Date: 2019-12-25 23:09:05 CET, cola version: 1.3.2
Document is loading... 
All available functions which can be applied to this res_list object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods() was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 16450   111
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

Folowing table shows the best k (number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
| The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
|---|---|---|---|---|---|---|
| SD:skmeans | 2 | 1.000 | 0.972 | 0.990 | ** | |
| CV:NMF | 2 | 1.000 | 0.970 | 0.986 | ** | |
| MAD:skmeans | 2 | 1.000 | 0.965 | 0.987 | ** | |
| ATC:pam | 2 | 1.000 | 0.967 | 0.986 | ** | |
| ATC:mclust | 2 | 1.000 | 0.967 | 0.986 | ** | |
| SD:NMF | 3 | 0.952 | 0.906 | 0.964 | ** | |
| CV:skmeans | 2 | 0.945 | 0.982 | 0.990 | * | |
| MAD:NMF | 3 | 0.945 | 0.928 | 0.970 | * | |
| ATC:hclust | 2 | 0.944 | 0.956 | 0.976 | * | |
| ATC:skmeans | 3 | 0.905 | 0.897 | 0.948 | * | 2 | 
| SD:mclust | 4 | 0.896 | 0.877 | 0.940 | ||
| CV:mclust | 4 | 0.832 | 0.849 | 0.914 | ||
| MAD:pam | 2 | 0.822 | 0.919 | 0.958 | ||
| SD:pam | 2 | 0.815 | 0.886 | 0.951 | ||
| CV:pam | 4 | 0.769 | 0.831 | 0.935 | ||
| ATC:kmeans | 4 | 0.718 | 0.796 | 0.887 | ||
| MAD:mclust | 4 | 0.675 | 0.778 | 0.903 | ||
| SD:hclust | 4 | 0.577 | 0.800 | 0.839 | ||
| CV:hclust | 3 | 0.530 | 0.900 | 0.926 | ||
| SD:kmeans | 2 | 0.499 | 0.908 | 0.925 | ||
| MAD:kmeans | 2 | 0.455 | 0.876 | 0.915 | ||
| CV:kmeans | 2 | 0.372 | 0.829 | 0.845 | ||
| MAD:hclust | 3 | 0.364 | 0.719 | 0.852 | ||
| ATC:NMF | 2 | 0.357 | 0.808 | 0.858 | 
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)

Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.889           0.912       0.965          0.487 0.510   0.510
#> CV:NMF      2 1.000           0.970       0.986          0.498 0.499   0.499
#> MAD:NMF     2 0.890           0.928       0.971          0.487 0.517   0.517
#> ATC:NMF     2 0.357           0.808       0.858          0.491 0.496   0.496
#> SD:skmeans  2 1.000           0.972       0.990          0.502 0.499   0.499
#> CV:skmeans  2 0.945           0.982       0.990          0.502 0.499   0.499
#> MAD:skmeans 2 1.000           0.965       0.987          0.503 0.499   0.499
#> ATC:skmeans 2 1.000           0.986       0.995          0.488 0.510   0.510
#> SD:mclust   2 0.514           0.761       0.860          0.414 0.629   0.629
#> CV:mclust   2 0.344           0.771       0.830          0.387 0.517   0.517
#> MAD:mclust  2 0.478           0.778       0.884          0.391 0.638   0.638
#> ATC:mclust  2 1.000           0.967       0.986          0.127 0.897   0.897
#> SD:kmeans   2 0.499           0.908       0.925          0.454 0.499   0.499
#> CV:kmeans   2 0.372           0.829       0.845          0.425 0.500   0.500
#> MAD:kmeans  2 0.455           0.876       0.915          0.451 0.500   0.500
#> ATC:kmeans  2 0.889           0.911       0.957          0.405 0.558   0.558
#> SD:pam      2 0.815           0.886       0.951          0.500 0.500   0.500
#> CV:pam      2 0.618           0.830       0.924          0.483 0.510   0.510
#> MAD:pam     2 0.822           0.919       0.958          0.498 0.497   0.497
#> ATC:pam     2 1.000           0.967       0.986          0.138 0.865   0.865
#> SD:hclust   2 0.632           0.859       0.928          0.202 0.897   0.897
#> CV:hclust   2 0.514           0.888       0.914          0.183 0.897   0.897
#> MAD:hclust  2 0.646           0.792       0.894          0.237 0.897   0.897
#> ATC:hclust  2 0.944           0.956       0.976          0.318 0.702   0.702
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.952           0.906       0.964          0.148 0.877   0.772
#> CV:NMF      3 0.768           0.859       0.914          0.185 0.938   0.876
#> MAD:NMF     3 0.945           0.928       0.970          0.161 0.887   0.788
#> ATC:NMF     3 0.397           0.592       0.790          0.302 0.651   0.407
#> SD:skmeans  3 0.782           0.378       0.704          0.273 0.701   0.480
#> CV:skmeans  3 0.801           0.913       0.946          0.281 0.863   0.725
#> MAD:skmeans 3 0.759           0.732       0.891          0.278 0.769   0.569
#> ATC:skmeans 3 0.905           0.897       0.948          0.259 0.846   0.707
#> SD:mclust   3 0.531           0.685       0.844          0.456 0.591   0.443
#> CV:mclust   3 0.690           0.773       0.885          0.528 0.702   0.511
#> MAD:mclust  3 0.565           0.681       0.866          0.496 0.611   0.466
#> ATC:mclust  3 0.357           0.689       0.840          2.898 0.583   0.535
#> SD:kmeans   3 0.611           0.623       0.778          0.344 0.930   0.860
#> CV:kmeans   3 0.478           0.792       0.811          0.353 0.882   0.768
#> MAD:kmeans  3 0.539           0.650       0.789          0.352 0.907   0.821
#> ATC:kmeans  3 0.686           0.763       0.878          0.429 0.637   0.444
#> SD:pam      3 0.629           0.816       0.841          0.278 0.785   0.593
#> CV:pam      3 0.659           0.823       0.921          0.117 0.944   0.891
#> MAD:pam     3 0.825           0.868       0.944          0.315 0.771   0.571
#> ATC:pam     3 0.867           0.904       0.963          2.859 0.576   0.515
#> SD:hclust   3 0.358           0.600       0.753          1.285 0.691   0.656
#> CV:hclust   3 0.530           0.900       0.926          1.855 0.553   0.502
#> MAD:hclust  3 0.364           0.719       0.852          1.049 0.552   0.500
#> ATC:hclust  3 0.901           0.935       0.955          0.123 0.986   0.980
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.593           0.629       0.826         0.2562 0.714   0.441
#> CV:NMF      4 0.528           0.456       0.718         0.1898 0.695   0.414
#> MAD:NMF     4 0.679           0.703       0.866         0.2467 0.757   0.501
#> ATC:NMF     4 0.477           0.600       0.773         0.1166 0.781   0.465
#> SD:skmeans  4 0.828           0.824       0.906         0.1445 0.773   0.481
#> CV:skmeans  4 0.848           0.885       0.931         0.1455 0.895   0.708
#> MAD:skmeans 4 0.820           0.830       0.909         0.1409 0.910   0.750
#> ATC:skmeans 4 0.764           0.766       0.881         0.1155 0.934   0.830
#> SD:mclust   4 0.896           0.877       0.940         0.1083 0.780   0.552
#> CV:mclust   4 0.832           0.849       0.914         0.1286 0.936   0.844
#> MAD:mclust  4 0.675           0.778       0.903         0.1293 0.760   0.517
#> ATC:mclust  4 0.460           0.769       0.810         0.2941 0.848   0.687
#> SD:kmeans   4 0.562           0.695       0.736         0.1308 0.771   0.534
#> CV:kmeans   4 0.595           0.713       0.744         0.1687 1.000   1.000
#> MAD:kmeans  4 0.527           0.612       0.688         0.1473 0.801   0.581
#> ATC:kmeans  4 0.718           0.796       0.887         0.1418 0.878   0.709
#> SD:pam      4 0.641           0.761       0.837         0.0658 0.960   0.886
#> CV:pam      4 0.769           0.831       0.935         0.1507 0.918   0.826
#> MAD:pam     4 0.740           0.818       0.876         0.0656 0.928   0.805
#> ATC:pam     4 0.853           0.859       0.944         0.2227 0.812   0.628
#> SD:hclust   4 0.577           0.800       0.839         0.3812 0.727   0.547
#> CV:hclust   4 0.589           0.872       0.875         0.1544 0.904   0.787
#> MAD:hclust  4 0.475           0.650       0.800         0.3266 0.652   0.392
#> ATC:hclust  4 0.514           0.815       0.862         0.5987 0.700   0.564
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.759           0.757       0.872         0.1193 0.814   0.466
#> CV:NMF      5 0.723           0.639       0.770         0.0989 0.800   0.456
#> MAD:NMF     5 0.601           0.673       0.807         0.1099 0.852   0.550
#> ATC:NMF     5 0.458           0.517       0.705         0.0522 0.885   0.639
#> SD:skmeans  5 0.781           0.781       0.809         0.0677 0.916   0.716
#> CV:skmeans  5 0.840           0.849       0.867         0.0628 0.935   0.756
#> MAD:skmeans 5 0.767           0.652       0.763         0.0654 0.928   0.756
#> ATC:skmeans 5 0.784           0.836       0.907         0.0766 0.906   0.720
#> SD:mclust   5 0.688           0.722       0.828         0.0905 0.864   0.639
#> CV:mclust   5 0.788           0.781       0.859         0.0695 1.000   1.000
#> MAD:mclust  5 0.618           0.599       0.808         0.1054 0.848   0.570
#> ATC:mclust  5 0.343           0.551       0.681         0.0764 0.922   0.777
#> SD:kmeans   5 0.621           0.731       0.741         0.0816 0.885   0.660
#> CV:kmeans   5 0.616           0.664       0.742         0.0854 0.857   0.642
#> MAD:kmeans  5 0.562           0.551       0.662         0.0782 0.845   0.544
#> ATC:kmeans  5 0.694           0.783       0.834         0.1085 0.780   0.445
#> SD:pam      5 0.841           0.874       0.938         0.1293 0.834   0.528
#> CV:pam      5 0.800           0.807       0.923         0.1352 0.889   0.719
#> MAD:pam     5 0.841           0.882       0.941         0.1027 0.859   0.589
#> ATC:pam     5 0.868           0.834       0.939         0.1137 0.909   0.752
#> SD:hclust   5 0.652           0.784       0.871         0.0749 0.972   0.919
#> CV:hclust   5 0.599           0.774       0.878         0.0944 0.986   0.960
#> MAD:hclust  5 0.628           0.643       0.793         0.0976 0.884   0.710
#> ATC:hclust  5 0.720           0.809       0.915         0.1180 0.976   0.938
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.766           0.694       0.814         0.0479 0.917   0.648
#> CV:NMF      6 0.844           0.860       0.905         0.0566 0.913   0.655
#> MAD:NMF     6 0.717           0.732       0.810         0.0509 0.935   0.716
#> ATC:NMF     6 0.553           0.548       0.729         0.0447 0.843   0.488
#> SD:skmeans  6 0.780           0.768       0.841         0.0527 0.949   0.765
#> CV:skmeans  6 0.822           0.835       0.857         0.0432 0.971   0.861
#> MAD:skmeans 6 0.774           0.662       0.763         0.0528 0.946   0.775
#> ATC:skmeans 6 0.804           0.753       0.873         0.0398 0.991   0.963
#> SD:mclust   6 0.821           0.791       0.892         0.0875 0.884   0.619
#> CV:mclust   6 0.716           0.683       0.801         0.0781 0.866   0.621
#> MAD:mclust  6 0.689           0.668       0.846         0.0834 0.883   0.575
#> ATC:mclust  6 0.549           0.518       0.704         0.0894 0.805   0.439
#> SD:kmeans   6 0.630           0.646       0.725         0.0586 0.960   0.834
#> CV:kmeans   6 0.642           0.732       0.766         0.0547 0.943   0.786
#> MAD:kmeans  6 0.678           0.656       0.743         0.0556 0.878   0.545
#> ATC:kmeans  6 0.716           0.615       0.800         0.0701 0.972   0.888
#> SD:pam      6 0.853           0.780       0.891         0.0424 0.947   0.776
#> CV:pam      6 0.722           0.580       0.829         0.0651 0.963   0.876
#> MAD:pam     6 0.869           0.786       0.882         0.0402 0.928   0.708
#> ATC:pam     6 0.753           0.674       0.820         0.0708 0.874   0.586
#> SD:hclust   6 0.715           0.771       0.826         0.0586 0.988   0.963
#> CV:hclust   6 0.696           0.820       0.886         0.0701 0.954   0.865
#> MAD:hclust  6 0.689           0.618       0.800         0.0578 0.942   0.828
#> ATC:hclust  6 0.727           0.824       0.921         0.0194 0.996   0.989
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)

collect_stats(res_list, k = 3)

collect_stats(res_list, k = 4)

collect_stats(res_list, k = 5)

collect_stats(res_list, k = 6)

Collect partitions from all methods:
collect_classes(res_list, k = 2)

collect_classes(res_list, k = 3)

collect_classes(res_list, k = 4)

collect_classes(res_list, k = 5)

collect_classes(res_list, k = 6)

Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")

top_rows_overlap(res_list, top_n = 2000, method = "euler")

top_rows_overlap(res_list, top_n = 3000, method = "euler")

top_rows_overlap(res_list, top_n = 4000, method = "euler")

top_rows_overlap(res_list, top_n = 5000, method = "euler")

Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)

top_rows_heatmap(res_list, top_n = 2000)

top_rows_heatmap(res_list, top_n = 3000)

top_rows_heatmap(res_list, top_n = 4000)

top_rows_heatmap(res_list, top_n = 5000)

The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.632           0.859       0.928         0.2023 0.897   0.897
#> 3 3 0.358           0.600       0.753         1.2849 0.691   0.656
#> 4 4 0.577           0.800       0.839         0.3812 0.727   0.547
#> 5 5 0.652           0.784       0.871         0.0749 0.972   0.919
#> 6 6 0.715           0.771       0.826         0.0586 0.988   0.963
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     2   0.844      0.697 0.272 0.728
#> SRR191640     2   0.443      0.859 0.092 0.908
#> SRR191641     2   0.469      0.853 0.100 0.900
#> SRR191642     2   0.443      0.859 0.092 0.908
#> SRR191643     2   0.000      0.917 0.000 1.000
#> SRR191644     2   0.000      0.917 0.000 1.000
#> SRR191645     2   0.000      0.917 0.000 1.000
#> SRR191646     2   0.000      0.917 0.000 1.000
#> SRR191647     2   0.000      0.917 0.000 1.000
#> SRR191648     2   0.000      0.917 0.000 1.000
#> SRR191649     2   0.000      0.917 0.000 1.000
#> SRR191650     2   0.788      0.723 0.236 0.764
#> SRR191651     2   0.788      0.723 0.236 0.764
#> SRR191652     2   0.921      0.620 0.336 0.664
#> SRR191653     2   0.000      0.917 0.000 1.000
#> SRR191654     2   0.000      0.917 0.000 1.000
#> SRR191655     2   0.000      0.917 0.000 1.000
#> SRR191656     2   0.921      0.620 0.336 0.664
#> SRR191657     2   0.921      0.620 0.336 0.664
#> SRR191658     2   0.921      0.620 0.336 0.664
#> SRR191659     2   0.921      0.620 0.336 0.664
#> SRR191660     2   0.921      0.620 0.336 0.664
#> SRR191661     2   0.921      0.620 0.336 0.664
#> SRR191662     2   0.921      0.620 0.336 0.664
#> SRR191663     2   0.921      0.620 0.336 0.664
#> SRR191664     2   0.921      0.620 0.336 0.664
#> SRR191665     2   0.921      0.620 0.336 0.664
#> SRR191666     2   0.921      0.620 0.336 0.664
#> SRR191667     2   0.921      0.620 0.336 0.664
#> SRR191668     2   0.921      0.620 0.336 0.664
#> SRR191669     2   0.921      0.620 0.336 0.664
#> SRR191670     2   0.921      0.620 0.336 0.664
#> SRR191671     2   0.921      0.620 0.336 0.664
#> SRR191672     2   0.921      0.620 0.336 0.664
#> SRR191673     2   0.921      0.620 0.336 0.664
#> SRR191674     2   0.000      0.917 0.000 1.000
#> SRR191675     2   0.000      0.917 0.000 1.000
#> SRR191677     2   0.000      0.917 0.000 1.000
#> SRR191678     2   0.000      0.917 0.000 1.000
#> SRR191679     2   0.000      0.917 0.000 1.000
#> SRR191680     2   0.000      0.917 0.000 1.000
#> SRR191681     2   0.000      0.917 0.000 1.000
#> SRR191682     2   0.000      0.917 0.000 1.000
#> SRR191683     2   0.000      0.917 0.000 1.000
#> SRR191684     2   0.000      0.917 0.000 1.000
#> SRR191685     2   0.000      0.917 0.000 1.000
#> SRR191686     2   0.000      0.917 0.000 1.000
#> SRR191687     2   0.000      0.917 0.000 1.000
#> SRR191688     2   0.000      0.917 0.000 1.000
#> SRR191689     2   0.000      0.917 0.000 1.000
#> SRR191690     2   0.000      0.917 0.000 1.000
#> SRR191691     2   0.000      0.917 0.000 1.000
#> SRR191692     2   0.000      0.917 0.000 1.000
#> SRR191693     2   0.000      0.917 0.000 1.000
#> SRR191694     2   0.000      0.917 0.000 1.000
#> SRR191695     2   0.000      0.917 0.000 1.000
#> SRR191696     2   0.000      0.917 0.000 1.000
#> SRR191697     2   0.000      0.917 0.000 1.000
#> SRR191698     2   0.000      0.917 0.000 1.000
#> SRR191699     2   0.000      0.917 0.000 1.000
#> SRR191700     2   0.000      0.917 0.000 1.000
#> SRR191701     2   0.000      0.917 0.000 1.000
#> SRR191702     2   0.000      0.917 0.000 1.000
#> SRR191703     2   0.000      0.917 0.000 1.000
#> SRR191704     2   0.000      0.917 0.000 1.000
#> SRR191705     2   0.000      0.917 0.000 1.000
#> SRR191706     2   0.000      0.917 0.000 1.000
#> SRR191707     2   0.000      0.917 0.000 1.000
#> SRR191708     2   0.000      0.917 0.000 1.000
#> SRR191709     2   0.000      0.917 0.000 1.000
#> SRR191710     2   0.000      0.917 0.000 1.000
#> SRR191711     2   0.000      0.917 0.000 1.000
#> SRR191712     2   0.000      0.917 0.000 1.000
#> SRR191713     2   0.000      0.917 0.000 1.000
#> SRR191714     2   0.000      0.917 0.000 1.000
#> SRR191715     2   0.000      0.917 0.000 1.000
#> SRR191716     2   0.000      0.917 0.000 1.000
#> SRR191717     2   0.000      0.917 0.000 1.000
#> SRR191718     2   0.000      0.917 0.000 1.000
#> SRR537099     2   0.443      0.859 0.092 0.908
#> SRR537100     2   0.443      0.859 0.092 0.908
#> SRR537101     2   0.469      0.853 0.100 0.900
#> SRR537102     2   0.443      0.859 0.092 0.908
#> SRR537104     2   0.000      0.917 0.000 1.000
#> SRR537105     2   0.000      0.917 0.000 1.000
#> SRR537106     2   0.000      0.917 0.000 1.000
#> SRR537107     2   0.000      0.917 0.000 1.000
#> SRR537108     2   0.000      0.917 0.000 1.000
#> SRR537109     2   0.000      0.917 0.000 1.000
#> SRR537110     2   0.000      0.917 0.000 1.000
#> SRR537111     2   0.788      0.723 0.236 0.764
#> SRR537113     2   0.000      0.917 0.000 1.000
#> SRR537114     2   0.000      0.917 0.000 1.000
#> SRR537115     2   0.000      0.917 0.000 1.000
#> SRR537116     2   0.000      0.917 0.000 1.000
#> SRR537117     2   0.000      0.917 0.000 1.000
#> SRR537118     2   0.000      0.917 0.000 1.000
#> SRR537119     2   0.000      0.917 0.000 1.000
#> SRR537120     2   0.000      0.917 0.000 1.000
#> SRR537121     2   0.000      0.917 0.000 1.000
#> SRR537122     2   0.000      0.917 0.000 1.000
#> SRR537123     2   0.000      0.917 0.000 1.000
#> SRR537124     2   0.000      0.917 0.000 1.000
#> SRR537125     2   0.000      0.917 0.000 1.000
#> SRR537126     2   0.000      0.917 0.000 1.000
#> SRR537127     1   0.000      1.000 1.000 0.000
#> SRR537128     1   0.000      1.000 1.000 0.000
#> SRR537129     1   0.000      1.000 1.000 0.000
#> SRR537130     1   0.000      1.000 1.000 0.000
#> SRR537131     1   0.000      1.000 1.000 0.000
#> SRR537132     1   0.000      1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> SRR191639     1  0.6215      0.577 0.572 0.428  0
#> SRR191640     1  0.5016      0.629 0.760 0.240  0
#> SRR191641     1  0.5098      0.627 0.752 0.248  0
#> SRR191642     1  0.5016      0.629 0.760 0.240  0
#> SRR191643     1  0.3816      0.636 0.852 0.148  0
#> SRR191644     1  0.3816      0.636 0.852 0.148  0
#> SRR191645     1  0.3752      0.637 0.856 0.144  0
#> SRR191646     1  0.3752      0.637 0.856 0.144  0
#> SRR191647     1  0.3752      0.637 0.856 0.144  0
#> SRR191648     1  0.3752      0.637 0.856 0.144  0
#> SRR191649     1  0.3752      0.637 0.856 0.144  0
#> SRR191650     1  0.6111      0.579 0.604 0.396  0
#> SRR191651     1  0.6111      0.579 0.604 0.396  0
#> SRR191652     1  0.6309      0.526 0.504 0.496  0
#> SRR191653     1  0.3879      0.635 0.848 0.152  0
#> SRR191654     1  0.3879      0.635 0.848 0.152  0
#> SRR191655     1  0.3879      0.635 0.848 0.152  0
#> SRR191656     1  0.6309      0.526 0.504 0.496  0
#> SRR191657     1  0.6309      0.526 0.504 0.496  0
#> SRR191658     1  0.6309      0.526 0.504 0.496  0
#> SRR191659     1  0.6309      0.526 0.504 0.496  0
#> SRR191660     1  0.6309      0.526 0.504 0.496  0
#> SRR191661     1  0.6309      0.526 0.504 0.496  0
#> SRR191662     1  0.6309      0.526 0.504 0.496  0
#> SRR191663     1  0.6309      0.526 0.504 0.496  0
#> SRR191664     1  0.6309      0.526 0.504 0.496  0
#> SRR191665     1  0.6309      0.526 0.504 0.496  0
#> SRR191666     1  0.6309      0.526 0.504 0.496  0
#> SRR191667     1  0.6309      0.526 0.504 0.496  0
#> SRR191668     1  0.6309      0.526 0.504 0.496  0
#> SRR191669     1  0.6309      0.526 0.504 0.496  0
#> SRR191670     1  0.6309      0.526 0.504 0.496  0
#> SRR191671     1  0.6309      0.526 0.504 0.496  0
#> SRR191672     1  0.6309      0.526 0.504 0.496  0
#> SRR191673     1  0.6309      0.526 0.504 0.496  0
#> SRR191674     2  0.6309      1.000 0.496 0.504  0
#> SRR191675     2  0.6309      1.000 0.496 0.504  0
#> SRR191677     2  0.6309      1.000 0.496 0.504  0
#> SRR191678     2  0.6309      1.000 0.496 0.504  0
#> SRR191679     2  0.6309      1.000 0.496 0.504  0
#> SRR191680     2  0.6309      1.000 0.496 0.504  0
#> SRR191681     2  0.6309      1.000 0.496 0.504  0
#> SRR191682     2  0.6309      1.000 0.496 0.504  0
#> SRR191683     2  0.6309      1.000 0.496 0.504  0
#> SRR191684     2  0.6309      1.000 0.496 0.504  0
#> SRR191685     2  0.6309      1.000 0.496 0.504  0
#> SRR191686     2  0.6309      1.000 0.496 0.504  0
#> SRR191687     2  0.6309      1.000 0.496 0.504  0
#> SRR191688     1  0.3340      0.337 0.880 0.120  0
#> SRR191689     1  0.3116      0.369 0.892 0.108  0
#> SRR191690     1  0.3116      0.369 0.892 0.108  0
#> SRR191691     1  0.2959      0.387 0.900 0.100  0
#> SRR191692     1  0.6267     -0.892 0.548 0.452  0
#> SRR191693     1  0.6267     -0.892 0.548 0.452  0
#> SRR191694     1  0.6267     -0.892 0.548 0.452  0
#> SRR191695     1  0.3340      0.337 0.880 0.120  0
#> SRR191696     1  0.3340      0.337 0.880 0.120  0
#> SRR191697     1  0.2959      0.387 0.900 0.100  0
#> SRR191698     1  0.2959      0.387 0.900 0.100  0
#> SRR191699     1  0.3116      0.369 0.892 0.108  0
#> SRR191700     1  0.2959      0.387 0.900 0.100  0
#> SRR191701     1  0.2959      0.387 0.900 0.100  0
#> SRR191702     2  0.6309      1.000 0.496 0.504  0
#> SRR191703     2  0.6309      1.000 0.496 0.504  0
#> SRR191704     2  0.6309      1.000 0.496 0.504  0
#> SRR191705     2  0.6309      1.000 0.496 0.504  0
#> SRR191706     2  0.6309      1.000 0.496 0.504  0
#> SRR191707     1  0.5733     -0.538 0.676 0.324  0
#> SRR191708     2  0.6309      1.000 0.496 0.504  0
#> SRR191709     2  0.6309      1.000 0.496 0.504  0
#> SRR191710     2  0.6309      1.000 0.496 0.504  0
#> SRR191711     1  0.2959      0.386 0.900 0.100  0
#> SRR191712     1  0.2959      0.386 0.900 0.100  0
#> SRR191713     2  0.6309      1.000 0.496 0.504  0
#> SRR191714     2  0.6309      1.000 0.496 0.504  0
#> SRR191715     1  0.3038      0.377 0.896 0.104  0
#> SRR191716     1  0.3340      0.337 0.880 0.120  0
#> SRR191717     1  0.3340      0.337 0.880 0.120  0
#> SRR191718     1  0.3340      0.337 0.880 0.120  0
#> SRR537099     1  0.5016      0.629 0.760 0.240  0
#> SRR537100     1  0.5016      0.629 0.760 0.240  0
#> SRR537101     1  0.5098      0.627 0.752 0.248  0
#> SRR537102     1  0.5016      0.629 0.760 0.240  0
#> SRR537104     1  0.3816      0.636 0.852 0.148  0
#> SRR537105     1  0.3752      0.637 0.856 0.144  0
#> SRR537106     1  0.3752      0.637 0.856 0.144  0
#> SRR537107     1  0.3752      0.637 0.856 0.144  0
#> SRR537108     1  0.3752      0.637 0.856 0.144  0
#> SRR537109     1  0.3340      0.337 0.880 0.120  0
#> SRR537110     1  0.3192      0.432 0.888 0.112  0
#> SRR537111     1  0.6111      0.579 0.604 0.396  0
#> SRR537113     1  0.3340      0.627 0.880 0.120  0
#> SRR537114     1  0.3340      0.627 0.880 0.120  0
#> SRR537115     1  0.3340      0.627 0.880 0.120  0
#> SRR537116     1  0.3340      0.337 0.880 0.120  0
#> SRR537117     1  0.0237      0.535 0.996 0.004  0
#> SRR537118     1  0.0237      0.535 0.996 0.004  0
#> SRR537119     1  0.0237      0.535 0.996 0.004  0
#> SRR537120     1  0.0237      0.535 0.996 0.004  0
#> SRR537121     1  0.0237      0.535 0.996 0.004  0
#> SRR537122     1  0.0237      0.535 0.996 0.004  0
#> SRR537123     1  0.0237      0.535 0.996 0.004  0
#> SRR537124     1  0.0237      0.535 0.996 0.004  0
#> SRR537125     1  0.0237      0.535 0.996 0.004  0
#> SRR537126     1  0.0237      0.535 0.996 0.004  0
#> SRR537127     3  0.0000      1.000 0.000 0.000  1
#> SRR537128     3  0.0000      1.000 0.000 0.000  1
#> SRR537129     3  0.0000      1.000 0.000 0.000  1
#> SRR537130     3  0.0000      1.000 0.000 0.000  1
#> SRR537131     3  0.0000      1.000 0.000 0.000  1
#> SRR537132     3  0.0000      1.000 0.000 0.000  1
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR191639     1  0.2921      0.817 0.860 0.000  0 0.140
#> SRR191640     4  0.4040      0.707 0.248 0.000  0 0.752
#> SRR191641     4  0.4103      0.696 0.256 0.000  0 0.744
#> SRR191642     4  0.4040      0.707 0.248 0.000  0 0.752
#> SRR191643     4  0.3257      0.810 0.152 0.004  0 0.844
#> SRR191644     4  0.3257      0.810 0.152 0.004  0 0.844
#> SRR191645     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR191646     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR191647     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR191648     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR191649     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR191650     1  0.5088      0.271 0.572 0.004  0 0.424
#> SRR191651     1  0.5088      0.271 0.572 0.004  0 0.424
#> SRR191652     1  0.1716      0.906 0.936 0.000  0 0.064
#> SRR191653     4  0.3695      0.807 0.156 0.016  0 0.828
#> SRR191654     4  0.3695      0.807 0.156 0.016  0 0.828
#> SRR191655     4  0.3695      0.807 0.156 0.016  0 0.828
#> SRR191656     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191657     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191658     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191659     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191660     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191661     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191662     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191663     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191664     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191665     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191666     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191667     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191668     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191669     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191670     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191671     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191672     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191673     1  0.1557      0.914 0.944 0.000  0 0.056
#> SRR191674     2  0.4595      0.763 0.044 0.780  0 0.176
#> SRR191675     2  0.4595      0.763 0.044 0.780  0 0.176
#> SRR191677     2  0.5090      0.729 0.044 0.728  0 0.228
#> SRR191678     2  0.5090      0.729 0.044 0.728  0 0.228
#> SRR191679     2  0.4417      0.763 0.044 0.796  0 0.160
#> SRR191680     2  0.4595      0.763 0.044 0.780  0 0.176
#> SRR191681     2  0.5090      0.729 0.044 0.728  0 0.228
#> SRR191682     2  0.1488      0.816 0.012 0.956  0 0.032
#> SRR191683     2  0.1488      0.816 0.012 0.956  0 0.032
#> SRR191684     2  0.1488      0.816 0.012 0.956  0 0.032
#> SRR191685     2  0.1488      0.816 0.012 0.956  0 0.032
#> SRR191686     2  0.1488      0.816 0.012 0.956  0 0.032
#> SRR191687     2  0.1488      0.816 0.012 0.956  0 0.032
#> SRR191688     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR191689     4  0.2469      0.801 0.000 0.108  0 0.892
#> SRR191690     4  0.2469      0.801 0.000 0.108  0 0.892
#> SRR191691     4  0.2760      0.790 0.000 0.128  0 0.872
#> SRR191692     2  0.5853      0.332 0.032 0.508  0 0.460
#> SRR191693     2  0.5853      0.332 0.032 0.508  0 0.460
#> SRR191694     2  0.5853      0.332 0.032 0.508  0 0.460
#> SRR191695     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR191696     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR191697     4  0.2760      0.790 0.000 0.128  0 0.872
#> SRR191698     4  0.2760      0.790 0.000 0.128  0 0.872
#> SRR191699     4  0.2469      0.801 0.000 0.108  0 0.892
#> SRR191700     4  0.2760      0.790 0.000 0.128  0 0.872
#> SRR191701     4  0.2760      0.790 0.000 0.128  0 0.872
#> SRR191702     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191703     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191704     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191705     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191706     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191707     2  0.4072      0.628 0.000 0.748  0 0.252
#> SRR191708     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191709     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191710     2  0.1118      0.822 0.000 0.964  0 0.036
#> SRR191711     4  0.2345      0.805 0.000 0.100  0 0.900
#> SRR191712     4  0.2345      0.805 0.000 0.100  0 0.900
#> SRR191713     2  0.1388      0.813 0.012 0.960  0 0.028
#> SRR191714     2  0.1388      0.813 0.012 0.960  0 0.028
#> SRR191715     4  0.2408      0.803 0.000 0.104  0 0.896
#> SRR191716     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR191717     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR191718     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR537099     4  0.4360      0.704 0.248 0.008  0 0.744
#> SRR537100     4  0.4360      0.704 0.248 0.008  0 0.744
#> SRR537101     4  0.4103      0.696 0.256 0.000  0 0.744
#> SRR537102     4  0.4040      0.707 0.248 0.000  0 0.752
#> SRR537104     4  0.3529      0.808 0.152 0.012  0 0.836
#> SRR537105     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR537106     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR537107     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR537108     4  0.3074      0.809 0.152 0.000  0 0.848
#> SRR537109     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR537110     4  0.3099      0.813 0.020 0.104  0 0.876
#> SRR537111     1  0.5088      0.271 0.572 0.004  0 0.424
#> SRR537113     4  0.2760      0.820 0.128 0.000  0 0.872
#> SRR537114     4  0.2760      0.820 0.128 0.000  0 0.872
#> SRR537115     4  0.2760      0.820 0.128 0.000  0 0.872
#> SRR537116     4  0.2647      0.791 0.000 0.120  0 0.880
#> SRR537117     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537118     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537119     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537120     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537121     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537122     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537123     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537124     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537125     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537126     4  0.0524      0.841 0.008 0.004  0 0.988
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR191639     1  0.2230      0.769 0.884 0.000  0 0.116 0.000
#> SRR191640     4  0.2280      0.732 0.120 0.000  0 0.880 0.000
#> SRR191641     4  0.2424      0.718 0.132 0.000  0 0.868 0.000
#> SRR191642     4  0.2280      0.732 0.120 0.000  0 0.880 0.000
#> SRR191643     4  0.0955      0.812 0.028 0.004  0 0.968 0.000
#> SRR191644     4  0.0955      0.812 0.028 0.004  0 0.968 0.000
#> SRR191645     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR191646     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR191647     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR191648     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR191649     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR191650     1  0.4310      0.347 0.604 0.004  0 0.392 0.000
#> SRR191651     1  0.4310      0.347 0.604 0.004  0 0.392 0.000
#> SRR191652     1  0.0609      0.887 0.980 0.000  0 0.020 0.000
#> SRR191653     4  0.1630      0.808 0.036 0.016  0 0.944 0.004
#> SRR191654     4  0.1630      0.808 0.036 0.016  0 0.944 0.004
#> SRR191655     4  0.1630      0.808 0.036 0.016  0 0.944 0.004
#> SRR191656     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191657     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191658     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191659     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191660     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191661     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191662     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191663     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191664     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191665     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191666     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191667     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191668     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191669     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191670     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191671     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191672     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191673     1  0.0000      0.905 1.000 0.000  0 0.000 0.000
#> SRR191674     5  0.0963      0.721 0.000 0.000  0 0.036 0.964
#> SRR191675     5  0.0963      0.721 0.000 0.000  0 0.036 0.964
#> SRR191677     5  0.1851      0.738 0.000 0.000  0 0.088 0.912
#> SRR191678     5  0.1851      0.738 0.000 0.000  0 0.088 0.912
#> SRR191679     5  0.0609      0.694 0.000 0.000  0 0.020 0.980
#> SRR191680     5  0.0963      0.721 0.000 0.000  0 0.036 0.964
#> SRR191681     5  0.1851      0.738 0.000 0.000  0 0.088 0.912
#> SRR191682     2  0.4161      0.695 0.000 0.704  0 0.016 0.280
#> SRR191683     2  0.4161      0.695 0.000 0.704  0 0.016 0.280
#> SRR191684     2  0.4161      0.695 0.000 0.704  0 0.016 0.280
#> SRR191685     2  0.4161      0.695 0.000 0.704  0 0.016 0.280
#> SRR191686     2  0.4161      0.695 0.000 0.704  0 0.016 0.280
#> SRR191687     2  0.4161      0.695 0.000 0.704  0 0.016 0.280
#> SRR191688     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR191689     4  0.4134      0.773 0.000 0.044  0 0.760 0.196
#> SRR191690     4  0.4134      0.773 0.000 0.044  0 0.760 0.196
#> SRR191691     4  0.4429      0.764 0.000 0.064  0 0.744 0.192
#> SRR191692     5  0.4655      0.532 0.000 0.028  0 0.328 0.644
#> SRR191693     5  0.4655      0.532 0.000 0.028  0 0.328 0.644
#> SRR191694     5  0.4655      0.532 0.000 0.028  0 0.328 0.644
#> SRR191695     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR191696     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR191697     4  0.4429      0.764 0.000 0.064  0 0.744 0.192
#> SRR191698     4  0.4429      0.764 0.000 0.064  0 0.744 0.192
#> SRR191699     4  0.4134      0.773 0.000 0.044  0 0.760 0.196
#> SRR191700     4  0.4429      0.764 0.000 0.064  0 0.744 0.192
#> SRR191701     4  0.4429      0.764 0.000 0.064  0 0.744 0.192
#> SRR191702     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191703     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191704     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191705     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191706     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191707     2  0.3942      0.453 0.000 0.748  0 0.232 0.020
#> SRR191708     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191709     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191710     2  0.2561      0.758 0.000 0.856  0 0.000 0.144
#> SRR191711     4  0.4028      0.777 0.000 0.040  0 0.768 0.192
#> SRR191712     4  0.4028      0.777 0.000 0.040  0 0.768 0.192
#> SRR191713     2  0.3630      0.723 0.000 0.780  0 0.016 0.204
#> SRR191714     2  0.3630      0.723 0.000 0.780  0 0.016 0.204
#> SRR191715     4  0.4062      0.775 0.000 0.040  0 0.764 0.196
#> SRR191716     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR191717     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR191718     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR537099     4  0.2597      0.728 0.120 0.004  0 0.872 0.004
#> SRR537100     4  0.2597      0.728 0.120 0.004  0 0.872 0.004
#> SRR537101     4  0.2377      0.722 0.128 0.000  0 0.872 0.000
#> SRR537102     4  0.2280      0.732 0.120 0.000  0 0.880 0.000
#> SRR537104     4  0.1153      0.811 0.024 0.008  0 0.964 0.004
#> SRR537105     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR537106     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR537107     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR537108     4  0.0703      0.813 0.024 0.000  0 0.976 0.000
#> SRR537109     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR537110     4  0.4711      0.786 0.020 0.048  0 0.744 0.188
#> SRR537111     1  0.4310      0.347 0.604 0.004  0 0.392 0.000
#> SRR537113     4  0.0000      0.817 0.000 0.000  0 1.000 0.000
#> SRR537114     4  0.0000      0.817 0.000 0.000  0 1.000 0.000
#> SRR537115     4  0.0000      0.817 0.000 0.000  0 1.000 0.000
#> SRR537116     4  0.4150      0.760 0.000 0.036  0 0.748 0.216
#> SRR537117     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537118     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537119     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537120     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537121     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537122     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537123     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537124     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537125     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537126     4  0.2329      0.822 0.000 0.000  0 0.876 0.124
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     1  0.3366      0.760 0.832 0.016  0 0.100 0.000 0.052
#> SRR191640     4  0.5074      0.685 0.108 0.296  0 0.596 0.000 0.000
#> SRR191641     4  0.5169      0.676 0.120 0.292  0 0.588 0.000 0.000
#> SRR191642     4  0.5074      0.685 0.108 0.296  0 0.596 0.000 0.000
#> SRR191643     4  0.3935      0.758 0.016 0.292  0 0.688 0.004 0.000
#> SRR191644     4  0.3935      0.758 0.016 0.292  0 0.688 0.004 0.000
#> SRR191645     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR191646     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR191647     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR191648     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR191649     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR191650     1  0.4333      0.304 0.596 0.020  0 0.380 0.004 0.000
#> SRR191651     1  0.4333      0.304 0.596 0.020  0 0.380 0.004 0.000
#> SRR191652     1  0.0622      0.871 0.980 0.012  0 0.008 0.000 0.000
#> SRR191653     4  0.4397      0.754 0.024 0.296  0 0.664 0.016 0.000
#> SRR191654     4  0.4397      0.754 0.024 0.296  0 0.664 0.016 0.000
#> SRR191655     4  0.4397      0.754 0.024 0.296  0 0.664 0.016 0.000
#> SRR191656     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191657     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191658     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191659     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191660     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191661     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191662     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191663     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191664     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191665     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191666     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191667     1  0.0000      0.884 1.000 0.000  0 0.000 0.000 0.000
#> SRR191668     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191669     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191670     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191671     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191672     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191673     1  0.1141      0.876 0.948 0.000  0 0.000 0.000 0.052
#> SRR191674     6  0.1930      0.711 0.000 0.000  0 0.036 0.048 0.916
#> SRR191675     6  0.1930      0.711 0.000 0.000  0 0.036 0.048 0.916
#> SRR191677     6  0.1556      0.713 0.000 0.000  0 0.080 0.000 0.920
#> SRR191678     6  0.1556      0.713 0.000 0.000  0 0.080 0.000 0.920
#> SRR191679     6  0.1434      0.678 0.000 0.000  0 0.012 0.048 0.940
#> SRR191680     6  0.1930      0.711 0.000 0.000  0 0.036 0.048 0.916
#> SRR191681     6  0.1556      0.713 0.000 0.000  0 0.080 0.000 0.920
#> SRR191682     5  0.0000      0.915 0.000 0.000  0 0.000 1.000 0.000
#> SRR191683     5  0.0000      0.915 0.000 0.000  0 0.000 1.000 0.000
#> SRR191684     5  0.0000      0.915 0.000 0.000  0 0.000 1.000 0.000
#> SRR191685     5  0.0000      0.915 0.000 0.000  0 0.000 1.000 0.000
#> SRR191686     5  0.0000      0.915 0.000 0.000  0 0.000 1.000 0.000
#> SRR191687     5  0.0000      0.915 0.000 0.000  0 0.000 1.000 0.000
#> SRR191688     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR191689     4  0.2418      0.694 0.000 0.016  0 0.884 0.092 0.008
#> SRR191690     4  0.2418      0.694 0.000 0.016  0 0.884 0.092 0.008
#> SRR191691     4  0.2494      0.685 0.000 0.016  0 0.864 0.120 0.000
#> SRR191692     6  0.5689      0.490 0.000 0.012  0 0.408 0.112 0.468
#> SRR191693     6  0.5689      0.490 0.000 0.012  0 0.408 0.112 0.468
#> SRR191694     6  0.5689      0.490 0.000 0.012  0 0.408 0.112 0.468
#> SRR191695     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR191696     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR191697     4  0.2494      0.685 0.000 0.016  0 0.864 0.120 0.000
#> SRR191698     4  0.2494      0.685 0.000 0.016  0 0.864 0.120 0.000
#> SRR191699     4  0.2418      0.694 0.000 0.016  0 0.884 0.092 0.008
#> SRR191700     4  0.2494      0.685 0.000 0.016  0 0.864 0.120 0.000
#> SRR191701     4  0.2494      0.685 0.000 0.016  0 0.864 0.120 0.000
#> SRR191702     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191703     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191704     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191705     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191706     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191707     2  0.5881      0.330 0.000 0.472  0 0.232 0.296 0.000
#> SRR191708     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191709     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191710     2  0.3634      0.914 0.000 0.696  0 0.000 0.296 0.008
#> SRR191711     4  0.3808      0.746 0.000 0.112  0 0.792 0.088 0.008
#> SRR191712     4  0.3808      0.746 0.000 0.112  0 0.792 0.088 0.008
#> SRR191713     5  0.2597      0.677 0.000 0.176  0 0.000 0.824 0.000
#> SRR191714     5  0.2597      0.677 0.000 0.176  0 0.000 0.824 0.000
#> SRR191715     4  0.3906      0.744 0.000 0.112  0 0.788 0.088 0.012
#> SRR191716     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR191717     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR191718     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR537099     4  0.5311      0.682 0.108 0.296  0 0.588 0.008 0.000
#> SRR537100     4  0.5311      0.682 0.108 0.296  0 0.588 0.008 0.000
#> SRR537101     4  0.5148      0.677 0.116 0.296  0 0.588 0.000 0.000
#> SRR537102     4  0.5074      0.685 0.108 0.296  0 0.596 0.000 0.000
#> SRR537104     4  0.4067      0.755 0.012 0.296  0 0.680 0.012 0.000
#> SRR537105     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR537106     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR537107     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR537108     4  0.3729      0.757 0.012 0.296  0 0.692 0.000 0.000
#> SRR537109     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR537110     4  0.4253      0.753 0.012 0.132  0 0.756 0.100 0.000
#> SRR537111     1  0.4333      0.304 0.596 0.020  0 0.380 0.004 0.000
#> SRR537113     4  0.3330      0.762 0.000 0.284  0 0.716 0.000 0.000
#> SRR537114     4  0.3330      0.762 0.000 0.284  0 0.716 0.000 0.000
#> SRR537115     4  0.3330      0.762 0.000 0.284  0 0.716 0.000 0.000
#> SRR537116     4  0.4259      0.735 0.000 0.112  0 0.772 0.084 0.032
#> SRR537117     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537118     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537119     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537120     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537121     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537122     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537123     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537124     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537125     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537126     4  0.0000      0.749 0.000 0.000  0 1.000 0.000 0.000
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.499           0.908       0.925         0.4544 0.499   0.499
#> 3 3 0.611           0.623       0.778         0.3442 0.930   0.860
#> 4 4 0.562           0.695       0.736         0.1308 0.771   0.534
#> 5 5 0.621           0.731       0.741         0.0816 0.885   0.660
#> 6 6 0.630           0.646       0.725         0.0586 0.960   0.834
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.4690      0.905 0.900 0.100
#> SRR191640     1  0.4690      0.905 0.900 0.100
#> SRR191641     1  0.4690      0.905 0.900 0.100
#> SRR191642     1  0.8909      0.739 0.692 0.308
#> SRR191643     1  0.9393      0.674 0.644 0.356
#> SRR191644     1  0.9044      0.724 0.680 0.320
#> SRR191645     1  0.4690      0.905 0.900 0.100
#> SRR191646     1  0.4690      0.905 0.900 0.100
#> SRR191647     1  0.4690      0.905 0.900 0.100
#> SRR191648     1  0.4690      0.905 0.900 0.100
#> SRR191649     1  0.4690      0.905 0.900 0.100
#> SRR191650     1  0.4690      0.905 0.900 0.100
#> SRR191651     1  0.4690      0.905 0.900 0.100
#> SRR191652     1  0.4690      0.905 0.900 0.100
#> SRR191653     1  0.7376      0.833 0.792 0.208
#> SRR191654     1  0.9358      0.680 0.648 0.352
#> SRR191655     1  0.7528      0.832 0.784 0.216
#> SRR191656     1  0.4690      0.905 0.900 0.100
#> SRR191657     1  0.4690      0.905 0.900 0.100
#> SRR191658     1  0.4690      0.905 0.900 0.100
#> SRR191659     1  0.4690      0.905 0.900 0.100
#> SRR191660     1  0.4690      0.905 0.900 0.100
#> SRR191661     1  0.4690      0.905 0.900 0.100
#> SRR191662     1  0.4690      0.905 0.900 0.100
#> SRR191663     1  0.4690      0.905 0.900 0.100
#> SRR191664     1  0.4690      0.905 0.900 0.100
#> SRR191665     1  0.4690      0.905 0.900 0.100
#> SRR191666     1  0.1843      0.860 0.972 0.028
#> SRR191667     1  0.1843      0.860 0.972 0.028
#> SRR191668     1  0.4690      0.905 0.900 0.100
#> SRR191669     1  0.4690      0.905 0.900 0.100
#> SRR191670     1  0.4690      0.905 0.900 0.100
#> SRR191671     1  0.4690      0.905 0.900 0.100
#> SRR191672     1  0.4690      0.905 0.900 0.100
#> SRR191673     1  0.4690      0.905 0.900 0.100
#> SRR191674     2  0.0000      0.986 0.000 1.000
#> SRR191675     2  0.0000      0.986 0.000 1.000
#> SRR191677     2  0.0000      0.986 0.000 1.000
#> SRR191678     2  0.0000      0.986 0.000 1.000
#> SRR191679     2  0.0000      0.986 0.000 1.000
#> SRR191680     2  0.0000      0.986 0.000 1.000
#> SRR191681     2  0.0000      0.986 0.000 1.000
#> SRR191682     2  0.0000      0.986 0.000 1.000
#> SRR191683     2  0.0000      0.986 0.000 1.000
#> SRR191684     2  0.0000      0.986 0.000 1.000
#> SRR191685     2  0.0000      0.986 0.000 1.000
#> SRR191686     2  0.0000      0.986 0.000 1.000
#> SRR191687     2  0.0000      0.986 0.000 1.000
#> SRR191688     2  0.0000      0.986 0.000 1.000
#> SRR191689     2  0.0000      0.986 0.000 1.000
#> SRR191690     2  0.0000      0.986 0.000 1.000
#> SRR191691     2  0.0000      0.986 0.000 1.000
#> SRR191692     2  0.0000      0.986 0.000 1.000
#> SRR191693     2  0.0000      0.986 0.000 1.000
#> SRR191694     2  0.0000      0.986 0.000 1.000
#> SRR191695     2  0.0000      0.986 0.000 1.000
#> SRR191696     2  0.0000      0.986 0.000 1.000
#> SRR191697     2  0.0000      0.986 0.000 1.000
#> SRR191698     2  0.0000      0.986 0.000 1.000
#> SRR191699     2  0.0000      0.986 0.000 1.000
#> SRR191700     2  0.0000      0.986 0.000 1.000
#> SRR191701     2  0.0000      0.986 0.000 1.000
#> SRR191702     2  0.0000      0.986 0.000 1.000
#> SRR191703     2  0.0000      0.986 0.000 1.000
#> SRR191704     2  0.0000      0.986 0.000 1.000
#> SRR191705     2  0.0000      0.986 0.000 1.000
#> SRR191706     2  0.0000      0.986 0.000 1.000
#> SRR191707     2  0.0000      0.986 0.000 1.000
#> SRR191708     2  0.0000      0.986 0.000 1.000
#> SRR191709     2  0.0000      0.986 0.000 1.000
#> SRR191710     2  0.0000      0.986 0.000 1.000
#> SRR191711     2  0.0000      0.986 0.000 1.000
#> SRR191712     2  0.0000      0.986 0.000 1.000
#> SRR191713     2  0.0000      0.986 0.000 1.000
#> SRR191714     2  0.0000      0.986 0.000 1.000
#> SRR191715     2  0.0000      0.986 0.000 1.000
#> SRR191716     2  0.0000      0.986 0.000 1.000
#> SRR191717     2  0.0000      0.986 0.000 1.000
#> SRR191718     2  0.0000      0.986 0.000 1.000
#> SRR537099     1  0.9427      0.668 0.640 0.360
#> SRR537100     1  0.7528      0.832 0.784 0.216
#> SRR537101     1  0.4690      0.905 0.900 0.100
#> SRR537102     1  0.9491      0.654 0.632 0.368
#> SRR537104     1  0.9963      0.433 0.536 0.464
#> SRR537105     1  0.7883      0.814 0.764 0.236
#> SRR537106     1  0.9491      0.654 0.632 0.368
#> SRR537107     1  0.9491      0.654 0.632 0.368
#> SRR537108     1  0.9491      0.654 0.632 0.368
#> SRR537109     2  0.0000      0.986 0.000 1.000
#> SRR537110     2  0.0000      0.986 0.000 1.000
#> SRR537111     1  0.9209      0.703 0.664 0.336
#> SRR537113     2  0.8608      0.471 0.284 0.716
#> SRR537114     2  0.8608      0.471 0.284 0.716
#> SRR537115     2  0.0000      0.986 0.000 1.000
#> SRR537116     2  0.0000      0.986 0.000 1.000
#> SRR537117     2  0.0000      0.986 0.000 1.000
#> SRR537118     2  0.0672      0.980 0.008 0.992
#> SRR537119     2  0.0672      0.980 0.008 0.992
#> SRR537120     2  0.0672      0.980 0.008 0.992
#> SRR537121     2  0.0672      0.980 0.008 0.992
#> SRR537122     2  0.0672      0.980 0.008 0.992
#> SRR537123     2  0.0672      0.980 0.008 0.992
#> SRR537124     2  0.0672      0.980 0.008 0.992
#> SRR537125     2  0.0672      0.980 0.008 0.992
#> SRR537126     2  0.0672      0.980 0.008 0.992
#> SRR537127     1  0.0000      0.840 1.000 0.000
#> SRR537128     1  0.0000      0.840 1.000 0.000
#> SRR537129     1  0.0000      0.840 1.000 0.000
#> SRR537130     1  0.0000      0.840 1.000 0.000
#> SRR537131     1  0.0000      0.840 1.000 0.000
#> SRR537132     1  0.0000      0.840 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.1753      0.709 0.952 0.000 0.048
#> SRR191640     1  0.6180      0.631 0.584 0.000 0.416
#> SRR191641     1  0.6062      0.650 0.616 0.000 0.384
#> SRR191642     1  0.7430      0.591 0.540 0.036 0.424
#> SRR191643     1  0.8039      0.550 0.508 0.064 0.428
#> SRR191644     1  0.7801      0.568 0.520 0.052 0.428
#> SRR191645     1  0.6111      0.642 0.604 0.000 0.396
#> SRR191646     1  0.6111      0.642 0.604 0.000 0.396
#> SRR191647     1  0.6140      0.639 0.596 0.000 0.404
#> SRR191648     1  0.6140      0.639 0.596 0.000 0.404
#> SRR191649     1  0.6140      0.639 0.596 0.000 0.404
#> SRR191650     1  0.5905      0.647 0.648 0.000 0.352
#> SRR191651     1  0.0592      0.710 0.988 0.000 0.012
#> SRR191652     1  0.2711      0.709 0.912 0.000 0.088
#> SRR191653     1  0.7755      0.548 0.492 0.048 0.460
#> SRR191654     1  0.8141      0.512 0.472 0.068 0.460
#> SRR191655     1  0.7337      0.593 0.540 0.032 0.428
#> SRR191656     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191657     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191658     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191659     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191660     1  0.0237      0.709 0.996 0.000 0.004
#> SRR191661     1  0.0592      0.709 0.988 0.000 0.012
#> SRR191662     1  0.0424      0.709 0.992 0.000 0.008
#> SRR191663     1  0.0592      0.709 0.988 0.000 0.012
#> SRR191664     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191665     1  0.0237      0.709 0.996 0.000 0.004
#> SRR191666     1  0.1964      0.708 0.944 0.000 0.056
#> SRR191667     1  0.1964      0.708 0.944 0.000 0.056
#> SRR191668     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191669     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191670     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191671     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191672     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191673     1  0.0000      0.708 1.000 0.000 0.000
#> SRR191674     2  0.3941      0.726 0.000 0.844 0.156
#> SRR191675     2  0.3941      0.726 0.000 0.844 0.156
#> SRR191677     2  0.3941      0.726 0.000 0.844 0.156
#> SRR191678     2  0.3941      0.726 0.000 0.844 0.156
#> SRR191679     2  0.3879      0.730 0.000 0.848 0.152
#> SRR191680     2  0.3941      0.726 0.000 0.844 0.156
#> SRR191681     2  0.3941      0.726 0.000 0.844 0.156
#> SRR191682     2  0.3267      0.780 0.000 0.884 0.116
#> SRR191683     2  0.3267      0.780 0.000 0.884 0.116
#> SRR191684     2  0.3340      0.780 0.000 0.880 0.120
#> SRR191685     2  0.3340      0.780 0.000 0.880 0.120
#> SRR191686     2  0.3192      0.779 0.000 0.888 0.112
#> SRR191687     2  0.3340      0.780 0.000 0.880 0.120
#> SRR191688     2  0.0592      0.812 0.000 0.988 0.012
#> SRR191689     2  0.1964      0.799 0.000 0.944 0.056
#> SRR191690     2  0.0747      0.811 0.000 0.984 0.016
#> SRR191691     2  0.1860      0.806 0.000 0.948 0.052
#> SRR191692     2  0.3941      0.726 0.000 0.844 0.156
#> SRR191693     2  0.4291      0.705 0.000 0.820 0.180
#> SRR191694     2  0.3340      0.761 0.000 0.880 0.120
#> SRR191695     2  0.0424      0.813 0.000 0.992 0.008
#> SRR191696     2  0.0424      0.813 0.000 0.992 0.008
#> SRR191697     2  0.1163      0.811 0.000 0.972 0.028
#> SRR191698     2  0.1860      0.806 0.000 0.948 0.052
#> SRR191699     2  0.1411      0.810 0.000 0.964 0.036
#> SRR191700     2  0.3941      0.663 0.000 0.844 0.156
#> SRR191701     2  0.1753      0.807 0.000 0.952 0.048
#> SRR191702     2  0.1643      0.803 0.000 0.956 0.044
#> SRR191703     2  0.1643      0.803 0.000 0.956 0.044
#> SRR191704     2  0.1860      0.804 0.000 0.948 0.052
#> SRR191705     2  0.1860      0.804 0.000 0.948 0.052
#> SRR191706     2  0.1753      0.804 0.000 0.952 0.048
#> SRR191707     2  0.1529      0.808 0.000 0.960 0.040
#> SRR191708     2  0.1860      0.804 0.000 0.948 0.052
#> SRR191709     2  0.1860      0.804 0.000 0.948 0.052
#> SRR191710     2  0.1860      0.804 0.000 0.948 0.052
#> SRR191711     2  0.1860      0.804 0.000 0.948 0.052
#> SRR191712     2  0.1860      0.804 0.000 0.948 0.052
#> SRR191713     2  0.1964      0.803 0.000 0.944 0.056
#> SRR191714     2  0.1964      0.803 0.000 0.944 0.056
#> SRR191715     2  0.1529      0.804 0.000 0.960 0.040
#> SRR191716     2  0.0747      0.811 0.000 0.984 0.016
#> SRR191717     2  0.0747      0.811 0.000 0.984 0.016
#> SRR191718     2  0.0237      0.813 0.000 0.996 0.004
#> SRR537099     1  0.8119      0.538 0.500 0.068 0.432
#> SRR537100     1  0.7446      0.586 0.532 0.036 0.432
#> SRR537101     1  0.6062      0.650 0.616 0.000 0.384
#> SRR537102     1  0.8119      0.538 0.500 0.068 0.432
#> SRR537104     3  0.9515     -0.250 0.388 0.188 0.424
#> SRR537105     1  0.7735      0.561 0.512 0.048 0.440
#> SRR537106     1  0.8450      0.491 0.484 0.088 0.428
#> SRR537107     1  0.8450      0.491 0.484 0.088 0.428
#> SRR537108     1  0.8450      0.491 0.484 0.088 0.428
#> SRR537109     2  0.1860      0.790 0.000 0.948 0.052
#> SRR537110     2  0.3619      0.688 0.000 0.864 0.136
#> SRR537111     1  0.7552      0.594 0.596 0.052 0.352
#> SRR537113     3  0.9192      0.542 0.176 0.308 0.516
#> SRR537114     3  0.9151      0.520 0.180 0.292 0.528
#> SRR537115     3  0.6664      0.514 0.008 0.464 0.528
#> SRR537116     2  0.1163      0.810 0.000 0.972 0.028
#> SRR537117     2  0.6204     -0.177 0.000 0.576 0.424
#> SRR537118     2  0.6302     -0.405 0.000 0.520 0.480
#> SRR537119     2  0.6302     -0.405 0.000 0.520 0.480
#> SRR537120     2  0.6280     -0.319 0.000 0.540 0.460
#> SRR537121     3  0.6286      0.529 0.000 0.464 0.536
#> SRR537122     3  0.6286      0.529 0.000 0.464 0.536
#> SRR537123     3  0.6286      0.529 0.000 0.464 0.536
#> SRR537124     2  0.6291     -0.354 0.000 0.532 0.468
#> SRR537125     3  0.6309      0.402 0.000 0.500 0.500
#> SRR537126     2  0.6309     -0.486 0.000 0.500 0.500
#> SRR537127     1  0.6235      0.491 0.564 0.000 0.436
#> SRR537128     1  0.6235      0.491 0.564 0.000 0.436
#> SRR537129     1  0.6235      0.491 0.564 0.000 0.436
#> SRR537130     1  0.6235      0.491 0.564 0.000 0.436
#> SRR537131     1  0.6235      0.491 0.564 0.000 0.436
#> SRR537132     1  0.6235      0.491 0.564 0.000 0.436
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.1576     0.9140 0.948 0.000 0.004 0.048
#> SRR191640     4  0.4776     0.5235 0.376 0.000 0.000 0.624
#> SRR191641     4  0.4830     0.5033 0.392 0.000 0.000 0.608
#> SRR191642     4  0.5175     0.5509 0.328 0.012 0.004 0.656
#> SRR191643     4  0.5134     0.5525 0.320 0.012 0.004 0.664
#> SRR191644     4  0.5154     0.5513 0.324 0.012 0.004 0.660
#> SRR191645     4  0.4830     0.5033 0.392 0.000 0.000 0.608
#> SRR191646     4  0.4830     0.5033 0.392 0.000 0.000 0.608
#> SRR191647     4  0.4804     0.5164 0.384 0.000 0.000 0.616
#> SRR191648     4  0.4804     0.5164 0.384 0.000 0.000 0.616
#> SRR191649     4  0.4804     0.5164 0.384 0.000 0.000 0.616
#> SRR191650     4  0.4985     0.3748 0.468 0.000 0.000 0.532
#> SRR191651     1  0.1743     0.9038 0.940 0.000 0.004 0.056
#> SRR191652     1  0.2345     0.8314 0.900 0.000 0.000 0.100
#> SRR191653     4  0.4923     0.5511 0.304 0.008 0.004 0.684
#> SRR191654     4  0.4923     0.5511 0.304 0.008 0.004 0.684
#> SRR191655     4  0.5134     0.5516 0.320 0.012 0.004 0.664
#> SRR191656     1  0.0524     0.9486 0.988 0.000 0.004 0.008
#> SRR191657     1  0.0592     0.9452 0.984 0.000 0.016 0.000
#> SRR191658     1  0.0592     0.9452 0.984 0.000 0.016 0.000
#> SRR191659     1  0.0592     0.9452 0.984 0.000 0.016 0.000
#> SRR191660     1  0.0927     0.9454 0.976 0.000 0.016 0.008
#> SRR191661     1  0.1182     0.9410 0.968 0.000 0.016 0.016
#> SRR191662     1  0.0779     0.9456 0.980 0.000 0.016 0.004
#> SRR191663     1  0.1059     0.9434 0.972 0.000 0.016 0.012
#> SRR191664     1  0.0592     0.9452 0.984 0.000 0.016 0.000
#> SRR191665     1  0.0779     0.9458 0.980 0.000 0.004 0.016
#> SRR191666     1  0.2542     0.8337 0.904 0.000 0.012 0.084
#> SRR191667     1  0.2542     0.8337 0.904 0.000 0.012 0.084
#> SRR191668     1  0.0524     0.9486 0.988 0.000 0.004 0.008
#> SRR191669     1  0.0524     0.9486 0.988 0.000 0.004 0.008
#> SRR191670     1  0.0524     0.9486 0.988 0.000 0.004 0.008
#> SRR191671     1  0.0524     0.9486 0.988 0.000 0.004 0.008
#> SRR191672     1  0.0524     0.9486 0.988 0.000 0.004 0.008
#> SRR191673     1  0.0524     0.9486 0.988 0.000 0.004 0.008
#> SRR191674     2  0.6792     0.6715 0.000 0.588 0.272 0.140
#> SRR191675     2  0.6792     0.6715 0.000 0.588 0.272 0.140
#> SRR191677     2  0.6833     0.6692 0.000 0.584 0.272 0.144
#> SRR191678     2  0.6950     0.6618 0.000 0.572 0.272 0.156
#> SRR191679     2  0.6770     0.6751 0.000 0.592 0.268 0.140
#> SRR191680     2  0.6792     0.6715 0.000 0.588 0.272 0.140
#> SRR191681     2  0.6833     0.6692 0.000 0.584 0.272 0.144
#> SRR191682     2  0.5731     0.7776 0.000 0.712 0.172 0.116
#> SRR191683     2  0.5731     0.7776 0.000 0.712 0.172 0.116
#> SRR191684     2  0.5690     0.7805 0.000 0.716 0.168 0.116
#> SRR191685     2  0.5783     0.7771 0.000 0.708 0.172 0.120
#> SRR191686     2  0.5731     0.7776 0.000 0.712 0.172 0.116
#> SRR191687     2  0.5783     0.7771 0.000 0.708 0.172 0.120
#> SRR191688     2  0.1936     0.8316 0.000 0.940 0.028 0.032
#> SRR191689     2  0.3716     0.8205 0.000 0.852 0.096 0.052
#> SRR191690     2  0.1913     0.8319 0.000 0.940 0.020 0.040
#> SRR191691     2  0.4424     0.8088 0.000 0.812 0.088 0.100
#> SRR191692     2  0.6833     0.6692 0.000 0.584 0.272 0.144
#> SRR191693     2  0.7254     0.6405 0.000 0.524 0.300 0.176
#> SRR191694     2  0.6488     0.7082 0.000 0.628 0.244 0.128
#> SRR191695     2  0.2131     0.8312 0.000 0.932 0.032 0.036
#> SRR191696     2  0.2131     0.8312 0.000 0.932 0.032 0.036
#> SRR191697     2  0.3903     0.8234 0.000 0.844 0.080 0.076
#> SRR191698     2  0.4535     0.8065 0.000 0.804 0.084 0.112
#> SRR191699     2  0.3903     0.8168 0.000 0.844 0.080 0.076
#> SRR191700     2  0.5728     0.7233 0.000 0.708 0.104 0.188
#> SRR191701     2  0.4297     0.8109 0.000 0.820 0.084 0.096
#> SRR191702     2  0.2179     0.8240 0.000 0.924 0.064 0.012
#> SRR191703     2  0.2179     0.8240 0.000 0.924 0.064 0.012
#> SRR191704     2  0.2376     0.8230 0.000 0.916 0.068 0.016
#> SRR191705     2  0.2376     0.8230 0.000 0.916 0.068 0.016
#> SRR191706     2  0.2255     0.8248 0.000 0.920 0.068 0.012
#> SRR191707     2  0.2623     0.8234 0.000 0.908 0.064 0.028
#> SRR191708     2  0.2376     0.8230 0.000 0.916 0.068 0.016
#> SRR191709     2  0.2376     0.8230 0.000 0.916 0.068 0.016
#> SRR191710     2  0.2376     0.8230 0.000 0.916 0.068 0.016
#> SRR191711     2  0.1610     0.8295 0.000 0.952 0.032 0.016
#> SRR191712     2  0.1610     0.8295 0.000 0.952 0.032 0.016
#> SRR191713     2  0.2699     0.8202 0.000 0.904 0.068 0.028
#> SRR191714     2  0.2699     0.8202 0.000 0.904 0.068 0.028
#> SRR191715     2  0.1798     0.8286 0.000 0.944 0.040 0.016
#> SRR191716     2  0.2224     0.8305 0.000 0.928 0.032 0.040
#> SRR191717     2  0.1929     0.8319 0.000 0.940 0.024 0.036
#> SRR191718     2  0.2131     0.8312 0.000 0.932 0.032 0.036
#> SRR537099     4  0.5045     0.5515 0.304 0.012 0.004 0.680
#> SRR537100     4  0.5068     0.5522 0.308 0.012 0.004 0.676
#> SRR537101     4  0.4830     0.5033 0.392 0.000 0.000 0.608
#> SRR537102     4  0.5239     0.5530 0.300 0.020 0.004 0.676
#> SRR537104     4  0.5968     0.5125 0.240 0.056 0.016 0.688
#> SRR537105     4  0.5405     0.5515 0.312 0.024 0.004 0.660
#> SRR537106     4  0.5799     0.5443 0.292 0.048 0.004 0.656
#> SRR537107     4  0.5799     0.5443 0.292 0.048 0.004 0.656
#> SRR537108     4  0.5799     0.5443 0.292 0.048 0.004 0.656
#> SRR537109     2  0.2773     0.8129 0.000 0.900 0.028 0.072
#> SRR537110     2  0.4719     0.6999 0.000 0.772 0.048 0.180
#> SRR537111     4  0.5687     0.3812 0.456 0.012 0.008 0.524
#> SRR537113     4  0.6524     0.3853 0.092 0.116 0.076 0.716
#> SRR537114     4  0.6417     0.3885 0.092 0.108 0.076 0.724
#> SRR537115     4  0.5575     0.3183 0.004 0.156 0.104 0.736
#> SRR537116     2  0.1929     0.8290 0.000 0.940 0.036 0.024
#> SRR537117     4  0.7479    -0.0373 0.000 0.300 0.208 0.492
#> SRR537118     4  0.7301     0.1424 0.000 0.236 0.228 0.536
#> SRR537119     4  0.7301     0.1424 0.000 0.236 0.228 0.536
#> SRR537120     4  0.7369     0.1156 0.000 0.248 0.228 0.524
#> SRR537121     4  0.7058     0.2197 0.000 0.200 0.228 0.572
#> SRR537122     4  0.7058     0.2197 0.000 0.200 0.228 0.572
#> SRR537123     4  0.7058     0.2197 0.000 0.200 0.228 0.572
#> SRR537124     4  0.7369     0.1156 0.000 0.248 0.228 0.524
#> SRR537125     4  0.7301     0.1424 0.000 0.236 0.228 0.536
#> SRR537126     4  0.7301     0.1424 0.000 0.236 0.228 0.536
#> SRR537127     3  0.7345     0.9945 0.336 0.000 0.492 0.172
#> SRR537128     3  0.7250     0.9955 0.336 0.000 0.504 0.160
#> SRR537129     3  0.7345     0.9945 0.336 0.000 0.492 0.172
#> SRR537130     3  0.7314     0.9953 0.336 0.000 0.496 0.168
#> SRR537131     3  0.7250     0.9955 0.336 0.000 0.504 0.160
#> SRR537132     3  0.7250     0.9955 0.336 0.000 0.504 0.160
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.4737      0.847 0.600 0.000 0.004 0.380 0.016
#> SRR191640     4  0.0880      0.862 0.032 0.000 0.000 0.968 0.000
#> SRR191641     4  0.1341      0.844 0.056 0.000 0.000 0.944 0.000
#> SRR191642     4  0.0727      0.880 0.004 0.012 0.000 0.980 0.004
#> SRR191643     4  0.0566      0.880 0.000 0.012 0.000 0.984 0.004
#> SRR191644     4  0.0960      0.879 0.004 0.016 0.000 0.972 0.008
#> SRR191645     4  0.1410      0.850 0.060 0.000 0.000 0.940 0.000
#> SRR191646     4  0.1410      0.850 0.060 0.000 0.000 0.940 0.000
#> SRR191647     4  0.1197      0.852 0.048 0.000 0.000 0.952 0.000
#> SRR191648     4  0.1197      0.852 0.048 0.000 0.000 0.952 0.000
#> SRR191649     4  0.1270      0.850 0.052 0.000 0.000 0.948 0.000
#> SRR191650     4  0.2463      0.789 0.100 0.000 0.004 0.888 0.008
#> SRR191651     1  0.4726      0.894 0.644 0.000 0.004 0.328 0.024
#> SRR191652     1  0.4101      0.914 0.664 0.000 0.000 0.332 0.004
#> SRR191653     4  0.1679      0.872 0.012 0.016 0.004 0.948 0.020
#> SRR191654     4  0.1679      0.872 0.012 0.016 0.004 0.948 0.020
#> SRR191655     4  0.0671      0.880 0.000 0.016 0.000 0.980 0.004
#> SRR191656     1  0.4410      0.934 0.700 0.000 0.008 0.276 0.016
#> SRR191657     1  0.4229      0.927 0.704 0.000 0.000 0.276 0.020
#> SRR191658     1  0.4229      0.927 0.704 0.000 0.000 0.276 0.020
#> SRR191659     1  0.4229      0.927 0.704 0.000 0.000 0.276 0.020
#> SRR191660     1  0.4275      0.927 0.696 0.000 0.000 0.284 0.020
#> SRR191661     1  0.4437      0.913 0.664 0.000 0.000 0.316 0.020
#> SRR191662     1  0.4400      0.918 0.672 0.000 0.000 0.308 0.020
#> SRR191663     1  0.4419      0.916 0.668 0.000 0.000 0.312 0.020
#> SRR191664     1  0.4229      0.927 0.704 0.000 0.000 0.276 0.020
#> SRR191665     1  0.4455      0.933 0.692 0.000 0.008 0.284 0.016
#> SRR191666     1  0.4260      0.921 0.680 0.000 0.004 0.308 0.008
#> SRR191667     1  0.4260      0.921 0.680 0.000 0.004 0.308 0.008
#> SRR191668     1  0.4387      0.933 0.704 0.000 0.008 0.272 0.016
#> SRR191669     1  0.4387      0.933 0.704 0.000 0.008 0.272 0.016
#> SRR191670     1  0.4387      0.933 0.704 0.000 0.008 0.272 0.016
#> SRR191671     1  0.4387      0.933 0.704 0.000 0.008 0.272 0.016
#> SRR191672     1  0.4478      0.932 0.700 0.000 0.008 0.272 0.020
#> SRR191673     1  0.4478      0.932 0.700 0.000 0.008 0.272 0.020
#> SRR191674     5  0.7608      0.420 0.128 0.348 0.100 0.000 0.424
#> SRR191675     5  0.7608      0.420 0.128 0.348 0.100 0.000 0.424
#> SRR191677     5  0.7603      0.425 0.128 0.344 0.100 0.000 0.428
#> SRR191678     5  0.7585      0.427 0.128 0.332 0.100 0.000 0.440
#> SRR191679     5  0.7642      0.408 0.132 0.352 0.100 0.000 0.416
#> SRR191680     5  0.7608      0.420 0.128 0.348 0.100 0.000 0.424
#> SRR191681     5  0.7603      0.425 0.128 0.344 0.100 0.000 0.428
#> SRR191682     2  0.7988      0.419 0.112 0.468 0.176 0.008 0.236
#> SRR191683     2  0.7988      0.419 0.112 0.468 0.176 0.008 0.236
#> SRR191684     2  0.8012      0.417 0.112 0.464 0.180 0.008 0.236
#> SRR191685     2  0.8012      0.417 0.112 0.464 0.180 0.008 0.236
#> SRR191686     2  0.7897      0.413 0.112 0.468 0.176 0.004 0.240
#> SRR191687     2  0.8012      0.417 0.112 0.464 0.180 0.008 0.236
#> SRR191688     2  0.2806      0.727 0.012 0.900 0.016 0.028 0.044
#> SRR191689     2  0.6178      0.580 0.080 0.676 0.100 0.004 0.140
#> SRR191690     2  0.2891      0.731 0.012 0.896 0.016 0.032 0.044
#> SRR191691     2  0.6224      0.627 0.040 0.664 0.112 0.012 0.172
#> SRR191692     5  0.7603      0.425 0.128 0.344 0.100 0.000 0.428
#> SRR191693     5  0.7929      0.377 0.156 0.280 0.132 0.000 0.432
#> SRR191694     2  0.7874     -0.287 0.148 0.388 0.116 0.000 0.348
#> SRR191695     2  0.3030      0.723 0.012 0.888 0.020 0.024 0.056
#> SRR191696     2  0.3030      0.723 0.012 0.888 0.020 0.024 0.056
#> SRR191697     2  0.5832      0.650 0.048 0.716 0.084 0.020 0.132
#> SRR191698     2  0.6242      0.620 0.036 0.660 0.100 0.016 0.188
#> SRR191699     2  0.5650      0.680 0.056 0.724 0.100 0.008 0.112
#> SRR191700     2  0.6770      0.572 0.036 0.616 0.100 0.032 0.216
#> SRR191701     2  0.5945      0.645 0.036 0.688 0.100 0.012 0.164
#> SRR191702     2  0.3195      0.735 0.040 0.880 0.052 0.012 0.016
#> SRR191703     2  0.3195      0.735 0.040 0.880 0.052 0.012 0.016
#> SRR191704     2  0.3772      0.738 0.040 0.848 0.076 0.012 0.024
#> SRR191705     2  0.3772      0.738 0.040 0.848 0.076 0.012 0.024
#> SRR191706     2  0.3344      0.734 0.048 0.872 0.052 0.012 0.016
#> SRR191707     2  0.3283      0.746 0.012 0.876 0.056 0.020 0.036
#> SRR191708     2  0.3772      0.738 0.040 0.848 0.076 0.012 0.024
#> SRR191709     2  0.3772      0.738 0.040 0.848 0.076 0.012 0.024
#> SRR191710     2  0.3772      0.738 0.040 0.848 0.076 0.012 0.024
#> SRR191711     2  0.1772      0.751 0.016 0.944 0.024 0.012 0.004
#> SRR191712     2  0.1772      0.751 0.016 0.944 0.024 0.012 0.004
#> SRR191713     2  0.3550      0.744 0.032 0.860 0.068 0.008 0.032
#> SRR191714     2  0.3550      0.744 0.032 0.860 0.068 0.008 0.032
#> SRR191715     2  0.2307      0.735 0.016 0.924 0.024 0.012 0.024
#> SRR191716     2  0.2952      0.725 0.012 0.892 0.016 0.028 0.052
#> SRR191717     2  0.2891      0.728 0.012 0.896 0.016 0.032 0.044
#> SRR191718     2  0.2933      0.724 0.012 0.892 0.016 0.024 0.056
#> SRR537099     4  0.0833      0.880 0.000 0.016 0.004 0.976 0.004
#> SRR537100     4  0.0833      0.880 0.000 0.016 0.004 0.976 0.004
#> SRR537101     4  0.1341      0.844 0.056 0.000 0.000 0.944 0.000
#> SRR537102     4  0.1243      0.876 0.000 0.028 0.004 0.960 0.008
#> SRR537104     4  0.2347      0.852 0.016 0.040 0.012 0.920 0.012
#> SRR537105     4  0.2029      0.865 0.008 0.028 0.004 0.932 0.028
#> SRR537106     4  0.2029      0.865 0.008 0.028 0.004 0.932 0.028
#> SRR537107     4  0.2029      0.865 0.008 0.028 0.004 0.932 0.028
#> SRR537108     4  0.2029      0.865 0.008 0.028 0.004 0.932 0.028
#> SRR537109     2  0.2952      0.725 0.012 0.892 0.016 0.052 0.028
#> SRR537110     2  0.4658      0.659 0.008 0.784 0.044 0.128 0.036
#> SRR537111     4  0.3400      0.775 0.104 0.012 0.004 0.852 0.028
#> SRR537113     4  0.5112      0.564 0.008 0.048 0.004 0.676 0.264
#> SRR537114     4  0.5135      0.557 0.008 0.048 0.004 0.672 0.268
#> SRR537115     4  0.5955      0.225 0.012 0.068 0.004 0.540 0.376
#> SRR537116     2  0.2312      0.737 0.012 0.924 0.020 0.024 0.020
#> SRR537117     5  0.4197      0.606 0.000 0.076 0.000 0.148 0.776
#> SRR537118     5  0.4396      0.598 0.000 0.056 0.012 0.160 0.772
#> SRR537119     5  0.4396      0.598 0.000 0.056 0.012 0.160 0.772
#> SRR537120     5  0.4214      0.605 0.000 0.064 0.004 0.152 0.780
#> SRR537121     5  0.4561      0.583 0.004 0.044 0.016 0.172 0.764
#> SRR537122     5  0.4561      0.583 0.004 0.044 0.016 0.172 0.764
#> SRR537123     5  0.4561      0.583 0.004 0.044 0.016 0.172 0.764
#> SRR537124     5  0.4173      0.604 0.000 0.064 0.004 0.148 0.784
#> SRR537125     5  0.4396      0.598 0.000 0.056 0.012 0.160 0.772
#> SRR537126     5  0.4396      0.598 0.000 0.056 0.012 0.160 0.772
#> SRR537127     3  0.5346      0.995 0.212 0.000 0.688 0.084 0.016
#> SRR537128     3  0.5550      0.995 0.216 0.000 0.676 0.084 0.024
#> SRR537129     3  0.5346      0.995 0.212 0.000 0.688 0.084 0.016
#> SRR537130     3  0.5375      0.994 0.216 0.000 0.684 0.084 0.016
#> SRR537131     3  0.5578      0.994 0.220 0.000 0.672 0.084 0.024
#> SRR537132     3  0.5550      0.995 0.216 0.000 0.676 0.084 0.024
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.3240     0.7786 0.752 0.000 0.004 0.244 0.000 0.000
#> SRR191640     4  0.0713     0.8707 0.028 0.000 0.000 0.972 0.000 0.000
#> SRR191641     4  0.0790     0.8687 0.032 0.000 0.000 0.968 0.000 0.000
#> SRR191642     4  0.0291     0.8773 0.004 0.004 0.000 0.992 0.000 0.000
#> SRR191643     4  0.0436     0.8774 0.004 0.000 0.004 0.988 0.004 0.000
#> SRR191644     4  0.0291     0.8772 0.004 0.000 0.004 0.992 0.000 0.000
#> SRR191645     4  0.2613     0.8574 0.048 0.000 0.012 0.892 0.008 0.040
#> SRR191646     4  0.2613     0.8574 0.048 0.000 0.012 0.892 0.008 0.040
#> SRR191647     4  0.2547     0.8597 0.044 0.000 0.012 0.896 0.008 0.040
#> SRR191648     4  0.2547     0.8597 0.044 0.000 0.012 0.896 0.008 0.040
#> SRR191649     4  0.2547     0.8597 0.044 0.000 0.012 0.896 0.008 0.040
#> SRR191650     4  0.3144     0.7365 0.172 0.000 0.016 0.808 0.004 0.000
#> SRR191651     1  0.2946     0.8495 0.812 0.000 0.012 0.176 0.000 0.000
#> SRR191652     1  0.4189     0.8396 0.744 0.000 0.012 0.204 0.012 0.028
#> SRR191653     4  0.0405     0.8759 0.000 0.000 0.004 0.988 0.008 0.000
#> SRR191654     4  0.0405     0.8759 0.000 0.000 0.004 0.988 0.008 0.000
#> SRR191655     4  0.0291     0.8769 0.000 0.000 0.004 0.992 0.004 0.000
#> SRR191656     1  0.2445     0.8822 0.868 0.000 0.004 0.120 0.008 0.000
#> SRR191657     1  0.4408     0.8617 0.780 0.000 0.016 0.100 0.032 0.072
#> SRR191658     1  0.4408     0.8617 0.780 0.000 0.016 0.100 0.032 0.072
#> SRR191659     1  0.4408     0.8617 0.780 0.000 0.016 0.100 0.032 0.072
#> SRR191660     1  0.4541     0.8627 0.768 0.000 0.016 0.112 0.032 0.072
#> SRR191661     1  0.5012     0.8462 0.724 0.000 0.020 0.152 0.032 0.072
#> SRR191662     1  0.4904     0.8532 0.736 0.000 0.020 0.140 0.032 0.072
#> SRR191663     1  0.4929     0.8490 0.728 0.000 0.016 0.152 0.032 0.072
#> SRR191664     1  0.4408     0.8617 0.780 0.000 0.016 0.100 0.032 0.072
#> SRR191665     1  0.2531     0.8814 0.860 0.000 0.004 0.128 0.008 0.000
#> SRR191666     1  0.4265     0.8500 0.756 0.000 0.008 0.168 0.012 0.056
#> SRR191667     1  0.4265     0.8500 0.756 0.000 0.008 0.168 0.012 0.056
#> SRR191668     1  0.2587     0.8826 0.864 0.000 0.004 0.120 0.008 0.004
#> SRR191669     1  0.2587     0.8826 0.864 0.000 0.004 0.120 0.008 0.004
#> SRR191670     1  0.2698     0.8829 0.860 0.000 0.008 0.120 0.008 0.004
#> SRR191671     1  0.2698     0.8829 0.860 0.000 0.008 0.120 0.008 0.004
#> SRR191672     1  0.2445     0.8828 0.868 0.000 0.000 0.120 0.008 0.004
#> SRR191673     1  0.2445     0.8828 0.868 0.000 0.000 0.120 0.008 0.004
#> SRR191674     5  0.7894     0.1627 0.020 0.260 0.132 0.000 0.312 0.276
#> SRR191675     5  0.7894     0.1627 0.020 0.260 0.132 0.000 0.312 0.276
#> SRR191677     5  0.7890     0.1649 0.020 0.256 0.132 0.000 0.316 0.276
#> SRR191678     5  0.7883     0.1613 0.020 0.248 0.132 0.000 0.320 0.280
#> SRR191679     5  0.7934     0.1621 0.024 0.260 0.128 0.000 0.312 0.276
#> SRR191680     5  0.7934     0.1621 0.024 0.260 0.128 0.000 0.312 0.276
#> SRR191681     5  0.7890     0.1649 0.020 0.256 0.132 0.000 0.316 0.276
#> SRR191682     6  0.5354     0.7081 0.000 0.260 0.000 0.000 0.160 0.580
#> SRR191683     6  0.5354     0.7081 0.000 0.260 0.000 0.000 0.160 0.580
#> SRR191684     6  0.5336     0.7067 0.000 0.256 0.000 0.000 0.160 0.584
#> SRR191685     6  0.5336     0.7067 0.000 0.256 0.000 0.000 0.160 0.584
#> SRR191686     6  0.5354     0.7081 0.000 0.260 0.000 0.000 0.160 0.580
#> SRR191687     6  0.5336     0.7067 0.000 0.256 0.000 0.000 0.160 0.584
#> SRR191688     2  0.3576     0.5889 0.008 0.840 0.016 0.008 0.056 0.072
#> SRR191689     2  0.5635     0.0586 0.004 0.560 0.020 0.000 0.092 0.324
#> SRR191690     2  0.3626     0.5924 0.008 0.840 0.012 0.020 0.044 0.076
#> SRR191691     2  0.6304     0.0782 0.020 0.488 0.016 0.004 0.112 0.360
#> SRR191692     5  0.7883     0.1582 0.020 0.248 0.132 0.000 0.320 0.280
#> SRR191693     6  0.7612    -0.1409 0.016 0.184 0.120 0.000 0.316 0.364
#> SRR191694     6  0.7799    -0.1992 0.016 0.272 0.124 0.000 0.272 0.316
#> SRR191695     2  0.3893     0.5767 0.012 0.820 0.016 0.008 0.060 0.084
#> SRR191696     2  0.3893     0.5767 0.012 0.820 0.016 0.008 0.060 0.084
#> SRR191697     2  0.6449     0.1824 0.024 0.540 0.020 0.008 0.124 0.284
#> SRR191698     2  0.6582     0.1140 0.024 0.484 0.016 0.008 0.132 0.336
#> SRR191699     2  0.5509     0.1844 0.004 0.556 0.016 0.004 0.068 0.352
#> SRR191700     2  0.6840     0.0973 0.024 0.468 0.016 0.016 0.148 0.328
#> SRR191701     2  0.6454     0.1173 0.024 0.492 0.016 0.004 0.128 0.336
#> SRR191702     2  0.4756     0.6095 0.032 0.752 0.072 0.004 0.012 0.128
#> SRR191703     2  0.4756     0.6095 0.032 0.752 0.072 0.004 0.012 0.128
#> SRR191704     2  0.5196     0.5966 0.032 0.704 0.076 0.004 0.012 0.172
#> SRR191705     2  0.5196     0.5966 0.032 0.704 0.076 0.004 0.012 0.172
#> SRR191706     2  0.4944     0.6027 0.032 0.732 0.072 0.004 0.012 0.148
#> SRR191707     2  0.3894     0.6269 0.016 0.796 0.032 0.004 0.008 0.144
#> SRR191708     2  0.5146     0.6001 0.032 0.708 0.072 0.004 0.012 0.172
#> SRR191709     2  0.5164     0.5992 0.032 0.708 0.076 0.004 0.012 0.168
#> SRR191710     2  0.5114     0.6012 0.032 0.712 0.072 0.004 0.012 0.168
#> SRR191711     2  0.2878     0.6450 0.012 0.876 0.036 0.004 0.004 0.068
#> SRR191712     2  0.2820     0.6463 0.012 0.880 0.036 0.004 0.004 0.064
#> SRR191713     2  0.4935     0.5911 0.028 0.712 0.072 0.004 0.004 0.180
#> SRR191714     2  0.4935     0.5911 0.028 0.712 0.072 0.004 0.004 0.180
#> SRR191715     2  0.1918     0.6368 0.004 0.932 0.020 0.004 0.016 0.024
#> SRR191716     2  0.3580     0.5898 0.008 0.840 0.016 0.008 0.060 0.068
#> SRR191717     2  0.3372     0.5927 0.008 0.852 0.012 0.008 0.056 0.064
#> SRR191718     2  0.3788     0.5838 0.012 0.828 0.016 0.008 0.060 0.076
#> SRR537099     4  0.0436     0.8769 0.000 0.004 0.004 0.988 0.004 0.000
#> SRR537100     4  0.0436     0.8769 0.000 0.004 0.004 0.988 0.004 0.000
#> SRR537101     4  0.0790     0.8687 0.032 0.000 0.000 0.968 0.000 0.000
#> SRR537102     4  0.0993     0.8659 0.000 0.024 0.000 0.964 0.012 0.000
#> SRR537104     4  0.1067     0.8662 0.000 0.024 0.004 0.964 0.004 0.004
#> SRR537105     4  0.3043     0.8520 0.008 0.028 0.020 0.880 0.020 0.044
#> SRR537106     4  0.3043     0.8520 0.008 0.028 0.020 0.880 0.020 0.044
#> SRR537107     4  0.3043     0.8520 0.008 0.028 0.020 0.880 0.020 0.044
#> SRR537108     4  0.3043     0.8520 0.008 0.028 0.020 0.880 0.020 0.044
#> SRR537109     2  0.2618     0.6198 0.000 0.896 0.012 0.036 0.020 0.036
#> SRR537110     2  0.4019     0.5848 0.008 0.804 0.008 0.096 0.012 0.072
#> SRR537111     4  0.3928     0.5967 0.264 0.004 0.016 0.712 0.004 0.000
#> SRR537113     4  0.5189     0.5143 0.004 0.016 0.016 0.612 0.320 0.032
#> SRR537114     4  0.5189     0.5143 0.004 0.016 0.016 0.612 0.320 0.032
#> SRR537115     4  0.5417     0.3118 0.000 0.024 0.016 0.524 0.404 0.032
#> SRR537116     2  0.1242     0.6374 0.000 0.960 0.008 0.008 0.012 0.012
#> SRR537117     5  0.2272     0.5371 0.000 0.040 0.000 0.056 0.900 0.004
#> SRR537118     5  0.2600     0.5469 0.000 0.036 0.000 0.084 0.876 0.004
#> SRR537119     5  0.2600     0.5469 0.000 0.036 0.000 0.084 0.876 0.004
#> SRR537120     5  0.2322     0.5422 0.000 0.036 0.000 0.064 0.896 0.004
#> SRR537121     5  0.2918     0.5418 0.004 0.032 0.004 0.104 0.856 0.000
#> SRR537122     5  0.2918     0.5418 0.004 0.032 0.004 0.104 0.856 0.000
#> SRR537123     5  0.2918     0.5418 0.004 0.032 0.004 0.104 0.856 0.000
#> SRR537124     5  0.2221     0.5460 0.000 0.032 0.000 0.072 0.896 0.000
#> SRR537125     5  0.2487     0.5475 0.000 0.032 0.000 0.092 0.876 0.000
#> SRR537126     5  0.2487     0.5475 0.000 0.032 0.000 0.092 0.876 0.000
#> SRR537127     3  0.4800     0.9919 0.192 0.000 0.696 0.100 0.008 0.004
#> SRR537128     3  0.5088     0.9924 0.192 0.000 0.684 0.100 0.016 0.008
#> SRR537129     3  0.4800     0.9919 0.192 0.000 0.696 0.100 0.008 0.004
#> SRR537130     3  0.4757     0.9918 0.192 0.000 0.696 0.100 0.012 0.000
#> SRR537131     3  0.5088     0.9924 0.192 0.000 0.684 0.100 0.016 0.008
#> SRR537132     3  0.5088     0.9924 0.192 0.000 0.684 0.100 0.016 0.008
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.972       0.990         0.5025 0.499   0.499
#> 3 3 0.782           0.378       0.704         0.2725 0.701   0.480
#> 4 4 0.828           0.824       0.906         0.1445 0.773   0.481
#> 5 5 0.781           0.781       0.809         0.0677 0.916   0.716
#> 6 6 0.780           0.768       0.841         0.0527 0.949   0.765
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1   0.000      0.996 1.000 0.000
#> SRR191640     1   0.000      0.996 1.000 0.000
#> SRR191641     1   0.000      0.996 1.000 0.000
#> SRR191642     1   0.000      0.996 1.000 0.000
#> SRR191643     1   0.000      0.996 1.000 0.000
#> SRR191644     1   0.000      0.996 1.000 0.000
#> SRR191645     1   0.000      0.996 1.000 0.000
#> SRR191646     1   0.000      0.996 1.000 0.000
#> SRR191647     1   0.000      0.996 1.000 0.000
#> SRR191648     1   0.000      0.996 1.000 0.000
#> SRR191649     1   0.000      0.996 1.000 0.000
#> SRR191650     1   0.000      0.996 1.000 0.000
#> SRR191651     1   0.000      0.996 1.000 0.000
#> SRR191652     1   0.000      0.996 1.000 0.000
#> SRR191653     1   0.000      0.996 1.000 0.000
#> SRR191654     1   0.000      0.996 1.000 0.000
#> SRR191655     1   0.000      0.996 1.000 0.000
#> SRR191656     1   0.000      0.996 1.000 0.000
#> SRR191657     1   0.000      0.996 1.000 0.000
#> SRR191658     1   0.000      0.996 1.000 0.000
#> SRR191659     1   0.000      0.996 1.000 0.000
#> SRR191660     1   0.000      0.996 1.000 0.000
#> SRR191661     1   0.000      0.996 1.000 0.000
#> SRR191662     1   0.000      0.996 1.000 0.000
#> SRR191663     1   0.000      0.996 1.000 0.000
#> SRR191664     1   0.000      0.996 1.000 0.000
#> SRR191665     1   0.000      0.996 1.000 0.000
#> SRR191666     1   0.000      0.996 1.000 0.000
#> SRR191667     1   0.000      0.996 1.000 0.000
#> SRR191668     1   0.000      0.996 1.000 0.000
#> SRR191669     1   0.000      0.996 1.000 0.000
#> SRR191670     1   0.000      0.996 1.000 0.000
#> SRR191671     1   0.000      0.996 1.000 0.000
#> SRR191672     1   0.000      0.996 1.000 0.000
#> SRR191673     1   0.000      0.996 1.000 0.000
#> SRR191674     2   0.000      0.983 0.000 1.000
#> SRR191675     2   0.000      0.983 0.000 1.000
#> SRR191677     2   0.000      0.983 0.000 1.000
#> SRR191678     2   0.000      0.983 0.000 1.000
#> SRR191679     2   0.000      0.983 0.000 1.000
#> SRR191680     2   0.000      0.983 0.000 1.000
#> SRR191681     2   0.000      0.983 0.000 1.000
#> SRR191682     2   0.000      0.983 0.000 1.000
#> SRR191683     2   0.000      0.983 0.000 1.000
#> SRR191684     2   0.000      0.983 0.000 1.000
#> SRR191685     2   0.000      0.983 0.000 1.000
#> SRR191686     2   0.000      0.983 0.000 1.000
#> SRR191687     2   0.000      0.983 0.000 1.000
#> SRR191688     2   0.000      0.983 0.000 1.000
#> SRR191689     2   0.000      0.983 0.000 1.000
#> SRR191690     2   0.000      0.983 0.000 1.000
#> SRR191691     2   0.000      0.983 0.000 1.000
#> SRR191692     2   0.000      0.983 0.000 1.000
#> SRR191693     2   0.000      0.983 0.000 1.000
#> SRR191694     2   0.000      0.983 0.000 1.000
#> SRR191695     2   0.000      0.983 0.000 1.000
#> SRR191696     2   0.000      0.983 0.000 1.000
#> SRR191697     2   0.000      0.983 0.000 1.000
#> SRR191698     2   0.000      0.983 0.000 1.000
#> SRR191699     2   0.000      0.983 0.000 1.000
#> SRR191700     2   0.000      0.983 0.000 1.000
#> SRR191701     2   0.000      0.983 0.000 1.000
#> SRR191702     2   0.000      0.983 0.000 1.000
#> SRR191703     2   0.000      0.983 0.000 1.000
#> SRR191704     2   0.000      0.983 0.000 1.000
#> SRR191705     2   0.000      0.983 0.000 1.000
#> SRR191706     2   0.000      0.983 0.000 1.000
#> SRR191707     2   0.000      0.983 0.000 1.000
#> SRR191708     2   0.000      0.983 0.000 1.000
#> SRR191709     2   0.000      0.983 0.000 1.000
#> SRR191710     2   0.000      0.983 0.000 1.000
#> SRR191711     2   0.000      0.983 0.000 1.000
#> SRR191712     2   0.000      0.983 0.000 1.000
#> SRR191713     2   0.000      0.983 0.000 1.000
#> SRR191714     2   0.000      0.983 0.000 1.000
#> SRR191715     2   0.000      0.983 0.000 1.000
#> SRR191716     2   0.000      0.983 0.000 1.000
#> SRR191717     2   0.000      0.983 0.000 1.000
#> SRR191718     2   0.000      0.983 0.000 1.000
#> SRR537099     1   0.000      0.996 1.000 0.000
#> SRR537100     1   0.000      0.996 1.000 0.000
#> SRR537101     1   0.000      0.996 1.000 0.000
#> SRR537102     1   0.000      0.996 1.000 0.000
#> SRR537104     1   0.722      0.742 0.800 0.200
#> SRR537105     1   0.000      0.996 1.000 0.000
#> SRR537106     1   0.000      0.996 1.000 0.000
#> SRR537107     1   0.000      0.996 1.000 0.000
#> SRR537108     1   0.000      0.996 1.000 0.000
#> SRR537109     2   0.000      0.983 0.000 1.000
#> SRR537110     2   0.000      0.983 0.000 1.000
#> SRR537111     1   0.000      0.996 1.000 0.000
#> SRR537113     2   0.994      0.169 0.456 0.544
#> SRR537114     2   0.994      0.169 0.456 0.544
#> SRR537115     2   0.278      0.936 0.048 0.952
#> SRR537116     2   0.000      0.983 0.000 1.000
#> SRR537117     2   0.000      0.983 0.000 1.000
#> SRR537118     2   0.000      0.983 0.000 1.000
#> SRR537119     2   0.000      0.983 0.000 1.000
#> SRR537120     2   0.000      0.983 0.000 1.000
#> SRR537121     2   0.000      0.983 0.000 1.000
#> SRR537122     2   0.000      0.983 0.000 1.000
#> SRR537123     2   0.000      0.983 0.000 1.000
#> SRR537124     2   0.000      0.983 0.000 1.000
#> SRR537125     2   0.000      0.983 0.000 1.000
#> SRR537126     2   0.000      0.983 0.000 1.000
#> SRR537127     1   0.000      0.996 1.000 0.000
#> SRR537128     1   0.000      0.996 1.000 0.000
#> SRR537129     1   0.000      0.996 1.000 0.000
#> SRR537130     1   0.000      0.996 1.000 0.000
#> SRR537131     1   0.000      0.996 1.000 0.000
#> SRR537132     1   0.000      0.996 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191640     1  0.7295     0.5630 0.488 0.484 0.028
#> SRR191641     1  0.6678     0.5847 0.512 0.480 0.008
#> SRR191642     2  0.9152    -0.1577 0.152 0.484 0.364
#> SRR191643     2  0.9152    -0.1577 0.152 0.484 0.364
#> SRR191644     1  0.6680     0.5815 0.508 0.484 0.008
#> SRR191645     1  0.6518     0.5838 0.512 0.484 0.004
#> SRR191646     1  0.6518     0.5838 0.512 0.484 0.004
#> SRR191647     1  0.7295     0.5630 0.488 0.484 0.028
#> SRR191648     1  0.7295     0.5630 0.488 0.484 0.028
#> SRR191649     1  0.6954     0.5744 0.500 0.484 0.016
#> SRR191650     1  0.3038     0.8296 0.896 0.104 0.000
#> SRR191651     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191652     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191653     2  0.8975    -0.1399 0.132 0.484 0.384
#> SRR191654     2  0.8936    -0.1353 0.128 0.484 0.388
#> SRR191655     2  0.9050    -0.1456 0.140 0.484 0.376
#> SRR191656     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191657     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191658     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191659     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191660     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191661     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191662     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191663     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191664     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191665     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191666     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191667     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191668     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191669     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191670     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191671     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191672     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191673     1  0.0000     0.8799 1.000 0.000 0.000
#> SRR191674     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191675     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191677     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191678     3  0.6244    -0.0754 0.000 0.440 0.560
#> SRR191679     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191680     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191681     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191682     2  0.6308     0.2433 0.000 0.508 0.492
#> SRR191683     2  0.6308     0.2433 0.000 0.508 0.492
#> SRR191684     2  0.6308     0.2433 0.000 0.508 0.492
#> SRR191685     2  0.6308     0.2433 0.000 0.508 0.492
#> SRR191686     2  0.6308     0.2433 0.000 0.508 0.492
#> SRR191687     2  0.6308     0.2433 0.000 0.508 0.492
#> SRR191688     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191689     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191690     2  0.6302     0.2529 0.000 0.520 0.480
#> SRR191691     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191692     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191693     3  0.6252    -0.0806 0.000 0.444 0.556
#> SRR191694     3  0.6267    -0.1083 0.000 0.452 0.548
#> SRR191695     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191696     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191697     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191698     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191699     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191700     3  0.5621     0.1606 0.000 0.308 0.692
#> SRR191701     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191702     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191703     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191704     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191705     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191706     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191707     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191708     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191709     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191710     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191711     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191712     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191713     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191714     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191715     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191716     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191717     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR191718     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR537099     2  0.8975    -0.1378 0.132 0.484 0.384
#> SRR537100     2  0.9014    -0.1425 0.136 0.484 0.380
#> SRR537101     1  0.7295     0.5630 0.488 0.484 0.028
#> SRR537102     2  0.8391    -0.0898 0.084 0.484 0.432
#> SRR537104     2  0.8434    -0.0893 0.088 0.496 0.416
#> SRR537105     2  0.8507    -0.0944 0.092 0.484 0.424
#> SRR537106     2  0.8507    -0.0944 0.092 0.484 0.424
#> SRR537107     2  0.8507    -0.0944 0.092 0.484 0.424
#> SRR537108     2  0.8507    -0.0944 0.092 0.484 0.424
#> SRR537109     2  0.5926     0.0421 0.000 0.644 0.356
#> SRR537110     2  0.6095     0.0825 0.000 0.608 0.392
#> SRR537111     1  0.1753     0.8593 0.952 0.048 0.000
#> SRR537113     3  0.6307     0.0816 0.000 0.488 0.512
#> SRR537114     3  0.6305     0.0775 0.000 0.484 0.516
#> SRR537115     3  0.6244     0.1152 0.000 0.440 0.560
#> SRR537116     2  0.6305     0.2606 0.000 0.516 0.484
#> SRR537117     3  0.0237     0.4507 0.000 0.004 0.996
#> SRR537118     3  0.0000     0.4527 0.000 0.000 1.000
#> SRR537119     3  0.0000     0.4527 0.000 0.000 1.000
#> SRR537120     3  0.0000     0.4527 0.000 0.000 1.000
#> SRR537121     3  0.1643     0.4311 0.000 0.044 0.956
#> SRR537122     3  0.1643     0.4311 0.000 0.044 0.956
#> SRR537123     3  0.1643     0.4311 0.000 0.044 0.956
#> SRR537124     3  0.0000     0.4527 0.000 0.000 1.000
#> SRR537125     3  0.0237     0.4520 0.000 0.004 0.996
#> SRR537126     3  0.0237     0.4520 0.000 0.004 0.996
#> SRR537127     1  0.0892     0.8725 0.980 0.000 0.020
#> SRR537128     1  0.0892     0.8725 0.980 0.000 0.020
#> SRR537129     1  0.0892     0.8725 0.980 0.000 0.020
#> SRR537130     1  0.0892     0.8725 0.980 0.000 0.020
#> SRR537131     1  0.0892     0.8725 0.980 0.000 0.020
#> SRR537132     1  0.0892     0.8725 0.980 0.000 0.020
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191640     4  0.0469     0.9855 0.012 0.000 0.000 0.988
#> SRR191641     4  0.0592     0.9815 0.016 0.000 0.000 0.984
#> SRR191642     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR191643     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR191644     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR191645     4  0.1118     0.9695 0.036 0.000 0.000 0.964
#> SRR191646     4  0.1118     0.9695 0.036 0.000 0.000 0.964
#> SRR191647     4  0.0592     0.9842 0.016 0.000 0.000 0.984
#> SRR191648     4  0.0592     0.9842 0.016 0.000 0.000 0.984
#> SRR191649     4  0.0707     0.9820 0.020 0.000 0.000 0.980
#> SRR191650     1  0.2704     0.8528 0.876 0.000 0.000 0.124
#> SRR191651     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191652     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191653     4  0.0524     0.9816 0.004 0.000 0.008 0.988
#> SRR191654     4  0.0524     0.9816 0.004 0.000 0.008 0.988
#> SRR191655     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR191656     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191658     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191659     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191660     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191661     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191662     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191663     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191664     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191665     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191666     1  0.1209     0.9521 0.964 0.000 0.004 0.032
#> SRR191667     1  0.1209     0.9521 0.964 0.000 0.004 0.032
#> SRR191668     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191669     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191670     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191673     1  0.0000     0.9676 1.000 0.000 0.000 0.000
#> SRR191674     2  0.5250     0.4772 0.000 0.552 0.440 0.008
#> SRR191675     2  0.5250     0.4772 0.000 0.552 0.440 0.008
#> SRR191677     2  0.5250     0.4772 0.000 0.552 0.440 0.008
#> SRR191678     2  0.5263     0.4666 0.000 0.544 0.448 0.008
#> SRR191679     2  0.5250     0.4772 0.000 0.552 0.440 0.008
#> SRR191680     2  0.5250     0.4772 0.000 0.552 0.440 0.008
#> SRR191681     2  0.5250     0.4772 0.000 0.552 0.440 0.008
#> SRR191682     2  0.4722     0.6601 0.000 0.692 0.300 0.008
#> SRR191683     2  0.4722     0.6601 0.000 0.692 0.300 0.008
#> SRR191684     2  0.4722     0.6601 0.000 0.692 0.300 0.008
#> SRR191685     2  0.4722     0.6601 0.000 0.692 0.300 0.008
#> SRR191686     2  0.4722     0.6601 0.000 0.692 0.300 0.008
#> SRR191687     2  0.4722     0.6601 0.000 0.692 0.300 0.008
#> SRR191688     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191689     2  0.3725     0.7347 0.000 0.812 0.180 0.008
#> SRR191690     2  0.0336     0.8084 0.000 0.992 0.008 0.000
#> SRR191691     2  0.1867     0.7893 0.000 0.928 0.072 0.000
#> SRR191692     2  0.5250     0.4772 0.000 0.552 0.440 0.008
#> SRR191693     2  0.5285     0.4372 0.000 0.524 0.468 0.008
#> SRR191694     2  0.5212     0.5071 0.000 0.572 0.420 0.008
#> SRR191695     2  0.0336     0.8084 0.000 0.992 0.008 0.000
#> SRR191696     2  0.0336     0.8084 0.000 0.992 0.008 0.000
#> SRR191697     2  0.1389     0.8007 0.000 0.952 0.048 0.000
#> SRR191698     2  0.4072     0.6112 0.000 0.748 0.252 0.000
#> SRR191699     2  0.1109     0.8047 0.000 0.968 0.028 0.004
#> SRR191700     2  0.4855     0.3207 0.000 0.600 0.400 0.000
#> SRR191701     2  0.1716     0.7929 0.000 0.936 0.064 0.000
#> SRR191702     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191703     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191704     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191705     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191706     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191707     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191708     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191709     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191710     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191711     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191712     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191713     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191714     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191715     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191716     2  0.0336     0.8084 0.000 0.992 0.008 0.000
#> SRR191717     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR191718     2  0.0336     0.8084 0.000 0.992 0.008 0.000
#> SRR537099     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR537100     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR537101     4  0.0469     0.9843 0.012 0.000 0.000 0.988
#> SRR537102     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR537104     4  0.0336     0.9859 0.008 0.000 0.000 0.992
#> SRR537105     4  0.1388     0.9680 0.012 0.000 0.028 0.960
#> SRR537106     4  0.1388     0.9680 0.012 0.000 0.028 0.960
#> SRR537107     4  0.1388     0.9680 0.012 0.000 0.028 0.960
#> SRR537108     4  0.1388     0.9680 0.012 0.000 0.028 0.960
#> SRR537109     2  0.2081     0.7573 0.000 0.916 0.000 0.084
#> SRR537110     2  0.4331     0.4927 0.000 0.712 0.000 0.288
#> SRR537111     1  0.0817     0.9530 0.976 0.000 0.000 0.024
#> SRR537113     3  0.5508     0.0614 0.000 0.016 0.508 0.476
#> SRR537114     3  0.4999     0.0195 0.000 0.000 0.508 0.492
#> SRR537115     3  0.3606     0.7704 0.000 0.024 0.844 0.132
#> SRR537116     2  0.0000     0.8105 0.000 1.000 0.000 0.000
#> SRR537117     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537118     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537119     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537120     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537121     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537122     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537123     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537124     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537125     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537126     3  0.0188     0.8879 0.000 0.004 0.996 0.000
#> SRR537127     1  0.3216     0.9058 0.880 0.000 0.044 0.076
#> SRR537128     1  0.3216     0.9058 0.880 0.000 0.044 0.076
#> SRR537129     1  0.3216     0.9058 0.880 0.000 0.044 0.076
#> SRR537130     1  0.3216     0.9058 0.880 0.000 0.044 0.076
#> SRR537131     1  0.3216     0.9058 0.880 0.000 0.044 0.076
#> SRR537132     1  0.3216     0.9058 0.880 0.000 0.044 0.076
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191640     4  0.0162     0.9320 0.004 0.000 0.000 0.996 0.000
#> SRR191641     4  0.2127     0.8823 0.000 0.000 0.108 0.892 0.000
#> SRR191642     4  0.0000     0.9318 0.000 0.000 0.000 1.000 0.000
#> SRR191643     4  0.0510     0.9296 0.000 0.000 0.016 0.984 0.000
#> SRR191644     4  0.2561     0.8542 0.000 0.000 0.144 0.856 0.000
#> SRR191645     4  0.1493     0.9239 0.028 0.000 0.024 0.948 0.000
#> SRR191646     4  0.1493     0.9239 0.028 0.000 0.024 0.948 0.000
#> SRR191647     4  0.1211     0.9296 0.016 0.000 0.024 0.960 0.000
#> SRR191648     4  0.1211     0.9296 0.016 0.000 0.024 0.960 0.000
#> SRR191649     4  0.1211     0.9296 0.016 0.000 0.024 0.960 0.000
#> SRR191650     1  0.1608     0.8177 0.928 0.000 0.000 0.072 0.000
#> SRR191651     1  0.0162     0.8666 0.996 0.000 0.004 0.000 0.000
#> SRR191652     1  0.1768     0.8455 0.924 0.000 0.072 0.004 0.000
#> SRR191653     4  0.4088     0.6130 0.000 0.000 0.368 0.632 0.000
#> SRR191654     4  0.3661     0.7145 0.000 0.000 0.276 0.724 0.000
#> SRR191655     4  0.0404     0.9305 0.000 0.000 0.012 0.988 0.000
#> SRR191656     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191657     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191658     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191659     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191660     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191661     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191662     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191663     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191664     1  0.0510     0.8674 0.984 0.000 0.016 0.000 0.000
#> SRR191665     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191666     1  0.4909     0.6632 0.588 0.000 0.380 0.032 0.000
#> SRR191667     1  0.4909     0.6632 0.588 0.000 0.380 0.032 0.000
#> SRR191668     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191669     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191670     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191671     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191672     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191673     1  0.0000     0.8666 1.000 0.000 0.000 0.000 0.000
#> SRR191674     3  0.6693     0.7884 0.000 0.320 0.424 0.000 0.256
#> SRR191675     3  0.6693     0.7884 0.000 0.320 0.424 0.000 0.256
#> SRR191677     3  0.6693     0.7884 0.000 0.320 0.424 0.000 0.256
#> SRR191678     3  0.6694     0.7660 0.000 0.292 0.432 0.000 0.276
#> SRR191679     3  0.6693     0.7884 0.000 0.320 0.424 0.000 0.256
#> SRR191680     3  0.6693     0.7884 0.000 0.320 0.424 0.000 0.256
#> SRR191681     3  0.6698     0.7872 0.000 0.316 0.424 0.000 0.260
#> SRR191682     3  0.5962     0.6426 0.000 0.424 0.468 0.000 0.108
#> SRR191683     3  0.5962     0.6426 0.000 0.424 0.468 0.000 0.108
#> SRR191684     3  0.5959     0.6412 0.000 0.420 0.472 0.000 0.108
#> SRR191685     3  0.5962     0.6426 0.000 0.424 0.468 0.000 0.108
#> SRR191686     3  0.5966     0.6397 0.000 0.432 0.460 0.000 0.108
#> SRR191687     3  0.5962     0.6426 0.000 0.424 0.468 0.000 0.108
#> SRR191688     2  0.2179     0.7624 0.000 0.888 0.112 0.000 0.000
#> SRR191689     3  0.5403     0.5585 0.000 0.456 0.488 0.000 0.056
#> SRR191690     2  0.2233     0.7698 0.000 0.892 0.104 0.000 0.004
#> SRR191691     2  0.4526     0.3925 0.000 0.672 0.300 0.000 0.028
#> SRR191692     3  0.6691     0.7874 0.000 0.312 0.428 0.000 0.260
#> SRR191693     3  0.6507     0.7658 0.000 0.268 0.488 0.000 0.244
#> SRR191694     3  0.6610     0.7790 0.000 0.340 0.436 0.000 0.224
#> SRR191695     2  0.2536     0.7526 0.000 0.868 0.128 0.000 0.004
#> SRR191696     2  0.2536     0.7526 0.000 0.868 0.128 0.000 0.004
#> SRR191697     2  0.4620     0.4381 0.000 0.652 0.320 0.000 0.028
#> SRR191698     2  0.5754     0.3333 0.000 0.604 0.260 0.000 0.136
#> SRR191699     2  0.4457     0.0923 0.000 0.620 0.368 0.000 0.012
#> SRR191700     2  0.6292     0.2395 0.000 0.532 0.208 0.000 0.260
#> SRR191701     2  0.4276     0.4845 0.000 0.716 0.256 0.000 0.028
#> SRR191702     2  0.0794     0.7947 0.000 0.972 0.028 0.000 0.000
#> SRR191703     2  0.0794     0.7947 0.000 0.972 0.028 0.000 0.000
#> SRR191704     2  0.1121     0.7896 0.000 0.956 0.044 0.000 0.000
#> SRR191705     2  0.1121     0.7896 0.000 0.956 0.044 0.000 0.000
#> SRR191706     2  0.0794     0.7947 0.000 0.972 0.028 0.000 0.000
#> SRR191707     2  0.1671     0.7748 0.000 0.924 0.076 0.000 0.000
#> SRR191708     2  0.1121     0.7896 0.000 0.956 0.044 0.000 0.000
#> SRR191709     2  0.1121     0.7896 0.000 0.956 0.044 0.000 0.000
#> SRR191710     2  0.1121     0.7896 0.000 0.956 0.044 0.000 0.000
#> SRR191711     2  0.0290     0.7973 0.000 0.992 0.008 0.000 0.000
#> SRR191712     2  0.0290     0.7973 0.000 0.992 0.008 0.000 0.000
#> SRR191713     2  0.1270     0.7835 0.000 0.948 0.052 0.000 0.000
#> SRR191714     2  0.1197     0.7858 0.000 0.952 0.048 0.000 0.000
#> SRR191715     2  0.1732     0.7699 0.000 0.920 0.080 0.000 0.000
#> SRR191716     2  0.2338     0.7610 0.000 0.884 0.112 0.000 0.004
#> SRR191717     2  0.2179     0.7624 0.000 0.888 0.112 0.000 0.000
#> SRR191718     2  0.2389     0.7596 0.000 0.880 0.116 0.000 0.004
#> SRR537099     4  0.0510     0.9296 0.000 0.000 0.016 0.984 0.000
#> SRR537100     4  0.0510     0.9296 0.000 0.000 0.016 0.984 0.000
#> SRR537101     4  0.1732     0.9007 0.000 0.000 0.080 0.920 0.000
#> SRR537102     4  0.0000     0.9318 0.000 0.000 0.000 1.000 0.000
#> SRR537104     4  0.0912     0.9273 0.000 0.012 0.016 0.972 0.000
#> SRR537105     4  0.1518     0.9245 0.012 0.000 0.020 0.952 0.016
#> SRR537106     4  0.1777     0.9207 0.012 0.004 0.020 0.944 0.020
#> SRR537107     4  0.1777     0.9207 0.012 0.004 0.020 0.944 0.020
#> SRR537108     4  0.1777     0.9207 0.012 0.004 0.020 0.944 0.020
#> SRR537109     2  0.3800     0.6643 0.000 0.812 0.108 0.080 0.000
#> SRR537110     2  0.3622     0.6323 0.000 0.820 0.056 0.124 0.000
#> SRR537111     1  0.1074     0.8562 0.968 0.004 0.016 0.012 0.000
#> SRR537113     5  0.4468     0.6038 0.000 0.004 0.024 0.276 0.696
#> SRR537114     5  0.4275     0.5922 0.000 0.000 0.020 0.284 0.696
#> SRR537115     5  0.2824     0.8369 0.000 0.008 0.024 0.088 0.880
#> SRR537116     2  0.1732     0.7700 0.000 0.920 0.080 0.000 0.000
#> SRR537117     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537118     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537119     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537120     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537121     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537122     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537123     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537124     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537125     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537126     5  0.0000     0.9216 0.000 0.000 0.000 0.000 1.000
#> SRR537127     1  0.6068     0.6031 0.504 0.000 0.408 0.064 0.024
#> SRR537128     1  0.6068     0.6031 0.504 0.000 0.408 0.064 0.024
#> SRR537129     1  0.6068     0.6031 0.504 0.000 0.408 0.064 0.024
#> SRR537130     1  0.6068     0.6031 0.504 0.000 0.408 0.064 0.024
#> SRR537131     1  0.6068     0.6031 0.504 0.000 0.408 0.064 0.024
#> SRR537132     1  0.6068     0.6031 0.504 0.000 0.408 0.064 0.024
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.0000      0.967 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191640     4  0.0000      0.909 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR191641     4  0.2562      0.767 0.000 0.000 0.172 0.828 0.000 0.000
#> SRR191642     4  0.0000      0.909 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR191643     4  0.0000      0.909 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR191644     4  0.3175      0.630 0.000 0.000 0.256 0.744 0.000 0.000
#> SRR191645     4  0.2533      0.909 0.004 0.000 0.052 0.892 0.008 0.044
#> SRR191646     4  0.2533      0.909 0.004 0.000 0.052 0.892 0.008 0.044
#> SRR191647     4  0.2533      0.909 0.004 0.000 0.052 0.892 0.008 0.044
#> SRR191648     4  0.2533      0.909 0.004 0.000 0.052 0.892 0.008 0.044
#> SRR191649     4  0.2533      0.909 0.004 0.000 0.052 0.892 0.008 0.044
#> SRR191650     1  0.1049      0.931 0.960 0.000 0.008 0.032 0.000 0.000
#> SRR191651     1  0.0405      0.965 0.988 0.000 0.008 0.000 0.000 0.004
#> SRR191652     1  0.1765      0.894 0.904 0.000 0.096 0.000 0.000 0.000
#> SRR191653     3  0.3531      0.464 0.000 0.000 0.672 0.328 0.000 0.000
#> SRR191654     3  0.3847      0.165 0.000 0.000 0.544 0.456 0.000 0.000
#> SRR191655     4  0.0363      0.905 0.000 0.000 0.012 0.988 0.000 0.000
#> SRR191656     1  0.0146      0.967 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR191657     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191658     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191659     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191660     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191661     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191662     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191663     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191664     1  0.1010      0.962 0.960 0.000 0.036 0.000 0.000 0.004
#> SRR191665     1  0.0146      0.967 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR191666     3  0.3360      0.817 0.264 0.000 0.732 0.004 0.000 0.000
#> SRR191667     3  0.3360      0.817 0.264 0.000 0.732 0.004 0.000 0.000
#> SRR191668     1  0.0291      0.967 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR191669     1  0.0291      0.967 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR191670     1  0.0146      0.967 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR191671     1  0.0146      0.967 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR191672     1  0.0291      0.967 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR191673     1  0.0291      0.967 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR191674     6  0.4261      0.690 0.000 0.112 0.000 0.000 0.156 0.732
#> SRR191675     6  0.4261      0.690 0.000 0.112 0.000 0.000 0.156 0.732
#> SRR191677     6  0.4261      0.690 0.000 0.112 0.000 0.000 0.156 0.732
#> SRR191678     6  0.4261      0.685 0.000 0.112 0.000 0.000 0.156 0.732
#> SRR191679     6  0.4261      0.690 0.000 0.112 0.000 0.000 0.156 0.732
#> SRR191680     6  0.4261      0.690 0.000 0.112 0.000 0.000 0.156 0.732
#> SRR191681     6  0.4261      0.690 0.000 0.112 0.000 0.000 0.156 0.732
#> SRR191682     6  0.5036      0.583 0.000 0.220 0.080 0.000 0.028 0.672
#> SRR191683     6  0.5036      0.583 0.000 0.220 0.080 0.000 0.028 0.672
#> SRR191684     6  0.5036      0.583 0.000 0.220 0.080 0.000 0.028 0.672
#> SRR191685     6  0.5036      0.583 0.000 0.220 0.080 0.000 0.028 0.672
#> SRR191686     6  0.5011      0.585 0.000 0.216 0.080 0.000 0.028 0.676
#> SRR191687     6  0.5036      0.583 0.000 0.220 0.080 0.000 0.028 0.672
#> SRR191688     2  0.4317      0.631 0.000 0.688 0.060 0.000 0.000 0.252
#> SRR191689     6  0.3010      0.636 0.000 0.148 0.020 0.000 0.004 0.828
#> SRR191690     2  0.4317      0.631 0.000 0.688 0.060 0.000 0.000 0.252
#> SRR191691     2  0.6001      0.225 0.000 0.532 0.132 0.000 0.032 0.304
#> SRR191692     6  0.4067      0.692 0.000 0.104 0.000 0.000 0.144 0.752
#> SRR191693     6  0.3823      0.677 0.000 0.044 0.032 0.000 0.124 0.800
#> SRR191694     6  0.3787      0.685 0.000 0.120 0.000 0.000 0.100 0.780
#> SRR191695     2  0.4495      0.606 0.000 0.660 0.064 0.000 0.000 0.276
#> SRR191696     2  0.4495      0.606 0.000 0.660 0.064 0.000 0.000 0.276
#> SRR191697     6  0.5815     -0.274 0.000 0.424 0.128 0.000 0.012 0.436
#> SRR191698     2  0.6508      0.243 0.000 0.512 0.124 0.000 0.084 0.280
#> SRR191699     6  0.5326      0.209 0.000 0.404 0.092 0.000 0.004 0.500
#> SRR191700     2  0.7101      0.245 0.000 0.464 0.140 0.000 0.188 0.208
#> SRR191701     2  0.5831      0.292 0.000 0.556 0.124 0.000 0.028 0.292
#> SRR191702     2  0.2361      0.725 0.000 0.884 0.028 0.000 0.000 0.088
#> SRR191703     2  0.2361      0.725 0.000 0.884 0.028 0.000 0.000 0.088
#> SRR191704     2  0.1984      0.717 0.000 0.912 0.032 0.000 0.000 0.056
#> SRR191705     2  0.1984      0.717 0.000 0.912 0.032 0.000 0.000 0.056
#> SRR191706     2  0.2537      0.723 0.000 0.872 0.032 0.000 0.000 0.096
#> SRR191707     2  0.2499      0.692 0.000 0.880 0.048 0.000 0.000 0.072
#> SRR191708     2  0.1921      0.719 0.000 0.916 0.032 0.000 0.000 0.052
#> SRR191709     2  0.1984      0.717 0.000 0.912 0.032 0.000 0.000 0.056
#> SRR191710     2  0.1984      0.717 0.000 0.912 0.032 0.000 0.000 0.056
#> SRR191711     2  0.1549      0.731 0.000 0.936 0.020 0.000 0.000 0.044
#> SRR191712     2  0.1616      0.731 0.000 0.932 0.020 0.000 0.000 0.048
#> SRR191713     2  0.1895      0.717 0.000 0.912 0.016 0.000 0.000 0.072
#> SRR191714     2  0.1895      0.717 0.000 0.912 0.016 0.000 0.000 0.072
#> SRR191715     2  0.3301      0.679 0.000 0.788 0.024 0.000 0.000 0.188
#> SRR191716     2  0.4271      0.634 0.000 0.696 0.060 0.000 0.000 0.244
#> SRR191717     2  0.4215      0.636 0.000 0.700 0.056 0.000 0.000 0.244
#> SRR191718     2  0.4435      0.619 0.000 0.672 0.064 0.000 0.000 0.264
#> SRR537099     4  0.0865      0.895 0.000 0.000 0.036 0.964 0.000 0.000
#> SRR537100     4  0.1007      0.891 0.000 0.000 0.044 0.956 0.000 0.000
#> SRR537101     4  0.2178      0.815 0.000 0.000 0.132 0.868 0.000 0.000
#> SRR537102     4  0.0000      0.909 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR537104     4  0.0692      0.903 0.000 0.000 0.020 0.976 0.000 0.004
#> SRR537105     4  0.2390      0.910 0.000 0.000 0.052 0.896 0.008 0.044
#> SRR537106     4  0.2390      0.910 0.000 0.000 0.052 0.896 0.008 0.044
#> SRR537107     4  0.2390      0.910 0.000 0.000 0.052 0.896 0.008 0.044
#> SRR537108     4  0.2390      0.910 0.000 0.000 0.052 0.896 0.008 0.044
#> SRR537109     2  0.5093      0.594 0.000 0.648 0.056 0.036 0.000 0.260
#> SRR537110     2  0.2893      0.684 0.000 0.872 0.028 0.044 0.000 0.056
#> SRR537111     1  0.1080      0.942 0.960 0.000 0.032 0.004 0.000 0.004
#> SRR537113     5  0.4478      0.724 0.000 0.000 0.044 0.152 0.748 0.056
#> SRR537114     5  0.4367      0.717 0.000 0.000 0.044 0.160 0.752 0.044
#> SRR537115     5  0.2706      0.861 0.000 0.000 0.044 0.016 0.880 0.060
#> SRR537116     2  0.3279      0.686 0.000 0.796 0.028 0.000 0.000 0.176
#> SRR537117     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537118     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537119     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537120     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537121     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537122     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537123     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537124     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537125     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537126     5  0.0260      0.941 0.000 0.000 0.000 0.000 0.992 0.008
#> SRR537127     3  0.3479      0.867 0.212 0.000 0.768 0.008 0.012 0.000
#> SRR537128     3  0.3479      0.867 0.212 0.000 0.768 0.008 0.012 0.000
#> SRR537129     3  0.3479      0.867 0.212 0.000 0.768 0.008 0.012 0.000
#> SRR537130     3  0.3479      0.867 0.212 0.000 0.768 0.008 0.012 0.000
#> SRR537131     3  0.3479      0.867 0.212 0.000 0.768 0.008 0.012 0.000
#> SRR537132     3  0.3479      0.867 0.212 0.000 0.768 0.008 0.012 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.815           0.886       0.951         0.5004 0.500   0.500
#> 3 3 0.629           0.816       0.841         0.2783 0.785   0.593
#> 4 4 0.641           0.761       0.837         0.0658 0.960   0.886
#> 5 5 0.841           0.874       0.938         0.1293 0.834   0.528
#> 6 6 0.853           0.780       0.891         0.0424 0.947   0.776
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.0000      0.932 1.000 0.000
#> SRR191640     1  0.0376      0.931 0.996 0.004
#> SRR191641     1  0.0376      0.931 0.996 0.004
#> SRR191642     1  0.0376      0.931 0.996 0.004
#> SRR191643     1  0.1414      0.923 0.980 0.020
#> SRR191644     1  0.0376      0.931 0.996 0.004
#> SRR191645     1  0.0000      0.932 1.000 0.000
#> SRR191646     1  0.0000      0.932 1.000 0.000
#> SRR191647     1  0.0376      0.931 0.996 0.004
#> SRR191648     1  0.0376      0.931 0.996 0.004
#> SRR191649     1  0.0376      0.931 0.996 0.004
#> SRR191650     1  0.0376      0.931 0.996 0.004
#> SRR191651     1  0.0000      0.932 1.000 0.000
#> SRR191652     1  0.0000      0.932 1.000 0.000
#> SRR191653     1  0.0376      0.931 0.996 0.004
#> SRR191654     1  0.1633      0.921 0.976 0.024
#> SRR191655     1  0.0376      0.931 0.996 0.004
#> SRR191656     1  0.0000      0.932 1.000 0.000
#> SRR191657     1  0.0000      0.932 1.000 0.000
#> SRR191658     1  0.0000      0.932 1.000 0.000
#> SRR191659     1  0.0000      0.932 1.000 0.000
#> SRR191660     1  0.0000      0.932 1.000 0.000
#> SRR191661     1  0.0000      0.932 1.000 0.000
#> SRR191662     1  0.0000      0.932 1.000 0.000
#> SRR191663     1  0.0000      0.932 1.000 0.000
#> SRR191664     1  0.0000      0.932 1.000 0.000
#> SRR191665     1  0.0000      0.932 1.000 0.000
#> SRR191666     1  0.0000      0.932 1.000 0.000
#> SRR191667     1  0.0000      0.932 1.000 0.000
#> SRR191668     1  0.0000      0.932 1.000 0.000
#> SRR191669     1  0.0000      0.932 1.000 0.000
#> SRR191670     1  0.0000      0.932 1.000 0.000
#> SRR191671     1  0.0000      0.932 1.000 0.000
#> SRR191672     1  0.0000      0.932 1.000 0.000
#> SRR191673     1  0.0000      0.932 1.000 0.000
#> SRR191674     2  0.0000      0.965 0.000 1.000
#> SRR191675     2  0.0000      0.965 0.000 1.000
#> SRR191677     2  0.0000      0.965 0.000 1.000
#> SRR191678     2  0.0000      0.965 0.000 1.000
#> SRR191679     2  0.0000      0.965 0.000 1.000
#> SRR191680     2  0.0000      0.965 0.000 1.000
#> SRR191681     2  0.0000      0.965 0.000 1.000
#> SRR191682     2  0.0000      0.965 0.000 1.000
#> SRR191683     2  0.0000      0.965 0.000 1.000
#> SRR191684     2  0.8144      0.650 0.252 0.748
#> SRR191685     2  0.0376      0.962 0.004 0.996
#> SRR191686     2  0.0000      0.965 0.000 1.000
#> SRR191687     2  0.0000      0.965 0.000 1.000
#> SRR191688     2  0.9323      0.434 0.348 0.652
#> SRR191689     2  0.0000      0.965 0.000 1.000
#> SRR191690     1  0.7299      0.749 0.796 0.204
#> SRR191691     2  0.3274      0.913 0.060 0.940
#> SRR191692     2  0.0000      0.965 0.000 1.000
#> SRR191693     2  0.0000      0.965 0.000 1.000
#> SRR191694     2  0.0000      0.965 0.000 1.000
#> SRR191695     2  0.0000      0.965 0.000 1.000
#> SRR191696     2  0.0000      0.965 0.000 1.000
#> SRR191697     2  0.0000      0.965 0.000 1.000
#> SRR191698     2  0.0000      0.965 0.000 1.000
#> SRR191699     2  0.0000      0.965 0.000 1.000
#> SRR191700     2  0.4690      0.873 0.100 0.900
#> SRR191701     2  0.0000      0.965 0.000 1.000
#> SRR191702     2  0.0000      0.965 0.000 1.000
#> SRR191703     2  0.0000      0.965 0.000 1.000
#> SRR191704     2  0.0000      0.965 0.000 1.000
#> SRR191705     2  0.0000      0.965 0.000 1.000
#> SRR191706     2  0.0000      0.965 0.000 1.000
#> SRR191707     2  0.9286      0.444 0.344 0.656
#> SRR191708     1  0.8608      0.636 0.716 0.284
#> SRR191709     2  0.0000      0.965 0.000 1.000
#> SRR191710     1  0.9427      0.496 0.640 0.360
#> SRR191711     2  0.0376      0.962 0.004 0.996
#> SRR191712     2  0.6343      0.794 0.160 0.840
#> SRR191713     1  0.9850      0.329 0.572 0.428
#> SRR191714     1  0.9635      0.434 0.612 0.388
#> SRR191715     2  0.6247      0.801 0.156 0.844
#> SRR191716     1  0.9922      0.232 0.552 0.448
#> SRR191717     2  0.1184      0.954 0.016 0.984
#> SRR191718     2  0.0000      0.965 0.000 1.000
#> SRR537099     1  0.0376      0.931 0.996 0.004
#> SRR537100     1  0.0376      0.931 0.996 0.004
#> SRR537101     1  0.0376      0.931 0.996 0.004
#> SRR537102     1  0.4562      0.863 0.904 0.096
#> SRR537104     1  0.0672      0.930 0.992 0.008
#> SRR537105     1  0.3431      0.892 0.936 0.064
#> SRR537106     1  0.3584      0.889 0.932 0.068
#> SRR537107     1  0.3584      0.889 0.932 0.068
#> SRR537108     1  0.3431      0.892 0.936 0.064
#> SRR537109     1  0.8207      0.683 0.744 0.256
#> SRR537110     1  0.6887      0.773 0.816 0.184
#> SRR537111     1  0.0376      0.931 0.996 0.004
#> SRR537113     1  0.9850      0.283 0.572 0.428
#> SRR537114     1  0.9909      0.236 0.556 0.444
#> SRR537115     2  0.3584      0.905 0.068 0.932
#> SRR537116     2  0.0000      0.965 0.000 1.000
#> SRR537117     2  0.0000      0.965 0.000 1.000
#> SRR537118     2  0.0000      0.965 0.000 1.000
#> SRR537119     2  0.0000      0.965 0.000 1.000
#> SRR537120     2  0.0000      0.965 0.000 1.000
#> SRR537121     2  0.1184      0.953 0.016 0.984
#> SRR537122     2  0.2043      0.941 0.032 0.968
#> SRR537123     2  0.0672      0.959 0.008 0.992
#> SRR537124     2  0.0000      0.965 0.000 1.000
#> SRR537125     2  0.0000      0.965 0.000 1.000
#> SRR537126     2  0.0000      0.965 0.000 1.000
#> SRR537127     1  0.0672      0.929 0.992 0.008
#> SRR537128     1  0.0000      0.932 1.000 0.000
#> SRR537129     1  0.1414      0.922 0.980 0.020
#> SRR537130     1  0.0000      0.932 1.000 0.000
#> SRR537131     1  0.0000      0.932 1.000 0.000
#> SRR537132     1  0.0000      0.932 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.4796      0.748 0.780 0.000 0.220
#> SRR191640     1  0.4235      0.764 0.824 0.000 0.176
#> SRR191641     1  0.4235      0.764 0.824 0.000 0.176
#> SRR191642     1  0.4235      0.764 0.824 0.000 0.176
#> SRR191643     1  0.4409      0.766 0.824 0.004 0.172
#> SRR191644     1  0.4235      0.764 0.824 0.000 0.176
#> SRR191645     1  0.4974      0.736 0.764 0.000 0.236
#> SRR191646     1  0.4974      0.736 0.764 0.000 0.236
#> SRR191647     1  0.4796      0.748 0.780 0.000 0.220
#> SRR191648     1  0.4796      0.748 0.780 0.000 0.220
#> SRR191649     1  0.4796      0.748 0.780 0.000 0.220
#> SRR191650     1  0.4750      0.750 0.784 0.000 0.216
#> SRR191651     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191652     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191653     1  0.4235      0.764 0.824 0.000 0.176
#> SRR191654     1  0.4295      0.767 0.864 0.032 0.104
#> SRR191655     1  0.4235      0.764 0.824 0.000 0.176
#> SRR191656     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191657     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191658     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191659     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191660     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191661     3  0.3752      0.933 0.144 0.000 0.856
#> SRR191662     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191663     3  0.3619      0.942 0.136 0.000 0.864
#> SRR191664     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191665     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191666     3  0.3412      0.947 0.124 0.000 0.876
#> SRR191667     3  0.3038      0.934 0.104 0.000 0.896
#> SRR191668     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191669     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191670     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191671     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191672     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191673     3  0.3482      0.950 0.128 0.000 0.872
#> SRR191674     2  0.0747      0.906 0.016 0.984 0.000
#> SRR191675     2  0.0747      0.906 0.016 0.984 0.000
#> SRR191677     2  0.0747      0.906 0.016 0.984 0.000
#> SRR191678     2  0.0892      0.906 0.020 0.980 0.000
#> SRR191679     2  0.1411      0.911 0.036 0.964 0.000
#> SRR191680     2  0.0237      0.909 0.004 0.996 0.000
#> SRR191681     2  0.3038      0.874 0.104 0.896 0.000
#> SRR191682     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191683     2  0.1411      0.911 0.036 0.964 0.000
#> SRR191684     2  0.4443      0.874 0.084 0.864 0.052
#> SRR191685     2  0.2774      0.907 0.072 0.920 0.008
#> SRR191686     2  0.1289      0.911 0.032 0.968 0.000
#> SRR191687     2  0.2066      0.908 0.060 0.940 0.000
#> SRR191688     1  0.4702      0.686 0.788 0.212 0.000
#> SRR191689     2  0.1031      0.911 0.024 0.976 0.000
#> SRR191690     1  0.4002      0.717 0.840 0.160 0.000
#> SRR191691     2  0.3293      0.895 0.088 0.900 0.012
#> SRR191692     2  0.1411      0.901 0.036 0.964 0.000
#> SRR191693     2  0.2959      0.876 0.100 0.900 0.000
#> SRR191694     2  0.0747      0.910 0.016 0.984 0.000
#> SRR191695     2  0.2625      0.903 0.084 0.916 0.000
#> SRR191696     2  0.2537      0.904 0.080 0.920 0.000
#> SRR191697     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191698     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191699     2  0.2625      0.902 0.084 0.916 0.000
#> SRR191700     2  0.2878      0.898 0.096 0.904 0.000
#> SRR191701     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191702     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191703     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191704     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191705     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191706     2  0.2356      0.906 0.072 0.928 0.000
#> SRR191707     1  0.4974      0.661 0.764 0.236 0.000
#> SRR191708     1  0.7292      0.122 0.500 0.472 0.028
#> SRR191709     2  0.3752      0.844 0.144 0.856 0.000
#> SRR191710     1  0.7203      0.309 0.556 0.416 0.028
#> SRR191711     1  0.6215      0.297 0.572 0.428 0.000
#> SRR191712     1  0.5988      0.444 0.632 0.368 0.000
#> SRR191713     1  0.9350      0.430 0.488 0.328 0.184
#> SRR191714     1  0.6630      0.565 0.672 0.300 0.028
#> SRR191715     2  0.7145      0.113 0.440 0.536 0.024
#> SRR191716     1  0.3879      0.722 0.848 0.152 0.000
#> SRR191717     1  0.5706      0.536 0.680 0.320 0.000
#> SRR191718     2  0.2356      0.906 0.072 0.928 0.000
#> SRR537099     1  0.4235      0.764 0.824 0.000 0.176
#> SRR537100     1  0.4235      0.764 0.824 0.000 0.176
#> SRR537101     1  0.4235      0.764 0.824 0.000 0.176
#> SRR537102     1  0.3921      0.749 0.884 0.080 0.036
#> SRR537104     1  0.4209      0.769 0.860 0.020 0.120
#> SRR537105     1  0.5356      0.762 0.784 0.020 0.196
#> SRR537106     1  0.5508      0.763 0.784 0.028 0.188
#> SRR537107     1  0.5455      0.765 0.788 0.028 0.184
#> SRR537108     1  0.5356      0.762 0.784 0.020 0.196
#> SRR537109     1  0.3425      0.736 0.884 0.112 0.004
#> SRR537110     1  0.3532      0.736 0.884 0.108 0.008
#> SRR537111     3  0.3482      0.950 0.128 0.000 0.872
#> SRR537113     1  0.3454      0.690 0.888 0.104 0.008
#> SRR537114     1  0.4033      0.673 0.856 0.136 0.008
#> SRR537115     2  0.4654      0.776 0.208 0.792 0.000
#> SRR537116     2  0.4605      0.765 0.204 0.796 0.000
#> SRR537117     2  0.3038      0.874 0.104 0.896 0.000
#> SRR537118     2  0.3038      0.874 0.104 0.896 0.000
#> SRR537119     2  0.3038      0.874 0.104 0.896 0.000
#> SRR537120     2  0.3038      0.874 0.104 0.896 0.000
#> SRR537121     2  0.3192      0.869 0.112 0.888 0.000
#> SRR537122     2  0.3619      0.853 0.136 0.864 0.000
#> SRR537123     2  0.3116      0.872 0.108 0.892 0.000
#> SRR537124     2  0.3038      0.874 0.104 0.896 0.000
#> SRR537125     2  0.3116      0.872 0.108 0.892 0.000
#> SRR537126     2  0.3116      0.872 0.108 0.892 0.000
#> SRR537127     3  0.1860      0.833 0.052 0.000 0.948
#> SRR537128     3  0.1643      0.840 0.044 0.000 0.956
#> SRR537129     3  0.2261      0.817 0.068 0.000 0.932
#> SRR537130     3  0.1643      0.840 0.044 0.000 0.956
#> SRR537131     3  0.1643      0.840 0.044 0.000 0.956
#> SRR537132     3  0.1643      0.840 0.044 0.000 0.956
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     4  0.4072     0.7472 0.252 0.000 0.000 0.748
#> SRR191640     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR191641     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR191642     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR191643     4  0.4542     0.7514 0.228 0.020 0.000 0.752
#> SRR191644     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR191645     1  0.4948    -0.1534 0.560 0.000 0.000 0.440
#> SRR191646     1  0.4948    -0.1534 0.560 0.000 0.000 0.440
#> SRR191647     4  0.4072     0.7472 0.252 0.000 0.000 0.748
#> SRR191648     4  0.4072     0.7472 0.252 0.000 0.000 0.748
#> SRR191649     4  0.4072     0.7472 0.252 0.000 0.000 0.748
#> SRR191650     4  0.4072     0.7472 0.252 0.000 0.000 0.748
#> SRR191651     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191652     1  0.0469     0.9034 0.988 0.000 0.000 0.012
#> SRR191653     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR191654     4  0.4829     0.7411 0.156 0.068 0.000 0.776
#> SRR191655     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR191656     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191658     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191659     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191660     1  0.0188     0.9092 0.996 0.000 0.000 0.004
#> SRR191661     1  0.4477     0.3745 0.688 0.000 0.000 0.312
#> SRR191662     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191663     1  0.2647     0.7675 0.880 0.000 0.000 0.120
#> SRR191664     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191665     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191666     1  0.0188     0.9077 0.996 0.000 0.004 0.000
#> SRR191667     1  0.0921     0.8792 0.972 0.000 0.028 0.000
#> SRR191668     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191669     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191670     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191673     1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> SRR191674     2  0.1474     0.8552 0.000 0.948 0.000 0.052
#> SRR191675     2  0.1474     0.8552 0.000 0.948 0.000 0.052
#> SRR191677     2  0.1474     0.8552 0.000 0.948 0.000 0.052
#> SRR191678     2  0.1637     0.8531 0.000 0.940 0.000 0.060
#> SRR191679     2  0.0592     0.8622 0.000 0.984 0.000 0.016
#> SRR191680     2  0.0921     0.8601 0.000 0.972 0.000 0.028
#> SRR191681     2  0.3266     0.8052 0.000 0.832 0.000 0.168
#> SRR191682     2  0.1824     0.8569 0.000 0.936 0.004 0.060
#> SRR191683     2  0.0469     0.8622 0.000 0.988 0.000 0.012
#> SRR191684     2  0.6405     0.4497 0.332 0.592 0.004 0.072
#> SRR191685     2  0.2365     0.8565 0.012 0.920 0.004 0.064
#> SRR191686     2  0.0469     0.8624 0.000 0.988 0.000 0.012
#> SRR191687     2  0.1389     0.8608 0.000 0.952 0.000 0.048
#> SRR191688     4  0.3569     0.6644 0.000 0.196 0.000 0.804
#> SRR191689     2  0.0000     0.8620 0.000 1.000 0.000 0.000
#> SRR191690     4  0.4267     0.6862 0.024 0.188 0.000 0.788
#> SRR191691     2  0.5607     0.6381 0.208 0.716 0.004 0.072
#> SRR191692     2  0.2011     0.8460 0.000 0.920 0.000 0.080
#> SRR191693     2  0.3219     0.8074 0.000 0.836 0.000 0.164
#> SRR191694     2  0.0817     0.8606 0.000 0.976 0.000 0.024
#> SRR191695     2  0.2125     0.8535 0.000 0.920 0.004 0.076
#> SRR191696     2  0.2125     0.8535 0.000 0.920 0.004 0.076
#> SRR191697     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191698     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191699     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191700     2  0.2197     0.8521 0.000 0.916 0.004 0.080
#> SRR191701     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191702     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191703     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191704     2  0.2238     0.8529 0.004 0.920 0.004 0.072
#> SRR191705     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191706     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR191707     4  0.3831     0.6563 0.000 0.204 0.004 0.792
#> SRR191708     4  0.7912     0.2741 0.304 0.260 0.004 0.432
#> SRR191709     2  0.3157     0.7952 0.000 0.852 0.004 0.144
#> SRR191710     4  0.7730     0.3233 0.304 0.220 0.004 0.472
#> SRR191711     4  0.5070     0.3430 0.000 0.416 0.004 0.580
#> SRR191712     4  0.4819     0.5036 0.000 0.344 0.004 0.652
#> SRR191713     4  0.7862     0.2881 0.324 0.236 0.004 0.436
#> SRR191714     4  0.7707     0.3293 0.304 0.216 0.004 0.476
#> SRR191715     2  0.7892     0.0197 0.252 0.436 0.004 0.308
#> SRR191716     4  0.4379     0.6986 0.036 0.172 0.000 0.792
#> SRR191717     4  0.4699     0.5449 0.000 0.320 0.004 0.676
#> SRR191718     2  0.2053     0.8544 0.000 0.924 0.004 0.072
#> SRR537099     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR537100     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR537101     4  0.4040     0.7492 0.248 0.000 0.000 0.752
#> SRR537102     4  0.4724     0.7169 0.076 0.136 0.000 0.788
#> SRR537104     4  0.4638     0.7459 0.180 0.044 0.000 0.776
#> SRR537105     4  0.4328     0.7508 0.244 0.008 0.000 0.748
#> SRR537106     4  0.4328     0.7508 0.244 0.008 0.000 0.748
#> SRR537107     4  0.4328     0.7508 0.244 0.008 0.000 0.748
#> SRR537108     4  0.4220     0.7495 0.248 0.004 0.000 0.748
#> SRR537109     4  0.4578     0.7060 0.052 0.160 0.000 0.788
#> SRR537110     4  0.5868     0.6258 0.116 0.168 0.004 0.712
#> SRR537111     1  0.0336     0.9064 0.992 0.000 0.000 0.008
#> SRR537113     4  0.3243     0.6212 0.036 0.088 0.000 0.876
#> SRR537114     4  0.3895     0.5834 0.036 0.132 0.000 0.832
#> SRR537115     2  0.3649     0.7786 0.000 0.796 0.000 0.204
#> SRR537116     2  0.3791     0.7265 0.000 0.796 0.004 0.200
#> SRR537117     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537118     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537119     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537120     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537121     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537122     2  0.3486     0.7932 0.000 0.812 0.000 0.188
#> SRR537123     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537124     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537125     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537126     2  0.3356     0.8009 0.000 0.824 0.000 0.176
#> SRR537127     3  0.0188     1.0000 0.004 0.000 0.996 0.000
#> SRR537128     3  0.0188     1.0000 0.004 0.000 0.996 0.000
#> SRR537129     3  0.0188     1.0000 0.004 0.000 0.996 0.000
#> SRR537130     3  0.0188     1.0000 0.004 0.000 0.996 0.000
#> SRR537131     3  0.0188     1.0000 0.004 0.000 0.996 0.000
#> SRR537132     3  0.0188     1.0000 0.004 0.000 0.996 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR191639     4  0.1121      0.922 0.044 0.000  0 0.956 0.000
#> SRR191640     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR191641     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR191642     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR191643     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR191644     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR191645     4  0.2329      0.864 0.124 0.000  0 0.876 0.000
#> SRR191646     4  0.2329      0.864 0.124 0.000  0 0.876 0.000
#> SRR191647     4  0.1121      0.922 0.044 0.000  0 0.956 0.000
#> SRR191648     4  0.1121      0.922 0.044 0.000  0 0.956 0.000
#> SRR191649     4  0.1544      0.911 0.068 0.000  0 0.932 0.000
#> SRR191650     4  0.1121      0.922 0.044 0.000  0 0.956 0.000
#> SRR191651     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191652     1  0.2127      0.873 0.892 0.000  0 0.108 0.000
#> SRR191653     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR191654     4  0.0566      0.924 0.012 0.004  0 0.984 0.000
#> SRR191655     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR191656     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191657     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191658     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191659     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191660     1  0.1410      0.922 0.940 0.000  0 0.060 0.000
#> SRR191661     1  0.2561      0.829 0.856 0.000  0 0.144 0.000
#> SRR191662     1  0.0162      0.967 0.996 0.000  0 0.004 0.000
#> SRR191663     1  0.2020      0.883 0.900 0.000  0 0.100 0.000
#> SRR191664     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191665     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191666     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191667     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191668     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191669     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191670     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191671     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191672     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191673     1  0.0000      0.970 1.000 0.000  0 0.000 0.000
#> SRR191674     5  0.2230      0.865 0.000 0.116  0 0.000 0.884
#> SRR191675     5  0.2230      0.865 0.000 0.116  0 0.000 0.884
#> SRR191677     5  0.2230      0.865 0.000 0.116  0 0.000 0.884
#> SRR191678     5  0.2127      0.868 0.000 0.108  0 0.000 0.892
#> SRR191679     5  0.3305      0.780 0.000 0.224  0 0.000 0.776
#> SRR191680     5  0.2773      0.839 0.000 0.164  0 0.000 0.836
#> SRR191681     5  0.0703      0.870 0.000 0.024  0 0.000 0.976
#> SRR191682     5  0.3816      0.662 0.000 0.304  0 0.000 0.696
#> SRR191683     5  0.3074      0.811 0.000 0.196  0 0.000 0.804
#> SRR191684     2  0.0162      0.920 0.004 0.996  0 0.000 0.000
#> SRR191685     2  0.0703      0.905 0.000 0.976  0 0.000 0.024
#> SRR191686     5  0.2813      0.834 0.000 0.168  0 0.000 0.832
#> SRR191687     2  0.3586      0.573 0.000 0.736  0 0.000 0.264
#> SRR191688     4  0.3707      0.620 0.000 0.284  0 0.716 0.000
#> SRR191689     5  0.2891      0.828 0.000 0.176  0 0.000 0.824
#> SRR191690     4  0.3336      0.700 0.000 0.228  0 0.772 0.000
#> SRR191691     2  0.0162      0.920 0.000 0.996  0 0.000 0.004
#> SRR191692     5  0.1908      0.870 0.000 0.092  0 0.000 0.908
#> SRR191693     5  0.0794      0.871 0.000 0.028  0 0.000 0.972
#> SRR191694     5  0.2471      0.855 0.000 0.136  0 0.000 0.864
#> SRR191695     2  0.4359      0.144 0.000 0.584  0 0.004 0.412
#> SRR191696     2  0.4359      0.146 0.000 0.584  0 0.004 0.412
#> SRR191697     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191698     2  0.0162      0.921 0.000 0.996  0 0.000 0.004
#> SRR191699     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191700     2  0.0404      0.914 0.000 0.988  0 0.000 0.012
#> SRR191701     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191702     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191703     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191704     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191705     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191706     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191707     2  0.0162      0.920 0.000 0.996  0 0.004 0.000
#> SRR191708     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191709     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191710     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191711     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191712     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191713     2  0.1043      0.888 0.040 0.960  0 0.000 0.000
#> SRR191714     2  0.0609      0.908 0.020 0.980  0 0.000 0.000
#> SRR191715     2  0.0000      0.922 0.000 1.000  0 0.000 0.000
#> SRR191716     4  0.3074      0.740 0.000 0.196  0 0.804 0.000
#> SRR191717     2  0.4341      0.253 0.000 0.592  0 0.404 0.004
#> SRR191718     5  0.4294      0.263 0.000 0.468  0 0.000 0.532
#> SRR537099     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR537100     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR537101     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR537102     4  0.0510      0.915 0.000 0.016  0 0.984 0.000
#> SRR537104     4  0.0510      0.926 0.016 0.000  0 0.984 0.000
#> SRR537105     4  0.1478      0.913 0.064 0.000  0 0.936 0.000
#> SRR537106     4  0.1544      0.910 0.068 0.000  0 0.932 0.000
#> SRR537107     4  0.1197      0.920 0.048 0.000  0 0.952 0.000
#> SRR537108     4  0.1121      0.922 0.044 0.000  0 0.956 0.000
#> SRR537109     4  0.2561      0.802 0.000 0.144  0 0.856 0.000
#> SRR537110     2  0.0703      0.899 0.000 0.976  0 0.024 0.000
#> SRR537111     1  0.1478      0.915 0.936 0.000  0 0.064 0.000
#> SRR537113     4  0.2732      0.781 0.000 0.000  0 0.840 0.160
#> SRR537114     4  0.2929      0.758 0.000 0.000  0 0.820 0.180
#> SRR537115     5  0.1331      0.860 0.000 0.008  0 0.040 0.952
#> SRR537116     2  0.0162      0.920 0.000 0.996  0 0.004 0.000
#> SRR537117     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537118     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537119     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537120     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537121     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537122     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537123     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537124     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537125     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537126     5  0.0510      0.866 0.000 0.000  0 0.016 0.984
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     4  0.0547      0.920 0.020 0.000  0 0.980 0.000 0.000
#> SRR191640     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191641     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191642     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191643     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191644     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191645     4  0.1863      0.860 0.104 0.000  0 0.896 0.000 0.000
#> SRR191646     4  0.1863      0.860 0.104 0.000  0 0.896 0.000 0.000
#> SRR191647     4  0.0458      0.921 0.016 0.000  0 0.984 0.000 0.000
#> SRR191648     4  0.0458      0.921 0.016 0.000  0 0.984 0.000 0.000
#> SRR191649     4  0.1141      0.904 0.052 0.000  0 0.948 0.000 0.000
#> SRR191650     4  0.0458      0.921 0.016 0.000  0 0.984 0.000 0.000
#> SRR191651     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191652     1  0.2003      0.862 0.884 0.000  0 0.116 0.000 0.000
#> SRR191653     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191654     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191655     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR191656     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191657     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191658     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191659     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191660     1  0.1267      0.920 0.940 0.000  0 0.060 0.000 0.000
#> SRR191661     1  0.2378      0.818 0.848 0.000  0 0.152 0.000 0.000
#> SRR191662     1  0.0146      0.965 0.996 0.000  0 0.004 0.000 0.000
#> SRR191663     1  0.1765      0.886 0.904 0.000  0 0.096 0.000 0.000
#> SRR191664     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191665     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191666     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191667     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191668     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191669     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191670     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191671     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191672     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191673     1  0.0000      0.968 1.000 0.000  0 0.000 0.000 0.000
#> SRR191674     6  0.4264      0.374 0.000 0.016  0 0.000 0.484 0.500
#> SRR191675     6  0.4264      0.374 0.000 0.016  0 0.000 0.484 0.500
#> SRR191677     6  0.4264      0.374 0.000 0.016  0 0.000 0.484 0.500
#> SRR191678     6  0.4315      0.362 0.000 0.012  0 0.004 0.488 0.496
#> SRR191679     6  0.4800      0.379 0.000 0.052  0 0.000 0.448 0.500
#> SRR191680     6  0.4264      0.374 0.000 0.016  0 0.000 0.484 0.500
#> SRR191681     6  0.4264      0.374 0.000 0.016  0 0.000 0.484 0.500
#> SRR191682     6  0.4926      0.198 0.000 0.240  0 0.000 0.120 0.640
#> SRR191683     6  0.1327      0.364 0.000 0.064  0 0.000 0.000 0.936
#> SRR191684     6  0.3817     -0.181 0.000 0.432  0 0.000 0.000 0.568
#> SRR191685     6  0.3817     -0.181 0.000 0.432  0 0.000 0.000 0.568
#> SRR191686     6  0.0363      0.374 0.000 0.012  0 0.000 0.000 0.988
#> SRR191687     6  0.3944     -0.174 0.000 0.428  0 0.000 0.004 0.568
#> SRR191688     4  0.3428      0.569 0.000 0.304  0 0.696 0.000 0.000
#> SRR191689     6  0.3907      0.405 0.000 0.004  0 0.000 0.408 0.588
#> SRR191690     4  0.3101      0.676 0.000 0.244  0 0.756 0.000 0.000
#> SRR191691     2  0.1444      0.841 0.000 0.928  0 0.000 0.000 0.072
#> SRR191692     6  0.4264      0.374 0.000 0.016  0 0.000 0.484 0.500
#> SRR191693     6  0.2883      0.430 0.000 0.000  0 0.000 0.212 0.788
#> SRR191694     6  0.3482      0.420 0.000 0.000  0 0.000 0.316 0.684
#> SRR191695     2  0.2912      0.677 0.000 0.784  0 0.000 0.216 0.000
#> SRR191696     2  0.2941      0.671 0.000 0.780  0 0.000 0.220 0.000
#> SRR191697     2  0.1204      0.850 0.000 0.944  0 0.000 0.056 0.000
#> SRR191698     2  0.1584      0.847 0.000 0.928  0 0.000 0.064 0.008
#> SRR191699     2  0.3659      0.511 0.000 0.636  0 0.000 0.000 0.364
#> SRR191700     2  0.1444      0.845 0.000 0.928  0 0.000 0.072 0.000
#> SRR191701     2  0.1204      0.850 0.000 0.944  0 0.000 0.056 0.000
#> SRR191702     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191703     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191704     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191705     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191706     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191707     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191708     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191709     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191710     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191711     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR191712     2  0.0547      0.863 0.000 0.980  0 0.020 0.000 0.000
#> SRR191713     2  0.4488      0.331 0.032 0.548  0 0.000 0.000 0.420
#> SRR191714     2  0.2094      0.810 0.020 0.900  0 0.000 0.000 0.080
#> SRR191715     2  0.2823      0.674 0.000 0.796  0 0.000 0.000 0.204
#> SRR191716     4  0.2941      0.708 0.000 0.220  0 0.780 0.000 0.000
#> SRR191717     2  0.3899      0.272 0.000 0.592  0 0.404 0.004 0.000
#> SRR191718     2  0.3482      0.496 0.000 0.684  0 0.000 0.316 0.000
#> SRR537099     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR537100     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR537101     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR537102     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR537104     4  0.0000      0.924 0.000 0.000  0 1.000 0.000 0.000
#> SRR537105     4  0.1075      0.906 0.048 0.000  0 0.952 0.000 0.000
#> SRR537106     4  0.1141      0.903 0.052 0.000  0 0.948 0.000 0.000
#> SRR537107     4  0.0632      0.919 0.024 0.000  0 0.976 0.000 0.000
#> SRR537108     4  0.0458      0.921 0.016 0.000  0 0.984 0.000 0.000
#> SRR537109     4  0.1501      0.871 0.000 0.076  0 0.924 0.000 0.000
#> SRR537110     2  0.0146      0.870 0.000 0.996  0 0.004 0.000 0.000
#> SRR537111     1  0.1700      0.894 0.916 0.004  0 0.080 0.000 0.000
#> SRR537113     4  0.3528      0.617 0.000 0.004  0 0.700 0.296 0.000
#> SRR537114     4  0.3409      0.614 0.000 0.000  0 0.700 0.300 0.000
#> SRR537115     5  0.3775      0.500 0.000 0.016  0 0.228 0.744 0.012
#> SRR537116     2  0.0000      0.872 0.000 1.000  0 0.000 0.000 0.000
#> SRR537117     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537118     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537119     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537120     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537121     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537122     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537123     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537124     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537125     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537126     5  0.0000      0.953 0.000 0.000  0 0.000 1.000 0.000
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.514           0.761       0.860         0.4140 0.629   0.629
#> 3 3 0.531           0.685       0.844         0.4558 0.591   0.443
#> 4 4 0.896           0.877       0.940         0.1083 0.780   0.552
#> 5 5 0.688           0.722       0.828         0.0905 0.864   0.639
#> 6 6 0.821           0.791       0.892         0.0875 0.884   0.619
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.3274      0.899 0.940 0.060
#> SRR191640     2  0.9710      0.617 0.400 0.600
#> SRR191641     2  0.9710      0.617 0.400 0.600
#> SRR191642     2  0.9710      0.617 0.400 0.600
#> SRR191643     2  0.9710      0.617 0.400 0.600
#> SRR191644     2  0.9710      0.617 0.400 0.600
#> SRR191645     2  0.9710      0.617 0.400 0.600
#> SRR191646     2  0.9710      0.617 0.400 0.600
#> SRR191647     2  0.9710      0.617 0.400 0.600
#> SRR191648     2  0.9710      0.617 0.400 0.600
#> SRR191649     2  0.9710      0.617 0.400 0.600
#> SRR191650     2  0.9710      0.617 0.400 0.600
#> SRR191651     1  0.0376      0.967 0.996 0.004
#> SRR191652     1  0.6343      0.722 0.840 0.160
#> SRR191653     2  0.9710      0.617 0.400 0.600
#> SRR191654     2  0.9710      0.617 0.400 0.600
#> SRR191655     2  0.9710      0.617 0.400 0.600
#> SRR191656     1  0.0376      0.967 0.996 0.004
#> SRR191657     1  0.0376      0.967 0.996 0.004
#> SRR191658     1  0.0376      0.967 0.996 0.004
#> SRR191659     1  0.0376      0.967 0.996 0.004
#> SRR191660     1  0.0376      0.967 0.996 0.004
#> SRR191661     1  0.9427      0.125 0.640 0.360
#> SRR191662     1  0.0376      0.967 0.996 0.004
#> SRR191663     1  0.0672      0.964 0.992 0.008
#> SRR191664     1  0.0376      0.967 0.996 0.004
#> SRR191665     1  0.0376      0.967 0.996 0.004
#> SRR191666     1  0.0000      0.966 1.000 0.000
#> SRR191667     1  0.0000      0.966 1.000 0.000
#> SRR191668     1  0.0376      0.967 0.996 0.004
#> SRR191669     1  0.0376      0.967 0.996 0.004
#> SRR191670     1  0.0376      0.967 0.996 0.004
#> SRR191671     1  0.0376      0.967 0.996 0.004
#> SRR191672     1  0.0376      0.967 0.996 0.004
#> SRR191673     1  0.0376      0.967 0.996 0.004
#> SRR191674     2  0.0000      0.778 0.000 1.000
#> SRR191675     2  0.0000      0.778 0.000 1.000
#> SRR191677     2  0.0000      0.778 0.000 1.000
#> SRR191678     2  0.0000      0.778 0.000 1.000
#> SRR191679     2  0.0000      0.778 0.000 1.000
#> SRR191680     2  0.0000      0.778 0.000 1.000
#> SRR191681     2  0.0000      0.778 0.000 1.000
#> SRR191682     2  0.0000      0.778 0.000 1.000
#> SRR191683     2  0.0000      0.778 0.000 1.000
#> SRR191684     2  0.0000      0.778 0.000 1.000
#> SRR191685     2  0.0000      0.778 0.000 1.000
#> SRR191686     2  0.0000      0.778 0.000 1.000
#> SRR191687     2  0.0000      0.778 0.000 1.000
#> SRR191688     2  0.0000      0.778 0.000 1.000
#> SRR191689     2  0.0000      0.778 0.000 1.000
#> SRR191690     2  0.0000      0.778 0.000 1.000
#> SRR191691     2  0.0000      0.778 0.000 1.000
#> SRR191692     2  0.0000      0.778 0.000 1.000
#> SRR191693     2  0.0000      0.778 0.000 1.000
#> SRR191694     2  0.0000      0.778 0.000 1.000
#> SRR191695     2  0.0000      0.778 0.000 1.000
#> SRR191696     2  0.0000      0.778 0.000 1.000
#> SRR191697     2  0.0000      0.778 0.000 1.000
#> SRR191698     2  0.0000      0.778 0.000 1.000
#> SRR191699     2  0.0000      0.778 0.000 1.000
#> SRR191700     2  0.0000      0.778 0.000 1.000
#> SRR191701     2  0.0000      0.778 0.000 1.000
#> SRR191702     2  0.0000      0.778 0.000 1.000
#> SRR191703     2  0.0000      0.778 0.000 1.000
#> SRR191704     2  0.0000      0.778 0.000 1.000
#> SRR191705     2  0.0000      0.778 0.000 1.000
#> SRR191706     2  0.0000      0.778 0.000 1.000
#> SRR191707     2  0.0000      0.778 0.000 1.000
#> SRR191708     2  0.0000      0.778 0.000 1.000
#> SRR191709     2  0.0000      0.778 0.000 1.000
#> SRR191710     2  0.0000      0.778 0.000 1.000
#> SRR191711     2  0.0000      0.778 0.000 1.000
#> SRR191712     2  0.0000      0.778 0.000 1.000
#> SRR191713     2  0.0000      0.778 0.000 1.000
#> SRR191714     2  0.0000      0.778 0.000 1.000
#> SRR191715     2  0.0000      0.778 0.000 1.000
#> SRR191716     2  0.0000      0.778 0.000 1.000
#> SRR191717     2  0.0000      0.778 0.000 1.000
#> SRR191718     2  0.0000      0.778 0.000 1.000
#> SRR537099     2  0.9710      0.617 0.400 0.600
#> SRR537100     2  0.9710      0.617 0.400 0.600
#> SRR537101     2  0.9710      0.617 0.400 0.600
#> SRR537102     2  0.9710      0.617 0.400 0.600
#> SRR537104     2  0.9710      0.617 0.400 0.600
#> SRR537105     2  0.9710      0.617 0.400 0.600
#> SRR537106     2  0.9710      0.617 0.400 0.600
#> SRR537107     2  0.9710      0.617 0.400 0.600
#> SRR537108     2  0.9710      0.617 0.400 0.600
#> SRR537109     2  0.8016      0.696 0.244 0.756
#> SRR537110     2  0.7139      0.714 0.196 0.804
#> SRR537111     2  0.9686      0.618 0.396 0.604
#> SRR537113     2  0.9710      0.617 0.400 0.600
#> SRR537114     2  0.9710      0.617 0.400 0.600
#> SRR537115     2  0.9491      0.643 0.368 0.632
#> SRR537116     2  0.0000      0.778 0.000 1.000
#> SRR537117     2  0.9491      0.643 0.368 0.632
#> SRR537118     2  0.9491      0.643 0.368 0.632
#> SRR537119     2  0.9491      0.643 0.368 0.632
#> SRR537120     2  0.9491      0.643 0.368 0.632
#> SRR537121     2  0.9491      0.643 0.368 0.632
#> SRR537122     2  0.9491      0.643 0.368 0.632
#> SRR537123     2  0.9491      0.643 0.368 0.632
#> SRR537124     2  0.9491      0.643 0.368 0.632
#> SRR537125     2  0.9491      0.643 0.368 0.632
#> SRR537126     2  0.9491      0.643 0.368 0.632
#> SRR537127     1  0.0000      0.966 1.000 0.000
#> SRR537128     1  0.0000      0.966 1.000 0.000
#> SRR537129     1  0.0000      0.966 1.000 0.000
#> SRR537130     1  0.0000      0.966 1.000 0.000
#> SRR537131     1  0.0000      0.966 1.000 0.000
#> SRR537132     1  0.0000      0.966 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0592      0.642 0.988 0.000 0.012
#> SRR191640     1  0.7717      0.505 0.680 0.148 0.172
#> SRR191641     1  0.3482      0.615 0.872 0.000 0.128
#> SRR191642     1  0.8972      0.392 0.564 0.236 0.200
#> SRR191643     1  0.8322      0.418 0.604 0.276 0.120
#> SRR191644     1  0.3253      0.639 0.912 0.052 0.036
#> SRR191645     1  0.0829      0.643 0.984 0.004 0.012
#> SRR191646     1  0.0983      0.643 0.980 0.004 0.016
#> SRR191647     1  0.4679      0.581 0.832 0.148 0.020
#> SRR191648     1  0.4937      0.579 0.824 0.148 0.028
#> SRR191649     1  0.5412      0.585 0.796 0.032 0.172
#> SRR191650     1  0.0424      0.642 0.992 0.000 0.008
#> SRR191651     1  0.2796      0.627 0.908 0.000 0.092
#> SRR191652     1  0.2165      0.635 0.936 0.000 0.064
#> SRR191653     1  0.7729      0.206 0.516 0.048 0.436
#> SRR191654     1  0.7806      0.348 0.584 0.064 0.352
#> SRR191655     1  0.5061      0.564 0.784 0.008 0.208
#> SRR191656     1  0.4654      0.519 0.792 0.000 0.208
#> SRR191657     1  0.2625      0.631 0.916 0.000 0.084
#> SRR191658     1  0.2711      0.629 0.912 0.000 0.088
#> SRR191659     1  0.2711      0.629 0.912 0.000 0.088
#> SRR191660     1  0.2711      0.629 0.912 0.000 0.088
#> SRR191661     1  0.2625      0.631 0.916 0.000 0.084
#> SRR191662     1  0.2711      0.629 0.912 0.000 0.088
#> SRR191663     1  0.2711      0.631 0.912 0.000 0.088
#> SRR191664     1  0.2448      0.633 0.924 0.000 0.076
#> SRR191665     1  0.2959      0.622 0.900 0.000 0.100
#> SRR191666     3  0.5098      0.522 0.248 0.000 0.752
#> SRR191667     3  0.5098      0.522 0.248 0.000 0.752
#> SRR191668     1  0.4654      0.519 0.792 0.000 0.208
#> SRR191669     1  0.4654      0.519 0.792 0.000 0.208
#> SRR191670     1  0.2959      0.622 0.900 0.000 0.100
#> SRR191671     1  0.2959      0.622 0.900 0.000 0.100
#> SRR191672     1  0.4750      0.512 0.784 0.000 0.216
#> SRR191673     1  0.4750      0.512 0.784 0.000 0.216
#> SRR191674     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191675     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191677     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191678     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191679     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191680     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191681     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191682     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191683     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191684     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191685     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191686     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191687     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191688     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191689     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191690     2  0.3482      0.794 0.128 0.872 0.000
#> SRR191691     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191692     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191693     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191694     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191695     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191696     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191697     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191698     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191699     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191700     2  0.6126      0.220 0.400 0.600 0.000
#> SRR191701     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191702     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191703     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191704     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191705     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191706     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191707     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191708     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191709     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191710     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191711     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191712     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191713     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191714     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191715     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191716     2  0.3038      0.826 0.104 0.896 0.000
#> SRR191717     2  0.0000      0.946 0.000 1.000 0.000
#> SRR191718     2  0.0000      0.946 0.000 1.000 0.000
#> SRR537099     1  0.6848      0.565 0.736 0.100 0.164
#> SRR537100     1  0.5158      0.547 0.764 0.004 0.232
#> SRR537101     1  0.3038      0.623 0.896 0.000 0.104
#> SRR537102     1  0.8925      0.394 0.564 0.256 0.180
#> SRR537104     2  0.9633     -0.181 0.352 0.436 0.212
#> SRR537105     1  0.8972      0.392 0.564 0.236 0.200
#> SRR537106     1  0.9081      0.382 0.552 0.236 0.212
#> SRR537107     1  0.9081      0.382 0.552 0.236 0.212
#> SRR537108     1  0.9081      0.382 0.552 0.236 0.212
#> SRR537109     2  0.0000      0.946 0.000 1.000 0.000
#> SRR537110     2  0.4062      0.740 0.164 0.836 0.000
#> SRR537111     1  0.0424      0.642 0.992 0.000 0.008
#> SRR537113     2  0.8966      0.205 0.268 0.556 0.176
#> SRR537114     1  0.9696      0.175 0.396 0.388 0.216
#> SRR537115     2  0.8748      0.295 0.172 0.584 0.244
#> SRR537116     2  0.0000      0.946 0.000 1.000 0.000
#> SRR537117     1  0.9666      0.134 0.412 0.376 0.212
#> SRR537118     1  0.8610      0.295 0.548 0.116 0.336
#> SRR537119     1  0.8610      0.295 0.548 0.116 0.336
#> SRR537120     1  0.9001      0.299 0.548 0.172 0.280
#> SRR537121     1  0.8610      0.295 0.548 0.116 0.336
#> SRR537122     1  0.8592      0.302 0.552 0.116 0.332
#> SRR537123     1  0.8719      0.297 0.548 0.128 0.324
#> SRR537124     1  0.9083      0.303 0.548 0.196 0.256
#> SRR537125     1  0.8610      0.295 0.548 0.116 0.336
#> SRR537126     1  0.8610      0.295 0.548 0.116 0.336
#> SRR537127     3  0.0000      0.887 0.000 0.000 1.000
#> SRR537128     3  0.0000      0.887 0.000 0.000 1.000
#> SRR537129     3  0.0000      0.887 0.000 0.000 1.000
#> SRR537130     3  0.0000      0.887 0.000 0.000 1.000
#> SRR537131     3  0.0000      0.887 0.000 0.000 1.000
#> SRR537132     3  0.0000      0.887 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR191639     1  0.2281     0.8713 0.904 0.000  0 0.096
#> SRR191640     4  0.1716     0.8716 0.064 0.000  0 0.936
#> SRR191641     4  0.1716     0.8716 0.064 0.000  0 0.936
#> SRR191642     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR191643     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR191644     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR191645     4  0.2081     0.8606 0.084 0.000  0 0.916
#> SRR191646     4  0.2814     0.8218 0.132 0.000  0 0.868
#> SRR191647     4  0.1716     0.8716 0.064 0.000  0 0.936
#> SRR191648     4  0.1716     0.8716 0.064 0.000  0 0.936
#> SRR191649     4  0.1716     0.8716 0.064 0.000  0 0.936
#> SRR191650     4  0.1716     0.8716 0.064 0.000  0 0.936
#> SRR191651     1  0.2081     0.8888 0.916 0.000  0 0.084
#> SRR191652     4  0.4804     0.4413 0.384 0.000  0 0.616
#> SRR191653     4  0.1635     0.8759 0.044 0.008  0 0.948
#> SRR191654     4  0.1635     0.8759 0.044 0.008  0 0.948
#> SRR191655     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR191656     1  0.0000     0.9703 1.000 0.000  0 0.000
#> SRR191657     1  0.0336     0.9719 0.992 0.000  0 0.008
#> SRR191658     1  0.0336     0.9719 0.992 0.000  0 0.008
#> SRR191659     1  0.0336     0.9719 0.992 0.000  0 0.008
#> SRR191660     1  0.0336     0.9719 0.992 0.000  0 0.008
#> SRR191661     1  0.0707     0.9608 0.980 0.000  0 0.020
#> SRR191662     1  0.0336     0.9719 0.992 0.000  0 0.008
#> SRR191663     1  0.0336     0.9719 0.992 0.000  0 0.008
#> SRR191664     1  0.2011     0.8939 0.920 0.000  0 0.080
#> SRR191665     1  0.0188     0.9714 0.996 0.000  0 0.004
#> SRR191666     4  0.4804     0.4413 0.384 0.000  0 0.616
#> SRR191667     4  0.4804     0.4413 0.384 0.000  0 0.616
#> SRR191668     1  0.0000     0.9703 1.000 0.000  0 0.000
#> SRR191669     1  0.0000     0.9703 1.000 0.000  0 0.000
#> SRR191670     1  0.0000     0.9703 1.000 0.000  0 0.000
#> SRR191671     1  0.0000     0.9703 1.000 0.000  0 0.000
#> SRR191672     1  0.0000     0.9703 1.000 0.000  0 0.000
#> SRR191673     1  0.0000     0.9703 1.000 0.000  0 0.000
#> SRR191674     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191675     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191677     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191678     2  0.2149     0.8886 0.000 0.912  0 0.088
#> SRR191679     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191680     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191681     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191682     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191683     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191684     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191685     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191686     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191687     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191688     2  0.3907     0.6899 0.000 0.768  0 0.232
#> SRR191689     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191690     4  0.4955     0.2462 0.000 0.444  0 0.556
#> SRR191691     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191692     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191693     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191694     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191695     2  0.1474     0.9272 0.000 0.948  0 0.052
#> SRR191696     2  0.0921     0.9499 0.000 0.972  0 0.028
#> SRR191697     2  0.0921     0.9499 0.000 0.972  0 0.028
#> SRR191698     2  0.3975     0.6773 0.000 0.760  0 0.240
#> SRR191699     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191700     4  0.4898     0.3032 0.000 0.416  0 0.584
#> SRR191701     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191702     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191703     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191704     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191705     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191706     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191707     2  0.1940     0.9021 0.000 0.924  0 0.076
#> SRR191708     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191709     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191710     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191711     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191712     2  0.0921     0.9499 0.000 0.972  0 0.028
#> SRR191713     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191714     2  0.0000     0.9690 0.000 1.000  0 0.000
#> SRR191715     2  0.0336     0.9639 0.000 0.992  0 0.008
#> SRR191716     4  0.4925     0.2934 0.000 0.428  0 0.572
#> SRR191717     2  0.3123     0.8002 0.000 0.844  0 0.156
#> SRR191718     2  0.0921     0.9499 0.000 0.972  0 0.028
#> SRR537099     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537100     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537101     4  0.1716     0.8716 0.064 0.000  0 0.936
#> SRR537102     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537104     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537105     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537106     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537107     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537108     4  0.2002     0.8776 0.044 0.020  0 0.936
#> SRR537109     4  0.5000     0.0753 0.000 0.496  0 0.504
#> SRR537110     4  0.4888     0.3369 0.000 0.412  0 0.588
#> SRR537111     4  0.3975     0.6921 0.240 0.000  0 0.760
#> SRR537113     4  0.2111     0.8760 0.044 0.024  0 0.932
#> SRR537114     4  0.1913     0.8771 0.040 0.020  0 0.940
#> SRR537115     4  0.1792     0.8278 0.000 0.068  0 0.932
#> SRR537116     2  0.0921     0.9499 0.000 0.972  0 0.028
#> SRR537117     4  0.0707     0.8613 0.000 0.020  0 0.980
#> SRR537118     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537119     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537120     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537121     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537122     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537123     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537124     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537125     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537126     4  0.0000     0.8589 0.000 0.000  0 1.000
#> SRR537127     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000  1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR191639     5  0.6576     -0.696 0.340 0.000  0 0.216 0.444
#> SRR191640     4  0.0290      0.767 0.000 0.000  0 0.992 0.008
#> SRR191641     4  0.2230      0.729 0.000 0.000  0 0.884 0.116
#> SRR191642     4  0.0162      0.769 0.000 0.004  0 0.996 0.000
#> SRR191643     4  0.3461      0.671 0.000 0.224  0 0.772 0.004
#> SRR191644     4  0.3461      0.671 0.000 0.224  0 0.772 0.004
#> SRR191645     4  0.0290      0.767 0.000 0.000  0 0.992 0.008
#> SRR191646     4  0.0290      0.767 0.000 0.000  0 0.992 0.008
#> SRR191647     4  0.0290      0.767 0.000 0.000  0 0.992 0.008
#> SRR191648     4  0.0290      0.767 0.000 0.000  0 0.992 0.008
#> SRR191649     4  0.0290      0.767 0.000 0.000  0 0.992 0.008
#> SRR191650     4  0.3707      0.657 0.004 0.008  0 0.768 0.220
#> SRR191651     1  0.5689      0.889 0.480 0.000  0 0.080 0.440
#> SRR191652     4  0.5382      0.495 0.104 0.000  0 0.644 0.252
#> SRR191653     4  0.3461      0.671 0.000 0.224  0 0.772 0.004
#> SRR191654     4  0.3461      0.671 0.000 0.224  0 0.772 0.004
#> SRR191655     4  0.2377      0.735 0.000 0.128  0 0.872 0.000
#> SRR191656     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191657     1  0.4415      0.980 0.552 0.000  0 0.004 0.444
#> SRR191658     1  0.4268      0.982 0.556 0.000  0 0.000 0.444
#> SRR191659     1  0.4415      0.980 0.552 0.000  0 0.004 0.444
#> SRR191660     1  0.4415      0.980 0.552 0.000  0 0.004 0.444
#> SRR191661     5  0.6217     -0.809 0.416 0.000  0 0.140 0.444
#> SRR191662     1  0.4415      0.980 0.552 0.000  0 0.004 0.444
#> SRR191663     1  0.4627      0.974 0.544 0.000  0 0.012 0.444
#> SRR191664     1  0.5283      0.933 0.508 0.000  0 0.048 0.444
#> SRR191665     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191666     4  0.5595      0.467 0.124 0.000  0 0.624 0.252
#> SRR191667     4  0.5595      0.467 0.124 0.000  0 0.624 0.252
#> SRR191668     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191669     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191670     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191671     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191672     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191673     1  0.4262      0.983 0.560 0.000  0 0.000 0.440
#> SRR191674     2  0.4182      0.804 0.400 0.600  0 0.000 0.000
#> SRR191675     2  0.4182      0.804 0.400 0.600  0 0.000 0.000
#> SRR191677     2  0.3966      0.798 0.336 0.664  0 0.000 0.000
#> SRR191678     2  0.0771      0.583 0.000 0.976  0 0.020 0.004
#> SRR191679     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191680     2  0.4150      0.802 0.388 0.612  0 0.000 0.000
#> SRR191681     2  0.3932      0.797 0.328 0.672  0 0.000 0.000
#> SRR191682     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191683     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191684     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191685     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191686     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191687     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191688     2  0.0566      0.583 0.000 0.984  0 0.012 0.004
#> SRR191689     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191690     2  0.3491      0.380 0.000 0.768  0 0.228 0.004
#> SRR191691     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191692     2  0.4150      0.803 0.388 0.612  0 0.000 0.000
#> SRR191693     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191694     2  0.4256      0.805 0.436 0.564  0 0.000 0.000
#> SRR191695     2  0.0404      0.588 0.000 0.988  0 0.012 0.000
#> SRR191696     2  0.0798      0.610 0.016 0.976  0 0.008 0.000
#> SRR191697     2  0.2074      0.695 0.104 0.896  0 0.000 0.000
#> SRR191698     2  0.4335      0.517 0.072 0.772  0 0.152 0.004
#> SRR191699     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191700     2  0.3607      0.358 0.000 0.752  0 0.244 0.004
#> SRR191701     2  0.3949      0.797 0.332 0.668  0 0.000 0.000
#> SRR191702     2  0.4161      0.803 0.392 0.608  0 0.000 0.000
#> SRR191703     2  0.4171      0.803 0.396 0.604  0 0.000 0.000
#> SRR191704     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191705     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191706     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191707     2  0.0451      0.588 0.000 0.988  0 0.008 0.004
#> SRR191708     2  0.3932      0.785 0.328 0.672  0 0.000 0.000
#> SRR191709     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191710     2  0.3949      0.786 0.332 0.668  0 0.000 0.000
#> SRR191711     2  0.3730      0.781 0.288 0.712  0 0.000 0.000
#> SRR191712     2  0.3160      0.740 0.188 0.808  0 0.004 0.000
#> SRR191713     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191714     2  0.4262      0.806 0.440 0.560  0 0.000 0.000
#> SRR191715     2  0.3534      0.772 0.256 0.744  0 0.000 0.000
#> SRR191716     2  0.3160      0.435 0.000 0.808  0 0.188 0.004
#> SRR191717     2  0.0566      0.583 0.000 0.984  0 0.012 0.004
#> SRR191718     2  0.2338      0.698 0.112 0.884  0 0.004 0.000
#> SRR537099     4  0.3461      0.671 0.000 0.224  0 0.772 0.004
#> SRR537100     4  0.3461      0.671 0.000 0.224  0 0.772 0.004
#> SRR537101     4  0.0290      0.767 0.000 0.000  0 0.992 0.008
#> SRR537102     4  0.1357      0.770 0.000 0.048  0 0.948 0.004
#> SRR537104     4  0.3579      0.662 0.000 0.240  0 0.756 0.004
#> SRR537105     4  0.0162      0.769 0.000 0.004  0 0.996 0.000
#> SRR537106     4  0.1124      0.771 0.000 0.036  0 0.960 0.004
#> SRR537107     4  0.1357      0.770 0.000 0.048  0 0.948 0.004
#> SRR537108     4  0.1952      0.759 0.000 0.084  0 0.912 0.004
#> SRR537109     2  0.1124      0.563 0.000 0.960  0 0.036 0.004
#> SRR537110     2  0.3741      0.314 0.000 0.732  0 0.264 0.004
#> SRR537111     4  0.3790      0.624 0.004 0.004  0 0.744 0.248
#> SRR537113     4  0.5425      0.459 0.000 0.320  0 0.600 0.080
#> SRR537114     4  0.4905      0.564 0.000 0.224  0 0.696 0.080
#> SRR537115     2  0.6363     -0.474 0.000 0.504  0 0.304 0.192
#> SRR537116     2  0.0290      0.592 0.000 0.992  0 0.008 0.000
#> SRR537117     5  0.6603      0.503 0.000 0.392  0 0.212 0.396
#> SRR537118     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537119     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537120     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537121     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537122     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537123     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537124     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537125     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537126     5  0.6203      0.727 0.000 0.224  0 0.224 0.552
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.3923     0.2626 0.580 0.004 0.000 0.416 0.000 0.000
#> SRR191640     4  0.0000     0.8981 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR191641     4  0.0260     0.8966 0.008 0.000 0.000 0.992 0.000 0.000
#> SRR191642     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR191643     4  0.0363     0.8961 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR191644     4  0.0547     0.8928 0.000 0.020 0.000 0.980 0.000 0.000
#> SRR191645     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR191646     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR191647     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR191648     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR191649     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR191650     4  0.0363     0.8952 0.012 0.000 0.000 0.988 0.000 0.000
#> SRR191651     1  0.2838     0.7038 0.808 0.004 0.000 0.188 0.000 0.000
#> SRR191652     4  0.1349     0.8669 0.056 0.004 0.000 0.940 0.000 0.000
#> SRR191653     4  0.0363     0.8961 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR191654     4  0.0363     0.8961 0.000 0.012 0.000 0.988 0.000 0.000
#> SRR191655     4  0.0260     0.8971 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR191656     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191657     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191658     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191659     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191660     1  0.0458     0.9099 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR191661     4  0.3737     0.3317 0.392 0.000 0.000 0.608 0.000 0.000
#> SRR191662     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191663     1  0.2996     0.6510 0.772 0.000 0.000 0.228 0.000 0.000
#> SRR191664     1  0.0291     0.9185 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR191665     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191666     4  0.2011     0.8506 0.064 0.004 0.020 0.912 0.000 0.000
#> SRR191667     4  0.2322     0.8401 0.064 0.004 0.036 0.896 0.000 0.000
#> SRR191668     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191669     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191670     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191671     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191672     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191673     1  0.0000     0.9235 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191674     6  0.2730     0.7249 0.000 0.192 0.000 0.000 0.000 0.808
#> SRR191675     6  0.2664     0.7323 0.000 0.184 0.000 0.000 0.000 0.816
#> SRR191677     6  0.3717     0.3707 0.000 0.384 0.000 0.000 0.000 0.616
#> SRR191678     2  0.3126     0.6537 0.000 0.752 0.000 0.000 0.000 0.248
#> SRR191679     6  0.0632     0.8337 0.000 0.024 0.000 0.000 0.000 0.976
#> SRR191680     6  0.3266     0.6195 0.000 0.272 0.000 0.000 0.000 0.728
#> SRR191681     6  0.3804     0.2519 0.000 0.424 0.000 0.000 0.000 0.576
#> SRR191682     6  0.1765     0.8395 0.000 0.096 0.000 0.000 0.000 0.904
#> SRR191683     6  0.1765     0.8395 0.000 0.096 0.000 0.000 0.000 0.904
#> SRR191684     6  0.1007     0.8428 0.000 0.044 0.000 0.000 0.000 0.956
#> SRR191685     6  0.0363     0.8311 0.000 0.012 0.000 0.000 0.000 0.988
#> SRR191686     6  0.0547     0.8372 0.000 0.020 0.000 0.000 0.000 0.980
#> SRR191687     6  0.0363     0.8311 0.000 0.012 0.000 0.000 0.000 0.988
#> SRR191688     2  0.1444     0.7873 0.000 0.928 0.000 0.000 0.000 0.072
#> SRR191689     6  0.0363     0.8311 0.000 0.012 0.000 0.000 0.000 0.988
#> SRR191690     2  0.3307     0.7234 0.000 0.820 0.000 0.108 0.000 0.072
#> SRR191691     6  0.1610     0.8426 0.000 0.084 0.000 0.000 0.000 0.916
#> SRR191692     6  0.2664     0.7282 0.000 0.184 0.000 0.000 0.000 0.816
#> SRR191693     6  0.0458     0.8289 0.000 0.016 0.000 0.000 0.000 0.984
#> SRR191694     6  0.0458     0.8289 0.000 0.016 0.000 0.000 0.000 0.984
#> SRR191695     2  0.1444     0.7873 0.000 0.928 0.000 0.000 0.000 0.072
#> SRR191696     2  0.1444     0.7873 0.000 0.928 0.000 0.000 0.000 0.072
#> SRR191697     2  0.2730     0.7463 0.000 0.808 0.000 0.000 0.000 0.192
#> SRR191698     6  0.3684     0.3656 0.000 0.372 0.000 0.000 0.000 0.628
#> SRR191699     6  0.0937     0.8424 0.000 0.040 0.000 0.000 0.000 0.960
#> SRR191700     4  0.6711    -0.3107 0.000 0.304 0.000 0.356 0.032 0.308
#> SRR191701     6  0.2562     0.7849 0.000 0.172 0.000 0.000 0.000 0.828
#> SRR191702     6  0.3198     0.7084 0.000 0.260 0.000 0.000 0.000 0.740
#> SRR191703     6  0.3076     0.7344 0.000 0.240 0.000 0.000 0.000 0.760
#> SRR191704     6  0.1765     0.8395 0.000 0.096 0.000 0.000 0.000 0.904
#> SRR191705     6  0.1765     0.8395 0.000 0.096 0.000 0.000 0.000 0.904
#> SRR191706     6  0.1765     0.8395 0.000 0.096 0.000 0.000 0.000 0.904
#> SRR191707     2  0.2631     0.7584 0.000 0.820 0.000 0.000 0.000 0.180
#> SRR191708     6  0.2092     0.8224 0.000 0.124 0.000 0.000 0.000 0.876
#> SRR191709     6  0.1663     0.8411 0.000 0.088 0.000 0.000 0.000 0.912
#> SRR191710     6  0.1863     0.8361 0.000 0.104 0.000 0.000 0.000 0.896
#> SRR191711     6  0.3371     0.6683 0.000 0.292 0.000 0.000 0.000 0.708
#> SRR191712     2  0.3531     0.5222 0.000 0.672 0.000 0.000 0.000 0.328
#> SRR191713     6  0.1556     0.8420 0.000 0.080 0.000 0.000 0.000 0.920
#> SRR191714     6  0.1556     0.8420 0.000 0.080 0.000 0.000 0.000 0.920
#> SRR191715     2  0.3843    -0.0582 0.000 0.548 0.000 0.000 0.000 0.452
#> SRR191716     2  0.2744     0.7587 0.000 0.864 0.000 0.064 0.000 0.072
#> SRR191717     2  0.1444     0.7873 0.000 0.928 0.000 0.000 0.000 0.072
#> SRR191718     2  0.2664     0.7578 0.000 0.816 0.000 0.000 0.000 0.184
#> SRR537099     4  0.1267     0.8664 0.000 0.060 0.000 0.940 0.000 0.000
#> SRR537100     4  0.0260     0.8971 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR537101     4  0.0000     0.8981 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR537102     4  0.0000     0.8981 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR537104     4  0.2912     0.6963 0.000 0.216 0.000 0.784 0.000 0.000
#> SRR537105     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR537106     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR537107     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR537108     4  0.0146     0.8984 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR537109     2  0.2340     0.7446 0.000 0.852 0.000 0.000 0.000 0.148
#> SRR537110     4  0.6032    -0.1250 0.000 0.288 0.000 0.424 0.000 0.288
#> SRR537111     4  0.1663     0.8431 0.088 0.000 0.000 0.912 0.000 0.000
#> SRR537113     4  0.4795     0.2691 0.000 0.400 0.000 0.544 0.056 0.000
#> SRR537114     4  0.2009     0.8487 0.000 0.024 0.000 0.908 0.068 0.000
#> SRR537115     2  0.5303     0.3966 0.000 0.600 0.000 0.204 0.196 0.000
#> SRR537116     2  0.2697     0.7550 0.000 0.812 0.000 0.000 0.000 0.188
#> SRR537117     2  0.3872     0.2847 0.000 0.604 0.000 0.004 0.392 0.000
#> SRR537118     5  0.0000     0.9902 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537119     5  0.0000     0.9902 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537120     5  0.0000     0.9902 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537121     5  0.0260     0.9877 0.000 0.008 0.000 0.000 0.992 0.000
#> SRR537122     5  0.0260     0.9877 0.000 0.008 0.000 0.000 0.992 0.000
#> SRR537123     5  0.0806     0.9637 0.000 0.008 0.000 0.020 0.972 0.000
#> SRR537124     5  0.0260     0.9877 0.000 0.008 0.000 0.000 0.992 0.000
#> SRR537125     5  0.0000     0.9902 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537126     5  0.0000     0.9902 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537127     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.889           0.912       0.965         0.4869 0.510   0.510
#> 3 3 0.952           0.906       0.964         0.1475 0.877   0.772
#> 4 4 0.593           0.629       0.826         0.2562 0.714   0.441
#> 5 5 0.759           0.757       0.872         0.1193 0.814   0.466
#> 6 6 0.766           0.694       0.814         0.0479 0.917   0.648
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.0000     0.9539 1.000 0.000
#> SRR191640     1  0.0000     0.9539 1.000 0.000
#> SRR191641     1  0.0000     0.9539 1.000 0.000
#> SRR191642     1  0.6973     0.7655 0.812 0.188
#> SRR191643     1  0.9635     0.3921 0.612 0.388
#> SRR191644     1  0.6438     0.7948 0.836 0.164
#> SRR191645     1  0.0000     0.9539 1.000 0.000
#> SRR191646     1  0.0000     0.9539 1.000 0.000
#> SRR191647     1  0.0000     0.9539 1.000 0.000
#> SRR191648     1  0.0000     0.9539 1.000 0.000
#> SRR191649     1  0.0000     0.9539 1.000 0.000
#> SRR191650     1  0.0000     0.9539 1.000 0.000
#> SRR191651     1  0.0000     0.9539 1.000 0.000
#> SRR191652     1  0.0000     0.9539 1.000 0.000
#> SRR191653     1  0.0000     0.9539 1.000 0.000
#> SRR191654     1  0.8207     0.6681 0.744 0.256
#> SRR191655     1  0.0000     0.9539 1.000 0.000
#> SRR191656     1  0.0000     0.9539 1.000 0.000
#> SRR191657     1  0.0000     0.9539 1.000 0.000
#> SRR191658     1  0.0000     0.9539 1.000 0.000
#> SRR191659     1  0.0000     0.9539 1.000 0.000
#> SRR191660     1  0.0000     0.9539 1.000 0.000
#> SRR191661     1  0.0000     0.9539 1.000 0.000
#> SRR191662     1  0.0000     0.9539 1.000 0.000
#> SRR191663     1  0.0000     0.9539 1.000 0.000
#> SRR191664     1  0.0000     0.9539 1.000 0.000
#> SRR191665     1  0.0000     0.9539 1.000 0.000
#> SRR191666     1  0.0000     0.9539 1.000 0.000
#> SRR191667     1  0.0000     0.9539 1.000 0.000
#> SRR191668     1  0.0000     0.9539 1.000 0.000
#> SRR191669     1  0.0000     0.9539 1.000 0.000
#> SRR191670     1  0.0000     0.9539 1.000 0.000
#> SRR191671     1  0.0000     0.9539 1.000 0.000
#> SRR191672     1  0.0000     0.9539 1.000 0.000
#> SRR191673     1  0.0000     0.9539 1.000 0.000
#> SRR191674     2  0.0000     0.9674 0.000 1.000
#> SRR191675     2  0.0000     0.9674 0.000 1.000
#> SRR191677     2  0.0000     0.9674 0.000 1.000
#> SRR191678     2  0.0000     0.9674 0.000 1.000
#> SRR191679     2  0.0000     0.9674 0.000 1.000
#> SRR191680     2  0.0000     0.9674 0.000 1.000
#> SRR191681     2  0.0000     0.9674 0.000 1.000
#> SRR191682     2  0.0000     0.9674 0.000 1.000
#> SRR191683     2  0.0000     0.9674 0.000 1.000
#> SRR191684     2  0.0000     0.9674 0.000 1.000
#> SRR191685     2  0.0000     0.9674 0.000 1.000
#> SRR191686     2  0.0000     0.9674 0.000 1.000
#> SRR191687     2  0.0000     0.9674 0.000 1.000
#> SRR191688     2  0.0000     0.9674 0.000 1.000
#> SRR191689     2  0.0000     0.9674 0.000 1.000
#> SRR191690     2  0.0000     0.9674 0.000 1.000
#> SRR191691     2  0.0000     0.9674 0.000 1.000
#> SRR191692     2  0.0000     0.9674 0.000 1.000
#> SRR191693     2  0.0000     0.9674 0.000 1.000
#> SRR191694     2  0.0000     0.9674 0.000 1.000
#> SRR191695     2  0.0000     0.9674 0.000 1.000
#> SRR191696     2  0.0000     0.9674 0.000 1.000
#> SRR191697     2  0.0000     0.9674 0.000 1.000
#> SRR191698     2  0.0000     0.9674 0.000 1.000
#> SRR191699     2  0.0000     0.9674 0.000 1.000
#> SRR191700     2  0.0000     0.9674 0.000 1.000
#> SRR191701     2  0.0000     0.9674 0.000 1.000
#> SRR191702     2  0.0000     0.9674 0.000 1.000
#> SRR191703     2  0.0000     0.9674 0.000 1.000
#> SRR191704     2  0.0000     0.9674 0.000 1.000
#> SRR191705     2  0.0000     0.9674 0.000 1.000
#> SRR191706     2  0.0000     0.9674 0.000 1.000
#> SRR191707     2  0.0000     0.9674 0.000 1.000
#> SRR191708     2  0.0000     0.9674 0.000 1.000
#> SRR191709     2  0.0000     0.9674 0.000 1.000
#> SRR191710     2  0.0000     0.9674 0.000 1.000
#> SRR191711     2  0.0000     0.9674 0.000 1.000
#> SRR191712     2  0.0000     0.9674 0.000 1.000
#> SRR191713     2  0.0000     0.9674 0.000 1.000
#> SRR191714     2  0.0000     0.9674 0.000 1.000
#> SRR191715     2  0.0000     0.9674 0.000 1.000
#> SRR191716     2  0.0000     0.9674 0.000 1.000
#> SRR191717     2  0.0000     0.9674 0.000 1.000
#> SRR191718     2  0.0000     0.9674 0.000 1.000
#> SRR537099     1  0.9661     0.3815 0.608 0.392
#> SRR537100     1  0.0000     0.9539 1.000 0.000
#> SRR537101     1  0.0000     0.9539 1.000 0.000
#> SRR537102     2  0.8861     0.5409 0.304 0.696
#> SRR537104     2  0.9833     0.2323 0.424 0.576
#> SRR537105     1  0.8443     0.6418 0.728 0.272
#> SRR537106     2  0.9963     0.0929 0.464 0.536
#> SRR537107     2  0.9358     0.4337 0.352 0.648
#> SRR537108     2  0.9323     0.4433 0.348 0.652
#> SRR537109     2  0.0000     0.9674 0.000 1.000
#> SRR537110     2  0.0000     0.9674 0.000 1.000
#> SRR537111     1  0.8661     0.6128 0.712 0.288
#> SRR537113     2  0.1843     0.9405 0.028 0.972
#> SRR537114     2  0.0376     0.9638 0.004 0.996
#> SRR537115     2  0.0000     0.9674 0.000 1.000
#> SRR537116     2  0.0000     0.9674 0.000 1.000
#> SRR537117     2  0.0000     0.9674 0.000 1.000
#> SRR537118     2  0.0000     0.9674 0.000 1.000
#> SRR537119     2  0.0000     0.9674 0.000 1.000
#> SRR537120     2  0.0000     0.9674 0.000 1.000
#> SRR537121     2  0.0000     0.9674 0.000 1.000
#> SRR537122     2  0.0000     0.9674 0.000 1.000
#> SRR537123     2  0.0000     0.9674 0.000 1.000
#> SRR537124     2  0.0000     0.9674 0.000 1.000
#> SRR537125     2  0.0000     0.9674 0.000 1.000
#> SRR537126     2  0.0000     0.9674 0.000 1.000
#> SRR537127     1  0.0000     0.9539 1.000 0.000
#> SRR537128     1  0.0000     0.9539 1.000 0.000
#> SRR537129     1  0.0000     0.9539 1.000 0.000
#> SRR537130     1  0.0000     0.9539 1.000 0.000
#> SRR537131     1  0.0000     0.9539 1.000 0.000
#> SRR537132     1  0.0000     0.9539 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191640     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191641     1  0.4555      0.722 0.800 0.000 0.200
#> SRR191642     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191643     1  0.6799      0.144 0.532 0.456 0.012
#> SRR191644     3  0.9386      0.401 0.204 0.296 0.500
#> SRR191645     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191646     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191647     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191648     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191649     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191650     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191651     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191652     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191653     3  0.0000      0.884 0.000 0.000 1.000
#> SRR191654     3  0.1753      0.845 0.000 0.048 0.952
#> SRR191655     1  0.5588      0.579 0.720 0.004 0.276
#> SRR191656     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191657     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191658     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191659     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191660     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191661     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191662     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191663     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191664     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191665     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191666     3  0.6244      0.132 0.440 0.000 0.560
#> SRR191667     1  0.6225      0.221 0.568 0.000 0.432
#> SRR191668     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191669     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191670     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191671     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191672     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191673     1  0.0000      0.935 1.000 0.000 0.000
#> SRR191674     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191675     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191677     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191678     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191679     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191680     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191681     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191682     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191683     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191684     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191685     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191686     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191687     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191688     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191689     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191690     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191691     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191692     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191693     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191694     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191695     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191696     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191697     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191698     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191699     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191700     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191701     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191702     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191703     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191704     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191705     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191706     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191707     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191708     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191709     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191710     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191711     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191712     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191713     2  0.0424      0.973 0.008 0.992 0.000
#> SRR191714     2  0.0237      0.977 0.004 0.996 0.000
#> SRR191715     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191716     2  0.0424      0.973 0.008 0.992 0.000
#> SRR191717     2  0.0000      0.981 0.000 1.000 0.000
#> SRR191718     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537099     2  0.7807      0.321 0.336 0.596 0.068
#> SRR537100     1  0.7918      0.483 0.660 0.136 0.204
#> SRR537101     1  0.2878      0.850 0.904 0.000 0.096
#> SRR537102     2  0.5810      0.455 0.336 0.664 0.000
#> SRR537104     2  0.6728      0.638 0.080 0.736 0.184
#> SRR537105     1  0.0000      0.935 1.000 0.000 0.000
#> SRR537106     1  0.0000      0.935 1.000 0.000 0.000
#> SRR537107     1  0.1411      0.893 0.964 0.036 0.000
#> SRR537108     1  0.1860      0.872 0.948 0.052 0.000
#> SRR537109     2  0.0592      0.968 0.012 0.988 0.000
#> SRR537110     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537111     1  0.1289      0.910 0.968 0.000 0.032
#> SRR537113     2  0.0237      0.977 0.000 0.996 0.004
#> SRR537114     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537115     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537116     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537117     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537118     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537119     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537120     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537121     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537122     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537123     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537124     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537125     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537126     2  0.0000      0.981 0.000 1.000 0.000
#> SRR537127     3  0.0000      0.884 0.000 0.000 1.000
#> SRR537128     3  0.0000      0.884 0.000 0.000 1.000
#> SRR537129     3  0.0000      0.884 0.000 0.000 1.000
#> SRR537130     3  0.0000      0.884 0.000 0.000 1.000
#> SRR537131     3  0.0000      0.884 0.000 0.000 1.000
#> SRR537132     3  0.0000      0.884 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0188    0.95322 0.996 0.000 0.004 0.000
#> SRR191640     4  0.4543    0.44182 0.324 0.000 0.000 0.676
#> SRR191641     3  0.4589    0.69750 0.048 0.000 0.784 0.168
#> SRR191642     4  0.3123    0.61657 0.156 0.000 0.000 0.844
#> SRR191643     4  0.3496    0.63569 0.072 0.004 0.052 0.872
#> SRR191644     3  0.4985    0.23371 0.000 0.000 0.532 0.468
#> SRR191645     4  0.5268    0.05586 0.452 0.000 0.008 0.540
#> SRR191646     4  0.5273    0.04828 0.456 0.000 0.008 0.536
#> SRR191647     4  0.4454    0.38029 0.308 0.000 0.000 0.692
#> SRR191648     4  0.4406    0.38630 0.300 0.000 0.000 0.700
#> SRR191649     4  0.5606   -0.02773 0.480 0.000 0.020 0.500
#> SRR191650     1  0.0524    0.94979 0.988 0.000 0.008 0.004
#> SRR191651     1  0.0000    0.95384 1.000 0.000 0.000 0.000
#> SRR191652     1  0.0188    0.95360 0.996 0.000 0.000 0.004
#> SRR191653     3  0.4277    0.66875 0.000 0.000 0.720 0.280
#> SRR191654     4  0.3873    0.42332 0.000 0.000 0.228 0.772
#> SRR191655     4  0.2399    0.62714 0.032 0.000 0.048 0.920
#> SRR191656     1  0.0000    0.95384 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0188    0.95360 0.996 0.000 0.000 0.004
#> SRR191658     1  0.0000    0.95384 1.000 0.000 0.000 0.000
#> SRR191659     1  0.0376    0.95281 0.992 0.000 0.004 0.004
#> SRR191660     1  0.0188    0.95360 0.996 0.000 0.000 0.004
#> SRR191661     1  0.0188    0.95360 0.996 0.000 0.000 0.004
#> SRR191662     1  0.0524    0.95108 0.988 0.000 0.008 0.004
#> SRR191663     1  0.0188    0.95360 0.996 0.000 0.000 0.004
#> SRR191664     1  0.0188    0.95360 0.996 0.000 0.000 0.004
#> SRR191665     1  0.0000    0.95384 1.000 0.000 0.000 0.000
#> SRR191666     1  0.4661    0.51607 0.652 0.000 0.348 0.000
#> SRR191667     1  0.4477    0.58673 0.688 0.000 0.312 0.000
#> SRR191668     1  0.0336    0.95112 0.992 0.000 0.008 0.000
#> SRR191669     1  0.0336    0.95112 0.992 0.000 0.008 0.000
#> SRR191670     1  0.0000    0.95384 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000    0.95384 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0188    0.95322 0.996 0.000 0.004 0.000
#> SRR191673     1  0.0188    0.95322 0.996 0.000 0.004 0.000
#> SRR191674     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191675     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191677     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191678     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191679     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191680     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191681     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191682     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191683     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191684     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191685     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191686     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191687     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191688     4  0.4608    0.61750 0.004 0.304 0.000 0.692
#> SRR191689     2  0.0469    0.75546 0.000 0.988 0.000 0.012
#> SRR191690     4  0.4391    0.65598 0.008 0.252 0.000 0.740
#> SRR191691     2  0.4967    0.00949 0.000 0.548 0.000 0.452
#> SRR191692     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191693     2  0.0188    0.76199 0.000 0.996 0.000 0.004
#> SRR191694     2  0.0000    0.76290 0.000 1.000 0.000 0.000
#> SRR191695     4  0.5000    0.21826 0.000 0.496 0.000 0.504
#> SRR191696     2  0.4994   -0.17944 0.000 0.520 0.000 0.480
#> SRR191697     2  0.4877    0.10309 0.000 0.592 0.000 0.408
#> SRR191698     4  0.4994    0.21975 0.000 0.480 0.000 0.520
#> SRR191699     2  0.4981   -0.10778 0.000 0.536 0.000 0.464
#> SRR191700     4  0.6182    0.58579 0.000 0.276 0.088 0.636
#> SRR191701     2  0.4941    0.00791 0.000 0.564 0.000 0.436
#> SRR191702     4  0.4817    0.49343 0.000 0.388 0.000 0.612
#> SRR191703     4  0.4948    0.37930 0.000 0.440 0.000 0.560
#> SRR191704     2  0.4933   -0.00184 0.000 0.568 0.000 0.432
#> SRR191705     2  0.4888    0.07312 0.000 0.588 0.000 0.412
#> SRR191706     2  0.3873    0.50428 0.000 0.772 0.000 0.228
#> SRR191707     4  0.3873    0.66628 0.000 0.228 0.000 0.772
#> SRR191708     4  0.4331    0.63283 0.000 0.288 0.000 0.712
#> SRR191709     4  0.3942    0.66450 0.000 0.236 0.000 0.764
#> SRR191710     4  0.4454    0.61536 0.000 0.308 0.000 0.692
#> SRR191711     4  0.4304    0.63601 0.000 0.284 0.000 0.716
#> SRR191712     4  0.4522    0.60079 0.000 0.320 0.000 0.680
#> SRR191713     4  0.4722    0.62009 0.008 0.300 0.000 0.692
#> SRR191714     4  0.4973    0.55795 0.008 0.348 0.000 0.644
#> SRR191715     4  0.4907    0.42801 0.000 0.420 0.000 0.580
#> SRR191716     4  0.4391    0.65598 0.008 0.252 0.000 0.740
#> SRR191717     4  0.4837    0.56017 0.004 0.348 0.000 0.648
#> SRR191718     2  0.4916    0.02820 0.000 0.576 0.000 0.424
#> SRR537099     4  0.3056    0.62205 0.040 0.000 0.072 0.888
#> SRR537100     4  0.3088    0.63164 0.052 0.000 0.060 0.888
#> SRR537101     4  0.7489    0.03639 0.184 0.000 0.364 0.452
#> SRR537102     4  0.1913    0.65886 0.040 0.020 0.000 0.940
#> SRR537104     4  0.1545    0.63934 0.008 0.000 0.040 0.952
#> SRR537105     4  0.0707    0.63645 0.020 0.000 0.000 0.980
#> SRR537106     4  0.0921    0.63071 0.028 0.000 0.000 0.972
#> SRR537107     4  0.0707    0.63445 0.020 0.000 0.000 0.980
#> SRR537108     4  0.0707    0.63445 0.020 0.000 0.000 0.980
#> SRR537109     4  0.2480    0.67803 0.008 0.088 0.000 0.904
#> SRR537110     4  0.1970    0.67093 0.008 0.060 0.000 0.932
#> SRR537111     1  0.5272    0.69162 0.752 0.000 0.112 0.136
#> SRR537113     2  0.7206    0.21027 0.000 0.460 0.140 0.400
#> SRR537114     2  0.6735    0.33332 0.000 0.516 0.096 0.388
#> SRR537115     2  0.3808    0.68617 0.004 0.808 0.004 0.184
#> SRR537116     4  0.3172    0.68329 0.000 0.160 0.000 0.840
#> SRR537117     2  0.3024    0.71645 0.000 0.852 0.000 0.148
#> SRR537118     2  0.3311    0.70131 0.000 0.828 0.000 0.172
#> SRR537119     2  0.3810    0.68503 0.000 0.804 0.008 0.188
#> SRR537120     2  0.3024    0.71645 0.000 0.852 0.000 0.148
#> SRR537121     2  0.3486    0.68724 0.000 0.812 0.000 0.188
#> SRR537122     2  0.4387    0.65065 0.000 0.776 0.024 0.200
#> SRR537123     2  0.3400    0.69470 0.000 0.820 0.000 0.180
#> SRR537124     2  0.2814    0.72337 0.000 0.868 0.000 0.132
#> SRR537125     2  0.3494    0.69866 0.000 0.824 0.004 0.172
#> SRR537126     2  0.3311    0.70131 0.000 0.828 0.000 0.172
#> SRR537127     3  0.0000    0.86559 0.000 0.000 1.000 0.000
#> SRR537128     3  0.0000    0.86559 0.000 0.000 1.000 0.000
#> SRR537129     3  0.0000    0.86559 0.000 0.000 1.000 0.000
#> SRR537130     3  0.0000    0.86559 0.000 0.000 1.000 0.000
#> SRR537131     3  0.0000    0.86559 0.000 0.000 1.000 0.000
#> SRR537132     3  0.0000    0.86559 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191640     4  0.6282     0.4475 0.248 0.216 0.000 0.536 0.000
#> SRR191641     3  0.0290     0.8935 0.000 0.000 0.992 0.008 0.000
#> SRR191642     4  0.4812     0.4273 0.028 0.372 0.000 0.600 0.000
#> SRR191643     4  0.6287     0.4598 0.004 0.260 0.184 0.552 0.000
#> SRR191644     3  0.4540     0.3372 0.000 0.020 0.640 0.340 0.000
#> SRR191645     4  0.1800     0.7014 0.048 0.020 0.000 0.932 0.000
#> SRR191646     4  0.2079     0.6965 0.064 0.020 0.000 0.916 0.000
#> SRR191647     4  0.1740     0.7123 0.012 0.056 0.000 0.932 0.000
#> SRR191648     4  0.1670     0.7122 0.012 0.052 0.000 0.936 0.000
#> SRR191649     4  0.3099     0.6636 0.124 0.028 0.000 0.848 0.000
#> SRR191650     1  0.2605     0.8035 0.852 0.000 0.000 0.148 0.000
#> SRR191651     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191652     1  0.0290     0.9599 0.992 0.000 0.000 0.008 0.000
#> SRR191653     4  0.4415     0.2152 0.000 0.000 0.444 0.552 0.004
#> SRR191654     4  0.4938     0.4474 0.000 0.036 0.324 0.636 0.004
#> SRR191655     4  0.4277     0.6590 0.000 0.100 0.112 0.784 0.004
#> SRR191656     1  0.0324     0.9614 0.992 0.000 0.000 0.004 0.004
#> SRR191657     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191658     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191659     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191660     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191661     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191662     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191663     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191664     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191665     1  0.0162     0.9624 0.996 0.000 0.000 0.004 0.000
#> SRR191666     1  0.3796     0.6123 0.700 0.000 0.300 0.000 0.000
#> SRR191667     1  0.3561     0.6769 0.740 0.000 0.260 0.000 0.000
#> SRR191668     1  0.0162     0.9603 0.996 0.000 0.000 0.000 0.004
#> SRR191669     1  0.0162     0.9603 0.996 0.000 0.000 0.000 0.004
#> SRR191670     1  0.0162     0.9603 0.996 0.000 0.000 0.000 0.004
#> SRR191671     1  0.0162     0.9603 0.996 0.000 0.000 0.000 0.004
#> SRR191672     1  0.0162     0.9603 0.996 0.000 0.000 0.000 0.004
#> SRR191673     1  0.0162     0.9603 0.996 0.000 0.000 0.000 0.004
#> SRR191674     5  0.1608     0.8445 0.000 0.072 0.000 0.000 0.928
#> SRR191675     5  0.1608     0.8445 0.000 0.072 0.000 0.000 0.928
#> SRR191677     5  0.1608     0.8445 0.000 0.072 0.000 0.000 0.928
#> SRR191678     5  0.1671     0.8434 0.000 0.076 0.000 0.000 0.924
#> SRR191679     5  0.2329     0.8131 0.000 0.124 0.000 0.000 0.876
#> SRR191680     5  0.1965     0.8331 0.000 0.096 0.000 0.000 0.904
#> SRR191681     5  0.1608     0.8445 0.000 0.072 0.000 0.000 0.928
#> SRR191682     5  0.2660     0.8098 0.000 0.128 0.000 0.008 0.864
#> SRR191683     5  0.2249     0.8332 0.000 0.096 0.000 0.008 0.896
#> SRR191684     5  0.2464     0.8273 0.000 0.096 0.000 0.016 0.888
#> SRR191685     5  0.2144     0.8385 0.000 0.068 0.000 0.020 0.912
#> SRR191686     5  0.1764     0.8417 0.000 0.064 0.000 0.008 0.928
#> SRR191687     5  0.1943     0.8391 0.000 0.056 0.000 0.020 0.924
#> SRR191688     2  0.0794     0.8882 0.000 0.972 0.000 0.028 0.000
#> SRR191689     5  0.4242     0.2764 0.000 0.428 0.000 0.000 0.572
#> SRR191690     2  0.1197     0.8761 0.000 0.952 0.000 0.048 0.000
#> SRR191691     2  0.4509     0.6725 0.000 0.716 0.000 0.048 0.236
#> SRR191692     5  0.1478     0.8452 0.000 0.064 0.000 0.000 0.936
#> SRR191693     5  0.0963     0.8412 0.000 0.036 0.000 0.000 0.964
#> SRR191694     5  0.1608     0.8445 0.000 0.072 0.000 0.000 0.928
#> SRR191695     2  0.0963     0.8855 0.000 0.964 0.000 0.000 0.036
#> SRR191696     2  0.1168     0.8893 0.000 0.960 0.000 0.008 0.032
#> SRR191697     2  0.2951     0.8362 0.000 0.860 0.000 0.028 0.112
#> SRR191698     2  0.3752     0.7837 0.000 0.804 0.000 0.048 0.148
#> SRR191699     2  0.1697     0.8756 0.000 0.932 0.000 0.008 0.060
#> SRR191700     2  0.3237     0.8339 0.000 0.864 0.012 0.048 0.076
#> SRR191701     2  0.3002     0.8309 0.000 0.856 0.000 0.028 0.116
#> SRR191702     2  0.1106     0.8906 0.000 0.964 0.000 0.012 0.024
#> SRR191703     2  0.1195     0.8895 0.000 0.960 0.000 0.012 0.028
#> SRR191704     2  0.1357     0.8807 0.000 0.948 0.000 0.004 0.048
#> SRR191705     2  0.1357     0.8807 0.000 0.948 0.000 0.004 0.048
#> SRR191706     2  0.3143     0.7235 0.000 0.796 0.000 0.000 0.204
#> SRR191707     2  0.1205     0.8848 0.000 0.956 0.000 0.040 0.004
#> SRR191708     2  0.0671     0.8925 0.000 0.980 0.000 0.016 0.004
#> SRR191709     2  0.0912     0.8927 0.000 0.972 0.000 0.016 0.012
#> SRR191710     2  0.0451     0.8928 0.000 0.988 0.000 0.008 0.004
#> SRR191711     2  0.0880     0.8859 0.000 0.968 0.000 0.032 0.000
#> SRR191712     2  0.0703     0.8889 0.000 0.976 0.000 0.024 0.000
#> SRR191713     2  0.0609     0.8912 0.000 0.980 0.000 0.020 0.000
#> SRR191714     2  0.0510     0.8912 0.000 0.984 0.000 0.016 0.000
#> SRR191715     2  0.1117     0.8927 0.000 0.964 0.000 0.020 0.016
#> SRR191716     2  0.1341     0.8709 0.000 0.944 0.000 0.056 0.000
#> SRR191717     2  0.1121     0.8791 0.000 0.956 0.000 0.044 0.000
#> SRR191718     2  0.1408     0.8787 0.000 0.948 0.000 0.008 0.044
#> SRR537099     4  0.5363     0.5501 0.000 0.100 0.232 0.664 0.004
#> SRR537100     4  0.5533     0.5216 0.000 0.104 0.252 0.640 0.004
#> SRR537101     3  0.4157     0.5405 0.000 0.020 0.716 0.264 0.000
#> SRR537102     4  0.4074     0.4567 0.000 0.364 0.000 0.636 0.000
#> SRR537104     4  0.4599     0.6453 0.000 0.156 0.088 0.752 0.004
#> SRR537105     4  0.1478     0.7115 0.000 0.064 0.000 0.936 0.000
#> SRR537106     4  0.1043     0.7093 0.000 0.040 0.000 0.960 0.000
#> SRR537107     4  0.1282     0.7092 0.000 0.044 0.000 0.952 0.004
#> SRR537108     4  0.1121     0.7097 0.000 0.044 0.000 0.956 0.000
#> SRR537109     2  0.4291     0.0118 0.000 0.536 0.000 0.464 0.000
#> SRR537110     2  0.4291     0.0197 0.000 0.536 0.000 0.464 0.000
#> SRR537111     4  0.3516     0.5917 0.164 0.000 0.004 0.812 0.020
#> SRR537113     4  0.2230     0.6273 0.000 0.000 0.000 0.884 0.116
#> SRR537114     4  0.2583     0.6144 0.000 0.004 0.000 0.864 0.132
#> SRR537115     4  0.4291    -0.1468 0.000 0.000 0.000 0.536 0.464
#> SRR537116     2  0.2127     0.8257 0.000 0.892 0.000 0.108 0.000
#> SRR537117     5  0.2806     0.7742 0.000 0.004 0.000 0.152 0.844
#> SRR537118     5  0.3885     0.6764 0.000 0.008 0.000 0.268 0.724
#> SRR537119     5  0.4478     0.5492 0.000 0.008 0.004 0.360 0.628
#> SRR537120     5  0.3171     0.7571 0.000 0.008 0.000 0.176 0.816
#> SRR537121     5  0.4088     0.5277 0.000 0.000 0.000 0.368 0.632
#> SRR537122     4  0.4452    -0.2582 0.000 0.000 0.004 0.500 0.496
#> SRR537123     5  0.4101     0.5230 0.000 0.000 0.000 0.372 0.628
#> SRR537124     5  0.1732     0.8062 0.000 0.000 0.000 0.080 0.920
#> SRR537125     5  0.3109     0.7365 0.000 0.000 0.000 0.200 0.800
#> SRR537126     5  0.3143     0.7330 0.000 0.000 0.000 0.204 0.796
#> SRR537127     3  0.0000     0.8987 0.000 0.000 1.000 0.000 0.000
#> SRR537128     3  0.0000     0.8987 0.000 0.000 1.000 0.000 0.000
#> SRR537129     3  0.0000     0.8987 0.000 0.000 1.000 0.000 0.000
#> SRR537130     3  0.0000     0.8987 0.000 0.000 1.000 0.000 0.000
#> SRR537131     3  0.0000     0.8987 0.000 0.000 1.000 0.000 0.000
#> SRR537132     3  0.0000     0.8987 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.0291      0.948 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR191640     4  0.5464      0.638 0.136 0.188 0.000 0.644 0.000 0.032
#> SRR191641     3  0.0790      0.868 0.000 0.000 0.968 0.032 0.000 0.000
#> SRR191642     4  0.4650      0.681 0.028 0.224 0.004 0.704 0.000 0.040
#> SRR191643     4  0.5323      0.631 0.000 0.204 0.152 0.632 0.000 0.012
#> SRR191644     3  0.3847      0.333 0.000 0.008 0.644 0.348 0.000 0.000
#> SRR191645     4  0.0748      0.742 0.004 0.004 0.000 0.976 0.016 0.000
#> SRR191646     4  0.0748      0.742 0.004 0.004 0.000 0.976 0.016 0.000
#> SRR191647     4  0.1643      0.762 0.000 0.068 0.000 0.924 0.008 0.000
#> SRR191648     4  0.1524      0.761 0.000 0.060 0.000 0.932 0.008 0.000
#> SRR191649     4  0.2164      0.758 0.028 0.056 0.000 0.908 0.008 0.000
#> SRR191650     1  0.4334      0.356 0.608 0.000 0.000 0.368 0.012 0.012
#> SRR191651     1  0.1036      0.947 0.964 0.000 0.000 0.008 0.004 0.024
#> SRR191652     1  0.0665      0.949 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR191653     4  0.4072      0.237 0.000 0.000 0.448 0.544 0.008 0.000
#> SRR191654     4  0.4395      0.587 0.000 0.044 0.264 0.684 0.008 0.000
#> SRR191655     4  0.3505      0.744 0.000 0.132 0.036 0.816 0.004 0.012
#> SRR191656     1  0.0922      0.948 0.968 0.000 0.000 0.004 0.004 0.024
#> SRR191657     1  0.0291      0.948 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR191658     1  0.0146      0.948 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR191659     1  0.0291      0.948 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR191660     1  0.0405      0.947 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR191661     1  0.0405      0.947 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR191662     1  0.0508      0.945 0.984 0.000 0.000 0.012 0.000 0.004
#> SRR191663     1  0.0405      0.947 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR191664     1  0.0291      0.948 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR191665     1  0.1036      0.947 0.964 0.000 0.000 0.008 0.004 0.024
#> SRR191666     1  0.2006      0.867 0.892 0.000 0.104 0.000 0.000 0.004
#> SRR191667     1  0.2562      0.791 0.828 0.000 0.172 0.000 0.000 0.000
#> SRR191668     1  0.0922      0.948 0.968 0.000 0.000 0.004 0.004 0.024
#> SRR191669     1  0.0922      0.948 0.968 0.000 0.000 0.004 0.004 0.024
#> SRR191670     1  0.0922      0.948 0.968 0.000 0.000 0.004 0.004 0.024
#> SRR191671     1  0.0922      0.948 0.968 0.000 0.000 0.004 0.004 0.024
#> SRR191672     1  0.1036      0.947 0.964 0.000 0.000 0.008 0.004 0.024
#> SRR191673     1  0.1036      0.947 0.964 0.000 0.000 0.008 0.004 0.024
#> SRR191674     5  0.4040      0.589 0.000 0.032 0.000 0.000 0.688 0.280
#> SRR191675     5  0.4040      0.589 0.000 0.032 0.000 0.000 0.688 0.280
#> SRR191677     5  0.4172      0.588 0.000 0.040 0.000 0.000 0.680 0.280
#> SRR191678     5  0.4234      0.587 0.000 0.044 0.000 0.000 0.676 0.280
#> SRR191679     5  0.5120      0.517 0.000 0.120 0.000 0.000 0.600 0.280
#> SRR191680     5  0.4515      0.572 0.000 0.064 0.000 0.000 0.656 0.280
#> SRR191681     5  0.4172      0.588 0.000 0.040 0.000 0.000 0.680 0.280
#> SRR191682     6  0.2250      0.522 0.000 0.020 0.000 0.000 0.092 0.888
#> SRR191683     6  0.2945      0.450 0.000 0.020 0.000 0.000 0.156 0.824
#> SRR191684     6  0.2039      0.535 0.000 0.020 0.000 0.000 0.076 0.904
#> SRR191685     6  0.2301      0.524 0.000 0.020 0.000 0.000 0.096 0.884
#> SRR191686     6  0.3088      0.419 0.000 0.020 0.000 0.000 0.172 0.808
#> SRR191687     6  0.2581      0.503 0.000 0.020 0.000 0.000 0.120 0.860
#> SRR191688     2  0.2263      0.879 0.000 0.896 0.000 0.048 0.000 0.056
#> SRR191689     5  0.5906      0.345 0.000 0.236 0.000 0.000 0.464 0.300
#> SRR191690     2  0.2066      0.880 0.000 0.908 0.000 0.052 0.000 0.040
#> SRR191691     6  0.4212      0.605 0.000 0.264 0.000 0.000 0.048 0.688
#> SRR191692     5  0.4152      0.575 0.000 0.032 0.000 0.000 0.664 0.304
#> SRR191693     5  0.3684      0.556 0.000 0.004 0.000 0.000 0.664 0.332
#> SRR191694     5  0.4040      0.589 0.000 0.032 0.000 0.000 0.688 0.280
#> SRR191695     2  0.2926      0.863 0.000 0.852 0.000 0.012 0.024 0.112
#> SRR191696     2  0.2890      0.870 0.000 0.860 0.000 0.012 0.032 0.096
#> SRR191697     6  0.3802      0.561 0.000 0.312 0.000 0.000 0.012 0.676
#> SRR191698     6  0.4009      0.583 0.000 0.288 0.000 0.000 0.028 0.684
#> SRR191699     6  0.3954      0.454 0.000 0.372 0.000 0.004 0.004 0.620
#> SRR191700     6  0.4078      0.566 0.000 0.300 0.000 0.008 0.016 0.676
#> SRR191701     6  0.3766      0.569 0.000 0.304 0.000 0.000 0.012 0.684
#> SRR191702     2  0.1245      0.897 0.000 0.952 0.000 0.000 0.032 0.016
#> SRR191703     2  0.1549      0.889 0.000 0.936 0.000 0.000 0.044 0.020
#> SRR191704     2  0.1498      0.891 0.000 0.940 0.000 0.000 0.032 0.028
#> SRR191705     2  0.1713      0.884 0.000 0.928 0.000 0.000 0.044 0.028
#> SRR191706     2  0.3041      0.787 0.000 0.832 0.000 0.000 0.128 0.040
#> SRR191707     2  0.3721      0.612 0.000 0.728 0.000 0.016 0.004 0.252
#> SRR191708     2  0.1226      0.898 0.000 0.952 0.000 0.004 0.004 0.040
#> SRR191709     2  0.0922      0.902 0.000 0.968 0.000 0.004 0.004 0.024
#> SRR191710     2  0.1036      0.902 0.000 0.964 0.000 0.008 0.004 0.024
#> SRR191711     2  0.0717      0.905 0.000 0.976 0.000 0.016 0.000 0.008
#> SRR191712     2  0.0603      0.905 0.000 0.980 0.000 0.016 0.000 0.004
#> SRR191713     2  0.0717      0.904 0.000 0.976 0.000 0.016 0.000 0.008
#> SRR191714     2  0.0820      0.904 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR191715     2  0.2570      0.885 0.000 0.892 0.000 0.032 0.036 0.040
#> SRR191716     2  0.1984      0.880 0.000 0.912 0.000 0.056 0.000 0.032
#> SRR191717     2  0.1421      0.898 0.000 0.944 0.000 0.028 0.000 0.028
#> SRR191718     2  0.3284      0.751 0.000 0.784 0.000 0.000 0.020 0.196
#> SRR537099     4  0.4927      0.699 0.000 0.100 0.128 0.728 0.008 0.036
#> SRR537100     4  0.4846      0.681 0.000 0.092 0.156 0.716 0.000 0.036
#> SRR537101     3  0.4475      0.399 0.000 0.032 0.636 0.324 0.000 0.008
#> SRR537102     4  0.4011      0.696 0.000 0.212 0.000 0.732 0.000 0.056
#> SRR537104     4  0.3939      0.740 0.000 0.124 0.036 0.800 0.008 0.032
#> SRR537105     4  0.1951      0.762 0.000 0.076 0.000 0.908 0.016 0.000
#> SRR537106     4  0.1225      0.741 0.000 0.012 0.000 0.952 0.036 0.000
#> SRR537107     4  0.1082      0.733 0.000 0.004 0.000 0.956 0.040 0.000
#> SRR537108     4  0.1082      0.733 0.000 0.004 0.000 0.956 0.040 0.000
#> SRR537109     4  0.4269      0.610 0.000 0.316 0.000 0.648 0.000 0.036
#> SRR537110     4  0.4646      0.275 0.000 0.460 0.000 0.500 0.000 0.040
#> SRR537111     4  0.3559      0.649 0.056 0.000 0.000 0.820 0.104 0.020
#> SRR537113     4  0.3515      0.450 0.000 0.000 0.000 0.676 0.324 0.000
#> SRR537114     4  0.3578      0.428 0.000 0.000 0.000 0.660 0.340 0.000
#> SRR537115     5  0.4105      0.345 0.000 0.000 0.000 0.348 0.632 0.020
#> SRR537116     2  0.2384      0.852 0.000 0.884 0.000 0.084 0.000 0.032
#> SRR537117     5  0.3920      0.443 0.000 0.000 0.000 0.120 0.768 0.112
#> SRR537118     6  0.5054      0.200 0.000 0.000 0.000 0.076 0.420 0.504
#> SRR537119     6  0.5443      0.184 0.000 0.000 0.000 0.124 0.384 0.492
#> SRR537120     5  0.4808     -0.227 0.000 0.000 0.000 0.052 0.476 0.472
#> SRR537121     5  0.4796      0.386 0.000 0.000 0.000 0.224 0.660 0.116
#> SRR537122     5  0.4986      0.340 0.000 0.000 0.000 0.304 0.600 0.096
#> SRR537123     5  0.4479      0.405 0.000 0.000 0.000 0.236 0.684 0.080
#> SRR537124     5  0.3464      0.465 0.000 0.000 0.000 0.108 0.808 0.084
#> SRR537125     5  0.4764      0.314 0.000 0.000 0.000 0.108 0.660 0.232
#> SRR537126     5  0.4796      0.323 0.000 0.000 0.000 0.116 0.660 0.224
#> SRR537127     3  0.0000      0.886 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537128     3  0.0000      0.886 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537129     3  0.0000      0.886 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537130     3  0.0000      0.886 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537131     3  0.0000      0.886 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537132     3  0.0000      0.886 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.514           0.888       0.914         0.1831 0.897   0.897
#> 3 3 0.530           0.900       0.926         1.8547 0.553   0.502
#> 4 4 0.589           0.872       0.875         0.1544 0.904   0.787
#> 5 5 0.599           0.774       0.878         0.0944 0.986   0.960
#> 6 6 0.696           0.820       0.886         0.0701 0.954   0.865
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     2   0.000      0.859 0.000 1.000
#> SRR191640     2   0.000      0.859 0.000 1.000
#> SRR191641     2   0.000      0.859 0.000 1.000
#> SRR191642     2   0.000      0.859 0.000 1.000
#> SRR191643     2   0.000      0.859 0.000 1.000
#> SRR191644     2   0.000      0.859 0.000 1.000
#> SRR191645     2   0.000      0.859 0.000 1.000
#> SRR191646     2   0.000      0.859 0.000 1.000
#> SRR191647     2   0.000      0.859 0.000 1.000
#> SRR191648     2   0.000      0.859 0.000 1.000
#> SRR191649     2   0.000      0.859 0.000 1.000
#> SRR191650     2   0.000      0.859 0.000 1.000
#> SRR191651     2   0.000      0.859 0.000 1.000
#> SRR191652     2   0.000      0.859 0.000 1.000
#> SRR191653     2   0.000      0.859 0.000 1.000
#> SRR191654     2   0.000      0.859 0.000 1.000
#> SRR191655     2   0.000      0.859 0.000 1.000
#> SRR191656     2   0.000      0.859 0.000 1.000
#> SRR191657     2   0.000      0.859 0.000 1.000
#> SRR191658     2   0.000      0.859 0.000 1.000
#> SRR191659     2   0.000      0.859 0.000 1.000
#> SRR191660     2   0.000      0.859 0.000 1.000
#> SRR191661     2   0.000      0.859 0.000 1.000
#> SRR191662     2   0.000      0.859 0.000 1.000
#> SRR191663     2   0.000      0.859 0.000 1.000
#> SRR191664     2   0.000      0.859 0.000 1.000
#> SRR191665     2   0.000      0.859 0.000 1.000
#> SRR191666     2   0.000      0.859 0.000 1.000
#> SRR191667     2   0.000      0.859 0.000 1.000
#> SRR191668     2   0.000      0.859 0.000 1.000
#> SRR191669     2   0.000      0.859 0.000 1.000
#> SRR191670     2   0.000      0.859 0.000 1.000
#> SRR191671     2   0.000      0.859 0.000 1.000
#> SRR191672     2   0.000      0.859 0.000 1.000
#> SRR191673     2   0.000      0.859 0.000 1.000
#> SRR191674     2   0.730      0.895 0.204 0.796
#> SRR191675     2   0.730      0.895 0.204 0.796
#> SRR191677     2   0.730      0.895 0.204 0.796
#> SRR191678     2   0.730      0.895 0.204 0.796
#> SRR191679     2   0.730      0.895 0.204 0.796
#> SRR191680     2   0.730      0.895 0.204 0.796
#> SRR191681     2   0.730      0.895 0.204 0.796
#> SRR191682     2   0.714      0.899 0.196 0.804
#> SRR191683     2   0.714      0.899 0.196 0.804
#> SRR191684     2   0.714      0.899 0.196 0.804
#> SRR191685     2   0.714      0.899 0.196 0.804
#> SRR191686     2   0.714      0.899 0.196 0.804
#> SRR191687     2   0.714      0.899 0.196 0.804
#> SRR191688     2   0.714      0.899 0.196 0.804
#> SRR191689     2   0.714      0.899 0.196 0.804
#> SRR191690     2   0.714      0.899 0.196 0.804
#> SRR191691     2   0.714      0.899 0.196 0.804
#> SRR191692     2   0.730      0.895 0.204 0.796
#> SRR191693     2   0.730      0.895 0.204 0.796
#> SRR191694     2   0.730      0.895 0.204 0.796
#> SRR191695     2   0.714      0.899 0.196 0.804
#> SRR191696     2   0.714      0.899 0.196 0.804
#> SRR191697     2   0.714      0.899 0.196 0.804
#> SRR191698     2   0.714      0.899 0.196 0.804
#> SRR191699     2   0.714      0.899 0.196 0.804
#> SRR191700     2   0.714      0.899 0.196 0.804
#> SRR191701     2   0.714      0.899 0.196 0.804
#> SRR191702     2   0.714      0.899 0.196 0.804
#> SRR191703     2   0.714      0.899 0.196 0.804
#> SRR191704     2   0.714      0.899 0.196 0.804
#> SRR191705     2   0.714      0.899 0.196 0.804
#> SRR191706     2   0.714      0.899 0.196 0.804
#> SRR191707     2   0.714      0.899 0.196 0.804
#> SRR191708     2   0.714      0.899 0.196 0.804
#> SRR191709     2   0.714      0.899 0.196 0.804
#> SRR191710     2   0.714      0.899 0.196 0.804
#> SRR191711     2   0.714      0.899 0.196 0.804
#> SRR191712     2   0.714      0.899 0.196 0.804
#> SRR191713     2   0.714      0.899 0.196 0.804
#> SRR191714     2   0.714      0.899 0.196 0.804
#> SRR191715     2   0.714      0.899 0.196 0.804
#> SRR191716     2   0.714      0.899 0.196 0.804
#> SRR191717     2   0.714      0.899 0.196 0.804
#> SRR191718     2   0.714      0.899 0.196 0.804
#> SRR537099     2   0.000      0.859 0.000 1.000
#> SRR537100     2   0.000      0.859 0.000 1.000
#> SRR537101     2   0.000      0.859 0.000 1.000
#> SRR537102     2   0.000      0.859 0.000 1.000
#> SRR537104     2   0.000      0.859 0.000 1.000
#> SRR537105     2   0.000      0.859 0.000 1.000
#> SRR537106     2   0.000      0.859 0.000 1.000
#> SRR537107     2   0.000      0.859 0.000 1.000
#> SRR537108     2   0.000      0.859 0.000 1.000
#> SRR537109     2   0.714      0.899 0.196 0.804
#> SRR537110     2   0.714      0.899 0.196 0.804
#> SRR537111     2   0.000      0.859 0.000 1.000
#> SRR537113     2   0.722      0.897 0.200 0.800
#> SRR537114     2   0.722      0.897 0.200 0.800
#> SRR537115     2   0.722      0.897 0.200 0.800
#> SRR537116     2   0.714      0.899 0.196 0.804
#> SRR537117     2   0.697      0.899 0.188 0.812
#> SRR537118     2   0.697      0.899 0.188 0.812
#> SRR537119     2   0.697      0.899 0.188 0.812
#> SRR537120     2   0.697      0.899 0.188 0.812
#> SRR537121     2   0.722      0.897 0.200 0.800
#> SRR537122     2   0.722      0.897 0.200 0.800
#> SRR537123     2   0.722      0.897 0.200 0.800
#> SRR537124     2   0.722      0.897 0.200 0.800
#> SRR537125     2   0.722      0.897 0.200 0.800
#> SRR537126     2   0.722      0.897 0.200 0.800
#> SRR537127     1   0.730      1.000 0.796 0.204
#> SRR537128     1   0.730      1.000 0.796 0.204
#> SRR537129     1   0.730      1.000 0.796 0.204
#> SRR537130     1   0.730      1.000 0.796 0.204
#> SRR537131     1   0.730      1.000 0.796 0.204
#> SRR537132     1   0.730      1.000 0.796 0.204
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191640     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191641     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191642     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191643     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191644     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191645     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191646     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191647     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191648     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191649     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191650     1  0.0237      0.901 0.996 0.004 0.000
#> SRR191651     1  0.0237      0.901 0.996 0.004 0.000
#> SRR191652     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191653     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191654     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191655     1  0.3482      0.835 0.872 0.128 0.000
#> SRR191656     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191657     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191658     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191659     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191660     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191661     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191662     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191663     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191664     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191665     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191666     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191667     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191668     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191669     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191670     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191671     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191672     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191673     1  0.0000      0.902 1.000 0.000 0.000
#> SRR191674     2  0.0892      0.902 0.020 0.980 0.000
#> SRR191675     2  0.0892      0.902 0.020 0.980 0.000
#> SRR191677     2  0.0892      0.902 0.020 0.980 0.000
#> SRR191678     2  0.0892      0.902 0.020 0.980 0.000
#> SRR191679     2  0.0000      0.883 0.000 1.000 0.000
#> SRR191680     2  0.0892      0.902 0.020 0.980 0.000
#> SRR191681     2  0.0892      0.902 0.020 0.980 0.000
#> SRR191682     2  0.2796      0.954 0.092 0.908 0.000
#> SRR191683     2  0.2796      0.954 0.092 0.908 0.000
#> SRR191684     2  0.0424      0.891 0.008 0.992 0.000
#> SRR191685     2  0.2796      0.954 0.092 0.908 0.000
#> SRR191686     2  0.2796      0.954 0.092 0.908 0.000
#> SRR191687     2  0.2796      0.954 0.092 0.908 0.000
#> SRR191688     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191689     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191690     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191691     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191692     2  0.2878      0.953 0.096 0.904 0.000
#> SRR191693     2  0.2878      0.953 0.096 0.904 0.000
#> SRR191694     2  0.2878      0.953 0.096 0.904 0.000
#> SRR191695     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191696     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191697     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191698     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191699     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191700     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191701     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191702     2  0.2625      0.951 0.084 0.916 0.000
#> SRR191703     2  0.2625      0.951 0.084 0.916 0.000
#> SRR191704     2  0.0424      0.891 0.008 0.992 0.000
#> SRR191705     2  0.1163      0.911 0.028 0.972 0.000
#> SRR191706     2  0.2625      0.951 0.084 0.916 0.000
#> SRR191707     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191708     2  0.2625      0.951 0.084 0.916 0.000
#> SRR191709     2  0.2625      0.951 0.084 0.916 0.000
#> SRR191710     2  0.2625      0.951 0.084 0.916 0.000
#> SRR191711     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191712     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191713     2  0.0424      0.891 0.008 0.992 0.000
#> SRR191714     2  0.0424      0.891 0.008 0.992 0.000
#> SRR191715     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191716     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191717     2  0.3192      0.954 0.112 0.888 0.000
#> SRR191718     2  0.3192      0.954 0.112 0.888 0.000
#> SRR537099     1  0.3482      0.835 0.872 0.128 0.000
#> SRR537100     1  0.3482      0.835 0.872 0.128 0.000
#> SRR537101     1  0.0000      0.902 1.000 0.000 0.000
#> SRR537102     1  0.3482      0.835 0.872 0.128 0.000
#> SRR537104     1  0.3482      0.835 0.872 0.128 0.000
#> SRR537105     1  0.0000      0.902 1.000 0.000 0.000
#> SRR537106     1  0.0000      0.902 1.000 0.000 0.000
#> SRR537107     1  0.0000      0.902 1.000 0.000 0.000
#> SRR537108     1  0.0000      0.902 1.000 0.000 0.000
#> SRR537109     2  0.3482      0.938 0.128 0.872 0.000
#> SRR537110     2  0.3879      0.909 0.152 0.848 0.000
#> SRR537111     1  0.0237      0.901 0.996 0.004 0.000
#> SRR537113     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537114     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537115     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537116     2  0.3879      0.909 0.152 0.848 0.000
#> SRR537117     1  0.4605      0.765 0.796 0.204 0.000
#> SRR537118     1  0.4605      0.765 0.796 0.204 0.000
#> SRR537119     1  0.4605      0.765 0.796 0.204 0.000
#> SRR537120     1  0.4605      0.765 0.796 0.204 0.000
#> SRR537121     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537122     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537123     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537124     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537125     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537126     1  0.5348      0.781 0.796 0.176 0.028
#> SRR537127     3  0.1163      1.000 0.028 0.000 0.972
#> SRR537128     3  0.1163      1.000 0.028 0.000 0.972
#> SRR537129     3  0.1163      1.000 0.028 0.000 0.972
#> SRR537130     3  0.1163      1.000 0.028 0.000 0.972
#> SRR537131     3  0.1163      1.000 0.028 0.000 0.972
#> SRR537132     3  0.1163      1.000 0.028 0.000 0.972
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR191639     1  0.0188      0.842 0.996 0.000  0 0.004
#> SRR191640     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191641     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191642     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191643     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191644     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191645     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR191646     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR191647     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR191648     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR191649     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR191650     1  0.0376      0.843 0.992 0.004  0 0.004
#> SRR191651     1  0.0376      0.843 0.992 0.004  0 0.004
#> SRR191652     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191653     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191654     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191655     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR191656     1  0.2408      0.767 0.896 0.000  0 0.104
#> SRR191657     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191658     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191659     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191660     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191661     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191662     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191663     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191664     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191665     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191666     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191667     1  0.0000      0.842 1.000 0.000  0 0.000
#> SRR191668     1  0.2408      0.767 0.896 0.000  0 0.104
#> SRR191669     1  0.2408      0.767 0.896 0.000  0 0.104
#> SRR191670     1  0.2408      0.767 0.896 0.000  0 0.104
#> SRR191671     1  0.2408      0.767 0.896 0.000  0 0.104
#> SRR191672     1  0.4431      0.526 0.696 0.000  0 0.304
#> SRR191673     1  0.4431      0.526 0.696 0.000  0 0.304
#> SRR191674     2  0.0895      0.904 0.004 0.976  0 0.020
#> SRR191675     2  0.0895      0.904 0.004 0.976  0 0.020
#> SRR191677     2  0.0895      0.904 0.004 0.976  0 0.020
#> SRR191678     2  0.0895      0.904 0.004 0.976  0 0.020
#> SRR191679     2  0.1118      0.891 0.000 0.964  0 0.036
#> SRR191680     2  0.0895      0.904 0.004 0.976  0 0.020
#> SRR191681     2  0.0895      0.904 0.004 0.976  0 0.020
#> SRR191682     2  0.2048      0.954 0.064 0.928  0 0.008
#> SRR191683     2  0.2048      0.954 0.064 0.928  0 0.008
#> SRR191684     2  0.1452      0.899 0.008 0.956  0 0.036
#> SRR191685     2  0.2048      0.954 0.064 0.928  0 0.008
#> SRR191686     2  0.2048      0.954 0.064 0.928  0 0.008
#> SRR191687     2  0.2048      0.954 0.064 0.928  0 0.008
#> SRR191688     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191689     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191690     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191691     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191692     2  0.1637      0.954 0.060 0.940  0 0.000
#> SRR191693     2  0.1637      0.954 0.060 0.940  0 0.000
#> SRR191694     2  0.1637      0.954 0.060 0.940  0 0.000
#> SRR191695     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191696     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191697     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191698     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191699     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191700     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191701     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191702     2  0.2300      0.952 0.064 0.920  0 0.016
#> SRR191703     2  0.2300      0.952 0.064 0.920  0 0.016
#> SRR191704     2  0.1452      0.899 0.008 0.956  0 0.036
#> SRR191705     2  0.1624      0.916 0.020 0.952  0 0.028
#> SRR191706     2  0.2300      0.952 0.064 0.920  0 0.016
#> SRR191707     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191708     2  0.2300      0.952 0.064 0.920  0 0.016
#> SRR191709     2  0.2300      0.952 0.064 0.920  0 0.016
#> SRR191710     2  0.2300      0.952 0.064 0.920  0 0.016
#> SRR191711     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191712     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191713     2  0.1452      0.899 0.008 0.956  0 0.036
#> SRR191714     2  0.1452      0.899 0.008 0.956  0 0.036
#> SRR191715     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191716     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191717     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR191718     2  0.2124      0.955 0.068 0.924  0 0.008
#> SRR537099     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR537100     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR537101     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR537102     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR537104     1  0.4370      0.749 0.800 0.156  0 0.044
#> SRR537105     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR537106     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR537107     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR537108     1  0.2466      0.820 0.916 0.028  0 0.056
#> SRR537109     2  0.2563      0.940 0.072 0.908  0 0.020
#> SRR537110     2  0.3082      0.910 0.084 0.884  0 0.032
#> SRR537111     1  0.0376      0.843 0.992 0.004  0 0.004
#> SRR537113     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537114     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537115     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537116     2  0.3082      0.910 0.084 0.884  0 0.032
#> SRR537117     4  0.7599      0.759 0.316 0.220  0 0.464
#> SRR537118     4  0.7599      0.759 0.316 0.220  0 0.464
#> SRR537119     4  0.7599      0.759 0.316 0.220  0 0.464
#> SRR537120     4  0.7599      0.759 0.316 0.220  0 0.464
#> SRR537121     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537122     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537123     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537124     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537125     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537126     4  0.5453      0.894 0.304 0.036  0 0.660
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR191639     4  0.1205      0.716 0.000 0.040  0 0.956 0.004
#> SRR191640     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191641     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191642     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191643     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191644     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191645     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR191646     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR191647     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR191648     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR191649     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR191650     4  0.1357      0.719 0.000 0.048  0 0.948 0.004
#> SRR191651     4  0.1357      0.719 0.000 0.048  0 0.948 0.004
#> SRR191652     4  0.1043      0.712 0.000 0.040  0 0.960 0.000
#> SRR191653     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191654     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191655     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR191656     4  0.2732      0.321 0.160 0.000  0 0.840 0.000
#> SRR191657     4  0.1331      0.709 0.008 0.040  0 0.952 0.000
#> SRR191658     4  0.1331      0.709 0.008 0.040  0 0.952 0.000
#> SRR191659     4  0.1331      0.709 0.008 0.040  0 0.952 0.000
#> SRR191660     4  0.1331      0.709 0.008 0.040  0 0.952 0.000
#> SRR191661     4  0.1331      0.709 0.008 0.040  0 0.952 0.000
#> SRR191662     4  0.1331      0.709 0.008 0.040  0 0.952 0.000
#> SRR191663     4  0.1331      0.709 0.008 0.040  0 0.952 0.000
#> SRR191664     4  0.1043      0.712 0.000 0.040  0 0.960 0.000
#> SRR191665     4  0.1648      0.694 0.020 0.040  0 0.940 0.000
#> SRR191666     4  0.1043      0.712 0.000 0.040  0 0.960 0.000
#> SRR191667     4  0.1043      0.712 0.000 0.040  0 0.960 0.000
#> SRR191668     4  0.2813      0.295 0.168 0.000  0 0.832 0.000
#> SRR191669     4  0.2813      0.295 0.168 0.000  0 0.832 0.000
#> SRR191670     4  0.2813      0.295 0.168 0.000  0 0.832 0.000
#> SRR191671     4  0.2813      0.295 0.168 0.000  0 0.832 0.000
#> SRR191672     1  0.5059      1.000 0.548 0.000  0 0.416 0.036
#> SRR191673     1  0.5059      1.000 0.548 0.000  0 0.416 0.036
#> SRR191674     2  0.4268      0.499 0.444 0.556  0 0.000 0.000
#> SRR191675     2  0.4268      0.499 0.444 0.556  0 0.000 0.000
#> SRR191677     2  0.4268      0.499 0.444 0.556  0 0.000 0.000
#> SRR191678     2  0.4268      0.499 0.444 0.556  0 0.000 0.000
#> SRR191679     2  0.4803      0.490 0.444 0.536  0 0.000 0.020
#> SRR191680     2  0.4268      0.499 0.444 0.556  0 0.000 0.000
#> SRR191681     2  0.4268      0.499 0.444 0.556  0 0.000 0.000
#> SRR191682     2  0.0404      0.899 0.000 0.988  0 0.000 0.012
#> SRR191683     2  0.0404      0.899 0.000 0.988  0 0.000 0.012
#> SRR191684     2  0.2270      0.843 0.076 0.904  0 0.000 0.020
#> SRR191685     2  0.0404      0.899 0.000 0.988  0 0.000 0.012
#> SRR191686     2  0.0404      0.899 0.000 0.988  0 0.000 0.012
#> SRR191687     2  0.0404      0.899 0.000 0.988  0 0.000 0.012
#> SRR191688     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191689     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191690     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191691     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191692     2  0.1043      0.889 0.040 0.960  0 0.000 0.000
#> SRR191693     2  0.1043      0.889 0.040 0.960  0 0.000 0.000
#> SRR191694     2  0.1043      0.889 0.040 0.960  0 0.000 0.000
#> SRR191695     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191696     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191697     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191698     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191699     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191700     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191701     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191702     2  0.0609      0.897 0.000 0.980  0 0.000 0.020
#> SRR191703     2  0.0609      0.897 0.000 0.980  0 0.000 0.020
#> SRR191704     2  0.2270      0.843 0.076 0.904  0 0.000 0.020
#> SRR191705     2  0.1943      0.860 0.056 0.924  0 0.000 0.020
#> SRR191706     2  0.0609      0.897 0.000 0.980  0 0.000 0.020
#> SRR191707     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191708     2  0.0609      0.897 0.000 0.980  0 0.000 0.020
#> SRR191709     2  0.0609      0.897 0.000 0.980  0 0.000 0.020
#> SRR191710     2  0.0609      0.897 0.000 0.980  0 0.000 0.020
#> SRR191711     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191712     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191713     2  0.2270      0.843 0.076 0.904  0 0.000 0.020
#> SRR191714     2  0.2270      0.843 0.076 0.904  0 0.000 0.020
#> SRR191715     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191716     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191717     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR191718     2  0.0290      0.902 0.000 0.992  0 0.000 0.008
#> SRR537099     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR537100     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR537101     4  0.3962      0.714 0.000 0.088  0 0.800 0.112
#> SRR537102     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR537104     4  0.4558      0.658 0.000 0.216  0 0.724 0.060
#> SRR537105     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR537106     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR537107     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR537108     4  0.4016      0.714 0.000 0.092  0 0.796 0.112
#> SRR537109     2  0.0703      0.889 0.000 0.976  0 0.000 0.024
#> SRR537110     2  0.1197      0.864 0.000 0.952  0 0.000 0.048
#> SRR537111     4  0.1357      0.719 0.000 0.048  0 0.948 0.004
#> SRR537113     5  0.1908      0.860 0.000 0.092  0 0.000 0.908
#> SRR537114     5  0.1908      0.860 0.000 0.092  0 0.000 0.908
#> SRR537115     5  0.1908      0.860 0.000 0.092  0 0.000 0.908
#> SRR537116     2  0.1197      0.864 0.000 0.952  0 0.000 0.048
#> SRR537117     5  0.3635      0.763 0.000 0.248  0 0.004 0.748
#> SRR537118     5  0.3635      0.763 0.000 0.248  0 0.004 0.748
#> SRR537119     5  0.3635      0.763 0.000 0.248  0 0.004 0.748
#> SRR537120     5  0.3635      0.763 0.000 0.248  0 0.004 0.748
#> SRR537121     5  0.1341      0.870 0.000 0.056  0 0.000 0.944
#> SRR537122     5  0.1341      0.870 0.000 0.056  0 0.000 0.944
#> SRR537123     5  0.1341      0.870 0.000 0.056  0 0.000 0.944
#> SRR537124     5  0.1341      0.870 0.000 0.056  0 0.000 0.944
#> SRR537125     5  0.1341      0.870 0.000 0.056  0 0.000 0.944
#> SRR537126     5  0.1341      0.870 0.000 0.056  0 0.000 0.944
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     4  0.1663      0.692 0.088 0.000  0 0.912 0.000 0.000
#> SRR191640     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR191641     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR191642     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR191643     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR191644     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR191645     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR191646     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR191647     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR191648     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR191649     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR191650     4  0.1036      0.719 0.024 0.008  0 0.964 0.004 0.000
#> SRR191651     4  0.1036      0.719 0.024 0.008  0 0.964 0.004 0.000
#> SRR191652     4  0.0632      0.712 0.024 0.000  0 0.976 0.000 0.000
#> SRR191653     4  0.3891      0.699 0.004 0.164  0 0.768 0.064 0.000
#> SRR191654     4  0.3891      0.699 0.004 0.164  0 0.768 0.064 0.000
#> SRR191655     4  0.3891      0.699 0.004 0.164  0 0.768 0.064 0.000
#> SRR191656     4  0.3672      0.277 0.368 0.000  0 0.632 0.000 0.000
#> SRR191657     4  0.2823      0.617 0.204 0.000  0 0.796 0.000 0.000
#> SRR191658     4  0.2823      0.617 0.204 0.000  0 0.796 0.000 0.000
#> SRR191659     4  0.2823      0.617 0.204 0.000  0 0.796 0.000 0.000
#> SRR191660     4  0.2823      0.617 0.204 0.000  0 0.796 0.000 0.000
#> SRR191661     4  0.2823      0.617 0.204 0.000  0 0.796 0.000 0.000
#> SRR191662     4  0.2823      0.617 0.204 0.000  0 0.796 0.000 0.000
#> SRR191663     4  0.2823      0.617 0.204 0.000  0 0.796 0.000 0.000
#> SRR191664     4  0.2092      0.673 0.124 0.000  0 0.876 0.000 0.000
#> SRR191665     4  0.2340      0.656 0.148 0.000  0 0.852 0.000 0.000
#> SRR191666     4  0.0632      0.712 0.024 0.000  0 0.976 0.000 0.000
#> SRR191667     4  0.0632      0.712 0.024 0.000  0 0.976 0.000 0.000
#> SRR191668     4  0.3563      0.233 0.336 0.000  0 0.664 0.000 0.000
#> SRR191669     4  0.3563      0.233 0.336 0.000  0 0.664 0.000 0.000
#> SRR191670     4  0.3578      0.221 0.340 0.000  0 0.660 0.000 0.000
#> SRR191671     4  0.3578      0.221 0.340 0.000  0 0.660 0.000 0.000
#> SRR191672     1  0.2597      1.000 0.824 0.000  0 0.176 0.000 0.000
#> SRR191673     1  0.2597      1.000 0.824 0.000  0 0.176 0.000 0.000
#> SRR191674     6  0.0547      0.994 0.000 0.020  0 0.000 0.000 0.980
#> SRR191675     6  0.0547      0.994 0.000 0.020  0 0.000 0.000 0.980
#> SRR191677     6  0.0547      0.994 0.000 0.020  0 0.000 0.000 0.980
#> SRR191678     6  0.0547      0.994 0.000 0.020  0 0.000 0.000 0.980
#> SRR191679     6  0.0000      0.961 0.000 0.000  0 0.000 0.000 1.000
#> SRR191680     6  0.0547      0.994 0.000 0.020  0 0.000 0.000 0.980
#> SRR191681     6  0.0547      0.994 0.000 0.020  0 0.000 0.000 0.980
#> SRR191682     2  0.1297      0.964 0.000 0.948  0 0.040 0.000 0.012
#> SRR191683     2  0.1297      0.964 0.000 0.948  0 0.040 0.000 0.012
#> SRR191684     2  0.1408      0.891 0.000 0.944  0 0.000 0.036 0.020
#> SRR191685     2  0.1297      0.964 0.000 0.948  0 0.040 0.000 0.012
#> SRR191686     2  0.1297      0.964 0.000 0.948  0 0.040 0.000 0.012
#> SRR191687     2  0.1297      0.964 0.000 0.948  0 0.040 0.000 0.012
#> SRR191688     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191689     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191690     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191691     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191692     2  0.2579      0.902 0.000 0.872  0 0.040 0.000 0.088
#> SRR191693     2  0.2579      0.902 0.000 0.872  0 0.040 0.000 0.088
#> SRR191694     2  0.2579      0.902 0.000 0.872  0 0.040 0.000 0.088
#> SRR191695     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191696     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191697     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191698     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191699     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191700     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191701     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191702     2  0.1480      0.961 0.000 0.940  0 0.040 0.000 0.020
#> SRR191703     2  0.1480      0.961 0.000 0.940  0 0.040 0.000 0.020
#> SRR191704     2  0.1408      0.891 0.000 0.944  0 0.000 0.036 0.020
#> SRR191705     2  0.1434      0.912 0.000 0.948  0 0.008 0.024 0.020
#> SRR191706     2  0.1480      0.961 0.000 0.940  0 0.040 0.000 0.020
#> SRR191707     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191708     2  0.1480      0.961 0.000 0.940  0 0.040 0.000 0.020
#> SRR191709     2  0.1480      0.961 0.000 0.940  0 0.040 0.000 0.020
#> SRR191710     2  0.1480      0.961 0.000 0.940  0 0.040 0.000 0.020
#> SRR191711     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191712     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191713     2  0.1408      0.891 0.000 0.944  0 0.000 0.036 0.020
#> SRR191714     2  0.1408      0.891 0.000 0.944  0 0.000 0.036 0.020
#> SRR191715     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191716     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191717     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR191718     2  0.1152      0.967 0.000 0.952  0 0.044 0.004 0.000
#> SRR537099     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR537100     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR537101     4  0.2843      0.733 0.000 0.036  0 0.848 0.116 0.000
#> SRR537102     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR537104     4  0.3752      0.698 0.000 0.164  0 0.772 0.064 0.000
#> SRR537105     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR537106     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR537107     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR537108     4  0.2912      0.734 0.000 0.040  0 0.844 0.116 0.000
#> SRR537109     2  0.1633      0.953 0.000 0.932  0 0.044 0.024 0.000
#> SRR537110     2  0.2134      0.924 0.000 0.904  0 0.044 0.052 0.000
#> SRR537111     4  0.1036      0.719 0.024 0.008  0 0.964 0.004 0.000
#> SRR537113     5  0.1723      0.842 0.000 0.036  0 0.036 0.928 0.000
#> SRR537114     5  0.1723      0.842 0.000 0.036  0 0.036 0.928 0.000
#> SRR537115     5  0.1723      0.842 0.000 0.036  0 0.036 0.928 0.000
#> SRR537116     2  0.2134      0.924 0.000 0.904  0 0.044 0.052 0.000
#> SRR537117     5  0.3271      0.741 0.000 0.232  0 0.008 0.760 0.000
#> SRR537118     5  0.3271      0.741 0.000 0.232  0 0.008 0.760 0.000
#> SRR537119     5  0.3271      0.741 0.000 0.232  0 0.008 0.760 0.000
#> SRR537120     5  0.3271      0.741 0.000 0.232  0 0.008 0.760 0.000
#> SRR537121     5  0.1007      0.858 0.000 0.044  0 0.000 0.956 0.000
#> SRR537122     5  0.1007      0.858 0.000 0.044  0 0.000 0.956 0.000
#> SRR537123     5  0.1007      0.858 0.000 0.044  0 0.000 0.956 0.000
#> SRR537124     5  0.1007      0.858 0.000 0.044  0 0.000 0.956 0.000
#> SRR537125     5  0.1007      0.858 0.000 0.044  0 0.000 0.956 0.000
#> SRR537126     5  0.1007      0.858 0.000 0.044  0 0.000 0.956 0.000
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.372           0.829       0.845         0.4252 0.500   0.500
#> 3 3 0.478           0.792       0.811         0.3527 0.882   0.768
#> 4 4 0.595           0.713       0.744         0.1687 1.000   1.000
#> 5 5 0.616           0.664       0.742         0.0854 0.857   0.642
#> 6 6 0.642           0.732       0.766         0.0547 0.943   0.786
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.6531      0.930 0.832 0.168
#> SRR191640     1  0.7453      0.929 0.788 0.212
#> SRR191641     1  0.7453      0.929 0.788 0.212
#> SRR191642     1  0.7453      0.929 0.788 0.212
#> SRR191643     1  0.7674      0.921 0.776 0.224
#> SRR191644     1  0.8443      0.862 0.728 0.272
#> SRR191645     1  0.7376      0.930 0.792 0.208
#> SRR191646     1  0.7376      0.930 0.792 0.208
#> SRR191647     1  0.7376      0.930 0.792 0.208
#> SRR191648     1  0.7376      0.930 0.792 0.208
#> SRR191649     1  0.7376      0.930 0.792 0.208
#> SRR191650     1  0.7056      0.934 0.808 0.192
#> SRR191651     1  0.6973      0.934 0.812 0.188
#> SRR191652     1  0.6887      0.934 0.816 0.184
#> SRR191653     1  0.8327      0.873 0.736 0.264
#> SRR191654     1  0.8386      0.867 0.732 0.268
#> SRR191655     1  0.7602      0.924 0.780 0.220
#> SRR191656     1  0.7056      0.912 0.808 0.192
#> SRR191657     1  0.6531      0.930 0.832 0.168
#> SRR191658     1  0.6438      0.928 0.836 0.164
#> SRR191659     1  0.6531      0.930 0.832 0.168
#> SRR191660     1  0.6531      0.930 0.832 0.168
#> SRR191661     1  0.6531      0.930 0.832 0.168
#> SRR191662     1  0.6531      0.930 0.832 0.168
#> SRR191663     1  0.6531      0.930 0.832 0.168
#> SRR191664     1  0.6531      0.930 0.832 0.168
#> SRR191665     1  0.6531      0.930 0.832 0.168
#> SRR191666     1  0.6343      0.929 0.840 0.160
#> SRR191667     1  0.6343      0.929 0.840 0.160
#> SRR191668     1  0.7056      0.912 0.808 0.192
#> SRR191669     1  0.7056      0.912 0.808 0.192
#> SRR191670     1  0.6438      0.928 0.836 0.164
#> SRR191671     1  0.6438      0.928 0.836 0.164
#> SRR191672     1  0.7056      0.912 0.808 0.192
#> SRR191673     1  0.7056      0.912 0.808 0.192
#> SRR191674     2  0.0000      0.829 0.000 1.000
#> SRR191675     2  0.0000      0.829 0.000 1.000
#> SRR191677     2  0.0000      0.829 0.000 1.000
#> SRR191678     2  0.0000      0.829 0.000 1.000
#> SRR191679     2  0.2778      0.852 0.048 0.952
#> SRR191680     2  0.0000      0.829 0.000 1.000
#> SRR191681     2  0.0000      0.829 0.000 1.000
#> SRR191682     2  0.2043      0.845 0.032 0.968
#> SRR191683     2  0.2043      0.845 0.032 0.968
#> SRR191684     2  0.4022      0.861 0.080 0.920
#> SRR191685     2  0.3431      0.857 0.064 0.936
#> SRR191686     2  0.2043      0.845 0.032 0.968
#> SRR191687     2  0.2778      0.852 0.048 0.952
#> SRR191688     2  0.4562      0.865 0.096 0.904
#> SRR191689     2  0.3733      0.859 0.072 0.928
#> SRR191690     2  0.4562      0.865 0.096 0.904
#> SRR191691     2  0.4562      0.865 0.096 0.904
#> SRR191692     2  0.0000      0.829 0.000 1.000
#> SRR191693     2  0.0000      0.829 0.000 1.000
#> SRR191694     2  0.0938      0.835 0.012 0.988
#> SRR191695     2  0.4562      0.865 0.096 0.904
#> SRR191696     2  0.4562      0.865 0.096 0.904
#> SRR191697     2  0.4562      0.865 0.096 0.904
#> SRR191698     2  0.4562      0.865 0.096 0.904
#> SRR191699     2  0.4562      0.865 0.096 0.904
#> SRR191700     2  0.4562      0.865 0.096 0.904
#> SRR191701     2  0.4562      0.865 0.096 0.904
#> SRR191702     2  0.4562      0.865 0.096 0.904
#> SRR191703     2  0.4562      0.865 0.096 0.904
#> SRR191704     2  0.4562      0.865 0.096 0.904
#> SRR191705     2  0.4562      0.865 0.096 0.904
#> SRR191706     2  0.4562      0.865 0.096 0.904
#> SRR191707     2  0.4562      0.865 0.096 0.904
#> SRR191708     2  0.4562      0.865 0.096 0.904
#> SRR191709     2  0.4562      0.865 0.096 0.904
#> SRR191710     2  0.4562      0.865 0.096 0.904
#> SRR191711     2  0.4562      0.865 0.096 0.904
#> SRR191712     2  0.4562      0.865 0.096 0.904
#> SRR191713     2  0.4562      0.865 0.096 0.904
#> SRR191714     2  0.4562      0.865 0.096 0.904
#> SRR191715     2  0.4562      0.865 0.096 0.904
#> SRR191716     2  0.4562      0.865 0.096 0.904
#> SRR191717     2  0.4562      0.865 0.096 0.904
#> SRR191718     2  0.4562      0.865 0.096 0.904
#> SRR537099     1  0.7745      0.917 0.772 0.228
#> SRR537100     1  0.7674      0.921 0.776 0.224
#> SRR537101     1  0.7453      0.929 0.788 0.212
#> SRR537102     1  0.7745      0.917 0.772 0.228
#> SRR537104     2  0.9998     -0.200 0.492 0.508
#> SRR537105     1  0.7453      0.928 0.788 0.212
#> SRR537106     1  0.7602      0.923 0.780 0.220
#> SRR537107     1  0.7602      0.923 0.780 0.220
#> SRR537108     1  0.7602      0.923 0.780 0.220
#> SRR537109     2  0.4562      0.865 0.096 0.904
#> SRR537110     2  0.4562      0.865 0.096 0.904
#> SRR537111     1  0.7528      0.926 0.784 0.216
#> SRR537113     2  0.9286      0.446 0.344 0.656
#> SRR537114     2  0.9286      0.446 0.344 0.656
#> SRR537115     2  0.9248      0.456 0.340 0.660
#> SRR537116     2  0.4562      0.865 0.096 0.904
#> SRR537117     2  0.9044      0.541 0.320 0.680
#> SRR537118     2  0.8555      0.606 0.280 0.720
#> SRR537119     2  0.8499      0.609 0.276 0.724
#> SRR537120     2  0.6973      0.713 0.188 0.812
#> SRR537121     2  0.9580      0.430 0.380 0.620
#> SRR537122     2  0.9580      0.430 0.380 0.620
#> SRR537123     2  0.9580      0.430 0.380 0.620
#> SRR537124     2  0.9522      0.449 0.372 0.628
#> SRR537125     2  0.9522      0.449 0.372 0.628
#> SRR537126     2  0.9522      0.449 0.372 0.628
#> SRR537127     1  0.4431      0.833 0.908 0.092
#> SRR537128     1  0.4431      0.833 0.908 0.092
#> SRR537129     1  0.4431      0.833 0.908 0.092
#> SRR537130     1  0.4431      0.833 0.908 0.092
#> SRR537131     1  0.4431      0.833 0.908 0.092
#> SRR537132     1  0.4431      0.833 0.908 0.092
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.6388      0.750 0.752 0.064 0.184
#> SRR191640     1  0.3112      0.775 0.900 0.096 0.004
#> SRR191641     1  0.3846      0.767 0.876 0.108 0.016
#> SRR191642     1  0.3846      0.767 0.876 0.108 0.016
#> SRR191643     1  0.4209      0.756 0.856 0.128 0.016
#> SRR191644     1  0.5843      0.584 0.732 0.252 0.016
#> SRR191645     1  0.3043      0.771 0.908 0.084 0.008
#> SRR191646     1  0.3043      0.771 0.908 0.084 0.008
#> SRR191647     1  0.3207      0.769 0.904 0.084 0.012
#> SRR191648     1  0.3207      0.769 0.904 0.084 0.012
#> SRR191649     1  0.3043      0.771 0.908 0.084 0.008
#> SRR191650     1  0.3528      0.776 0.892 0.092 0.016
#> SRR191651     1  0.4253      0.779 0.872 0.080 0.048
#> SRR191652     1  0.4658      0.775 0.856 0.068 0.076
#> SRR191653     1  0.5803      0.584 0.736 0.248 0.016
#> SRR191654     1  0.5803      0.584 0.736 0.248 0.016
#> SRR191655     1  0.4068      0.762 0.864 0.120 0.016
#> SRR191656     1  0.6986      0.702 0.688 0.056 0.256
#> SRR191657     1  0.6673      0.742 0.732 0.068 0.200
#> SRR191658     1  0.6585      0.741 0.736 0.064 0.200
#> SRR191659     1  0.6673      0.742 0.732 0.068 0.200
#> SRR191660     1  0.6673      0.742 0.732 0.068 0.200
#> SRR191661     1  0.6673      0.742 0.732 0.068 0.200
#> SRR191662     1  0.6673      0.742 0.732 0.068 0.200
#> SRR191663     1  0.6673      0.742 0.732 0.068 0.200
#> SRR191664     1  0.6585      0.741 0.736 0.064 0.200
#> SRR191665     1  0.6229      0.747 0.764 0.064 0.172
#> SRR191666     1  0.4556      0.774 0.860 0.060 0.080
#> SRR191667     1  0.4652      0.774 0.856 0.064 0.080
#> SRR191668     1  0.6913      0.709 0.696 0.056 0.248
#> SRR191669     1  0.6913      0.709 0.696 0.056 0.248
#> SRR191670     1  0.6847      0.722 0.708 0.060 0.232
#> SRR191671     1  0.6847      0.722 0.708 0.060 0.232
#> SRR191672     1  0.6986      0.702 0.688 0.056 0.256
#> SRR191673     1  0.6986      0.702 0.688 0.056 0.256
#> SRR191674     2  0.5443      0.617 0.004 0.736 0.260
#> SRR191675     2  0.5443      0.617 0.004 0.736 0.260
#> SRR191677     2  0.5285      0.646 0.004 0.752 0.244
#> SRR191678     2  0.5443      0.617 0.004 0.736 0.260
#> SRR191679     2  0.3030      0.852 0.004 0.904 0.092
#> SRR191680     2  0.4521      0.746 0.004 0.816 0.180
#> SRR191681     2  0.5443      0.617 0.004 0.736 0.260
#> SRR191682     2  0.1647      0.903 0.004 0.960 0.036
#> SRR191683     2  0.1647      0.903 0.004 0.960 0.036
#> SRR191684     2  0.0983      0.914 0.004 0.980 0.016
#> SRR191685     2  0.1267      0.910 0.004 0.972 0.024
#> SRR191686     2  0.1647      0.903 0.004 0.960 0.036
#> SRR191687     2  0.1267      0.910 0.004 0.972 0.024
#> SRR191688     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191689     2  0.0475      0.920 0.004 0.992 0.004
#> SRR191690     2  0.0829      0.922 0.012 0.984 0.004
#> SRR191691     2  0.1315      0.913 0.008 0.972 0.020
#> SRR191692     2  0.5365      0.632 0.004 0.744 0.252
#> SRR191693     2  0.5618      0.608 0.008 0.732 0.260
#> SRR191694     2  0.2496      0.869 0.004 0.928 0.068
#> SRR191695     2  0.1015      0.918 0.008 0.980 0.012
#> SRR191696     2  0.1015      0.918 0.008 0.980 0.012
#> SRR191697     2  0.1315      0.913 0.008 0.972 0.020
#> SRR191698     2  0.1315      0.913 0.008 0.972 0.020
#> SRR191699     2  0.0661      0.922 0.008 0.988 0.004
#> SRR191700     2  0.1315      0.913 0.008 0.972 0.020
#> SRR191701     2  0.1315      0.913 0.008 0.972 0.020
#> SRR191702     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191703     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191704     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191705     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191706     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191707     2  0.1315      0.913 0.008 0.972 0.020
#> SRR191708     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191709     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191710     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191711     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191712     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191713     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191714     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191715     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191716     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191717     2  0.0592      0.923 0.012 0.988 0.000
#> SRR191718     2  0.1015      0.918 0.008 0.980 0.012
#> SRR537099     1  0.4209      0.756 0.856 0.128 0.016
#> SRR537100     1  0.4068      0.762 0.864 0.120 0.016
#> SRR537101     1  0.3769      0.767 0.880 0.104 0.016
#> SRR537102     1  0.4209      0.756 0.856 0.128 0.016
#> SRR537104     1  0.6510      0.319 0.624 0.364 0.012
#> SRR537105     1  0.4094      0.755 0.872 0.100 0.028
#> SRR537106     1  0.4249      0.750 0.864 0.108 0.028
#> SRR537107     1  0.4249      0.750 0.864 0.108 0.028
#> SRR537108     1  0.4249      0.750 0.864 0.108 0.028
#> SRR537109     2  0.0592      0.923 0.012 0.988 0.000
#> SRR537110     2  0.0592      0.923 0.012 0.988 0.000
#> SRR537111     1  0.3995      0.771 0.868 0.116 0.016
#> SRR537113     3  0.9849      0.855 0.332 0.260 0.408
#> SRR537114     3  0.9830      0.844 0.340 0.252 0.408
#> SRR537115     3  0.9806      0.875 0.328 0.252 0.420
#> SRR537116     2  0.0592      0.923 0.012 0.988 0.000
#> SRR537117     3  0.9664      0.901 0.244 0.296 0.460
#> SRR537118     3  0.9585      0.855 0.212 0.332 0.456
#> SRR537119     3  0.9596      0.850 0.212 0.336 0.452
#> SRR537120     3  0.9475      0.797 0.188 0.360 0.452
#> SRR537121     3  0.9604      0.924 0.268 0.256 0.476
#> SRR537122     3  0.9604      0.924 0.268 0.256 0.476
#> SRR537123     3  0.9604      0.924 0.268 0.256 0.476
#> SRR537124     3  0.9604      0.924 0.268 0.256 0.476
#> SRR537125     3  0.9604      0.924 0.268 0.256 0.476
#> SRR537126     3  0.9604      0.924 0.268 0.256 0.476
#> SRR537127     1  0.7600      0.453 0.600 0.056 0.344
#> SRR537128     1  0.7559      0.453 0.608 0.056 0.336
#> SRR537129     1  0.7600      0.453 0.600 0.056 0.344
#> SRR537130     1  0.7600      0.453 0.600 0.056 0.344
#> SRR537131     1  0.7559      0.453 0.608 0.056 0.336
#> SRR537132     1  0.7559      0.453 0.608 0.056 0.336
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR191639     1  0.5272      0.639 0.608 0.008 NA 0.004
#> SRR191640     1  0.1920      0.664 0.944 0.028 NA 0.004
#> SRR191641     1  0.2594      0.651 0.920 0.032 NA 0.012
#> SRR191642     1  0.2742      0.652 0.912 0.040 NA 0.008
#> SRR191643     1  0.2870      0.647 0.908 0.044 NA 0.012
#> SRR191644     1  0.4914      0.513 0.772 0.180 NA 0.012
#> SRR191645     1  0.2797      0.649 0.912 0.016 NA 0.044
#> SRR191646     1  0.2797      0.649 0.912 0.016 NA 0.044
#> SRR191647     1  0.2552      0.647 0.920 0.012 NA 0.048
#> SRR191648     1  0.2552      0.647 0.920 0.012 NA 0.048
#> SRR191649     1  0.2400      0.651 0.924 0.004 NA 0.044
#> SRR191650     1  0.2957      0.669 0.900 0.016 NA 0.016
#> SRR191651     1  0.4000      0.673 0.828 0.012 NA 0.016
#> SRR191652     1  0.4377      0.671 0.788 0.008 NA 0.016
#> SRR191653     1  0.4987      0.510 0.772 0.176 NA 0.016
#> SRR191654     1  0.4987      0.510 0.772 0.176 NA 0.016
#> SRR191655     1  0.2781      0.649 0.912 0.040 NA 0.012
#> SRR191656     1  0.6232      0.568 0.480 0.008 NA 0.036
#> SRR191657     1  0.5614      0.624 0.568 0.008 NA 0.012
#> SRR191658     1  0.5623      0.622 0.564 0.008 NA 0.012
#> SRR191659     1  0.5614      0.624 0.568 0.008 NA 0.012
#> SRR191660     1  0.5614      0.624 0.568 0.008 NA 0.012
#> SRR191661     1  0.5605      0.625 0.572 0.008 NA 0.012
#> SRR191662     1  0.5605      0.625 0.572 0.008 NA 0.012
#> SRR191663     1  0.5605      0.625 0.572 0.008 NA 0.012
#> SRR191664     1  0.5614      0.624 0.568 0.008 NA 0.012
#> SRR191665     1  0.5112      0.631 0.608 0.008 NA 0.000
#> SRR191666     1  0.4475      0.668 0.748 0.004 NA 0.008
#> SRR191667     1  0.4475      0.668 0.748 0.004 NA 0.008
#> SRR191668     1  0.5990      0.577 0.492 0.008 NA 0.024
#> SRR191669     1  0.5990      0.577 0.492 0.008 NA 0.024
#> SRR191670     1  0.5899      0.583 0.500 0.008 NA 0.020
#> SRR191671     1  0.5899      0.583 0.500 0.008 NA 0.020
#> SRR191672     1  0.6232      0.568 0.480 0.008 NA 0.036
#> SRR191673     1  0.6232      0.568 0.480 0.008 NA 0.036
#> SRR191674     2  0.6685      0.449 0.000 0.568 NA 0.324
#> SRR191675     2  0.6685      0.449 0.000 0.568 NA 0.324
#> SRR191677     2  0.6473      0.529 0.000 0.612 NA 0.280
#> SRR191678     2  0.6685      0.449 0.000 0.568 NA 0.324
#> SRR191679     2  0.4608      0.765 0.000 0.800 NA 0.096
#> SRR191680     2  0.5857      0.654 0.000 0.696 NA 0.196
#> SRR191681     2  0.6685      0.449 0.000 0.568 NA 0.324
#> SRR191682     2  0.3439      0.827 0.000 0.868 NA 0.048
#> SRR191683     2  0.3439      0.827 0.000 0.868 NA 0.048
#> SRR191684     2  0.3107      0.836 0.000 0.884 NA 0.036
#> SRR191685     2  0.3107      0.836 0.000 0.884 NA 0.036
#> SRR191686     2  0.3439      0.827 0.000 0.868 NA 0.048
#> SRR191687     2  0.3176      0.834 0.000 0.880 NA 0.036
#> SRR191688     2  0.0707      0.884 0.020 0.980 NA 0.000
#> SRR191689     2  0.0524      0.882 0.004 0.988 NA 0.000
#> SRR191690     2  0.1042      0.884 0.020 0.972 NA 0.000
#> SRR191691     2  0.1998      0.876 0.020 0.944 NA 0.020
#> SRR191692     2  0.6669      0.453 0.000 0.572 NA 0.320
#> SRR191693     2  0.6634      0.461 0.000 0.580 NA 0.312
#> SRR191694     2  0.3705      0.817 0.004 0.860 NA 0.052
#> SRR191695     2  0.1509      0.882 0.020 0.960 NA 0.012
#> SRR191696     2  0.1509      0.882 0.020 0.960 NA 0.012
#> SRR191697     2  0.1998      0.876 0.020 0.944 NA 0.020
#> SRR191698     2  0.1998      0.876 0.020 0.944 NA 0.020
#> SRR191699     2  0.0804      0.884 0.012 0.980 NA 0.000
#> SRR191700     2  0.1998      0.876 0.020 0.944 NA 0.020
#> SRR191701     2  0.1998      0.876 0.020 0.944 NA 0.020
#> SRR191702     2  0.1631      0.883 0.020 0.956 NA 0.008
#> SRR191703     2  0.1631      0.883 0.020 0.956 NA 0.008
#> SRR191704     2  0.1631      0.883 0.020 0.956 NA 0.008
#> SRR191705     2  0.1631      0.883 0.020 0.956 NA 0.008
#> SRR191706     2  0.1516      0.883 0.016 0.960 NA 0.008
#> SRR191707     2  0.2324      0.873 0.020 0.932 NA 0.028
#> SRR191708     2  0.1631      0.883 0.020 0.956 NA 0.008
#> SRR191709     2  0.1631      0.883 0.020 0.956 NA 0.008
#> SRR191710     2  0.1631      0.883 0.020 0.956 NA 0.008
#> SRR191711     2  0.0895      0.884 0.020 0.976 NA 0.004
#> SRR191712     2  0.0895      0.884 0.020 0.976 NA 0.004
#> SRR191713     2  0.1362      0.884 0.020 0.964 NA 0.004
#> SRR191714     2  0.1362      0.884 0.020 0.964 NA 0.004
#> SRR191715     2  0.0895      0.884 0.020 0.976 NA 0.004
#> SRR191716     2  0.0707      0.884 0.020 0.980 NA 0.000
#> SRR191717     2  0.0707      0.884 0.020 0.980 NA 0.000
#> SRR191718     2  0.1509      0.882 0.020 0.960 NA 0.012
#> SRR537099     1  0.3167      0.644 0.896 0.048 NA 0.016
#> SRR537100     1  0.3081      0.646 0.900 0.044 NA 0.016
#> SRR537101     1  0.2686      0.652 0.916 0.032 NA 0.012
#> SRR537102     1  0.3167      0.644 0.896 0.048 NA 0.016
#> SRR537104     1  0.5627      0.384 0.684 0.268 NA 0.008
#> SRR537105     1  0.3606      0.621 0.872 0.020 NA 0.080
#> SRR537106     1  0.3606      0.621 0.872 0.020 NA 0.080
#> SRR537107     1  0.3606      0.621 0.872 0.020 NA 0.080
#> SRR537108     1  0.3606      0.621 0.872 0.020 NA 0.080
#> SRR537109     2  0.0707      0.884 0.020 0.980 NA 0.000
#> SRR537110     2  0.1082      0.884 0.020 0.972 NA 0.004
#> SRR537111     1  0.3423      0.666 0.884 0.024 NA 0.028
#> SRR537113     4  0.6770      0.842 0.252 0.088 NA 0.636
#> SRR537114     4  0.6739      0.838 0.256 0.084 NA 0.636
#> SRR537115     4  0.6385      0.881 0.224 0.076 NA 0.676
#> SRR537116     2  0.0895      0.884 0.020 0.976 NA 0.004
#> SRR537117     4  0.6384      0.901 0.148 0.128 NA 0.700
#> SRR537118     4  0.6382      0.888 0.140 0.144 NA 0.696
#> SRR537119     4  0.6515      0.877 0.140 0.156 NA 0.684
#> SRR537120     4  0.6515      0.877 0.140 0.156 NA 0.684
#> SRR537121     4  0.5477      0.924 0.156 0.080 NA 0.752
#> SRR537122     4  0.5477      0.924 0.156 0.080 NA 0.752
#> SRR537123     4  0.5477      0.924 0.156 0.080 NA 0.752
#> SRR537124     4  0.5370      0.923 0.152 0.084 NA 0.756
#> SRR537125     4  0.5352      0.924 0.156 0.080 NA 0.756
#> SRR537126     4  0.5352      0.924 0.156 0.080 NA 0.756
#> SRR537127     1  0.7793      0.310 0.448 0.020 NA 0.140
#> SRR537128     1  0.7763      0.310 0.448 0.020 NA 0.136
#> SRR537129     1  0.7793      0.310 0.448 0.020 NA 0.140
#> SRR537130     1  0.7763      0.310 0.448 0.020 NA 0.136
#> SRR537131     1  0.7763      0.310 0.448 0.020 NA 0.136
#> SRR537132     1  0.7763      0.310 0.448 0.020 NA 0.136
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     4  0.4595    -0.6478 0.488 0.004 0.004 0.504 0.000
#> SRR191640     4  0.1932     0.6243 0.020 0.032 0.004 0.936 0.008
#> SRR191641     4  0.1686     0.6303 0.004 0.036 0.004 0.944 0.012
#> SRR191642     4  0.1766     0.6315 0.004 0.040 0.004 0.940 0.012
#> SRR191643     4  0.2061     0.6337 0.004 0.056 0.004 0.924 0.012
#> SRR191644     4  0.3039     0.6001 0.004 0.124 0.004 0.856 0.012
#> SRR191645     4  0.4684     0.5947 0.080 0.016 0.056 0.800 0.048
#> SRR191646     4  0.4684     0.5947 0.080 0.016 0.056 0.800 0.048
#> SRR191647     4  0.4684     0.5947 0.080 0.016 0.056 0.800 0.048
#> SRR191648     4  0.4684     0.5947 0.080 0.016 0.056 0.800 0.048
#> SRR191649     4  0.4587     0.5868 0.088 0.008 0.056 0.800 0.048
#> SRR191650     4  0.3865     0.4863 0.160 0.012 0.004 0.804 0.020
#> SRR191651     4  0.4307     0.3085 0.236 0.008 0.004 0.736 0.016
#> SRR191652     4  0.4821     0.0694 0.308 0.008 0.004 0.660 0.020
#> SRR191653     4  0.3141     0.5833 0.000 0.152 0.000 0.832 0.016
#> SRR191654     4  0.3141     0.5833 0.000 0.152 0.000 0.832 0.016
#> SRR191655     4  0.1701     0.6370 0.000 0.048 0.000 0.936 0.016
#> SRR191656     1  0.5184     0.8444 0.656 0.004 0.032 0.292 0.016
#> SRR191657     1  0.5337     0.8630 0.580 0.004 0.028 0.376 0.012
#> SRR191658     1  0.5303     0.8646 0.592 0.004 0.028 0.364 0.012
#> SRR191659     1  0.5337     0.8630 0.580 0.004 0.028 0.376 0.012
#> SRR191660     1  0.5337     0.8630 0.580 0.004 0.028 0.376 0.012
#> SRR191661     1  0.5348     0.8603 0.576 0.004 0.028 0.380 0.012
#> SRR191662     1  0.5348     0.8603 0.576 0.004 0.028 0.380 0.012
#> SRR191663     1  0.5348     0.8603 0.576 0.004 0.028 0.380 0.012
#> SRR191664     1  0.5337     0.8630 0.580 0.004 0.028 0.376 0.012
#> SRR191665     1  0.4434     0.7297 0.536 0.004 0.000 0.460 0.000
#> SRR191666     4  0.4757    -0.1480 0.364 0.008 0.008 0.616 0.004
#> SRR191667     4  0.4757    -0.1480 0.364 0.008 0.008 0.616 0.004
#> SRR191668     1  0.5224     0.8462 0.648 0.004 0.032 0.300 0.016
#> SRR191669     1  0.5224     0.8462 0.648 0.004 0.032 0.300 0.016
#> SRR191670     1  0.5147     0.8492 0.648 0.004 0.032 0.304 0.012
#> SRR191671     1  0.5147     0.8492 0.648 0.004 0.032 0.304 0.012
#> SRR191672     1  0.5474     0.8380 0.620 0.004 0.036 0.320 0.020
#> SRR191673     1  0.5474     0.8380 0.620 0.004 0.036 0.320 0.020
#> SRR191674     3  0.6706     0.9645 0.000 0.324 0.452 0.004 0.220
#> SRR191675     3  0.6706     0.9645 0.000 0.324 0.452 0.004 0.220
#> SRR191677     3  0.6628     0.9363 0.000 0.344 0.456 0.004 0.196
#> SRR191678     3  0.6706     0.9645 0.000 0.324 0.452 0.004 0.220
#> SRR191679     2  0.5023    -0.4535 0.004 0.520 0.456 0.004 0.016
#> SRR191680     3  0.6173     0.7628 0.000 0.420 0.460 0.004 0.116
#> SRR191681     3  0.6706     0.9645 0.000 0.324 0.452 0.004 0.220
#> SRR191682     2  0.5657     0.2187 0.040 0.604 0.328 0.004 0.024
#> SRR191683     2  0.5657     0.2187 0.040 0.604 0.328 0.004 0.024
#> SRR191684     2  0.5626     0.2379 0.040 0.612 0.320 0.004 0.024
#> SRR191685     2  0.5657     0.2187 0.040 0.604 0.328 0.004 0.024
#> SRR191686     2  0.5657     0.2187 0.040 0.604 0.328 0.004 0.024
#> SRR191687     2  0.5657     0.2187 0.040 0.604 0.328 0.004 0.024
#> SRR191688     2  0.1699     0.8073 0.008 0.944 0.036 0.008 0.004
#> SRR191689     2  0.1168     0.8088 0.000 0.960 0.032 0.008 0.000
#> SRR191690     2  0.1779     0.8075 0.008 0.940 0.040 0.008 0.004
#> SRR191691     2  0.2775     0.7683 0.036 0.884 0.076 0.000 0.004
#> SRR191692     3  0.6706     0.9645 0.000 0.324 0.452 0.004 0.220
#> SRR191693     3  0.6706     0.9645 0.000 0.324 0.452 0.004 0.220
#> SRR191694     2  0.4675     0.0710 0.000 0.640 0.336 0.004 0.020
#> SRR191695     2  0.2444     0.7903 0.028 0.908 0.056 0.004 0.004
#> SRR191696     2  0.2444     0.7903 0.028 0.908 0.056 0.004 0.004
#> SRR191697     2  0.2913     0.7652 0.040 0.876 0.080 0.000 0.004
#> SRR191698     2  0.2913     0.7652 0.040 0.876 0.080 0.000 0.004
#> SRR191699     2  0.0992     0.8113 0.000 0.968 0.024 0.008 0.000
#> SRR191700     2  0.2913     0.7652 0.040 0.876 0.080 0.000 0.004
#> SRR191701     2  0.2913     0.7652 0.040 0.876 0.080 0.000 0.004
#> SRR191702     2  0.1785     0.8052 0.024 0.944 0.016 0.008 0.008
#> SRR191703     2  0.1785     0.8052 0.024 0.944 0.016 0.008 0.008
#> SRR191704     2  0.1785     0.8052 0.024 0.944 0.016 0.008 0.008
#> SRR191705     2  0.1785     0.8052 0.024 0.944 0.016 0.008 0.008
#> SRR191706     2  0.1884     0.8035 0.024 0.940 0.020 0.008 0.008
#> SRR191707     2  0.2913     0.7651 0.040 0.876 0.080 0.000 0.004
#> SRR191708     2  0.1785     0.8052 0.024 0.944 0.016 0.008 0.008
#> SRR191709     2  0.1785     0.8052 0.024 0.944 0.016 0.008 0.008
#> SRR191710     2  0.1785     0.8052 0.024 0.944 0.016 0.008 0.008
#> SRR191711     2  0.0902     0.8115 0.004 0.976 0.008 0.008 0.004
#> SRR191712     2  0.0902     0.8115 0.004 0.976 0.008 0.008 0.004
#> SRR191713     2  0.1488     0.8089 0.016 0.956 0.012 0.008 0.008
#> SRR191714     2  0.1362     0.8100 0.016 0.960 0.012 0.008 0.004
#> SRR191715     2  0.0902     0.8115 0.004 0.976 0.008 0.008 0.004
#> SRR191716     2  0.1892     0.8052 0.012 0.936 0.040 0.008 0.004
#> SRR191717     2  0.1812     0.8063 0.012 0.940 0.036 0.008 0.004
#> SRR191718     2  0.2444     0.7903 0.028 0.908 0.056 0.004 0.004
#> SRR537099     4  0.2061     0.6337 0.004 0.056 0.004 0.924 0.012
#> SRR537100     4  0.2061     0.6337 0.004 0.056 0.004 0.924 0.012
#> SRR537101     4  0.1686     0.6303 0.004 0.036 0.004 0.944 0.012
#> SRR537102     4  0.2312     0.6337 0.008 0.056 0.008 0.916 0.012
#> SRR537104     4  0.3896     0.5288 0.004 0.196 0.008 0.780 0.012
#> SRR537105     4  0.5361     0.5862 0.072 0.024 0.056 0.760 0.088
#> SRR537106     4  0.5361     0.5862 0.072 0.024 0.056 0.760 0.088
#> SRR537107     4  0.5361     0.5862 0.072 0.024 0.056 0.760 0.088
#> SRR537108     4  0.5361     0.5862 0.072 0.024 0.056 0.760 0.088
#> SRR537109     2  0.1243     0.8117 0.000 0.960 0.028 0.008 0.004
#> SRR537110     2  0.0775     0.8123 0.004 0.980 0.004 0.008 0.004
#> SRR537111     4  0.4108     0.5211 0.140 0.020 0.004 0.804 0.032
#> SRR537113     5  0.5071     0.8154 0.016 0.024 0.028 0.208 0.724
#> SRR537114     5  0.5071     0.8154 0.016 0.024 0.028 0.208 0.724
#> SRR537115     5  0.4874     0.8382 0.016 0.024 0.028 0.184 0.748
#> SRR537116     2  0.0740     0.8113 0.000 0.980 0.008 0.008 0.004
#> SRR537117     5  0.3765     0.8962 0.000 0.040 0.040 0.080 0.840
#> SRR537118     5  0.4046     0.8940 0.008 0.040 0.040 0.080 0.832
#> SRR537119     5  0.4046     0.8940 0.008 0.040 0.040 0.080 0.832
#> SRR537120     5  0.4046     0.8940 0.008 0.040 0.040 0.080 0.832
#> SRR537121     5  0.2707     0.9146 0.000 0.024 0.008 0.080 0.888
#> SRR537122     5  0.2707     0.9146 0.000 0.024 0.008 0.080 0.888
#> SRR537123     5  0.2707     0.9146 0.000 0.024 0.008 0.080 0.888
#> SRR537124     5  0.2930     0.9118 0.008 0.024 0.008 0.076 0.884
#> SRR537125     5  0.2930     0.9118 0.008 0.024 0.008 0.076 0.884
#> SRR537126     5  0.2930     0.9118 0.008 0.024 0.008 0.076 0.884
#> SRR537127     4  0.8219     0.2969 0.248 0.012 0.192 0.436 0.112
#> SRR537128     4  0.8195     0.2969 0.244 0.012 0.204 0.436 0.104
#> SRR537129     4  0.8225     0.2968 0.244 0.012 0.196 0.436 0.112
#> SRR537130     4  0.8219     0.2969 0.248 0.012 0.192 0.436 0.112
#> SRR537131     4  0.8195     0.2969 0.244 0.012 0.204 0.436 0.104
#> SRR537132     4  0.8195     0.2969 0.244 0.012 0.204 0.436 0.104
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.4127     0.4889 0.508 0.000 0.004 0.484 0.004 0.000
#> SRR191640     4  0.1456     0.7919 0.020 0.012 0.004 0.952 0.008 0.004
#> SRR191641     4  0.1036     0.7904 0.000 0.024 0.000 0.964 0.008 0.004
#> SRR191642     4  0.1241     0.7928 0.004 0.020 0.004 0.960 0.008 0.004
#> SRR191643     4  0.1116     0.7888 0.000 0.028 0.000 0.960 0.008 0.004
#> SRR191644     4  0.1863     0.7600 0.000 0.056 0.004 0.924 0.008 0.008
#> SRR191645     4  0.4637     0.7652 0.052 0.008 0.036 0.780 0.028 0.096
#> SRR191646     4  0.4637     0.7652 0.052 0.008 0.036 0.780 0.028 0.096
#> SRR191647     4  0.4637     0.7652 0.052 0.008 0.036 0.780 0.028 0.096
#> SRR191648     4  0.4637     0.7652 0.052 0.008 0.036 0.780 0.028 0.096
#> SRR191649     4  0.4637     0.7652 0.052 0.008 0.036 0.780 0.028 0.096
#> SRR191650     4  0.4513     0.5817 0.204 0.004 0.016 0.732 0.020 0.024
#> SRR191651     4  0.4836     0.2985 0.300 0.000 0.016 0.644 0.016 0.024
#> SRR191652     4  0.5102    -0.0981 0.384 0.000 0.016 0.560 0.016 0.024
#> SRR191653     4  0.2097     0.7509 0.000 0.064 0.008 0.912 0.008 0.008
#> SRR191654     4  0.2097     0.7509 0.000 0.064 0.008 0.912 0.008 0.008
#> SRR191655     4  0.1109     0.7915 0.000 0.016 0.004 0.964 0.012 0.004
#> SRR191656     1  0.3867     0.7193 0.784 0.000 0.000 0.152 0.020 0.044
#> SRR191657     1  0.5503     0.7853 0.596 0.000 0.112 0.272 0.000 0.020
#> SRR191658     1  0.5485     0.7841 0.600 0.000 0.112 0.268 0.000 0.020
#> SRR191659     1  0.5503     0.7853 0.596 0.000 0.112 0.272 0.000 0.020
#> SRR191660     1  0.5503     0.7853 0.596 0.000 0.112 0.272 0.000 0.020
#> SRR191661     1  0.5503     0.7853 0.596 0.000 0.112 0.272 0.000 0.020
#> SRR191662     1  0.5503     0.7853 0.596 0.000 0.112 0.272 0.000 0.020
#> SRR191663     1  0.5503     0.7853 0.596 0.000 0.112 0.272 0.000 0.020
#> SRR191664     1  0.5485     0.7848 0.600 0.000 0.112 0.268 0.000 0.020
#> SRR191665     1  0.4181     0.6606 0.616 0.000 0.004 0.368 0.004 0.008
#> SRR191666     1  0.5298     0.4837 0.476 0.000 0.044 0.456 0.004 0.020
#> SRR191667     1  0.5298     0.4837 0.476 0.000 0.044 0.456 0.004 0.020
#> SRR191668     1  0.3764     0.7278 0.784 0.000 0.000 0.160 0.012 0.044
#> SRR191669     1  0.3764     0.7278 0.784 0.000 0.000 0.160 0.012 0.044
#> SRR191670     1  0.3667     0.7288 0.788 0.000 0.000 0.160 0.008 0.044
#> SRR191671     1  0.3667     0.7288 0.788 0.000 0.000 0.160 0.008 0.044
#> SRR191672     1  0.4483     0.7073 0.748 0.000 0.008 0.160 0.020 0.064
#> SRR191673     1  0.4483     0.7073 0.748 0.000 0.008 0.160 0.020 0.064
#> SRR191674     6  0.5231     0.9376 0.000 0.216 0.004 0.000 0.156 0.624
#> SRR191675     6  0.5231     0.9376 0.000 0.216 0.004 0.000 0.156 0.624
#> SRR191677     6  0.5012     0.9243 0.000 0.236 0.000 0.000 0.132 0.632
#> SRR191678     6  0.5096     0.9374 0.000 0.216 0.000 0.000 0.156 0.628
#> SRR191679     6  0.3795     0.6926 0.000 0.364 0.004 0.000 0.000 0.632
#> SRR191680     6  0.4587     0.8377 0.000 0.296 0.000 0.000 0.064 0.640
#> SRR191681     6  0.5096     0.9374 0.000 0.216 0.000 0.000 0.156 0.628
#> SRR191682     2  0.6443     0.1602 0.048 0.528 0.080 0.008 0.016 0.320
#> SRR191683     2  0.6443     0.1602 0.048 0.528 0.080 0.008 0.016 0.320
#> SRR191684     2  0.6410     0.1950 0.044 0.544 0.088 0.008 0.016 0.300
#> SRR191685     2  0.6430     0.1602 0.044 0.528 0.084 0.008 0.016 0.320
#> SRR191686     2  0.6443     0.1602 0.048 0.528 0.080 0.008 0.016 0.320
#> SRR191687     2  0.6430     0.1602 0.044 0.528 0.084 0.008 0.016 0.320
#> SRR191688     2  0.2308     0.7723 0.008 0.904 0.028 0.004 0.000 0.056
#> SRR191689     2  0.2154     0.7748 0.004 0.908 0.020 0.000 0.004 0.064
#> SRR191690     2  0.2705     0.7697 0.008 0.884 0.032 0.004 0.004 0.068
#> SRR191691     2  0.4299     0.7153 0.028 0.788 0.104 0.000 0.020 0.060
#> SRR191692     6  0.5427     0.9356 0.000 0.216 0.012 0.000 0.156 0.616
#> SRR191693     6  0.5473     0.9319 0.000 0.224 0.012 0.000 0.156 0.608
#> SRR191694     2  0.5115    -0.3698 0.000 0.480 0.020 0.000 0.040 0.460
#> SRR191695     2  0.3413     0.7434 0.024 0.836 0.068 0.000 0.000 0.072
#> SRR191696     2  0.3413     0.7434 0.024 0.836 0.068 0.000 0.000 0.072
#> SRR191697     2  0.4517     0.7075 0.028 0.772 0.104 0.000 0.020 0.076
#> SRR191698     2  0.4517     0.7075 0.028 0.772 0.104 0.000 0.020 0.076
#> SRR191699     2  0.2094     0.7759 0.004 0.912 0.020 0.000 0.004 0.060
#> SRR191700     2  0.4517     0.7075 0.028 0.772 0.104 0.000 0.020 0.076
#> SRR191701     2  0.4517     0.7075 0.028 0.772 0.104 0.000 0.020 0.076
#> SRR191702     2  0.2345     0.7640 0.028 0.908 0.028 0.004 0.000 0.032
#> SRR191703     2  0.2345     0.7640 0.028 0.908 0.028 0.004 0.000 0.032
#> SRR191704     2  0.2345     0.7640 0.028 0.908 0.028 0.004 0.000 0.032
#> SRR191705     2  0.2345     0.7640 0.028 0.908 0.028 0.004 0.000 0.032
#> SRR191706     2  0.2274     0.7630 0.028 0.908 0.028 0.000 0.000 0.036
#> SRR191707     2  0.4133     0.7197 0.036 0.796 0.108 0.000 0.012 0.048
#> SRR191708     2  0.2345     0.7640 0.028 0.908 0.028 0.004 0.000 0.032
#> SRR191709     2  0.2345     0.7640 0.028 0.908 0.028 0.004 0.000 0.032
#> SRR191710     2  0.2345     0.7640 0.028 0.908 0.028 0.004 0.000 0.032
#> SRR191711     2  0.1007     0.7797 0.004 0.968 0.008 0.004 0.000 0.016
#> SRR191712     2  0.1007     0.7797 0.004 0.968 0.008 0.004 0.000 0.016
#> SRR191713     2  0.1490     0.7756 0.008 0.948 0.024 0.004 0.000 0.016
#> SRR191714     2  0.1490     0.7756 0.008 0.948 0.024 0.004 0.000 0.016
#> SRR191715     2  0.1007     0.7797 0.004 0.968 0.008 0.004 0.000 0.016
#> SRR191716     2  0.2369     0.7717 0.008 0.900 0.028 0.004 0.000 0.060
#> SRR191717     2  0.2308     0.7723 0.008 0.904 0.028 0.004 0.000 0.056
#> SRR191718     2  0.3356     0.7453 0.024 0.840 0.064 0.000 0.000 0.072
#> SRR537099     4  0.1405     0.7892 0.004 0.028 0.004 0.952 0.008 0.004
#> SRR537100     4  0.1405     0.7892 0.004 0.028 0.004 0.952 0.008 0.004
#> SRR537101     4  0.1241     0.7899 0.004 0.020 0.004 0.960 0.008 0.004
#> SRR537102     4  0.1709     0.7877 0.004 0.032 0.008 0.940 0.008 0.008
#> SRR537104     4  0.2623     0.7185 0.004 0.092 0.008 0.880 0.008 0.008
#> SRR537105     4  0.5331     0.7443 0.056 0.016 0.040 0.740 0.048 0.100
#> SRR537106     4  0.5331     0.7443 0.056 0.016 0.040 0.740 0.048 0.100
#> SRR537107     4  0.5331     0.7443 0.056 0.016 0.040 0.740 0.048 0.100
#> SRR537108     4  0.5331     0.7443 0.056 0.016 0.040 0.740 0.048 0.100
#> SRR537109     2  0.1921     0.7780 0.004 0.924 0.024 0.004 0.000 0.044
#> SRR537110     2  0.0798     0.7800 0.004 0.976 0.012 0.004 0.000 0.004
#> SRR537111     4  0.4425     0.6030 0.192 0.004 0.016 0.744 0.020 0.024
#> SRR537113     5  0.4221     0.7933 0.004 0.012 0.020 0.152 0.776 0.036
#> SRR537114     5  0.4221     0.7933 0.004 0.012 0.020 0.152 0.776 0.036
#> SRR537115     5  0.3535     0.8628 0.004 0.012 0.020 0.088 0.840 0.036
#> SRR537116     2  0.0767     0.7797 0.000 0.976 0.008 0.004 0.000 0.012
#> SRR537117     5  0.3427     0.8918 0.004 0.024 0.020 0.052 0.856 0.044
#> SRR537118     5  0.3567     0.8913 0.004 0.028 0.020 0.056 0.848 0.044
#> SRR537119     5  0.3567     0.8913 0.004 0.028 0.020 0.056 0.848 0.044
#> SRR537120     5  0.3567     0.8913 0.004 0.028 0.020 0.056 0.848 0.044
#> SRR537121     5  0.1979     0.9124 0.008 0.008 0.004 0.036 0.928 0.016
#> SRR537122     5  0.1979     0.9124 0.008 0.008 0.004 0.036 0.928 0.016
#> SRR537123     5  0.1979     0.9124 0.008 0.008 0.004 0.036 0.928 0.016
#> SRR537124     5  0.1307     0.9094 0.000 0.008 0.000 0.032 0.952 0.008
#> SRR537125     5  0.1382     0.9097 0.000 0.008 0.000 0.036 0.948 0.008
#> SRR537126     5  0.1382     0.9097 0.000 0.008 0.000 0.036 0.948 0.008
#> SRR537127     3  0.5961     0.9829 0.084 0.008 0.592 0.276 0.024 0.016
#> SRR537128     3  0.5403     0.9819 0.068 0.008 0.628 0.272 0.020 0.004
#> SRR537129     3  0.5961     0.9829 0.084 0.008 0.592 0.276 0.024 0.016
#> SRR537130     3  0.5961     0.9829 0.084 0.008 0.592 0.276 0.024 0.016
#> SRR537131     3  0.5352     0.9825 0.064 0.008 0.632 0.272 0.020 0.004
#> SRR537132     3  0.5403     0.9819 0.068 0.008 0.628 0.272 0.020 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.945           0.982       0.990         0.5018 0.499   0.499
#> 3 3 0.801           0.913       0.946         0.2812 0.863   0.725
#> 4 4 0.848           0.885       0.931         0.1455 0.895   0.708
#> 5 5 0.840           0.849       0.867         0.0628 0.935   0.756
#> 6 6 0.822           0.835       0.857         0.0432 0.971   0.861
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1   0.000      1.000 1.000 0.000
#> SRR191640     1   0.000      1.000 1.000 0.000
#> SRR191641     1   0.000      1.000 1.000 0.000
#> SRR191642     1   0.000      1.000 1.000 0.000
#> SRR191643     1   0.000      1.000 1.000 0.000
#> SRR191644     1   0.000      1.000 1.000 0.000
#> SRR191645     1   0.000      1.000 1.000 0.000
#> SRR191646     1   0.000      1.000 1.000 0.000
#> SRR191647     1   0.000      1.000 1.000 0.000
#> SRR191648     1   0.000      1.000 1.000 0.000
#> SRR191649     1   0.000      1.000 1.000 0.000
#> SRR191650     1   0.000      1.000 1.000 0.000
#> SRR191651     1   0.000      1.000 1.000 0.000
#> SRR191652     1   0.000      1.000 1.000 0.000
#> SRR191653     1   0.000      1.000 1.000 0.000
#> SRR191654     1   0.000      1.000 1.000 0.000
#> SRR191655     1   0.000      1.000 1.000 0.000
#> SRR191656     1   0.000      1.000 1.000 0.000
#> SRR191657     1   0.000      1.000 1.000 0.000
#> SRR191658     1   0.000      1.000 1.000 0.000
#> SRR191659     1   0.000      1.000 1.000 0.000
#> SRR191660     1   0.000      1.000 1.000 0.000
#> SRR191661     1   0.000      1.000 1.000 0.000
#> SRR191662     1   0.000      1.000 1.000 0.000
#> SRR191663     1   0.000      1.000 1.000 0.000
#> SRR191664     1   0.000      1.000 1.000 0.000
#> SRR191665     1   0.000      1.000 1.000 0.000
#> SRR191666     1   0.000      1.000 1.000 0.000
#> SRR191667     1   0.000      1.000 1.000 0.000
#> SRR191668     1   0.000      1.000 1.000 0.000
#> SRR191669     1   0.000      1.000 1.000 0.000
#> SRR191670     1   0.000      1.000 1.000 0.000
#> SRR191671     1   0.000      1.000 1.000 0.000
#> SRR191672     1   0.000      1.000 1.000 0.000
#> SRR191673     1   0.000      1.000 1.000 0.000
#> SRR191674     2   0.000      0.982 0.000 1.000
#> SRR191675     2   0.000      0.982 0.000 1.000
#> SRR191677     2   0.000      0.982 0.000 1.000
#> SRR191678     2   0.000      0.982 0.000 1.000
#> SRR191679     2   0.000      0.982 0.000 1.000
#> SRR191680     2   0.000      0.982 0.000 1.000
#> SRR191681     2   0.000      0.982 0.000 1.000
#> SRR191682     2   0.000      0.982 0.000 1.000
#> SRR191683     2   0.000      0.982 0.000 1.000
#> SRR191684     2   0.000      0.982 0.000 1.000
#> SRR191685     2   0.000      0.982 0.000 1.000
#> SRR191686     2   0.000      0.982 0.000 1.000
#> SRR191687     2   0.000      0.982 0.000 1.000
#> SRR191688     2   0.000      0.982 0.000 1.000
#> SRR191689     2   0.000      0.982 0.000 1.000
#> SRR191690     2   0.000      0.982 0.000 1.000
#> SRR191691     2   0.000      0.982 0.000 1.000
#> SRR191692     2   0.000      0.982 0.000 1.000
#> SRR191693     2   0.000      0.982 0.000 1.000
#> SRR191694     2   0.000      0.982 0.000 1.000
#> SRR191695     2   0.000      0.982 0.000 1.000
#> SRR191696     2   0.000      0.982 0.000 1.000
#> SRR191697     2   0.000      0.982 0.000 1.000
#> SRR191698     2   0.000      0.982 0.000 1.000
#> SRR191699     2   0.000      0.982 0.000 1.000
#> SRR191700     2   0.000      0.982 0.000 1.000
#> SRR191701     2   0.000      0.982 0.000 1.000
#> SRR191702     2   0.000      0.982 0.000 1.000
#> SRR191703     2   0.000      0.982 0.000 1.000
#> SRR191704     2   0.000      0.982 0.000 1.000
#> SRR191705     2   0.000      0.982 0.000 1.000
#> SRR191706     2   0.000      0.982 0.000 1.000
#> SRR191707     2   0.000      0.982 0.000 1.000
#> SRR191708     2   0.000      0.982 0.000 1.000
#> SRR191709     2   0.000      0.982 0.000 1.000
#> SRR191710     2   0.000      0.982 0.000 1.000
#> SRR191711     2   0.000      0.982 0.000 1.000
#> SRR191712     2   0.000      0.982 0.000 1.000
#> SRR191713     2   0.000      0.982 0.000 1.000
#> SRR191714     2   0.000      0.982 0.000 1.000
#> SRR191715     2   0.000      0.982 0.000 1.000
#> SRR191716     2   0.000      0.982 0.000 1.000
#> SRR191717     2   0.000      0.982 0.000 1.000
#> SRR191718     2   0.000      0.982 0.000 1.000
#> SRR537099     1   0.000      1.000 1.000 0.000
#> SRR537100     1   0.000      1.000 1.000 0.000
#> SRR537101     1   0.000      1.000 1.000 0.000
#> SRR537102     1   0.000      1.000 1.000 0.000
#> SRR537104     1   0.000      1.000 1.000 0.000
#> SRR537105     1   0.000      1.000 1.000 0.000
#> SRR537106     1   0.000      1.000 1.000 0.000
#> SRR537107     1   0.000      1.000 1.000 0.000
#> SRR537108     1   0.000      1.000 1.000 0.000
#> SRR537109     2   0.000      0.982 0.000 1.000
#> SRR537110     2   0.000      0.982 0.000 1.000
#> SRR537111     1   0.000      1.000 1.000 0.000
#> SRR537113     2   0.529      0.881 0.120 0.880
#> SRR537114     2   0.653      0.822 0.168 0.832
#> SRR537115     2   0.518      0.885 0.116 0.884
#> SRR537116     2   0.000      0.982 0.000 1.000
#> SRR537117     2   0.000      0.982 0.000 1.000
#> SRR537118     2   0.000      0.982 0.000 1.000
#> SRR537119     2   0.000      0.982 0.000 1.000
#> SRR537120     2   0.000      0.982 0.000 1.000
#> SRR537121     2   0.529      0.881 0.120 0.880
#> SRR537122     2   0.529      0.881 0.120 0.880
#> SRR537123     2   0.529      0.881 0.120 0.880
#> SRR537124     2   0.416      0.914 0.084 0.916
#> SRR537125     2   0.518      0.885 0.116 0.884
#> SRR537126     2   0.518      0.885 0.116 0.884
#> SRR537127     1   0.000      1.000 1.000 0.000
#> SRR537128     1   0.000      1.000 1.000 0.000
#> SRR537129     1   0.000      1.000 1.000 0.000
#> SRR537130     1   0.000      1.000 1.000 0.000
#> SRR537131     1   0.000      1.000 1.000 0.000
#> SRR537132     1   0.000      1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191640     1  0.0747      0.934 0.984 0.000 0.016
#> SRR191641     1  0.0747      0.934 0.984 0.000 0.016
#> SRR191642     1  0.0892      0.934 0.980 0.000 0.020
#> SRR191643     1  0.0892      0.934 0.980 0.000 0.020
#> SRR191644     1  0.1491      0.930 0.968 0.016 0.016
#> SRR191645     1  0.2878      0.904 0.904 0.000 0.096
#> SRR191646     1  0.2878      0.904 0.904 0.000 0.096
#> SRR191647     1  0.2878      0.904 0.904 0.000 0.096
#> SRR191648     1  0.2878      0.904 0.904 0.000 0.096
#> SRR191649     1  0.2878      0.904 0.904 0.000 0.096
#> SRR191650     1  0.1031      0.933 0.976 0.000 0.024
#> SRR191651     1  0.1031      0.933 0.976 0.000 0.024
#> SRR191652     1  0.1031      0.933 0.976 0.000 0.024
#> SRR191653     1  0.2663      0.921 0.932 0.024 0.044
#> SRR191654     1  0.2663      0.921 0.932 0.024 0.044
#> SRR191655     1  0.0892      0.934 0.980 0.000 0.020
#> SRR191656     1  0.4654      0.765 0.792 0.000 0.208
#> SRR191657     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191658     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191659     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191660     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191661     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191662     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191663     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191664     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191665     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191666     1  0.0592      0.934 0.988 0.000 0.012
#> SRR191667     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191668     1  0.3816      0.836 0.852 0.000 0.148
#> SRR191669     1  0.3816      0.836 0.852 0.000 0.148
#> SRR191670     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191671     1  0.0237      0.934 0.996 0.000 0.004
#> SRR191672     1  0.4605      0.770 0.796 0.000 0.204
#> SRR191673     1  0.4605      0.770 0.796 0.000 0.204
#> SRR191674     3  0.4796      0.793 0.000 0.220 0.780
#> SRR191675     3  0.4796      0.793 0.000 0.220 0.780
#> SRR191677     3  0.5948      0.579 0.000 0.360 0.640
#> SRR191678     3  0.4796      0.793 0.000 0.220 0.780
#> SRR191679     2  0.2261      0.918 0.000 0.932 0.068
#> SRR191680     3  0.6126      0.492 0.000 0.400 0.600
#> SRR191681     3  0.4796      0.793 0.000 0.220 0.780
#> SRR191682     2  0.1411      0.961 0.000 0.964 0.036
#> SRR191683     2  0.1411      0.961 0.000 0.964 0.036
#> SRR191684     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191685     2  0.1163      0.968 0.000 0.972 0.028
#> SRR191686     2  0.1411      0.961 0.000 0.964 0.036
#> SRR191687     2  0.1163      0.968 0.000 0.972 0.028
#> SRR191688     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191689     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191690     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191691     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191692     3  0.4796      0.793 0.000 0.220 0.780
#> SRR191693     3  0.4796      0.793 0.000 0.220 0.780
#> SRR191694     3  0.5254      0.743 0.000 0.264 0.736
#> SRR191695     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191696     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191697     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191698     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191699     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191700     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191701     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191702     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191703     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191704     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191705     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191706     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191707     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191708     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191709     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191710     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191711     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191712     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191713     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191714     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191715     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191716     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191717     2  0.0000      0.993 0.000 1.000 0.000
#> SRR191718     2  0.0000      0.993 0.000 1.000 0.000
#> SRR537099     1  0.0892      0.934 0.980 0.000 0.020
#> SRR537100     1  0.0892      0.934 0.980 0.000 0.020
#> SRR537101     1  0.0892      0.934 0.980 0.000 0.020
#> SRR537102     1  0.0892      0.934 0.980 0.000 0.020
#> SRR537104     1  0.6717      0.469 0.628 0.352 0.020
#> SRR537105     1  0.3412      0.886 0.876 0.000 0.124
#> SRR537106     1  0.3412      0.886 0.876 0.000 0.124
#> SRR537107     1  0.3412      0.886 0.876 0.000 0.124
#> SRR537108     1  0.3412      0.886 0.876 0.000 0.124
#> SRR537109     2  0.0000      0.993 0.000 1.000 0.000
#> SRR537110     2  0.0000      0.993 0.000 1.000 0.000
#> SRR537111     1  0.1529      0.930 0.960 0.000 0.040
#> SRR537113     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537114     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537115     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537116     2  0.0000      0.993 0.000 1.000 0.000
#> SRR537117     3  0.0237      0.879 0.000 0.004 0.996
#> SRR537118     3  0.0237      0.879 0.000 0.004 0.996
#> SRR537119     3  0.0237      0.879 0.000 0.004 0.996
#> SRR537120     3  0.0237      0.879 0.000 0.004 0.996
#> SRR537121     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537122     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537123     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537124     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537125     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537126     3  0.0000      0.879 0.000 0.000 1.000
#> SRR537127     1  0.3038      0.899 0.896 0.000 0.104
#> SRR537128     1  0.3038      0.899 0.896 0.000 0.104
#> SRR537129     1  0.3038      0.899 0.896 0.000 0.104
#> SRR537130     1  0.3038      0.899 0.896 0.000 0.104
#> SRR537131     1  0.3038      0.899 0.896 0.000 0.104
#> SRR537132     1  0.3038      0.899 0.896 0.000 0.104
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191640     4  0.1022      0.787 0.032 0.000 0.000 0.968
#> SRR191641     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR191642     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR191643     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR191644     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR191645     4  0.5955      0.590 0.328 0.000 0.056 0.616
#> SRR191646     4  0.5955      0.590 0.328 0.000 0.056 0.616
#> SRR191647     4  0.5936      0.596 0.324 0.000 0.056 0.620
#> SRR191648     4  0.5936      0.596 0.324 0.000 0.056 0.620
#> SRR191649     4  0.5955      0.590 0.328 0.000 0.056 0.616
#> SRR191650     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191651     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191652     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191653     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR191654     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR191655     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR191656     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191658     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191659     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191660     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191661     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191662     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191663     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191664     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191665     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191666     1  0.0707      0.974 0.980 0.000 0.000 0.020
#> SRR191667     1  0.0707      0.974 0.980 0.000 0.000 0.020
#> SRR191668     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191669     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191670     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191673     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR191674     3  0.3810      0.839 0.000 0.188 0.804 0.008
#> SRR191675     3  0.3810      0.839 0.000 0.188 0.804 0.008
#> SRR191677     3  0.3810      0.839 0.000 0.188 0.804 0.008
#> SRR191678     3  0.3810      0.839 0.000 0.188 0.804 0.008
#> SRR191679     2  0.2342      0.901 0.000 0.912 0.080 0.008
#> SRR191680     3  0.3972      0.822 0.000 0.204 0.788 0.008
#> SRR191681     3  0.3810      0.839 0.000 0.188 0.804 0.008
#> SRR191682     2  0.2412      0.901 0.000 0.908 0.084 0.008
#> SRR191683     2  0.2412      0.901 0.000 0.908 0.084 0.008
#> SRR191684     2  0.0336      0.979 0.000 0.992 0.000 0.008
#> SRR191685     2  0.1890      0.930 0.000 0.936 0.056 0.008
#> SRR191686     2  0.2412      0.901 0.000 0.908 0.084 0.008
#> SRR191687     2  0.2342      0.906 0.000 0.912 0.080 0.008
#> SRR191688     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191689     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191690     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191691     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191692     3  0.3810      0.839 0.000 0.188 0.804 0.008
#> SRR191693     3  0.3591      0.845 0.000 0.168 0.824 0.008
#> SRR191694     3  0.4452      0.744 0.000 0.260 0.732 0.008
#> SRR191695     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191696     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191697     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191698     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191699     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191700     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191701     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191702     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191703     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191704     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191705     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191706     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191707     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191708     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191709     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191710     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191711     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191712     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191713     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191714     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191715     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191716     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191717     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR191718     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR537099     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR537100     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR537101     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR537102     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR537104     4  0.0336      0.793 0.008 0.000 0.000 0.992
#> SRR537105     4  0.6141      0.600 0.312 0.000 0.072 0.616
#> SRR537106     4  0.6141      0.600 0.312 0.000 0.072 0.616
#> SRR537107     4  0.6141      0.600 0.312 0.000 0.072 0.616
#> SRR537108     4  0.6141      0.600 0.312 0.000 0.072 0.616
#> SRR537109     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR537110     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR537111     1  0.0336      0.988 0.992 0.000 0.000 0.008
#> SRR537113     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537114     3  0.0188      0.885 0.000 0.000 0.996 0.004
#> SRR537115     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537116     2  0.0000      0.984 0.000 1.000 0.000 0.000
#> SRR537117     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537118     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537119     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537120     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537121     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537122     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537123     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537124     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537125     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537126     3  0.0000      0.888 0.000 0.000 1.000 0.000
#> SRR537127     4  0.5198      0.621 0.252 0.000 0.040 0.708
#> SRR537128     4  0.5198      0.621 0.252 0.000 0.040 0.708
#> SRR537129     4  0.5198      0.621 0.252 0.000 0.040 0.708
#> SRR537130     4  0.5198      0.621 0.252 0.000 0.040 0.708
#> SRR537131     4  0.5198      0.621 0.252 0.000 0.040 0.708
#> SRR537132     4  0.5198      0.621 0.252 0.000 0.040 0.708
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191640     4  0.0771      0.745 0.000 0.000 0.004 0.976 0.020
#> SRR191641     4  0.0566      0.747 0.000 0.000 0.004 0.984 0.012
#> SRR191642     4  0.0671      0.746 0.000 0.000 0.004 0.980 0.016
#> SRR191643     4  0.0290      0.747 0.000 0.000 0.000 0.992 0.008
#> SRR191644     4  0.2361      0.721 0.000 0.000 0.012 0.892 0.096
#> SRR191645     4  0.6950      0.593 0.192 0.000 0.044 0.544 0.220
#> SRR191646     4  0.6950      0.593 0.192 0.000 0.044 0.544 0.220
#> SRR191647     4  0.6869      0.605 0.180 0.000 0.044 0.556 0.220
#> SRR191648     4  0.6869      0.605 0.180 0.000 0.044 0.556 0.220
#> SRR191649     4  0.6950      0.593 0.192 0.000 0.044 0.544 0.220
#> SRR191650     1  0.1280      0.961 0.960 0.000 0.008 0.008 0.024
#> SRR191651     1  0.1059      0.966 0.968 0.000 0.008 0.004 0.020
#> SRR191652     1  0.0960      0.968 0.972 0.000 0.008 0.004 0.016
#> SRR191653     4  0.2017      0.728 0.000 0.000 0.008 0.912 0.080
#> SRR191654     4  0.2017      0.728 0.000 0.000 0.008 0.912 0.080
#> SRR191655     4  0.0404      0.747 0.000 0.000 0.000 0.988 0.012
#> SRR191656     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191657     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191658     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191659     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191660     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191661     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191662     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191663     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191664     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191665     1  0.0162      0.980 0.996 0.000 0.000 0.000 0.004
#> SRR191666     1  0.2753      0.876 0.876 0.000 0.012 0.008 0.104
#> SRR191667     1  0.2864      0.871 0.872 0.000 0.012 0.012 0.104
#> SRR191668     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191669     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191670     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191671     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191672     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191673     1  0.0000      0.982 1.000 0.000 0.000 0.000 0.000
#> SRR191674     3  0.2278      0.691 0.000 0.060 0.908 0.000 0.032
#> SRR191675     3  0.2278      0.691 0.000 0.060 0.908 0.000 0.032
#> SRR191677     3  0.2278      0.691 0.000 0.060 0.908 0.000 0.032
#> SRR191678     3  0.2278      0.691 0.000 0.060 0.908 0.000 0.032
#> SRR191679     3  0.4151      0.663 0.000 0.344 0.652 0.000 0.004
#> SRR191680     3  0.2824      0.707 0.000 0.096 0.872 0.000 0.032
#> SRR191681     3  0.2278      0.691 0.000 0.060 0.908 0.000 0.032
#> SRR191682     3  0.3983      0.685 0.000 0.340 0.660 0.000 0.000
#> SRR191683     3  0.3983      0.685 0.000 0.340 0.660 0.000 0.000
#> SRR191684     3  0.4161      0.589 0.000 0.392 0.608 0.000 0.000
#> SRR191685     3  0.4060      0.654 0.000 0.360 0.640 0.000 0.000
#> SRR191686     3  0.3983      0.685 0.000 0.340 0.660 0.000 0.000
#> SRR191687     3  0.3999      0.680 0.000 0.344 0.656 0.000 0.000
#> SRR191688     2  0.0566      0.977 0.000 0.984 0.012 0.000 0.004
#> SRR191689     2  0.2286      0.861 0.000 0.888 0.108 0.000 0.004
#> SRR191690     2  0.0566      0.977 0.000 0.984 0.012 0.000 0.004
#> SRR191691     2  0.0794      0.972 0.000 0.972 0.028 0.000 0.000
#> SRR191692     3  0.2278      0.691 0.000 0.060 0.908 0.000 0.032
#> SRR191693     3  0.2300      0.673 0.000 0.052 0.908 0.000 0.040
#> SRR191694     3  0.2233      0.705 0.000 0.080 0.904 0.000 0.016
#> SRR191695     2  0.1124      0.966 0.000 0.960 0.036 0.000 0.004
#> SRR191696     2  0.1124      0.966 0.000 0.960 0.036 0.000 0.004
#> SRR191697     2  0.0794      0.972 0.000 0.972 0.028 0.000 0.000
#> SRR191698     2  0.0794      0.972 0.000 0.972 0.028 0.000 0.000
#> SRR191699     2  0.0451      0.979 0.000 0.988 0.008 0.000 0.004
#> SRR191700     2  0.0794      0.972 0.000 0.972 0.028 0.000 0.000
#> SRR191701     2  0.0794      0.972 0.000 0.972 0.028 0.000 0.000
#> SRR191702     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191703     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191704     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191705     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191706     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191707     2  0.0510      0.977 0.000 0.984 0.016 0.000 0.000
#> SRR191708     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191709     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191710     2  0.0510      0.976 0.000 0.984 0.016 0.000 0.000
#> SRR191711     2  0.0162      0.979 0.000 0.996 0.000 0.000 0.004
#> SRR191712     2  0.0162      0.979 0.000 0.996 0.000 0.000 0.004
#> SRR191713     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> SRR191714     2  0.0000      0.979 0.000 1.000 0.000 0.000 0.000
#> SRR191715     2  0.0162      0.979 0.000 0.996 0.000 0.000 0.004
#> SRR191716     2  0.0451      0.977 0.000 0.988 0.008 0.000 0.004
#> SRR191717     2  0.0451      0.978 0.000 0.988 0.008 0.000 0.004
#> SRR191718     2  0.0671      0.978 0.000 0.980 0.016 0.000 0.004
#> SRR537099     4  0.0290      0.748 0.000 0.000 0.000 0.992 0.008
#> SRR537100     4  0.0290      0.748 0.000 0.000 0.000 0.992 0.008
#> SRR537101     4  0.0162      0.748 0.000 0.000 0.000 0.996 0.004
#> SRR537102     4  0.0671      0.746 0.000 0.000 0.004 0.980 0.016
#> SRR537104     4  0.0162      0.747 0.000 0.000 0.000 0.996 0.004
#> SRR537105     4  0.6805      0.587 0.136 0.000 0.044 0.544 0.276
#> SRR537106     4  0.6805      0.587 0.136 0.000 0.044 0.544 0.276
#> SRR537107     4  0.6805      0.587 0.136 0.000 0.044 0.544 0.276
#> SRR537108     4  0.6805      0.587 0.136 0.000 0.044 0.544 0.276
#> SRR537109     2  0.0162      0.979 0.000 0.996 0.000 0.000 0.004
#> SRR537110     2  0.0162      0.979 0.000 0.996 0.000 0.000 0.004
#> SRR537111     1  0.1492      0.952 0.948 0.000 0.008 0.004 0.040
#> SRR537113     5  0.3684      0.955 0.000 0.000 0.280 0.000 0.720
#> SRR537114     5  0.3766      0.942 0.000 0.000 0.268 0.004 0.728
#> SRR537115     5  0.3774      0.968 0.000 0.000 0.296 0.000 0.704
#> SRR537116     2  0.0162      0.979 0.000 0.996 0.000 0.000 0.004
#> SRR537117     5  0.3837      0.973 0.000 0.000 0.308 0.000 0.692
#> SRR537118     5  0.3837      0.973 0.000 0.000 0.308 0.000 0.692
#> SRR537119     5  0.3837      0.973 0.000 0.000 0.308 0.000 0.692
#> SRR537120     5  0.3837      0.973 0.000 0.000 0.308 0.000 0.692
#> SRR537121     5  0.3837      0.977 0.000 0.000 0.308 0.000 0.692
#> SRR537122     5  0.3837      0.977 0.000 0.000 0.308 0.000 0.692
#> SRR537123     5  0.3837      0.977 0.000 0.000 0.308 0.000 0.692
#> SRR537124     5  0.3857      0.975 0.000 0.000 0.312 0.000 0.688
#> SRR537125     5  0.3857      0.975 0.000 0.000 0.312 0.000 0.688
#> SRR537126     5  0.3857      0.975 0.000 0.000 0.312 0.000 0.688
#> SRR537127     4  0.6101      0.553 0.120 0.000 0.016 0.596 0.268
#> SRR537128     4  0.6101      0.553 0.120 0.000 0.016 0.596 0.268
#> SRR537129     4  0.6101      0.553 0.120 0.000 0.016 0.596 0.268
#> SRR537130     4  0.6101      0.553 0.120 0.000 0.016 0.596 0.268
#> SRR537131     4  0.6101      0.553 0.120 0.000 0.016 0.596 0.268
#> SRR537132     4  0.6101      0.553 0.120 0.000 0.016 0.596 0.268
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.0547      0.924 0.980 0.000 0.020 0.000 0.000 0.000
#> SRR191640     4  0.4097     -0.518 0.008 0.000 0.492 0.500 0.000 0.000
#> SRR191641     3  0.3672      0.629 0.000 0.000 0.632 0.368 0.000 0.000
#> SRR191642     3  0.3860      0.525 0.000 0.000 0.528 0.472 0.000 0.000
#> SRR191643     3  0.3756      0.614 0.000 0.000 0.600 0.400 0.000 0.000
#> SRR191644     3  0.3349      0.640 0.000 0.000 0.748 0.244 0.000 0.008
#> SRR191645     4  0.2030      0.897 0.064 0.000 0.000 0.908 0.028 0.000
#> SRR191646     4  0.2030      0.897 0.064 0.000 0.000 0.908 0.028 0.000
#> SRR191647     4  0.2030      0.897 0.064 0.000 0.000 0.908 0.028 0.000
#> SRR191648     4  0.2030      0.897 0.064 0.000 0.000 0.908 0.028 0.000
#> SRR191649     4  0.2030      0.897 0.064 0.000 0.000 0.908 0.028 0.000
#> SRR191650     1  0.3387      0.849 0.852 0.000 0.032 0.048 0.056 0.012
#> SRR191651     1  0.3179      0.858 0.864 0.000 0.028 0.040 0.056 0.012
#> SRR191652     1  0.2931      0.866 0.876 0.000 0.024 0.036 0.056 0.008
#> SRR191653     3  0.3575      0.644 0.000 0.000 0.708 0.284 0.000 0.008
#> SRR191654     3  0.3575      0.644 0.000 0.000 0.708 0.284 0.000 0.008
#> SRR191655     3  0.3975      0.617 0.000 0.000 0.600 0.392 0.000 0.008
#> SRR191656     1  0.0260      0.924 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191657     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191658     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191659     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191660     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191661     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191662     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191663     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191664     1  0.1464      0.922 0.944 0.000 0.036 0.016 0.000 0.004
#> SRR191665     1  0.0891      0.919 0.968 0.000 0.008 0.024 0.000 0.000
#> SRR191666     1  0.4800      0.643 0.652 0.000 0.272 0.004 0.004 0.068
#> SRR191667     1  0.4800      0.643 0.652 0.000 0.272 0.004 0.004 0.068
#> SRR191668     1  0.0260      0.924 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191669     1  0.0260      0.924 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191670     1  0.0260      0.924 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191671     1  0.0260      0.924 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191672     1  0.0260      0.924 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191673     1  0.0260      0.924 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191674     6  0.2896      0.869 0.000 0.016 0.000 0.000 0.160 0.824
#> SRR191675     6  0.2896      0.869 0.000 0.016 0.000 0.000 0.160 0.824
#> SRR191677     6  0.2896      0.869 0.000 0.016 0.000 0.000 0.160 0.824
#> SRR191678     6  0.2896      0.869 0.000 0.016 0.000 0.000 0.160 0.824
#> SRR191679     6  0.2118      0.848 0.000 0.104 0.000 0.000 0.008 0.888
#> SRR191680     6  0.2748      0.874 0.000 0.024 0.000 0.000 0.128 0.848
#> SRR191681     6  0.2896      0.869 0.000 0.016 0.000 0.000 0.160 0.824
#> SRR191682     6  0.2940      0.848 0.000 0.108 0.012 0.020 0.004 0.856
#> SRR191683     6  0.2940      0.848 0.000 0.108 0.012 0.020 0.004 0.856
#> SRR191684     6  0.2976      0.835 0.000 0.124 0.012 0.020 0.000 0.844
#> SRR191685     6  0.2940      0.848 0.000 0.108 0.012 0.020 0.004 0.856
#> SRR191686     6  0.2940      0.848 0.000 0.108 0.012 0.020 0.004 0.856
#> SRR191687     6  0.2940      0.848 0.000 0.108 0.012 0.020 0.004 0.856
#> SRR191688     2  0.1313      0.913 0.000 0.952 0.028 0.004 0.000 0.016
#> SRR191689     2  0.2738      0.806 0.000 0.820 0.000 0.004 0.000 0.176
#> SRR191690     2  0.0951      0.916 0.000 0.968 0.020 0.004 0.000 0.008
#> SRR191691     2  0.1957      0.912 0.000 0.920 0.048 0.024 0.000 0.008
#> SRR191692     6  0.2896      0.869 0.000 0.016 0.000 0.000 0.160 0.824
#> SRR191693     6  0.2841      0.863 0.000 0.012 0.000 0.000 0.164 0.824
#> SRR191694     6  0.2709      0.872 0.000 0.020 0.000 0.000 0.132 0.848
#> SRR191695     2  0.1693      0.907 0.000 0.936 0.032 0.012 0.000 0.020
#> SRR191696     2  0.1693      0.907 0.000 0.936 0.032 0.012 0.000 0.020
#> SRR191697     2  0.2058      0.911 0.000 0.916 0.048 0.024 0.000 0.012
#> SRR191698     2  0.1957      0.912 0.000 0.920 0.048 0.024 0.000 0.008
#> SRR191699     2  0.1010      0.920 0.000 0.960 0.000 0.004 0.000 0.036
#> SRR191700     2  0.1957      0.910 0.000 0.920 0.048 0.024 0.000 0.008
#> SRR191701     2  0.1957      0.912 0.000 0.920 0.048 0.024 0.000 0.008
#> SRR191702     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191703     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191704     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191705     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191706     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191707     2  0.2000      0.912 0.000 0.916 0.048 0.032 0.000 0.004
#> SRR191708     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191709     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191710     2  0.3470      0.893 0.000 0.836 0.052 0.040 0.000 0.072
#> SRR191711     2  0.1908      0.917 0.000 0.916 0.028 0.000 0.000 0.056
#> SRR191712     2  0.1845      0.917 0.000 0.920 0.028 0.000 0.000 0.052
#> SRR191713     2  0.2101      0.917 0.000 0.912 0.028 0.008 0.000 0.052
#> SRR191714     2  0.2101      0.917 0.000 0.912 0.028 0.008 0.000 0.052
#> SRR191715     2  0.1845      0.917 0.000 0.920 0.028 0.000 0.000 0.052
#> SRR191716     2  0.1296      0.912 0.000 0.952 0.032 0.004 0.000 0.012
#> SRR191717     2  0.1296      0.912 0.000 0.952 0.032 0.004 0.000 0.012
#> SRR191718     2  0.1605      0.908 0.000 0.940 0.032 0.012 0.000 0.016
#> SRR537099     3  0.3828      0.581 0.000 0.000 0.560 0.440 0.000 0.000
#> SRR537100     3  0.3828      0.581 0.000 0.000 0.560 0.440 0.000 0.000
#> SRR537101     3  0.3828      0.581 0.000 0.000 0.560 0.440 0.000 0.000
#> SRR537102     3  0.3860      0.525 0.000 0.000 0.528 0.472 0.000 0.000
#> SRR537104     3  0.3955      0.583 0.000 0.000 0.560 0.436 0.000 0.004
#> SRR537105     4  0.2070      0.894 0.048 0.000 0.000 0.908 0.044 0.000
#> SRR537106     4  0.2070      0.894 0.048 0.000 0.000 0.908 0.044 0.000
#> SRR537107     4  0.2070      0.894 0.048 0.000 0.000 0.908 0.044 0.000
#> SRR537108     4  0.2070      0.894 0.048 0.000 0.000 0.908 0.044 0.000
#> SRR537109     2  0.1036      0.916 0.000 0.964 0.024 0.004 0.000 0.008
#> SRR537110     2  0.1845      0.917 0.000 0.920 0.028 0.000 0.000 0.052
#> SRR537111     1  0.3940      0.824 0.816 0.000 0.040 0.060 0.072 0.012
#> SRR537113     5  0.0922      0.959 0.000 0.000 0.004 0.024 0.968 0.004
#> SRR537114     5  0.1003      0.956 0.000 0.000 0.004 0.028 0.964 0.004
#> SRR537115     5  0.0748      0.962 0.000 0.000 0.004 0.016 0.976 0.004
#> SRR537116     2  0.1845      0.917 0.000 0.920 0.028 0.000 0.000 0.052
#> SRR537117     5  0.1327      0.950 0.000 0.000 0.000 0.064 0.936 0.000
#> SRR537118     5  0.1327      0.950 0.000 0.000 0.000 0.064 0.936 0.000
#> SRR537119     5  0.1327      0.950 0.000 0.000 0.000 0.064 0.936 0.000
#> SRR537120     5  0.1327      0.950 0.000 0.000 0.000 0.064 0.936 0.000
#> SRR537121     5  0.0146      0.970 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR537122     5  0.0146      0.970 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR537123     5  0.0146      0.970 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR537124     5  0.0146      0.970 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR537125     5  0.0146      0.970 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR537126     5  0.0146      0.970 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR537127     3  0.5077      0.560 0.060 0.000 0.748 0.048 0.080 0.064
#> SRR537128     3  0.5077      0.560 0.060 0.000 0.748 0.048 0.080 0.064
#> SRR537129     3  0.5077      0.560 0.060 0.000 0.748 0.048 0.080 0.064
#> SRR537130     3  0.5077      0.560 0.060 0.000 0.748 0.048 0.080 0.064
#> SRR537131     3  0.5077      0.560 0.060 0.000 0.748 0.048 0.080 0.064
#> SRR537132     3  0.5077      0.560 0.060 0.000 0.748 0.048 0.080 0.064
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.618           0.830       0.924         0.4826 0.510   0.510
#> 3 3 0.659           0.823       0.921         0.1173 0.944   0.891
#> 4 4 0.769           0.831       0.935         0.1507 0.918   0.826
#> 5 5 0.800           0.807       0.923         0.1352 0.889   0.719
#> 6 6 0.722           0.580       0.829         0.0651 0.963   0.876
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.0000    0.87940 1.000 0.000
#> SRR191640     1  0.1633    0.87102 0.976 0.024
#> SRR191641     1  0.7219    0.75863 0.800 0.200
#> SRR191642     1  0.9286    0.47265 0.656 0.344
#> SRR191643     2  0.4161    0.86313 0.084 0.916
#> SRR191644     2  0.0376    0.93069 0.004 0.996
#> SRR191645     1  0.0000    0.87940 1.000 0.000
#> SRR191646     1  0.0000    0.87940 1.000 0.000
#> SRR191647     1  0.0000    0.87940 1.000 0.000
#> SRR191648     1  0.0000    0.87940 1.000 0.000
#> SRR191649     1  0.0000    0.87940 1.000 0.000
#> SRR191650     1  0.4690    0.81868 0.900 0.100
#> SRR191651     1  0.0938    0.87627 0.988 0.012
#> SRR191652     1  0.0000    0.87940 1.000 0.000
#> SRR191653     2  0.0376    0.93069 0.004 0.996
#> SRR191654     2  0.0376    0.93069 0.004 0.996
#> SRR191655     1  0.9710    0.32866 0.600 0.400
#> SRR191656     1  0.0000    0.87940 1.000 0.000
#> SRR191657     1  0.0000    0.87940 1.000 0.000
#> SRR191658     1  0.0000    0.87940 1.000 0.000
#> SRR191659     1  0.0000    0.87940 1.000 0.000
#> SRR191660     1  0.0000    0.87940 1.000 0.000
#> SRR191661     1  0.3274    0.84857 0.940 0.060
#> SRR191662     1  0.6048    0.77264 0.852 0.148
#> SRR191663     1  0.0000    0.87940 1.000 0.000
#> SRR191664     1  0.0000    0.87940 1.000 0.000
#> SRR191665     1  0.0000    0.87940 1.000 0.000
#> SRR191666     1  0.0000    0.87940 1.000 0.000
#> SRR191667     1  0.0000    0.87940 1.000 0.000
#> SRR191668     1  0.0000    0.87940 1.000 0.000
#> SRR191669     1  0.0000    0.87940 1.000 0.000
#> SRR191670     1  0.0000    0.87940 1.000 0.000
#> SRR191671     1  0.0000    0.87940 1.000 0.000
#> SRR191672     1  0.0376    0.87825 0.996 0.004
#> SRR191673     1  0.0000    0.87940 1.000 0.000
#> SRR191674     2  0.6247    0.76986 0.156 0.844
#> SRR191675     2  0.1843    0.91170 0.028 0.972
#> SRR191677     2  0.0000    0.93316 0.000 1.000
#> SRR191678     2  0.0000    0.93316 0.000 1.000
#> SRR191679     2  0.0000    0.93316 0.000 1.000
#> SRR191680     2  0.0000    0.93316 0.000 1.000
#> SRR191681     2  0.0000    0.93316 0.000 1.000
#> SRR191682     2  0.0000    0.93316 0.000 1.000
#> SRR191683     2  0.0000    0.93316 0.000 1.000
#> SRR191684     2  0.0000    0.93316 0.000 1.000
#> SRR191685     2  0.0000    0.93316 0.000 1.000
#> SRR191686     2  0.0000    0.93316 0.000 1.000
#> SRR191687     2  0.0000    0.93316 0.000 1.000
#> SRR191688     2  0.0000    0.93316 0.000 1.000
#> SRR191689     2  0.0000    0.93316 0.000 1.000
#> SRR191690     2  0.0000    0.93316 0.000 1.000
#> SRR191691     2  0.0000    0.93316 0.000 1.000
#> SRR191692     2  0.0000    0.93316 0.000 1.000
#> SRR191693     2  0.8386    0.58397 0.268 0.732
#> SRR191694     2  0.0000    0.93316 0.000 1.000
#> SRR191695     2  0.0000    0.93316 0.000 1.000
#> SRR191696     2  0.0000    0.93316 0.000 1.000
#> SRR191697     2  0.0000    0.93316 0.000 1.000
#> SRR191698     2  0.0000    0.93316 0.000 1.000
#> SRR191699     2  0.0000    0.93316 0.000 1.000
#> SRR191700     2  0.0000    0.93316 0.000 1.000
#> SRR191701     2  0.0000    0.93316 0.000 1.000
#> SRR191702     2  0.0000    0.93316 0.000 1.000
#> SRR191703     2  0.0000    0.93316 0.000 1.000
#> SRR191704     2  0.0000    0.93316 0.000 1.000
#> SRR191705     2  0.0000    0.93316 0.000 1.000
#> SRR191706     2  0.0000    0.93316 0.000 1.000
#> SRR191707     2  0.0000    0.93316 0.000 1.000
#> SRR191708     2  0.4815    0.83535 0.104 0.896
#> SRR191709     2  0.0000    0.93316 0.000 1.000
#> SRR191710     2  0.7950    0.63730 0.240 0.760
#> SRR191711     2  0.0000    0.93316 0.000 1.000
#> SRR191712     2  0.0000    0.93316 0.000 1.000
#> SRR191713     2  0.0000    0.93316 0.000 1.000
#> SRR191714     2  0.0000    0.93316 0.000 1.000
#> SRR191715     2  0.0000    0.93316 0.000 1.000
#> SRR191716     2  0.0000    0.93316 0.000 1.000
#> SRR191717     2  0.0000    0.93316 0.000 1.000
#> SRR191718     2  0.0000    0.93316 0.000 1.000
#> SRR537099     2  0.6048    0.79102 0.148 0.852
#> SRR537100     2  0.8909    0.53835 0.308 0.692
#> SRR537101     1  0.0000    0.87940 1.000 0.000
#> SRR537102     2  0.4298    0.85738 0.088 0.912
#> SRR537104     2  0.0938    0.92532 0.012 0.988
#> SRR537105     1  0.2043    0.86745 0.968 0.032
#> SRR537106     2  0.9635    0.36133 0.388 0.612
#> SRR537107     2  0.9608    0.37223 0.384 0.616
#> SRR537108     2  0.9129    0.49791 0.328 0.672
#> SRR537109     2  0.0000    0.93316 0.000 1.000
#> SRR537110     2  0.0000    0.93316 0.000 1.000
#> SRR537111     1  0.2778    0.86224 0.952 0.048
#> SRR537113     2  0.8443    0.58745 0.272 0.728
#> SRR537114     1  0.8267    0.69346 0.740 0.260
#> SRR537115     1  0.9922    0.30833 0.552 0.448
#> SRR537116     2  0.0000    0.93316 0.000 1.000
#> SRR537117     1  0.8016    0.72127 0.756 0.244
#> SRR537118     2  0.0376    0.93071 0.004 0.996
#> SRR537119     2  0.0376    0.93071 0.004 0.996
#> SRR537120     2  0.0000    0.93316 0.000 1.000
#> SRR537121     1  0.9323    0.56055 0.652 0.348
#> SRR537122     2  0.1843    0.91388 0.028 0.972
#> SRR537123     1  0.8443    0.68535 0.728 0.272
#> SRR537124     1  0.8763    0.65334 0.704 0.296
#> SRR537125     2  0.9954    0.00176 0.460 0.540
#> SRR537126     2  0.9170    0.43778 0.332 0.668
#> SRR537127     1  0.8443    0.68591 0.728 0.272
#> SRR537128     1  0.8144    0.71050 0.748 0.252
#> SRR537129     1  0.8443    0.68576 0.728 0.272
#> SRR537130     1  0.8144    0.71050 0.748 0.252
#> SRR537131     1  0.8144    0.71050 0.748 0.252
#> SRR537132     1  0.8144    0.71050 0.748 0.252
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191640     1  0.0424     0.8752 0.992 0.008 0.000
#> SRR191641     1  0.4555     0.6486 0.800 0.200 0.000
#> SRR191642     1  0.5810     0.4218 0.664 0.336 0.000
#> SRR191643     2  0.1529     0.8811 0.040 0.960 0.000
#> SRR191644     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191645     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191646     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191647     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191648     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191649     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191650     1  0.3412     0.7561 0.876 0.124 0.000
#> SRR191651     1  0.0592     0.8720 0.988 0.012 0.000
#> SRR191652     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191653     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191654     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191655     1  0.6126     0.2854 0.600 0.400 0.000
#> SRR191656     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191657     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191658     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191659     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191660     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191661     1  0.2537     0.8079 0.920 0.080 0.000
#> SRR191662     1  0.4178     0.6883 0.828 0.172 0.000
#> SRR191663     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191664     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191665     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191666     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191667     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191668     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191669     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191670     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191671     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191672     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191673     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR191674     2  0.4235     0.6947 0.176 0.824 0.000
#> SRR191675     2  0.1163     0.8907 0.028 0.972 0.000
#> SRR191677     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191678     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191679     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191680     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191681     2  0.0237     0.9128 0.000 0.996 0.004
#> SRR191682     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191683     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191684     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191685     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191686     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191687     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191688     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191689     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191690     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191691     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191692     2  0.0237     0.9126 0.000 0.996 0.004
#> SRR191693     2  0.6326     0.4578 0.292 0.688 0.020
#> SRR191694     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191695     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191696     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191697     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191698     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191699     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191700     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191701     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191702     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191703     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191704     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191705     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191706     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191707     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191708     2  0.3267     0.7850 0.116 0.884 0.000
#> SRR191709     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191710     2  0.5216     0.5482 0.260 0.740 0.000
#> SRR191711     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191712     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191713     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191714     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191715     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191716     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191717     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR191718     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR537099     2  0.3267     0.7954 0.116 0.884 0.000
#> SRR537100     2  0.5291     0.5706 0.268 0.732 0.000
#> SRR537101     1  0.0000     0.8795 1.000 0.000 0.000
#> SRR537102     2  0.1964     0.8649 0.056 0.944 0.000
#> SRR537104     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR537105     1  0.0424     0.8752 0.992 0.008 0.000
#> SRR537106     2  0.5968     0.3970 0.364 0.636 0.000
#> SRR537107     2  0.5926     0.4134 0.356 0.644 0.000
#> SRR537108     2  0.5560     0.5146 0.300 0.700 0.000
#> SRR537109     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR537110     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR537111     1  0.1163     0.8621 0.972 0.028 0.000
#> SRR537113     2  0.8992     0.2555 0.272 0.552 0.176
#> SRR537114     1  0.7927     0.5759 0.664 0.160 0.176
#> SRR537115     1  0.8760     0.4320 0.584 0.240 0.176
#> SRR537116     2  0.0000     0.9156 0.000 1.000 0.000
#> SRR537117     1  0.6848     0.6258 0.736 0.164 0.100
#> SRR537118     2  0.3551     0.7949 0.000 0.868 0.132
#> SRR537119     2  0.1753     0.8768 0.000 0.952 0.048
#> SRR537120     2  0.1753     0.8768 0.000 0.952 0.048
#> SRR537121     1  0.7717     0.5921 0.668 0.112 0.220
#> SRR537122     2  0.5772     0.6498 0.024 0.756 0.220
#> SRR537123     1  0.6722     0.6540 0.720 0.060 0.220
#> SRR537124     1  0.6722     0.6540 0.720 0.060 0.220
#> SRR537125     1  0.9543     0.2229 0.476 0.304 0.220
#> SRR537126     2  0.9676    -0.0177 0.348 0.432 0.220
#> SRR537127     3  0.4589     0.9991 0.008 0.172 0.820
#> SRR537128     3  0.4589     0.9991 0.008 0.172 0.820
#> SRR537129     3  0.4409     0.9955 0.004 0.172 0.824
#> SRR537130     3  0.4589     0.9991 0.008 0.172 0.820
#> SRR537131     3  0.4589     0.9991 0.008 0.172 0.820
#> SRR537132     3  0.4589     0.9991 0.008 0.172 0.820
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191640     1  0.1022      0.894 0.968 0.032 0.000 0.000
#> SRR191641     1  0.3569      0.668 0.804 0.196 0.000 0.000
#> SRR191642     1  0.4624      0.475 0.660 0.340 0.000 0.000
#> SRR191643     2  0.2081      0.838 0.084 0.916 0.000 0.000
#> SRR191644     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191645     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191646     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191647     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191648     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191649     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191650     1  0.2216      0.830 0.908 0.092 0.000 0.000
#> SRR191651     1  0.0469      0.909 0.988 0.012 0.000 0.000
#> SRR191652     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191653     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191654     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191655     1  0.4855      0.332 0.600 0.400 0.000 0.000
#> SRR191656     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191658     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191659     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191660     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191661     1  0.1637      0.866 0.940 0.060 0.000 0.000
#> SRR191662     1  0.2868      0.774 0.864 0.136 0.000 0.000
#> SRR191663     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191664     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191665     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191666     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191667     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191668     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191669     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191670     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191673     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR191674     2  0.3894      0.757 0.140 0.832 0.004 0.024
#> SRR191675     2  0.1004      0.890 0.024 0.972 0.004 0.000
#> SRR191677     2  0.0188      0.906 0.000 0.996 0.004 0.000
#> SRR191678     2  0.2593      0.819 0.000 0.892 0.004 0.104
#> SRR191679     2  0.0188      0.906 0.000 0.996 0.004 0.000
#> SRR191680     2  0.0188      0.906 0.000 0.996 0.004 0.000
#> SRR191681     2  0.4677      0.496 0.000 0.680 0.004 0.316
#> SRR191682     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191683     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191684     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191685     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191686     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191687     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191688     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191689     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191690     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191691     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191692     2  0.4655      0.501 0.000 0.684 0.004 0.312
#> SRR191693     2  0.5988      0.218 0.036 0.568 0.004 0.392
#> SRR191694     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191695     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191696     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191697     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191698     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191699     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191700     2  0.3074      0.767 0.000 0.848 0.000 0.152
#> SRR191701     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191702     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191703     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191704     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191705     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191706     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191707     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191708     2  0.2345      0.823 0.100 0.900 0.000 0.000
#> SRR191709     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191710     2  0.3873      0.663 0.228 0.772 0.000 0.000
#> SRR191711     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191712     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191713     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191714     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191715     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191716     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191717     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR191718     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR537099     2  0.3649      0.699 0.204 0.796 0.000 0.000
#> SRR537100     2  0.4661      0.460 0.348 0.652 0.000 0.000
#> SRR537101     1  0.0000      0.917 1.000 0.000 0.000 0.000
#> SRR537102     2  0.2704      0.796 0.124 0.876 0.000 0.000
#> SRR537104     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR537105     1  0.1211      0.887 0.960 0.040 0.000 0.000
#> SRR537106     2  0.4916      0.261 0.424 0.576 0.000 0.000
#> SRR537107     2  0.4907      0.273 0.420 0.580 0.000 0.000
#> SRR537108     2  0.4746      0.414 0.368 0.632 0.000 0.000
#> SRR537109     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR537110     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR537111     1  0.1474      0.877 0.948 0.052 0.000 0.000
#> SRR537113     2  0.7764     -0.054 0.252 0.424 0.000 0.324
#> SRR537114     1  0.6071      0.429 0.612 0.064 0.000 0.324
#> SRR537115     1  0.6991      0.287 0.540 0.136 0.000 0.324
#> SRR537116     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> SRR537117     4  0.2867      0.806 0.012 0.104 0.000 0.884
#> SRR537118     4  0.2216      0.820 0.000 0.092 0.000 0.908
#> SRR537119     4  0.3569      0.695 0.000 0.196 0.000 0.804
#> SRR537120     4  0.3610      0.689 0.000 0.200 0.000 0.800
#> SRR537121     4  0.0000      0.865 0.000 0.000 0.000 1.000
#> SRR537122     4  0.0000      0.865 0.000 0.000 0.000 1.000
#> SRR537123     4  0.0000      0.865 0.000 0.000 0.000 1.000
#> SRR537124     4  0.0000      0.865 0.000 0.000 0.000 1.000
#> SRR537125     4  0.0000      0.865 0.000 0.000 0.000 1.000
#> SRR537126     4  0.0000      0.865 0.000 0.000 0.000 1.000
#> SRR537127     3  0.0188      1.000 0.000 0.004 0.996 0.000
#> SRR537128     3  0.0188      1.000 0.000 0.004 0.996 0.000
#> SRR537129     3  0.0188      1.000 0.000 0.004 0.996 0.000
#> SRR537130     3  0.0188      1.000 0.000 0.004 0.996 0.000
#> SRR537131     3  0.0188      1.000 0.000 0.004 0.996 0.000
#> SRR537132     3  0.0188      1.000 0.000 0.004 0.996 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR191639     1  0.0290     0.9253 0.992 0.000  0 0.008 0.000
#> SRR191640     1  0.1877     0.8745 0.924 0.064  0 0.012 0.000
#> SRR191641     1  0.3355     0.6926 0.804 0.184  0 0.012 0.000
#> SRR191642     1  0.4430     0.4153 0.628 0.360  0 0.012 0.000
#> SRR191643     2  0.1830     0.8335 0.068 0.924  0 0.008 0.000
#> SRR191644     2  0.0290     0.8944 0.000 0.992  0 0.008 0.000
#> SRR191645     1  0.0162     0.9276 0.996 0.000  0 0.004 0.000
#> SRR191646     1  0.0162     0.9276 0.996 0.000  0 0.004 0.000
#> SRR191647     1  0.0162     0.9276 0.996 0.000  0 0.004 0.000
#> SRR191648     1  0.0162     0.9276 0.996 0.000  0 0.004 0.000
#> SRR191649     1  0.0162     0.9276 0.996 0.000  0 0.004 0.000
#> SRR191650     1  0.1478     0.8782 0.936 0.064  0 0.000 0.000
#> SRR191651     1  0.0404     0.9210 0.988 0.012  0 0.000 0.000
#> SRR191652     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191653     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191654     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191655     1  0.4537     0.3266 0.592 0.396  0 0.012 0.000
#> SRR191656     1  0.0290     0.9250 0.992 0.000  0 0.008 0.000
#> SRR191657     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191658     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191659     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191660     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191661     1  0.1043     0.9004 0.960 0.040  0 0.000 0.000
#> SRR191662     1  0.2020     0.8377 0.900 0.100  0 0.000 0.000
#> SRR191663     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191664     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191665     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191666     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191667     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191668     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191669     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191670     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191671     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191672     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191673     1  0.0000     0.9286 1.000 0.000  0 0.000 0.000
#> SRR191674     4  0.0451     0.6958 0.000 0.008  0 0.988 0.004
#> SRR191675     4  0.0404     0.6983 0.000 0.012  0 0.988 0.000
#> SRR191677     4  0.0794     0.7020 0.000 0.028  0 0.972 0.000
#> SRR191678     4  0.0912     0.6970 0.000 0.016  0 0.972 0.012
#> SRR191679     4  0.3143     0.5832 0.000 0.204  0 0.796 0.000
#> SRR191680     4  0.0794     0.7020 0.000 0.028  0 0.972 0.000
#> SRR191681     4  0.0451     0.6958 0.000 0.008  0 0.988 0.004
#> SRR191682     4  0.4182     0.5247 0.000 0.400  0 0.600 0.000
#> SRR191683     4  0.4060     0.5783 0.000 0.360  0 0.640 0.000
#> SRR191684     2  0.0510     0.8882 0.000 0.984  0 0.016 0.000
#> SRR191685     2  0.0510     0.8882 0.000 0.984  0 0.016 0.000
#> SRR191686     4  0.3966     0.5966 0.000 0.336  0 0.664 0.000
#> SRR191687     2  0.0609     0.8858 0.000 0.980  0 0.020 0.000
#> SRR191688     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191689     4  0.4273     0.4163 0.000 0.448  0 0.552 0.000
#> SRR191690     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191691     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191692     4  0.0451     0.6958 0.000 0.008  0 0.988 0.004
#> SRR191693     4  0.1502     0.7016 0.000 0.056  0 0.940 0.004
#> SRR191694     4  0.3752     0.6220 0.000 0.292  0 0.708 0.000
#> SRR191695     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191696     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191697     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191698     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191699     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191700     2  0.2377     0.7716 0.000 0.872  0 0.000 0.128
#> SRR191701     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191702     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191703     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191704     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191705     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191706     2  0.4101     0.1688 0.000 0.628  0 0.372 0.000
#> SRR191707     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191708     2  0.1732     0.8241 0.080 0.920  0 0.000 0.000
#> SRR191709     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191710     2  0.3039     0.6756 0.192 0.808  0 0.000 0.000
#> SRR191711     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191712     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191713     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191714     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191715     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191716     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191717     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR191718     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR537099     2  0.3093     0.7172 0.168 0.824  0 0.008 0.000
#> SRR537100     2  0.4025     0.5453 0.292 0.700  0 0.008 0.000
#> SRR537101     1  0.0404     0.9244 0.988 0.000  0 0.012 0.000
#> SRR537102     2  0.2753     0.7570 0.136 0.856  0 0.008 0.000
#> SRR537104     2  0.0290     0.8944 0.000 0.992  0 0.008 0.000
#> SRR537105     1  0.1768     0.8697 0.924 0.072  0 0.004 0.000
#> SRR537106     2  0.4310     0.3499 0.392 0.604  0 0.004 0.000
#> SRR537107     2  0.4299     0.3606 0.388 0.608  0 0.004 0.000
#> SRR537108     2  0.4084     0.4956 0.328 0.668  0 0.004 0.000
#> SRR537109     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR537110     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR537111     1  0.2011     0.8545 0.908 0.088  0 0.004 0.000
#> SRR537113     2  0.6605    -0.0295 0.220 0.432  0 0.000 0.348
#> SRR537114     1  0.5671     0.3301 0.568 0.080  0 0.004 0.348
#> SRR537115     4  0.7404     0.1203 0.168 0.056  0 0.428 0.348
#> SRR537116     2  0.0000     0.8996 0.000 1.000  0 0.000 0.000
#> SRR537117     5  0.2361     0.8237 0.012 0.096  0 0.000 0.892
#> SRR537118     5  0.1851     0.8342 0.000 0.088  0 0.000 0.912
#> SRR537119     5  0.3074     0.7056 0.000 0.196  0 0.000 0.804
#> SRR537120     5  0.3109     0.6992 0.000 0.200  0 0.000 0.800
#> SRR537121     5  0.0000     0.8757 0.000 0.000  0 0.000 1.000
#> SRR537122     5  0.0000     0.8757 0.000 0.000  0 0.000 1.000
#> SRR537123     5  0.0000     0.8757 0.000 0.000  0 0.000 1.000
#> SRR537124     5  0.0000     0.8757 0.000 0.000  0 0.000 1.000
#> SRR537125     5  0.0000     0.8757 0.000 0.000  0 0.000 1.000
#> SRR537126     5  0.0000     0.8757 0.000 0.000  0 0.000 1.000
#> SRR537127     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.3592    0.54901 0.656 0.000 0.344 0.000 0.000 0.000
#> SRR191640     1  0.5319    0.40108 0.504 0.000 0.388 0.108 0.000 0.000
#> SRR191641     1  0.5319    0.40108 0.504 0.000 0.388 0.108 0.000 0.000
#> SRR191642     3  0.7251    0.00320 0.280 0.224 0.388 0.108 0.000 0.000
#> SRR191643     2  0.3862    0.48018 0.004 0.608 0.388 0.000 0.000 0.000
#> SRR191644     2  0.3684    0.50413 0.000 0.628 0.372 0.000 0.000 0.000
#> SRR191645     1  0.3337    0.79770 0.824 0.000 0.064 0.108 0.000 0.004
#> SRR191646     1  0.3337    0.79770 0.824 0.000 0.064 0.108 0.000 0.004
#> SRR191647     1  0.3337    0.79770 0.824 0.000 0.064 0.108 0.000 0.004
#> SRR191648     1  0.3337    0.79770 0.824 0.000 0.064 0.108 0.000 0.004
#> SRR191649     1  0.3279    0.80014 0.828 0.000 0.060 0.108 0.000 0.004
#> SRR191650     1  0.0508    0.87138 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR191651     1  0.0458    0.86866 0.984 0.016 0.000 0.000 0.000 0.000
#> SRR191652     1  0.0291    0.87652 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR191653     2  0.0865    0.79802 0.000 0.964 0.036 0.000 0.000 0.000
#> SRR191654     2  0.1556    0.77703 0.000 0.920 0.080 0.000 0.000 0.000
#> SRR191655     3  0.7270   -0.00538 0.284 0.228 0.380 0.108 0.000 0.000
#> SRR191656     1  0.0260    0.87547 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR191657     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191658     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191659     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191660     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191661     1  0.0458    0.86823 0.984 0.016 0.000 0.000 0.000 0.000
#> SRR191662     1  0.0790    0.85357 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR191663     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191664     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191665     1  0.0146    0.87693 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR191666     1  0.0146    0.87639 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR191667     1  0.0146    0.87693 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR191668     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191669     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191670     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191671     1  0.0000    0.87722 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191672     1  0.0146    0.87639 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR191673     1  0.0146    0.87639 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR191674     6  0.3997   -0.35282 0.000 0.004 0.000 0.488 0.000 0.508
#> SRR191675     6  0.3997   -0.35282 0.000 0.004 0.000 0.488 0.000 0.508
#> SRR191677     6  0.3997   -0.35282 0.000 0.004 0.000 0.488 0.000 0.508
#> SRR191678     6  0.3997   -0.35282 0.000 0.004 0.000 0.488 0.000 0.508
#> SRR191679     4  0.5585    0.00000 0.000 0.148 0.000 0.488 0.000 0.364
#> SRR191680     6  0.3997   -0.35282 0.000 0.004 0.000 0.488 0.000 0.508
#> SRR191681     6  0.3997   -0.35282 0.000 0.004 0.000 0.488 0.000 0.508
#> SRR191682     6  0.3499    0.18408 0.000 0.320 0.000 0.000 0.000 0.680
#> SRR191683     6  0.3482    0.18467 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR191684     2  0.3866   -0.01344 0.000 0.516 0.000 0.000 0.000 0.484
#> SRR191685     2  0.3866   -0.01344 0.000 0.516 0.000 0.000 0.000 0.484
#> SRR191686     6  0.3428    0.18010 0.000 0.304 0.000 0.000 0.000 0.696
#> SRR191687     6  0.3869   -0.04445 0.000 0.500 0.000 0.000 0.000 0.500
#> SRR191688     2  0.0713    0.79897 0.000 0.972 0.028 0.000 0.000 0.000
#> SRR191689     2  0.5327    0.17245 0.000 0.596 0.000 0.196 0.000 0.208
#> SRR191690     2  0.1411    0.78550 0.004 0.936 0.060 0.000 0.000 0.000
#> SRR191691     2  0.0458    0.80192 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR191692     6  0.3997   -0.35282 0.000 0.004 0.000 0.488 0.000 0.508
#> SRR191693     6  0.4091   -0.29809 0.000 0.056 0.000 0.224 0.000 0.720
#> SRR191694     6  0.5931   -0.00868 0.000 0.360 0.000 0.216 0.000 0.424
#> SRR191695     2  0.1152    0.78775 0.000 0.952 0.004 0.000 0.000 0.044
#> SRR191696     2  0.1007    0.78822 0.000 0.956 0.000 0.000 0.000 0.044
#> SRR191697     2  0.0458    0.80192 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR191698     2  0.0458    0.80192 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR191699     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR191700     2  0.2859    0.68402 0.000 0.828 0.000 0.016 0.156 0.000
#> SRR191701     2  0.0458    0.80192 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR191702     2  0.0146    0.80424 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR191703     2  0.0146    0.80424 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR191704     2  0.0146    0.80424 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR191705     2  0.0146    0.80424 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR191706     2  0.4023    0.52790 0.000 0.756 0.000 0.100 0.000 0.144
#> SRR191707     2  0.0603    0.80082 0.000 0.980 0.000 0.016 0.000 0.004
#> SRR191708     2  0.1218    0.78692 0.028 0.956 0.000 0.012 0.000 0.004
#> SRR191709     2  0.0146    0.80424 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR191710     2  0.2006    0.71881 0.104 0.892 0.000 0.000 0.000 0.004
#> SRR191711     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR191712     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR191713     2  0.0146    0.80424 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR191714     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR191715     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR191716     2  0.1141    0.78993 0.000 0.948 0.052 0.000 0.000 0.000
#> SRR191717     2  0.1196    0.79216 0.008 0.952 0.040 0.000 0.000 0.000
#> SRR191718     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR537099     2  0.3862    0.48018 0.004 0.608 0.388 0.000 0.000 0.000
#> SRR537100     2  0.3965    0.47522 0.008 0.604 0.388 0.000 0.000 0.000
#> SRR537101     1  0.5319    0.40108 0.504 0.000 0.388 0.108 0.000 0.000
#> SRR537102     2  0.3862    0.48085 0.000 0.608 0.388 0.004 0.000 0.000
#> SRR537104     2  0.3672    0.50527 0.000 0.632 0.368 0.000 0.000 0.000
#> SRR537105     1  0.3337    0.79770 0.824 0.000 0.064 0.108 0.000 0.004
#> SRR537106     2  0.6277    0.12681 0.384 0.460 0.044 0.108 0.000 0.004
#> SRR537107     2  0.6268    0.15096 0.376 0.468 0.044 0.108 0.000 0.004
#> SRR537108     2  0.6168    0.26355 0.324 0.520 0.044 0.108 0.000 0.004
#> SRR537109     2  0.0146    0.80441 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR537110     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR537111     1  0.2822    0.81426 0.856 0.032 0.004 0.108 0.000 0.000
#> SRR537113     2  0.6672    0.15833 0.164 0.468 0.024 0.000 0.320 0.024
#> SRR537114     1  0.7124    0.30620 0.464 0.044 0.068 0.104 0.320 0.000
#> SRR537115     5  0.8548   -0.12865 0.256 0.072 0.004 0.156 0.320 0.192
#> SRR537116     2  0.0000    0.80428 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR537117     5  0.2162    0.77813 0.012 0.088 0.000 0.000 0.896 0.004
#> SRR537118     5  0.1501    0.79180 0.000 0.076 0.000 0.000 0.924 0.000
#> SRR537119     5  0.2762    0.65459 0.000 0.196 0.000 0.000 0.804 0.000
#> SRR537120     5  0.2793    0.64823 0.000 0.200 0.000 0.000 0.800 0.000
#> SRR537121     5  0.0000    0.82628 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537122     5  0.0000    0.82628 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537123     5  0.0000    0.82628 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537124     5  0.0000    0.82628 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537125     5  0.0000    0.82628 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537126     5  0.0000    0.82628 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537127     3  0.3727    0.67352 0.000 0.000 0.612 0.388 0.000 0.000
#> SRR537128     3  0.3727    0.67352 0.000 0.000 0.612 0.388 0.000 0.000
#> SRR537129     3  0.3727    0.67352 0.000 0.000 0.612 0.388 0.000 0.000
#> SRR537130     3  0.3727    0.67352 0.000 0.000 0.612 0.388 0.000 0.000
#> SRR537131     3  0.3727    0.67352 0.000 0.000 0.612 0.388 0.000 0.000
#> SRR537132     3  0.3727    0.67352 0.000 0.000 0.612 0.388 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.344           0.771       0.830         0.3871 0.517   0.517
#> 3 3 0.690           0.773       0.885         0.5278 0.702   0.511
#> 4 4 0.832           0.849       0.914         0.1286 0.936   0.844
#> 5 5 0.788           0.781       0.859         0.0695 1.000   1.000
#> 6 6 0.716           0.683       0.801         0.0781 0.866   0.621
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.9460      0.841 0.636 0.364
#> SRR191640     1  0.9522      0.836 0.628 0.372
#> SRR191641     1  0.9775      0.781 0.588 0.412
#> SRR191642     1  0.9732      0.801 0.596 0.404
#> SRR191643     2  0.9635     -0.110 0.388 0.612
#> SRR191644     2  0.8661      0.371 0.288 0.712
#> SRR191645     1  0.9491      0.839 0.632 0.368
#> SRR191646     1  0.9491      0.839 0.632 0.368
#> SRR191647     1  0.9460      0.841 0.636 0.364
#> SRR191648     1  0.9460      0.841 0.636 0.364
#> SRR191649     1  0.9491      0.839 0.632 0.368
#> SRR191650     1  0.9732      0.801 0.596 0.404
#> SRR191651     1  0.9732      0.801 0.596 0.404
#> SRR191652     1  0.9427      0.841 0.640 0.360
#> SRR191653     2  0.9129      0.210 0.328 0.672
#> SRR191654     2  0.7219      0.622 0.200 0.800
#> SRR191655     1  0.9732      0.801 0.596 0.404
#> SRR191656     1  0.7453      0.763 0.788 0.212
#> SRR191657     1  0.9491      0.839 0.632 0.368
#> SRR191658     1  0.9393      0.841 0.644 0.356
#> SRR191659     1  0.9460      0.841 0.636 0.364
#> SRR191660     1  0.9393      0.841 0.644 0.356
#> SRR191661     1  0.9491      0.839 0.632 0.368
#> SRR191662     1  0.9608      0.825 0.616 0.384
#> SRR191663     1  0.9460      0.841 0.636 0.364
#> SRR191664     1  0.9393      0.841 0.644 0.356
#> SRR191665     1  0.9393      0.841 0.644 0.356
#> SRR191666     1  0.9209      0.833 0.664 0.336
#> SRR191667     1  0.9129      0.830 0.672 0.328
#> SRR191668     1  0.7528      0.765 0.784 0.216
#> SRR191669     1  0.7453      0.763 0.788 0.212
#> SRR191670     1  0.7602      0.767 0.780 0.220
#> SRR191671     1  0.7602      0.767 0.780 0.220
#> SRR191672     1  0.7453      0.763 0.788 0.212
#> SRR191673     1  0.7453      0.763 0.788 0.212
#> SRR191674     2  0.0938      0.876 0.012 0.988
#> SRR191675     2  0.0938      0.876 0.012 0.988
#> SRR191677     2  0.0938      0.876 0.012 0.988
#> SRR191678     2  0.0938      0.876 0.012 0.988
#> SRR191679     2  0.0938      0.876 0.012 0.988
#> SRR191680     2  0.0938      0.876 0.012 0.988
#> SRR191681     2  0.0938      0.876 0.012 0.988
#> SRR191682     2  0.0000      0.880 0.000 1.000
#> SRR191683     2  0.0000      0.880 0.000 1.000
#> SRR191684     2  0.0000      0.880 0.000 1.000
#> SRR191685     2  0.0000      0.880 0.000 1.000
#> SRR191686     2  0.0938      0.876 0.012 0.988
#> SRR191687     2  0.0000      0.880 0.000 1.000
#> SRR191688     2  0.0000      0.880 0.000 1.000
#> SRR191689     2  0.0000      0.880 0.000 1.000
#> SRR191690     2  0.0000      0.880 0.000 1.000
#> SRR191691     2  0.0000      0.880 0.000 1.000
#> SRR191692     2  0.0938      0.876 0.012 0.988
#> SRR191693     2  0.0938      0.876 0.012 0.988
#> SRR191694     2  0.0938      0.876 0.012 0.988
#> SRR191695     2  0.0000      0.880 0.000 1.000
#> SRR191696     2  0.0000      0.880 0.000 1.000
#> SRR191697     2  0.0000      0.880 0.000 1.000
#> SRR191698     2  0.0000      0.880 0.000 1.000
#> SRR191699     2  0.0000      0.880 0.000 1.000
#> SRR191700     2  0.0000      0.880 0.000 1.000
#> SRR191701     2  0.0000      0.880 0.000 1.000
#> SRR191702     2  0.0000      0.880 0.000 1.000
#> SRR191703     2  0.0000      0.880 0.000 1.000
#> SRR191704     2  0.0000      0.880 0.000 1.000
#> SRR191705     2  0.0000      0.880 0.000 1.000
#> SRR191706     2  0.0000      0.880 0.000 1.000
#> SRR191707     2  0.0000      0.880 0.000 1.000
#> SRR191708     2  0.0000      0.880 0.000 1.000
#> SRR191709     2  0.0000      0.880 0.000 1.000
#> SRR191710     2  0.0000      0.880 0.000 1.000
#> SRR191711     2  0.0000      0.880 0.000 1.000
#> SRR191712     2  0.0000      0.880 0.000 1.000
#> SRR191713     2  0.0000      0.880 0.000 1.000
#> SRR191714     2  0.0000      0.880 0.000 1.000
#> SRR191715     2  0.0000      0.880 0.000 1.000
#> SRR191716     2  0.0000      0.880 0.000 1.000
#> SRR191717     2  0.0000      0.880 0.000 1.000
#> SRR191718     2  0.0000      0.880 0.000 1.000
#> SRR537099     2  0.9866     -0.321 0.432 0.568
#> SRR537100     1  0.9754      0.794 0.592 0.408
#> SRR537101     1  0.9286      0.837 0.656 0.344
#> SRR537102     2  0.9323      0.114 0.348 0.652
#> SRR537104     2  0.6438      0.693 0.164 0.836
#> SRR537105     1  0.9522      0.836 0.628 0.372
#> SRR537106     1  0.9732      0.801 0.596 0.404
#> SRR537107     1  0.9732      0.801 0.596 0.404
#> SRR537108     1  0.9732      0.801 0.596 0.404
#> SRR537109     2  0.0000      0.880 0.000 1.000
#> SRR537110     2  0.0938      0.876 0.012 0.988
#> SRR537111     1  0.9732      0.801 0.596 0.404
#> SRR537113     2  0.5946      0.723 0.144 0.856
#> SRR537114     2  0.5946      0.723 0.144 0.856
#> SRR537115     2  0.5946      0.723 0.144 0.856
#> SRR537116     2  0.0000      0.880 0.000 1.000
#> SRR537117     2  0.9170      0.568 0.332 0.668
#> SRR537118     2  0.8955      0.592 0.312 0.688
#> SRR537119     2  0.6531      0.718 0.168 0.832
#> SRR537120     2  0.6531      0.718 0.168 0.832
#> SRR537121     2  0.9209      0.562 0.336 0.664
#> SRR537122     2  0.8955      0.592 0.312 0.688
#> SRR537123     2  0.9209      0.562 0.336 0.664
#> SRR537124     2  0.9209      0.562 0.336 0.664
#> SRR537125     2  0.9209      0.562 0.336 0.664
#> SRR537126     2  0.9209      0.562 0.336 0.664
#> SRR537127     1  0.0000      0.596 1.000 0.000
#> SRR537128     1  0.0000      0.596 1.000 0.000
#> SRR537129     1  0.0000      0.596 1.000 0.000
#> SRR537130     1  0.0000      0.596 1.000 0.000
#> SRR537131     1  0.0000      0.596 1.000 0.000
#> SRR537132     1  0.0000      0.596 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.3038      0.789 0.896 0.000 0.104
#> SRR191640     1  0.2860      0.794 0.912 0.004 0.084
#> SRR191641     1  0.0237      0.785 0.996 0.004 0.000
#> SRR191642     1  0.0237      0.785 0.996 0.004 0.000
#> SRR191643     1  0.1529      0.771 0.960 0.040 0.000
#> SRR191644     1  0.2261      0.748 0.932 0.068 0.000
#> SRR191645     1  0.0747      0.786 0.984 0.000 0.016
#> SRR191646     1  0.0747      0.786 0.984 0.000 0.016
#> SRR191647     1  0.3272      0.790 0.892 0.004 0.104
#> SRR191648     1  0.3272      0.790 0.892 0.004 0.104
#> SRR191649     1  0.0747      0.786 0.984 0.000 0.016
#> SRR191650     1  0.0892      0.789 0.980 0.000 0.020
#> SRR191651     1  0.0424      0.787 0.992 0.000 0.008
#> SRR191652     1  0.1860      0.791 0.948 0.000 0.052
#> SRR191653     1  0.2356      0.744 0.928 0.072 0.000
#> SRR191654     1  0.2356      0.744 0.928 0.072 0.000
#> SRR191655     1  0.0592      0.784 0.988 0.012 0.000
#> SRR191656     1  0.5497      0.657 0.708 0.000 0.292
#> SRR191657     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191658     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191659     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191660     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191661     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191662     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191663     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191664     1  0.3941      0.780 0.844 0.000 0.156
#> SRR191665     1  0.3752      0.783 0.856 0.000 0.144
#> SRR191666     1  0.2356      0.794 0.928 0.000 0.072
#> SRR191667     1  0.3038      0.789 0.896 0.000 0.104
#> SRR191668     1  0.5497      0.657 0.708 0.000 0.292
#> SRR191669     1  0.5497      0.657 0.708 0.000 0.292
#> SRR191670     1  0.4002      0.778 0.840 0.000 0.160
#> SRR191671     1  0.4002      0.778 0.840 0.000 0.160
#> SRR191672     1  0.5291      0.669 0.732 0.000 0.268
#> SRR191673     1  0.5291      0.669 0.732 0.000 0.268
#> SRR191674     2  0.0892      0.971 0.000 0.980 0.020
#> SRR191675     2  0.1031      0.967 0.000 0.976 0.024
#> SRR191677     2  0.1163      0.964 0.000 0.972 0.028
#> SRR191678     2  0.1289      0.960 0.000 0.968 0.032
#> SRR191679     2  0.0237      0.981 0.000 0.996 0.004
#> SRR191680     2  0.1163      0.964 0.000 0.972 0.028
#> SRR191681     2  0.1289      0.960 0.000 0.968 0.032
#> SRR191682     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191683     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191684     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191685     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191686     2  0.0237      0.981 0.000 0.996 0.004
#> SRR191687     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191688     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191689     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191690     2  0.3551      0.790 0.132 0.868 0.000
#> SRR191691     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191692     2  0.0892      0.971 0.000 0.980 0.020
#> SRR191693     2  0.2772      0.864 0.080 0.916 0.004
#> SRR191694     2  0.0237      0.981 0.000 0.996 0.004
#> SRR191695     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191696     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191697     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191698     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191699     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191700     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191701     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191702     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191703     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191704     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191705     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191706     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191707     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191708     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191709     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191710     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191711     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191712     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191713     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191714     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191715     2  0.0000      0.984 0.000 1.000 0.000
#> SRR191716     2  0.3482      0.797 0.128 0.872 0.000
#> SRR191717     2  0.0237      0.980 0.004 0.996 0.000
#> SRR191718     2  0.0000      0.984 0.000 1.000 0.000
#> SRR537099     1  0.2261      0.748 0.932 0.068 0.000
#> SRR537100     1  0.0892      0.782 0.980 0.020 0.000
#> SRR537101     1  0.1399      0.794 0.968 0.004 0.028
#> SRR537102     1  0.1964      0.759 0.944 0.056 0.000
#> SRR537104     1  0.3375      0.712 0.892 0.100 0.008
#> SRR537105     1  0.0475      0.787 0.992 0.004 0.004
#> SRR537106     1  0.0237      0.785 0.996 0.004 0.000
#> SRR537107     1  0.0237      0.785 0.996 0.004 0.000
#> SRR537108     1  0.0237      0.785 0.996 0.004 0.000
#> SRR537109     2  0.0000      0.984 0.000 1.000 0.000
#> SRR537110     2  0.0237      0.981 0.000 0.996 0.004
#> SRR537111     1  0.3532      0.789 0.884 0.008 0.108
#> SRR537113     1  0.9823     -0.228 0.412 0.252 0.336
#> SRR537114     1  0.9823     -0.228 0.412 0.252 0.336
#> SRR537115     1  0.9823     -0.228 0.412 0.252 0.336
#> SRR537116     2  0.0000      0.984 0.000 1.000 0.000
#> SRR537117     1  0.9874     -0.226 0.412 0.284 0.304
#> SRR537118     1  0.9849     -0.204 0.420 0.280 0.300
#> SRR537119     1  0.9849     -0.204 0.420 0.280 0.300
#> SRR537120     1  0.9863     -0.214 0.416 0.284 0.300
#> SRR537121     3  0.9563      0.541 0.284 0.236 0.480
#> SRR537122     3  0.9636      0.526 0.284 0.248 0.468
#> SRR537123     3  0.9563      0.541 0.284 0.236 0.480
#> SRR537124     3  0.9563      0.541 0.284 0.236 0.480
#> SRR537125     3  0.9563      0.541 0.284 0.236 0.480
#> SRR537126     3  0.9563      0.541 0.284 0.236 0.480
#> SRR537127     3  0.1860      0.669 0.052 0.000 0.948
#> SRR537128     3  0.1860      0.669 0.052 0.000 0.948
#> SRR537129     3  0.1860      0.669 0.052 0.000 0.948
#> SRR537130     3  0.1860      0.669 0.052 0.000 0.948
#> SRR537131     3  0.1860      0.669 0.052 0.000 0.948
#> SRR537132     3  0.1860      0.669 0.052 0.000 0.948
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0524      0.910 0.988 0.004 0.008 0.000
#> SRR191640     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> SRR191641     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR191642     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR191643     1  0.0779      0.907 0.980 0.004 0.000 0.016
#> SRR191644     1  0.1406      0.895 0.960 0.024 0.000 0.016
#> SRR191645     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> SRR191646     1  0.0000      0.910 1.000 0.000 0.000 0.000
#> SRR191647     1  0.1576      0.896 0.948 0.004 0.000 0.048
#> SRR191648     1  0.1576      0.896 0.948 0.004 0.000 0.048
#> SRR191649     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR191650     1  0.0524      0.909 0.988 0.004 0.000 0.008
#> SRR191651     1  0.0376      0.909 0.992 0.004 0.000 0.004
#> SRR191652     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR191653     1  0.1406      0.895 0.960 0.024 0.000 0.016
#> SRR191654     1  0.1406      0.895 0.960 0.024 0.000 0.016
#> SRR191655     1  0.0779      0.907 0.980 0.004 0.000 0.016
#> SRR191656     1  0.3937      0.855 0.800 0.000 0.188 0.012
#> SRR191657     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191658     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191659     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191660     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191661     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191662     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191663     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191664     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191665     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191666     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR191667     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR191668     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191669     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191670     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191671     1  0.3810      0.858 0.804 0.000 0.188 0.008
#> SRR191672     1  0.3937      0.855 0.800 0.000 0.188 0.012
#> SRR191673     1  0.3937      0.855 0.800 0.000 0.188 0.012
#> SRR191674     2  0.4925      0.335 0.000 0.572 0.000 0.428
#> SRR191675     2  0.4925      0.335 0.000 0.572 0.000 0.428
#> SRR191677     2  0.4941      0.315 0.000 0.564 0.000 0.436
#> SRR191678     2  0.4941      0.315 0.000 0.564 0.000 0.436
#> SRR191679     2  0.1637      0.875 0.000 0.940 0.000 0.060
#> SRR191680     2  0.4406      0.587 0.000 0.700 0.000 0.300
#> SRR191681     2  0.4941      0.315 0.000 0.564 0.000 0.436
#> SRR191682     2  0.0469      0.913 0.000 0.988 0.000 0.012
#> SRR191683     2  0.0592      0.910 0.000 0.984 0.000 0.016
#> SRR191684     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191685     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191686     2  0.1022      0.900 0.000 0.968 0.000 0.032
#> SRR191687     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191688     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191689     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191690     2  0.0592      0.905 0.000 0.984 0.000 0.016
#> SRR191691     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191692     2  0.4454      0.575 0.000 0.692 0.000 0.308
#> SRR191693     2  0.4961      0.283 0.000 0.552 0.000 0.448
#> SRR191694     2  0.1118      0.897 0.000 0.964 0.000 0.036
#> SRR191695     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191696     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191697     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191698     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191699     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191700     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191701     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191702     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191703     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191704     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191705     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191706     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191707     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191708     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191709     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191710     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191711     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191712     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191713     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR191714     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191715     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR191716     2  0.0592      0.905 0.000 0.984 0.000 0.016
#> SRR191717     2  0.0188      0.914 0.000 0.996 0.000 0.004
#> SRR191718     2  0.0188      0.916 0.000 0.996 0.000 0.004
#> SRR537099     1  0.1406      0.895 0.960 0.024 0.000 0.016
#> SRR537100     1  0.0779      0.907 0.980 0.004 0.000 0.016
#> SRR537101     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR537102     1  0.0927      0.905 0.976 0.008 0.000 0.016
#> SRR537104     1  0.4399      0.602 0.760 0.224 0.000 0.016
#> SRR537105     1  0.0188      0.910 0.996 0.004 0.000 0.000
#> SRR537106     1  0.0779      0.907 0.980 0.004 0.000 0.016
#> SRR537107     1  0.0779      0.907 0.980 0.004 0.000 0.016
#> SRR537108     1  0.0779      0.907 0.980 0.004 0.000 0.016
#> SRR537109     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR537110     2  0.1118      0.895 0.000 0.964 0.000 0.036
#> SRR537111     1  0.1004      0.906 0.972 0.004 0.000 0.024
#> SRR537113     4  0.6573      0.456 0.164 0.184 0.004 0.648
#> SRR537114     4  0.5794      0.352 0.320 0.040 0.004 0.636
#> SRR537115     4  0.4419      0.585 0.028 0.176 0.004 0.792
#> SRR537116     2  0.0000      0.916 0.000 1.000 0.000 0.000
#> SRR537117     4  0.0469      0.844 0.000 0.000 0.012 0.988
#> SRR537118     4  0.0592      0.847 0.000 0.000 0.016 0.984
#> SRR537119     4  0.0592      0.847 0.000 0.000 0.016 0.984
#> SRR537120     4  0.0592      0.847 0.000 0.000 0.016 0.984
#> SRR537121     4  0.0000      0.850 0.000 0.000 0.000 1.000
#> SRR537122     4  0.0000      0.850 0.000 0.000 0.000 1.000
#> SRR537123     4  0.0188      0.848 0.000 0.000 0.004 0.996
#> SRR537124     4  0.0336      0.843 0.000 0.000 0.008 0.992
#> SRR537125     4  0.0000      0.850 0.000 0.000 0.000 1.000
#> SRR537126     4  0.0000      0.850 0.000 0.000 0.000 1.000
#> SRR537127     3  0.3486      1.000 0.000 0.000 0.812 0.188
#> SRR537128     3  0.3486      1.000 0.000 0.000 0.812 0.188
#> SRR537129     3  0.3486      1.000 0.000 0.000 0.812 0.188
#> SRR537130     3  0.3486      1.000 0.000 0.000 0.812 0.188
#> SRR537131     3  0.3486      1.000 0.000 0.000 0.812 0.188
#> SRR537132     3  0.3486      1.000 0.000 0.000 0.812 0.188
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2 p3    p4    p5
#> SRR191639     4  0.2377      0.790 NA 0.000  0 0.872 0.000
#> SRR191640     4  0.0290      0.787 NA 0.000  0 0.992 0.000
#> SRR191641     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191642     4  0.2929      0.776 NA 0.000  0 0.820 0.000
#> SRR191643     4  0.3508      0.745 NA 0.000  0 0.748 0.000
#> SRR191644     4  0.3783      0.741 NA 0.000  0 0.740 0.008
#> SRR191645     4  0.0290      0.787 NA 0.000  0 0.992 0.000
#> SRR191646     4  0.0290      0.787 NA 0.000  0 0.992 0.000
#> SRR191647     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191648     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191649     4  0.2127      0.786 NA 0.000  0 0.892 0.000
#> SRR191650     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191651     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191652     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191653     4  0.3783      0.741 NA 0.000  0 0.740 0.008
#> SRR191654     4  0.3783      0.741 NA 0.000  0 0.740 0.008
#> SRR191655     4  0.3480      0.748 NA 0.000  0 0.752 0.000
#> SRR191656     4  0.4235      0.630 NA 0.000  0 0.656 0.008
#> SRR191657     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191658     4  0.3366      0.720 NA 0.000  0 0.768 0.000
#> SRR191659     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191660     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191661     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191662     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191663     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191664     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191665     4  0.3336      0.722 NA 0.000  0 0.772 0.000
#> SRR191666     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191667     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR191668     4  0.3999      0.631 NA 0.000  0 0.656 0.000
#> SRR191669     4  0.3999      0.631 NA 0.000  0 0.656 0.000
#> SRR191670     4  0.3395      0.717 NA 0.000  0 0.764 0.000
#> SRR191671     4  0.3395      0.717 NA 0.000  0 0.764 0.000
#> SRR191672     4  0.4268      0.623 NA 0.000  0 0.648 0.008
#> SRR191673     4  0.4252      0.626 NA 0.000  0 0.652 0.008
#> SRR191674     2  0.6150      0.408 NA 0.464  0 0.000 0.132
#> SRR191675     2  0.6150      0.408 NA 0.464  0 0.000 0.132
#> SRR191677     2  0.6236      0.392 NA 0.456  0 0.000 0.144
#> SRR191678     2  0.6239      0.386 NA 0.452  0 0.000 0.144
#> SRR191679     2  0.1478      0.842 NA 0.936  0 0.000 0.064
#> SRR191680     2  0.6171      0.433 NA 0.488  0 0.000 0.140
#> SRR191681     2  0.6239      0.386 NA 0.452  0 0.000 0.144
#> SRR191682     2  0.3177      0.753 NA 0.792  0 0.000 0.000
#> SRR191683     2  0.3210      0.750 NA 0.788  0 0.000 0.000
#> SRR191684     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191685     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191686     2  0.3480      0.722 NA 0.752  0 0.000 0.000
#> SRR191687     2  0.0510      0.874 NA 0.984  0 0.000 0.000
#> SRR191688     2  0.0290      0.874 NA 0.992  0 0.008 0.000
#> SRR191689     2  0.0290      0.877 NA 0.992  0 0.000 0.000
#> SRR191690     2  0.0703      0.862 NA 0.976  0 0.024 0.000
#> SRR191691     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191692     2  0.5742      0.477 NA 0.508  0 0.000 0.088
#> SRR191693     2  0.6519      0.284 NA 0.408  0 0.000 0.192
#> SRR191694     2  0.4114      0.601 NA 0.624  0 0.000 0.000
#> SRR191695     2  0.0290      0.877 NA 0.992  0 0.000 0.000
#> SRR191696     2  0.0290      0.877 NA 0.992  0 0.000 0.000
#> SRR191697     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191698     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191699     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191700     2  0.1270      0.857 NA 0.948  0 0.000 0.000
#> SRR191701     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191702     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191703     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191704     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191705     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191706     2  0.0290      0.877 NA 0.992  0 0.000 0.000
#> SRR191707     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191708     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191709     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191710     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191711     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191712     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191713     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191714     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191715     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR191716     2  0.0703      0.862 NA 0.976  0 0.024 0.000
#> SRR191717     2  0.0798      0.869 NA 0.976  0 0.016 0.000
#> SRR191718     2  0.0290      0.877 NA 0.992  0 0.000 0.000
#> SRR537099     4  0.3662      0.744 NA 0.000  0 0.744 0.004
#> SRR537100     4  0.3508      0.745 NA 0.000  0 0.748 0.000
#> SRR537101     4  0.3039      0.774 NA 0.000  0 0.808 0.000
#> SRR537102     4  0.3480      0.748 NA 0.000  0 0.752 0.000
#> SRR537104     4  0.6408      0.424 NA 0.264  0 0.532 0.004
#> SRR537105     4  0.0290      0.787 NA 0.000  0 0.992 0.000
#> SRR537106     4  0.0290      0.788 NA 0.000  0 0.992 0.000
#> SRR537107     4  0.0162      0.788 NA 0.000  0 0.996 0.000
#> SRR537108     4  0.0000      0.788 NA 0.000  0 1.000 0.000
#> SRR537109     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR537110     2  0.1668      0.846 NA 0.940  0 0.032 0.028
#> SRR537111     4  0.0000      0.788 NA 0.000  0 1.000 0.000
#> SRR537113     5  0.5839      0.582 NA 0.168  0 0.108 0.680
#> SRR537114     5  0.4339      0.483 NA 0.000  0 0.296 0.684
#> SRR537115     5  0.2270      0.842 NA 0.020  0 0.000 0.904
#> SRR537116     2  0.0000      0.879 NA 1.000  0 0.000 0.000
#> SRR537117     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537118     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537119     5  0.0794      0.897 NA 0.000  0 0.000 0.972
#> SRR537120     5  0.0794      0.897 NA 0.000  0 0.000 0.972
#> SRR537121     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537122     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537123     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537124     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537125     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537126     5  0.0000      0.910 NA 0.000  0 0.000 1.000
#> SRR537127     3  0.0000      1.000 NA 0.000  1 0.000 0.000
#> SRR537128     3  0.0000      1.000 NA 0.000  1 0.000 0.000
#> SRR537129     3  0.0000      1.000 NA 0.000  1 0.000 0.000
#> SRR537130     3  0.0000      1.000 NA 0.000  1 0.000 0.000
#> SRR537131     3  0.0000      1.000 NA 0.000  1 0.000 0.000
#> SRR537132     3  0.0000      1.000 NA 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     4  0.1745      0.634 0.068 0.000  0 0.920 0.000 0.012
#> SRR191640     4  0.3432      0.405 0.216 0.000  0 0.764 0.000 0.020
#> SRR191641     4  0.2712      0.638 0.088 0.000  0 0.864 0.000 0.048
#> SRR191642     4  0.1003      0.660 0.016 0.000  0 0.964 0.000 0.020
#> SRR191643     4  0.3958      0.578 0.128 0.000  0 0.764 0.000 0.108
#> SRR191644     4  0.5481      0.507 0.128 0.088  0 0.676 0.000 0.108
#> SRR191645     4  0.3431      0.349 0.228 0.000  0 0.756 0.000 0.016
#> SRR191646     4  0.3457      0.341 0.232 0.000  0 0.752 0.000 0.016
#> SRR191647     4  0.1010      0.656 0.036 0.000  0 0.960 0.000 0.004
#> SRR191648     4  0.1010      0.656 0.036 0.000  0 0.960 0.000 0.004
#> SRR191649     4  0.2118      0.590 0.104 0.000  0 0.888 0.000 0.008
#> SRR191650     4  0.0146      0.661 0.000 0.000  0 0.996 0.000 0.004
#> SRR191651     4  0.0291      0.661 0.004 0.000  0 0.992 0.000 0.004
#> SRR191652     4  0.1010      0.656 0.036 0.000  0 0.960 0.000 0.004
#> SRR191653     4  0.5526      0.503 0.128 0.092  0 0.672 0.000 0.108
#> SRR191654     4  0.5613      0.494 0.128 0.100  0 0.664 0.000 0.108
#> SRR191655     4  0.3595      0.596 0.120 0.000  0 0.796 0.000 0.084
#> SRR191656     1  0.3394      0.595 0.776 0.000  0 0.200 0.000 0.024
#> SRR191657     1  0.3823      0.752 0.564 0.000  0 0.436 0.000 0.000
#> SRR191658     1  0.3828      0.750 0.560 0.000  0 0.440 0.000 0.000
#> SRR191659     1  0.3833      0.745 0.556 0.000  0 0.444 0.000 0.000
#> SRR191660     1  0.3828      0.750 0.560 0.000  0 0.440 0.000 0.000
#> SRR191661     1  0.3838      0.741 0.552 0.000  0 0.448 0.000 0.000
#> SRR191662     1  0.3851      0.726 0.540 0.000  0 0.460 0.000 0.000
#> SRR191663     1  0.3828      0.750 0.560 0.000  0 0.440 0.000 0.000
#> SRR191664     1  0.3833      0.745 0.556 0.000  0 0.444 0.000 0.000
#> SRR191665     4  0.4184     -0.665 0.488 0.000  0 0.500 0.000 0.012
#> SRR191666     4  0.0865      0.656 0.036 0.000  0 0.964 0.000 0.000
#> SRR191667     4  0.1007      0.651 0.044 0.000  0 0.956 0.000 0.000
#> SRR191668     1  0.3403      0.621 0.768 0.000  0 0.212 0.000 0.020
#> SRR191669     1  0.3403      0.621 0.768 0.000  0 0.212 0.000 0.020
#> SRR191670     1  0.3810      0.752 0.572 0.000  0 0.428 0.000 0.000
#> SRR191671     1  0.3810      0.752 0.572 0.000  0 0.428 0.000 0.000
#> SRR191672     1  0.3645      0.578 0.740 0.000  0 0.236 0.000 0.024
#> SRR191673     1  0.3619      0.582 0.744 0.000  0 0.232 0.000 0.024
#> SRR191674     6  0.2740      0.828 0.000 0.076  0 0.000 0.060 0.864
#> SRR191675     6  0.2740      0.828 0.000 0.076  0 0.000 0.060 0.864
#> SRR191677     6  0.2997      0.826 0.000 0.096  0 0.000 0.060 0.844
#> SRR191678     6  0.2740      0.828 0.000 0.076  0 0.000 0.060 0.864
#> SRR191679     2  0.3244      0.651 0.000 0.732  0 0.000 0.000 0.268
#> SRR191680     6  0.4443      0.616 0.000 0.276  0 0.000 0.060 0.664
#> SRR191681     6  0.2740      0.828 0.000 0.076  0 0.000 0.060 0.864
#> SRR191682     2  0.3866      0.213 0.000 0.516  0 0.000 0.000 0.484
#> SRR191683     2  0.3866      0.217 0.000 0.516  0 0.000 0.000 0.484
#> SRR191684     2  0.1556      0.831 0.000 0.920  0 0.000 0.000 0.080
#> SRR191685     2  0.2823      0.786 0.000 0.796  0 0.000 0.000 0.204
#> SRR191686     6  0.3717      0.317 0.000 0.384  0 0.000 0.000 0.616
#> SRR191687     2  0.3390      0.709 0.000 0.704  0 0.000 0.000 0.296
#> SRR191688     2  0.0508      0.812 0.004 0.984  0 0.000 0.000 0.012
#> SRR191689     2  0.3351      0.719 0.000 0.712  0 0.000 0.000 0.288
#> SRR191690     2  0.2203      0.756 0.004 0.896  0 0.084 0.000 0.016
#> SRR191691     2  0.2092      0.820 0.000 0.876  0 0.000 0.000 0.124
#> SRR191692     6  0.2697      0.828 0.000 0.092  0 0.000 0.044 0.864
#> SRR191693     6  0.2799      0.824 0.000 0.076  0 0.000 0.064 0.860
#> SRR191694     6  0.3547      0.577 0.000 0.300  0 0.000 0.004 0.696
#> SRR191695     2  0.3240      0.647 0.004 0.752  0 0.000 0.000 0.244
#> SRR191696     2  0.2703      0.758 0.004 0.824  0 0.000 0.000 0.172
#> SRR191697     2  0.1141      0.817 0.000 0.948  0 0.000 0.000 0.052
#> SRR191698     2  0.2631      0.810 0.000 0.820  0 0.000 0.000 0.180
#> SRR191699     2  0.2092      0.820 0.000 0.876  0 0.000 0.000 0.124
#> SRR191700     2  0.3446      0.658 0.000 0.692  0 0.000 0.000 0.308
#> SRR191701     2  0.1387      0.828 0.000 0.932  0 0.000 0.000 0.068
#> SRR191702     2  0.0000      0.810 0.000 1.000  0 0.000 0.000 0.000
#> SRR191703     2  0.0000      0.810 0.000 1.000  0 0.000 0.000 0.000
#> SRR191704     2  0.0713      0.822 0.000 0.972  0 0.000 0.000 0.028
#> SRR191705     2  0.2260      0.820 0.000 0.860  0 0.000 0.000 0.140
#> SRR191706     2  0.2969      0.782 0.000 0.776  0 0.000 0.000 0.224
#> SRR191707     2  0.0000      0.810 0.000 1.000  0 0.000 0.000 0.000
#> SRR191708     2  0.2912      0.787 0.000 0.784  0 0.000 0.000 0.216
#> SRR191709     2  0.0865      0.824 0.000 0.964  0 0.000 0.000 0.036
#> SRR191710     2  0.2912      0.787 0.000 0.784  0 0.000 0.000 0.216
#> SRR191711     2  0.1610      0.829 0.000 0.916  0 0.000 0.000 0.084
#> SRR191712     2  0.2135      0.826 0.000 0.872  0 0.000 0.000 0.128
#> SRR191713     2  0.2762      0.790 0.000 0.804  0 0.000 0.000 0.196
#> SRR191714     2  0.2854      0.785 0.000 0.792  0 0.000 0.000 0.208
#> SRR191715     2  0.0146      0.808 0.004 0.996  0 0.000 0.000 0.000
#> SRR191716     2  0.2265      0.760 0.004 0.896  0 0.076 0.000 0.024
#> SRR191717     2  0.3301      0.657 0.004 0.772  0 0.008 0.000 0.216
#> SRR191718     2  0.1765      0.799 0.000 0.904  0 0.000 0.000 0.096
#> SRR537099     4  0.4475      0.566 0.128 0.020  0 0.744 0.000 0.108
#> SRR537100     4  0.3873      0.584 0.124 0.000  0 0.772 0.000 0.104
#> SRR537101     4  0.1320      0.656 0.036 0.000  0 0.948 0.000 0.016
#> SRR537102     4  0.3686      0.592 0.124 0.000  0 0.788 0.000 0.088
#> SRR537104     4  0.5898      0.313 0.080 0.300  0 0.560 0.000 0.060
#> SRR537105     4  0.3374      0.375 0.208 0.000  0 0.772 0.000 0.020
#> SRR537106     4  0.3253      0.407 0.192 0.000  0 0.788 0.000 0.020
#> SRR537107     4  0.3284      0.393 0.196 0.000  0 0.784 0.000 0.020
#> SRR537108     4  0.3284      0.393 0.196 0.000  0 0.784 0.000 0.020
#> SRR537109     2  0.0405      0.811 0.004 0.988  0 0.000 0.000 0.008
#> SRR537110     2  0.2473      0.818 0.000 0.856  0 0.008 0.000 0.136
#> SRR537111     4  0.2946      0.450 0.176 0.000  0 0.812 0.000 0.012
#> SRR537113     5  0.4559      0.649 0.004 0.012  0 0.020 0.620 0.344
#> SRR537114     5  0.4901      0.659 0.004 0.004  0 0.060 0.612 0.320
#> SRR537115     5  0.3820      0.683 0.000 0.004  0 0.004 0.660 0.332
#> SRR537116     2  0.0260      0.814 0.000 0.992  0 0.000 0.000 0.008
#> SRR537117     5  0.1910      0.759 0.000 0.000  0 0.000 0.892 0.108
#> SRR537118     5  0.3634      0.678 0.000 0.000  0 0.000 0.644 0.356
#> SRR537119     5  0.3774      0.629 0.000 0.000  0 0.000 0.592 0.408
#> SRR537120     5  0.3774      0.629 0.000 0.000  0 0.000 0.592 0.408
#> SRR537121     5  0.0000      0.765 0.000 0.000  0 0.000 1.000 0.000
#> SRR537122     5  0.1610      0.778 0.000 0.000  0 0.000 0.916 0.084
#> SRR537123     5  0.0000      0.765 0.000 0.000  0 0.000 1.000 0.000
#> SRR537124     5  0.0000      0.765 0.000 0.000  0 0.000 1.000 0.000
#> SRR537125     5  0.0000      0.765 0.000 0.000  0 0.000 1.000 0.000
#> SRR537126     5  0.0000      0.765 0.000 0.000  0 0.000 1.000 0.000
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.970       0.986         0.4981 0.499   0.499
#> 3 3 0.768           0.859       0.914         0.1849 0.938   0.876
#> 4 4 0.528           0.456       0.718         0.1898 0.695   0.414
#> 5 5 0.723           0.639       0.770         0.0989 0.800   0.456
#> 6 6 0.844           0.860       0.905         0.0566 0.913   0.655
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.0000      0.969 1.000 0.000
#> SRR191640     1  0.0000      0.969 1.000 0.000
#> SRR191641     1  0.0000      0.969 1.000 0.000
#> SRR191642     1  0.0000      0.969 1.000 0.000
#> SRR191643     1  0.0000      0.969 1.000 0.000
#> SRR191644     1  0.0000      0.969 1.000 0.000
#> SRR191645     1  0.0000      0.969 1.000 0.000
#> SRR191646     1  0.0000      0.969 1.000 0.000
#> SRR191647     1  0.0000      0.969 1.000 0.000
#> SRR191648     1  0.0000      0.969 1.000 0.000
#> SRR191649     1  0.0000      0.969 1.000 0.000
#> SRR191650     1  0.0000      0.969 1.000 0.000
#> SRR191651     1  0.0000      0.969 1.000 0.000
#> SRR191652     1  0.0000      0.969 1.000 0.000
#> SRR191653     1  0.0000      0.969 1.000 0.000
#> SRR191654     1  0.0000      0.969 1.000 0.000
#> SRR191655     1  0.0000      0.969 1.000 0.000
#> SRR191656     1  0.6712      0.804 0.824 0.176
#> SRR191657     1  0.0000      0.969 1.000 0.000
#> SRR191658     1  0.0000      0.969 1.000 0.000
#> SRR191659     1  0.0000      0.969 1.000 0.000
#> SRR191660     1  0.0000      0.969 1.000 0.000
#> SRR191661     1  0.0000      0.969 1.000 0.000
#> SRR191662     1  0.0000      0.969 1.000 0.000
#> SRR191663     1  0.0000      0.969 1.000 0.000
#> SRR191664     1  0.0000      0.969 1.000 0.000
#> SRR191665     1  0.0000      0.969 1.000 0.000
#> SRR191666     1  0.0000      0.969 1.000 0.000
#> SRR191667     1  0.0000      0.969 1.000 0.000
#> SRR191668     1  0.0000      0.969 1.000 0.000
#> SRR191669     1  0.0000      0.969 1.000 0.000
#> SRR191670     1  0.0000      0.969 1.000 0.000
#> SRR191671     1  0.0000      0.969 1.000 0.000
#> SRR191672     1  0.3114      0.927 0.944 0.056
#> SRR191673     1  0.5946      0.842 0.856 0.144
#> SRR191674     2  0.0000      1.000 0.000 1.000
#> SRR191675     2  0.0000      1.000 0.000 1.000
#> SRR191677     2  0.0000      1.000 0.000 1.000
#> SRR191678     2  0.0000      1.000 0.000 1.000
#> SRR191679     2  0.0000      1.000 0.000 1.000
#> SRR191680     2  0.0000      1.000 0.000 1.000
#> SRR191681     2  0.0000      1.000 0.000 1.000
#> SRR191682     2  0.0000      1.000 0.000 1.000
#> SRR191683     2  0.0000      1.000 0.000 1.000
#> SRR191684     2  0.0000      1.000 0.000 1.000
#> SRR191685     2  0.0000      1.000 0.000 1.000
#> SRR191686     2  0.0000      1.000 0.000 1.000
#> SRR191687     2  0.0000      1.000 0.000 1.000
#> SRR191688     2  0.0000      1.000 0.000 1.000
#> SRR191689     2  0.0000      1.000 0.000 1.000
#> SRR191690     2  0.0000      1.000 0.000 1.000
#> SRR191691     2  0.0000      1.000 0.000 1.000
#> SRR191692     2  0.0000      1.000 0.000 1.000
#> SRR191693     2  0.0000      1.000 0.000 1.000
#> SRR191694     2  0.0000      1.000 0.000 1.000
#> SRR191695     2  0.0000      1.000 0.000 1.000
#> SRR191696     2  0.0000      1.000 0.000 1.000
#> SRR191697     2  0.0000      1.000 0.000 1.000
#> SRR191698     2  0.0000      1.000 0.000 1.000
#> SRR191699     2  0.0000      1.000 0.000 1.000
#> SRR191700     2  0.0000      1.000 0.000 1.000
#> SRR191701     2  0.0000      1.000 0.000 1.000
#> SRR191702     2  0.0000      1.000 0.000 1.000
#> SRR191703     2  0.0000      1.000 0.000 1.000
#> SRR191704     2  0.0000      1.000 0.000 1.000
#> SRR191705     2  0.0000      1.000 0.000 1.000
#> SRR191706     2  0.0000      1.000 0.000 1.000
#> SRR191707     2  0.0000      1.000 0.000 1.000
#> SRR191708     2  0.0000      1.000 0.000 1.000
#> SRR191709     2  0.0000      1.000 0.000 1.000
#> SRR191710     2  0.0000      1.000 0.000 1.000
#> SRR191711     2  0.0000      1.000 0.000 1.000
#> SRR191712     2  0.0000      1.000 0.000 1.000
#> SRR191713     2  0.0000      1.000 0.000 1.000
#> SRR191714     2  0.0000      1.000 0.000 1.000
#> SRR191715     2  0.0000      1.000 0.000 1.000
#> SRR191716     2  0.0000      1.000 0.000 1.000
#> SRR191717     2  0.0000      1.000 0.000 1.000
#> SRR191718     2  0.0000      1.000 0.000 1.000
#> SRR537099     1  0.0000      0.969 1.000 0.000
#> SRR537100     1  0.0000      0.969 1.000 0.000
#> SRR537101     1  0.0000      0.969 1.000 0.000
#> SRR537102     1  0.9944      0.223 0.544 0.456
#> SRR537104     1  0.6247      0.829 0.844 0.156
#> SRR537105     1  0.1633      0.953 0.976 0.024
#> SRR537106     1  0.4022      0.906 0.920 0.080
#> SRR537107     1  0.8443      0.659 0.728 0.272
#> SRR537108     1  0.6712      0.804 0.824 0.176
#> SRR537109     2  0.0000      1.000 0.000 1.000
#> SRR537110     2  0.0000      1.000 0.000 1.000
#> SRR537111     1  0.1414      0.955 0.980 0.020
#> SRR537113     2  0.0376      0.996 0.004 0.996
#> SRR537114     2  0.0000      1.000 0.000 1.000
#> SRR537115     2  0.0000      1.000 0.000 1.000
#> SRR537116     2  0.0000      1.000 0.000 1.000
#> SRR537117     2  0.0000      1.000 0.000 1.000
#> SRR537118     2  0.0000      1.000 0.000 1.000
#> SRR537119     2  0.0000      1.000 0.000 1.000
#> SRR537120     2  0.0000      1.000 0.000 1.000
#> SRR537121     2  0.0000      1.000 0.000 1.000
#> SRR537122     2  0.0000      1.000 0.000 1.000
#> SRR537123     2  0.0000      1.000 0.000 1.000
#> SRR537124     2  0.0000      1.000 0.000 1.000
#> SRR537125     2  0.0000      1.000 0.000 1.000
#> SRR537126     2  0.0000      1.000 0.000 1.000
#> SRR537127     1  0.0000      0.969 1.000 0.000
#> SRR537128     1  0.0000      0.969 1.000 0.000
#> SRR537129     1  0.0000      0.969 1.000 0.000
#> SRR537130     1  0.0000      0.969 1.000 0.000
#> SRR537131     1  0.0000      0.969 1.000 0.000
#> SRR537132     1  0.0000      0.969 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000      0.839 1.000 0.000 0.000
#> SRR191640     1  0.0592      0.837 0.988 0.000 0.012
#> SRR191641     1  0.6045      0.476 0.620 0.000 0.380
#> SRR191642     1  0.1163      0.837 0.972 0.000 0.028
#> SRR191643     1  0.6168      0.406 0.588 0.000 0.412
#> SRR191644     3  0.2796      0.992 0.092 0.000 0.908
#> SRR191645     1  0.4555      0.797 0.800 0.000 0.200
#> SRR191646     1  0.4555      0.797 0.800 0.000 0.200
#> SRR191647     1  0.4702      0.791 0.788 0.000 0.212
#> SRR191648     1  0.4702      0.791 0.788 0.000 0.212
#> SRR191649     1  0.4291      0.804 0.820 0.000 0.180
#> SRR191650     1  0.4702      0.791 0.788 0.000 0.212
#> SRR191651     1  0.3619      0.819 0.864 0.000 0.136
#> SRR191652     1  0.2356      0.825 0.928 0.000 0.072
#> SRR191653     3  0.2165      0.962 0.064 0.000 0.936
#> SRR191654     3  0.2796      0.971 0.092 0.000 0.908
#> SRR191655     1  0.4178      0.788 0.828 0.000 0.172
#> SRR191656     1  0.0424      0.838 0.992 0.000 0.008
#> SRR191657     1  0.0000      0.839 1.000 0.000 0.000
#> SRR191658     1  0.0237      0.838 0.996 0.000 0.004
#> SRR191659     1  0.0237      0.838 0.996 0.000 0.004
#> SRR191660     1  0.0000      0.839 1.000 0.000 0.000
#> SRR191661     1  0.0000      0.839 1.000 0.000 0.000
#> SRR191662     1  0.0237      0.838 0.996 0.000 0.004
#> SRR191663     1  0.0000      0.839 1.000 0.000 0.000
#> SRR191664     1  0.0237      0.838 0.996 0.000 0.004
#> SRR191665     1  0.0000      0.839 1.000 0.000 0.000
#> SRR191666     1  0.5497      0.510 0.708 0.000 0.292
#> SRR191667     1  0.4931      0.641 0.768 0.000 0.232
#> SRR191668     1  0.0424      0.838 0.992 0.000 0.008
#> SRR191669     1  0.0424      0.838 0.992 0.000 0.008
#> SRR191670     1  0.0237      0.838 0.996 0.000 0.004
#> SRR191671     1  0.0237      0.838 0.996 0.000 0.004
#> SRR191672     1  0.0747      0.838 0.984 0.000 0.016
#> SRR191673     1  0.0592      0.838 0.988 0.000 0.012
#> SRR191674     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191675     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191677     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191678     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191679     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191680     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191681     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191682     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191683     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191684     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191685     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191686     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191687     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191688     2  0.1182      0.941 0.012 0.976 0.012
#> SRR191689     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191690     2  0.1182      0.941 0.012 0.976 0.012
#> SRR191691     2  0.0424      0.949 0.000 0.992 0.008
#> SRR191692     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191693     2  0.0237      0.949 0.000 0.996 0.004
#> SRR191694     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191695     2  0.0424      0.950 0.000 0.992 0.008
#> SRR191696     2  0.0424      0.950 0.000 0.992 0.008
#> SRR191697     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191698     2  0.0424      0.949 0.000 0.992 0.008
#> SRR191699     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191700     2  0.0424      0.950 0.000 0.992 0.008
#> SRR191701     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191702     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191703     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191704     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191705     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191706     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191707     2  0.0592      0.948 0.000 0.988 0.012
#> SRR191708     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191709     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191710     2  0.0000      0.951 0.000 1.000 0.000
#> SRR191711     2  0.0424      0.950 0.000 0.992 0.008
#> SRR191712     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191713     2  0.0661      0.948 0.004 0.988 0.008
#> SRR191714     2  0.0424      0.950 0.000 0.992 0.008
#> SRR191715     2  0.0237      0.950 0.000 0.996 0.004
#> SRR191716     2  0.1620      0.932 0.024 0.964 0.012
#> SRR191717     2  0.0592      0.948 0.000 0.988 0.012
#> SRR191718     2  0.0000      0.951 0.000 1.000 0.000
#> SRR537099     1  0.7363      0.440 0.588 0.040 0.372
#> SRR537100     1  0.5968      0.523 0.636 0.000 0.364
#> SRR537101     1  0.3816      0.800 0.852 0.000 0.148
#> SRR537102     1  0.8444      0.441 0.612 0.236 0.152
#> SRR537104     1  0.8996      0.347 0.560 0.244 0.196
#> SRR537105     1  0.4750      0.789 0.784 0.000 0.216
#> SRR537106     1  0.4750      0.789 0.784 0.000 0.216
#> SRR537107     1  0.4750      0.789 0.784 0.000 0.216
#> SRR537108     1  0.4750      0.789 0.784 0.000 0.216
#> SRR537109     2  0.2297      0.925 0.020 0.944 0.036
#> SRR537110     2  0.1337      0.940 0.012 0.972 0.016
#> SRR537111     1  0.4842      0.781 0.776 0.000 0.224
#> SRR537113     2  0.5497      0.669 0.000 0.708 0.292
#> SRR537114     2  0.5560      0.657 0.000 0.700 0.300
#> SRR537115     2  0.4654      0.780 0.000 0.792 0.208
#> SRR537116     2  0.0424      0.950 0.000 0.992 0.008
#> SRR537117     2  0.2537      0.902 0.000 0.920 0.080
#> SRR537118     2  0.4452      0.803 0.000 0.808 0.192
#> SRR537119     2  0.4654      0.784 0.000 0.792 0.208
#> SRR537120     2  0.2711      0.900 0.000 0.912 0.088
#> SRR537121     2  0.4702      0.775 0.000 0.788 0.212
#> SRR537122     2  0.5465      0.675 0.000 0.712 0.288
#> SRR537123     2  0.4702      0.775 0.000 0.788 0.212
#> SRR537124     2  0.2537      0.902 0.000 0.920 0.080
#> SRR537125     2  0.4178      0.821 0.000 0.828 0.172
#> SRR537126     2  0.4504      0.795 0.000 0.804 0.196
#> SRR537127     3  0.2796      0.992 0.092 0.000 0.908
#> SRR537128     3  0.2796      0.992 0.092 0.000 0.908
#> SRR537129     3  0.2796      0.992 0.092 0.000 0.908
#> SRR537130     3  0.2796      0.992 0.092 0.000 0.908
#> SRR537131     3  0.2796      0.992 0.092 0.000 0.908
#> SRR537132     3  0.2796      0.992 0.092 0.000 0.908
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0000     0.9002 1.000 0.000 0.000 0.000
#> SRR191640     2  0.5738     0.0233 0.432 0.540 0.028 0.000
#> SRR191641     3  0.6079     0.4991 0.052 0.380 0.568 0.000
#> SRR191642     2  0.6617     0.0982 0.280 0.600 0.120 0.000
#> SRR191643     2  0.6748    -0.1510 0.112 0.560 0.328 0.000
#> SRR191644     3  0.3099     0.8097 0.020 0.104 0.876 0.000
#> SRR191645     2  0.7718    -0.0700 0.408 0.452 0.028 0.112
#> SRR191646     2  0.7715    -0.0596 0.404 0.456 0.028 0.112
#> SRR191647     2  0.7887     0.0679 0.344 0.496 0.036 0.124
#> SRR191648     2  0.7944     0.0703 0.336 0.496 0.036 0.132
#> SRR191649     2  0.7645    -0.1010 0.424 0.444 0.028 0.104
#> SRR191650     1  0.4882     0.7352 0.776 0.004 0.056 0.164
#> SRR191651     1  0.3634     0.8204 0.856 0.000 0.048 0.096
#> SRR191652     1  0.3205     0.8260 0.872 0.000 0.024 0.104
#> SRR191653     3  0.2140     0.8334 0.008 0.052 0.932 0.008
#> SRR191654     3  0.5510     0.3640 0.016 0.480 0.504 0.000
#> SRR191655     2  0.7078     0.0798 0.276 0.580 0.136 0.008
#> SRR191656     1  0.3024     0.8153 0.852 0.000 0.000 0.148
#> SRR191657     1  0.0188     0.9006 0.996 0.000 0.004 0.000
#> SRR191658     1  0.0188     0.9006 0.996 0.000 0.004 0.000
#> SRR191659     1  0.0188     0.9006 0.996 0.000 0.004 0.000
#> SRR191660     1  0.0000     0.9002 1.000 0.000 0.000 0.000
#> SRR191661     1  0.0000     0.9002 1.000 0.000 0.000 0.000
#> SRR191662     1  0.0188     0.9006 0.996 0.000 0.004 0.000
#> SRR191663     1  0.0000     0.9002 1.000 0.000 0.000 0.000
#> SRR191664     1  0.0188     0.9006 0.996 0.000 0.004 0.000
#> SRR191665     1  0.0000     0.9002 1.000 0.000 0.000 0.000
#> SRR191666     1  0.2408     0.8412 0.896 0.000 0.104 0.000
#> SRR191667     1  0.2868     0.8178 0.864 0.000 0.136 0.000
#> SRR191668     1  0.2593     0.8514 0.892 0.000 0.004 0.104
#> SRR191669     1  0.2999     0.8296 0.864 0.000 0.004 0.132
#> SRR191670     1  0.0524     0.9000 0.988 0.000 0.004 0.008
#> SRR191671     1  0.0524     0.9000 0.988 0.000 0.004 0.008
#> SRR191672     1  0.3074     0.8144 0.848 0.000 0.000 0.152
#> SRR191673     1  0.3074     0.8144 0.848 0.000 0.000 0.152
#> SRR191674     4  0.4214     0.7058 0.000 0.204 0.016 0.780
#> SRR191675     4  0.4214     0.7058 0.000 0.204 0.016 0.780
#> SRR191677     4  0.5237     0.6234 0.000 0.356 0.016 0.628
#> SRR191678     4  0.5253     0.6186 0.000 0.360 0.016 0.624
#> SRR191679     4  0.5253     0.6186 0.000 0.360 0.016 0.624
#> SRR191680     4  0.5253     0.6186 0.000 0.360 0.016 0.624
#> SRR191681     4  0.5047     0.6619 0.000 0.316 0.016 0.668
#> SRR191682     4  0.4535     0.6993 0.000 0.240 0.016 0.744
#> SRR191683     4  0.4535     0.6993 0.000 0.240 0.016 0.744
#> SRR191684     4  0.5220     0.6302 0.000 0.352 0.016 0.632
#> SRR191685     4  0.5090     0.6566 0.000 0.324 0.016 0.660
#> SRR191686     4  0.4567     0.6987 0.000 0.244 0.016 0.740
#> SRR191687     4  0.4661     0.6940 0.000 0.256 0.016 0.728
#> SRR191688     2  0.1743     0.4302 0.004 0.940 0.000 0.056
#> SRR191689     4  0.5151     0.4254 0.000 0.464 0.004 0.532
#> SRR191690     2  0.1661     0.4318 0.004 0.944 0.000 0.052
#> SRR191691     2  0.4888    -0.1138 0.000 0.588 0.000 0.412
#> SRR191692     4  0.5090     0.6556 0.000 0.324 0.016 0.660
#> SRR191693     4  0.4175     0.7051 0.000 0.200 0.016 0.784
#> SRR191694     4  0.4214     0.7049 0.000 0.204 0.016 0.780
#> SRR191695     2  0.4898    -0.1232 0.000 0.584 0.000 0.416
#> SRR191696     2  0.4866    -0.0960 0.000 0.596 0.000 0.404
#> SRR191697     2  0.4916    -0.1438 0.000 0.576 0.000 0.424
#> SRR191698     2  0.4898    -0.1236 0.000 0.584 0.000 0.416
#> SRR191699     2  0.4941    -0.1744 0.000 0.564 0.000 0.436
#> SRR191700     2  0.4877    -0.1045 0.000 0.592 0.000 0.408
#> SRR191701     2  0.4925    -0.1538 0.000 0.572 0.000 0.428
#> SRR191702     2  0.4955    -0.1991 0.000 0.556 0.000 0.444
#> SRR191703     2  0.4967    -0.2191 0.000 0.548 0.000 0.452
#> SRR191704     2  0.4985    -0.2660 0.000 0.532 0.000 0.468
#> SRR191705     2  0.4989    -0.2775 0.000 0.528 0.000 0.472
#> SRR191706     4  0.4843     0.5736 0.000 0.396 0.000 0.604
#> SRR191707     2  0.3074     0.3575 0.000 0.848 0.000 0.152
#> SRR191708     2  0.4989    -0.2773 0.000 0.528 0.000 0.472
#> SRR191709     2  0.4961    -0.2108 0.000 0.552 0.000 0.448
#> SRR191710     4  0.4967     0.4593 0.000 0.452 0.000 0.548
#> SRR191711     2  0.2973     0.3669 0.000 0.856 0.000 0.144
#> SRR191712     2  0.3688     0.2870 0.000 0.792 0.000 0.208
#> SRR191713     2  0.3052     0.3760 0.004 0.860 0.000 0.136
#> SRR191714     2  0.4936    -0.0259 0.004 0.624 0.000 0.372
#> SRR191715     2  0.3569     0.3055 0.000 0.804 0.000 0.196
#> SRR191716     2  0.1661     0.4318 0.004 0.944 0.000 0.052
#> SRR191717     2  0.3105     0.3733 0.004 0.856 0.000 0.140
#> SRR191718     2  0.4967    -0.2208 0.000 0.548 0.000 0.452
#> SRR537099     2  0.5067     0.1605 0.048 0.736 0.216 0.000
#> SRR537100     2  0.5564     0.1321 0.076 0.708 0.216 0.000
#> SRR537101     2  0.7015    -0.0651 0.168 0.568 0.264 0.000
#> SRR537102     2  0.3335     0.3274 0.016 0.856 0.128 0.000
#> SRR537104     2  0.4919     0.1915 0.048 0.752 0.200 0.000
#> SRR537105     2  0.7543     0.1655 0.184 0.588 0.028 0.200
#> SRR537106     2  0.7609     0.1593 0.192 0.580 0.028 0.200
#> SRR537107     2  0.7543     0.1655 0.184 0.588 0.028 0.200
#> SRR537108     2  0.7609     0.1593 0.192 0.580 0.028 0.200
#> SRR537109     2  0.1369     0.4424 0.004 0.964 0.016 0.016
#> SRR537110     2  0.0779     0.4462 0.004 0.980 0.016 0.000
#> SRR537111     1  0.5947     0.5919 0.628 0.000 0.060 0.312
#> SRR537113     4  0.1557     0.6210 0.000 0.000 0.056 0.944
#> SRR537114     4  0.4562     0.4601 0.000 0.152 0.056 0.792
#> SRR537115     4  0.1557     0.6210 0.000 0.000 0.056 0.944
#> SRR537116     2  0.1637     0.4266 0.000 0.940 0.000 0.060
#> SRR537117     4  0.0000     0.6478 0.000 0.000 0.000 1.000
#> SRR537118     4  0.2831     0.6497 0.000 0.120 0.004 0.876
#> SRR537119     4  0.3710     0.6008 0.000 0.192 0.004 0.804
#> SRR537120     4  0.3208     0.6365 0.000 0.148 0.004 0.848
#> SRR537121     4  0.1557     0.6210 0.000 0.000 0.056 0.944
#> SRR537122     4  0.1743     0.6228 0.000 0.004 0.056 0.940
#> SRR537123     4  0.1557     0.6210 0.000 0.000 0.056 0.944
#> SRR537124     4  0.0707     0.6400 0.000 0.000 0.020 0.980
#> SRR537125     4  0.1474     0.6239 0.000 0.000 0.052 0.948
#> SRR537126     4  0.1474     0.6239 0.000 0.000 0.052 0.948
#> SRR537127     3  0.1118     0.8571 0.036 0.000 0.964 0.000
#> SRR537128     3  0.1118     0.8571 0.036 0.000 0.964 0.000
#> SRR537129     3  0.1118     0.8571 0.036 0.000 0.964 0.000
#> SRR537130     3  0.1118     0.8571 0.036 0.000 0.964 0.000
#> SRR537131     3  0.1118     0.8571 0.036 0.000 0.964 0.000
#> SRR537132     3  0.1118     0.8571 0.036 0.000 0.964 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191640     4  0.5404    0.65603 0.184 0.152 0.000 0.664 0.000
#> SRR191641     3  0.3628    0.64810 0.012 0.000 0.772 0.216 0.000
#> SRR191642     4  0.5807    0.69825 0.072 0.144 0.088 0.696 0.000
#> SRR191643     4  0.5965    0.49272 0.044 0.048 0.320 0.588 0.000
#> SRR191644     3  0.1195    0.87381 0.012 0.000 0.960 0.028 0.000
#> SRR191645     4  0.4618    0.75549 0.068 0.000 0.000 0.724 0.208
#> SRR191646     4  0.4618    0.75549 0.068 0.000 0.000 0.724 0.208
#> SRR191647     4  0.4497    0.75760 0.060 0.000 0.000 0.732 0.208
#> SRR191648     4  0.4528    0.75499 0.060 0.000 0.000 0.728 0.212
#> SRR191649     4  0.4718    0.75086 0.092 0.000 0.000 0.728 0.180
#> SRR191650     4  0.6763    0.36415 0.276 0.000 0.000 0.392 0.332
#> SRR191651     1  0.2411    0.86383 0.884 0.000 0.000 0.008 0.108
#> SRR191652     1  0.2929    0.81337 0.840 0.000 0.000 0.008 0.152
#> SRR191653     3  0.4538   -0.00254 0.008 0.000 0.540 0.452 0.000
#> SRR191654     4  0.4449    0.45575 0.004 0.008 0.352 0.636 0.000
#> SRR191655     4  0.5694    0.71395 0.052 0.104 0.108 0.724 0.012
#> SRR191656     1  0.1851    0.90395 0.912 0.000 0.000 0.000 0.088
#> SRR191657     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191658     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191659     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191660     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191661     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191662     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191663     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191664     1  0.0290    0.94683 0.992 0.000 0.000 0.008 0.000
#> SRR191665     1  0.0609    0.94085 0.980 0.000 0.000 0.020 0.000
#> SRR191666     1  0.1544    0.91066 0.932 0.000 0.068 0.000 0.000
#> SRR191667     1  0.2930    0.81097 0.832 0.000 0.164 0.004 0.000
#> SRR191668     1  0.1341    0.92162 0.944 0.000 0.000 0.000 0.056
#> SRR191669     1  0.1410    0.92001 0.940 0.000 0.000 0.000 0.060
#> SRR191670     1  0.0162    0.94458 0.996 0.000 0.000 0.000 0.004
#> SRR191671     1  0.0162    0.94458 0.996 0.000 0.000 0.000 0.004
#> SRR191672     1  0.1792    0.90682 0.916 0.000 0.000 0.000 0.084
#> SRR191673     1  0.1965    0.89745 0.904 0.000 0.000 0.000 0.096
#> SRR191674     5  0.7086    0.19499 0.000 0.292 0.016 0.264 0.428
#> SRR191675     5  0.7066    0.21307 0.000 0.284 0.016 0.264 0.436
#> SRR191677     2  0.6854    0.27124 0.000 0.492 0.016 0.268 0.224
#> SRR191678     2  0.6771    0.30239 0.000 0.508 0.016 0.268 0.208
#> SRR191679     2  0.6484    0.37670 0.000 0.552 0.016 0.268 0.164
#> SRR191680     2  0.6814    0.28737 0.000 0.500 0.016 0.268 0.216
#> SRR191681     2  0.7162   -0.00139 0.000 0.384 0.016 0.268 0.332
#> SRR191682     2  0.7300   -0.00622 0.004 0.380 0.016 0.268 0.332
#> SRR191683     2  0.7310   -0.06878 0.004 0.360 0.016 0.268 0.352
#> SRR191684     2  0.7032    0.17363 0.000 0.448 0.016 0.268 0.268
#> SRR191685     2  0.7148    0.03773 0.000 0.396 0.016 0.268 0.320
#> SRR191686     5  0.7309    0.03582 0.004 0.348 0.016 0.268 0.364
#> SRR191687     5  0.7173    0.02746 0.000 0.352 0.016 0.268 0.364
#> SRR191688     2  0.0794    0.75972 0.000 0.972 0.000 0.028 0.000
#> SRR191689     2  0.3596    0.64503 0.000 0.776 0.012 0.212 0.000
#> SRR191690     2  0.1043    0.75172 0.000 0.960 0.000 0.040 0.000
#> SRR191691     2  0.0671    0.76655 0.000 0.980 0.000 0.004 0.016
#> SRR191692     2  0.7067    0.14523 0.000 0.436 0.016 0.268 0.280
#> SRR191693     5  0.6951    0.24162 0.000 0.280 0.016 0.236 0.468
#> SRR191694     5  0.7077    0.24280 0.004 0.280 0.016 0.232 0.468
#> SRR191695     2  0.0510    0.76739 0.000 0.984 0.000 0.000 0.016
#> SRR191696     2  0.0671    0.76655 0.000 0.980 0.000 0.004 0.016
#> SRR191697     2  0.0510    0.76739 0.000 0.984 0.000 0.000 0.016
#> SRR191698     2  0.0510    0.76739 0.000 0.984 0.000 0.000 0.016
#> SRR191699     2  0.0000    0.76810 0.000 1.000 0.000 0.000 0.000
#> SRR191700     2  0.0671    0.76655 0.000 0.980 0.000 0.004 0.016
#> SRR191701     2  0.0510    0.76739 0.000 0.984 0.000 0.000 0.016
#> SRR191702     2  0.1469    0.76313 0.000 0.948 0.000 0.036 0.016
#> SRR191703     2  0.1701    0.75955 0.000 0.936 0.000 0.048 0.016
#> SRR191704     2  0.2519    0.73687 0.000 0.884 0.000 0.100 0.016
#> SRR191705     2  0.2293    0.74469 0.000 0.900 0.000 0.084 0.016
#> SRR191706     2  0.4096    0.66698 0.000 0.784 0.000 0.144 0.072
#> SRR191707     2  0.0671    0.76655 0.000 0.980 0.000 0.004 0.016
#> SRR191708     2  0.1725    0.76078 0.000 0.936 0.000 0.044 0.020
#> SRR191709     2  0.1981    0.75351 0.000 0.920 0.000 0.064 0.016
#> SRR191710     2  0.2879    0.72857 0.000 0.868 0.000 0.100 0.032
#> SRR191711     2  0.0404    0.76656 0.000 0.988 0.000 0.012 0.000
#> SRR191712     2  0.0510    0.76540 0.000 0.984 0.000 0.016 0.000
#> SRR191713     2  0.0794    0.76510 0.000 0.972 0.000 0.028 0.000
#> SRR191714     2  0.0609    0.76530 0.000 0.980 0.000 0.020 0.000
#> SRR191715     2  0.0404    0.76756 0.000 0.988 0.000 0.012 0.000
#> SRR191716     2  0.2516    0.64129 0.000 0.860 0.000 0.140 0.000
#> SRR191717     2  0.1205    0.75049 0.000 0.956 0.000 0.040 0.004
#> SRR191718     2  0.0510    0.76739 0.000 0.984 0.000 0.000 0.016
#> SRR537099     4  0.5261    0.67282 0.012 0.200 0.092 0.696 0.000
#> SRR537100     4  0.5453    0.66065 0.012 0.200 0.108 0.680 0.000
#> SRR537101     4  0.5982    0.57766 0.032 0.084 0.260 0.624 0.000
#> SRR537102     4  0.4066    0.57672 0.000 0.324 0.004 0.672 0.000
#> SRR537104     4  0.5178    0.67814 0.016 0.204 0.076 0.704 0.000
#> SRR537105     4  0.4765    0.76032 0.040 0.020 0.000 0.728 0.212
#> SRR537106     4  0.4744    0.76012 0.044 0.016 0.000 0.728 0.212
#> SRR537107     4  0.4779    0.75910 0.036 0.024 0.000 0.728 0.212
#> SRR537108     4  0.4765    0.76032 0.040 0.020 0.000 0.728 0.212
#> SRR537109     2  0.4235   -0.04064 0.000 0.576 0.000 0.424 0.000
#> SRR537110     2  0.4268   -0.12298 0.000 0.556 0.000 0.444 0.000
#> SRR537111     5  0.4794   -0.03103 0.032 0.000 0.000 0.344 0.624
#> SRR537113     5  0.3074    0.41763 0.000 0.000 0.000 0.196 0.804
#> SRR537114     5  0.4835   -0.12570 0.000 0.028 0.000 0.380 0.592
#> SRR537115     5  0.1043    0.63942 0.000 0.000 0.000 0.040 0.960
#> SRR537116     2  0.0703    0.76196 0.000 0.976 0.000 0.024 0.000
#> SRR537117     5  0.0000    0.65823 0.000 0.000 0.000 0.000 1.000
#> SRR537118     5  0.1800    0.63902 0.000 0.048 0.000 0.020 0.932
#> SRR537119     5  0.2795    0.60253 0.000 0.056 0.000 0.064 0.880
#> SRR537120     5  0.2370    0.62318 0.000 0.056 0.000 0.040 0.904
#> SRR537121     5  0.0162    0.65766 0.000 0.000 0.000 0.004 0.996
#> SRR537122     5  0.0794    0.64862 0.000 0.000 0.000 0.028 0.972
#> SRR537123     5  0.0000    0.65823 0.000 0.000 0.000 0.000 1.000
#> SRR537124     5  0.0162    0.65771 0.000 0.000 0.000 0.004 0.996
#> SRR537125     5  0.0290    0.65734 0.000 0.000 0.000 0.008 0.992
#> SRR537126     5  0.0404    0.65627 0.000 0.000 0.000 0.012 0.988
#> SRR537127     3  0.0510    0.89180 0.016 0.000 0.984 0.000 0.000
#> SRR537128     3  0.0510    0.89180 0.016 0.000 0.984 0.000 0.000
#> SRR537129     3  0.0510    0.89180 0.016 0.000 0.984 0.000 0.000
#> SRR537130     3  0.0510    0.89180 0.016 0.000 0.984 0.000 0.000
#> SRR537131     3  0.0510    0.89180 0.016 0.000 0.984 0.000 0.000
#> SRR537132     3  0.0510    0.89180 0.016 0.000 0.984 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.0551     0.9183 0.984 0.000 0.004 0.008 0.000 0.004
#> SRR191640     4  0.4719     0.7219 0.160 0.036 0.044 0.744 0.004 0.012
#> SRR191641     3  0.4268    -0.0139 0.000 0.000 0.556 0.428 0.004 0.012
#> SRR191642     4  0.4015     0.7818 0.028 0.008 0.176 0.772 0.004 0.012
#> SRR191643     4  0.3826     0.7663 0.012 0.004 0.208 0.760 0.004 0.012
#> SRR191644     3  0.3154     0.6679 0.000 0.000 0.800 0.184 0.004 0.012
#> SRR191645     4  0.0508     0.8253 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR191646     4  0.0508     0.8253 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR191647     4  0.0508     0.8261 0.004 0.000 0.000 0.984 0.012 0.000
#> SRR191648     4  0.0508     0.8261 0.004 0.000 0.000 0.984 0.012 0.000
#> SRR191649     4  0.0692     0.8222 0.020 0.000 0.000 0.976 0.004 0.000
#> SRR191650     4  0.5842     0.3116 0.228 0.000 0.000 0.484 0.288 0.000
#> SRR191651     1  0.2834     0.8345 0.848 0.000 0.000 0.008 0.128 0.016
#> SRR191652     1  0.3109     0.7891 0.812 0.000 0.000 0.004 0.168 0.016
#> SRR191653     4  0.3767     0.6952 0.000 0.000 0.276 0.708 0.004 0.012
#> SRR191654     4  0.3507     0.7618 0.000 0.000 0.216 0.764 0.008 0.012
#> SRR191655     4  0.2412     0.8204 0.000 0.004 0.080 0.892 0.012 0.012
#> SRR191656     1  0.3425     0.8259 0.800 0.000 0.000 0.008 0.164 0.028
#> SRR191657     1  0.0260     0.9208 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR191658     1  0.0000     0.9197 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191659     1  0.0260     0.9208 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR191660     1  0.0260     0.9208 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR191661     1  0.0260     0.9208 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR191662     1  0.0260     0.9208 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR191663     1  0.0260     0.9208 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR191664     1  0.0260     0.9208 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR191665     1  0.1116     0.9172 0.960 0.000 0.000 0.008 0.004 0.028
#> SRR191666     1  0.2003     0.8599 0.884 0.000 0.116 0.000 0.000 0.000
#> SRR191667     1  0.3190     0.7408 0.772 0.000 0.220 0.008 0.000 0.000
#> SRR191668     1  0.1970     0.9027 0.920 0.000 0.000 0.008 0.044 0.028
#> SRR191669     1  0.2164     0.8977 0.908 0.000 0.000 0.008 0.056 0.028
#> SRR191670     1  0.1116     0.9145 0.960 0.000 0.000 0.008 0.004 0.028
#> SRR191671     1  0.1003     0.9154 0.964 0.000 0.000 0.004 0.004 0.028
#> SRR191672     1  0.3460     0.8224 0.796 0.000 0.000 0.008 0.168 0.028
#> SRR191673     1  0.3748     0.7850 0.760 0.000 0.000 0.008 0.204 0.028
#> SRR191674     6  0.2448     0.9016 0.000 0.064 0.000 0.000 0.052 0.884
#> SRR191675     6  0.2511     0.8994 0.000 0.064 0.000 0.000 0.056 0.880
#> SRR191677     6  0.1806     0.9156 0.000 0.088 0.000 0.000 0.004 0.908
#> SRR191678     6  0.1806     0.9156 0.000 0.088 0.000 0.000 0.004 0.908
#> SRR191679     6  0.1858     0.9136 0.000 0.092 0.000 0.000 0.004 0.904
#> SRR191680     6  0.1806     0.9156 0.000 0.088 0.000 0.000 0.004 0.908
#> SRR191681     6  0.1918     0.9162 0.000 0.088 0.000 0.000 0.008 0.904
#> SRR191682     6  0.1858     0.9094 0.000 0.092 0.000 0.000 0.004 0.904
#> SRR191683     6  0.1858     0.9094 0.000 0.092 0.000 0.000 0.004 0.904
#> SRR191684     6  0.1908     0.9063 0.000 0.096 0.000 0.000 0.004 0.900
#> SRR191685     6  0.1858     0.9094 0.000 0.092 0.000 0.000 0.004 0.904
#> SRR191686     6  0.1858     0.9094 0.000 0.092 0.000 0.000 0.004 0.904
#> SRR191687     6  0.1858     0.9094 0.000 0.092 0.000 0.000 0.004 0.904
#> SRR191688     2  0.0520     0.9465 0.000 0.984 0.000 0.008 0.000 0.008
#> SRR191689     2  0.2912     0.7170 0.000 0.784 0.000 0.000 0.000 0.216
#> SRR191690     2  0.0622     0.9479 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR191691     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191692     6  0.1866     0.9163 0.000 0.084 0.000 0.000 0.008 0.908
#> SRR191693     6  0.4233     0.6814 0.000 0.048 0.000 0.000 0.268 0.684
#> SRR191694     6  0.4548     0.6079 0.000 0.056 0.000 0.000 0.312 0.632
#> SRR191695     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191696     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191697     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191698     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191699     2  0.0458     0.9475 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR191700     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191701     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191702     2  0.1753     0.9269 0.000 0.912 0.000 0.000 0.004 0.084
#> SRR191703     2  0.1753     0.9269 0.000 0.912 0.000 0.000 0.004 0.084
#> SRR191704     2  0.2402     0.8831 0.000 0.856 0.000 0.000 0.004 0.140
#> SRR191705     2  0.1858     0.9226 0.000 0.904 0.000 0.000 0.004 0.092
#> SRR191706     2  0.1858     0.9226 0.000 0.904 0.000 0.000 0.004 0.092
#> SRR191707     2  0.0363     0.9485 0.000 0.988 0.000 0.000 0.000 0.012
#> SRR191708     2  0.1471     0.9324 0.000 0.932 0.000 0.000 0.004 0.064
#> SRR191709     2  0.1858     0.9226 0.000 0.904 0.000 0.000 0.004 0.092
#> SRR191710     2  0.1858     0.9226 0.000 0.904 0.000 0.000 0.004 0.092
#> SRR191711     2  0.0858     0.9463 0.000 0.968 0.000 0.004 0.000 0.028
#> SRR191712     2  0.0858     0.9463 0.000 0.968 0.000 0.004 0.000 0.028
#> SRR191713     2  0.1918     0.9086 0.000 0.904 0.000 0.008 0.000 0.088
#> SRR191714     2  0.0458     0.9470 0.000 0.984 0.000 0.000 0.000 0.016
#> SRR191715     2  0.0777     0.9472 0.000 0.972 0.000 0.004 0.000 0.024
#> SRR191716     2  0.0717     0.9431 0.000 0.976 0.000 0.016 0.000 0.008
#> SRR191717     2  0.0260     0.9486 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR191718     2  0.0260     0.9489 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR537099     4  0.3839     0.7828 0.000 0.032 0.176 0.776 0.004 0.012
#> SRR537100     4  0.3839     0.7828 0.000 0.032 0.176 0.776 0.004 0.012
#> SRR537101     4  0.3780     0.7431 0.000 0.008 0.236 0.740 0.004 0.012
#> SRR537102     4  0.3686     0.6815 0.000 0.196 0.016 0.772 0.004 0.012
#> SRR537104     4  0.3943     0.7902 0.000 0.036 0.156 0.784 0.012 0.012
#> SRR537105     4  0.0363     0.8255 0.000 0.000 0.000 0.988 0.012 0.000
#> SRR537106     4  0.0458     0.8246 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR537107     4  0.0458     0.8246 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR537108     4  0.0458     0.8246 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR537109     4  0.2442     0.7079 0.000 0.144 0.000 0.852 0.000 0.004
#> SRR537110     2  0.3273     0.7139 0.000 0.776 0.000 0.212 0.004 0.008
#> SRR537111     5  0.2859     0.8149 0.000 0.000 0.000 0.156 0.828 0.016
#> SRR537113     5  0.2019     0.8938 0.000 0.000 0.000 0.088 0.900 0.012
#> SRR537114     5  0.3323     0.7040 0.000 0.000 0.000 0.240 0.752 0.008
#> SRR537115     5  0.0993     0.9252 0.000 0.000 0.000 0.024 0.964 0.012
#> SRR537116     2  0.0858     0.9427 0.000 0.968 0.000 0.004 0.000 0.028
#> SRR537117     5  0.0806     0.9180 0.000 0.000 0.000 0.008 0.972 0.020
#> SRR537118     5  0.1633     0.9201 0.000 0.000 0.000 0.044 0.932 0.024
#> SRR537119     5  0.3148     0.8702 0.000 0.024 0.000 0.116 0.840 0.020
#> SRR537120     5  0.2959     0.8845 0.000 0.048 0.000 0.056 0.868 0.028
#> SRR537121     5  0.0891     0.9222 0.000 0.000 0.000 0.008 0.968 0.024
#> SRR537122     5  0.1341     0.9252 0.000 0.000 0.000 0.028 0.948 0.024
#> SRR537123     5  0.0458     0.9174 0.000 0.000 0.000 0.000 0.984 0.016
#> SRR537124     5  0.0458     0.9174 0.000 0.000 0.000 0.000 0.984 0.016
#> SRR537125     5  0.1003     0.9250 0.000 0.000 0.000 0.016 0.964 0.020
#> SRR537126     5  0.1003     0.9250 0.000 0.000 0.000 0.016 0.964 0.020
#> SRR537127     3  0.0146     0.8857 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR537128     3  0.0146     0.8857 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR537129     3  0.0146     0.8857 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR537130     3  0.0146     0.8857 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR537131     3  0.0146     0.8857 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR537132     3  0.0146     0.8857 0.000 0.000 0.996 0.000 0.004 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.646           0.792       0.894         0.2368 0.897   0.897
#> 3 3 0.364           0.719       0.852         1.0486 0.552   0.500
#> 4 4 0.475           0.650       0.800         0.3266 0.652   0.392
#> 5 5 0.628           0.643       0.793         0.0976 0.884   0.710
#> 6 6 0.689           0.618       0.800         0.0578 0.942   0.828
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     2  0.9933      0.412 0.452 0.548
#> SRR191640     2  0.3431      0.865 0.064 0.936
#> SRR191641     2  0.9209      0.597 0.336 0.664
#> SRR191642     2  0.3431      0.865 0.064 0.936
#> SRR191643     2  0.4431      0.852 0.092 0.908
#> SRR191644     2  0.4431      0.852 0.092 0.908
#> SRR191645     2  0.3733      0.863 0.072 0.928
#> SRR191646     2  0.3733      0.863 0.072 0.928
#> SRR191647     2  0.3733      0.863 0.072 0.928
#> SRR191648     2  0.3733      0.863 0.072 0.928
#> SRR191649     2  0.3733      0.863 0.072 0.928
#> SRR191650     2  0.4939      0.841 0.108 0.892
#> SRR191651     2  0.4939      0.841 0.108 0.892
#> SRR191652     2  0.9922      0.420 0.448 0.552
#> SRR191653     2  0.3733      0.862 0.072 0.928
#> SRR191654     2  0.3733      0.862 0.072 0.928
#> SRR191655     2  0.3733      0.862 0.072 0.928
#> SRR191656     2  0.9933      0.412 0.452 0.548
#> SRR191657     2  0.9933      0.412 0.452 0.548
#> SRR191658     2  0.9933      0.412 0.452 0.548
#> SRR191659     2  0.9933      0.412 0.452 0.548
#> SRR191660     2  0.9933      0.412 0.452 0.548
#> SRR191661     2  0.9933      0.412 0.452 0.548
#> SRR191662     2  0.9933      0.412 0.452 0.548
#> SRR191663     2  0.9933      0.412 0.452 0.548
#> SRR191664     2  0.9933      0.412 0.452 0.548
#> SRR191665     2  0.9933      0.412 0.452 0.548
#> SRR191666     2  0.9933      0.412 0.452 0.548
#> SRR191667     2  0.9933      0.412 0.452 0.548
#> SRR191668     2  0.9933      0.412 0.452 0.548
#> SRR191669     2  0.9933      0.412 0.452 0.548
#> SRR191670     2  0.9933      0.412 0.452 0.548
#> SRR191671     2  0.9933      0.412 0.452 0.548
#> SRR191672     2  0.9933      0.412 0.452 0.548
#> SRR191673     2  0.9933      0.412 0.452 0.548
#> SRR191674     2  0.0000      0.878 0.000 1.000
#> SRR191675     2  0.0000      0.878 0.000 1.000
#> SRR191677     2  0.0000      0.878 0.000 1.000
#> SRR191678     2  0.0000      0.878 0.000 1.000
#> SRR191679     2  0.0000      0.878 0.000 1.000
#> SRR191680     2  0.0000      0.878 0.000 1.000
#> SRR191681     2  0.0000      0.878 0.000 1.000
#> SRR191682     2  0.0000      0.878 0.000 1.000
#> SRR191683     2  0.0000      0.878 0.000 1.000
#> SRR191684     2  0.0000      0.878 0.000 1.000
#> SRR191685     2  0.0000      0.878 0.000 1.000
#> SRR191686     2  0.0000      0.878 0.000 1.000
#> SRR191687     2  0.0000      0.878 0.000 1.000
#> SRR191688     2  0.0000      0.878 0.000 1.000
#> SRR191689     2  0.0000      0.878 0.000 1.000
#> SRR191690     2  0.0000      0.878 0.000 1.000
#> SRR191691     2  0.1633      0.876 0.024 0.976
#> SRR191692     2  0.0000      0.878 0.000 1.000
#> SRR191693     2  0.0000      0.878 0.000 1.000
#> SRR191694     2  0.0000      0.878 0.000 1.000
#> SRR191695     2  0.0000      0.878 0.000 1.000
#> SRR191696     2  0.0000      0.878 0.000 1.000
#> SRR191697     2  0.1633      0.876 0.024 0.976
#> SRR191698     2  0.1633      0.876 0.024 0.976
#> SRR191699     2  0.0000      0.878 0.000 1.000
#> SRR191700     2  0.1633      0.876 0.024 0.976
#> SRR191701     2  0.1633      0.876 0.024 0.976
#> SRR191702     2  0.0000      0.878 0.000 1.000
#> SRR191703     2  0.0000      0.878 0.000 1.000
#> SRR191704     2  0.0000      0.878 0.000 1.000
#> SRR191705     2  0.0000      0.878 0.000 1.000
#> SRR191706     2  0.0000      0.878 0.000 1.000
#> SRR191707     2  0.0000      0.878 0.000 1.000
#> SRR191708     2  0.0000      0.878 0.000 1.000
#> SRR191709     2  0.0000      0.878 0.000 1.000
#> SRR191710     2  0.0000      0.878 0.000 1.000
#> SRR191711     2  0.1184      0.877 0.016 0.984
#> SRR191712     2  0.1184      0.877 0.016 0.984
#> SRR191713     2  0.0000      0.878 0.000 1.000
#> SRR191714     2  0.0000      0.878 0.000 1.000
#> SRR191715     2  0.0000      0.878 0.000 1.000
#> SRR191716     2  0.0000      0.878 0.000 1.000
#> SRR191717     2  0.0000      0.878 0.000 1.000
#> SRR191718     2  0.0000      0.878 0.000 1.000
#> SRR537099     2  0.3733      0.862 0.072 0.928
#> SRR537100     2  0.3733      0.862 0.072 0.928
#> SRR537101     2  0.9209      0.597 0.336 0.664
#> SRR537102     2  0.3431      0.865 0.064 0.936
#> SRR537104     2  0.3733      0.862 0.072 0.928
#> SRR537105     2  0.3431      0.865 0.064 0.936
#> SRR537106     2  0.3431      0.865 0.064 0.936
#> SRR537107     2  0.3431      0.865 0.064 0.936
#> SRR537108     2  0.3431      0.865 0.064 0.936
#> SRR537109     2  0.0000      0.878 0.000 1.000
#> SRR537110     2  0.3274      0.866 0.060 0.940
#> SRR537111     2  0.4939      0.841 0.108 0.892
#> SRR537113     2  0.1843      0.875 0.028 0.972
#> SRR537114     2  0.1843      0.875 0.028 0.972
#> SRR537115     2  0.1843      0.875 0.028 0.972
#> SRR537116     2  0.0000      0.878 0.000 1.000
#> SRR537117     2  0.0376      0.879 0.004 0.996
#> SRR537118     2  0.0376      0.879 0.004 0.996
#> SRR537119     2  0.0376      0.879 0.004 0.996
#> SRR537120     2  0.0376      0.879 0.004 0.996
#> SRR537121     2  0.0376      0.879 0.004 0.996
#> SRR537122     2  0.0376      0.879 0.004 0.996
#> SRR537123     2  0.0376      0.879 0.004 0.996
#> SRR537124     2  0.0376      0.879 0.004 0.996
#> SRR537125     2  0.0376      0.879 0.004 0.996
#> SRR537126     2  0.0376      0.879 0.004 0.996
#> SRR537127     1  0.0000      1.000 1.000 0.000
#> SRR537128     1  0.0000      1.000 1.000 0.000
#> SRR537129     1  0.0000      1.000 1.000 0.000
#> SRR537130     1  0.0000      1.000 1.000 0.000
#> SRR537131     1  0.0000      1.000 1.000 0.000
#> SRR537132     1  0.0000      1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> SRR191639     1  0.0000      0.645 1.000 0.000  0
#> SRR191640     1  0.6079      0.584 0.612 0.388  0
#> SRR191641     1  0.3267      0.681 0.884 0.116  0
#> SRR191642     1  0.6079      0.584 0.612 0.388  0
#> SRR191643     1  0.5948      0.611 0.640 0.360  0
#> SRR191644     1  0.5948      0.611 0.640 0.360  0
#> SRR191645     1  0.6045      0.594 0.620 0.380  0
#> SRR191646     1  0.6045      0.594 0.620 0.380  0
#> SRR191647     1  0.6045      0.594 0.620 0.380  0
#> SRR191648     1  0.6045      0.594 0.620 0.380  0
#> SRR191649     1  0.6045      0.594 0.620 0.380  0
#> SRR191650     1  0.5882      0.618 0.652 0.348  0
#> SRR191651     1  0.5882      0.618 0.652 0.348  0
#> SRR191652     1  0.0237      0.646 0.996 0.004  0
#> SRR191653     1  0.6168      0.551 0.588 0.412  0
#> SRR191654     1  0.6168      0.551 0.588 0.412  0
#> SRR191655     1  0.6168      0.551 0.588 0.412  0
#> SRR191656     1  0.0000      0.645 1.000 0.000  0
#> SRR191657     1  0.0000      0.645 1.000 0.000  0
#> SRR191658     1  0.0000      0.645 1.000 0.000  0
#> SRR191659     1  0.0000      0.645 1.000 0.000  0
#> SRR191660     1  0.0000      0.645 1.000 0.000  0
#> SRR191661     1  0.0000      0.645 1.000 0.000  0
#> SRR191662     1  0.0000      0.645 1.000 0.000  0
#> SRR191663     1  0.0000      0.645 1.000 0.000  0
#> SRR191664     1  0.0000      0.645 1.000 0.000  0
#> SRR191665     1  0.0000      0.645 1.000 0.000  0
#> SRR191666     1  0.0000      0.645 1.000 0.000  0
#> SRR191667     1  0.0000      0.645 1.000 0.000  0
#> SRR191668     1  0.0000      0.645 1.000 0.000  0
#> SRR191669     1  0.0000      0.645 1.000 0.000  0
#> SRR191670     1  0.0000      0.645 1.000 0.000  0
#> SRR191671     1  0.0000      0.645 1.000 0.000  0
#> SRR191672     1  0.0000      0.645 1.000 0.000  0
#> SRR191673     1  0.0000      0.645 1.000 0.000  0
#> SRR191674     2  0.0000      0.850 0.000 1.000  0
#> SRR191675     2  0.0000      0.850 0.000 1.000  0
#> SRR191677     2  0.0000      0.850 0.000 1.000  0
#> SRR191678     2  0.0000      0.850 0.000 1.000  0
#> SRR191679     2  0.0000      0.850 0.000 1.000  0
#> SRR191680     2  0.0000      0.850 0.000 1.000  0
#> SRR191681     2  0.0000      0.850 0.000 1.000  0
#> SRR191682     2  0.0000      0.850 0.000 1.000  0
#> SRR191683     2  0.0000      0.850 0.000 1.000  0
#> SRR191684     2  0.0000      0.850 0.000 1.000  0
#> SRR191685     2  0.0000      0.850 0.000 1.000  0
#> SRR191686     2  0.0000      0.850 0.000 1.000  0
#> SRR191687     2  0.0000      0.850 0.000 1.000  0
#> SRR191688     2  0.4235      0.778 0.176 0.824  0
#> SRR191689     2  0.3340      0.818 0.120 0.880  0
#> SRR191690     2  0.3340      0.818 0.120 0.880  0
#> SRR191691     2  0.3192      0.803 0.112 0.888  0
#> SRR191692     2  0.0000      0.850 0.000 1.000  0
#> SRR191693     2  0.0000      0.850 0.000 1.000  0
#> SRR191694     2  0.0000      0.850 0.000 1.000  0
#> SRR191695     2  0.4235      0.778 0.176 0.824  0
#> SRR191696     2  0.4235      0.778 0.176 0.824  0
#> SRR191697     2  0.3192      0.803 0.112 0.888  0
#> SRR191698     2  0.3192      0.803 0.112 0.888  0
#> SRR191699     2  0.3340      0.818 0.120 0.880  0
#> SRR191700     2  0.3192      0.803 0.112 0.888  0
#> SRR191701     2  0.3192      0.803 0.112 0.888  0
#> SRR191702     2  0.0000      0.850 0.000 1.000  0
#> SRR191703     2  0.0000      0.850 0.000 1.000  0
#> SRR191704     2  0.0000      0.850 0.000 1.000  0
#> SRR191705     2  0.0000      0.850 0.000 1.000  0
#> SRR191706     2  0.0000      0.850 0.000 1.000  0
#> SRR191707     2  0.0237      0.850 0.004 0.996  0
#> SRR191708     2  0.0000      0.850 0.000 1.000  0
#> SRR191709     2  0.0000      0.850 0.000 1.000  0
#> SRR191710     2  0.0000      0.850 0.000 1.000  0
#> SRR191711     2  0.4702      0.741 0.212 0.788  0
#> SRR191712     2  0.4702      0.741 0.212 0.788  0
#> SRR191713     2  0.0000      0.850 0.000 1.000  0
#> SRR191714     2  0.0000      0.850 0.000 1.000  0
#> SRR191715     2  0.4399      0.767 0.188 0.812  0
#> SRR191716     2  0.4235      0.778 0.176 0.824  0
#> SRR191717     2  0.4235      0.778 0.176 0.824  0
#> SRR191718     2  0.4235      0.778 0.176 0.824  0
#> SRR537099     1  0.6154      0.555 0.592 0.408  0
#> SRR537100     1  0.6154      0.555 0.592 0.408  0
#> SRR537101     1  0.3267      0.681 0.884 0.116  0
#> SRR537102     1  0.6079      0.584 0.612 0.388  0
#> SRR537104     1  0.6168      0.551 0.588 0.412  0
#> SRR537105     1  0.6079      0.584 0.612 0.388  0
#> SRR537106     1  0.6079      0.584 0.612 0.388  0
#> SRR537107     1  0.6079      0.584 0.612 0.388  0
#> SRR537108     1  0.6079      0.584 0.612 0.388  0
#> SRR537109     2  0.5058      0.692 0.244 0.756  0
#> SRR537110     2  0.5621      0.523 0.308 0.692  0
#> SRR537111     1  0.5882      0.618 0.652 0.348  0
#> SRR537113     1  0.6302      0.356 0.520 0.480  0
#> SRR537114     1  0.6302      0.356 0.520 0.480  0
#> SRR537115     1  0.6302      0.356 0.520 0.480  0
#> SRR537116     2  0.4504      0.759 0.196 0.804  0
#> SRR537117     2  0.5138      0.673 0.252 0.748  0
#> SRR537118     2  0.5138      0.673 0.252 0.748  0
#> SRR537119     2  0.5138      0.673 0.252 0.748  0
#> SRR537120     2  0.5138      0.673 0.252 0.748  0
#> SRR537121     2  0.5138      0.673 0.252 0.748  0
#> SRR537122     2  0.5138      0.673 0.252 0.748  0
#> SRR537123     2  0.5138      0.673 0.252 0.748  0
#> SRR537124     2  0.5138      0.673 0.252 0.748  0
#> SRR537125     2  0.5138      0.673 0.252 0.748  0
#> SRR537126     2  0.5138      0.673 0.252 0.748  0
#> SRR537127     3  0.0000      1.000 0.000 0.000  1
#> SRR537128     3  0.0000      1.000 0.000 0.000  1
#> SRR537129     3  0.0000      1.000 0.000 0.000  1
#> SRR537130     3  0.0000      1.000 0.000 0.000  1
#> SRR537131     3  0.0000      1.000 0.000 0.000  1
#> SRR537132     3  0.0000      1.000 0.000 0.000  1
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR191639     1  0.0921     0.8395 0.972 0.000  0 0.028
#> SRR191640     4  0.4072     0.5690 0.252 0.000  0 0.748
#> SRR191641     1  0.4925     0.2529 0.572 0.000  0 0.428
#> SRR191642     4  0.4072     0.5690 0.252 0.000  0 0.748
#> SRR191643     4  0.4477     0.5059 0.312 0.000  0 0.688
#> SRR191644     4  0.4477     0.5059 0.312 0.000  0 0.688
#> SRR191645     4  0.4193     0.5538 0.268 0.000  0 0.732
#> SRR191646     4  0.4193     0.5538 0.268 0.000  0 0.732
#> SRR191647     4  0.4193     0.5538 0.268 0.000  0 0.732
#> SRR191648     4  0.4193     0.5538 0.268 0.000  0 0.732
#> SRR191649     4  0.4193     0.5538 0.268 0.000  0 0.732
#> SRR191650     1  0.5147     0.0262 0.536 0.004  0 0.460
#> SRR191651     1  0.5147     0.0262 0.536 0.004  0 0.460
#> SRR191652     1  0.0469     0.8552 0.988 0.000  0 0.012
#> SRR191653     4  0.4868     0.5752 0.256 0.024  0 0.720
#> SRR191654     4  0.4868     0.5752 0.256 0.024  0 0.720
#> SRR191655     4  0.4868     0.5752 0.256 0.024  0 0.720
#> SRR191656     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191657     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191658     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191659     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191660     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191661     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191662     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191663     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191664     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191665     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191666     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191667     1  0.0188     0.8605 0.996 0.000  0 0.004
#> SRR191668     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191669     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191670     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191671     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191672     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191673     1  0.0000     0.8592 1.000 0.000  0 0.000
#> SRR191674     2  0.4103     0.7734 0.000 0.744  0 0.256
#> SRR191675     2  0.4103     0.7734 0.000 0.744  0 0.256
#> SRR191677     4  0.4855     0.1394 0.000 0.400  0 0.600
#> SRR191678     4  0.4855     0.1394 0.000 0.400  0 0.600
#> SRR191679     2  0.4103     0.7734 0.000 0.744  0 0.256
#> SRR191680     2  0.4103     0.7734 0.000 0.744  0 0.256
#> SRR191681     4  0.4855     0.1394 0.000 0.400  0 0.600
#> SRR191682     2  0.2704     0.8119 0.000 0.876  0 0.124
#> SRR191683     2  0.2704     0.8119 0.000 0.876  0 0.124
#> SRR191684     2  0.2408     0.8066 0.000 0.896  0 0.104
#> SRR191685     2  0.2469     0.8084 0.000 0.892  0 0.108
#> SRR191686     2  0.2704     0.8119 0.000 0.876  0 0.124
#> SRR191687     2  0.2469     0.8084 0.000 0.892  0 0.108
#> SRR191688     4  0.3942     0.5135 0.000 0.236  0 0.764
#> SRR191689     4  0.4193     0.4804 0.000 0.268  0 0.732
#> SRR191690     4  0.4193     0.4804 0.000 0.268  0 0.732
#> SRR191691     4  0.5632     0.3714 0.036 0.340  0 0.624
#> SRR191692     2  0.4103     0.7734 0.000 0.744  0 0.256
#> SRR191693     2  0.4103     0.7734 0.000 0.744  0 0.256
#> SRR191694     2  0.4103     0.7734 0.000 0.744  0 0.256
#> SRR191695     4  0.3942     0.5135 0.000 0.236  0 0.764
#> SRR191696     4  0.3942     0.5135 0.000 0.236  0 0.764
#> SRR191697     4  0.5558     0.3977 0.036 0.324  0 0.640
#> SRR191698     4  0.5632     0.3714 0.036 0.340  0 0.624
#> SRR191699     4  0.4193     0.4804 0.000 0.268  0 0.732
#> SRR191700     4  0.5558     0.3977 0.036 0.324  0 0.640
#> SRR191701     4  0.5558     0.3977 0.036 0.324  0 0.640
#> SRR191702     2  0.3400     0.7664 0.000 0.820  0 0.180
#> SRR191703     2  0.3400     0.7664 0.000 0.820  0 0.180
#> SRR191704     2  0.3400     0.7604 0.000 0.820  0 0.180
#> SRR191705     2  0.3400     0.7664 0.000 0.820  0 0.180
#> SRR191706     2  0.3400     0.7664 0.000 0.820  0 0.180
#> SRR191707     2  0.3444     0.7608 0.000 0.816  0 0.184
#> SRR191708     2  0.3400     0.7664 0.000 0.820  0 0.180
#> SRR191709     2  0.3400     0.7664 0.000 0.820  0 0.180
#> SRR191710     2  0.3400     0.7664 0.000 0.820  0 0.180
#> SRR191711     4  0.4323     0.5735 0.020 0.204  0 0.776
#> SRR191712     4  0.4323     0.5735 0.020 0.204  0 0.776
#> SRR191713     2  0.1118     0.7724 0.000 0.964  0 0.036
#> SRR191714     2  0.1118     0.7724 0.000 0.964  0 0.036
#> SRR191715     4  0.3837     0.5362 0.000 0.224  0 0.776
#> SRR191716     4  0.3942     0.5135 0.000 0.236  0 0.764
#> SRR191717     4  0.3942     0.5135 0.000 0.236  0 0.764
#> SRR191718     4  0.3942     0.5135 0.000 0.236  0 0.764
#> SRR537099     4  0.4767     0.5759 0.256 0.020  0 0.724
#> SRR537100     4  0.4767     0.5759 0.256 0.020  0 0.724
#> SRR537101     1  0.4925     0.2529 0.572 0.000  0 0.428
#> SRR537102     4  0.4072     0.5690 0.252 0.000  0 0.748
#> SRR537104     4  0.4868     0.5752 0.256 0.024  0 0.720
#> SRR537105     4  0.4072     0.5690 0.252 0.000  0 0.748
#> SRR537106     4  0.4072     0.5690 0.252 0.000  0 0.748
#> SRR537107     4  0.4072     0.5690 0.252 0.000  0 0.748
#> SRR537108     4  0.4072     0.5690 0.252 0.000  0 0.748
#> SRR537109     4  0.3024     0.5923 0.000 0.148  0 0.852
#> SRR537110     4  0.4436     0.6039 0.052 0.148  0 0.800
#> SRR537111     1  0.5147     0.0262 0.536 0.004  0 0.460
#> SRR537113     4  0.5690     0.6201 0.216 0.084  0 0.700
#> SRR537114     4  0.5690     0.6201 0.216 0.084  0 0.700
#> SRR537115     4  0.5690     0.6201 0.216 0.084  0 0.700
#> SRR537116     4  0.3837     0.5446 0.000 0.224  0 0.776
#> SRR537117     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537118     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537119     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537120     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537121     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537122     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537123     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537124     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537125     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537126     4  0.3390     0.6259 0.016 0.132  0 0.852
#> SRR537127     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000  1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR191639     1  0.0963     0.9523 0.964 0.000  0 0.036 0.000
#> SRR191640     4  0.1544     0.6608 0.068 0.000  0 0.932 0.000
#> SRR191641     4  0.4235     0.2029 0.424 0.000  0 0.576 0.000
#> SRR191642     4  0.1544     0.6608 0.068 0.000  0 0.932 0.000
#> SRR191643     4  0.2561     0.6361 0.144 0.000  0 0.856 0.000
#> SRR191644     4  0.2561     0.6361 0.144 0.000  0 0.856 0.000
#> SRR191645     4  0.1792     0.6574 0.084 0.000  0 0.916 0.000
#> SRR191646     4  0.1792     0.6574 0.084 0.000  0 0.916 0.000
#> SRR191647     4  0.1792     0.6574 0.084 0.000  0 0.916 0.000
#> SRR191648     4  0.1792     0.6574 0.084 0.000  0 0.916 0.000
#> SRR191649     4  0.1792     0.6574 0.084 0.000  0 0.916 0.000
#> SRR191650     4  0.4446     0.2159 0.476 0.000  0 0.520 0.004
#> SRR191651     4  0.4446     0.2159 0.476 0.000  0 0.520 0.004
#> SRR191652     1  0.0510     0.9808 0.984 0.000  0 0.016 0.000
#> SRR191653     4  0.2450     0.6599 0.076 0.000  0 0.896 0.028
#> SRR191654     4  0.2450     0.6599 0.076 0.000  0 0.896 0.028
#> SRR191655     4  0.2450     0.6599 0.076 0.000  0 0.896 0.028
#> SRR191656     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191657     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191658     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191659     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191660     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191661     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191662     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191663     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191664     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191665     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191666     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191667     1  0.0162     0.9944 0.996 0.000  0 0.004 0.000
#> SRR191668     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191669     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191670     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191671     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191672     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191673     1  0.0000     0.9936 1.000 0.000  0 0.000 0.000
#> SRR191674     5  0.0324     0.6014 0.000 0.004  0 0.004 0.992
#> SRR191675     5  0.0324     0.6014 0.000 0.004  0 0.004 0.992
#> SRR191677     5  0.4030    -0.0946 0.000 0.000  0 0.352 0.648
#> SRR191678     5  0.4030    -0.0946 0.000 0.000  0 0.352 0.648
#> SRR191679     5  0.0324     0.6014 0.000 0.004  0 0.004 0.992
#> SRR191680     5  0.0324     0.6014 0.000 0.004  0 0.004 0.992
#> SRR191681     5  0.4030    -0.0946 0.000 0.000  0 0.352 0.648
#> SRR191682     5  0.5151     0.3065 0.000 0.396  0 0.044 0.560
#> SRR191683     5  0.5151     0.3065 0.000 0.396  0 0.044 0.560
#> SRR191684     5  0.5131     0.2580 0.000 0.420  0 0.040 0.540
#> SRR191685     5  0.5188     0.2688 0.000 0.416  0 0.044 0.540
#> SRR191686     5  0.5151     0.3065 0.000 0.396  0 0.044 0.560
#> SRR191687     5  0.5188     0.2688 0.000 0.416  0 0.044 0.540
#> SRR191688     4  0.4242     0.4634 0.000 0.000  0 0.572 0.428
#> SRR191689     4  0.5423     0.4471 0.000 0.064  0 0.548 0.388
#> SRR191690     4  0.5423     0.4471 0.000 0.064  0 0.548 0.388
#> SRR191691     4  0.6219     0.3461 0.000 0.212  0 0.548 0.240
#> SRR191692     5  0.1648     0.6075 0.000 0.020  0 0.040 0.940
#> SRR191693     5  0.1648     0.6075 0.000 0.020  0 0.040 0.940
#> SRR191694     5  0.1648     0.6075 0.000 0.020  0 0.040 0.940
#> SRR191695     4  0.4242     0.4634 0.000 0.000  0 0.572 0.428
#> SRR191696     4  0.4242     0.4634 0.000 0.000  0 0.572 0.428
#> SRR191697     4  0.6132     0.3762 0.000 0.212  0 0.564 0.224
#> SRR191698     4  0.6219     0.3461 0.000 0.212  0 0.548 0.240
#> SRR191699     4  0.5423     0.4471 0.000 0.064  0 0.548 0.388
#> SRR191700     4  0.6132     0.3762 0.000 0.212  0 0.564 0.224
#> SRR191701     4  0.6132     0.3762 0.000 0.212  0 0.564 0.224
#> SRR191702     2  0.1732     0.8919 0.000 0.920  0 0.000 0.080
#> SRR191703     2  0.1732     0.8919 0.000 0.920  0 0.000 0.080
#> SRR191704     2  0.1544     0.8779 0.000 0.932  0 0.000 0.068
#> SRR191705     2  0.1732     0.8919 0.000 0.920  0 0.000 0.080
#> SRR191706     2  0.1732     0.8919 0.000 0.920  0 0.000 0.080
#> SRR191707     2  0.1952     0.8821 0.000 0.912  0 0.004 0.084
#> SRR191708     2  0.1732     0.8919 0.000 0.920  0 0.000 0.080
#> SRR191709     2  0.1732     0.8919 0.000 0.920  0 0.000 0.080
#> SRR191710     2  0.1732     0.8919 0.000 0.920  0 0.000 0.080
#> SRR191711     4  0.4857     0.5373 0.000 0.040  0 0.636 0.324
#> SRR191712     4  0.4857     0.5373 0.000 0.040  0 0.636 0.324
#> SRR191713     2  0.4182     0.3113 0.000 0.600  0 0.000 0.400
#> SRR191714     2  0.4182     0.3113 0.000 0.600  0 0.000 0.400
#> SRR191715     4  0.5002     0.4970 0.000 0.040  0 0.596 0.364
#> SRR191716     4  0.4242     0.4634 0.000 0.000  0 0.572 0.428
#> SRR191717     4  0.4242     0.4634 0.000 0.000  0 0.572 0.428
#> SRR191718     4  0.4242     0.4634 0.000 0.000  0 0.572 0.428
#> SRR537099     4  0.2362     0.6610 0.076 0.000  0 0.900 0.024
#> SRR537100     4  0.2362     0.6610 0.076 0.000  0 0.900 0.024
#> SRR537101     4  0.4227     0.2097 0.420 0.000  0 0.580 0.000
#> SRR537102     4  0.1544     0.6608 0.068 0.000  0 0.932 0.000
#> SRR537104     4  0.2450     0.6599 0.076 0.000  0 0.896 0.028
#> SRR537105     4  0.1544     0.6608 0.068 0.000  0 0.932 0.000
#> SRR537106     4  0.1544     0.6608 0.068 0.000  0 0.932 0.000
#> SRR537107     4  0.1544     0.6608 0.068 0.000  0 0.932 0.000
#> SRR537108     4  0.1544     0.6608 0.068 0.000  0 0.932 0.000
#> SRR537109     4  0.4118     0.5543 0.000 0.004  0 0.660 0.336
#> SRR537110     4  0.4624     0.5777 0.000 0.112  0 0.744 0.144
#> SRR537111     4  0.4446     0.2159 0.476 0.000  0 0.520 0.004
#> SRR537113     4  0.3767     0.6522 0.068 0.000  0 0.812 0.120
#> SRR537114     4  0.3767     0.6522 0.068 0.000  0 0.812 0.120
#> SRR537115     4  0.3767     0.6522 0.068 0.000  0 0.812 0.120
#> SRR537116     4  0.5578     0.5055 0.000 0.112  0 0.616 0.272
#> SRR537117     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537118     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537119     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537120     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537121     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537122     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537123     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537124     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537125     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537126     4  0.3816     0.5911 0.000 0.000  0 0.696 0.304
#> SRR537127     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     1  0.1297      0.947 0.948 0.000  0 0.040 0.012 0.000
#> SRR191640     4  0.0146      0.597 0.004 0.000  0 0.996 0.000 0.000
#> SRR191641     4  0.3672      0.234 0.368 0.000  0 0.632 0.000 0.000
#> SRR191642     4  0.0146      0.597 0.004 0.000  0 0.996 0.000 0.000
#> SRR191643     4  0.1663      0.569 0.088 0.000  0 0.912 0.000 0.000
#> SRR191644     4  0.1663      0.569 0.088 0.000  0 0.912 0.000 0.000
#> SRR191645     4  0.0547      0.593 0.020 0.000  0 0.980 0.000 0.000
#> SRR191646     4  0.0547      0.593 0.020 0.000  0 0.980 0.000 0.000
#> SRR191647     4  0.0547      0.593 0.020 0.000  0 0.980 0.000 0.000
#> SRR191648     4  0.0547      0.593 0.020 0.000  0 0.980 0.000 0.000
#> SRR191649     4  0.0547      0.593 0.020 0.000  0 0.980 0.000 0.000
#> SRR191650     4  0.3993      0.148 0.476 0.000  0 0.520 0.004 0.000
#> SRR191651     4  0.3993      0.148 0.476 0.000  0 0.520 0.004 0.000
#> SRR191652     1  0.0458      0.974 0.984 0.000  0 0.016 0.000 0.000
#> SRR191653     4  0.1334      0.588 0.020 0.000  0 0.948 0.032 0.000
#> SRR191654     4  0.1334      0.588 0.020 0.000  0 0.948 0.032 0.000
#> SRR191655     4  0.1334      0.588 0.020 0.000  0 0.948 0.032 0.000
#> SRR191656     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191657     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191658     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191659     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191660     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191661     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191662     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191663     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191664     1  0.0146      0.990 0.996 0.000  0 0.000 0.004 0.000
#> SRR191665     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191666     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191667     1  0.0000      0.990 1.000 0.000  0 0.000 0.000 0.000
#> SRR191668     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191669     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191670     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191671     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191672     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191673     1  0.0363      0.989 0.988 0.000  0 0.000 0.012 0.000
#> SRR191674     6  0.0000      0.721 0.000 0.000  0 0.000 0.000 1.000
#> SRR191675     6  0.0000      0.721 0.000 0.000  0 0.000 0.000 1.000
#> SRR191677     6  0.4386      0.353 0.000 0.000  0 0.300 0.048 0.652
#> SRR191678     6  0.4386      0.353 0.000 0.000  0 0.300 0.048 0.652
#> SRR191679     6  0.0146      0.716 0.000 0.004  0 0.000 0.000 0.996
#> SRR191680     6  0.0000      0.721 0.000 0.000  0 0.000 0.000 1.000
#> SRR191681     6  0.4386      0.353 0.000 0.000  0 0.300 0.048 0.652
#> SRR191682     5  0.3826      0.388 0.000 0.124  0 0.004 0.784 0.088
#> SRR191683     5  0.3826      0.388 0.000 0.124  0 0.004 0.784 0.088
#> SRR191684     5  0.3689      0.373 0.000 0.136  0 0.004 0.792 0.068
#> SRR191685     5  0.3649      0.382 0.000 0.132  0 0.004 0.796 0.068
#> SRR191686     5  0.3826      0.388 0.000 0.124  0 0.004 0.784 0.088
#> SRR191687     5  0.3649      0.382 0.000 0.132  0 0.004 0.796 0.068
#> SRR191688     4  0.5814      0.313 0.000 0.000  0 0.448 0.188 0.364
#> SRR191689     4  0.6034      0.340 0.000 0.000  0 0.420 0.308 0.272
#> SRR191690     4  0.6034      0.340 0.000 0.000  0 0.420 0.308 0.272
#> SRR191691     5  0.4864      0.156 0.000 0.020  0 0.396 0.556 0.028
#> SRR191692     6  0.2048      0.708 0.000 0.000  0 0.000 0.120 0.880
#> SRR191693     6  0.2048      0.708 0.000 0.000  0 0.000 0.120 0.880
#> SRR191694     6  0.2048      0.708 0.000 0.000  0 0.000 0.120 0.880
#> SRR191695     4  0.5814      0.313 0.000 0.000  0 0.448 0.188 0.364
#> SRR191696     4  0.5814      0.313 0.000 0.000  0 0.448 0.188 0.364
#> SRR191697     5  0.4891      0.119 0.000 0.020  0 0.412 0.540 0.028
#> SRR191698     5  0.4864      0.156 0.000 0.020  0 0.396 0.556 0.028
#> SRR191699     4  0.6034      0.340 0.000 0.000  0 0.420 0.308 0.272
#> SRR191700     5  0.4891      0.119 0.000 0.020  0 0.412 0.540 0.028
#> SRR191701     5  0.4891      0.119 0.000 0.020  0 0.412 0.540 0.028
#> SRR191702     2  0.0547      0.895 0.000 0.980  0 0.000 0.000 0.020
#> SRR191703     2  0.0547      0.895 0.000 0.980  0 0.000 0.000 0.020
#> SRR191704     2  0.0146      0.880 0.000 0.996  0 0.000 0.000 0.004
#> SRR191705     2  0.0547      0.895 0.000 0.980  0 0.000 0.000 0.020
#> SRR191706     2  0.0547      0.895 0.000 0.980  0 0.000 0.000 0.020
#> SRR191707     2  0.1092      0.880 0.000 0.960  0 0.000 0.020 0.020
#> SRR191708     2  0.0547      0.895 0.000 0.980  0 0.000 0.000 0.020
#> SRR191709     2  0.0547      0.895 0.000 0.980  0 0.000 0.000 0.020
#> SRR191710     2  0.0547      0.895 0.000 0.980  0 0.000 0.000 0.020
#> SRR191711     4  0.5885      0.427 0.000 0.004  0 0.508 0.240 0.248
#> SRR191712     4  0.5885      0.427 0.000 0.004  0 0.508 0.240 0.248
#> SRR191713     2  0.4868      0.438 0.000 0.524  0 0.000 0.416 0.060
#> SRR191714     2  0.4868      0.438 0.000 0.524  0 0.000 0.416 0.060
#> SRR191715     4  0.6019      0.381 0.000 0.004  0 0.468 0.240 0.288
#> SRR191716     4  0.5814      0.313 0.000 0.000  0 0.448 0.188 0.364
#> SRR191717     4  0.5814      0.313 0.000 0.000  0 0.448 0.188 0.364
#> SRR191718     4  0.5814      0.313 0.000 0.000  0 0.448 0.188 0.364
#> SRR537099     4  0.1257      0.590 0.020 0.000  0 0.952 0.028 0.000
#> SRR537100     4  0.1257      0.590 0.020 0.000  0 0.952 0.028 0.000
#> SRR537101     4  0.3647      0.238 0.360 0.000  0 0.640 0.000 0.000
#> SRR537102     4  0.0146      0.597 0.004 0.000  0 0.996 0.000 0.000
#> SRR537104     4  0.1334      0.588 0.020 0.000  0 0.948 0.032 0.000
#> SRR537105     4  0.0146      0.597 0.004 0.000  0 0.996 0.000 0.000
#> SRR537106     4  0.0146      0.597 0.004 0.000  0 0.996 0.000 0.000
#> SRR537107     4  0.0146      0.597 0.004 0.000  0 0.996 0.000 0.000
#> SRR537108     4  0.0146      0.597 0.004 0.000  0 0.996 0.000 0.000
#> SRR537109     4  0.5624      0.444 0.000 0.000  0 0.536 0.200 0.264
#> SRR537110     4  0.4270      0.392 0.000 0.004  0 0.652 0.316 0.028
#> SRR537111     4  0.3993      0.148 0.476 0.000  0 0.520 0.004 0.000
#> SRR537113     4  0.2804      0.592 0.004 0.000  0 0.852 0.024 0.120
#> SRR537114     4  0.2804      0.592 0.004 0.000  0 0.852 0.024 0.120
#> SRR537115     4  0.2804      0.592 0.004 0.000  0 0.852 0.024 0.120
#> SRR537116     4  0.5849      0.386 0.000 0.004  0 0.484 0.332 0.180
#> SRR537117     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537118     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537119     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537120     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537121     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537122     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537123     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537124     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537125     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537126     4  0.5438      0.504 0.000 0.000  0 0.568 0.260 0.172
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.455           0.876       0.915         0.4509 0.500   0.500
#> 3 3 0.539           0.650       0.789         0.3517 0.907   0.821
#> 4 4 0.527           0.612       0.688         0.1473 0.801   0.581
#> 5 5 0.562           0.551       0.662         0.0782 0.845   0.544
#> 6 6 0.678           0.656       0.743         0.0556 0.878   0.545
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.5059      0.903 0.888 0.112
#> SRR191640     1  0.5059      0.903 0.888 0.112
#> SRR191641     1  0.5059      0.903 0.888 0.112
#> SRR191642     1  0.9129      0.678 0.672 0.328
#> SRR191643     1  0.9977      0.385 0.528 0.472
#> SRR191644     1  0.9087      0.684 0.676 0.324
#> SRR191645     1  0.5059      0.903 0.888 0.112
#> SRR191646     1  0.5059      0.903 0.888 0.112
#> SRR191647     1  0.5059      0.903 0.888 0.112
#> SRR191648     1  0.5059      0.903 0.888 0.112
#> SRR191649     1  0.5059      0.903 0.888 0.112
#> SRR191650     1  0.5059      0.903 0.888 0.112
#> SRR191651     1  0.4939      0.902 0.892 0.108
#> SRR191652     1  0.5059      0.903 0.888 0.112
#> SRR191653     1  0.5519      0.894 0.872 0.128
#> SRR191654     1  0.9248      0.666 0.660 0.340
#> SRR191655     1  0.5408      0.896 0.876 0.124
#> SRR191656     1  0.4939      0.902 0.892 0.108
#> SRR191657     1  0.4939      0.901 0.892 0.108
#> SRR191658     1  0.5059      0.903 0.888 0.112
#> SRR191659     1  0.4815      0.900 0.896 0.104
#> SRR191660     1  0.5059      0.903 0.888 0.112
#> SRR191661     1  0.5059      0.903 0.888 0.112
#> SRR191662     1  0.5059      0.903 0.888 0.112
#> SRR191663     1  0.5059      0.903 0.888 0.112
#> SRR191664     1  0.4939      0.901 0.892 0.108
#> SRR191665     1  0.5059      0.903 0.888 0.112
#> SRR191666     1  0.3114      0.862 0.944 0.056
#> SRR191667     1  0.3114      0.862 0.944 0.056
#> SRR191668     1  0.4939      0.902 0.892 0.108
#> SRR191669     1  0.4939      0.902 0.892 0.108
#> SRR191670     1  0.4939      0.902 0.892 0.108
#> SRR191671     1  0.4939      0.902 0.892 0.108
#> SRR191672     1  0.4939      0.902 0.892 0.108
#> SRR191673     1  0.4939      0.902 0.892 0.108
#> SRR191674     2  0.0672      0.970 0.008 0.992
#> SRR191675     2  0.0672      0.970 0.008 0.992
#> SRR191677     2  0.0672      0.970 0.008 0.992
#> SRR191678     2  0.0672      0.970 0.008 0.992
#> SRR191679     2  0.0672      0.970 0.008 0.992
#> SRR191680     2  0.0672      0.970 0.008 0.992
#> SRR191681     2  0.0672      0.970 0.008 0.992
#> SRR191682     2  0.0672      0.966 0.008 0.992
#> SRR191683     2  0.0672      0.966 0.008 0.992
#> SRR191684     2  0.0672      0.966 0.008 0.992
#> SRR191685     2  0.0672      0.966 0.008 0.992
#> SRR191686     2  0.0376      0.968 0.004 0.996
#> SRR191687     2  0.0672      0.966 0.008 0.992
#> SRR191688     2  0.0672      0.970 0.008 0.992
#> SRR191689     2  0.0672      0.969 0.008 0.992
#> SRR191690     2  0.0672      0.970 0.008 0.992
#> SRR191691     2  0.0672      0.966 0.008 0.992
#> SRR191692     2  0.0376      0.970 0.004 0.996
#> SRR191693     2  0.0376      0.968 0.004 0.996
#> SRR191694     2  0.0938      0.970 0.012 0.988
#> SRR191695     2  0.0672      0.970 0.008 0.992
#> SRR191696     2  0.0672      0.970 0.008 0.992
#> SRR191697     2  0.0672      0.970 0.008 0.992
#> SRR191698     2  0.0672      0.966 0.008 0.992
#> SRR191699     2  0.0672      0.966 0.008 0.992
#> SRR191700     2  0.0672      0.966 0.008 0.992
#> SRR191701     2  0.0376      0.968 0.004 0.996
#> SRR191702     2  0.0938      0.970 0.012 0.988
#> SRR191703     2  0.0938      0.970 0.012 0.988
#> SRR191704     2  0.0938      0.970 0.012 0.988
#> SRR191705     2  0.0938      0.970 0.012 0.988
#> SRR191706     2  0.0938      0.970 0.012 0.988
#> SRR191707     2  0.0672      0.970 0.008 0.992
#> SRR191708     2  0.0938      0.970 0.012 0.988
#> SRR191709     2  0.0938      0.970 0.012 0.988
#> SRR191710     2  0.0938      0.970 0.012 0.988
#> SRR191711     2  0.0672      0.970 0.008 0.992
#> SRR191712     2  0.0672      0.970 0.008 0.992
#> SRR191713     2  0.0938      0.970 0.012 0.988
#> SRR191714     2  0.0938      0.970 0.012 0.988
#> SRR191715     2  0.0672      0.970 0.008 0.992
#> SRR191716     2  0.0672      0.970 0.008 0.992
#> SRR191717     2  0.0672      0.970 0.008 0.992
#> SRR191718     2  0.0672      0.970 0.008 0.992
#> SRR537099     1  0.9977      0.385 0.528 0.472
#> SRR537100     1  0.5946      0.882 0.856 0.144
#> SRR537101     1  0.5059      0.903 0.888 0.112
#> SRR537102     1  0.9977      0.385 0.528 0.472
#> SRR537104     2  0.9993     -0.267 0.484 0.516
#> SRR537105     1  0.5408      0.896 0.876 0.124
#> SRR537106     1  0.9977      0.385 0.528 0.472
#> SRR537107     1  0.9977      0.385 0.528 0.472
#> SRR537108     1  0.9977      0.385 0.528 0.472
#> SRR537109     2  0.0672      0.970 0.008 0.992
#> SRR537110     2  0.0672      0.970 0.008 0.992
#> SRR537111     1  0.9087      0.684 0.676 0.324
#> SRR537113     2  0.9000      0.389 0.316 0.684
#> SRR537114     2  0.9000      0.389 0.316 0.684
#> SRR537115     2  0.0672      0.970 0.008 0.992
#> SRR537116     2  0.0672      0.970 0.008 0.992
#> SRR537117     2  0.0000      0.969 0.000 1.000
#> SRR537118     2  0.0376      0.967 0.004 0.996
#> SRR537119     2  0.0376      0.967 0.004 0.996
#> SRR537120     2  0.0376      0.967 0.004 0.996
#> SRR537121     2  0.0376      0.967 0.004 0.996
#> SRR537122     2  0.0376      0.967 0.004 0.996
#> SRR537123     2  0.0376      0.967 0.004 0.996
#> SRR537124     2  0.0376      0.967 0.004 0.996
#> SRR537125     2  0.0376      0.967 0.004 0.996
#> SRR537126     2  0.0376      0.967 0.004 0.996
#> SRR537127     1  0.0672      0.827 0.992 0.008
#> SRR537128     1  0.0672      0.827 0.992 0.008
#> SRR537129     1  0.0672      0.827 0.992 0.008
#> SRR537130     1  0.0672      0.827 0.992 0.008
#> SRR537131     1  0.0672      0.827 0.992 0.008
#> SRR537132     1  0.0672      0.827 0.992 0.008
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.5882      0.395 0.652 0.000 0.348
#> SRR191640     1  0.0892      0.534 0.980 0.000 0.020
#> SRR191641     1  0.2066      0.533 0.940 0.000 0.060
#> SRR191642     1  0.1753      0.525 0.952 0.048 0.000
#> SRR191643     1  0.2682      0.502 0.920 0.076 0.004
#> SRR191644     1  0.1643      0.525 0.956 0.044 0.000
#> SRR191645     1  0.2066      0.538 0.940 0.000 0.060
#> SRR191646     1  0.2066      0.538 0.940 0.000 0.060
#> SRR191647     1  0.1753      0.536 0.952 0.000 0.048
#> SRR191648     1  0.1753      0.536 0.952 0.000 0.048
#> SRR191649     1  0.1753      0.536 0.952 0.000 0.048
#> SRR191650     1  0.3192      0.535 0.888 0.000 0.112
#> SRR191651     1  0.6111      0.351 0.604 0.000 0.396
#> SRR191652     1  0.5968      0.336 0.636 0.000 0.364
#> SRR191653     1  0.2743      0.496 0.928 0.020 0.052
#> SRR191654     1  0.3375      0.474 0.908 0.048 0.044
#> SRR191655     1  0.0829      0.530 0.984 0.012 0.004
#> SRR191656     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191657     1  0.6140      0.320 0.596 0.000 0.404
#> SRR191658     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191659     1  0.6140      0.320 0.596 0.000 0.404
#> SRR191660     1  0.6111      0.333 0.604 0.000 0.396
#> SRR191661     1  0.5706      0.403 0.680 0.000 0.320
#> SRR191662     1  0.6026      0.355 0.624 0.000 0.376
#> SRR191663     1  0.5882      0.383 0.652 0.000 0.348
#> SRR191664     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191665     1  0.6168      0.332 0.588 0.000 0.412
#> SRR191666     1  0.5988      0.251 0.632 0.000 0.368
#> SRR191667     1  0.5988      0.251 0.632 0.000 0.368
#> SRR191668     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191669     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191670     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191671     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191672     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191673     1  0.6192      0.320 0.580 0.000 0.420
#> SRR191674     2  0.2878      0.855 0.000 0.904 0.096
#> SRR191675     2  0.2878      0.855 0.000 0.904 0.096
#> SRR191677     2  0.2878      0.855 0.000 0.904 0.096
#> SRR191678     2  0.4094      0.851 0.028 0.872 0.100
#> SRR191679     2  0.2711      0.857 0.000 0.912 0.088
#> SRR191680     2  0.2878      0.855 0.000 0.904 0.096
#> SRR191681     2  0.2878      0.855 0.000 0.904 0.096
#> SRR191682     2  0.3340      0.853 0.000 0.880 0.120
#> SRR191683     2  0.3340      0.853 0.000 0.880 0.120
#> SRR191684     2  0.3500      0.854 0.004 0.880 0.116
#> SRR191685     2  0.3573      0.853 0.004 0.876 0.120
#> SRR191686     2  0.3340      0.853 0.000 0.880 0.120
#> SRR191687     2  0.3573      0.853 0.004 0.876 0.120
#> SRR191688     2  0.3484      0.858 0.048 0.904 0.048
#> SRR191689     2  0.1411      0.864 0.000 0.964 0.036
#> SRR191690     2  0.3589      0.857 0.052 0.900 0.048
#> SRR191691     2  0.3030      0.855 0.004 0.904 0.092
#> SRR191692     2  0.3192      0.853 0.000 0.888 0.112
#> SRR191693     2  0.3619      0.845 0.000 0.864 0.136
#> SRR191694     2  0.2711      0.857 0.000 0.912 0.088
#> SRR191695     2  0.3369      0.860 0.040 0.908 0.052
#> SRR191696     2  0.3369      0.860 0.040 0.908 0.052
#> SRR191697     2  0.2414      0.865 0.020 0.940 0.040
#> SRR191698     2  0.4172      0.854 0.028 0.868 0.104
#> SRR191699     2  0.2682      0.860 0.004 0.920 0.076
#> SRR191700     2  0.6902      0.759 0.148 0.736 0.116
#> SRR191701     2  0.2796      0.858 0.000 0.908 0.092
#> SRR191702     2  0.3461      0.849 0.024 0.900 0.076
#> SRR191703     2  0.3461      0.849 0.024 0.900 0.076
#> SRR191704     2  0.3181      0.853 0.024 0.912 0.064
#> SRR191705     2  0.3181      0.853 0.024 0.912 0.064
#> SRR191706     2  0.3045      0.853 0.020 0.916 0.064
#> SRR191707     2  0.3993      0.856 0.052 0.884 0.064
#> SRR191708     2  0.3181      0.853 0.024 0.912 0.064
#> SRR191709     2  0.3181      0.853 0.024 0.912 0.064
#> SRR191710     2  0.3181      0.853 0.024 0.912 0.064
#> SRR191711     2  0.3181      0.853 0.024 0.912 0.064
#> SRR191712     2  0.3181      0.853 0.024 0.912 0.064
#> SRR191713     2  0.3461      0.850 0.024 0.900 0.076
#> SRR191714     2  0.3461      0.850 0.024 0.900 0.076
#> SRR191715     2  0.3550      0.850 0.024 0.896 0.080
#> SRR191716     2  0.3589      0.858 0.048 0.900 0.052
#> SRR191717     2  0.3484      0.858 0.048 0.904 0.048
#> SRR191718     2  0.2806      0.863 0.032 0.928 0.040
#> SRR537099     1  0.3415      0.482 0.900 0.080 0.020
#> SRR537100     1  0.2564      0.514 0.936 0.036 0.028
#> SRR537101     1  0.2066      0.533 0.940 0.000 0.060
#> SRR537102     1  0.3310      0.493 0.908 0.064 0.028
#> SRR537104     1  0.5874      0.269 0.760 0.208 0.032
#> SRR537105     1  0.1337      0.526 0.972 0.016 0.012
#> SRR537106     1  0.3207      0.490 0.904 0.084 0.012
#> SRR537107     1  0.3207      0.490 0.904 0.084 0.012
#> SRR537108     1  0.3207      0.490 0.904 0.084 0.012
#> SRR537109     2  0.3039      0.859 0.036 0.920 0.044
#> SRR537110     2  0.7924      0.626 0.304 0.612 0.084
#> SRR537111     1  0.5507      0.496 0.808 0.056 0.136
#> SRR537113     1  0.7279      0.106 0.588 0.376 0.036
#> SRR537114     1  0.7170      0.122 0.612 0.352 0.036
#> SRR537115     2  0.8173      0.622 0.300 0.600 0.100
#> SRR537116     2  0.3083      0.855 0.024 0.916 0.060
#> SRR537117     2  0.6313      0.803 0.084 0.768 0.148
#> SRR537118     2  0.8934      0.614 0.236 0.568 0.196
#> SRR537119     2  0.8934      0.614 0.236 0.568 0.196
#> SRR537120     2  0.8566      0.661 0.204 0.608 0.188
#> SRR537121     2  0.9055      0.592 0.252 0.552 0.196
#> SRR537122     2  0.9162      0.568 0.268 0.536 0.196
#> SRR537123     2  0.9055      0.592 0.252 0.552 0.196
#> SRR537124     2  0.8118      0.701 0.188 0.648 0.164
#> SRR537125     2  0.8965      0.609 0.240 0.564 0.196
#> SRR537126     2  0.8965      0.609 0.240 0.564 0.196
#> SRR537127     3  0.5810      1.000 0.336 0.000 0.664
#> SRR537128     3  0.5810      1.000 0.336 0.000 0.664
#> SRR537129     3  0.5810      1.000 0.336 0.000 0.664
#> SRR537130     3  0.5810      1.000 0.336 0.000 0.664
#> SRR537131     3  0.5810      1.000 0.336 0.000 0.664
#> SRR537132     3  0.5810      1.000 0.336 0.000 0.664
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.5576     0.5149 0.536 0.000 0.020 0.444
#> SRR191640     4  0.1389     0.7813 0.048 0.000 0.000 0.952
#> SRR191641     4  0.2081     0.7534 0.084 0.000 0.000 0.916
#> SRR191642     4  0.0712     0.8039 0.004 0.008 0.004 0.984
#> SRR191643     4  0.0844     0.8039 0.004 0.012 0.004 0.980
#> SRR191644     4  0.0992     0.8017 0.012 0.008 0.004 0.976
#> SRR191645     4  0.2973     0.6789 0.144 0.000 0.000 0.856
#> SRR191646     4  0.2973     0.6789 0.144 0.000 0.000 0.856
#> SRR191647     4  0.2149     0.7517 0.088 0.000 0.000 0.912
#> SRR191648     4  0.2149     0.7517 0.088 0.000 0.000 0.912
#> SRR191649     4  0.2216     0.7486 0.092 0.000 0.000 0.908
#> SRR191650     4  0.4072     0.4661 0.252 0.000 0.000 0.748
#> SRR191651     1  0.5403     0.7052 0.628 0.000 0.024 0.348
#> SRR191652     1  0.4522     0.7451 0.680 0.000 0.000 0.320
#> SRR191653     4  0.2057     0.7862 0.020 0.008 0.032 0.940
#> SRR191654     4  0.2074     0.7832 0.016 0.012 0.032 0.940
#> SRR191655     4  0.0672     0.8029 0.008 0.008 0.000 0.984
#> SRR191656     1  0.5207     0.7610 0.680 0.000 0.028 0.292
#> SRR191657     1  0.4382     0.7582 0.704 0.000 0.000 0.296
#> SRR191658     1  0.4795     0.7599 0.696 0.000 0.012 0.292
#> SRR191659     1  0.4382     0.7582 0.704 0.000 0.000 0.296
#> SRR191660     1  0.4406     0.7568 0.700 0.000 0.000 0.300
#> SRR191661     4  0.4999    -0.3880 0.492 0.000 0.000 0.508
#> SRR191662     1  0.4730     0.6930 0.636 0.000 0.000 0.364
#> SRR191663     1  0.4877     0.6164 0.592 0.000 0.000 0.408
#> SRR191664     1  0.4382     0.7582 0.704 0.000 0.000 0.296
#> SRR191665     1  0.5137     0.7593 0.680 0.000 0.024 0.296
#> SRR191666     1  0.5143     0.6967 0.628 0.000 0.012 0.360
#> SRR191667     1  0.5143     0.6967 0.628 0.000 0.012 0.360
#> SRR191668     1  0.5207     0.7610 0.680 0.000 0.028 0.292
#> SRR191669     1  0.5207     0.7610 0.680 0.000 0.028 0.292
#> SRR191670     1  0.5207     0.7610 0.680 0.000 0.028 0.292
#> SRR191671     1  0.5207     0.7610 0.680 0.000 0.028 0.292
#> SRR191672     1  0.5207     0.7610 0.680 0.000 0.028 0.292
#> SRR191673     1  0.5207     0.7610 0.680 0.000 0.028 0.292
#> SRR191674     2  0.5112     0.5136 0.012 0.668 0.316 0.004
#> SRR191675     2  0.5112     0.5136 0.012 0.668 0.316 0.004
#> SRR191677     2  0.5112     0.5136 0.012 0.668 0.316 0.004
#> SRR191678     2  0.6393     0.3475 0.012 0.572 0.368 0.048
#> SRR191679     2  0.5068     0.5242 0.012 0.676 0.308 0.004
#> SRR191680     2  0.5090     0.5187 0.012 0.672 0.312 0.004
#> SRR191681     2  0.5175     0.4992 0.012 0.656 0.328 0.004
#> SRR191682     2  0.5453     0.4757 0.020 0.592 0.388 0.000
#> SRR191683     2  0.5453     0.4757 0.020 0.592 0.388 0.000
#> SRR191684     2  0.5734     0.4764 0.020 0.592 0.380 0.008
#> SRR191685     2  0.5747     0.4712 0.020 0.588 0.384 0.008
#> SRR191686     2  0.5453     0.4757 0.020 0.592 0.388 0.000
#> SRR191687     2  0.5747     0.4712 0.020 0.588 0.384 0.008
#> SRR191688     2  0.4733     0.5993 0.008 0.800 0.128 0.064
#> SRR191689     2  0.4652     0.6148 0.020 0.756 0.220 0.004
#> SRR191690     2  0.4801     0.5916 0.008 0.800 0.108 0.084
#> SRR191691     2  0.5330     0.5224 0.008 0.648 0.332 0.012
#> SRR191692     2  0.5404     0.4243 0.012 0.600 0.384 0.004
#> SRR191693     2  0.5607     0.3303 0.020 0.492 0.488 0.000
#> SRR191694     2  0.5110     0.5442 0.016 0.684 0.296 0.004
#> SRR191695     2  0.5227     0.5631 0.008 0.756 0.176 0.060
#> SRR191696     2  0.5227     0.5631 0.008 0.756 0.176 0.060
#> SRR191697     2  0.5907     0.5122 0.012 0.672 0.268 0.048
#> SRR191698     2  0.7063     0.2091 0.012 0.504 0.396 0.088
#> SRR191699     2  0.5370     0.5348 0.012 0.660 0.316 0.012
#> SRR191700     2  0.7813    -0.2301 0.012 0.428 0.392 0.168
#> SRR191701     2  0.5285     0.5185 0.012 0.632 0.352 0.004
#> SRR191702     2  0.2074     0.6403 0.016 0.940 0.032 0.012
#> SRR191703     2  0.2074     0.6403 0.016 0.940 0.032 0.012
#> SRR191704     2  0.3285     0.6371 0.020 0.884 0.080 0.016
#> SRR191705     2  0.3285     0.6371 0.020 0.884 0.080 0.016
#> SRR191706     2  0.2275     0.6456 0.020 0.928 0.048 0.004
#> SRR191707     2  0.4073     0.6257 0.012 0.848 0.076 0.064
#> SRR191708     2  0.3285     0.6371 0.020 0.884 0.080 0.016
#> SRR191709     2  0.3285     0.6371 0.020 0.884 0.080 0.016
#> SRR191710     2  0.3285     0.6371 0.020 0.884 0.080 0.016
#> SRR191711     2  0.2074     0.6530 0.016 0.940 0.032 0.012
#> SRR191712     2  0.2074     0.6530 0.016 0.940 0.032 0.012
#> SRR191713     2  0.3782     0.6251 0.024 0.852 0.112 0.012
#> SRR191714     2  0.3782     0.6251 0.024 0.852 0.112 0.012
#> SRR191715     2  0.1262     0.6499 0.016 0.968 0.008 0.008
#> SRR191716     2  0.5193     0.5628 0.008 0.768 0.148 0.076
#> SRR191717     2  0.4733     0.5993 0.008 0.800 0.128 0.064
#> SRR191718     2  0.5077     0.5742 0.008 0.764 0.176 0.052
#> SRR537099     4  0.1543     0.7923 0.004 0.008 0.032 0.956
#> SRR537100     4  0.1082     0.8010 0.004 0.004 0.020 0.972
#> SRR537101     4  0.2081     0.7534 0.084 0.000 0.000 0.916
#> SRR537102     4  0.0927     0.8010 0.000 0.016 0.008 0.976
#> SRR537104     4  0.3164     0.7216 0.000 0.052 0.064 0.884
#> SRR537105     4  0.0779     0.8038 0.000 0.016 0.004 0.980
#> SRR537106     4  0.0895     0.8030 0.000 0.020 0.004 0.976
#> SRR537107     4  0.0895     0.8030 0.000 0.020 0.004 0.976
#> SRR537108     4  0.0895     0.8030 0.000 0.020 0.004 0.976
#> SRR537109     2  0.3777     0.6328 0.012 0.864 0.068 0.056
#> SRR537110     2  0.6941    -0.0866 0.012 0.492 0.076 0.420
#> SRR537111     4  0.6176     0.2763 0.284 0.036 0.028 0.652
#> SRR537113     4  0.5708     0.4475 0.004 0.212 0.076 0.708
#> SRR537114     4  0.5191     0.5503 0.004 0.120 0.108 0.768
#> SRR537115     4  0.7926    -0.4273 0.004 0.316 0.256 0.424
#> SRR537116     2  0.2170     0.6497 0.012 0.936 0.016 0.036
#> SRR537117     3  0.6763     0.6200 0.000 0.320 0.564 0.116
#> SRR537118     3  0.7386     0.9226 0.020 0.180 0.592 0.208
#> SRR537119     3  0.7386     0.9226 0.020 0.180 0.592 0.208
#> SRR537120     3  0.7309     0.8729 0.016 0.216 0.592 0.176
#> SRR537121     3  0.7359     0.9084 0.020 0.164 0.592 0.224
#> SRR537122     3  0.7350     0.9005 0.020 0.160 0.592 0.228
#> SRR537123     3  0.7359     0.9084 0.020 0.164 0.592 0.224
#> SRR537124     3  0.7091     0.8239 0.008 0.244 0.592 0.156
#> SRR537125     3  0.7386     0.9226 0.020 0.180 0.592 0.208
#> SRR537126     3  0.7386     0.9226 0.020 0.180 0.592 0.208
#> SRR537127     1  0.7079     0.3884 0.556 0.000 0.276 0.168
#> SRR537128     1  0.7037     0.3884 0.564 0.000 0.268 0.168
#> SRR537129     1  0.7079     0.3884 0.556 0.000 0.276 0.168
#> SRR537130     1  0.7079     0.3884 0.556 0.000 0.276 0.168
#> SRR537131     1  0.7037     0.3884 0.564 0.000 0.268 0.168
#> SRR537132     1  0.7037     0.3884 0.564 0.000 0.268 0.168
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.4592    0.78133 0.644 0.024 0.000 0.332 0.000
#> SRR191640     4  0.1357    0.83818 0.048 0.004 0.000 0.948 0.000
#> SRR191641     4  0.2351    0.80599 0.088 0.000 0.016 0.896 0.000
#> SRR191642     4  0.1074    0.84733 0.012 0.016 0.000 0.968 0.004
#> SRR191643     4  0.1074    0.84799 0.012 0.016 0.000 0.968 0.004
#> SRR191644     4  0.1588    0.84265 0.028 0.016 0.008 0.948 0.000
#> SRR191645     4  0.2573    0.78738 0.104 0.000 0.016 0.880 0.000
#> SRR191646     4  0.2573    0.78738 0.104 0.000 0.016 0.880 0.000
#> SRR191647     4  0.2293    0.80883 0.084 0.000 0.016 0.900 0.000
#> SRR191648     4  0.2293    0.80883 0.084 0.000 0.016 0.900 0.000
#> SRR191649     4  0.2293    0.80883 0.084 0.000 0.016 0.900 0.000
#> SRR191650     4  0.3814    0.46580 0.276 0.004 0.000 0.720 0.000
#> SRR191651     1  0.4880    0.85304 0.692 0.040 0.012 0.256 0.000
#> SRR191652     1  0.3934    0.88437 0.740 0.000 0.016 0.244 0.000
#> SRR191653     4  0.2047    0.83388 0.020 0.012 0.040 0.928 0.000
#> SRR191654     4  0.1885    0.83540 0.020 0.012 0.032 0.936 0.000
#> SRR191655     4  0.0566    0.84678 0.012 0.004 0.000 0.984 0.000
#> SRR191656     1  0.4054    0.89155 0.760 0.036 0.000 0.204 0.000
#> SRR191657     1  0.4389    0.87877 0.752 0.020 0.024 0.204 0.000
#> SRR191658     1  0.3933    0.88310 0.776 0.020 0.008 0.196 0.000
#> SRR191659     1  0.4389    0.87877 0.752 0.020 0.024 0.204 0.000
#> SRR191660     1  0.4483    0.87950 0.740 0.020 0.024 0.216 0.000
#> SRR191661     1  0.5301    0.67625 0.576 0.020 0.024 0.380 0.000
#> SRR191662     1  0.5078    0.83653 0.676 0.024 0.032 0.268 0.000
#> SRR191663     1  0.4879    0.83974 0.680 0.020 0.024 0.276 0.000
#> SRR191664     1  0.4389    0.87877 0.752 0.020 0.024 0.204 0.000
#> SRR191665     1  0.4150    0.89086 0.748 0.036 0.000 0.216 0.000
#> SRR191666     1  0.4351    0.84944 0.724 0.004 0.028 0.244 0.000
#> SRR191667     1  0.4351    0.84944 0.724 0.004 0.028 0.244 0.000
#> SRR191668     1  0.4054    0.89155 0.760 0.036 0.000 0.204 0.000
#> SRR191669     1  0.4054    0.89155 0.760 0.036 0.000 0.204 0.000
#> SRR191670     1  0.4087    0.89235 0.756 0.036 0.000 0.208 0.000
#> SRR191671     1  0.4087    0.89235 0.756 0.036 0.000 0.208 0.000
#> SRR191672     1  0.4054    0.89155 0.760 0.036 0.000 0.204 0.000
#> SRR191673     1  0.4054    0.89155 0.760 0.036 0.000 0.204 0.000
#> SRR191674     5  0.1410    0.34758 0.000 0.060 0.000 0.000 0.940
#> SRR191675     5  0.1410    0.34758 0.000 0.060 0.000 0.000 0.940
#> SRR191677     5  0.1341    0.34815 0.000 0.056 0.000 0.000 0.944
#> SRR191678     5  0.1518    0.37325 0.000 0.012 0.020 0.016 0.952
#> SRR191679     5  0.1478    0.34419 0.000 0.064 0.000 0.000 0.936
#> SRR191680     5  0.1410    0.34758 0.000 0.060 0.000 0.000 0.940
#> SRR191681     5  0.1197    0.35293 0.000 0.048 0.000 0.000 0.952
#> SRR191682     2  0.7062    0.35137 0.012 0.400 0.184 0.008 0.396
#> SRR191683     2  0.7062    0.35137 0.012 0.400 0.184 0.008 0.396
#> SRR191684     2  0.7348    0.39168 0.012 0.420 0.196 0.020 0.352
#> SRR191685     2  0.7359    0.37724 0.012 0.408 0.196 0.020 0.364
#> SRR191686     5  0.7062   -0.39020 0.012 0.396 0.184 0.008 0.400
#> SRR191687     2  0.7359    0.37724 0.012 0.408 0.196 0.020 0.364
#> SRR191688     5  0.6333    0.03610 0.008 0.332 0.048 0.048 0.564
#> SRR191689     5  0.4409    0.09180 0.008 0.180 0.052 0.000 0.760
#> SRR191690     5  0.6903    0.02102 0.012 0.312 0.052 0.084 0.540
#> SRR191691     2  0.7154    0.44879 0.012 0.500 0.196 0.020 0.272
#> SRR191692     5  0.0963    0.36090 0.000 0.036 0.000 0.000 0.964
#> SRR191693     5  0.5258    0.11621 0.012 0.200 0.080 0.004 0.704
#> SRR191694     5  0.2130    0.31632 0.000 0.080 0.012 0.000 0.908
#> SRR191695     5  0.6170    0.13809 0.008 0.256 0.064 0.044 0.628
#> SRR191696     5  0.6170    0.13809 0.008 0.256 0.064 0.044 0.628
#> SRR191697     5  0.6446    0.15034 0.012 0.192 0.132 0.032 0.632
#> SRR191698     2  0.7742    0.28918 0.012 0.452 0.248 0.048 0.240
#> SRR191699     2  0.7201    0.45820 0.016 0.500 0.184 0.020 0.280
#> SRR191700     2  0.8338    0.14205 0.012 0.388 0.272 0.100 0.228
#> SRR191701     2  0.7286    0.40147 0.012 0.448 0.216 0.016 0.308
#> SRR191702     2  0.5521    0.47940 0.032 0.600 0.016 0.008 0.344
#> SRR191703     2  0.5521    0.47940 0.032 0.600 0.016 0.008 0.344
#> SRR191704     2  0.4994    0.55550 0.032 0.680 0.008 0.008 0.272
#> SRR191705     2  0.4994    0.55550 0.032 0.680 0.008 0.008 0.272
#> SRR191706     2  0.5030    0.51292 0.032 0.624 0.008 0.000 0.336
#> SRR191707     2  0.5537    0.52367 0.016 0.652 0.028 0.024 0.280
#> SRR191708     2  0.4971    0.55536 0.032 0.684 0.008 0.008 0.268
#> SRR191709     2  0.4948    0.55540 0.032 0.688 0.008 0.008 0.264
#> SRR191710     2  0.4948    0.55540 0.032 0.688 0.008 0.008 0.264
#> SRR191711     2  0.5271    0.48289 0.008 0.616 0.020 0.016 0.340
#> SRR191712     2  0.5271    0.47960 0.008 0.616 0.020 0.016 0.340
#> SRR191713     2  0.5211    0.55946 0.008 0.696 0.040 0.020 0.236
#> SRR191714     2  0.5211    0.55946 0.008 0.696 0.040 0.020 0.236
#> SRR191715     5  0.5693   -0.28652 0.012 0.464 0.024 0.016 0.484
#> SRR191716     5  0.6400    0.10160 0.008 0.288 0.060 0.052 0.592
#> SRR191717     5  0.6333    0.03610 0.008 0.332 0.048 0.048 0.564
#> SRR191718     5  0.6146    0.12473 0.008 0.264 0.064 0.040 0.624
#> SRR537099     4  0.1256    0.84324 0.012 0.004 0.012 0.964 0.008
#> SRR537100     4  0.0854    0.84552 0.012 0.000 0.008 0.976 0.004
#> SRR537101     4  0.2351    0.80599 0.088 0.000 0.016 0.896 0.000
#> SRR537102     4  0.1200    0.84040 0.000 0.016 0.012 0.964 0.008
#> SRR537104     4  0.3126    0.78498 0.016 0.044 0.044 0.884 0.012
#> SRR537105     4  0.1490    0.84174 0.004 0.032 0.008 0.952 0.004
#> SRR537106     4  0.1652    0.84026 0.004 0.040 0.008 0.944 0.004
#> SRR537107     4  0.1573    0.84000 0.004 0.036 0.008 0.948 0.004
#> SRR537108     4  0.1573    0.84000 0.004 0.036 0.008 0.948 0.004
#> SRR537109     5  0.6491   -0.15322 0.008 0.408 0.040 0.056 0.488
#> SRR537110     2  0.7018    0.24861 0.016 0.496 0.048 0.360 0.080
#> SRR537111     4  0.6086    0.04065 0.340 0.072 0.020 0.564 0.004
#> SRR537113     4  0.5663    0.60163 0.004 0.076 0.060 0.712 0.148
#> SRR537114     4  0.5174    0.62957 0.000 0.052 0.076 0.744 0.128
#> SRR537115     4  0.6715   -0.00988 0.000 0.056 0.076 0.456 0.412
#> SRR537116     5  0.6127   -0.21803 0.012 0.444 0.032 0.032 0.480
#> SRR537117     5  0.7160    0.34972 0.000 0.104 0.296 0.088 0.512
#> SRR537118     5  0.7832    0.33959 0.000 0.104 0.356 0.156 0.384
#> SRR537119     5  0.7832    0.33959 0.000 0.104 0.356 0.156 0.384
#> SRR537120     5  0.7571    0.34587 0.000 0.104 0.340 0.120 0.436
#> SRR537121     5  0.7853    0.33779 0.000 0.104 0.356 0.160 0.380
#> SRR537122     5  0.7895    0.33197 0.000 0.104 0.356 0.168 0.372
#> SRR537123     5  0.7853    0.33779 0.000 0.104 0.356 0.160 0.380
#> SRR537124     5  0.7447    0.34879 0.000 0.104 0.328 0.108 0.460
#> SRR537125     5  0.7832    0.33959 0.000 0.104 0.356 0.156 0.384
#> SRR537126     5  0.7832    0.33959 0.000 0.104 0.356 0.156 0.384
#> SRR537127     3  0.5715    0.99498 0.388 0.000 0.524 0.088 0.000
#> SRR537128     3  0.6071    0.99498 0.388 0.012 0.512 0.088 0.000
#> SRR537129     3  0.5715    0.99498 0.388 0.000 0.524 0.088 0.000
#> SRR537130     3  0.5715    0.99498 0.388 0.000 0.524 0.088 0.000
#> SRR537131     3  0.6071    0.99498 0.388 0.012 0.512 0.088 0.000
#> SRR537132     3  0.6071    0.99498 0.388 0.012 0.512 0.088 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.4896     0.7965 0.704 0.000 0.016 0.200 0.016 0.064
#> SRR191640     4  0.0692     0.8828 0.020 0.000 0.004 0.976 0.000 0.000
#> SRR191641     4  0.0972     0.8802 0.028 0.000 0.008 0.964 0.000 0.000
#> SRR191642     4  0.0943     0.8841 0.012 0.004 0.004 0.972 0.004 0.004
#> SRR191643     4  0.0943     0.8843 0.012 0.004 0.004 0.972 0.004 0.004
#> SRR191644     4  0.1273     0.8833 0.012 0.004 0.008 0.960 0.004 0.012
#> SRR191645     4  0.2257     0.8535 0.060 0.000 0.016 0.904 0.000 0.020
#> SRR191646     4  0.2257     0.8535 0.060 0.000 0.016 0.904 0.000 0.020
#> SRR191647     4  0.1448     0.8797 0.024 0.000 0.012 0.948 0.000 0.016
#> SRR191648     4  0.1448     0.8797 0.024 0.000 0.012 0.948 0.000 0.016
#> SRR191649     4  0.1448     0.8797 0.024 0.000 0.012 0.948 0.000 0.016
#> SRR191650     4  0.4432     0.4455 0.304 0.000 0.012 0.660 0.008 0.016
#> SRR191651     1  0.4287     0.8648 0.784 0.000 0.020 0.096 0.016 0.084
#> SRR191652     1  0.3013     0.8524 0.828 0.000 0.012 0.152 0.004 0.004
#> SRR191653     4  0.1647     0.8667 0.000 0.004 0.008 0.940 0.016 0.032
#> SRR191654     4  0.1647     0.8667 0.000 0.004 0.008 0.940 0.016 0.032
#> SRR191655     4  0.1069     0.8810 0.004 0.004 0.008 0.968 0.008 0.008
#> SRR191656     1  0.3651     0.8741 0.828 0.000 0.012 0.068 0.016 0.076
#> SRR191657     1  0.2556     0.8659 0.884 0.000 0.012 0.076 0.000 0.028
#> SRR191658     1  0.2456     0.8668 0.888 0.000 0.008 0.076 0.000 0.028
#> SRR191659     1  0.2556     0.8659 0.884 0.000 0.012 0.076 0.000 0.028
#> SRR191660     1  0.2894     0.8641 0.864 0.000 0.020 0.088 0.000 0.028
#> SRR191661     1  0.4232     0.7297 0.716 0.000 0.020 0.236 0.000 0.028
#> SRR191662     1  0.3612     0.8322 0.800 0.000 0.016 0.148 0.000 0.036
#> SRR191663     1  0.3627     0.8296 0.796 0.000 0.020 0.156 0.000 0.028
#> SRR191664     1  0.2556     0.8659 0.884 0.000 0.012 0.076 0.000 0.028
#> SRR191665     1  0.3812     0.8745 0.816 0.000 0.016 0.080 0.012 0.076
#> SRR191666     1  0.3523     0.8215 0.812 0.000 0.008 0.144 0.016 0.020
#> SRR191667     1  0.3523     0.8215 0.812 0.000 0.008 0.144 0.016 0.020
#> SRR191668     1  0.3651     0.8741 0.828 0.000 0.012 0.068 0.016 0.076
#> SRR191669     1  0.3651     0.8741 0.828 0.000 0.012 0.068 0.016 0.076
#> SRR191670     1  0.3651     0.8741 0.828 0.000 0.012 0.068 0.016 0.076
#> SRR191671     1  0.3651     0.8741 0.828 0.000 0.012 0.068 0.016 0.076
#> SRR191672     1  0.3704     0.8732 0.824 0.000 0.012 0.068 0.016 0.080
#> SRR191673     1  0.3704     0.8732 0.824 0.000 0.012 0.068 0.016 0.080
#> SRR191674     6  0.5611     0.5782 0.000 0.228 0.000 0.000 0.228 0.544
#> SRR191675     6  0.5611     0.5782 0.000 0.228 0.000 0.000 0.228 0.544
#> SRR191677     6  0.5611     0.5768 0.000 0.224 0.000 0.000 0.232 0.544
#> SRR191678     6  0.5897     0.5021 0.000 0.184 0.004 0.004 0.292 0.516
#> SRR191679     6  0.5611     0.5767 0.000 0.232 0.000 0.000 0.224 0.544
#> SRR191680     6  0.5611     0.5782 0.000 0.228 0.000 0.000 0.228 0.544
#> SRR191681     6  0.5565     0.5673 0.000 0.208 0.000 0.000 0.240 0.552
#> SRR191682     6  0.7672     0.4123 0.016 0.284 0.100 0.004 0.216 0.380
#> SRR191683     6  0.7672     0.4123 0.016 0.284 0.100 0.004 0.216 0.380
#> SRR191684     6  0.7929     0.3894 0.016 0.272 0.104 0.016 0.216 0.376
#> SRR191685     6  0.7929     0.3894 0.016 0.272 0.104 0.016 0.216 0.376
#> SRR191686     6  0.7685     0.4145 0.016 0.284 0.100 0.004 0.220 0.376
#> SRR191687     6  0.7929     0.3894 0.016 0.272 0.104 0.016 0.216 0.376
#> SRR191688     2  0.6472     0.4482 0.004 0.524 0.072 0.008 0.084 0.308
#> SRR191689     6  0.5713     0.4019 0.000 0.332 0.024 0.000 0.104 0.540
#> SRR191690     2  0.7122     0.4508 0.004 0.504 0.072 0.052 0.084 0.284
#> SRR191691     2  0.8094    -0.2016 0.024 0.348 0.108 0.016 0.208 0.296
#> SRR191692     6  0.5608     0.5655 0.000 0.200 0.000 0.000 0.260 0.540
#> SRR191693     6  0.6607     0.4779 0.004 0.156 0.060 0.000 0.280 0.500
#> SRR191694     6  0.5528     0.5624 0.000 0.252 0.000 0.000 0.192 0.556
#> SRR191695     2  0.6823     0.4001 0.004 0.476 0.072 0.008 0.120 0.320
#> SRR191696     2  0.6823     0.4001 0.004 0.476 0.072 0.008 0.120 0.320
#> SRR191697     6  0.7663    -0.1328 0.020 0.332 0.092 0.004 0.196 0.356
#> SRR191698     5  0.8253    -0.1474 0.024 0.256 0.116 0.020 0.336 0.248
#> SRR191699     2  0.7939    -0.2007 0.020 0.364 0.104 0.016 0.184 0.312
#> SRR191700     5  0.8208     0.0869 0.020 0.220 0.100 0.052 0.424 0.184
#> SRR191701     2  0.8237    -0.1511 0.024 0.316 0.120 0.016 0.256 0.268
#> SRR191702     2  0.2118     0.5567 0.020 0.916 0.012 0.000 0.004 0.048
#> SRR191703     2  0.2118     0.5567 0.020 0.916 0.012 0.000 0.004 0.048
#> SRR191704     2  0.1533     0.5500 0.016 0.948 0.008 0.000 0.012 0.016
#> SRR191705     2  0.1533     0.5500 0.016 0.948 0.008 0.000 0.012 0.016
#> SRR191706     2  0.2007     0.5495 0.016 0.924 0.012 0.000 0.008 0.040
#> SRR191707     2  0.4049     0.5602 0.008 0.816 0.040 0.020 0.028 0.088
#> SRR191708     2  0.1533     0.5504 0.016 0.948 0.008 0.000 0.012 0.016
#> SRR191709     2  0.1705     0.5473 0.016 0.940 0.008 0.000 0.012 0.024
#> SRR191710     2  0.1533     0.5504 0.016 0.948 0.008 0.000 0.012 0.016
#> SRR191711     2  0.4360     0.5670 0.004 0.760 0.064 0.004 0.016 0.152
#> SRR191712     2  0.4443     0.5690 0.004 0.756 0.064 0.004 0.020 0.152
#> SRR191713     2  0.3959     0.5265 0.020 0.816 0.060 0.004 0.016 0.084
#> SRR191714     2  0.3959     0.5265 0.020 0.816 0.060 0.004 0.016 0.084
#> SRR191715     2  0.5124     0.5225 0.004 0.648 0.072 0.004 0.012 0.260
#> SRR191716     2  0.6741     0.4310 0.004 0.500 0.072 0.008 0.116 0.300
#> SRR191717     2  0.6472     0.4482 0.004 0.524 0.072 0.008 0.084 0.308
#> SRR191718     2  0.6773     0.4266 0.004 0.496 0.072 0.008 0.120 0.300
#> SRR537099     4  0.1495     0.8762 0.004 0.000 0.008 0.948 0.020 0.020
#> SRR537100     4  0.1312     0.8786 0.004 0.000 0.008 0.956 0.020 0.012
#> SRR537101     4  0.0972     0.8802 0.028 0.000 0.008 0.964 0.000 0.000
#> SRR537102     4  0.0912     0.8830 0.004 0.004 0.000 0.972 0.012 0.008
#> SRR537104     4  0.2220     0.8537 0.008 0.004 0.012 0.916 0.016 0.044
#> SRR537105     4  0.2159     0.8764 0.012 0.004 0.012 0.920 0.012 0.040
#> SRR537106     4  0.2466     0.8733 0.012 0.016 0.012 0.908 0.012 0.040
#> SRR537107     4  0.2466     0.8730 0.012 0.012 0.012 0.908 0.016 0.040
#> SRR537108     4  0.2466     0.8730 0.012 0.012 0.012 0.908 0.016 0.040
#> SRR537109     2  0.5993     0.4839 0.004 0.572 0.076 0.008 0.044 0.296
#> SRR537110     2  0.6853     0.1986 0.004 0.432 0.056 0.388 0.024 0.096
#> SRR537111     4  0.6279    -0.1199 0.400 0.004 0.028 0.464 0.016 0.088
#> SRR537113     4  0.5143     0.6915 0.004 0.072 0.020 0.740 0.072 0.092
#> SRR537114     4  0.4591     0.7312 0.004 0.024 0.020 0.772 0.096 0.084
#> SRR537115     4  0.7327     0.2926 0.008 0.128 0.020 0.516 0.180 0.148
#> SRR537116     2  0.5449     0.5124 0.004 0.612 0.076 0.004 0.020 0.284
#> SRR537117     5  0.2791     0.7531 0.000 0.024 0.004 0.028 0.880 0.064
#> SRR537118     5  0.2238     0.8304 0.000 0.016 0.004 0.076 0.900 0.004
#> SRR537119     5  0.2238     0.8304 0.000 0.016 0.004 0.076 0.900 0.004
#> SRR537120     5  0.2501     0.8072 0.000 0.016 0.004 0.056 0.896 0.028
#> SRR537121     5  0.1951     0.8293 0.000 0.016 0.000 0.076 0.908 0.000
#> SRR537122     5  0.1951     0.8293 0.000 0.016 0.000 0.076 0.908 0.000
#> SRR537123     5  0.1951     0.8293 0.000 0.016 0.000 0.076 0.908 0.000
#> SRR537124     5  0.2380     0.7828 0.000 0.016 0.000 0.036 0.900 0.048
#> SRR537125     5  0.2095     0.8305 0.000 0.016 0.000 0.076 0.904 0.004
#> SRR537126     5  0.2095     0.8305 0.000 0.016 0.000 0.076 0.904 0.004
#> SRR537127     3  0.4874     0.9926 0.148 0.000 0.732 0.072 0.036 0.012
#> SRR537128     3  0.4426     0.9926 0.144 0.000 0.752 0.072 0.032 0.000
#> SRR537129     3  0.4874     0.9926 0.148 0.000 0.732 0.072 0.036 0.012
#> SRR537130     3  0.4874     0.9926 0.148 0.000 0.732 0.072 0.036 0.012
#> SRR537131     3  0.4426     0.9926 0.144 0.000 0.752 0.072 0.032 0.000
#> SRR537132     3  0.4426     0.9926 0.144 0.000 0.752 0.072 0.032 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.987         0.5030 0.499   0.499
#> 3 3 0.759           0.732       0.891         0.2783 0.769   0.569
#> 4 4 0.820           0.830       0.909         0.1409 0.910   0.750
#> 5 5 0.767           0.652       0.763         0.0654 0.928   0.756
#> 6 6 0.774           0.662       0.763         0.0528 0.946   0.775
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1   0.000      0.996 1.000 0.000
#> SRR191640     1   0.000      0.996 1.000 0.000
#> SRR191641     1   0.000      0.996 1.000 0.000
#> SRR191642     1   0.000      0.996 1.000 0.000
#> SRR191643     1   0.000      0.996 1.000 0.000
#> SRR191644     1   0.000      0.996 1.000 0.000
#> SRR191645     1   0.000      0.996 1.000 0.000
#> SRR191646     1   0.000      0.996 1.000 0.000
#> SRR191647     1   0.000      0.996 1.000 0.000
#> SRR191648     1   0.000      0.996 1.000 0.000
#> SRR191649     1   0.000      0.996 1.000 0.000
#> SRR191650     1   0.000      0.996 1.000 0.000
#> SRR191651     1   0.000      0.996 1.000 0.000
#> SRR191652     1   0.000      0.996 1.000 0.000
#> SRR191653     1   0.000      0.996 1.000 0.000
#> SRR191654     1   0.000      0.996 1.000 0.000
#> SRR191655     1   0.000      0.996 1.000 0.000
#> SRR191656     1   0.000      0.996 1.000 0.000
#> SRR191657     1   0.000      0.996 1.000 0.000
#> SRR191658     1   0.000      0.996 1.000 0.000
#> SRR191659     1   0.000      0.996 1.000 0.000
#> SRR191660     1   0.000      0.996 1.000 0.000
#> SRR191661     1   0.000      0.996 1.000 0.000
#> SRR191662     1   0.000      0.996 1.000 0.000
#> SRR191663     1   0.000      0.996 1.000 0.000
#> SRR191664     1   0.000      0.996 1.000 0.000
#> SRR191665     1   0.000      0.996 1.000 0.000
#> SRR191666     1   0.000      0.996 1.000 0.000
#> SRR191667     1   0.000      0.996 1.000 0.000
#> SRR191668     1   0.000      0.996 1.000 0.000
#> SRR191669     1   0.000      0.996 1.000 0.000
#> SRR191670     1   0.000      0.996 1.000 0.000
#> SRR191671     1   0.000      0.996 1.000 0.000
#> SRR191672     1   0.000      0.996 1.000 0.000
#> SRR191673     1   0.000      0.996 1.000 0.000
#> SRR191674     2   0.000      0.978 0.000 1.000
#> SRR191675     2   0.000      0.978 0.000 1.000
#> SRR191677     2   0.000      0.978 0.000 1.000
#> SRR191678     2   0.000      0.978 0.000 1.000
#> SRR191679     2   0.000      0.978 0.000 1.000
#> SRR191680     2   0.000      0.978 0.000 1.000
#> SRR191681     2   0.000      0.978 0.000 1.000
#> SRR191682     2   0.000      0.978 0.000 1.000
#> SRR191683     2   0.000      0.978 0.000 1.000
#> SRR191684     2   0.000      0.978 0.000 1.000
#> SRR191685     2   0.000      0.978 0.000 1.000
#> SRR191686     2   0.000      0.978 0.000 1.000
#> SRR191687     2   0.000      0.978 0.000 1.000
#> SRR191688     2   0.000      0.978 0.000 1.000
#> SRR191689     2   0.000      0.978 0.000 1.000
#> SRR191690     2   0.000      0.978 0.000 1.000
#> SRR191691     2   0.000      0.978 0.000 1.000
#> SRR191692     2   0.000      0.978 0.000 1.000
#> SRR191693     2   0.000      0.978 0.000 1.000
#> SRR191694     2   0.000      0.978 0.000 1.000
#> SRR191695     2   0.000      0.978 0.000 1.000
#> SRR191696     2   0.000      0.978 0.000 1.000
#> SRR191697     2   0.000      0.978 0.000 1.000
#> SRR191698     2   0.000      0.978 0.000 1.000
#> SRR191699     2   0.000      0.978 0.000 1.000
#> SRR191700     2   0.000      0.978 0.000 1.000
#> SRR191701     2   0.000      0.978 0.000 1.000
#> SRR191702     2   0.000      0.978 0.000 1.000
#> SRR191703     2   0.000      0.978 0.000 1.000
#> SRR191704     2   0.000      0.978 0.000 1.000
#> SRR191705     2   0.000      0.978 0.000 1.000
#> SRR191706     2   0.000      0.978 0.000 1.000
#> SRR191707     2   0.000      0.978 0.000 1.000
#> SRR191708     2   0.000      0.978 0.000 1.000
#> SRR191709     2   0.000      0.978 0.000 1.000
#> SRR191710     2   0.000      0.978 0.000 1.000
#> SRR191711     2   0.000      0.978 0.000 1.000
#> SRR191712     2   0.000      0.978 0.000 1.000
#> SRR191713     2   0.000      0.978 0.000 1.000
#> SRR191714     2   0.000      0.978 0.000 1.000
#> SRR191715     2   0.000      0.978 0.000 1.000
#> SRR191716     2   0.000      0.978 0.000 1.000
#> SRR191717     2   0.000      0.978 0.000 1.000
#> SRR191718     2   0.000      0.978 0.000 1.000
#> SRR537099     1   0.000      0.996 1.000 0.000
#> SRR537100     1   0.000      0.996 1.000 0.000
#> SRR537101     1   0.000      0.996 1.000 0.000
#> SRR537102     1   0.000      0.996 1.000 0.000
#> SRR537104     1   0.706      0.753 0.808 0.192
#> SRR537105     1   0.000      0.996 1.000 0.000
#> SRR537106     1   0.000      0.996 1.000 0.000
#> SRR537107     1   0.000      0.996 1.000 0.000
#> SRR537108     1   0.000      0.996 1.000 0.000
#> SRR537109     2   0.000      0.978 0.000 1.000
#> SRR537110     2   0.978      0.309 0.412 0.588
#> SRR537111     1   0.000      0.996 1.000 0.000
#> SRR537113     2   0.981      0.288 0.420 0.580
#> SRR537114     2   0.981      0.288 0.420 0.580
#> SRR537115     2   0.184      0.951 0.028 0.972
#> SRR537116     2   0.000      0.978 0.000 1.000
#> SRR537117     2   0.000      0.978 0.000 1.000
#> SRR537118     2   0.000      0.978 0.000 1.000
#> SRR537119     2   0.000      0.978 0.000 1.000
#> SRR537120     2   0.000      0.978 0.000 1.000
#> SRR537121     2   0.000      0.978 0.000 1.000
#> SRR537122     2   0.000      0.978 0.000 1.000
#> SRR537123     2   0.000      0.978 0.000 1.000
#> SRR537124     2   0.000      0.978 0.000 1.000
#> SRR537125     2   0.000      0.978 0.000 1.000
#> SRR537126     2   0.000      0.978 0.000 1.000
#> SRR537127     1   0.000      0.996 1.000 0.000
#> SRR537128     1   0.000      0.996 1.000 0.000
#> SRR537129     1   0.000      0.996 1.000 0.000
#> SRR537130     1   0.000      0.996 1.000 0.000
#> SRR537131     1   0.000      0.996 1.000 0.000
#> SRR537132     1   0.000      0.996 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191640     3  0.6215    0.13032 0.428 0.000 0.572
#> SRR191641     3  0.6309   -0.07442 0.496 0.000 0.504
#> SRR191642     3  0.2796    0.63852 0.092 0.000 0.908
#> SRR191643     3  0.2796    0.63852 0.092 0.000 0.908
#> SRR191644     1  0.6302    0.07137 0.520 0.000 0.480
#> SRR191645     1  0.6302    0.07137 0.520 0.000 0.480
#> SRR191646     1  0.6302    0.07137 0.520 0.000 0.480
#> SRR191647     3  0.6252    0.08884 0.444 0.000 0.556
#> SRR191648     3  0.6252    0.08884 0.444 0.000 0.556
#> SRR191649     3  0.6309   -0.07442 0.496 0.000 0.504
#> SRR191650     1  0.1529    0.88498 0.960 0.000 0.040
#> SRR191651     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191652     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191653     3  0.0892    0.64181 0.020 0.000 0.980
#> SRR191654     3  0.0747    0.64195 0.016 0.000 0.984
#> SRR191655     3  0.2356    0.64346 0.072 0.000 0.928
#> SRR191656     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191657     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191658     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191659     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191660     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191661     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191662     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191663     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191664     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191665     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191666     1  0.1289    0.89813 0.968 0.000 0.032
#> SRR191667     1  0.1289    0.89813 0.968 0.000 0.032
#> SRR191668     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191669     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191670     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191671     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191672     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191673     1  0.0000    0.91543 1.000 0.000 0.000
#> SRR191674     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191675     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191677     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191678     2  0.0592    0.94868 0.000 0.988 0.012
#> SRR191679     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191680     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191681     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191682     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191683     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191684     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191685     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191686     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191687     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191688     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191689     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191690     2  0.1964    0.90044 0.000 0.944 0.056
#> SRR191691     2  0.1529    0.91979 0.000 0.960 0.040
#> SRR191692     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191693     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191694     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191695     2  0.0424    0.95455 0.000 0.992 0.008
#> SRR191696     2  0.0424    0.95455 0.000 0.992 0.008
#> SRR191697     2  0.0237    0.95458 0.000 0.996 0.004
#> SRR191698     2  0.3619    0.80146 0.000 0.864 0.136
#> SRR191699     2  0.0000    0.95587 0.000 1.000 0.000
#> SRR191700     2  0.6062    0.29480 0.000 0.616 0.384
#> SRR191701     2  0.0237    0.95468 0.000 0.996 0.004
#> SRR191702     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191703     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191704     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191705     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191706     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191707     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191708     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191709     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191710     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191711     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191712     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191713     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191714     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191715     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191716     2  0.0592    0.95199 0.000 0.988 0.012
#> SRR191717     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR191718     2  0.0424    0.95455 0.000 0.992 0.008
#> SRR537099     3  0.1529    0.64826 0.040 0.000 0.960
#> SRR537100     3  0.1529    0.64826 0.040 0.000 0.960
#> SRR537101     3  0.6295    0.00319 0.472 0.000 0.528
#> SRR537102     3  0.1753    0.64889 0.048 0.000 0.952
#> SRR537104     3  0.1832    0.64948 0.036 0.008 0.956
#> SRR537105     3  0.2711    0.64076 0.088 0.000 0.912
#> SRR537106     3  0.2711    0.64076 0.088 0.000 0.912
#> SRR537107     3  0.2711    0.64076 0.088 0.000 0.912
#> SRR537108     3  0.2711    0.64076 0.088 0.000 0.912
#> SRR537109     2  0.1289    0.92739 0.000 0.968 0.032
#> SRR537110     3  0.5650    0.47701 0.000 0.312 0.688
#> SRR537111     1  0.0237    0.91227 0.996 0.004 0.000
#> SRR537113     3  0.4963    0.59395 0.008 0.200 0.792
#> SRR537114     3  0.2584    0.64627 0.008 0.064 0.928
#> SRR537115     3  0.5098    0.56506 0.000 0.248 0.752
#> SRR537116     2  0.0237    0.95599 0.000 0.996 0.004
#> SRR537117     2  0.6252    0.10088 0.000 0.556 0.444
#> SRR537118     3  0.6302    0.09543 0.000 0.480 0.520
#> SRR537119     3  0.6302    0.09543 0.000 0.480 0.520
#> SRR537120     3  0.6302    0.09543 0.000 0.480 0.520
#> SRR537121     3  0.6260    0.18320 0.000 0.448 0.552
#> SRR537122     3  0.6235    0.21088 0.000 0.436 0.564
#> SRR537123     3  0.6260    0.18320 0.000 0.448 0.552
#> SRR537124     2  0.6308   -0.04494 0.000 0.508 0.492
#> SRR537125     3  0.6302    0.09543 0.000 0.480 0.520
#> SRR537126     3  0.6302    0.09543 0.000 0.480 0.520
#> SRR537127     1  0.3116    0.84752 0.892 0.000 0.108
#> SRR537128     1  0.3116    0.84752 0.892 0.000 0.108
#> SRR537129     1  0.3116    0.84752 0.892 0.000 0.108
#> SRR537130     1  0.3116    0.84752 0.892 0.000 0.108
#> SRR537131     1  0.3116    0.84752 0.892 0.000 0.108
#> SRR537132     1  0.3116    0.84752 0.892 0.000 0.108
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191640     4  0.0188    0.93017 0.004 0.000 0.000 0.996
#> SRR191641     4  0.0817    0.91807 0.024 0.000 0.000 0.976
#> SRR191642     4  0.0188    0.93017 0.004 0.000 0.000 0.996
#> SRR191643     4  0.0188    0.93017 0.004 0.000 0.000 0.996
#> SRR191644     4  0.0469    0.92445 0.012 0.000 0.000 0.988
#> SRR191645     4  0.0592    0.92663 0.016 0.000 0.000 0.984
#> SRR191646     4  0.0592    0.92663 0.016 0.000 0.000 0.984
#> SRR191647     4  0.0188    0.93017 0.004 0.000 0.000 0.996
#> SRR191648     4  0.0188    0.93017 0.004 0.000 0.000 0.996
#> SRR191649     4  0.0592    0.92663 0.016 0.000 0.000 0.984
#> SRR191650     1  0.1302    0.94110 0.956 0.000 0.000 0.044
#> SRR191651     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191652     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191653     4  0.0000    0.92909 0.000 0.000 0.000 1.000
#> SRR191654     4  0.0000    0.92909 0.000 0.000 0.000 1.000
#> SRR191655     4  0.0000    0.92909 0.000 0.000 0.000 1.000
#> SRR191656     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191658     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191659     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191660     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191661     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191662     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191663     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191664     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191665     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191666     1  0.1302    0.95206 0.956 0.000 0.000 0.044
#> SRR191667     1  0.1302    0.95206 0.956 0.000 0.000 0.044
#> SRR191668     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191669     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191670     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191673     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR191674     2  0.4304    0.69263 0.000 0.716 0.284 0.000
#> SRR191675     2  0.4304    0.69263 0.000 0.716 0.284 0.000
#> SRR191677     2  0.4331    0.68977 0.000 0.712 0.288 0.000
#> SRR191678     2  0.4933    0.47636 0.000 0.568 0.432 0.000
#> SRR191679     2  0.4277    0.69496 0.000 0.720 0.280 0.000
#> SRR191680     2  0.4304    0.69263 0.000 0.716 0.284 0.000
#> SRR191681     2  0.4331    0.68977 0.000 0.712 0.288 0.000
#> SRR191682     2  0.4761    0.59181 0.000 0.628 0.372 0.000
#> SRR191683     2  0.4761    0.59181 0.000 0.628 0.372 0.000
#> SRR191684     2  0.4761    0.59181 0.000 0.628 0.372 0.000
#> SRR191685     2  0.4761    0.59181 0.000 0.628 0.372 0.000
#> SRR191686     2  0.4761    0.59181 0.000 0.628 0.372 0.000
#> SRR191687     2  0.4761    0.59181 0.000 0.628 0.372 0.000
#> SRR191688     2  0.0336    0.81026 0.000 0.992 0.008 0.000
#> SRR191689     2  0.3486    0.75355 0.000 0.812 0.188 0.000
#> SRR191690     2  0.1474    0.79005 0.000 0.948 0.052 0.000
#> SRR191691     2  0.4989    0.17018 0.000 0.528 0.472 0.000
#> SRR191692     2  0.4543    0.65989 0.000 0.676 0.324 0.000
#> SRR191693     2  0.4961    0.47464 0.000 0.552 0.448 0.000
#> SRR191694     2  0.4250    0.69851 0.000 0.724 0.276 0.000
#> SRR191695     2  0.1637    0.78856 0.000 0.940 0.060 0.000
#> SRR191696     2  0.1637    0.78856 0.000 0.940 0.060 0.000
#> SRR191697     2  0.3528    0.74819 0.000 0.808 0.192 0.000
#> SRR191698     3  0.4304    0.57582 0.000 0.284 0.716 0.000
#> SRR191699     2  0.3907    0.69427 0.000 0.768 0.232 0.000
#> SRR191700     3  0.4483    0.57915 0.000 0.284 0.712 0.004
#> SRR191701     2  0.4222    0.65265 0.000 0.728 0.272 0.000
#> SRR191702     2  0.0000    0.81102 0.000 1.000 0.000 0.000
#> SRR191703     2  0.0000    0.81102 0.000 1.000 0.000 0.000
#> SRR191704     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191705     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191706     2  0.0000    0.81102 0.000 1.000 0.000 0.000
#> SRR191707     2  0.0592    0.80818 0.000 0.984 0.016 0.000
#> SRR191708     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191709     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191710     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191711     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191712     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191713     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191714     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR191715     2  0.0000    0.81102 0.000 1.000 0.000 0.000
#> SRR191716     2  0.1637    0.78856 0.000 0.940 0.060 0.000
#> SRR191717     2  0.0336    0.81026 0.000 0.992 0.008 0.000
#> SRR191718     2  0.1637    0.78856 0.000 0.940 0.060 0.000
#> SRR537099     4  0.0000    0.92909 0.000 0.000 0.000 1.000
#> SRR537100     4  0.0000    0.92909 0.000 0.000 0.000 1.000
#> SRR537101     4  0.0336    0.92914 0.008 0.000 0.000 0.992
#> SRR537102     4  0.0188    0.93017 0.004 0.000 0.000 0.996
#> SRR537104     4  0.0000    0.92909 0.000 0.000 0.000 1.000
#> SRR537105     4  0.0469    0.92788 0.012 0.000 0.000 0.988
#> SRR537106     4  0.0469    0.92788 0.012 0.000 0.000 0.988
#> SRR537107     4  0.0524    0.92820 0.008 0.000 0.004 0.988
#> SRR537108     4  0.0524    0.92820 0.008 0.000 0.004 0.988
#> SRR537109     2  0.0188    0.81078 0.000 0.996 0.004 0.000
#> SRR537110     4  0.4936    0.44698 0.000 0.372 0.004 0.624
#> SRR537111     1  0.0000    0.97460 1.000 0.000 0.000 0.000
#> SRR537113     4  0.5234    0.59127 0.004 0.256 0.032 0.708
#> SRR537114     4  0.4416    0.76513 0.004 0.052 0.132 0.812
#> SRR537115     4  0.7836    0.00199 0.000 0.328 0.272 0.400
#> SRR537116     2  0.0188    0.81115 0.000 0.996 0.004 0.000
#> SRR537117     3  0.0188    0.93215 0.000 0.004 0.996 0.000
#> SRR537118     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537119     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537120     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537121     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537122     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537123     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537124     3  0.0188    0.93215 0.000 0.004 0.996 0.000
#> SRR537125     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537126     3  0.0188    0.93515 0.000 0.000 0.996 0.004
#> SRR537127     1  0.2919    0.92076 0.896 0.000 0.060 0.044
#> SRR537128     1  0.2919    0.92076 0.896 0.000 0.060 0.044
#> SRR537129     1  0.2919    0.92076 0.896 0.000 0.060 0.044
#> SRR537130     1  0.2919    0.92076 0.896 0.000 0.060 0.044
#> SRR537131     1  0.2919    0.92076 0.896 0.000 0.060 0.044
#> SRR537132     1  0.2919    0.92076 0.896 0.000 0.060 0.044
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.4504     0.8586 0.564 0.000 0.000 0.008 0.428
#> SRR191640     4  0.0000     0.8993 0.000 0.000 0.000 1.000 0.000
#> SRR191641     4  0.1965     0.8629 0.096 0.000 0.000 0.904 0.000
#> SRR191642     4  0.0000     0.8993 0.000 0.000 0.000 1.000 0.000
#> SRR191643     4  0.0162     0.8994 0.000 0.000 0.000 0.996 0.004
#> SRR191644     4  0.3129     0.8162 0.156 0.000 0.004 0.832 0.008
#> SRR191645     4  0.0510     0.8989 0.016 0.000 0.000 0.984 0.000
#> SRR191646     4  0.0510     0.8989 0.016 0.000 0.000 0.984 0.000
#> SRR191647     4  0.0404     0.8994 0.012 0.000 0.000 0.988 0.000
#> SRR191648     4  0.0404     0.8994 0.012 0.000 0.000 0.988 0.000
#> SRR191649     4  0.0404     0.8994 0.012 0.000 0.000 0.988 0.000
#> SRR191650     1  0.4861     0.8483 0.548 0.000 0.000 0.024 0.428
#> SRR191651     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191652     1  0.4225     0.8461 0.632 0.000 0.000 0.004 0.364
#> SRR191653     4  0.4903     0.5467 0.400 0.000 0.016 0.576 0.008
#> SRR191654     4  0.4137     0.7178 0.248 0.000 0.012 0.732 0.008
#> SRR191655     4  0.0451     0.8992 0.008 0.000 0.000 0.988 0.004
#> SRR191656     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191657     1  0.4192     0.8623 0.596 0.000 0.000 0.000 0.404
#> SRR191658     1  0.4192     0.8623 0.596 0.000 0.000 0.000 0.404
#> SRR191659     1  0.4192     0.8623 0.596 0.000 0.000 0.000 0.404
#> SRR191660     1  0.4192     0.8623 0.596 0.000 0.000 0.000 0.404
#> SRR191661     1  0.4341     0.8617 0.592 0.000 0.000 0.004 0.404
#> SRR191662     1  0.4192     0.8623 0.596 0.000 0.000 0.000 0.404
#> SRR191663     1  0.4192     0.8623 0.596 0.000 0.000 0.000 0.404
#> SRR191664     1  0.4192     0.8623 0.596 0.000 0.000 0.000 0.404
#> SRR191665     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191666     1  0.0404     0.6373 0.988 0.000 0.000 0.012 0.000
#> SRR191667     1  0.0404     0.6373 0.988 0.000 0.000 0.012 0.000
#> SRR191668     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191669     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191670     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191671     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191672     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191673     1  0.4242     0.8616 0.572 0.000 0.000 0.000 0.428
#> SRR191674     2  0.5019     0.1289 0.000 0.568 0.396 0.000 0.036
#> SRR191675     2  0.5019     0.1289 0.000 0.568 0.396 0.000 0.036
#> SRR191677     2  0.5019     0.1289 0.000 0.568 0.396 0.000 0.036
#> SRR191678     2  0.5350     0.0255 0.000 0.488 0.460 0.000 0.052
#> SRR191679     2  0.5010     0.1363 0.000 0.572 0.392 0.000 0.036
#> SRR191680     2  0.5019     0.1289 0.000 0.568 0.396 0.000 0.036
#> SRR191681     2  0.5028     0.1297 0.000 0.564 0.400 0.000 0.036
#> SRR191682     3  0.3969     0.6780 0.000 0.304 0.692 0.000 0.004
#> SRR191683     3  0.3969     0.6780 0.000 0.304 0.692 0.000 0.004
#> SRR191684     3  0.3906     0.6838 0.000 0.292 0.704 0.000 0.004
#> SRR191685     3  0.3906     0.6838 0.000 0.292 0.704 0.000 0.004
#> SRR191686     3  0.3816     0.6757 0.000 0.304 0.696 0.000 0.000
#> SRR191687     3  0.3906     0.6838 0.000 0.292 0.704 0.000 0.004
#> SRR191688     2  0.1168     0.5786 0.000 0.960 0.032 0.000 0.008
#> SRR191689     2  0.4455     0.0788 0.000 0.588 0.404 0.000 0.008
#> SRR191690     2  0.2278     0.5529 0.000 0.916 0.044 0.032 0.008
#> SRR191691     3  0.4697     0.4990 0.008 0.360 0.620 0.000 0.012
#> SRR191692     2  0.5083     0.0317 0.000 0.532 0.432 0.000 0.036
#> SRR191693     3  0.4268     0.4788 0.000 0.344 0.648 0.000 0.008
#> SRR191694     2  0.4682     0.1001 0.000 0.564 0.420 0.000 0.016
#> SRR191695     2  0.1764     0.5690 0.000 0.928 0.064 0.000 0.008
#> SRR191696     2  0.1764     0.5690 0.000 0.928 0.064 0.000 0.008
#> SRR191697     2  0.4275     0.2504 0.000 0.696 0.284 0.000 0.020
#> SRR191698     3  0.5774     0.1991 0.000 0.232 0.612 0.000 0.156
#> SRR191699     3  0.4565     0.4880 0.000 0.408 0.580 0.000 0.012
#> SRR191700     3  0.6465    -0.2183 0.000 0.220 0.492 0.000 0.288
#> SRR191701     3  0.4653     0.4099 0.000 0.472 0.516 0.000 0.012
#> SRR191702     2  0.2189     0.5693 0.000 0.904 0.084 0.000 0.012
#> SRR191703     2  0.2189     0.5693 0.000 0.904 0.084 0.000 0.012
#> SRR191704     2  0.3596     0.4559 0.000 0.776 0.212 0.000 0.012
#> SRR191705     2  0.3596     0.4559 0.000 0.776 0.212 0.000 0.012
#> SRR191706     2  0.2522     0.5561 0.000 0.880 0.108 0.000 0.012
#> SRR191707     2  0.3628     0.4175 0.000 0.772 0.216 0.000 0.012
#> SRR191708     2  0.3563     0.4567 0.000 0.780 0.208 0.000 0.012
#> SRR191709     2  0.3596     0.4559 0.000 0.776 0.212 0.000 0.012
#> SRR191710     2  0.3596     0.4559 0.000 0.776 0.212 0.000 0.012
#> SRR191711     2  0.2361     0.5541 0.000 0.892 0.096 0.000 0.012
#> SRR191712     2  0.2361     0.5577 0.000 0.892 0.096 0.000 0.012
#> SRR191713     2  0.3720     0.4269 0.000 0.760 0.228 0.000 0.012
#> SRR191714     2  0.3720     0.4269 0.000 0.760 0.228 0.000 0.012
#> SRR191715     2  0.0693     0.5846 0.000 0.980 0.008 0.000 0.012
#> SRR191716     2  0.1913     0.5647 0.000 0.932 0.044 0.016 0.008
#> SRR191717     2  0.1168     0.5786 0.000 0.960 0.032 0.000 0.008
#> SRR191718     2  0.1557     0.5724 0.000 0.940 0.052 0.000 0.008
#> SRR537099     4  0.1041     0.8937 0.032 0.000 0.000 0.964 0.004
#> SRR537100     4  0.1124     0.8925 0.036 0.000 0.000 0.960 0.004
#> SRR537101     4  0.1671     0.8743 0.076 0.000 0.000 0.924 0.000
#> SRR537102     4  0.0162     0.8994 0.000 0.000 0.000 0.996 0.004
#> SRR537104     4  0.1565     0.8873 0.020 0.008 0.016 0.952 0.004
#> SRR537105     4  0.0162     0.8986 0.000 0.000 0.004 0.996 0.000
#> SRR537106     4  0.0324     0.8977 0.000 0.004 0.004 0.992 0.000
#> SRR537107     4  0.0324     0.8977 0.000 0.004 0.004 0.992 0.000
#> SRR537108     4  0.0324     0.8977 0.000 0.004 0.004 0.992 0.000
#> SRR537109     2  0.0324     0.5845 0.000 0.992 0.004 0.004 0.000
#> SRR537110     2  0.8418    -0.0250 0.132 0.424 0.192 0.236 0.016
#> SRR537111     1  0.4799     0.8547 0.556 0.004 0.004 0.008 0.428
#> SRR537113     4  0.5919     0.5797 0.000 0.212 0.052 0.660 0.076
#> SRR537114     4  0.5137     0.6978 0.000 0.116 0.048 0.748 0.088
#> SRR537115     4  0.8462    -0.1191 0.000 0.276 0.164 0.308 0.252
#> SRR537116     2  0.0566     0.5840 0.000 0.984 0.004 0.000 0.012
#> SRR537117     5  0.4291     0.9880 0.000 0.000 0.464 0.000 0.536
#> SRR537118     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537119     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537120     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537121     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537122     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537123     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537124     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537125     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537126     5  0.4283     0.9987 0.000 0.000 0.456 0.000 0.544
#> SRR537127     1  0.2131     0.5827 0.920 0.000 0.008 0.016 0.056
#> SRR537128     1  0.2131     0.5827 0.920 0.000 0.008 0.016 0.056
#> SRR537129     1  0.2131     0.5827 0.920 0.000 0.008 0.016 0.056
#> SRR537130     1  0.2131     0.5827 0.920 0.000 0.008 0.016 0.056
#> SRR537131     1  0.2131     0.5827 0.920 0.000 0.008 0.016 0.056
#> SRR537132     1  0.2131     0.5827 0.920 0.000 0.008 0.016 0.056
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191640     4  0.0363     0.9066 0.000 0.000 0.012 0.988 0.000 0.000
#> SRR191641     4  0.2473     0.8157 0.008 0.000 0.136 0.856 0.000 0.000
#> SRR191642     4  0.0260     0.9075 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR191643     4  0.0520     0.9066 0.000 0.000 0.008 0.984 0.000 0.008
#> SRR191644     4  0.3808     0.5923 0.004 0.000 0.284 0.700 0.000 0.012
#> SRR191645     4  0.0653     0.9081 0.004 0.000 0.004 0.980 0.000 0.012
#> SRR191646     4  0.0653     0.9081 0.004 0.000 0.004 0.980 0.000 0.012
#> SRR191647     4  0.0622     0.9085 0.000 0.000 0.008 0.980 0.000 0.012
#> SRR191648     4  0.0622     0.9085 0.000 0.000 0.008 0.980 0.000 0.012
#> SRR191649     4  0.0622     0.9085 0.000 0.000 0.008 0.980 0.000 0.012
#> SRR191650     1  0.0551     0.9559 0.984 0.000 0.004 0.008 0.000 0.004
#> SRR191651     1  0.0260     0.9614 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR191652     1  0.2100     0.8830 0.884 0.000 0.112 0.004 0.000 0.000
#> SRR191653     3  0.3738     0.5171 0.000 0.000 0.704 0.280 0.000 0.016
#> SRR191654     3  0.4263    -0.0106 0.000 0.000 0.504 0.480 0.000 0.016
#> SRR191655     4  0.0806     0.9028 0.000 0.000 0.020 0.972 0.000 0.008
#> SRR191656     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191657     1  0.1141     0.9553 0.948 0.000 0.052 0.000 0.000 0.000
#> SRR191658     1  0.1141     0.9553 0.948 0.000 0.052 0.000 0.000 0.000
#> SRR191659     1  0.1141     0.9553 0.948 0.000 0.052 0.000 0.000 0.000
#> SRR191660     1  0.1141     0.9553 0.948 0.000 0.052 0.000 0.000 0.000
#> SRR191661     1  0.1204     0.9553 0.944 0.000 0.056 0.000 0.000 0.000
#> SRR191662     1  0.1204     0.9553 0.944 0.000 0.056 0.000 0.000 0.000
#> SRR191663     1  0.1204     0.9553 0.944 0.000 0.056 0.000 0.000 0.000
#> SRR191664     1  0.1141     0.9553 0.948 0.000 0.052 0.000 0.000 0.000
#> SRR191665     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191666     3  0.3056     0.8788 0.184 0.000 0.804 0.008 0.004 0.000
#> SRR191667     3  0.3056     0.8788 0.184 0.000 0.804 0.008 0.004 0.000
#> SRR191668     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191669     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191670     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191671     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191672     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191673     1  0.0000     0.9657 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR191674     2  0.5894     0.1013 0.000 0.472 0.032 0.000 0.096 0.400
#> SRR191675     2  0.5894     0.1013 0.000 0.472 0.032 0.000 0.096 0.400
#> SRR191677     2  0.5987     0.0970 0.000 0.464 0.036 0.000 0.100 0.400
#> SRR191678     2  0.6274     0.1125 0.000 0.480 0.048 0.000 0.124 0.348
#> SRR191679     2  0.5916     0.1041 0.000 0.472 0.036 0.000 0.092 0.400
#> SRR191680     2  0.5952     0.1012 0.000 0.468 0.036 0.000 0.096 0.400
#> SRR191681     2  0.5987     0.0970 0.000 0.464 0.036 0.000 0.100 0.400
#> SRR191682     6  0.1794     0.7773 0.000 0.036 0.000 0.000 0.040 0.924
#> SRR191683     6  0.1794     0.7773 0.000 0.036 0.000 0.000 0.040 0.924
#> SRR191684     6  0.1788     0.7783 0.000 0.028 0.004 0.000 0.040 0.928
#> SRR191685     6  0.1788     0.7783 0.000 0.028 0.004 0.000 0.040 0.928
#> SRR191686     6  0.1934     0.7725 0.000 0.044 0.000 0.000 0.040 0.916
#> SRR191687     6  0.1788     0.7783 0.000 0.028 0.004 0.000 0.040 0.928
#> SRR191688     2  0.1579     0.4963 0.000 0.944 0.020 0.008 0.004 0.024
#> SRR191689     6  0.4494     0.0283 0.000 0.424 0.032 0.000 0.000 0.544
#> SRR191690     2  0.1862     0.4910 0.000 0.932 0.020 0.024 0.004 0.020
#> SRR191691     6  0.4551     0.6010 0.000 0.152 0.024 0.000 0.088 0.736
#> SRR191692     2  0.5990     0.0816 0.000 0.460 0.036 0.000 0.100 0.404
#> SRR191693     6  0.4553     0.5649 0.000 0.144 0.028 0.000 0.088 0.740
#> SRR191694     2  0.5465     0.0232 0.000 0.460 0.032 0.000 0.052 0.456
#> SRR191695     2  0.1736     0.4931 0.000 0.936 0.020 0.008 0.004 0.032
#> SRR191696     2  0.1736     0.4931 0.000 0.936 0.020 0.008 0.004 0.032
#> SRR191697     2  0.4816     0.2042 0.000 0.668 0.028 0.004 0.036 0.264
#> SRR191698     6  0.6143     0.3155 0.000 0.184 0.020 0.000 0.304 0.492
#> SRR191699     6  0.2295     0.7533 0.000 0.052 0.016 0.000 0.028 0.904
#> SRR191700     5  0.6242     0.0702 0.000 0.196 0.024 0.000 0.488 0.292
#> SRR191701     6  0.4912     0.5565 0.000 0.224 0.020 0.000 0.080 0.676
#> SRR191702     2  0.4871     0.4509 0.000 0.652 0.124 0.000 0.000 0.224
#> SRR191703     2  0.4871     0.4509 0.000 0.652 0.124 0.000 0.000 0.224
#> SRR191704     2  0.5475     0.2869 0.000 0.460 0.124 0.000 0.000 0.416
#> SRR191705     2  0.5472     0.2907 0.000 0.464 0.124 0.000 0.000 0.412
#> SRR191706     2  0.5103     0.4245 0.000 0.608 0.124 0.000 0.000 0.268
#> SRR191707     2  0.5456     0.3014 0.000 0.536 0.120 0.000 0.004 0.340
#> SRR191708     2  0.5439     0.2925 0.000 0.472 0.120 0.000 0.000 0.408
#> SRR191709     2  0.5445     0.2873 0.000 0.464 0.120 0.000 0.000 0.416
#> SRR191710     2  0.5445     0.2873 0.000 0.464 0.120 0.000 0.000 0.416
#> SRR191711     2  0.4556     0.4502 0.000 0.688 0.100 0.000 0.000 0.212
#> SRR191712     2  0.4490     0.4530 0.000 0.700 0.104 0.000 0.000 0.196
#> SRR191713     2  0.5357     0.2636 0.000 0.464 0.108 0.000 0.000 0.428
#> SRR191714     2  0.5357     0.2636 0.000 0.464 0.108 0.000 0.000 0.428
#> SRR191715     2  0.2910     0.5026 0.000 0.852 0.068 0.000 0.000 0.080
#> SRR191716     2  0.1774     0.4932 0.000 0.936 0.020 0.016 0.004 0.024
#> SRR191717     2  0.1579     0.4963 0.000 0.944 0.020 0.008 0.004 0.024
#> SRR191718     2  0.1579     0.4963 0.000 0.944 0.020 0.008 0.004 0.024
#> SRR537099     4  0.1867     0.8764 0.000 0.000 0.064 0.916 0.000 0.020
#> SRR537100     4  0.1701     0.8755 0.000 0.000 0.072 0.920 0.000 0.008
#> SRR537101     4  0.2092     0.8364 0.000 0.000 0.124 0.876 0.000 0.000
#> SRR537102     4  0.0260     0.9075 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR537104     4  0.2361     0.8496 0.000 0.000 0.028 0.884 0.000 0.088
#> SRR537105     4  0.0508     0.9065 0.000 0.000 0.004 0.984 0.000 0.012
#> SRR537106     4  0.0622     0.9051 0.000 0.000 0.008 0.980 0.000 0.012
#> SRR537107     4  0.0725     0.9033 0.000 0.000 0.012 0.976 0.000 0.012
#> SRR537108     4  0.0725     0.9033 0.000 0.000 0.012 0.976 0.000 0.012
#> SRR537109     2  0.2011     0.5014 0.000 0.912 0.020 0.004 0.000 0.064
#> SRR537110     2  0.7113     0.1877 0.000 0.416 0.160 0.120 0.000 0.304
#> SRR537111     1  0.0862     0.9456 0.972 0.008 0.016 0.000 0.000 0.004
#> SRR537113     4  0.6720     0.4164 0.004 0.256 0.032 0.544 0.120 0.044
#> SRR537114     4  0.5950     0.5693 0.004 0.172 0.032 0.640 0.132 0.020
#> SRR537115     5  0.7672     0.1541 0.004 0.304 0.032 0.184 0.396 0.080
#> SRR537116     2  0.2965     0.4990 0.000 0.848 0.072 0.000 0.000 0.080
#> SRR537117     5  0.0146     0.8844 0.000 0.004 0.000 0.000 0.996 0.000
#> SRR537118     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537119     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537120     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537121     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537122     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537123     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537124     5  0.0000     0.8880 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR537125     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537126     5  0.0146     0.8907 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR537127     3  0.3133     0.8822 0.180 0.000 0.804 0.008 0.008 0.000
#> SRR537128     3  0.3133     0.8822 0.180 0.000 0.804 0.008 0.008 0.000
#> SRR537129     3  0.3133     0.8822 0.180 0.000 0.804 0.008 0.008 0.000
#> SRR537130     3  0.3133     0.8822 0.180 0.000 0.804 0.008 0.008 0.000
#> SRR537131     3  0.3133     0.8822 0.180 0.000 0.804 0.008 0.008 0.000
#> SRR537132     3  0.3133     0.8822 0.180 0.000 0.804 0.008 0.008 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.822           0.919       0.958         0.4981 0.497   0.497
#> 3 3 0.825           0.868       0.944         0.3154 0.771   0.571
#> 4 4 0.740           0.818       0.876         0.0656 0.928   0.805
#> 5 5 0.841           0.882       0.941         0.1027 0.859   0.589
#> 6 6 0.869           0.786       0.882         0.0402 0.928   0.708
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.1633      0.947 0.976 0.024
#> SRR191640     1  0.1633      0.947 0.976 0.024
#> SRR191641     1  0.1633      0.947 0.976 0.024
#> SRR191642     1  0.2948      0.938 0.948 0.052
#> SRR191643     1  0.2948      0.938 0.948 0.052
#> SRR191644     1  0.2948      0.938 0.948 0.052
#> SRR191645     1  0.1633      0.947 0.976 0.024
#> SRR191646     1  0.1633      0.947 0.976 0.024
#> SRR191647     1  0.1633      0.947 0.976 0.024
#> SRR191648     1  0.1633      0.947 0.976 0.024
#> SRR191649     1  0.1633      0.947 0.976 0.024
#> SRR191650     1  0.1633      0.947 0.976 0.024
#> SRR191651     1  0.0000      0.947 1.000 0.000
#> SRR191652     1  0.0000      0.947 1.000 0.000
#> SRR191653     1  0.2948      0.938 0.948 0.052
#> SRR191654     1  0.2948      0.938 0.948 0.052
#> SRR191655     1  0.2948      0.938 0.948 0.052
#> SRR191656     1  0.0000      0.947 1.000 0.000
#> SRR191657     1  0.0000      0.947 1.000 0.000
#> SRR191658     1  0.0000      0.947 1.000 0.000
#> SRR191659     1  0.0000      0.947 1.000 0.000
#> SRR191660     1  0.0000      0.947 1.000 0.000
#> SRR191661     1  0.0000      0.947 1.000 0.000
#> SRR191662     1  0.0000      0.947 1.000 0.000
#> SRR191663     1  0.0000      0.947 1.000 0.000
#> SRR191664     1  0.0000      0.947 1.000 0.000
#> SRR191665     1  0.0000      0.947 1.000 0.000
#> SRR191666     1  0.0000      0.947 1.000 0.000
#> SRR191667     1  0.0000      0.947 1.000 0.000
#> SRR191668     1  0.0000      0.947 1.000 0.000
#> SRR191669     1  0.0000      0.947 1.000 0.000
#> SRR191670     1  0.0000      0.947 1.000 0.000
#> SRR191671     1  0.0000      0.947 1.000 0.000
#> SRR191672     1  0.0000      0.947 1.000 0.000
#> SRR191673     1  0.0000      0.947 1.000 0.000
#> SRR191674     2  0.0000      0.965 0.000 1.000
#> SRR191675     2  0.0000      0.965 0.000 1.000
#> SRR191677     2  0.0000      0.965 0.000 1.000
#> SRR191678     2  0.0000      0.965 0.000 1.000
#> SRR191679     2  0.0000      0.965 0.000 1.000
#> SRR191680     2  0.0000      0.965 0.000 1.000
#> SRR191681     2  0.0000      0.965 0.000 1.000
#> SRR191682     2  0.0000      0.965 0.000 1.000
#> SRR191683     2  0.0000      0.965 0.000 1.000
#> SRR191684     2  0.5842      0.834 0.140 0.860
#> SRR191685     2  0.0000      0.965 0.000 1.000
#> SRR191686     2  0.0000      0.965 0.000 1.000
#> SRR191687     2  0.0000      0.965 0.000 1.000
#> SRR191688     2  0.5946      0.829 0.144 0.856
#> SRR191689     2  0.0000      0.965 0.000 1.000
#> SRR191690     1  0.6801      0.812 0.820 0.180
#> SRR191691     2  0.3584      0.918 0.068 0.932
#> SRR191692     2  0.0000      0.965 0.000 1.000
#> SRR191693     2  0.0000      0.965 0.000 1.000
#> SRR191694     2  0.0000      0.965 0.000 1.000
#> SRR191695     2  0.0000      0.965 0.000 1.000
#> SRR191696     2  0.0000      0.965 0.000 1.000
#> SRR191697     2  0.0000      0.965 0.000 1.000
#> SRR191698     2  0.0000      0.965 0.000 1.000
#> SRR191699     2  0.0000      0.965 0.000 1.000
#> SRR191700     2  0.6438      0.805 0.164 0.836
#> SRR191701     2  0.0000      0.965 0.000 1.000
#> SRR191702     2  0.0000      0.965 0.000 1.000
#> SRR191703     2  0.0000      0.965 0.000 1.000
#> SRR191704     2  0.0000      0.965 0.000 1.000
#> SRR191705     2  0.0000      0.965 0.000 1.000
#> SRR191706     2  0.0000      0.965 0.000 1.000
#> SRR191707     2  0.6247      0.815 0.156 0.844
#> SRR191708     1  0.8267      0.691 0.740 0.260
#> SRR191709     2  0.0000      0.965 0.000 1.000
#> SRR191710     1  0.9087      0.582 0.676 0.324
#> SRR191711     2  0.0376      0.962 0.004 0.996
#> SRR191712     2  0.2236      0.939 0.036 0.964
#> SRR191713     1  0.9954      0.233 0.540 0.460
#> SRR191714     2  0.9129      0.472 0.328 0.672
#> SRR191715     2  0.0000      0.965 0.000 1.000
#> SRR191716     2  0.8555      0.616 0.280 0.720
#> SRR191717     2  0.0000      0.965 0.000 1.000
#> SRR191718     2  0.0000      0.965 0.000 1.000
#> SRR537099     1  0.5059      0.890 0.888 0.112
#> SRR537100     1  0.1843      0.947 0.972 0.028
#> SRR537101     1  0.1633      0.947 0.976 0.024
#> SRR537102     1  0.2948      0.938 0.948 0.052
#> SRR537104     1  0.2948      0.938 0.948 0.052
#> SRR537105     1  0.2948      0.938 0.948 0.052
#> SRR537106     1  0.2948      0.938 0.948 0.052
#> SRR537107     1  0.2948      0.938 0.948 0.052
#> SRR537108     1  0.2948      0.938 0.948 0.052
#> SRR537109     1  0.6148      0.849 0.848 0.152
#> SRR537110     1  0.3431      0.931 0.936 0.064
#> SRR537111     1  0.2236      0.931 0.964 0.036
#> SRR537113     1  0.6973      0.806 0.812 0.188
#> SRR537114     1  0.6247      0.843 0.844 0.156
#> SRR537115     2  0.7745      0.694 0.228 0.772
#> SRR537116     2  0.0000      0.965 0.000 1.000
#> SRR537117     2  0.0000      0.965 0.000 1.000
#> SRR537118     2  0.0000      0.965 0.000 1.000
#> SRR537119     2  0.2423      0.936 0.040 0.960
#> SRR537120     2  0.0000      0.965 0.000 1.000
#> SRR537121     2  0.2423      0.936 0.040 0.960
#> SRR537122     2  0.2423      0.936 0.040 0.960
#> SRR537123     2  0.0000      0.965 0.000 1.000
#> SRR537124     2  0.0000      0.965 0.000 1.000
#> SRR537125     2  0.0000      0.965 0.000 1.000
#> SRR537126     2  0.0000      0.965 0.000 1.000
#> SRR537127     1  0.0672      0.946 0.992 0.008
#> SRR537128     1  0.0000      0.947 1.000 0.000
#> SRR537129     1  0.6973      0.769 0.812 0.188
#> SRR537130     1  0.0000      0.947 1.000 0.000
#> SRR537131     1  0.0000      0.947 1.000 0.000
#> SRR537132     1  0.0000      0.947 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191640     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191641     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191642     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191643     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191644     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191645     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191646     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191647     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191648     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191649     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191650     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191651     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191652     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191653     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191654     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191655     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR191656     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191657     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191658     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191659     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191660     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191661     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191662     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191663     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191664     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191665     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191666     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191667     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191668     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191669     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191670     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191671     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191672     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191673     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR191674     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR191675     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR191677     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR191678     2  0.3272    0.85839 0.104 0.892 0.004
#> SRR191679     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191680     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191681     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR191682     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191683     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191684     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191685     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191686     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191687     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191688     1  0.4555    0.72359 0.800 0.200 0.000
#> SRR191689     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191690     1  0.0424    0.93436 0.992 0.008 0.000
#> SRR191691     2  0.3412    0.81792 0.000 0.876 0.124
#> SRR191692     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR191693     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR191694     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191695     2  0.3551    0.83423 0.132 0.868 0.000
#> SRR191696     2  0.2878    0.86591 0.096 0.904 0.000
#> SRR191697     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191698     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191699     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191700     2  0.3412    0.84155 0.124 0.876 0.000
#> SRR191701     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191702     2  0.0237    0.91577 0.004 0.996 0.000
#> SRR191703     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191704     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191705     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191706     2  0.0000    0.91671 0.000 1.000 0.000
#> SRR191707     1  0.4654    0.71257 0.792 0.208 0.000
#> SRR191708     1  0.6260    0.16032 0.552 0.448 0.000
#> SRR191709     2  0.4062    0.76929 0.164 0.836 0.000
#> SRR191710     2  0.6309   -0.07247 0.500 0.500 0.000
#> SRR191711     2  0.6299    0.02360 0.476 0.524 0.000
#> SRR191712     1  0.5678    0.51896 0.684 0.316 0.000
#> SRR191713     3  0.9892    0.06875 0.268 0.340 0.392
#> SRR191714     2  0.6676    0.00606 0.476 0.516 0.008
#> SRR191715     1  0.6309    0.04396 0.504 0.496 0.000
#> SRR191716     1  0.0592    0.93121 0.988 0.012 0.000
#> SRR191717     1  0.3816    0.79306 0.852 0.148 0.000
#> SRR191718     2  0.0237    0.91577 0.004 0.996 0.000
#> SRR537099     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537100     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537101     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537102     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537104     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537105     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537106     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537107     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537108     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537109     1  0.0237    0.93706 0.996 0.004 0.000
#> SRR537110     1  0.0747    0.92917 0.984 0.016 0.000
#> SRR537111     3  0.0592    0.97613 0.012 0.000 0.988
#> SRR537113     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537114     1  0.0000    0.93961 1.000 0.000 0.000
#> SRR537115     2  0.5760    0.54824 0.328 0.672 0.000
#> SRR537116     2  0.5291    0.65854 0.268 0.732 0.000
#> SRR537117     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR537118     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR537119     2  0.3349    0.85526 0.108 0.888 0.004
#> SRR537120     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR537121     2  0.3573    0.84464 0.120 0.876 0.004
#> SRR537122     2  0.4110    0.81371 0.152 0.844 0.004
#> SRR537123     2  0.2682    0.87811 0.076 0.920 0.004
#> SRR537124     2  0.0237    0.91608 0.000 0.996 0.004
#> SRR537125     2  0.2682    0.87811 0.076 0.920 0.004
#> SRR537126     2  0.2590    0.88058 0.072 0.924 0.004
#> SRR537127     3  0.0000    0.96967 0.000 0.000 1.000
#> SRR537128     3  0.0000    0.96967 0.000 0.000 1.000
#> SRR537129     3  0.0000    0.96967 0.000 0.000 1.000
#> SRR537130     3  0.0000    0.96967 0.000 0.000 1.000
#> SRR537131     3  0.0000    0.96967 0.000 0.000 1.000
#> SRR537132     3  0.0000    0.96967 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     4  0.0188     0.8624 0.004 0.000 0.000 0.996
#> SRR191640     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191641     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191642     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191643     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191644     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191645     4  0.1302     0.8336 0.044 0.000 0.000 0.956
#> SRR191646     4  0.1302     0.8336 0.044 0.000 0.000 0.956
#> SRR191647     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191648     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191649     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191650     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191651     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191652     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191653     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191654     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191655     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR191656     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191658     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191659     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191660     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191661     1  0.1302     0.9020 0.956 0.000 0.000 0.044
#> SRR191662     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191663     1  0.0592     0.9629 0.984 0.000 0.000 0.016
#> SRR191664     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191665     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191666     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191667     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191668     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191669     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191670     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191673     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR191674     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191675     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191677     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191678     2  0.2469     0.7980 0.000 0.892 0.000 0.108
#> SRR191679     2  0.1302     0.8466 0.000 0.956 0.044 0.000
#> SRR191680     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191681     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191682     2  0.1118     0.8465 0.000 0.964 0.036 0.000
#> SRR191683     2  0.0188     0.8448 0.000 0.996 0.004 0.000
#> SRR191684     2  0.4467     0.7971 0.040 0.788 0.172 0.000
#> SRR191685     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191686     2  0.1792     0.8452 0.000 0.932 0.068 0.000
#> SRR191687     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191688     4  0.4332     0.7065 0.000 0.160 0.040 0.800
#> SRR191689     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191690     4  0.0817     0.8525 0.000 0.000 0.024 0.976
#> SRR191691     2  0.6284     0.6721 0.164 0.664 0.172 0.000
#> SRR191692     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191693     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191694     2  0.0000     0.8443 0.000 1.000 0.000 0.000
#> SRR191695     2  0.5677     0.7670 0.000 0.720 0.140 0.140
#> SRR191696     2  0.5151     0.7974 0.000 0.760 0.140 0.100
#> SRR191697     2  0.2760     0.8332 0.000 0.872 0.128 0.000
#> SRR191698     2  0.4500     0.7971 0.000 0.684 0.316 0.000
#> SRR191699     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191700     2  0.4522     0.7953 0.000 0.680 0.320 0.000
#> SRR191701     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191702     2  0.3494     0.8198 0.000 0.824 0.172 0.004
#> SRR191703     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191704     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191705     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191706     2  0.3311     0.8200 0.000 0.828 0.172 0.000
#> SRR191707     4  0.6401     0.5619 0.000 0.176 0.172 0.652
#> SRR191708     4  0.8220     0.3352 0.044 0.276 0.172 0.508
#> SRR191709     2  0.6243     0.6606 0.000 0.668 0.172 0.160
#> SRR191710     4  0.8436     0.1808 0.044 0.348 0.172 0.436
#> SRR191711     4  0.7446     0.0901 0.000 0.396 0.172 0.432
#> SRR191712     4  0.6854     0.4666 0.000 0.232 0.172 0.596
#> SRR191713     2  0.9848     0.0365 0.256 0.312 0.172 0.260
#> SRR191714     4  0.8461     0.1162 0.044 0.368 0.172 0.416
#> SRR191715     4  0.8267     0.0648 0.032 0.388 0.172 0.408
#> SRR191716     4  0.1211     0.8427 0.000 0.000 0.040 0.960
#> SRR191717     4  0.4894     0.7003 0.000 0.120 0.100 0.780
#> SRR191718     2  0.2053     0.8455 0.000 0.924 0.072 0.004
#> SRR537099     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537100     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537101     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537102     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537104     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537105     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537106     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537107     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537108     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537109     4  0.0188     0.8630 0.000 0.000 0.004 0.996
#> SRR537110     4  0.4944     0.7089 0.036 0.016 0.172 0.776
#> SRR537111     1  0.0000     0.9935 1.000 0.000 0.000 0.000
#> SRR537113     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537114     4  0.0000     0.8647 0.000 0.000 0.000 1.000
#> SRR537115     2  0.4431     0.5308 0.000 0.696 0.000 0.304
#> SRR537116     2  0.7093     0.5234 0.000 0.556 0.172 0.272
#> SRR537117     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537118     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537119     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537120     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537121     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537122     2  0.3479     0.7899 0.000 0.840 0.148 0.012
#> SRR537123     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537124     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537125     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537126     2  0.3024     0.7981 0.000 0.852 0.148 0.000
#> SRR537127     3  0.4522     0.9986 0.320 0.000 0.680 0.000
#> SRR537128     3  0.4522     0.9986 0.320 0.000 0.680 0.000
#> SRR537129     3  0.4500     0.9930 0.316 0.000 0.684 0.000
#> SRR537130     3  0.4522     0.9986 0.320 0.000 0.680 0.000
#> SRR537131     3  0.4522     0.9986 0.320 0.000 0.680 0.000
#> SRR537132     3  0.4522     0.9986 0.320 0.000 0.680 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1    p2 p3    p4    p5
#> SRR191639     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191640     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191641     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191642     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191643     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191644     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191645     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191646     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191647     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191648     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191649     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191650     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191651     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191652     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191653     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191654     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191655     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR191656     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191657     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191658     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191659     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191660     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191661     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191662     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191663     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191664     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191665     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191666     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191667     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191668     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191669     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191670     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191671     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191672     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191673     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR191674     5  0.2648      0.833  0 0.152  0 0.000 0.848
#> SRR191675     5  0.2648      0.833  0 0.152  0 0.000 0.848
#> SRR191677     5  0.2648      0.833  0 0.152  0 0.000 0.848
#> SRR191678     5  0.3237      0.779  0 0.048  0 0.104 0.848
#> SRR191679     5  0.3983      0.661  0 0.340  0 0.000 0.660
#> SRR191680     5  0.2813      0.828  0 0.168  0 0.000 0.832
#> SRR191681     5  0.2648      0.833  0 0.152  0 0.000 0.848
#> SRR191682     5  0.3774      0.719  0 0.296  0 0.000 0.704
#> SRR191683     5  0.3039      0.815  0 0.192  0 0.000 0.808
#> SRR191684     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191685     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191686     5  0.4101      0.610  0 0.372  0 0.000 0.628
#> SRR191687     2  0.0162      0.919  0 0.996  0 0.000 0.004
#> SRR191688     4  0.3109      0.732  0 0.200  0 0.800 0.000
#> SRR191689     5  0.2732      0.831  0 0.160  0 0.000 0.840
#> SRR191690     4  0.2179      0.846  0 0.112  0 0.888 0.000
#> SRR191691     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191692     5  0.2648      0.833  0 0.152  0 0.000 0.848
#> SRR191693     5  0.2648      0.833  0 0.152  0 0.000 0.848
#> SRR191694     5  0.2648      0.833  0 0.152  0 0.000 0.848
#> SRR191695     5  0.6121      0.213  0 0.408  0 0.128 0.464
#> SRR191696     5  0.5818      0.198  0 0.448  0 0.092 0.460
#> SRR191697     2  0.4304     -0.305  0 0.516  0 0.000 0.484
#> SRR191698     2  0.2471      0.807  0 0.864  0 0.000 0.136
#> SRR191699     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191700     2  0.2648      0.787  0 0.848  0 0.000 0.152
#> SRR191701     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191702     2  0.0162      0.920  0 0.996  0 0.004 0.000
#> SRR191703     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191704     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191705     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191706     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191707     2  0.2280      0.815  0 0.880  0 0.120 0.000
#> SRR191708     2  0.1732      0.859  0 0.920  0 0.080 0.000
#> SRR191709     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191710     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191711     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191712     2  0.2074      0.834  0 0.896  0 0.104 0.000
#> SRR191713     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191714     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191715     2  0.0000      0.922  0 1.000  0 0.000 0.000
#> SRR191716     4  0.2813      0.776  0 0.168  0 0.832 0.000
#> SRR191717     4  0.3816      0.557  0 0.304  0 0.696 0.000
#> SRR191718     5  0.4238      0.611  0 0.368  0 0.004 0.628
#> SRR537099     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537100     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537101     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537102     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537104     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537105     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537106     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537107     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537108     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537109     4  0.1043      0.926  0 0.040  0 0.960 0.000
#> SRR537110     2  0.2605      0.777  0 0.852  0 0.148 0.000
#> SRR537111     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR537113     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537114     4  0.0000      0.965  0 0.000  0 1.000 0.000
#> SRR537115     5  0.2813      0.716  0 0.000  0 0.168 0.832
#> SRR537116     2  0.2230      0.821  0 0.884  0 0.116 0.000
#> SRR537117     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537118     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537119     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537120     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537121     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537122     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537123     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537124     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537125     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537126     5  0.0000      0.807  0 0.000  0 0.000 1.000
#> SRR537127     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR537128     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR537129     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR537130     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR537131     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR537132     3  0.0000      1.000  0 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2 p3    p4    p5    p6
#> SRR191639     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191640     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191641     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191642     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191643     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191644     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191645     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191646     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191647     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191648     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191649     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191650     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191651     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191652     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191653     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191654     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191655     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR191656     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191657     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191658     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191659     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191660     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191661     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191662     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191663     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191664     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191665     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191666     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191667     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191668     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191669     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191670     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191671     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191672     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191673     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR191674     6  0.0000      0.792  0 0.000  0 0.000 0.000 1.000
#> SRR191675     6  0.0000      0.792  0 0.000  0 0.000 0.000 1.000
#> SRR191677     6  0.0000      0.792  0 0.000  0 0.000 0.000 1.000
#> SRR191678     6  0.2823      0.412  0 0.000  0 0.204 0.000 0.796
#> SRR191679     6  0.0146      0.789  0 0.004  0 0.000 0.000 0.996
#> SRR191680     6  0.0000      0.792  0 0.000  0 0.000 0.000 1.000
#> SRR191681     6  0.0000      0.792  0 0.000  0 0.000 0.000 1.000
#> SRR191682     5  0.4509     -0.357  0 0.032  0 0.000 0.532 0.436
#> SRR191683     6  0.4066      0.411  0 0.012  0 0.000 0.392 0.596
#> SRR191684     5  0.6023     -0.234  0 0.364  0 0.000 0.392 0.244
#> SRR191685     5  0.6023     -0.234  0 0.364  0 0.000 0.392 0.244
#> SRR191686     6  0.5254      0.322  0 0.100  0 0.000 0.392 0.508
#> SRR191687     5  0.6021     -0.227  0 0.360  0 0.000 0.396 0.244
#> SRR191688     4  0.2793      0.727  0 0.200  0 0.800 0.000 0.000
#> SRR191689     6  0.0146      0.791  0 0.000  0 0.000 0.004 0.996
#> SRR191690     4  0.2003      0.832  0 0.116  0 0.884 0.000 0.000
#> SRR191691     2  0.2331      0.805  0 0.888  0 0.000 0.032 0.080
#> SRR191692     6  0.0000      0.792  0 0.000  0 0.000 0.000 1.000
#> SRR191693     6  0.3349      0.562  0 0.008  0 0.000 0.244 0.748
#> SRR191694     6  0.0363      0.786  0 0.000  0 0.000 0.012 0.988
#> SRR191695     2  0.5175      0.506  0 0.620  0 0.184 0.000 0.196
#> SRR191696     2  0.4228      0.639  0 0.716  0 0.072 0.000 0.212
#> SRR191697     2  0.3615      0.617  0 0.700  0 0.008 0.000 0.292
#> SRR191698     2  0.1858      0.807  0 0.904  0 0.000 0.092 0.004
#> SRR191699     2  0.5086      0.447  0 0.532  0 0.000 0.384 0.084
#> SRR191700     2  0.2118      0.796  0 0.888  0 0.000 0.104 0.008
#> SRR191701     2  0.1918      0.815  0 0.904  0 0.000 0.008 0.088
#> SRR191702     2  0.0260      0.835  0 0.992  0 0.000 0.000 0.008
#> SRR191703     2  0.0260      0.835  0 0.992  0 0.000 0.000 0.008
#> SRR191704     2  0.0000      0.835  0 1.000  0 0.000 0.000 0.000
#> SRR191705     2  0.0260      0.836  0 0.992  0 0.008 0.000 0.000
#> SRR191706     2  0.0865      0.826  0 0.964  0 0.000 0.000 0.036
#> SRR191707     2  0.0260      0.836  0 0.992  0 0.008 0.000 0.000
#> SRR191708     2  0.0260      0.836  0 0.992  0 0.008 0.000 0.000
#> SRR191709     2  0.0000      0.835  0 1.000  0 0.000 0.000 0.000
#> SRR191710     2  0.0260      0.836  0 0.992  0 0.008 0.000 0.000
#> SRR191711     2  0.1701      0.821  0 0.920  0 0.008 0.000 0.072
#> SRR191712     2  0.2009      0.806  0 0.908  0 0.068 0.000 0.024
#> SRR191713     2  0.5974      0.244  0 0.428  0 0.000 0.336 0.236
#> SRR191714     2  0.3403      0.702  0 0.768  0 0.000 0.020 0.212
#> SRR191715     2  0.3547      0.575  0 0.668  0 0.000 0.000 0.332
#> SRR191716     4  0.2631      0.754  0 0.180  0 0.820 0.000 0.000
#> SRR191717     4  0.3499      0.511  0 0.320  0 0.680 0.000 0.000
#> SRR191718     2  0.4051      0.341  0 0.560  0 0.008 0.000 0.432
#> SRR537099     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537100     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537101     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537102     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537104     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537105     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537106     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537107     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537108     4  0.0000      0.948  0 0.000  0 1.000 0.000 0.000
#> SRR537109     4  0.0937      0.913  0 0.040  0 0.960 0.000 0.000
#> SRR537110     2  0.0363      0.835  0 0.988  0 0.012 0.000 0.000
#> SRR537111     1  0.0000      1.000  1 0.000  0 0.000 0.000 0.000
#> SRR537113     4  0.0146      0.945  0 0.000  0 0.996 0.004 0.000
#> SRR537114     4  0.0260      0.943  0 0.000  0 0.992 0.008 0.000
#> SRR537115     4  0.4654      0.145  0 0.000  0 0.544 0.044 0.412
#> SRR537116     2  0.0260      0.836  0 0.992  0 0.008 0.000 0.000
#> SRR537117     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537118     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537119     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537120     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537121     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537122     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537123     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537124     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537125     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537126     5  0.3737      0.590  0 0.000  0 0.000 0.608 0.392
#> SRR537127     3  0.0000      1.000  0 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000      1.000  0 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000      1.000  0 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000      1.000  0 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000      1.000  0 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000      1.000  0 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.478           0.778       0.884         0.3913 0.638   0.638
#> 3 3 0.565           0.681       0.866         0.4955 0.611   0.466
#> 4 4 0.675           0.778       0.903         0.1293 0.760   0.517
#> 5 5 0.618           0.599       0.808         0.1054 0.848   0.570
#> 6 6 0.689           0.668       0.846         0.0834 0.883   0.575
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.9491      0.282 0.632 0.368
#> SRR191640     2  0.9552      0.569 0.376 0.624
#> SRR191641     2  0.9552      0.569 0.376 0.624
#> SRR191642     2  0.9552      0.569 0.376 0.624
#> SRR191643     2  0.8386      0.704 0.268 0.732
#> SRR191644     2  0.8955      0.655 0.312 0.688
#> SRR191645     2  0.9686      0.529 0.396 0.604
#> SRR191646     2  0.9686      0.529 0.396 0.604
#> SRR191647     2  0.9552      0.569 0.376 0.624
#> SRR191648     2  0.9552      0.569 0.376 0.624
#> SRR191649     2  0.9552      0.569 0.376 0.624
#> SRR191650     2  0.9552      0.569 0.376 0.624
#> SRR191651     1  0.2423      0.919 0.960 0.040
#> SRR191652     1  0.8386      0.569 0.732 0.268
#> SRR191653     2  0.9552      0.569 0.376 0.624
#> SRR191654     2  0.7299      0.762 0.204 0.796
#> SRR191655     2  0.9552      0.569 0.376 0.624
#> SRR191656     1  0.2236      0.922 0.964 0.036
#> SRR191657     1  0.2236      0.922 0.964 0.036
#> SRR191658     1  0.2236      0.922 0.964 0.036
#> SRR191659     1  0.2236      0.922 0.964 0.036
#> SRR191660     1  0.2423      0.919 0.960 0.040
#> SRR191661     2  0.9710      0.520 0.400 0.600
#> SRR191662     1  0.7602      0.669 0.780 0.220
#> SRR191663     1  0.9963     -0.124 0.536 0.464
#> SRR191664     1  0.2236      0.922 0.964 0.036
#> SRR191665     1  0.2236      0.922 0.964 0.036
#> SRR191666     1  0.1633      0.917 0.976 0.024
#> SRR191667     1  0.1633      0.917 0.976 0.024
#> SRR191668     1  0.2236      0.922 0.964 0.036
#> SRR191669     1  0.2236      0.922 0.964 0.036
#> SRR191670     1  0.2236      0.922 0.964 0.036
#> SRR191671     1  0.2236      0.922 0.964 0.036
#> SRR191672     1  0.2236      0.922 0.964 0.036
#> SRR191673     1  0.2236      0.922 0.964 0.036
#> SRR191674     2  0.0000      0.842 0.000 1.000
#> SRR191675     2  0.0000      0.842 0.000 1.000
#> SRR191677     2  0.0000      0.842 0.000 1.000
#> SRR191678     2  0.0000      0.842 0.000 1.000
#> SRR191679     2  0.0000      0.842 0.000 1.000
#> SRR191680     2  0.0000      0.842 0.000 1.000
#> SRR191681     2  0.0000      0.842 0.000 1.000
#> SRR191682     2  0.0000      0.842 0.000 1.000
#> SRR191683     2  0.0000      0.842 0.000 1.000
#> SRR191684     2  0.0000      0.842 0.000 1.000
#> SRR191685     2  0.0000      0.842 0.000 1.000
#> SRR191686     2  0.0000      0.842 0.000 1.000
#> SRR191687     2  0.0000      0.842 0.000 1.000
#> SRR191688     2  0.0000      0.842 0.000 1.000
#> SRR191689     2  0.0000      0.842 0.000 1.000
#> SRR191690     2  0.0000      0.842 0.000 1.000
#> SRR191691     2  0.0000      0.842 0.000 1.000
#> SRR191692     2  0.0000      0.842 0.000 1.000
#> SRR191693     2  0.0000      0.842 0.000 1.000
#> SRR191694     2  0.0000      0.842 0.000 1.000
#> SRR191695     2  0.0000      0.842 0.000 1.000
#> SRR191696     2  0.0000      0.842 0.000 1.000
#> SRR191697     2  0.0000      0.842 0.000 1.000
#> SRR191698     2  0.0000      0.842 0.000 1.000
#> SRR191699     2  0.0000      0.842 0.000 1.000
#> SRR191700     2  0.0376      0.841 0.004 0.996
#> SRR191701     2  0.0000      0.842 0.000 1.000
#> SRR191702     2  0.0000      0.842 0.000 1.000
#> SRR191703     2  0.0000      0.842 0.000 1.000
#> SRR191704     2  0.0000      0.842 0.000 1.000
#> SRR191705     2  0.0000      0.842 0.000 1.000
#> SRR191706     2  0.0000      0.842 0.000 1.000
#> SRR191707     2  0.0000      0.842 0.000 1.000
#> SRR191708     2  0.0000      0.842 0.000 1.000
#> SRR191709     2  0.0000      0.842 0.000 1.000
#> SRR191710     2  0.0000      0.842 0.000 1.000
#> SRR191711     2  0.0000      0.842 0.000 1.000
#> SRR191712     2  0.0000      0.842 0.000 1.000
#> SRR191713     2  0.0000      0.842 0.000 1.000
#> SRR191714     2  0.0000      0.842 0.000 1.000
#> SRR191715     2  0.0000      0.842 0.000 1.000
#> SRR191716     2  0.0000      0.842 0.000 1.000
#> SRR191717     2  0.0000      0.842 0.000 1.000
#> SRR191718     2  0.0000      0.842 0.000 1.000
#> SRR537099     2  0.7299      0.762 0.204 0.796
#> SRR537100     2  0.9044      0.645 0.320 0.680
#> SRR537101     2  0.9552      0.569 0.376 0.624
#> SRR537102     2  0.9393      0.598 0.356 0.644
#> SRR537104     2  0.7299      0.762 0.204 0.796
#> SRR537105     2  0.9552      0.569 0.376 0.624
#> SRR537106     2  0.9552      0.569 0.376 0.624
#> SRR537107     2  0.9552      0.569 0.376 0.624
#> SRR537108     2  0.9552      0.569 0.376 0.624
#> SRR537109     2  0.0938      0.839 0.012 0.988
#> SRR537110     2  0.2948      0.828 0.052 0.948
#> SRR537111     2  0.9608      0.554 0.384 0.616
#> SRR537113     2  0.7299      0.762 0.204 0.796
#> SRR537114     2  0.7219      0.765 0.200 0.800
#> SRR537115     2  0.6438      0.789 0.164 0.836
#> SRR537116     2  0.0000      0.842 0.000 1.000
#> SRR537117     2  0.6438      0.789 0.164 0.836
#> SRR537118     2  0.6438      0.789 0.164 0.836
#> SRR537119     2  0.6438      0.789 0.164 0.836
#> SRR537120     2  0.6438      0.789 0.164 0.836
#> SRR537121     2  0.6438      0.789 0.164 0.836
#> SRR537122     2  0.6438      0.789 0.164 0.836
#> SRR537123     2  0.6438      0.789 0.164 0.836
#> SRR537124     2  0.6438      0.789 0.164 0.836
#> SRR537125     2  0.6438      0.789 0.164 0.836
#> SRR537126     2  0.6438      0.789 0.164 0.836
#> SRR537127     1  0.0000      0.903 1.000 0.000
#> SRR537128     1  0.0000      0.903 1.000 0.000
#> SRR537129     1  0.0000      0.903 1.000 0.000
#> SRR537130     1  0.0000      0.903 1.000 0.000
#> SRR537131     1  0.0000      0.903 1.000 0.000
#> SRR537132     1  0.0000      0.903 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0237     0.6887 0.996 0.004 0.000
#> SRR191640     1  0.4883     0.5603 0.788 0.208 0.004
#> SRR191641     1  0.0424     0.6902 0.992 0.008 0.000
#> SRR191642     1  0.6102     0.4548 0.672 0.320 0.008
#> SRR191643     1  0.6467     0.3838 0.604 0.388 0.008
#> SRR191644     1  0.3851     0.6162 0.860 0.136 0.004
#> SRR191645     1  0.0424     0.6902 0.992 0.008 0.000
#> SRR191646     1  0.0424     0.6902 0.992 0.008 0.000
#> SRR191647     1  0.1525     0.6851 0.964 0.032 0.004
#> SRR191648     1  0.1525     0.6851 0.964 0.032 0.004
#> SRR191649     1  0.0661     0.6895 0.988 0.008 0.004
#> SRR191650     1  0.0424     0.6902 0.992 0.008 0.000
#> SRR191651     1  0.3038     0.6442 0.896 0.000 0.104
#> SRR191652     1  0.4645     0.5614 0.816 0.008 0.176
#> SRR191653     2  0.9994    -0.2480 0.340 0.344 0.316
#> SRR191654     1  0.9980     0.0696 0.364 0.324 0.312
#> SRR191655     1  0.0661     0.6895 0.988 0.008 0.004
#> SRR191656     1  0.3482     0.6265 0.872 0.000 0.128
#> SRR191657     1  0.0000     0.6864 1.000 0.000 0.000
#> SRR191658     1  0.2711     0.6547 0.912 0.000 0.088
#> SRR191659     1  0.5016     0.5040 0.760 0.000 0.240
#> SRR191660     1  0.0000     0.6864 1.000 0.000 0.000
#> SRR191661     1  0.0424     0.6902 0.992 0.008 0.000
#> SRR191662     1  0.0237     0.6887 0.996 0.004 0.000
#> SRR191663     1  0.0424     0.6902 0.992 0.008 0.000
#> SRR191664     1  0.0892     0.6819 0.980 0.000 0.020
#> SRR191665     1  0.2711     0.6547 0.912 0.000 0.088
#> SRR191666     3  0.5763     0.5585 0.276 0.008 0.716
#> SRR191667     3  0.5763     0.5585 0.276 0.008 0.716
#> SRR191668     1  0.3482     0.6265 0.872 0.000 0.128
#> SRR191669     1  0.3482     0.6265 0.872 0.000 0.128
#> SRR191670     1  0.2711     0.6547 0.912 0.000 0.088
#> SRR191671     1  0.2711     0.6547 0.912 0.000 0.088
#> SRR191672     1  0.3482     0.6265 0.872 0.000 0.128
#> SRR191673     1  0.3482     0.6265 0.872 0.000 0.128
#> SRR191674     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191675     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191677     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191678     2  0.0424     0.9119 0.008 0.992 0.000
#> SRR191679     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191680     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191681     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191682     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191683     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191684     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191685     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191686     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191687     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191688     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191689     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191690     2  0.2261     0.8529 0.068 0.932 0.000
#> SRR191691     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191692     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191693     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191694     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191695     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191696     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191697     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191698     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191699     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191700     2  0.6111     0.2186 0.396 0.604 0.000
#> SRR191701     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191702     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191703     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191704     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191705     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191706     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191707     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191708     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191709     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191710     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191711     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191712     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191713     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191714     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191715     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191716     2  0.2261     0.8555 0.068 0.932 0.000
#> SRR191717     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR191718     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR537099     2  0.9343     0.0395 0.348 0.476 0.176
#> SRR537100     1  0.8487     0.2745 0.584 0.124 0.292
#> SRR537101     1  0.0661     0.6895 0.988 0.008 0.004
#> SRR537102     1  0.5929     0.4564 0.676 0.320 0.004
#> SRR537104     2  0.9392     0.1756 0.196 0.492 0.312
#> SRR537105     1  0.6255     0.4529 0.668 0.320 0.012
#> SRR537106     1  0.6769     0.4442 0.652 0.320 0.028
#> SRR537107     1  0.7948     0.4063 0.600 0.320 0.080
#> SRR537108     1  0.7948     0.4063 0.600 0.320 0.080
#> SRR537109     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR537110     2  0.4291     0.7220 0.180 0.820 0.000
#> SRR537111     1  0.0661     0.6899 0.988 0.008 0.004
#> SRR537113     2  0.8659     0.3734 0.228 0.596 0.176
#> SRR537114     2  0.9331     0.0525 0.344 0.480 0.176
#> SRR537115     2  0.6192     0.6661 0.060 0.764 0.176
#> SRR537116     2  0.0000     0.9191 0.000 1.000 0.000
#> SRR537117     2  0.6458     0.6533 0.072 0.752 0.176
#> SRR537118     1  0.9601     0.1671 0.464 0.224 0.312
#> SRR537119     1  0.9601     0.1671 0.464 0.224 0.312
#> SRR537120     1  0.9447     0.2011 0.464 0.348 0.188
#> SRR537121     1  0.9601     0.1671 0.464 0.224 0.312
#> SRR537122     1  0.9601     0.1671 0.464 0.224 0.312
#> SRR537123     1  0.9601     0.1671 0.464 0.224 0.312
#> SRR537124     1  0.9399     0.1886 0.452 0.372 0.176
#> SRR537125     1  0.9601     0.1671 0.464 0.224 0.312
#> SRR537126     1  0.9601     0.1671 0.464 0.224 0.312
#> SRR537127     3  0.0237     0.8939 0.004 0.000 0.996
#> SRR537128     3  0.0237     0.8939 0.004 0.000 0.996
#> SRR537129     3  0.0237     0.8939 0.004 0.000 0.996
#> SRR537130     3  0.0237     0.8939 0.004 0.000 0.996
#> SRR537131     3  0.0237     0.8939 0.004 0.000 0.996
#> SRR537132     3  0.0237     0.8939 0.004 0.000 0.996
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR191639     1  0.4008     0.6900 0.756 0.000  0 0.244
#> SRR191640     4  0.2011     0.8237 0.080 0.000  0 0.920
#> SRR191641     4  0.2011     0.8236 0.080 0.000  0 0.920
#> SRR191642     4  0.2101     0.8495 0.012 0.060  0 0.928
#> SRR191643     4  0.2101     0.8495 0.012 0.060  0 0.928
#> SRR191644     4  0.2546     0.8463 0.028 0.060  0 0.912
#> SRR191645     4  0.4830     0.2791 0.392 0.000  0 0.608
#> SRR191646     4  0.4843     0.2665 0.396 0.000  0 0.604
#> SRR191647     4  0.2408     0.8086 0.104 0.000  0 0.896
#> SRR191648     4  0.2408     0.8086 0.104 0.000  0 0.896
#> SRR191649     4  0.2281     0.8141 0.096 0.000  0 0.904
#> SRR191650     4  0.3219     0.7488 0.164 0.000  0 0.836
#> SRR191651     1  0.1302     0.7961 0.956 0.000  0 0.044
#> SRR191652     1  0.5000     0.0737 0.500 0.000  0 0.500
#> SRR191653     4  0.0927     0.8435 0.016 0.008  0 0.976
#> SRR191654     4  0.0524     0.8434 0.004 0.008  0 0.988
#> SRR191655     4  0.2021     0.8502 0.012 0.056  0 0.932
#> SRR191656     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191657     1  0.2760     0.7641 0.872 0.000  0 0.128
#> SRR191658     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191659     1  0.0188     0.8025 0.996 0.000  0 0.004
#> SRR191660     1  0.4250     0.6288 0.724 0.000  0 0.276
#> SRR191661     1  0.4985     0.1710 0.532 0.000  0 0.468
#> SRR191662     1  0.3311     0.7394 0.828 0.000  0 0.172
#> SRR191663     1  0.4564     0.5436 0.672 0.000  0 0.328
#> SRR191664     1  0.0921     0.7992 0.972 0.000  0 0.028
#> SRR191665     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191666     4  0.4454     0.4273 0.308 0.000  0 0.692
#> SRR191667     4  0.4522     0.3956 0.320 0.000  0 0.680
#> SRR191668     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191669     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191670     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191671     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191672     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191673     1  0.0000     0.8024 1.000 0.000  0 0.000
#> SRR191674     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191675     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191677     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191678     2  0.4477     0.5850 0.000 0.688  0 0.312
#> SRR191679     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191680     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191681     2  0.1118     0.8831 0.000 0.964  0 0.036
#> SRR191682     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191683     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191684     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191685     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191686     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191687     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191688     2  0.4804     0.4172 0.000 0.616  0 0.384
#> SRR191689     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191690     4  0.5126     0.1630 0.004 0.444  0 0.552
#> SRR191691     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191692     2  0.0592     0.8929 0.000 0.984  0 0.016
#> SRR191693     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191694     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191695     2  0.3400     0.7797 0.000 0.820  0 0.180
#> SRR191696     2  0.3024     0.8109 0.000 0.852  0 0.148
#> SRR191697     2  0.2973     0.8138 0.000 0.856  0 0.144
#> SRR191698     2  0.4585     0.5408 0.000 0.668  0 0.332
#> SRR191699     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191700     4  0.4837     0.3845 0.004 0.348  0 0.648
#> SRR191701     2  0.1211     0.8809 0.000 0.960  0 0.040
#> SRR191702     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191703     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191704     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191705     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191706     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191707     2  0.4072     0.6864 0.000 0.748  0 0.252
#> SRR191708     2  0.2868     0.8193 0.000 0.864  0 0.136
#> SRR191709     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191710     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191711     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191712     2  0.3024     0.8111 0.000 0.852  0 0.148
#> SRR191713     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191714     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191715     2  0.0000     0.8999 0.000 1.000  0 0.000
#> SRR191716     4  0.5119     0.1775 0.004 0.440  0 0.556
#> SRR191717     2  0.4454     0.5883 0.000 0.692  0 0.308
#> SRR191718     2  0.2973     0.8138 0.000 0.856  0 0.144
#> SRR537099     4  0.1824     0.8484 0.004 0.060  0 0.936
#> SRR537100     4  0.1489     0.8505 0.004 0.044  0 0.952
#> SRR537101     4  0.1940     0.8257 0.076 0.000  0 0.924
#> SRR537102     4  0.2101     0.8495 0.012 0.060  0 0.928
#> SRR537104     4  0.1661     0.8502 0.004 0.052  0 0.944
#> SRR537105     4  0.2222     0.8491 0.016 0.060  0 0.924
#> SRR537106     4  0.2101     0.8495 0.012 0.060  0 0.928
#> SRR537107     4  0.2101     0.8495 0.012 0.060  0 0.928
#> SRR537108     4  0.2101     0.8495 0.012 0.060  0 0.928
#> SRR537109     2  0.4977     0.1721 0.000 0.540  0 0.460
#> SRR537110     4  0.4313     0.6476 0.004 0.260  0 0.736
#> SRR537111     1  0.3907     0.6979 0.768 0.000  0 0.232
#> SRR537113     4  0.2921     0.7865 0.000 0.140  0 0.860
#> SRR537114     4  0.1824     0.8484 0.004 0.060  0 0.936
#> SRR537115     4  0.4222     0.6356 0.000 0.272  0 0.728
#> SRR537116     2  0.3266     0.7923 0.000 0.832  0 0.168
#> SRR537117     4  0.3219     0.7265 0.000 0.164  0 0.836
#> SRR537118     4  0.0188     0.8408 0.000 0.004  0 0.996
#> SRR537119     4  0.0188     0.8408 0.000 0.004  0 0.996
#> SRR537120     4  0.0188     0.8408 0.000 0.004  0 0.996
#> SRR537121     4  0.0188     0.8408 0.000 0.004  0 0.996
#> SRR537122     4  0.0188     0.8408 0.000 0.004  0 0.996
#> SRR537123     4  0.0336     0.8423 0.000 0.008  0 0.992
#> SRR537124     4  0.0592     0.8437 0.000 0.016  0 0.984
#> SRR537125     4  0.0188     0.8408 0.000 0.004  0 0.996
#> SRR537126     4  0.0188     0.8408 0.000 0.004  0 0.996
#> SRR537127     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000  1 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000  1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.4088     0.6194 0.632 0.000 0.000 0.368 0.000
#> SRR191640     4  0.0000     0.6679 0.000 0.000 0.000 1.000 0.000
#> SRR191641     4  0.2471     0.5724 0.136 0.000 0.000 0.864 0.000
#> SRR191642     4  0.2516     0.6892 0.000 0.000 0.000 0.860 0.140
#> SRR191643     4  0.4126     0.5293 0.000 0.000 0.000 0.620 0.380
#> SRR191644     4  0.4126     0.5293 0.000 0.000 0.000 0.620 0.380
#> SRR191645     4  0.2929     0.4662 0.180 0.000 0.000 0.820 0.000
#> SRR191646     4  0.2929     0.4629 0.180 0.000 0.000 0.820 0.000
#> SRR191647     4  0.0000     0.6679 0.000 0.000 0.000 1.000 0.000
#> SRR191648     4  0.0000     0.6679 0.000 0.000 0.000 1.000 0.000
#> SRR191649     4  0.0000     0.6679 0.000 0.000 0.000 1.000 0.000
#> SRR191650     4  0.4843     0.3970 0.292 0.000 0.000 0.660 0.048
#> SRR191651     1  0.0510     0.8188 0.984 0.000 0.000 0.016 0.000
#> SRR191652     1  0.4302     0.3834 0.520 0.000 0.000 0.480 0.000
#> SRR191653     4  0.4126     0.5293 0.000 0.000 0.000 0.620 0.380
#> SRR191654     4  0.4126     0.5293 0.000 0.000 0.000 0.620 0.380
#> SRR191655     4  0.3707     0.6013 0.000 0.000 0.000 0.716 0.284
#> SRR191656     1  0.0162     0.8160 0.996 0.000 0.000 0.004 0.000
#> SRR191657     1  0.2648     0.8199 0.848 0.000 0.000 0.152 0.000
#> SRR191658     1  0.2179     0.8236 0.888 0.000 0.000 0.112 0.000
#> SRR191659     1  0.2648     0.8199 0.848 0.000 0.000 0.152 0.000
#> SRR191660     1  0.3003     0.8077 0.812 0.000 0.000 0.188 0.000
#> SRR191661     1  0.4126     0.5883 0.620 0.000 0.000 0.380 0.000
#> SRR191662     1  0.2732     0.8189 0.840 0.000 0.000 0.160 0.000
#> SRR191663     1  0.3177     0.7975 0.792 0.000 0.000 0.208 0.000
#> SRR191664     1  0.2690     0.8199 0.844 0.000 0.000 0.156 0.000
#> SRR191665     1  0.0404     0.8184 0.988 0.000 0.000 0.012 0.000
#> SRR191666     4  0.4449    -0.3388 0.484 0.000 0.004 0.512 0.000
#> SRR191667     1  0.4450     0.3554 0.508 0.000 0.004 0.488 0.000
#> SRR191668     1  0.0162     0.8160 0.996 0.000 0.000 0.004 0.000
#> SRR191669     1  0.0162     0.8160 0.996 0.000 0.000 0.004 0.000
#> SRR191670     1  0.0162     0.8160 0.996 0.000 0.000 0.004 0.000
#> SRR191671     1  0.0162     0.8160 0.996 0.000 0.000 0.004 0.000
#> SRR191672     1  0.0162     0.8160 0.996 0.000 0.000 0.004 0.000
#> SRR191673     1  0.0162     0.8160 0.996 0.000 0.000 0.004 0.000
#> SRR191674     2  0.0162     0.8072 0.000 0.996 0.000 0.000 0.004
#> SRR191675     2  0.0162     0.8072 0.000 0.996 0.000 0.000 0.004
#> SRR191677     2  0.3508     0.6130 0.000 0.748 0.000 0.000 0.252
#> SRR191678     5  0.4455     0.3512 0.000 0.404 0.000 0.008 0.588
#> SRR191679     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191680     2  0.0162     0.8072 0.000 0.996 0.000 0.000 0.004
#> SRR191681     2  0.3480     0.6203 0.000 0.752 0.000 0.000 0.248
#> SRR191682     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191683     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191684     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> SRR191685     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> SRR191686     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191687     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> SRR191688     5  0.4192     0.3475 0.000 0.404 0.000 0.000 0.596
#> SRR191689     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191690     5  0.6392     0.3823 0.000 0.400 0.000 0.168 0.432
#> SRR191691     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> SRR191692     2  0.2648     0.7131 0.000 0.848 0.000 0.000 0.152
#> SRR191693     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191694     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191695     5  0.4192     0.3475 0.000 0.404 0.000 0.000 0.596
#> SRR191696     5  0.4201     0.3352 0.000 0.408 0.000 0.000 0.592
#> SRR191697     2  0.4302     0.0596 0.000 0.520 0.000 0.000 0.480
#> SRR191698     2  0.6334    -0.3624 0.000 0.452 0.000 0.160 0.388
#> SRR191699     2  0.1270     0.7744 0.000 0.948 0.000 0.000 0.052
#> SRR191700     2  0.6757    -0.4444 0.004 0.396 0.000 0.216 0.384
#> SRR191701     2  0.2813     0.6938 0.000 0.832 0.000 0.000 0.168
#> SRR191702     2  0.2471     0.7214 0.000 0.864 0.000 0.000 0.136
#> SRR191703     2  0.0162     0.8072 0.000 0.996 0.000 0.000 0.004
#> SRR191704     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> SRR191705     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191706     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191707     5  0.4192     0.3475 0.000 0.404 0.000 0.000 0.596
#> SRR191708     2  0.4108     0.4059 0.000 0.684 0.000 0.008 0.308
#> SRR191709     2  0.0000     0.8080 0.000 1.000 0.000 0.000 0.000
#> SRR191710     2  0.2891     0.6887 0.000 0.824 0.000 0.000 0.176
#> SRR191711     2  0.2891     0.6889 0.000 0.824 0.000 0.000 0.176
#> SRR191712     2  0.4262     0.1440 0.000 0.560 0.000 0.000 0.440
#> SRR191713     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> SRR191714     2  0.0162     0.8069 0.000 0.996 0.000 0.000 0.004
#> SRR191715     2  0.3210     0.6586 0.000 0.788 0.000 0.000 0.212
#> SRR191716     2  0.6729    -0.3223 0.000 0.396 0.000 0.256 0.348
#> SRR191717     5  0.4192     0.3475 0.000 0.404 0.000 0.000 0.596
#> SRR191718     2  0.4283     0.1607 0.000 0.544 0.000 0.000 0.456
#> SRR537099     4  0.4126     0.5293 0.000 0.000 0.000 0.620 0.380
#> SRR537100     4  0.4126     0.5293 0.000 0.000 0.000 0.620 0.380
#> SRR537101     4  0.0000     0.6679 0.000 0.000 0.000 1.000 0.000
#> SRR537102     4  0.2516     0.6892 0.000 0.000 0.000 0.860 0.140
#> SRR537104     4  0.4192     0.4972 0.000 0.000 0.000 0.596 0.404
#> SRR537105     4  0.2424     0.6884 0.000 0.000 0.000 0.868 0.132
#> SRR537106     4  0.2516     0.6892 0.000 0.000 0.000 0.860 0.140
#> SRR537107     4  0.2516     0.6892 0.000 0.000 0.000 0.860 0.140
#> SRR537108     4  0.2516     0.6892 0.000 0.000 0.000 0.860 0.140
#> SRR537109     5  0.4192     0.3475 0.000 0.404 0.000 0.000 0.596
#> SRR537110     5  0.6778     0.4288 0.000 0.340 0.000 0.280 0.380
#> SRR537111     1  0.5408     0.5079 0.652 0.000 0.000 0.228 0.120
#> SRR537113     4  0.4562     0.3402 0.000 0.008 0.000 0.500 0.492
#> SRR537114     4  0.4126     0.5293 0.000 0.000 0.000 0.620 0.380
#> SRR537115     5  0.3829     0.5241 0.000 0.196 0.000 0.028 0.776
#> SRR537116     5  0.4192     0.3475 0.000 0.404 0.000 0.000 0.596
#> SRR537117     5  0.5375     0.4740 0.000 0.156 0.000 0.176 0.668
#> SRR537118     5  0.3366     0.3846 0.004 0.000 0.000 0.212 0.784
#> SRR537119     5  0.3366     0.3846 0.004 0.000 0.000 0.212 0.784
#> SRR537120     5  0.3366     0.3846 0.004 0.000 0.000 0.212 0.784
#> SRR537121     5  0.3366     0.3846 0.004 0.000 0.000 0.212 0.784
#> SRR537122     5  0.3398     0.3794 0.004 0.000 0.000 0.216 0.780
#> SRR537123     5  0.3398     0.3794 0.004 0.000 0.000 0.216 0.780
#> SRR537124     5  0.3643     0.3885 0.004 0.008 0.000 0.212 0.776
#> SRR537125     5  0.3366     0.3846 0.004 0.000 0.000 0.212 0.784
#> SRR537126     5  0.3366     0.3846 0.004 0.000 0.000 0.212 0.784
#> SRR537127     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     4  0.3869   -0.23228 0.500 0.000  0 0.500 0.000 0.000
#> SRR191640     4  0.0000    0.76509 0.000 0.000  0 1.000 0.000 0.000
#> SRR191641     4  0.0260    0.76306 0.008 0.000  0 0.992 0.000 0.000
#> SRR191642     4  0.1444    0.77760 0.000 0.072  0 0.928 0.000 0.000
#> SRR191643     4  0.2883    0.71372 0.000 0.212  0 0.788 0.000 0.000
#> SRR191644     4  0.3738    0.71229 0.040 0.208  0 0.752 0.000 0.000
#> SRR191645     4  0.0146    0.76433 0.004 0.000  0 0.996 0.000 0.000
#> SRR191646     4  0.0146    0.76433 0.004 0.000  0 0.996 0.000 0.000
#> SRR191647     4  0.0000    0.76509 0.000 0.000  0 1.000 0.000 0.000
#> SRR191648     4  0.0000    0.76509 0.000 0.000  0 1.000 0.000 0.000
#> SRR191649     4  0.0000    0.76509 0.000 0.000  0 1.000 0.000 0.000
#> SRR191650     4  0.3261    0.73313 0.104 0.072  0 0.824 0.000 0.000
#> SRR191651     1  0.0260    0.79354 0.992 0.000  0 0.008 0.000 0.000
#> SRR191652     4  0.3727    0.10262 0.388 0.000  0 0.612 0.000 0.000
#> SRR191653     4  0.4371    0.67688 0.000 0.180  0 0.716 0.104 0.000
#> SRR191654     4  0.4371    0.67688 0.000 0.180  0 0.716 0.104 0.000
#> SRR191655     4  0.1765    0.77326 0.000 0.096  0 0.904 0.000 0.000
#> SRR191656     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191657     1  0.3221    0.70663 0.736 0.000  0 0.264 0.000 0.000
#> SRR191658     1  0.2003    0.78098 0.884 0.000  0 0.116 0.000 0.000
#> SRR191659     1  0.3101    0.72265 0.756 0.000  0 0.244 0.000 0.000
#> SRR191660     1  0.3774    0.49410 0.592 0.000  0 0.408 0.000 0.000
#> SRR191661     4  0.3351    0.40729 0.288 0.000  0 0.712 0.000 0.000
#> SRR191662     1  0.3330    0.67991 0.716 0.000  0 0.284 0.000 0.000
#> SRR191663     1  0.3823    0.43034 0.564 0.000  0 0.436 0.000 0.000
#> SRR191664     1  0.3151    0.71695 0.748 0.000  0 0.252 0.000 0.000
#> SRR191665     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191666     4  0.3727    0.10262 0.388 0.000  0 0.612 0.000 0.000
#> SRR191667     4  0.3727    0.10262 0.388 0.000  0 0.612 0.000 0.000
#> SRR191668     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191669     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191670     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191671     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191672     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191673     1  0.0000    0.79572 1.000 0.000  0 0.000 0.000 0.000
#> SRR191674     6  0.3371    0.66333 0.000 0.292  0 0.000 0.000 0.708
#> SRR191675     6  0.2969    0.74579 0.000 0.224  0 0.000 0.000 0.776
#> SRR191677     2  0.3828   -0.02862 0.000 0.560  0 0.000 0.000 0.440
#> SRR191678     2  0.0790    0.74870 0.000 0.968  0 0.000 0.000 0.032
#> SRR191679     6  0.2562    0.78909 0.000 0.172  0 0.000 0.000 0.828
#> SRR191680     6  0.3684    0.52383 0.000 0.372  0 0.000 0.000 0.628
#> SRR191681     2  0.3765    0.10743 0.000 0.596  0 0.000 0.000 0.404
#> SRR191682     6  0.0260    0.80397 0.000 0.008  0 0.000 0.000 0.992
#> SRR191683     6  0.0260    0.80397 0.000 0.008  0 0.000 0.000 0.992
#> SRR191684     6  0.0260    0.80476 0.000 0.008  0 0.000 0.000 0.992
#> SRR191685     6  0.1714    0.81247 0.000 0.092  0 0.000 0.000 0.908
#> SRR191686     6  0.2454    0.79640 0.000 0.160  0 0.000 0.000 0.840
#> SRR191687     6  0.1714    0.81247 0.000 0.092  0 0.000 0.000 0.908
#> SRR191688     2  0.0146    0.74850 0.000 0.996  0 0.000 0.000 0.004
#> SRR191689     6  0.2454    0.79614 0.000 0.160  0 0.000 0.000 0.840
#> SRR191690     2  0.2320    0.64622 0.000 0.864  0 0.132 0.000 0.004
#> SRR191691     6  0.0000    0.80160 0.000 0.000  0 0.000 0.000 1.000
#> SRR191692     6  0.3810    0.41599 0.000 0.428  0 0.000 0.000 0.572
#> SRR191693     6  0.2340    0.80089 0.000 0.148  0 0.000 0.000 0.852
#> SRR191694     6  0.2527    0.79164 0.000 0.168  0 0.000 0.000 0.832
#> SRR191695     2  0.0146    0.74850 0.000 0.996  0 0.000 0.000 0.004
#> SRR191696     2  0.0146    0.74850 0.000 0.996  0 0.000 0.000 0.004
#> SRR191697     2  0.0713    0.74946 0.000 0.972  0 0.000 0.000 0.028
#> SRR191698     6  0.4788    0.25389 0.000 0.396  0 0.000 0.056 0.548
#> SRR191699     6  0.2092    0.80899 0.000 0.124  0 0.000 0.000 0.876
#> SRR191700     2  0.5428    0.24677 0.000 0.556  0 0.072 0.348 0.024
#> SRR191701     6  0.2996    0.70949 0.000 0.228  0 0.000 0.000 0.772
#> SRR191702     6  0.3672    0.51648 0.000 0.368  0 0.000 0.000 0.632
#> SRR191703     6  0.3482    0.60164 0.000 0.316  0 0.000 0.000 0.684
#> SRR191704     6  0.0000    0.80160 0.000 0.000  0 0.000 0.000 1.000
#> SRR191705     6  0.0146    0.80190 0.000 0.004  0 0.000 0.000 0.996
#> SRR191706     6  0.0363    0.80377 0.000 0.012  0 0.000 0.000 0.988
#> SRR191707     2  0.0146    0.74850 0.000 0.996  0 0.000 0.000 0.004
#> SRR191708     6  0.3126    0.54106 0.000 0.248  0 0.000 0.000 0.752
#> SRR191709     6  0.1387    0.81356 0.000 0.068  0 0.000 0.000 0.932
#> SRR191710     6  0.2793    0.63000 0.000 0.200  0 0.000 0.000 0.800
#> SRR191711     2  0.3868   -0.22572 0.000 0.504  0 0.000 0.000 0.496
#> SRR191712     2  0.2491    0.64839 0.000 0.836  0 0.000 0.000 0.164
#> SRR191713     6  0.0146    0.79941 0.000 0.004  0 0.000 0.000 0.996
#> SRR191714     6  0.0146    0.79941 0.000 0.004  0 0.000 0.000 0.996
#> SRR191715     2  0.3747    0.12381 0.000 0.604  0 0.000 0.000 0.396
#> SRR191716     2  0.2320    0.64313 0.000 0.864  0 0.132 0.000 0.004
#> SRR191717     2  0.0146    0.74850 0.000 0.996  0 0.000 0.000 0.004
#> SRR191718     2  0.0713    0.74946 0.000 0.972  0 0.000 0.000 0.028
#> SRR537099     4  0.3630    0.70182 0.000 0.212  0 0.756 0.032 0.000
#> SRR537100     4  0.2631    0.73664 0.000 0.180  0 0.820 0.000 0.000
#> SRR537101     4  0.0000    0.76509 0.000 0.000  0 1.000 0.000 0.000
#> SRR537102     4  0.1444    0.77760 0.000 0.072  0 0.928 0.000 0.000
#> SRR537104     4  0.5109    0.49896 0.000 0.316  0 0.580 0.104 0.000
#> SRR537105     4  0.0363    0.76909 0.000 0.012  0 0.988 0.000 0.000
#> SRR537106     4  0.1444    0.77760 0.000 0.072  0 0.928 0.000 0.000
#> SRR537107     4  0.1444    0.77760 0.000 0.072  0 0.928 0.000 0.000
#> SRR537108     4  0.1444    0.77760 0.000 0.072  0 0.928 0.000 0.000
#> SRR537109     2  0.0146    0.74850 0.000 0.996  0 0.000 0.000 0.004
#> SRR537110     4  0.5782    0.17044 0.000 0.420  0 0.456 0.104 0.020
#> SRR537111     1  0.4978    0.18823 0.532 0.072  0 0.396 0.000 0.000
#> SRR537113     2  0.3765   -0.00358 0.000 0.596  0 0.404 0.000 0.000
#> SRR537114     4  0.3699    0.54657 0.000 0.336  0 0.660 0.004 0.000
#> SRR537115     2  0.3136    0.51371 0.000 0.796  0 0.016 0.188 0.000
#> SRR537116     2  0.0713    0.74910 0.000 0.972  0 0.000 0.000 0.028
#> SRR537117     2  0.3990    0.40222 0.000 0.688  0 0.000 0.284 0.028
#> SRR537118     5  0.0000    0.84469 0.000 0.000  0 0.000 1.000 0.000
#> SRR537119     5  0.0000    0.84469 0.000 0.000  0 0.000 1.000 0.000
#> SRR537120     5  0.0000    0.84469 0.000 0.000  0 0.000 1.000 0.000
#> SRR537121     5  0.2882    0.81114 0.000 0.180  0 0.008 0.812 0.000
#> SRR537122     5  0.2882    0.81114 0.000 0.180  0 0.008 0.812 0.000
#> SRR537123     5  0.3071    0.80534 0.000 0.180  0 0.016 0.804 0.000
#> SRR537124     5  0.2697    0.80458 0.000 0.188  0 0.000 0.812 0.000
#> SRR537125     5  0.0000    0.84469 0.000 0.000  0 0.000 1.000 0.000
#> SRR537126     5  0.0000    0.84469 0.000 0.000  0 0.000 1.000 0.000
#> SRR537127     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000    1.00000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.890           0.928       0.971         0.4867 0.517   0.517
#> 3 3 0.945           0.928       0.970         0.1608 0.887   0.788
#> 4 4 0.679           0.703       0.866         0.2467 0.757   0.501
#> 5 5 0.601           0.673       0.807         0.1099 0.852   0.550
#> 6 6 0.717           0.732       0.810         0.0509 0.935   0.716
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.0000      0.980 1.000 0.000
#> SRR191640     1  0.0000      0.980 1.000 0.000
#> SRR191641     1  0.0000      0.980 1.000 0.000
#> SRR191642     1  0.7745      0.688 0.772 0.228
#> SRR191643     2  0.9970      0.160 0.468 0.532
#> SRR191644     1  0.6712      0.772 0.824 0.176
#> SRR191645     1  0.0000      0.980 1.000 0.000
#> SRR191646     1  0.0000      0.980 1.000 0.000
#> SRR191647     1  0.0000      0.980 1.000 0.000
#> SRR191648     1  0.0000      0.980 1.000 0.000
#> SRR191649     1  0.0000      0.980 1.000 0.000
#> SRR191650     1  0.0000      0.980 1.000 0.000
#> SRR191651     1  0.0000      0.980 1.000 0.000
#> SRR191652     1  0.0000      0.980 1.000 0.000
#> SRR191653     1  0.0000      0.980 1.000 0.000
#> SRR191654     1  0.0938      0.969 0.988 0.012
#> SRR191655     1  0.0000      0.980 1.000 0.000
#> SRR191656     1  0.0000      0.980 1.000 0.000
#> SRR191657     1  0.0000      0.980 1.000 0.000
#> SRR191658     1  0.0000      0.980 1.000 0.000
#> SRR191659     1  0.0000      0.980 1.000 0.000
#> SRR191660     1  0.0000      0.980 1.000 0.000
#> SRR191661     1  0.0000      0.980 1.000 0.000
#> SRR191662     1  0.0000      0.980 1.000 0.000
#> SRR191663     1  0.0000      0.980 1.000 0.000
#> SRR191664     1  0.0000      0.980 1.000 0.000
#> SRR191665     1  0.0000      0.980 1.000 0.000
#> SRR191666     1  0.0000      0.980 1.000 0.000
#> SRR191667     1  0.0000      0.980 1.000 0.000
#> SRR191668     1  0.0000      0.980 1.000 0.000
#> SRR191669     1  0.0000      0.980 1.000 0.000
#> SRR191670     1  0.0000      0.980 1.000 0.000
#> SRR191671     1  0.0000      0.980 1.000 0.000
#> SRR191672     1  0.0000      0.980 1.000 0.000
#> SRR191673     1  0.0000      0.980 1.000 0.000
#> SRR191674     2  0.0000      0.961 0.000 1.000
#> SRR191675     2  0.0000      0.961 0.000 1.000
#> SRR191677     2  0.0000      0.961 0.000 1.000
#> SRR191678     2  0.0000      0.961 0.000 1.000
#> SRR191679     2  0.0000      0.961 0.000 1.000
#> SRR191680     2  0.0000      0.961 0.000 1.000
#> SRR191681     2  0.0000      0.961 0.000 1.000
#> SRR191682     2  0.0000      0.961 0.000 1.000
#> SRR191683     2  0.0000      0.961 0.000 1.000
#> SRR191684     2  0.0000      0.961 0.000 1.000
#> SRR191685     2  0.0000      0.961 0.000 1.000
#> SRR191686     2  0.0000      0.961 0.000 1.000
#> SRR191687     2  0.0000      0.961 0.000 1.000
#> SRR191688     2  0.0000      0.961 0.000 1.000
#> SRR191689     2  0.0000      0.961 0.000 1.000
#> SRR191690     2  0.0000      0.961 0.000 1.000
#> SRR191691     2  0.0000      0.961 0.000 1.000
#> SRR191692     2  0.0000      0.961 0.000 1.000
#> SRR191693     2  0.0000      0.961 0.000 1.000
#> SRR191694     2  0.0000      0.961 0.000 1.000
#> SRR191695     2  0.0000      0.961 0.000 1.000
#> SRR191696     2  0.0000      0.961 0.000 1.000
#> SRR191697     2  0.0000      0.961 0.000 1.000
#> SRR191698     2  0.0000      0.961 0.000 1.000
#> SRR191699     2  0.0000      0.961 0.000 1.000
#> SRR191700     2  0.0672      0.955 0.008 0.992
#> SRR191701     2  0.0000      0.961 0.000 1.000
#> SRR191702     2  0.0000      0.961 0.000 1.000
#> SRR191703     2  0.0000      0.961 0.000 1.000
#> SRR191704     2  0.0000      0.961 0.000 1.000
#> SRR191705     2  0.0000      0.961 0.000 1.000
#> SRR191706     2  0.0000      0.961 0.000 1.000
#> SRR191707     2  0.0000      0.961 0.000 1.000
#> SRR191708     2  0.0000      0.961 0.000 1.000
#> SRR191709     2  0.0000      0.961 0.000 1.000
#> SRR191710     2  0.0000      0.961 0.000 1.000
#> SRR191711     2  0.0000      0.961 0.000 1.000
#> SRR191712     2  0.0000      0.961 0.000 1.000
#> SRR191713     2  0.0000      0.961 0.000 1.000
#> SRR191714     2  0.0000      0.961 0.000 1.000
#> SRR191715     2  0.0000      0.961 0.000 1.000
#> SRR191716     2  0.0000      0.961 0.000 1.000
#> SRR191717     2  0.0000      0.961 0.000 1.000
#> SRR191718     2  0.0000      0.961 0.000 1.000
#> SRR537099     2  0.9795      0.323 0.416 0.584
#> SRR537100     1  0.0000      0.980 1.000 0.000
#> SRR537101     1  0.0000      0.980 1.000 0.000
#> SRR537102     2  0.6973      0.768 0.188 0.812
#> SRR537104     2  0.8327      0.655 0.264 0.736
#> SRR537105     1  0.0000      0.980 1.000 0.000
#> SRR537106     2  0.9661      0.388 0.392 0.608
#> SRR537107     2  0.8267      0.661 0.260 0.740
#> SRR537108     2  0.8267      0.661 0.260 0.740
#> SRR537109     2  0.0000      0.961 0.000 1.000
#> SRR537110     2  0.0000      0.961 0.000 1.000
#> SRR537111     1  0.9635      0.327 0.612 0.388
#> SRR537113     2  0.5737      0.830 0.136 0.864
#> SRR537114     2  0.3274      0.909 0.060 0.940
#> SRR537115     2  0.0000      0.961 0.000 1.000
#> SRR537116     2  0.0000      0.961 0.000 1.000
#> SRR537117     2  0.0000      0.961 0.000 1.000
#> SRR537118     2  0.0000      0.961 0.000 1.000
#> SRR537119     2  0.0000      0.961 0.000 1.000
#> SRR537120     2  0.0000      0.961 0.000 1.000
#> SRR537121     2  0.0000      0.961 0.000 1.000
#> SRR537122     2  0.0000      0.961 0.000 1.000
#> SRR537123     2  0.0000      0.961 0.000 1.000
#> SRR537124     2  0.0000      0.961 0.000 1.000
#> SRR537125     2  0.0000      0.961 0.000 1.000
#> SRR537126     2  0.0000      0.961 0.000 1.000
#> SRR537127     1  0.0000      0.980 1.000 0.000
#> SRR537128     1  0.0000      0.980 1.000 0.000
#> SRR537129     1  0.0000      0.980 1.000 0.000
#> SRR537130     1  0.0000      0.980 1.000 0.000
#> SRR537131     1  0.0000      0.980 1.000 0.000
#> SRR537132     1  0.0000      0.980 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191640     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191641     1  0.1643      0.939 0.956 0.000 0.044
#> SRR191642     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191643     2  0.7056      0.303 0.404 0.572 0.024
#> SRR191644     3  0.8957      0.331 0.132 0.376 0.492
#> SRR191645     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191646     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191647     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191648     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191649     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191650     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191651     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191652     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191653     3  0.0000      0.889 0.000 0.000 1.000
#> SRR191654     3  0.0000      0.889 0.000 0.000 1.000
#> SRR191655     3  0.6359      0.318 0.404 0.004 0.592
#> SRR191656     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191657     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191658     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191659     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191660     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191661     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191662     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191663     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191664     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191665     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191666     3  0.0892      0.879 0.020 0.000 0.980
#> SRR191667     3  0.1031      0.876 0.024 0.000 0.976
#> SRR191668     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191669     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191670     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191671     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191672     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191673     1  0.0000      0.983 1.000 0.000 0.000
#> SRR191674     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191675     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191677     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191678     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191679     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191680     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191681     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191682     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191683     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191684     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191685     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191686     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191687     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191688     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191689     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191690     2  0.2066      0.915 0.060 0.940 0.000
#> SRR191691     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191692     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191693     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191694     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191695     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191696     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191697     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191698     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191699     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191700     2  0.3192      0.855 0.000 0.888 0.112
#> SRR191701     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191702     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191703     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191704     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191705     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191706     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191707     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191708     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191709     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191710     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191711     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191712     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191713     2  0.2537      0.892 0.080 0.920 0.000
#> SRR191714     2  0.2711      0.883 0.088 0.912 0.000
#> SRR191715     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191716     2  0.2711      0.884 0.088 0.912 0.000
#> SRR191717     2  0.0000      0.970 0.000 1.000 0.000
#> SRR191718     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537099     2  0.5402      0.739 0.028 0.792 0.180
#> SRR537100     3  0.8126      0.611 0.148 0.208 0.644
#> SRR537101     1  0.0747      0.968 0.984 0.000 0.016
#> SRR537102     2  0.5810      0.488 0.336 0.664 0.000
#> SRR537104     2  0.4293      0.793 0.004 0.832 0.164
#> SRR537105     1  0.0000      0.983 1.000 0.000 0.000
#> SRR537106     1  0.0000      0.983 1.000 0.000 0.000
#> SRR537107     1  0.3752      0.756 0.856 0.144 0.000
#> SRR537108     1  0.4235      0.698 0.824 0.176 0.000
#> SRR537109     2  0.0892      0.953 0.020 0.980 0.000
#> SRR537110     2  0.0747      0.957 0.016 0.984 0.000
#> SRR537111     1  0.0000      0.983 1.000 0.000 0.000
#> SRR537113     2  0.1620      0.943 0.012 0.964 0.024
#> SRR537114     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537115     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537116     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537117     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537118     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537119     2  0.0424      0.964 0.000 0.992 0.008
#> SRR537120     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537121     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537122     2  0.0424      0.964 0.000 0.992 0.008
#> SRR537123     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537124     2  0.0000      0.970 0.000 1.000 0.000
#> SRR537125     2  0.0424      0.964 0.000 0.992 0.008
#> SRR537126     2  0.0424      0.964 0.000 0.992 0.008
#> SRR537127     3  0.0000      0.889 0.000 0.000 1.000
#> SRR537128     3  0.0000      0.889 0.000 0.000 1.000
#> SRR537129     3  0.0000      0.889 0.000 0.000 1.000
#> SRR537130     3  0.0000      0.889 0.000 0.000 1.000
#> SRR537131     3  0.0000      0.889 0.000 0.000 1.000
#> SRR537132     3  0.0000      0.889 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0188     0.9588 0.996 0.000 0.000 0.004
#> SRR191640     4  0.2011     0.7180 0.080 0.000 0.000 0.920
#> SRR191641     1  0.3757     0.7909 0.828 0.000 0.152 0.020
#> SRR191642     4  0.1940     0.7205 0.076 0.000 0.000 0.924
#> SRR191643     4  0.3113     0.7048 0.052 0.004 0.052 0.892
#> SRR191644     3  0.5799     0.2997 0.024 0.004 0.552 0.420
#> SRR191645     4  0.4888     0.2415 0.412 0.000 0.000 0.588
#> SRR191646     4  0.4977     0.0997 0.460 0.000 0.000 0.540
#> SRR191647     4  0.1940     0.7205 0.076 0.000 0.000 0.924
#> SRR191648     4  0.1867     0.7217 0.072 0.000 0.000 0.928
#> SRR191649     4  0.5000    -0.0465 0.496 0.000 0.000 0.504
#> SRR191650     1  0.0921     0.9429 0.972 0.000 0.000 0.028
#> SRR191651     1  0.0336     0.9573 0.992 0.000 0.000 0.008
#> SRR191652     1  0.0188     0.9588 0.996 0.000 0.000 0.004
#> SRR191653     3  0.5112     0.2955 0.004 0.000 0.560 0.436
#> SRR191654     4  0.3907     0.5761 0.004 0.008 0.180 0.808
#> SRR191655     4  0.1042     0.7367 0.020 0.000 0.008 0.972
#> SRR191656     1  0.0000     0.9577 1.000 0.000 0.000 0.000
#> SRR191657     1  0.0188     0.9588 0.996 0.000 0.000 0.004
#> SRR191658     1  0.0188     0.9588 0.996 0.000 0.000 0.004
#> SRR191659     1  0.0188     0.9588 0.996 0.000 0.000 0.004
#> SRR191660     1  0.0336     0.9573 0.992 0.000 0.000 0.008
#> SRR191661     1  0.1474     0.9197 0.948 0.000 0.000 0.052
#> SRR191662     1  0.3975     0.6645 0.760 0.000 0.000 0.240
#> SRR191663     1  0.0592     0.9522 0.984 0.000 0.000 0.016
#> SRR191664     1  0.0188     0.9588 0.996 0.000 0.000 0.004
#> SRR191665     1  0.0188     0.9588 0.996 0.000 0.000 0.004
#> SRR191666     3  0.3942     0.5831 0.236 0.000 0.764 0.000
#> SRR191667     3  0.4746     0.3501 0.368 0.000 0.632 0.000
#> SRR191668     1  0.0000     0.9577 1.000 0.000 0.000 0.000
#> SRR191669     1  0.0000     0.9577 1.000 0.000 0.000 0.000
#> SRR191670     1  0.0000     0.9577 1.000 0.000 0.000 0.000
#> SRR191671     1  0.0000     0.9577 1.000 0.000 0.000 0.000
#> SRR191672     1  0.0188     0.9553 0.996 0.000 0.000 0.004
#> SRR191673     1  0.0188     0.9553 0.996 0.000 0.000 0.004
#> SRR191674     2  0.0336     0.8491 0.000 0.992 0.000 0.008
#> SRR191675     2  0.0469     0.8493 0.000 0.988 0.000 0.012
#> SRR191677     2  0.0336     0.8501 0.000 0.992 0.000 0.008
#> SRR191678     2  0.0336     0.8501 0.000 0.992 0.000 0.008
#> SRR191679     2  0.0000     0.8496 0.000 1.000 0.000 0.000
#> SRR191680     2  0.0188     0.8500 0.000 0.996 0.000 0.004
#> SRR191681     2  0.0336     0.8501 0.000 0.992 0.000 0.008
#> SRR191682     2  0.0469     0.8488 0.000 0.988 0.000 0.012
#> SRR191683     2  0.0336     0.8480 0.000 0.992 0.000 0.008
#> SRR191684     2  0.0817     0.8508 0.000 0.976 0.000 0.024
#> SRR191685     2  0.1022     0.8500 0.000 0.968 0.000 0.032
#> SRR191686     2  0.0188     0.8491 0.000 0.996 0.000 0.004
#> SRR191687     2  0.0707     0.8508 0.000 0.980 0.000 0.020
#> SRR191688     2  0.4948     0.2239 0.000 0.560 0.000 0.440
#> SRR191689     2  0.0336     0.8493 0.000 0.992 0.000 0.008
#> SRR191690     4  0.6083     0.3447 0.056 0.360 0.000 0.584
#> SRR191691     2  0.4916     0.3751 0.000 0.576 0.000 0.424
#> SRR191692     2  0.0188     0.8488 0.000 0.996 0.000 0.004
#> SRR191693     2  0.0469     0.8493 0.000 0.988 0.000 0.012
#> SRR191694     2  0.0336     0.8496 0.000 0.992 0.000 0.008
#> SRR191695     2  0.3400     0.7456 0.000 0.820 0.000 0.180
#> SRR191696     2  0.3024     0.7708 0.000 0.852 0.000 0.148
#> SRR191697     2  0.2081     0.8362 0.000 0.916 0.000 0.084
#> SRR191698     2  0.4843     0.4340 0.000 0.604 0.000 0.396
#> SRR191699     2  0.3975     0.6951 0.000 0.760 0.000 0.240
#> SRR191700     4  0.6740     0.4080 0.000 0.144 0.256 0.600
#> SRR191701     2  0.1716     0.8459 0.000 0.936 0.000 0.064
#> SRR191702     2  0.4933     0.2298 0.000 0.568 0.000 0.432
#> SRR191703     2  0.3873     0.6790 0.000 0.772 0.000 0.228
#> SRR191704     2  0.1637     0.8398 0.000 0.940 0.000 0.060
#> SRR191705     2  0.1211     0.8455 0.000 0.960 0.000 0.040
#> SRR191706     2  0.0469     0.8496 0.000 0.988 0.000 0.012
#> SRR191707     4  0.1716     0.7204 0.000 0.064 0.000 0.936
#> SRR191708     4  0.4522     0.4682 0.000 0.320 0.000 0.680
#> SRR191709     4  0.3801     0.6297 0.000 0.220 0.000 0.780
#> SRR191710     4  0.4804     0.3339 0.000 0.384 0.000 0.616
#> SRR191711     4  0.4877     0.2598 0.000 0.408 0.000 0.592
#> SRR191712     4  0.4985     0.0670 0.000 0.468 0.000 0.532
#> SRR191713     2  0.4720     0.5243 0.004 0.672 0.000 0.324
#> SRR191714     2  0.4741     0.5174 0.004 0.668 0.000 0.328
#> SRR191715     2  0.2408     0.8124 0.000 0.896 0.000 0.104
#> SRR191716     4  0.6324     0.3607 0.072 0.356 0.000 0.572
#> SRR191717     2  0.4955     0.2218 0.000 0.556 0.000 0.444
#> SRR191718     2  0.0817     0.8479 0.000 0.976 0.000 0.024
#> SRR537099     4  0.2360     0.7108 0.020 0.004 0.052 0.924
#> SRR537100     4  0.1484     0.7346 0.020 0.004 0.016 0.960
#> SRR537101     4  0.6003     0.2021 0.456 0.000 0.040 0.504
#> SRR537102     4  0.0657     0.7379 0.012 0.004 0.000 0.984
#> SRR537104     4  0.0992     0.7351 0.004 0.008 0.012 0.976
#> SRR537105     4  0.1118     0.7353 0.036 0.000 0.000 0.964
#> SRR537106     4  0.0921     0.7372 0.028 0.000 0.000 0.972
#> SRR537107     4  0.0895     0.7385 0.020 0.004 0.000 0.976
#> SRR537108     4  0.0895     0.7385 0.020 0.004 0.000 0.976
#> SRR537109     4  0.0779     0.7366 0.004 0.016 0.000 0.980
#> SRR537110     4  0.0592     0.7352 0.000 0.016 0.000 0.984
#> SRR537111     1  0.3311     0.7719 0.828 0.000 0.000 0.172
#> SRR537113     4  0.1584     0.7364 0.012 0.036 0.000 0.952
#> SRR537114     4  0.4663     0.5609 0.012 0.272 0.000 0.716
#> SRR537115     2  0.4206     0.7679 0.000 0.816 0.048 0.136
#> SRR537116     4  0.1389     0.7273 0.000 0.048 0.000 0.952
#> SRR537117     2  0.0707     0.8480 0.000 0.980 0.000 0.020
#> SRR537118     2  0.4153     0.7363 0.000 0.820 0.132 0.048
#> SRR537119     2  0.5720     0.4655 0.000 0.652 0.296 0.052
#> SRR537120     2  0.1302     0.8420 0.000 0.956 0.000 0.044
#> SRR537121     2  0.4039     0.7642 0.000 0.836 0.084 0.080
#> SRR537122     3  0.6672     0.1358 0.000 0.408 0.504 0.088
#> SRR537123     2  0.2385     0.8247 0.000 0.920 0.028 0.052
#> SRR537124     2  0.0592     0.8491 0.000 0.984 0.000 0.016
#> SRR537125     2  0.5344     0.4850 0.000 0.668 0.300 0.032
#> SRR537126     2  0.5021     0.5909 0.000 0.724 0.240 0.036
#> SRR537127     3  0.0000     0.7842 0.000 0.000 1.000 0.000
#> SRR537128     3  0.0000     0.7842 0.000 0.000 1.000 0.000
#> SRR537129     3  0.0000     0.7842 0.000 0.000 1.000 0.000
#> SRR537130     3  0.0000     0.7842 0.000 0.000 1.000 0.000
#> SRR537131     3  0.0000     0.7842 0.000 0.000 1.000 0.000
#> SRR537132     3  0.0000     0.7842 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.0510      0.912 0.984 0.000 0.000 0.016 0.000
#> SRR191640     4  0.3862      0.762 0.104 0.088 0.000 0.808 0.000
#> SRR191641     3  0.4708      0.241 0.436 0.000 0.548 0.016 0.000
#> SRR191642     4  0.3362      0.776 0.076 0.080 0.000 0.844 0.000
#> SRR191643     4  0.4442      0.768 0.060 0.088 0.052 0.800 0.000
#> SRR191644     3  0.4610      0.129 0.000 0.016 0.596 0.388 0.000
#> SRR191645     4  0.3231      0.702 0.196 0.004 0.000 0.800 0.000
#> SRR191646     4  0.3398      0.683 0.216 0.004 0.000 0.780 0.000
#> SRR191647     4  0.2171      0.802 0.064 0.024 0.000 0.912 0.000
#> SRR191648     4  0.1981      0.801 0.064 0.016 0.000 0.920 0.000
#> SRR191649     4  0.3990      0.548 0.308 0.004 0.000 0.688 0.000
#> SRR191650     1  0.2773      0.773 0.836 0.000 0.000 0.164 0.000
#> SRR191651     1  0.0963      0.907 0.964 0.000 0.000 0.036 0.000
#> SRR191652     1  0.0898      0.911 0.972 0.008 0.000 0.020 0.000
#> SRR191653     4  0.5021      0.223 0.000 0.008 0.416 0.556 0.020
#> SRR191654     4  0.4143      0.690 0.000 0.016 0.160 0.788 0.036
#> SRR191655     4  0.0807      0.804 0.000 0.012 0.000 0.976 0.012
#> SRR191656     1  0.0404      0.910 0.988 0.000 0.000 0.012 0.000
#> SRR191657     1  0.1310      0.904 0.956 0.024 0.000 0.020 0.000
#> SRR191658     1  0.0404      0.912 0.988 0.000 0.000 0.012 0.000
#> SRR191659     1  0.1310      0.904 0.956 0.024 0.000 0.020 0.000
#> SRR191660     1  0.1836      0.892 0.932 0.036 0.000 0.032 0.000
#> SRR191661     1  0.3182      0.806 0.844 0.032 0.000 0.124 0.000
#> SRR191662     1  0.4290      0.544 0.680 0.016 0.000 0.304 0.000
#> SRR191663     1  0.1915      0.889 0.928 0.032 0.000 0.040 0.000
#> SRR191664     1  0.0703      0.911 0.976 0.000 0.000 0.024 0.000
#> SRR191665     1  0.0510      0.912 0.984 0.000 0.000 0.016 0.000
#> SRR191666     3  0.4434      0.189 0.460 0.000 0.536 0.000 0.004
#> SRR191667     3  0.4305      0.104 0.488 0.000 0.512 0.000 0.000
#> SRR191668     1  0.0162      0.909 0.996 0.000 0.000 0.004 0.000
#> SRR191669     1  0.0162      0.909 0.996 0.000 0.000 0.004 0.000
#> SRR191670     1  0.0000      0.909 1.000 0.000 0.000 0.000 0.000
#> SRR191671     1  0.0000      0.909 1.000 0.000 0.000 0.000 0.000
#> SRR191672     1  0.0162      0.909 0.996 0.000 0.000 0.004 0.000
#> SRR191673     1  0.0162      0.909 0.996 0.000 0.000 0.004 0.000
#> SRR191674     5  0.4114      0.506 0.000 0.376 0.000 0.000 0.624
#> SRR191675     5  0.4114      0.506 0.000 0.376 0.000 0.000 0.624
#> SRR191677     5  0.4101      0.514 0.000 0.372 0.000 0.000 0.628
#> SRR191678     5  0.4030      0.537 0.000 0.352 0.000 0.000 0.648
#> SRR191679     2  0.4101      0.186 0.000 0.628 0.000 0.000 0.372
#> SRR191680     5  0.4304      0.272 0.000 0.484 0.000 0.000 0.516
#> SRR191681     5  0.4088      0.517 0.000 0.368 0.000 0.000 0.632
#> SRR191682     5  0.2852      0.675 0.000 0.172 0.000 0.000 0.828
#> SRR191683     5  0.3661      0.621 0.000 0.276 0.000 0.000 0.724
#> SRR191684     5  0.2351      0.693 0.000 0.088 0.000 0.016 0.896
#> SRR191685     5  0.1774      0.702 0.000 0.052 0.000 0.016 0.932
#> SRR191686     5  0.2377      0.691 0.000 0.128 0.000 0.000 0.872
#> SRR191687     5  0.1740      0.705 0.000 0.056 0.000 0.012 0.932
#> SRR191688     2  0.3612      0.771 0.000 0.800 0.000 0.172 0.028
#> SRR191689     5  0.4262      0.411 0.000 0.440 0.000 0.000 0.560
#> SRR191690     2  0.4608      0.657 0.036 0.700 0.000 0.260 0.004
#> SRR191691     5  0.5274      0.556 0.000 0.132 0.000 0.192 0.676
#> SRR191692     5  0.3983      0.556 0.000 0.340 0.000 0.000 0.660
#> SRR191693     5  0.3452      0.634 0.000 0.244 0.000 0.000 0.756
#> SRR191694     5  0.4171      0.475 0.000 0.396 0.000 0.000 0.604
#> SRR191695     2  0.5084      0.697 0.004 0.712 0.000 0.144 0.140
#> SRR191696     2  0.4911      0.674 0.004 0.728 0.000 0.120 0.148
#> SRR191697     5  0.3182      0.672 0.000 0.124 0.000 0.032 0.844
#> SRR191698     5  0.5271      0.560 0.000 0.152 0.000 0.168 0.680
#> SRR191699     5  0.4678      0.566 0.000 0.224 0.000 0.064 0.712
#> SRR191700     5  0.6668      0.426 0.000 0.184 0.036 0.204 0.576
#> SRR191701     5  0.3283      0.658 0.000 0.140 0.000 0.028 0.832
#> SRR191702     2  0.3289      0.777 0.000 0.844 0.000 0.108 0.048
#> SRR191703     2  0.2983      0.742 0.000 0.868 0.000 0.056 0.076
#> SRR191704     2  0.2519      0.707 0.000 0.884 0.000 0.016 0.100
#> SRR191705     2  0.3055      0.665 0.000 0.840 0.000 0.016 0.144
#> SRR191706     2  0.3086      0.593 0.000 0.816 0.000 0.004 0.180
#> SRR191707     2  0.6319      0.343 0.000 0.520 0.000 0.284 0.196
#> SRR191708     2  0.4369      0.708 0.000 0.740 0.000 0.208 0.052
#> SRR191709     2  0.4243      0.682 0.000 0.712 0.000 0.264 0.024
#> SRR191710     2  0.3847      0.765 0.000 0.784 0.000 0.180 0.036
#> SRR191711     2  0.3795      0.755 0.000 0.780 0.000 0.192 0.028
#> SRR191712     2  0.3492      0.745 0.000 0.796 0.000 0.188 0.016
#> SRR191713     2  0.2610      0.771 0.004 0.892 0.000 0.076 0.028
#> SRR191714     2  0.2952      0.776 0.004 0.872 0.000 0.088 0.036
#> SRR191715     2  0.2927      0.753 0.000 0.872 0.000 0.060 0.068
#> SRR191716     2  0.4348      0.596 0.016 0.668 0.000 0.316 0.000
#> SRR191717     2  0.4777      0.698 0.000 0.680 0.000 0.268 0.052
#> SRR191718     2  0.3491      0.600 0.004 0.768 0.000 0.000 0.228
#> SRR537099     4  0.2965      0.766 0.000 0.012 0.040 0.880 0.068
#> SRR537100     4  0.4169      0.719 0.000 0.024 0.060 0.808 0.108
#> SRR537101     4  0.7342      0.284 0.316 0.052 0.176 0.456 0.000
#> SRR537102     4  0.2144      0.794 0.000 0.068 0.000 0.912 0.020
#> SRR537104     4  0.1605      0.793 0.000 0.012 0.004 0.944 0.040
#> SRR537105     4  0.1341      0.802 0.000 0.056 0.000 0.944 0.000
#> SRR537106     4  0.0794      0.805 0.000 0.028 0.000 0.972 0.000
#> SRR537107     4  0.0865      0.805 0.000 0.024 0.000 0.972 0.004
#> SRR537108     4  0.0865      0.805 0.000 0.024 0.000 0.972 0.004
#> SRR537109     4  0.3333      0.676 0.000 0.208 0.000 0.788 0.004
#> SRR537110     4  0.2873      0.757 0.000 0.128 0.000 0.856 0.016
#> SRR537111     1  0.4390      0.284 0.568 0.004 0.000 0.428 0.000
#> SRR537113     4  0.2597      0.772 0.004 0.060 0.000 0.896 0.040
#> SRR537114     4  0.4316      0.651 0.008 0.128 0.000 0.784 0.080
#> SRR537115     5  0.6815      0.348 0.004 0.324 0.000 0.248 0.424
#> SRR537116     4  0.4416      0.359 0.000 0.356 0.000 0.632 0.012
#> SRR537117     5  0.3019      0.706 0.000 0.088 0.000 0.048 0.864
#> SRR537118     5  0.3238      0.680 0.000 0.000 0.028 0.136 0.836
#> SRR537119     5  0.3731      0.660 0.000 0.000 0.040 0.160 0.800
#> SRR537120     5  0.2189      0.702 0.000 0.012 0.000 0.084 0.904
#> SRR537121     5  0.3773      0.660 0.000 0.004 0.032 0.164 0.800
#> SRR537122     5  0.4392      0.618 0.000 0.004 0.048 0.200 0.748
#> SRR537123     5  0.3484      0.675 0.000 0.004 0.028 0.144 0.824
#> SRR537124     5  0.2972      0.706 0.004 0.084 0.000 0.040 0.872
#> SRR537125     5  0.3523      0.678 0.000 0.004 0.044 0.120 0.832
#> SRR537126     5  0.3523      0.678 0.000 0.004 0.044 0.120 0.832
#> SRR537127     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR537128     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR537129     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR537130     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR537131     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR537132     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.1080     0.8899 0.960 0.004 0.000 0.032 0.004 0.000
#> SRR191640     4  0.4132     0.7614 0.028 0.144 0.000 0.780 0.040 0.008
#> SRR191641     3  0.3108     0.7871 0.076 0.004 0.844 0.076 0.000 0.000
#> SRR191642     4  0.3386     0.7793 0.020 0.124 0.000 0.824 0.032 0.000
#> SRR191643     4  0.3578     0.7921 0.016 0.072 0.032 0.844 0.032 0.004
#> SRR191644     3  0.4049     0.1342 0.000 0.004 0.580 0.412 0.000 0.004
#> SRR191645     4  0.1985     0.7816 0.064 0.004 0.000 0.916 0.008 0.008
#> SRR191646     4  0.2156     0.7811 0.068 0.008 0.000 0.908 0.008 0.008
#> SRR191647     4  0.2689     0.7934 0.016 0.112 0.000 0.864 0.004 0.004
#> SRR191648     4  0.2361     0.7970 0.012 0.104 0.000 0.880 0.000 0.004
#> SRR191649     4  0.2892     0.7443 0.136 0.020 0.000 0.840 0.000 0.004
#> SRR191650     1  0.3921     0.5540 0.676 0.004 0.000 0.308 0.000 0.012
#> SRR191651     1  0.1707     0.8807 0.928 0.004 0.000 0.056 0.000 0.012
#> SRR191652     1  0.1514     0.8879 0.948 0.016 0.000 0.016 0.004 0.016
#> SRR191653     4  0.4863     0.0384 0.000 0.008 0.476 0.484 0.024 0.008
#> SRR191654     4  0.4014     0.7466 0.000 0.016 0.096 0.808 0.048 0.032
#> SRR191655     4  0.1963     0.8007 0.000 0.044 0.004 0.924 0.012 0.016
#> SRR191656     1  0.1059     0.8860 0.964 0.004 0.000 0.016 0.000 0.016
#> SRR191657     1  0.2620     0.8739 0.892 0.048 0.000 0.024 0.004 0.032
#> SRR191658     1  0.1223     0.8890 0.960 0.008 0.000 0.016 0.004 0.012
#> SRR191659     1  0.2825     0.8702 0.880 0.056 0.000 0.028 0.004 0.032
#> SRR191660     1  0.3140     0.8627 0.864 0.060 0.000 0.028 0.008 0.040
#> SRR191661     1  0.4362     0.8172 0.784 0.072 0.000 0.096 0.016 0.032
#> SRR191662     1  0.5080     0.6953 0.684 0.068 0.000 0.212 0.008 0.028
#> SRR191663     1  0.3718     0.8477 0.828 0.068 0.000 0.060 0.008 0.036
#> SRR191664     1  0.1598     0.8876 0.940 0.008 0.000 0.040 0.004 0.008
#> SRR191665     1  0.0790     0.8895 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR191666     1  0.4203     0.4710 0.608 0.008 0.376 0.004 0.000 0.004
#> SRR191667     1  0.4121     0.4611 0.604 0.004 0.384 0.004 0.000 0.004
#> SRR191668     1  0.0291     0.8866 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR191669     1  0.0291     0.8866 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR191670     1  0.0291     0.8866 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR191671     1  0.0291     0.8866 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR191672     1  0.0405     0.8859 0.988 0.004 0.000 0.000 0.000 0.008
#> SRR191673     1  0.0405     0.8859 0.988 0.004 0.000 0.000 0.000 0.008
#> SRR191674     6  0.2282     0.7791 0.000 0.088 0.000 0.000 0.024 0.888
#> SRR191675     6  0.2282     0.7791 0.000 0.088 0.000 0.000 0.024 0.888
#> SRR191677     6  0.2412     0.7795 0.000 0.092 0.000 0.000 0.028 0.880
#> SRR191678     6  0.2724     0.7750 0.000 0.084 0.000 0.000 0.052 0.864
#> SRR191679     6  0.3323     0.5507 0.000 0.240 0.000 0.000 0.008 0.752
#> SRR191680     6  0.2357     0.7568 0.000 0.116 0.000 0.000 0.012 0.872
#> SRR191681     6  0.2412     0.7795 0.000 0.092 0.000 0.000 0.028 0.880
#> SRR191682     5  0.4175     0.7614 0.000 0.104 0.000 0.000 0.740 0.156
#> SRR191683     5  0.5244     0.4585 0.000 0.112 0.000 0.000 0.552 0.336
#> SRR191684     5  0.3227     0.8031 0.000 0.088 0.000 0.000 0.828 0.084
#> SRR191685     5  0.3328     0.8069 0.000 0.064 0.000 0.000 0.816 0.120
#> SRR191686     5  0.4327     0.6794 0.000 0.056 0.000 0.000 0.680 0.264
#> SRR191687     5  0.3435     0.8011 0.000 0.060 0.000 0.000 0.804 0.136
#> SRR191688     2  0.4632     0.7792 0.000 0.748 0.000 0.060 0.072 0.120
#> SRR191689     6  0.2868     0.7437 0.000 0.132 0.000 0.000 0.028 0.840
#> SRR191690     2  0.4517     0.7043 0.008 0.768 0.000 0.112 0.056 0.056
#> SRR191691     5  0.1700     0.8066 0.000 0.028 0.000 0.024 0.936 0.012
#> SRR191692     6  0.3062     0.7421 0.000 0.052 0.000 0.000 0.112 0.836
#> SRR191693     6  0.3420     0.5219 0.000 0.012 0.000 0.000 0.240 0.748
#> SRR191694     6  0.2333     0.7775 0.000 0.092 0.000 0.000 0.024 0.884
#> SRR191695     2  0.6104     0.7007 0.000 0.592 0.000 0.068 0.152 0.188
#> SRR191696     2  0.6321     0.5501 0.000 0.504 0.000 0.060 0.120 0.316
#> SRR191697     5  0.2123     0.8181 0.000 0.024 0.000 0.012 0.912 0.052
#> SRR191698     5  0.1498     0.8002 0.000 0.028 0.000 0.032 0.940 0.000
#> SRR191699     5  0.3516     0.7852 0.000 0.088 0.000 0.004 0.812 0.096
#> SRR191700     5  0.2332     0.7776 0.000 0.032 0.004 0.036 0.908 0.020
#> SRR191701     5  0.1867     0.8138 0.000 0.036 0.000 0.004 0.924 0.036
#> SRR191702     2  0.3309     0.7838 0.000 0.788 0.000 0.016 0.004 0.192
#> SRR191703     2  0.3584     0.7526 0.000 0.740 0.000 0.012 0.004 0.244
#> SRR191704     2  0.3424     0.7667 0.000 0.780 0.004 0.000 0.020 0.196
#> SRR191705     2  0.3342     0.7501 0.000 0.760 0.000 0.000 0.012 0.228
#> SRR191706     2  0.3748     0.6859 0.000 0.688 0.000 0.000 0.012 0.300
#> SRR191707     2  0.4959     0.5930 0.000 0.684 0.000 0.080 0.208 0.028
#> SRR191708     2  0.2445     0.7619 0.000 0.892 0.000 0.060 0.040 0.008
#> SRR191709     2  0.3623     0.7933 0.000 0.808 0.000 0.084 0.008 0.100
#> SRR191710     2  0.2979     0.8018 0.000 0.848 0.000 0.032 0.008 0.112
#> SRR191711     2  0.2870     0.8011 0.000 0.856 0.000 0.040 0.004 0.100
#> SRR191712     2  0.2282     0.7992 0.000 0.900 0.000 0.020 0.012 0.068
#> SRR191713     2  0.2532     0.7942 0.000 0.884 0.000 0.012 0.024 0.080
#> SRR191714     2  0.2911     0.7933 0.000 0.856 0.000 0.008 0.036 0.100
#> SRR191715     2  0.3571     0.7603 0.000 0.744 0.000 0.008 0.008 0.240
#> SRR191716     2  0.4556     0.6654 0.004 0.744 0.000 0.160 0.056 0.036
#> SRR191717     2  0.5780     0.5731 0.000 0.548 0.000 0.208 0.008 0.236
#> SRR191718     2  0.5022     0.6731 0.000 0.640 0.000 0.000 0.204 0.156
#> SRR537099     4  0.3404     0.7842 0.000 0.028 0.016 0.852 0.056 0.048
#> SRR537100     4  0.4232     0.7523 0.000 0.032 0.040 0.792 0.112 0.024
#> SRR537101     4  0.7227     0.2328 0.080 0.104 0.336 0.448 0.020 0.012
#> SRR537102     4  0.3352     0.7827 0.000 0.120 0.000 0.820 0.056 0.004
#> SRR537104     4  0.2036     0.7839 0.000 0.008 0.000 0.916 0.048 0.028
#> SRR537105     4  0.2454     0.7990 0.000 0.104 0.000 0.876 0.016 0.004
#> SRR537106     4  0.1599     0.7967 0.000 0.028 0.000 0.940 0.024 0.008
#> SRR537107     4  0.1518     0.7878 0.000 0.008 0.000 0.944 0.024 0.024
#> SRR537108     4  0.1599     0.7869 0.000 0.008 0.000 0.940 0.024 0.028
#> SRR537109     4  0.4254     0.6962 0.000 0.224 0.000 0.720 0.044 0.012
#> SRR537110     4  0.4461     0.7193 0.000 0.196 0.000 0.716 0.080 0.008
#> SRR537111     4  0.4706     0.5500 0.264 0.008 0.000 0.668 0.004 0.056
#> SRR537113     4  0.4126     0.6327 0.012 0.004 0.000 0.724 0.024 0.236
#> SRR537114     4  0.4394     0.5907 0.000 0.020 0.000 0.688 0.028 0.264
#> SRR537115     6  0.5293     0.3036 0.008 0.028 0.000 0.340 0.040 0.584
#> SRR537116     4  0.4746     0.3142 0.000 0.420 0.000 0.540 0.028 0.012
#> SRR537117     6  0.4837    -0.0258 0.000 0.000 0.000 0.056 0.432 0.512
#> SRR537118     5  0.2999     0.8192 0.000 0.000 0.000 0.048 0.840 0.112
#> SRR537119     5  0.3221     0.8136 0.000 0.000 0.000 0.076 0.828 0.096
#> SRR537120     5  0.3278     0.8071 0.000 0.000 0.000 0.040 0.808 0.152
#> SRR537121     5  0.3566     0.7995 0.000 0.000 0.000 0.104 0.800 0.096
#> SRR537122     5  0.3736     0.7610 0.000 0.000 0.000 0.156 0.776 0.068
#> SRR537123     5  0.4159     0.7630 0.000 0.000 0.000 0.116 0.744 0.140
#> SRR537124     6  0.4873     0.0203 0.000 0.000 0.000 0.060 0.420 0.520
#> SRR537125     5  0.3475     0.8030 0.000 0.000 0.000 0.060 0.800 0.140
#> SRR537126     5  0.3548     0.8014 0.000 0.000 0.000 0.068 0.796 0.136
#> SRR537127     3  0.0000     0.9038 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537128     3  0.0000     0.9038 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537129     3  0.0000     0.9038 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537130     3  0.0000     0.9038 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537131     3  0.0000     0.9038 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537132     3  0.0000     0.9038 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.944           0.956       0.976         0.3180 0.702   0.702
#> 3 3 0.901           0.935       0.955         0.1229 0.986   0.980
#> 4 4 0.514           0.815       0.862         0.5987 0.700   0.564
#> 5 5 0.720           0.809       0.915         0.1180 0.976   0.938
#> 6 6 0.727           0.824       0.921         0.0194 0.996   0.989
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     2  0.2948      0.937 0.052 0.948
#> SRR191640     2  0.0000      0.973 0.000 1.000
#> SRR191641     1  0.1414      0.993 0.980 0.020
#> SRR191642     2  0.0000      0.973 0.000 1.000
#> SRR191643     2  0.0000      0.973 0.000 1.000
#> SRR191644     2  0.0000      0.973 0.000 1.000
#> SRR191645     2  0.0672      0.969 0.008 0.992
#> SRR191646     2  0.0672      0.969 0.008 0.992
#> SRR191647     2  0.2948      0.937 0.052 0.948
#> SRR191648     2  0.2948      0.937 0.052 0.948
#> SRR191649     2  0.2948      0.937 0.052 0.948
#> SRR191650     2  0.0000      0.973 0.000 1.000
#> SRR191651     2  0.0000      0.973 0.000 1.000
#> SRR191652     1  0.1414      0.993 0.980 0.020
#> SRR191653     2  0.0000      0.973 0.000 1.000
#> SRR191654     2  0.0000      0.973 0.000 1.000
#> SRR191655     2  0.0000      0.973 0.000 1.000
#> SRR191656     2  0.6887      0.791 0.184 0.816
#> SRR191657     1  0.1414      0.993 0.980 0.020
#> SRR191658     1  0.1414      0.993 0.980 0.020
#> SRR191659     1  0.1633      0.989 0.976 0.024
#> SRR191660     1  0.1414      0.993 0.980 0.020
#> SRR191661     2  0.0672      0.969 0.008 0.992
#> SRR191662     2  0.0000      0.973 0.000 1.000
#> SRR191663     2  0.0672      0.969 0.008 0.992
#> SRR191664     2  0.3879      0.917 0.076 0.924
#> SRR191665     2  0.0938      0.967 0.012 0.988
#> SRR191666     1  0.1414      0.993 0.980 0.020
#> SRR191667     1  0.1414      0.993 0.980 0.020
#> SRR191668     2  0.7528      0.753 0.216 0.784
#> SRR191669     2  0.7528      0.753 0.216 0.784
#> SRR191670     1  0.1414      0.993 0.980 0.020
#> SRR191671     1  0.1414      0.993 0.980 0.020
#> SRR191672     1  0.1414      0.993 0.980 0.020
#> SRR191673     1  0.1414      0.993 0.980 0.020
#> SRR191674     2  0.0000      0.973 0.000 1.000
#> SRR191675     2  0.0000      0.973 0.000 1.000
#> SRR191677     2  0.0000      0.973 0.000 1.000
#> SRR191678     2  0.2603      0.944 0.044 0.956
#> SRR191679     2  0.0000      0.973 0.000 1.000
#> SRR191680     2  0.0000      0.973 0.000 1.000
#> SRR191681     2  0.0000      0.973 0.000 1.000
#> SRR191682     2  0.0000      0.973 0.000 1.000
#> SRR191683     2  0.0000      0.973 0.000 1.000
#> SRR191684     2  0.0000      0.973 0.000 1.000
#> SRR191685     2  0.0000      0.973 0.000 1.000
#> SRR191686     2  0.0000      0.973 0.000 1.000
#> SRR191687     2  0.0000      0.973 0.000 1.000
#> SRR191688     2  0.0000      0.973 0.000 1.000
#> SRR191689     2  0.0000      0.973 0.000 1.000
#> SRR191690     2  0.2603      0.944 0.044 0.956
#> SRR191691     2  0.0000      0.973 0.000 1.000
#> SRR191692     2  0.0000      0.973 0.000 1.000
#> SRR191693     2  0.0000      0.973 0.000 1.000
#> SRR191694     2  0.0000      0.973 0.000 1.000
#> SRR191695     2  0.0000      0.973 0.000 1.000
#> SRR191696     2  0.0000      0.973 0.000 1.000
#> SRR191697     2  0.0000      0.973 0.000 1.000
#> SRR191698     2  0.0000      0.973 0.000 1.000
#> SRR191699     2  0.0000      0.973 0.000 1.000
#> SRR191700     1  0.1414      0.993 0.980 0.020
#> SRR191701     2  0.0000      0.973 0.000 1.000
#> SRR191702     2  0.0000      0.973 0.000 1.000
#> SRR191703     2  0.0000      0.973 0.000 1.000
#> SRR191704     2  0.0000      0.973 0.000 1.000
#> SRR191705     2  0.0000      0.973 0.000 1.000
#> SRR191706     2  0.0000      0.973 0.000 1.000
#> SRR191707     2  0.0000      0.973 0.000 1.000
#> SRR191708     2  0.0000      0.973 0.000 1.000
#> SRR191709     2  0.0000      0.973 0.000 1.000
#> SRR191710     2  0.0000      0.973 0.000 1.000
#> SRR191711     2  0.0000      0.973 0.000 1.000
#> SRR191712     2  0.0000      0.973 0.000 1.000
#> SRR191713     2  0.0000      0.973 0.000 1.000
#> SRR191714     2  0.0000      0.973 0.000 1.000
#> SRR191715     2  0.0000      0.973 0.000 1.000
#> SRR191716     2  0.2603      0.944 0.044 0.956
#> SRR191717     2  0.0000      0.973 0.000 1.000
#> SRR191718     2  0.0000      0.973 0.000 1.000
#> SRR537099     2  0.0672      0.969 0.008 0.992
#> SRR537100     2  0.0672      0.969 0.008 0.992
#> SRR537101     1  0.1414      0.993 0.980 0.020
#> SRR537102     2  0.0000      0.973 0.000 1.000
#> SRR537104     2  0.0000      0.973 0.000 1.000
#> SRR537105     2  0.0000      0.973 0.000 1.000
#> SRR537106     2  0.0000      0.973 0.000 1.000
#> SRR537107     2  0.0000      0.973 0.000 1.000
#> SRR537108     2  0.0000      0.973 0.000 1.000
#> SRR537109     2  0.0000      0.973 0.000 1.000
#> SRR537110     2  0.0000      0.973 0.000 1.000
#> SRR537111     2  0.0000      0.973 0.000 1.000
#> SRR537113     2  0.0000      0.973 0.000 1.000
#> SRR537114     2  0.0000      0.973 0.000 1.000
#> SRR537115     2  0.0000      0.973 0.000 1.000
#> SRR537116     2  0.0000      0.973 0.000 1.000
#> SRR537117     2  0.8081      0.705 0.248 0.752
#> SRR537118     2  0.0672      0.969 0.008 0.992
#> SRR537119     2  0.8081      0.705 0.248 0.752
#> SRR537120     2  0.8081      0.705 0.248 0.752
#> SRR537121     2  0.0672      0.969 0.008 0.992
#> SRR537122     2  0.0672      0.969 0.008 0.992
#> SRR537123     2  0.8081      0.705 0.248 0.752
#> SRR537124     2  0.8081      0.705 0.248 0.752
#> SRR537125     2  0.0672      0.969 0.008 0.992
#> SRR537126     2  0.0672      0.969 0.008 0.992
#> SRR537127     1  0.0000      0.984 1.000 0.000
#> SRR537128     1  0.0000      0.984 1.000 0.000
#> SRR537129     1  0.0000      0.984 1.000 0.000
#> SRR537130     1  0.0000      0.984 1.000 0.000
#> SRR537131     1  0.0000      0.984 1.000 0.000
#> SRR537132     1  0.0000      0.984 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     2  0.2680      0.912 0.068 0.924 0.008
#> SRR191640     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191641     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191642     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191643     2  0.0000      0.949 0.000 1.000 0.000
#> SRR191644     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191645     2  0.1453      0.940 0.024 0.968 0.008
#> SRR191646     2  0.1453      0.940 0.024 0.968 0.008
#> SRR191647     2  0.2680      0.912 0.068 0.924 0.008
#> SRR191648     2  0.2680      0.912 0.068 0.924 0.008
#> SRR191649     2  0.2680      0.912 0.068 0.924 0.008
#> SRR191650     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191651     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191652     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191653     2  0.0000      0.949 0.000 1.000 0.000
#> SRR191654     2  0.0000      0.949 0.000 1.000 0.000
#> SRR191655     2  0.0000      0.949 0.000 1.000 0.000
#> SRR191656     2  0.4963      0.768 0.200 0.792 0.008
#> SRR191657     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191658     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191659     1  0.0424      0.992 0.992 0.008 0.000
#> SRR191660     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191661     2  0.1453      0.940 0.024 0.968 0.008
#> SRR191662     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191663     2  0.1453      0.940 0.024 0.968 0.008
#> SRR191664     2  0.3213      0.895 0.092 0.900 0.008
#> SRR191665     2  0.1585      0.938 0.028 0.964 0.008
#> SRR191666     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191667     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191668     2  0.5335      0.728 0.232 0.760 0.008
#> SRR191669     2  0.5335      0.728 0.232 0.760 0.008
#> SRR191670     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191671     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191672     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191673     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191674     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191675     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191677     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191678     2  0.2486      0.918 0.060 0.932 0.008
#> SRR191679     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191680     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191681     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191682     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191683     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191684     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191685     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191686     2  0.0747      0.949 0.000 0.984 0.016
#> SRR191687     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191688     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191689     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191690     2  0.2486      0.918 0.060 0.932 0.008
#> SRR191691     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191692     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191693     2  0.0747      0.949 0.000 0.984 0.016
#> SRR191694     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191695     2  0.0237      0.949 0.000 0.996 0.004
#> SRR191696     2  0.0237      0.949 0.000 0.996 0.004
#> SRR191697     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191698     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191699     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191700     1  0.0237      0.999 0.996 0.004 0.000
#> SRR191701     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191702     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191703     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191704     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191705     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191706     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191707     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191708     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191709     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191710     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191711     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191712     2  0.0424      0.948 0.000 0.992 0.008
#> SRR191713     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191714     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191715     2  0.1878      0.943 0.004 0.952 0.044
#> SRR191716     2  0.2486      0.918 0.060 0.932 0.008
#> SRR191717     2  0.0592      0.949 0.000 0.988 0.012
#> SRR191718     2  0.0424      0.948 0.000 0.992 0.008
#> SRR537099     2  0.0848      0.947 0.008 0.984 0.008
#> SRR537100     2  0.0848      0.947 0.008 0.984 0.008
#> SRR537101     1  0.0237      0.999 0.996 0.004 0.000
#> SRR537102     2  0.0000      0.949 0.000 1.000 0.000
#> SRR537104     2  0.1878      0.943 0.004 0.952 0.044
#> SRR537105     2  0.0000      0.949 0.000 1.000 0.000
#> SRR537106     2  0.1878      0.943 0.004 0.952 0.044
#> SRR537107     2  0.0000      0.949 0.000 1.000 0.000
#> SRR537108     2  0.0000      0.949 0.000 1.000 0.000
#> SRR537109     2  0.1878      0.943 0.004 0.952 0.044
#> SRR537110     2  0.1878      0.943 0.004 0.952 0.044
#> SRR537111     2  0.1878      0.943 0.004 0.952 0.044
#> SRR537113     2  0.1878      0.943 0.004 0.952 0.044
#> SRR537114     2  0.0424      0.948 0.000 0.992 0.008
#> SRR537115     2  0.0424      0.948 0.000 0.992 0.008
#> SRR537116     2  0.1878      0.943 0.004 0.952 0.044
#> SRR537117     2  0.5656      0.680 0.264 0.728 0.008
#> SRR537118     2  0.0848      0.947 0.008 0.984 0.008
#> SRR537119     2  0.5656      0.680 0.264 0.728 0.008
#> SRR537120     2  0.5656      0.680 0.264 0.728 0.008
#> SRR537121     2  0.0848      0.947 0.008 0.984 0.008
#> SRR537122     2  0.0848      0.947 0.008 0.984 0.008
#> SRR537123     2  0.5656      0.680 0.264 0.728 0.008
#> SRR537124     2  0.5656      0.680 0.264 0.728 0.008
#> SRR537125     2  0.0848      0.947 0.008 0.984 0.008
#> SRR537126     2  0.0848      0.947 0.008 0.984 0.008
#> SRR537127     3  0.1860      1.000 0.052 0.000 0.948
#> SRR537128     3  0.1860      1.000 0.052 0.000 0.948
#> SRR537129     3  0.1860      1.000 0.052 0.000 0.948
#> SRR537130     3  0.1860      1.000 0.052 0.000 0.948
#> SRR537131     3  0.1860      1.000 0.052 0.000 0.948
#> SRR537132     3  0.1860      1.000 0.052 0.000 0.948
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR191639     4  0.1637      0.815 0.060 0.000  0 0.940
#> SRR191640     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR191641     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191642     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR191643     4  0.4985     -0.303 0.000 0.468  0 0.532
#> SRR191644     2  0.4331      0.915 0.000 0.712  0 0.288
#> SRR191645     4  0.1151      0.830 0.024 0.008  0 0.968
#> SRR191646     4  0.1151      0.830 0.024 0.008  0 0.968
#> SRR191647     4  0.1637      0.815 0.060 0.000  0 0.940
#> SRR191648     4  0.1637      0.815 0.060 0.000  0 0.940
#> SRR191649     4  0.1637      0.815 0.060 0.000  0 0.940
#> SRR191650     2  0.4331      0.915 0.000 0.712  0 0.288
#> SRR191651     2  0.4331      0.915 0.000 0.712  0 0.288
#> SRR191652     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191653     4  0.2704      0.752 0.000 0.124  0 0.876
#> SRR191654     4  0.2704      0.752 0.000 0.124  0 0.876
#> SRR191655     4  0.2704      0.752 0.000 0.124  0 0.876
#> SRR191656     4  0.3569      0.703 0.196 0.000  0 0.804
#> SRR191657     1  0.0188      0.994 0.996 0.000  0 0.004
#> SRR191658     1  0.0188      0.994 0.996 0.000  0 0.004
#> SRR191659     1  0.0336      0.988 0.992 0.000  0 0.008
#> SRR191660     1  0.0188      0.994 0.996 0.000  0 0.004
#> SRR191661     4  0.1151      0.830 0.024 0.008  0 0.968
#> SRR191662     2  0.4331      0.915 0.000 0.712  0 0.288
#> SRR191663     4  0.1151      0.830 0.024 0.008  0 0.968
#> SRR191664     4  0.2081      0.806 0.084 0.000  0 0.916
#> SRR191665     4  0.1004      0.828 0.024 0.004  0 0.972
#> SRR191666     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191667     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191668     4  0.3873      0.681 0.228 0.000  0 0.772
#> SRR191669     4  0.3873      0.681 0.228 0.000  0 0.772
#> SRR191670     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191671     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191672     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191673     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191674     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191675     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191677     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191678     4  0.1474      0.818 0.052 0.000  0 0.948
#> SRR191679     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191680     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191681     4  0.4164      0.518 0.000 0.264  0 0.736
#> SRR191682     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR191683     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR191684     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191685     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191686     4  0.4193      0.510 0.000 0.268  0 0.732
#> SRR191687     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191688     4  0.4888     -0.024 0.000 0.412  0 0.588
#> SRR191689     4  0.4134      0.525 0.000 0.260  0 0.740
#> SRR191690     4  0.1474      0.818 0.052 0.000  0 0.948
#> SRR191691     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191692     4  0.0592      0.831 0.000 0.016  0 0.984
#> SRR191693     4  0.4193      0.510 0.000 0.268  0 0.732
#> SRR191694     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191695     4  0.1389      0.813 0.000 0.048  0 0.952
#> SRR191696     4  0.1389      0.813 0.000 0.048  0 0.952
#> SRR191697     4  0.0469      0.832 0.000 0.012  0 0.988
#> SRR191698     4  0.0469      0.832 0.000 0.012  0 0.988
#> SRR191699     4  0.4164      0.518 0.000 0.264  0 0.736
#> SRR191700     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR191701     2  0.4998      0.428 0.000 0.512  0 0.488
#> SRR191702     2  0.4008      0.961 0.000 0.756  0 0.244
#> SRR191703     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191704     4  0.4898      0.446 0.000 0.416  0 0.584
#> SRR191705     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR191706     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191707     4  0.4888     -0.024 0.000 0.412  0 0.588
#> SRR191708     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR191709     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191710     4  0.4888     -0.024 0.000 0.412  0 0.588
#> SRR191711     2  0.4543      0.852 0.000 0.676  0 0.324
#> SRR191712     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR191713     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191714     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191715     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR191716     4  0.1474      0.818 0.052 0.000  0 0.948
#> SRR191717     4  0.4164      0.518 0.000 0.264  0 0.736
#> SRR191718     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR537099     4  0.0000      0.833 0.000 0.000  0 1.000
#> SRR537100     4  0.0000      0.833 0.000 0.000  0 1.000
#> SRR537101     1  0.0000      0.997 1.000 0.000  0 0.000
#> SRR537102     4  0.2704      0.752 0.000 0.124  0 0.876
#> SRR537104     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR537105     4  0.2704      0.752 0.000 0.124  0 0.876
#> SRR537106     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR537107     4  0.2868      0.740 0.000 0.136  0 0.864
#> SRR537108     4  0.2868      0.740 0.000 0.136  0 0.864
#> SRR537109     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR537110     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR537111     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR537113     2  0.4713      0.782 0.000 0.640  0 0.360
#> SRR537114     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR537115     4  0.0336      0.833 0.000 0.008  0 0.992
#> SRR537116     2  0.3975      0.964 0.000 0.760  0 0.240
#> SRR537117     4  0.4134      0.647 0.260 0.000  0 0.740
#> SRR537118     4  0.0000      0.833 0.000 0.000  0 1.000
#> SRR537119     4  0.4134      0.647 0.260 0.000  0 0.740
#> SRR537120     4  0.4134      0.647 0.260 0.000  0 0.740
#> SRR537121     4  0.0000      0.833 0.000 0.000  0 1.000
#> SRR537122     4  0.0000      0.833 0.000 0.000  0 1.000
#> SRR537123     4  0.4134      0.647 0.260 0.000  0 0.740
#> SRR537124     4  0.4134      0.647 0.260 0.000  0 0.740
#> SRR537125     4  0.0000      0.833 0.000 0.000  0 1.000
#> SRR537126     4  0.0000      0.833 0.000 0.000  0 1.000
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4   p5
#> SRR191639     4  0.0880      0.821 0.032 0.000  0 0.968 0.00
#> SRR191640     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR191641     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR191642     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR191643     2  0.4227      0.153 0.000 0.580  0 0.420 0.00
#> SRR191644     2  0.1341      0.875 0.000 0.944  0 0.056 0.00
#> SRR191645     4  0.0404      0.837 0.000 0.012  0 0.988 0.00
#> SRR191646     4  0.0404      0.837 0.000 0.012  0 0.988 0.00
#> SRR191647     4  0.0880      0.821 0.032 0.000  0 0.968 0.00
#> SRR191648     4  0.0880      0.821 0.032 0.000  0 0.968 0.00
#> SRR191649     4  0.0880      0.821 0.032 0.000  0 0.968 0.00
#> SRR191650     2  0.1341      0.875 0.000 0.944  0 0.056 0.00
#> SRR191651     2  0.1341      0.875 0.000 0.944  0 0.056 0.00
#> SRR191652     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR191653     4  0.2773      0.774 0.000 0.164  0 0.836 0.00
#> SRR191654     4  0.2773      0.774 0.000 0.164  0 0.836 0.00
#> SRR191655     4  0.2773      0.774 0.000 0.164  0 0.836 0.00
#> SRR191656     4  0.3523      0.699 0.044 0.004  0 0.832 0.12
#> SRR191657     1  0.0794      0.950 0.972 0.000  0 0.028 0.00
#> SRR191658     1  0.0794      0.950 0.972 0.000  0 0.028 0.00
#> SRR191659     1  0.0880      0.945 0.968 0.000  0 0.032 0.00
#> SRR191660     1  0.0794      0.950 0.972 0.000  0 0.028 0.00
#> SRR191661     4  0.0404      0.837 0.000 0.012  0 0.988 0.00
#> SRR191662     2  0.1341      0.875 0.000 0.944  0 0.056 0.00
#> SRR191663     4  0.0404      0.837 0.000 0.012  0 0.988 0.00
#> SRR191664     4  0.1571      0.810 0.060 0.004  0 0.936 0.00
#> SRR191665     4  0.0290      0.835 0.000 0.008  0 0.992 0.00
#> SRR191666     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR191667     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR191668     4  0.4044      0.674 0.076 0.004  0 0.800 0.12
#> SRR191669     4  0.4044      0.674 0.076 0.004  0 0.800 0.12
#> SRR191670     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR191671     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR191672     1  0.2597      0.846 0.872 0.004  0 0.004 0.12
#> SRR191673     1  0.2597      0.846 0.872 0.004  0 0.004 0.12
#> SRR191674     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191675     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191677     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191678     4  0.0703      0.824 0.024 0.000  0 0.976 0.00
#> SRR191679     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191680     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191681     4  0.3857      0.606 0.000 0.312  0 0.688 0.00
#> SRR191682     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR191683     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR191684     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191685     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191686     4  0.3876      0.601 0.000 0.316  0 0.684 0.00
#> SRR191687     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191688     4  0.4300      0.235 0.000 0.476  0 0.524 0.00
#> SRR191689     4  0.3837      0.610 0.000 0.308  0 0.692 0.00
#> SRR191690     4  0.0703      0.824 0.024 0.000  0 0.976 0.00
#> SRR191691     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191692     4  0.1121      0.843 0.000 0.044  0 0.956 0.00
#> SRR191693     4  0.3876      0.601 0.000 0.316  0 0.684 0.00
#> SRR191694     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191695     4  0.1732      0.827 0.000 0.080  0 0.920 0.00
#> SRR191696     4  0.1732      0.827 0.000 0.080  0 0.920 0.00
#> SRR191697     4  0.1043      0.844 0.000 0.040  0 0.960 0.00
#> SRR191698     4  0.1043      0.844 0.000 0.040  0 0.960 0.00
#> SRR191699     4  0.3857      0.606 0.000 0.312  0 0.688 0.00
#> SRR191700     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR191701     2  0.4150      0.250 0.000 0.612  0 0.388 0.00
#> SRR191702     2  0.0290      0.920 0.000 0.992  0 0.008 0.00
#> SRR191703     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191704     5  0.2280      0.000 0.000 0.000  0 0.120 0.88
#> SRR191705     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR191706     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191707     4  0.4300      0.235 0.000 0.476  0 0.524 0.00
#> SRR191708     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR191709     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191710     4  0.4300      0.235 0.000 0.476  0 0.524 0.00
#> SRR191711     2  0.3109      0.650 0.000 0.800  0 0.200 0.00
#> SRR191712     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR191713     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191714     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191715     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR191716     4  0.0703      0.824 0.024 0.000  0 0.976 0.00
#> SRR191717     4  0.3857      0.606 0.000 0.312  0 0.688 0.00
#> SRR191718     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR537099     4  0.0794      0.844 0.000 0.028  0 0.972 0.00
#> SRR537100     4  0.0794      0.844 0.000 0.028  0 0.972 0.00
#> SRR537101     1  0.0000      0.964 1.000 0.000  0 0.000 0.00
#> SRR537102     4  0.2773      0.774 0.000 0.164  0 0.836 0.00
#> SRR537104     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR537105     4  0.2773      0.774 0.000 0.164  0 0.836 0.00
#> SRR537106     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR537107     4  0.2891      0.765 0.000 0.176  0 0.824 0.00
#> SRR537108     4  0.2891      0.765 0.000 0.176  0 0.824 0.00
#> SRR537109     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR537110     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR537111     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR537113     2  0.3210      0.634 0.000 0.788  0 0.212 0.00
#> SRR537114     4  0.0963      0.845 0.000 0.036  0 0.964 0.00
#> SRR537115     4  0.1043      0.844 0.000 0.040  0 0.960 0.00
#> SRR537116     2  0.0162      0.923 0.000 0.996  0 0.004 0.00
#> SRR537117     4  0.3366      0.615 0.232 0.000  0 0.768 0.00
#> SRR537118     4  0.0794      0.844 0.000 0.028  0 0.972 0.00
#> SRR537119     4  0.3366      0.615 0.232 0.000  0 0.768 0.00
#> SRR537120     4  0.3366      0.615 0.232 0.000  0 0.768 0.00
#> SRR537121     4  0.0794      0.844 0.000 0.028  0 0.972 0.00
#> SRR537122     4  0.0794      0.844 0.000 0.028  0 0.972 0.00
#> SRR537123     4  0.3366      0.615 0.232 0.000  0 0.768 0.00
#> SRR537124     4  0.3366      0.615 0.232 0.000  0 0.768 0.00
#> SRR537125     4  0.0794      0.844 0.000 0.028  0 0.972 0.00
#> SRR537126     4  0.0794      0.844 0.000 0.028  0 0.972 0.00
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.00
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.00
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.00
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.00
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.00
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.00
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5 p6
#> SRR191639     4  0.1411      0.848 0.004 0.000  0 0.936 0.060  0
#> SRR191640     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR191641     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR191642     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR191643     2  0.3838      0.104 0.000 0.552  0 0.448 0.000  0
#> SRR191644     2  0.1327      0.862 0.000 0.936  0 0.064 0.000  0
#> SRR191645     4  0.0547      0.861 0.000 0.000  0 0.980 0.020  0
#> SRR191646     4  0.0547      0.861 0.000 0.000  0 0.980 0.020  0
#> SRR191647     4  0.1411      0.848 0.004 0.000  0 0.936 0.060  0
#> SRR191648     4  0.1411      0.848 0.004 0.000  0 0.936 0.060  0
#> SRR191649     4  0.1411      0.848 0.004 0.000  0 0.936 0.060  0
#> SRR191650     2  0.1327      0.862 0.000 0.936  0 0.064 0.000  0
#> SRR191651     2  0.1327      0.862 0.000 0.936  0 0.064 0.000  0
#> SRR191652     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR191653     4  0.2178      0.806 0.000 0.132  0 0.868 0.000  0
#> SRR191654     4  0.2178      0.806 0.000 0.132  0 0.868 0.000  0
#> SRR191655     4  0.2178      0.806 0.000 0.132  0 0.868 0.000  0
#> SRR191656     4  0.2793      0.738 0.000 0.000  0 0.800 0.200  0
#> SRR191657     1  0.1524      0.932 0.932 0.000  0 0.008 0.060  0
#> SRR191658     1  0.1524      0.932 0.932 0.000  0 0.008 0.060  0
#> SRR191659     1  0.1625      0.926 0.928 0.000  0 0.012 0.060  0
#> SRR191660     1  0.1524      0.932 0.932 0.000  0 0.008 0.060  0
#> SRR191661     4  0.0547      0.861 0.000 0.000  0 0.980 0.020  0
#> SRR191662     2  0.1327      0.862 0.000 0.936  0 0.064 0.000  0
#> SRR191663     4  0.0547      0.861 0.000 0.000  0 0.980 0.020  0
#> SRR191664     4  0.1950      0.840 0.024 0.000  0 0.912 0.064  0
#> SRR191665     4  0.0632      0.860 0.000 0.000  0 0.976 0.024  0
#> SRR191666     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR191667     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR191668     4  0.3136      0.718 0.004 0.000  0 0.768 0.228  0
#> SRR191669     4  0.3136      0.718 0.004 0.000  0 0.768 0.228  0
#> SRR191670     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR191671     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR191672     5  0.1267      1.000 0.060 0.000  0 0.000 0.940  0
#> SRR191673     5  0.1267      1.000 0.060 0.000  0 0.000 0.940  0
#> SRR191674     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191675     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191677     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191678     4  0.1285      0.851 0.004 0.000  0 0.944 0.052  0
#> SRR191679     2  0.0520      0.906 0.000 0.984  0 0.008 0.008  0
#> SRR191680     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191681     4  0.3309      0.645 0.000 0.280  0 0.720 0.000  0
#> SRR191682     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR191683     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR191684     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191685     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191686     4  0.3330      0.640 0.000 0.284  0 0.716 0.000  0
#> SRR191687     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191688     4  0.3838      0.269 0.000 0.448  0 0.552 0.000  0
#> SRR191689     4  0.3288      0.650 0.000 0.276  0 0.724 0.000  0
#> SRR191690     4  0.1285      0.851 0.004 0.000  0 0.944 0.052  0
#> SRR191691     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191692     4  0.0363      0.864 0.000 0.012  0 0.988 0.000  0
#> SRR191693     4  0.3330      0.640 0.000 0.284  0 0.716 0.000  0
#> SRR191694     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191695     4  0.1075      0.851 0.000 0.048  0 0.952 0.000  0
#> SRR191696     4  0.1075      0.851 0.000 0.048  0 0.952 0.000  0
#> SRR191697     4  0.0260      0.865 0.000 0.008  0 0.992 0.000  0
#> SRR191698     4  0.0260      0.865 0.000 0.008  0 0.992 0.000  0
#> SRR191699     4  0.3309      0.645 0.000 0.280  0 0.720 0.000  0
#> SRR191700     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR191701     2  0.3782      0.212 0.000 0.588  0 0.412 0.000  0
#> SRR191702     2  0.0146      0.913 0.000 0.996  0 0.004 0.000  0
#> SRR191703     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191704     6  0.0000      0.000 0.000 0.000  0 0.000 0.000  1
#> SRR191705     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR191706     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191707     4  0.3838      0.269 0.000 0.448  0 0.552 0.000  0
#> SRR191708     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR191709     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191710     4  0.3838      0.269 0.000 0.448  0 0.552 0.000  0
#> SRR191711     2  0.2912      0.636 0.000 0.784  0 0.216 0.000  0
#> SRR191712     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR191713     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191714     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191715     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR191716     4  0.1285      0.851 0.004 0.000  0 0.944 0.052  0
#> SRR191717     4  0.3309      0.645 0.000 0.280  0 0.720 0.000  0
#> SRR191718     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR537099     4  0.0405      0.865 0.000 0.004  0 0.988 0.008  0
#> SRR537100     4  0.0405      0.865 0.000 0.004  0 0.988 0.008  0
#> SRR537101     1  0.0000      0.966 1.000 0.000  0 0.000 0.000  0
#> SRR537102     4  0.2178      0.806 0.000 0.132  0 0.868 0.000  0
#> SRR537104     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR537105     4  0.2178      0.806 0.000 0.132  0 0.868 0.000  0
#> SRR537106     2  0.0260      0.911 0.000 0.992  0 0.008 0.000  0
#> SRR537107     4  0.2300      0.798 0.000 0.144  0 0.856 0.000  0
#> SRR537108     4  0.2300      0.798 0.000 0.144  0 0.856 0.000  0
#> SRR537109     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR537110     2  0.0260      0.911 0.000 0.992  0 0.008 0.000  0
#> SRR537111     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR537113     2  0.2969      0.630 0.000 0.776  0 0.224 0.000  0
#> SRR537114     4  0.0146      0.865 0.000 0.004  0 0.996 0.000  0
#> SRR537115     4  0.0260      0.865 0.000 0.008  0 0.992 0.000  0
#> SRR537116     2  0.0000      0.915 0.000 1.000  0 0.000 0.000  0
#> SRR537117     4  0.4011      0.668 0.204 0.000  0 0.736 0.060  0
#> SRR537118     4  0.0405      0.865 0.000 0.004  0 0.988 0.008  0
#> SRR537119     4  0.4011      0.668 0.204 0.000  0 0.736 0.060  0
#> SRR537120     4  0.4011      0.668 0.204 0.000  0 0.736 0.060  0
#> SRR537121     4  0.0405      0.865 0.000 0.004  0 0.988 0.008  0
#> SRR537122     4  0.0405      0.865 0.000 0.004  0 0.988 0.008  0
#> SRR537123     4  0.4011      0.668 0.204 0.000  0 0.736 0.060  0
#> SRR537124     4  0.4011      0.668 0.204 0.000  0 0.736 0.060  0
#> SRR537125     4  0.0405      0.865 0.000 0.004  0 0.988 0.008  0
#> SRR537126     4  0.0405      0.865 0.000 0.004  0 0.988 0.008  0
#> SRR537127     3  0.0000      1.000 0.000 0.000  1 0.000 0.000  0
#> SRR537128     3  0.0000      1.000 0.000 0.000  1 0.000 0.000  0
#> SRR537129     3  0.0000      1.000 0.000 0.000  1 0.000 0.000  0
#> SRR537130     3  0.0000      1.000 0.000 0.000  1 0.000 0.000  0
#> SRR537131     3  0.0000      1.000 0.000 0.000  1 0.000 0.000  0
#> SRR537132     3  0.0000      1.000 0.000 0.000  1 0.000 0.000  0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.889           0.911       0.957         0.4053 0.558   0.558
#> 3 3 0.686           0.763       0.878         0.4285 0.637   0.444
#> 4 4 0.718           0.796       0.887         0.1418 0.878   0.709
#> 5 5 0.694           0.783       0.834         0.1085 0.780   0.445
#> 6 6 0.716           0.615       0.800         0.0701 0.972   0.888
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1   0.946      0.550 0.636 0.364
#> SRR191640     2   0.000      0.999 0.000 1.000
#> SRR191641     1   0.000      0.860 1.000 0.000
#> SRR191642     2   0.000      0.999 0.000 1.000
#> SRR191643     2   0.000      0.999 0.000 1.000
#> SRR191644     2   0.000      0.999 0.000 1.000
#> SRR191645     2   0.000      0.999 0.000 1.000
#> SRR191646     2   0.000      0.999 0.000 1.000
#> SRR191647     1   0.000      0.860 1.000 0.000
#> SRR191648     1   0.689      0.751 0.816 0.184
#> SRR191649     1   0.985      0.443 0.572 0.428
#> SRR191650     2   0.000      0.999 0.000 1.000
#> SRR191651     2   0.000      0.999 0.000 1.000
#> SRR191652     1   0.000      0.860 1.000 0.000
#> SRR191653     2   0.000      0.999 0.000 1.000
#> SRR191654     2   0.000      0.999 0.000 1.000
#> SRR191655     2   0.000      0.999 0.000 1.000
#> SRR191656     2   0.000      0.999 0.000 1.000
#> SRR191657     1   0.000      0.860 1.000 0.000
#> SRR191658     1   0.000      0.860 1.000 0.000
#> SRR191659     1   0.000      0.860 1.000 0.000
#> SRR191660     1   0.000      0.860 1.000 0.000
#> SRR191661     2   0.000      0.999 0.000 1.000
#> SRR191662     2   0.000      0.999 0.000 1.000
#> SRR191663     2   0.000      0.999 0.000 1.000
#> SRR191664     1   0.988      0.426 0.564 0.436
#> SRR191665     2   0.000      0.999 0.000 1.000
#> SRR191666     1   0.000      0.860 1.000 0.000
#> SRR191667     1   0.000      0.860 1.000 0.000
#> SRR191668     1   0.000      0.860 1.000 0.000
#> SRR191669     1   0.753      0.725 0.784 0.216
#> SRR191670     1   0.000      0.860 1.000 0.000
#> SRR191671     1   0.000      0.860 1.000 0.000
#> SRR191672     1   0.000      0.860 1.000 0.000
#> SRR191673     1   0.000      0.860 1.000 0.000
#> SRR191674     2   0.000      0.999 0.000 1.000
#> SRR191675     2   0.000      0.999 0.000 1.000
#> SRR191677     2   0.000      0.999 0.000 1.000
#> SRR191678     2   0.430      0.882 0.088 0.912
#> SRR191679     2   0.000      0.999 0.000 1.000
#> SRR191680     2   0.000      0.999 0.000 1.000
#> SRR191681     2   0.000      0.999 0.000 1.000
#> SRR191682     2   0.000      0.999 0.000 1.000
#> SRR191683     2   0.000      0.999 0.000 1.000
#> SRR191684     2   0.000      0.999 0.000 1.000
#> SRR191685     2   0.000      0.999 0.000 1.000
#> SRR191686     2   0.000      0.999 0.000 1.000
#> SRR191687     2   0.000      0.999 0.000 1.000
#> SRR191688     2   0.000      0.999 0.000 1.000
#> SRR191689     2   0.000      0.999 0.000 1.000
#> SRR191690     1   0.985      0.443 0.572 0.428
#> SRR191691     2   0.000      0.999 0.000 1.000
#> SRR191692     2   0.000      0.999 0.000 1.000
#> SRR191693     2   0.000      0.999 0.000 1.000
#> SRR191694     2   0.000      0.999 0.000 1.000
#> SRR191695     2   0.000      0.999 0.000 1.000
#> SRR191696     2   0.000      0.999 0.000 1.000
#> SRR191697     2   0.000      0.999 0.000 1.000
#> SRR191698     2   0.000      0.999 0.000 1.000
#> SRR191699     2   0.000      0.999 0.000 1.000
#> SRR191700     1   0.000      0.860 1.000 0.000
#> SRR191701     2   0.000      0.999 0.000 1.000
#> SRR191702     2   0.000      0.999 0.000 1.000
#> SRR191703     2   0.000      0.999 0.000 1.000
#> SRR191704     2   0.000      0.999 0.000 1.000
#> SRR191705     2   0.000      0.999 0.000 1.000
#> SRR191706     2   0.000      0.999 0.000 1.000
#> SRR191707     2   0.000      0.999 0.000 1.000
#> SRR191708     2   0.000      0.999 0.000 1.000
#> SRR191709     2   0.000      0.999 0.000 1.000
#> SRR191710     2   0.000      0.999 0.000 1.000
#> SRR191711     2   0.000      0.999 0.000 1.000
#> SRR191712     2   0.000      0.999 0.000 1.000
#> SRR191713     2   0.000      0.999 0.000 1.000
#> SRR191714     2   0.000      0.999 0.000 1.000
#> SRR191715     2   0.000      0.999 0.000 1.000
#> SRR191716     2   0.000      0.999 0.000 1.000
#> SRR191717     2   0.000      0.999 0.000 1.000
#> SRR191718     2   0.000      0.999 0.000 1.000
#> SRR537099     2   0.000      0.999 0.000 1.000
#> SRR537100     1   0.795      0.702 0.760 0.240
#> SRR537101     1   0.000      0.860 1.000 0.000
#> SRR537102     2   0.000      0.999 0.000 1.000
#> SRR537104     2   0.000      0.999 0.000 1.000
#> SRR537105     2   0.000      0.999 0.000 1.000
#> SRR537106     2   0.000      0.999 0.000 1.000
#> SRR537107     2   0.000      0.999 0.000 1.000
#> SRR537108     2   0.000      0.999 0.000 1.000
#> SRR537109     2   0.000      0.999 0.000 1.000
#> SRR537110     2   0.000      0.999 0.000 1.000
#> SRR537111     2   0.000      0.999 0.000 1.000
#> SRR537113     2   0.000      0.999 0.000 1.000
#> SRR537114     2   0.000      0.999 0.000 1.000
#> SRR537115     2   0.000      0.999 0.000 1.000
#> SRR537116     2   0.000      0.999 0.000 1.000
#> SRR537117     1   1.000      0.297 0.512 0.488
#> SRR537118     2   0.000      0.999 0.000 1.000
#> SRR537119     1   1.000      0.297 0.512 0.488
#> SRR537120     1   0.988      0.426 0.564 0.436
#> SRR537121     2   0.000      0.999 0.000 1.000
#> SRR537122     2   0.000      0.999 0.000 1.000
#> SRR537123     1   0.184      0.848 0.972 0.028
#> SRR537124     1   0.000      0.860 1.000 0.000
#> SRR537125     1   1.000      0.297 0.512 0.488
#> SRR537126     1   1.000      0.297 0.512 0.488
#> SRR537127     1   0.000      0.860 1.000 0.000
#> SRR537128     1   0.000      0.860 1.000 0.000
#> SRR537129     1   0.000      0.860 1.000 0.000
#> SRR537130     1   0.000      0.860 1.000 0.000
#> SRR537131     1   0.000      0.860 1.000 0.000
#> SRR537132     1   0.000      0.860 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0424     0.7015 0.992 0.008 0.000
#> SRR191640     1  0.2261     0.7272 0.932 0.068 0.000
#> SRR191641     1  0.5678    -0.0995 0.684 0.000 0.316
#> SRR191642     1  0.5733     0.6555 0.676 0.324 0.000
#> SRR191643     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191644     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191645     1  0.5810     0.6435 0.664 0.336 0.000
#> SRR191646     1  0.5733     0.6555 0.676 0.324 0.000
#> SRR191647     1  0.0237     0.6913 0.996 0.000 0.004
#> SRR191648     1  0.0237     0.6967 0.996 0.004 0.000
#> SRR191649     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR191650     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191651     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191652     3  0.6154     0.7740 0.408 0.000 0.592
#> SRR191653     1  0.6225     0.4755 0.568 0.432 0.000
#> SRR191654     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191655     1  0.6168     0.5191 0.588 0.412 0.000
#> SRR191656     1  0.4605     0.6948 0.796 0.204 0.000
#> SRR191657     1  0.6192    -0.4493 0.580 0.000 0.420
#> SRR191658     1  0.0592     0.6835 0.988 0.000 0.012
#> SRR191659     1  0.0237     0.6913 0.996 0.000 0.004
#> SRR191660     1  0.0592     0.6835 0.988 0.000 0.012
#> SRR191661     1  0.6192     0.5026 0.580 0.420 0.000
#> SRR191662     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191663     1  0.2261     0.7272 0.932 0.068 0.000
#> SRR191664     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR191665     1  0.5733     0.6555 0.676 0.324 0.000
#> SRR191666     3  0.5706     0.8089 0.320 0.000 0.680
#> SRR191667     3  0.5706     0.8089 0.320 0.000 0.680
#> SRR191668     1  0.0237     0.6913 0.996 0.000 0.004
#> SRR191669     1  0.0424     0.7015 0.992 0.008 0.000
#> SRR191670     3  0.6154     0.7740 0.408 0.000 0.592
#> SRR191671     3  0.6154     0.7740 0.408 0.000 0.592
#> SRR191672     3  0.6235     0.7428 0.436 0.000 0.564
#> SRR191673     3  0.6235     0.7428 0.436 0.000 0.564
#> SRR191674     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191675     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191677     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191678     1  0.1860     0.7227 0.948 0.052 0.000
#> SRR191679     2  0.0592     0.9528 0.000 0.988 0.012
#> SRR191680     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191681     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191682     1  0.2261     0.7272 0.932 0.068 0.000
#> SRR191683     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191684     2  0.0592     0.9528 0.000 0.988 0.012
#> SRR191685     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191686     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191687     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191688     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191689     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191690     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR191691     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191692     1  0.5835     0.6386 0.660 0.340 0.000
#> SRR191693     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191694     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191695     1  0.5835     0.6386 0.660 0.340 0.000
#> SRR191696     2  0.5785     0.3093 0.332 0.668 0.000
#> SRR191697     2  0.6286    -0.1987 0.464 0.536 0.000
#> SRR191698     1  0.5785     0.6477 0.668 0.332 0.000
#> SRR191699     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191700     3  0.6225     0.7482 0.432 0.000 0.568
#> SRR191701     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191702     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191703     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191704     2  0.8045    -0.1316 0.432 0.504 0.064
#> SRR191705     1  0.5810     0.6435 0.664 0.336 0.000
#> SRR191706     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191707     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191708     1  0.6126     0.5419 0.600 0.400 0.000
#> SRR191709     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191710     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191711     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191712     1  0.5905     0.6214 0.648 0.352 0.000
#> SRR191713     2  0.0592     0.9528 0.000 0.988 0.012
#> SRR191714     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191715     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191716     1  0.2261     0.7272 0.932 0.068 0.000
#> SRR191717     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR191718     1  0.5810     0.6435 0.664 0.336 0.000
#> SRR537099     1  0.6168     0.5191 0.588 0.412 0.000
#> SRR537100     1  0.0424     0.7015 0.992 0.008 0.000
#> SRR537101     3  0.5706     0.8089 0.320 0.000 0.680
#> SRR537102     1  0.6225     0.4755 0.568 0.432 0.000
#> SRR537104     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537105     1  0.5835     0.6386 0.660 0.340 0.000
#> SRR537106     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537107     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537108     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537109     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537110     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537111     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537113     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537114     1  0.2625     0.7248 0.916 0.084 0.000
#> SRR537115     1  0.6180     0.5111 0.584 0.416 0.000
#> SRR537116     2  0.0000     0.9643 0.000 1.000 0.000
#> SRR537117     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR537118     1  0.2261     0.7272 0.932 0.068 0.000
#> SRR537119     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR537120     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR537121     1  0.2261     0.7272 0.932 0.068 0.000
#> SRR537122     1  0.2261     0.7272 0.932 0.068 0.000
#> SRR537123     1  0.0237     0.6967 0.996 0.004 0.000
#> SRR537124     1  0.0237     0.6913 0.996 0.000 0.004
#> SRR537125     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR537126     1  0.0747     0.7093 0.984 0.016 0.000
#> SRR537127     3  0.2165     0.7841 0.064 0.000 0.936
#> SRR537128     3  0.2165     0.7841 0.064 0.000 0.936
#> SRR537129     3  0.2165     0.7841 0.064 0.000 0.936
#> SRR537130     3  0.2165     0.7841 0.064 0.000 0.936
#> SRR537131     3  0.2165     0.7841 0.064 0.000 0.936
#> SRR537132     3  0.2165     0.7841 0.064 0.000 0.936
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     4  0.4431      0.595 0.304 0.000 0.000 0.696
#> SRR191640     4  0.1389      0.837 0.048 0.000 0.000 0.952
#> SRR191641     1  0.1867      0.849 0.928 0.000 0.000 0.072
#> SRR191642     4  0.1545      0.845 0.008 0.040 0.000 0.952
#> SRR191643     2  0.4776      0.565 0.000 0.624 0.000 0.376
#> SRR191644     2  0.0707      0.867 0.000 0.980 0.000 0.020
#> SRR191645     4  0.1635      0.845 0.008 0.044 0.000 0.948
#> SRR191646     4  0.1545      0.845 0.008 0.040 0.000 0.952
#> SRR191647     4  0.4431      0.595 0.304 0.000 0.000 0.696
#> SRR191648     4  0.4431      0.595 0.304 0.000 0.000 0.696
#> SRR191649     4  0.4431      0.595 0.304 0.000 0.000 0.696
#> SRR191650     2  0.3024      0.802 0.000 0.852 0.000 0.148
#> SRR191651     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191652     1  0.1209      0.844 0.964 0.000 0.004 0.032
#> SRR191653     4  0.2198      0.828 0.008 0.072 0.000 0.920
#> SRR191654     2  0.4843      0.524 0.000 0.604 0.000 0.396
#> SRR191655     4  0.2198      0.828 0.008 0.072 0.000 0.920
#> SRR191656     4  0.1510      0.844 0.016 0.028 0.000 0.956
#> SRR191657     1  0.1637      0.850 0.940 0.000 0.000 0.060
#> SRR191658     1  0.2530      0.835 0.888 0.000 0.000 0.112
#> SRR191659     1  0.2530      0.835 0.888 0.000 0.000 0.112
#> SRR191660     1  0.2530      0.835 0.888 0.000 0.000 0.112
#> SRR191661     4  0.2198      0.828 0.008 0.072 0.000 0.920
#> SRR191662     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191663     4  0.1389      0.837 0.048 0.000 0.000 0.952
#> SRR191664     4  0.4431      0.595 0.304 0.000 0.000 0.696
#> SRR191665     4  0.1635      0.845 0.008 0.044 0.000 0.948
#> SRR191666     1  0.1305      0.812 0.960 0.000 0.036 0.004
#> SRR191667     1  0.1661      0.797 0.944 0.000 0.052 0.004
#> SRR191668     1  0.2589      0.833 0.884 0.000 0.000 0.116
#> SRR191669     1  0.4761      0.444 0.628 0.000 0.000 0.372
#> SRR191670     1  0.1209      0.844 0.964 0.000 0.004 0.032
#> SRR191671     1  0.1209      0.844 0.964 0.000 0.004 0.032
#> SRR191672     1  0.1211      0.849 0.960 0.000 0.000 0.040
#> SRR191673     1  0.1211      0.849 0.960 0.000 0.000 0.040
#> SRR191674     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191675     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191677     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191678     4  0.3024      0.761 0.148 0.000 0.000 0.852
#> SRR191679     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191680     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191681     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR191682     4  0.1211      0.837 0.040 0.000 0.000 0.960
#> SRR191683     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR191684     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191685     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191686     2  0.3975      0.746 0.000 0.760 0.000 0.240
#> SRR191687     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191688     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR191689     2  0.4855      0.516 0.000 0.600 0.000 0.400
#> SRR191690     4  0.4304      0.613 0.284 0.000 0.000 0.716
#> SRR191691     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191692     4  0.1302      0.845 0.000 0.044 0.000 0.956
#> SRR191693     2  0.2814      0.811 0.000 0.868 0.000 0.132
#> SRR191694     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191695     4  0.1302      0.845 0.000 0.044 0.000 0.956
#> SRR191696     4  0.3074      0.736 0.000 0.152 0.000 0.848
#> SRR191697     4  0.2281      0.805 0.000 0.096 0.000 0.904
#> SRR191698     4  0.1302      0.845 0.000 0.044 0.000 0.956
#> SRR191699     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR191700     1  0.1211      0.847 0.960 0.000 0.000 0.040
#> SRR191701     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191702     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191703     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191704     4  0.3712      0.749 0.028 0.024 0.080 0.868
#> SRR191705     4  0.1302      0.845 0.000 0.044 0.000 0.956
#> SRR191706     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191707     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR191708     4  0.1792      0.831 0.000 0.068 0.000 0.932
#> SRR191709     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191710     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR191711     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191712     4  0.1302      0.845 0.000 0.044 0.000 0.956
#> SRR191713     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191714     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191715     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR191716     4  0.1211      0.837 0.040 0.000 0.000 0.960
#> SRR191717     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR191718     4  0.1302      0.845 0.000 0.044 0.000 0.956
#> SRR537099     4  0.1867      0.828 0.000 0.072 0.000 0.928
#> SRR537100     4  0.4382      0.597 0.296 0.000 0.000 0.704
#> SRR537101     1  0.1661      0.797 0.944 0.000 0.052 0.004
#> SRR537102     4  0.2198      0.828 0.008 0.072 0.000 0.920
#> SRR537104     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR537105     4  0.1635      0.845 0.008 0.044 0.000 0.948
#> SRR537106     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR537107     2  0.4972      0.374 0.000 0.544 0.000 0.456
#> SRR537108     2  0.4103      0.735 0.000 0.744 0.000 0.256
#> SRR537109     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR537110     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR537111     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR537113     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR537114     4  0.1211      0.837 0.040 0.000 0.000 0.960
#> SRR537115     4  0.1867      0.828 0.000 0.072 0.000 0.928
#> SRR537116     2  0.0000      0.876 0.000 1.000 0.000 0.000
#> SRR537117     4  0.4382      0.597 0.296 0.000 0.000 0.704
#> SRR537118     4  0.1211      0.837 0.040 0.000 0.000 0.960
#> SRR537119     4  0.4382      0.597 0.296 0.000 0.000 0.704
#> SRR537120     4  0.4382      0.597 0.296 0.000 0.000 0.704
#> SRR537121     4  0.1211      0.837 0.040 0.000 0.000 0.960
#> SRR537122     4  0.1211      0.837 0.040 0.000 0.000 0.960
#> SRR537123     1  0.4898      0.322 0.584 0.000 0.000 0.416
#> SRR537124     1  0.4522      0.573 0.680 0.000 0.000 0.320
#> SRR537125     4  0.4382      0.597 0.296 0.000 0.000 0.704
#> SRR537126     4  0.4382      0.597 0.296 0.000 0.000 0.704
#> SRR537127     3  0.2011      1.000 0.080 0.000 0.920 0.000
#> SRR537128     3  0.2011      1.000 0.080 0.000 0.920 0.000
#> SRR537129     3  0.2011      1.000 0.080 0.000 0.920 0.000
#> SRR537130     3  0.2197      0.998 0.080 0.000 0.916 0.004
#> SRR537131     3  0.2011      1.000 0.080 0.000 0.920 0.000
#> SRR537132     3  0.2011      1.000 0.080 0.000 0.920 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     5  0.5013     0.8484 0.084 0.000 0.000 0.232 0.684
#> SRR191640     5  0.4446     0.5981 0.004 0.000 0.000 0.476 0.520
#> SRR191641     1  0.0771     0.9443 0.976 0.000 0.000 0.004 0.020
#> SRR191642     4  0.2230     0.6538 0.000 0.000 0.000 0.884 0.116
#> SRR191643     4  0.4767     0.6788 0.000 0.192 0.000 0.720 0.088
#> SRR191644     2  0.4736     0.0566 0.000 0.576 0.000 0.404 0.020
#> SRR191645     4  0.2230     0.6572 0.000 0.000 0.000 0.884 0.116
#> SRR191646     4  0.2230     0.6572 0.000 0.000 0.000 0.884 0.116
#> SRR191647     5  0.5112     0.8464 0.080 0.000 0.000 0.256 0.664
#> SRR191648     5  0.5112     0.8464 0.080 0.000 0.000 0.256 0.664
#> SRR191649     5  0.5181     0.8453 0.080 0.000 0.000 0.268 0.652
#> SRR191650     4  0.4798     0.3823 0.000 0.440 0.000 0.540 0.020
#> SRR191651     2  0.0693     0.9640 0.000 0.980 0.000 0.008 0.012
#> SRR191652     1  0.0609     0.9456 0.980 0.000 0.000 0.000 0.020
#> SRR191653     4  0.2563     0.6617 0.000 0.008 0.000 0.872 0.120
#> SRR191654     4  0.4832     0.6794 0.000 0.176 0.000 0.720 0.104
#> SRR191655     4  0.2230     0.6572 0.000 0.000 0.000 0.884 0.116
#> SRR191656     4  0.4348    -0.0397 0.016 0.000 0.000 0.668 0.316
#> SRR191657     1  0.0880     0.9427 0.968 0.000 0.000 0.000 0.032
#> SRR191658     1  0.1041     0.9420 0.964 0.000 0.000 0.004 0.032
#> SRR191659     1  0.1041     0.9420 0.964 0.000 0.000 0.004 0.032
#> SRR191660     1  0.1041     0.9420 0.964 0.000 0.000 0.004 0.032
#> SRR191661     4  0.2439     0.6606 0.000 0.004 0.000 0.876 0.120
#> SRR191662     2  0.1310     0.9450 0.000 0.956 0.000 0.024 0.020
#> SRR191663     5  0.4440     0.5990 0.004 0.000 0.000 0.468 0.528
#> SRR191664     5  0.5487     0.8248 0.100 0.000 0.000 0.280 0.620
#> SRR191665     4  0.2127     0.6651 0.000 0.000 0.000 0.892 0.108
#> SRR191666     1  0.0609     0.9456 0.980 0.000 0.000 0.000 0.020
#> SRR191667     1  0.0771     0.9448 0.976 0.000 0.004 0.000 0.020
#> SRR191668     1  0.4354     0.3448 0.624 0.000 0.000 0.008 0.368
#> SRR191669     5  0.5799     0.3317 0.416 0.000 0.000 0.092 0.492
#> SRR191670     1  0.0290     0.9377 0.992 0.000 0.000 0.000 0.008
#> SRR191671     1  0.0290     0.9377 0.992 0.000 0.000 0.000 0.008
#> SRR191672     1  0.1270     0.9162 0.948 0.000 0.000 0.000 0.052
#> SRR191673     1  0.1270     0.9162 0.948 0.000 0.000 0.000 0.052
#> SRR191674     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191675     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191677     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191678     5  0.5048     0.7994 0.040 0.000 0.000 0.380 0.580
#> SRR191679     2  0.0451     0.9619 0.000 0.988 0.004 0.000 0.008
#> SRR191680     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191681     4  0.4067     0.6159 0.000 0.300 0.000 0.692 0.008
#> SRR191682     5  0.4420     0.7342 0.004 0.000 0.000 0.448 0.548
#> SRR191683     4  0.4067     0.6159 0.000 0.300 0.000 0.692 0.008
#> SRR191684     2  0.0404     0.9636 0.000 0.988 0.000 0.000 0.012
#> SRR191685     2  0.0566     0.9653 0.000 0.984 0.000 0.004 0.012
#> SRR191686     4  0.4327     0.5474 0.000 0.360 0.000 0.632 0.008
#> SRR191687     2  0.0566     0.9653 0.000 0.984 0.000 0.004 0.012
#> SRR191688     4  0.4380     0.5394 0.000 0.376 0.000 0.616 0.008
#> SRR191689     4  0.3582     0.6731 0.000 0.224 0.000 0.768 0.008
#> SRR191690     5  0.5406     0.8097 0.068 0.000 0.000 0.360 0.572
#> SRR191691     2  0.0566     0.9653 0.000 0.984 0.000 0.004 0.012
#> SRR191692     4  0.0963     0.6752 0.000 0.000 0.000 0.964 0.036
#> SRR191693     4  0.4464     0.4516 0.000 0.408 0.000 0.584 0.008
#> SRR191694     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191695     4  0.0963     0.6752 0.000 0.000 0.000 0.964 0.036
#> SRR191696     4  0.1918     0.6910 0.000 0.036 0.000 0.928 0.036
#> SRR191697     4  0.1251     0.6830 0.000 0.008 0.000 0.956 0.036
#> SRR191698     4  0.0963     0.6752 0.000 0.000 0.000 0.964 0.036
#> SRR191699     4  0.4564     0.5342 0.000 0.372 0.000 0.612 0.016
#> SRR191700     1  0.0609     0.9456 0.980 0.000 0.000 0.000 0.020
#> SRR191701     2  0.1764     0.9064 0.000 0.928 0.000 0.064 0.008
#> SRR191702     2  0.0579     0.9646 0.000 0.984 0.000 0.008 0.008
#> SRR191703     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191704     4  0.3700     0.5954 0.000 0.008 0.000 0.752 0.240
#> SRR191705     4  0.0880     0.6768 0.000 0.000 0.000 0.968 0.032
#> SRR191706     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191707     4  0.4380     0.5388 0.000 0.376 0.000 0.616 0.008
#> SRR191708     4  0.0609     0.6827 0.000 0.000 0.000 0.980 0.020
#> SRR191709     2  0.0324     0.9668 0.000 0.992 0.000 0.004 0.004
#> SRR191710     4  0.4380     0.5394 0.000 0.376 0.000 0.616 0.008
#> SRR191711     2  0.0324     0.9669 0.000 0.992 0.000 0.004 0.004
#> SRR191712     4  0.0880     0.6768 0.000 0.000 0.000 0.968 0.032
#> SRR191713     2  0.0162     0.9654 0.000 0.996 0.000 0.000 0.004
#> SRR191714     2  0.0324     0.9669 0.000 0.992 0.000 0.004 0.004
#> SRR191715     2  0.0451     0.9664 0.000 0.988 0.000 0.004 0.008
#> SRR191716     5  0.4451     0.6734 0.004 0.000 0.000 0.492 0.504
#> SRR191717     4  0.4201     0.5904 0.000 0.328 0.000 0.664 0.008
#> SRR191718     4  0.0963     0.6752 0.000 0.000 0.000 0.964 0.036
#> SRR537099     4  0.2179     0.6576 0.000 0.000 0.000 0.888 0.112
#> SRR537100     5  0.5091     0.8508 0.084 0.000 0.000 0.244 0.672
#> SRR537101     1  0.0771     0.9448 0.976 0.000 0.004 0.000 0.020
#> SRR537102     4  0.2179     0.6576 0.000 0.000 0.000 0.888 0.112
#> SRR537104     2  0.0566     0.9653 0.000 0.984 0.000 0.004 0.012
#> SRR537105     4  0.2230     0.6572 0.000 0.000 0.000 0.884 0.116
#> SRR537106     2  0.0912     0.9590 0.000 0.972 0.000 0.012 0.016
#> SRR537107     4  0.4683     0.6822 0.000 0.176 0.000 0.732 0.092
#> SRR537108     4  0.4555     0.5668 0.000 0.344 0.000 0.636 0.020
#> SRR537109     2  0.0451     0.9659 0.000 0.988 0.000 0.004 0.008
#> SRR537110     2  0.0912     0.9590 0.000 0.972 0.000 0.012 0.016
#> SRR537111     2  0.0566     0.9653 0.000 0.984 0.000 0.004 0.012
#> SRR537113     2  0.0579     0.9657 0.000 0.984 0.000 0.008 0.008
#> SRR537114     4  0.2011     0.6108 0.004 0.000 0.000 0.908 0.088
#> SRR537115     4  0.0794     0.6793 0.000 0.000 0.000 0.972 0.028
#> SRR537116     2  0.0324     0.9668 0.000 0.992 0.000 0.004 0.004
#> SRR537117     5  0.5441     0.8106 0.080 0.000 0.000 0.324 0.596
#> SRR537118     5  0.4218     0.8017 0.008 0.000 0.000 0.332 0.660
#> SRR537119     5  0.5116     0.8507 0.084 0.000 0.000 0.248 0.668
#> SRR537120     5  0.5210     0.8480 0.084 0.000 0.000 0.264 0.652
#> SRR537121     5  0.4218     0.8017 0.008 0.000 0.000 0.332 0.660
#> SRR537122     5  0.4118     0.7901 0.004 0.000 0.000 0.336 0.660
#> SRR537123     5  0.5673     0.5752 0.292 0.000 0.000 0.112 0.596
#> SRR537124     5  0.5600     0.5127 0.316 0.000 0.000 0.096 0.588
#> SRR537125     5  0.5091     0.8508 0.084 0.000 0.000 0.244 0.672
#> SRR537126     5  0.5091     0.8508 0.084 0.000 0.000 0.244 0.672
#> SRR537127     3  0.0162     0.9982 0.004 0.000 0.996 0.000 0.000
#> SRR537128     3  0.0162     0.9982 0.004 0.000 0.996 0.000 0.000
#> SRR537129     3  0.0162     0.9982 0.004 0.000 0.996 0.000 0.000
#> SRR537130     3  0.0671     0.9911 0.004 0.000 0.980 0.000 0.016
#> SRR537131     3  0.0162     0.9982 0.004 0.000 0.996 0.000 0.000
#> SRR537132     3  0.0162     0.9982 0.004 0.000 0.996 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     5  0.1845     0.7339 0.000 0.000 0.000 0.028 0.920 0.052
#> SRR191640     5  0.5803    -0.1034 0.000 0.000 0.000 0.404 0.416 0.180
#> SRR191641     1  0.1296     0.9487 0.952 0.000 0.000 0.004 0.032 0.012
#> SRR191642     4  0.4474     0.3015 0.000 0.000 0.000 0.708 0.120 0.172
#> SRR191643     4  0.1794     0.4053 0.000 0.036 0.000 0.924 0.040 0.000
#> SRR191644     4  0.4277     0.1609 0.000 0.356 0.000 0.616 0.000 0.028
#> SRR191645     4  0.4253     0.3262 0.000 0.000 0.000 0.732 0.108 0.160
#> SRR191646     4  0.4328     0.3165 0.000 0.000 0.000 0.724 0.112 0.164
#> SRR191647     5  0.3033     0.7045 0.012 0.000 0.000 0.076 0.856 0.056
#> SRR191648     5  0.3033     0.7045 0.012 0.000 0.000 0.076 0.856 0.056
#> SRR191649     5  0.3670     0.6776 0.012 0.000 0.000 0.100 0.808 0.080
#> SRR191650     4  0.3745     0.2760 0.000 0.240 0.000 0.732 0.000 0.028
#> SRR191651     2  0.3377     0.7755 0.000 0.784 0.000 0.188 0.000 0.028
#> SRR191652     1  0.1116     0.9496 0.960 0.000 0.000 0.004 0.028 0.008
#> SRR191653     4  0.3159     0.3804 0.000 0.000 0.000 0.832 0.100 0.068
#> SRR191654     4  0.1938     0.4047 0.000 0.036 0.000 0.920 0.040 0.004
#> SRR191655     4  0.3832     0.3630 0.000 0.000 0.000 0.776 0.104 0.120
#> SRR191656     6  0.6366     0.3252 0.016 0.000 0.000 0.232 0.376 0.376
#> SRR191657     1  0.1552     0.9439 0.940 0.000 0.000 0.004 0.036 0.020
#> SRR191658     1  0.1793     0.9397 0.928 0.000 0.000 0.004 0.036 0.032
#> SRR191659     1  0.1938     0.9350 0.920 0.000 0.000 0.004 0.036 0.040
#> SRR191660     1  0.1793     0.9397 0.928 0.000 0.000 0.004 0.036 0.032
#> SRR191661     4  0.3745     0.3668 0.000 0.000 0.000 0.784 0.100 0.116
#> SRR191662     2  0.3929     0.6718 0.000 0.700 0.000 0.272 0.000 0.028
#> SRR191663     5  0.5871    -0.0945 0.000 0.000 0.000 0.396 0.408 0.196
#> SRR191664     5  0.5304     0.5018 0.032 0.000 0.000 0.216 0.652 0.100
#> SRR191665     4  0.4532     0.2958 0.000 0.000 0.000 0.696 0.108 0.196
#> SRR191666     1  0.1116     0.9496 0.960 0.000 0.000 0.004 0.028 0.008
#> SRR191667     1  0.1116     0.9496 0.960 0.000 0.000 0.004 0.028 0.008
#> SRR191668     5  0.5294     0.2251 0.356 0.000 0.000 0.000 0.532 0.112
#> SRR191669     5  0.4892     0.4737 0.248 0.000 0.000 0.000 0.640 0.112
#> SRR191670     1  0.1391     0.9319 0.944 0.000 0.000 0.000 0.016 0.040
#> SRR191671     1  0.1391     0.9319 0.944 0.000 0.000 0.000 0.016 0.040
#> SRR191672     1  0.3395     0.8313 0.808 0.000 0.000 0.000 0.060 0.132
#> SRR191673     1  0.3395     0.8313 0.808 0.000 0.000 0.000 0.060 0.132
#> SRR191674     2  0.1082     0.9268 0.000 0.956 0.000 0.004 0.000 0.040
#> SRR191675     2  0.1082     0.9268 0.000 0.956 0.000 0.004 0.000 0.040
#> SRR191677     2  0.0777     0.9301 0.000 0.972 0.000 0.004 0.000 0.024
#> SRR191678     5  0.3493     0.5994 0.000 0.000 0.000 0.056 0.796 0.148
#> SRR191679     2  0.2051     0.9090 0.008 0.916 0.000 0.040 0.000 0.036
#> SRR191680     2  0.1049     0.9268 0.000 0.960 0.000 0.008 0.000 0.032
#> SRR191681     4  0.5076     0.3191 0.000 0.132 0.000 0.620 0.000 0.248
#> SRR191682     5  0.4874     0.1818 0.000 0.000 0.000 0.084 0.608 0.308
#> SRR191683     4  0.5076     0.3191 0.000 0.132 0.000 0.620 0.000 0.248
#> SRR191684     2  0.0914     0.9270 0.000 0.968 0.000 0.016 0.000 0.016
#> SRR191685     2  0.0909     0.9262 0.000 0.968 0.000 0.012 0.000 0.020
#> SRR191686     4  0.5507     0.2905 0.000 0.208 0.000 0.564 0.000 0.228
#> SRR191687     2  0.0806     0.9276 0.000 0.972 0.000 0.008 0.000 0.020
#> SRR191688     4  0.4953     0.3649 0.000 0.172 0.000 0.652 0.000 0.176
#> SRR191689     4  0.4707     0.3306 0.000 0.096 0.000 0.660 0.000 0.244
#> SRR191690     5  0.3763     0.5905 0.000 0.000 0.000 0.060 0.768 0.172
#> SRR191691     2  0.0993     0.9249 0.000 0.964 0.000 0.012 0.000 0.024
#> SRR191692     4  0.5265     0.1668 0.000 0.000 0.000 0.500 0.100 0.400
#> SRR191693     4  0.5609     0.2654 0.000 0.236 0.000 0.544 0.000 0.220
#> SRR191694     2  0.1082     0.9268 0.000 0.956 0.000 0.004 0.000 0.040
#> SRR191695     4  0.5265     0.1668 0.000 0.000 0.000 0.500 0.100 0.400
#> SRR191696     4  0.5030     0.2048 0.000 0.000 0.000 0.588 0.096 0.316
#> SRR191697     4  0.5016     0.2107 0.000 0.000 0.000 0.592 0.096 0.312
#> SRR191698     4  0.5305     0.1572 0.000 0.000 0.000 0.492 0.104 0.404
#> SRR191699     4  0.4942     0.3583 0.000 0.192 0.000 0.652 0.000 0.156
#> SRR191700     1  0.1116     0.9496 0.960 0.000 0.000 0.004 0.028 0.008
#> SRR191701     2  0.4972     0.4810 0.000 0.628 0.000 0.256 0.000 0.116
#> SRR191702     2  0.1049     0.9268 0.000 0.960 0.000 0.008 0.000 0.032
#> SRR191703     2  0.0935     0.9287 0.000 0.964 0.000 0.004 0.000 0.032
#> SRR191704     6  0.3787     0.2044 0.000 0.008 0.000 0.260 0.012 0.720
#> SRR191705     4  0.5242     0.1572 0.000 0.000 0.000 0.492 0.096 0.412
#> SRR191706     2  0.1082     0.9268 0.000 0.956 0.000 0.004 0.000 0.040
#> SRR191707     4  0.4828     0.3683 0.000 0.176 0.000 0.668 0.000 0.156
#> SRR191708     4  0.5082     0.1841 0.000 0.000 0.000 0.512 0.080 0.408
#> SRR191709     2  0.0260     0.9310 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191710     4  0.5066     0.3492 0.000 0.188 0.000 0.636 0.000 0.176
#> SRR191711     2  0.0260     0.9313 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR191712     4  0.5242     0.1572 0.000 0.000 0.000 0.492 0.096 0.412
#> SRR191713     2  0.1003     0.9259 0.000 0.964 0.000 0.016 0.000 0.020
#> SRR191714     2  0.0713     0.9301 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR191715     2  0.0632     0.9304 0.000 0.976 0.000 0.000 0.000 0.024
#> SRR191716     5  0.5461    -0.0614 0.000 0.000 0.000 0.140 0.528 0.332
#> SRR191717     4  0.5224     0.3267 0.000 0.164 0.000 0.608 0.000 0.228
#> SRR191718     4  0.5274     0.1559 0.000 0.000 0.000 0.492 0.100 0.408
#> SRR537099     4  0.3961     0.3643 0.000 0.000 0.000 0.764 0.112 0.124
#> SRR537100     5  0.0363     0.7450 0.000 0.000 0.000 0.012 0.988 0.000
#> SRR537101     1  0.1116     0.9496 0.960 0.000 0.000 0.004 0.028 0.008
#> SRR537102     4  0.3566     0.3752 0.000 0.000 0.000 0.800 0.104 0.096
#> SRR537104     2  0.1151     0.9259 0.000 0.956 0.000 0.012 0.000 0.032
#> SRR537105     4  0.3873     0.3606 0.000 0.000 0.000 0.772 0.104 0.124
#> SRR537106     2  0.1564     0.9114 0.000 0.936 0.000 0.040 0.000 0.024
#> SRR537107     4  0.1780     0.4049 0.000 0.028 0.000 0.924 0.048 0.000
#> SRR537108     4  0.2101     0.3907 0.000 0.100 0.000 0.892 0.004 0.004
#> SRR537109     2  0.0972     0.9273 0.000 0.964 0.000 0.008 0.000 0.028
#> SRR537110     2  0.1564     0.9114 0.000 0.936 0.000 0.040 0.000 0.024
#> SRR537111     2  0.1151     0.9259 0.000 0.956 0.000 0.012 0.000 0.032
#> SRR537113     2  0.2907     0.8064 0.000 0.828 0.000 0.152 0.000 0.020
#> SRR537114     4  0.5537     0.0297 0.000 0.000 0.000 0.520 0.152 0.328
#> SRR537115     4  0.5144     0.2070 0.000 0.000 0.000 0.536 0.092 0.372
#> SRR537116     2  0.0146     0.9312 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR537117     5  0.1564     0.7200 0.000 0.000 0.000 0.024 0.936 0.040
#> SRR537118     5  0.0865     0.7406 0.000 0.000 0.000 0.036 0.964 0.000
#> SRR537119     5  0.0622     0.7446 0.000 0.000 0.000 0.012 0.980 0.008
#> SRR537120     5  0.1176     0.7339 0.000 0.000 0.000 0.024 0.956 0.020
#> SRR537121     5  0.0865     0.7406 0.000 0.000 0.000 0.036 0.964 0.000
#> SRR537122     5  0.1075     0.7364 0.000 0.000 0.000 0.048 0.952 0.000
#> SRR537123     5  0.1528     0.7126 0.048 0.000 0.000 0.000 0.936 0.016
#> SRR537124     5  0.1780     0.7102 0.048 0.000 0.000 0.000 0.924 0.028
#> SRR537125     5  0.0458     0.7454 0.000 0.000 0.000 0.016 0.984 0.000
#> SRR537126     5  0.0458     0.7454 0.000 0.000 0.000 0.016 0.984 0.000
#> SRR537127     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537128     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537129     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537130     3  0.0291     0.9951 0.000 0.000 0.992 0.004 0.000 0.004
#> SRR537131     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR537132     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.986       0.995         0.4884 0.510   0.510
#> 3 3 0.905           0.897       0.948         0.2594 0.846   0.707
#> 4 4 0.764           0.766       0.881         0.1155 0.934   0.830
#> 5 5 0.784           0.836       0.907         0.0766 0.906   0.720
#> 6 6 0.804           0.753       0.873         0.0398 0.991   0.963
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1   0.000      0.987 1.000 0.000
#> SRR191640     1   0.000      0.987 1.000 0.000
#> SRR191641     1   0.000      0.987 1.000 0.000
#> SRR191642     2   0.000      1.000 0.000 1.000
#> SRR191643     2   0.000      1.000 0.000 1.000
#> SRR191644     2   0.000      1.000 0.000 1.000
#> SRR191645     2   0.000      1.000 0.000 1.000
#> SRR191646     2   0.000      1.000 0.000 1.000
#> SRR191647     1   0.000      0.987 1.000 0.000
#> SRR191648     1   0.000      0.987 1.000 0.000
#> SRR191649     1   0.000      0.987 1.000 0.000
#> SRR191650     2   0.000      1.000 0.000 1.000
#> SRR191651     2   0.000      1.000 0.000 1.000
#> SRR191652     1   0.000      0.987 1.000 0.000
#> SRR191653     2   0.000      1.000 0.000 1.000
#> SRR191654     2   0.000      1.000 0.000 1.000
#> SRR191655     2   0.000      1.000 0.000 1.000
#> SRR191656     1   0.994      0.164 0.544 0.456
#> SRR191657     1   0.000      0.987 1.000 0.000
#> SRR191658     1   0.000      0.987 1.000 0.000
#> SRR191659     1   0.000      0.987 1.000 0.000
#> SRR191660     1   0.000      0.987 1.000 0.000
#> SRR191661     2   0.000      1.000 0.000 1.000
#> SRR191662     2   0.000      1.000 0.000 1.000
#> SRR191663     1   0.000      0.987 1.000 0.000
#> SRR191664     1   0.000      0.987 1.000 0.000
#> SRR191665     2   0.000      1.000 0.000 1.000
#> SRR191666     1   0.000      0.987 1.000 0.000
#> SRR191667     1   0.000      0.987 1.000 0.000
#> SRR191668     1   0.000      0.987 1.000 0.000
#> SRR191669     1   0.000      0.987 1.000 0.000
#> SRR191670     1   0.000      0.987 1.000 0.000
#> SRR191671     1   0.000      0.987 1.000 0.000
#> SRR191672     1   0.000      0.987 1.000 0.000
#> SRR191673     1   0.000      0.987 1.000 0.000
#> SRR191674     2   0.000      1.000 0.000 1.000
#> SRR191675     2   0.000      1.000 0.000 1.000
#> SRR191677     2   0.000      1.000 0.000 1.000
#> SRR191678     1   0.000      0.987 1.000 0.000
#> SRR191679     2   0.000      1.000 0.000 1.000
#> SRR191680     2   0.000      1.000 0.000 1.000
#> SRR191681     2   0.000      1.000 0.000 1.000
#> SRR191682     1   0.000      0.987 1.000 0.000
#> SRR191683     2   0.000      1.000 0.000 1.000
#> SRR191684     2   0.000      1.000 0.000 1.000
#> SRR191685     2   0.000      1.000 0.000 1.000
#> SRR191686     2   0.000      1.000 0.000 1.000
#> SRR191687     2   0.000      1.000 0.000 1.000
#> SRR191688     2   0.000      1.000 0.000 1.000
#> SRR191689     2   0.000      1.000 0.000 1.000
#> SRR191690     1   0.000      0.987 1.000 0.000
#> SRR191691     2   0.000      1.000 0.000 1.000
#> SRR191692     2   0.000      1.000 0.000 1.000
#> SRR191693     2   0.000      1.000 0.000 1.000
#> SRR191694     2   0.000      1.000 0.000 1.000
#> SRR191695     2   0.000      1.000 0.000 1.000
#> SRR191696     2   0.000      1.000 0.000 1.000
#> SRR191697     2   0.000      1.000 0.000 1.000
#> SRR191698     2   0.000      1.000 0.000 1.000
#> SRR191699     2   0.000      1.000 0.000 1.000
#> SRR191700     1   0.000      0.987 1.000 0.000
#> SRR191701     2   0.000      1.000 0.000 1.000
#> SRR191702     2   0.000      1.000 0.000 1.000
#> SRR191703     2   0.000      1.000 0.000 1.000
#> SRR191704     2   0.000      1.000 0.000 1.000
#> SRR191705     2   0.000      1.000 0.000 1.000
#> SRR191706     2   0.000      1.000 0.000 1.000
#> SRR191707     2   0.000      1.000 0.000 1.000
#> SRR191708     2   0.000      1.000 0.000 1.000
#> SRR191709     2   0.000      1.000 0.000 1.000
#> SRR191710     2   0.000      1.000 0.000 1.000
#> SRR191711     2   0.000      1.000 0.000 1.000
#> SRR191712     2   0.000      1.000 0.000 1.000
#> SRR191713     2   0.000      1.000 0.000 1.000
#> SRR191714     2   0.000      1.000 0.000 1.000
#> SRR191715     2   0.000      1.000 0.000 1.000
#> SRR191716     1   0.000      0.987 1.000 0.000
#> SRR191717     2   0.000      1.000 0.000 1.000
#> SRR191718     2   0.000      1.000 0.000 1.000
#> SRR537099     2   0.000      1.000 0.000 1.000
#> SRR537100     1   0.000      0.987 1.000 0.000
#> SRR537101     1   0.000      0.987 1.000 0.000
#> SRR537102     2   0.000      1.000 0.000 1.000
#> SRR537104     2   0.000      1.000 0.000 1.000
#> SRR537105     2   0.000      1.000 0.000 1.000
#> SRR537106     2   0.000      1.000 0.000 1.000
#> SRR537107     2   0.000      1.000 0.000 1.000
#> SRR537108     2   0.000      1.000 0.000 1.000
#> SRR537109     2   0.000      1.000 0.000 1.000
#> SRR537110     2   0.000      1.000 0.000 1.000
#> SRR537111     2   0.000      1.000 0.000 1.000
#> SRR537113     2   0.000      1.000 0.000 1.000
#> SRR537114     1   0.563      0.842 0.868 0.132
#> SRR537115     2   0.000      1.000 0.000 1.000
#> SRR537116     2   0.000      1.000 0.000 1.000
#> SRR537117     1   0.000      0.987 1.000 0.000
#> SRR537118     1   0.000      0.987 1.000 0.000
#> SRR537119     1   0.000      0.987 1.000 0.000
#> SRR537120     1   0.000      0.987 1.000 0.000
#> SRR537121     1   0.000      0.987 1.000 0.000
#> SRR537122     1   0.000      0.987 1.000 0.000
#> SRR537123     1   0.000      0.987 1.000 0.000
#> SRR537124     1   0.000      0.987 1.000 0.000
#> SRR537125     1   0.000      0.987 1.000 0.000
#> SRR537126     1   0.000      0.987 1.000 0.000
#> SRR537127     1   0.000      0.987 1.000 0.000
#> SRR537128     1   0.000      0.987 1.000 0.000
#> SRR537129     1   0.000      0.987 1.000 0.000
#> SRR537130     1   0.000      0.987 1.000 0.000
#> SRR537131     1   0.000      0.987 1.000 0.000
#> SRR537132     1   0.000      0.987 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191640     3  0.2165      0.832 0.064 0.000 0.936
#> SRR191641     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191642     3  0.2066      0.878 0.000 0.060 0.940
#> SRR191643     3  0.5621      0.660 0.000 0.308 0.692
#> SRR191644     2  0.5397      0.570 0.000 0.720 0.280
#> SRR191645     3  0.2165      0.880 0.000 0.064 0.936
#> SRR191646     3  0.2165      0.880 0.000 0.064 0.936
#> SRR191647     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191648     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191649     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191650     2  0.5431      0.562 0.000 0.716 0.284
#> SRR191651     2  0.4399      0.725 0.000 0.812 0.188
#> SRR191652     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191653     3  0.2165      0.880 0.000 0.064 0.936
#> SRR191654     3  0.4796      0.773 0.000 0.220 0.780
#> SRR191655     3  0.2165      0.880 0.000 0.064 0.936
#> SRR191656     2  0.6490      0.520 0.256 0.708 0.036
#> SRR191657     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191658     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191659     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191660     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191661     3  0.2165      0.880 0.000 0.064 0.936
#> SRR191662     2  0.6235      0.115 0.000 0.564 0.436
#> SRR191663     3  0.2165      0.832 0.064 0.000 0.936
#> SRR191664     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191665     3  0.5244      0.735 0.004 0.240 0.756
#> SRR191666     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191667     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191668     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191669     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191670     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191671     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191672     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191673     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191674     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191675     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191677     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191678     1  0.0892      0.978 0.980 0.000 0.020
#> SRR191679     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191680     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191681     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191682     1  0.2165      0.955 0.936 0.000 0.064
#> SRR191683     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191684     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191685     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191686     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191687     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191688     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191689     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191690     1  0.0592      0.980 0.988 0.000 0.012
#> SRR191691     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191692     2  0.0592      0.927 0.000 0.988 0.012
#> SRR191693     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191694     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191695     2  0.0592      0.927 0.000 0.988 0.012
#> SRR191696     2  0.0592      0.927 0.000 0.988 0.012
#> SRR191697     2  0.0592      0.927 0.000 0.988 0.012
#> SRR191698     2  0.2066      0.879 0.000 0.940 0.060
#> SRR191699     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191700     1  0.0000      0.987 1.000 0.000 0.000
#> SRR191701     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191702     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191703     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191704     2  0.0592      0.927 0.000 0.988 0.012
#> SRR191705     2  0.0592      0.927 0.000 0.988 0.012
#> SRR191706     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191707     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191708     2  0.0592      0.927 0.000 0.988 0.012
#> SRR191709     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191710     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191711     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191712     2  0.0747      0.925 0.000 0.984 0.016
#> SRR191713     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191714     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191715     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191716     1  0.0747      0.978 0.984 0.000 0.016
#> SRR191717     2  0.0000      0.934 0.000 1.000 0.000
#> SRR191718     2  0.0747      0.925 0.000 0.984 0.016
#> SRR537099     2  0.6111      0.284 0.000 0.604 0.396
#> SRR537100     1  0.0000      0.987 1.000 0.000 0.000
#> SRR537101     1  0.0000      0.987 1.000 0.000 0.000
#> SRR537102     3  0.2165      0.880 0.000 0.064 0.936
#> SRR537104     2  0.4399      0.725 0.000 0.812 0.188
#> SRR537105     3  0.2165      0.880 0.000 0.064 0.936
#> SRR537106     2  0.5431      0.562 0.000 0.716 0.284
#> SRR537107     3  0.5621      0.659 0.000 0.308 0.692
#> SRR537108     3  0.5785      0.613 0.000 0.332 0.668
#> SRR537109     2  0.0000      0.934 0.000 1.000 0.000
#> SRR537110     2  0.5397      0.570 0.000 0.720 0.280
#> SRR537111     2  0.0000      0.934 0.000 1.000 0.000
#> SRR537113     2  0.0000      0.934 0.000 1.000 0.000
#> SRR537114     3  0.7298      0.615 0.220 0.088 0.692
#> SRR537115     2  0.0000      0.934 0.000 1.000 0.000
#> SRR537116     2  0.0000      0.934 0.000 1.000 0.000
#> SRR537117     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537118     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537119     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537120     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537121     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537122     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537123     1  0.1753      0.965 0.952 0.000 0.048
#> SRR537124     1  0.0747      0.981 0.984 0.000 0.016
#> SRR537125     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537126     1  0.1860      0.963 0.948 0.000 0.052
#> SRR537127     1  0.0000      0.987 1.000 0.000 0.000
#> SRR537128     1  0.0000      0.987 1.000 0.000 0.000
#> SRR537129     1  0.0000      0.987 1.000 0.000 0.000
#> SRR537130     1  0.0000      0.987 1.000 0.000 0.000
#> SRR537131     1  0.0000      0.987 1.000 0.000 0.000
#> SRR537132     1  0.0000      0.987 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191640     4  0.1940     0.7537 0.076 0.000 0.000 0.924
#> SRR191641     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR191642     4  0.0188     0.7970 0.000 0.000 0.004 0.996
#> SRR191643     4  0.4382     0.6154 0.000 0.296 0.000 0.704
#> SRR191644     2  0.3074     0.7439 0.000 0.848 0.000 0.152
#> SRR191645     4  0.0188     0.8008 0.000 0.004 0.000 0.996
#> SRR191646     4  0.0188     0.8008 0.000 0.004 0.000 0.996
#> SRR191647     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR191648     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR191649     1  0.0188     0.9224 0.996 0.000 0.000 0.004
#> SRR191650     2  0.3123     0.7390 0.000 0.844 0.000 0.156
#> SRR191651     2  0.1940     0.8189 0.000 0.924 0.000 0.076
#> SRR191652     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR191653     4  0.0707     0.8092 0.000 0.020 0.000 0.980
#> SRR191654     4  0.3311     0.7322 0.000 0.172 0.000 0.828
#> SRR191655     4  0.0707     0.8092 0.000 0.020 0.000 0.980
#> SRR191656     2  0.6454     0.3520 0.316 0.600 0.080 0.004
#> SRR191657     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191658     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191659     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191660     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191661     4  0.0707     0.8092 0.000 0.020 0.000 0.980
#> SRR191662     2  0.4605     0.4425 0.000 0.664 0.000 0.336
#> SRR191663     4  0.2081     0.7463 0.084 0.000 0.000 0.916
#> SRR191664     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191665     4  0.5085     0.4091 0.000 0.376 0.008 0.616
#> SRR191666     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR191667     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR191668     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191669     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191670     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191671     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191672     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191673     1  0.0524     0.9211 0.988 0.000 0.008 0.004
#> SRR191674     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191675     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191677     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191678     3  0.4955     0.3643 0.344 0.000 0.648 0.008
#> SRR191679     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191680     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191681     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191682     3  0.0336     0.4136 0.008 0.000 0.992 0.000
#> SRR191683     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191684     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191685     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191686     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191687     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191688     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191689     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191690     1  0.4792     0.3488 0.680 0.000 0.312 0.008
#> SRR191691     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191692     2  0.5217     0.5300 0.000 0.608 0.380 0.012
#> SRR191693     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191694     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191695     2  0.5313     0.5304 0.000 0.608 0.376 0.016
#> SRR191696     2  0.5055     0.5479 0.000 0.624 0.368 0.008
#> SRR191697     2  0.4889     0.5607 0.000 0.636 0.360 0.004
#> SRR191698     3  0.2888     0.2924 0.000 0.124 0.872 0.004
#> SRR191699     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191700     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR191701     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191702     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191703     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191704     2  0.5510     0.5199 0.000 0.600 0.376 0.024
#> SRR191705     2  0.5523     0.5149 0.000 0.596 0.380 0.024
#> SRR191706     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191707     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191708     2  0.5510     0.5204 0.000 0.600 0.376 0.024
#> SRR191709     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191710     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191711     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191712     2  0.5326     0.5252 0.000 0.604 0.380 0.016
#> SRR191713     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191714     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191715     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191716     1  0.5510    -0.0111 0.504 0.000 0.480 0.016
#> SRR191717     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR191718     2  0.5493     0.4219 0.000 0.528 0.456 0.016
#> SRR537099     2  0.5599     0.4891 0.000 0.672 0.052 0.276
#> SRR537100     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR537101     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR537102     4  0.0817     0.8084 0.000 0.024 0.000 0.976
#> SRR537104     2  0.1940     0.8189 0.000 0.924 0.000 0.076
#> SRR537105     4  0.0707     0.8092 0.000 0.020 0.000 0.980
#> SRR537106     2  0.3266     0.7278 0.000 0.832 0.000 0.168
#> SRR537107     4  0.4304     0.6304 0.000 0.284 0.000 0.716
#> SRR537108     4  0.4564     0.5484 0.000 0.328 0.000 0.672
#> SRR537109     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR537110     2  0.3024     0.7507 0.000 0.852 0.000 0.148
#> SRR537111     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR537113     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR537114     4  0.5971     0.3021 0.040 0.000 0.428 0.532
#> SRR537115     2  0.2521     0.8252 0.000 0.912 0.064 0.024
#> SRR537116     2  0.0000     0.8756 0.000 1.000 0.000 0.000
#> SRR537117     3  0.4843     0.7746 0.396 0.000 0.604 0.000
#> SRR537118     3  0.4817     0.7846 0.388 0.000 0.612 0.000
#> SRR537119     3  0.4817     0.7846 0.388 0.000 0.612 0.000
#> SRR537120     3  0.4817     0.7846 0.388 0.000 0.612 0.000
#> SRR537121     3  0.4817     0.7846 0.388 0.000 0.612 0.000
#> SRR537122     3  0.4978     0.7821 0.384 0.000 0.612 0.004
#> SRR537123     3  0.4989     0.6356 0.472 0.000 0.528 0.000
#> SRR537124     1  0.4994    -0.5640 0.520 0.000 0.480 0.000
#> SRR537125     3  0.4817     0.7846 0.388 0.000 0.612 0.000
#> SRR537126     3  0.4817     0.7846 0.388 0.000 0.612 0.000
#> SRR537127     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR537128     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR537129     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR537130     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR537131     1  0.0000     0.9230 1.000 0.000 0.000 0.000
#> SRR537132     1  0.0000     0.9230 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     1  0.0833      0.908 0.976 0.000 0.016 0.004 0.004
#> SRR191640     4  0.3145      0.706 0.060 0.000 0.064 0.868 0.008
#> SRR191641     1  0.2074      0.932 0.896 0.000 0.000 0.000 0.104
#> SRR191642     4  0.1662      0.745 0.000 0.004 0.056 0.936 0.004
#> SRR191643     4  0.4192      0.400 0.000 0.404 0.000 0.596 0.000
#> SRR191644     2  0.2286      0.848 0.000 0.888 0.004 0.108 0.000
#> SRR191645     4  0.1788      0.747 0.000 0.008 0.056 0.932 0.004
#> SRR191646     4  0.1822      0.744 0.004 0.004 0.056 0.932 0.004
#> SRR191647     1  0.2616      0.926 0.880 0.000 0.020 0.000 0.100
#> SRR191648     1  0.2616      0.926 0.880 0.000 0.020 0.000 0.100
#> SRR191649     1  0.3030      0.912 0.868 0.000 0.040 0.004 0.088
#> SRR191650     2  0.2389      0.839 0.000 0.880 0.004 0.116 0.000
#> SRR191651     2  0.1124      0.917 0.000 0.960 0.004 0.036 0.000
#> SRR191652     1  0.2074      0.932 0.896 0.000 0.000 0.000 0.104
#> SRR191653     4  0.0404      0.759 0.000 0.012 0.000 0.988 0.000
#> SRR191654     4  0.3109      0.640 0.000 0.200 0.000 0.800 0.000
#> SRR191655     4  0.0290      0.759 0.000 0.008 0.000 0.992 0.000
#> SRR191656     2  0.7216      0.080 0.376 0.456 0.056 0.008 0.104
#> SRR191657     1  0.0727      0.911 0.980 0.000 0.012 0.004 0.004
#> SRR191658     1  0.0932      0.906 0.972 0.000 0.020 0.004 0.004
#> SRR191659     1  0.0833      0.909 0.976 0.000 0.016 0.004 0.004
#> SRR191660     1  0.0613      0.912 0.984 0.000 0.008 0.004 0.004
#> SRR191661     4  0.0451      0.759 0.000 0.008 0.004 0.988 0.000
#> SRR191662     2  0.4029      0.486 0.000 0.680 0.004 0.316 0.000
#> SRR191663     4  0.3145      0.706 0.060 0.000 0.064 0.868 0.008
#> SRR191664     1  0.1369      0.901 0.956 0.000 0.028 0.008 0.008
#> SRR191665     4  0.7791      0.293 0.112 0.384 0.104 0.392 0.008
#> SRR191666     1  0.2074      0.932 0.896 0.000 0.000 0.000 0.104
#> SRR191667     1  0.2074      0.932 0.896 0.000 0.000 0.000 0.104
#> SRR191668     1  0.1686      0.902 0.944 0.000 0.028 0.008 0.020
#> SRR191669     1  0.1686      0.902 0.944 0.000 0.028 0.008 0.020
#> SRR191670     1  0.0833      0.917 0.976 0.000 0.004 0.004 0.016
#> SRR191671     1  0.0833      0.917 0.976 0.000 0.004 0.004 0.016
#> SRR191672     1  0.1869      0.904 0.936 0.000 0.028 0.008 0.028
#> SRR191673     1  0.1869      0.904 0.936 0.000 0.028 0.008 0.028
#> SRR191674     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191675     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191677     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191678     3  0.5422      0.512 0.212 0.000 0.656 0.000 0.132
#> SRR191679     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191680     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191681     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191682     5  0.3990      0.510 0.004 0.000 0.308 0.000 0.688
#> SRR191683     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191684     2  0.0162      0.945 0.000 0.996 0.004 0.000 0.000
#> SRR191685     2  0.0162      0.945 0.000 0.996 0.004 0.000 0.000
#> SRR191686     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191687     2  0.0162      0.945 0.000 0.996 0.004 0.000 0.000
#> SRR191688     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191689     2  0.0510      0.934 0.000 0.984 0.016 0.000 0.000
#> SRR191690     3  0.4256      0.245 0.436 0.000 0.564 0.000 0.000
#> SRR191691     2  0.0162      0.945 0.000 0.996 0.004 0.000 0.000
#> SRR191692     3  0.2127      0.803 0.000 0.108 0.892 0.000 0.000
#> SRR191693     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191694     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191695     3  0.2074      0.802 0.000 0.104 0.896 0.000 0.000
#> SRR191696     3  0.2813      0.780 0.000 0.168 0.832 0.000 0.000
#> SRR191697     3  0.3707      0.647 0.000 0.284 0.716 0.000 0.000
#> SRR191698     3  0.3810      0.676 0.000 0.040 0.792 0.000 0.168
#> SRR191699     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191700     1  0.2280      0.927 0.880 0.000 0.000 0.000 0.120
#> SRR191701     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191702     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191703     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191704     3  0.3353      0.759 0.000 0.196 0.796 0.008 0.000
#> SRR191705     3  0.2179      0.803 0.000 0.112 0.888 0.000 0.000
#> SRR191706     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191707     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191708     3  0.3177      0.749 0.000 0.208 0.792 0.000 0.000
#> SRR191709     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191710     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191711     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191712     3  0.2230      0.803 0.000 0.116 0.884 0.000 0.000
#> SRR191713     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191714     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191715     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191716     3  0.1792      0.708 0.084 0.000 0.916 0.000 0.000
#> SRR191717     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR191718     3  0.2020      0.800 0.000 0.100 0.900 0.000 0.000
#> SRR537099     2  0.5038      0.549 0.000 0.692 0.016 0.244 0.048
#> SRR537100     1  0.2329      0.925 0.876 0.000 0.000 0.000 0.124
#> SRR537101     1  0.2074      0.932 0.896 0.000 0.000 0.000 0.104
#> SRR537102     4  0.0510      0.759 0.000 0.016 0.000 0.984 0.000
#> SRR537104     2  0.1205      0.914 0.000 0.956 0.004 0.040 0.000
#> SRR537105     4  0.0290      0.759 0.000 0.008 0.000 0.992 0.000
#> SRR537106     2  0.2536      0.825 0.000 0.868 0.004 0.128 0.000
#> SRR537107     4  0.4030      0.508 0.000 0.352 0.000 0.648 0.000
#> SRR537108     4  0.4201      0.389 0.000 0.408 0.000 0.592 0.000
#> SRR537109     2  0.0324      0.942 0.000 0.992 0.004 0.004 0.000
#> SRR537110     2  0.2011      0.870 0.000 0.908 0.004 0.088 0.000
#> SRR537111     2  0.0671      0.934 0.000 0.980 0.004 0.016 0.000
#> SRR537113     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR537114     3  0.4553      0.433 0.016 0.000 0.652 0.328 0.004
#> SRR537115     2  0.2929      0.736 0.000 0.820 0.180 0.000 0.000
#> SRR537116     2  0.0000      0.946 0.000 1.000 0.000 0.000 0.000
#> SRR537117     5  0.0880      0.918 0.032 0.000 0.000 0.000 0.968
#> SRR537118     5  0.0404      0.928 0.012 0.000 0.000 0.000 0.988
#> SRR537119     5  0.0510      0.928 0.016 0.000 0.000 0.000 0.984
#> SRR537120     5  0.0609      0.927 0.020 0.000 0.000 0.000 0.980
#> SRR537121     5  0.0290      0.925 0.008 0.000 0.000 0.000 0.992
#> SRR537122     5  0.0404      0.928 0.012 0.000 0.000 0.000 0.988
#> SRR537123     5  0.1608      0.881 0.072 0.000 0.000 0.000 0.928
#> SRR537124     5  0.2929      0.749 0.180 0.000 0.000 0.000 0.820
#> SRR537125     5  0.0404      0.928 0.012 0.000 0.000 0.000 0.988
#> SRR537126     5  0.0404      0.928 0.012 0.000 0.000 0.000 0.988
#> SRR537127     1  0.2230      0.929 0.884 0.000 0.000 0.000 0.116
#> SRR537128     1  0.2230      0.929 0.884 0.000 0.000 0.000 0.116
#> SRR537129     1  0.2230      0.929 0.884 0.000 0.000 0.000 0.116
#> SRR537130     1  0.2230      0.929 0.884 0.000 0.000 0.000 0.116
#> SRR537131     1  0.2230      0.929 0.884 0.000 0.000 0.000 0.116
#> SRR537132     1  0.2230      0.929 0.884 0.000 0.000 0.000 0.116
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.2416      0.819 0.844 0.000 0.156 0.000 0.000 0.000
#> SRR191640     4  0.4687      0.486 0.044 0.012 0.276 0.664 0.004 0.000
#> SRR191641     1  0.0458      0.867 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR191642     4  0.2553      0.630 0.000 0.008 0.144 0.848 0.000 0.000
#> SRR191643     4  0.4084      0.195 0.000 0.000 0.012 0.588 0.000 0.400
#> SRR191644     6  0.2848      0.756 0.000 0.004 0.008 0.160 0.000 0.828
#> SRR191645     4  0.3357      0.591 0.000 0.008 0.224 0.764 0.004 0.000
#> SRR191646     4  0.3357      0.591 0.000 0.008 0.224 0.764 0.004 0.000
#> SRR191647     1  0.1956      0.837 0.908 0.004 0.080 0.000 0.008 0.000
#> SRR191648     1  0.1956      0.837 0.908 0.004 0.080 0.000 0.008 0.000
#> SRR191649     1  0.3538      0.691 0.764 0.012 0.216 0.004 0.004 0.000
#> SRR191650     6  0.2920      0.745 0.000 0.004 0.008 0.168 0.000 0.820
#> SRR191651     6  0.1477      0.876 0.000 0.004 0.008 0.048 0.000 0.940
#> SRR191652     1  0.0547      0.868 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR191653     4  0.0260      0.667 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR191654     4  0.2623      0.548 0.000 0.000 0.016 0.852 0.000 0.132
#> SRR191655     4  0.0458      0.668 0.000 0.000 0.016 0.984 0.000 0.000
#> SRR191656     3  0.6193      0.565 0.128 0.020 0.596 0.000 0.040 0.216
#> SRR191657     1  0.2595      0.810 0.836 0.000 0.160 0.000 0.004 0.000
#> SRR191658     1  0.2838      0.795 0.808 0.000 0.188 0.000 0.004 0.000
#> SRR191659     1  0.2838      0.795 0.808 0.000 0.188 0.000 0.004 0.000
#> SRR191660     1  0.2595      0.810 0.836 0.000 0.160 0.000 0.004 0.000
#> SRR191661     4  0.1615      0.661 0.000 0.004 0.064 0.928 0.000 0.004
#> SRR191662     6  0.3925      0.454 0.000 0.004 0.008 0.332 0.000 0.656
#> SRR191663     4  0.4821      0.460 0.048 0.012 0.292 0.644 0.004 0.000
#> SRR191664     1  0.3405      0.714 0.724 0.000 0.272 0.000 0.004 0.000
#> SRR191665     3  0.5028      0.502 0.016 0.012 0.716 0.140 0.004 0.112
#> SRR191666     1  0.0547      0.868 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR191667     1  0.0547      0.868 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR191668     1  0.3592      0.577 0.656 0.000 0.344 0.000 0.000 0.000
#> SRR191669     1  0.3607      0.570 0.652 0.000 0.348 0.000 0.000 0.000
#> SRR191670     1  0.2006      0.833 0.892 0.000 0.104 0.000 0.004 0.000
#> SRR191671     1  0.2006      0.833 0.892 0.000 0.104 0.000 0.004 0.000
#> SRR191672     1  0.3563      0.585 0.664 0.000 0.336 0.000 0.000 0.000
#> SRR191673     1  0.3563      0.585 0.664 0.000 0.336 0.000 0.000 0.000
#> SRR191674     6  0.1226      0.899 0.000 0.004 0.040 0.000 0.004 0.952
#> SRR191675     6  0.1226      0.899 0.000 0.004 0.040 0.000 0.004 0.952
#> SRR191677     6  0.0260      0.912 0.000 0.000 0.008 0.000 0.000 0.992
#> SRR191678     2  0.5274      0.491 0.176 0.664 0.028 0.000 0.132 0.000
#> SRR191679     6  0.0922      0.906 0.000 0.004 0.024 0.000 0.004 0.968
#> SRR191680     6  0.1003      0.904 0.000 0.004 0.028 0.000 0.004 0.964
#> SRR191681     6  0.1364      0.894 0.000 0.004 0.048 0.000 0.004 0.944
#> SRR191682     5  0.4382      0.546 0.000 0.264 0.060 0.000 0.676 0.000
#> SRR191683     6  0.1728      0.881 0.000 0.008 0.064 0.000 0.004 0.924
#> SRR191684     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191685     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191686     6  0.1555      0.887 0.000 0.004 0.060 0.000 0.004 0.932
#> SRR191687     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191688     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191689     6  0.2468      0.837 0.000 0.016 0.096 0.000 0.008 0.880
#> SRR191690     2  0.4254      0.236 0.404 0.576 0.020 0.000 0.000 0.000
#> SRR191691     6  0.0436      0.909 0.000 0.004 0.004 0.004 0.000 0.988
#> SRR191692     2  0.3413      0.685 0.000 0.824 0.112 0.000 0.012 0.052
#> SRR191693     6  0.1555      0.887 0.000 0.004 0.060 0.000 0.004 0.932
#> SRR191694     6  0.1226      0.899 0.000 0.004 0.040 0.000 0.004 0.952
#> SRR191695     2  0.3078      0.691 0.000 0.844 0.112 0.000 0.012 0.032
#> SRR191696     2  0.4263      0.620 0.000 0.756 0.124 0.000 0.012 0.108
#> SRR191697     2  0.5449      0.304 0.000 0.592 0.124 0.000 0.012 0.272
#> SRR191698     2  0.5211      0.546 0.000 0.652 0.100 0.000 0.224 0.024
#> SRR191699     6  0.0146      0.912 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR191700     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR191701     6  0.0146      0.913 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR191702     6  0.0922      0.906 0.000 0.004 0.024 0.000 0.004 0.968
#> SRR191703     6  0.0508      0.910 0.000 0.004 0.012 0.000 0.000 0.984
#> SRR191704     2  0.3967      0.673 0.000 0.800 0.092 0.008 0.016 0.084
#> SRR191705     2  0.2637      0.698 0.000 0.876 0.088 0.000 0.012 0.024
#> SRR191706     6  0.1226      0.899 0.000 0.004 0.040 0.000 0.004 0.952
#> SRR191707     6  0.0146      0.912 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR191708     2  0.3771      0.659 0.000 0.800 0.088 0.000 0.012 0.100
#> SRR191709     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191710     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191711     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191712     2  0.2605      0.705 0.000 0.884 0.064 0.000 0.012 0.040
#> SRR191713     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191714     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191715     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR191716     2  0.1921      0.689 0.032 0.916 0.052 0.000 0.000 0.000
#> SRR191717     6  0.1429      0.892 0.000 0.004 0.052 0.000 0.004 0.940
#> SRR191718     2  0.1577      0.706 0.000 0.940 0.036 0.000 0.008 0.016
#> SRR537099     6  0.6102      0.109 0.000 0.008 0.056 0.356 0.068 0.512
#> SRR537100     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR537101     1  0.0547      0.868 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR537102     4  0.0260      0.668 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR537104     6  0.1728      0.863 0.000 0.004 0.008 0.064 0.000 0.924
#> SRR537105     4  0.0603      0.671 0.000 0.000 0.016 0.980 0.000 0.004
#> SRR537106     6  0.3357      0.660 0.000 0.004 0.008 0.224 0.000 0.764
#> SRR537107     4  0.3584      0.326 0.000 0.000 0.004 0.688 0.000 0.308
#> SRR537108     4  0.3830      0.234 0.000 0.000 0.004 0.620 0.000 0.376
#> SRR537109     6  0.0436      0.909 0.000 0.004 0.004 0.004 0.000 0.988
#> SRR537110     6  0.2884      0.751 0.000 0.004 0.008 0.164 0.000 0.824
#> SRR537111     6  0.0665      0.905 0.000 0.004 0.008 0.008 0.000 0.980
#> SRR537113     6  0.0146      0.913 0.000 0.000 0.004 0.000 0.000 0.996
#> SRR537114     2  0.5956      0.369 0.008 0.532 0.256 0.200 0.004 0.000
#> SRR537115     6  0.5433      0.367 0.000 0.164 0.200 0.004 0.008 0.624
#> SRR537116     6  0.0000      0.913 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR537117     5  0.2164      0.887 0.068 0.000 0.032 0.000 0.900 0.000
#> SRR537118     5  0.0790      0.907 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR537119     5  0.1480      0.904 0.040 0.000 0.020 0.000 0.940 0.000
#> SRR537120     5  0.1682      0.901 0.052 0.000 0.020 0.000 0.928 0.000
#> SRR537121     5  0.0790      0.907 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR537122     5  0.0858      0.903 0.028 0.000 0.000 0.004 0.968 0.000
#> SRR537123     5  0.2531      0.827 0.132 0.000 0.012 0.000 0.856 0.000
#> SRR537124     5  0.3284      0.725 0.196 0.000 0.020 0.000 0.784 0.000
#> SRR537125     5  0.0790      0.907 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR537126     5  0.0790      0.907 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR537127     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR537128     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR537129     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR537130     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR537131     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR537132     1  0.0632      0.868 0.976 0.000 0.000 0.000 0.024 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.967       0.986         0.1380 0.865   0.865
#> 3 3 0.867           0.904       0.963         2.8588 0.576   0.515
#> 4 4 0.853           0.859       0.944         0.2227 0.812   0.628
#> 5 5 0.868           0.834       0.939         0.1137 0.909   0.752
#> 6 6 0.753           0.674       0.820         0.0708 0.874   0.586
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     2  0.0938      0.985 0.012 0.988
#> SRR191640     2  0.0000      0.990 0.000 1.000
#> SRR191641     2  0.1184      0.982 0.016 0.984
#> SRR191642     2  0.0000      0.990 0.000 1.000
#> SRR191643     2  0.0000      0.990 0.000 1.000
#> SRR191644     2  0.0000      0.990 0.000 1.000
#> SRR191645     2  0.0000      0.990 0.000 1.000
#> SRR191646     2  0.0000      0.990 0.000 1.000
#> SRR191647     2  0.0938      0.985 0.012 0.988
#> SRR191648     2  0.0938      0.985 0.012 0.988
#> SRR191649     2  0.0938      0.985 0.012 0.988
#> SRR191650     2  0.0000      0.990 0.000 1.000
#> SRR191651     2  0.0000      0.990 0.000 1.000
#> SRR191652     2  0.4815      0.881 0.104 0.896
#> SRR191653     2  0.0000      0.990 0.000 1.000
#> SRR191654     2  0.0000      0.990 0.000 1.000
#> SRR191655     2  0.0000      0.990 0.000 1.000
#> SRR191656     2  0.0672      0.987 0.008 0.992
#> SRR191657     2  0.1184      0.982 0.016 0.984
#> SRR191658     2  0.1184      0.982 0.016 0.984
#> SRR191659     2  0.1184      0.982 0.016 0.984
#> SRR191660     2  0.1184      0.982 0.016 0.984
#> SRR191661     2  0.0000      0.990 0.000 1.000
#> SRR191662     2  0.0000      0.990 0.000 1.000
#> SRR191663     2  0.0000      0.990 0.000 1.000
#> SRR191664     2  0.0938      0.985 0.012 0.988
#> SRR191665     2  0.0000      0.990 0.000 1.000
#> SRR191666     2  0.9686      0.265 0.396 0.604
#> SRR191667     1  0.9866      0.268 0.568 0.432
#> SRR191668     2  0.1184      0.982 0.016 0.984
#> SRR191669     2  0.0938      0.985 0.012 0.988
#> SRR191670     2  0.3114      0.941 0.056 0.944
#> SRR191671     2  0.1184      0.982 0.016 0.984
#> SRR191672     2  0.1184      0.982 0.016 0.984
#> SRR191673     2  0.1184      0.982 0.016 0.984
#> SRR191674     2  0.0000      0.990 0.000 1.000
#> SRR191675     2  0.0000      0.990 0.000 1.000
#> SRR191677     2  0.0000      0.990 0.000 1.000
#> SRR191678     2  0.0938      0.985 0.012 0.988
#> SRR191679     2  0.0000      0.990 0.000 1.000
#> SRR191680     2  0.0000      0.990 0.000 1.000
#> SRR191681     2  0.0000      0.990 0.000 1.000
#> SRR191682     2  0.0938      0.985 0.012 0.988
#> SRR191683     2  0.0000      0.990 0.000 1.000
#> SRR191684     2  0.0000      0.990 0.000 1.000
#> SRR191685     2  0.0000      0.990 0.000 1.000
#> SRR191686     2  0.0000      0.990 0.000 1.000
#> SRR191687     2  0.0000      0.990 0.000 1.000
#> SRR191688     2  0.0000      0.990 0.000 1.000
#> SRR191689     2  0.0000      0.990 0.000 1.000
#> SRR191690     2  0.0938      0.985 0.012 0.988
#> SRR191691     2  0.0000      0.990 0.000 1.000
#> SRR191692     2  0.0000      0.990 0.000 1.000
#> SRR191693     2  0.0000      0.990 0.000 1.000
#> SRR191694     2  0.0000      0.990 0.000 1.000
#> SRR191695     2  0.0000      0.990 0.000 1.000
#> SRR191696     2  0.0000      0.990 0.000 1.000
#> SRR191697     2  0.0000      0.990 0.000 1.000
#> SRR191698     2  0.0000      0.990 0.000 1.000
#> SRR191699     2  0.0000      0.990 0.000 1.000
#> SRR191700     2  0.1184      0.982 0.016 0.984
#> SRR191701     2  0.0000      0.990 0.000 1.000
#> SRR191702     2  0.0000      0.990 0.000 1.000
#> SRR191703     2  0.0000      0.990 0.000 1.000
#> SRR191704     2  0.0000      0.990 0.000 1.000
#> SRR191705     2  0.0000      0.990 0.000 1.000
#> SRR191706     2  0.0000      0.990 0.000 1.000
#> SRR191707     2  0.0000      0.990 0.000 1.000
#> SRR191708     2  0.0000      0.990 0.000 1.000
#> SRR191709     2  0.0000      0.990 0.000 1.000
#> SRR191710     2  0.0000      0.990 0.000 1.000
#> SRR191711     2  0.0000      0.990 0.000 1.000
#> SRR191712     2  0.0000      0.990 0.000 1.000
#> SRR191713     2  0.0000      0.990 0.000 1.000
#> SRR191714     2  0.0000      0.990 0.000 1.000
#> SRR191715     2  0.0000      0.990 0.000 1.000
#> SRR191716     2  0.0376      0.988 0.004 0.996
#> SRR191717     2  0.0000      0.990 0.000 1.000
#> SRR191718     2  0.0000      0.990 0.000 1.000
#> SRR537099     2  0.0000      0.990 0.000 1.000
#> SRR537100     2  0.0938      0.985 0.012 0.988
#> SRR537101     1  0.7219      0.737 0.800 0.200
#> SRR537102     2  0.0000      0.990 0.000 1.000
#> SRR537104     2  0.0000      0.990 0.000 1.000
#> SRR537105     2  0.0000      0.990 0.000 1.000
#> SRR537106     2  0.0000      0.990 0.000 1.000
#> SRR537107     2  0.0000      0.990 0.000 1.000
#> SRR537108     2  0.0000      0.990 0.000 1.000
#> SRR537109     2  0.0000      0.990 0.000 1.000
#> SRR537110     2  0.0000      0.990 0.000 1.000
#> SRR537111     2  0.0000      0.990 0.000 1.000
#> SRR537113     2  0.0000      0.990 0.000 1.000
#> SRR537114     2  0.0000      0.990 0.000 1.000
#> SRR537115     2  0.0000      0.990 0.000 1.000
#> SRR537116     2  0.0000      0.990 0.000 1.000
#> SRR537117     2  0.0938      0.985 0.012 0.988
#> SRR537118     2  0.0938      0.985 0.012 0.988
#> SRR537119     2  0.0938      0.985 0.012 0.988
#> SRR537120     2  0.0938      0.985 0.012 0.988
#> SRR537121     2  0.0938      0.985 0.012 0.988
#> SRR537122     2  0.0938      0.985 0.012 0.988
#> SRR537123     2  0.0938      0.985 0.012 0.988
#> SRR537124     2  0.1184      0.982 0.016 0.984
#> SRR537125     2  0.0938      0.985 0.012 0.988
#> SRR537126     2  0.0938      0.985 0.012 0.988
#> SRR537127     1  0.0000      0.907 1.000 0.000
#> SRR537128     1  0.0000      0.907 1.000 0.000
#> SRR537129     1  0.0000      0.907 1.000 0.000
#> SRR537130     1  0.0000      0.907 1.000 0.000
#> SRR537131     1  0.0000      0.907 1.000 0.000
#> SRR537132     1  0.0000      0.907 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191640     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191641     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191642     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191643     1  0.0237     0.9729 0.996 0.004 0.000
#> SRR191644     2  0.5431     0.5973 0.284 0.716 0.000
#> SRR191645     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191646     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191647     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191648     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191649     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191650     1  0.4062     0.7742 0.836 0.164 0.000
#> SRR191651     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191652     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191653     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191654     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191655     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191656     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191657     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191658     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191659     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191660     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191661     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191662     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191663     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191664     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191665     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191666     1  0.4504     0.7512 0.804 0.000 0.196
#> SRR191667     1  0.6299     0.0509 0.524 0.000 0.476
#> SRR191668     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191669     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191670     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191671     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191672     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191673     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191674     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191675     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191677     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191678     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191679     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191680     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191681     2  0.4842     0.6803 0.224 0.776 0.000
#> SRR191682     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191683     2  0.5591     0.5652 0.304 0.696 0.000
#> SRR191684     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191685     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191686     2  0.2711     0.8277 0.088 0.912 0.000
#> SRR191687     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191688     2  0.5098     0.6493 0.248 0.752 0.000
#> SRR191689     1  0.3482     0.8275 0.872 0.128 0.000
#> SRR191690     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191691     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191692     1  0.1411     0.9455 0.964 0.036 0.000
#> SRR191693     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191694     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191695     1  0.1411     0.9455 0.964 0.036 0.000
#> SRR191696     1  0.1411     0.9455 0.964 0.036 0.000
#> SRR191697     1  0.1411     0.9455 0.964 0.036 0.000
#> SRR191698     1  0.1289     0.9490 0.968 0.032 0.000
#> SRR191699     2  0.1289     0.8783 0.032 0.968 0.000
#> SRR191700     1  0.0747     0.9664 0.984 0.000 0.016
#> SRR191701     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191702     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191703     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191704     1  0.1411     0.9455 0.964 0.036 0.000
#> SRR191705     1  0.0237     0.9729 0.996 0.004 0.000
#> SRR191706     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191707     2  0.4702     0.6993 0.212 0.788 0.000
#> SRR191708     1  0.0237     0.9729 0.996 0.004 0.000
#> SRR191709     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191710     2  0.4504     0.7172 0.196 0.804 0.000
#> SRR191711     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191712     1  0.0237     0.9729 0.996 0.004 0.000
#> SRR191713     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191714     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191715     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR191716     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR191717     2  0.4504     0.7172 0.196 0.804 0.000
#> SRR191718     1  0.0237     0.9729 0.996 0.004 0.000
#> SRR537099     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537100     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537101     3  0.5216     0.6361 0.260 0.000 0.740
#> SRR537102     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537104     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR537105     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537106     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR537107     2  0.6305     0.1810 0.484 0.516 0.000
#> SRR537108     2  0.4750     0.6937 0.216 0.784 0.000
#> SRR537109     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR537110     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR537111     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR537113     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR537114     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537115     1  0.1289     0.9493 0.968 0.032 0.000
#> SRR537116     2  0.0000     0.9038 0.000 1.000 0.000
#> SRR537117     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537118     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537119     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537120     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537121     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537122     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537123     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537124     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537125     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537126     1  0.0000     0.9750 1.000 0.000 0.000
#> SRR537127     3  0.0000     0.9433 0.000 0.000 1.000
#> SRR537128     3  0.0000     0.9433 0.000 0.000 1.000
#> SRR537129     3  0.0000     0.9433 0.000 0.000 1.000
#> SRR537130     3  0.0000     0.9433 0.000 0.000 1.000
#> SRR537131     3  0.0000     0.9433 0.000 0.000 1.000
#> SRR537132     3  0.0000     0.9433 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2   p3    p4
#> SRR191639     4  0.0592      0.909 0.016 0.000 0.00 0.984
#> SRR191640     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191641     1  0.1716      0.863 0.936 0.000 0.00 0.064
#> SRR191642     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191643     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191644     4  0.2149      0.839 0.000 0.088 0.00 0.912
#> SRR191645     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191646     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191647     4  0.0707      0.907 0.020 0.000 0.00 0.980
#> SRR191648     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191649     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191650     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191651     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191652     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191653     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191654     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191655     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191656     4  0.1474      0.877 0.052 0.000 0.00 0.948
#> SRR191657     1  0.0592      0.919 0.984 0.000 0.00 0.016
#> SRR191658     1  0.0592      0.919 0.984 0.000 0.00 0.016
#> SRR191659     1  0.4356      0.497 0.708 0.000 0.00 0.292
#> SRR191660     1  0.3074      0.729 0.848 0.000 0.00 0.152
#> SRR191661     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191662     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191663     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191664     4  0.4830      0.287 0.392 0.000 0.00 0.608
#> SRR191665     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191666     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191667     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191668     1  0.1211      0.897 0.960 0.000 0.00 0.040
#> SRR191669     4  0.4804      0.457 0.384 0.000 0.00 0.616
#> SRR191670     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191671     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191672     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191673     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191674     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191675     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191677     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191678     4  0.0188      0.915 0.004 0.000 0.00 0.996
#> SRR191679     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191680     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191681     4  0.3266      0.735 0.000 0.168 0.00 0.832
#> SRR191682     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191683     4  0.1389      0.878 0.000 0.048 0.00 0.952
#> SRR191684     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191685     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191686     2  0.2589      0.796 0.000 0.884 0.00 0.116
#> SRR191687     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191688     4  0.4804      0.327 0.000 0.384 0.00 0.616
#> SRR191689     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191690     4  0.0336      0.913 0.008 0.000 0.00 0.992
#> SRR191691     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191692     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191693     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191694     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191695     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191696     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191697     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191698     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191699     2  0.1940      0.847 0.000 0.924 0.00 0.076
#> SRR191700     1  0.0000      0.926 1.000 0.000 0.00 0.000
#> SRR191701     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191702     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191703     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191704     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191705     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191706     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191707     2  0.4790      0.409 0.000 0.620 0.00 0.380
#> SRR191708     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191709     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191710     2  0.4454      0.530 0.000 0.692 0.00 0.308
#> SRR191711     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191712     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191713     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191714     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191715     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR191716     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR191717     2  0.4454      0.530 0.000 0.692 0.00 0.308
#> SRR191718     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR537099     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR537100     4  0.0707      0.906 0.020 0.000 0.00 0.980
#> SRR537101     1  0.0895      0.912 0.976 0.000 0.02 0.004
#> SRR537102     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR537104     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR537105     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR537106     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR537107     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR537108     2  0.4855      0.356 0.000 0.600 0.00 0.400
#> SRR537109     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR537110     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR537111     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR537113     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR537114     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR537115     4  0.0000      0.917 0.000 0.000 0.00 1.000
#> SRR537116     2  0.0000      0.931 0.000 1.000 0.00 0.000
#> SRR537117     4  0.4643      0.539 0.344 0.000 0.00 0.656
#> SRR537118     4  0.0469      0.910 0.012 0.000 0.00 0.988
#> SRR537119     4  0.4585      0.558 0.332 0.000 0.00 0.668
#> SRR537120     4  0.4643      0.539 0.344 0.000 0.00 0.656
#> SRR537121     4  0.0469      0.910 0.012 0.000 0.00 0.988
#> SRR537122     4  0.0469      0.910 0.012 0.000 0.00 0.988
#> SRR537123     4  0.4643      0.539 0.344 0.000 0.00 0.656
#> SRR537124     4  0.4643      0.539 0.344 0.000 0.00 0.656
#> SRR537125     4  0.4643      0.539 0.344 0.000 0.00 0.656
#> SRR537126     4  0.4643      0.539 0.344 0.000 0.00 0.656
#> SRR537127     3  0.0000      1.000 0.000 0.000 1.00 0.000
#> SRR537128     3  0.0000      1.000 0.000 0.000 1.00 0.000
#> SRR537129     3  0.0000      1.000 0.000 0.000 1.00 0.000
#> SRR537130     3  0.0000      1.000 0.000 0.000 1.00 0.000
#> SRR537131     3  0.0000      1.000 0.000 0.000 1.00 0.000
#> SRR537132     3  0.0000      1.000 0.000 0.000 1.00 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR191639     4   0.417     0.3537 0.000 0.000  0 0.604 0.396
#> SRR191640     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191641     1   0.247     0.7004 0.864 0.000  0 0.136 0.000
#> SRR191642     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191643     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191644     4   0.185     0.8324 0.000 0.088  0 0.912 0.000
#> SRR191645     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191646     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191647     4   0.430     0.0848 0.000 0.000  0 0.512 0.488
#> SRR191648     4   0.409     0.4189 0.000 0.000  0 0.632 0.368
#> SRR191649     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191650     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191651     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191652     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191653     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191654     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191655     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191656     4   0.275     0.7811 0.136 0.000  0 0.856 0.008
#> SRR191657     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191658     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191659     1   0.194     0.8473 0.920 0.000  0 0.012 0.068
#> SRR191660     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191661     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191662     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191663     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191664     4   0.423     0.2467 0.420 0.000  0 0.580 0.000
#> SRR191665     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191666     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191667     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191668     1   0.430    -0.0344 0.516 0.000  0 0.000 0.484
#> SRR191669     4   0.618     0.0227 0.136 0.000  0 0.464 0.400
#> SRR191670     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191671     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR191672     5   0.422     0.3199 0.416 0.000  0 0.000 0.584
#> SRR191673     5   0.386     0.5350 0.312 0.000  0 0.000 0.688
#> SRR191674     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191675     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191677     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191678     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191679     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191680     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191681     4   0.281     0.7272 0.000 0.168  0 0.832 0.000
#> SRR191682     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191683     4   0.120     0.8765 0.000 0.048  0 0.952 0.000
#> SRR191684     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191685     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191686     2   0.223     0.8076 0.000 0.884  0 0.116 0.000
#> SRR191687     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191688     4   0.414     0.3301 0.000 0.384  0 0.616 0.000
#> SRR191689     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191690     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191691     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191692     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191693     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191694     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191695     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191696     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191697     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191698     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191699     2   0.167     0.8560 0.000 0.924  0 0.076 0.000
#> SRR191700     5   0.397     0.4459 0.336 0.000  0 0.000 0.664
#> SRR191701     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191702     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191703     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191704     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191705     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191706     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191707     2   0.413     0.4218 0.000 0.620  0 0.380 0.000
#> SRR191708     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191709     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191710     2   0.384     0.5516 0.000 0.692  0 0.308 0.000
#> SRR191711     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191712     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191713     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191714     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191715     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR191716     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR191717     2   0.384     0.5516 0.000 0.692  0 0.308 0.000
#> SRR191718     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR537099     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR537100     5   0.407     0.3390 0.000 0.000  0 0.364 0.636
#> SRR537101     1   0.000     0.9148 1.000 0.000  0 0.000 0.000
#> SRR537102     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR537104     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR537105     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR537106     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR537107     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR537108     2   0.418     0.3638 0.000 0.600  0 0.400 0.000
#> SRR537109     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR537110     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR537111     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR537113     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR537114     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR537115     4   0.000     0.9205 0.000 0.000  0 1.000 0.000
#> SRR537116     2   0.000     0.9354 0.000 1.000  0 0.000 0.000
#> SRR537117     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537118     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537119     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537120     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537121     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537122     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537123     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537124     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537125     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537126     5   0.000     0.8581 0.000 0.000  0 0.000 1.000
#> SRR537127     3   0.000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537128     3   0.000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537129     3   0.000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537130     3   0.000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537131     3   0.000     1.0000 0.000 0.000  1 0.000 0.000
#> SRR537132     3   0.000     1.0000 0.000 0.000  1 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     4  0.3717     0.3635 0.000 0.000  0 0.616 0.384 0.000
#> SRR191640     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191641     1  0.5366     0.6126 0.568 0.284  0 0.148 0.000 0.000
#> SRR191642     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191643     4  0.1141     0.8140 0.000 0.052  0 0.948 0.000 0.000
#> SRR191644     2  0.4903     0.4739 0.000 0.568  0 0.360 0.000 0.072
#> SRR191645     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191646     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191647     4  0.3862     0.0737 0.000 0.000  0 0.524 0.476 0.000
#> SRR191648     4  0.3634     0.4305 0.000 0.000  0 0.644 0.356 0.000
#> SRR191649     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191650     2  0.3804     0.3754 0.000 0.576  0 0.424 0.000 0.000
#> SRR191651     2  0.3804     0.3314 0.000 0.576  0 0.000 0.000 0.424
#> SRR191652     1  0.3620     0.6591 0.648 0.352  0 0.000 0.000 0.000
#> SRR191653     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191654     4  0.3446     0.3994 0.000 0.308  0 0.692 0.000 0.000
#> SRR191655     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191656     4  0.3355     0.7231 0.072 0.076  0 0.836 0.016 0.000
#> SRR191657     1  0.0405     0.7258 0.988 0.004  0 0.008 0.000 0.000
#> SRR191658     1  0.1753     0.7184 0.912 0.004  0 0.084 0.000 0.000
#> SRR191659     1  0.2918     0.6990 0.856 0.004  0 0.088 0.052 0.000
#> SRR191660     1  0.1753     0.7184 0.912 0.004  0 0.084 0.000 0.000
#> SRR191661     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191662     2  0.3833     0.2870 0.000 0.556  0 0.000 0.000 0.444
#> SRR191663     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191664     4  0.3592     0.4279 0.344 0.000  0 0.656 0.000 0.000
#> SRR191665     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191666     1  0.3620     0.6591 0.648 0.352  0 0.000 0.000 0.000
#> SRR191667     1  0.3620     0.6591 0.648 0.352  0 0.000 0.000 0.000
#> SRR191668     1  0.5826     0.4326 0.588 0.068  0 0.076 0.268 0.000
#> SRR191669     4  0.6496    -0.0879 0.116 0.068  0 0.420 0.396 0.000
#> SRR191670     1  0.1444     0.7184 0.928 0.072  0 0.000 0.000 0.000
#> SRR191671     1  0.1387     0.7176 0.932 0.068  0 0.000 0.000 0.000
#> SRR191672     1  0.4148     0.5921 0.724 0.068  0 0.000 0.208 0.000
#> SRR191673     1  0.4799     0.3992 0.592 0.068  0 0.000 0.340 0.000
#> SRR191674     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191675     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191677     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191678     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191679     6  0.1007     0.8678 0.000 0.044  0 0.000 0.000 0.956
#> SRR191680     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191681     2  0.4184     0.3999 0.000 0.576  0 0.408 0.000 0.016
#> SRR191682     4  0.1663     0.7944 0.000 0.000  0 0.912 0.088 0.000
#> SRR191683     2  0.4543     0.4399 0.000 0.576  0 0.384 0.000 0.040
#> SRR191684     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191685     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191686     2  0.3930     0.3417 0.000 0.576  0 0.004 0.000 0.420
#> SRR191687     6  0.0363     0.8917 0.000 0.012  0 0.000 0.000 0.988
#> SRR191688     2  0.5335     0.5469 0.000 0.576  0 0.276 0.000 0.148
#> SRR191689     2  0.3804     0.3754 0.000 0.576  0 0.424 0.000 0.000
#> SRR191690     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191691     6  0.0865     0.8766 0.000 0.036  0 0.000 0.000 0.964
#> SRR191692     4  0.1814     0.7766 0.000 0.100  0 0.900 0.000 0.000
#> SRR191693     6  0.3847    -0.0368 0.000 0.456  0 0.000 0.000 0.544
#> SRR191694     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191695     4  0.2491     0.7091 0.000 0.164  0 0.836 0.000 0.000
#> SRR191696     2  0.3833     0.3381 0.000 0.556  0 0.444 0.000 0.000
#> SRR191697     2  0.3860     0.2762 0.000 0.528  0 0.472 0.000 0.000
#> SRR191698     4  0.3101     0.5344 0.000 0.244  0 0.756 0.000 0.000
#> SRR191699     2  0.4025     0.3508 0.000 0.576  0 0.008 0.000 0.416
#> SRR191700     2  0.6125    -0.6073 0.312 0.352  0 0.000 0.336 0.000
#> SRR191701     2  0.3804     0.3314 0.000 0.576  0 0.000 0.000 0.424
#> SRR191702     6  0.2454     0.7333 0.000 0.160  0 0.000 0.000 0.840
#> SRR191703     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191704     2  0.3860     0.2766 0.000 0.528  0 0.472 0.000 0.000
#> SRR191705     4  0.2969     0.5951 0.000 0.224  0 0.776 0.000 0.000
#> SRR191706     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191707     2  0.4379     0.3860 0.000 0.576  0 0.028 0.000 0.396
#> SRR191708     2  0.3868     0.2204 0.000 0.508  0 0.492 0.000 0.000
#> SRR191709     6  0.2378     0.7411 0.000 0.152  0 0.000 0.000 0.848
#> SRR191710     2  0.4319     0.3807 0.000 0.576  0 0.024 0.000 0.400
#> SRR191711     6  0.3515     0.4174 0.000 0.324  0 0.000 0.000 0.676
#> SRR191712     4  0.1610     0.7878 0.000 0.084  0 0.916 0.000 0.000
#> SRR191713     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191714     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191715     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR191716     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR191717     2  0.4319     0.3807 0.000 0.576  0 0.024 0.000 0.400
#> SRR191718     4  0.1327     0.8070 0.000 0.064  0 0.936 0.000 0.000
#> SRR537099     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR537100     5  0.3659     0.3854 0.000 0.000  0 0.364 0.636 0.000
#> SRR537101     1  0.3620     0.6591 0.648 0.352  0 0.000 0.000 0.000
#> SRR537102     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR537104     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR537105     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR537106     6  0.3050     0.6062 0.000 0.236  0 0.000 0.000 0.764
#> SRR537107     4  0.3126     0.5653 0.000 0.248  0 0.752 0.000 0.000
#> SRR537108     2  0.5870     0.4373 0.000 0.460  0 0.212 0.000 0.328
#> SRR537109     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR537110     6  0.3717     0.2428 0.000 0.384  0 0.000 0.000 0.616
#> SRR537111     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR537113     2  0.3864     0.1776 0.000 0.520  0 0.000 0.000 0.480
#> SRR537114     4  0.0000     0.8424 0.000 0.000  0 1.000 0.000 0.000
#> SRR537115     4  0.1663     0.7844 0.000 0.088  0 0.912 0.000 0.000
#> SRR537116     6  0.0000     0.8987 0.000 0.000  0 0.000 0.000 1.000
#> SRR537117     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537118     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537119     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537120     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537121     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537122     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537123     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537124     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537125     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537126     5  0.0000     0.9423 0.000 0.000  0 0.000 1.000 0.000
#> SRR537127     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.967       0.986         0.1269 0.897   0.897
#> 3 3 0.357           0.689       0.840         2.8980 0.583   0.535
#> 4 4 0.460           0.769       0.810         0.2941 0.848   0.687
#> 5 5 0.343           0.551       0.681         0.0764 0.922   0.777
#> 6 6 0.549           0.518       0.704         0.0894 0.805   0.439
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     2  0.0000      0.985 0.000 1.000
#> SRR191640     2  0.0000      0.985 0.000 1.000
#> SRR191641     2  0.0376      0.983 0.004 0.996
#> SRR191642     2  0.0000      0.985 0.000 1.000
#> SRR191643     2  0.0000      0.985 0.000 1.000
#> SRR191644     2  0.0000      0.985 0.000 1.000
#> SRR191645     2  0.0000      0.985 0.000 1.000
#> SRR191646     2  0.0000      0.985 0.000 1.000
#> SRR191647     2  0.1633      0.969 0.024 0.976
#> SRR191648     2  0.1633      0.969 0.024 0.976
#> SRR191649     2  0.0000      0.985 0.000 1.000
#> SRR191650     2  0.0000      0.985 0.000 1.000
#> SRR191651     2  0.0000      0.985 0.000 1.000
#> SRR191652     2  0.0376      0.983 0.004 0.996
#> SRR191653     2  0.0376      0.983 0.004 0.996
#> SRR191654     2  0.0376      0.983 0.004 0.996
#> SRR191655     2  0.0000      0.985 0.000 1.000
#> SRR191656     2  0.2236      0.959 0.036 0.964
#> SRR191657     2  0.0376      0.983 0.004 0.996
#> SRR191658     2  0.0376      0.983 0.004 0.996
#> SRR191659     2  0.0376      0.983 0.004 0.996
#> SRR191660     2  0.0376      0.983 0.004 0.996
#> SRR191661     2  0.0000      0.985 0.000 1.000
#> SRR191662     2  0.0000      0.985 0.000 1.000
#> SRR191663     2  0.0000      0.985 0.000 1.000
#> SRR191664     2  0.0000      0.985 0.000 1.000
#> SRR191665     2  0.0000      0.985 0.000 1.000
#> SRR191666     2  0.0672      0.982 0.008 0.992
#> SRR191667     2  0.0672      0.982 0.008 0.992
#> SRR191668     2  0.0376      0.983 0.004 0.996
#> SRR191669     2  0.0376      0.983 0.004 0.996
#> SRR191670     2  0.0672      0.982 0.008 0.992
#> SRR191671     2  0.0672      0.982 0.008 0.992
#> SRR191672     2  0.9983      0.123 0.476 0.524
#> SRR191673     2  0.9983      0.123 0.476 0.524
#> SRR191674     2  0.0000      0.985 0.000 1.000
#> SRR191675     2  0.0000      0.985 0.000 1.000
#> SRR191677     2  0.0000      0.985 0.000 1.000
#> SRR191678     2  0.0000      0.985 0.000 1.000
#> SRR191679     2  0.0000      0.985 0.000 1.000
#> SRR191680     2  0.0000      0.985 0.000 1.000
#> SRR191681     2  0.0000      0.985 0.000 1.000
#> SRR191682     2  0.0376      0.983 0.004 0.996
#> SRR191683     2  0.0000      0.985 0.000 1.000
#> SRR191684     2  0.0000      0.985 0.000 1.000
#> SRR191685     2  0.0000      0.985 0.000 1.000
#> SRR191686     2  0.0000      0.985 0.000 1.000
#> SRR191687     2  0.0000      0.985 0.000 1.000
#> SRR191688     2  0.0000      0.985 0.000 1.000
#> SRR191689     2  0.0000      0.985 0.000 1.000
#> SRR191690     2  0.0000      0.985 0.000 1.000
#> SRR191691     2  0.0000      0.985 0.000 1.000
#> SRR191692     2  0.0000      0.985 0.000 1.000
#> SRR191693     2  0.0000      0.985 0.000 1.000
#> SRR191694     2  0.0000      0.985 0.000 1.000
#> SRR191695     2  0.0000      0.985 0.000 1.000
#> SRR191696     2  0.0000      0.985 0.000 1.000
#> SRR191697     2  0.0000      0.985 0.000 1.000
#> SRR191698     2  0.0000      0.985 0.000 1.000
#> SRR191699     2  0.0000      0.985 0.000 1.000
#> SRR191700     2  0.0672      0.982 0.008 0.992
#> SRR191701     2  0.0000      0.985 0.000 1.000
#> SRR191702     2  0.0000      0.985 0.000 1.000
#> SRR191703     2  0.0000      0.985 0.000 1.000
#> SRR191704     2  0.0000      0.985 0.000 1.000
#> SRR191705     2  0.0000      0.985 0.000 1.000
#> SRR191706     2  0.0000      0.985 0.000 1.000
#> SRR191707     2  0.0000      0.985 0.000 1.000
#> SRR191708     2  0.0000      0.985 0.000 1.000
#> SRR191709     2  0.0000      0.985 0.000 1.000
#> SRR191710     2  0.0000      0.985 0.000 1.000
#> SRR191711     2  0.0000      0.985 0.000 1.000
#> SRR191712     2  0.0000      0.985 0.000 1.000
#> SRR191713     2  0.0000      0.985 0.000 1.000
#> SRR191714     2  0.0000      0.985 0.000 1.000
#> SRR191715     2  0.0000      0.985 0.000 1.000
#> SRR191716     2  0.0000      0.985 0.000 1.000
#> SRR191717     2  0.0000      0.985 0.000 1.000
#> SRR191718     2  0.0000      0.985 0.000 1.000
#> SRR537099     2  0.2236      0.959 0.036 0.964
#> SRR537100     2  0.1184      0.976 0.016 0.984
#> SRR537101     2  0.0672      0.982 0.008 0.992
#> SRR537102     2  0.0376      0.983 0.004 0.996
#> SRR537104     2  0.0000      0.985 0.000 1.000
#> SRR537105     2  0.0938      0.978 0.012 0.988
#> SRR537106     2  0.0000      0.985 0.000 1.000
#> SRR537107     2  0.0000      0.985 0.000 1.000
#> SRR537108     2  0.0376      0.983 0.004 0.996
#> SRR537109     2  0.0000      0.985 0.000 1.000
#> SRR537110     2  0.0000      0.985 0.000 1.000
#> SRR537111     2  0.0000      0.985 0.000 1.000
#> SRR537113     2  0.0000      0.985 0.000 1.000
#> SRR537114     2  0.0000      0.985 0.000 1.000
#> SRR537115     2  0.0000      0.985 0.000 1.000
#> SRR537116     2  0.0000      0.985 0.000 1.000
#> SRR537117     2  0.2603      0.952 0.044 0.956
#> SRR537118     2  0.2948      0.945 0.052 0.948
#> SRR537119     2  0.0376      0.983 0.004 0.996
#> SRR537120     2  0.0376      0.983 0.004 0.996
#> SRR537121     2  0.2948      0.945 0.052 0.948
#> SRR537122     2  0.2423      0.956 0.040 0.960
#> SRR537123     2  0.2778      0.948 0.048 0.952
#> SRR537124     2  0.0376      0.983 0.004 0.996
#> SRR537125     2  0.2948      0.945 0.052 0.948
#> SRR537126     2  0.2948      0.945 0.052 0.948
#> SRR537127     1  0.0000      1.000 1.000 0.000
#> SRR537128     1  0.0000      1.000 1.000 0.000
#> SRR537129     1  0.0000      1.000 1.000 0.000
#> SRR537130     1  0.0000      1.000 1.000 0.000
#> SRR537131     1  0.0000      1.000 1.000 0.000
#> SRR537132     1  0.0000      1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     1  0.4974     0.7881 0.764 0.236 0.000
#> SRR191640     2  0.6062     0.2381 0.384 0.616 0.000
#> SRR191641     1  0.4861     0.7964 0.808 0.180 0.012
#> SRR191642     2  0.5926     0.3247 0.356 0.644 0.000
#> SRR191643     2  0.6252     0.2037 0.444 0.556 0.000
#> SRR191644     2  0.4796     0.6120 0.220 0.780 0.000
#> SRR191645     2  0.5905     0.3321 0.352 0.648 0.000
#> SRR191646     2  0.5926     0.3212 0.356 0.644 0.000
#> SRR191647     1  0.2878     0.7650 0.904 0.096 0.000
#> SRR191648     1  0.2878     0.7650 0.904 0.096 0.000
#> SRR191649     2  0.6267     0.0653 0.452 0.548 0.000
#> SRR191650     2  0.6235     0.2257 0.436 0.564 0.000
#> SRR191651     2  0.6045     0.3907 0.380 0.620 0.000
#> SRR191652     1  0.4897     0.7908 0.812 0.172 0.016
#> SRR191653     1  0.5058     0.6684 0.756 0.244 0.000
#> SRR191654     1  0.6192     0.2280 0.580 0.420 0.000
#> SRR191655     2  0.6045     0.2743 0.380 0.620 0.000
#> SRR191656     1  0.5098     0.7798 0.752 0.248 0.000
#> SRR191657     1  0.6062     0.7114 0.708 0.276 0.016
#> SRR191658     1  0.5797     0.7107 0.712 0.280 0.008
#> SRR191659     1  0.6228     0.5273 0.624 0.372 0.004
#> SRR191660     1  0.6600     0.4935 0.604 0.384 0.012
#> SRR191661     2  0.6062     0.2581 0.384 0.616 0.000
#> SRR191662     1  0.6308    -0.0449 0.508 0.492 0.000
#> SRR191663     2  0.6215     0.1402 0.428 0.572 0.000
#> SRR191664     2  0.6280     0.0628 0.460 0.540 0.000
#> SRR191665     2  0.4842     0.6286 0.224 0.776 0.000
#> SRR191666     1  0.4663     0.7924 0.828 0.156 0.016
#> SRR191667     1  0.4663     0.7924 0.828 0.156 0.016
#> SRR191668     1  0.4750     0.7741 0.784 0.216 0.000
#> SRR191669     1  0.4750     0.7741 0.784 0.216 0.000
#> SRR191670     1  0.5156     0.7716 0.776 0.216 0.008
#> SRR191671     1  0.5156     0.7716 0.776 0.216 0.008
#> SRR191672     1  0.6171     0.6555 0.776 0.080 0.144
#> SRR191673     1  0.6171     0.6555 0.776 0.080 0.144
#> SRR191674     2  0.0892     0.8173 0.020 0.980 0.000
#> SRR191675     2  0.0592     0.8220 0.012 0.988 0.000
#> SRR191677     2  0.0592     0.8209 0.012 0.988 0.000
#> SRR191678     2  0.1753     0.7894 0.048 0.952 0.000
#> SRR191679     2  0.2448     0.7813 0.076 0.924 0.000
#> SRR191680     2  0.0424     0.8232 0.008 0.992 0.000
#> SRR191681     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191682     1  0.5621     0.7397 0.692 0.308 0.000
#> SRR191683     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191684     2  0.1031     0.8150 0.024 0.976 0.000
#> SRR191685     2  0.2261     0.7775 0.068 0.932 0.000
#> SRR191686     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191687     2  0.1529     0.8070 0.040 0.960 0.000
#> SRR191688     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191689     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191690     2  0.4504     0.6599 0.196 0.804 0.000
#> SRR191691     2  0.0892     0.8171 0.020 0.980 0.000
#> SRR191692     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191693     2  0.0747     0.8199 0.016 0.984 0.000
#> SRR191694     2  0.0747     0.8199 0.016 0.984 0.000
#> SRR191695     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191696     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191697     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191698     2  0.5706     0.4097 0.320 0.680 0.000
#> SRR191699     2  0.0237     0.8230 0.004 0.996 0.000
#> SRR191700     1  0.4399     0.8003 0.812 0.188 0.000
#> SRR191701     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191702     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191703     2  0.0237     0.8230 0.004 0.996 0.000
#> SRR191704     2  0.0747     0.8186 0.016 0.984 0.000
#> SRR191705     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191706     2  0.0424     0.8232 0.008 0.992 0.000
#> SRR191707     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191708     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191709     2  0.0592     0.8207 0.012 0.988 0.000
#> SRR191710     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191711     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191712     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR191713     2  0.0892     0.8173 0.020 0.980 0.000
#> SRR191714     2  0.0747     0.8191 0.016 0.984 0.000
#> SRR191715     2  0.0592     0.8209 0.012 0.988 0.000
#> SRR191716     2  0.1529     0.7942 0.040 0.960 0.000
#> SRR191717     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR191718     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR537099     1  0.2959     0.7681 0.900 0.100 0.000
#> SRR537100     1  0.3551     0.7873 0.868 0.132 0.000
#> SRR537101     1  0.4663     0.7924 0.828 0.156 0.016
#> SRR537102     1  0.6252     0.1675 0.556 0.444 0.000
#> SRR537104     2  0.6111     0.3626 0.396 0.604 0.000
#> SRR537105     1  0.3816     0.7654 0.852 0.148 0.000
#> SRR537106     2  0.6008     0.4211 0.372 0.628 0.000
#> SRR537107     2  0.6295     0.1429 0.472 0.528 0.000
#> SRR537108     2  0.6295     0.1429 0.472 0.528 0.000
#> SRR537109     2  0.2066     0.7851 0.060 0.940 0.000
#> SRR537110     2  0.6280     0.1841 0.460 0.540 0.000
#> SRR537111     2  0.1643     0.7994 0.044 0.956 0.000
#> SRR537113     2  0.0000     0.8233 0.000 1.000 0.000
#> SRR537114     2  0.0424     0.8220 0.008 0.992 0.000
#> SRR537115     2  0.0237     0.8231 0.004 0.996 0.000
#> SRR537116     2  0.0592     0.8207 0.012 0.988 0.000
#> SRR537117     1  0.5178     0.7808 0.744 0.256 0.000
#> SRR537118     1  0.3112     0.7648 0.900 0.096 0.004
#> SRR537119     1  0.5178     0.7786 0.744 0.256 0.000
#> SRR537120     1  0.5178     0.7812 0.744 0.256 0.000
#> SRR537121     1  0.3112     0.7648 0.900 0.096 0.004
#> SRR537122     1  0.2878     0.7656 0.904 0.096 0.000
#> SRR537123     1  0.3349     0.7697 0.888 0.108 0.004
#> SRR537124     1  0.5216     0.7782 0.740 0.260 0.000
#> SRR537125     1  0.3112     0.7648 0.900 0.096 0.004
#> SRR537126     1  0.3112     0.7648 0.900 0.096 0.004
#> SRR537127     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000 1.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.4488     0.8288 0.808 0.096 0.000 0.096
#> SRR191640     4  0.4204     0.8559 0.020 0.192 0.000 0.788
#> SRR191641     1  0.4837     0.8012 0.796 0.076 0.008 0.120
#> SRR191642     4  0.4158     0.8442 0.008 0.224 0.000 0.768
#> SRR191643     4  0.3933     0.8471 0.008 0.200 0.000 0.792
#> SRR191644     4  0.5292     0.3178 0.008 0.480 0.000 0.512
#> SRR191645     4  0.4098     0.8564 0.012 0.204 0.000 0.784
#> SRR191646     4  0.4098     0.8564 0.012 0.204 0.000 0.784
#> SRR191647     1  0.4244     0.7963 0.804 0.036 0.000 0.160
#> SRR191648     1  0.4285     0.7946 0.804 0.040 0.000 0.156
#> SRR191649     4  0.5076     0.8239 0.072 0.172 0.000 0.756
#> SRR191650     4  0.4049     0.8461 0.008 0.212 0.000 0.780
#> SRR191651     2  0.5731    -0.2013 0.028 0.544 0.000 0.428
#> SRR191652     1  0.5398     0.7924 0.772 0.076 0.024 0.128
#> SRR191653     1  0.6497     0.5636 0.596 0.100 0.000 0.304
#> SRR191654     4  0.6414     0.5135 0.240 0.124 0.000 0.636
#> SRR191655     4  0.3972     0.8581 0.008 0.204 0.000 0.788
#> SRR191656     1  0.4906     0.7883 0.776 0.140 0.000 0.084
#> SRR191657     1  0.6637     0.5737 0.616 0.144 0.000 0.240
#> SRR191658     1  0.6834     0.5324 0.600 0.176 0.000 0.224
#> SRR191659     1  0.7340     0.0727 0.436 0.156 0.000 0.408
#> SRR191660     1  0.7261     0.2232 0.480 0.152 0.000 0.368
#> SRR191661     4  0.3972     0.8606 0.008 0.204 0.000 0.788
#> SRR191662     4  0.3863     0.8035 0.028 0.144 0.000 0.828
#> SRR191663     4  0.4916     0.8422 0.056 0.184 0.000 0.760
#> SRR191664     4  0.5062     0.8359 0.064 0.184 0.000 0.752
#> SRR191665     2  0.4635     0.6839 0.028 0.756 0.000 0.216
#> SRR191666     1  0.3951     0.8162 0.860 0.048 0.024 0.068
#> SRR191667     1  0.4024     0.8155 0.856 0.048 0.024 0.072
#> SRR191668     1  0.4300     0.8085 0.820 0.092 0.000 0.088
#> SRR191669     1  0.4477     0.8016 0.808 0.108 0.000 0.084
#> SRR191670     1  0.3894     0.8110 0.844 0.088 0.000 0.068
#> SRR191671     1  0.3959     0.8105 0.840 0.092 0.000 0.068
#> SRR191672     1  0.3697     0.7783 0.868 0.012 0.052 0.068
#> SRR191673     1  0.3697     0.7783 0.868 0.012 0.052 0.068
#> SRR191674     2  0.2256     0.8421 0.056 0.924 0.000 0.020
#> SRR191675     2  0.2060     0.8433 0.052 0.932 0.000 0.016
#> SRR191677     2  0.1624     0.8504 0.020 0.952 0.000 0.028
#> SRR191678     2  0.3958     0.8004 0.032 0.824 0.000 0.144
#> SRR191679     2  0.3117     0.8426 0.028 0.880 0.000 0.092
#> SRR191680     2  0.0672     0.8572 0.008 0.984 0.000 0.008
#> SRR191681     2  0.2473     0.8548 0.012 0.908 0.000 0.080
#> SRR191682     1  0.5050     0.7945 0.764 0.152 0.000 0.084
#> SRR191683     2  0.3215     0.8511 0.032 0.876 0.000 0.092
#> SRR191684     2  0.1305     0.8502 0.004 0.960 0.000 0.036
#> SRR191685     2  0.1297     0.8545 0.016 0.964 0.000 0.020
#> SRR191686     2  0.3198     0.8516 0.040 0.880 0.000 0.080
#> SRR191687     2  0.0657     0.8588 0.004 0.984 0.000 0.012
#> SRR191688     2  0.2060     0.8599 0.016 0.932 0.000 0.052
#> SRR191689     2  0.2480     0.8512 0.008 0.904 0.000 0.088
#> SRR191690     2  0.4541     0.7749 0.060 0.796 0.000 0.144
#> SRR191691     2  0.1209     0.8485 0.004 0.964 0.000 0.032
#> SRR191692     2  0.3706     0.8374 0.040 0.848 0.000 0.112
#> SRR191693     2  0.3464     0.8460 0.056 0.868 0.000 0.076
#> SRR191694     2  0.2060     0.8433 0.052 0.932 0.000 0.016
#> SRR191695     2  0.2741     0.8493 0.012 0.892 0.000 0.096
#> SRR191696     2  0.2412     0.8529 0.008 0.908 0.000 0.084
#> SRR191697     2  0.3080     0.8509 0.024 0.880 0.000 0.096
#> SRR191698     2  0.6895    -0.1397 0.108 0.492 0.000 0.400
#> SRR191699     2  0.1867     0.8588 0.000 0.928 0.000 0.072
#> SRR191700     1  0.3015     0.8321 0.884 0.092 0.000 0.024
#> SRR191701     2  0.0779     0.8594 0.004 0.980 0.000 0.016
#> SRR191702     2  0.1004     0.8566 0.004 0.972 0.000 0.024
#> SRR191703     2  0.1388     0.8509 0.012 0.960 0.000 0.028
#> SRR191704     2  0.3547     0.8210 0.016 0.840 0.000 0.144
#> SRR191705     2  0.3377     0.8211 0.012 0.848 0.000 0.140
#> SRR191706     2  0.1706     0.8507 0.036 0.948 0.000 0.016
#> SRR191707     2  0.2737     0.8474 0.008 0.888 0.000 0.104
#> SRR191708     2  0.3351     0.8098 0.008 0.844 0.000 0.148
#> SRR191709     2  0.1356     0.8485 0.008 0.960 0.000 0.032
#> SRR191710     2  0.1867     0.8577 0.000 0.928 0.000 0.072
#> SRR191711     2  0.0921     0.8540 0.000 0.972 0.000 0.028
#> SRR191712     2  0.3047     0.8399 0.012 0.872 0.000 0.116
#> SRR191713     2  0.1109     0.8504 0.004 0.968 0.000 0.028
#> SRR191714     2  0.1209     0.8470 0.004 0.964 0.000 0.032
#> SRR191715     2  0.1936     0.8490 0.032 0.940 0.000 0.028
#> SRR191716     2  0.3763     0.8107 0.024 0.832 0.000 0.144
#> SRR191717     2  0.3037     0.8553 0.036 0.888 0.000 0.076
#> SRR191718     2  0.2799     0.8446 0.008 0.884 0.000 0.108
#> SRR537099     1  0.4285     0.8082 0.820 0.076 0.000 0.104
#> SRR537100     1  0.4104     0.8275 0.832 0.080 0.000 0.088
#> SRR537101     1  0.4094     0.8147 0.852 0.048 0.024 0.076
#> SRR537102     4  0.4534     0.7766 0.068 0.132 0.000 0.800
#> SRR537104     2  0.5508    -0.1505 0.020 0.572 0.000 0.408
#> SRR537105     1  0.4994     0.7663 0.744 0.048 0.000 0.208
#> SRR537106     2  0.5590    -0.2921 0.020 0.524 0.000 0.456
#> SRR537107     4  0.3852     0.8297 0.012 0.180 0.000 0.808
#> SRR537108     4  0.3958     0.8102 0.024 0.160 0.000 0.816
#> SRR537109     2  0.1610     0.8488 0.016 0.952 0.000 0.032
#> SRR537110     4  0.5597     0.4547 0.020 0.464 0.000 0.516
#> SRR537111     2  0.1584     0.8399 0.012 0.952 0.000 0.036
#> SRR537113     2  0.0817     0.8553 0.000 0.976 0.000 0.024
#> SRR537114     2  0.4253     0.7331 0.016 0.776 0.000 0.208
#> SRR537115     2  0.2805     0.8496 0.012 0.888 0.000 0.100
#> SRR537116     2  0.1209     0.8492 0.004 0.964 0.000 0.032
#> SRR537117     1  0.3266     0.8222 0.876 0.084 0.000 0.040
#> SRR537118     1  0.3919     0.7941 0.840 0.056 0.000 0.104
#> SRR537119     1  0.4374     0.8236 0.812 0.120 0.000 0.068
#> SRR537120     1  0.4410     0.8212 0.808 0.128 0.000 0.064
#> SRR537121     1  0.4102     0.7934 0.836 0.056 0.004 0.104
#> SRR537122     1  0.3919     0.7941 0.840 0.056 0.000 0.104
#> SRR537123     1  0.3504     0.8115 0.872 0.056 0.004 0.068
#> SRR537124     1  0.3307     0.8214 0.868 0.104 0.000 0.028
#> SRR537125     1  0.3919     0.7941 0.840 0.056 0.000 0.104
#> SRR537126     1  0.3919     0.7941 0.840 0.056 0.000 0.104
#> SRR537127     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000 1.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     5  0.6358     0.1130 0.280 0.020 0.000 0.132 0.568
#> SRR191640     4  0.5984     0.5881 0.280 0.112 0.000 0.596 0.012
#> SRR191641     1  0.5354     0.4286 0.628 0.012 0.000 0.052 0.308
#> SRR191642     4  0.6255     0.6236 0.188 0.132 0.000 0.636 0.044
#> SRR191643     4  0.4651     0.6954 0.016 0.184 0.000 0.748 0.052
#> SRR191644     4  0.6706     0.6522 0.136 0.268 0.000 0.556 0.040
#> SRR191645     4  0.5958     0.6125 0.244 0.128 0.000 0.616 0.012
#> SRR191646     4  0.5907     0.5838 0.284 0.124 0.000 0.588 0.004
#> SRR191647     5  0.4756     0.4669 0.052 0.004 0.000 0.240 0.704
#> SRR191648     5  0.4690     0.4677 0.048 0.004 0.000 0.240 0.708
#> SRR191649     4  0.6544     0.4113 0.424 0.116 0.000 0.440 0.020
#> SRR191650     4  0.5458     0.6986 0.040 0.216 0.000 0.688 0.056
#> SRR191651     2  0.6953    -0.4108 0.080 0.428 0.000 0.420 0.072
#> SRR191652     1  0.5069     0.4312 0.648 0.012 0.000 0.036 0.304
#> SRR191653     4  0.6784     0.0750 0.032 0.120 0.000 0.436 0.412
#> SRR191654     4  0.6498     0.5132 0.032 0.144 0.000 0.584 0.240
#> SRR191655     4  0.5234     0.6768 0.096 0.128 0.000 0.736 0.040
#> SRR191656     1  0.7957     0.0558 0.380 0.148 0.000 0.128 0.344
#> SRR191657     1  0.5755     0.4174 0.700 0.072 0.000 0.084 0.144
#> SRR191658     1  0.6130     0.4229 0.672 0.088 0.000 0.100 0.140
#> SRR191659     1  0.6074     0.3321 0.680 0.096 0.000 0.112 0.112
#> SRR191660     1  0.5897     0.3863 0.692 0.076 0.000 0.104 0.128
#> SRR191661     4  0.5715     0.6703 0.124 0.136 0.000 0.696 0.044
#> SRR191662     4  0.5492     0.6798 0.024 0.208 0.000 0.684 0.084
#> SRR191663     4  0.6453     0.4746 0.376 0.120 0.000 0.488 0.016
#> SRR191664     4  0.6102     0.4229 0.420 0.108 0.000 0.468 0.004
#> SRR191665     2  0.5972     0.5613 0.140 0.560 0.000 0.300 0.000
#> SRR191666     1  0.4922     0.3265 0.552 0.004 0.000 0.020 0.424
#> SRR191667     1  0.4892     0.3467 0.568 0.004 0.000 0.020 0.408
#> SRR191668     1  0.7686     0.1907 0.440 0.080 0.000 0.188 0.292
#> SRR191669     1  0.7947     0.1800 0.424 0.108 0.000 0.200 0.268
#> SRR191670     1  0.6511     0.3224 0.588 0.064 0.000 0.084 0.264
#> SRR191671     1  0.6511     0.3224 0.588 0.064 0.000 0.084 0.264
#> SRR191672     5  0.7421     0.1781 0.208 0.052 0.024 0.164 0.552
#> SRR191673     5  0.7421     0.1781 0.208 0.052 0.024 0.164 0.552
#> SRR191674     2  0.4439     0.7012 0.140 0.784 0.000 0.040 0.036
#> SRR191675     2  0.4321     0.7035 0.136 0.792 0.000 0.036 0.036
#> SRR191677     2  0.3096     0.7112 0.084 0.868 0.000 0.040 0.008
#> SRR191678     2  0.5889     0.5946 0.124 0.592 0.000 0.280 0.004
#> SRR191679     2  0.3406     0.7236 0.020 0.856 0.000 0.084 0.040
#> SRR191680     2  0.2291     0.7380 0.072 0.908 0.000 0.012 0.008
#> SRR191681     2  0.3678     0.7252 0.040 0.816 0.000 0.140 0.004
#> SRR191682     5  0.8216    -0.1148 0.316 0.136 0.000 0.196 0.352
#> SRR191683     2  0.4350     0.7276 0.100 0.784 0.000 0.108 0.008
#> SRR191684     2  0.1740     0.6980 0.000 0.932 0.000 0.056 0.012
#> SRR191685     2  0.3732     0.7179 0.076 0.840 0.000 0.060 0.024
#> SRR191686     2  0.3268     0.7389 0.060 0.856 0.000 0.080 0.004
#> SRR191687     2  0.3563     0.7198 0.088 0.848 0.000 0.036 0.028
#> SRR191688     2  0.5115     0.6644 0.092 0.676 0.000 0.232 0.000
#> SRR191689     2  0.4251     0.6974 0.040 0.756 0.000 0.200 0.004
#> SRR191690     2  0.6271     0.5633 0.180 0.572 0.000 0.240 0.008
#> SRR191691     2  0.1557     0.6963 0.000 0.940 0.000 0.052 0.008
#> SRR191692     2  0.5316     0.6552 0.084 0.656 0.000 0.256 0.004
#> SRR191693     2  0.5184     0.6975 0.140 0.736 0.000 0.088 0.036
#> SRR191694     2  0.4286     0.6998 0.140 0.792 0.000 0.032 0.036
#> SRR191695     2  0.5124     0.6408 0.068 0.668 0.000 0.260 0.004
#> SRR191696     2  0.4756     0.6688 0.052 0.704 0.000 0.240 0.004
#> SRR191697     2  0.4538     0.6822 0.044 0.724 0.000 0.228 0.004
#> SRR191698     2  0.7270     0.3852 0.184 0.476 0.000 0.292 0.048
#> SRR191699     2  0.3930     0.7191 0.056 0.792 0.000 0.152 0.000
#> SRR191700     1  0.5745     0.2893 0.496 0.020 0.000 0.044 0.440
#> SRR191701     2  0.1662     0.7195 0.004 0.936 0.000 0.056 0.004
#> SRR191702     2  0.1377     0.7327 0.020 0.956 0.000 0.020 0.004
#> SRR191703     2  0.2674     0.7208 0.084 0.888 0.000 0.020 0.008
#> SRR191704     2  0.6255     0.5555 0.108 0.560 0.000 0.312 0.020
#> SRR191705     2  0.5737     0.5921 0.120 0.592 0.000 0.288 0.000
#> SRR191706     2  0.3218     0.7233 0.128 0.844 0.000 0.024 0.004
#> SRR191707     2  0.5339     0.6553 0.116 0.660 0.000 0.224 0.000
#> SRR191708     2  0.5957     0.5719 0.148 0.572 0.000 0.280 0.000
#> SRR191709     2  0.2778     0.7208 0.032 0.892 0.000 0.060 0.016
#> SRR191710     2  0.4210     0.7217 0.064 0.788 0.000 0.140 0.008
#> SRR191711     2  0.1717     0.7049 0.008 0.936 0.000 0.052 0.004
#> SRR191712     2  0.5737     0.5935 0.120 0.592 0.000 0.288 0.000
#> SRR191713     2  0.1557     0.6988 0.000 0.940 0.000 0.052 0.008
#> SRR191714     2  0.1597     0.6974 0.000 0.940 0.000 0.048 0.012
#> SRR191715     2  0.3282     0.7075 0.084 0.860 0.000 0.044 0.012
#> SRR191716     2  0.5776     0.5889 0.124 0.588 0.000 0.288 0.000
#> SRR191717     2  0.3209     0.7390 0.060 0.860 0.000 0.076 0.004
#> SRR191718     2  0.5828     0.5971 0.116 0.596 0.000 0.284 0.004
#> SRR537099     5  0.3375     0.5338 0.048 0.020 0.000 0.072 0.860
#> SRR537100     5  0.4444     0.3935 0.180 0.000 0.000 0.072 0.748
#> SRR537101     1  0.5078     0.3700 0.576 0.004 0.000 0.032 0.388
#> SRR537102     4  0.5457     0.6340 0.020 0.136 0.000 0.700 0.144
#> SRR537104     4  0.6457     0.5220 0.060 0.400 0.000 0.488 0.052
#> SRR537105     5  0.5930     0.3002 0.032 0.052 0.000 0.352 0.564
#> SRR537106     4  0.5759     0.5823 0.016 0.344 0.000 0.576 0.064
#> SRR537107     4  0.4480     0.6889 0.004 0.180 0.000 0.752 0.064
#> SRR537108     4  0.4571     0.6713 0.000 0.188 0.000 0.736 0.076
#> SRR537109     2  0.2395     0.7122 0.016 0.904 0.000 0.072 0.008
#> SRR537110     4  0.5746     0.5878 0.016 0.340 0.000 0.580 0.064
#> SRR537111     2  0.1788     0.6996 0.004 0.932 0.000 0.056 0.008
#> SRR537113     2  0.1857     0.7100 0.004 0.928 0.000 0.060 0.008
#> SRR537114     2  0.6420     0.5008 0.160 0.524 0.000 0.308 0.008
#> SRR537115     2  0.5191     0.6636 0.080 0.672 0.000 0.244 0.004
#> SRR537116     2  0.1740     0.6956 0.000 0.932 0.000 0.056 0.012
#> SRR537117     5  0.7680    -0.0465 0.344 0.096 0.000 0.144 0.416
#> SRR537118     5  0.1571     0.5667 0.000 0.004 0.000 0.060 0.936
#> SRR537119     5  0.6929     0.0577 0.260 0.044 0.000 0.160 0.536
#> SRR537120     5  0.7475    -0.1284 0.368 0.048 0.000 0.200 0.384
#> SRR537121     5  0.1571     0.5667 0.000 0.004 0.000 0.060 0.936
#> SRR537122     5  0.1857     0.5648 0.008 0.004 0.000 0.060 0.928
#> SRR537123     5  0.3056     0.5306 0.068 0.000 0.000 0.068 0.864
#> SRR537124     1  0.7561     0.0669 0.400 0.068 0.000 0.168 0.364
#> SRR537125     5  0.1571     0.5667 0.000 0.004 0.000 0.060 0.936
#> SRR537126     5  0.1571     0.5667 0.000 0.004 0.000 0.060 0.936
#> SRR537127     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> SRR537128     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> SRR537129     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> SRR537130     3  0.0162     0.9948 0.004 0.000 0.996 0.000 0.000
#> SRR537131     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
#> SRR537132     3  0.0000     0.9990 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR191639     5  0.6460     0.2659 0.108 0.348  0 0.032 0.488 0.024
#> SRR191640     2  0.6211     0.3864 0.276 0.460  0 0.252 0.000 0.012
#> SRR191641     1  0.3072     0.7381 0.836 0.000  0 0.036 0.124 0.004
#> SRR191642     2  0.6232     0.3818 0.208 0.480  0 0.292 0.000 0.020
#> SRR191643     4  0.5359     0.5928 0.008 0.052  0 0.536 0.016 0.388
#> SRR191644     6  0.5963    -0.3933 0.024 0.076  0 0.396 0.016 0.488
#> SRR191645     2  0.6334     0.3949 0.276 0.460  0 0.244 0.000 0.020
#> SRR191646     2  0.6334     0.3949 0.276 0.460  0 0.244 0.000 0.020
#> SRR191647     5  0.4905     0.5713 0.084 0.068  0 0.108 0.736 0.004
#> SRR191648     5  0.4905     0.5713 0.084 0.068  0 0.108 0.736 0.004
#> SRR191649     2  0.6370     0.3377 0.372 0.460  0 0.128 0.028 0.012
#> SRR191650     4  0.5622     0.5787 0.020 0.052  0 0.512 0.016 0.400
#> SRR191651     6  0.5133    -0.2767 0.020 0.024  0 0.404 0.012 0.540
#> SRR191652     1  0.3010     0.7356 0.836 0.000  0 0.028 0.132 0.004
#> SRR191653     5  0.7078     0.2562 0.052 0.052  0 0.212 0.524 0.160
#> SRR191654     6  0.7336    -0.4797 0.028 0.048  0 0.328 0.224 0.372
#> SRR191655     4  0.5621    -0.1268 0.024 0.412  0 0.504 0.020 0.040
#> SRR191656     5  0.8532     0.2479 0.144 0.220  0 0.252 0.300 0.084
#> SRR191657     1  0.3680     0.6980 0.824 0.032  0 0.088 0.052 0.004
#> SRR191658     1  0.3317     0.7271 0.852 0.052  0 0.024 0.064 0.008
#> SRR191659     1  0.4449     0.6571 0.776 0.080  0 0.088 0.048 0.008
#> SRR191660     1  0.3849     0.6924 0.812 0.036  0 0.096 0.052 0.004
#> SRR191661     4  0.7278    -0.0194 0.112 0.348  0 0.400 0.016 0.124
#> SRR191662     4  0.6090     0.5742 0.036 0.052  0 0.484 0.028 0.400
#> SRR191663     2  0.6327     0.3834 0.300 0.468  0 0.212 0.004 0.016
#> SRR191664     2  0.6009     0.3469 0.356 0.452  0 0.184 0.000 0.008
#> SRR191665     2  0.5750     0.5890 0.144 0.604  0 0.024 0.004 0.224
#> SRR191666     1  0.4135     0.5934 0.668 0.000  0 0.032 0.300 0.000
#> SRR191667     1  0.4117     0.5942 0.672 0.000  0 0.032 0.296 0.000
#> SRR191668     2  0.7349     0.0777 0.336 0.400  0 0.128 0.120 0.016
#> SRR191669     2  0.7216     0.1457 0.320 0.432  0 0.112 0.120 0.016
#> SRR191670     1  0.4235     0.6408 0.752 0.152  0 0.004 0.088 0.004
#> SRR191671     1  0.4235     0.6408 0.752 0.152  0 0.004 0.088 0.004
#> SRR191672     4  0.6404    -0.5182 0.088 0.068  0 0.420 0.420 0.004
#> SRR191673     5  0.6404     0.2314 0.088 0.068  0 0.420 0.420 0.004
#> SRR191674     6  0.3462     0.7256 0.000 0.100  0 0.004 0.080 0.816
#> SRR191675     6  0.3556     0.7268 0.004 0.096  0 0.004 0.080 0.816
#> SRR191677     6  0.0790     0.7752 0.000 0.032  0 0.000 0.000 0.968
#> SRR191678     2  0.1908     0.5785 0.000 0.900  0 0.000 0.004 0.096
#> SRR191679     6  0.2596     0.7621 0.024 0.060  0 0.008 0.016 0.892
#> SRR191680     6  0.1471     0.7726 0.000 0.064  0 0.004 0.000 0.932
#> SRR191681     6  0.3511     0.6138 0.000 0.216  0 0.024 0.000 0.760
#> SRR191682     2  0.6549    -0.0154 0.120 0.464  0 0.016 0.360 0.040
#> SRR191683     6  0.3032     0.7347 0.004 0.128  0 0.024 0.004 0.840
#> SRR191684     6  0.0909     0.7663 0.000 0.012  0 0.020 0.000 0.968
#> SRR191685     6  0.2116     0.7603 0.036 0.024  0 0.024 0.000 0.916
#> SRR191686     6  0.2760     0.7437 0.000 0.116  0 0.024 0.004 0.856
#> SRR191687     6  0.2016     0.7721 0.024 0.040  0 0.016 0.000 0.920
#> SRR191688     2  0.4903     0.4244 0.028 0.532  0 0.020 0.000 0.420
#> SRR191689     6  0.4527    -0.1727 0.000 0.456  0 0.024 0.004 0.516
#> SRR191690     2  0.2398     0.5732 0.016 0.888  0 0.004 0.004 0.088
#> SRR191691     6  0.0935     0.7612 0.000 0.004  0 0.032 0.000 0.964
#> SRR191692     2  0.4916     0.2274 0.004 0.484  0 0.028 0.012 0.472
#> SRR191693     6  0.3709     0.7190 0.000 0.112  0 0.020 0.060 0.808
#> SRR191694     6  0.3556     0.7268 0.004 0.096  0 0.004 0.080 0.816
#> SRR191695     2  0.3767     0.5658 0.000 0.708  0 0.012 0.004 0.276
#> SRR191696     2  0.4365     0.4869 0.000 0.636  0 0.024 0.008 0.332
#> SRR191697     6  0.4627    -0.1595 0.000 0.456  0 0.024 0.008 0.512
#> SRR191698     2  0.7409     0.5169 0.108 0.476  0 0.056 0.092 0.268
#> SRR191699     6  0.1821     0.7702 0.008 0.040  0 0.024 0.000 0.928
#> SRR191700     1  0.5344     0.4685 0.564 0.100  0 0.008 0.328 0.000
#> SRR191701     6  0.1176     0.7759 0.000 0.024  0 0.020 0.000 0.956
#> SRR191702     6  0.1082     0.7761 0.000 0.040  0 0.004 0.000 0.956
#> SRR191703     6  0.0865     0.7758 0.000 0.036  0 0.000 0.000 0.964
#> SRR191704     2  0.4374     0.5394 0.004 0.700  0 0.048 0.004 0.244
#> SRR191705     2  0.1910     0.5845 0.000 0.892  0 0.000 0.000 0.108
#> SRR191706     6  0.2981     0.7528 0.004 0.092  0 0.004 0.044 0.856
#> SRR191707     6  0.3120     0.6960 0.008 0.112  0 0.040 0.000 0.840
#> SRR191708     2  0.4899     0.4446 0.016 0.560  0 0.036 0.000 0.388
#> SRR191709     6  0.0665     0.7711 0.008 0.008  0 0.004 0.000 0.980
#> SRR191710     6  0.2030     0.7649 0.000 0.064  0 0.028 0.000 0.908
#> SRR191711     6  0.0291     0.7727 0.004 0.000  0 0.004 0.000 0.992
#> SRR191712     2  0.2340     0.5930 0.000 0.852  0 0.000 0.000 0.148
#> SRR191713     6  0.0146     0.7694 0.000 0.004  0 0.000 0.000 0.996
#> SRR191714     6  0.0622     0.7702 0.000 0.008  0 0.012 0.000 0.980
#> SRR191715     6  0.1010     0.7764 0.004 0.036  0 0.000 0.000 0.960
#> SRR191716     2  0.1908     0.5785 0.000 0.900  0 0.000 0.004 0.096
#> SRR191717     6  0.2573     0.7459 0.000 0.112  0 0.024 0.000 0.864
#> SRR191718     2  0.2544     0.5892 0.000 0.852  0 0.004 0.004 0.140
#> SRR537099     5  0.3204     0.6425 0.032 0.056  0 0.032 0.864 0.016
#> SRR537100     5  0.3430     0.6358 0.040 0.068  0 0.032 0.848 0.012
#> SRR537101     1  0.3929     0.6221 0.700 0.000  0 0.028 0.272 0.000
#> SRR537102     4  0.6611     0.5380 0.012 0.048  0 0.452 0.124 0.364
#> SRR537104     6  0.5044    -0.3883 0.028 0.004  0 0.428 0.020 0.520
#> SRR537105     5  0.5912     0.4827 0.052 0.068  0 0.172 0.660 0.048
#> SRR537106     6  0.4935    -0.5007 0.004 0.020  0 0.476 0.020 0.480
#> SRR537107     4  0.5226     0.5928 0.004 0.044  0 0.544 0.020 0.388
#> SRR537108     4  0.5168     0.5901 0.004 0.040  0 0.548 0.020 0.388
#> SRR537109     6  0.1708     0.7547 0.024 0.004  0 0.040 0.000 0.932
#> SRR537110     4  0.4782     0.4549 0.004 0.012  0 0.492 0.020 0.472
#> SRR537111     6  0.1010     0.7590 0.000 0.004  0 0.036 0.000 0.960
#> SRR537113     6  0.0806     0.7730 0.000 0.008  0 0.020 0.000 0.972
#> SRR537114     2  0.4620     0.5993 0.052 0.724  0 0.040 0.000 0.184
#> SRR537115     2  0.4655     0.3042 0.004 0.516  0 0.024 0.004 0.452
#> SRR537116     6  0.0291     0.7708 0.004 0.004  0 0.000 0.000 0.992
#> SRR537117     5  0.7842     0.3154 0.148 0.208  0 0.232 0.388 0.024
#> SRR537118     5  0.2015     0.6493 0.012 0.056  0 0.000 0.916 0.016
#> SRR537119     5  0.6271     0.0759 0.092 0.428  0 0.028 0.432 0.020
#> SRR537120     2  0.5984    -0.0200 0.132 0.492  0 0.004 0.356 0.016
#> SRR537121     5  0.1801     0.6507 0.000 0.056  0 0.004 0.924 0.016
#> SRR537122     5  0.2309     0.6494 0.016 0.052  0 0.012 0.908 0.012
#> SRR537123     5  0.2941     0.6360 0.008 0.072  0 0.044 0.868 0.008
#> SRR537124     5  0.7805     0.2575 0.172 0.320  0 0.152 0.336 0.020
#> SRR537125     5  0.1851     0.6502 0.004 0.056  0 0.004 0.924 0.012
#> SRR537126     5  0.1801     0.6507 0.000 0.056  0 0.004 0.924 0.016
#> SRR537127     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537128     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537129     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537130     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537131     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
#> SRR537132     3  0.0000     1.0000 0.000 0.000  1 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 16450 rows and 111 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"
collect_plots() function collects all the plots made from res for all k (number of partitions)
into one single page to provide an easy and fast comparison between different k.
collect_plots(res)

The plots are:
k and the heatmap of
predicted classes for each k.k.k.k.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number() produces several plots showing different
statistics for choosing “optimized” k. There are following statistics:
k;k, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1.
If they are too similar, we won't accept k is better than k-1.
select_partition_number(res)

The numeric values for all these statistics can be obtained by get_stats().
get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.357           0.808       0.858         0.4914 0.496   0.496
#> 3 3 0.397           0.592       0.790         0.3019 0.651   0.407
#> 4 4 0.477           0.600       0.773         0.1166 0.781   0.465
#> 5 5 0.458           0.517       0.705         0.0522 0.885   0.639
#> 6 6 0.553           0.548       0.729         0.0447 0.843   0.488
suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*)
is inferred by
clue::cl_consensus()
function with the SE method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes() function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR191639     1  0.4022      0.858 0.920 0.080
#> SRR191640     1  0.0376      0.853 0.996 0.004
#> SRR191641     1  0.1414      0.859 0.980 0.020
#> SRR191642     1  0.0938      0.851 0.988 0.012
#> SRR191643     2  0.9608      0.660 0.384 0.616
#> SRR191644     2  0.9998      0.364 0.492 0.508
#> SRR191645     1  0.1184      0.848 0.984 0.016
#> SRR191646     1  0.1184      0.848 0.984 0.016
#> SRR191647     1  0.0000      0.855 1.000 0.000
#> SRR191648     1  0.0000      0.855 1.000 0.000
#> SRR191649     1  0.0000      0.855 1.000 0.000
#> SRR191650     1  0.4690      0.783 0.900 0.100
#> SRR191651     1  0.1633      0.851 0.976 0.024
#> SRR191652     1  0.1414      0.859 0.980 0.020
#> SRR191653     1  0.2423      0.836 0.960 0.040
#> SRR191654     1  0.7056      0.664 0.808 0.192
#> SRR191655     1  0.2423      0.836 0.960 0.040
#> SRR191656     1  0.7674      0.801 0.776 0.224
#> SRR191657     1  0.0000      0.855 1.000 0.000
#> SRR191658     1  0.2603      0.860 0.956 0.044
#> SRR191659     1  0.0000      0.855 1.000 0.000
#> SRR191660     1  0.0376      0.856 0.996 0.004
#> SRR191661     1  0.1633      0.845 0.976 0.024
#> SRR191662     1  0.2043      0.840 0.968 0.032
#> SRR191663     1  0.1633      0.844 0.976 0.024
#> SRR191664     1  0.0000      0.855 1.000 0.000
#> SRR191665     1  0.7056      0.823 0.808 0.192
#> SRR191666     1  0.1843      0.860 0.972 0.028
#> SRR191667     1  0.1843      0.860 0.972 0.028
#> SRR191668     1  0.7674      0.801 0.776 0.224
#> SRR191669     1  0.7674      0.801 0.776 0.224
#> SRR191670     1  0.7674      0.801 0.776 0.224
#> SRR191671     1  0.7674      0.801 0.776 0.224
#> SRR191672     1  0.7674      0.801 0.776 0.224
#> SRR191673     1  0.7674      0.801 0.776 0.224
#> SRR191674     2  0.2948      0.835 0.052 0.948
#> SRR191675     2  0.2423      0.839 0.040 0.960
#> SRR191677     2  0.1843      0.840 0.028 0.972
#> SRR191678     2  0.8081      0.598 0.248 0.752
#> SRR191679     2  0.6438      0.845 0.164 0.836
#> SRR191680     2  0.1843      0.840 0.028 0.972
#> SRR191681     2  0.2603      0.839 0.044 0.956
#> SRR191682     2  0.3274      0.831 0.060 0.940
#> SRR191683     2  0.2603      0.839 0.044 0.956
#> SRR191684     2  0.5629      0.845 0.132 0.868
#> SRR191685     2  0.2603      0.846 0.044 0.956
#> SRR191686     2  0.2778      0.837 0.048 0.952
#> SRR191687     2  0.1843      0.840 0.028 0.972
#> SRR191688     2  0.7815      0.824 0.232 0.768
#> SRR191689     2  0.2603      0.839 0.044 0.956
#> SRR191690     1  0.9248      0.408 0.660 0.340
#> SRR191691     2  0.7602      0.832 0.220 0.780
#> SRR191692     2  0.3114      0.833 0.056 0.944
#> SRR191693     2  0.3114      0.833 0.056 0.944
#> SRR191694     2  0.2603      0.839 0.044 0.956
#> SRR191695     2  0.2948      0.835 0.052 0.948
#> SRR191696     2  0.2948      0.835 0.052 0.948
#> SRR191697     2  0.2603      0.839 0.044 0.956
#> SRR191698     2  0.8207      0.708 0.256 0.744
#> SRR191699     2  0.7528      0.826 0.216 0.784
#> SRR191700     1  0.8813      0.729 0.700 0.300
#> SRR191701     2  0.5178      0.850 0.116 0.884
#> SRR191702     2  0.2778      0.848 0.048 0.952
#> SRR191703     2  0.2423      0.846 0.040 0.960
#> SRR191704     2  0.7883      0.821 0.236 0.764
#> SRR191705     2  0.7219      0.837 0.200 0.800
#> SRR191706     2  0.1843      0.840 0.028 0.972
#> SRR191707     2  0.7674      0.818 0.224 0.776
#> SRR191708     2  0.7815      0.825 0.232 0.768
#> SRR191709     2  0.7674      0.814 0.224 0.776
#> SRR191710     2  0.7528      0.835 0.216 0.784
#> SRR191711     2  0.7674      0.832 0.224 0.776
#> SRR191712     2  0.7376      0.839 0.208 0.792
#> SRR191713     2  0.6801      0.843 0.180 0.820
#> SRR191714     2  0.7056      0.844 0.192 0.808
#> SRR191715     2  0.1843      0.840 0.028 0.972
#> SRR191716     2  0.8555      0.731 0.280 0.720
#> SRR191717     2  0.2043      0.840 0.032 0.968
#> SRR191718     2  0.3584      0.841 0.068 0.932
#> SRR537099     1  0.5294      0.850 0.880 0.120
#> SRR537100     1  0.5629      0.848 0.868 0.132
#> SRR537101     1  0.1843      0.860 0.972 0.028
#> SRR537102     1  0.7950      0.576 0.760 0.240
#> SRR537104     2  0.8081      0.818 0.248 0.752
#> SRR537105     1  0.2603      0.834 0.956 0.044
#> SRR537106     2  0.7815      0.812 0.232 0.768
#> SRR537107     2  0.8081      0.818 0.248 0.752
#> SRR537108     2  0.8081      0.818 0.248 0.752
#> SRR537109     2  0.8081      0.818 0.248 0.752
#> SRR537110     2  0.7745      0.811 0.228 0.772
#> SRR537111     2  0.9833      0.572 0.424 0.576
#> SRR537113     2  0.8016      0.823 0.244 0.756
#> SRR537114     1  0.6438      0.721 0.836 0.164
#> SRR537115     2  0.5737      0.848 0.136 0.864
#> SRR537116     2  0.7815      0.826 0.232 0.768
#> SRR537117     1  0.9775      0.550 0.588 0.412
#> SRR537118     1  0.6801      0.833 0.820 0.180
#> SRR537119     1  0.7056      0.789 0.808 0.192
#> SRR537120     1  0.9393      0.646 0.644 0.356
#> SRR537121     1  0.7674      0.801 0.776 0.224
#> SRR537122     1  0.1414      0.859 0.980 0.020
#> SRR537123     1  0.7674      0.801 0.776 0.224
#> SRR537124     1  0.8386      0.769 0.732 0.268
#> SRR537125     1  0.4815      0.854 0.896 0.104
#> SRR537126     1  0.6438      0.837 0.836 0.164
#> SRR537127     1  0.6623      0.834 0.828 0.172
#> SRR537128     1  0.6531      0.836 0.832 0.168
#> SRR537129     1  0.6712      0.832 0.824 0.176
#> SRR537130     1  0.2043      0.860 0.968 0.032
#> SRR537131     1  0.6623      0.834 0.828 0.172
#> SRR537132     1  0.6623      0.834 0.828 0.172
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR191639     3  0.5650    0.42665 0.312 0.000 0.688
#> SRR191640     1  0.0661    0.83574 0.988 0.004 0.008
#> SRR191641     1  0.7825    0.48475 0.620 0.080 0.300
#> SRR191642     1  0.0747    0.83488 0.984 0.016 0.000
#> SRR191643     1  0.1289    0.82629 0.968 0.032 0.000
#> SRR191644     1  0.1163    0.82803 0.972 0.028 0.000
#> SRR191645     1  0.0661    0.83574 0.988 0.004 0.008
#> SRR191646     1  0.0829    0.83559 0.984 0.004 0.012
#> SRR191647     1  0.1289    0.83172 0.968 0.000 0.032
#> SRR191648     1  0.1031    0.83346 0.976 0.000 0.024
#> SRR191649     1  0.1989    0.82690 0.948 0.004 0.048
#> SRR191650     1  0.0424    0.83418 0.992 0.008 0.000
#> SRR191651     1  0.0000    0.83464 1.000 0.000 0.000
#> SRR191652     1  0.7909    0.11466 0.496 0.056 0.448
#> SRR191653     1  0.0424    0.83410 0.992 0.008 0.000
#> SRR191654     1  0.1163    0.82803 0.972 0.028 0.000
#> SRR191655     1  0.0592    0.83359 0.988 0.012 0.000
#> SRR191656     3  0.0237    0.66229 0.000 0.004 0.996
#> SRR191657     1  0.1860    0.82531 0.948 0.000 0.052
#> SRR191658     3  0.6260    0.09244 0.448 0.000 0.552
#> SRR191659     1  0.2537    0.81451 0.920 0.000 0.080
#> SRR191660     1  0.3784    0.77987 0.864 0.004 0.132
#> SRR191661     1  0.0000    0.83464 1.000 0.000 0.000
#> SRR191662     1  0.1031    0.82959 0.976 0.024 0.000
#> SRR191663     1  0.0424    0.83500 0.992 0.000 0.008
#> SRR191664     1  0.1860    0.82531 0.948 0.000 0.052
#> SRR191665     3  0.3619    0.63421 0.136 0.000 0.864
#> SRR191666     1  0.6448    0.48091 0.636 0.012 0.352
#> SRR191667     1  0.5860    0.67519 0.748 0.024 0.228
#> SRR191668     3  0.1031    0.66615 0.024 0.000 0.976
#> SRR191669     3  0.1031    0.66615 0.024 0.000 0.976
#> SRR191670     3  0.1163    0.66570 0.028 0.000 0.972
#> SRR191671     3  0.1163    0.66570 0.028 0.000 0.972
#> SRR191672     3  0.0424    0.66489 0.008 0.000 0.992
#> SRR191673     3  0.0424    0.66489 0.008 0.000 0.992
#> SRR191674     3  0.5810    0.17616 0.000 0.336 0.664
#> SRR191675     3  0.6274   -0.18370 0.000 0.456 0.544
#> SRR191677     2  0.4121    0.72426 0.000 0.832 0.168
#> SRR191678     3  0.5864    0.49805 0.008 0.288 0.704
#> SRR191679     2  0.3295    0.66278 0.008 0.896 0.096
#> SRR191680     2  0.4291    0.71908 0.000 0.820 0.180
#> SRR191681     2  0.5560    0.60706 0.000 0.700 0.300
#> SRR191682     3  0.4605    0.57711 0.000 0.204 0.796
#> SRR191683     2  0.5560    0.61453 0.000 0.700 0.300
#> SRR191684     2  0.1989    0.68255 0.004 0.948 0.048
#> SRR191685     2  0.4121    0.72426 0.000 0.832 0.168
#> SRR191686     2  0.6140    0.43754 0.000 0.596 0.404
#> SRR191687     2  0.4452    0.71334 0.000 0.808 0.192
#> SRR191688     2  0.5067    0.70989 0.116 0.832 0.052
#> SRR191689     3  0.6299   -0.00428 0.000 0.476 0.524
#> SRR191690     3  0.7889    0.50115 0.088 0.288 0.624
#> SRR191691     2  0.6191    0.70655 0.140 0.776 0.084
#> SRR191692     3  0.5058    0.54089 0.000 0.244 0.756
#> SRR191693     3  0.2356    0.63527 0.000 0.072 0.928
#> SRR191694     3  0.6026    0.07068 0.000 0.376 0.624
#> SRR191695     3  0.5465    0.48491 0.000 0.288 0.712
#> SRR191696     3  0.5835    0.39659 0.000 0.340 0.660
#> SRR191697     2  0.6252    0.27105 0.000 0.556 0.444
#> SRR191698     3  0.7245    0.33036 0.036 0.368 0.596
#> SRR191699     2  0.5060    0.71256 0.100 0.836 0.064
#> SRR191700     3  0.3530    0.66364 0.032 0.068 0.900
#> SRR191701     2  0.4172    0.72859 0.004 0.840 0.156
#> SRR191702     2  0.3941    0.72791 0.000 0.844 0.156
#> SRR191703     2  0.3816    0.72929 0.000 0.852 0.148
#> SRR191704     3  0.8141    0.28266 0.068 0.460 0.472
#> SRR191705     2  0.6416    0.07562 0.008 0.616 0.376
#> SRR191706     2  0.5968    0.54726 0.000 0.636 0.364
#> SRR191707     2  0.4291    0.65451 0.180 0.820 0.000
#> SRR191708     2  0.8333    0.10649 0.100 0.572 0.328
#> SRR191709     2  0.4291    0.65973 0.180 0.820 0.000
#> SRR191710     2  0.5442    0.73042 0.056 0.812 0.132
#> SRR191711     2  0.4676    0.73591 0.040 0.848 0.112
#> SRR191712     2  0.7453    0.12270 0.036 0.528 0.436
#> SRR191713     2  0.2050    0.68057 0.020 0.952 0.028
#> SRR191714     2  0.5331    0.71836 0.100 0.824 0.076
#> SRR191715     2  0.4654    0.70733 0.000 0.792 0.208
#> SRR191716     3  0.7425    0.41212 0.052 0.328 0.620
#> SRR191717     2  0.5465    0.63358 0.000 0.712 0.288
#> SRR191718     3  0.6111    0.28402 0.000 0.396 0.604
#> SRR537099     1  0.5465    0.62746 0.712 0.000 0.288
#> SRR537100     3  0.6661    0.21881 0.400 0.012 0.588
#> SRR537101     3  0.8185    0.07608 0.428 0.072 0.500
#> SRR537102     1  0.1163    0.82803 0.972 0.028 0.000
#> SRR537104     2  0.6302    0.16666 0.480 0.520 0.000
#> SRR537105     1  0.0592    0.83359 0.988 0.012 0.000
#> SRR537106     1  0.2066    0.80982 0.940 0.060 0.000
#> SRR537107     1  0.1860    0.81804 0.948 0.052 0.000
#> SRR537108     1  0.1964    0.81424 0.944 0.056 0.000
#> SRR537109     2  0.5291    0.59806 0.268 0.732 0.000
#> SRR537110     1  0.4702    0.65075 0.788 0.212 0.000
#> SRR537111     1  0.2772    0.79735 0.916 0.080 0.004
#> SRR537113     2  0.5591    0.55881 0.304 0.696 0.000
#> SRR537114     1  0.8487    0.25724 0.536 0.100 0.364
#> SRR537115     3  0.5728    0.48834 0.008 0.272 0.720
#> SRR537116     2  0.5538    0.70742 0.132 0.808 0.060
#> SRR537117     3  0.1289    0.65262 0.000 0.032 0.968
#> SRR537118     3  0.7794    0.26357 0.368 0.060 0.572
#> SRR537119     3  0.8005    0.53446 0.224 0.128 0.648
#> SRR537120     3  0.3805    0.65513 0.024 0.092 0.884
#> SRR537121     3  0.5178    0.47756 0.256 0.000 0.744
#> SRR537122     1  0.1585    0.83401 0.964 0.008 0.028
#> SRR537123     3  0.1411    0.66352 0.036 0.000 0.964
#> SRR537124     3  0.1163    0.66258 0.000 0.028 0.972
#> SRR537125     1  0.6912    0.48611 0.628 0.028 0.344
#> SRR537126     1  0.7075    0.12359 0.492 0.020 0.488
#> SRR537127     1  0.6095    0.43826 0.608 0.000 0.392
#> SRR537128     1  0.5560    0.60068 0.700 0.000 0.300
#> SRR537129     1  0.5678    0.57789 0.684 0.000 0.316
#> SRR537130     1  0.2711    0.81051 0.912 0.000 0.088
#> SRR537131     1  0.5810    0.54726 0.664 0.000 0.336
#> SRR537132     1  0.5431    0.61958 0.716 0.000 0.284
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR191639     1  0.5522     0.4167 0.668 0.044 0.000 0.288
#> SRR191640     4  0.3450     0.6671 0.000 0.156 0.008 0.836
#> SRR191641     2  0.5157     0.5528 0.000 0.688 0.028 0.284
#> SRR191642     4  0.5762     0.2616 0.000 0.352 0.040 0.608
#> SRR191643     4  0.1209     0.7613 0.000 0.004 0.032 0.964
#> SRR191644     4  0.1398     0.7599 0.000 0.004 0.040 0.956
#> SRR191645     4  0.4535     0.4660 0.000 0.292 0.004 0.704
#> SRR191646     4  0.5203     0.1248 0.000 0.416 0.008 0.576
#> SRR191647     4  0.0376     0.7605 0.004 0.004 0.000 0.992
#> SRR191648     4  0.0188     0.7608 0.000 0.004 0.000 0.996
#> SRR191649     2  0.5168     0.0997 0.000 0.500 0.004 0.496
#> SRR191650     4  0.0000     0.7600 0.000 0.000 0.000 1.000
#> SRR191651     4  0.0188     0.7598 0.004 0.000 0.000 0.996
#> SRR191652     2  0.6313     0.5504 0.028 0.648 0.044 0.280
#> SRR191653     4  0.0188     0.7601 0.000 0.000 0.004 0.996
#> SRR191654     4  0.0817     0.7620 0.000 0.000 0.024 0.976
#> SRR191655     4  0.1042     0.7623 0.000 0.008 0.020 0.972
#> SRR191656     1  0.0188     0.7793 0.996 0.004 0.000 0.000
#> SRR191657     2  0.5388     0.2212 0.012 0.532 0.000 0.456
#> SRR191658     2  0.7121     0.4122 0.160 0.540 0.000 0.300
#> SRR191659     2  0.5912     0.2348 0.036 0.524 0.000 0.440
#> SRR191660     2  0.5125     0.3957 0.008 0.604 0.000 0.388
#> SRR191661     4  0.0336     0.7612 0.000 0.008 0.000 0.992
#> SRR191662     4  0.0000     0.7600 0.000 0.000 0.000 1.000
#> SRR191663     4  0.1118     0.7590 0.000 0.036 0.000 0.964
#> SRR191664     4  0.4933     0.4691 0.016 0.296 0.000 0.688
#> SRR191665     1  0.6669     0.3282 0.572 0.320 0.000 0.108
#> SRR191666     4  0.6544     0.2791 0.060 0.352 0.012 0.576
#> SRR191667     4  0.6263    -0.0698 0.032 0.460 0.012 0.496
#> SRR191668     1  0.0895     0.7802 0.976 0.020 0.004 0.000
#> SRR191669     1  0.0779     0.7809 0.980 0.016 0.004 0.000
#> SRR191670     1  0.4452     0.5837 0.732 0.260 0.000 0.008
#> SRR191671     1  0.4699     0.4807 0.676 0.320 0.000 0.004
#> SRR191672     1  0.0336     0.7804 0.992 0.008 0.000 0.000
#> SRR191673     1  0.0336     0.7804 0.992 0.008 0.000 0.000
#> SRR191674     1  0.3052     0.7135 0.860 0.004 0.136 0.000
#> SRR191675     1  0.4661     0.4171 0.652 0.000 0.348 0.000
#> SRR191677     3  0.1474     0.8136 0.052 0.000 0.948 0.000
#> SRR191678     2  0.4095     0.7060 0.016 0.792 0.192 0.000
#> SRR191679     2  0.2839     0.5969 0.004 0.884 0.108 0.004
#> SRR191680     3  0.1661     0.8131 0.052 0.004 0.944 0.000
#> SRR191681     3  0.6039     0.1124 0.056 0.348 0.596 0.000
#> SRR191682     2  0.7299     0.5571 0.224 0.536 0.240 0.000
#> SRR191683     3  0.2867     0.7928 0.104 0.012 0.884 0.000
#> SRR191684     2  0.4655     0.2484 0.004 0.684 0.312 0.000
#> SRR191685     3  0.1576     0.8151 0.048 0.004 0.948 0.000
#> SRR191686     3  0.4248     0.6659 0.220 0.012 0.768 0.000
#> SRR191687     3  0.1824     0.8138 0.060 0.004 0.936 0.000
#> SRR191688     2  0.5345     0.5767 0.004 0.584 0.404 0.008
#> SRR191689     2  0.5615     0.6053 0.032 0.612 0.356 0.000
#> SRR191690     2  0.3668     0.7072 0.004 0.808 0.188 0.000
#> SRR191691     3  0.2739     0.7835 0.000 0.036 0.904 0.060
#> SRR191692     2  0.6943     0.5967 0.160 0.576 0.264 0.000
#> SRR191693     1  0.2654     0.7343 0.888 0.004 0.108 0.000
#> SRR191694     1  0.4679     0.4098 0.648 0.000 0.352 0.000
#> SRR191695     2  0.5687     0.6701 0.068 0.684 0.248 0.000
#> SRR191696     2  0.5851     0.6559 0.068 0.660 0.272 0.000
#> SRR191697     2  0.5775     0.5428 0.032 0.560 0.408 0.000
#> SRR191698     2  0.4978     0.6560 0.012 0.664 0.324 0.000
#> SRR191699     2  0.4978     0.6049 0.000 0.612 0.384 0.004
#> SRR191700     2  0.5091     0.7065 0.068 0.752 0.180 0.000
#> SRR191701     3  0.2918     0.7401 0.008 0.116 0.876 0.000
#> SRR191702     3  0.2737     0.7668 0.008 0.104 0.888 0.000
#> SRR191703     3  0.1182     0.8114 0.016 0.016 0.968 0.000
#> SRR191704     2  0.1082     0.6173 0.004 0.972 0.020 0.004
#> SRR191705     2  0.3052     0.6995 0.004 0.860 0.136 0.000
#> SRR191706     3  0.4661     0.3878 0.348 0.000 0.652 0.000
#> SRR191707     2  0.6079     0.5279 0.000 0.544 0.408 0.048
#> SRR191708     2  0.3626     0.7058 0.000 0.812 0.184 0.004
#> SRR191709     3  0.2565     0.7864 0.000 0.032 0.912 0.056
#> SRR191710     3  0.1930     0.7985 0.004 0.056 0.936 0.004
#> SRR191711     3  0.1847     0.7999 0.004 0.052 0.940 0.004
#> SRR191712     2  0.4632     0.6701 0.004 0.688 0.308 0.000
#> SRR191713     2  0.3375     0.6065 0.012 0.864 0.116 0.008
#> SRR191714     3  0.2553     0.7870 0.016 0.008 0.916 0.060
#> SRR191715     3  0.2973     0.7335 0.144 0.000 0.856 0.000
#> SRR191716     2  0.3870     0.7062 0.004 0.788 0.208 0.000
#> SRR191717     3  0.2867     0.7912 0.104 0.012 0.884 0.000
#> SRR191718     2  0.4472     0.7008 0.020 0.760 0.220 0.000
#> SRR537099     4  0.3711     0.6897 0.140 0.000 0.024 0.836
#> SRR537100     4  0.8730     0.0885 0.204 0.336 0.052 0.408
#> SRR537101     2  0.5389     0.6404 0.032 0.756 0.036 0.176
#> SRR537102     4  0.1743     0.7577 0.000 0.004 0.056 0.940
#> SRR537104     4  0.4804     0.3265 0.000 0.000 0.384 0.616
#> SRR537105     4  0.0657     0.7621 0.000 0.004 0.012 0.984
#> SRR537106     4  0.1474     0.7576 0.000 0.000 0.052 0.948
#> SRR537107     4  0.3105     0.7144 0.000 0.004 0.140 0.856
#> SRR537108     4  0.1743     0.7570 0.000 0.004 0.056 0.940
#> SRR537109     3  0.3569     0.6654 0.000 0.000 0.804 0.196
#> SRR537110     4  0.4891     0.4860 0.000 0.012 0.308 0.680
#> SRR537111     4  0.2593     0.7161 0.004 0.000 0.104 0.892
#> SRR537113     3  0.4673     0.5178 0.000 0.008 0.700 0.292
#> SRR537114     2  0.5863     0.6748 0.000 0.700 0.120 0.180
#> SRR537115     3  0.8156    -0.0996 0.220 0.344 0.420 0.016
#> SRR537116     3  0.2385     0.7898 0.000 0.028 0.920 0.052
#> SRR537117     1  0.1824     0.7626 0.936 0.004 0.060 0.000
#> SRR537118     4  0.7542     0.2653 0.280 0.004 0.204 0.512
#> SRR537119     2  0.7004     0.6807 0.072 0.632 0.248 0.048
#> SRR537120     2  0.6514     0.6667 0.152 0.636 0.212 0.000
#> SRR537121     1  0.4891     0.4099 0.680 0.000 0.012 0.308
#> SRR537122     4  0.1492     0.7598 0.004 0.004 0.036 0.956
#> SRR537123     1  0.0336     0.7789 0.992 0.000 0.008 0.000
#> SRR537124     1  0.4245     0.7063 0.820 0.116 0.064 0.000
#> SRR537125     4  0.6461     0.5299 0.168 0.004 0.168 0.660
#> SRR537126     4  0.6929     0.3520 0.308 0.004 0.120 0.568
#> SRR537127     4  0.5060     0.3491 0.412 0.000 0.004 0.584
#> SRR537128     4  0.4608     0.5358 0.304 0.000 0.004 0.692
#> SRR537129     4  0.4936     0.4236 0.372 0.000 0.004 0.624
#> SRR537130     4  0.2197     0.7331 0.080 0.000 0.004 0.916
#> SRR537131     4  0.4889     0.4491 0.360 0.000 0.004 0.636
#> SRR537132     4  0.4584     0.5398 0.300 0.000 0.004 0.696
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR191639     5  0.8310     0.0487 0.264 0.012 0.092 0.248 0.384
#> SRR191640     1  0.5731     0.2802 0.480 0.000 0.084 0.436 0.000
#> SRR191641     1  0.3604     0.5302 0.840 0.008 0.044 0.104 0.004
#> SRR191642     1  0.4986     0.4539 0.608 0.004 0.032 0.356 0.000
#> SRR191643     4  0.1306     0.7093 0.016 0.016 0.008 0.960 0.000
#> SRR191644     4  0.5135     0.4409 0.204 0.008 0.088 0.700 0.000
#> SRR191645     1  0.6087     0.3828 0.528 0.008 0.088 0.372 0.004
#> SRR191646     1  0.5754     0.4362 0.564 0.000 0.088 0.344 0.004
#> SRR191647     4  0.2043     0.7158 0.008 0.004 0.048 0.928 0.012
#> SRR191648     4  0.1757     0.7152 0.004 0.000 0.048 0.936 0.012
#> SRR191649     1  0.5840     0.4570 0.596 0.008 0.084 0.308 0.004
#> SRR191650     4  0.3779     0.6339 0.068 0.004 0.096 0.828 0.004
#> SRR191651     4  0.4018     0.6339 0.064 0.012 0.092 0.824 0.008
#> SRR191652     1  0.4286     0.5352 0.804 0.004 0.076 0.100 0.016
#> SRR191653     4  0.0162     0.7147 0.000 0.000 0.004 0.996 0.000
#> SRR191654     4  0.0566     0.7159 0.000 0.012 0.004 0.984 0.000
#> SRR191655     4  0.2144     0.6884 0.068 0.000 0.020 0.912 0.000
#> SRR191656     5  0.1168     0.6592 0.032 0.000 0.008 0.000 0.960
#> SRR191657     1  0.6580     0.4350 0.564 0.012 0.112 0.292 0.020
#> SRR191658     1  0.7524     0.4214 0.548 0.012 0.112 0.204 0.124
#> SRR191659     1  0.6936     0.4152 0.532 0.012 0.104 0.312 0.040
#> SRR191660     1  0.6001     0.4822 0.648 0.012 0.100 0.224 0.016
#> SRR191661     4  0.5263     0.4551 0.188 0.008 0.096 0.704 0.004
#> SRR191662     4  0.1774     0.6950 0.016 0.000 0.052 0.932 0.000
#> SRR191663     4  0.6180     0.0713 0.332 0.008 0.096 0.556 0.008
#> SRR191664     1  0.7028     0.2963 0.468 0.012 0.104 0.380 0.036
#> SRR191665     1  0.7341     0.2425 0.504 0.012 0.100 0.072 0.312
#> SRR191666     1  0.6203     0.4408 0.624 0.008 0.056 0.260 0.052
#> SRR191667     1  0.4965     0.5060 0.732 0.008 0.032 0.200 0.028
#> SRR191668     5  0.3885     0.5778 0.176 0.000 0.040 0.000 0.784
#> SRR191669     5  0.3409     0.6092 0.144 0.000 0.032 0.000 0.824
#> SRR191670     5  0.5999    -0.0197 0.456 0.008 0.072 0.004 0.460
#> SRR191671     1  0.5996    -0.0158 0.472 0.008 0.072 0.004 0.444
#> SRR191672     5  0.0880     0.6612 0.032 0.000 0.000 0.000 0.968
#> SRR191673     5  0.0880     0.6612 0.032 0.000 0.000 0.000 0.968
#> SRR191674     5  0.2929     0.6327 0.008 0.152 0.000 0.000 0.840
#> SRR191675     5  0.3814     0.5068 0.004 0.276 0.000 0.000 0.720
#> SRR191677     2  0.2563     0.7452 0.120 0.872 0.000 0.000 0.008
#> SRR191678     1  0.3011     0.5012 0.876 0.036 0.076 0.000 0.012
#> SRR191679     3  0.4065     0.8458 0.180 0.048 0.772 0.000 0.000
#> SRR191680     2  0.3022     0.7501 0.136 0.848 0.004 0.000 0.012
#> SRR191681     2  0.5604     0.3364 0.460 0.480 0.008 0.000 0.052
#> SRR191682     1  0.8030    -0.1019 0.432 0.136 0.188 0.000 0.244
#> SRR191683     2  0.5983     0.6666 0.168 0.656 0.020 0.004 0.152
#> SRR191684     3  0.4998     0.8167 0.172 0.108 0.716 0.004 0.000
#> SRR191685     2  0.3305     0.7283 0.088 0.864 0.008 0.012 0.028
#> SRR191686     2  0.6402     0.4509 0.168 0.508 0.004 0.000 0.320
#> SRR191687     2  0.3347     0.7343 0.100 0.856 0.004 0.012 0.028
#> SRR191688     1  0.3113     0.5350 0.864 0.100 0.020 0.016 0.000
#> SRR191689     1  0.4826     0.4532 0.760 0.140 0.068 0.000 0.032
#> SRR191690     1  0.1549     0.5251 0.944 0.016 0.040 0.000 0.000
#> SRR191691     2  0.4475     0.7284 0.180 0.756 0.008 0.056 0.000
#> SRR191692     1  0.6284     0.3499 0.660 0.128 0.092 0.000 0.120
#> SRR191693     5  0.3031     0.6367 0.016 0.128 0.004 0.000 0.852
#> SRR191694     5  0.3635     0.5479 0.004 0.248 0.000 0.000 0.748
#> SRR191695     1  0.4687     0.4547 0.780 0.068 0.108 0.000 0.044
#> SRR191696     1  0.5135     0.4320 0.752 0.076 0.108 0.000 0.064
#> SRR191697     1  0.6187     0.2222 0.588 0.288 0.096 0.000 0.028
#> SRR191698     1  0.5115     0.4134 0.720 0.132 0.140 0.004 0.004
#> SRR191699     1  0.5525     0.3365 0.664 0.212 0.116 0.008 0.000
#> SRR191700     1  0.4596     0.4535 0.780 0.076 0.116 0.000 0.028
#> SRR191701     2  0.4387     0.6363 0.328 0.660 0.004 0.004 0.004
#> SRR191702     2  0.3963     0.7265 0.256 0.732 0.004 0.000 0.008
#> SRR191703     2  0.2674     0.7457 0.140 0.856 0.000 0.000 0.004
#> SRR191704     3  0.5255     0.7891 0.304 0.072 0.624 0.000 0.000
#> SRR191705     1  0.3815     0.3509 0.764 0.012 0.220 0.000 0.004
#> SRR191706     2  0.4196     0.3474 0.004 0.640 0.000 0.000 0.356
#> SRR191707     1  0.5468     0.1607 0.608 0.328 0.016 0.048 0.000
#> SRR191708     1  0.2166     0.5139 0.912 0.012 0.072 0.004 0.000
#> SRR191709     2  0.4129     0.7331 0.204 0.756 0.000 0.040 0.000
#> SRR191710     2  0.4009     0.6837 0.312 0.684 0.000 0.000 0.004
#> SRR191711     2  0.4084     0.6506 0.328 0.668 0.000 0.004 0.000
#> SRR191712     1  0.1471     0.5321 0.952 0.024 0.020 0.000 0.004
#> SRR191713     3  0.5598     0.8180 0.248 0.112 0.636 0.000 0.004
#> SRR191714     2  0.3818     0.7002 0.128 0.824 0.008 0.028 0.012
#> SRR191715     2  0.3409     0.6780 0.052 0.836 0.000 0.000 0.112
#> SRR191716     1  0.1372     0.5335 0.956 0.024 0.016 0.000 0.004
#> SRR191717     2  0.5153     0.7094 0.204 0.684 0.000 0.000 0.112
#> SRR191718     1  0.3410     0.4988 0.856 0.052 0.076 0.000 0.016
#> SRR537099     4  0.6172     0.6179 0.008 0.084 0.132 0.684 0.092
#> SRR537100     4  0.8605     0.3439 0.180 0.056 0.132 0.472 0.160
#> SRR537101     1  0.3724     0.5244 0.848 0.004 0.028 0.064 0.056
#> SRR537102     4  0.1883     0.7135 0.012 0.048 0.008 0.932 0.000
#> SRR537104     4  0.3508     0.5764 0.000 0.252 0.000 0.748 0.000
#> SRR537105     4  0.0833     0.7161 0.004 0.016 0.004 0.976 0.000
#> SRR537106     4  0.1393     0.7101 0.008 0.024 0.012 0.956 0.000
#> SRR537107     4  0.2359     0.6999 0.036 0.060 0.000 0.904 0.000
#> SRR537108     4  0.1408     0.7130 0.008 0.044 0.000 0.948 0.000
#> SRR537109     2  0.4180     0.5605 0.036 0.744 0.000 0.220 0.000
#> SRR537110     4  0.4224     0.6220 0.080 0.120 0.008 0.792 0.000
#> SRR537111     4  0.5505     0.5606 0.040 0.148 0.080 0.724 0.008
#> SRR537113     2  0.7269     0.1994 0.196 0.464 0.032 0.304 0.004
#> SRR537114     1  0.2032     0.5468 0.924 0.004 0.020 0.052 0.000
#> SRR537115     1  0.6039     0.2932 0.604 0.232 0.000 0.008 0.156
#> SRR537116     2  0.3495     0.7495 0.160 0.812 0.000 0.028 0.000
#> SRR537117     5  0.2494     0.6533 0.032 0.056 0.008 0.000 0.904
#> SRR537118     4  0.8568     0.4115 0.112 0.116 0.136 0.504 0.132
#> SRR537119     1  0.7603     0.2520 0.576 0.128 0.148 0.116 0.032
#> SRR537120     1  0.6313     0.3645 0.668 0.104 0.124 0.004 0.100
#> SRR537121     5  0.7557    -0.1589 0.004 0.080 0.124 0.384 0.408
#> SRR537122     4  0.5448     0.6493 0.016 0.084 0.112 0.744 0.044
#> SRR537123     5  0.2948     0.5950 0.008 0.020 0.092 0.004 0.876
#> SRR537124     5  0.4878     0.4783 0.208 0.060 0.012 0.000 0.720
#> SRR537125     4  0.7615     0.5150 0.104 0.096 0.132 0.596 0.072
#> SRR537126     4  0.7981     0.4719 0.056 0.096 0.140 0.548 0.160
#> SRR537127     4  0.6297     0.3768 0.000 0.008 0.128 0.508 0.356
#> SRR537128     4  0.6142     0.4634 0.000 0.008 0.128 0.560 0.304
#> SRR537129     4  0.6122     0.4049 0.000 0.004 0.124 0.528 0.344
#> SRR537130     4  0.4214     0.6717 0.000 0.004 0.120 0.788 0.088
#> SRR537131     4  0.6111     0.4121 0.000 0.004 0.124 0.532 0.340
#> SRR537132     4  0.6013     0.4705 0.000 0.004 0.128 0.568 0.300
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR191639     1  0.4058      0.408 0.672 0.012 0.004 0.004 0.308 0.000
#> SRR191640     1  0.3694      0.628 0.740 0.232 0.000 0.028 0.000 0.000
#> SRR191641     2  0.4320      0.516 0.280 0.684 0.012 0.000 0.016 0.008
#> SRR191642     2  0.4763      0.354 0.336 0.608 0.000 0.048 0.000 0.008
#> SRR191643     4  0.4987      0.377 0.472 0.016 0.000 0.476 0.000 0.036
#> SRR191644     1  0.2126      0.645 0.904 0.020 0.000 0.072 0.000 0.004
#> SRR191645     1  0.3373      0.619 0.744 0.248 0.000 0.008 0.000 0.000
#> SRR191646     1  0.3565      0.539 0.692 0.304 0.000 0.004 0.000 0.000
#> SRR191647     4  0.4090      0.539 0.384 0.000 0.008 0.604 0.004 0.000
#> SRR191648     4  0.4118      0.526 0.396 0.000 0.008 0.592 0.004 0.000
#> SRR191649     1  0.3725      0.517 0.676 0.316 0.000 0.000 0.008 0.000
#> SRR191650     1  0.1663      0.620 0.912 0.000 0.000 0.088 0.000 0.000
#> SRR191651     1  0.2113      0.611 0.896 0.000 0.004 0.092 0.008 0.000
#> SRR191652     2  0.4753      0.344 0.356 0.600 0.008 0.000 0.028 0.008
#> SRR191653     4  0.4316      0.484 0.432 0.004 0.004 0.552 0.000 0.008
#> SRR191654     4  0.4171      0.550 0.380 0.004 0.000 0.604 0.000 0.012
#> SRR191655     1  0.5027     -0.128 0.552 0.068 0.000 0.376 0.000 0.004
#> SRR191656     5  0.1007      0.706 0.016 0.008 0.000 0.004 0.968 0.004
#> SRR191657     1  0.3964      0.637 0.776 0.164 0.016 0.004 0.040 0.000
#> SRR191658     1  0.4724      0.549 0.708 0.104 0.008 0.000 0.176 0.004
#> SRR191659     1  0.3379      0.664 0.832 0.100 0.008 0.004 0.056 0.000
#> SRR191660     1  0.4713      0.537 0.672 0.264 0.016 0.000 0.044 0.004
#> SRR191661     1  0.1674      0.639 0.924 0.004 0.000 0.068 0.004 0.000
#> SRR191662     1  0.3583      0.320 0.728 0.000 0.004 0.260 0.000 0.008
#> SRR191663     1  0.1633      0.670 0.932 0.044 0.000 0.024 0.000 0.000
#> SRR191664     1  0.2514      0.676 0.896 0.044 0.008 0.008 0.044 0.000
#> SRR191665     1  0.4781      0.303 0.608 0.072 0.000 0.000 0.320 0.000
#> SRR191666     2  0.5755      0.425 0.308 0.580 0.012 0.052 0.048 0.000
#> SRR191667     2  0.4836      0.563 0.252 0.684 0.012 0.024 0.020 0.008
#> SRR191668     5  0.3470      0.609 0.200 0.028 0.000 0.000 0.772 0.000
#> SRR191669     5  0.2973      0.657 0.136 0.024 0.000 0.004 0.836 0.000
#> SRR191670     5  0.5136      0.170 0.420 0.084 0.000 0.000 0.496 0.000
#> SRR191671     5  0.5252      0.144 0.424 0.096 0.000 0.000 0.480 0.000
#> SRR191672     5  0.0964      0.704 0.012 0.016 0.000 0.004 0.968 0.000
#> SRR191673     5  0.0912      0.705 0.008 0.012 0.000 0.004 0.972 0.004
#> SRR191674     5  0.2001      0.691 0.000 0.004 0.000 0.004 0.900 0.092
#> SRR191675     5  0.3429      0.558 0.000 0.004 0.000 0.004 0.740 0.252
#> SRR191677     6  0.3757      0.704 0.000 0.120 0.000 0.052 0.024 0.804
#> SRR191678     2  0.0582      0.718 0.004 0.984 0.004 0.000 0.004 0.004
#> SRR191679     3  0.4469      0.809 0.016 0.088 0.780 0.072 0.000 0.044
#> SRR191680     6  0.5127      0.706 0.000 0.176 0.040 0.056 0.020 0.708
#> SRR191681     2  0.4248      0.481 0.000 0.708 0.000 0.004 0.052 0.236
#> SRR191682     2  0.5327      0.574 0.000 0.712 0.028 0.124 0.096 0.040
#> SRR191683     6  0.7065      0.350 0.000 0.352 0.004 0.092 0.156 0.396
#> SRR191684     3  0.6487      0.751 0.028 0.112 0.612 0.112 0.000 0.136
#> SRR191685     6  0.5080      0.616 0.008 0.080 0.012 0.176 0.016 0.708
#> SRR191686     2  0.7102     -0.243 0.000 0.392 0.000 0.092 0.200 0.316
#> SRR191687     6  0.5337      0.640 0.004 0.104 0.000 0.160 0.048 0.684
#> SRR191688     2  0.3456      0.686 0.112 0.824 0.008 0.000 0.004 0.052
#> SRR191689     2  0.2007      0.712 0.008 0.924 0.000 0.012 0.016 0.040
#> SRR191690     2  0.1965      0.715 0.040 0.924 0.024 0.000 0.004 0.008
#> SRR191691     2  0.5858     -0.200 0.016 0.452 0.000 0.124 0.000 0.408
#> SRR191692     2  0.2643      0.701 0.000 0.888 0.000 0.040 0.036 0.036
#> SRR191693     5  0.3219      0.669 0.000 0.040 0.000 0.028 0.848 0.084
#> SRR191694     5  0.2989      0.642 0.000 0.008 0.000 0.004 0.812 0.176
#> SRR191695     2  0.1967      0.716 0.004 0.928 0.008 0.004 0.028 0.028
#> SRR191696     2  0.2311      0.714 0.004 0.912 0.004 0.016 0.028 0.036
#> SRR191697     2  0.3133      0.678 0.000 0.852 0.000 0.064 0.016 0.068
#> SRR191698     2  0.3077      0.674 0.004 0.848 0.004 0.112 0.004 0.028
#> SRR191699     2  0.2263      0.700 0.004 0.908 0.008 0.036 0.000 0.044
#> SRR191700     2  0.2365      0.694 0.000 0.892 0.004 0.084 0.008 0.012
#> SRR191701     2  0.4447      0.415 0.004 0.680 0.000 0.044 0.004 0.268
#> SRR191702     6  0.4675      0.634 0.008 0.324 0.036 0.000 0.004 0.628
#> SRR191703     6  0.3219      0.705 0.008 0.168 0.000 0.000 0.016 0.808
#> SRR191704     3  0.4324      0.783 0.020 0.108 0.784 0.024 0.000 0.064
#> SRR191705     2  0.4520      0.479 0.028 0.660 0.296 0.000 0.004 0.012
#> SRR191706     6  0.4051      0.189 0.000 0.008 0.000 0.000 0.432 0.560
#> SRR191707     2  0.3706      0.634 0.024 0.796 0.000 0.032 0.000 0.148
#> SRR191708     2  0.3765      0.648 0.048 0.780 0.164 0.000 0.000 0.008
#> SRR191709     6  0.3732      0.700 0.024 0.228 0.004 0.000 0.000 0.744
#> SRR191710     6  0.4015      0.562 0.012 0.372 0.000 0.000 0.000 0.616
#> SRR191711     6  0.3799      0.689 0.008 0.280 0.000 0.008 0.000 0.704
#> SRR191712     2  0.2359      0.715 0.056 0.904 0.020 0.000 0.012 0.008
#> SRR191713     3  0.4526      0.786 0.040 0.064 0.772 0.016 0.000 0.108
#> SRR191714     6  0.4817      0.612 0.048 0.092 0.052 0.020 0.016 0.772
#> SRR191715     6  0.3487      0.613 0.004 0.036 0.000 0.008 0.140 0.812
#> SRR191716     2  0.1909      0.715 0.052 0.920 0.024 0.000 0.004 0.000
#> SRR191717     6  0.6316      0.510 0.000 0.312 0.000 0.032 0.176 0.480
#> SRR191718     2  0.1527      0.719 0.020 0.948 0.012 0.000 0.012 0.008
#> SRR537099     4  0.2231      0.627 0.048 0.020 0.000 0.912 0.012 0.008
#> SRR537100     4  0.5268      0.142 0.012 0.360 0.008 0.564 0.056 0.000
#> SRR537101     2  0.4484      0.626 0.176 0.748 0.028 0.004 0.036 0.008
#> SRR537102     4  0.4875      0.532 0.368 0.028 0.000 0.580 0.000 0.024
#> SRR537104     4  0.5935      0.469 0.276 0.004 0.000 0.492 0.000 0.228
#> SRR537105     4  0.4315      0.542 0.384 0.004 0.004 0.596 0.000 0.012
#> SRR537106     1  0.4700     -0.412 0.488 0.008 0.000 0.476 0.000 0.028
#> SRR537107     4  0.5350      0.529 0.356 0.040 0.000 0.560 0.000 0.044
#> SRR537108     4  0.4954      0.516 0.388 0.008 0.000 0.552 0.000 0.052
#> SRR537109     6  0.4622      0.476 0.132 0.012 0.000 0.136 0.000 0.720
#> SRR537110     4  0.6046      0.474 0.332 0.068 0.000 0.524 0.000 0.076
#> SRR537111     1  0.3384      0.597 0.840 0.004 0.000 0.088 0.020 0.048
#> SRR537113     1  0.5618      0.360 0.584 0.064 0.000 0.012 0.028 0.312
#> SRR537114     2  0.3019      0.683 0.128 0.840 0.020 0.000 0.000 0.012
#> SRR537115     2  0.6264      0.466 0.108 0.576 0.000 0.000 0.212 0.104
#> SRR537116     6  0.4280      0.710 0.012 0.228 0.000 0.044 0.000 0.716
#> SRR537117     5  0.3748      0.642 0.000 0.084 0.000 0.060 0.816 0.040
#> SRR537118     4  0.3259      0.534 0.000 0.104 0.000 0.836 0.048 0.012
#> SRR537119     2  0.3627      0.605 0.000 0.760 0.004 0.216 0.004 0.016
#> SRR537120     2  0.3172      0.656 0.000 0.820 0.000 0.152 0.016 0.012
#> SRR537121     4  0.2926      0.581 0.004 0.008 0.000 0.844 0.132 0.012
#> SRR537122     4  0.2362      0.641 0.080 0.012 0.000 0.892 0.000 0.016
#> SRR537123     5  0.3885      0.509 0.000 0.044 0.000 0.220 0.736 0.000
#> SRR537124     2  0.5136      0.310 0.000 0.544 0.000 0.068 0.380 0.008
#> SRR537125     4  0.2892      0.591 0.028 0.068 0.000 0.876 0.016 0.012
#> SRR537126     4  0.2768      0.574 0.008 0.060 0.000 0.880 0.044 0.008
#> SRR537127     4  0.4488      0.516 0.044 0.000 0.016 0.692 0.248 0.000
#> SRR537128     4  0.4321      0.569 0.048 0.000 0.020 0.732 0.200 0.000
#> SRR537129     4  0.4234      0.557 0.044 0.000 0.016 0.732 0.208 0.000
#> SRR537130     4  0.3438      0.648 0.144 0.000 0.020 0.812 0.024 0.000
#> SRR537131     4  0.4295      0.563 0.048 0.000 0.016 0.728 0.208 0.000
#> SRR537132     4  0.4292      0.570 0.048 0.000 0.020 0.736 0.196 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)

consensus_heatmap(res, k = 3)

consensus_heatmap(res, k = 4)

consensus_heatmap(res, k = 5)

consensus_heatmap(res, k = 6)

Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)

membership_heatmap(res, k = 3)

membership_heatmap(res, k = 4)

membership_heatmap(res, k = 5)

membership_heatmap(res, k = 6)

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)

get_signatures(res, k = 3)

get_signatures(res, k = 4)

get_signatures(res, k = 5)

get_signatures(res, k = 6)

Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)

get_signatures(res, k = 3, scale_rows = FALSE)

get_signatures(res, k = 4, scale_rows = FALSE)

get_signatures(res, k = 5, scale_rows = FALSE)

get_signatures(res, k = 6, scale_rows = FALSE)

Compare the overlap of signatures from different k:
compare_signatures(res)

get_signature() returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot argument is set
to FALSE, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb is:
#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...
The columns in tb are:
which_row: row indices corresponding to the input matrix.fdr: FDR for the differential test. mean_x: The mean value in group x.scaled_mean_x: The mean value in group x after rows are scaled.km: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")

dimension_reduction(res, k = 3, method = "UMAP")

dimension_reduction(res, k = 4, method = "UMAP")

dimension_reduction(res, k = 5, method = "UMAP")

dimension_reduction(res, k = 6, method = "UMAP")

Following heatmap shows how subgroups are split when increasing k:
collect_classes(res)

If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0