SRR1069539 3 0.9189 0.5472 0.336 0.164 0.500
#> SRR1343031 2 0.8203 -0.2201 0.072 0.484 0.444
#> SRR1319690 1 0.6267 0.4928 0.548 0.452 0.000
#> SRR1310604 2 0.1129 0.5227 0.004 0.976 0.020
#> SRR1327747 2 0.6309 -0.4351 0.496 0.504 0.000
#> SRR1072456 2 0.5178 0.3555 0.000 0.744 0.256
#> SRR1367896 3 0.4654 0.5522 0.000 0.208 0.792
#> SRR1480107 1 0.9189 0.5475 0.500 0.336 0.164
#> SRR1377756 1 0.8034 0.5883 0.584 0.336 0.080
#> SRR1435272 1 0.1399 0.4491 0.968 0.004 0.028
#> SRR1089230 1 0.4799 0.3637 0.836 0.132 0.032
#> SRR1389522 2 0.6816 -0.2594 0.012 0.516 0.472
#> SRR1080600 2 0.1163 0.5212 0.000 0.972 0.028
#> SRR1086935 2 0.7236 0.2507 0.392 0.576 0.032
#> SRR1344060 3 0.5024 0.5526 0.004 0.220 0.776
#> SRR1467922 2 0.6955 0.2576 0.332 0.636 0.032
#> SRR1090984 2 0.8059 -0.3462 0.444 0.492 0.064
#> SRR1456991 1 0.8280 0.5797 0.564 0.344 0.092
#> SRR1085039 1 0.9974 0.1114 0.368 0.324 0.308
#> SRR1069303 1 0.8194 0.5853 0.572 0.340 0.088
#> SRR1091500 2 0.7251 0.2583 0.348 0.612 0.040
#> SRR1075198 2 0.0475 0.5276 0.004 0.992 0.004
#> SRR1086915 1 0.1289 0.4851 0.968 0.032 0.000
#> SRR1499503 2 0.6855 0.2640 0.316 0.652 0.032
#> SRR1094312 2 0.2269 0.5185 0.040 0.944 0.016
#> SRR1352437 1 0.0592 0.4807 0.988 0.012 0.000
#> SRR1436323 2 0.3573 0.5012 0.120 0.876 0.004
#> SRR1073507 1 0.5986 -0.0375 0.704 0.012 0.284
#> SRR1401972 1 0.7262 0.5928 0.624 0.332 0.044
#> SRR1415510 2 0.0475 0.5282 0.004 0.992 0.004
#> SRR1327279 3 0.9967 -0.0205 0.296 0.340 0.364
#> SRR1086983 1 0.1950 0.4412 0.952 0.008 0.040
#> SRR1105174 1 0.6570 -0.0911 0.668 0.024 0.308
#> SRR1468893 1 0.8698 0.5258 0.564 0.136 0.300
#> SRR1362555 2 0.7084 0.3011 0.044 0.652 0.304
#> SRR1074526 3 0.9215 0.5457 0.332 0.168 0.500
#> SRR1326225 2 0.7163 0.2550 0.332 0.628 0.040
#> SRR1401933 2 0.3618 0.5110 0.104 0.884 0.012
#> SRR1324062 1 0.8194 0.5853 0.572 0.340 0.088
#> SRR1102296 1 0.5706 0.5903 0.680 0.320 0.000
#> SRR1085087 1 0.0892 0.4873 0.980 0.020 0.000
#> SRR1079046 2 0.3983 0.5247 0.048 0.884 0.068
#> SRR1328339 1 0.6521 0.4291 0.504 0.492 0.004
#> SRR1079782 2 0.4281 0.5233 0.072 0.872 0.056
#> SRR1092257 2 0.7129 0.2546 0.392 0.580 0.028
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 4 0.4175 0.69726 0.000 0.200 0.016 0.784
#> SRR1429287 2 0.0376 0.61676 0.004 0.992 0.000 0.004
#> SRR1359238 1 0.5113 0.62955 0.684 0.292 0.024 0.000
#> SRR1309597 1 0.6299 -0.42481 0.496 0.456 0.040 0.008
#> SRR1441398 1 0.3074 0.35925 0.848 0.000 0.152 0.000
#> SRR1084055 3 0.5397 0.34567 0.000 0.068 0.720 0.212
#> SRR1417566 1 0.5830 0.56600 0.620 0.332 0.048 0.000
#> SRR1351857 3 0.5632 0.36670 0.012 0.008 0.560 0.420
#> SRR1487485 2 0.5007 0.54265 0.208 0.752 0.028 0.012
#> SRR1335875 1 0.4560 0.63850 0.700 0.296 0.004 0.000
#> SRR1073947 3 0.9328 0.42222 0.176 0.288 0.408 0.128
#> SRR1443483 3 0.3873 0.50279 0.000 0.228 0.772 0.000
#> SRR1346794 1 0.4560 0.63850 0.700 0.296 0.004 0.000
#> SRR1405245 1 0.0188 0.51381 0.996 0.000 0.004 0.000
#> SRR1409677 1 0.7122 0.30583 0.560 0.000 0.192 0.248
#> SRR1095549 3 0.4993 0.48085 0.020 0.008 0.728 0.244
#> SRR1323788 3 0.9285 0.43999 0.164 0.288 0.416 0.132
#> SRR1314054 4 0.4175 0.69726 0.000 0.200 0.016 0.784
#> SRR1077944 1 0.4770 0.64013 0.700 0.288 0.012 0.000
#> SRR1480587 2 0.5402 0.24671 0.288 0.680 0.024 0.008
#> SRR1311205 1 0.0188 0.51395 0.996 0.004 0.000 0.000
#> SRR1076369 3 0.7911 0.12084 0.208 0.308 0.472 0.012
#> SRR1453549 1 0.4770 0.64013 0.700 0.288 0.012 0.000
#> SRR1345782 3 0.9268 0.44394 0.160 0.292 0.416 0.132
#> SRR1447850 2 0.3216 0.49431 0.004 0.864 0.124 0.008
#> SRR1391553 2 0.4713 0.27753 0.360 0.640 0.000 0.000
#> SRR1444156 4 0.4175 0.69726 0.000 0.200 0.016 0.784
#> SRR1471731 2 0.4158 0.54799 0.224 0.768 0.008 0.000
#> SRR1120987 1 0.5696 -0.01543 0.492 0.000 0.024 0.484
#> SRR1477363 1 0.4560 0.63850 0.700 0.296 0.004 0.000
#> SRR1391961 3 0.5349 0.48934 0.008 0.212 0.732 0.048
#> SRR1373879 3 0.6373 0.51262 0.092 0.012 0.664 0.232
#> SRR1318732 2 0.5352 0.12428 0.388 0.596 0.016 0.000
#> SRR1091404 3 0.9442 0.23425 0.260 0.248 0.380 0.112
#> SRR1402109 3 0.8105 0.51094 0.052 0.300 0.516 0.132
#> SRR1407336 3 0.6145 0.56514 0.020 0.128 0.716 0.136
#> SRR1097417 3 0.5998 0.46424 0.000 0.212 0.680 0.108
#> SRR1396227 1 0.4770 0.64013 0.700 0.288 0.012 0.000
#> SRR1400775 2 0.5436 0.46301 0.008 0.756 0.128 0.108
#> SRR1392861 1 0.7210 0.27465 0.540 0.000 0.276 0.184
#> SRR1472929 1 0.6806 -0.21915 0.516 0.012 0.404 0.068
#> SRR1436740 1 0.6295 0.27263 0.580 0.000 0.072 0.348
#> SRR1477057 2 0.0376 0.61676 0.004 0.992 0.000 0.004
#> SRR1311980 1 0.3402 0.28251 0.832 0.164 0.004 0.000
#> SRR1069400 3 0.4454 0.46402 0.000 0.308 0.692 0.000
#> SRR1351016 1 0.4535 0.63853 0.704 0.292 0.004 0.000
#> SRR1096291 3 0.6805 0.39415 0.076 0.008 0.512 0.404
#> SRR1418145 2 0.7555 0.38970 0.288 0.552 0.136 0.024
#> SRR1488111 2 0.2654 0.63270 0.108 0.888 0.000 0.004
#> SRR1370495 2 0.5427 0.29327 0.416 0.568 0.016 0.000
#> SRR1352639 1 0.5815 0.61484 0.652 0.288 0.060 0.000
#> SRR1348911 1 0.4685 0.39490 0.784 0.060 0.156 0.000
#> SRR1467386 3 0.7179 0.48169 0.208 0.004 0.576 0.212
#> SRR1415956 1 0.0336 0.51297 0.992 0.000 0.008 0.000
#> SRR1500495 1 0.0188 0.51381 0.996 0.000 0.004 0.000
#> SRR1405099 1 0.1302 0.49846 0.956 0.000 0.044 0.000
#> SRR1345585 2 0.5251 0.47777 0.252 0.712 0.028 0.008
#> SRR1093196 1 0.6522 0.54428 0.600 0.328 0.052 0.020
#> SRR1466006 2 0.6949 0.37923 0.064 0.680 0.116 0.140
#> SRR1351557 2 0.0376 0.61676 0.004 0.992 0.000 0.004
#> SRR1382687 1 0.4770 0.64013 0.700 0.288 0.012 0.000
#> SRR1375549 2 0.3074 0.59854 0.152 0.848 0.000 0.000
#> SRR1101765 4 0.6897 0.37364 0.332 0.124 0.000 0.544
#> SRR1334461 3 0.5269 0.33862 0.364 0.016 0.620 0.000
#> SRR1094073 4 0.4175 0.69726 0.000 0.200 0.016 0.784
#> SRR1077549 3 0.6784 0.49870 0.156 0.000 0.600 0.244
#> SRR1440332 1 0.6920 0.55926 0.588 0.288 0.116 0.008
#> SRR1454177 4 0.7176 -0.10282 0.196 0.000 0.252 0.552
#> SRR1082447 3 0.8210 0.55195 0.164 0.120 0.580 0.136
#> SRR1420043 1 0.4382 0.63793 0.704 0.296 0.000 0.000
#> SRR1432500 1 0.4963 0.64058 0.696 0.284 0.020 0.000
#> SRR1378045 2 0.8080 0.48334 0.152 0.584 0.176 0.088
#> SRR1334200 2 0.6005 0.29467 0.356 0.600 0.036 0.008
#> SRR1069539 3 0.5236 0.33479 0.000 0.008 0.560 0.432
#> SRR1343031 3 0.7476 0.51296 0.020 0.300 0.548 0.132
#> SRR1319690 1 0.4697 0.63731 0.696 0.296 0.008 0.000
#> SRR1310604 2 0.6994 0.51449 0.124 0.648 0.032 0.196
#> SRR1327747 1 0.4980 0.62215 0.680 0.304 0.016 0.000
#> SRR1072456 2 0.9030 0.43397 0.184 0.484 0.132 0.200
#> SRR1367896 3 0.5623 0.36841 0.196 0.012 0.728 0.064
#> SRR1480107 1 0.9181 0.20646 0.412 0.296 0.192 0.100
#> SRR1377756 1 0.4673 0.63988 0.700 0.292 0.008 0.000
#> SRR1435272 1 0.7273 -0.03163 0.452 0.000 0.148 0.400
#> SRR1089230 4 0.7538 -0.00994 0.260 0.000 0.248 0.492
#> SRR1389522 3 0.3873 0.50279 0.000 0.228 0.772 0.000
#> SRR1080600 2 0.6426 0.38209 0.000 0.620 0.108 0.272
#> SRR1086935 4 0.7147 0.49454 0.128 0.308 0.008 0.556
#> SRR1344060 3 0.6363 0.22676 0.400 0.048 0.544 0.008
#> SRR1467922 4 0.5510 0.39043 0.000 0.480 0.016 0.504
#> SRR1090984 1 0.5517 0.46473 0.568 0.412 0.020 0.000
#> SRR1456991 1 0.7553 0.47000 0.536 0.296 0.152 0.016
#> SRR1085039 3 0.8019 0.55049 0.164 0.104 0.596 0.136
#> SRR1069303 1 0.4382 0.63793 0.704 0.296 0.000 0.000
#> SRR1091500 4 0.3837 0.68660 0.000 0.224 0.000 0.776
#> SRR1075198 2 0.3824 0.62073 0.048 0.868 0.028 0.056
#> SRR1086915 1 0.6996 0.34425 0.580 0.000 0.192 0.228
#> SRR1499503 4 0.7084 0.46592 0.000 0.284 0.164 0.552
#> SRR1094312 2 0.5771 0.39918 0.000 0.712 0.144 0.144
#> SRR1352437 1 0.6885 0.37403 0.596 0.000 0.196 0.208
#> SRR1436323 2 0.5273 -0.08538 0.456 0.536 0.008 0.000
#> SRR1073507 3 0.6860 0.49723 0.164 0.000 0.592 0.244
#> SRR1401972 1 0.4770 0.64013 0.700 0.288 0.012 0.000
#> SRR1415510 2 0.2846 0.61059 0.012 0.908 0.028 0.052
#> SRR1327279 3 0.7910 0.55204 0.156 0.092 0.604 0.148
#> SRR1086983 3 0.6922 0.49256 0.168 0.000 0.584 0.248
#> SRR1105174 3 0.6860 0.49723 0.164 0.000 0.592 0.244
#> SRR1468893 1 0.2011 0.56330 0.920 0.080 0.000 0.000
#> SRR1362555 2 0.5536 0.31286 0.384 0.592 0.024 0.000
#> SRR1074526 3 0.5070 0.19480 0.000 0.004 0.580 0.416
#> SRR1326225 4 0.4059 0.69593 0.000 0.200 0.012 0.788
#> SRR1401933 2 0.3710 0.57830 0.192 0.804 0.000 0.004
#> SRR1324062 1 0.4535 0.63975 0.704 0.292 0.004 0.000
#> SRR1102296 1 0.6125 0.58479 0.692 0.144 0.160 0.004
#> SRR1085087 1 0.6303 0.45229 0.660 0.004 0.228 0.108
#> SRR1079046 2 0.2466 0.63382 0.096 0.900 0.000 0.004
#> SRR1328339 1 0.7016 0.53356 0.560 0.308 0.128 0.004
#> SRR1079782 2 0.2922 0.63232 0.104 0.884 0.008 0.004
#> SRR1092257 4 0.7149 0.48978 0.108 0.336 0.012 0.544
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.0703 0.561785 0.000 0.976 0.000 0.000 0.024
#> SRR1429287 5 0.4362 0.639743 0.360 0.004 0.000 0.004 0.632
#> SRR1359238 1 0.1363 0.601370 0.956 0.004 0.032 0.004 0.004
#> SRR1309597 5 0.7251 0.188339 0.240 0.128 0.084 0.004 0.544
#> SRR1441398 1 0.4538 0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1084055 3 0.4657 0.531822 0.000 0.108 0.740 0.152 0.000
#> SRR1417566 1 0.0727 0.608491 0.980 0.004 0.012 0.004 0.000
#> SRR1351857 4 0.2377 0.610786 0.000 0.128 0.000 0.872 0.000
#> SRR1487485 1 0.7514 -0.148494 0.536 0.176 0.088 0.008 0.192
#> SRR1335875 1 0.0162 0.610859 0.996 0.000 0.004 0.000 0.000
#> SRR1073947 4 0.4510 0.297098 0.432 0.000 0.008 0.560 0.000
#> SRR1443483 3 0.3209 0.625634 0.008 0.000 0.812 0.180 0.000
#> SRR1346794 1 0.0000 0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1405245 1 0.4538 0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1409677 1 0.7603 -0.130175 0.368 0.228 0.040 0.360 0.004
#> SRR1095549 4 0.0162 0.692698 0.004 0.000 0.000 0.996 0.000
#> SRR1323788 4 0.4088 0.383921 0.368 0.000 0.000 0.632 0.000
#> SRR1314054 2 0.1818 0.559209 0.000 0.932 0.044 0.000 0.024
#> SRR1077944 1 0.0579 0.611054 0.984 0.000 0.008 0.008 0.000
#> SRR1480587 5 0.3257 0.207070 0.004 0.124 0.028 0.000 0.844
#> SRR1311205 1 0.4525 0.343839 0.624 0.000 0.016 0.000 0.360
#> SRR1076369 3 0.4260 0.523495 0.256 0.004 0.720 0.020 0.000
#> SRR1453549 1 0.0932 0.607045 0.972 0.000 0.020 0.004 0.004
#> SRR1345782 4 0.4101 0.379208 0.372 0.000 0.000 0.628 0.000
#> SRR1447850 5 0.4869 0.634140 0.340 0.004 0.008 0.016 0.632
#> SRR1391553 1 0.3333 0.339593 0.788 0.000 0.004 0.000 0.208
#> SRR1444156 2 0.1965 0.557952 0.000 0.924 0.052 0.000 0.024
#> SRR1471731 1 0.4644 -0.149551 0.604 0.000 0.012 0.004 0.380
#> SRR1120987 2 0.7093 0.294000 0.312 0.452 0.016 0.216 0.004
#> SRR1477363 1 0.0000 0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1391961 3 0.3684 0.630748 0.024 0.004 0.800 0.172 0.000
#> SRR1373879 4 0.0794 0.702099 0.028 0.000 0.000 0.972 0.000
#> SRR1318732 1 0.3732 0.382017 0.796 0.004 0.016 0.004 0.180
#> SRR1091404 1 0.5001 0.196982 0.620 0.004 0.036 0.340 0.000
#> SRR1402109 4 0.4211 0.381594 0.360 0.000 0.004 0.636 0.000
#> SRR1407336 4 0.0324 0.692412 0.004 0.000 0.004 0.992 0.000
#> SRR1097417 3 0.3002 0.601472 0.008 0.048 0.876 0.068 0.000
#> SRR1396227 1 0.0000 0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1400775 2 0.7860 -0.367172 0.344 0.348 0.040 0.012 0.256
#> SRR1392861 4 0.5320 0.211239 0.384 0.040 0.008 0.568 0.000
#> SRR1472929 3 0.6374 0.369644 0.132 0.004 0.500 0.004 0.360
#> SRR1436740 1 0.7239 -0.108416 0.388 0.236 0.024 0.352 0.000
#> SRR1477057 5 0.4362 0.639743 0.360 0.004 0.000 0.004 0.632
#> SRR1311980 1 0.4538 0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1069400 3 0.6194 0.340336 0.156 0.000 0.516 0.328 0.000
#> SRR1351016 1 0.0671 0.608926 0.980 0.000 0.016 0.000 0.004
#> SRR1096291 4 0.1410 0.666321 0.000 0.060 0.000 0.940 0.000
#> SRR1418145 1 0.7240 -0.102471 0.536 0.148 0.036 0.020 0.260
#> SRR1488111 5 0.4211 0.639243 0.360 0.000 0.000 0.004 0.636
#> SRR1370495 5 0.4944 0.256122 0.156 0.116 0.004 0.000 0.724
#> SRR1352639 1 0.2193 0.560320 0.900 0.000 0.008 0.092 0.000
#> SRR1348911 1 0.4843 0.363383 0.648 0.004 0.024 0.004 0.320
#> SRR1467386 4 0.3209 0.574222 0.180 0.000 0.008 0.812 0.000
#> SRR1415956 1 0.4538 0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1500495 1 0.4538 0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1405099 1 0.4538 0.342631 0.620 0.000 0.016 0.000 0.364
#> SRR1345585 1 0.6773 0.001219 0.612 0.140 0.072 0.004 0.172
#> SRR1093196 1 0.2601 0.575385 0.908 0.036 0.036 0.008 0.012
#> SRR1466006 3 0.6689 0.172861 0.004 0.200 0.416 0.000 0.380
#> SRR1351557 5 0.4464 0.638701 0.356 0.004 0.000 0.008 0.632
#> SRR1382687 1 0.0000 0.611407 1.000 0.000 0.000 0.000 0.000
#> SRR1375549 5 0.4438 0.606668 0.384 0.000 0.004 0.004 0.608
#> SRR1101765 2 0.6112 0.367338 0.300 0.572 0.012 0.116 0.000
#> SRR1334461 3 0.6427 0.439400 0.160 0.004 0.556 0.008 0.272
#> SRR1094073 2 0.1965 0.557952 0.000 0.924 0.052 0.000 0.024
#> SRR1077549 4 0.0404 0.697201 0.012 0.000 0.000 0.988 0.000
#> SRR1440332 1 0.3210 0.446155 0.788 0.000 0.000 0.212 0.000
#> SRR1454177 2 0.7065 0.201933 0.096 0.476 0.060 0.364 0.004
#> SRR1082447 4 0.0671 0.699902 0.016 0.000 0.004 0.980 0.000
#> SRR1420043 1 0.0510 0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1432500 1 0.0162 0.611421 0.996 0.000 0.004 0.000 0.000
#> SRR1378045 1 0.7972 -0.126106 0.492 0.188 0.012 0.192 0.116
#> SRR1334200 5 0.6922 0.214472 0.180 0.144 0.076 0.004 0.596
#> SRR1069539 4 0.5193 0.250787 0.000 0.364 0.052 0.584 0.000
#> SRR1343031 4 0.4060 0.383536 0.360 0.000 0.000 0.640 0.000
#> SRR1319690 1 0.0771 0.607175 0.976 0.000 0.020 0.000 0.004
#> SRR1310604 1 0.6788 -0.138733 0.496 0.360 0.084 0.000 0.060
#> SRR1327747 1 0.1116 0.603345 0.964 0.004 0.028 0.004 0.000
#> SRR1072456 3 0.7797 0.214521 0.172 0.268 0.452 0.000 0.108
#> SRR1367896 3 0.3209 0.622886 0.000 0.000 0.812 0.180 0.008
#> SRR1480107 1 0.4290 0.265559 0.680 0.000 0.016 0.304 0.000
#> SRR1377756 1 0.0510 0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1435272 2 0.7621 0.133456 0.320 0.328 0.032 0.316 0.004
#> SRR1089230 2 0.7377 0.363113 0.200 0.516 0.060 0.220 0.004
#> SRR1389522 3 0.3550 0.626220 0.020 0.000 0.796 0.184 0.000
#> SRR1080600 2 0.6391 -0.054755 0.020 0.472 0.408 0.000 0.100
#> SRR1086935 2 0.4644 0.484849 0.004 0.720 0.052 0.000 0.224
#> SRR1344060 3 0.4734 0.497732 0.268 0.004 0.692 0.004 0.032
#> SRR1467922 2 0.1671 0.545082 0.000 0.924 0.000 0.000 0.076
#> SRR1090984 1 0.1121 0.606826 0.968 0.004 0.016 0.004 0.008
#> SRR1456991 1 0.1372 0.602643 0.956 0.000 0.016 0.024 0.004
#> SRR1085039 4 0.1341 0.697464 0.056 0.000 0.000 0.944 0.000
#> SRR1069303 1 0.0510 0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1091500 2 0.0703 0.561785 0.000 0.976 0.000 0.000 0.024
#> SRR1075198 1 0.7700 -0.284672 0.480 0.180 0.072 0.008 0.260
#> SRR1086915 1 0.7326 -0.006253 0.424 0.176 0.036 0.360 0.004
#> SRR1499503 2 0.4313 0.469280 0.000 0.800 0.076 0.100 0.024
#> SRR1094312 2 0.7732 -0.332473 0.336 0.380 0.024 0.020 0.240
#> SRR1352437 1 0.6492 -0.000174 0.452 0.120 0.016 0.412 0.000
#> SRR1436323 1 0.3078 0.467928 0.848 0.000 0.016 0.004 0.132
#> SRR1073507 4 0.1410 0.694924 0.060 0.000 0.000 0.940 0.000
#> SRR1401972 1 0.0162 0.611421 0.996 0.000 0.004 0.000 0.000
#> SRR1415510 1 0.7848 -0.399493 0.408 0.236 0.064 0.004 0.288
#> SRR1327279 4 0.0404 0.697201 0.012 0.000 0.000 0.988 0.000
#> SRR1086983 4 0.1197 0.701261 0.048 0.000 0.000 0.952 0.000
#> SRR1105174 4 0.1197 0.701261 0.048 0.000 0.000 0.952 0.000
#> SRR1468893 1 0.3011 0.533234 0.844 0.000 0.016 0.000 0.140
#> SRR1362555 5 0.5104 0.282436 0.224 0.036 0.028 0.004 0.708
#> SRR1074526 2 0.6468 -0.005217 0.000 0.452 0.360 0.188 0.000
#> SRR1326225 2 0.0703 0.561785 0.000 0.976 0.000 0.000 0.024
#> SRR1401933 1 0.4900 -0.380632 0.512 0.000 0.024 0.000 0.464
#> SRR1324062 1 0.0510 0.610050 0.984 0.000 0.016 0.000 0.000
#> SRR1102296 1 0.2612 0.553332 0.868 0.000 0.008 0.124 0.000
#> SRR1085087 1 0.4718 0.118443 0.540 0.000 0.016 0.444 0.000
#> SRR1079046 5 0.4211 0.639243 0.360 0.000 0.000 0.004 0.636
#> SRR1328339 1 0.2813 0.501223 0.832 0.000 0.000 0.168 0.000
#> SRR1079782 5 0.4347 0.640024 0.356 0.000 0.004 0.004 0.636
#> SRR1092257 2 0.6453 0.409296 0.004 0.540 0.012 0.132 0.312
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.0363 0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1429287 6 0.2969 0.63186 0.224 0.000 0.000 0.000 0.000 0.776
#> SRR1359238 1 0.1346 0.61386 0.952 0.000 0.016 0.008 0.024 0.000
#> SRR1309597 5 0.5663 0.31837 0.168 0.000 0.012 0.000 0.576 0.244
#> SRR1441398 5 0.3867 -0.05135 0.488 0.000 0.000 0.000 0.512 0.000
#> SRR1084055 3 0.4895 0.53721 0.000 0.040 0.716 0.040 0.016 0.188
#> SRR1417566 1 0.2527 0.54962 0.868 0.000 0.000 0.000 0.108 0.024
#> SRR1351857 4 0.3393 0.57400 0.000 0.192 0.004 0.784 0.000 0.020
#> SRR1487485 1 0.7097 -0.39011 0.408 0.008 0.060 0.000 0.232 0.292
#> SRR1335875 1 0.0632 0.61311 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1073947 4 0.3899 0.41860 0.404 0.000 0.000 0.592 0.004 0.000
#> SRR1443483 3 0.2744 0.69696 0.000 0.000 0.840 0.144 0.016 0.000
#> SRR1346794 1 0.0508 0.61794 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1405245 1 0.3860 0.00283 0.528 0.000 0.000 0.000 0.472 0.000
#> SRR1409677 1 0.8194 -0.13399 0.312 0.096 0.016 0.236 0.308 0.032
#> SRR1095549 4 0.0000 0.73052 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1323788 4 0.3351 0.53340 0.288 0.000 0.000 0.712 0.000 0.000
#> SRR1314054 2 0.0458 0.70069 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1077944 1 0.0508 0.61734 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1480587 5 0.4325 0.09398 0.008 0.000 0.008 0.000 0.504 0.480
#> SRR1311205 1 0.3804 0.07500 0.576 0.000 0.000 0.000 0.424 0.000
#> SRR1076369 3 0.5072 0.60960 0.152 0.000 0.700 0.044 0.104 0.000
#> SRR1453549 1 0.0508 0.61753 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1345782 4 0.3198 0.55553 0.260 0.000 0.000 0.740 0.000 0.000
#> SRR1447850 6 0.2664 0.60446 0.184 0.000 0.000 0.000 0.000 0.816
#> SRR1391553 1 0.3970 0.22760 0.692 0.000 0.000 0.000 0.028 0.280
#> SRR1444156 2 0.0458 0.70069 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1471731 6 0.5400 0.45959 0.376 0.000 0.000 0.000 0.120 0.504
#> SRR1120987 2 0.8100 0.36850 0.204 0.372 0.028 0.072 0.292 0.032
#> SRR1477363 1 0.0405 0.61782 0.988 0.000 0.000 0.008 0.004 0.000
#> SRR1391961 3 0.3300 0.70064 0.012 0.000 0.816 0.148 0.024 0.000
#> SRR1373879 4 0.0622 0.73687 0.012 0.000 0.000 0.980 0.008 0.000
#> SRR1318732 1 0.4653 0.30159 0.684 0.000 0.000 0.000 0.120 0.196
#> SRR1091404 1 0.4708 -0.02264 0.528 0.000 0.020 0.436 0.016 0.000
#> SRR1402109 4 0.3748 0.56456 0.224 0.000 0.016 0.748 0.012 0.000
#> SRR1407336 4 0.0363 0.72224 0.000 0.000 0.000 0.988 0.012 0.000
#> SRR1097417 3 0.1124 0.66645 0.000 0.000 0.956 0.036 0.008 0.000
#> SRR1396227 1 0.0363 0.61766 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1400775 6 0.6981 0.45957 0.220 0.260 0.028 0.000 0.032 0.460
#> SRR1392861 4 0.7063 0.03905 0.300 0.016 0.000 0.356 0.296 0.032
#> SRR1472929 3 0.4801 0.38812 0.036 0.000 0.520 0.000 0.436 0.008
#> SRR1436740 1 0.8194 -0.13399 0.312 0.096 0.016 0.236 0.308 0.032
#> SRR1477057 6 0.3126 0.63710 0.248 0.000 0.000 0.000 0.000 0.752
#> SRR1311980 5 0.4757 -0.00216 0.468 0.000 0.000 0.000 0.484 0.048
#> SRR1069400 3 0.5989 0.31945 0.172 0.000 0.484 0.332 0.012 0.000
#> SRR1351016 1 0.0865 0.60924 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1096291 4 0.1732 0.70476 0.000 0.072 0.004 0.920 0.000 0.004
#> SRR1418145 1 0.5852 -0.19276 0.540 0.044 0.020 0.016 0.016 0.364
#> SRR1488111 6 0.3175 0.63515 0.256 0.000 0.000 0.000 0.000 0.744
#> SRR1370495 5 0.5575 0.22996 0.140 0.000 0.000 0.000 0.460 0.400
#> SRR1352639 1 0.1219 0.60687 0.948 0.000 0.000 0.048 0.004 0.000
#> SRR1348911 1 0.5840 0.03838 0.520 0.000 0.156 0.000 0.312 0.012
#> SRR1467386 4 0.3107 0.68904 0.136 0.000 0.000 0.832 0.016 0.016
#> SRR1415956 1 0.3843 0.04676 0.548 0.000 0.000 0.000 0.452 0.000
#> SRR1500495 1 0.3843 0.04676 0.548 0.000 0.000 0.000 0.452 0.000
#> SRR1405099 1 0.3843 0.04676 0.548 0.000 0.000 0.000 0.452 0.000
#> SRR1345585 1 0.6721 -0.26967 0.464 0.000 0.036 0.008 0.236 0.256
#> SRR1093196 1 0.3738 0.53167 0.824 0.012 0.024 0.000 0.088 0.052
#> SRR1466006 6 0.6185 0.15108 0.000 0.028 0.348 0.000 0.152 0.472
#> SRR1351557 6 0.2793 0.61821 0.200 0.000 0.000 0.000 0.000 0.800
#> SRR1382687 1 0.0363 0.61766 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1375549 6 0.3446 0.60367 0.308 0.000 0.000 0.000 0.000 0.692
#> SRR1101765 2 0.7451 0.49023 0.172 0.504 0.028 0.048 0.216 0.032
#> SRR1334461 3 0.4270 0.62600 0.072 0.000 0.736 0.000 0.184 0.008
#> SRR1094073 2 0.0458 0.70069 0.000 0.984 0.016 0.000 0.000 0.000
#> SRR1077549 4 0.0146 0.73306 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1440332 1 0.2402 0.55113 0.856 0.000 0.000 0.140 0.004 0.000
#> SRR1454177 2 0.8092 0.28458 0.084 0.336 0.016 0.228 0.304 0.032
#> SRR1082447 4 0.0632 0.73911 0.024 0.000 0.000 0.976 0.000 0.000
#> SRR1420043 1 0.0000 0.61694 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1432500 1 0.0820 0.61473 0.972 0.000 0.000 0.012 0.016 0.000
#> SRR1378045 1 0.8348 -0.37924 0.352 0.044 0.016 0.196 0.116 0.276
#> SRR1334200 5 0.5166 0.19464 0.060 0.000 0.012 0.000 0.528 0.400
#> SRR1069539 4 0.3672 0.44285 0.000 0.304 0.008 0.688 0.000 0.000
#> SRR1343031 4 0.3136 0.58273 0.228 0.000 0.004 0.768 0.000 0.000
#> SRR1319690 1 0.1007 0.60813 0.956 0.000 0.000 0.000 0.044 0.000
#> SRR1310604 6 0.8751 0.20288 0.200 0.232 0.108 0.000 0.184 0.276
#> SRR1327747 1 0.2651 0.54586 0.860 0.000 0.000 0.000 0.112 0.028
#> SRR1072456 3 0.7563 0.10782 0.144 0.040 0.484 0.000 0.160 0.172
#> SRR1367896 3 0.2886 0.69739 0.000 0.000 0.836 0.144 0.016 0.004
#> SRR1480107 1 0.3168 0.48842 0.804 0.000 0.000 0.172 0.024 0.000
#> SRR1377756 1 0.0000 0.61694 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1435272 5 0.8055 -0.36098 0.284 0.288 0.012 0.080 0.304 0.032
#> SRR1089230 2 0.7834 0.47866 0.112 0.432 0.016 0.128 0.280 0.032
#> SRR1389522 3 0.3018 0.69184 0.004 0.000 0.816 0.168 0.012 0.000
#> SRR1080600 6 0.7909 -0.06629 0.024 0.304 0.192 0.000 0.148 0.332
#> SRR1086935 2 0.3407 0.66236 0.000 0.800 0.016 0.000 0.168 0.016
#> SRR1344060 3 0.5193 0.51783 0.172 0.000 0.644 0.000 0.176 0.008
#> SRR1467922 2 0.0363 0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1090984 1 0.4183 0.44753 0.752 0.000 0.004 0.000 0.128 0.116
#> SRR1456991 1 0.2300 0.54682 0.856 0.000 0.000 0.000 0.144 0.000
#> SRR1085039 4 0.2112 0.72654 0.088 0.000 0.000 0.896 0.016 0.000
#> SRR1069303 1 0.0632 0.61311 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1091500 2 0.0363 0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1075198 6 0.6836 0.45150 0.288 0.008 0.040 0.000 0.228 0.436
#> SRR1086915 1 0.8191 -0.12667 0.312 0.084 0.020 0.248 0.304 0.032
#> SRR1499503 2 0.6644 0.31639 0.000 0.544 0.140 0.004 0.104 0.208
#> SRR1094312 6 0.6325 0.29921 0.132 0.384 0.028 0.000 0.008 0.448
#> SRR1352437 1 0.7799 -0.06855 0.332 0.052 0.012 0.264 0.308 0.032
#> SRR1436323 1 0.4594 0.26564 0.676 0.000 0.000 0.000 0.092 0.232
#> SRR1073507 4 0.2554 0.72358 0.088 0.000 0.000 0.880 0.012 0.020
#> SRR1401972 1 0.0508 0.61754 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1415510 6 0.6804 0.45030 0.260 0.008 0.040 0.000 0.240 0.452
#> SRR1327279 4 0.0000 0.73052 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1086983 4 0.2790 0.71944 0.088 0.000 0.000 0.868 0.012 0.032
#> SRR1105174 4 0.2019 0.72760 0.088 0.000 0.000 0.900 0.012 0.000
#> SRR1468893 1 0.3464 0.30674 0.688 0.000 0.000 0.000 0.312 0.000
#> SRR1362555 5 0.5082 0.19881 0.080 0.000 0.000 0.000 0.512 0.408
#> SRR1074526 2 0.6029 0.03469 0.000 0.412 0.332 0.256 0.000 0.000
#> SRR1326225 2 0.0363 0.70164 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1401933 6 0.4516 0.48144 0.420 0.000 0.000 0.008 0.020 0.552
#> SRR1324062 1 0.0458 0.61475 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1102296 1 0.3626 0.44483 0.776 0.000 0.008 0.188 0.028 0.000
#> SRR1085087 1 0.7103 -0.04079 0.364 0.012 0.012 0.304 0.288 0.020
#> SRR1079046 6 0.3151 0.63633 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1328339 1 0.2950 0.53189 0.828 0.000 0.000 0.148 0.024 0.000
#> SRR1079782 6 0.3126 0.63710 0.248 0.000 0.000 0.000 0.000 0.752
#> SRR1092257 2 0.5351 0.63426 0.000 0.712 0.028 0.052 0.132 0.076
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
ATC:NMF
The object with results only for a single top-value method and a single partition method
can be extracted as:
res = res_list["ATC", "NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 17611 rows and 118 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)

The plots are:
- The first row: a plot of the ECDF (empirical cumulative distribution
function) curves of the consensus matrix for each
k
and the heatmap of
predicted classes for each k
.
- The second row: heatmaps of the consensus matrix for each
k
.
- The third row: heatmaps of the membership matrix for each
k
.
- The fouth row: heatmaps of the signatures for each
k
.
All the plots in panels can be made by individual functions and they are
plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
- ECDF curves of the consensus matrix for each
k
;
- 1-PAC. The PAC
score
measures the proportion of the ambiguous subgrouping.
- Mean silhouette score.
- Concordance. The mean probability of fiting the consensus class ids in all
partitions.
- Area increased. Denote \(A_k\) as the area under the ECDF curve for current
k
, the area increased is defined as \(A_k - A_{k-1}\).
- Rand index. The percent of pairs of samples that are both in a same cluster
or both are not in a same cluster in the partition of k and k-1.
- Jaccard index. The ratio of pairs of samples are both in a same cluster in
the partition of k and k-1 and the pairs of samples are both in a same
cluster in the partition k or k-1.
The detailed explanations of these statistics can be found in the cola
vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.488 0.818 0.898 0.4020 0.618 0.618
#> 3 3 0.374 0.708 0.816 0.4873 0.733 0.590
#> 4 4 0.445 0.486 0.725 0.2041 0.728 0.438
#> 5 5 0.482 0.435 0.645 0.0853 0.722 0.285
#> 6 6 0.574 0.542 0.720 0.0491 0.833 0.407
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
- All \(k\) with Jaccard index larger than 0.95 are removed because increasing
\(k\) does not provide enough extra information. If all \(k\) are removed, it is
marked as no subgroup is detected.
- For all \(k\) with 1-PAC score larger than 0.9, the maximal \(k\) is taken as
the best \(k\), and other \(k\) are marked as optional \(k\).
- If it does not fit the second rule. The \(k\) with the maximal vote of the
highest 1-PAC score, highest mean silhouette, and highest concordance is
taken as the best \(k\).
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
show/hide code output
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1396765 2 0.7674 0.771 0.224 0.776
#> SRR1429287 1 0.0000 0.884 1.000 0.000
#> SRR1359238 1 0.0672 0.883 0.992 0.008
#> SRR1309597 1 0.0000 0.884 1.000 0.000
#> SRR1441398 1 0.1184 0.882 0.984 0.016
#> SRR1084055 1 0.8327 0.493 0.736 0.264
#> SRR1417566 1 0.0000 0.884 1.000 0.000
#> SRR1351857 2 0.2043 0.841 0.032 0.968
#> SRR1487485 1 0.0000 0.884 1.000 0.000
#> SRR1335875 1 0.7299 0.812 0.796 0.204
#> SRR1073947 1 0.7745 0.793 0.772 0.228
#> SRR1443483 1 0.0000 0.884 1.000 0.000
#> SRR1346794 1 0.6623 0.829 0.828 0.172
#> SRR1405245 1 0.2948 0.874 0.948 0.052
#> SRR1409677 2 0.0000 0.846 0.000 1.000
#> SRR1095549 2 0.9358 0.389 0.352 0.648
#> SRR1323788 1 0.7602 0.800 0.780 0.220
#> SRR1314054 2 0.7674 0.771 0.224 0.776
#> SRR1077944 1 0.7602 0.800 0.780 0.220
#> SRR1480587 1 0.0000 0.884 1.000 0.000
#> SRR1311205 1 0.3584 0.870 0.932 0.068
#> SRR1076369 1 0.0000 0.884 1.000 0.000
#> SRR1453549 1 0.7453 0.806 0.788 0.212
#> SRR1345782 1 0.7376 0.809 0.792 0.208
#> SRR1447850 1 0.0000 0.884 1.000 0.000
#> SRR1391553 1 0.3584 0.870 0.932 0.068
#> SRR1444156 2 0.7602 0.773 0.220 0.780
#> SRR1471731 1 0.0000 0.884 1.000 0.000
#> SRR1120987 2 0.0000 0.846 0.000 1.000
#> SRR1477363 1 0.7602 0.800 0.780 0.220
#> SRR1391961 1 0.0000 0.884 1.000 0.000
#> SRR1373879 1 0.5519 0.848 0.872 0.128
#> SRR1318732 1 0.0000 0.884 1.000 0.000
#> SRR1091404 1 0.8016 0.635 0.756 0.244
#> SRR1402109 1 0.0376 0.884 0.996 0.004
#> SRR1407336 1 0.0376 0.884 0.996 0.004
#> SRR1097417 1 0.0000 0.884 1.000 0.000
#> SRR1396227 1 0.7602 0.800 0.780 0.220
#> SRR1400775 1 0.0000 0.884 1.000 0.000
#> SRR1392861 2 0.2423 0.829 0.040 0.960
#> SRR1472929 1 0.0000 0.884 1.000 0.000
#> SRR1436740 2 0.0376 0.845 0.004 0.996
#> SRR1477057 1 0.0000 0.884 1.000 0.000
#> SRR1311980 1 0.0000 0.884 1.000 0.000
#> SRR1069400 1 0.0000 0.884 1.000 0.000
#> SRR1351016 1 0.7299 0.812 0.796 0.204
#> SRR1096291 2 0.6887 0.790 0.184 0.816
#> SRR1418145 2 0.8499 0.603 0.276 0.724
#> SRR1488111 1 0.0938 0.883 0.988 0.012
#> SRR1370495 1 0.0000 0.884 1.000 0.000
#> SRR1352639 1 0.7139 0.816 0.804 0.196
#> SRR1348911 1 0.0000 0.884 1.000 0.000
#> SRR1467386 2 0.4022 0.802 0.080 0.920
#> SRR1415956 1 0.7299 0.812 0.796 0.204
#> SRR1500495 1 0.7219 0.814 0.800 0.200
#> SRR1405099 1 0.7299 0.812 0.796 0.204
#> SRR1345585 1 0.0000 0.884 1.000 0.000
#> SRR1093196 1 0.0000 0.884 1.000 0.000
#> SRR1466006 1 0.0000 0.884 1.000 0.000
#> SRR1351557 1 0.0000 0.884 1.000 0.000
#> SRR1382687 1 0.7745 0.793 0.772 0.228
#> SRR1375549 1 0.1414 0.882 0.980 0.020
#> SRR1101765 2 0.7219 0.782 0.200 0.800
#> SRR1334461 1 0.0000 0.884 1.000 0.000
#> SRR1094073 2 0.7602 0.773 0.220 0.780
#> SRR1077549 2 0.8955 0.448 0.312 0.688
#> SRR1440332 1 0.7453 0.806 0.788 0.212
#> SRR1454177 2 0.0000 0.846 0.000 1.000
#> SRR1082447 1 0.9170 0.657 0.668 0.332
#> SRR1420043 1 0.7602 0.800 0.780 0.220
#> SRR1432500 1 0.8144 0.769 0.748 0.252
#> SRR1378045 1 0.0000 0.884 1.000 0.000
#> SRR1334200 1 0.0000 0.884 1.000 0.000
#> SRR1069539 2 0.7528 0.775 0.216 0.784
#> SRR1343031 1 0.4815 0.857 0.896 0.104
#> SRR1319690 1 0.0938 0.883 0.988 0.012
#> SRR1310604 1 0.8661 0.427 0.712 0.288
#> SRR1327747 1 0.0000 0.884 1.000 0.000
#> SRR1072456 1 0.0000 0.884 1.000 0.000
#> SRR1367896 1 0.0000 0.884 1.000 0.000
#> SRR1480107 1 0.7376 0.809 0.792 0.208
#> SRR1377756 1 0.7745 0.793 0.772 0.228
#> SRR1435272 2 0.0000 0.846 0.000 1.000
#> SRR1089230 2 0.0000 0.846 0.000 1.000
#> SRR1389522 1 0.0000 0.884 1.000 0.000
#> SRR1080600 1 0.3733 0.824 0.928 0.072
#> SRR1086935 2 0.0000 0.846 0.000 1.000
#> SRR1344060 1 0.0000 0.884 1.000 0.000
#> SRR1467922 1 0.0376 0.882 0.996 0.004
#> SRR1090984 1 0.0000 0.884 1.000 0.000
#> SRR1456991 1 0.6973 0.821 0.812 0.188
#> SRR1085039 2 0.9427 0.315 0.360 0.640
#> SRR1069303 1 0.7602 0.800 0.780 0.220
#> SRR1091500 2 0.7674 0.771 0.224 0.776
#> SRR1075198 1 0.0000 0.884 1.000 0.000
#> SRR1086915 2 0.0000 0.846 0.000 1.000
#> SRR1499503 1 0.0376 0.882 0.996 0.004
#> SRR1094312 1 0.0000 0.884 1.000 0.000
#> SRR1352437 2 0.0376 0.845 0.004 0.996
#> SRR1436323 1 0.0376 0.883 0.996 0.004
#> SRR1073507 2 0.0376 0.845 0.004 0.996
#> SRR1401972 1 0.7745 0.793 0.772 0.228
#> SRR1415510 1 0.0000 0.884 1.000 0.000
#> SRR1327279 1 0.7602 0.800 0.780 0.220
#> SRR1086983 2 0.0000 0.846 0.000 1.000
#> SRR1105174 2 0.0000 0.846 0.000 1.000
#> SRR1468893 1 0.7602 0.800 0.780 0.220
#> SRR1362555 1 0.0000 0.884 1.000 0.000
#> SRR1074526 2 0.7815 0.765 0.232 0.768
#> SRR1326225 2 0.9775 0.533 0.412 0.588
#> SRR1401933 1 0.7453 0.806 0.788 0.212
#> SRR1324062 1 0.7602 0.800 0.780 0.220
#> SRR1102296 1 0.7602 0.800 0.780 0.220
#> SRR1085087 1 0.8955 0.689 0.688 0.312
#> SRR1079046 1 0.6247 0.836 0.844 0.156
#> SRR1328339 1 0.0376 0.884 0.996 0.004
#> SRR1079782 1 0.2948 0.874 0.948 0.052
#> SRR1092257 2 0.0000 0.846 0.000 1.000
show/hide code output
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1396765 2 0.1860 0.757 0.000 0.948 0.052
#> SRR1429287 1 0.6617 0.419 0.556 0.436 0.008
#> SRR1359238 1 0.6208 0.780 0.768 0.164 0.068
#> SRR1309597 1 0.4654 0.752 0.792 0.208 0.000
#> SRR1441398 1 0.0848 0.781 0.984 0.008 0.008
#> SRR1084055 2 0.2448 0.792 0.076 0.924 0.000
#> SRR1417566 1 0.1753 0.772 0.952 0.048 0.000
#> SRR1351857 3 0.7504 0.599 0.200 0.112 0.688
#> SRR1487485 1 0.5529 0.665 0.704 0.296 0.000
#> SRR1335875 1 0.5167 0.783 0.792 0.016 0.192
#> SRR1073947 1 0.4931 0.745 0.768 0.000 0.232
#> SRR1443483 1 0.1964 0.760 0.944 0.056 0.000
#> SRR1346794 1 0.4235 0.786 0.824 0.000 0.176
#> SRR1405245 1 0.2879 0.802 0.924 0.024 0.052
#> SRR1409677 3 0.1031 0.820 0.024 0.000 0.976
#> SRR1095549 2 0.9431 0.352 0.292 0.496 0.212
#> SRR1323788 1 0.1753 0.783 0.952 0.000 0.048
#> SRR1314054 2 0.2703 0.761 0.016 0.928 0.056
#> SRR1077944 1 0.4452 0.770 0.808 0.000 0.192
#> SRR1480587 1 0.5760 0.650 0.672 0.328 0.000
#> SRR1311205 1 0.0475 0.780 0.992 0.004 0.004
#> SRR1076369 2 0.6307 0.348 0.488 0.512 0.000
#> SRR1453549 1 0.4796 0.768 0.780 0.000 0.220
#> SRR1345782 1 0.1163 0.781 0.972 0.000 0.028
#> SRR1447850 1 0.6129 0.696 0.700 0.284 0.016
#> SRR1391553 1 0.5737 0.800 0.804 0.104 0.092
#> SRR1444156 2 0.2711 0.734 0.000 0.912 0.088
#> SRR1471731 1 0.4605 0.769 0.796 0.204 0.000
#> SRR1120987 3 0.1529 0.801 0.000 0.040 0.960
#> SRR1477363 1 0.4887 0.761 0.772 0.000 0.228
#> SRR1391961 2 0.4974 0.726 0.236 0.764 0.000
#> SRR1373879 1 0.3038 0.735 0.896 0.000 0.104
#> SRR1318732 1 0.3038 0.779 0.896 0.104 0.000
#> SRR1091404 3 0.9100 0.417 0.248 0.204 0.548
#> SRR1402109 1 0.0892 0.775 0.980 0.020 0.000
#> SRR1407336 1 0.6295 -0.315 0.528 0.472 0.000
#> SRR1097417 2 0.4399 0.741 0.188 0.812 0.000
#> SRR1396227 1 0.4796 0.764 0.780 0.000 0.220
#> SRR1400775 2 0.6102 0.418 0.320 0.672 0.008
#> SRR1392861 3 0.4750 0.745 0.216 0.000 0.784
#> SRR1472929 1 0.4750 0.662 0.784 0.216 0.000
#> SRR1436740 3 0.1860 0.819 0.052 0.000 0.948
#> SRR1477057 1 0.5461 0.758 0.768 0.216 0.016
#> SRR1311980 1 0.4682 0.775 0.804 0.192 0.004
#> SRR1069400 2 0.6267 0.482 0.452 0.548 0.000
#> SRR1351016 1 0.4555 0.777 0.800 0.000 0.200
#> SRR1096291 3 0.8763 0.448 0.196 0.216 0.588
#> SRR1418145 3 0.6031 0.752 0.116 0.096 0.788
#> SRR1488111 1 0.5618 0.784 0.796 0.156 0.048
#> SRR1370495 1 0.5420 0.743 0.752 0.240 0.008
#> SRR1352639 1 0.2066 0.792 0.940 0.000 0.060
#> SRR1348911 1 0.2261 0.757 0.932 0.068 0.000
#> SRR1467386 3 0.3192 0.798 0.112 0.000 0.888
#> SRR1415956 1 0.4399 0.781 0.812 0.000 0.188
#> SRR1500495 1 0.4346 0.784 0.816 0.000 0.184
#> SRR1405099 1 0.4654 0.772 0.792 0.000 0.208
#> SRR1345585 1 0.4504 0.684 0.804 0.196 0.000
#> SRR1093196 1 0.4291 0.763 0.820 0.180 0.000
#> SRR1466006 2 0.1964 0.790 0.056 0.944 0.000
#> SRR1351557 2 0.5502 0.593 0.248 0.744 0.008
#> SRR1382687 1 0.5291 0.721 0.732 0.000 0.268
#> SRR1375549 1 0.5659 0.785 0.796 0.152 0.052
#> SRR1101765 3 0.5327 0.565 0.000 0.272 0.728
#> SRR1334461 1 0.3192 0.739 0.888 0.112 0.000
#> SRR1094073 2 0.5343 0.727 0.132 0.816 0.052
#> SRR1077549 3 0.5431 0.731 0.284 0.000 0.716
#> SRR1440332 1 0.2261 0.787 0.932 0.000 0.068
#> SRR1454177 3 0.0424 0.817 0.008 0.000 0.992
#> SRR1082447 3 0.6180 0.590 0.416 0.000 0.584
#> SRR1420043 1 0.4796 0.762 0.780 0.000 0.220
#> SRR1432500 3 0.5363 0.591 0.276 0.000 0.724
#> SRR1378045 1 0.4346 0.632 0.816 0.184 0.000
#> SRR1334200 1 0.6260 0.369 0.552 0.448 0.000
#> SRR1069539 2 0.8008 0.571 0.192 0.656 0.152
#> SRR1343031 1 0.0424 0.778 0.992 0.008 0.000
#> SRR1319690 1 0.5618 0.786 0.796 0.156 0.048
#> SRR1310604 2 0.1860 0.797 0.052 0.948 0.000
#> SRR1327747 1 0.3941 0.776 0.844 0.156 0.000
#> SRR1072456 2 0.3551 0.781 0.132 0.868 0.000
#> SRR1367896 1 0.5882 0.199 0.652 0.348 0.000
#> SRR1480107 1 0.4452 0.774 0.808 0.000 0.192
#> SRR1377756 1 0.5397 0.700 0.720 0.000 0.280
#> SRR1435272 3 0.0424 0.817 0.008 0.000 0.992
#> SRR1089230 3 0.3134 0.797 0.052 0.032 0.916
#> SRR1389522 1 0.3619 0.687 0.864 0.136 0.000
#> SRR1080600 2 0.1860 0.797 0.052 0.948 0.000
#> SRR1086935 3 0.1529 0.801 0.000 0.040 0.960
#> SRR1344060 1 0.6280 -0.066 0.540 0.460 0.000
#> SRR1467922 2 0.1163 0.790 0.028 0.972 0.000
#> SRR1090984 1 0.4504 0.767 0.804 0.196 0.000
#> SRR1456991 1 0.4121 0.789 0.832 0.000 0.168
#> SRR1085039 3 0.4974 0.767 0.236 0.000 0.764
#> SRR1069303 1 0.4931 0.758 0.768 0.000 0.232
#> SRR1091500 2 0.2537 0.740 0.000 0.920 0.080
#> SRR1075198 2 0.4452 0.718 0.192 0.808 0.000
#> SRR1086915 3 0.0237 0.816 0.004 0.000 0.996
#> SRR1499503 2 0.2165 0.797 0.064 0.936 0.000
#> SRR1094312 2 0.5070 0.638 0.224 0.772 0.004
#> SRR1352437 3 0.2711 0.810 0.088 0.000 0.912
#> SRR1436323 1 0.5072 0.770 0.792 0.196 0.012
#> SRR1073507 3 0.2448 0.820 0.076 0.000 0.924
#> SRR1401972 1 0.5968 0.559 0.636 0.000 0.364
#> SRR1415510 2 0.1643 0.792 0.044 0.956 0.000
#> SRR1327279 1 0.2066 0.776 0.940 0.000 0.060
#> SRR1086983 3 0.1289 0.818 0.032 0.000 0.968
#> SRR1105174 3 0.2711 0.821 0.088 0.000 0.912
#> SRR1468893 1 0.4887 0.765 0.772 0.000 0.228
#> SRR1362555 1 0.4931 0.753 0.768 0.232 0.000
#> SRR1074526 2 0.5689 0.693 0.184 0.780 0.036
#> SRR1326225 2 0.0424 0.785 0.008 0.992 0.000
#> SRR1401933 1 0.5743 0.785 0.784 0.044 0.172
#> SRR1324062 1 0.4796 0.764 0.780 0.000 0.220
#> SRR1102296 1 0.4796 0.764 0.780 0.000 0.220
#> SRR1085087 3 0.4605 0.717 0.204 0.000 0.796
#> SRR1079046 1 0.6144 0.790 0.780 0.132 0.088
#> SRR1328339 1 0.1163 0.772 0.972 0.028 0.000
#> SRR1079782 1 0.5875 0.783 0.784 0.160 0.056
#> SRR1092257 3 0.3116 0.756 0.000 0.108 0.892
show/hide code output
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1396765 2 0.2831 0.6122 0.000 0.876 0.004 0.120
#> SRR1429287 3 0.4857 0.4333 0.000 0.284 0.700 0.016
#> SRR1359238 3 0.6494 0.5151 0.040 0.044 0.648 0.268
#> SRR1309597 3 0.2053 0.6909 0.072 0.004 0.924 0.000
#> SRR1441398 1 0.4855 0.3626 0.600 0.000 0.400 0.000
#> SRR1084055 2 0.4250 0.5521 0.276 0.724 0.000 0.000
#> SRR1417566 3 0.4877 0.0850 0.408 0.000 0.592 0.000
#> SRR1351857 2 0.7870 0.1942 0.300 0.392 0.000 0.308
#> SRR1487485 3 0.2032 0.6961 0.036 0.028 0.936 0.000
#> SRR1335875 3 0.4231 0.6548 0.096 0.000 0.824 0.080
#> SRR1073947 1 0.7088 0.4393 0.568 0.000 0.228 0.204
#> SRR1443483 1 0.5314 0.5774 0.748 0.108 0.144 0.000
#> SRR1346794 3 0.3636 0.6171 0.172 0.000 0.820 0.008
#> SRR1405245 3 0.5060 0.1525 0.412 0.000 0.584 0.004
#> SRR1409677 4 0.0336 0.7709 0.008 0.000 0.000 0.992
#> SRR1095549 1 0.3402 0.4433 0.832 0.164 0.000 0.004
#> SRR1323788 1 0.5074 0.5353 0.724 0.000 0.236 0.040
#> SRR1314054 2 0.2704 0.6091 0.000 0.876 0.000 0.124
#> SRR1077944 1 0.6084 0.4963 0.656 0.000 0.252 0.092
#> SRR1480587 3 0.1576 0.6911 0.004 0.048 0.948 0.000
#> SRR1311205 1 0.4679 0.4364 0.648 0.000 0.352 0.000
#> SRR1076369 1 0.5471 0.2445 0.684 0.268 0.048 0.000
#> SRR1453549 3 0.5594 0.5811 0.112 0.000 0.724 0.164
#> SRR1345782 1 0.2676 0.6130 0.896 0.000 0.092 0.012
#> SRR1447850 3 0.4910 0.4405 0.000 0.276 0.704 0.020
#> SRR1391553 3 0.1209 0.6976 0.032 0.000 0.964 0.004
#> SRR1444156 2 0.3787 0.6078 0.000 0.840 0.036 0.124
#> SRR1471731 3 0.1109 0.6987 0.028 0.004 0.968 0.000
#> SRR1120987 4 0.1059 0.7529 0.000 0.016 0.012 0.972
#> SRR1477363 3 0.6407 0.4848 0.204 0.000 0.648 0.148
#> SRR1391961 1 0.4996 -0.1721 0.516 0.484 0.000 0.000
#> SRR1373879 1 0.1697 0.5653 0.952 0.016 0.004 0.028
#> SRR1318732 3 0.2216 0.6733 0.092 0.000 0.908 0.000
#> SRR1091404 1 0.6995 -0.0335 0.496 0.384 0.000 0.120
#> SRR1402109 1 0.4257 0.6099 0.812 0.048 0.140 0.000
#> SRR1407336 1 0.4050 0.4415 0.808 0.168 0.024 0.000
#> SRR1097417 2 0.5016 0.3996 0.396 0.600 0.004 0.000
#> SRR1396227 3 0.6273 0.4298 0.264 0.000 0.636 0.100
#> SRR1400775 3 0.4560 0.4099 0.000 0.296 0.700 0.004
#> SRR1392861 4 0.4675 0.6635 0.244 0.000 0.020 0.736
#> SRR1472929 1 0.6725 0.4203 0.548 0.104 0.348 0.000
#> SRR1436740 4 0.2222 0.7800 0.060 0.000 0.016 0.924
#> SRR1477057 3 0.3706 0.6568 0.000 0.112 0.848 0.040
#> SRR1311980 3 0.2334 0.6777 0.088 0.000 0.908 0.004
#> SRR1069400 1 0.4590 0.4046 0.772 0.192 0.036 0.000
#> SRR1351016 3 0.6407 0.3034 0.332 0.000 0.584 0.084
#> SRR1096291 1 0.8046 -0.2208 0.376 0.324 0.004 0.296
#> SRR1418145 4 0.7279 0.2577 0.004 0.144 0.336 0.516
#> SRR1488111 3 0.3144 0.6809 0.000 0.072 0.884 0.044
#> SRR1370495 3 0.1822 0.6993 0.008 0.044 0.944 0.004
#> SRR1352639 1 0.4999 0.4521 0.660 0.000 0.328 0.012
#> SRR1348911 1 0.6055 0.4221 0.576 0.052 0.372 0.000
#> SRR1467386 4 0.3208 0.7612 0.148 0.000 0.004 0.848
#> SRR1415956 1 0.5399 0.1447 0.520 0.000 0.468 0.012
#> SRR1500495 1 0.5488 0.1898 0.532 0.000 0.452 0.016
#> SRR1405099 1 0.6555 0.1099 0.480 0.000 0.444 0.076
#> SRR1345585 3 0.4079 0.5869 0.180 0.020 0.800 0.000
#> SRR1093196 3 0.1635 0.6952 0.044 0.008 0.948 0.000
#> SRR1466006 2 0.5212 0.2888 0.008 0.572 0.420 0.000
#> SRR1351557 3 0.4456 0.4286 0.000 0.280 0.716 0.004
#> SRR1382687 3 0.6883 0.4316 0.156 0.000 0.584 0.260
#> SRR1375549 3 0.3383 0.6892 0.000 0.052 0.872 0.076
#> SRR1101765 4 0.4744 0.4547 0.000 0.284 0.012 0.704
#> SRR1334461 1 0.5250 0.3208 0.660 0.316 0.024 0.000
#> SRR1094073 2 0.4723 0.6237 0.036 0.816 0.040 0.108
#> SRR1077549 1 0.4175 0.4592 0.776 0.012 0.000 0.212
#> SRR1440332 1 0.5219 0.5292 0.712 0.000 0.244 0.044
#> SRR1454177 4 0.0592 0.7720 0.016 0.000 0.000 0.984
#> SRR1082447 1 0.4100 0.5067 0.816 0.036 0.000 0.148
#> SRR1420043 3 0.6277 -0.0642 0.468 0.000 0.476 0.056
#> SRR1432500 4 0.4500 0.7005 0.192 0.000 0.032 0.776
#> SRR1378045 3 0.6419 -0.1301 0.420 0.068 0.512 0.000
#> SRR1334200 3 0.2988 0.6564 0.012 0.112 0.876 0.000
#> SRR1069539 2 0.5848 0.4196 0.376 0.584 0.000 0.040
#> SRR1343031 1 0.2101 0.5400 0.928 0.060 0.012 0.000
#> SRR1319690 3 0.6005 0.6142 0.144 0.036 0.736 0.084
#> SRR1310604 2 0.4914 0.6105 0.208 0.748 0.044 0.000
#> SRR1327747 3 0.1637 0.6927 0.060 0.000 0.940 0.000
#> SRR1072456 2 0.7344 0.4901 0.268 0.524 0.208 0.000
#> SRR1367896 1 0.4225 0.4102 0.792 0.184 0.024 0.000
#> SRR1480107 1 0.6084 0.5037 0.660 0.000 0.244 0.096
#> SRR1377756 3 0.7706 0.1806 0.268 0.000 0.452 0.280
#> SRR1435272 4 0.0895 0.7709 0.020 0.004 0.000 0.976
#> SRR1089230 4 0.3048 0.6950 0.016 0.108 0.000 0.876
#> SRR1389522 1 0.3142 0.4761 0.860 0.132 0.008 0.000
#> SRR1080600 2 0.3877 0.6582 0.048 0.840 0.112 0.000
#> SRR1086935 4 0.1637 0.7390 0.000 0.060 0.000 0.940
#> SRR1344060 1 0.6412 0.1091 0.592 0.320 0.088 0.000
#> SRR1467922 2 0.4866 0.3265 0.000 0.596 0.404 0.000
#> SRR1090984 3 0.2399 0.6997 0.048 0.032 0.920 0.000
#> SRR1456991 1 0.6004 0.4817 0.648 0.000 0.276 0.076
#> SRR1085039 1 0.5678 -0.0333 0.532 0.012 0.008 0.448
#> SRR1069303 1 0.7661 0.1074 0.412 0.000 0.376 0.212
#> SRR1091500 2 0.4633 0.5683 0.000 0.780 0.048 0.172
#> SRR1075198 3 0.5161 0.3906 0.024 0.300 0.676 0.000
#> SRR1086915 4 0.0000 0.7669 0.000 0.000 0.000 1.000
#> SRR1499503 2 0.4467 0.6318 0.172 0.788 0.040 0.000
#> SRR1094312 3 0.4632 0.3920 0.000 0.308 0.688 0.004
#> SRR1352437 4 0.2976 0.7746 0.120 0.000 0.008 0.872
#> SRR1436323 3 0.1209 0.6976 0.032 0.000 0.964 0.004
#> SRR1073507 4 0.3831 0.7248 0.204 0.000 0.004 0.792
#> SRR1401972 4 0.7140 0.3437 0.204 0.000 0.236 0.560
#> SRR1415510 2 0.4998 0.1105 0.000 0.512 0.488 0.000
#> SRR1327279 1 0.1510 0.5847 0.956 0.000 0.028 0.016
#> SRR1086983 4 0.2868 0.7725 0.136 0.000 0.000 0.864
#> SRR1105174 4 0.4917 0.5502 0.328 0.004 0.004 0.664
#> SRR1468893 3 0.6785 0.4388 0.208 0.000 0.608 0.184
#> SRR1362555 3 0.0672 0.6993 0.008 0.008 0.984 0.000
#> SRR1074526 2 0.4382 0.5306 0.296 0.704 0.000 0.000
#> SRR1326225 2 0.2281 0.6516 0.000 0.904 0.096 0.000
#> SRR1401933 3 0.1675 0.7011 0.004 0.004 0.948 0.044
#> SRR1324062 3 0.6037 0.3867 0.304 0.000 0.628 0.068
#> SRR1102296 3 0.6953 0.0132 0.412 0.000 0.476 0.112
#> SRR1085087 4 0.4418 0.7108 0.184 0.000 0.032 0.784
#> SRR1079046 3 0.5940 0.5417 0.000 0.188 0.692 0.120
#> SRR1328339 1 0.5010 0.5285 0.700 0.024 0.276 0.000
#> SRR1079782 3 0.4175 0.5278 0.000 0.212 0.776 0.012
#> SRR1092257 4 0.5359 0.4167 0.000 0.288 0.036 0.676
show/hide code output
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1396765 2 0.5716 0.23957 0.000 0.616 0.000 0.144 0.240
#> SRR1429287 2 0.5496 0.28273 0.340 0.592 0.008 0.000 0.060
#> SRR1359238 1 0.7603 0.39561 0.488 0.184 0.024 0.268 0.036
#> SRR1309597 3 0.6082 0.34438 0.148 0.312 0.540 0.000 0.000
#> SRR1441398 3 0.4297 0.57751 0.124 0.064 0.796 0.004 0.012
#> SRR1084055 5 0.2206 0.69341 0.004 0.068 0.016 0.000 0.912
#> SRR1417566 3 0.4497 0.52024 0.060 0.208 0.732 0.000 0.000
#> SRR1351857 5 0.6170 0.33146 0.000 0.016 0.104 0.324 0.556
#> SRR1487485 3 0.5717 0.38138 0.104 0.324 0.572 0.000 0.000
#> SRR1335875 1 0.3844 0.61179 0.792 0.176 0.024 0.008 0.000
#> SRR1073947 1 0.5885 0.39215 0.676 0.000 0.132 0.152 0.040
#> SRR1443483 3 0.1818 0.57861 0.000 0.024 0.932 0.000 0.044
#> SRR1346794 3 0.6324 0.35312 0.164 0.304 0.528 0.004 0.000
#> SRR1405245 3 0.6240 0.14691 0.360 0.152 0.488 0.000 0.000
#> SRR1409677 4 0.2773 0.68827 0.164 0.000 0.000 0.836 0.000
#> SRR1095549 3 0.5748 0.28501 0.020 0.000 0.648 0.096 0.236
#> SRR1323788 3 0.4280 0.54276 0.120 0.000 0.800 0.048 0.032
#> SRR1314054 2 0.5974 0.24372 0.000 0.604 0.004 0.168 0.224
#> SRR1077944 3 0.7315 -0.15276 0.232 0.012 0.408 0.336 0.012
#> SRR1480587 2 0.6740 0.04739 0.304 0.412 0.284 0.000 0.000
#> SRR1311205 3 0.3216 0.59067 0.096 0.044 0.856 0.004 0.000
#> SRR1076369 3 0.5595 0.27377 0.000 0.084 0.560 0.000 0.356
#> SRR1453549 1 0.7666 0.42527 0.492 0.232 0.148 0.128 0.000
#> SRR1345782 3 0.4630 0.50255 0.072 0.000 0.776 0.028 0.124
#> SRR1447850 2 0.4763 0.32227 0.336 0.632 0.000 0.000 0.032
#> SRR1391553 3 0.6262 0.31654 0.164 0.332 0.504 0.000 0.000
#> SRR1444156 2 0.5999 0.26123 0.008 0.612 0.000 0.160 0.220
#> SRR1471731 3 0.6252 0.31323 0.164 0.328 0.508 0.000 0.000
#> SRR1120987 4 0.1579 0.67354 0.024 0.032 0.000 0.944 0.000
#> SRR1477363 1 0.4490 0.66389 0.792 0.108 0.040 0.060 0.000
#> SRR1391961 5 0.2172 0.71376 0.076 0.000 0.016 0.000 0.908
#> SRR1373879 3 0.7639 -0.10263 0.108 0.000 0.396 0.120 0.376
#> SRR1318732 3 0.5355 0.43571 0.084 0.292 0.624 0.000 0.000
#> SRR1091404 5 0.4018 0.68760 0.136 0.012 0.012 0.028 0.812
#> SRR1402109 3 0.2540 0.55189 0.024 0.000 0.888 0.000 0.088
#> SRR1407336 3 0.2388 0.56337 0.000 0.028 0.900 0.000 0.072
#> SRR1097417 5 0.2792 0.70615 0.004 0.040 0.072 0.000 0.884
#> SRR1396227 1 0.3980 0.66575 0.816 0.080 0.092 0.012 0.000
#> SRR1400775 2 0.4555 0.52547 0.200 0.732 0.000 0.000 0.068
#> SRR1392861 4 0.3933 0.61950 0.020 0.008 0.196 0.776 0.000
#> SRR1472929 3 0.6272 0.51335 0.052 0.160 0.644 0.000 0.144
#> SRR1436740 4 0.3129 0.68511 0.156 0.008 0.004 0.832 0.000
#> SRR1477057 1 0.5176 0.42940 0.636 0.312 0.012 0.000 0.040
#> SRR1311980 3 0.6783 0.11414 0.328 0.288 0.384 0.000 0.000
#> SRR1069400 3 0.3375 0.55015 0.000 0.056 0.840 0.000 0.104
#> SRR1351016 1 0.3142 0.67674 0.868 0.056 0.068 0.008 0.000
#> SRR1096291 4 0.6002 0.47040 0.000 0.152 0.144 0.664 0.040
#> SRR1418145 4 0.6220 -0.06492 0.140 0.428 0.000 0.432 0.000
#> SRR1488111 1 0.5832 0.35850 0.568 0.356 0.056 0.016 0.004
#> SRR1370495 1 0.5370 0.43702 0.640 0.296 0.040 0.000 0.024
#> SRR1352639 3 0.3477 0.56300 0.152 0.012 0.824 0.008 0.004
#> SRR1348911 3 0.3790 0.60180 0.084 0.068 0.832 0.000 0.016
#> SRR1467386 4 0.4702 0.62345 0.256 0.000 0.036 0.700 0.008
#> SRR1415956 1 0.4842 0.55975 0.716 0.024 0.232 0.004 0.024
#> SRR1500495 1 0.5064 0.54703 0.684 0.048 0.256 0.008 0.004
#> SRR1405099 1 0.2822 0.64891 0.888 0.000 0.064 0.012 0.036
#> SRR1345585 3 0.4640 0.48787 0.048 0.256 0.696 0.000 0.000
#> SRR1093196 3 0.5187 0.45796 0.084 0.260 0.656 0.000 0.000
#> SRR1466006 2 0.6162 0.49566 0.096 0.672 0.112 0.000 0.120
#> SRR1351557 2 0.3484 0.51509 0.144 0.824 0.028 0.004 0.000
#> SRR1382687 1 0.6550 0.57889 0.600 0.124 0.052 0.224 0.000
#> SRR1375549 1 0.5325 0.57433 0.712 0.208 0.028 0.032 0.020
#> SRR1101765 5 0.5799 0.55860 0.048 0.184 0.000 0.088 0.680
#> SRR1334461 5 0.3670 0.65929 0.180 0.004 0.020 0.000 0.796
#> SRR1094073 2 0.6589 0.27764 0.008 0.604 0.028 0.184 0.176
#> SRR1077549 3 0.7152 -0.22080 0.076 0.000 0.416 0.412 0.096
#> SRR1440332 3 0.4394 0.52258 0.084 0.000 0.788 0.112 0.016
#> SRR1454177 4 0.1410 0.69731 0.060 0.000 0.000 0.940 0.000
#> SRR1082447 5 0.8004 0.19259 0.212 0.000 0.192 0.148 0.448
#> SRR1420043 3 0.7882 0.13496 0.244 0.112 0.448 0.196 0.000
#> SRR1432500 4 0.5006 0.37564 0.408 0.000 0.020 0.564 0.008
#> SRR1378045 3 0.3488 0.55151 0.024 0.168 0.808 0.000 0.000
#> SRR1334200 2 0.7446 0.24514 0.256 0.496 0.168 0.000 0.080
#> SRR1069539 4 0.7823 -0.03807 0.000 0.184 0.096 0.428 0.292
#> SRR1343031 3 0.3811 0.50027 0.036 0.000 0.808 0.008 0.148
#> SRR1319690 1 0.4439 0.62343 0.804 0.096 0.020 0.012 0.068
#> SRR1310604 5 0.4927 0.50696 0.004 0.276 0.040 0.004 0.676
#> SRR1327747 3 0.6380 0.31098 0.144 0.336 0.512 0.008 0.000
#> SRR1072456 3 0.7384 0.05385 0.036 0.220 0.376 0.000 0.368
#> SRR1367896 3 0.4040 0.41532 0.000 0.016 0.724 0.000 0.260
#> SRR1480107 1 0.5380 0.46696 0.688 0.000 0.224 0.052 0.036
#> SRR1377756 1 0.6819 0.41084 0.548 0.052 0.124 0.276 0.000
#> SRR1435272 4 0.0955 0.68807 0.028 0.004 0.000 0.968 0.000
#> SRR1089230 4 0.2012 0.63483 0.000 0.060 0.000 0.920 0.020
#> SRR1389522 3 0.3544 0.46739 0.008 0.004 0.788 0.000 0.200
#> SRR1080600 2 0.4521 0.39112 0.000 0.748 0.088 0.000 0.164
#> SRR1086935 4 0.2471 0.58733 0.000 0.136 0.000 0.864 0.000
#> SRR1344060 5 0.3497 0.70246 0.024 0.040 0.084 0.000 0.852
#> SRR1467922 2 0.3892 0.48612 0.024 0.844 0.036 0.020 0.076
#> SRR1090984 1 0.6641 0.31677 0.540 0.304 0.120 0.000 0.036
#> SRR1456991 1 0.5052 0.52942 0.732 0.004 0.188 0.040 0.036
#> SRR1085039 4 0.8446 0.15145 0.284 0.000 0.156 0.296 0.264
#> SRR1069303 1 0.3232 0.59594 0.864 0.000 0.016 0.084 0.036
#> SRR1091500 5 0.6019 0.20452 0.096 0.368 0.000 0.008 0.528
#> SRR1075198 2 0.4608 0.34407 0.036 0.700 0.260 0.004 0.000
#> SRR1086915 4 0.1774 0.69323 0.052 0.016 0.000 0.932 0.000
#> SRR1499503 2 0.5619 0.00977 0.000 0.516 0.064 0.004 0.416
#> SRR1094312 2 0.5754 0.46882 0.260 0.604 0.000 0.000 0.136
#> SRR1352437 4 0.4473 0.53586 0.324 0.000 0.020 0.656 0.000
#> SRR1436323 3 0.6752 0.10901 0.264 0.352 0.384 0.000 0.000
#> SRR1073507 4 0.5809 0.58805 0.240 0.000 0.092 0.644 0.024
#> SRR1401972 1 0.4230 0.48499 0.764 0.000 0.016 0.196 0.024
#> SRR1415510 2 0.3056 0.53296 0.040 0.884 0.052 0.004 0.020
#> SRR1327279 3 0.6165 0.36987 0.100 0.000 0.648 0.056 0.196
#> SRR1086983 4 0.3033 0.69616 0.084 0.000 0.052 0.864 0.000
#> SRR1105174 4 0.6384 0.55800 0.216 0.000 0.156 0.600 0.028
#> SRR1468893 1 0.2418 0.67245 0.912 0.024 0.020 0.044 0.000
#> SRR1362555 2 0.6783 0.00208 0.316 0.388 0.296 0.000 0.000
#> SRR1074526 5 0.1282 0.70538 0.000 0.044 0.004 0.000 0.952
#> SRR1326225 2 0.4487 0.22947 0.004 0.660 0.008 0.004 0.324
#> SRR1401933 1 0.5780 0.43332 0.616 0.284 0.084 0.016 0.000
#> SRR1324062 1 0.3297 0.67617 0.860 0.048 0.080 0.012 0.000
#> SRR1102296 1 0.4257 0.63235 0.800 0.012 0.140 0.020 0.028
#> SRR1085087 1 0.5517 -0.11303 0.536 0.000 0.032 0.412 0.020
#> SRR1079046 1 0.4615 0.59837 0.784 0.100 0.000 0.036 0.080
#> SRR1328339 3 0.3009 0.58831 0.080 0.016 0.876 0.000 0.028
#> SRR1079782 2 0.5503 0.27923 0.328 0.596 0.072 0.004 0.000
#> SRR1092257 2 0.5942 0.15857 0.056 0.524 0.000 0.396 0.024
show/hide code output
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1396765 2 0.4196 0.6729 0.000 0.784 0.000 0.076 0.092 0.048
#> SRR1429287 6 0.2781 0.6624 0.044 0.036 0.000 0.000 0.040 0.880
#> SRR1359238 6 0.3284 0.5902 0.004 0.004 0.000 0.172 0.016 0.804
#> SRR1309597 6 0.3410 0.6167 0.000 0.008 0.216 0.000 0.008 0.768
#> SRR1441398 3 0.4407 0.5284 0.264 0.000 0.680 0.004 0.000 0.052
#> SRR1084055 5 0.2713 0.6387 0.004 0.040 0.036 0.000 0.888 0.032
#> SRR1417566 3 0.4194 0.5419 0.032 0.048 0.764 0.000 0.000 0.156
#> SRR1351857 5 0.6017 0.4862 0.012 0.048 0.116 0.212 0.612 0.000
#> SRR1487485 6 0.5213 0.2757 0.044 0.024 0.420 0.000 0.000 0.512
#> SRR1335875 1 0.2886 0.7204 0.876 0.060 0.028 0.004 0.000 0.032
#> SRR1073947 1 0.3664 0.7388 0.824 0.000 0.052 0.072 0.052 0.000
#> SRR1443483 3 0.1176 0.6264 0.000 0.024 0.956 0.000 0.000 0.020
#> SRR1346794 6 0.5023 0.4397 0.036 0.016 0.344 0.008 0.000 0.596
#> SRR1405245 3 0.6323 0.1901 0.296 0.004 0.444 0.004 0.004 0.248
#> SRR1409677 4 0.1644 0.7717 0.076 0.000 0.000 0.920 0.000 0.004
#> SRR1095549 3 0.2870 0.6007 0.032 0.004 0.860 0.004 0.100 0.000
#> SRR1323788 3 0.4418 0.6067 0.168 0.000 0.752 0.032 0.008 0.040
#> SRR1314054 2 0.2968 0.6941 0.000 0.852 0.004 0.092 0.052 0.000
#> SRR1077944 4 0.6181 0.6255 0.088 0.004 0.152 0.628 0.008 0.120
#> SRR1480587 6 0.4752 0.6556 0.100 0.116 0.048 0.000 0.000 0.736
#> SRR1311205 3 0.3570 0.5845 0.228 0.004 0.752 0.000 0.000 0.016
#> SRR1076369 5 0.6104 0.1920 0.000 0.016 0.408 0.000 0.412 0.164
#> SRR1453549 6 0.3349 0.6401 0.016 0.004 0.016 0.132 0.004 0.828
#> SRR1345782 3 0.3649 0.6303 0.140 0.000 0.808 0.012 0.012 0.028
#> SRR1447850 6 0.6024 0.1002 0.248 0.348 0.000 0.000 0.000 0.404
#> SRR1391553 6 0.5906 0.3847 0.076 0.044 0.344 0.004 0.000 0.532
#> SRR1444156 2 0.2474 0.7032 0.000 0.880 0.000 0.080 0.040 0.000
#> SRR1471731 6 0.6243 0.5050 0.104 0.084 0.256 0.000 0.000 0.556
#> SRR1120987 4 0.0665 0.7628 0.004 0.008 0.000 0.980 0.000 0.008
#> SRR1477363 1 0.6070 0.3935 0.516 0.008 0.016 0.104 0.008 0.348
#> SRR1391961 5 0.1036 0.6303 0.024 0.008 0.004 0.000 0.964 0.000
#> SRR1373879 3 0.6305 0.3867 0.236 0.000 0.532 0.020 0.200 0.012
#> SRR1318732 3 0.5730 0.0490 0.048 0.064 0.528 0.000 0.000 0.360
#> SRR1091404 5 0.3116 0.6198 0.012 0.004 0.000 0.016 0.836 0.132
#> SRR1402109 3 0.1901 0.6538 0.076 0.000 0.912 0.000 0.008 0.004
#> SRR1407336 3 0.2078 0.6077 0.000 0.012 0.916 0.000 0.032 0.040
#> SRR1097417 5 0.2475 0.6481 0.000 0.012 0.060 0.000 0.892 0.036
#> SRR1396227 1 0.2375 0.7465 0.896 0.036 0.060 0.008 0.000 0.000
#> SRR1400775 2 0.3311 0.6508 0.204 0.780 0.004 0.000 0.000 0.012
#> SRR1392861 4 0.3421 0.7110 0.004 0.004 0.160 0.804 0.000 0.028
#> SRR1472929 3 0.6019 0.1020 0.004 0.016 0.496 0.000 0.140 0.344
#> SRR1436740 4 0.2355 0.7626 0.112 0.004 0.000 0.876 0.000 0.008
#> SRR1477057 6 0.5381 0.4041 0.328 0.052 0.000 0.000 0.040 0.580
#> SRR1311980 6 0.6324 0.3919 0.164 0.044 0.280 0.000 0.000 0.512
#> SRR1069400 3 0.4599 0.4701 0.004 0.012 0.732 0.000 0.140 0.112
#> SRR1351016 1 0.5215 0.7025 0.708 0.004 0.072 0.040 0.012 0.164
#> SRR1096291 4 0.5011 0.5679 0.000 0.140 0.168 0.680 0.008 0.004
#> SRR1418145 4 0.5913 0.5555 0.140 0.124 0.000 0.632 0.000 0.104
#> SRR1488111 6 0.2401 0.6750 0.060 0.016 0.000 0.020 0.004 0.900
#> SRR1370495 6 0.5050 0.5941 0.216 0.072 0.000 0.000 0.036 0.676
#> SRR1352639 3 0.4905 0.2550 0.420 0.052 0.524 0.000 0.000 0.004
#> SRR1348911 3 0.4307 0.6020 0.200 0.008 0.740 0.000 0.020 0.032
#> SRR1467386 4 0.3575 0.7346 0.136 0.004 0.024 0.816 0.012 0.008
#> SRR1415956 1 0.3655 0.6218 0.756 0.004 0.220 0.000 0.004 0.016
#> SRR1500495 1 0.4622 0.5730 0.692 0.000 0.244 0.012 0.008 0.044
#> SRR1405099 1 0.2152 0.7683 0.920 0.000 0.028 0.016 0.024 0.012
#> SRR1345585 3 0.4650 -0.1699 0.000 0.040 0.488 0.000 0.000 0.472
#> SRR1093196 3 0.6497 -0.2283 0.088 0.092 0.424 0.000 0.000 0.396
#> SRR1466006 6 0.5331 0.6269 0.028 0.096 0.112 0.000 0.048 0.716
#> SRR1351557 2 0.4787 0.4126 0.108 0.656 0.000 0.000 0.000 0.236
#> SRR1382687 4 0.6214 0.4481 0.148 0.008 0.020 0.536 0.004 0.284
#> SRR1375549 6 0.3220 0.6442 0.084 0.004 0.000 0.028 0.032 0.852
#> SRR1101765 5 0.5662 0.4348 0.004 0.016 0.000 0.236 0.600 0.144
#> SRR1334461 5 0.2190 0.6242 0.044 0.000 0.008 0.000 0.908 0.040
#> SRR1094073 2 0.2637 0.6988 0.000 0.876 0.012 0.088 0.024 0.000
#> SRR1077549 3 0.5684 0.0330 0.140 0.000 0.476 0.380 0.000 0.004
#> SRR1440332 3 0.4972 0.5946 0.108 0.000 0.720 0.128 0.004 0.040
#> SRR1454177 4 0.0937 0.7725 0.040 0.000 0.000 0.960 0.000 0.000
#> SRR1082447 1 0.6090 0.1130 0.404 0.000 0.224 0.004 0.368 0.000
#> SRR1420043 6 0.5700 0.3308 0.016 0.004 0.088 0.308 0.008 0.576
#> SRR1432500 4 0.4753 0.7263 0.104 0.004 0.032 0.756 0.012 0.092
#> SRR1378045 3 0.3657 0.5884 0.044 0.060 0.824 0.000 0.000 0.072
#> SRR1334200 6 0.1401 0.6731 0.004 0.000 0.020 0.000 0.028 0.948
#> SRR1069539 2 0.7378 -0.1124 0.000 0.324 0.112 0.256 0.308 0.000
#> SRR1343031 3 0.2586 0.6455 0.100 0.000 0.868 0.000 0.032 0.000
#> SRR1319690 6 0.2718 0.6527 0.076 0.004 0.000 0.020 0.020 0.880
#> SRR1310604 5 0.5404 0.4995 0.000 0.048 0.060 0.000 0.616 0.276
#> SRR1327747 6 0.2933 0.6619 0.000 0.004 0.124 0.016 0.008 0.848
#> SRR1072456 5 0.7540 0.0752 0.024 0.064 0.300 0.000 0.316 0.296
#> SRR1367896 3 0.3498 0.5525 0.020 0.020 0.812 0.000 0.144 0.004
#> SRR1480107 1 0.4438 0.6803 0.768 0.000 0.140 0.040 0.032 0.020
#> SRR1377756 4 0.6539 0.5281 0.152 0.004 0.060 0.560 0.008 0.216
#> SRR1435272 4 0.0146 0.7610 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1089230 4 0.2006 0.7041 0.000 0.104 0.000 0.892 0.004 0.000
#> SRR1389522 3 0.2854 0.6122 0.036 0.008 0.868 0.000 0.084 0.004
#> SRR1080600 6 0.7707 -0.0055 0.008 0.244 0.152 0.000 0.244 0.352
#> SRR1086935 4 0.2219 0.6818 0.000 0.136 0.000 0.864 0.000 0.000
#> SRR1344060 5 0.2265 0.6426 0.004 0.008 0.084 0.000 0.896 0.008
#> SRR1467922 2 0.2189 0.6978 0.032 0.912 0.008 0.000 0.004 0.044
#> SRR1090984 6 0.1251 0.6776 0.024 0.000 0.008 0.000 0.012 0.956
#> SRR1456991 1 0.4898 0.6906 0.744 0.000 0.132 0.040 0.028 0.056
#> SRR1085039 5 0.6786 0.0692 0.304 0.000 0.088 0.148 0.460 0.000
#> SRR1069303 1 0.1409 0.7612 0.948 0.012 0.000 0.032 0.008 0.000
#> SRR1091500 2 0.5241 0.5347 0.104 0.600 0.000 0.000 0.288 0.008
#> SRR1075198 6 0.6242 0.5027 0.044 0.144 0.260 0.004 0.000 0.548
#> SRR1086915 4 0.0909 0.7690 0.012 0.000 0.000 0.968 0.000 0.020
#> SRR1499503 5 0.7088 0.2592 0.004 0.292 0.112 0.000 0.444 0.148
#> SRR1094312 2 0.4289 0.6219 0.228 0.720 0.004 0.000 0.012 0.036
#> SRR1352437 1 0.3330 0.5589 0.716 0.000 0.000 0.284 0.000 0.000
#> SRR1436323 6 0.2244 0.6818 0.004 0.004 0.100 0.004 0.000 0.888
#> SRR1073507 4 0.4813 0.4649 0.324 0.000 0.048 0.616 0.012 0.000
#> SRR1401972 1 0.1973 0.7603 0.916 0.012 0.000 0.064 0.004 0.004
#> SRR1415510 6 0.2382 0.6731 0.000 0.020 0.072 0.004 0.008 0.896
#> SRR1327279 3 0.4072 0.4693 0.292 0.000 0.684 0.004 0.016 0.004
#> SRR1086983 4 0.1720 0.7745 0.040 0.000 0.032 0.928 0.000 0.000
#> SRR1105174 4 0.5440 0.3989 0.316 0.000 0.096 0.572 0.016 0.000
#> SRR1468893 1 0.3743 0.7219 0.804 0.004 0.008 0.072 0.000 0.112
#> SRR1362555 6 0.4700 0.6636 0.112 0.084 0.060 0.000 0.000 0.744
#> SRR1074526 5 0.1480 0.6326 0.000 0.040 0.020 0.000 0.940 0.000
#> SRR1326225 2 0.4341 0.6213 0.004 0.736 0.000 0.000 0.124 0.136
#> SRR1401933 6 0.5032 0.5373 0.288 0.084 0.000 0.008 0.000 0.620
#> SRR1324062 1 0.2258 0.7375 0.896 0.044 0.060 0.000 0.000 0.000
#> SRR1102296 1 0.2591 0.7345 0.880 0.052 0.064 0.004 0.000 0.000
#> SRR1085087 1 0.2846 0.7206 0.840 0.000 0.016 0.140 0.004 0.000
#> SRR1079046 1 0.5788 0.4564 0.620 0.020 0.000 0.032 0.084 0.244
#> SRR1328339 3 0.3430 0.5921 0.208 0.000 0.772 0.000 0.004 0.016
#> SRR1079782 6 0.5879 0.4795 0.272 0.176 0.008 0.004 0.000 0.540
#> SRR1092257 2 0.3493 0.6900 0.136 0.800 0.000 0.064 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two
samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures
which are significantly different between classes which can be candidate marks
for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.
fdr
: FDR for the differential test.
mean_x
: The mean value in group x.
scaled_mean_x
: The mean value in group x after rows are scaled.
km
: Row groups if k-means clustering is applied to rows.
UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
Session info
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0